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ABSTRACT

Decisions are often made in an uncertain environment. For example, in power system
operations, decision makers need to schedule generators without the accurate outcome of
various uncertain parameters, e.g., electricity load and renewable energy. If we have ac-
cess to the (joint) probability distribution of these uncertain parameters, we can apply the
stochastic programming approaches to schedule the generators. However, in practice, we
can hardly have access to such (true) probability distribution. Under such circumstances,
stochastic programming approaches may produce over-optimistic solutions and lead to an
unreliable power system. In this dissertation, we propose data-driven optimization methods
to model uncertainty directly based on the historical data. More specifically, we statistically
infer key characteristics of the (ambiguous) probability distribution (e.g., support, mean,
mean absolute deviation, unimodality, etc.) based on the historical data and construct an
ambiguity set consisting of all probability distributions that match the inferred character-
istics. Then, we make distributionally robust decisions that hedge against the worst-case
distributions within the ambiguity set. We study new data-driven distributionally robust
optimization models as well as their solution approaches and applications on power system
operations, including optimal power flow, unit commitment, and transmission expansion
planning. The specific contributions of this dissertation include (i) a distributionally robust
optimization approach for unit commitment and reserve procurement and an algorithm
based on generalized linear decision rule; (ii) a Wasserstein-moment ambiguity set for
the distributionally robust chance-constrained optimal power flow problem and a tractable
convex conservative approximation based on worst-case conditional value-at-risk; (iii) a
general framework for distributionally robust optimization models to incorporate shape in-
formation of probability distributions into ambiguity sets; (iv) an adaptive two-stage robust
transmission expansion planning model and an algorithm based on prioritization decision
rule.
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CHAPTER 1

Introduction

Decisions are often made in an uncertain environment. For example, in power system oper-
ations, decision makers need to decide generation schedule or transmission expansion plan
without the accurate outcome of various uncertain parameters, e.g., electricity loads and/or
renewable energy. The stochastic programming (SP) is one of the most popular approaches
for making decisions under uncertainty. SP often describes uncertainty by a number of
possible scenarios, each with a corresponding probability. For example, SP approaches
for unit commitment problem (see, e.g., [10, 23, 135, 121, 104]) model the renewable en-
ergy uncertainty by a number of possible scenarios. Then, a two-stage stochastic program
can be formulated to decide the day-ahead unit commitment and reserves in the first-stage
formulation and to decide economic dispatch in the second-stage formulation, with the
objective of minimizing the expected total costs. On optimal power flow problem, an SP
approach, called chance-constrained programming (see, e.g., [162, 141, 113, 21]) is widely
used to hedge against uncertainty. In a chance-constrained program, system operators aim
to satisfy a random constraint with high probability under a prescribed distribution at the
smallest cost. A basic challenge to applying SP is that, in practice, it may be hard to ob-
tain an accurate estimation of the (true) probability distribution due to the lack of historical
data and/or the fluctuating nature of the uncertainty. Under such circumstances, SP may
produce over-optimistic solutions and lead to disappointing out-of-sample performance in
real-world implementation. Alternatively, another widely used approach is called robust
optimization (RO). Different from SP, RO only assumes an uncertainty set of the random
parameters, which can be conveniently inferred by using a minimal amount of distribu-
tional information. For example, robust transmission expansion minimizes the cost of the
future transmission grid with regard to the worst-case scenario within an uncertainty set of
parameters (e.g., renewable energy, load, etc.) [70, 32, 101]. To compute the worst-case
cost, one needs to compute the optimal power flow after the uncertainties are realized, lead-
ing to a two-stage (adaptive) RO model. Similarly, robust unit commitment approaches aim
to minimize the worst-case generation and reserve costs [75, 169, 18, 167, 55] and also lead
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to two-stage RO models. Various decision rules have been proposed to solve the two-stage
RO models (see, e.g., continuous recourse [149, 93] and mixed-integer recourse [60, 16]).
The basic idea of decision rules is to make the recourse decisions be a function of the
first-stage decision and the realized uncertainties.

RO ignores commonly available distributional information, e.g., mean and variance of
the uncertainty. Also, RO only focuses on the worst-case scenario while omitting all other
possible (and likely) scenarios. As a result, it is often concerned that the solutions obtained
by RO are over-conservative. In this dissertation, we study data-driven distributionally ro-
bust optimization (DRO) approaches for power system decision-making under uncertainty.
Unlike SP, DRO does not assume perfect knowledge of the probability distribution of the
uncertain parameters. Instead, it considers a family of probability distributions that share
certain characteristics of the true distribution. By incorporating the distributional informa-
tion, DRO makes decisions under the worst-case distribution. More specifically, we statis-
tically infer key characteristics of the (ambiguous) probability distribution (e.g., support,
mean, mean absolute deviation from the median, unimodality, etc.) based on the historical
data and construct an ambiguity set consisting of all distributions that match the inferred
characteristics. Then, we make decisions that hedge against the worst-case distribution
within the ambiguity set. Hence, the decisions obtained from DRO approaches are less
conservative than their RO counterparts. DRO methods have received growing attention
in the last decade (see, e.g., [37, 52, 151, 20, 73]) and recently have also been applied in
power system operations (see, e.g., [53, 155, 74, 164, 34]). For example, [155] studied a
DRO model for unit commitment problem (without reserve procurement decisions) consid-
ering uncertain wind power generation. A linear decision rule was applied to approximate
the recourse decisions in the second-stage problem. [166] studied contingency-constrained
unit commitment and proposed an iterative algorithm based on Benders’ decomposition.
Distributionally robust chance-constrained optimal power flow was studied in [164]. It
considered the renewable energy uncertainty as well as the load reserve uncertainty. The
ambiguity sets in these works consist of statistical information such as mean and covari-
ance. Moment-based ambiguity sets can usually lead to computationally tractable refor-
mulations, such as semidefinite program or second-order conic program. In many practical
cases, we can obtain more distributional information than moments. For example, a refer-
ence distribution can be obtained from historical data by data-fitting. Although measure-
ment errors are inevitable, the system operators may believe that the distance between the
true distribution and the reference distribution should be small. With this assumption, more
recently, probability discrepancy functions have been applied to construct ambiguity set,
including the Prokhorov metric [45], the φ-divergence [73, 67], and the Wasserstein met-
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ric [105, 152, 47]. The discrepancy ambiguity set is defined as a neighborhood surrounding
a reference distribution, in which all candidate distributions are close to the reference one
measured by the prescribed discrepancy. The degree of conservatism of discrepancy am-
biguity sets can be controlled by adjusting the discrepancy upper bound to the reference
distribution. A Kullback–Leibler divergence based ambiguity set was considered for unit
commitment[34]. An iterative algorithm based on a Benders’ decomposition was proposed
and it can guarantee global convergence within finite iterations. In [42], distributionally
robust chance-constrained optimal power flow was model with Wasserstein metric. It also
considered an approximated ac model instead of more tractable dc model. In this disser-
tation, We study new data-driven DRO approaches as well as their solution approaches
and applications on power system operations, including optimal power flow, unit commit-
ment, and transmission expansion planning. We introduce the details of our approaches
and applications in each chapter as follows.

In Chapter 2, we study a data-driven approach for unit commitment and reserve pro-
curement. The unit commitment (UC) problem [103] aims to decide an efficient schedule
of generation in the power system to satisfy the forecasted loads, and required safety con-
straints. UC and reserve procurement decisions are to ensure sufficient generation poten-
tials in proper locations to reliably serve the forecasted loads under transmission congestion
by leveraging off-line resources if necessary. Due to the low operational costs, low green
house gas emission, and government incentives (e.g., tax credits), a growing share of re-
newable energy is incorporated into the power systems. However, the inherent volatility
of renewable energy requires the UC and reserve decisions to be made under uncertainty.
Several methods have been proposed to improve the UC and reserve procurement deci-
sions under uncertainty (see, e.g., SP [10, 23, 135, 121, 104], RO [75, 169, 18, 167, 55]).
From the perspective of distributional information, SP and RO lie in opposite ends of the
spectrum. In this chapter, with the objective of optimizing day-ahead UC and reserve pro-
curement, we study a data-driven approach that relies on a set of descriptive statistics of the
renewable energy that can be conveniently estimated based on historical data, e.g., mean
and mean absolute deviation from the median. This approach lies in between SP and RO.
It does not need the accurate information of the uncertainty and meanwhile is less conser-
vative than RO beacuse more distributional information is considered. We introduce the
generalized linear decision rules to conservatively reformulate the data-driven model as a
mixed-integer linear program, which facilitates efficient commercial solvers like CPLEX.
We conduct a case study based on the real-world wind data. The out-of-sample tests in-
dicate that, with a small amount of historical data, the proposed data-driven approach can
enhance the system flexibility and capability of accommodating renewable energy.
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In Chapter 3, we investigate the distributionally robust chance-constrained optimal
power flow problem with a Wasserstein-moment ambiguity set. Optimal power flow (OPF)
is one of the most critical decision-making problems in power system operations. It aims
to minimize power system costs, e.g., generation costs and power loss, while satisfying
the predicted loads and safety constraints on generators and transmission lines. Integrat-
ing uncertain renewable energy creates new challenges for the power system operators to
ensure safety constraints, such as the transmission capacity limits. The chance-constrained
program (CCP) is an effective and convenient method to control the risk when decisions
are made under uncertainty. Specifically, CCP ensures that the safety constraints are satis-
fied with a pre-required high probability. However, major challenges of CCP include: (i)
the joint probability distribution of the uncertainties is rarely accessible in reality and (ii)
CCP is in general is computationally intractable. To address these challenges, distribution-
ally robust chance constraints (DRCC) were proposed (see, e.g., [37, 171]). In DRCC, the
uncertain constraints are required to be satisfied with given probability under all distribu-
tions within an ambiguity set. The ambiguity set contains distributions characterized by
certain characteristics of the (unknown) true distribution. A critical component in applying
DRCC is the choice of the ambiguity set. In this chapter, we propose a Wasserstein-moment
ambiguity set which takes into account both probability discrepancy and moment informa-
tion of the uncertainty. DRCC model with a Wasserstein-moment ambiguity set combines
predictive, prescriptive, and preventive analytics. Therefore, this approach can directly in-
corporate the renewable data and provide powerful out-of-sample performance guarantee
even with a limited number of data samples. In addition, by using conditional value-at-
risk approximation, the model can be conservatively approximated as a linear program
or a second-order cone program depending on the choice of the Wasserstein metric. In
the numerical experiments with real-world wind forecast data, the proposed model shows
improved performance over two benchmark approaches, including the Gaussian approxi-
mation based approach and the DRCC-OPF model with a moment ambiguity set.

In Chapter 4, we investigate the distributionally robust optimization using shape in-
formation. DRO is a natural and effective way of modeling decision-making problems
under ambiguous uncertainty. In reality, in addition to historical data, the decision maker
often possesses certain shape information of the probability distribution (e.g., skewness,
sub-Gaussian, or sub-exponential properties, etc.), which can be taken into account to fur-
ther reduce the conservatism. Unfortunately, a straightforward incorporation of such shape
information often results in non-convex DRO models, making them computationally pro-
hibitive. In this chapter, we investigate a DRO framework that models shape information
in a computationally tractable manner. In particular, we consider a class of concentration
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inequalities, potentially leading to an infinitely constrained ambiguity set. Then, we show
that the corresponding DRO model can be conservatively approximated as a stochastic pro-
gram with respect to an (unambiguous) probability distribution. This facilitates efficient
solution algorithms (e.g., sample average approximation) for DRO models with shape in-
formation. In addition, we show that this approximation is tight for a wide class of DRO
models. Finally, we demonstrate the theoretical results via computational case studies on
the appointment scheduling problem and the risk-constrained optimal power flow problem.

In Chapter 5, we investigate the adaptive robust transmission expansion planning with
prioritization. The transmission expansion planning (TEP) problem aims to decide an
optimal augmentation plan of an existing transmission network to serve the forthcoming
electric loads while satisfying the required security constraints. Due to the long planning
horizon, the TEP problem inevitably involves significant uncertainties arising from, e.g.,
renewable energy, loads, and installation budget. RO has been widely used for expansion
decision making under uncertainty [70, 32, 101]. To compute the worst-case cost, robust
TEP needs to compute the optimal power flow after the uncertainties are realized, leading to
a two-stage (adaptive) RO model. Ideally, we would like to install additional lines/circuits
adaptively with respect to the unveiled uncertainties (e.g., budget, load, and renewable en-
ergy). Unfortunately, the adaptive installation result in a RO model with mixed-integer re-
course, which is computationally prohibitive. One way to address this challenge is by waiv-
ing the option of adaptive installation and accordingly robust TEP reduces to a two-stage
RO model with continuous recourse (see, e.g., [69]). We can then apply the column-and-
constraint generation algorithm [160] to efficiently solve robust TEP. The second stream
of literature designs decision rules to determine the adaptive installation as a function of
the first-stage installation and the realized uncertainties (see, e.g., [60, 16]). In this chapter,
we adopt the decision rule of prioritization [80, 81] to the two-stage adaptive robust TEP
model. In particular, we rank all possible expansions in a priority list and commit to each
expansion based on its priority and the realized uncertainty (e.g., the realized budget). The
prioritization decision rule is consistent with the practice in industrial and governmental
decision making and provides a more interpretable expansion plan. Additionally, it enables
us to efficiently compute the adaptive binary variables in the proposed robust TEP model. A
tailored column-and-constraint generation algorithm is designed to solve the resulting for-
mulation. We demonstrate the performance of the proposed approach based on the Garver
6-bus and the southern Brazilian 46-bus system with the real-world wind data.

Finally, in Chapter 6, we conclude this dissertation and discuss future research direc-
tions.
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CHAPTER 2

A Data-Driven Approach for Unit Commitment
and Reserve Procurement

2.1 Introduction

The last decade has witnessed a worldwide emergence of renewable energy in the en-
ergy mix [110]. For example, during years 2008-2013, the total installed wind power
capacity increased from 121GW to 318GW (increasing by 162.81%), and the total grid-
connected solar photovoltaic (PV) capacity increased from 16GW to 139GW (increasing
by 768.75%). Up to year 2012, the renewable energy accounts for more than 10% of
the world energy consumption [68]. Due to the low operational costs, low green house
gas emission, and government incentives (e.g., tax credits), the share of renewable energy
(e.g., wind and solar) in the U.S. energy mix is projected to continue growing at an am-
bitious pace [136], and the Department of Energy has also analyzed a scenario where the
wind power alone provides 20% of the U.S. electricity needs by year 2030 [91]. As more
wind/solar energy are integrated in the energy mix, the power systems can become more
cost-effective.

However, this blueprint remains far-fetched before the power systems can effectively
accommodate the fluctuating renewable energy. Due to its inherent volatility, renewable
energy is often difficult to predict. Meanwhile, it can be challenging to estimate the proba-
bility distributions of renewable energy. For example, it is observed that normal distribution
is not able to accurately estimate the wind forecasting error in U.S. (see, e.g., [64, 63]). Be-
sides, the forecasted probability distributions of solar power can largely deviate from the
true distributions [163]. As compared to the existing renewable resources, less amounts of
historical data are available for the new ones, contributing to the distributional ambiguity
of renewable energy. As a result, it can be difficult to perfectly accommodate the renew-
able energy when faced with transmission congestions and physical restrictions of other
generation resources. In order to maintain the power systems reliability, system operators
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often need to curtail a considerable portion of renewable energy [116] which equivalently
increases the use of fossil resources.

One possible approach to better accommodate the volatile renewable energy is by ad-
vanced unit commitment (UC) and reserve procurement, which enhance the system flexibil-
ity to adapt to the real-time fluctuations. In power system operations, various reserves (e.g.,
spinning and operating) can be synchronized or put online within a short amount of time
(e.g., 10 min) to provide ramping capability [125, 144, 72]. In practice, several Independent
System Operators (ISOs) (e.g., ERCOT) conduct reliability unit commitment (RUC) runs
after the closure of day-ahead markets [150]. RUC runs ensure sufficient generation poten-
tial in proper locations to reliably serve the forecasted loads under transmission congestion
by leveraging off-line resources if necessary. Several methods have been proposed and
studied in the literature to improve the RUC runs. Deterministic approaches often describe
the renewable energy uncertainty by their forecasted values and impose a fixed percent-
age of the total online capacity (and the capacity that can be quickly online) as energy re-
serves [170]. Alternatively, the stochastic UC approaches (see, e.g., [10, 23, 135, 121, 104])
are popular methods that describe the renewable energy uncertainty by a number of possible
scenarios, each with a corresponding probability. Then, a two-stage stochastic program is
formulated to decide the day-ahead UC and reserves in the first-stage problem and to decide
economic dispatch (ED) in the second-stage problem, with the objective of minimizing the
expected total costs. More recently, robust UC approaches (see, e.g., [75, 169, 18, 167, 55])
have been proposed to ensure the system reliability. As compared to the stochastic ap-
proaches, the robust UC approaches describe the renewable energy ξ by an uncertainty set
(e.g., a polytope). Meanwhile, the robust UC approaches aim to minimize the worst-case

total costs with respect to ξ that can be realized within the uncertainty set. Linear decision
rules (LDRs, also known as affine policies) have been studied in the literature of stochastic
programming (see, e.g., [83]) and robust optimization (see, e.g., [13]). In power system ap-
plications, LDRs have been successfully applied in chance-constrained optimal power flow
(OPF) (see, e.g., [141, 21]), robust adjustable OPF (see, e.g., [147, 148, 70]), and robust
unit commitment (see, e.g., [149, 93]).

From the perspective of distributional information, stochastic and robust UC approaches
lie in opposite ends of the spectrum. On the one hand, stochastic UC approaches need
an accurate estimate of Pξ so that a set of scenarios can be generated for the two-stage
stochastic UC formulation. However, as more renewable energy resources are integrated
in the power systems, accurately estimating Pξ can be difficult due to the lack of abundant
historical data. Accordingly, the UC and reserves obtained from stochastic UC approaches
can be sensitive to the Pξ estimates. On the other hand, robust UC approaches need a min-
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imal amount of distributional information, i.e., an uncertainty set of ξ that can often be
conveniently estimated. However, robust UC approaches tend to ignore other commonly
available distributional information, e.g., mean of ξ. Also, robust UC approaches focus
only on the worst-case scenario of ξ while omitting other possible (and likely) scenarios.
As a result, it is often concerned that robust UC solutions can be over-conservative. In
this work, we propose a data-driven approach that relies on a set of descriptive statistics
of the renewable energy that can be conveniently estimated based on historical data, e.g.,
mean and mean absolute deviation from the median (MAD-median). This approach lies in
between the stochastic and robust UC approaches, because it does not require an accurate
estimate of Pξ and meanwhile uses more distributional information than the uncertainty
set. As a result, the obtained UC and reserves are immune to biased probability distribu-
tion estimates and meanwhile less conservative than the robust solutions. The proposed
approach applies the methodology of distributionally robust optimization (DRO) that was
first studied in [124]. DRO methods have received growing attention in the last decade (see,
e.g., [37, 52, 151, 20, 73]) and recently have also been applied in power system operations
(see e.g., [53, 155, 74]). As compared to the existing literature, this work investigates the
reserve procurement in a DRO framework. It is demonstrated in the case study that our ap-
proach encourages to procure more reserves from the thermal units, which leads to higher
utilization of renewable energy and a lower average cost than in the robust UC approach.

In the remainder of this chapter, we describe the mathematical formulations in Section
2.2. In Section 2.3, we derive a solution methodology of the data-driven approach based
on generalized linear decision rules. Case studies and results are reported in Section 2.4,
before we conclude this research in Section 2.5. In addition, we list the nomenclature in
Section 2.6.

2.2 Mathematical Formulation

In this section, we start by reviewing the two-stage stochastic UC models [75] that can be
formulated as follows:

min
y,u,v,e,r

T∑
t=1

∑
i∈I

(SUiuit + SDivit + NLiyit + cU
i r

U
it + cD

i r
D
it) + EPξ [Q(e, r, ξ)] (2.1a)

s.t. yi(t−1) − yit + uit ≥ 0, ∀i ∈ I \ IR, ∀t ∈ T , (2.1b)

vit = yi(t−1) − yit + uit,∀i ∈ I \ IR, ∀t ∈ T , (2.1c)

yit − yi(t−1) ≤ yiτ , ∀i ∈ I \ IR,∀t ∈ T ,
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∀τ = t+ 1, . . . ,min{t+ MUi − 1, T}, (2.1d)

yi(t−1) − yit ≤ 1− yiτ , ∀i ∈ I \ IR,∀t ∈ T ,

∀τ = t+ 1, . . . ,min{t+ MDi − 1, T}, (2.1e)

eit + rU
it ≤ Uiyit, ∀i ∈ I \ IR, ∀t ∈ T , (2.1f)

eit − rD
it ≥ Liyit, ∀i ∈ I \ IR,∀t ∈ T , (2.1g)

yit, uit, vit ∈ {0, 1}, eit, rU
it, r

D
it ≥ 0,∀i ∈ I \ IR, ∀t ∈ T , (2.1h)

where I = {1, . . . , I} is the set of all generators, IR ⊆ I is the set of generators that utilize
renewable energy, T = {1, . . . , T} is the set of operating time intervals, SUi (resp. SDi)
is the start-up (resp. shut-down) cost for generator i, NLi is the no-load cost of thermal
generator i, cU

i (resp. cD
i ) is the unit cost of upward (resp. downward) reserve amount of

generator i, MUi (resp. MDi) is the minimum-up (resp. minimum-down) time for thermal
generator i, Ui (resp. Li) is the maximal (resp. minimal) power output if generator i is
on, binary variable uit (resp. vit) indicates if generator i is started up (resp. shut down)
at the beginning of time period t, binary variable yit indicates if generator i is on during
time period t, random variable ξjt is the available renewable energy of generator j in time
period t, Pξ is the probability distribution of ξ, and Q(e, r, ξ) represents the fuel costs
with respect to given scheduled electricity generation e = (eit : i ∈ I \ IR, t ∈ T ),
upward/downward reserves r = (rU

it/r
D
it : i ∈ I \IR, t ∈ T ), and realized renewable energy

ξ = (ξjt : j ∈ IR, t ∈ T ). More specifically, the value of Q(e, r, ξ) equals to the optimal
objective value of a second-stage ED problem that is formulated as follows:

min
g

T∑
t=1

∑
i∈I\IR

fi(git) (2.2a)

s.t.
∑
i∈I

git =
B∑
b=1

Dbt, ∀t ∈ T , (2.2b)

eit − rD
it ≤ git ≤ eit + rU

it, ∀i ∈ I \ IR, ∀t ∈ T , (2.2c)

gi(t+1) − git ≤ RUi, ∀i ∈ I \ IR, ∀t = 1, . . . , T − 1, (2.2d)

git − gi(t+1) ≤ RDi, ∀i ∈ I \ IR, ∀t = 1, . . . , T − 1, (2.2e)

− Cmn ≤
B∑
b=1

Kb
mn

(∑
i∈Gb

git −Dbt

)
≤ Cmn, ∀(m,n) ∈ L, ∀t ∈ T , (2.2f)

0 ≤ gjt ≤ ξjt, ∀j ∈ IR,∀t ∈ T , (2.2g)
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where B = {1, . . . , B} is the set of buses, Gb is the set of generators at bus b, L is the set of
transmission lines linking two buses, Cmn is the capacity of the transmission line linking
bus m and bus n, Dbt is the load at bus b in time period t, fi(·) is the fuel cost function of
generator i, Kb

mn is the line flow distribution factor for transmission line linking bus m and
bus n due to the net injection at bus b, RUi (resp. RDi) is the ramp-up (resp. ramp-down)
limit for thermal generator i, variable git is the actual amount of electricity generated by
generator i in time period t.

In formulation (2.1)–(2.2) described above, we seek to minimize the expected total costs
including UC, reserve, and fuel costs. In this work, we approximate the fuel cost function
fi(git) by using a piecewise linear approximation. Constraints (2.1b) (respectively, (2.1c))
describe the thermal generator start-up (respectively, shut-down) operations, constraints
(2.1d) (respectively, (2.1e)) describe the thermal generator minimum-up time (respectively,
minimum-down time) restrictions, and constraints (2.1f) (respectively, (2.1g)) describe
bounds of upward (respectively, downward) reserve amounts and scheduled generation
amounts. Meanwhile, constraints (2.2b) describe the system-wide balance between gen-
eration and load amounts, constraints (2.2c) describe bounds of actual generation amounts,
constraints (2.2d)–(2.2e) describe the ramp-rate limit restrictions of generation amounts,
constraints (2.2f) describe transmission line capacity restrictions based on the dc approx-
imation, and constraints (2.2g) describe the minimal and maximal amounts of renewable
energy we can utilize. Based on formulation (2.2), the two-stage robust UC model can be
formulated as

min
y,u,v,e,r

T∑
t=1

∑
i∈I

(SUiuit + SDivit + NLiyit + cU
i r

U
it + cD

i r
D
it) + max

ξ∈U
Q(e, r, ξ) (2.3a)

s.t. (2.1b)–(2.1h), (2.3b)

where U represents the uncertainty set of ξ and the worst-case fuel costs maxξ∈U Q(e, r, ξ)

are considered in the objective function (2.3a). In this work, we consider a polyhedral
uncertainty set

U =
{
ξ : ξL

jt ≤ ξjt ≤ ξU
jt, ∀j ∈ IR,∀t ∈ T , (2.4a)

πL
j ≤

T∑
t=1

ξjt ≤ πU
j , ∀j ∈ IR

}
, (2.4b)

where constraints (2.4a) describe the lower and upper bounds of the renewable energy
for each generator in each time unit, and constraints (2.4b) describe the lower and upper
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bounds of the total renewable energy for each generator throughout the operational time
intervals. We note that the polyhedral uncertainty set (2.4) is often applied in robust UC
approaches (see, e.g., [75, 169]), and other cardinality-constrained (see, e.g., [19, 9]) or
norm-constrained (see, e.g., [18]) polyhedral uncertainty sets can also be applied here.

In this work, we study a data-driven approach to address the challenge of ambiguous
probability distribution Pξ. To this end, we consider descriptive statistics that can be con-
veniently inferred by historical data, including bounds, mean, and MAD-median of ξ. We
then construct an ambiguity set containing all probability distributions that are consistent
with these statistics. Mathematically, we define the ambiguity set D as

D :=
{
Pξ : µL

jt ≤
∫
U
ξjtdPξ ≤ µU

jt, ∀j ∈ IR, ∀t ∈ T , (2.5a)∫
U
|ξjt − νjt|dPξ ≤ σjt, ∀j ∈ IR,∀t ∈ T , (2.5b)∫

U
dPξ = 1

}
. (2.5c)

D incorporates all probability distributions Pξ that have (i) mean value within interval
[µL
jt, µ

U
jt](see constraints (2.5a)), (ii) MAD-median within interval [0, σjt], where νjt rep-

resents the median of ξjt (see constraints (2.5b)), and (iii) support on set U (see constraint
(2.5c)). The MAD-median is a robust statistic of the variability of ξjt and less sensitive
to outliers as compared to the standard deviation when the data is inadequate. The MAD-
median also keeps the formulation linear. In practice, we can construct intervals [µL

jt, µ
U
jt]

and [0, σjt] based on historical data. For example, these two intervals can be obtained based
on the 95% confidence intervals (CIs) of EPξ [ξjt] and EPξ [|ξjt−νjt|], respectively. We give a
simple numerical example for obtaining 95% CIs of EPξ [ξjt] and EPξ [|ξjt− νjt|] as follows.
Example. Suppose that j = 1, t = 1, and the samples of ξ11 are {73, 96, 83, 67, 75, 50}.
Then, the sample mean and (corrected) sample standard deviation of ξ11 are 74 and 15.44,
respectively. Hence, the 95% two-sided CI for EPξ [ξ11] has a lower bound 74− t0.025(5)×
15.44/

√
6 = 57.80 and an upper bound 74 + t0.025(5) × 15.44/

√
6 = 90.20, i.e., the

two-sided 95% CI for EPξ [ξ11] is [57.80, 90.20]. Note that t0.025(5) = 2.57 represents the
t-distribution critical value with 5 degrees of freedom and upper-tail probability 0.025.
Likewise, the one-sided 95% CI for EPξ [|ξ11 − ν11|] can be obtained as [0, 18.97].

Note that these CIs can be estimated based on marginal data, i.e., the historical data
separately collected for each renewable resource. This feature is particularly desirable
when the data are unsynchronous, or when the correlations among different renewable
resources are unclear or not perfectly estimated. In addition, these CIs can often be obtained
based on a much smaller amount of historical data than those needed to accurately estimate
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Pξ. We propose the following data-driven UC model as an alternative of the stochastic and
robust UC approaches:

min
y,u,v,e,r

T∑
t=1

∑
i∈I

(SUiuit + SDivit + NLiyit + cU
i r

U
it + cD

i r
D
it) + sup

Pξ∈D
EPξ [Q(e, r, ξ)] (2.6a)

s.t. (2.1b)–(2.1h). (2.6b)

In the objective function (2.6a), we consider all possible expected total costs with respect to
plausible Pξ in the ambiguity set, i.e., {EPξ [Q(e, r, ξ)] : Pξ ∈ D}, and select the largest one
(hence the supremum notation). It follows that formulation (2.6a)–(2.6b) offers a guarantee
on the expected total costs because EPξ [Q(e, r, ξ)] ≤ sup

Pξ∈D
EPξ [Q(e, r, ξ)] if D contains the

true probability distribution. Meanwhile, formulation (2.6a)–(2.6b) is less conservative
than the robust UC approaches, which is formalized in the following observation.

Observation 2.2.1. sup
Pξ∈D

EPξ [Q(e, r, ξ)] ≤ max
ξ∈U

Q(e, r, ξ). Accordingly, the optimal objec-

tive value of the data-driven UC model (2.6) is less than or equal to that of the robust UC

model (2.3).

Proof. We prove that

max
ξ∈U

Q(e, r, ξ) = sup
Pξ∈D′

EPξ [Q(e, r, ξ)],

where D′ consists of all probability distributions supported on U , i.e.,

D′ =
{
Pξ :

∫
U
dPξ = 1

}
.

If this claim holds, then the conclusion follows because D′ is a relaxation of D and so
supPξ∈D′ EPξ [Q(e, r, ξ)] ≤ supPξ∈D EPξ [Q(e, r, ξ)]. To see this claim, we first note that
maxξ∈U Q(e, r, ξ) ≥ EPξ [Q(e, r, ξ)] for all distributions Pξ supported on U , and it follows
that maxξ∈U Q(e, r, ξ) ≥ supPξ∈D′ EPξ [Q(e, r, ξ)]. Second, let ξ∗ ∈ U represent the worst-
case scenario, i.e., maxξ∈U Q(e, r, ξ) = Q(e, r, ξ∗). Then the Dirac measure supported
on singleton {ξ∗} belongs to D′, i.e., 1({ξ∗}) ∈ D′. It follows that maxξ∈U Q(e, r, ξ) =

E1({ξ∗})[Q(e, r, ξ)] and so maxξ∈U Q(e, r, ξ) ≤ supPξ∈D′ EPξ [Q(e, r, ξ)]. The proof is com-
pleted.
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2.3 Solution Methodology

In this section, we derive a reformulation of model (2.6a)–(2.6b) in Section 2.3.1 and a
solution algorithm based on the generalized linear decision rule (GLDR) in Section 2.3.2.

2.3.1 Reformulation

We first provide a reformulation of the worst-case expected cost sup
Pξ∈D

EPξ [Q(e, r, ξ)] as

follows:

sup
Pξ∈D

EPξ [Q(e, r, ξ)]

= max
Pξ,ω

∫
V
Q(e, r, ξ)dPξ,ω (2.7a)

s.t. µL
jt ≤

∫
V
ξjtdPξ,ω ≤ µU

jt, ∀j ∈ IR,∀t ∈ T , (2.7b)∫
V
ωjtdPξ,ω ≤ σjt, ∀j ∈ IR,∀t ∈ T , (2.7c)∫
V
dPξ,ω = 1, (2.7d)

where we introduce a new random variable ωjt to represent the mean absolute deviation of
ξjt, i.e., |ξjt − νjt| and rewrite constraints (2.5b) in the form of (2.7c). Accordingly, we lift
probability distribution Pξ and uncertainty set U to joint probability distribution Pξ,ω and
joint uncertainty set V of (ξ, ω), respectively, where

V =
{

(ξ, ω) : ξ ∈ U , ωjt ≥ ξjt − νjt, ωjt ≥ νjt − ξjt,∀j ∈ IR, ∀t ∈ T
}
.

Note that the lifting transformation (see [151, 20]) linearizes constraints (2.5b) and facil-
itates existing techniques on (functional) linear optimization and the GLDR. Second, we
take the dual of formulation (2.7a)–(2.7d) as follows:

min
p,q,r

(
µU)T pU −

(
µL)T pL + σTq + r (2.8a)

s.t.
(
pU − pL)T ξ + qTω + r ≥ Q(e, r, ξ), ∀(ξ, ω) ∈ V , (2.8b)

pU, pL ≥ 0, (2.8c)

where dual variables pU/L, q, and r are associated with primal constraints (2.7b)–(2.7d),
respectively, and dual constraints (2.8b) are associated with primal variables Pξ,ω. Mean-
while, we let µU/L, σ, pU/L, and q represent vectors (µ

U/L
jt : j ∈ IR, t ∈ T ), (σjt : j ∈
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IR, t ∈ T ), (p
U/L
jt : j ∈ IR, t ∈ T ), and (qjt : j ∈ IR, t ∈ T ), respectively. This

dual formulation can be obtained via standard Lagrangian dual approach [126]. It can be
shown that strong duality holds between the primal (2.7) and dual formulations (2.8), and
so we can substitute sup

Pξ∈D
EPξ [Q(e, r, ξ)] with the dual formulation in model (2.6) to obtain

a monolithic formulation:

min
T∑
t=1

∑
i∈I

(SUiuit + SDivit + NLiyit + cU
i r

U
it + cD

i r
D
it)

+
(
µU)T pU −

(
µL)T pL + σTq + r (2.9)

s.t. (2.1b)–(2.1h), (2.8b)–(2.8c).

However, formulation (2.9) is computationally intractable because of the semi-infinite con-
straints (2.8b). In fact, it has been proved to be NP-hard (see, e.g., [17]). In this work, we
apply the GLDR to simplify constraints (2.8b) and conservatively approximate formulation
(2.9) by using a mixed-integer linear program (MILP).

2.3.2 Solution Algorithm based on the GLDR

To reformulate constraints (2.8b) under the GLDR, we first rewrite formulation (2.2) and
uncertainty set V in abstract forms:

Q(x, ξ) = min
z

cTz (2.10a)

s.t. aTm+1z = dm+1, (2.10b)

aTi z + eTi x+ hTi ξ ≥ di, ∀i = 1, . . . ,m, (2.10c)

V = {(ξ, ω) : Γξ + Ψω ≥ η}, (2.11)

where we let x represent the first-stage decision variables (e, r) and z represent the second-
stage decision variables including g and auxiliary variables for the piecewise linear approx-
imation of fi(git). Meanwhile, constraint (2.10b) represents equality constraints (2.2b), and
constraints (2.10c) subsume all inequality constraints (2.2c)–(2.2g). We also let matrices Γ

and Ψ, and vectors c, di, ai, ei, hi, and η represent given parameters. Based on formulation
(2.10), the GLDR restricts the search space of variables z to affine functions of ξ and ω,
i.e.,

z = z0 +Gξξ +Gωω, (2.12)
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where vector z0 represents a benchmark of z, matrix Gξ represents a linear dependence on
vector ξ, andGω represents a linear dependence on vector ω. Note that ωjt represents |ξjt−
νjt|, and so (2.12) designates variables z as an affine function of the (realized) renewable
energy ξ and its deviation from median ν. Also, as the GLDR restricts the feasible region of
the second-stage problem (2.10), it leads to a conservative approximation of the data-driven
UC model. Second, we substitute (2.12) in formulation (2.10) to obtain

QGLDR(x, ξ) ≡ cTz0 +
(
GT
ξ c
)T
ξ +

(
GT
ωc
)T
ω,(

GT
ξ am+1

)T
ξ +

(
GT
ωam+1

)T
ω = dm+1 − aTm+1z

0, ∀(ξ, ω) ∈ V , (2.13a)(
GT
ξ ai + hi

)T
ξ +

(
GT
ωai
)T
ω ≥ di − aTi z0 − eTi x, ∀(ξ, ω) ∈ V , ∀i = 1, . . . ,m,

(2.13b)

where QGLDR(x, ξ) represents the fuel costs under the GLDR, and constraints (2.13a)–
(2.13b) reformulates constraints (2.10b)–(2.10c), respectively. It follows that constraints
(2.8b) can be rewritten as

(
pU − pL −GT

ξ c
)T
ξ +

(
q −GT

ωc
)T
ω ≥ cTz0 − r, ∀(ξ, ω) ∈ V . (2.13c)

(2.13a)–(2.13b).

Third, we note that constraints (2.13a)–(2.13c) are semi-infinite. To address the potential
challenges in computation, we apply the techniques in robust optimization to rewrite them
as finite linear constraints. For constraints (2.13a), as equality holds for arbitrary (ξ, ω) ∈
V , it is equivalent that

GT
ξ am+1 = 0, GT

ωam+1 = 0, aTm+1z
0 = dm+1. (2.14a)

Meanwhile, constraints (2.13c) requires that a linear function of variables ξ and ω to be no
less than cTz0 − r on polyhedron V . It is equivalent that

min
(ξ,ω)∈V

{(
pU − pL −GT

ξ c
)T
ξ +

(
q −GT

ωc
)T
ω
}
≥ cTz0 − r. (2.14b)

We then take the dual of the linear program on the left-hand side of (2.14b) to obtain

ΨTχ0 ≤ q −GT
ωc, ΓTχ0 ≤ pU − pL −GT

ξ c, (2.14c)

ηTχ0 ≥ cTz0 − r, χ0 ≥ 0, (2.14d)
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where dual variables χ0 are associated with primal constraints (2.11) in the abstract def-
inition of V , and dual constraints (2.14c) are associated with primal variables ξ and ω,
respectively. Similarly, constraints (2.13b) can be reformulated as

ΓTχi ≤ GT
ξ ai + hi, ΨTχi ≤ GT

ωai, (2.14e)

ηTχi ≥ di − aTi z0 − eTi x, χi ≥ 0, ∀i = 1, . . . ,m. (2.14f)

Therefore, constraints (2.8b) are represented as (finite and linear) constraints (2.14a), (2.14c)–
(2.14f) and so the data-driven UC model (2.6) under the GLDR is equivalent to the follow-
ing MILP:

min
T∑
t=1

∑
i∈I

(SUiuit + SDivit + NLiyit + cU
i r

U
it + cD

i r
D
it)

+
(
µU)T pU −

(
µL)T pL + σTq + r (2.15)

s.t. (2.1b)–(2.1h), (2.8c), (2.14a), (2.14c)–(2.14f).

Note that we optimize the choices of (z0, Gξ, Gω) jointly with the decision variables (y, u, v,

e, r). In other words, we search for an optimal GLDR to help make better UC and reserve
procurement. Note that the GLDR (2.12) implies that, for all i ∈ I and s ∈ T , generation
amount gis depends on vectors (ξjt : j ∈ IR, t ∈ T ) and (ωjt : j ∈ IR, t ∈ T ). To respect
the nonanticipativity, i.e., making decisions in each time unit only based on the informa-
tion available up to that time unit, we need to restrict the GLDR by fixing all entries of
Gξ that link gis with ξjt to be zeros if t ≥ s + 1. Likewise, we fix all entries of Gω that
link gis with ωjt to be zeros if t ≥ s + 1. Furthermore, we can make the GLDR more
flexible and sparse by designating gis to depend only on the recent realizations of ξjt and
ωjt for t ∈ {s− L + 1, . . . , s− 1, s}, where L represents the time length the GLDR dates
back. For example, if L = 1, then gis depends only on the most recent realizations ξjs and
ωjs. Also, if L = s, then gis depends on all historical realizations (ξjt : t = 1, . . . , s) and
(ωjt : t = 1, . . . , s). Accordingly, we fix all entries of Gξ and Gω that link gis with ξjt
and ωjt to be zero if t ≤ s− L. We summarize all linear constraints that fix corresponding
entries of Gξ and Gω to be zero in the following abstract form

L (Gξ, Gω) = 0, (2.16)

and we add constraints (2.16) to the MILP (2.15) for the GLDR nonanticipativity and de-
pendency. We note that the MILP reformulation (2.15) facilitates efficient commercial
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software like CPLEX. Additionally, (2.15) possesses the same number of binary variables
as the deterministic UC formulation. As a consequence, the data-driven UC model (2.6)
under the GLDR has a similar computational complexity as the deterministic UC approach.
There are two ways of further speeding up the solution process:

1. We can solve the MILP (2.15) in a parallel computing environment [156] to accelerate
the branch-and-cut algorithm.

2. We can incorporate constraints (2.14c)–(2.14f) by using a row generation algorithm.
That is, we solve (2.15) with these constraints relaxed at the beginning. Then, we in-
troduce them back to the relaxed formulation only if they are violated. This row gen-
eration algorithm can be implemented by using the LazyConstraintCallback function in
CPLEX.

GLDR extends the more classical LDR

z = z0 +Gξξ, (2.17)

which designates variables z as an affine function of ξ (but not ω). LDR is proposed in [13]
and can be applied on robust UC model (2.3a)–(2.3b), which results in a MILP. The deriva-
tion is similar to that of the data-driven UC model with the GLDR, and so is omitted here.
Finally, we note that GLDR has a close connection with the extended affine policy (EAP)
proposed in [33]. Both GLDR and EAP designate that the recourse variables affinely de-
pend on the realized random variables and some auxiliary variables. The auxiliary variables
in EAP often stem from splitting the random variables as positive and negative parts along
different directions, while the auxiliary variables in GLDR stem from lifting the ambiguity
set (see (2.7)).

2.4 Case Study

To test the proposed data-driven UC model with GLDR and the solution algorithm, we
conduct computational case studies based on a 60-bus system and an IEEE 118-bus system.
We report the setup and results of the 60-bus system in Section 2.4.1, and those of the 118-
bus system in Section 2.4.2. All experiments are performed on a Linux server with Intel
Xeon Quad Core 2.93 GHz, 2GB memory, and CPLEX 12.3.
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2.4.1 60-Bus System

Experiment Setup: The 60-bus system duplicates the IEEE 30-bus system containing 30
nodes and 41 transmission lines (see http://www.ee.washington.edu/research/

pstca/ for the data set). First, we place 12 thermal generators in this system (see Tables
2.1–2.2 for the generator characteristics). In this case study, we approximate the fuel cost
function of the thermal generators by linear functions and denote the slopes as cG

i in Table
2.2. Meanwhile, we put 3 wind farms and 3 solar farms in the system as renewable energy
resources. The 3 wind farms are based on the time series of 3 onshore sites from the
National Renewable Energy Laboratory (NREL) Eastern Wind Dataset [1] and the 3 solar
farms are based on the times series of 3 sites from the NREL National Solar Radiation
Database [2].

Table 2.1: Generator characteristics - part I

Generator Index Ui Li RUi RDi MUi MDi

1,2 60 5 30 30 1 1
3,4 100 10 50 50 1 1
5,6 120 10 60 60 1 1
7,8 350 50 150 150 6 6

9,10 300 40 120 120 7 7
11,12 400 60 180 180 7 7

Second, we characterize uncertainty set U in (2.4) and ambiguity set D in (2.5) based
on the historical data from NREL. For each day we test, we collect the historical data
of renewable energy in the previous week, and in the week before and after this day in
the previous two years. For example, if we test Feb 1 in year 2006, then we collect data
during Jan 25-31 in 2006, Jan 25-Feb 7 in 2005, and Jan 25-Feb 7 in 2004. Note that
this can help reflect the seasonal patterns of renewable energy. For uncertainty set U , for
each wind/solar farm, we set ξL

jt and ξU
jt as the 0.05- and 0.95-percentile of the hourly data,

respectively. Likewise, we set πL
j and πU

j as the 0.05- and 0.95-percentile of the sums of the
hourly data within a day, respectively. For ambiguity set D, for each wind/solar farm, we
set µL

jt and µU
jt as the lower and upper limits, respectively, of the 95% CIs of EPξ [ξjt] based

on the hourly data. Likewise, we set νjt as the median of the hourly data and σjt as the
upper limit of the 95% one-sided CIs of EPξ |ξjt − νjt|.

Third, we test the proposed approach under four different penetration levels of renew-
able energy. Using the medians of renewable energy from each site as benchmarks, we
scale the mean and MAD-median values of the wind and solar farms to account for 5%,
10%, 15%, and 20% of the total electricity loads, respectively.
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Fourth, we simulate to schedule day-ahead UC and reserve procurement of this power
system for 4 weeks, each week picked from February, May, August, and November, re-
spectively (i.e., 28 days in total). For each day in these 4 weeks, we solve the data-driven
UC model with the GLDR (2.15) with T = 24 hours. As a benchmark, we also test the
robust UC approach with uncertainty set U and LDR (2.17). Depending on which approach
is applied, we denote the solution obtained from the data-driven approach as DD schedule
and that from the robust approach as RO schedule. For simplicity, we set L = 1 in both
data-driven and robust UC approaches. In addition, we compare both approaches to a per-
fect information (PI) model, where we assume that we can perfectly predict the renewable
energy before deciding the day-ahead UC and reserves. Note that the PI model is a deter-
ministic UC model with ξ replaced by their realizations in the day we test. Hence, the PI
schedule is guaranteed to perform the best.

Table 2.2: Generator characteristics - part II

Generator Index SUi SDi cG
i cU

i cD
i

1,2 50 50 35 3 3
3,4 50 50 40 5 5
5,6 60 60 50 5 5
7,8 300 300 10 3 3

9,10 200 200 8 4 4
11,12 350 350 10 3 3

Finally, we evaluate the performance of DD schedule based on a post-optimization
and out-of-sample simulation. We fix the first-stage decisions (i.e., (y, u, v, e, r)) to be
the optimal solutions obtained from solving MILP (2.15). Then, we compute the actual
cost of DD schedule by resolving the second-stage ED problem (2.2) based on the fixed
first-stage decisions and the realized renewable energy. In other words, the GLDR helps
find first-stage decisions but do not decide the actual electricity generation amounts git in
this simulation. This is a more practical evaluation of DD schedule because the system
operators can resolve the ED problem based on a more accurate forecast of the renewable
energy shortly before dispatch. In this simulation, we evaluate the performance of DD
schedule by computing the following values:

1. SDD, the actual costs of DD schedule.

2. VPI, the optimal objective value of the PI model.

3. GapDD = (SDD − VPI)/VPI × 100%, the relative gap between the PI and DD schedules.

4. RDD, the reserve costs of DD schedule.
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5. UTDD =
∑

j∈IR gjt/
∑

j∈IR ξjt × 100%, renewable energy utilization of DD schedule.

As a benchmark, we test RO schedule and similarly obtain SRO, GapRO, RRO, and UTRO.

Table 2.3: Reserve cost comparison on the 60-bus system

Penetration Levels (%)
Average Reserve Cost ($)

RDD RRO

5 4789.24 23.00
10 6987.90 45.99
15 8094.13 64.69
20 8557.62 76.79

Table 2.4: Comparisons on the out-of-sample performance on the 60-bus system

Penetration Levels (%)
Average Relative Average Renewable

Gaps (%) Utilization (%)
GapDD GapRO UTDD UTRO

5 1.36 3.90 99.58 50.08
10 2.53 7.64 98.37 50.40
15 4.88 12.53 95.45 49.93
20 8.13 17.64 91.38 49.23

Experiment Results: First, we report the computational time for solving MILP (2.15). All
instances can be solved within 10 mins, and on average, each instance takes less than 5
mins to achieve global optimality.

Second, we report the results of the out-of-sample simulation in Tables 2.3–2.4 and Fig-
ures 2.1–2.3. From Table 2.4 (see columns UTDD and UTRO) and Figure 2.1, we observe that
DD schedules consistently outperform RO schedules in utilizing renewable energy. More
precisely, the average UTDD is consistently above 90%, while the average UTRO is around
50%. Meanwhile, based on Table 2.4 (see columns GapDD and GapRO) and Figure 2.2, the
average costs of DD schedules are lower than that of RO schedules. More precisely, the
average GapDD is consistently less than 50% of the average GapRO. Furthermore, from Table
2.3 and Figure 2.3, we observe that DD schedules procure a larger amount of reserves as
compared to RO schedules. These observations indicate that incorporating distributional
information in the day-ahead scheduling can encourage procurement of system flexibility
(e.g., reserves). With larger reserves, thermal units have wider ranges of adjusting their ac-
tual amounts of electricity generation according to random solar/wind power outputs. This
further enhances the system capability of accommodating renewable energy and reducing
average costs.
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Figure 2.1: Renewable utilization comparison on the 60-bus system; Solid - DD Schedule,
Dashed - RO Schedule; Penetration Levels - 5%, 10%, 15%, 20% Clockwise
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Figure 2.2: Total cost comparison on the 60-bus system; Solid - DD Schedule, Dashed -
RO Schedule; Penetration Levels - 5%, 10%, 15%, 20% Clockwise
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Figure 2.3: Reserve cost comparison on the 60-bus system; Solid - DD Schedule, Dashed -
RO Schedule; Penetration Levels - 5%, 10%, 15%, 20% Clockwise

2.4.2 118-Bus System

Experiment Setup: The IEEE 118-bus system contains 54 thermal units and 186 transmis-
sion lines (see http://www.ee.washington.edu/research/pstca/ for the
data set). Similar to the 60-bus system, we place 3 wind farms and 3 solar farms in the
system as renewable energy resources. We construct the uncertainty set U and ambiguity
set D based on the NREL historical data [1, 2] as described in Section 2.4.1. Likewise,
we simulate penetration levels from 5% to 20%, and schedule day-ahead UC and reserve
procurement of this power system for 4 weeks, each week picked from February, May, Au-
gust, and November, respectively (i.e., 28 days in total). In this case study, we compare the
data-driven approach with robust and stochastic UC approaches. We denote the solution
obtained from the stochastic UC approach as ST schedule.

Table 2.5: Comparisons on the reserve cost and CPU seconds on the 118-bus system

Penetration Average Reserve
CPU Time (s)

Levels (%) Costs (×5, 000$)
RDD RRO RST DD RO ST

5 1.85 0.29 1.19 2577.43 3681.79 4586.43
10 3.60 0.44 2.31 3966.32 3966.32 6962.39
15 4.77 0.72 3.22 3958.21 7528.75 6466.14
20 5.58 0.93 4.06 3840.50 6700.86 6316.96
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Table 2.6: Comparisons on the out-of-sample performance on the 118-bus system

Penetration Average Relative Average Renewable
Levels (%) Gaps (%) Utilization (%)

GapDD GapRO GapST UTDD UTRO UTST

5 1.64 3.90 1.89 96.76 63.11 97.40
10 2.55 7.64 2.93 95.26 59.40 95.30
15 3.10 12.53 3.93 94.53 60.54 92.95
20 4.03 17.64 4.87 92.23 60.07 90.43

Experiment Results: First, we report the computational time for solving MILP (2.15) in
Table 2.5. All instances can be solved within 3 hours, and on average, each instance takes
around 1 hour to achieve global optimality (see column CPU Time–DD).

Second, we report the results of the out-of-sample simulation in Tables 2.5–2.6 and
Figures 2.4–2.6. From Table 2.6 (see columns Average Renewable Utilization) and Figure
2.4, we observe that DD schedules utilize over 90% of renewable energy throughout all
penetration levels. Meanwhile, the utilization of DD schedules are in general level with
that of ST schedules, while both of them significantly exceed the utilization of RO sched-
ules in most days. Furthermore, based on Table 2.6 (see columns Average Relative Gaps)
and Figure 2.5, the average costs of DD schedules are lower than those of RO and ST
schedules. More precisely, the average GapDD is consistently less than 50% of the average
GapRO and less than 90% of the average GapST. Together with Table 2.5 (see column Aver-
age Reserve Costs) and Figure 2.6, this confirms our observation from the 60-bus system.
That is, incorporating distributional information in the day-ahead scheduling can encour-
age procurement of system flexibility (e.g., reserves), which reduces the average cost in
out-of-sample simulations.

2.5 Conclusion

In this chapter, we proposed a data-driven approach for scheduling day-ahead UC and re-
serve procurement in power systems with renewable energy integration. In particular, we
incorporated descriptive statistics (e.g., mean and MAD-median) of the renewable energy
based on historical data, and derived a conservative approximation of the data-driven UC
model by using the GLDR. We tested the proposed approach in two out-of-sample simu-
lations based on publicly available data from the NREL. The experiment results indicated
that the proposed data-driven approach enhances the system flexibility and capability of ac-
commodating renewable energy, and a real-time economic re-dispatch can help fully utilize
the system flexibility.
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Figure 2.4: Renewable utilization comparison on the 118-bus system; Solid - DD Schedule,
Dashed - RO Schedule, Cross - ST Schedule; Penetration Levels - 5%, 10%, 15%, 20%
Clockwise
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Figure 2.5: Total cost comparison on the 118-bus system; Solid - DD Schedule, Dashed -
RO Schedule, Cross - ST Schedule; Penetration Levels - 5%, 10%, 15%, 20% Clockwise
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Figure 2.6: Reserve cost comparison on the 118-bus system; Solid - DD Schedule, Dashed
- RO Schedule, Cross - ST Schedule; Penetration Levels - 5%, 10%, 15%, 20% Clockwise

2.6 Nomenclature

A. Sets and Indices

B = {1, . . . , B} Set of buses.

Gb Set of generators at bus b.

I = {1, . . . , I} Set of all generators.

IR ⊆ I Set of generators that utilize renewable energy.

L Set of transmission lines linking two buses.

T = {1, . . . , T} Set of operating time intervals.

U Support of the renewable energy.

V Extended support of the renewable energy.

i Index for generators.

j Index for generators that utilize renewable energy.
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B. Parameters

Cmn Capacity of the transmission line linking bus m and bus n.

cU
i /cD

i Unit cost of upward/downward reserve amount of generator i.

Dbt Load at bus b in time period t.

D Ambiguity set of Pξ.

fi(·) Fuel cost function of generator i.

Kb
mn Line flow distribution factor for transmission line linking bus m and bus n due to the

net injection at bus b.

Li Minimal power output if generator i is on.

MUi Minimum-up time for thermal generator i.

MDi Minimum-down time for thermal generator i.

NLi No-load cost of thermal generator i.

Pξ Probability distribution of ξ.

Pξ,ω Joint probability distribution of ξ and ω.

RUi Ramp-up limit for thermal generator i.

RDi Ramp-down limit for thermal generator i.

SUi Start-up cost for generator i.

SDi Shut-down cost for generator i.

Ui Maximal power output if generator i is on.

ξjt Available renewable energy of generator j in time period t.

µL
jt Lower bound of the mean value of ξjt.

µU
jt Upper bound of the mean value of ξjt.

νjt Median of ξjt.

σjt Upper bound of the mean absolute deviation of ξjt.
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ωjt Auxiliary random variables for the mean absolute deviation from median of ξjt.

C. Decision Variables

eit Scheduled amount of electricity generated by generator i in time period t.

git Actual amount of electricity generated by generator i in time period t.

rU
it/rD

it Upward/downward reserve amount of generator i in time period t.

uit Binary decision variable to indicate if generator i is started up at the beginning of time
period t.

vit Binary decision variable to indicate if generator i is shut down at the beginning of time
period t.

yit Binary decision variable to indicate if generator i is on during time period t.
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CHAPTER 3

Distributionally Robust Chance-Constrained
Optimal Power Flow with a

Wasserstein-Moment Ambiguity Set

3.1 Introduction

Optimal power flow (OPF) problem is one of the most important optimization problems in
power system operations. It aims to minimize power system costs including, e.g., gener-
ation cost or power loss, while satisfying network and physical constraints on generators
and transmission lines. During the last decade, renewable energy (e.g., wind and solar) has
been steadily penetrating into power systems all over the world [110]. For example, the
U.S. Department of Energy has analyzed a scenario, in which the wind power contributes
20% of the total electricity utility by 2030 [91]. However, the inherent intermittency and
volatility of renewable energy introduce significant uncertainty into the OPF problem, ren-
dering its safety constraints (e.g., transmission line capacity limits and reserve capacity
limits) vulnerable.

Chance-constrained programming has been widely studied to hedge against uncertain-
ties in the OPF problem (see e.g., [161, 162, 70, 141, 113, 21, 142, 88]). For a constraint
subject to uncertainty, its corresponding chance constraint ensures that the constraint is sat-
isfied with certain probability under a prescribed distribution of the uncertain parameters.
The solution approaches of the chance-constrained program include scenario approxima-
tion [26], probabilistically robust methods [97], and analytical reformulations relying on
specific forms of the probability distributions (see e.g., [113, 21]). However, scenario ap-
proximation is often computationally heavy and conservative in general, (classical) robust
optimization is even more conservative than scenario approximation, and the analytical re-
formulations may result in unreliable solutions if the uncertain parameters do not follow the
assumed distributions (see, e.g., [86]). Another basic challenge of chance constraints lies
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in estimating the probability distribution of the renewable energy due to its non-stationary
nature and/or a lack of historical data (see, e.g., [64]). To address these drawbacks, distribu-
tionally robust chance constraints (DRCC) were proposed (see, e.g., [37, 171]). In DRCC,
the uncertain constraints are required to be satisfied with given probability under all distri-
butions within an ambiguity set. The ambiguity set contains distributions characterized by
certain characteristics of the (unknown) true distribution. The ambiguity set plays a crucial
role in the DRCC model. Most existing literature focuses on the moment ambiguity set,
i.e., a set of probability distributions that share the same moments of certain functions (see,
e.g., [37, 52, 151, 171]). For example, [171] studied DRCC under a moment ambiguity set
based on the mean and covariance matrix of the uncertain parameters. In addition, [86, 164]
demonstrated that DRCC under moment ambiguity sets lead to improved OPF solutions.

More recently, probability discrepancy functions have been applied to construct ambi-
guity sets, including the Prokhorov metric [45], the φ-divergence [73, 67], and the Wasser-
stein metric [105, 152, 47]. The discrepancy ambiguity set is defined as a neighborhood
surrounding a reference distribution, in which all candidate distributions are close to the
reference one measured by the prescribed discrepancy. The degree of conservatism of dis-
crepancy ambiguity sets can be controlled by adjusting the discrepancy upper bound to
the reference distribution. If we set the bound to be zero, then the discrepancy ambiguity
set reduces to a singleton (i.e., the reference distribution) and the DRCC reduces to the
corresponding (non-robust) chance constraint. Wasserstein metric has received growing
attention in recent literature (see, e.g., [165, 59, 42, 47, 153]). In particular, [165] showed
that the Wasserstein ambiguity set enjoys asymptotic guarantee as the data size increases
to infinity, [47] derived a tractable reformation of the distributionally robust optimization
problem with the Wasserstein ambiguity set, and [153] recast Wasserstein DRCCs as a
deterministic mixed-integer linear program with the help of the big-M coefficients. The
contributions of this study include:

1. We propose a Wasserstein-moment (W-M) ambiguity set that contains both moment and
discrepancy information. We apply this strengthened ambiguity set on DRCC-OPF to
reduce its conservatism, especially under a limited amount of data.

2. We derive a conservative convex approximation of the proposed DRCC-OPF model us-
ing conditional Value-at-Risk (CVaR). We show that this approximation can be recast as
linear constraints if the `1- or the `∞-norm is applied to characterize the (W-M) ambi-
guity set, and as second order conic constraints if the `2-norm is applied. This improves
the scalability of DRCC.

3. We demonstrate the proposed approach in a case study on the IEEE 30-bus system. The
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results show that the DRCC-OPF model with the W-M ambiguity set provides better
balance between cost-effectiveness and reliability, as compared to two state-of-the-art
benchmarks.

The remainder of this chpater is organized as follows. We present the DRCC-OPF model
under Wasserstein and W-M ambiguity sets in Section 3.2. In Section 3.3, we derive CVaR-
based approximations of the proposed models. Section 3.4 reports the case study and the
comparisons with the two benchmark approaches. Section 3.5 summarizes this chapter. In
addition, Section 3.6 lists the nomenclature of this chapter.

3.2 Mathematical Formulation

3.2.1 Multi-Period Optimal Power Flow

We start by describing the deterministic multi-period OPF problem [86] in the following
formulation (3.1).

min
PG,t,RG,t,RG,t,dt

Nt∑
t=1

(
c>GPG,t + c>R(RG,t +RG,t)

)
(3.1a)

s.t. PI,t = BG(PG,t +Rt) +BwPw,t −BLPL,t, t ∈ [Nt], (3.1b)

Pw,t = P f
w,t + wt, t ∈ [Nt], (3.1c)

Rt = −(1>wt)dt, t ∈ [Nt], (3.1d)

1>dt = 1, t ∈ [Nt], (3.1e)

1>(BGPG,t +BwP
f
w,t −BLPL,t) = 0, t ∈ [Nt], (3.1f)

PG,t+1 − PG,t ≤ RU, t ∈ [Nt − 1], (3.1g)

PG,t − PG,t+1 ≤ RD, t ∈ [Nt − 1], (3.1h)

− P` ≤ A`PI,t ≤ P`, t ∈ [Nt], (3.1i)

0 ≤ PG,t +Rt ≤ PG, t ∈ [Nt], (3.1j)

RG,t ≤ Rt ≤ RG,t, t ∈ [Nt], (3.1k)

PG,t, RG,t, RG,t, dt ≥ 0, t ∈ [Nt]. (3.1l)

where [N ] := {1, . . . , N} for integer N . 1 (resp. 0) denotes an all one (resp. zero) vector
of proper dimension. Let NB, NG, NL, N`, Nw, and Nt be the number of buses, thermal
generators, loads, transmission lines, wind farms, and operating time intervals, respectively.
cG, cR ∈ RNG are the unit costs for energy generation and providing reserve, respectively.
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BG ∈ RNB×NG , Bw ∈ RNB×Nw , BL ∈ RNB×NL are the bus-generator incidence, bus-wind
incidence matrix, and bus-load incidence matrix, respectively. P f

w,t ∈ RNw is the forecasted
wind power during time interval t. RU, RD ∈ RNG are the ramp-up and -down capacities
of the thermal generators, respectively. A` ∈ RN`×NB is the distribution factor matrix.
P` ∈ RN` and PG ∈ RNG are the transmission line and thermal generator production
capacities, respectively. PL,t ∈ RNL is the loads during time interval t. Random variables
wt ∈ RNw represent the forecast errors of wind energy during time interval t. Variables
dt ∈ RNG represent the distribution vector during time interval t, which parameterizes
an affine response from the generator-providing reserves to the real-time supply/demand
mismatch. Variables PG,t ∈ RNG represent the planned thermal generation amounts during
time interval t. Variables RG,t, RG,t ∈ RNG represent the generator upward and downward
reserve capacities during time interval t, respectively. Auxiliary variables PI,t ∈ RNB

represent the net power injection at buses during time interval t. Auxiliary variables Pw,t ∈
RNw represent the actual wind energy during time interval t. Auxiliary variables Rt ∈ RNG

represent the generator reserve dispatch during time interval t.
The objective function (3.1a) is to minimize the power production and the reserve

costs while satisfying the network and physical constraints. As in [141, 113, 21], power
flows are modeled as a system of linear equations, i.e., based on the dc power flow ap-
proximation. In constraints (3.1b), for each time interval t, matrices BG, Bw, and BL

map real generators production, wind energy, and loads to PI,t, the net power injection at
buses. Constraints (3.1c) describe the actual wind energy during each time interval t. Con-
strains (3.1d) compute the actual power reserve amount provided by all thermal generators
during each time interval t. Here distribution vector dt specifies the portion of the real-time
supply/demand mismatch to be provided by each thermal generator. Constraints (3.1e) en-
sure that distribution vectors dt, for all t ∈ [Nt], are valid. Constraints (3.1f) enforce the
system balance between the total generation and total load. Constraints (3.1g)–(3.1h) de-
scribe the ramp-rate limit restrictions on generation amounts. Constraints (3.1i) describe
transmission line capacity limits. Finally, constraints (3.1j) and (3.1k) enforce bounds on
the actual generation amounts and reserve amounts of the thermal generators, respectively.

3.2.2 Distributionally Robust Chance-Constrained Optimal Power Flow

Chance-constrained program has been considered in the OPF problem in face of uncertain
wind power (see e.g., [162, 113, 21]). It ensures that each constraint subject to uncertainty
is satisfied with at least a pre-specified probability with regard to a prescribed distribution.
When wind power is incorporated, constraints (3.1i), (3.1j), and (3.1k) in the OPF formu-
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lation are subject to uncertainty. For presentation brevity, we present these constraints in
the following abstract form:

ci(w)>x ≤ di(w), ∀i ∈ [I], (3.2)

where x ∈ RNd represents decision variables (PG, RG, RG, d) in formulation (3.1) and
Nd denotes dimension of the decision variables. To handle the random constraint viola-
tions, chance constraints attempt to satisfy (3.2) with at least pre-specified probabilities
1− εi, ∀i ∈ [I], i.e.,

Q
(
ci(w)>x ≤ di(w)

)
≥ 1− εi, ∀i ∈ [I], (3.3)

where uncertain coefficients ci(w), di(w) depend on the random variables w, Q denotes
the true joint probability distribution of random variables w, and 1 − εi represents the risk
threshold of the ith chance constraint, with εi ∈ [0, 1] usually taking a small value (e.g.,
0.05 or 0.10). In a chance-constrained OPF (CC-OPF) model, constraints (3.1i), (3.1j),
and (3.1k) are replaced with the chance constraint counterpart (3.3). In this work, we
assume that ci(w) and di(w) depend affinely on w (see [127]):

ci(w) = c0
i +

Nw∑
k=1

ckiwk, di(w) = d0
i +

Nw∑
k=1

dkiwk, i ∈ [I]. (3.4)

By introducing auxiliary functions aki (x) : RNd → R and bi(x) : RNd → R, k ∈ [Nw], i ∈
[I] defined through

aki (x) = (cki )
>x− dki , bi(x) = (c0

i )
>x− d0

i , k ∈ [Nw], i ∈ [I] (3.5)

and letting ai(x) =
[
a1
i (x), . . . , aNwi (x)

]>
for all i ∈ [I], we rewrite constraints (3.3) as

Q
(
ai(x)>w + bi(x) ≤ 0

)
≥ 1− εi, ∀i ∈ [I]. (3.6)

Chance-constrained program was first proposed by Charnes et al. [30], Miller and Wag-
ner [100] and Prékopa [109]. Although having been studied for a long time, chance-
constrained program still has the following limitations [171]:

1. In general, the chance-constrained program is computationally intractable. In fact,
even to check if a given solution x is feasible requires computing a multi-dimensional
integral, which is notoriously difficult when the dimension of the random variables
is large. In addition, the feasible region of chance constraint is typically nonconvex
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and even disconnected in some cases.

2. Chance-constrained program assumes that full and accurate information of the true
distribution Q is known. However, in practice, this assumption rarely holds. In
most situations, Q has to be estimated from historical data. Similar to the overfitting
effects in statistics [129], replacing Q with a (possibly biased) estimate may lead to
over-optimistic solutions.

To address these limitations, DRCC is proposed (see, e.g., [3, 25, 50, 45, 102, 139, 171, 172,
73]). It forces the constraint to be satisfied with a prescribed probability under the worst-
case distribution. Here, the worst case is with respect to an ambiguity setD, which contains
all probability distributions that are consistent with certain known characteristics of Q (e.g.,
moment information). Then, the distributionally robust version of constraints (3.3) is for-
mulated as

inf
P∈D

P
(
ai(x)>w + bi(x) ≤ 0

)
≥ 1− εi, ∀i ∈ [I]. (3.7)

Formulation (3.1) becomes a DRCC-OPF model if constraints (3.1i), (3.1j), and (3.1k) are
replaced with (3.7).

3.2.3 Wasserstein-Moment Ambiguity Set

To guarantee the performance of the model as well as to prevent over-conservative deci-
sions, the ambiguity set should contain the true distribution with high confidence while
avoiding pathological distributions. In this work, we propose a Wasserstein-moment ambi-
guity set which incorporates moment information into a Wasserstein ball. The underlying
support set U of w is assumed to be a polyhedron in the form

U :=
{
w ∈ RNw : Hw ≤ h

}
. (3.8)

In addition, we useM(U) to represent all probability distributions supported on U .

3.2.3.1 Wasserstein ambiguity set

The Wasserstein metric is defined on the probability spaceM(U) of all probability distri-
butions P supported on U with EP[‖w‖] =

∫
U ‖w‖P(dw) <∞.

Definition 3.2.1 (Wasserstein metric [78]). The Wasserstein metric dW :M(U)×M(U)→
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R is defined as

dW (P1,P2) := inf

{∫
U2

‖w(1) − w(2)‖Π(dw(1), dw(2)) :

Π is a joint distribution of w(1) and w(2)

with marginals P1 and P2, respectively

}

for all distributions P1,P2 ∈M(U), and ‖ · ‖ represents an arbitrary norm on RNw .

Accordingly, the Wasserstein ambiguity set is defined as

DW := {P ∈M(U) : dW (P0,P) ≤ θ} , (3.9)

that is, DW is a Wasserstein ball of radius θ centered at a reference distribution P0. A nat-
ural approach to estimating the reference distribution P0 is by using the discrete empirical
probability distribution based on N historical data samples w(1)

0 , w
(2)
0 , . . . , w

(N)
0 [47], i.e.,

P0(x) =
1

N

N∑
i=1

δ
w

(i)
0

(x), (3.10)

where δ
w

(i)
0

(x) denotes the indicator variable that equals 1 if w(i)
0 ≤ x and 0 otherwise. The

following theorem provides a probabilistic guarantee of the true probability distribution Q
lying within the Wasserstein ambiguity set DW .

Theorem 3.2.2 ([165]). Let N be the number of data points and ∅ be the diameter of

Nw-dimensional support space U , we have

P (dW (P0,Q) ≤ θ) ≥ 1− exp

(
− θ2

2∅2
N

)
.

Setting the confidence level to be η = 1− exp(− θ2

2∅2N), the radius

θ = ∅

√
2

N
log

(
1

1− η

)
(3.11)

of the Wasserstein ambiguity setDW ensures that Q ∈ DW with probability at least η when

the diameter ∅ of the support space U is defined by [51]:

∅ = sup
{
dW (w(i), w(j)) : w(i), w(j) ∈ U

}
.
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3.2.3.2 Incorporating additional moment information

A Wasserstein ball contains all distributions within a certain distance from a reference
distribution P0 measured by the Wasserstein metric. Theorem 3.2.2 proves a strong proba-
bilistic guarantee. However, the Wasserstein ambiguity set ignores conveniently available
distributional information, e.g., mean and mean absolution deviation of random variables.
In this section, we incorporate the moment information into the Wasserstein ball to further
reduce the conservativeness of this ambiguity set. Given the first moment information and
the Wasserstein ball of random variables w , we define the Wasserstein-moment ambiguity
set as following:

DWM :=

P ∈M(U) :

dW (P0,P) ≤ θ,

EP[w] = µ,

EP[V >(w − µ)]+ ≤ δ+,

EP[V >(w − µ)]− ≤ δ−,

 (3.12)

where (x)+ := max{x, 0}, and (x)− := max{−x, 0}. In (3.12), we consider all probability
distributions of w that (i) are supported on the set U ; (ii) are in the Wasserstein ball of
radius θ centered at the reference distribution P0; (iii) have mean value µ; and (iv) have at
most δ+ (resp. δ−) mean positive (resp. negative) deviation along perturbation directions
V ∈ RNw×Nv .

3.3 Solution Methodology

3.3.1 CVaR Approximations

In this section, we conservatively approximate DRCC under Wasserstein and W-M ambi-
guity sets as convex programs based on CVaR.

Definition 3.3.1 (CVaR [114]). For a given measurable loss function L(x,w) : RNd ×
RNw → R, probability distribution P, and the tolerance ε ∈ (0, 1), the CVaR at level ε with

respect to P is defined as

P-CVaRε (L(x,w)) := inf
β∈R

{
β +

1

ε
EP
[
(L(x,w)− β)+

]}
,

where EP[·] denotes the expectation with respect to distribution P and (x)+ represents

max{x, 0}.
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Essentially, P-CVaRε(L(x,w)) evaluates the conditional expectation of loss function
L(x,w) on the upper ε-tail part of its distribution P. Therefore, the following inequality
holds valid:

P
(
L(x,w) ≤ P-CVaRε (L(x,w))

)
≥ 1− ε. (3.13)

Since CVaR is a convex function with respect to its random input L(x,w), we can use it
to obtain a convex conservation approximation of DRCC. Let Li(x,w) = ai(x)>w+ bi(x)

for all i ∈ [I] be the loss functions. If P-CVaRε (Li(x,w)) ≤ 0,∀i ∈ [I] hold for every
probability P ∈ D, then DRCC (3.7) will be satisfied. Formally,

sup
P∈D

P-CVaRεi

(
ai(x)>w + bi(x)

)
≤ 0, ∀i ∈ [I], (3.14)

⇒ inf
P∈D

P
(
ai(x)>w + bi(x) ≤ 0

)
≥ 1− εi, ∀i ∈ [I].

Replacing DRCC (3.7) by constraints (3.14) yields a conservative convex approximation
for the DRCC-OPF problem. Based on Definition 3.3.1, we recast the CVaR approxima-
tion (3.14) as follows:

sup
P∈D

P-CVaRεi

(
ai(x)>w + bi(x)

)
≤ 0, ∀i ∈ [I],

⇔ sup
P∈D

inf
β∈R

{
β +

1

εi
EP
[
(ai(x)>w + bi(x)− β)+

]}
≤ 0, ∀i ∈ [I],

⇔ inf
β∈R

{
β +

1

εi
sup
P∈D

EP
[
(ai(x)>w + bi(x)− β)+

]}
≤ 0, ∀i ∈ [I],

⇔ ∃βi ∈ R : βi +
1

εi
sup
P∈D

EP
[
(ai(x)>w + bi(x)− βi)+

]
≤ 0, ∀i ∈ [I]. (3.15)

In the following sections, we present tractable reformulations for the CVaR approximation
under DW and DWM .

3.3.1.1 CVaR approximation with the Wasserstein ambiguity set

Theorem 3.3.2 gives an exact reformulation of the worst-case expectation in (3.15) over
DW .

Theorem 3.3.2 ([47]). Suppose that the loss function is in the form of maximal of sev-

eral affine functions, that is, L(x,w) := maxk∈[K] lk(x,w), where lk(x,w) = gk(x)>w +

ek(x),∀k ∈ [K]. And suppose that the uncertainty set is a polyhedron of form (3.8). Let N

be the number of data samples and w(n)
0 , n ∈ [N ] be the data samples. Then the worst-case
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expectation

sup
P∈DW

EP[L(x,w)] (3.16)

with the Wasserstein ambiguity set (3.9) equals the optimal value of the following convex

program

inf
λ,sn,γnk

λθ +
1

N

N∑
n=1

sn (3.17a)

s.t. ek(x) + gk(x)>w
(n)
0 + γ>nk

(
h−Hw(n)

0

)
≤ sn, ∀n ∈ [N ], ∀k ∈ [K], (3.17b)

‖H>γnk − gk(x)‖∗ ≤ λ, ∀n ∈ [N ], ∀k ∈ [K], (3.17c)

γnk ≥ 0, ∀n ∈ [N ], ∀k ∈ [K]. (3.17d)

where ‖ · ‖∗ is the dual norm of the norm used in the Wasserstein mertic.

By Theorem 3.3.2, for each i ∈ [I], the CVaR constraint (3.15) can be reformulated as:

βi +
1

εi

(
λiθ +

1

N

N∑
n=1

sin

)
≤ 0, ∀n ∈ [N ], ∀k ∈ [K], (3.18a)

ek(x) + gk(x)>w
(n)
0 + γ>ink

(
h−Hw(n)

0

)
≤ sin, ∀n ∈ [N ], ∀k ∈ [K], (3.18b)

‖H>γink − gk(x)‖∗ ≤ λi, ∀n ∈ [N ], ∀k ∈ [K], (3.18c)

γink ≥ 0, ∀n ∈ [N ], ∀k ∈ [K], (3.18d)

where x are decision variables and λi, sin, γink are auxiliary variables.

3.3.1.2 CVaR with the W-M ambiguity set

Theorem 3.3.3 gives an exact reformulation of the worst-case expectation in (3.15) over
DWM .

Theorem 3.3.3. Suppose that the loss function is in the form of maximal of several affine

functions, that is, L(x,w) := maxk∈[K] lk(x,w), where lk(x,w) = gk(x)>w + ek(x),∀k ∈
[K]. And suppose that the uncertainty set is a polyhedron (3.8). Let N be the number of

data samples and w(n)
0 , n ∈ [N ] be the data samples. Then the worst-case expectation

sup
P∈DWM

EP[L(x,w)] (3.19)
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with the W-M ambiguity set (3.12) equals the optimal value of following convex program

inf
λ∈R+, q±∈RNv+

p∈RNw , s∈RN , znk∈RNw
d±nk∈R

Nv
+ ,dhnk∈R

Nu
+

θλ+ p>µ+ q+>δ+ + q−>δ− +
1

N

N∑
n=1

sn (3.20a)

s.t. µ>V d+
nk − µ

>V d−nk + h>dhnk + ek(x) + z>nkw
(n)
0 ≤ sn,

∀n ∈ [N ],∀k ∈ [K], (3.20b)

V d+
nk − V d

−
nk +H>dhnk = gk(x)− znk − p,

∀n ∈ [N ],∀k ∈ [K], (3.20c)

d+
nk ≤ q+, ∀n ∈ [N ],∀k ∈ [K], (3.20d)

d−nk ≤ q−, ∀n ∈ [N ],∀k ∈ [K], (3.20e)

‖znk‖∗ ≤ λ, ∀n ∈ [N ],∀k ∈ [K]. (3.20f)

where ‖ · ‖∗ is the dual norm of the norm used in the Wasserstein mertic.

Proof. First, the worst-case expectation (3.19) can be written as a functional optimization
problem as follows:

sup
P∈M(U)

Π∈M(U)×M(U)

∫
U
L(x,w)P(dw) (3.21a)

s.t.
∫
U2

‖w − w′‖Π(dw, dw′) ≤ θ, (3.21b)

Π is a joint distribution of w and w′with marginals P and P0, respectively,
(3.21c)∫

U
wP(dw) = µ, (3.21d)∫

U
[V >(w − µ)]+P(dw) ≤ δ+, (3.21e)∫
U

[V >(w − µ)]−P(dw) ≤ δ−. (3.21f)

By the law of total probability, the joint probability distribution Π of w and w′ can be
constructed from the marginal distribution P0 of w′ and the conditional distribution P(n) of
w given w′ = w

(n)
0 , n ∈ [N ]. Then problem (3.21) can be reformulated as

sup
P(n)∈M(U)

1

N

N∑
n=1

∫
U
L(x,w)P(n)(dw) (3.22a)
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s.t.
1

N

N∑
n=1

∫
U
‖w − w(n)

0 ‖P(n)(dw) ≤ θ, (3.22b)

1

N

N∑
n=1

∫
U
wP(n)(dw) = µ, (3.22c)

1

N

N∑
n=1

∫
U

[V >(w − µ)]+P(n)(dw) ≤ δ+, (3.22d)

1

N

N∑
n=1

∫
U

[V >(w − µ)]−P(n)(dw) ≤ δ−. (3.22e)

Take the Lagrangian dual of (3.22), and strong duality holds due to an extended version of
Proposition 3.4 in [126].

=



inf
λ∈R+, q±∈RNv+

p∈RNw

sup
P(n)∈M(U)

1

N

N∑
n=1

∫
U
L(x,w)P(n)(dw)

+λ

[
θ − 1

N

N∑
n=1

∫
U
‖w − w(n)

0 ‖P(n)(dw)

]

+p>

[
µ− 1

N

N∑
n=1

∫
U
wP(n)(dw)

]

+q+>

[
δ+ − 1

N

N∑
n=1

∫
U

[V >(w − µ)]+P(n)(dw)

]

+q−>

[
δ− − 1

N

N∑
n=1

∫
U

[V >(w − µ)]−P(n)(dw)

]

(3.23a)

=



inf
λ∈R+, q±∈RNv+

p∈RNw

θλ+ p>µ+ q+>δ+ + q−>δ−

+ sup
P(n)∈M(U)

1

N

N∑
n=1

∫
U

[
L(x,w)− λ‖w − w(n)

0 ‖ − p>w

−q+>[V >(w − µ)]+ − q−>[V >(w − µ)]−

]
P(n)(dw)

(3.23b)
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=



inf
λ∈R+, q±∈RNv+

p∈RNw

θλ+ p>µ+ q+>δ+ + q−>δ−

+
1

N

N∑
n=1

sup
w∈U

[
L(x,w)− λ‖w − w(n)

0 ‖ − p>w

−q+>[V >(w − µ)]+ − q−>[V >(w − µ)]−

] (3.23c)

=



inf
λ∈R+, q±∈RNv+

p∈RNw , s∈RN

θλ+ p>µ+ q+>δ+ + q−>δ− +
1

N

N∑
n=1

sn

s.t. sup
w∈U

[
L(x,w)− λ‖w − w(n)

0 ‖ − p>w − q+>[V >(w − µ)]+

−q−>[V >(w − µ)]−

]
≤ sn, ∀n ∈ [N ],

(3.23d)

=



inf
λ∈R+, q±∈RNv+

p∈RNw , s∈RN

θλ+ p>µ+ q+>δ+ + q−>δ− +
1

N

N∑
n=1

sn

s.t. sup
w∈U

t±nk∈R
Nv
+

[
lk(x,w)− max

‖znk‖∗≤λ
z>nk(w − w

(n)
0 )− p>w

−q+>t+nk − q
−>t−nk

]
≤ sn,∀n ∈ [N ], ∀k ∈ [K],

s.t. t+nk ≥ V >(w − µ),

t−nk ≥ −V
>(w − µ),

(3.23e)

=



inf
λ∈R+, q±∈RNv+

p∈RNw , s∈RN

θλ+ p>µ+ q+>δ+ + q−>δ− +
1

N

N∑
n=1

sn

s.t. min
‖znk‖∗≤λ

sup
w∈U

t±nk∈R
Nv
+

[
lk(x,w)− z>nk(w − w

(n)
0 )− p>w

−q+>t+nk − q
−>t−nk

]
≤ sn,∀n ∈ [N ], ∀k ∈ [K],

s.t. t+nk ≥ V >(w − µ),

t−nk ≥ −V
>(w − µ),

(3.23f)
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=



inf
λ∈R+, q±∈RNv+

p∈RNw , s∈RN , znk∈RNw

θλ+ p>µ+ q+>δ+ + q−>δ− +
1

N

N∑
n=1

sn

s.t. ‖znk‖∗ ≤ λ, ∀n ∈ [N ], ∀k ∈ [K],

sup
w∈U ,
t±nk∈R

Nv
+

[
lk(x,w)− z>nk(w − w

(n)
0 )− p>w

−q+>t+nk − q
−>t−nk

]
≤ sn,∀n ∈ [N ], ∀k ∈ [K],

s.t. t+nk ≥ V >(w − µ),

t−nk ≥ −V
>(w − µ).

(3.23g)

Equality (3.23c) holds because the worst-case distribution will occur on a singleton
distribution, i.e., P(n)(w) = 1 for some w ∈ U [47]. In (3.23d), we introduce auxiliary
variables sn. Equality (3.23e) holds because: (i) L(x,w) := maxk∈[K] lk(x,w); (ii) the
definition of dual norm is used and (iii) auxiliary variables t+ and t− are introduced to
linearize (·)+ and (·)−, respectively. Equality (3.23f) follows from the classical minimax
theorem [15] and the fact that (i) the set {znk : ‖znk‖∗ ≤ λ} is compact for any finite λ ≥ 0;
(ii) U is a polyhedral uncertainty set hence U is convex and closed and (iii) the function is
linear in znk, w and t±nk.

Take the dual of each supreme problem in (3.23g), we have

sup
w∈RNw
t±nk∈R

Nv
+

[
gk(x)>w + ek(x)− z>nk(w − w

(n)
0 )− p>w − q+>t+nk − q

−>t−nk

]

s.t. t+nk ≥ V >(w − µ),

t−nk ≥ −V
>(w − µ),

Hw ≤ h,

(3.24a)

=



inf
d±nk∈R

Nv
+

dhnk∈R
Nu
+

[
µ>V d+

nk − µ
>V d−nk + hTdhnk

]
+ ek(x) + z>nkw

(n)
0

s.t. V d+
nk − V d

−
nk +H>dhnk = gk(x)− znk − p,

d+
nk ≤ q+,

d−nk ≤ q−,

(3.24b)

Strong duality holds since this is a linear formulation. Plug formulation (3.24b) into (3.23g),
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we have

inf
λ∈R+, q±∈RNv+

p∈RNw , s∈RN , znk∈RNw
d±nk∈R

Nv
+ ,dhnk∈R

Nu
+

θλ+ p>µ+ q+>δ+ + q−>δ− +
1

N

N∑
n=1

sn

s.t. µ>V d+
nk − µ

>V d−nk + hTdhnk + ek(x) + z>nkw
(n)
0 ≤ sn,

∀n ∈ [N ], ∀k ∈ [K],

V d+
nk − V d

−
nk +H>dhnk = gk(x)− znk − p,

∀n ∈ [N ], ∀k ∈ [K],

d+
nk ≤ q+, ∀n ∈ [N ], ∀k ∈ [K],

d−nk ≤ q−, ∀n ∈ [N ], ∀k ∈ [K],

‖znk‖∗ ≤ λ, ∀n ∈ [N ], ∀k ∈ [K].

(3.25a)

which completes the proof.
By Theorem 3.3.3, for each i ∈ [I], the CVaR constraint (3.15) can be recast as:

βi +
1

εi

(
λiθ + p>i µ+ q+>

i δ+ + q−>i δ− +
1

N

N∑
n=1

sin

)
≤ 0, ∀n ∈ [N ],∀k ∈ [K],

(3.26a)

µ>V d+
ink − µ

>V d−ink + h>dhink + ek(x) + z>inkw
(n)
0 ≤ sin, ∀n ∈ [N ],∀k ∈ [K], (3.26b)

V d+
ink − V d

−
ink +H>dhink = gk(x)− zink − pi, ∀n ∈ [N ],∀k ∈ [K], (3.26c)

d+
ink ≤ q+

i , ∀n ∈ [N ], ∀k ∈ [K], (3.26d)

d−ink ≤ q−i , ∀n ∈ [N ],∀k ∈ [K], (3.26e)

‖zink‖∗ ≤ λi, ∀n ∈ [N ],∀k ∈ [K], (3.26f)

where x are decision variables and λi, sin, pi, q±i , d
±
ink, d

h
ink, zink are auxiliary variables.

When the `1- or the `∞-norm is applied in the Wasserstein metric, constraints (3.18c)
and (3.26f) can be reformulated as linear constraints; and when `2-norm is applied, (3.18c)
and (3.26f) are second-order conic constraints. Thus, the CVaR approximation under both
Wasserstein and W-M ambiguity sets lead to tractable convex program of the DRCC-OPF
problem. These approximations can then be efficiently solved by the off-the-shelf commer-
cial softwares (e.g., CPLEX).
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3.4 Case Study

To test the DRCC-OPF models under DW and DWM , we conduct computational case stud-
ies on the IEEE 30-bus system. All instances are solved by CPLEX 12.7.1 on a 64-bit
Windows Server 2012 R2 Standard machine with two Intel(R) Xeon(R) E5-2630 v4 pro-
cessors, running at 2.20 GHz with 128 GB memory.

3.4.1 Experiment Setting

The IEEE 30-bus system contains 30 nodes and 41 transmission lines (see http://www.
ee.washington.edu/research/pstca/ for the data set). We place 9 thermal gen-
erators (see Tables 3.1 for the generator characteristics) and 3 wind farms in this system.
The 3 wind farms are based on 3 onshore sites from the National Renewable Energy Lab-
oratory (NREL).

Table 3.1: Generator characteristics

Generator Index Bus Index Ui RUi RDi cG
i cR

i

1 4 20 10 10 2.5 25
2 6 10 5 5 2.4 24
3 10 30 15 15 1.4 14
4 12 20 10 10 1.3 13
5 15 30 15 15 2.8 28
6 18 30 15 15 1.8 18
7 24 20 10 10 2.2 22
8 26 10 5 5 1.1 11
9 27 20 10 10 2.6 26

We characterize the uncertainty set U defined in (3.8), the Wasserstein ambiguity set
DW defined in (3.9), and the W-M ambiguity set DWM defined in (3.12) based on the
historical data from NREL Wind Integration National Dataset Toolkit [41, 40, 90, 79]. For
each day we test, we collect the historical data of the forecast errors of wind energy in
the previous 20 days, and 20 days before and after this day in the previous six years. For
example, if we test Feb. 1 in the year 2013, then we collect data during Jan. 12–31 in
2013, Jan. 12–Feb. 20 in 2007–2012. For the uncertainty set U , we consider upper and
lower bounds of the hourly forecast errors of each wind farm as well as the upper and lower
bounds of the hourly total forecast errors of all three wind farms. The `1-norm is applied
to characterize both DW and DWM . Two types of Wasserstein ball radii θ are used to test
our approaches:

43

http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/


1. The theoretical radius calculated based on Theorem 3.2.2 in [165], with regard to the
confidence level η = 0.95.

2. A statistical radius inspired by the concept of SAA. The theoretical radius guarantees
that the true probability distribution Q ∈ DW with confidence level at least η, but
this radius is often too conservative and can lead to unnecessarily robust solutions.
The statistical radius is estimated by calculating the Wasserstein distance between
the reference distribution P0 and another reference distribution Pe constructed from
much more data samples than P0. That is, the radius is set to be dW (P0,Pe), where
Pe is a uniform distribution on Nc � N data samples.

The proposed approaches are tested under a 20% penetration level of renewable energy.
Using the median of renewable energy from each site during each hour as a benchmark, we
scale the total capacity of the wind farms to take up 20% of the total electricity load. We
schedule the power flow of this power system for 30 days. In each day, we solve the DRCC-
OPF model with Nt = 6 hours. We compare the DRCC-OPF under DW and DWM with
the moment-based DRCC-OPF model in [164] and a benchmark approach based on Gaus-
sian approximation [113, 21]. Both approaches lead to second-order conic programming
reformulations. In particular, the moment ambiguity set used in [164] is

DM :=


∫
w∈RNw P(dw) = 1

P : E[w] = µ

E[(w − µ)(w − µ)>] = Σ

 , (3.27)

where µ and Σ are the empirical mean and covariance matrix of the random variables w,
respectively.

3.4.2 Out-of-Sample Performance

We first compare solutions of the existing approaches with those of our approaches. We
refer to them as

• Gaussian (A1): The Gaussian approximation based approach [113, 21].

• DR-moment (A2): The DR approach with DM [164].

• DR-Wasserstein-T (A3): The DR approach with DW using the theoretical radius.

• DR-Wasserstein-S (A4): The DR approach with DW using the statistical radius.
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• DR-Wasserstein-Moment-S (A5): The DR approach with DWM using the statistical
radius.

In the experiments, we evaluate the performance of the approaches by the following three
criteria:

1. Cost: The average objective cost (3.1a) out of the 30 days.

2. Reliability: The fraction of days out of the 30 days in which all the constraints are
satisfied in the out-of-sample simulation.

3. Time: The average CPU seconds for solving each instance.

We report the comparison of the performance of A1–A5 in Table 3.2 and Figure 3.1.
In this simulation, all approaches (A1–A5) are solved based on 260 data samples of ŵ.
Note that A1 and A2 only use data to get the empirical mean and covariance matrix while
A3–A5 directly incorporate the data samples. First, the average computational time (see
the column Time) is around 5 minutes for solving A3 and A4 to global optimality and 90
minutes for solving A5. A1 and A2 can be solved within 1 second. The main difficulty
of solving A3, A4, and A5 is that the number of constraints in these models is related to
the number of data samples. As compared with A3 and A4, A5 is computationally heav-
ier due to the incorporation of moment information in UWM . Although A5 takes longer
time, it still can be solved within a reasonable amount of time for practical applications.
Second, we report the results of the out-of-sample performance of each approach (see the
columns Cost and Reliability). Overall, A5 balances the robustness and cost-efficiency the
best among all the five approaches. A1 is the most optimistic, leading to the lowest cost
and reliability. This is mainly because the wind forecast errors typically do not follow a
Gaussian distribution [64]. Compared with A3–A5, A2 is much more sensitive to the risk
threshold (1 − εi). When the threshold is high, A2 provides over-conservative solutions.
On the other hand, when the threshold is low, A2 becomes less conservative than A3 and
A4, but still more conservative than A5. Note that A3 provides the same solution in all the
experiments under all the risk thresholds. This is because the theoretical radius is so large
that the ambiguity set even includes some singletons, i.e., probability distributions that put
all the weight on certain worst-case scenarios. In this case, A3 performs similarly as a
classical robust OPF model. In contrast, the statistical radius produces a less conservative
ambiguity set so that the ambiguity set can exclude such extremal distribution. A4 provides
relatively less conservative solutions which have 100% reliability under all risk thresholds.
By incorporating the moment information into the Wasserstein ambiguity set, for all risk
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thresholds, A5 shows a delicate balance between reliability and cost-effectiveness. It pro-
vides a less conservative solution while always satisfying the uncertain constraints above
the required risk thresholds.

Table 3.2: Comparisons on the performance of A1–A5

A1: Gaussion A2: DR-moment
1− εi (% ) Cost Reliability (%) Time (s) Cost Reliability (%) Time (s)

99 1401.20 60% 0.29 5769.14 100% 0.43
95 1299.53 43% 0.31 2786.56 100% 0.36
90 1236.65 30% 0.34 2115.92 100% 0.32
85 1188.81 17% 0.28 1811.64 93% 0.32

A3: DR-Wasserstein-T A4: DR-Wasserstein-S A5: DR-Wasserstein-Moment-S
1− εi (% ) Cost Reliability (%) Time (s) Cost Reliability (%) Time (s) Cost Reliability (%) Time (s)

99 2135.52 100% 478.08 2135.52 100% 352.78 2135.52 100% 2619.64
95 2135.52 100% 406.94 2134.39 100% 248.60 2130.30 100% 6185.00
90 2135.52 100% 392.15 2116.88 100% 243.36 1915.35 100% 6450.25
85 2135.52 100% 375.43 1945.44 100% 284.18 1680.60 87% 6320.47
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Figure 3.1: Average total cost comparison on the 30-bus System; Blue - A1, Red - A2,
Yellow - A3, Purple - A4, Green - A5; Risk threshold - 99%, 95%, 90%, 85% Clockwise1

The Table 3.3 reports the influence of the data sizes on the performance of A3–A5.
First, the computation time decreases nearly linearly with the data size decreases (see the
column Time). The column Radius reports the average radius of the 30 days for each

1When 1− εi = 99% and 95%, the average total costs of A3, A4, and A5 are too close to distinguish.
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approach and each data size. Note that the radii of all approaches increase as the data
size decreases and the theoretical radii are much larger than the corresponding statistical
radii. Second, since the theoretical radii are over-conservative, A3 yields the same solution
for all the data sizes. A4 and A5 provide less conservative solutions than A3 because the
corresponding ambiguity sets defined by the statistical radii are much smaller. The costs in
A4 and A5 increase as the data size decreases because less data leads to a larger radius. By
incorporating moment information, the Wasserstein ambiguity set is further strengthened
and A5 shows the best balance between cost-effectiveness and reliability.

Table 3.3: Comparisons on the performance of A3, A4, and A5 with different data sizes

1− εi = 85% A3: DR-Wasserstein-T A4: DR-Wasserstein-S A5: DR-Wasserstein-Moment-S
Number of samples (n) Cost Reliability (%) Time (s) Radius Cost Reliability (%) Time (s) Radius Cost Reliability (%) Time (s) Radius

260 2135.52 100 375.43 3.24 1945.44 100 284.18 0.52 1680.60 87 6320.47 0.52
195 2135.52 100 244.47 3.61 2077.44 100 197.57 0.73 1788.43 97 3846.04 0.73
130 2135.52 100 112.24 4.18 2128.50 100 106.06 1.02 1924.70 100 1927.72 1.02
65 2135.52 100 47.39 5.34 2132.53 100 35.17 1.48 2061.73 100 581.22 1.48

3.5 Conclusion

In this chapter, we proposed a Wasserstein-moment ambiguity set and formulated a multi-
period DRCC-OPF model with both the Wasserstein and the Wasserstein-moment ambi-
guity sets. These two models can be conservatively recast as an linear program if the
`1- or the `∞-norm is applied in the Wasserstein metric, or as a second-order conic pro-
gram if the `2-norm is applied. We also proposed a statistical radius to overcome the over-
conservativeness of the theoretical radius. We compared the out-of-sample performance of
the proposed approaches with an existing moment-based DR approach and a benchmark
approach based on Gaussian approximation on the IEEE 30-bus system. We found that
the DRCC-OPF model with the Wasserstein-moment ambiguity set using statistical radius
performs the best in term of balancing cost-effectiveness and reliability.

3.6 Nomenclature

A. Sets and Indices

NB Number of buses.

NG Number of thermal generators.

NL Number of loads.
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N` Number of transmission lines.

Nw Number of wind farms.

Nt Number of operating time intervals.[
N
]

Set {1, . . . , N} for integer N .

B. Parameters

A` ∈ RN`×NB The distribution factor matrix, in which each component [A`]ij represents
the shift distribution factor of bus j to line i in the dc power flow model.

BG ∈ RNB×NG The bus-generator incidence matrix, in which component [BG]ij = 1 if
generator j locates at bus i and [BG]ij = 0 otherwise.

BL ∈ RNB×NL The bus-load incidence matrix, in which component [BL]ij = 1 if load j
locates at bus i and [BL]ij = 0 otherwise.

Bw ∈ RNB×Nw The bus-wind incidence matrix, in which component [Bw]ij = 1 if wind
farm j locates at bus i and [Bw]ij = 0 otherwise.

cG ∈ RNG The unit costs for energy generation.

cR ∈ RNG The unit costs for providing reserve.

P f
w,t ∈ RNw Forecasted wind power during time interval t.

PG ∈ RNG Thermal generator production capacities.

PL,t ∈ RNL Loads during time interval t.

P` ∈ RN` Transmission line capacities.

RU, RD ∈ RNG Ramp-up/-down capacities of the thermal generators.

C. Random Variables

wt ∈ RNw Forecast errors of wind energy during time interval t.

D. Decision Variables

dt ∈ RNG Distribution vector during time interval t, which parameterizes an affine re-
sponse from the generator-providing reserves to the real-time supply/demand mis-
match.
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PG,t ∈ RNG Planed thermal generation amounts during time interval t.

RG,t, RG,t ∈ RNG Generator upward/downward reserve capacities during time interval t.

E. Auxiliary Variables

PI,t ∈ RNB Net power injection at buses during time interval t.

Pw,t ∈ RNw Actual wind energy during time interval t.

Rt ∈ RNG Generator reserve dispatch amounts during time interval t.
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CHAPTER 4

Distributionally Robust Optimization Using
Shape Information

4.1 Introduction

In an uncertain environment, crucial decisions often need to be made before the uncertain
parameters are fully realized. If we have access to the probability distribution of these pa-
rameters, then we can adopt a classical stochastic program (SP) that optimizes the expected
value of the cost:

zSP := min
x

EPξ [f(x, ξ)] , (SP)

where x ∈ Rn represents an n-dimensional decision vector, ξ ∈ RT represents a T -
dimensional random vector, f(x, ξ) represents a cost function involving x and ξ, and Pξ
represents the probability distribution of ξ. (SP) is an effective approach and has been suc-
cessfully implemented in a wide range of applications (e.g., appointment scheduling [46]
and power system operations [134]). Indeed, suppose that a decision maker needs to re-
peatedly implement a decision in face of uncertainty that is stationary over time. Then,
the objective function of (SP) becomes an unbiased representative of the long-term average
cost, and as a result, an optimal solution xSP to (SP) leads to a minimal cost in the long run.

A basic challenge to the (SP) model is that the decision maker may not have perfect
knowledge of Pξ. For example, in appointment scheduling, the service durations may be
non-stationary due to patient heterogeneity or seasonality; and in power system operations,
the data on the new renewable energy resources may be limited. As a consequence, xSP can
lead to unsatisfactory performance in reality. As an alternative to SP, distributionally robust
optimization (DRO) proposes to waive the perfect-knowledge assumption on Pξ by consid-
ering an ambiguity set, consisting of a family of plausible distributions that satisfy certain
characteristics of the true (yet ambiguous) Pξ. A convenient ambiguity set is constructed
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based on moments, e.g.,

D :=
{
P ∈ P(Ξ) : EP[Aξ] = m

}
,

where Ξ represents the support of ξ, P(Ξ) represents the set of distributions supported on
Ξ, A ∈ RL×T and m ∈ RL respectively represent a matrix of coefficients and a vector
of moments that are matched by EP[ξ] under the linear transformation defined by A. For
example, if L = T and A = IT×T then D incorporates all distributions under which the
mean of ξ equalsm. DRO seeks to minimize the expected cost with regard to the worst-case
distribution in D, i.e.,

zDRO := min
x

sup
P∈D

EP [f(x, ξ)] . (DRO)

In a data-driven context, the matched moments m can be inferred from the historical data
of ξ. In that case, if ambiguity set D includes Pξ as a member with high confidence, then
zDRO provides a conservative, but high-confidence, upper bound on zSP, which is unknown
when Pξ is ambiguous.

In reality, in addition to the moments, a decision maker often possesses certain shape
information of Pξ. For example, multiple classes of distributions have been proposed to
model wind prediction errors, including normal [39], Cauchy [65], and hyperbolic [64], all
of which are unimodal. Likewise, multiple classes of distributions have been proposed to
model appointment durations, including exponential [145], Gamma [130], and normal [31],
all of which are log-concave. Incorporation of the shape information into the definition of
D can make (DRO) less conservative (see, e.g., [89, 87]). Unfortunately, such incorporation
often makes DRO models computationally intractable. For example, when unimodality is
incorporated intoD and f(x, ξ) is convex and piecewise affine in ξ, [138] indicates that the
worst-case expectation supP∈D EP [f(x, ξ)] may be computationally prohibitive even when
x is fixed. For another example, incorporating log-concavity may deprive the convexity of
D, making (DRO) non-convex. Indeed, the mixture of two log-concave distributions is in
general not log-concave anymore.

In this chapter, we investigate a general framework to indirectly take the shape infor-
mation into account. Specifically, we consider concentration inequalities in the form

P{ξ ∈ Ξr} ≥ 1− ε(r) ∀r ∈ R, (4.1)

where R represents a set of real numbers, {Ξr}r∈R represent a series of nondecreasing
confidence sets parameterized by r, i.e., Ξr1 ⊆ Ξr2 whenever r1 ≤ r2, and 1 − ε(r) repre-
sents a nondecreasing function in r onR. In Section 4.2, we make it concrete how to infer
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concentration inequalities in the above form from higher moments and shape information,
including unimodality, log-concavity, and sub-Gaussian property. Using (4.1), we re-define
the ambiguity set as follows and stick with this definition in the remainder of this chapter:

D =
{
P ∈ P(Ξ) : EP[Aξ] = m, P

{
ξ ∈ Ξr

}
≥ 1− ε(r), ∀r ∈ R

}
. (4.2)

When R is chosen to be a continuous interval of R, D becomes an infinitely constrained

ambiguity set, potentially making (DRO) intractable. Perhaps surprisingly, we shall show
that, even under an infinitely constrained D as in (4.2), (DRO) with shape information
admits a SP reformulation with respect to an unambiguous probability distribution. This
facilitates efficient solution algorithms, e.g., sample average approximation.

4.1.1 Literature Review

DRO was first introduced by [124] as a minimax stochastic program for the newsvendor
problem under an ambiguous demand with the first two moments. Following this semi-
nal work, moment information has been widely used for characterizing ambiguity sets in
various DRO models (see, e.g., [44, 107, 25, 108, 139, 143, 17, 37, 171, 3, 172, 35, 61]).
A key merit of the moment-based DRO is that the model can often be recast as tractable
convex programs such as semidefinite programs (see, e.g., [107, 139, 37, 171, 35]) or conic
programs (see, e.g., [44, 25, 143, 61]) that can be efficiently solved by commercial solvers.
Recently, [151] successfully identified a class of moment-based ambiguity sets that lead to
tractable convex program reformulations of general DRO models.

An alternative type of ambiguity sets consist of probability distributions that are within
a neighborhood of a reference distribution. To define the neighborhood, various diver-
gences including the Prohorov metric [45], the φ-divergence (see, e.g., [14, 11, 73]), the
ζ-structure probability metrics [165], and the Wasserstein distance (see, e.g., [47]) have
been employed in DRO models. Based on a series of data of ξ, the divergence-based DRO
can asymptotically recover the (SP) model if the ambiguity set shrinks to the true distri-
bution Pξ, e.g., as the data size increases to infinity. Nevertheless, the divergence-based
ambiguity sets usually rely on joint data of ξ, i.e., all components of ξ need to be realized
in all data samples. In many applications, only marginal data is available due to asyn-
chronous data collection and/or data privacy consideration. In that case, it is unclear how
divergence-based ambiguity sets can be constructed, while the (marginal) moments of ξ
can still be inferred from the data.

As compared to the aforementioned ambiguity sets, shape information has received
much less attention in the existing literature. For example, [137] generalized the Gauss in-
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equality when Pξ is α-unimodal, [58] generalized the newsvendor model in [124] to a multi-
item setting under a multi-modal ambiguity set in the sense that Pξ is a mixture of multiple
distributions with known moments, [131, 86] studied distributionally robust chance con-
straints when Pξ is α-unimodal, [138] considered ambiguity sets with α-unimodality or
γ-monotonicity in distributionally robust expectation inequalities, and [89] incorporated
log-concavity into distributionally robust chance constraints. To the best of our knowledge,
this study takes the first step to study DRO models with shape information in a general and
computationally tractable manner. We highlight our main contributions as follows:

1. We propose a new class of ambiguity sets using shape information. We derive concen-
tration inequalities from various shape information and incorporate these inequalities to
strengthen the ambiguity set. This provides a general framework for DRO models with
shape information.

2. We derive an upper bound of the worst-case expectation under the new ambiguity set.
Under mild conditions, we show that this upper bound is tight for a wide class of cost
functions f(x, ξ), both when D is finitely constrained and when it is infinitely con-
strained. In addition, we show that the (DRO) model is computationally tractable when
the worst-case expectation is replaced by the tight upper bound.

3. We further extend the framework in multiple directions, including adaptive DRO models
with fixed recourse and cost functions that violate the identified conditions. In particular,
we show that these models admit tractable reformulations when shape information is
taken into account.

Notation. Throughout this chapter, we adopt the convention that∞·0 = 0 ·∞ = 0/0 = 0.
For integers M,N ∈ N, we denote [N ] := {1, . . . , N} and [M,N ]Z := {n ∈ N : M ≤
n ≤ N}. Given a norm ‖ · ‖ on Rn, its dual norm is defined as ‖x‖∗ := supξ:‖ξ‖≤1 x

>ξ.
Given a function f : Rn → R, its conjugate f ∗ : Rn → R is defined as f ∗(x) :=

supξ∈Rn
{
x>ξ − f(ξ)

}
. For a set Ξ ⊆ Rn, its indicator function 1Ξ : Rn → {0, 1} is

defined as 1Ξ(ξ) :=

1, if ξ ∈ Ξ,

0, otherwise
, the characteristic function χΞ : Rn → {0,∞} is

defined as χΞ(ξ) :=

0, if ξ ∈ Ξ

∞, otherwise
, and the support function σΞ : Rn → R is defined

as σΞ(x) := supξ∈Ξ x
>ξ.

Organization. The remainder of this chapter is organized as follows. In Section 4.2, we
discuss how the concentration inequalities in D can be inferred from higher moments and
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shape information. In Section 4.3, we derive an upper bound of the worst-case expectation
in (DRO) for two cases: (i)R is discrete and (ii)R is a continuous interval. In Section 4.4,
we show that this upper bound is sharp for a wide class of cost functions. Then, we study
extensions of the proposed framework in Section 4.5. Finally, we conduct computational
case studies on appointment scheduling and optimal power flow in Section 4.6.

4.2 Inferring Concentration Inequalities

In this section, we discuss how the concentration inequalities (4.1) can be inferred from
higher moments and shape information.

Higher moments: Suppose that we know the kth marginal moments mkt := EPξ [|ξt|k] for
some k ≥ 2 and all t ∈ [T ]. Then, the Markov’s inequality implies that Pξ{|ξt| > r} ≤
mkt/r

k for all r > 0. It follows that

Pξ{‖ξ‖∞ ≤ r} ≥ 1−
T∑
t=1

mkt

rk
, ∀r > 0.

In other words, these kth moments infer concentration inequalities (4.1) with Ξr = {ξ :

‖ξ‖∞ ≤ r}, ε(r) =
∑T

t=1(mkt/r
k), andR = (0,∞).

Unimodality: Suppose that, for all t ∈ [T ], the tth component of ξ is unimodal about a
mode ot. Then, the Gauss inequality implies that Pξ{|ξt − ot| > r} ≤ (2st/3r)

2 for all
r ≥ 2st/

√
3, where s2

t := EPξ [(ξt − ot)2]. It follows that

Pξ{‖ξ − o‖∞ ≤ r} ≥ 1−
T∑
t=1

(
2st
3r

)2

, ∀r ≥ max
t∈[T ]

{
2st√

3

}
.

In other words, the unimodality infers concentration inequalities (4.1) with Ξr = {ξ :

‖ξ − o‖∞ ≤ r}, ε(r) =
∑T

t=1 (2st/(3r))
2, andR =

[
maxt∈[T ]{2st/

√
3}, ∞

)
.

Star-unimodality: Suppose that ξ is star-unimodal1 about its mean µ. Then, a general-
ized Gauss inequality by Lemma 4 in [137] implies that

Pξ
{
‖Σ−1/2(ξ − µ)‖∞ ≤

√
Tr
}
≥ 1−

(
2

T + 2

) 2
T 1

r2
, ∀r >

(
2

T + 2

) 1
T
(
T + 2

T

) 1
2

,

1Star-unimodality is a generalized concept of unimodality for random vectors; see [38].
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where Σ represents the covariance matrix of ξ. In other words, the star-unimodality in-
fers concentration inequalities (4.1) with Ξr = {ξ : ‖Σ−1/2(ξ − µ)‖∞ ≤

√
Tr}, ε(r) =

(2/(T + 2))2/T (1/r2), andR =
(
(2/(T + 2))1/T (1 + 2/T )1/2, ∞

)
.

Log-concavity: Suppose that ξ is log-concave and ‖ · ‖ represent an arbitrary norm on
RT . Then, Proposition 5.15 in [56] implies that

Pξ{‖ξ‖ ≥ 4Γr} ≤ e−
r
2 , ∀r ≥ 1,

where Γ := EPξ [‖ξ‖]. This is equivalent to concentration inequalities (4.1) with Ξr = {ξ :

‖ξ‖ ≤ 4Γr}, ε(r) = e−r/2, andR = [1,∞).

Sub-Gaussian: Suppose that each component of ξ is sub-Gaussian, i.e., there exists con-
stants ct ≥ 1 and τt ∈ R such that Pξ{|ξt − µt| ≥ r} ≤ ctP{|N (µt, τ

2
t )− µt| ≥ r} for all

t ∈ [T ] and r ≥ 0, where µ := EPξ [ξ] andN (µt, τ
2
t ) represents the normal random variable

with mean µt and variance τ 2
t . It follows that

Pξ{‖ξ − µ‖∞ ≤ r} ≥ 1−
T∑
t=1

ctP{|N (µt, τ
2
t )− µt| ≥ r}, ∀r ≥ 0.

This is equivalent to concentration inequalities (4.1) with Ξr = {ξ : ‖ξ − µ‖∞ ≤ r},
ε(r) =

∑T
t=1 ctP{|N (µt, τ

2
t )− µt| ≥ r}, andR = [0,∞).

Sub-Gaussian and independence: An equivalent definition of ξt being sub-Gaussian is
that ‖ξt − µt‖ψ2 := supp≥1 p

−1/2
(
EPξ |ξt − µt|p

)1/p
< ∞. In addition to the sub-Gaussian

information, suppose that the components of ξ are independent and s2
t := EPξ [(ξt − µt)2].

Then, the Hanson-Wright inequality (see, e.g., [120]) implies

Pξ

{
(ξ − µ)>Σ(ξ − µ) ≤

T∑
t=1

s2
tΣt,t + r

}
≥ 1− 2 exp

[
−cmin

{
r2

κ4‖Σ‖2
F

,
r

κ2‖Σ‖

}]
,

∀r ≥ 0, for any matrix Σ ∈ RT×T , and a constant c > 0, where κ := maxt∈[T ] ‖ξt − µt‖ψ2 ,

‖Σ‖F :=
(∑T

r=1

∑T
t=1 Σ2

r,t

)1/2

represents the Frobenius norm, and ‖Σ‖ := sup‖ξ‖2≤1 ‖Σξ‖2

represents the operator norm. In other words, sub-Gaussian and independence information
infers concentration inequalities (4.1) with Ξr = {ξ : (ξ−µ)>Σ(ξ−µ) ≤

∑T
t=1 s

2
tΣt,t+r},

ε(r) = 2 exp
[
−cmin

{
r2/(κ4‖Σ‖2

F ), r/(κ2‖Σ‖)
}]

, andR = [0,∞).
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4.3 Upper Bounds of the Worst-Case Expectation

In this section, we derive upper bounds of the worst-case expectation in (DRO) for a general
cost function f(x, ξ). In particular, we consider two topologies ofR: (i)R is a discrete set
of scalars and (ii)R is a continuous interval on R. For notational brevity, we parameterize
the support set Ξ := Ξr̄ such that r̄ ≥ sup{R}. We formalize the discrete case in the
following assumption.

Assumption 4.3.1 (Discrete Topology). R = {r0, . . . , rK} with r0 < · · · < rK . In addi-

tion, Ξrk $ Ξ and Ξrk \ Ξrk−1
6= ∅ for all k ∈ [K].

We note that Assumption 4.3.1 can be made with little loss of generality. Indeed, we
can always redefine Ξr to be Ξr ∩ Ξ and/or enlarge Ξ infinitesimally to make Ξr a strict
subset of Ξ. In addition, we can merge the duplicated confidence sets and their confidence
bounds to ensure that {Ξrk}Kk=0 is strictly increasing under inclusion. We summarize the
main result for the discrete topology in the following theorem.

Theorem 4.3.1. Under Assumption 4.3.1, we have

sup
P∈D

EP [f(x, ξ)] ≤ inf
p∈RT

EQK

[
H(x, p, ζ)

]
,

where ζ represents a 1-dimensional random variable,

H(x, p, ζ) := sup
ξ∈Ξζ

{
f(x, ξ)− p>(Aξ −m)

}
, (4.3)

and QK represents its probability distribution with the cumulative distribution function

QK{ζ ≤ x} =


0, if x < r0,

1− ε(rk−1), if rk−1 ≤ x < rk for k ∈ [K],

1− ε(rK), if rK ≤ x < r,

1, if x ≥ r.

Proof. First, we formulate the distributionally robust expectation in (DRO) as the following
optimization problem

zKP = sup
P

EP [f(x, ξ)] (4.4a)

s.t. EP[Aξ] = m, (4.4b)

EP
[
−1Ξrk

(ξ)
]
≤ ε(rk)− 1, ∀k ∈ [0, K]Z, (4.4c)
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EP
[
1Ξ(ξ)

]
= 1, (4.4d)

whose dual is

zKD = inf
p∈RT , q∈R, gk≥0

m>p+ q −
K∑
k=0

[1− ε(rk)] gk (4.5a)

s.t. q + p>Aξ −
K∑
k=0

1Ξrk
(ξ)gk ≥ f(x, ξ), ∀ξ ∈ Ξ, (4.5b)

where dual variables p are associated with primal constraints (4.4b), q is associated with
primal constraint (4.4d), gk is associated with primal constraint (4.4c) for each k ∈ [0, K]Z,
and dual constraints (4.5b) are associated with primal variables P. By construction, weak
duality holds between problems (4.4a)–(4.4d) and (4.5a)–(4.5b), i.e., zKP ≤ zKD .

Second, we categorize the value of r and recast constraints (4.5b) as follows:
q + p>Aξ −

∑K
k=0 gk ≥ f(x, ξ), ∀ξ ∈ Ξr0 ,

q + p>Aξ −
∑K

k=j gk ≥ f(x, ξ), ∀ξ ∈ Ξrj \ Ξrj−1
, ∀j ∈ [K],

q + p>Aξ ≥ f(x, ξ), ∀ξ ∈ Ξ \ ΞrK ,

⇔



q −
∑K

k=0 gk ≥ sup
ξ∈Ξr0

{
f(x, ξ)− p>Aξ

}
,

q −
∑K

k=j gk ≥ sup
ξ∈Ξrj \Ξrj−1

{
f(x, ξ)− p>Aξ

}
, ∀j ∈ [K],

q ≥ sup
ξ∈Ξ\ΞrK

{
f(x, ξ)− p>Aξ

}
,

(4.6a)

⇔


q −

∑K
k=0 gk ≥ sup

ξ∈Ξr0

{
f(x, ξ)− p>Aξ

}
,

q −
∑K

k=j gk ≥ sup
ξ∈Ξrj

{
f(x, ξ)− p>Aξ

}
, ∀j ∈ [K],

q ≥ sup
ξ∈Ξ

{
f(x, ξ)− p>Aξ

}
,

(4.6b)

⇔ q −
K∑
k=j

gk ≥ H̄(rj), ∀j ∈ [0, K + 1]Z,

where H̄(t) := supξ∈Ξt

{
f(x, ξ)− p>Aξ

}
for all t ∈ R and ΞrK+1

:= Ξ. The equivalence
between (4.6a) and (4.6b) is because gk ≥ 0 and so, for any i, j ∈ [K] and i < j, we have
q−
∑K

k=j gk ≥ q−
∑K

k=i gk ≥ supξ∈Ξri\Ξri−1

{
f(x, ξ)− p>Aξ

}
. Similarly, q−

∑K
k=j gk ≥
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q −
∑K

k=0 gk ≥ supξ∈Ξr0

{
f(x, ξ)− p>Aξ

}
. It follows that

q −
K∑
k=j

gk ≥ max
i∈[j]

{
sup

ξ∈Ξri\Ξri−1

{
f(x, ξ)− p>Aξ

}
, sup
ξ∈Ξr0

{
f(x, ξ)− p>Aξ

}}
= sup

ξ∈Ξrj

{
f(x, ξ)− p>Aξ

}
.

We recast the dual problem (4.5a)–(4.5b) as

inf
p∈RT , q∈R, gk≥0

m>p+ q −
K∑
k=0

[1− ε(rk)]gk (4.6c)

s.t. q −
K∑
k=j

gk ≥ H̄(rj), ∀j ∈ [0, K + 1]Z, (4.6d)

= inf
p∈RT , q≥H̄(r)

m>p+ q − sup
gk≥0

K∑
k=0

[1− ε(rk)]gk (4.6e)

s.t.
K∑
k=j

gk ≤ q − H̄(rj), ∀j ∈ [0, K]Z. (4.6f)

Third, we solve the maximization problem embedded in the formulation (4.6e)–(4.6f).
To this end, we conduct a change of variables by definingGj =

∑K
k=j gk for all j ∈ [0, K]Z.

It follows that gK = GK and gk = Gk − Gk+1 for all k ∈ [0, K − 1]Z, i.e., it is equivalent
to work with either variables gk or Gk in (4.6e)–(4.6f). Hence, we recast the maximization
problem as:

sup
Gk≥0

[1− ε(r0)]G0 +
K∑
k=1

[ε(rk−1)− ε(rk)]Gk (4.6g)

s.t. Gk ≤ q − H̄(rk), ∀k ∈ [0, K]Z, (4.6h)

G0 ≥ G1 ≥ · · · ≥ GK ≥ 0. (4.6i)

Suppose that we relax constraints (4.6i). Then, Gk = q − H̄(rk) for all k = 0, . . . , K

is optimal to the above problem because 1 − ε(r0) ≥ 0 and ε(rk−1) − ε(rk) ≥ 0 for all
k ∈ [K]. But q− H̄(rk) is nonnegative because q ≥ H̄(r̄), and nonincreasing in k because
H̄(t) is nondecreasing in t and r0 < · · · < rK . Hence, constraints (4.6i) are automatically
satisfied and so the optimal value of the problem (4.6g)–(4.6i) is [1− ε(r0)] [q − H̄(r0)] +∑K

k=1[ε(rk−1)− ε(rk)] [q − H̄(rk)].
Finally, we plug this optimal value into (4.6e) and recast the dual problem (4.5a)–(4.5b)
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as

inf
p∈RT , q≥H̄(r)

m>p+ q − [1− ε(r0)][q − H̄(r0)]−
K∑
k=1

[ε(rk−1)− ε(rk)][q − H̄(rk)]

= inf
p∈RT , q≥H̄(r)

m>p+ ε(rK)q + [1− ε(r0)] H̄(r0) +
K∑
k=1

[ε(rk−1)− ε(rk)]H̄(rk)

= inf
p∈RT

m>p+ [1− ε(r0)] H̄(r0) +
K∑
k=1

[ε(rk−1)− ε(rk)]H̄(rk) + ε(rK)H̄(r)

= inf
p∈RT

EQK [H(x, p, ζ)].

Therefore, zKP ≤ zKD = infp∈RT {EQK [H(x, p, ζ)]} and the proof is completed.
Theorem 4.3.1 upper bounds the worst-case expectation in (DRO) by the optimal value

of a stochastic program with an unambiguous probability distribution. As a result, a reli-
able upper bound of the worst-case expectation can be obtained as long as we are able to
solve the unambiguous stochastic program. In Section 4.4, we shall show that the upper
bound is actually sharp for a wide class of cost functions. The continuous case, however, is
more complicated than the discrete one. This is largely becauseR now incorporates an un-
countable number of elements. Accordingly, the ambiguity set D becomes (uncountably)
infinitely constrained. Nevertheless, we identify the following mild condition under which
a counterpart of Theorem 4.3.1 holds for the continuous case.

Assumption 4.3.2 (Continuous Topology). R = [rL, rU] with Ξr $ Ξ, Ξr \ (
⋃
t<r Ξt) 6= ∅,

and limt→rD(Ξt,Ξr) = 0 for all r ∈ R, where D(A,B) := max{supξ∈A infξ′∈B ‖ξ −
ξ′‖, supξ′∈B infξ∈A ‖ξ − ξ′‖} represents the Hausdorff distance between sets A and B. In

addition, ε(r) is continuous on R. Finally, for all x, f(x, ξ) is piecewise continuous in ξ.

That is, there exists a partition {Pn}Nn=1 of Ξ, such that Pm ∩ Pn = ∅ for all m,n ∈ [N ]

and m 6= n, ∪Nn=1Pn = Ξ, and f(x, ξ) is continuous in ξ on Pn for all n ∈ [N ].

Assumption 4.3.2 is mild because, like in the discrete topology, we can always enlarge Ξ

infinitesimally to make it a strict superset of all ξr. In addition, all concentration inequalities
discussed in Section 4.2 satisfy the assumptions on {Ξr}r∈R. We summarize the main result
for the continuous topology in the following theorem.

Theorem 4.3.2. Under Assumption 4.3.2, we have

sup
P∈D

EP [f(x, ξ)] ≤ inf
p∈RT

EQ

[
H(x, p, ζ)

]
,

where ζ represents a 1-dimensional random variable with probability distribution Q and
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cumulative distribution function

Q{ζ ≤ x} =


0, if x < rL,

1− ε(x), if rL ≤ x ≤ rU,

1− ε(rU), if rU < x < r,

1, if x ≥ r,

and H(x, p, ζ) is defined in (4.3).

Proof. First, we formulate the distributionally robust expectation in (DRO) as the following
optimization problem

zP = sup
P

EP [f(x, ξ)] (4.7a)

s.t. EP[Aξ] = m, (4.7b)

EP

[
−1Ξr(ξ)

]
≤ ε(r)− 1, ∀r ∈ [rL, rU], (4.7c)

EP

[
1Ξ(ξ)

]
= 1, (4.7d)

whose dual is

zD = inf
p∈RT , q∈R,
g(r)≥0

m>p+ q −
∫ rU

rL

[1− ε(r)]g(r)dr (4.8a)

s.t. q + p>Aξ −
∫ rU

rL

1Ξr(ξ)g(r)dr ≥ f(x, ξ), ∀ξ ∈ Ξ, (4.8b)

where dual variables p are associated with primal constraints (4.7b), q is associated with pri-
mal constraint (4.7d), g(r) is associated with primal constraint (4.7c) for each r ∈ [rL, rU],
and dual constraints (4.8b) are associated with primal variables P. By construction, weak
duality holds between problems (4.7a)–(4.7d) and (4.8a)–(4.8b), i.e., zP ≤ zD.

Second, we categorize the value of r and recast constraints (4.8b) as follows:

q + p>Aξ −
∫ rU

rL

1Ξr(ξ)g(r)dr ≥ f(x, ξ), ∀ξ ∈ ΞrL , (4.9a)

q + p>Aξ −
∫ rU

rL

1Ξr(ξ)g(r)dr ≥ f(x, ξ), ∀rL ≤ t ≤ rU, ∀ξ ∈ Ξt \

(⋃
s<t

Ξs

)
, (4.9b)

q + p>Aξ −
∫ rU

rL

1Ξr(ξ)g(r)dr ≥ f(x, ξ), ∀ξ ∈ Ξ \ ΞrU . (4.9c)

For inequalities (4.9a), as ξ ∈ ΞrL , we have 1Ξr(ξ) = 1 for all r ∈ [rL, rU] and so (4.9a)
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reduces to

q −
∫ rU

rL

g(r)dr ≥ H̄(rL), (4.9d)

where function H̄(t) is defined as H̄(t) := supξ∈Ξt

{
f(x, ξ)− p>Aξ

}
. Applying similar

analyses on constraints (4.9b)–(4.9c) yields the following reformulation

q −
∫ rU

t

g(r)dr ≥ sup
ξ∈Ξt\(

⋃
s<t Ξs)

{
f(x, ξ)− p>Aξ

}
, ∀rL ≤ t ≤ rU, (4.9e)

q ≥ sup
ξ∈Ξ\ΞrU

{
f(x, ξ)− p>Aξ

}
, (4.9f)

for (4.9b) and (4.9c), respectively. Now consider any s, t ∈ [rL, rU] with s ≤ t. As g(r) ≥ 0

for all r ∈ [rL, rU], we have q −
∫ rU

t
g(r)dr ≥ q −

∫ rU

s
g(r)dr and so q −

∫ rU

t
g(r)dr ≥

supξ∈Ξs\(
⋃
u<s Ξu)

{
f(x, ξ)− p>Aξ

}
by (4.9e). It follows that q−

∫ rU

t
g(r)dr ≥ supξ:Ξt\ΞrL{

f(x, ξ)− p>Aξ
}

. In addition, q −
∫ rU

t
g(r)dr ≥ q −

∫ rU

rL
g(r)dr ≥ H̄(rL) by (4.9d).

Hence, we recast constraints (4.9e) as

q −
∫ rU

t

g(r)dr ≥ H̄(t), ∀t ∈ [rL, rU]. (4.9g)

Furthermore, as q ≥ H̄(rU) by (4.9g) with t = rU, we recast constraints (4.9f) as

q ≥ H̄(r̄). (4.9h)

To sum up, we have recast the dual problem (4.8a)–(4.8b) as

inf
p∈RT , q∈R, g(r)≥0

m>p+ q −
∫ rU

rL

[1− ε(r)]g(r)dr

s.t. (4.9g)–(4.9h),

= inf
p∈RT , q≥H̄(r)

m>p+ q − sup
g(r)≥0

∫ rU

rL

[1− ε(r)]g(r)dr (4.10a)

s.t.
∫ rU

t

g(r)dr ≤ q − H̄(t), ∀rL ≤ t ≤ rU. (4.10b)

Third, we define G(t) =
∫ rU

t
g(r)dr for t ∈ [rL, rU]. Then, G(t) is continuous, non-

increasing in t on the interval [rL, rU], and G(rU) = 0. Then, we recast the maximization
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problem in (4.10a)–(4.10b) as

sup
G(r)≥0

−
∫ rU

rL

[1− ε(r)]dG(r) (4.10c)

s.t. G(t) ≤ q − H̄(t), ∀rL ≤ t ≤ rU, (4.10d)

G(rU) = 0, (4.10e)

G(t) continuous and nonincreasing in t on [rL, rU]. (4.10f)

We show that the optimal value of problem (4.10c)–(4.10f) is [1 − ε(rL)][q − H̄(rL)] +∫ rU

rL
[q − H̄(r)]d[1 − ε(r)]. To this end, on the one hand, the objective function (4.10c)

satisfies

−
∫ rU

rL

[1− ε(r)] dG(r) = [1− ε(rL)]G(rL) +

∫ rU

rL

G(r) d[1− ε(r)]

≤ [1− ε(rL)] [q − H̄(rL)] +

∫ rU

rL

[q − H̄(r)] d[1− ε(r)],

where the equality follows from integration by parts and the inequality follows from con-
straint (4.10d). On the other hand, we construct a sequence of functions {Gn(r)}n∈N such
that

Gn(r) =

 q − H̄(r) if rL ≤ r ≤ rU − 1
n
,

−n(r − rU)
[
q − H̄(r)

]
if rU − 1

n
≤ r ≤ rU.

We prove that {Gn(r)}n∈N are a sequence of feasible solutions to problem (4.10c)–(4.10f)
with their objective values converging to the claimed optimal value. To avoid clutter, we
assume that H̄(t) is continuous on the interval [rL, rU]. For the general H̄(t), we can prove
the same claim by modifying the above definition ofGn(r) within the neighborhood of each
discontinuous point of H̄(t) as that within the interval [rU − 1

n
, rU]. Under this assumption,

when n > 1/(rU − rL), Gn(r) is continuous, nonincreasing in r, Gn(rU) = 0, and Gn(r) ≤
q − H̄(r) for all rL ≤ r ≤ rU. Hence, Gn(r) is a feasible solution to problem (4.10c)–
(4.10f). It follows that, for all n sufficiently large, the optimal value of this problem is
bounded from below by

−
∫ rU

rL

[
1− ε(r)

]
dGn(r)

= −
∫ rU−1/n

rL

[
1− ε(r)

]
d
[
q − H̄(r)

]
−
∫ rU

rU−1/n

[
1− ε(r)

]
d
[
−n(r − rU)

[
q − H̄(r)

]]
= −

∫ rU−1/n

rL

[
1− ε(r)

]
d
[
q − H̄(r)

]
+
[
1− ε

(
rU −

1

n

)][
q − H̄

(
rU −

1

n

)]
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+

∫ rU

rU−1/n

n
[
q − H̄(r)

](
rU − r

)
d
[
1− ε(r)

]
, (4.10g)

where the second equality follows from integration by parts. We analyze the convergence
of the three terms in (4.10g) as n→∞. Specifically, −

∫ rU−1/n

rL

[
1− ε(r)

]
d
[
q− H̄(r)

]
→

−
∫ rU

rL

[
1− ε(r)

]
d
[
q− H̄(r)

]
by the monotone convergence theorem, because of the mono-

tonicity of functions 1[rL ≤ r ≤ rU − 1/n](r) [1 − ε(r)] as n increases. In addition,[
1− ε

(
rU − 1/n

)][
q − H̄

(
rU − 1/n

)]
→
[
1− ε

(
rU

)][
q − H̄

(
rU

)]
because of the left con-

tinuity of ε(r) and H̄(r) at rU. Furthermore,
∫ rU

rU−1/n
n
[
q − H̄(r)

](
rU − r

)
d
[
1− ε(r)

]
→ 0

because ∣∣∣∣∣
∫ rU

rU−1/n

n
[
q − H̄(r)

](
rU − r

)
d
[
1− ε(r)

]∣∣∣∣∣
≤

(
sup

rU−1/n≤r≤rU

∣∣q − H̄(r)
∣∣)( sup

rU−1/n≤r≤rU

∣∣rU − r
∣∣)∣∣∣∣∣

∫ rU

rU−1/n

n d
[
1− ε(r)

]∣∣∣∣∣
=
[
q − H̄

(
rU −

1

n

)] [
ε
(
rU −

1

n

)
− ε(rU)

]
→ 0

as n→∞, where the convergence follows from the left continuity of ε(r) at rU. It follows
that

−
∫ rU

rL

[
1− ε(r)

]
dGn(r)

→ −
∫ rU

rL

[
1− ε(r)

]
d
[
q − H̄(r)

]
+
[
1− ε

(
rU

)][
q − H̄

(
rU

)]
= [1− ε(rL)] [q − H̄(rL)] +

∫ rU

rL

[q − H̄(r)] d[1− ε(r)].

Hence, the optimal value of problem (4.10c)–(4.10f) is [1 − ε(rL)] [q − H̄(rL)] +
∫ rU

rL
[q −

H̄(r)] d[1 − ε(r)]. Finally, we plug this optimal value into (4.10a) and recast the dual
problem (4.8a)–(4.8b) as

inf
p∈RT , q≥H̄(r)

m>p+ q − [1− ε(rL)] [q − H̄(rL)]−
∫ rU

rL

[q − H̄(r)] d[1− ε(r)]

= inf
p∈RT , q≥H̄(r)

m>p+ ε(rU)q + [1− ε(rL)] H̄(rL) +

∫ rU

rL

H̄(r) d[1− ε(r)]

= inf
p∈RT

m>p+ [1− ε(rL)] H̄(rL) +

∫ rU

rL

H̄(r) d[1− ε(r)] + ε(rU)H̄(r)
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= inf
p∈RT

EQ[H(x, p, ζ)].

Therefore, zP ≤ zD = infp∈RT {EQ[H(x, p, ζ)]} and the proof is completed.

4.4 Sharpness of the Upper Bounds

In this section, we show that the upper bounds derived in Theorems 4.3.1–4.3.2 are actually
sharp for a wide class of cost functions f(x, ξ). To this end, we first formalize the sufficient
conditions on the sharpness in the following assumption.

Assumption 4.4.1. Ξ and {Ξr}r∈R are convex and compact. In addition, for I ∈ N+,

f(x, ξ) = maxi∈[I] {fi(x, ξ)}, where−fi(x, ξ) is proper, convex, and lower-semicontinuous

in ξ for each i ∈ [I].

We note that all settings described in Section 4.2 satisfy Assumption 4.4.1 on the con-
vexity and compactness of the confidence sets. In addition, Assumption 4.4.1 designates
that f(x, ξ) can be written as the pointwise maximum of a finite number of concave func-
tions. We next describe three examples of f(x, ξ) that satisfy this assumption.

Piecewise Linear Function. For all i ∈ [I], define fi(x) := ai(x)>ξ + bi(x), where
ai(x) : Rn → RT and bi(x) : Rn → R represent affine functions of x. Then, such
functions satisfy Assumption 4.4.1. These functions arise when modeling (i) the dis-
tributionally robust conditional Value-at-Risk (CVaR) constraints and (ii) two-stage
adaptive DRO models.

Indicator Function. Consider a polyhedron {ξ : (Aix + bi)
>ξ ≤ c>i x + di, ∀i ∈ [I]}.

Then, the indicator function of its complement is

1[
∃i∈[I]:(Aix+bi)>ξ>c>i x+di

](ξ) = max

{
0,max

i∈[I]

{
1− χ[(Aix+bi)>ξ>c>i x+di]

(ξ)
}}

.

Then, such functions satisfy Assumption 4.4.1. These functions arise when quantify-
ing the uncertainty of ξ by computing the worst-case probability of ξ locating outside
of a polyhedron.

Single Concave Function. Suppose that I = 1 and f(x, ξ) is concave in ξ. Then, such
functions satisfy Assumption 4.4.1. These functions arise when modeling uncertain
objective coefficients, e.g., f(x, ξ) = miny∈Y (x) ξ

>Ay, where Y (x) ⊆ Rm represents
a feasible region of variables y that is a multifunction of variables x, A ∈ Rn×m

represents a given matrix, and A>ξ represents the uncertain objective coefficients.
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We are now ready to present the sharpness result for the discrete case in the following
theorem.

Theorem 4.4.1. Suppose that Assumptions 4.3.1 and 4.4.1 hold. Then,

sup
P∈D

EP [f(x, ξ)] = inf
p∈RT

EQK

[
H(x, p, ζ)

]
,

where H(x, p, ζ) is defined in (4.3). In addition, sup
P∈D

EP [f(x, ξ)] is attained by the distri-

bution P∗ξ ∈ D with P∗ξ
{
ξ = π∗ij

}
= α∗ij for all i ∈ [I] and j ∈ [0, K + 1]Z, where (π∗, α∗)

represents an optimal solution to the following optimization problem:

sup
α≥0,π

I∑
i=1

K+1∑
j=0

αijfi(πij) (4.11a)

s.t.
I∑
i=1

K+1∑
j=0

αij = 1, (4.11b)

πij ∈ Ξj, ∀i ∈ [I], ∀j ∈ [0, K + 1]Z, (4.11c)
I∑
i=1

K+1∑
j=0

αijAπij = m, (4.11d)

I∑
i=1

k∑
j=0

αij ≥ 1− ε(rk), ∀k ∈ [0, K]Z, (4.11e)

where we define ΞrK+1
:= Ξ.

Proof. Recall, from the proof of Theorem 4.3.1, that infp∈RT EQK [H(x, p, ζ)] equals the
optimal value of the formulation (4.6c)–(4.6d), which we duplicate below:

inf
p∈RT

EQK [H(x, p, ζ)] = inf
p∈RT , q∈R,

gk≥0

m>p+ q −
K∑
k=0

[1− ε(rk)]gk (4.12a)

s.t. q −
K∑
k=j

gk ≥ sup
ξ∈Ξrj

{
fi(x, ξ)− p>Aξ

}
,

∀i ∈ [I], ∀j ∈ [0, K + 1]Z. (4.12b)

In the following, we recast the formulation (4.12a)–(4.12b) as (4.11a)–(4.11e). To this end,
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we recast the right-hand side of constraints (4.12b) as follows:

sup
ξ∈Ξrj

{
fi(x, ξ)− p>Aξ

}
= sup

ξ∈RT

{
fi(x, ξ)− p>Aξ − χΞrj

(ξ)
}

(4.12c)

=
(
−fi(x, ·) + χΞrj

)∗
(−A>p) (4.12d)

= cl
(

inf
vij

{
(−fi)∗(x,−A>p− vij) + σΞrj

(vij)
})

(4.12e)

where equality (4.12c) follows from the definition of characteristic function χΞrj
, equality

(4.12d) follows from the definition of conjugacy, and equality (4.12e) is because we rewrite
the conjugate of the sum of−fi and χΞrj

as the lower-semicontinuous closure of the infimal
convolution of their conjugates. As the objective function (4.12a) is linear, we can relax the
closure operation without loss of optimality. Plugging this representation back into (4.12b)
yields that infp∈RT EQK [H(x, p, ζ)] equals the following:

inf
p∈RT , q∈R,
gk≥0, vij∈RT

m>p+ q −
K∑
k=0

[1− ε(rk)]gk (4.12f)

s.t. q −
K∑
k=j

gk ≥ (−fi)∗(x,−A>p− vij) + σΞrj
(vij), ∀i ∈ [I], ∀j ∈ [0, K + 1]Z

(4.12g)

= sup
αij≥0

inf
p∈RT , q∈R,
gk≥0, vij∈RT

m>p+ q −
K∑
k=0

[1− ε(rk)]gk −
I∑
i=1

K+1∑
j=0

αij

[
q −

K∑
k=j

gk

− (−fi)∗(x,−A>p− vij)− σΞrj
(vij)

]

= sup
αij≥0

inf
p∈RT ,vij∈RT

m>p+
I∑
i=1

K+1∑
j=0

αij

[
(−fi)∗(x,−A>p− vij) + σΞrj

(vij)
]

(4.12h)

s.t.
I∑
i=1

K+1∑
j=0

αij = 1, (4.12i)

I∑
i=1

k∑
j=0

αij ≥ 1− ε(rk), ∀k ∈ [0, K]Z, (4.12j)

where we take the Lagrangian dual of the formulation (4.12f)–(4.12g) with dual variables
αij associated with constraints (4.12g), and dual constraints (4.12i) and (4.12j) are associ-
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ated with primal variables q and gk, respectively. The strong duality holds between formu-
lations (4.12f)–(4.12g) and (4.12h)–(4.12j) because (4.12f)–(4.12g) is a convex program
(note that (−fi)∗(x, ·) is convex in its second argument and σΞrj

is convex) and it satisfies
the Slater’s condition (indeed, we can arbitrarily increase the value of q to strictly satisfy
constraints (4.12g)). For fixed αij ≥ 0, we proceed by representing the inner minimization
problem in (4.12h) as follows:

inf
p∈RT ,vij∈RT

m>p+
I∑
i=1

K+1∑
j=0

αij

[
(−fi)∗(x,−A>p− vij) + σΞrj

(vij)
]

= inf
p∈RT ,vij∈RT

m>p+
I∑
i=1

K+1∑
j=0

αij

[
(−fi)∗(x,−A>p− vij) + sup

πij∈Ξrj

{v>ijπij}

]
(4.12k)

= sup
πij∈Ξrj

inf
p∈RT ,vij∈RT

m>p+
I∑
i=1

K+1∑
j=0

αij
[
(−fi)∗(x,−A>p− vij) + v>ijπij

]
(4.12l)

= sup
πij∈Ξrj

inf
p∈RT ,wij∈RT

m>p+
I∑
i=1

K+1∑
j=0

αij

[
(−fi)∗(x,wij) +

(
−A>p− wij

)>
πij

]
(4.12m)

= sup
πij∈Ξrj

I∑
i=1

K+1∑
j=0

αij inf
wij∈RT

{
(−fi)∗(x,wij)− w>ijπij

}
(4.12n)

s.t.
I∑
i=1

K+1∑
j=0

αijAπij = m, (4.12o)

where equality (4.12k) follows from the definition of support function σΞrj
. In equality

(4.12l), we switch the order of infp,vij and supπij because (i) the objective function in
(4.12k) is convex in variables (p, vij) and concave in variables πij and (ii) Ξrj is convex
and compact. In addition, equality (4.12m) follows from a change of variables through
wij := −A>p− vij , equality (4.12n) is because αij ≥ 0 and the minimization over wij can
be done separately for each i ∈ [I] and j ∈ [0, K + 1]Z, and the dual constraints (4.12o)
are associated with variables p. Furthermore, we note that

inf
wij∈RT

{
(−fi)∗(x,wij)− w>ijπij

}
= − sup

wij∈RT

{
π>ijwij − (−fi)∗(x,wij)

}
= fi(x, πij)

by the definition of biconjugacy and the assumption that −fi is proper, convex, and lower-
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semicontinuous. Plugging (4.12n)–(4.12o) back into the objective function (4.12h) with
the representation yields (4.11a)–(4.11e). Finally, we note that the probability distribution
P∗ξ associated with the optimal solution (π∗, α∗) belongs with ambiguity set D by con-
straints (4.11b)–(4.11e). It follows that infp∈RT EQK [H(x, p, ζ)] ≤ supP∈D EP[f(x, ξ)] and
so infp∈RT EQK [H(x, p, ζ)] = supP∈D EP[f(x, ξ)] by Theorem 4.3.1. The proof is com-
pleted.
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Figure 4.1: An example of the cumulative distribution functions (CDF) of QK , Q, and QK

Next, we present the sharpness result for the continuous case.

Theorem 4.4.2. Suppose that Assumptions 4.3.2 and 4.4.1 hold. Then,

sup
P∈D

EP [f(x, ξ)] = inf
p∈RT

EQ

[
H(x, p, ζ)

]
,

where H(x, p, ζ) is defined in (4.3).

Proof. For a fixed K ∈ N+ and the given R and D, define a sequence of real numbers
{rk}Kk=0 such that rk = (k/K)rU + (1 − k/K)rL for all k = 0, . . . , K (e.g., r0 = rL and
rK = rU). In addition, define a probability distribution QK of random variable ζ such that

QK{ζ ≤ x} =


0, if x < r0,

1− ε(rk), if rk−1 ≤ x < rk for k ∈ {1, . . . , K},
1− ε(rK), if rK ≤ x < r,

1, if x ≥ r.
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Correspondingly, define an ambiguity set DK such that

DK =
{
P ∈ P(Ω) : EP[Aξ] = m, P

{
ξ ∈ Σrk

}
≥ 1− ε(rk+1), ∀k = 0, . . . , K − 1

}
.

Note that QK is different from the QK defined in Theorem 4.3.1. In fact, for the given
D and Q defined in Theorem 4.3.2, QK stochastically dominates Q, which further stochas-
tically dominates QK (see Figure 4.1 for an example). By Theorems 4.3.1 and 4.4.1, we
have

sup
P∈DK

EP [f(x, ξ)] = inf
p∈RT

EQK [H(x, p, ζ)]

because QK and the ambiguity set D′ with respect to R′ = {r0, . . . , rK} respectively
recover QK andDK if we replace each 1− ε(rk) in the definition of suchD′ by 1− ε(rk+1)

for all k = 0, . . . , K − 1 and keep 1− ε(rK) unchanged.
On the one hand, we note that DK ⊆ D because P

{
ξ ∈ Ξrk

}
≥ 1 − ε(rk+1) for all

k = 0, . . . , K − 1 implies that P
{
ξ ∈ Ξr

}
≥ 1 − ε(r) for all r ∈ [rL, rU]. It follows

that infp∈RT EQK [H(x, p, ζ)] ≤ supP∈D EP [f(x, ξ)] for all K ∈ N+. For all x ∈ [rL, rU],
we have 1 − ε(x) ≤ QK{ζ ≤ x} ≤ 1 − ε (x+ (rU − rL)/K) because 1 − ε(x) is non-
decreasing in x. Then, limK→∞QK{ζ ≤ x} = Q{ζ ≤ x} for all x ∈ [rL, rU]. In
addition, QK{ζ ≤ x} = Q{ζ ≤ x} for all x ∈ [0, rL) ∩ [rU,∞) by construction. It
follows that limK→∞QK{ζ ≤ x} = Q{ζ ≤ x} for all x where Q{ζ ≤ x} is continu-
ous, or equivalently, the sequence of cumulative distribution functions {QK{ζ ≤ ·}}K∈N+

weakly converges to Q{ζ ≤ ·}. Hence, for any fixed p ∈ RT , limK→∞ EQK [H(x, p, ζ)] =

EQ [H(x, p, ζ)] by the Helly-Bray Theorem. Furthermore, it can be shown that there exists
a compact set P̄ ⊆ RT such that infp∈RT EPξ [H(x, p, ζ)] = infp∈P̄ EPξ [H(x, p, ζ)] for any

probability distribution Pξ ∈ P(Ω). It follows that limK→∞

{
infp∈RT EQK [H(x, p, ζ)]

}
=

limK→∞

{
infp∈P̄ EQK [H(x, p, ζ)]

}
= infp∈P̄ EQ [H(x, p, ζ)] = infp∈RT EQ [H(x, p, ζ)].

Therefore, infp∈RT EQ [H(x, p, ζ)] ≤ supP∈D EP [f(x, ξ)].
On the other hand, we have infp∈RT EQ [H(x, p, ζ)] ≥ supP∈D EP [f(x, ξ)] by Theorem

4.3.2. The proof is hence completed.

Remark 4.4.3. Theorem 4.4.2 formally confirms that the DRO model with shape informa-

tion can be recast as a stochastic program with a one-dimensional random variable and an

unambiguous probability distribution. This representation holds for a wide range of shape

information under the continuous topology (see Assumption 4.3.2) and a wide range of

cost functions (see Assumption 4.4.1). Notably, this reformulation is also computationally

tractable. Indeed, for any the cost function f(x, ξ) that is convex in x, the reformulation

infx,p EQ[H(x, p, ζ)] is a convex stochastic program. This stochastic program can be effi-
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ciently solved by the sample average approximation algorithm because it only involves one

single random variable (i.e., ζ).

We close this section with examples of applying Theorems 4.4.2 on cost functions that
satisfy Assumption 4.4.1.

Piecewise Linear Function. Suppose that A = IT×T , Ξr = {ξ : ‖ξ − m‖ ≤ r} and
f(x, ξ) = maxi∈[I]{fi(x, ξ)} with fi(x) := ai(x)>ξ + bi(x) for all i ∈ [I], where
ai(x) : Rn → RT and bi(x) : Rn → R represent affine functions of x. Then,

H(x, p, ζ) = max
i∈[I]

sup
ξ:||ξ−m||≤ζ

{
ai(x)>ξ + bi(x)− p>(ξ −m)

}
= max

i∈[I]
sup

ξ:||ξ−m||≤ζ

{
(ai(x)− p)>(ξ −m) + ai(x)>m+ bi(x)

}
= max

i∈[I]

{
ζ ||ai(x)− p||∗ + ai(x)>m+ bi(x)

}
.

It follows from Theorem 4.4.2 that

sup
P∈D

EP [f(x, ξ)] = inf
p∈RT

EQ

[
max
i∈[I]

{
ζ ||ai(x)− p||∗ + ai(x)>m+ bi(x)

}]
.

Distributionally Robust CVaR Constraint. Suppose that A = IT×T and Ξr = {ξ : ‖ξ −
m‖ ≤ r}. Consider the distributionally robust CVaR constraint supP∈D CVaRP

1−ε(
a(x)>ξ

)
≤ b(x), where a(x) : Rn → RT and b(x) : Rn → R represent affine

functions of x and 1− ε represents the confidence level of CVaR. Then, by Theorem
4.4.2 and the definition of CVaR (see, e.g., [115]), we have

sup
P∈D

CVaRP
1−ε
(
a(x)>ξ

)
= inf

β∈R

{
β +

1

ε
sup
P∈D

EP

[
max

{
a(x)>ξ − β, 0

}]}
= inf

β∈R

{
β +

1

ε
inf
p∈RT

EQ

[
max

{
ζ‖a(x)− p‖∗ + a(x)>m− β, ζ‖p‖∗

}]}
= inf

β∈R
p∈RT

{
β +

1

ε
EQ

[
max

{
ζ‖a(x)− p‖∗ + a(x)>m− β, ζ‖p‖∗

}]}
.

It follows that the distributionally robust CVaR constraint can be recast as the follow-
ing expectation conic constraint:

εβ + EQ

[
max

{
ζ‖a(x)− p‖∗ + a(x)>m− β, ζ‖p‖∗

}]
≤ εb(x).
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Indicator Function. Suppose that A = IT×T and Ξr = {ξ : ‖ξ − m‖∞ ≤ r}. Given
x ∈ Rn

+, consider polyhedron S = {ξ : ξ ≥ m + x} and the uncertainty quantifi-
cation problem supP∈D P{ξ /∈ S}. Then, it follows from Theorem 4.4.2 and the fact
1RT \S(ξ) = max

{
0,maxt∈[T ]{1− χ[ξt<mt+xt](ξ)}

}
that

sup
P∈D

P{ξ /∈ S} = inf
p∈RT

{
EQ[ζ] ‖p‖1 + EQ

[
max
t∈[T ]
{1− (ζ − xt)+(pt)+}

]
+

}
,

where (x)+ = max{x, 0} for x ∈ R. Hence, we can quantify the uncertainty of
P{ξ /∈ S} by solving a stochastic linear program.

Single Concave Function. Suppose that I = 1 and f(x, ξ) is concave in ξ. The fol-
lowing proposition shows that it suffices to represent the uncertainty of random
vector ξ only by its mean value µ. For example, consider a two-stage stochas-
tic program minx∈X{c>x + EP[f(x, ξ)]} with uncertain objective coefficients, i.e.,
f(x, ξ) = miny∈Y (x) ξ

>Ay, where Y (x) := {y : Tx + Wy ≤ h} represents a de-
terministic polyhedron that is nonempty for any x ∈ X . The following proposition
implies that supP∈D EP[f(x, ξ)] = miny∈Y (x) µ

>Ay. Hence, we can solve the two-
stage DRO model minx∈X{c>x + supP∈D EP[f(x, ξ)]} by solving a linear program
without uncertainty.

Proposition 4.4.4. Suppose that A = IT×T and denote the mean value of ξ as µ := m. If

f(x, ξ) is concave in ξ for any given x then

sup
P∈D

EP[f(x, ξ)] = f(x, µ).

Proof. First, we show infp∈Rm µ>p + EQ

[
supξ∈Ξζ

{
f(x, ξ) − p>ξ

}]
≥ f(x, µ). For all

p ∈ Rm and for all ζ ∈ [rL, r], we have

sup
ξ∈Ξζ

{
f(x, ξ)− p>ξ

}
≥ f(x, µ)− p>µ,

because ξ = µ is a feasible solution for this maximization problem. Then for all p ∈ R>,

EQ

[
sup
ξ∈Ξζ

{
f(x, ξ)− p>ξ

}]
≥ f(x, µ)− p>µ.
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Hence

inf
p∈Rm

µ>p+ EQ

[
sup
ξ∈Ξζ

{
f(x, ξ)− p>ξ

}]
≥ f(x, µ).

To prove the other direction, we start with the following inequality

sup
ξ∈Ξζ

{
f(x, ξ)− p>ξ

}
≤ sup

ξ∈Rm

{
f(x, ξ)− p>ξ

}
, ∀p ∈ Rm,

which holds since the right-hand side is a relaxation of the left-hand side. Then for all
p ∈ Rm, we have

µ>p+EQ

[
sup
ξ∈Ξζ

{
f(x, ξ)−p>ξ

}]
≤ µ>p+ sup

ξ∈Rm

{
f(x, ξ)−p>ξ

}
= sup

ξ∈Rm

{
f(x, ξ)−p>(ξ−µ)

}
.

Hence

inf
p∈Rm

µ>p+ EQ

[
sup
ξ∈Ξζ

{
f(x, ξ)− p>ξ

}]
≤ inf

p∈Rm
sup
ξ∈Rm

{
f(x, ξ)− p>(ξ − µ)

}
.

Note that
inf
p∈Rm

sup
ξ∈Rm

{
f(x, ξ)− p>(ξ − µ)

}
is the Lagrange dual problem of

sup
ξ∈Rm

f(x, ξ) (4.13)

s.t. ξ = µ,

where strong duality holds since Slater’s condition is satisfied. Thus we have

inf
p∈Rm

sup
ξ∈Rm

{
f(x, ξ)− p>(ξ − µ)

}
= f(x, µ),

which gives

inf
p∈Rm

µ>p+ EQ

[
sup
ξ∈Ξζ

{
f(x, ξ)− p>ξ

}]
≤ f(x, µ).

Thus, this proof is completed.
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4.5 Extensions

In this section, we extend the results to other important applications of DRO. In particular,
we derive a sharp upper bound of the covariance matrix in Section 4.5.1 and a computa-
tionally tractable reformulation of two-stage adaptive DRO in Section 4.5.2.

4.5.1 Sharp Upper Bound of the Covariance Matrix

In this section, we extend the discussion to the case beyond Assumption 4.4.1, i.e., when
f(x, ξ) is convex in ξ. In particular, we derive a sharp upper bound of the covariance matrix
EPξ [(ξ − µ)(ξ − µ)>] by using Theorem 4.3.2. We summarize this result in the following
proposition.

Proposition 4.5.1. Suppose thatA = IT×T , µ := m, and Ξr = {ξ : ‖Σ−1/2(ξ−µ)‖2 ≤ r}.
Then,

EP
[
(ξ − µ)(ξ − µ)>

]
� EQ[ζ2]Σ, ∀P ∈ D.

Furthermore, the upper bound EQ[ζ2]Σ is sharp in the sense that, for any symmetric matrix

∆ ∈ RT×T , EP[(ξ − µ)(ξ − µ)>] � ∆ for all P ∈ D implies that ∆ � EQ[ζ2]Σ.

Proof. First, we define function f : RT → R such that

f(a) = sup
P∈D

EP

[
a>(ξ − µ)(ξ − µ)>a

]
.

By Theorems 4.3.2, we have

f(a) ≤ inf
p∈RT

{
µ>p+ EQ

[
max

ξ:‖Σ−
1
2 (ξ−µ)‖2≤ζ

{
a>(ξ − µ)(ξ − µ)>a− p>ξ

}]}

= inf
p∈RT

EQ

 sup
ξ:‖Σ−

1
2 (ξ−µ)‖2≤ζ

{
a>(ξ − µ)(ξ − µ)>a− p>(ξ − µ)

} . (4.14a)

Let f̄(a) := infp∈RT EQ

[
sup

ξ:‖Σ−
1
2 (ξ−µ)‖2≤ζ

{
a>(ξ − µ)(ξ − µ)>a− p>(ξ − µ)

}]
.

Second, we show that p = 0 is an optimal solution to the (outer-layer) minimization
problem in (4.14a). On the one hand, for any p ∈ RT and ζ > 0, we note that

sup
ξ:‖Σ−

1
2 (ξ−µ)‖2≤ζ

{
a>(ξ − µ)(ξ − µ)>a− p>(ξ − µ)

}
= sup

φ:‖φ‖2≤ζ

{[
(Σ

1
2a)>φ

]2

− (Σ
1
2p)>φ

}
(4.14b)
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≥ ζ2(a>Σa) +
|p>Σa|
‖Σ 1

2a‖2

ζ (4.14c)

≥ a>
(
ζ2Σ

)
a, (4.14d)

where equality (4.14b) follows from a change of variable by defining φ = Σ−
1
2 (ξ − µ),

inequality (4.14c) holds because Σ
1
2 a

‖Σ
1
2 a‖2

ζ and − Σ
1
2 a

‖Σ
1
2 a‖2

ζ are both feasible (but possibly

suboptimal) to the maximization problem in (4.14b). It follows that f̄(a) ≥ a>
(
EQ[ζ2]Σ

)
a

because inequality (4.14d) holds valid for any p ∈ RT and ζ > 0. On the other hand, this
lower bound is attainable by letting p = 0 because

EQ

 sup
ξ:‖Σ−

1
2 (ξ−µ)‖2≤ζ

{
a>(ξ − µ)(ξ − µ)>a

}
= EQ

[
sup

φ:‖φ‖2≤ζ

{[
(Σ

1
2a)>φ

]2
}]

= EQ
[
ζ2
(
a>Σa

)]
.

It follows that f̄(a) ≤ a>
(
EQ[ζ2]Σ

)
a, hence f̄(a) = a>

(
EQ[ζ2]Σ

)
a. Then for all a ∈ RT ,

f(a) ≤ f̄(a) implies supPξ∈D a
>EPξ [(ξ − µ)(ξ − µ)>]a ≤ a>

(
EQ[ζ2]Σ

)
a. Therefore,

EP[(ξ − µ)(ξ − µ)>] � EQ[ζ2]Σ for all P ∈ D.
Third, we show that f(a) ≥ f̄(a). We prove by constructing a P∗ ∈ D such that

EP∗
[
a>(ξ − µ)(ξ − µ)>a

]
= EQ

[
ζ2
(
a>Σa

)]
.

Let pζ(x) be the corresponding probability density function of Q{ζ ≤ x}. And ∀x ∈
[rL, rU ] ∪ {r̄}, let ξ+

x = Σa

‖Σ
1
2 a‖2

x + µ and ξ−x = − Σa

‖Σ
1
2 a‖2

x + µ. Note that ξ+
x , ξ

−
x cor-

respond to the optimal solution of sup
ξ:‖Σ−

1
2 (ξ−µ)‖2≤x

{
a>(ξ − µ)(ξ − µ)>a

}
. We define

pξ(y) based on pζ(x), i.e., pξ(ξ+
x ) = pξ(ξ

−
x ) = 1

2
pζ(x), ∀x ∈ [rL, rU ] ∪ {r̄} and pξ(y) = 0

for all the other y ∈ Ξ. Then,
∫
y∈Ξ

pξ(y)dy = 1. Let P∗ be the cumulative distribu-
tion function corresponding to pξ(y). Then, P∗ ∈ P(Ξ). Because ξ+

x + ξ−x = µ,∀x,
EP∗ [ξ] = µ. By the definition of Q and pξ(y), we have P∗{ξ ∈ Ξr} ≥ 1 − ε(r),∀r ∈ R.
Hence P∗ ∈ D. It remains to check EP∗

[
a>(ξ − µ)(ξ − µ)>a

]
= EQ

[
ζ2
(
a>Σa

)]
. This

holds because ∀x ∈ [rL, rU ] ∪ {r̄}, we set ξ as the two optimal solutions ξ+
x , ξ

−
x of

sup
ξ:‖Σ−

1
2 (ξ−µ)‖2≤x

{
a>(ξ − µ)(ξ − µ)>a

}
, with pξ(ξ+

x ) = pξ(ξ
−
x ) = 1

2
pζ(x) and the op-

timal value is x2
(
a>Σa

)
. It follows that f(a) ≥ f̄(a) and hence f(a) = f̄(a).

Finally, we prove by contradiction that the upper bound EQ[ζ2]Σ is sharp. Suppose that
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there exists a symmetric matrix ∆ ∈ RT×T such that EP[(ξ − µ)(ξ − µ)>] � ∆ for all
P ∈ D and ∆ − EQ[ζ2]Σ is not positive semidefinite. Then, there exists a vector â ∈ RT

such that â>(∆ − EQ[ζ2]Σ)â < 0, i.e., â>∆â < â>(EQ[ζ2]Σ)â. But it is shown above
that f(â) = supP∈D EP[â>(ξ − µ)(ξ − µ)>â] = â>(EQ[ζ2]Σ)â and it follows that there
exists a probability distribution P̂ ∈ D such that EP̂[â>(ξ − µ)(ξ − µ)>â] > â>∆â. This
contradicts the assumption that EP[(ξ − µ)(ξ − µ)>] � ∆ for all P ∈ D. Thus, the upper
bound EQ[ζ2]Σ is sharp.

Remark 4.5.2. Proposition 4.5.1 indicates that the shape information may be strong enough

to subsume the covariance information. In particular, suppose that one knows EP[(ξ −
µ)(ξ−µ)>] � Σ from the covariance information. But if EQ[ζ2] < 1− ε for an ε ∈ (0, 1),

then Proposition 4.5.1 implies that EP[(ξ−µ)(ξ−µ)>] � (1−ε)Σ, which already implies

the covariance bound. From the perspective of computation, we may compute EQ[ζ2] be-

fore incorporating the covariance information into D to avoid unnecessary computational

burden.

4.5.2 Two-Stage Adaptive DRO with Fixed Recourse

In this section, we study a special case of shape information based on the `1-norm and
show that it leads to a computationally tractable reformulation of the two-stage adaptive
DRO model with fixed recourse. We summarize this result in the following theorem.

Theorem 4.5.3. Consider an `1-norm based ambiguity set

D1 :=
{
P ∈ P(Ξ) : EP[Aξ] = m, P

{
‖Σ−1/2(ξ−µ)‖1 ≤ r

}
≥ 1−ε(r), ∀r ∈ [rL, rU]

}
,

where the support set Ξ := {ξ ∈ RT : ‖Σ−1/2(ξ − µ)‖1 ≤ r̄} and Σ ∈ RT×T represent a

positive definite matrix. Then, the two-stage adaptive DRO model

min
x∈X

{
c>x+ sup

P∈D1

EP[Q(x, ξ)]

}
with

Q(x, ξ) := min
y≥0

q>y

s.t. T (ξ)x+Wy ≥ h(ξ),

where T (ξ) and h(ξ) respectively represent the technology matrix and the right-hand side
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that are affine in ξ, is equivalent to

inf
p∈RT , x∈X

{
c>x+ (m− Aµ)>p+ EQ

[
max
t∈[T ]

{
Q(x, µ± ζΣ1/2et)∓ ζe>t Σ1/2A>p

}]}
,

where et represents the tth standard basis vector in RT and probability distribution Q is

defined in Theorem 4.3.2.

Proof. Following Theorem 4.4.2, we have

sup
P∈D1

EP[Q(x, ξ)] = inf
p∈RT

EQ[H(x, p, ζ)], (4.15a)

where

H(x, p, ζ) = sup
ξ:‖Σ−1/2(ξ−µ)‖1≤ζ

{
Q(x, ξ)− p>(Aξ −m)

}
= sup

α:‖α‖1≤ζ

{
Q(x, µ+ Σ1/2α)− p>(AΣ1/2α + Aµ−m)

}
(4.15b)

= max
t∈[T ]

{
Q(x, µ± ζΣ1/2et)− p>(±ζAΣ1/2et + Aµ−m)

}
, (4.15c)

where equality (4.15b) follows from a change of variable α ≡ Σ−1/2(ξ − µ). In addition,
as Q(x, µ + Σ1/2α) is convex in α, the supremum in (4.15b) is attained at one of the
extreme points of the `1-ball {α : ‖α‖1 ≤ ζ}, which are {±ζet}Tt=1. Then, equality (4.15c)
follows from enumerating these extreme points. The conclusion follows from plugging the
representation H(x, p, ζ) back into (4.15a). The proof is completed.

4.6 Case Study

To demonstrate the proposed DRO model with shape information, we conduct numerical
experiments on the appointment scheduling problem (ASP) and the risk-constrained opti-
mal power flow problem (RC-OPF). All computations are implemented by CPLEX 12.6
on a 64-bit Windows 7 PC with Intel(R) Xeon(R) E3-1241 processor, running at 3.50 GHz
and 32 GB memory. All instances of ASP and RC-OPF instances can be solved within 3
and 200 seconds, respectively.

In all DRO models with shape information, we assumeA = IT×T , Ξr = {ξ : ‖ξ−m‖ ≤
r} for all r ∈ R in the ambiguity set, and Ξ = {ξ : ‖ξ −m‖ ≤ r̄} with r̄ ≥ supR, where
‖ · ‖ represents a norm on Rn to be specified later.
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4.6.1 Appointment Scheduling

We consider an ambiguous ASP model described in [95], where a single server needs to
schedule a set of appointments with ambiguous service durations. Due to the uncertainty, an
appointments may start after the scheduled time due to the late completion of the previous
appointment (waiting) and the server may work overtime due to late completion of the
last appointment (overtime). The object is to minimize a weighted sum of the waiting and
overtime penalty by optimally deciding the appointment times. Specifically, we consider
scheduling n appointments within a time limit T . For all i ∈ [n], we let x := [x1, . . . , xn]>

and w := [w1, . . . , wn]> represent the scheduled appointment durations and waiting times,
respectively, and wn+1 the overtime. In addition, we let ci represent the unit penalty cost
for waiting/overtime wi, ∀i ∈ [n + 1]. Random vector ξ := [ξ1, . . . , ξn]> represents the
service durations. Given x and ξ, the waiting times and the overtime can be computed by
solving the following linear program:

f1(x, ξ) := min
w

n+1∑
i=1

ciwi (4.16a)

s.t. wi+1 ≥ wi + ξi − xi, ∀i ∈ [n], (4.16b)

w1 = 0, wi ≥ 0, ∀i ∈ [2, n+ 1]Z. (4.16c)

The objective function (4.16a) minimizes the total penalty cost from a system perspective.
However, this could result in uneven waiting times (or overtime), e.g., some appointments
have much longer waiting times than others. To promote a more fair appointment schedule,
we also consider minimizing the maximum penalty in the following linear program:

f2(x, ξ) := min
w

max

{
max
i∈[n]
{ciwi}, γcn+1wn+1

}
(4.17a)

s.t. (4.16b)–(4.16c), (4.17b)

where parameter γ trades off between the maximum waiting time and the overtime. In
this experiment, we set γ = 3. To address the ambiguity of ξ, we consider a distribution-
ally robust appointment scheduling (DR-ASP) model with moment and shape information.
Specifically, we formulate

min
x≥0

sup
P∈D

EP[f(x, ξ)] (4.18a)

s.t.
n∑
i=1

xi ≤ T, (4.18b)
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where constraint (4.18b) designates that all appointments are scheduled before the time
limit. We derive tractable reformulation of the (DR-ASP) model. To that end, we specify
the norm in D.

Definition 4.6.1. For given c+, c− ∈ RT
+, let ‖ξ‖G = maxt∈[T ]

{
max{c+

t ξt, −c−t ξt}
}

.

Throughout this experiment, we adopt ‖ · ‖G in D for modeling shape information. We
note that if c+ = c− = e then ‖ · ‖G = ‖ · ‖∞. On the other hand, if c+

t 6= c−t for some
t ∈ [T ] then ‖ · ‖G can capture the skewness of the distribution of ξt. We also note that
the dual norm of ‖ · ‖G is ‖ · ‖G∗ such that ‖ξ‖G∗ =

∑T
t=1 max{ξj/c+

t , −ξt/c−t }. The next
theorem shows that (DR-ASP) with both objective functions f1 and f2 admits a tractable
reformulation.

Theorem 4.6.2. Under norm ‖·‖G and objective function f1, the (DR-ASP) model (4.18a)–
(4.18b) is equivalent to stochastic linear program min

p∈Rn, x∈Rn+:(4.18b)
EQ[J1(x, p, ζ)], where

J1(x, p, ζ) = min
λ,φ

n∑
j=1

λj

s.t.
min{`,n}∑
j=k

λj ≥
min{`,n}∑
j=k

[ζφj` + (µj − xj)πj`], ∀k ∈ [n], ∀` ∈ [k, n+ 1]Z,

c−k φk` − pk ≥ −πk`, ∀k ∈ [n], ∀` ∈ [k, n+ 1]Z,

c+
k φk` + pk ≥ πk`, ∀k ∈ [n], ∀` ∈ [k, n+ 1]Z,

where πk` =
∑`

j=k+1 cj for all k ∈ [n] and ` ∈ [k, n + 1]Z. In addition, under norm ‖ · ‖G
and objective function f2, the (DR-ASP) model (4.18a)–(4.18b) is equivalent to stochastic

linear program min
p∈Rn, x∈Rn+:(4.18b)

EQ[J2(x, p, ζ)], where

J2(x, p, ζ) = min
θ,ϕ

θ

s.t. θ ≥ ζ
n∑
k=1

ϕijk − bij(x) + a>ijµ, ∀i ∈ [2, n+ 1]Z, ∀j ∈ [i],

c−k ϕijk − pk ≥ −aijk, ∀i ∈ [2, n+ 1]Z, ∀j ∈ [i], ∀k ∈ [n],

c+
k ϕijk + pk ≥ aijk, ∀i ∈ [2, n+ 1]Z, ∀j ∈ [i], ∀k ∈ [n],

aijk =

ci, if k ∈ [j, i− 1]Z

0, otherwise
and bij(x) = ci

i−1∑
k=j

xk.
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Proof. First, for objective function f1, we take the dual of formulation (4.16a)–(4.16c) to
obtain

f1(x, ξ) = max
y

y>ξ − y>x (4.19a)

s.t. yi − yi−1 ≥ −ci, ∀2 ≤ i ≤ n, (4.19b)

yn ≤ cn+1, (4.19c)

yi ≥ 0, ∀1 ≤ i ≤ n. (4.19d)

Let Y denote the feasible region of (4.19) and Y(xp) the set of extreme points of Y . Be-
cause (4.19) is a linear program, it can be equivalently written as

f1(x, ξ) = max
y(i)∈Y(xp)

{
ξ>y(i) − x>y(i)

}
,

that is, f1(x, ξ) is convex and piecewise linear. It then follows from Theorem 4.4.2 that

sup
P∈D

EP[f1(x, ξ)] = min
p∈Rn

EQ

[
max

y(i)∈Y(xp)

{
ζ‖y(i) − p‖G∗ + (µ− x)>y(i)

}]
= min

p∈Rn
EQK

[
max
y∈Y

{
ζ‖y − p‖G∗ + (µ− x)>y

}]
. (4.20)

The second equality holds because ζ‖y−p‖G∗+(µ−x)>y is convex on y. By an essentially
identical proof of the Proposition 2 in [95], we recast the embedded maximization problem
in (4.20) as

min
λ

n+1∑
j=1

λj (4.21a)

s.t.
min{`,n}∑
j=k

λj ≥
min{`,n}∑
j=k

[
ζ max

{
−πj` − pj

c−j
,
πj` − pj
c+
j

}
+ (µj − xj)πj`

]
,

∀k ∈ [n], ∀` ∈ [k, n+ 1]Z. (4.21b)

The proof is completed by introducing auxiliary variables φ to linearize the maximum
terms on the right-hand side of constraints (4.21b) and plugging formulation (4.21) back
into (4.20).

Second, for objective function f2, we represent variables wi, i ∈ [2, n + 1]Z as follows
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by constraints (4.16b)–(4.16c):

wi = max
j∈[i]

{
i−1∑
k=j

(ξk − xk)

}
.

Accordingly, we rewrite f2(x, ξ) as

f2(x, ξ) = max
i∈[2,n+1]Z

{
ci max

j∈[i]

{
i−1∑
k=j

(ξk − xk)

}}

= max
i∈[2,n+1]Z

j∈[i]

{
ci

i−1∑
k=j

(ξk − xk)

}

= max
i∈[2,n+1]Z

j∈[i]

{
a>ijξ − bij(x)

}
.

As f2(x, ξ) is convex and piecewise linear, we have by Theorem 4.4.2 that

sup
P

EP∈D[f2(x, ξ)] = min
p∈Rn

EQK

 max
i∈[2,n+1]Z

j∈[i]

{
ζ‖aij − p‖G∗ + a>ijµ− bij(x)

} . (4.22)

The proof is completed by introducing auxiliary variables θ and ϕ to linearize formulation
(4.22).

To infer the shape information in D, we perform regression analysis on a set of N
historical data {ξi}Ni=1 randomly generated from a log-normal distribution.2 We consider
two types of functions, polynomial and exponential, in this analysis. For the polynomial
functions, we assume that

P{ξ ∈ Ξr} = β0 +
d∑
j=1

βjr
j + ε,

where d represents the degree of the polynomial function, {βj}dj=0 represent the polynomial
coefficients to be fitted, and ε represents the unobserved random error. To perform the
regression, we surrogate P{ξ ∈ Ξr} with its empirical estimate (1/N)

∑N
i=1 1Ξr(ξ

i) (in
this case, we interpret the unobserved random error ε as the difference between P{ξ ∈ Ξr}
and its empirical estimate) and obtain {βj}dj=0 via the least square estimation. Regression to
the exponential function can be done similarly. In this study, we consider three polynomial

2Note that the log-normality is not assumed in the (DR-ASP) model, and it is only used to generate
training and testing data.
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functions with d = 1, 2, 3 and denote them as P1, P2, and P3, respectively. Additionally, we
denote EXP as the regression to the exponential function. Furthermore, for each function
we obtain two set of coefficients as detailed below.

• EC: the coefficients that attain the least square error, e.g., P1-EC denotes the degree-
one polynomial function with coefficients attaining the least square error.

• LC: the coefficients pertaining to the 95% lower confidence band, e.g., EXP-LC
denotes the exponential function with coefficients pertaining to the 95% lower confi-
dence band.

As a benchmark, we also consider the model with no shape information, denoted as MT.
That is, MT only considers the mean and support information in the ambiguity set.

We report the results in Table 4.1 and Figures 4.2–4.4. In these results, we use TWT to
represent the DR-ASP model with cost function f1 and MWT for the DR-ASP model with
f2, respectively. For each model, 1,000 samples are generated from each function to solve
the problem by using sample average approximation.

Table 4.1: Comparisons on the (DR-ASP) out-of-sample performance

TWT MWT

Objective value
Out-of-sample test

Objective value
Out-of-sample test

Cost Ind. waiting Cost Ind. waiting

P1
EC 922.66 509.56 29.21 447.05 108.71 48.00
LC 1224.75 577.32 33.06 576.43 139.38 55.29

P2
EC 579.60 316.10 19.27 266.71 88.73 31.01
LC 747.78 324.56 19.40 336.76 91.77 23.59

P3
EC 603.26 345.78 20.59 286.62 92.41 25.84
LC 989.06 281.28 17.75 436.30 91.22 30.70

EXP
EC 846.29 513.07 29.36 423.79 115.02 39.63
LC 906.71 547.22 31.22 454.29 137.51 69.12

MT 3270.66 1624.84 108.29 1657.35 306.68 140.70
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Figure 4.2: Objective value comparison

From Table 4.1 (see column Optimal Value) and Figure 4.2, we observe that, for both
TWT and MWT, MT yields the largest optimal values from the corresponding (DR-ASP)
model. In fact, the MT optimal values often double or triple the corresponding (DR-ASP)
models with shape information. This indicates that the shape information can help to sig-
nificantly strengthen the ambiguity set and reduce the conservativeness of the DRO model.
This is further confirmed by only looking at the results generated from the (DR-ASP) mod-
els with shape information. For example, the polynomial function with degree two or three
yields a smaller optimal value than that with degree one, and adopting EC in the shape
information leads to a smaller optimal value than adopting LC. This indicates that the am-
biguity set and the (DR-ASP) model are sensitive to the shape information. This highlights
the importance of incorporating shape information in DRO models.

82



     

method

0

500

1000

1500

2000

2500

3000

3500

co
st

P1 P2 P3 EXP MT

EC
LC

(a) Total penalty cost, TWT

     

method

0

100

200

300

400

500

600

700

co
st

P1 P2 P3 EXP MT

EC
LC

(b) Maximal penalty cost, MWT

     

method

0

50

100

150

200

250

300

tim
e

P1 P2 P3 EXP MT

EC
LC

(c) Individual waiting time, TWT

     

method

0

50

100

150

200

250

300

tim
e

P1 P2 P3 EXP MT

EC
LC

(d) Individual waiting time, MWT

Figure 4.3: Comparisons on the out-of-sample performance

Figure 4.3 and Table 4.1 (see column Out-of-Sample) report the out-of-sample perfor-
mance of TWT, MWT, and MT models under various settings. Observations we make
from the comparisons of optimal values carry on in the comparison of out-of-sample per-
formance. Notably, we observe that all three polynomial models (i.e., Pd with d = 1, 2, 3)
outperform the exponential model (EXP). This indicates that polynomial functions are bet-
ter fit for learning the shape information in the (DR-ASP) model. More importantly, we
observe that the degree-two polynomial function yields the best performance in nearly all
aspects (see Figure 4.3(a) for total penalty cost, Figure 4.3(b) for maximal penalty cost,
Figure 4.3(c) for individual waiting time in TWT, and Figure 4.3(d) for individual waiting
time in MWT) among all the approaches we test. This indicates that the concentration in-
equalities (4.1) may be best fitted when ε(r) is a quadratic function. Decreasing the degree
to one (i.e., using linear regression) may lose certain shape information, and increasing it
to three (i.e., using cubic regression) may not yield much additional benefit.
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Figure 4.4: Optimal appointment schedule comparison

Figure 4.4 report the optimal appointment schedules generated in various models. First,
we observe that the time slot assignment in MT is significantly more variable than that in
other DR-ASP models with shape information. In particular, there are a good portion of
zero-length time slots in the MT schedules (both in TWT and in MWT), indicating batch
arrivals (i.e., multiple appointments are scheduled to arrive at the same time). This indicates
that the MT schedule may be impacted by certain extreme scenarios of service durations
(e.g., short service durations for multiple appointments in a row). The incorporation of
shape information mitigates the impacts from such unlikely scenarios. Second, by com-
paring Figures 4.4(a) and 4.4(b), we observe that the optimal schedules in TWT generally
assign longer time slots for the earlier appointments, while those in MWT assign the time
slots more evenly, possibly with longer time slots for the last two appointments. This indi-
cates that TWT puts more emphasis on avoiding waiting time accumulation earlier in the
day to minimize the total penalty cost. In contrast, MWT treats most appointments equally
and tends to assign longer time slots at the end of the day to avoid long overtime.

4.6.2 Risk-Constrained Optimal Power Flow

We consider a RC-OPF model that aims to minimize the total power production and reserve
cost under safety constraints, including the transmission line capacity limits and reserve
capacity limits [86]. In face of uncertainty (e.g., wind power), risk constraints are often
incorporated to make sure that these safety constraints are satisfied with high probability
(see e.g., [132]). In this experiment, we employ the conditional Value-at-Risk (CVaR) to
protect the transmission line capacity limits and reserve capacity limits in a multi-period
optimal power flow model. Intuitively, the CVaR of a random variable at confidence level
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Table 4.2: Comparisons on the (RC-OPF) out-of-sample performance

`∞-norm `2-norm
ε = 0.2 ε = 0.6 ε = 1 ε = 0.2 ε = 0.6 ε = 1

cost violation cost violation cost violation cost violation cost violation cost violation

P1
FD 11431 0.00% 11181 0.00% 9802 0.56% 9101 0.00% 8940 0.00% 7953 0.00%
LD 10899 0.00% 10736 0.00% 9661 0.56% 8854 0.00% 8814 0.00% 8099 0.00%

P2
FD 11239 0.00% 9109 0.00% 7530 2.78% 8209 0.00% 9102 0.00% 6958 0.93%
LD 10786 0.00% 9098 0.00% 7578 3.70% 7869 0.19% 8831 0.00% 6753 2.41%

P3
FD 11031 0.00% 10191 0.00% 8852 1.48% 8619 0.00% 8731 0.00% 7837 0.00%
LD 10829 0.00% 9912 0.00% 8750 2.04% 8337 0.00% 8839 0.00% 7427 1.67%

EXP
FD 11405 0.00% 10555 0.00% 9497 0.37% 8781 0.00% 9062 0.00% 8210 0.00%
LD 10901 0.00% 10409 0.00% 9486 0.56% 8656 0.00% 8867 0.00% 7850 0.00%

MT
FD 11406 0.00% 11406 0.00% 11406 0.00% 8795 0.00% 8795 0.00% 8795 0.00%
LD 10875 0.00% 10875 0.00% 10875 0.00% 8681 0.00% 8681 0.00% 8681 0.00%

1 − ε evaluates the conditional expectation at the upper ε-tail of the distribution of this
random variable. A power system operator can adjust the confidence level to reflect her
risk preference. For example, a risk-neutral operator sets ε = 1, in which case the CVaR
reduces to the expected value of the random variable. On the other hand, a risk-averse
operator sets ε to be close zero, in which case the CVaR focuses on scenarios with smaller
likelihood but larger impacts. For a group of constraints {ai(x)>ξ + bi(x) ≤ 0, ∀i ∈ [I]}
subject to ambiguous uncertainty ξ, we consider the following distributionally robust CVaR
constraint:

sup
P∈D

P-CVaRε

(
max
i∈[I]

{
ai(x)>ξ + bi(x)

})
≤ 0, (4.23)

where the ambiguity setD incorporates shape information. By the definition of CVaR (see,
e.g., [114]), we can recast (4.23) as

∃β ∈ R : β +
1

ε
sup
P∈D

EP

[
max
i

{
ai(x)>ξ + bi(x)− β

}]
+
≤ 0. (4.24)

Then, we follow Theorem 4.4.2 to recast (4.24) as expected value constraint. As a conse-
quence, we can solve the resulting RC-OPF formulation by the sample average approxima-
tion algorithm as described in [146].

We conduct numerical experiments of the RC-OPF model on the IEEE 30-bus system,
which contains 30 nodes and 41 transmission lines (see http://www.ee.washington.
edu/research/pstca/ for the data set). We place nine thermal generators and three
wind farms in this system. The three wind farms are based on three onshore sites ana-
lyzed by the National Renewable Energy Laboratory (NREL) [41, 40, 90, 79]. The random
variables ξ represent wind forecasting errors. We consider the following two training data
sets:
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• FD: 60 days of wind forecasting error data per year for six years (2007–2012).

• LD: 30 days of wind forecasting error data per year for three years (2010–2012).

Intuitively, FD allows a larger data set for the ambiguity set to learn from, while LD allows
a shorter learning time window but possibly with high data quality. In addition, we follow
the same regression approach described in Section 4.6.1 to calibrate the shape information
inD using P1, P2, P3, and EXP. In each calibration model, we consider two types of norms:
the `∞-norm and the `2-norm. Moreover, the ε value in the CVaR constraints are set to be
1, 0.6, and 0.2. Finally, after obtaining an optimal solution of the RC-OPF model in each
experiment setting, we conduct out-of-sample evaluation of the optimal solution based on
the wind forecasting errors in 60 days in 2013. We evaluate the out-of-sample performance
based on the following two criteria:

1. Cost: the average out-of-sample total cost in the 60 days, including the power pro-
duction cost, reserve cost, and the penalty cost due to constraint violation.

2. Violation: the average out-of-sample frequency of violating any safety constraints in
the 60 days.

86



    

method

90

92

94

96

98

100

102

104

106

108

110

re
la

tiv
e 

co
st

 (
%

)

P1 P2 P3 EXP

FD
LD

(a) `∞ with ε = 0.2

    

method

90

92

94

96

98

100

102

104

106

108

110

re
la

tiv
e 

co
st

 (
%

)

P1 P2 P3 EXP

FD
LD

(b) `2 with ε = 0.2
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(c) `∞ with ε = 0.6
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(f) `2 with ε = 1

Figure 4.5: Out-of-sample cost comparison
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(b) `2 with ε = 1

Figure 4.6: Out-of-sample violation comparison (the violation frequency almost always
becomes zero for all approaches when ε = 0.2 or 0.6)

We report the results in Table 4.2 and Figures 4.5–4.6. Note that we only report the
out-of-sample violation when ε = 1 in Figure 4.6 because the violation frequency almost
always becomes zero for all approaches when ε = 0.2 or 0.6. First, Figures 4.5–4.6 show
that, as ε increases from 0.2 to 1, the out-of-sample cost of all approaches decrease and
the out-of-sample violation of all approaches increase. This demonstrates how the CVaR
confidence level affects the risk-averseness of the RC-OPF solution. Second, by compar-
ing MT with other DRO models with shape information, we observe that MT always yields
the lowest out-of-sample violation, confirming that MT provides the most conservative
RC-OPF solutions because its ambiguity set does not incorporate any shape information.
However, we also observe that lower violation frequency does not always result in higher
average cost. For example, when the risk-averseness is high (e.g., when ε = 0.2 under
the `∞ norm), most DRO models with shape information yield higher out-of-sample cost
than MT does. Intuitively, this indicates that the high risk-averseness of CVaR offsets the
conservativeness of the MT ambiguity set and the RC-OPF solutions of all approaches be-
come similarly conservative. In this case, as MT leads to a deterministic formulation and
all other DRO models lead to expectation constraints after reformulation, the RC-OPF so-
lutions in the DRO models with shape information can become even more conservative due
to the sample average approximation algorithm. Third, from Table 4.2, we observe that the
average cost generated under the `2-norm are always lower than those generated under the
`∞-norm. Meanwhile, the violation frequency generated under the `2 norm are lower. This
suggests that the shape information characterized under the `2-norm is more effective than
that under the `∞-norm. Fourth, the LD training data set tends to give RC-OPF solutions
with lower average costs and higher violation frequencies. Note that LD contains the more
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recent data. Hence, if the power system operator could tolerate slightly higher risk, she
can ignore some older data on purpose in exchange of lower average costs. Finally, P2
almost always yields the lowest out-of-sample average cost, and lowest violation frequen-
cies except when ε = 1, among all tested approaches. This indicates that the concentration
inequalities (4.1) may be best fitted when ε(r) is a quadratic function.

4.7 Conclusion

In this chapter, we investigated a DRO framework that models shape information in a com-
putationally tractable manner. A new class of ambiguity sets with shape information were
proposed in work. In particular, we incorporated concentration inequalities can be derived
from various shape information into the ambiguity set, potentially making it infinitely con-
strained. We showed that the resulting DRO model can be conservatively approximated by
a stochastic program with respect to an (unambiguous) probability distribution. This facil-
itates efficient solution algorithms (e.g., sample average approximation) for DRO models
with shape information. In addition, we showed that, under mild conditions, this approx-
imation is tight for a wide class of DRO models. We further extended the framework to
give tractable reformulation of the two-stage adaptive DRO models with fixed recourse if
the ambiguity set is defined based on the `1 norm. Finally, we demonstrated the theoreti-
cal results via computational case studies on the appointment scheduling problem and the
risk-constrained optimal power flow problem.
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CHAPTER 5

Adaptive Robust Transmission Expansion
Planning with Prioritization

5.1 Introduction

The transmission grid is a critical infrastructure that connects large-scale electricity gen-
eration with the distribution system that further serves industrial and household electricity
loads. The transmission expansion planning (TEP) aims to decide an optimal augmen-
tation plan of an existing transmission grid to serve the forthcoming electric load while
satisfying the security constraints. Augmentation decisions include installing new trans-
mission lines and adding new circuits to existing lines. The investment on the transmis-
sion network is capital-intensive and has a long-term impact on the power system [94].
For instance, the European Network of Transmission System Operators for Electricity
had a total budget of over EUR 100 billion for their 2012–2022 electrical grid invest-
ments [29]. The TEP problem has been investigated over decades (see, e.g., review ar-
ticles [84, 85]). Although TEP decisions can be made based on the ac power flow model
(see, e.g., [112, 66, 71]), the dc power flow is commonly applied largely because it leads
to more tractable formulations (see, e.g., [122, 8, 69]). The TEP problem based on dc
power flow can be formulated as a mixed-integer nonlinear program. Various methods
have been applied to solve the TEP problem, such as linear programming [140], nonlinear
programming [159, 5], mixed-integer programming [7], game theory [48], hierarchical de-
composition [118], and dynamic programming [43]. There are also approaches based on
Meta-heuristic (see e.g., [128, 111, 6]).

The electricity load uncertainty due to, e.g., demographic shift, has been long exist-
ing in the TEP literature (see, e.g., [117, 168]). During the last decade, renewable energy
(e.g., wind and solar) has taken a growing share in the energy mix [110]. For example, the
U.S. Department of Energy has analyzed a scenario that wind power contributes 20% to
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the total energy utilization by 2030 [91]. Other uncertainty sources in the TEP problem in-
clude the availability of power system components [117] and the electricity markets [157].
These uncertainties make the TEP problem very challenging because the current design
of transmission grid may not well serve the load and renewable energy to be realized in
the future. In addition, planning under uncertainty requires to find an expansion plan that
optimizes a specific metric (e.g., expected cost, worst-case cost, etc.) over a huge set
of future scenarios, which is significantly more complicated than planning for a deter-
ministic future. Stochastic programming has been studied for more than 60 years (see,
e.g., [36, 96, 76, 54, 77, 62, 106, 22]). Stochastic TEP (see, e.g., [4, 92, 28]) minimizes the
expected total cost of the future transmission grid while satisfying the security constraints.
As this approach often models the uncertainties by using a set of scenarios, it brings two
challenges: first, the true probability distribution of the uncertain parameters is usually
unavailable given the long planning horizon; and second, if a large number of scenarios
are generated to well represent the uncertainties, the resulting stochastic program becomes
computationally intractable. Robust optimization (RO), on the other hand, only requires
the knowledge of support (termed an uncertainty set) of the uncertain parameters [12]. For
a given uncertainty set, robust TEP minimizes the cost of the future transmission grid with
regard to the worst-case scenario within the uncertainty set. Although the uncertainty set
usually consists of an infinite number of scenarios, the worst-case scenario can be com-
puted by solving an optimization model. This saves the effort of scenario enumeration and
leads to better computational efficacy of robust TEP. Recently, robust TEP has received
growing attention in the literature [70, 32, 101].

To compute the worst-case cost, robust TEP needs to compute the optimal power flow
after the uncertainties are realized, leading to a two-stage (adaptive) RO model. In the first
stage, a set of line/circuit are installed; and in the second stage, after the uncertainties (e.g.,
budget, load, and renewable energy) are realized, an additional set of line/circuit are adap-
tively installed and the power is re-dispatched to yield an optimal power flow based on the
augmented grid. Unfortunately, the adaptive installation result in a RO model with mixed-
integer recourse, which is computationally prohibitive. Existing literature addresses this
challenge in two ways. The first stream of literature waives the option of adaptive installa-
tion and accordingly robust TEP reduces to a two-stage RO model with continuous recourse
(see, e.g., [69]). We can then apply the column-and-constraint generation algorithm [160]
to efficiently solve robust TEP. The second stream of literature designs decision rules to de-
termine the adaptive installation as a function of the first-stage installation and the realized
uncertainties (see, e.g., [60, 16]). In this work, we adopt the decision rule of prioritiza-
tion [80, 81]. Prioritization was initially proposed to solve uncertain resource-constrained
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activity-selection problems. This decision rule involves optimally placing activities into a
priority list before the uncertainty is realized, and making an activity selection following
the priority list after the uncertainty realization. Prioritization is consistent with the practice
in many industrial and governmental decision-making processes [24, 123] and can provide
more interpretable solutions.

The remainder of this chapter is organized as follows. We describe the mathematical
formulations of the proposed robust TEP with prioritization (TEP-P) model in Section 5.2.
In Section 5.3, we present computationally tractable reformulations of the proposed model
and a tailored column-and-constraint generation algorithm. Section 5.4 validates the pro-
posed approach via case studies based on the real-world wind power data. Section 5.5
summarizes this study. In addition, we list the nomenclature in Section 5.6.

5.2 Mathematical Formulation

We first present the deterministic TEP model. Then we generalize it to stochastic and robust
TEP-P models.

5.2.1 Deterministic TEP

If the installation budget, load, and renewable energy is deterministic and known, then the
TEP model [69] can be formulated as follows:

min
n1,f,g,h,r,θ

∑
b∈B

(cgbgb + crbrb) (5.1a)

s.t. Af + g + h+ r = d̃, (5.1b)

fij = γij

n0
ij +

∑
k∈N 1

ij

n1
k

 (θi − θj), ∀(i, j) ∈ L, (5.1c)

|fij| ≤

n0
ij +

∑
k∈N 1

ij

n1
k

 f̄ij, ∀(i, j) ∈ L, (5.1d)

0 ≤ g ≤ ḡ, (5.1e)

0 ≤ h ≤ h̃, (5.1f)

0 ≤ r ≤ d̃, (5.1g)

− π

2
1 ≤ θ ≤ π

2
1, (5.1h)
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∑
(i,j)∈L

∑
k∈N 1

ij

ckn
1
k ≤ B1, (5.1i)

n1 ∈ {0, 1}N 1

, (5.1j)

where 1 (resp. 0) represents an all-one (resp. all-zero) vector of proper dimension, B is
the set of buses, L is the set of lines, N 1

ij is the set of circuits can be installed to line (i, j)

now, N 1 =
⋃

(i,j)∈LN 1
ij , c

g
b (resp. crb) is the unit power generation (resp. load curtailment

penalty) cost at bus b, A is the node-branch incidence matrix of the transmission grid, d
are the loads, γij is the susceptance of of each circuit on line (i, j), n0

ij is the initial num-
ber of circuits on line (i, j), f̄ij is the power flow capacity of each circuit on line (i, j),
ḡ is the thermal generation capacity, h̃ is the available renewable energy, B1 is the cur-
rent budget for circuits installation, ck is installation cost of circuit k, variables g represent
power generation amounts from thermal generators, variables h represent power genera-
tion amounts from renewable generators, variables r represent load curtailment amounts,
variable fij represents the power flow on line (i, j), binary variable n1

k represents whether
circuit k ∈ N 1 is installed now, and variable θb represents the phase angle at bus b.

The goal of formulation (5.1a)–(5.1j) is to find an optimal transmission grid augmen-
tation to meet the load with the minimum total cost, including power generation costs
and load curtailment penalty costs. Constraints (5.1b) describe the nodal power balance
and constraints (5.1c) are the dc line flow equations. Constraints (5.1d)–(5.1h) specify the
bounds of power flow, thermal power generation amount, renewable energy, load curtail-
ment, and phase angle, respectively. Constraint (5.1i) describes the TEP budget limit.

5.2.2 TEP with Prioritization

In an uncertain environment, the TEP budget can be divided into two parts: the budget
B1 available now and the (uncertain) budget B̃2 to be provided in the future. Let N 2

ij be
the set of circuits that can be installed to line (i, j) in the future and N 2 =

⋃
(i,j)∈LN 2

ij .
Accordingly, we use variables n1

k, k ∈ N 1 to denote the installation plan in the present and
n2
k, k ∈ N 2 to denote the plan in the future. In practice, the renewable generation h̃, load d̃,

as well as the future budget B̃2 are uncertain. Recently, [80] proposed a prioritization de-
cision rule to deal with the uncertainty in resource-constrained activity-selection problems.
The concept of prioritization is consistent with the widely-used decision-making process in
practice [24, 123]. In this approach, we rank all the activities in a priority list, and commit
to each activity based on its priority and the realized uncertainty. Prioritization requires
that an activity can be selected only if all the activities with higher priority have been se-
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lected. To apply the prioritization decision rule, we introduce binary decision variables skk′

to model the priority order between n2
k and n2

k′ . Specifically, skk′ equals 1 if n2
k is ranked at

least as high as n2
k′ and it equals 0 otherwise.

5.2.2.1 Stochastic TEP-P

In (5.2), we present the stochastic TEP-P model. Let Ω be the set of scenarios, where
|Ω| < ∞. For each ω ∈ Ω , we let (B̃2ω, d̃ω, h̃ω) denote the random variable realizations
with probability qω and (fω, gω, hω, rω, θω, n2ω) be the corresponding decision variables
for scenario ω.

min
n1,s,fω

gω ,hω ,rω

θω ,n2ω

∑
ω∈Ω

qω

(∑
b∈B

cgbg
ω
b + crbr

ω
b

)
(5.2a)

s.t. Afω + gω + hω + rω = d̃ω, ∀ω ∈ Ω, (5.2b)

γij

n0
ij +

∑
k∈N 1

ij

n1
k +

∑
k∈N 2

ij

n2ω
k

 (θωi − θωj ) = fωij , ∀(i, j) ∈ L, ∀ω ∈ Ω, (5.2c)

|fωij | ≤

n0
ij +

∑
k∈N 1

ij

n1
k +

∑
k∈N 2

ij

n2ω
k

 f̄ij, ∀(i, j) ∈ L, ∀ω ∈ Ω, (5.2d)

0 ≤ gω ≤ ḡ, ∀ω ∈ Ω, (5.2e)

0 ≤ hω ≤ h̃ω, ∀ω ∈ Ω, (5.2f)

0 ≤ rω ≤ d̃ω, ∀ω ∈ Ω, (5.2g)

− π

2
1 ≤ θω ≤ π

2
1, ∀ω ∈ Ω, (5.2h)

skk′ + sk′k ≥ 1, ∀k, k′ ∈ N 2, k 6= k′, (5.2i)

skk′′ ≥ skk′ + sk′k′′ − 1, ∀k, k′, k′′ ∈ N 2, k 6= k′ 6= k′′, (5.2j)

s ∈ {0, 1}N 2×N 2

, (5.2k)

n2ω
k ≥ n2ω

k′ + skk′ − 1, ∀k, k′ ∈ N 2, k 6= k′, ∀ω ∈ Ω, (5.2l)∑
k∈N 2

ckn
2ω
k ≤ B̃2ω, ∀ω ∈ Ω, (5.2m)

n2ω ∈ {0, 1}N 2

, ∀ω ∈ Ω, (5.2n)∑
k∈N 1

ckn
1
k ≤ B1, (5.2o)

n1 ∈ {0, 1}N 1

. (5.2p)
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The objective function (5.2a) consists of expected generation costs and expected load cur-
tailment penalty costs. Constraints (5.2b)–(5.2h) correspond to constraints (5.1b)–(5.1h)
under each scenario ω. For each pair of circuits to be installed, constraints (5.2i)–(5.2k)
ensure that either they have the same priority or one has higher priority than the other.
Constraints (5.2l) describe the priority rule, i.e., a circuit can be installed only if all the cir-
cuits with higher rank have been installed. Constraints (5.2m) describe the future TEP
budget limit and Constraints (5.2o) describe the present TEP budget limit. Note that
formulation (5.2) is a mixed-integer nonlinear program due to the bilinear terms in con-
straints (5.2c). By introducing the McCormick inequalities [98], this model can be recast
as a mixed-integer linear program (MILP) that can be solved by commercial solvers, e.g.,
CPLEX.

5.2.2.2 Robust TEP-P

In this section, we propose a two-stage adaptive robust formulation with prioritization to
deal with the TEP problem under uncertainty. In this model, n1 and s are the first-stage
decision variables, parameters (B̃2, d̃, h̃) are random variables and (f, g, h, r, θ, n2) are
second-stage decision variables. In the future installation plan, we assume, in each sce-
nario, the budget will be used as much as possible. Then, constraints (5.2l)–(5.2m) can be
replaced by constraints (5.3).

B̃2 −
∑
k′∈N 2

k′ 6=k

ck′sk′k − ck ≤Mn2
k, ∀k ∈ N 2, (5.3a)

∑
k′∈N 2

k′ 6=k

ck′sk′k + ck − B̃2 ≤M(1− n2
k), ∀k ∈ N 2. (5.3b)

Without loss of generality, we can assume B̃2 6=
∑

k′∈N 2, k′ 6=k ck′sk′k+ck by perturbing
B̃2. We can treat n2 as random variables because n2 can be fully determined by the priority
list s and the realization of the random variable B̃2. After incorporating the priority list s,
we assume the uncertainty set U(s) is of the form (5.4).

U(s) :=
{(

B̃2, d̃, h̃, n2
)

:d ≤ d̃ ≤ d, (5.4a)

dL ≤
∑
b∈B

d̃b ≤ dU , (5.4b)

h ≤ h̃ ≤ h, (5.4c)

hL ≤
∑
b∈B

h̃b ≤ hU , (5.4d)
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ψ(d̃, h̃) ≤ B̃2 ≤ ψ(d̃, h̃), (5.4e)

n2 ∈ {0, 1}N 2

, (5.4f)

Constraints (5.3a) and (5.3b)
}

(5.4g)

where constraints (5.4a) and (5.4c) describe the lower and upper bounds of the renewable
energy and load at each bus, respectively. Constraints (5.4b) and (5.4d) describe the total
renewable energy and load bounds throughout all buses, respectively. Constraint (5.4e) set
lower and upper bounds of the budget, which linearly depend on the total renewable energy
and load. ψ(·), ψ(·) represent budget upper and lower bounds as functions of the realized
renewable energy and load, respectively. Constraints (5.4f)–(5.4g) ensure that the circuits
are installed according to the priority list and the future budget. Based on U(s), we propose
a two-stage adaptive robust TEP-P (5.5) to address the load, renewable energy, and future
budget uncertainty.

min
n1,s

max
(B̃2,d̃,h̃,n2)∈U(s)

min
(f,g,h,r,θ)∈

Ψ(B̃2,d̃,h̃,n1,n2)

∑
b∈BS

(cgbgb + crbrb) (5.5a)

s.t.
∑
k∈N 1

ckn
1
k ≤ B1, (5.5b)

n1
k ∈ {0, 1} ∀k ∈ N 1. (5.5c)

skk′ + sk′k ≥ 1, ∀k, k′ ∈ N 2, k 6= k′, (5.5d)

skk′′ ≥ skk′ + sk′k′′ − 1, ∀k, k′, k′′ ∈ N 2, k 6= k′ 6= k′′, (5.5e)

s ∈ {0, 1}N 2×N 2

, (5.5f)

where

Ψ
(
B̃2, d̃, h̃, n1, n2

)
=
{

(f, g, h, r, θ) :

Af + g + h+ r = d̃, (5.5g)

fij = γij

n0
ij +

∑
k∈N 1

ij

n1
k +

∑
k∈N 2

ij

n2
k

 (θi − θj), ∀(i, j) ∈ L, (5.5h)

|γij(θi − θj)| ≤ f̄ij, ∀(i, j) ∈ L : n0
ij 6= 0, (5.5i)

|γij(θi − θj)| ≤ f̄ij + (1− n1
k)(M − f̄ij), ∀k ∈ N 1

ij,∀(i, j) ∈ L : n0
ij = 0, (5.5j)

|γij(θi − θj)| ≤ f̄ij + (1− n2
k)(M − f̄ij), ∀k ∈ N 2

ij,∀(i, j) ∈ L : n0
ij = 0, (5.5k)

0 ≤ g ≤ ḡ, (5.5l)

0 ≤ h ≤ h̃, (5.5m)
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0 ≤ r ≤ d̃, (5.5n)

− π

2
1 ≤ θ ≤ π

2
1
}
. (5.5o)

The objective function (5.5a) consists of power generation costs and load curtailment penalty
costs. In the first stage, the present circuit installation decisions n1 and prioritization deci-
sions s are made. In the second stage, the generation and transmission decisions are made
for each scenario. In this formulation, the load d̃, renewable energy h̃, future budget B̃2,
and circuit installation n2 are subject to uncertainty and described by the uncertainty set
U(s). Note that, in each scenario, the uncertain future circuit installation decisions n2 will
be determined by the future budget and priority list. The objective is to minimize the total
generation costs and load curtailment penalty costs under the worst-case scenario. Con-
straints (5.5d)–(5.5e) describe the priority of each pair of circuits, i.e., either they have the
same priority or one has higher priority than the other. Constraints (5.5g)–(5.5o) are the
stochastic counterpart of constraints (5.1b)–(5.1h). Note that constraints (5.5i)–(5.5k) are
equivalent to

|fij| ≤

n0
ij +

∑
k∈N 1

ij

n1
k +

∑
k∈N 2

ij

n2
k

 f̄ij,∀(i, j) ∈ L.

We use constraints (5.5i)–(5.5k) because they can reduce the number of bilinear terms in
the reformulation.

5.3 Solution Methodology

To simplify the notation, we will use an abstract form of the robust TEP-P model (5.5).
Let E1, E2, F0, H1, H2 be constant matrices and c, λ, α0, β0 be constant vectors. Let
F1(·), F2(·) be matrices and α1(·), α2(·), β1(·) be vectors, all of which are affine functions
of the input variables. Also, let y represent all second-stage variables corresponding to
(f, g, h, r, θ) and ξ represent the random variables (B̃2, d̃, h̃). Then, we present an abstract
form of (5.5) as follows.

min
n1,s

max
(ξ,n2)∈U(s)

min
y∈Ψ(ξ,n1,n2)

c>y (5.6a)

s.t. E1n
1 + E2s ≥ λ, (5.6b)

n1 ∈ {0, 1}N 1

, s ∈ {0, 1}N 2×N 2

, (5.6c)
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where

Ψ
(
ξ, n1, n2

)
=
{
y :
[
F0 + F1(n1) + F2(n2)

]
y ≥ α0 + α1(n1) + α2(ξ, n2)

}
, (5.6d)

and

U(s) =
{(

ξ, n2
)

:H1ξ +H2n
2 ≥ β0 + β1(s), (5.6e)

n2 ∈ {0, 1}N 2
}
. (5.6f)

The proposed formulation has a min-max-min objective function and cannot be solved
directly by commercial solvers. Therefore, efficient algorithms need to be developed. In
Section 5.3.2, we design a tailored column-and-constraint generation algorithm to solve
formulation (5.6).

5.3.1 Second-Stage Problem Reformulation

We view n2 as random variables and the inner minimization problem of formulation (5.6)
becomes a linear program. By dualizing it and combining two maximization operators, we
recast the second-stage problem as follows. Strong duality holds because the inner problem
is a linear program.

Π(n1, s) = max
η,ξ,n2

[
α0 + α1(n1) + α2(ξ, n2)

]>
η (5.7a)[

F0 + F1(n1) + F2(n2)
]>
η = c, (5.7b)

η ≥ 0, (5.7c)

H1ξ +H2n
2 ≥ β0 + β1(s), (5.7d)

n2 ∈ {0, 1}N 2

, (5.7e)

where dual variables η are associated with constraints (5.6d) and dual constraints (5.7b) are
associated with primal variables y. We apply the following reformulations to linearize the
bilinear terms in the objective function (5.7a) and constraint (5.7b). Note that there are two
types of bilinear terms:

n2
kηj: It is the product of an integer variable and a continuous variable. We directly apply

the McCormick inequalities [98] to linearize this term. Formally, we can define
auxiliary variable znηkj to replace n2

kηj and add the following constraints:

znηkj ≤ ηj, (5.8a)
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znηkj ≤Mn2
k, (5.8b)

znηkj ≥ ηj −M(1− n2
k), (5.8c)

znηkj ≥ 0. (5.8d)

where M is a sufficiently large value that upper bounds ηj .

ξiηj: It is the product of two continuous variables. We first apply the binary expansion
approach [158] on dual variables ηj by adding the following auxiliary variables and
constraints.

ηj ≈
TU∑

t=−TL

2tzηj,t,

zηj,t ∈ {0, 1}, ∀t ∈ [−TL, TU ] ∩ Z.

With the binary expansion, the new bilinear term ξiz
η
j,t becomes the product of an

integer variable and a continuous variable. We apply similar McCormick inequalities
as (5.8) to linearize these terms.

Therefore, the maximization problem (5.7) can be reformulated as a MILP that can readily
be solved by commercial solvers.

5.3.2 Column-and-Constraint Generation Algorithm

In this section, we design a tailored column-and-constraint generation algorithm to solve
the robust TEP-P model. We solve the following master problem iteratively by adding new
primal constraints to cut off the suboptimal solutions. Note that we do not need feasibility
cuts due to the relatively complete recourse of formulation (5.5).

Master problem The master problem is

min
s,n1,Θ,yv ,n2v

Θ (5.9a)

s.t. E1n
1 + E2s ≥ λ, (5.9b)

n1
k ∈ {0, 1}N

1

, s ∈ {0, 1}N 2×N 2

, (5.9c)

Θ ≥ c>yv, ∀v, (5.9d)[
F0 + F1(n1) + F2(n2v)

]
yv ≥ α0 + α1

(
n1
)

+ α2

(
ξ̂v, n2v

)
, ∀v, (5.9e)

H1ξ̂
v +H2n

2v ≥ β0 + β1(s), ∀v, (5.9f)
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n2v ∈ {0, 1}N 2

, ∀v, (5.9g)

where constraints (5.9d)–(5.9g) are optimality cuts in primal form and v represents the
index of the optimality cuts (formally described below) and also the iteration number. Note
that the optimality cuts contain bilinear terms n1

ky
v
j and n2v

k y
v
j in (5.9e). Therefore, we once

again employ the McCormick inequalities [98] to linearize these terms.

Optimality cuts In the master problem (5.9), Θ represents the optimal value of the
second-stage problem (5.7). Suppose in iteration v, by solving the master problem (5.9),
we obtain an incumbent optimal solution (Θ̂, ŝ, n̂1). We substitute ŝ and n̂1 into the second-
stage problem (5.7) to obtain the optimal objective value Π(n̂1, ŝ) and the corresponding
worst-case scenario ξ̂v. If Θ̂ < Π(n̂1, ŝ) then the solution (Θ̂, ŝ, n̂1) is suboptimal with
regard to ξ̂v. Therefore, we add an optimality cut (5.9d)–(5.9g) in the primal form based
on ξ̂v.s

5.4 Case Study

To test the proposed two-stage adaptive robust TEP-P model, we conduct computational
case studies based on the Garver 6-bus system [119] and the southern Brazilian 46-bus
system [57]. All instances are solved by CPLEX 12.8 solver on a 64-bit Windows 10
machine with Intel(R) Core(TM) i7-6600U processor, running at 2.60 GHz with 8 GB
memory.

5.4.1 Experiment System

5.4.1.1 6-bus system

The Garver 6-bus system contains six buses and nine transmission lines for adding new
circuits [119], which was used in [49] originally. In this system, the total load is 760 MW
and the detailed data is shown in Table 5.1 and Table 5.2. We place three wind farms in
this system, i.e., in the bus 3, 4 and 6. The data of these three wind farms is given by three
onshore sites from the National Renewable Energy Laboratory (NREL) [41, 40, 90, 79].
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Table 5.1: 6-bus generation and load data

Generator index Bus index ḡ (MW) d (MW) cg ($) cr ($)

1 1 50 80 2.02 3.27
2 2 0 240 0.60 3.89
3 3 165 40 2.15 3.07
4 4 0 160 2.01 0.90
5 5 0 240 2.10 0.62
6 6 545 0 1.60 3.19

Table 5.2: 6-bus transmission line data

Line index i-j n0
ij Reactance (p.u.) f̄ij (MW) c (103$)

1 1-2 0 0.4 100 6
2 1-4 1 0.6 80 4
3 1-5 0 0.2 100 3
4 2-3 1 0.2 100 5
5 2-4 0 0.4 100 5.5
6 3-5 0 0.2 100 3.5
7 6-2 0 0.3 100 4.5
8 6-4 0 0.3 100 6.5
9 6-5 0 0.61 78 7

5.4.1.2 46-bus system

The 46-bus system is a medium-sized system representing the southern part of the Brazilian
interconnected network [57]. It contains 46 buses and 71 transmission lines for adding new
circuits. In this system, the total load is 6880 MW. All the relevant data can be found in
[57]. We place 6 wind farms in this system. The information of these 6 wind farms is based
on 6 onshore sites from NREL.

5.4.2 Experiment Setting

In this case study, we consider uncertainty in renewable energy h̃ and the future installation
budget B̃2. The uncertainty set U(s) is constructed based on the historical data from NREL
Wind Integration National Dataset Toolkit [41, 40, 90, 79] and the circuit installation costs.
We collect the historical data of wind energy from Jan. 18 to Feb. 14 in 2007–2011 as the
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training data and wind energy from the same period in 2012–2013 as the test data. There
are hence 140 training samples and 56 testing samples. In the uncertainty set U(s), we
consider the upper and lower bounds of the wind power on each farm as well as the upper
and lower bounds of the total wind energy of all 3 (or 6) wind farms, and the upper and
lower bounds of the future TEP budget. To test our proposed two-stage robust adaptive
TEP-P model, we conduct out-of-sample tests on the following approaches. We refer to
them as:

• RP: two-stage robust TEP-P approach (5.5).

• RG: two-stage robust TEP approach. In this approach, we approximately solve the
robust TEP model by considering a finite subset of scenarios in the uncertainty set.

• SP: two-stage stochastic TEP-P approach (5.2). Ω contains all the 140 historical data
samples and the probability distribution is assumed to be a uniform distribution over
the samples.

• SG: two-stage stochastic TEP approach. Similar to RG, we solve stochastic TEP by
sample average approximation (SAA).

• RM: randomized approach. We generate uniformly random present and future instal-
lation plans.

We perform the out-of-sample tests based on the following two different wind data sets.

• Real data: wind data obtained from NREL Wind Integration National Dataset Toolkit.

• Misspecified data: real data plus a 10% increase, which mimics a potentially accel-
erated adoption of wind energy at the end of the planning horizon.

In addition, we evaluate the performance of the approaches based on the following two
criteria:

• Cost: the average total costs, including power generation costs and load curtailment
penalty costs.

• Time: the average CPU seconds.

All approaches are tested under different penetration levels of renewable energy, from 10%
to 20%. For example, if the penetration level is 20%, the data will be scaled such that the
median of historical data samples of the total wind energy from all the sites can provide
20% of the total electricity load. We also conduct a sensitivity analysis on the budget levels
for RP and RG.
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5.4.3 Results

5.4.3.1 6-bus system

Comparisons For the 6-bus system, we compare the above five approaches. We use the
140 historical data samples to construct the uncertainty set for RP and RG, 500 data samples
generated from the obtained uncertainty set to approximately solve RG, and 30 historical
data samples to solve SG using SAA. The first-stage budget (i.e., B1) is set to be 10, and
the second-stage budget (i.e., B̃2) is randomly sampled from Unif[10, 40]. We report the
out-of-sample performance of the above five approaches on both real data samples and the
corresponding misspecified data samples.

Table 5.3 and Figure 5.1 compare the average total costs among the five approaches on
the two data sets. In Figure 5.1, the x-coordinate represents the penetration level and the
y-coordinate represents the cost. From these results, we first observe that the worst-case
performance of RP and RG is better than the others, while the average performance of SP
and SG is better than the others. RM performs the worst among the all the approaches
in all experiments. These results are consistent with the metric used in each approach.
Second, except for the worst-case cost of SP, both the worst-case and average costs become
lower as the penetration level increases. This is because as we incorporate more renewable
energy, the cost-effectiveness of using renewable energy becomes more significant. Since
the object of SP is to optimize the average performance, it may lead to some bad worst-
case out-of-sample performance. Third, the total cost difference between RP and RG is
very small, which suggests that the prioritization decision rules can provide near-optimal
decisions. Fourth, the results demonstrate that the performance of the RG and SG is exactly
the same. The reason is that the second-stage problems of these two approaches are both
fully adaptive. As a result, they just need to optimize the first-stage installation plan. Since
the 6-bus system only contains three candidate circuits in the first stage, it is likely that
these two approaches yield the same optimal solution. Finally, these approaches perform
similarly under both real and misspecified data. This indicates that the proposed approach
for transmission expansion planning can handle mild misspecification of wind power data.

Table 5.4 reports the CPU seconds of four approaches. The CPU time of RP is around
1.5 seconds, which is dramatically less than those of the other approaches. For the other
three approaches, since they are all solved with a finite number of scenarios, their CPU
seconds highly depend on the number of scenarios considered in each approach. This
result shows that SG is the most time-consuming.
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Table 5.3: Cost comparison on the 6-bus system

Worst-case performance
on real data

Worst-case performance
on misspecified data

Penetration level 10% 15% 20% 10% 15% 20%
RP 95.56 93.16 88.23 94.60 92.07 86.69
RG 96.13 92.34 88.51 95.37 91.20 86.98
SP 100.43 96.21 106.43 99.59 94.93 104.87
SG 96.13 92.34 88.51 95.37 91.20 86.98
RM 120.74 117.14 114.19 120.02 116.06 113.35

Average performance
on real data

Average performance
on misspecified data

Penetration level 10% 15% 20% 10% 15% 20%
RP 85.78 78.84 71.88 84.42 76.75 69.29
RG 82.17 75.37 68.57 80.81 73.33 65.85
SP 82.42 75.60 69.34 81.05 73.56 66.63
SG 82.17 75.37 68.57 80.81 73.33 65.85
RM 97.17 90.80 85.19 95.84 89.01 83.14

Table 5.4: CPU seconds comparison on the 6-bus system

Penetration level 10% 15% 20%
RP 0.9 2.5 1.1
RG 682.2 960.0 769.9
SP 99.4 178.6 184.0
SG 301.1 627.0 3485.7

Sensitivity analysis Table 5.5 and Figure 5.2 display the sensitivity analysis of RP and
RG on different budget levels. In this experiment, the penetration level is 20%. We compare
the out-of-sample performance of these two approaches on eight different budget levels and
the two data sets. Each budget level contains five units, from 0–5 to 35–40. The result first
shows that both worst-case and average costs are decreasing as the budget level increases
and they all decrease dramatically in the lower budget levels and become more smooth
beyond the budget level 10–15. Second, RP and RG have quite similar costs. Their worst-
case costs are even identical on some budget levels, e.g., 5–10, 30–35, and 35–40. As
compared with the results for the 10–40 budget level reported in Table 5.3, Table 5.5 also
shows that the difference between these two approaches become smaller when the budget
level is lower. This is because the full adaptivity in the second-stage formulation becomes
less impactful with a smaller budget.
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(b) Worst-case performance on misspecified data
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(d) Average performance on misspecified data

Figure 5.1: Cost comparison on the 6-bus system

5.4.3.2 46-bus system

Comparisons In the 46-bus system, we compare three approaches, i.e., RP, RG, and
RM, because the other two approaches become too time-consuming to solve. We still
use 140 historical data samples to construct the uncertainty set for RP and RG, and 100
data samples to approximately solve RG. We set the first-stage budget to be 100 and the
second-stage budget to be Unif[50, 150]. We report the out-of-sample performance of these
three approaches on the 56 real data samples in Table 5.6 and Figure 5.3. From these
results, we make similar observations as in the 6-bus system. The approximated RG has the
lowest objective values on all penetration levels and under both evaluation criteria, and RM
performs the worst. The difference between RP and RG remains very small, which suggests
the prioritization decision rule remains highly effective in a medium-sized system. RP has
an excellent computational time (see Table 5.7). We omit the out-of-sample performance
of these approaches on the misspecified data samples and the sensitivity analysis because

105



Table 5.5: Sensitivity analysis on the 6-bus system based on real data

Budget level 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40
Worst-case RP 122.17 95.95 91.15 87.21 84.43 84.13 83.90 83.90

performance RG 122.02 95.95 87.62 85.96 84.27 84.04 83.90 83.90
Average RP 112.18 78.23 74.10 70.96 68.66 67.82 67.67 67.67

performance RG 108.48 77.94 70.60 69.49 68.54 67.70 67.59 67.58

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40

Budget Level

60

70

80

90

100

110

120

130

C
o
s
t

RP

RG
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(b) Average performance on real data

Figure 5.2: Sensitivity analysis on the 6-bus system based on real data

the results are similar as those in the 6-bus system.

Table 5.6: Cost comparison on the 46-bus system based on real data

Worst-case performance Average performance
Penetration level 10% 15% 20% 10% 15% 20%

RP 124.00 122.03 120.35 112.42 103.84 98.39
RG 122.63 120.17 117.80 110.44 102.69 96.45
RM 131.25 128.51 125.77 117.08 108.81 101.16

5.5 Conclusion

In this chapter, we investigated a two-stage adaptive robust TEP model with prioritization.
The core idea of prioritization is to rank the candidate circuits in the first-stage formulation,
and after uncertainty is realized, to expand the transmission grid from the circuits with top
prioritization in the second-stage formulation. It leads to more tractable formulations as
well as more interpretable decisions. A tailored column-and-constraint generation algo-
rithm was designed to solve the proposed model. We tested the robust TEP-P model on
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Figure 5.3: Cost comparison on the 46-bus system based on real data

Table 5.7: CPU seconds comparison on the 46-bus system

Penetration level 10% 15% 20%
RP 8.9 208.1 18.1
RG 5750.0 2595.5 7903.9

the Garver 6-bus system and the southern Brazilian 46-bus system. The numerical experi-
ments demonstrated that the proposed approach performs near-optimally with significantly
less computational time.

5.6 Nomenclature

A. Sets and Indices

B Set of buses.

L Set of lines.

N 1
ij,N 2

ij Set of circuits that can be installed to line (i, j) now and in the future, respectively.

N 1,N 2
⋃

(i,j)∈LN 1
ij and

⋃
(i,j)∈LN 2

ij , respectively.

Ω Set of scenarios.

B. Parameters

A Node–branch incidence matrix of the transmission grid.
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B1 Current budget for circuit installation ($).

ck Installation cost of circuit k ($).

crb Unit load curtailment penalty cost of bus b ($/MW).

cgb Unit power generation cost at bus b ($/MW).

γij Susceptance of each circuit on line (i, j).

f̄ij Power flow capacity of each circuit on line (i, j) (MW).

ḡb Thermal generation capacity of bus b (MW).

n0
ij Initial number of circuits on line (i, j).

ψ(·), ψ(·) Budget upper and lower bounds as functions of the realized renewable energy
and load, respectively.

C.Random Variables

h̃b Renewable energy at bus b (MW).

d̃b Load at bus b (MW).

B̃2 Budget for circuit installation in the future ($).

D. Decision Variables

fij Power flow on line (i, j) (MW).

gb Power generation amount from thermal generators at bus b (MW).

hb Power generation amount from renewable generators at bus b (MW).

n1
k Binary variable such that n1

k = 1 if circuit k ∈ N 1 is installed now and n1
k = 0

otherwise.

n2
k Binary variable such that n2

k = 1 if circuit k ∈ N 2 is installed in the future and n2
k = 0

otherwise.

rb Load curtailment amount at bus b (MW).

θb Phase angle at bus b.
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skk′ Binary variable to denote the priority order between circuit k and k′ such that skk′ = 1

if circuit k is ranked at least as high as k′ and skk′ = 0 otherwise.
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CHAPTER 6

Conclusions

In this dissertation, we study data-driven optimization methods for power system operations
by modeling uncertainty directly based on the historical data. More specifically, we statis-
tically infer key characteristics of the (ambiguous) probability distribution (e.g., support,
mean, mean absolute deviation, unimodality, etc.) from the historical data and construct an
ambiguity set consisting of all probability distributions that match the inferred character-
istics. Then, we make distributionally robust decisions that hedge against the worst-case
distributions within the ambiguity set. Efficient solution approaches are proposed for these
data-driven distributionally robust optimization models. In addition, we apply the proposed
models in power system operations, including optimal power flow, unit commitment, and
transmission expansion planning.

In Chapter 2, We proposed a DRO approach for unit commitment and reserve procure-
ment in power systems with renewable energy integration. Moment information obtained
from historical data was considered in the ambiguity set and the resulting model was sovled
by an algorithm based on the generalized linear decision rule. The numerical experiments
on real-world wind energy data indicated that the proposed DRO approach can enhance the
system flexibility and capability of accommodating renewable energy, and a real-time eco-
nomic re-dispatch can help fully utilize the system flexibility. In Charter 3, we proposed
an ambiguity set containing both moment and probability discrepancy information, i.e.,
a Wasserstein-moment ambiguity set, for the multi-period distributionally robust chance-
constrained optimal power flow problem. A tractable convex conservative approximation
was derived based on worst-case conditional value-at-risk. Compared with benchmark ap-
proaches, the proposed ambiguity set can better balance cost-effectiveness and reliability.
In Chapter 4, we proposed a general framework of DRO models to incorporate shape in-
formation in a computationally tractable manner. A new class of ambiguity sets with shape
information were proposed in work. In particular, we incorporated concentration inequali-
ties can be derived from various shape information into the ambiguity set and showed that
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the resulting DRO model can be conservatively approximated by a stochastic program with
respect to an (unambiguous) probability distribution. In addition, we showed that, under
mild conditions, this approximation is tight for a wide class of DRO models. Computa-
tional case studies on the appointment scheduling problem and the risk-constrained optimal
power flow problem are conducted to demonstrate the theoretical results. In Chapter 5, we
investigated a two-stage adaptive robust TEP model with prioritization. The prioritization
decision rule led to more tractable formulations as well as more interpretable decisions. A
tailored column-and-constraint generation algorithm was designed to solve the proposed
model. As compared with the fully adaptive model, the numerical experiments demon-
strated that the proposed approach can provide near-optimal solution with significantly less
computational time.

Possible future directions include:

• Investigating other distributional information to strengthen the ambiguity set while
leading to tractable and efficient reformulations. For example, one interesting open
question here is whether DRO with ambiguity set containing both probability dis-
crepancy and concentration inequalities admits tractable reformulation. Study of de-
cision rules is another possible direction. Decision rules can significantly reduce the
computational burden. An efficient decision rule with good performance will be of
practical interest.

• Extending the proposed models to handle dynamic decision making under uncer-
tainty. For example, a transmission network is often managed over a long time hori-
zon, and hence expanding the network can naturally be modeled as a multistage
optimization problem. Multistage optimization problem is considerably more diffi-
cult than two-stage problem, especially when ambiguous distribution is taken into
account. A multistage DRO inventory model with moment-based ambiguity set was
investigated in [154]. Its result heavily relies on the property of newsvendor problem.
It will be very interesting to obtain more general results for the moment-based and
other ambiguity sets.

• Studying data-driven optimization methods with applications beyond power system
operations, e.g., healthcare operations, disaster risk management, and transportation.
One important problem in healthcare operations is appointment scheduling. Many
DRO appoaches have been studied for this problem (see e.g., [82, 95, 164]). DRO ap-
proach with shape information was applied on single server appointment scheduling
in Chapter 4. We would also like to investigate multi-server appointment scheduling
in the future. Data-driven optimization models have also been proposed to improve
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the performance of transportation systems, such as vehicle balancing [99], vehicle
routing [27] and transportation network design [133]. Applying the proposed models
in different categories of applications could lead to interesting results.
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