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Abstract

Many applications can be modeled as follows: an agent is given access to several

distributions and she wishes to determine those that meet some pre-specified criteria

by sampling from the distributions in a sequential experiment. For example internet

companies often perform A/B/n testing, which consists of determining which of sev-

eral website design options is the best (e.g., maximizes the probability of a purchase)

by diverting traffic to each of the options. As another example, in crowdsourcing, it

is important to identify high-quality workers from a large pool of workers, e.g., those

who give the correct answer with the highest probability on a random question. It is

common practice to use “gold standard” questions, i.e., questions whose answers are

known, to assess the quality of a worker. In these applications, it is of interest to de-

termine the answer as quickly as possible so as to save money from experimentation.

Pure exploration multi-armed bandits provide a framework for designing statistically

efficient adaptive algorithms for solving these problems. Most of the literature has

focused on settings where at each round of the sequential experiment the feedback

is scalar-valued (i.e., one random number is observed). In this thesis, I argue that

many applications exhibit multi-dimensional feedback and criteria. For example, in

the crowdsourcing application, it is natural to require that a worker give the correct

answer with high probability and at a suitable pace (e.g., within 15 seconds) and

when a prospective crowdsourcing worker answers a gold standard question, there is

feedback both on whether a worker is correct and her response time. To study and

solve applications of this multi-dimensional nature, in Chapters 2 and 3 I introduce

xi



novel pure exploration multi-armed bandit problems and design new algorithms that

enjoy both strong theoretical guarantees and excellent empirical performance.

My dissertation also makes contributions to fundamental machine learning prob-

lems such as ε-good arm identification, mutual contamination models, and preference

completion. In Chapter 4, I consider two multi-armed bandit problems: (i) given

an ε ą 0, identify an arm with mean that is within ε of the largest mean and (ii)

given a threshold µ0 and k, minimize the time to identify k arms with means larger

than µ0. Existing lower bounds and algorithms for the PAC framework suggest that

both of these problems require Ωpnq samples. However, I argue that these defi-

nitions not only conflict with how these algorithms are used in practice, but also

that these results disagree with strong intuition that says (i) requires only Θp n
m
q

samples where m “ |ti : µi ą maxiPrns µi ´ εu| and (ii) requires Θp n
m
kq samples

where m “ |ti : µi ą µ0u|. I provide definitions that formalize these intuitions, ob-

tain lower bounds that match the above sample complexities, and develop explicit,

practical algorithms that achieve nearly matching upper bounds.

In Chapter 5, I consider the general framework of mutual contamination models.

In this framework, the goal is to recover base distributions using only samples from

mixtures of these base distributions. This framework models popular machine learn-

ing problems such as multiclass classification with label noise, learning with partial

labels, and topic modeling. In this work, I provide algorithms for these problems

that have theoretical guarantees under very general conditions.

In Chapter 6, I consider the problem of preference completion. In this prob-

lem, there is a pool of items and a pool of users. Each user rates a subset of the

items and the goal is to recover the personalized ranking of each user over all of the

xii



items. This problem is fundamental to recommender systems, arising in tasks such

as movie recommendation and news personalization. In this chapter, I consider a

statistical framework for nonparametric preference completion. I propose a simple

k-nearest neighbors-like algorithm, and I show that it is consistent in this general

nonparametric setting.

xiii



Chapter 1

Introduction

Pure exploration multi-armed bandit (MAB) problems provide a framework for designing a

statistically efficient sequential experiment. This framework has applications in areas such as

crowdsourcing, A/B testing, and clinical trials, and has recently received a surge of interest

(Mannor and Tistisklis, 2004; Gabillon et al., 2012; Bubeck et al., 2013; Chen et al., 2014a;

Jamieson et al., 2014a; Jamieson and Jain, 2018). Most of the literature has focused on

settings where at each round of the sequential experiment the feedback is scalar-valued (i.e.,

one random number is observed). In this thesis, I argue that many applications exhibit multi-

dimensional feedback and criteria, and I introduce novel pure exploration multi-armed bandit

problems for modeling these applications. In the subsequent sections of this Introduction, I

will describe and motivate these problems in more detail.

1.1 Feasible Arm Identification

Pure exploration multi-armed bandit (MAB) problems provide a framework for determining

via a sequential experiment which of a set of distributions meet some criteria. In this

setting, there are K distributions ν1, . . . , νK and the agent sequentially chooses from which

distribution to sample an observation. At the end of the sampling stage, the agent outputs

the distributions believed to meet the desired criteria and the performance of the agent is

measured based on the quality of this decision. In the MAB literature, distributions are also

referred to as arms, and sampling a realization from a distribution νi is referred to as pulling
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arm i.

Although the vast majority of work in MAB formulates arms as scalar-valued, in many ap-

plications, arms are multi-dimensional and the criteria for a good arm are multi-dimensional.

To address this gap in the pure-exploration MAB literature, I introduce the feasible arm iden-

tification problem. In this problem, the agent is given a set of D-dimensional arms and a

polyhedron P “ tx : Ax ď bu Ă RD. Pulling an arm gives a random vector and the goal is

to determine, using a fixed budget of T pulls, which of the arms have means belonging to P .

I provide a lower bound for the number of pulls that characterizes the problem’s difficulty

in terms of the distance of the mean of each arm to the boundary of the polyhedron. This

lower bound does not depend on the number of constraints of the polyhedron, which suggests

that the statistical difficulty of the problem is independent of the number of constraints.

Because of this feature of the lower bound and the fact that polyhedra can approximate

convex sets arbitrarily well, I am able to derive a lower bound for a generalization of the

feasible arm identification problem where P is a convex set.

I also propose three algorithms MD-UCBE, MD-SAR, and MD-APT and provide a unified

analysis establishing upper bounds for each of them. Each of the algorithms uses the distance

of the empirical mean of an arm to decide whether to pull it. MD-UCBE is a modification

of the algorithm UCBE (Upper Confidence Bound Exploration) from Audibert and Bubeck

(2010); it uses the technique of confidence bounds to quantify its uncertainty about an

estimate. MD-SAR extends the Successive Accepts Rejects algorithm from Bubeck et al.

(2013). It divides the budget into phases, samples arms remaining in a set Q uniformly in

each phase, and at the end of a phase, it removes from Q the arm about which it has the

least uncertainty, i.e., that maximizes the distance of the empirical mean to the boundary.

MD-APT is a modification of the APT ((Anytime Parameter-free Thresholdin) algorithm

in Locatelli et al. (2016a). The algorithm allocates proportionally to the inverse square of

the estimated distance of the mean to the boundary of the polyhedron. In this work, I show

that MD-UCBE and MD-APT have upper bounds nearly matching our lower bound, while

the upper bound of MD-SAR has a gap.

I also conduct experiments that demonstrate the effectiveness of our algorithms. I use

synthetic datasets and real-world datasets based on a clinical trials application and a crowd-
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sourcing application (Genovese et al., 2013; Snow et al., 2008). Our experiments show that

MD-UCBE has a very difficult-to-tune hyperparameter and that MD-SAR and MD-APT

dramatically outperform a uniform allocation approach, often obtaining a probability of

error that is better by a factor of 10.

1.2 Top Feasible Arm Identification

In the top arm identification problem in multi-armed bandits, there are K scalar-valued

distributions (also referred to as arms) and an agent plays a sequential game where, at each

round, the agent chooses (or “pulls”) one of the arms and observes an i.i.d. realization from

it. At the end of the game, the agent outputs the set of m arms believed to have the largest

means. This problem has applications in areas such as crowdsourcing, A/B testing, and

clinical trials.

While top arm identification considers settings where the feedback is scalar-valued and

the goal is maximization, in many applications, the feedback is multi-dimensional and it is of

interest to perform constrained maximization. For example, in crowdsourcing, an important

challenge is to identify high-quality workers that complete work at a suitable pace (e.g.,

below 15 seconds on average) and, in clinical trials, it is of interest to efficiently find drugs

that are most likely to be effective and have an acceptably low probability of causing an

adverse effect.

In this chapter, I propose a new variant of the top arm identification problem, top feasible

arm identification, where there are K arms associated with D-dimensional distributions

and the goal is to find m arms that maximize some known linear function of their means

subject to the constraint that their means belong to a given set P Ă RD. This problem has

many applications since in many settings, feedback is multi-dimensional and it is of interest

to perform constrained maximization. I present problem-dependent lower bounds for top

feasible arm identification and upper bounds for several algorithms. Our most broadly

applicable algorithm, TF-LUCB-B (Top Feasible Lower Upper Confidence Bound Ball), has

an upper bound that is loose by a factor of OpD logpKqq. Many problems of practical interest

are two-dimensional and, for these, it is loose by a factor of OplogpKqq. Finally, I conduct
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experiments on synthetic and real-world datasets that demonstrate the effectiveness of our

algorithms. Our algorithms are superior both in theory and in practice to a naive two-stage

algorithm that first identifies the feasible arms and then applies a best arm identification

algorithm to the feasible arms.

1.3 Other Contributions

My dissertation also makes contributions to fundamental machine learning problems such as

ε-good arm identification, mutual contamination models, and preference completion. In the

following sections, I describe this work briefly and elaborate on each of the projects in its

own chapter.

1.3.1 The True Sample Complexity of Identifying Good Arms

We consider two multi-armed bandit problems: (i) given an ε ą 0, identify an arm with

mean that is within ε of the largest mean and (ii) given a threshold µ0 and k, minimize the

time to identify k arms with means larger than µ0. Existing lower bounds and algorithms for

the PAC framework suggest that both of these problems require Ωpnq samples. However, we

argue that these definitions not only conflict with how these algorithms are used in practice,

but also that these results disagree with strong intuition that says (i) requires only Θp n
m
q

samples where m “ |ti : µi ą maxiPrns µi ´ εu| and (ii) requires Θp n
m
kq samples where

m “ |ti : µi ą µ0u|. We provide definitions that formalize these intuitions, obtain lower

bounds that match the above sample complexities, and develop explicit, practical algorithms

that achieve nearly matching upper bounds.

1.3.2 Decontamination of Mutual Contamination Models

In many machine learning problems, the learner observes several random samples from dif-

ferent mixtures of unknown base distributions, with unknown mixing weights, and the goal

is to infer these base distributions. Examples include binary classification with label noise,

multiclass classification with label noise, classification with partial labels, and topic mod-
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eling. The goal of this chapter is to develop a unified framework and set of tools to study

statistical properties of these problems in a very general setting.

To this end, I use the general framework of mutual contamination models (Blanchard

and Scott, 2014). In a mutual contamination model, there are L distributions P1, . . . , PL

called base distributions. The learner observes M random samples

X i
1, . . . , X

i
ni

i.i.d.
„ P̃i “

L
ÿ

j“1
πi,jPj (1.1)

where i “ 1, . . . ,M , πi,j ě 0, and
ř

j πi,j “ 1. Here πi,j is the probability that an instance of

the contaminated distribution P̃i is a realization of Pj. The πi,js and Pjs are unknown and

the P̃is are observed through data. In this work, I avoid parametric models and assume that

the sample space is arbitrary.

Our work focuses on three problems: multiclass classification with label noise, demixing of

mixed membership models, and classification with partial labels. In multiclass classification

with label noise, the learner observes samples whose labels have been randomly flipped. This

problem arises in nuclear particle classification (Scott et al., 2013). When one draws samples

of a specific particle, it is impossible to remove other types of particles from the background.

Thus, each example is drawn from a mixture of the different types of particles.

In demixing of mixed membership models, the goal is to recover the base distributions up

to a permutation. This problem arises in the task of automatically uncovering the thematic

topics of a corpus of documents. Under the mixed membership model approach, the words

of each document are thought of as being drawn from a document-specific mixture of topics.

Specifically, documents correspond to the P̃is and the topics to the Pis. This approach is

also referred to as topic modeling.

In classification with partial labels, each data point is labeled with a partial label S Ă

t1, . . . , Lu; the true label is in S, but it is not known which label is the true one. There

are many applications of classification with partial labels because often abundant sources

of data are naturally associated with information that can be interpreted as partial labels.

For example, consider the task of face recognition. On the internet, there are many images

with captions that indicate who is in the picture but do not indicate which face belongs to

which person. A partial label could be formed by associating each face with the names of
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the individuals appearing in the same image (Cour et al., 2011).

In this work, I make several contributions. (i) I give sufficient conditions for identifiability

of the three problems. (ii) I establish necessary conditions that in some cases match or are

similar to the sufficient conditions. (iii) I introduce novel algorithms for the infinite and finite

sample settings. These algorithms are nonparametric in the sense that they do not model

the base distributions as a probability vector or other parametric model. (iv) I develop novel

estimators for distributions obtained by iteratively applying the κ˚ operator (defined below).

1.3.3 Nonparametric Preference Completion

In the preference completion problem, there is a pool of items and a pool of users. Each user

rates a subset of the items and the goal is to recover the personalized ranking of each user

over all of the items. This problem is fundamental to recommender systems, arising in tasks

such as movie recommendation and news personalization. A common approach is to first

estimate the ratings through either a matrix factorization method or a neighborhood-based

method and to output personalized rankings from the estimated ratings (Koren et al., 2009;

Zhou et al., 2008; Ning et al., 2011; Breese et al., 1998). Recent research has observed a

number of shortcomings of this approach (Weimer et al., 2007; Liu and Yang, 2008); for

example, many ratings-oriented algorithms minimize the RMSE, which does not necessarily

produce a good ranking (Cremonesi et al., 2010). This observation has sparked a number

of proposals of algorithms that aim to directly recover the rankings (Weimer et al., 2007;

Liu and Yang, 2008; Lu and Negahban, 2014; Park et al., 2015; Oh et al., 2015; Gunasekar

et al., 2016). Although these ranking-oriented algorithms have strong empirical performance,

there are few theoretical guarantees to date and they all make specific distributional assump-

tions (discussed in more detail below). In addition, these results have focused on low-rank

methods, while ranking-oriented neighborhood-based methods have received little theoretical

attention.

In this chapter, I consider a statistical framework for nonparametric preference com-

pletion. I assume that each item i and each user u have unobserved features xi and yu,

respectively, and that the associated rating is given by gupfpxi, yuqq where f is Lipschitz and

gu is a monotonic transformation that depends on the user. I make the following contribu-
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tions. (i) I propose a simple k-nearest neighbors-like algorithm, (ii) I provide, to the best

of our knowledge, the first consistency result for ranking-oriented algorithms in a nonpara-

metric setting, and (iii) I provide a necessary and sufficient condition for the optimality of a

solution (defined below) to the preference completion problem.
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Chapter 2

Feasible Arm Identification

In this Chapter, I introduce the feasible arm identification problem, a pure exploration

multi-armed bandit problem where the agent is given a set of D-dimensional arms and a

polyhedron P “ tx : Ax ď bu Ă RD. Pulling an arm gives a random vector and the goal is

to determine, using a fixed budget of T pulls, which of the arms have means belonging to P . I

propose three algorithms MD-UCBE, MD-SAR, and MD-APT and provide a unified analysis

establishing upper bounds for each of them. I also establish a lower bound that matches

up to constants the upper bounds of MD-UCBE and MD-APT. Finally, I demonstrate the

effectiveness of our algorithms on synthetic and real-world datasets. This Chapter is joint

work with Clayton Scott and was presented at the International Conference on Machine

Learning in 2018.

2.1 Introduction

Pure exploration multi-armed bandit (MAB) problems provide a framework for determining

via a sequential experiment which of a set of distributions meet some criteria. In this

setting, there are K distributions ν1, . . . , νK and the agent sequentially chooses from which

distribution to sample an observation. At the end of the sampling stage, the agent outputs

the distributions which he believes meet the desired criteria and the performance of the agent

is measured based on the quality of this decision. In the MAB literature, distributions are

also referred to as arms, and sampling a realization from a distribution νi is referred to as
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pulling arm i. The most well-studied of these problems is top-k arm identification. In this

problem, the goal is to find the k best arms, that is, k arms with the largest means. This

problem and other pure exploration problems have applications in a wide range of areas,

including crowdsourcing, A/B testing, and online advertising.

In many application domains, the arms and the criteria for a good arm are multi-

dimensional in nature. For example, in crowdsourcing it is important to distinguish good

workers from bad workers. For a multilabel classification task (where examples are asso-

ciated with multiple labels), a worker can be modeled as a multi-dimensional arm where

each dimension corresponds to her accuracy at identifying a particular label, and a natural

definition for a “good worker” is that her accuracy is above some threshold for each label

(e.g., 90%). A common approach for finding such workers is to use a collection of examples

labeled by domain experts as a set of tests. Since workers are paid for each example that they

label, often an organization is only willing to spend a limited number of queries to find good

workers and an effective method under this budget constraint is needed. Other examples

where this multi-dimensional structure arises include A/B testing and clinical trials.

The pure exploration MAB literature lacks (i) a simple framework for describing problems

where the arms and criteria are multi-dimensional and (ii) practical algorithms for addressing

these problems. In this chapter, we aim to address this gap. We introduce the feasible arm

identification problem in which arms are associated with multi-dimensional distributions and

the goal is to find arms whose means belong to a given polyhedron1 P “ tx : Ax ď bu. Poly-

hedra encompass a large class of regions that can model common user-defined constraints,

including thresholds or ranges on individual dimensions and linear constraints involving mul-

tiple dimensions. We propose several algorithms for the fixed budget setting and provide

upper and lower bounds. Finally, we demonstrate through experiments on synthetic and

real-world datasets that by leveraging the geometry of the problem, our methods signifi-

cantly outperform a uniform allocation strategy. Indeed, in several of our experiments, our

methods find the feasible arms with a probability that is a factor of 10 better than that of

a uniform allocation strategy. All proofs are contained in the supplementary material.
1There are several conflicting definitions of polyhedra. We define a polyhedron as the intersection of a

finite number of halfspaces (Boyd and Vandenberghe, 2004).
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2.2 Related Work

MABs have received a significant amount of attention. Most work considers minimizing

the cumulative regret instead of a pure exploration objective. There have been relatively

few works on multi-dimensional arms and criteria in this regime (Drugan and NowÃľ, 2013;

Busa-Fekete et al., 2017; Tekin and Turgay, 2017). Drugan and NowÃľ (2013) modify a

UCB algorithm to find all arms on the Pareto front. Busa-Fekete et al. (2017) use the

Generalized Gini Index to optimize all objectives in a fair way. Tekin and Turgay (2017)

consider a contextual MAB setting where the goal is to maximize the total reward in a non-

dominant objective, subject to the constraint that the total reward in a dominant objective

is maximized. These works differ from our work in that (i) they consider the cumulative

regret setting, which is fundamentally different from the pure exploration setting (Bubeck

et al., 2009), and (ii) they aim to either balance multiple objective functions or find arms

on the Pareto front, whereas we aim to find feasible arms, where feasibility is defined by

membership in a given polyhedron.

In recent years, there have been many advances in pure exploration MABs in the fixed

confidence and fixed budget settings (Mannor and Tistisklis, 2004; Gabillon et al., 2012;

Bubeck et al., 2013; Chen et al., 2014a; Jamieson et al., 2014a). A limited number of works

have considered multi-dimensional feedback. Auer et al. (2016) considered a variant of the

top arm identification problem where arms are multi-dimensional with each dimension corre-

sponding to a distinct objective that an agent wishes to optimize, and the goal is to identify

the Pareto front of the arms. In contrast to our work, they consider the fixed confidence

setting. More importantly, Pareto front identification and feasible arm identification are

mathematically very different problems and apply to distinct situations. Whereas Pareto

front identification is relevant to multi-objective optimization, the feasible arm identification

problem is useful for situations where there are user-defined criteria for what qualifies as a

good arm.

Chen et al. (2017a) recently proposed the general sampling problem, which can model a

setting where arms are multi-dimensional and the goal is to find arms with means belonging

to a given polyhedron. There are several major differences with our work. First, Chen
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et al. (2017a) do not consider multi-dimensional feedback as the agent can sample from one

dimension of one arm at a time. Second, whereas they study the fixed confidence setting,

we study the fixed budget setting. Third, they assume isotropic Gaussian arms, whereas we

assume each arm is associated with a multi-dimensional sub-Gaussian distribution. Finally,

their proposed algorithm (see their Algorithm 7) is sample-inefficient and impractical since in

its first stage, it employs a uniform allocation strategy until the confidence bounds (defined

with δ “ 0.01) of all of the means either intersect with the given polyhedron or do not

intersect with the given polyhedron.

Locatelli et al. (2016a) introduced the thresholding bandit problem (TBP), which is es-

sentially the scalar version of the feasible arm identification problem, and the algorithm APT.

In TBP, there are K scalar-valued distributions, a threshold τ , and a budget T . The goal

is to identify all of the distributions with means above τ . Our work significantly generalizes

TBP by considering multi-dimensional arms and the problem of identifying those arms with

means belonging to a given polyhedron. Unlike Locatelli et al. (2016a) who only analyze

APT, we provide an unified analysis of three algorithms for the feasible arm identification

problem. One of our algorithm, MD-APT, reduces to APT in the one-dimensional thresh-

olding case and our upper bound also reduces to the upper bound of APT (up to constant

factors). To deal with this general setting, we introduce a novel complexity measure that

characterizes the hardness of determining whether an arm is in P . This measure is essen-

tially the distance of the mean of an arm to the boundary of the polyhedron. In addition,

our general setting introduces technical challenges for establishing upper and lower bounds.

We overcome these by using tools from convex analysis, properties of multi-dimensional

sub-Gaussian distributions, and change-of-measure arguments involving multi-dimensional

distributions.

Recently, Zheng et al. (2017) considered a problem with a polyhedral constraint, but their

setup is very different from our own. In their setting, the goal is to solve a linear program

where either the constraints are not fully known or the cost function is not fully known but

can be estimated by adaptive sampling. In our work, the constraints are known and we wish

to learn which out of a collection of distributions have feasible means.

11



2.3 Setup

In this section, we formalize the feasible arm identification problem. To begin, we define

some notation. For all n P N, let rns “ t1, . . . , nu. For any x P RD and A Ă RD, let

distpx, Aq “ infyPA }x´ y}2. Let 1 “ p1, . . . , 1qT P RD and 1t¨u denote the indicator

function. Define SD´1 “ tx P RD : }x}2 “ 1u.

Suppose we are given K stochastic arms. When the ith arm is pulled, a reward is drawn

i.i.d. from a D-dimensional distribution νi. Denote µi “ EX„νiX. We assume that the

agent is given a polyhedron P “ tx : Ax ď bu where A P RMˆD such that

A “

¨

˚

˚

˚

˝

at1
...

atM

˛

‹

‹

‹

‚

and b P RM . By dividing each constraint by }aj}2, we can assume without loss of generality

that }aj}2 “ 1 for all j P rM s. Let BP denote the boundary of P , i.e., BP “ sP zP ˝ where sP

denotes the closure of P and P ˝ denotes the interior of P . For simplicity, we assume that P

has positive volume. Thus, BP is non-empty.

We consider the fixed budget setting. The game is as follows: there are T rounds and

at each round t, the agent chooses an arm It P rKs and observes a realization Xt „ νIt .

The goal is to identify all of the arms whose means belong to the polyhedron. To define

a performance measure, let ε ą 0 denote the tolerance, and define Sint
P,ε – ti P rKs : µi P

P and dispµi, BP q ě εu and Sout
P,ε – ti P rKs : dispµi, P q ą εu. Sint

P,ε is the set of arms that lie

in the interior of P by at least ε and Sout
P,ε is the set of arms that lie outside of P by at least

ε. Let pS Ă rKs denote the set of arms outputted by an algorithm. We define the following

error measure:

LT,P,εppSq– 1tpS X Sout
P,ε ‰ H_ pSc X Sint

P,ε ‰ Hu

In words, the goal is to identify all of the arms with means belonging to the polyhedron up

to tolerance ε in the sense that an algorithm is successful if its output includes every arm i

such that µi P P and dispµi, BP q ě ε and excludes every arm l such that dispµl, P q ą ε.
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We define the margin of arm i as

∆P,ε
i – distpµi, BP q ` ε

“

$

&

%

minjPrMs distpµi, tx : atjx “ bjuq ` ε : µi P P

distpµi, P q ` ε : µi R P
(2.1)

“

$

&

%

minjPrMs bj ´ atjµi ` ε : µi P P

distpµi, P q ` ε : µi R P
(2.2)

where line (2.1) follows by Lemma 13 and line (2.2) follows by the closed form solution of

the distance from a point to a hyperplane and }aj}2 “ 1 (Boyd and Vandenberghe, 2004).

The complexity of an instance of the feasible arm identification problem is defined to be:

HP,ε –
ÿ

iPrKs

r∆P,ε
i s

´2.

In words, an instance has low complexity if all of the arms are far from the boundary of

the polyhedron and high complexity if some of the arms are very close to the boundary.

The intuition behind this complexity measure is that for an algorithm to output the correct

answer about arm i, it is sufficient to guarantee that an estimate pµi is within a ball centered

at µi with radius ∆P,ε
i

2 (see Lemma 3). For the sake of brevity, we usually write LT,εppSq, ∆i,

and H instead of LT,P,εppSq, ∆P,ε
i , and HP,ε, respectively.

Our analysis assumes that each νi is a multi-dimensional sub-Gaussian distribution, which

we now define (see Vershynin et al. (2017) for more details). Let X be a scalar random

variable. We say that X is R-sub-Gaussian if E exppX2

R2 q ď 2. We define the sub-Gaussian

norm of X as the smallest R that satisfies the above requirement:

}X}ψ2
“ inftR ą 0 : E exppX

2

R2 q ď 2u.

A random vector X P RD is sub-Gaussian if X ta is sub-Gaussian for all a P RD. The

sub-Gaussian norm of X is defined as

}X}ψ2
“ sup
aPSD´1

›

›X ta
›

›

ψ2
.

We say that a random vector X is R-sub-Gaussian if }X}ψ2
ď R. Henceforth, we assume

that ν1, . . . , νK are R-sub-Gaussian. See Vershynin (2012) for a discussion of sub-Gaussian

distributions.
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2.4 Lower Bound

In this section, we establish a lower bound for the feasible arm identification problem. Our

construction takes any polyhedron P and means µ1, . . . ,µK P P
˝ and produces a collection

of problems such that any algorithm makes a mistake on one of the problems with probability

at least on the order of expp´c T
H
q (where c is a constant). In fact, this lower bound holds

even when the algorithm is given the distance of each arm to the boundary of the polyhedron.

If A Ă RD is closed and x P RD, let ProjApxq denote the projection of x onto A.

Theorem 1. Let P “ tx P RD : Ax ď bu have positive volume and ε ě 0 such that

P ˝ε – tx P P : distpx, BP q ą εqu is nonempty. Let µ1, . . . ,µK P P
˝
ε , τi P ProjBP pµiq for all

i P rKs, and µ1i “ µi ` 2pτi ´ µiq for all i P rKs. Let νi denote the distribution Npµi, Iq

and ν 1i the distribution Npµ1i, Iq. Let B0 denote the product distribution ν1b . . .b νK and Bi

denote the product distribution

ν1 b . . .b νi´1 b ν
1
i b νi`1 b . . .b νK .

Then, B0, . . . ,BK have the same problem complexity

H “

K
ÿ

i“1
r distpµi, BP q ` εs´2

and for any algorithm,

max
iPt0,...,Ku

EBipLT,εppSqq ě expp´13 T
H
´ 25D logp48plogpT q ` 1qKDqqq.

This lower bound is equal to the lower bound of Locatelli et al. (2016a) (see their Theorem

1) up to the factor of D and constants. Since D logpplogpT q ` 1qKDqq grows very slowly as

a function of T in comparison with T
H

, the dependence on D is quite mild. We also note

that the lower bound does not depend on the number of constraints M in the polyhedron

P , which suggests that the number of constraints of P does not directly affect the statistical

difficulty of the feasible arm identification problem. Since polyhedra approximate convex

sets arbitrarily well, the independence of our lower bound from M enables us to derive a

nearly identical lower bound for the more general version of the feasible arm identification

problem where P is convex (see the supplementary material for details).
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The proof of Theorem 1 is based on a novel lower bound construction with multidimen-

sional distributions for MABs. Often, lower bounds in the bandit literature modify scalar

distributions and the main idea is to perturb the mean of a scalar distribution by making

it either larger or smaller. In the feasible arm identification problem, picking a direction to

perturb the mean of a distribution is not so simple. Indeed, the direction depends on the

polyhedron since for some polyhedra, changing the first coordinate does not produce points

lying outside of the polyhedron. In our construction, we interchange a distribution νi with

mean µi P P ˝ with a distribution ν 1i with mean µ1i that is shifted away from µi in the direction

of its projection onto the boundary of P .

Theorem 1 also implies the following non-asymptotic minimax bound.

Corollary 1. Let P “ tx P RD : Ax ď bu have positive volume, ε ě 0 such that P ˝ε is

nonempty, and R ą 0. Let H̃ ą 0 such that there exists µ1, . . . ,µK P P
˝
ε with

H̃ “

K
ÿ

i“1
r distpµi, BP q ` εs´2.

Let BP,ε,H̃,R denote the set of feasible arm identification problems on polyhedron P , with

tolerance ε, and with K arms such that the distributions are R-sub-Gaussian and the problem

complexity is less than H̃. Then, T ě 25D logp48plogpT q ` 1qKDqq implies that, for any

algorithm,

sup
BPBP,ε,H̃,R

EBpLT,εppSqq ě expp´14 T

H̃R2
q.

In words, this result says essentially that for any polyhedron P and tolerance ε ě 0, the

induced class of feasible arm identification problems with P and ε has a minimax lower bound

on the order of expp´c T
HR2 q where c is a constant. Henceforth, we say that an algorithm is

nearly optimal if for large enough T its expected loss decays as Opexpp´c T
HR2 qq where c is a

constant.

2.5 Algorithms

In this section, we extend three algorithms to the feasible arm identification problem, namely,

an upper confidence bound based algorithm (UCBE) (Audibert and Bubeck, 2010), a suc-

cessive accepts and rejects algorithm (SAR) (Bubeck et al., 2013; Chen et al., 2014a), and
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the Anytime Parameter-free Thresholding algorithm (APT) (Locatelli et al., 2016a). The

main novelty of our approach is that our algorithms estimate the distance of the mean of

each arm to the boundary of the polyhedron to decide which arm to pull. To begin, we

introduce some notation. Let It denote the index of the arm chosen at time t. Let Xi,j,t

denote the tth realization of the jth coordinate of νi, Tiptq “
řt´1
s“1 1tIs “ iu denote the

number of pulls of arm i at round t, and pµi,t denote the estimate of µi after t samples, i.e.,

pµi,t “ ppµi,1,t, . . . , pµi,D,tq
t where pµi,j,t “

1
t

řt
s“1Xi,j,s.

The key quantity in each of these algorithms is the following empirical estimator of the

margin of each arm:

p∆i,t “

$

&

%

minjPrMs bj ´ atj pµi,t ` ε : pµi,t P P

distppµi,t, P q ` ε : pµi,t R P

Given pµi,t, distppµi,t, P q can be computed by solving a quadratic program and, thus, the

interior point method can compute p∆i,t in runtime polynomial in M and D. Each of our

algorithms updates one p∆i,t in each round, thus solving at most T quadratic programs.

Therefore, each algorithm can be implemented efficiently.

Algorithm 1 MD-UCBE: Multi-dimensional Upper Confidence Bound Exploration algo-

rithm
1: Input: K arms, polyhedron P , tolerance ε, budget T , hyperparameter a

2: for t “ 1, . . . , T do

3: if t ď K then

4: Sample Xt „ νt.

5: else

6: Choose It “ arg mini p∆i,Tiptq ´
b

a
Tiptq

and sample Xt „ νIt .

7: end if

8: end for

9: Return: pS “ ti P rKs : pµi,TipT`1q P P u

Next, we describe each of the algorithms and our results. Each algorithm outputs pS “

ti P rKs : pµi,TipT`1q P P u. The algorithms differ in how they decide which arm to pull. MD-

UCBE (Algorithm 1) is a modification of the algorithm UCBE from Audibert and Bubeck
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(2010). At each time step t, it pulls an arm i that minimizes p∆i,Tiptq ´
b

a
Tiptq

breaking ties

arbitrarily where a is a hyperparameter. Theorem 2 gives an upper bound on its expected

loss.

Theorem 2. Let K ě 0, T ě K and ε ě 0. Suppose 0 ď a ď 25
36
T´K
H

. Then, the expected

loss of MD-UCBE is bounded as follows:

ErLT,εppSqs ď 2plogpT q ` 1qK5D expp´ a

1600R2 q.

Paralleling our upper bounds for MD-SAR and MD-APT, this result says that the degree

of difficulty of a problem for MD-UCBE depends on H, i.e., the distance of the arms to the

boundary of the polyhedron and the tolerance parameter ε. Theorem 2 suggests setting

a “ 25
36
T´K
H

, in which case MD-UCBE is nearly optimal. One important shortcoming of this

algorithm is that H is not known in practice, so it is unclear how to set the hyperparameter a.

Indeed, in our experiments, we show that the performance of MD-UCBE is highly sensitive

to the selection of a.

Algorithm 2 MD-SAR: Multi-dimensional Successive Accepts and Rejects algorithm
1: Input: K arms, polyhedron P , tolerance ε, budget T

2: Ďlogpxq “ 1
2 `

řx
i“2

1
i
, n0 “ 0, nk “

Q

T´K
ĎlogpKqpK`1´kq

U

pk ą 1q

3: Q “ rKs

4: for k “ 1, . . . , K ´ 1 do

5: Query nk ´ nk´1 samples from all arms i P Q

6: QÐÝ Qz arg maxiPQ p∆i,nk

7: end for

8: Return: pS “ ti P rKs : pµi,TipT`1q P P u

MD-SAR (Algorithm 2) extends the SAR algorithm from Bubeck et al. (2013). It divides

the budget T into K ´ 1 rounds. In each round, it samples all of the arms belonging to

Q Ă rKs the same number of times. At the end of each round, it removes from Q an arm i

that maximizes p∆i,Tiptq. Intuitively, MD-SAR stops sampling from an arm i for which there

is the least amount of uncertainty about whether µi P P . Theorem 3 provides an upper

bound on the expected loss of MD-SAR. It depends on a different complexity term that is
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nevertheless related to H. Let piq denote the index of the arm with the ith smallest margin

so that ∆p1q ď ∆p2q ď . . . ď ∆pKq and define the complexity parameter

H2 “ max
iPrKs

i∆´2
piq .

The analysis of Audibert and Bubeck (2010) of the analogous quantities immediately implies

that H2 ď H ď logp2KqH2.

Theorem 3. Let K ě 0, T ě K and ε ě 0. Then, the expected loss of MD-SAR is bounded

as follows:

ErLT,εppSqs ď2plogpT q ` 1qK5D

ˆ expp´ T ´K

1296 logp2KqH2

1
R2 q

`4K35D expp´ T ´K

512R2H2
q.

Similar to previous results on SAR-type algorithms in the fixed budget setting (Audibert

and Bubeck, 2010; Chen et al., 2014a), our upper bound on MD-SAR is loose by a factor of

logpKq in the exponential. While the guarantee is not tight, it has the significant practical

advantage over MD-UCBE that it does not involve a difficult-to-tune hyperparameter. On

the other hand, MD-SAR has the limitation that it needs to know T in advance.

Algorithm 3 MD-APT: Multi-dimensional Anytime Parameter-Free Thresholding algo-

rithm
1: Input: K arms, polyhedron P , tolerance ε, budget T

2: for t “ 1, . . . , T do

3: if t ď K then

4: Sample Xt „ νt.

5: else

6: Choose It “ arg mini p∆i,Tiptq

a

Tiptq and sample Xt „ νIt .

7: end if

8: end for

9: Return: pS “ ti P rKs : pµi,Tipt`1q P P u
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MD-APT (Algorithm 3) is a modification of the APT algorithm in Locatelli et al. (2016a).

After an initialization phase in which it pulls each arm once, at each round t, it pulls an arm

i that minimizes p∆i,Tiptq

a

Tiptq. The intuition behind the algorithm is that if the margins ∆i

were known in advance, then a nearly optimal strategy would allocate samples to the arms

proportionally to the ∆2
i s. For simplicity, let ε “ 0; the case ε ą 0 is not as clear since arms

whose distance to the boundary is less than ε do not need to be sampled at all.

Proposition 1. Let ε “ 0. A static allocation strategy with a total of Ti “ T
∆2
iH

pulls of the

ith arm for all i P rKs achieves

ErLT,εppSqs ď 2K5D expp´1
8

T

HR2 q.

Thus, such a static allocation is nearly optimal. Since the ∆is are unknown, MD-APT

samples the arms proportionally to the estimates p∆2
i,Tiptq

. Theorem 4 gives an upper bound

on the expected loss of MD-APT.

Theorem 4. Let K ě 0, T ě 2K, and ε ě 0. Then, the expected loss of MD-APT is bounded

as follows:

ErLT,εppSqs ď 2plogpT q ` 1qK5D expp´ T

1296R2H
q.

This Theorem implies that MD-APT is nearly optimal. Further, unlike MD-UCBE, it is

parameter-free and, unlike MD-SAR, it is an anytime algorithm in the sense that MD-APT

does not require knowledge of the budget T . These properties make MD-ADT practical for

many applications (Jun and Nowak, 2016).

We note that although the runtime of our algorithms certainly depends on M , our results

suggest that their statistical performance is independent of M . We leverage this result

and the fact that polyhedra approximate convex sets arbitrarily well to show that given

minimal knowledge about µ1, . . . ,µK , there exists a computationally inefficient algorithm

with nearly the same guarantee as Theorem 4 for the more general version of the feasible

arm identification problem where P is convex (see the supplementary material for details).
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2.6 Analysis

Our analyses of the three algorithms are unified through a series of lemmas. The first key idea

is a sufficient condition for p∆i,t to concentrate around ∆i. Lemma 1 shows that concentration

of pµiptq around its mean in the norm sense is sufficient.

Lemma 1. Let γ ą 0, i P rKs, and t P rT s. If }pµi,t ´ µi}2 ď γ, then

|p∆i,t ´∆i| ď 2γ.

In the scalar case, concentration of the empirical margin around the true margin often fol-

lows by the triangle inequality. In our setting, because of the more complicated relationship

between pµi,t and p∆i,t such an argument is not sufficient.

The second key idea is that with an appropriately high probability, pµi,t concentrates

around its mean in the norm sense. The main tools are Hoeffding’s maximal inequality (see

Lemma 5) and an ε-net, which we now define (Vershynin et al., 2017).

Definition 1. Let A Ă RD and ε ą 0. N Ă A is an ε-net of A if @x P A, there exists y P N

such that }x´ y}2 ď ε. Let N Ă A be an ε-net of A. We say that N is minimal if, for any

other ε-net M of A, it holds that |M| ě |N |.

Lemma 2. Let N be a minimal 1
2-net on SD´1. Let ω ą 0. Define the event

Ξ “ t@i P rKs, @y P N , @r P t1, . . . , T u :

|ytppµi.r ´ µiq| ď

c

ω2

4r u.

Then, on Ξ, for all i P rKs and for all r P rT s,

}pµi.r ´ µi}2 ď

c

ω2

r

and

PrpΞq ě 1´ 2plogpT q ` 1qK5D expp´ ω2

16R2 q.

In effect, Lemma 1 and Lemma 2 together imply that with high probability, (i) pµi,t

concentrates around µi in the norm sense and (ii) p∆i,t concentrates around ∆i.

Finally, the third idea is the simple observation that if for all i P rKs, pµi,t lies in a ball

centered at µi with radius ∆i

2 , then an algorithm does not make a mistake.
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Lemma 3. Fix t P rT s and i P rKs and suppose that }pµi,t ´ µi}2 ă
1
2∆i. Then, Aµi ď b´ε1

implies that Apµi,t ă b and dispµi, P q ě ε implies that pµi,t R P .

The analysis of each algorithm then proceeds as follows. First, suppose some appro-

priately defined variant of the event Ξ in Lemma 2. Second, by Lemmas 1 and 2, (i) pµi,t

concentrates around µi in the norm sense and (ii) p∆i,t concentrates around ∆i. Given these

concentration results, it is shown that each algorithm pulls each arm a sufficient number of

times so that Lemma 3 can be applied.

2.7 Experiments

In this section, we conduct experiments on synthetic and real-world datasets. In addition

to the algorithms MD-UCBE, MD-SAR, and MD-APT, we consider a uniform allocation

algorithm (UA), which samples the arms in a cyclic fashion. We consider the performance

of MD-UCBE under four hyperparameter settings ai “ i25
36
T´K
H

for i P t.1, 1, 10, 100u. Let

MD-UCBE[i] denote MD-UCBE with hyperparameter ai. Note that the larger i is, the more

MD-UCBE[i] explores and that our theoretical guarantee in Theorem 2 only covers i ď 1.

To calculate p∆i,t, we use the quadratic programming solver in the CVXOPT package for

python. We average all experiments over 2000 trials.

2.7.1 Synthetic Experiments

Each experiment has 20 5-dimensional arms and is run for 2000 time steps. We use Gaussian

distributions with variance 1
4 . For experiments 1, 2, and 3 we use a cube P “ tx P R5 :

0 ď xi ď 1u. In experiments 4 and 5, we use more complicated feasibility regions. In the

following, we say an arm i is irrelevant if the error measure LT,εp¨q does not depend on how

i is categorized.

Experiment 1 (Four Groups with Irrelevant Arms): We set ε “ 0.075 and use

µ0:1 “ p.8qb5, µ2:3 “ p.9qb5, µ4:5 “ p1.1qb5, µ6:7 “ p1.2qb5, µ8 “ p.975qb5, µ9 “ p1.025qb5,

µ10:19 “ p.3qb5. Note that this problem has two irrelevant arms, µ8 and µ9.

Experiment 2 (Four Groups with no Irrelevant Arms): We set ε “ 0 and use
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µ0:1 “ p.8qb5, µ2:3 “ p.9qb5, µ4:5 “ p1.1qb5, µ6:7 “ p1.2qb5, µ8 “ p.95qb5, µ9 “ p1.05qb5,

µ10:19 “ p.3qb5. In comparison to experiment 1, we make it slightly easier to determine

whether the arms µ8 and µ9 belong to the polyhedron because otherwise the difficulty of the

problem prevents any algorithm from achieving substantial progress after 2000 time steps.

Experiment 3 (Linear Progression with Irrelevant Arms): We set ε “ 0.075 and

use µ0:3 “ p.75qb5`p0 : 3qˆ.05, µ4 “ p.975qb5, µ5 “ p1.025qb5, µ6:9 “ p1.25qb5´p0 : 3qˆ.05,

µ10:19 “ p1.15qb5. Note that this problem has two irrelevant arms, µ4 and µ5.

Experiment 4 (Four Groups on the Simplex): For this experiment, we use P “

tx P R5 : xi ě 0,
ř

i xi ď 2u. We set ε “ .1. Let c “ p.2qb5. We use µ0:4 “ c, µ5:9 “ 1.85 ¨ c,

µ10:14 “ 2.25 ¨ c, and µ15:19 “ 1.95 ¨ c. µ0:9 are good arms, µ10:14 are bad arms, and µ15:19

are irrelevant.

Experiment 5 (Ordered Polyhedron): For this experiment, we use P “ tx P R5 :

xi ď xi`1@i P r4su and ε “ .1. We use µ0:3 “ p0, .2, .4, .6, .8qt, µ4:7 “ p.0, .15, .3, .45, .6qt,

µ8:11 “ p0, .2, .15, .6, .8sqt, µ12:15 “ p0, .2, .05, .6, .8qt, and µ16:19 “ p0, .2, .4, .2, 0qt. The arms

µ8:11 are irrelevant.

The performance of MD-UCBE is very sensitive to the selection of its hyperparameter.

MD-UCBE[1] and MD-UCBE[10] tend to do well, but MD-UCBE[100] explores too much so

that it tends to perform only slightly better than UA and MD-UCBE[.1] does not explore

enough. Although MD-UCBE[.1] has a theoretical guarantee, the constants are too large

so that it never makes progress in solving the problems. MD-APT performs better than

MD-SAR in experiments 1, 4, and 5 and worse than MD-SAR in experiments 2 and 3. In

experiment 2, MD-APT pulls arm 8, which minimizes ∆i, too frequently. It pulls arm 8 on

average 904.8125 times, whereas MD-SAR more evenly spreads out its pulls, pulling arm 8

on average 317.751 times. We observe a similar phenomenon in a variant of experiment 3

where we set ε “ 0 and which we defer to the supplementary material due to lack of space.

This suggests that in certain problems MD-APT focuses too much on specific arms with

means near the boundary and does not allocate enough samples to other arms. On the other

hand, MD-SAR utilizes knowledge of the time horizon T to effectively spread out samples.

MD-APT’s agnosticism about T may put it a disadvantage in the regime where some of

the ∆i are very small and T is small relative to H. As suggested by experiment 1, the ε
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Groups on a Simplex

parameter can be used to counteract the sensitivity of MD-APT to arms with means near

the boundary.

2.7.2 Application 1: Dose-Finding

In clinical trials, an important challenge is determining the appropriate dosage of a drug.

The main difficulty is the trade-off that as the dosage increases, the effectiveness of the drug

tends to increase, but the likelihood of adverse effects also increases. Thus, one must find a

dosage that is sufficiently effective, but does not have too many side effects. We assume a

situation where the side effects are mild enough not to be a concern for clinical trials, but

could nevertheless be unacceptable for a final commercial product.

We investigate this problem by considering the data in Genovese et al. (2013) (see

ARCR20 in week 16 in Table 2 and Table 3). In this study, the authors examine the drug se-

cukinumab for treating rheumatoid arthritis. They consider four dosage levels (25mg, 75mg,

150mg, 300mg) and a placebo. We design a simulation based on their data where each arm
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corresponds to a drug and has two attributes, the likelihood of being effective and the likeli-

hood of causing an adverse effect. Let µi,1 denote the probability of being effective and µi,2

the probability of causing an adverse effect. Then, dosage levels 25mg, 75mg, 150mg, and

300mg have means µ1 “ p.34, .519qt,µ2 “ p.469, .612qt,µ3 “ p.465, .465qt,µ4 “ p.537, .61qt,

respectively, and the placebo has mean µ5 “ p.36, .58qt. We suppose that a drug is consid-

ered good if the probability of success is above .4 and the probability of adverse effects is

below .5 and we set ε “ 0. Thus, only arm 3 is good and all other arms are bad. We chose

these thresholds so that one drug is good; we did not try other threshold settings. We run

the experiment for 1000 time steps.

Figure 2.6 gives the results of the experiment. MD-APT and MD-UCBE[10] perform

better than the rest of the algorithms. MD-UCBE[1] performs slightly worse than UA,

which may be because there are only 5 arms so that UA is not that bad of a strategy and

MD-UCBE[1] does not explore sufficiently. MD-SAR only performs slightly better than UA.

This may be because the time horizon is only 1000 time steps and there are only 5 arms.

2.7.3 Application 2: Crowdsourcing

We use a real-world dataset for the natural language processing task of affective text analysis

(Snow et al., 2008). In this task, workers are asked to rate a short headline on valence and

six emotions: disgust, fear, joy, anger, sadness and surprise. A group of experts also provide

such ratings for the headlines.

We consider the problem of finding workers that tend to agree with the expert views on

each of the tasks. We examine the deviation of a worker’s ratings with the experts ratings.

We normalize this deviation onto a scale of r0, 1s. Let µi,j denote the mean of worker i on

task j and let µ̄j denote the mean of all of the workers on task j. We deem a worker i good if

µi,j ď µ̄j for all j P r7s. In words, a worker is good if for every task, he performs better than

the average worker. To make this realistic, we assume that we are in a setting where the

average worker performance on each task is known based on another pool of workers. We

use a tolerance of ε “ 0.02. There is a total of 38 workers, where 30 workers are bad arms,

3 workers are good arms, and 5 workers are irrelevant. Because each worker only provides a

small number (at least 20) of ratings, whenever an arm is pulled, the algorithm observes an
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observation chosen uniformly at random with replacement from the data associated with the

arm. We run each algorithm for 4000 time steps and in each trial, we randomly permute the

samples of each worker. In the supplementary material, we repeat this experiment, but we

simulate each arm as a Gaussian distribution (see Section 2.18); the results are very similar.

Figure 2.7 gives the results of the experiment. Until roughly time step 3000, MD-APT

and MD-UCBE[10] perform the best. Afterwards, MD-SAR does substantially better than

MD-APT and MD-UCBE[10]. MD-UCBE[1] and MD-UCBE[100] perform only marginally

better than UA.

2.7.4 Summary of Results

The experiments suggest that although MD-UCBE is a competitive algorithm, it is highly

sensitive to hyperparameter selection, which limits its applicability in practice. MD-SAR and

MD-APT tend to perform dramatically better than UA. For example, in the crowdsourcing
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experiment, UA has a final error rate of roughly 52%, whereas MD-SAR has a final error

rate of roughly 5%. Further, our algorithms can handle complicated polyhedra such as the

polyhdron that requires that coordinates are sorted in ascending order (see experiment 5).

These results suggest that MD-APT tends to perform better than MD-SAR, but in some

settings (e.g., some arms with small ∆i and H large relative to T ) MD-APT focuses too

much on some of the arms with means near the boundary. Because MD-SAR more evenly

spreads out its pulls among the arms, it performs better in this regime.

2.8 Conclusion

In this chapter, we introduced the feasible arm identification problem. This problem pro-

vides a flexible framework for settings where arms are multi-dimensional and it is of interest

to determine whether each arm satisfies user-defined multi-dimensional criteria. We pro-

vided a characterization of the difficulty of these problems that yielded a lower bound and

we provided a unified analysis of three algorithms MD-UCBE, MD-SAR, and MD-APT.

Our experiments suggest that by leveraging the geometry of the feasible arm identification

problem, MD-SAR and MD-APT are able to dramatically outperform a uniform allocation

approach.

2.9 Chapter Appendix Outline

In Section 3.10, we prove our lower bound for the feasible identification problem (Theorem

1). In Section 2.12, we prove the upper bound for MD-UCBE (Theorem 2). In Section 2.13,

we prove the upper bound for MD-SAR (Theorem 3). In Section 2.14, we prove Proposition

1 and the upper bound for MD-APT (Theorem 4). In Section 2.15, we prove the key lemmas

that unify our analyses of the three algorithms, namely, Lemmas 1, 2, and 3. In Section

6.11, we prove some useful technical lemmas. In Section 2.17, we extend our results to the

feasible arm identification problem where P is convex. Finally, in Section 2.18, we present

additional experimental results.

Regarding the lower and upper bound proofs (Theorems 1, 2, 3, and 4), we note that
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we may assume that the realizations for each arm are drawn before the game has begun.

Therefore, the empirical mean of an arm after t pulls is well-defined even if that arm has not

been pulled t times.

2.10 Notation

Let Ti denote the number of pulls of arm i after T rounds. Let Xi,j,t denote the tth realization

of the jth coordinate of νi.

2.11 Lower Bound Proof

We note that the proof of Theorem 1 has some similarities to the proof of Theorem 1 of

Locatelli et al. (2016a). The most important technical differences are (i) our novel lower

bound construction with multidimensional distributions and (ii) our simple “chaining” ar-

gument that iteratively applies the well-known change-of-measure equation (6) in Audibert

and Bubeck (2010) to relate B0 and Bi.

Proof of Theorem 1. Step 1: All of the problems have the same complexity. The

difference between problem B0 and Bi is the ith arm, i.e., the distributions νi and ν 1i. Since

µi P P and µ1i R P , by definition of H, it suffices to show that dispµi, BP q “ dispµ1i, P q. By

Lemma 13, there is m P rM s such that τm P tx : atmx “ bmu and τm is the projection of µi
onto tx : atmx “ bmu. Let τ 1i denote the projection of µ1i onto tx : atmx “ bmu. We claim

that τi “ τ 1i . Using the closed form solution of the projection of a vector onto a hyperplane

(Boyd and Vandenberghe, 2004),

τi “ µi ` pa
t
mµi ´ bmqam,

τ 1i “ µ
1
i ` pbm ´ a

t
mµ

1
iqam

“ µi ` 2pτi ´ µiq ` pbm ´ atmpµi ` 2pτi ´ µiqqam

“ 2τi ´ µi ´ pbm ´ atmµiqam

“ τi,
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establishing the claim.

Then,

dispµ1i, P q ě dispµ1i, tx : atmx ď bmuq “ }µ
1
i ´ τi}2 ě dispµ1i, P q

where the last inequality follows since τi P P . Thus,

dispµ1i, P q “ }µ1i ´ τi}2 “ }µi ´ τi}2 “ dispµi, BP q.

Thus, B0, . . . ,BK have the same problem complexity.

Step 2: Change of Measure For all i P rKs, since dispµi, BP q ą ε, there exists di ą 0

such that distpµi, BP q “ di ` ε. We note that

}µ1i ´ µi}2 “ 2 }τi ´ µi}2 “ 2pdi ` εq “ ∆i ` di ď 2∆i. (2.3)

Note that we can write νi as a product distribution νi,1bνi,2b. . .bνi,D where νi,j „ Npµi,j, 1q

and ν 1i – ν 1i,1 b ν
1
i,2 b . . .b ν

1
i,D where ν 1i,j „ Npµ1i,j, 1q. Let l ď D and define

ν
1,plq
i “ ν 1i,1 b ν

1
i,2 b . . .b ν

1
i,l´1 b ν

1
i,l b νi,l`1 b . . .b νi,D.

Let Bi,plq denote the product distribution

ν1 b . . .b νi´1 b ν
1,plq
i b νi`1 b . . .b νK .

Define

KLk,l – KLpν 1k,l, νk,lq “
1
2pµ

1
k,l ´ µk,lq

2

where we used the KL-divergence between two multivariate Gaussian random variables.

Next, define for 1 ď k ď K, 1 ď l ď D, and 1 ď t ď T ,

xKLk,l,t –
1
t

t
ÿ

s“1
logp

dν 1k,lpXk,l,sq

dνk,lpXk,l,sq
q “

1
t

t
ÿ

s“1
r
1
2pµ

2
k,l ´ pµ

1
k,lq

2
q ` pµ1k,l ´ µk,lqXk,l,ss

where we used the definition of the pdf of Gaussian random variables. Note that Eνk,l xKLk,l,t “

KLk,l and that

Varνk,lr
1
2pµ

2
k,l ´ pµ

1
k,lq

2
q ` pµ1k,l ´ µk,lqXk,l,ss “ pµ

1
k,l ´ µk,lq

2Varνk,lpXk,l,sq “ pµ
1
k,l ´ µk,lq

2.
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Define the event

Θ “ t@k ď K, @t ď T,@l ď D : xKLk,l,t ´KLk,l ď 2|µk,l ´ µ1k,l|
c

logp4plogpT q ` 1qKDq
t

u.

Claim: PB0pΘq ě 3
4 . Fix k ď K and l ď D. xKLk,l,t´KLk,l is a sum of centered Gaussian

random variables with variance pµ1k,l´µk,lq2. Therefore, the sub-Gaussian norm of each term

in the sum is |µ1k,l ´ µk,l|. Let u P t0, . . . , rlogpT qsu. By Lemma 5,

PB0pDt P r2u, 2u`1
s : xKLk,l,t ´KLk,l ě 2|µ1k,l ´ µk,l|

c

logp4plogpT q ` 1qKDq
t

q ď
1

4plogpT q ` 1qKDq .

Then a union bound over k ď K, u P t0, . . . , rlogpT qsu, l ď D yields that

PB0pΘc
q ď

1
4 (2.4)

establishing the claim.

Next, let i P rKs and define the event Ai “ ti P pSu. We lower bound PBipAiq. Recall

that Ti denotes the number of pulls of arm i after T rounds and let

ti “ EB0Ti.

and define the event

Θi “ ΘXAi X tTi ď 6tiu.

We use equation (6) from Audibert and Bubeck (2010), whose argument we briefly restate

in the interest of making our chapter more self-contained. Let E denote an event. Then,

EBi,pD´1qr1tEu expp´TixKLi,D,Tiqs “ EBi,pD´1qr1tEu
Ti
ź

s“1

dνi,D
dν 1i,D

pXi,D,sqs

“

ż

. . .

ż

1tEu
Ti
ź

s“1

dνi,D
dν 1i,D

pXi,D,sq

”

ź

k‰i

Tk
ź

s“1
dνk,lpXk,l,sq

ı”
Ti
ź

s“1

ź

l‰D

dνi,lpXi,l,sq

ı
Ti
ź

s“1
dν 1i,DpXi,D,sq

“ EBir1tEus. (2.5)
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We have the following series of inequalities:

PBipAiq ě PBipΘiq

“ EBi,pD´1qr1tΘiu expp´TixKLi,D,Tiqs (2.6)

ě EBi,pD´1qr1tΘiu expp´Ti
1
2pµi,D ´ µ

1
i,Dq

2
´ 2|µi,D ´ µ1i,D|

a

Ti logp4plogpT q ` 1qKDqqs

(2.7)

ě PrBi,pD´1qpΘiq expp´3tipµi,D ´ µ1i,Dq2 ´ 2|µi,D ´ µ1i,D|
a

6ti logp4plogpT q ` 1qKDqqq (2.8)

where equality (2.6) follows by equation (2.5), inequality (2.7) follows by Θ, and inequality

(2.8) follows by tTi ď 6tiu. Observe that we can repeat lines (2.6), (2.7), and (2.8) for

PrBi,pD´1qpΘiq. Continuing in this manner for l “ 1, . . . , D ´ 1 yields:

PBipAiq (2.9)

ě PrBi,pD´1qpΘiq expp´3tipµi,D ´ µ1i,Dq2 ´ 2|µi,D ´ µ1i,D|
a

6ti logp4plogpT q ` 1qKDqqq

ě PrB0pΘiq expp´3ti
D
ÿ

l“1
pµi,l ´ µ

1
i,lq

2
´ |µi,l ´ µ

1
i,l|
a

24ti logp4plogpT q ` 1qKDqqq (2.10)

ě PrB0pΘiq expp´12ti∆2
i ´ }µi ´ µ

1
i}1

a

24ti logp4plogpT q ` 1qKDqqq (2.11)

ě PrB0pΘiq expp´12ti∆2
i ´ }µi ´ µ

1
i}2

?
D
a

24ti logp4plogpT q ` 1qKDqqq (2.12)

ě PrB0pΘiq expp´12ti∆2
i ´ 2∆i

a

24tiD logp4plogpT q ` 1qKDqqq (2.13)

ě PrB0pΘiq expp´13ti∆2
i ´ 24D logp4plogpT q ` 1qKDqqq (2.14)

Line (2.11) follows by (2.3), line (2.12) follows by applying the inequality }x}1 ď }x}2
?
D,

line (2.13) follows by (2.3), and line (2.14) follows by the inequality 2ab ď a2 ` b2 with

a “ ∆i

?
ti.

Step 3: Lower bounding PrB0pΘiq. Suppose that for some i it holds that PrB0pAiq ă 1
2 .

Then,

PrB0pXkPrKsAkq ď PrB0pAiq ă
1
2 .

Observe that under B0, the event pXkPrKsAkqc implies that LT,εppSq “ 1 since for all k P rKs,

µk P P and dispµk, BP q ě ε. Thus, the theorem follows since

max
iPt0,...,Ku

EBipLT,εppSqq ě EB0pLT,εppSqq ě PrB0ppXkPrKsAkqcq ą
1
2 .
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Therefore, we may suppose for the remainder of the proof that PrB0pAjq ě 1
2 for all j P rKs.

Fix i P rKs. By Markov’s inequality,

PrB0pTi ą 6tiq ď
EB0rTis

6ti
“

1
6 .

Then, using the above two inequalities and inequality (2.4), by a union bound,

PrB0pΘc
iq ď

1
4 `

1
2 `

1
6 “

11
12 ,

concluding this step of the proof.

Step 4: Putting it together.

max
iPt1,...,Ku

PrBipAiq ě
1
K

K
ÿ

i“1
PrBipAiq

ě
1
K

K
ÿ

i“1
PrB0pΘiq expp´13ti∆2

i ´ 24D logp4plogpT q ` 1qKDqqq (2.15)

ě
1
12

1
K

K
ÿ

i“1
expp´13ti∆2

i ´ 24D logp4plogpT q ` 1qKDqqq (2.16)

where in inequality (2.15) we used (2.14), in inequality (2.16) we used PrB0pΘiq ě
1
12 . We

claim that since
řK
i“1 ti “ T , there exists some j such that tj ď T

H∆2
j
. Towards a contradic-

tion, suppose that for all i P rKs ti ą T
H∆2

i
. Then,

T “
ÿ

iPrKs

ti ą
ÿ

iPrKs

T

H∆2
i

“ T,

which is a contradiction. Then,

1
K

K
ÿ

i“1
expp´13ti∆2

i ´ 24D logp4plogpT q ` 1qKDqqq

ě expp´13tj∆2
j ´ 24D logp4plogpT q ` 1qKDqq ´ logpKqq

ě expp´13 T
H
´ 24D logp4plogpT q ` 1qKDqq ´ logpKqq.
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Observe that under Bi, the event Ai implies that LT,εppSq “ 1 since dispµ1i, P q ą ε. Thus,

max
iPt0,...,Ku

EBipLT,εppSqq ě max
iPt1,...,Ku

EBipLT,εppSqq

ě max
iPt1,...,Ku

PrBipAiq

ě
1
12 expp´13 T

H
´ 24D logp4plogpT q ` 1qKDqq ´ logpKqq

ě expp´13 T
H
´ 25D logp48plogpT q ` 1qKDqqq.

2.12 MD-UCBE Upper Bound Proof

Proof of Theorem 2. Step 1: Defining an appropriate event.

Let N be a minimal 1
2 -net on SD´1. Let δ ą 0 (we choose it later). Define the event

Ξ “ t@i P rKs, @y P N , @r P t1, . . . , T u : |ytppµi,r ´ µiq| ď
c

aδ2

4r u.

By Lemma 2, on Ξ, for all i P rKs and for all r P rT s,

}pµi,r ´ µi}2 ď

c

aδ2

r
(2.17)

and

PrpΞq ě 1´ 2plogpT q ` 1qK5D expp´a δ2

16R2 q.

For the remainder of the proof, we suppose that Ξ holds.

Step 2: Lower bound the number of pulls for some arm.

Fix T . Recall that Ti denotes the number of pulls of arm i after T rounds. We claim

that there exists an arm k such that it has been pulled after initialization and such that

Tk ´ 1 ě T´K
H∆2

k
(for the remainder of the proof, let k denote one of these arms). If not, then

we obtain the following contradiction.

T ´K “

K
ÿ

i“1
pTi ´ 1q ă

K
ÿ

i“1

T ´K

H∆2
i

“ T ´K.

32



For the remainder of the proof, let t denote the last time at which arm k was pulled. Then,

Tkptq “ Tk ´ 1 ě T ´K

H∆2
k

. (2.18)

Step 3: Lower bound the number of pulls for each arm.

Lemma 1 and event Ξ imply that

|p∆i,Tiptq ´∆i| ď 2

d

aδ2

Tiptq
(2.19)

for all i P rKs. We choose δ “ 1
10 .

Arm k was pulled at time t, so that we have for all i P rKs,

p∆k,Tkptq ´

c

a

Tkptq
ď p∆i,Tiptq ´

c

a

Tiptq
. (2.20)

Now,

∆k `

c

a

Tiptq
ď p∆k,Tkptq `

c

a

Tiptq
`

1
5

c

a

Tkptq
(2.21)

ď
6
5

c

a

Tkptq
` p∆i,Tiptq (2.22)

where in inequality (2.21) we apply (2.19) and in inequality (2.22) we apply (2.20).

Rearranging (2.22), we obtain
c

a

Tiptq
ď

6
5

c

a

Tkptq
´∆k `

p∆i,Tiptq

ď ∆k ´∆k `
p∆i,Tiptq (2.23)

ď ∆i `
1
5

c

a

Tiptq
. (2.24)

where inequality (2.23) follows by (2.18) and 0 ď a ď 25
36
T´K
H

and inequality (2.24) follows

by (2.19).

Rearranging (2.24) implies that

4
5

c

a

Tiptq
ď ∆i.

Thus,

1
5

c

a

Ti
ď

1
5

c

a

Tiptq
ď

∆i

4 ă
∆i

2 (2.25)
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Step 4: Putting it together

Combining (2.25), event Ξ, and (2.17) yields for all i P rKs,

›

›

pµi,TipT`1q ´ µi
›

›

2 ă
∆i

2 .

Then, by Lemma 3, it follows that LT,εppSq “ 0.

2.13 MD-SAR Upper Bound Proof

As in Algorithm 2, define Ďlogpxq “ 1
2 `

řx
i“2

1
i
.

Proof of Theorem 3. Step 1: Defining an event and bounding probability Let N be

a minimal 1
2 -net on SD´1. Let δ ą 0 (we choose it later). Define the events

Ξ1 “ t@i P rKs, @y P N , @r P t1, . . . , T u : |ytppµi,r ´ µiq| ď

d

pT ´Kqδ2

ĎlogpKqH2r
u,

Ξ2 “ t@k P rK ´ 1s, @l P tpKq, . . . , pK ` 1´ kqu and j P rKs s.t. 2∆j ă ∆l : p∆l,nk ´
p∆j,nk ą 0u.

Then, by Lemma 2,

PrpΞ1q ě 1´ 2plogpT q ` 1qK5D expp´ T ´K

16ĎlogpKqH2

δ2

R2 q

ě 1´ 2plogpT q ` 1qK5D expp´ T ´K

16 logp2KqH2

δ2

R2 q (2.26)

where line (2.26) follows by logpK ` 1q ´ 1
2 ď

ĎlogpKq ď logpKq ` 1
2 ď logp2Kq (Audibert

and Bubeck, 2010).

Next, we bound PrpΞ2q. By a union bound,

PrpΞc
2q ď

ÿ

kPrK´1s

ÿ

lPtpKq,...,pK`1´kqu,j:2∆jă∆l

Prpp∆j,nk ´
p∆l,nk ě 0q.

Fix a round k P t1, . . . , K ´ 1u, let l P tpKq, . . . , pK ` 1 ´ kqu, and let j P rKs such that
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2∆j ă ∆l. Then,

Prpp∆j,nk ´
p∆l,nk ě 0q “ Prppp∆j,nk ´∆jq ´ p

p∆l,nk ´∆lq ě ∆l ´∆jq

ď Prppp∆j,nk ´∆jq ´ p
p∆l,nk ´∆lq ą

1
2∆lq

ď Prp|pp∆j,nk ´∆jq ´ p
p∆l,nk ´∆lq| ą

1
2∆lq

ď Prp|p∆j,nk ´∆j| ` |
p∆l,nk ´∆l| ą

1
2∆lq

ď Prp|p∆j,nk ´∆j| ą
1
4∆lq ` Prp|p∆l,nk ´∆l| ą

1
4∆lq

Define the event

Σi “ t@y P N , : |ytppµi,nk ´ µiq| ď
1
16∆lu.

Under Σi, Lemma 14 implies that

}pµi,nk ´ µi}2 ď 2 sup
yPN

ytppµi,nk ´ µiq ď
1
8∆l.

Thus, by Lemma 1, Σi implies that |p∆ipnkq ´ ∆i| ď
1
4∆l. Using the contrapositive of this

implication,

Prp|p∆j,nk ´∆j| ą
1
4∆lq ` Prp|p∆l,nk ´∆l| ą

1
4∆lq ď PrpΣc

jq ` PrpΣc
l q

ď
ÿ

yPN
rPrp|ytppµl,nk ´ µlq| ą

1
16∆lq

` Prp|ytppµj,nk ´ µjq| ą
1
16∆lqs

ď 4 ¨ 5D expp´ nk∆2
l

512R2 q (2.27)

ď 4 ¨ 5D expp´
nk∆2

pK`1´kq

512R2 q.

where line (2.27) follows by Lemma 8 and since N is a 1
2 -net by construction, we have

|N | ď 5D by Lemma 15. Then,

PrpΞc
2q ď

ÿ

kPrK´1s

ÿ

lPtpKq,...,pK`1´kqu,j:2∆jă∆l

4 ¨ 5D expp´
nk∆2

pK`1´kq

512R2 q

ď
ÿ

kPrK´1s
kK24 ¨ 5D expp´

nk∆2
pK`1´kq

512R2 q

ď 4K35D expp´ T ´K

512R2H2
q
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where we used the fact that

nk∆2
pK`1´kq ě

T ´K
ĎlogpKqpK ` 1´ kq∆´2

pK`1´kq
ě

T ´K
ĎlogpKqH2

.

For the remainder of the proof, we suppose Ξ1 X Ξ2 holds.

Step 2: Lower bounding the number of pulls This step of the proof is similar

to the proof of Theorem 3 in (Audibert and Bubeck, 2010); we repeat it for the sake of

completeness. Consider phase k. At least one of the arms l P tpKq, . . . , pK ` 1 ´ kqu has

not been eliminated. Then, by Ξ2, we have that p∆l,nk ą
p∆j,nk for any arm j satisfying

2∆j ă ∆pK`1´kq. Thus, at the end of phase k, MD-SAR does not eliminate any arm j such

that 2∆j ă ∆pK`1´kq.

Now, fix an arm j. Recall that Tj denotes the number of pulls of arm j after T rounds.

We consider two distinct cases: (i) there exists m P rKs such that ∆pm´1q ď 2∆j ă ∆pmq

and (ii) there exists no such m P rKs. Suppose (i) holds. Since 2∆j ă ∆pmq, the arm j is

eliminated some time after the K ` 2´m phase so that

∆2
jTj ě ∆2

jnK`2´m “
∆2
j

∆2
pm´1q

T ´K
ĎlogpKqpm´ 1q∆´2

pm´1q
ě

∆2
j

∆2
pm´1q

T ´K
ĎlogpKqH2

ě
T ´K

4ĎlogpKqH2
.

Next, suppose (ii) holds. Then, 2∆j ě ∆pKq, so that

∆2
jTj ě

1
4∆2

pKqn1 “
T ´K

4ĎlogpKqK∆´2
pKq

ě
T ´K

4ĎlogpKqH2
.

Thus, we have that for all j P rKs,

Tj ě
T ´K

4ĎlogpKqH2∆2
j

. (2.28)

Step 3: Putting it together. Using Lemma 2, Ξ1, and (2.28), we have that for all i P rKs,

›

›

pµi,TipT`1q ´ µi
›

›

2 ď 2

d

pT ´Kqδ2

ĎlogpKqH2Ti
ď 4δ∆i.

We choose δ “ 1
9 . Then, by Lemma 3, it follows that LT,εppSq “ 0.

36



2.14 MD-APT Upper Bound Proof

Proof of Proposition 1. Let N be a minimal 1
2 -net of SD´1. By Lemma 15, |N | ď 5D. Then,

ErLT,εppSqs ď PrpDi : pµi,TipT`1q P P and µi R P

or pµi,TipT`1q R P and µi P P q

ď PrpDi :
›

›

pµi,TipT`1q ´ µi
›

›

2 ą ∆iq

ď
ÿ

iPrKs

Prp
›

›

pµi,TipT`1q ´ µi
›

›

2 ą ∆iq

ď
ÿ

iPrKs

ÿ

yPN
Prp|ytppµi,TipT`1q ´ µiq| ą

∆i

2 q (2.29)

ď
ÿ

iPrKs

ÿ

yPN
2 expp´1

8
∆2
iTi
R2 q (2.30)

“ 2K5D expp´1
8

T

HR2 q.

Line (2.29) follows since by Lemma 14, if
›

›

pµi,TipT`1q ´ µi
›

›

2 ą ∆i, then there exists y P N

such that |ytppµi,TipT`1q ´ µiq| ą
∆i

2 . Line (2.30) follows by Lemma 8.

Proof of Theorem 4. Step 1: Defining an appropriate event.

Let N be a minimal 1
2 -net on SD´1. Let δ ą 0 (we choose it later). Define the event

Ξ “ t@i P rKs, @y P N , @r P t1, . . . , T u : |ytppµi.r ´ µiq| ď
c

Tδ2

4Hru.

By Lemma 2, on Ξ, for all i P rKs and for all r P rT s

}pµi.r ´ µi}2 ď

c

Tδ2

Hr
. (2.31)

and

PpΞq ě 1´ 2plogpT q ` 1qK5D expp´T δ2

16R2H
q

For the remainder of the proof, we suppose that Ξ holds.

Step 2: Lower bound the number of pulls for some arm.

Fix T . Recall that Ti denotes the number of pulls of arm i after T rounds. We claim that

there exists an arm k that has been pulled after initialization and such that Tk ´ 1 ě T´K
H∆2

k
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(for the remainder of the proof, let k denote one of these arms). If not, then we obtain the

following contradiction:

T ´K “

K
ÿ

i“1
pTi ´ 1q ă

K
ÿ

i“1

T ´K

H∆2
i

“ T ´K.

Since T ě 2K, Tk ´ 1 ě T
2H∆2

k
.

For the remainder of the proof, let t ď T denote the last round that arm k was pulled.

Then,

Tkptq “ Tk ´ 1 ě T

2H∆2
k

. (2.32)

Step 3: Lower bound the number of pulls for each arm.

Lemma 1 and event Ξ imply that

|p∆i,Tiptq ´∆i| ď 2

d

Tδ2

HTiptq
(2.33)

for all i P rKs.

At time t, we pulled arm k, so that for all i P rKs, p∆k,Tkptq

a

Tkptq ď p∆i,Tiptq

a

Tiptq. Then,

using (2.32) and (2.33),

p∆k,Tkptq

a

Tkptq ě p∆k ´ 2

d

Tδ2

HTkptq
q
a

Tkptq

ě p∆k ´ 2
b

2δ2∆2
kq
a

Tkptq. (2.34)

We require that δ ă 1
2
?

2 so that (2.34) is positive. Thus, we can apply (2.34) and (2.32) to

obtain that

p∆k,Tkptq

a

Tkptq ě p
1
?

2
´ 2δq

c

T

H
. (2.35)

Next, applying (2.33), we obtain

p∆i,Tiptq

a

Tiptq “ p∆i,Tiptq

a

Tiptq

ď p∆i ` 2

d

Tδ2

HTiptq
q
a

Tiptq

ď ∆i

a

Tiptq ` 2δ
c

T

H
. (2.36)
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Combining inequalities Tiptq ď Ti, (2.36), p∆k,Tkptq

a

Tkptq ď p∆i,Tiptq

a

Tiptq, and (2.35) yields

that

∆i

a

Ti ` 2δ
c

T

H
ě ∆i

a

Tiptq ` 2δ
c

T

H

ě p∆i,Tiptq

a

Tiptq

ě p∆k,Tkptq

a

Tkptq

ě p
1
?

2
´ 2δq

c

T

H
. (2.37)

Rearranging (2.37) yields for all i P rKs

p1´ 4
?

2δq2 T

2H∆2
i

ď Ti. (2.38)

Step 4: Putting it together.

Combining (2.38) with (2.31) and Ξ respectively, we obtain
›

›

pµi,TipT`1q ´ µi
›

›

2 ď ∆iδp1´ 4
?

2δq.

We choose δ “
?

2
9 . Thus, by Lemma 3, LT,εppSq “ 0.

2.15 Key Lemmas

In this section, we prove the Lemmas of Section 6.5, namely, Lemmas 1, 2, and 3.

Proof of Lemma 1. For the sake of brevity, we write pµi instead of pµi,t and p∆i instead of p∆i,t.

We separate the analysis into 4 cases.

Case 1: Aµi ď b and Apµi ď b.

Let j be such that ∆i “ |bj ´ a
t
jµi| ` ε and let pj such that p∆i “ |bpj ´ a

t
pj
pµi| ` ε. Then,

by definition of j and pj,

0 ď bj ´ a
t
jµi ď b

pj ´ a
t
pj
µi (2.39)

0 ď b
pj ´ a

t
pj
pµi ď bj ´ a

t
j pµi. (2.40)

Note that it suffices to bound

|∆i ´
p∆i| “ ||bj ´ a

t
jµi| ´ |bpj ´ a

t
pj
pµi||.
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Then,

pbj ´ a
t
jµiq ´ pbpj ´ a

t
pj
pµiq ď pbpj ´ a

t
pj
µiq ´ pbpj ´ a

t
pj
pµiq (2.41)

“ at
pj
ppµi ´ µiq (2.42)

ď γ. (2.43)

where line (2.41) used line (2.39) and line (2.43) follows by Cauchy-Schwarz inequality,

}aj}2 “ 1, and the hypothesis. Next,

pb
pj ´ a

t
pj
pµiq ´ pbj ´ a

t
jµiq ď pbj ´ a

t
j pµiq ´ pbj ´ a

t
jµiq (2.44)

“ atjpµi ´ pµiq

ď γ. (2.45)

where line (2.44) used line (2.40) and line (2.45) follows by Cauchy-Schwarz inequality,

}aj}2 “ 1, and the hypothesis.

Case 2: Aµi � b and Apµi � b. Then,

|∆i ´
p∆i| “ | }µi ´ ProjP pµiq}2 ´ }pµi ´ ProjP ppµiq}2 |

ď }pµi ´ pµiq ´ pProjP pµiq ´ ProjP ppµiqq}2 (2.46)

ď }µi ´ pµi}2 ` }ProjP pµiq ´ ProjP ppµiq}2 (2.47)

ď 2 }µi ´ pµi}2 (2.48)

ď 2γ

where line (2.46) used the reverse triangle inequality, (2.47) used the triangle inequality,

and (2.48) used the fact that projection onto a convex set is contractive (Proposition 2.2.1

(Bertsekas, 2009)).

Case 3: Aµi � b and Apµi ď b.

We claim that disppµi, BP q ď }pµi ´ µi}2. Suppose not. Then, since pµi P P and µi R P ,

there exists θ P r0, 1s such that z “ θµi ` p1´ θqpµi P BP . Then,

}pµi ´ z}2 ď }pµi ´ µi}2 ă disppµi, BP q,

which is a contradiction. Thus, the claim follows. Then,

disppµi, BP q ď }pµi ´ µi}2 ď γ.
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Next, since pµi P P ,

dispµi, P q ď }µi ´ pµi}2 ď γ.

Thus,

|∆i ´
p∆i| “ | disppµi, BP q ´ dispµi, P q| ď maxpdisppµi, BP q, dispµi, P qq ď γ.

Case 4: Aµi ď b and Apµi � b. This case is similar to case 3. Since µi P P and pµi R P ,

disppµi, P q ď }pµi ´ µi}2 ď γ.

Next, since µi P P and pµi R P , by a similar argument used in case 3,

dispµi, BP q ď }µi ´ pµi}2

ď γ.

Thus,

|∆i ´
p∆i| “ | disppµi, BP q ´ dispµi, P q| ď maxpdisppµi, BP q, dispµi, P qq ď γ.

Proof of Lemma 2. First, we bound the norm of pµi,r ´ µi on Ξ for all i P rKs and for all

r P rT s. Fix i P rKs and r P rT s. Recall that N is a minimal 1
2 -net. Using the event Ξ and

Lemma 14,

}pµi,r ´ µi}2 ď 2 sup
yPN

ytppµi,r ´ µiq ď

c

ω2

r
.

Next, we give the probability bound. Since νi is R-sub-Gaussian, by definition, we have that

if X „ νi, then

sup
yPN

›

›X ty
›

›

ψ2
ď sup
yPSD´1

›

›X ty
›

›

ψ2
“ }νi}ψ2

ď R.

Thus, by Lemma 5 and a union bound, for each i P rKs, y P N , and u P t0, . . . , tlogpT quu:

PrpDv P r2u, 2u`1
s, |ytppµi,v ´ µiq| ě

c

ω2

4v q ď 2 expp´ ω2

16R2 q.

41



Taking a union bound over all i P rKs, y P N , and u P t0, . . . , tlogpT quu yields

PrpΞq ě 1´ 2plogpT q ` 1qK|N | expp´ ω2

16R2 q

ě 1´ 2plogpT q ` 1qK5D expp´ ω2

16R2 q

where in the last line we used |N | ď 5D by Lemma 15.

Proof of Lemma 3. Fix i P rKs. For the sake of brevity, we write pµi instead of pµi,t. First,

suppose Aµi ď b´ ε1. Fix any j P rM s. Then,

atj pµi ´ bj “ a
t
jppµi ´ µiq ` a

t
jµi ´ bj

ă
∆i

2 ` atjµi ´ bj (2.49)

ď
1
2pbj ´ a

t
jµi ` εq ` a

t
jµi ´ bj

ď
1
2pa

t
jµi ´ bj ` εq

ď
1
2p´ε` εq

“ 0

where line (2.49) follows by the Cauchy-Schwarz inequality, }aj}2 “ 1, and the hypothesis.

Next, suppose dispµi, P q ě ε. Then,

}pµi ´ µi}2 ă
∆i

2 “
1
2pdispµi, P q ` εq ď dispµi, P q.

Thus, pµi R P since otherwise we have a contradiction.

2.16 Technical Lemmas

Lemma 4. Let P “ tx P RD : Ax ď bu with A P RMˆD. Let µ P P . Then,

dispµ, BP q “ min
i“1,...,M

dispµ, tx : atix “ biuq.

Proof. It is not hard to establish that BP “ P X pYMi“1tx : atix “ biuq. We claim that

dispµ,YMi“1tx : atix “ biuq “ dispµ, P X pYMi“1tx : atix “ biuqq.
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Since YMi“1tx : atibx “ biu is closed, there exists y P YMi“1tx : atibx “ biu such that

}µ´ y}2 “ dispµ,YMi“1tx : atibx “ biuq.

We claim that y P P . Suppose not (towards a contradiction). Then, there exists θ P p0, 1q

such that z “ p1´ θqµ` θy P BP . Then,

dispµ, pYMi“1tx : atix “ biuqq ď }z ´ µ}2 ă }y ´ µ}2 “ dispµ,YMi“1tx : atibx “ biuq,

which is a contradiction, establishing the claim. Then,

min
i“1,...,M

dispµ, tx : atix “ biuq “ dispµ,YMi“1tx : atix “ biuq

“ dispµ, P X pYMi“1tx : atix “ biuqq

“ dispµ, BP q.

Lemma 5. Suppose that X1, . . . , XT are centered scalar R-sub-Gaussian random variables.

Then, @u P t0, . . . , rlogpT qsu,

PrpDv P r2u, 2u`1
s : 1
v

v
ÿ

i“1
Xi ě

c

x

v
q ď expp´ x

4R2 q.

Proof. Define Sv “
řv
i“1Xi. Fix u P t0, . . . , rlogpT qsu. Let m “ 2u`1. Hoeffding’s maximal

inequality yields (see Step 2 of Lemma 1 of (Jamieson et al., 2014a))

PrpDv P rms : 1
v
Sv ě

?
x

v
q “ PrpDv P rms : Sv ě

?
xq

ď expp´ x

2R2m
q.

Then,

PrpDv P r2u, 2u`1
s : 1
v
Sv ě

?
x

v
q ď PrpDv P rms : 1

v
Sv ě

?
x

v
q

ď expp´ x

2R2m
q.

Finally,

PrpDv P r2u, 2u`1
s : 1
v
Sv ě

c

x

v
q ď PrpDv P r2u, 2u`1

s : 1
v
Sv ě

?
x2u
v
q

ď expp´ x2u
2R2m

q

“ expp´ x

4R2 q.
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Lemma 6. Let ε ą 0 and Nε be an ε-net of SD´1. For any y P RD,

}y}2 ď
1

1´ ε sup
zPNε

ytz.

Proof. Let z0 P Nε such that
›

›

›

y
}y}2

´ z0

›

›

›

2
ď ε. Then, by Cauchy-Schwarz,

}y}2 “
yty

}y}2
“ ytp

y

}y}2
´ z0q ` y

tz0 ď }y}2

›

›

›

›

y

}y}2
´ z0

›

›

›

›

2
` ytz0 ď ε }y}2 ` y

tz0.

Rearranging the inequality, we obtain

}y}2 ď
1

1´ εy
tz0 ď

1
1´ ε sup

zPNε

ytz.

The following Lemma appears in (Vershynin et al., 2017) (see Corollary 4.2.13).

Lemma 7. Let ε ą 0 and Nε be a minimal ε-net of SD´1. Then, |Nε| ď p2
ε
` 1qD.

We state without proof general Hoeffding’s inequality for sub-Gaussian random variables

(see Theorem 2.6.2 in Vershynin et al. (2017)).

Lemma 8. Suppose that X1, . . . , Xn are i.i.d. scalar R-sub-Gaussian random variables with

mean µ P R. Then, for all t ą 0,

Prp| 1
n

n
ÿ

i“1
Xi ´ µ| ą tq ď 2 expp´ t2n

2R2 q.

2.17 Feasible Arm Identification with a Convex Re-

gion: Statistical Results

To begin, we introduce some notation. Let δ ą 0 and x P RD. Define Bδpxq “ tx P RD :

}x}2 ď δu.

Proposition 2. Let P be a compact convex set with positive volume. There exists a sequence

of polyhedra tPnu such that

lim
nÝÑ8

sup
yPRD

| dispy, BPnq ´ dispy, BP q| “ 0.
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Further, if there exists some τ ą 0 such that distpµi, BP q ě τ @i P rKs, then for all δ ą 0,

there exists a large enough n such that

p1´ δqHP ď HPn ď p1` δqHP .

Proof. Step 1: Defining a sequence of approximations. Define a dyadic cube of side

length 2´n as a set of the form

r
i1

2´n ,
i1 ` 1
2´n s ˆ . . .ˆ r

iD
2´n ,

iD ` 1
2´n s

where i1, . . . iD are integers and n P N. Let En denote the set of dyadic cubes with sidelength

2´n. Define

Pn “ convp Y
EPEn,EĂP

Eq.

Note that for any n, Pn is a polyhedron with a finite number of constraints.

Step 2: For large n, BPn is a good approximation of BP . Next, we claim that

@δ ą 0, there exists N such that n ě N implies that supxPBPn dispx, BP q ď δ. Suppose

not. Then, there exists δ ą 0 such that @n P N there exists xn such that dispxn, BP q ą δ.

Since P is compact and txnunPN Ă P , there exists a convergent subsequence txnju with limit

x P P . Then, dispx, BP q ě δ, which implies that x P P ˝ and Bδpxq Ă P . By definition of

Pn, there exists N such that n ě N implies that B δ
2
pxq Ă PN . Thus, n ě N implies that

dispx, BPnq ě δ
2 . Thus, xnj cannot converge to x, which is a contradiction. So, the claim is

true.

Next, we claim that @δ ą 0, there existsN such that n ě N implies that supxPBP dispx, BPnq ď

δ. Suppose not. Then, Dδ ą 0 such that @n P N there exists xn P BP such that dispxn, BPnq ą

δ. BP is bounded and closed so that BP is compact. Thus, txnu has a convergent subse-

quence txnju with limit point x P BP . x has the property that dispx, BPnq ě δ for all n P N.

Let y P P ˝ (such a point exists since P has positive volume). Then, since P is convex,

by the line segment principle (Proposition 1.4.1 (Bertsekas, 2009)), every point of the form

zθ “ p1 ´ θqx ` θy for θ P p0, 1s is such that zθ P P ˝. So there exists w P Bδpxq X P ˝. For

large enough n, w P Pn. Since }w ´ x}2 ă δ, we have a contradiction and thus the claim

follows.
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Step 3: Distance to BPn approaches uniformly distance to BP . Formally, we

show that

lim
nÝÑ8

sup
yPRD

| dispy, BPnq ´ dispy, BP q| “ 0. (2.50)

Let δ ą 0. Let n large enough so that supxPBPn dispx, BP q ď δ and supxPBP dispx, BPnq ď δ.

Fix y P RD. Let xp P BP such that }y ´ xp}2 “ dispy, BP q and xpn P BPn such that

}y ´ xpn}2 “ dispy, BPnq.

Let z P BP such that }xpn ´ z}2 ď δ. Then, by the reverse triangle inequality,

| }z ´ y}2 ´ }xpn ´ y}2 | ď δ.

Then,

distpy, BP q ´ }y ´ xpn}2 ď distpy, BP q ´ }z ´ y}2 ` δ ď δ.

Let w P BPn such that }xp ´w}2 ď δ. By the reverse triangle inequality,

| }y ´ xp}2 ´ }y ´w}2 | ď δ.

Then,

distpy, BPnq ´ }y ´ xp}2 ď distpy, BPnq ´ }y ´w}2 ` δ ď δ.

This establishes (2.50).

Step 4: Approximation of Problem Complexity. Suppose there exists some τ ą 0

such that distpµi, BP q ě τ @i P rKs. Let γ1 “ 1´ 1?
1`δ , γ2 “

1?
1´δ ´ 1 and γ “ minpγ1, γ2q.

Let n large enough such that @y P RD,

| dispy, BPnq ´ dispy, BP q| ď γτ ď γmin
i

dispµi, BP q.
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Then,

HP “
ÿ

iPrKs

rdispµi, BP q ` εs´2

ď
ÿ

iPrKs

rdispµi, BPNqp1´ γq ` εs´2

ď
ÿ

iPrKs

rdispµi, BPNq ` εs´2
p1´ γq´2

ď
ÿ

iPrKs

rdispµi, BPNq ` εs´2
p1` δq

“ p1` δqHPn

Similarly, HP ě p1´ δqHPn .

Theorem 5. Let P be a convex set with positive volume and ε ě 0 such that P ˝ε – tx P P :

distpx, BP q ą εqu is nonempty. Let µ1, . . . ,µK P P
˝
ε . Then, for any δ ą 0, there exists a

collection of K ` 1 problems B0, . . . ,BK such that for any algorithm,

max
iPt0,...,Ku

EBipLT,P,εppSqq ě expp´13 T

p1´ δqHP

´ 25D logp48plogpT q ` 1qKDqqq.

where

HP “

K
ÿ

i“1
r distpµi, BP q ` εs´2.

Proof. Step 1: Reduce convex set to compact convex set. Let ri – 2 distpµi, BP q

for all i P rKs. Clearly, there exists large enough B ą 0 such that P0 “ P X tx P RD :

}x}2 ď Bu has the property that for all i P rKs, if we replace µi with any µ̃i P Brpµiq, then

distpµ̃i, BP q “ distpµ̃i, BP0q and

LT,P,εpSq “ LT,P0,εpSq (2.51)

for all S Ă rKs . Further, for the feasible identification problem with µ1, . . . ,µK as the

means, HP “ HP0 .

Step 2: Define approximation. Since distpµi, BP0q ą ε for all i P rKs, there exists

γ P p0, εq such that for all i P rKs,

distpµi, BP0q ą ε` γ. (2.52)
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Fix δ ą 0. By Proposition 2, there exists a polyhedron Papprox such that

p1´ δqHP0 ď HPapprox ď p1` δqHP0

and

sup
yPRD

| dispy, BPapproxq ´ dispy, BP0q| ă
γ

2 . (2.53)

By (2.52) and (2.53), µ1, . . . ,µK P Papprox and for all i P rKs, dispµi, BPapproxq ą ε ` γ
2 so

that LT,P0,εpSq “ LT,Papprox,εpSq for all S Ă rKs.

Step 3: Apply lower bound for polyhedra. Apply the lower bound construction

from Theorem 1 to Papprox to define K` 1 collections of distributions Bi for i P t0, 1, . . . , Ku

(see Theorem 1 for their definitions). We claim that for every problem Bi, LT,P0,εpSq “

LT,Papprox,εpSq for all S Ă rKs. We briefly sketch the proof. First,

distpµ1i, BP0q `
γ

2 ą distpµ1i, BPapproxq “ distpµi, BPapproxq ą distpµi, BP0q ´
γ

2 ě ε`
γ

2 .

Thus, distpµ1i, BP0q ą ε. Further, µ1i R Papprox, distpµ1i, Papproxq ě ε ` γ
2 , and (2.53) imply

that µ1i R P . The claim follows from this observation.

Thus, by Theorem 1, for all pS Ă rKs,

max
iPt0,...,Ku

EBiLT,P,εppSq “ max
iPt0,...,Ku

EBiLT,P0,εp
pSq (2.54)

“ max
iPt0,...,Ku

EBiLT,Papprox,εppSq

ě expp´13 T

HPapprox

´ 25D logp48plogpT q ` 1qKDqqq

ě expp´13 T

HP p1´ δq
´ 25D logp48plogpT q ` 1qKDqqq

where line (2.54) follows by (2.51).

Theorem 6. Let P be a convex set with positive volume and µ1, . . . ,µK P RD. Suppose that

there are some B ą 0 and γ ą 0 such that it is known that

1. maxp distpµi, BP q, }µi}2q ď B for all i P rKs,

2. | dispµi, BP q ´ ε| ě γ for all i P rKs, and
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3. distpµi, BP q ě γ.

Then, there exists an algorithm that given any δ ą 0, achieves

ErLT,P,εppSqs ď 2plogpT q ` 1qK5D expp´ T

1296R2HP p1` δq
q.

Proof. Step 1: Define the algorithm. The algorithm is as follows:

1. Set P0 “ P X ĞB2Bp0q.

2. Use the construction from Proposition 2 to approximate P0 with Papprox such that

sup
yPRD

| dispy, BP0q ´ dispy, BPapproxq| ď
γ

2 (2.55)

p1´ δqHP0 ď Happrox ď HP0p1` δq.

3. Run MD-APT with the K given arms, Papprox, and ε and return its answer pS.

We note that because it is known that distpµi, BP q ě γ, step 2 of the algorithm is valid.

Step 2: Distance of µi to BP is equal to the distance of µi to BP0. First, we

claim that

distpµi, BP q “ distpµi, BP0q. (2.56)

Let x P BP such that }x´ µi}2 “ distpµi, BP q. Then,

}x}2 ď }µi}2 ` }x´ µi}2 ď 2B.

Thus, x P P0. Since P0 Ă P , x P BP0. Therefore, distpµi, BP0q ď distpµi, BP q. Towards a

contradiction, suppose that distpµi, BP0q ă distpµi, BP q. Let y P BP0 such that }µi ´ y} “

distpµi, BP0q. Then,

}y}2 ď }µi}2 ` }y ´ µi}2 ă 2B. (2.57)

Recall the fact

BpAXBq Ă BAY BB.
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Therefore, by this fact, y P BP0 and (2.57) imply that y P BP . Thus, we have a contradiction.

This establishes (2.56).

Step 3: LT,P,εpSq “ LT,P0εpSq for every S Ă rKs. Next, we show that LT,P,εpSq “

LT,P0,εpSq for all S Ă rKs. Suppose µi P Sint
P,ε. Then, by (2.56), distpµi, BP0q “ distpµi, BP q ě

ε. Further, by hypothesis, }µi}2 ď B so that µi P P0. Thus, µi P Sint
P0,ε.

Next, suppose that µi P Sout
P,ε . Then, P0 Ă P implies that µi R P0 and distpµi, P0q “

distpµi, P q ą ε by (2.56). Thus, µi P Sout
P0,ε.

Next, suppose that µi R Sout
P,ε and µi R Sint

P,ε. Then, either (i) µi P P and dispµi, BP q ă ε

or (ii) µi R P and distpµi, BP q ď ε. Suppose (i). Then, by (2.56), it follows that µi R Sout
P0,ε

and µi R Sint
P0,ε. Suppose (ii). Then, P0 Ă P and (2.56) imply that µi R Sout

P0,ε and µi R Sint
P0,ε.

This establishes the claim.

Step 4: Putting it together. (2.55) and the hypotheses imply that LT,P0,εpSq “

LT,ε,PapproxpSq for all S Ă rKs.

Thus, let pS denote the output of MD-APT with the K given arms, Papprox, and ε. By

Theorem 4,

ErLT,P,εpSqs “ ErLT,P0,εpSqs

“ ErLT,Papprox,εpSqs

ď 2plogpT q ` 1qK5D expp´ T

1296R2HPapprox

q

ď 2plogpT q ` 1qK5D expp´ T

1296R2HP p1` δq
q.

2.18 Additional Experiments

In this section, we present a couple more experiments. First, we present another variant

of experiment 3, linear progression of arms on a cube, where there are no irrelevant arms.

We set ε “ 0. We use µ0:3 “ p.75qb5 ` p0 : 3q ˆ .05, µ4 “ p.95qb5, µ5 “ p1.05qb5, µ6:9 “

p1.25qb5´p0 : 3qˆ .05, µ10:19 “ p1.15qb5. In comparison to experiment 3, we make it slightly

easier to determine whether the arms µ4 and µ5 belong to the polyhedron because otherwise
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Figure 2.8: Linear Progression on Cube, no Irrelevant Arms

the difficulty of the problem prevents any algorithm from achieving substantial progress after

2000 time steps. Figure 2.8 presents the results. MD-SAR performs substantially better than

MD-APT. MD-APT pulls arm 4, which minimizes ∆i, too much. MD-APT pulls arm 4 time

on average 1006.27 times, whereas MD-SAR pulls arm 4 on average 319.59 times.

We also repeat the crowdsourcing experiment with a slightly different setup. Now, we

draw samples from a Gaussian distribution for each worker with mean calculated from the

dataset in Snow et al. (2008) and variance over all the ratings over all the workers. The

results are very similar to the results in the main text.
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Figure 2.9: Crowdsourcing Experiment with Simulated Data
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Chapter 3

Top Feasible Arm Identification

In this chapter, I propose a new variant of the top arm identification problem, top feasible

arm identification, where there are K arms associated with D-dimensional distributions and

the goal is to find m arms that maximize some known linear function of their means subject

to the constraint that their means belong to a given set P Ă RD. This problem has many

applications since in many settings, feedback is multi-dimensional and it is of interest to per-

form constrained maximization. I present problem-dependent lower bounds for top feasible

arm identification and upper bounds for several algorithms. Our most broadly applicable

algorithm, TF-LUCB-B, has an upper bound that is loose by a factor of OpD logpKqq. Many

problems of practical interest are two-dimensional and, for these, it is loose by a factor of

OplogpKqq. Finally, I conduct experiments on synthetic and real-world datasets that demon-

strate the effectiveness of our algorithms. My algorithms are superior both in theory and in

practice to a naive two-stage algorithm that first identifies the feasible arms and then applies

a best arm identification algorithm to the feasible arms. This Chapter is joint work with

Clayton Scott and was presented at the International Conference on Artificial Intelligence

and Statistics in 2019.

3.1 Introduction

In the top arm identification problem in multi-armed bandits, there are K scalar-valued

distributions (also referred to as arms) and an agent plays a sequential game where, at each
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round, the agent chooses (or “pulls”) one of the arms and observes an i.i.d. realization from

it. At the end of the game, the agent outputs the set of m arms believed to have the largest

means. This problem has applications in areas such as crowdsourcing, A/B testing, and

clinical trials.

While top arm identification considers settings where the feedback is scalar-valued and

the goal is maximization, in many applications, the feedback is multi-dimensional and it is of

interest to perform constrained maximization. For example, in crowdsourcing, an important

challenge is to identify high-quality workers that complete work at a suitable pace (e.g.,

below 15 seconds on average) and, in clinical trials, it is of interest to efficiently find drugs

that are most likely to be effective and have an acceptably low probability of causing an

adverse effect.

In this paper, we introduce top feasible arm identification for situations where the feed-

back is multi-dimensional and the goal is constrained maximization. In this problem, there

are K arms and each arm i is associated with a D-dimensional distribution νi that has mean

µi. At each round t “ 1, 2, . . ., the agent chooses an arm It and observes an independent

random vector drawn from νIt . For given P Ă RD, c P RD, m ď K, and δ P p0, 1q, the goal

of the agent is to identify m arms that maximize cJµi subject to the constraint µi P P , with

probability at least 1´ δ, in the fewest number of samples possible.

We make several contributions to this problem. We prove problem-dependent lower

bounds for top feasible arm identification. We also propose a family of algorithms TF-

LUCB, where each instance is specified by a test for feasibility TestF, and we prove a master

theorem that characterizes an upper bound for TF-LUCB in terms of the subroutine TestF.

Finally, we use this master theorem to prove upper bounds for several algorithms. Our most

broadly applicable algorithm, TF-LUCB-B, has an upper bound that is loose by a factor of

OpD logpKqq. Many problems of practical interest are two-dimensional and for these, it is

loose by a factor of OplogpKqq. Notably, our algorithms are superior both in theory and in

practice to a naive two-stage algorithm that first identifies the feasible arms and then applies

a best arm identification algorithm to the feasible arms. The sample complexity of such a

two-stage algorithm can be arbitrarily larger than the sample complexity of our algorithms

and, indeed, in our experiments we improve on such a baseline by as much as a factor of 4.5.
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3.2 Related Work

Top arm identification has received a lot of attention in recent years (Mannor and Tistisklis,

2004; Audibert and Bubeck, 2010; Gabillon et al., 2012; Kalyanakrishnan et al., 2012b;

Bubeck et al., 2013; Chen et al., 2014a; Jamieson et al., 2014a). Most work considers the

case where arms are scalar-valued and, thus, their results cannot be applied to our problem

setting. Recently, Chen et al. (2017a) proposed the general sampling problem, which does

encompass a variant of top feasible arm identification. Their work differs from ours in

several significant ways. First, in the work of Chen et al. (2017a), the agent samples from

one dimension of one arm at a time, whereas in our setting pulling an arm yields a random

D-dimensional vector. Second, Chen et al. (2017a) assume that the arms are isotropic

Gaussian, whereas we assume each arm is a multi-dimensional sub-Gaussian distribution.

Finally, their algorithm (see their Algorithm 7) is impractical for moderate values of δ in

the fixed confidence setting since its first stage consists of a uniform allocation strategy that

terminates when the confidence bounds of all of the means are small enough to determine

which of the arms are in the top feasible m with probability at least 0.99.

Auer et al. (2016) also consider a setting where arms are multi-dimensional. Their goal is

to determine the Pareto front of the arms, which is quite different from the task of constrained

maximization in top feasible arm identification. We also remark that they use an elimination

algorithm, whereas we adapt the LUCB algorithm from Kalyanakrishnan et al. (2012b) to

our setting.

Recently, Katz-Samuels and Scott (2018) proposed the feasible arm identification prob-

lem, in which there are K multi-dimensional distributions and a given polyhedron, and the

goal is to determine which of the distributions have means belonging to the polyhedron. By

contrast, in top feasible arm identification, the goal is to find a collection of arms whose

means are feasible and maximize some linear function. In short, Katz-Samuels and Scott

(2018) deal with feasibility while the current paper deals with constrained maximization.

Furthermore, whereas Katz-Samuels and Scott (2018) consider the fixed budget setting (in

which there is a fixed number of rounds), we consider the fixed confidence setting. These

differences require the development of new ideas and algorithms.

55



We also note that top feasible arm identification differs from best-arm identification in

linear bandits (Soare et al., 2014). In best-arm identification in linear bandits, each arm i

is associated with a known feature vector xi and the reward of arm i has mean xJi θ where

θ is unknown. In our setting, each arm is associated with a D-dimensional distribution and

the goal is to maximize some known linear function f : RD ÝÑ R subject to the constraint

that µi P P .

3.3 Problem Statement

Notation. For n P N, let rns “ t1, . . . , nu. Let U be a finite set and f be a scalar-valued

function with domain containing U , and define maxplqxPUfpxq–
$

&

%

max
txPU :|tyPU :fpyqěfpxqu|ěl´1u

fpxq : |U | ě l

´8 : otherwise
.

In words, maxplqxPUfpxq is the value of the lth largest x P U under fp¨q and if |U | ă l, then

it is ´8. For a set A Ă RD, let BA denote the boundary of A, i.e., BA “ sAzA˝ (where
sA denotes the closure of A and A˝ denotes the interior of A). Let x P RD, and define

distpx, Aq “ infyPA }x´ y}2. Let γ ą 0, and define Bγpxq “ ty : }x´ y}2 ă γu. Let xi
denote the ith entry of x and for yi P RD, let yi,j denote the jth entry of yi. Let ei denote

the ith standard basis vector. We use “whp” for “with high probability” and “wrt” for “with

respect to.”

Problem Parameters. Suppose that there are K arms associated with distributions

ν1, . . . , νK over RD that have means µ1, . . . ,µK P RD, and let ν “ pν1, . . . , νKq. At each

round t “ 1, 2, . . ., an agent chooses an arm It and observes an independent draw Xt „ νIt .

Let P Ă RD denote a nonempty set such that P ‰ RD. Let c denote a reward vector,

which is fixed, known, and the same across all arms. We assume }c}2 “ 1. We say that cJµi
is the expected reward of arm i. Let m denote the number of top feasible arms desired. We

denote an instance of the top feasible arm identification problem by pν, P, c,mq. Let Prν
(Eν) denote the probability measure (expected value) associated with the problem instance

pν, P, c,mq.
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Define FEAS “ ti P rKs : µi P P u, INFEAS “ FEASc, and

OPT “ ti P FEAS : cJµi ě maxpmqjPFEAS c
Jµju,

SUBOPT “ ti P rKs : cJµi ă maxpmqjPFEAS c
Jµju.

We say that an arm j is suboptimal if cJµj ă maxpmqiPFEASc
Jµi; we say that an arm j is

feasible (infeasible) if µj P P (µj R P ). We note that, in general, SUBOPT and INFEAS

are not disjoint, and that when there are fewer than m arms that are feasible (µi P P ),

SUBOPT “ H.

We consider the following class of problems: M–

tpν, P, c,mq : p@i : µi R BP q and

pmaxpmqiPFEASc
Jµi ą maxpm`1q

jPFEASc
Jµj _ |FEAS | ď mqu.

In words,M consists of problems where the means of the arms do not belong to the boundary

of P and either there are m or fewer feasible arms or the mth largest reward of a feasible

arm and the pm`1qth largest reward of a feasible arm are distinct. It is possible to drop the

assumption pν, P, c,mq P M by allowing for a tolerance for suboptimality or infeasibility,

and we describe this extension in the supplemental material.

Goal. We consider the fixed confidence setting with a novel criterion for correctness. An

algorithm A is associated with a policy that determines which arm It P rKs is chosen at time

t, a finite stopping time τ wrt I1,X1, I2,X2, . . . (i.e., Prνpτ ă 8q “ 1) that determines when

the algorithm stops, and an outputted partition of the arms ppO,pS,pIq with pOYpSYpI “ rKs.

A standard criterion of correctness for an algorithm is δ- PAC, which we now define.

Definition 2. Let δ P p0, 1q. We say an algorithm A is δ- PAC wrt M if for any problem

pν, P, c,mq belonging to M, A outputs pO Ă rKs such that PrνppO “ OPTq ě 1´ δ.

A standard goal is to design algorithms that are δ- PAC wrt M and that minimize τ .

We propose a novel criterion δ- PAC-EXPLANATORY and aim to design algorithms that

are δ- PAC-EXPLANATORY wrt M and that minimize τ .

Definition 3. Let δ P p0, 1q. We say an algorithm A is δ- PAC-EXPLANATORY wrt M if

for any problem pν, P, c,mq belonging to M, A outputs a triple ppO,pS,pIq of disjoint sets such

57



that pOYpSYpI “ rKs and

PrνppO “ OPT and ppS,pIq P Valid-Partitionsq ě 1´ δ

where Valid-Partitions –

tpS, Iq :S Ă SUBOPT, I Ă INFEAS,

S X I “ H, S Y I “ OPTc
u.

To identify arms in OPT, an agent must rule out every i P OPTc as suboptimal or

infeasible. When SUBOPTX INFEAS ‰ H, there are arms that can be ruled out in multiple

ways. Valid-Partitions captures the various correct ways to partition the arms in OPTc to

distinguish them from OPT. Thus, our notion, δ- PAC-EXPLANATORY, is slightly stronger

than δ- PAC since it essentially requires that whp (i) an algorithm output the correct top m

feasible arms and (ii) that it provide a correct reason for rejecting each arm (either that it is

suboptimal or infeasible). We remark that it is natural to require only one reason for rejecting

an arm because once an algorithm identifies an arm as infeasible (suboptimal), there is no

reason to keep pulling it to determine whether it is suboptimal (infeasible). Furthermore, in

most problems and for most algorithms, if an arm is infeasible and suboptimal, showing one

of these is easier than showing the other.

This notion is practically relevant since in many applications it is of interest to provide a

reason to reject an arm. For example, in crowdsourcing, it might be necessary to provide a

worker with a reason for why she was not hired. In clinical trials, it might be useful for the

clinician to know why a drug is rejected. Furthermore, as we discuss in the supplemental ma-

terial, we conjecture that there is a small gap between δ- PAC and δ- PAC-EXPLANATORY

algorithms.

Sub-Gaussian Assumption. We assume that each νi is a multi-dimensional sub-

Gaussian distribution, which we now define. Let X be a scalar random variable and X P RD

a random vector. We say that X is sub-Gaussian if E exppX2

σ2 q ď 2 for some σ ą 0 and

X P RD is sub-Gaussian if for all a P RD, XJa is sub-Gaussian. The sub-Gaussian norms
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of X and X are defined respectively as:

}X}ψ2
“ inftσ ą 0 : E exppX

2

σ2 q ď 2u,

}X}ψ2
“ sup
aPRD:}a}2“1

›

›XJa
›

›

ψ2
.

X is said to be σ-sub-Gaussian if }X}ψ2
ď σ and X is said to be σ-sub-Gaussian if }X}ψ2

ď

σ. For the remainder of this paper, we assume that ν1, . . . , νK are σ-sub-Gaussian. See

Vershynin (2012); Vershynin et al. (2017) for more details.

3.4 Lower Bounds

Theorem 7 gives our lower bound for δ- PAC-EXPLANATORY algorithms.

Theorem 7. Let µ1, . . . ,µK P RD such that @i ‰ j P rKs : µi,1 ‰ µj,1. Define νi “ Npµi, IDq

for all i P rKs. Suppose P “ RˆP 1 for some P 1 Ă RD´1 and @x P BP, @ε ą 0 : BεpxqXP
˝ ‰

H and Bεpxq X pP
cq˝ ‰ H. Let c “ e1. Assume pν, P, e1,mq PM and let δ P p0, 0.1q. For

any pS, Iq P Valid-Partitions, define LpS, Iq–

ÿ

iPOPT
maxprmin

jPS
cJpµi ´ µjqs

´2, distpµi, BP q´2
q

`
ÿ

iPS

r min
jPOPT

cJpµj ´ µiqs
´2
`
ÿ

iPI

distpµi, P q´2.

Then, any algorithm A that is δ- PAC-EXPLANATORY wrt M has a stopping time τ

on the problem pν, P, e1,mq that satisfies

Eνrτ s ě min
pS,IqPValid-Partitions

2
15 lnp 1

2δ qLpS, Iq.

The conditions P “ R ˆ P 1 and c “ e1 decouple the reward and feasibility of the arms

and hold in many applications. The other conditions on P remove pathological cases such

as isolated points and nowhere dense sets with positive measure.

The lower bound is the solution of a constrained minimization problem over all the

ways to distinguish the arms in OPTc from OPT, i.e., pS, Iq P Valid-Partitions. If we fix

some pS, Iq P Valid-Partitions, there are three main terms in the lower bound reflecting the

difficulty of identifying arms as belonging to either OPT, S, or I, respectively. Essentially,
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optimal arms must be shown to be feasible and to have reward greater than all arms in S,

arms in S must be shown to have reward less than arms in OPT, and arms in I must be

shown to be infeasible.

The key observation in the proof is that for a given problem pν, P, c,mq, we can associate

with an algorithm A a particular pS, Iq P Valid-Partitions such that for every i P S (i P I),

it is likely that A puts i P pS (i P pI). Then, using the notion of δ- PAC-EXPLANATORY, it

suffices to analyze the difficulty of identifying each arm as belonging either to OPT, S, or I.

The result follows by minimizing over pS, Iq P Valid-Partitions.

We also state a similar lower bound for algorithms that are δ- PAC wrt M.

Theorem 8. Assume the conditions of Theorem 7. Define ro “ minjPOPT c
Jµj, rs –

maxjPOPTcXFEAS c
Jµj, and L1 –

ÿ

iPINFEASXSUBOPT
minprro ´ cJµis´2, distpµi, P q´2

q

`
ÿ

iPOPT
maxprcJµi ´ rss´2, distpµi, BP q´2

q

`
ÿ

iPOPTcXFEAS
r min
jPOPT

cJpµj ´ µiqs
´2

`
ÿ

iPINFEASXSUBOPTc
distpµi, P q´2.

Then, any algorithm A that is δ- PAC wrtM has a stopping time τ on the problem pν, P, e1,mq

that satisfies

Eνrτ s ě lnp 1
2.4δ qL

1.

The bound in Theorem 8 suggests that δ- PAC algorithms must show that arms in OPT

are feasible and have reward greater than every arm in OPTc
XFEAS, arms in OPTc

XFEAS

have reward less than arms in OPT, arms in INFEASX SUBOPTc are infeasible, and, finally,

arms in INFEASX SUBOPT are either infeasible or suboptimal.

Since any δ- PAC-EXPLANATORY algorithm wrt M is δ- PAC wrt M, we expect the

lower bound in Theorem 7 to be at least as large as the lower bound in Theorem 8, and

this is indeed the case. The main difference between the bounds occurs in the terms corre-

sponding to i P OPT. Essentially, in Theorem 7, it is required to show that every arm in
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OPT has reward greater than all arms that are ruled out as suboptimal (i.e., belong to S),

whereas in Theorem 8, these arms must only be shown to have reward greater than arms in

FEASXOPTc. See the supplemental material for a more detailed discussion.

3.5 TF-LUCB: A Family of Algorithms for Top Feasi-

ble Arm Identification

In this section, we introduce an algorithm for the top feasible arm identification problem. To

begin, we define some notation. Let pµi,s denote the empirical mean of arm i after s samples.

Let Niptq “
řt´1
s“1 1tIs “ iu denote the number of times that arm i has been selected up to

round t. Let

Upt, δq “ σ

c

2 logp1{δq ` 6 log logp1{δq ` 3 log logpetq
t

denote a confidence bound, which holds uniformly over time (see Lemma 20 in the supple-

mental material) (Kaufmann et al., 2016b). For the sake of simplicity, we assume henceforth

that µ1, . . . ,µK P B 1
2
p0q and P Ă B 1

2
p0q.

Challenge. As suggested by Theorem 8, a major challenge in designing a nearly optimal

algorithm is how to rule out with nearly optimal sample complexity an arm i that is infeasible

and whose reward rJµi is too small to be among the top m feasible arms (i.e., belongs to

INFEASX SUBOPT). In short, a nearly optimal algorithm must determine which is easier

to show: that arm i is infeasible or that it has too small reward. Either of these can be

arbitrarily more difficult to show than the other; for example, consider an infeasible arm

with mean very close to the set P and a very small reward relative to the other arms. In

this case, it is quite easy to show suboptimality, but very difficult to show infeasibility.

Algorithm. TF-LUCB is a family of algorithms, where each instance is specified by a

subroutine TestF. TestFpi, sq considers the first s pulls of arm i and returns True if arm

i is feasible whp, returns False if i is infeasible whp, and otherwise returns ?, indicating

“don’t know.” When the context makes it clear which distribution is involved, we simply

write TestFpsq. TestF essentially solves what we will call the set membership problem, which

we now define. In this problem, there is a distribution ξ over RD with mean µ P RD and
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a set P Ă RD. At round t “ 1, 2, . . . an algorithm B observes Xt „ ξ. An algorithm

B is associated with a stopping time τ wrt pXtqtPN, and after τ rounds outputs True if it

concludes that µ P P and False if it concludes that µ R P . We define the following class of

set membership problems:

N “ tpξ, P q :ξ is a distribution over RD with mean

µ P B 1
2
p0q, P Ă B 1

2
p0q, P ‰ H,µ R BP u.

We defer our discussion of specific algorithms for the set membership problem until the next

section.

Given a subroutine TestF, TF-LUCB is an adaptation of LUCB (Lower Upper Confidence

Bound) from Kalyanakrishnan et al. (2012b) to the top feasible arm identification problem.

TF-LUCB maintains three sets: arms Ft that are feasible whp, arms Gt that have not been

determined whp to be feasible or infeasible, and arms Et – Ft Y Gt that have not been

ruled out as infeasible whp. At round t, TF-LUCB considers TOPt, the set of m arms that

have not been ruled out as infeasible whp (i.e., belong to Et) and have the top m estimated

rewards. TF-LUCB uses Ucpt, δq– Upt, δ
2K q for a confidence bound on the reward associated

with an arm. If all of the arms in TOPt are feasible whp, then it pulls an arm ht in TOPt

with the smallest lower confidence bound. If only some of the arms in TOPt are determined

to be feasible whp, then to avoid oversampling optimal arms, it chooses the arm ht instead

by picking the arm in TOPtXGt with the smallest lower confidence bound, i.e., an arm

in the top empirical m for which it is still not determined whp whether it is feasible. We

note that because TOPtXE
c
t “ H by definition of TOPt, when TOPt Ć Ft, TOPtXGt is

nonempty so that the argmax operator in line 14 is well-defined. If there are arms outside

of TOPt that have not been ruled out as infeasible, then the algorithm pulls an additional

arm lt among these (in TOPc
t XEt) that maximizes an upper confidence bound on its reward.

The algorithm terminates when it determines whp that each arm in TOPt is feasible and

has mean larger than arms in TOPc
t XEt, or that the arms in TOPt are feasible and all other

arms are infeasible.

For the sake of brevity, define the function F px, yq “ x´2 logplogpx´2qyq. Theorem 9

shows that TF-LUCB is δ- PAC-EXPLANATORY with a bound on τ that nearly matches
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Algorithm 4 TF-LUCB: Top-m Feasible Lower Upper Confidence Bound algorithm
1: Input: TestF, sub-Gaussian norm bound σ, confidence δ

2: for t “ 1, 2, . . . do

3: Ft ÐÝ ti P rKs : TestFpi, Niptqq “ Trueu // arms that are feasible whp

4: Gt ÐÝ ti P rKs : TestFpi, Niptqq “ ?u // arms whose feasibility is unclear whp

5: Et ÐÝ Ft YGt // arms that are not ruled out as infeasible whp

6: TOPt ÐÝ arg maxZĂEt,|Z|“minpm,|Et|q
ř

iPZ c
J
pµi,Niptq

7: if TOPt “ Ft and Ft “ Et then

8: return pTOPt,TOPc
t XEt, E

c
t q

9: else if TOPt Ă Ft and miniPTOPt c
J
pµi,Niptq´UcpNiptq, δq ě maxjPTOPct XEt c

J
pµj,Njptq`

UcpNjptq, δq then

10: return pTOPt,TOPc
t XEt, E

c
t q

11: else if TOPt Ă Ft then

12: ht “ arg miniPTOPt c
J
pµi,Niptq ´ UcpNiptq, δq

13: else if TOPt Ć Ft then

14: ht “ arg miniPTOPtXGt c
J
pµi,Niptq ´ UcpNiptq, δq

15: end if

16: if TOPc
t XEt ‰ H then

17: lt “ arg maxjPTOPct XEt c
J
pµj,Njptq ` UcpNjptq, δq

18: Pull arm lt

19: end if

20: Pull arm ht

21: end for

the lower bound.

Theorem 9. Let δ P p0, 1q and pν, P, c,mq P M. Suppose that for any set membership

problem pξ, Rq P N where ξ is σ-sub-Gaussian and has mean µ, with probability at least

1 ´ δ
2K , TestF returns True only if µ P R and False only if µ P Rc, and TestF uses at

most ηpξ, Rq samples, where ηpξ, Rq is a deterministic function of ξ and R. For any pS, Iq P
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Valid-Partitions, define UpS, Iq–

ÿ

iPS

F pminjPOPT c
J
pµj ´ µiq,

K

δ
q `

ÿ

iPI

ηpνi, P q

`
ÿ

iPOPT
maxpF pminjPS cJpµi ´ µjq,

K

δ
q, ηpνi, P qq.

Then, with probability at least 1´ δ, TF-LUCB returns ppO,pS,pIq such that pO “ OPT, ppS,pIq P

Valid-Partitions, and

τ ď min
pS,IqPValid-Partitions

cσ2UpS, Iq. (3.1)

where c is a universal positive constant.

This upper bound has a very similar structure to the lower bound in Theorem 7. It is

the solution of a constrained minimization problem over pS, Iq P Valid-Partitions. One can

interpret this form as saying that TF-LUCB finds the easiest way to solve a given instance

of the top feasible arm identification problem. Ignoring doubly logarithmic factors, the

upper bound on the reward-associated terms is loose by a factor of logpKq.1 Theorem 9

can be interpreted as a reduction of the top feasible arm identification problem to the set

membership problem and in the next section we will discuss how various algorithms for the

set membership problem affect the sample complexity of TF-LUCB.

In light of Theorem 9, it is instructive to consider a two-stage algorithm that first identifies

the collection of feasible arms and then applies a best arm identification algorithm to the fea-

sible arms. The drawback of this two-stage approach is that there may be suboptimal infea-

sible arms that are much easier to rule out as suboptimal rather than infeasible. Essentially,

such a two-stage algorithm solves a problem instance by picking the pS 1, I 1q P Valid-Partitions

such that I 1 “ INFEAS, whereas TF-LUCB adapts to the problem instance to choose the

best pS, Iq P Valid-Partitions. Thus, the sample complexity of such a two-stage algorithm is

at least the sample complexity of TF-LUCB and can be arbitrarily larger than the sample

complexity of TF-LUCB. To see this, consider a problem with an arm whose mean is very

close to the boundary of P , but has very small reward relative to the other arms.
1We note that this logarithmic factor could be improved by adapting LUCB++ (Simchowitz et al., 2017a)

instead of LUCB.
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The proof of Theorem 9 considers the pS, Iq P Valid-Partitions that minimizes (3.1) and

analyzes the sample complexity of TF-LUCB to identify each arm as belonging to either

OPT, S, or I. It is shown that at each round t, either ht or lt is a needy arm wrt to the sets

OPT, S, and I (defined precisely in the supplemental material) in the sense that either it is

necessary to determine whether it is feasible or it is necessary to improve our estimate of its

reward.

Allowing for a tolerance: It is possible to extend TF-LUCB to allow for a tolerance

on suboptimality or infeasibility (see supplemental material). For example, if a suboptimality

gap of ε ą 0 is permitted, then pO is correct if it satisfies @i P pO, i P FEAS and cJpµi ` ε ě

minjPOPT c
Jµj.

3.6 Three Instances of TF-LUCB

In this section, we consider three distinct general classes of sets and apply Theorem 9 to

derive upper bounds for algorithms for each of these. To begin, we consider a general set P .

Since there are in general no known computationally efficient algorithms for such a general

setting, we then consider the computationally tractable and very rich class of polyhedra. For

this setting, let P “ tx P RD : Ax ď bu denote a polyhedron, where A P RMˆD and b P RM .

Let aJj denote the jth row of A. By dividing each constraint j by }aj}2, we can assume

without loss of generality that }aj}2 “ 1 for all j P rM s. Finally, we consider the common

case where the polyhedron has orthogonal constraints, i.e., aJi aj “ 0 for all i ‰ j P rM s,

which arises for example when there is one constraint per coordinate. Note that in this case,

it follows that M ď D.

For a general set, we propose the TestF subroutine: TestF-B (see Algorithm 5). It

controls }pµi,t ´ µi}2 with a confidence bound Uballpt, δq – 2Upt, δ
5D2K q that is constructed

based on an ε-net argument. TestF-B returns True if the ball centered at pµi,t with radius

Uballpt, δq does not intersect P c, False if this ball does not intersect P , and otherwise returns

?. The variant of TF-LUCB that uses TestF-B is called TF-LUCB-B.

For a polyhedron, we propose the subroutine TestF-CB, which also uses the confidence

bound Uconpt,
δ
2q – Upt, δ

4KM q (see Algorithm 6). If it determines that µi satisfies all of the
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Algorithm 5 TestF-B:
Input: arm index i, number

of pulls t

if distppµi,t, P cq ą Uballpt, δq

then

return True

else if distppµi,t, P q ą

Uballpt, δq then

return False

else

return ?

end if

Algorithm 6 TestF-CB:
Input: arm index i, number

of pulls t

if Apµi,t ` Uconpt,
δ
2q1 ď b

then

return True

else if distppµi,t, P q ą

Uballpt,
δ
2q then

return False

else

return ?

end if

Algorithm 7 TestF-C:
Input: arm index i, number

of pulls t

if Apµi,t ` Uconpt, δq1 ď b

then

return True

else if Apµi,t ´ Uconpt, δq1 �

b then

return False

else

return ?

end if

TF-LUCB-B TF-LUCB-CB TF-LUCB-C

i P OPT DF p distpµi, BP q, Kδ q F p distpµi, BP q, KMδ qq F p distpµi, BP q, KMδ q

i P INFEAS DF p distpµi, BP q, Kδ q DF p distpµi, BP q, Kδ q viF p distpµi, P q, KMδ )

Table 3.1: Upper bounds on ηpνi, P q. For the case where P is a polyhedron, let vi “ |tj :

aJj µi ą bju|.

constraints whp, it returns True, if it determines that the ball centered at pµi,t with radius

Uballpt,
δ
2q does not intersect P whp, it returns False, and otherwise it returns ?. The variant

of TF-LUCB that uses TestF-CB is called TF-LUCB-CB.

Finally, a polyhedron with orthogonal constraints, we propose the subroutine TestF-C,

which uses the confidence bound Uconpt, δq (see Algorithm 7). If it determines that µi
satisfies all of the constraints whp, it returns True, if it determines that µi violates one of

the constraints whp, it returns False, and otherwise it returns ?.

The following theorem establishes upper bounds for TF-LUCB-B, TF-LUCB-CB, and

TF-LUCB-C.

Theorem 10. Let δ P p0, 1q and pν, P, c,mq PM. Then, with probability at least 1´ δ,
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• TF-LUCB-B returns ppO,pS,pIq such that pO “ OPT, ppS,pIq P Valid-Partitions, τ is bounded

as in (3.1), and ηpνi, P q is bounded as in Table 3.1.

• If P is a polyhedron, TF-LUCB-CB returns ppO,pS,pIq such that pO “ OPT, ppS,pIq P

Valid-Partitions, τ is bounded as in (3.1), and ηpνi, P q is bounded as in Table 3.1.

• If P is a polyhedron with orthogonal constraints, TF-LUCB-C returns ppO,pS,pIq such that
pO “ OPT, ppS,pIq P Valid-Partitions, τ is bounded as in (3.1), and ηpνi, P q is bounded as

in Table 3.1.

Ignoring doubly logarithmic factors, the terms related to determining feasibility for TF-

LUCB-B are loose by a factor of D logpKq relative to our lower bound. When D is OplogKq,

then the bound is loose by a polylogarithmic factor. Since in many applications the dimension

of the feedback is not very large, this bound is practically relevant. TF-LUCB-CB only

requires F p distpµi, BP q, KMδ q samples to show that an arm i P OPT is feasible, which is a

significant improvement over the corresponding term for TF-LUCB-B if M is polynomial in

D. TF-LUCB-C differs from TF-LUCB-CB in the term for showing infeasibility. The term

for determining that arms in I are infeasible is loose by a factor vi logpKMq, which can be

much smaller than D logpKq. In the common setting where the arms are two-dimensional

with one coordinate encoding reward and the other a constraint, the upper bound is only

loose by a logarithmic factor. See the supplemental material for an upper bound for TF-

LUCB-C for the case of a general polyhedron.

3.7 Experiments

In this section, we demonstrate experimentally the effectiveness of our algorithms. We

consider the task of identifying OPT Ă rKs.

Synthetic Datasets: In each of the experiments, we use δ “ 0.1, the last coordinate

determines the reward (c “ p0, . . . , 0, 1qJ), and the rest of the coordinates determine whether

x P P . We consider two kinds of reward structures: linearly varying rewards cJµi “ .95p1´
i

100q and polynomially varying rewards cJµi “ .95p1 ´ p i
100q

.3q. In each trial, we randomly
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Experiment TF-LUCB-C TF-LUCB-CB TF-AE-C FFAF-C FFAF-CB

Simplex Arithmetic Linear 1.00 1.45 2.84 1.56 3.05

Simplex Arithmetic Polynomial 1.00 1.48 3.12 1.59 3.23

Simplex Groups Linear 1.00 1.25 2.78 1.29 2.14

Simplex Groups Polynomial 1.00 1.32 2.97 1.32 2.14

Ordered Groups Linear 1.00 1.04 1.93 1.15 1.16

Ordered Groups Polynomial 1.00 1.05 2.02 1.43 1.33

Crowdsourcing 1.00 N/A 2.15 2.88 N/A

Medical 1.00 N/A 1.12 4.52 N/A

Table 3.2: Number of samples required, relative to TF-LUCB-C, averaged over 50 trials.

permute the rewards among the arms in the sense that we take a random permutation

σ : rKs ÝÑ rKs and set µi,D to µσpiq,D.

In one set of experiments, we use 6-dimensional multivariate Gaussian distributions as

arms with covariance matrix 1
4I. We use a simplex P “ tx P R6 :

ř5
i“1 xi ď 2, xi ě 0@i P

r5su. We consider one setting where there are four groups of arms µ1:15,1:5 “ p.1qb5,µ16:30,1:5 “

p.35qb5,µ31:45,1:5 “ p.45qb5,µ46:60,1:5 “ p´.1qb5. Only the arms in r30s are feasible. In another

setting, we consider arms with arithmetically changing values. In this setting, for i P r30s,

µi,1:5 “ rp.1`p2´0.05
5 ´ .1q i30s

b5, for i P r45szr30s, µi,1:5 “ r2.05{5`p3{5´2.05{5q i´30
15 s

b5, and

for i P r60szr45s, µi,1:5 “ r´0.05 ` p´.3 ` 0.05q i´45
15 s

b5. Only the arms in r30s are feasible.

We use
a

1{4 as the sub-Gaussian norm for the arms.

In another set of experiments, we use 5-dimensional Bernoulli distributions. We use

an ordered polyhedron P “ tx P R5 : xi ď xi`1@i P r3su. We consider a setting with

three groups: µ1:30,1:4 “ p0.05, 0.35, 0.65, 0.95qJ, µ31:40,1:4 “ p0.95, 0.65, 0.35, 0.05qJ, and

µ41:50,1:4 “ p.7, .6, .5, .4qJ. Only the arms in r30s are feasible. We use 1 as the sub-Gaussian

norm of the arms.

Crowdsourcing Application: We consider the task of finding the most accurate crowd-

sourcing workers subject to the constraint that they complete tasks at a suitable average

speed. We use a crowdsourcing dataset collected by Venanzi et al. (2016) in which Amazon

Mechanical Turk workers determine what kind of a statement a tweet makes regarding the

weather: (i) positive, (ii) neutral, (iii) negative, (iv) unrelated, or (v) can’t tell. We only

68



consider workers that have answered at least 100 questions, leaving a total of 21 workers.

Here, µi,1 is the probability of being correct and µi,2 is the average amount of time required.

We seek the top 3 most accurate workers who on average answer questions within 15 sec-

onds. Whenever an algorithm pulls an arm corresponding to a worker, it samples a datapoint

associated with that worker uniformly at random with replacement. We use the standard

deviation of the speed measurements (135.86 sec) as the sub-Gaussian norm for the coordi-

nate corresponding to the speed and 1 as the sub-Gaussian norm for the other coordinate.

We use δ “ 0.1 and allow for a suboptimality gap of 0.05.

Clinical Trials Application: We examine the problem in clinical trials of finding the

most effective drugs that also meet some safety threshold. We use data from Genovese et al.

(2013) (see ARCR20 in week 16 in Table 2 and Table 3), which studies the drug secukinumab

for treating rheumatoid arthritis. Each arm corresponds to a dosage level (25mg, 75mg,

150mg, 300mg, placebo) and has two attributes: the probability of being effective, µi,1, and

the probability of causing an infection or infestation, µi,2. The dosage levels 25mg, 75mg,

150mg, and 300mg have averages µ1 “ p.34, .259qJ, µ2 “ p.469, .184qJ, µ3 “ p.465, .209qJ,

µ4 “ p.537, .293qJ, respectively, and the placebo has average µ5 “ p.36, .36qJ. In our

experiment, whenever arm i is chosen two Bernoulli random variables with means given by

µi are drawn. We assume that a drug is acceptable if the probability of an infection is below

.25, we set m “ 1, and we allow for a suboptimality gap of 0.05. Thus, the correct answer

is either arm 2 or arm 3. We use δ “ 0.05. We use 1 as the sub-Gaussian norm.

Algorithms: We consider our algorithms TF-LUCB-C and TF-LUCB-CB. We also con-

sider Find-Feasible-Arms-First (FFAF), which is a two-stage algorithm that first determines

which of the arms are feasible and then applies LUCB to the feasible arms to find the top

arms. FFAF-CB uses TestF-CB to test feasibility, whereas FFAF-C uses TestF-C. We also

implement an action elimination algorithm (TF-AE-C) that samples remaining arms in a

round-robin fashion, eliminating an arm if it is determined using confidence bounds to be

either suboptimal or infeasible. We only consider a variant that uses TestF-C since TF-AE-C

has poor performance. For the experiments where D “ 2, we only run the constraint based

algorithms since the ε-net approach uses strictly worse (by a constant factor) confidence

bounds.
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Discussion of Results: Table 3.2 displays our results as the number of samples required,

relative to TF-LUCB-C. All algorithms find a correct set of arms on every trial. TF-LUCB-C

has the best sample complexity in all of the experiments, beating the FFAF algorithms by

a substantial margin in many of them. In particular, FFAF-C requires nearly five times as

many samples as TF-LUCB-C on the medical dataset and nearly three times as many samples

on the crowdsourcing dataset. The performance gap between TF-LUCB and FFAF depends

on the relative difficulty of showing arms to be suboptimal vs. infeasible. In particular,

FFAF-C has poor performance on the real-world datasets because on the crowdsourcing

dataset the sub-Gaussian norm for showing feasibility is large and on the medical dataset

one of the suboptimal infeasible arms is very close to the boundary. TF-AE-C performs so

poorly because each suboptimal feasible arm must be pulled until at least m arms are shown

to be feasible and have larger reward than it.

3.8 Conclusion

We introduced a novel problem, top feasible arm identification: the first general pure explo-

ration multi-armed bandit problem on constrained optimization. We argued that it has many

real-world applications since in many settings there is multi-dimensional feedback and a nat-

ural goal is constrained optimization based on this feedback (e.g., safety and effectiveness in

clinical trials); thus, we argue that our algorithms are of significant practical interest.

3.9 Chapter Appendix Outline and Notation

In this section, we provide an outline of the supplemental material and define some notation.

In Section 3.10, we prove Theorem 7. In Section 3.11, we prove Theorem 9 and the main

lemmas used in its proof. In Section 3.12, we prove Theorem 10, splitting it up into three

distinct theorems. In Section 3.13, we discuss our conjecture that there is a small gap between

δ- PAC and δ- PAC-EXPLANATORY algorithms; we also prove and discuss our lower bound

for δ- PAC algorithms. In section 3.14, we prove a number of technical lemmas. In Section

3.15, we present and discuss a version of TF-LUCB that allows for tolerance of infeasibility
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and suboptimality. In section 3.16, we provide pseudocode for TF-AE and FFAF.

Define SD´1 “ tx P RD : }x}2 “ 1u. Define a function d : p0, 1q ˆ p0, 1q ÞÑ R such that

dpx, yq – x logpx
y
q ` p1 ´ xq logp1´x

1´y q. Recall that if U “ H, then we use the convention

minxPU x “ 8 and maxxPU x “ ´8.

3.10 Lower Bound

For the proof of Theorem 7, we introduce the following notation. For a given problem

pν, P, c,mq, define

FEASpν, P, c,mq “ ti P rKs : µi P P u, INFEASpν, P, c,mq “ FEASpν, P, c,mqc,

OPTpν, P, c,mq “ ti P FEASpν, P, c,mq : cJµi ě maxpmqjPFEASpν,P,c,mq c
Jµju,

SUBOPTpν, P, c,mq “ ti P rKs : cJµi ă maxpmqjPFEASpν,P,c,mq c
Jµju.

Proof of Theorem 7. Step 1: Pick a good partition of the arms. Fix δ ą 0. Let

pν, P, c,mq satisfy the hypotheses of the theorem statement. In the interest of brevity,

abbreviate

FEAS – FEASpν, P, c,mq, INFEAS – INFEASpν, P, c,mq,

OPT – OPTpν, P, c,mq, SUBOPT – SUBOPTpν, P, c,mq.

Let A denote a δ- PAC-EXPLANATORY algorithm wrt M with stopping time τ .

We claim that there exists pS, Iq P Valid-Partitions that satisfies the following property:

i P S ùñ Prνpi P pSq ě
1´ δ

2 ; i P I ùñ Prνpi P pIq ě
1´ δ

2 . (3.2)

As an intermediate step, we claim that for every i P OPTc,

maxpPrνpi P pIq,Prνpi P pSqq ě
1´ δ

2 . (3.3)

To see this, fix i P OPTc. Define the events

B “ tpO “ OPT, ppS,pIq P Valid-Partitionsu,

B1 “ B X ti P pSu,

B2 “ B X ti P pIu.
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Note that B “ B1 YB2 and B1 XB2 “ H. Since A is δ- PAC-EXPLANATORY wrt M,

1´ δ ď PrνpBq

“ PrνpB1q ` PrνpB2q

ď Prνpi P pSq ` Prνpi P pIq

ď 2 maxpPrνpi P pSq,Prνpi P pIqq.

This establishes the claim in (3.3). Furthermore, note that if i P OPTc
z INFEAS “

SUBOPTXFEAS, then B2 “ H, so that

Prνpi P pSq ě
1´ δ

2 . (3.4)

Similarly, if i P OPTc
z SUBOPT, then B1 “ H, so that

Prνpi P pIq ě
1´ δ

2 . (3.5)

Define

S “ ti P SUBOPT : Prνpi P pSq ě
1´ δ

2 u

I “ INFEAS zti P SUBOPT : Prνpi P pSq ě
1´ δ

2 u.

We claim that pS, Iq P Valid-Partitions. Clearly, S Ă SUBOPT, I Ă INFEAS, S X I “

H, and S Y I Ă OPTc. Therefore, it suffices to show that OPTc
Ă S Y I. Let i P

OPTc. If i P INFEAS, then either i P I or i P S, so suppose that i R INFEAS. Then,

i P OPTc
z INFEAS “ SUBOPTXFEAS Ă S by (3.4). Thus, the claim that pS, Iq P

Valid-Partitions follows.

We claim that pS, Iq has the property (3.2). Let i P S. By definition of S, Prνpi P
pSq ě 1´δ

2 . Next, let i P I. If i P SUBOPT, then i P I Ă INFEAS and i R S imply that

Prνpi P pSq ă 1´δ
2 . Then, by (3.3) Prνpi P pIq ě 1´δ

2 . If i R SUBOPT, then (3.5) implies that

Prνpi P pIq ě 1´δ
2 . Thus, the claim follows.

Next, we outline the rest of our proof. For the rest of the proof, the S and I that we

constructed are fixed. Using the fact that τ “
řK
i“1Nipτq, we will show that for this choice

72



of S and I,

Eνrτ s “
K
ÿ

i“1
EνrNipτqs ě

1
15 lnp 1

2δ qr
ÿ

iPOPT
maxprmin

jPS
cJpµi ´ µjqs

´2, distpµi, BP q´2
q (3.6)

`
ÿ

iPS

r min
jPOPT

cJpµj ´ µiqs
´2
`
ÿ

iPI

distpµi, P q´2
s. (3.7)

To this end, we lower bound EνrNipτqs for each of the distinct cases (i P OPT, i P S,

i P I). To do this, we construct a related problem by modifying one of the distributions and

applying Lemma 11. The result will follow by taking the minimum of the right-hand side of

(3.7) over all pS 1, I 1q P Valid-Partitions.

In each of the next steps, we will define a new problem to obtain a lower bound. To avoid

notational clutter, we will redefine the symbols µ1i, ν 1i, and νpiq in each step. The context

should make their meaning clear.

Step 2.a: reward bound for i P OPT. Fix i P OPT. First, we show that

EνrNipτqs ě
2
15 lnp 1

2δ qrmin
jPS

cJpµi ´ µjq ` εs
´2

for a sufficiently small ε ą 0. If S “ H, minjPS cJpµi ´µjq “ ´8 by definition and there is

nothing to show. So, suppose that S ‰ H. Define

j0 “ arg max
jPS

cJµj. (3.8)

Define for all j P rKs

µ1j “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˝

µj0,1 ´ ε

µi,2:D

˛

‹

‚

if j “ i

µj if j ‰ i

ν 1j “ Npµ1j, IDq.

where ε ą 0 is chosen sufficiently small such that for all δ P r0, εq, cJµ1i ` δ ‰ cJµ1j for all

j ‰ i (which is possible since cJµl ‰ cJµk for all l ‰ k P rKs). Define νpiq “ pν 11, . . . , ν 1Kq

and consider the problem pνpiq, P, c,mq. We claim that pνpiq, P, c,mq PM. Since µi R BP

and BP “ BpR ˆ P 1q “ R ˆ BP 1 for some P 1 Ă RD´1, µ1i R BP . Further, by construction,
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cJµ1i ‰ c
Jµ1j for all j ‰ i. Thus, none of the arms have means on the boundary of P and

all of the rewards of the arms are distinct, so pνpiq, P, c,mq PM.

In the interest of brevity, abbreviate

FEASi – FEASpνpiq, P, c,mq, SUBOPTi – SUBOPTpνpiq, P, c,mq.

We claim that j0 R SUBOPTi. Suppose j0 P FEAS. Then,

cJµ1j0 “ c
Jµj0

“ maxlPScJµl (3.9)

ě maxlPSUBOPTXFEASc
Jµl (3.10)

“ maxpm`1q
lPFEASc

Jµl (3.11)

“ maxpmqlPFEASic
Jµ1l (3.12)

where line (3.9) follows from (3.8), line (3.10) follows from S Ą SUBOPTXFEAS, (3.11)

follows from j0 P FEAS by assumption, and (3.12) follows from the fact that j0 P FEAS and

the only difference between ν and νpiq is in the ith arm, which now has reward less than the

j0th arm. Thus, if j0 P FEAS, then j0 R SUBOPTi.

On the other hand, if j0 R FEAS, then

cJµ1j0 “ maxlPScJµ1l (3.13)

ą cJµ1i (3.14)

ą maxlPSUBOPTXFEASc
Jµ1l (3.15)

where line (3.13) follows from (3.8) and µ1l “ µl for all l P S, line (3.14) follows from

µ1i is defined to satisfy cJµ1i ą maxl:cJµ1
l
ăcJµ1j0

cJµ1l, and line (3.15) follows from S Ą

SUBOPTXFEAS, j0 R FEAS, and tcJµ|lprimeulPrKs distinct. (3.15) implies that

maxpmqlPFEASic
Jµ1l “ c

Jµ1i ă c
Jµ1j0

so that j0 R SUBOPTi. This establishes the claim that j0 R SUBOPTi.

Consider the event B “ tj0 P pSu. Then, since A is δ- PAC-EXPLANATORY wrt to M,

pνpiq, P, c,mq PM, and arm j0 R SUBOPTi, we have that

PrνpiqpBq ď PrνpiqppS Ć SUBOPTiq ď δ. (3.16)
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Further, by construction of S,

PrνpBq ě
1´ δ

2 . (3.17)

Then,

1
2rc

J
pµi ´ µj0q ` εs

2EνrNipτqs “ KLpνi, ν 1iqEνrNipτqs (3.18)

ě dpPrνpBq,PrνpiqpBqq (3.19)

ě dpPrνpBq, δq (3.20)

ě dp
1´ δ

2 , δq (3.21)

ě
1
15 lnp 1

2δ q. (3.22)

Line (3.18) follows by the formula for the KL-divergence of two multivariate normal distribu-

tions, (3.19) follows by Lemma 11, (3.20) follows since y ÞÑ dpx, yq is decreasing when x ą y,

(3.16), (3.17), and δ ă .1, (3.21) follows since x ÞÑ dpx, yq is increasing when x ą y, (3.16),

(3.17), and δ ă .1, and (3.22) follows by Lemma (17). The claim follows by rearranging the

inequality.

Step 2.b: feasibility bound for i P OPT. Next, we show that for sufficiently small

ε ą 0,

EνrNipτqs ě
2
15 lnp 1

2δ qr distpµi, BP q ` εs´2.

Since P is nonempty and P ‰ RD, by Lemma 16 BP is nonempty. Since in addition BP is

closed, by Lemma 12, there exists τi P ProjBP pµiq. Since τi P BP , by the assumptions of

the Theorem on P , for all ε ą 0, Bεpτq X pP
cq˝ ‰ H. Thus, for any ε ą 0, there exists a

direction v P RD with }v}2 “ 1 such that τi` εv P pP cq˝. Further, since by the assumptions

of the Theorem on P , P “ Rˆ P 1 for some P 1 Ă RD´1, we can choose v such that v1 “ 0.

Define for j P rKs

µ1j “

$

’

&

’

%

τi ` εv if j “ i

µj if j ‰ i

ν 1j “ Npµ1j, IDq.
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Define νpiq “ pν 11, . . . , ν 1Kq and consider the problem pνpiq, P, c,mq. We claim that pνpiq, P, c,mq P

M. Since µ1i P pP cq˝, µ1i R BP . Therefore, it suffices to show that cJµ1i ‰ cJµ1j for all j ‰ i.

To show this, it suffices to show that τi,1 “ µi,1 since then it follows by our choice of v,

c “ e1, and the fact that for all j ‰ i, cJµj ‰ cJµi. Towards a contradiction, suppose that

µi,1 ‰ τi,1. Define

τ 1i,j “

$

&

%

τi,j : j ‰ 1

µi,1 : otherwise
.

Recall that P “ R ˆ P 1 for some P 1 Ă RD´1 and observe that BP “ BR ˆ P 1 Y R ˆ BP 1 “

R ˆ BP 1. Thus, τi P BP implies that τ 1i P BP . Further, }τ 1i ´ µi}2 ă }τi ´ µi}2, which is a

contradiction to τi P BP . Thus, the claim follows and hence pνpiq, P, c,mq PM.

In the interest of brevity, abbreviate

FEASi – FEASpνpiq, P, c,mq, OPTi – OPTpνpiqP , P, c,mq.

Define the event B “ ti P pOu. Then, i R FEASi, so that the event B implies that the

algorithm A makes a mistake. Since A is δ- PAC-EXPLANATORY wrt M, PrνpiqpBq ď

PrνpiqppO Ć OPTiq ď δ. Further, since i P OPT and A is δ- PAC-EXPLANATORY wrt M,

PrνpBq ě PrνppO “ OPTq ě 1´ δ ě 1´ δ
2 .

Thus,

1
2p distpµi, BP q ` εq2EνrNipτqs “

1
2p}τi ´ µi}2 ` εq

2EνrNipτqs (3.23)

ě
1
2 }τi ` εv ´ µi}

2
2 EνrNipτqs (3.24)

“ KLpνi, ν 1iqEνrNipτqs (3.25)

ě
1
15 lnp 1

2δ q. (3.26)

Line (3.23) follows by the definition of τi, line (3.24) follows by the triangle inequality and

}v}2 “ 1, line (3.25) follows by the definition of the KL divergence for multivariate normal

distributions, and line (3.26) follows by a similar series of inequalities as (3.18)-(3.22).

Step 3: i P S. If S “ H, then there is nothing to show in this step. So, suppose that

S ‰ H. Then, S ‰ H implies that there are at least m feasible arms. Let j0 P rKs such
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that µj0 P P and

cJµj0 “ minlPOPTc
Jµl.

Define for j P rKs

µ1j “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˝

µi,1 ` µj0,1 ` ε

µi,2:D

˛

‹

‚

if j “ i

µj if j ‰ i

ν 1j “ Npµ1j, IDq.

where ε ą 0 is chosen sufficiently small so that for any δ P r0, εq, cJµ1i´δ ‰ cJµ1j for all j ‰ i

(which is possible since cJµl ‰ cJµk for all l ‰ k P rKs). Define νpiq “ pν 11, . . . , ν
1
Kq and

consider the problem pνpiq, P, c,mq. It follows that pνpiq, P, c,mq PM by a similar argument

that showed in Step 2.a that when i P OPT, pνpiq, P, c,mq PM.

In the interest of brevity, abbreviate

SUBOPTi – SUBOPTpνpiq, P, c,mq.

Define B “ ti P pSu. Note that arm i R SUBOPTi by construction. Thus, since A is

δ- PAC-EXPLANATORY wrt M, we have that PrνpiqpBq ď δ. Further, by construction of

S, PrνpBq ě 1´δ
2 . Therefore, by a similar series of inequalities as (3.18)-(3.22), it follows

that

1
15 lnp 1

2δ q ď
1
2rc

J
pµj0 ´ µiq ` εs

2EνrNipτqs. (3.27)

Step 4: i P I. Since P ‰ RD and P is nonempty, by Lemma 16 BP is nonempty. Since

in addition BP is closed, by Lemma 12, there exists τi P ProjBP pµiq. By the assumptions of

the Theorem on P , since τi P BP , for every ε ą 0, Bεpτiq X P ˝ ‰ H. Thus, for sufficiently

small ε ą 0, there exists a direction v P RD with }v}2 “ 1 such that τi ` εv P P ˝. Since by

the assumptions of the Theorem on P , P “ R ˆ P 1 for some P 1 Ă RD´1, we can choose v
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such that v1 “ 0. Define for j P rKs

µ1j “

$

’

&

’

%

τi ` εv if j “ i

µj if j ‰ i

ν 1j “ Npµ1j, IDq.

Define νpiq “ pν 11, . . . , ν 1Kq and consider the problem pνpiq, P, c,mq. It follows that pνpiq, P, c,mq P

M by a similar argument that showed in step 2.b that when i P OPT, pνpiq, P, c,mq PM.

In the interest of brevity, abbreviate

INFEASi – INFEASpνpiq, P, c,mq.

Define the eventB “ ti P pIu. Observe that i R INFEASi. Thus, sinceA is δ- PAC-EXPLANATORY

wrt M,

PrνpiqpBq ď PrνpiqppI Ć INFEASiq ď δ.

Further, by construction of I, Prνpi P pIq ě 1´δ
2 . Therefore, by a similar series of inequalities

as (3.23)-(3.26), it follows that

1
15 lnp 1

2δ q ď
1
2p distpµi, P q ` εq2EνrNipτqs. (3.28)

Step 5: Putting it together. Using Eνrτ s “
řK
i“1 EνrNipτqs and inequalities (3.22),

(3.26), (3.27), and (3.28), we establish for all sufficiently small ε ą 0,

Eνrτ s ě
2
15 lnp 1

2δ qr
ÿ

iPOPT
maxprmin

jPS
cJpµi ´ µjq ` εs

´2, r distpµi, BP q ` εs´2
q

`
ÿ

iPS

r min
jPOPT

cJpµj ´ µiq ` εs
´2
`
ÿ

iPI

r distpµi, P q ` εs´2
s.

Since this bound holds for all ε ą 0 sufficiently small, letting ε ÝÑ 0 on the RHS of the

above inequality establishes (3.7).
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3.11 Proof of Theorem 9

To begin, we introduce some notation. Fix pS, Iq P Valid-Partitions. We will bound the

number of samples required to identify each arm as belonging to either OPT, S, or I. Define

dpSq “
miniPOPTc

Jµi `maxjPScJµj
2 .

If either |FEAS | ă m or S “ H, then define dpSq – ´8. Next, we introduce a notion,

which captures when arm i needs to be pulled more. Define for all i P rKs,

NEEDYt
ipS, Iq “ rti P OPTu ^ pti P Gtu _ tc

J
pµi,Niptq ´ UcpNiptq, δq ď dpSquqs

_ rti P Su ^ tcJpµi,Niptq ` UcpNiptq, δq ě dpSqus

_ rti P Iu ^ ti P Gtus

In words, if arm i is optimal, then it needs to be pulled more if either it has not been

determined whp that µi P P or the lower bound on its reward is below dpSq. If i is in S,

then it needs to be pulled more if the upper bound on its reward is above dpSq, and if i is

in I, then it needs to be pulled more if it has not been determined that µi R P .

Next, we state the two main lemmas that we use in the proof of Theorem 9.

Lemma 9. Fix δ ą 0 and a problem pν, P, c,mq PM. Fix pS, Iq P Valid-Partitions. Suppose

that for all i P rKs and for all t ě 1, (i) it holds that

|cJpµi ´ pµi,tq| ď Ucpt, δq, (3.29)

and (ii) TestFpi, tq “ True implies that µi P P and TestFpi, tq “ False implies that µi R P .

Then, for all t prior to termination (i.e., t ă τ), NEEDYt
ltpS, Iq _ NEEDYt

htpS, Iq is true.

Lemma 9 essentially says that provided (i) Ucpt, δq bounds the deviation |cJpµi ´ pµi,tq|

and (ii) TestF does not make a mistake, then every round prior to termination, at least one

of the pulled arms is “needy.”

The second main lemma states that provided that (i) Ucpt, δq bounds the deviation

|cJpµi ´ pµi,tq| and (ii) TestF does not make a mistake, the algorithm returns a correct

answer, i.e., returns ppO,pS,pIq such that pO “ OPT, pS Ă SUBOPT, and pI Ă INFEAS.
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Lemma 10. Fix δ ą 0 and a problem pν, P, c,mq P M. Suppose that for all i P rKs and

t P N, (i) it holds that

|cJpµi ´ pµi,tq| ď Ucpt, δq, (3.30)

and (ii) TestFpi, tq “ True implies that µi P P and TestFpi, tq “ False implies that µi R P .

Then, TF-LUCB(δ) returns ppO,pS,pIq such that pO “ OPT, and ppS,pIq P Valid-Partitions.

The proofs of the two lemmas are given in Section 3.11.1.

Next, we prove Theorem 9. The proof has three main steps. First, we show that whp

for every arm i (i) TestF does not make a mistake about the feasibility of arm i, (ii) after

arm i has been pulled ηpνi, P q times, TestF determines whether arm i is feasible, and (iii)

Ucpt, δq controls the deviation of the empirical mean reward to the expected reward for arm

i. Second, we apply Lemma 10 to conclude that the algorithm returns the correct answer.

Finally, we upper bound the sample complexity, τ , of the algorithm by essentially upper

bounding how many times an arm must be pulled before no longer being “needy.”

Proof of Theorem 9. Step 1: Defining the event. Let pS, Iq P Valid-Partitions that

achieves the minimum in the upper bound (3.1) stated in Theorem 9. For the sake of

brevity, we write NEEDYt
i and d instead of NEEDYt

ipS, Iq and dpSq, respectively.

If µi P P , let

Bi “t@t P N : TestFpi, tq ‰ Falseu X t@t ě ηpνi, P q : TestFpi, tq “ Trueu

Xt@t P N : |cJppµi,t ´ µiq| ď Ucpt, δqu.

If µi R P , let

Bi “t@t P N : TestFpi, tq ‰ Trueu X t@t ě ηpνi, P q : TestFpi, tq “ Falseu

Xt@t P N : |cJppµi,t ´ µiq| ď Ucpt, δqu.

In words, when µi P P , Bi says that (i) TestF does not make the mistake of concluding that

arm i is infeasible, (ii) after arm i has been pulled ηpνi, P q times, TestF determines that

arm i is feasible, and (iii) Ucpt, δq controls the deviation of the empirical mean reward to the

expected reward of arm i. For µi R P , Bi is the analogous event.
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Observe that since }c}2 “ 1 and νi is σ-sub-Gaussian, if X „ νi, then
›

›cJX
›

›

ψ2
ď }X}ψ2

ď σ

so that cJX is σ-sub-Gaussian.

Then, by the union bound,

Prp YKi“1 B
c
i q (3.31)

ď
ÿ

iPrKs

PrpBc
i q (3.32)

ď
ÿ

iPFEAS
Prprt@t P N : TestFpi, tq ‰ Falseu X t@t ě ηpνi, P q : TestFpi, tq “ Trueuscq

(3.33)

`
ÿ

iPINFEAS
Prprt@t P N : TestFpi, tq ‰ Trueu X t@t ě ηpνi, P q : TestFpi, tq “ Falseuscq

(3.34)

`
ÿ

iPrKs

PrpDt P N : |cJppµi,t ´ µiq| ą Ucpt, δqq (3.35)

ď
ÿ

iPrKs

2 δ

2K (3.36)

“ δ, (3.37)

where line (3.36) follows by Lemma 20 and the assumption on TestF that for any set mem-

bership problem pξ, Rq P N where ξ is σ-sub-Gaussian and has mean µ, with probability at

least 1 ´ δ
2K , TestF returns True only if µ P R and False only if µ P Rc and uses at most

ηpξ, Rq samples. For the rest of the proof, we assume XiPrKsEi.

Step 2: Correctness. On event XiPrKsBi, the conditions of Lemma 10 are satisfied, so

that TF-LUCB returns ppO,pS,pIq such that pO “ OPT, pS Ă SUBOPT and pI Ă pI.

Step 3: Sample Complexity. Next, we bound the sample complexity of TF-LUCB,

i.e., prove (3.1) in the statement of Theorem 9. If i P OPT, let ρi denote the smallest integer

such that @t ě ρi

Ucpt, δq ă
minjPS cJpµi ´ µjq

4 . (3.38)

We claim that for all i P OPT and s P N, if Nipsq ě maxpρi, ηpνi, P qq, then NEEDYs
i “ 0.

Let i P OPT. Let Nipsq ě maxpρi, ηpνi, P qq. Then, on event Bi, TestFpi, Nipsqq “ True,
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which implies that i R Gs. Further,

cJpµi,Nipsq ´ UcpNipsq, δq ě c
Jµi ´ 2UcpNipsq, δq (3.39)

ě cJµi ´
minjPS cJpµi ´ µjq

2 (3.40)

ě d (3.41)

where line (3.39) follows by event Bi and line (3.40) follows by (3.38). Thus, NEEDYs
i “ 0.

If i P S, let ρi denote the smallest integer such that @t ě ρi

Ucpt, δq ă
minjPOPT c

Jµj ´ c
Jµi

4 . (3.42)

We claim that for all i P S and s P N, if Nipsq ě ρi, then NEEDYs
i “ 0. Observe that

cJpµi,Nipsq ` UcpNipsq, δq ď c
Jµi ` 2UcpNipsq, δq (3.43)

ď cJµi `
minjPOPT c

Jpµj ´ µiq

2 (3.44)

ď d (3.45)

where line (3.43) follows by event Bi, and (3.44) follows by (3.42). Thus, NEEDYs
i “ 0.

Finally, let i P I. Then, Nipsq ě ηpνi, P q implies by event Bi that TestFpi, tq “ False, so

that i R Gs. Thus, NEEDYs
i “ 0.

Then,

τ ´ 1 ď
8
ÿ

t“1
1tNEEDYt

ht “ 1 or NEEDYt
lt “ 1u (3.46)

ď

8
ÿ

t“1

K
ÿ

i“1
1tht “ i or lt “ iu1tNEEDYt

i “ 1u (3.47)

ď

8
ÿ

t“1

ÿ

iPOPT

“

1tht “ i or lt “ iu1tNiptq ď maxpρi, ηpνi, P qqu (3.48)

`
ÿ

iPS

1tht “ i or lt “ iu1tNiptq ď ρiu (3.49)

`
ÿ

iPI

1tht “ i or lt “ iu1tNiptq ď ηpνi, P qu
‰

(3.50)

ď
ÿ

iPOPT
maxpρi, ηpνi, P qq `

ÿ

iPS

ρi `
ÿ

iPI

ηpνi, P q. (3.51)

Line (3.46) follows by Lemma 9; line (3.48) follows by the contrapositive of the claim that

for i P OPT and s P N, if Nipsq ě maxpρi, ηpνi, P qq, then NEEDYs
i “ 0; lines (3.49) and
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(3.50) follow by the contrapositives of the analogous claims for i P S and i P I; line (3.51)

follows by exchanging the summations via Tonelli’s theorem for series and if ht “ i or lt “ i,

then Nipt` 1q “ Ntptq ` 1.

By Lemma 21, for i P OPT,

ρi ď cσ2
rmin
jPS

cJpµi ´ µjqs
´2
q logplogprmin

jPS
cJpµi ´ µjqs

´2
q
K

δ
q.

where c is a universal positive constant. By Lemma 21, for i P S,

ρi ď cσ2
r min
jPOPT

cJpµj ´ µiqs
´2 logplogpr min

jPOPT
cJpµj ´ µiqs

´2
q
K

δ
q

where c is a universal positive constant. The result follows.

3.11.1 Main Lemmas

Define the sets

ABOVEtpSq “ ti P rKs : cJpµi,Niptq ´ UcpNiptq, δq ą dpSqu

BELOWtpSq “ ti P rKs : cJpµi,Niptq ` UcpNiptq, δq ă dpSqu

MIDDLEtpSq “ rKszpABOVEtpSq Y BELOWtpSqq

Recall that dpSq is the average of the smallest reward among the arms in OPT and the

largest reward among the arms in S. Note that dpSq is not known to the agent. Hence,

ABOVEtpSq are the arms that at time t it is clear that whp their rewards are greater than

the rewards of the arms in S and, similarly, BELOWtpSq are the arms that at time t it is

clear that whp their rewards are less than the rewards of the arms in OPT. MIDDLEtpSq

are the arms for which more evidence must be collected about their rewards to determine

whether their reward is greater than or less than dpSq.

Proof of Lemma 9. Fix pS, Iq P Valid-Partitions. Let t be some round prior to termination,

i.e., t ă τ . For the sake of brevity, we write NEEDYt
i, d, ABOVEt, BELOWt, and MIDDLEt

instead of NEEDYt
ipS, Iq, dpSq, ABOVEtpSq, BELOWtpSq, and MIDDLEtpSq respectively.

Case 1: |FEAS | ă m. Then, SUBOPT “ H so that S “ H. We claim that ht P Gt.

Towards a contradiction, suppose that ht R Gt. Since ht P TOPt Ă Et, if ht R Gt, then
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ht P Ft. Then, by lines 11 and 13 of the algorithm, TOPt Ă Ft. Either (i) |TOPt | ă m or

(ii) |TOPt | “ m. Suppose |TOPt | ă m. Then, the definition of TOPt implies that

Et “ TOP
t
Ă Ft Ă Et,

so that TOPt “ Ft “ Et. Thus, that t is the last round, i.e., t “ τ , which is a contradiction.

Next, assume that |TOPt | “ m. Since by assumption |FEAS | ă m there exists i P INFEAS

such that TestFpi, tq “ True, which is a contradiction. Thus, ht P Gt.

Since S “ H, ht P OPTYI, which implies NEEDYt
ht “ 1.

Case 2: |FEAS | ě m. We split the rest of the proof up into cases, where in each case

we show either that NEEDYt
ht “ 1, NEEDYt

lt “ 1, or there is a contradiction. We briefly

make two useful observations that follow from the assumption that TestFpi, tq “ True implies

that µi P P and TestFpi, tq “ False implies that µi R P . First, the assumption implies that

FEAS Ă Et for all t, so that m ď |FEAS | ď |Et| and furthermore by the definition of TOPt,

|TOPt | ě m. Second, if i P I Ă INFEAS, the assumption implies that TestFpi, tq ‰ True,

so that i P Gt for all t P N.

• Suppose TOPc
t XEt “ H. Then, |Ec

t | ě n´m, which implies that

m ď |FEAS | ď |Et| ď m.

Since Et “ TOPt by definition of TOPt, FEAS Ă Et “ TOPt, so that TOPt “ FEAS “

OPT. Either TOPt Ă Ft or TOPt Ć Ft. If TOPt Ă Ft, then

Et “ TOP
t
Ă Ft Ă Et,

so that TOPt “ Ft “ Et. Thus, that t is the last round, i.e., t “ τ , which is a contra-

diction. If TOPt Ć Ft, then ht P Gt by line 13 of the algorithm, so that NEEDYt
ht “ 1.

For the remainder of the proof, we will assume TOPc
t XEt ‰ H.

• Suppose ht P BELOWt and lt P ABOVEt. Then,

cJpµht,Nht ptq ď c
J
pµht,Nht ptq ` UcpNhtptq, δq (3.52)

ă d (3.53)

ă cJpµlt,Nlt ptq ´ UcpNltptq, δq (3.54)

ď cJpµlt,Nlt ptq (3.55)

84



where line (3.53) follows since ht P BELOWt and line (3.54) follows since lt P ABOVEt.

Thus, cJpµht,Nht ptq ă cJpµlt,Nlt ptq. However, ht P TOPt and lt P TOPtXEt imply

cJpµht,Nht ptq ě c
J
pµlt,Nlt ptq and thus we have a contradiction.

• Suppose that ht P BELOWt and lt P BELOWt; we will derive a contradiction. We

claim that OPTXTOPc
t “ H. Suppose that there exists i P OPTXTOPc

t . Since

TestFpi, tq ‰ False for all i P OPT, i P Et. Then,

cJµi ď c
J
pµi,Niptq ` UcpNiptq, δq (3.56)

ď cJpµlt,Nlt ptq ` UcpNltptq, δq (3.57)

ă d, (3.58)

where (3.56) follows by (3.29), (3.57) follows by i P Et, and (3.58) follows by lt P

BELOWt. cJµi ă d is a contradiction, so that OPTXTOPc
t “ H. Thus, for all

i P TOPc
t , either cJµi ă d or µi R P . Furthermore, observe that

cJµht ď c
J
pµht,Nht ptq ` UcpNhtptq, δq (3.59)

ď d (3.60)

where line (3.59) follows by (3.29) and line (3.60) follows by ht P BELOWt. Thus,

there are at least K ´m` 1 arms that are either suboptimal or infeasible. But, this is

a contradiction since by assumption |FEAS | ě m, there are exactly K ´m arms that

are suboptimal or infeasible.

• Suppose ht P ABOVEt and TOPt Ć Ft. Since TOPt Ć Ft, ht P Gt so that if ht P

OPTYI, then NEEDYt
ht “ 1. So, suppose that ht P S. If ht P S, then

cJµht ě c
J
pµht,Nht ptq ´ UcpNhtptq, δq ą d

where the first inequality follows by (3.29) and the second inequality follows by ht P

ABOVEt. But, cJµht ą d is a contradiction since ht P S.

• Suppose ht P ABOVEt, TOPt Ă Ft, and lt P BELOWt . Then, TOPt Ă Ft, ht P

ABOVEt, and lt P BELOWt imply that the termination condition is satisfied so that

t “ τ , which is a contradiction.
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• Suppose ht P ABOVEt, TOPt Ă Ft, and lt P ABOVEt. First, we claim that TOPt Ă

OPT. Let i P TOPt. Then, i P Ft, which implies that TestFpi, tq “ True, so that

i R I. Further, ht P ABOVEt implies that

cJµi ě c
J
pµi,Niptq ´ UcpNiptq, δq ą d,

where the first inequality follows by (3.29) and the second inequality follows by ht P

ABOVEt. Therefore, i R S. Thus, i P OPT, proving that TOPt Ă OPT.

There are three cases: either lt P OPT, lt P S, or lt P I. lt P OPT implies that there are

m`1 optimal feasible arms since |TOPt | ě m as established earlier and OPT Ą TOPt,

which is a contradiction. Since lt P ABOVEt, we have by (3.29),

cJµlt ě c
J
pµlt,Nlt ptq ´ UcpNltptq, δq ą d,

which implies that lt R S. Thus, lt P I. Since lt P Gt as established earlier, we have

that NEEDYt
lt “ 1.

• If lt P MIDDLEt, then lt R ABOVEtYBELOWt so if lt P OPTYS, then NEEDYt
lt “ 1.

Further, if lt P I, then as argued previously lt P Gt, so that NEEDYt
lt “ 1.

• If ht P MIDDLEt, the argument is identical to the previous case.

Proof of Lemma 10. First, we observe that pO “ TOPτ , pS “ pTOPτ YE
c
τ q
c, and pI “ Ec

τ .

Note that pSXpI “ H by definition of the algorithm.

Step 1: TOPτ “ OPT.

To begin, we make two useful observations. (i) We claim that TOPτ Ă FEAS. Let

i P TOPτ . Then, since at termination, TOPτ Ă Fτ , we have that TestFpi, τq “ True. Then,

by the hypothesis, µi P P , so that i P FEAS. (ii) We claim that OPT Ă Eτ . Let i P OPT.

Since by assumption TestFpi, τq ‰ False for all i such that µi P P , it follows that i P Eτ ,

establishing OPT Ă Eτ .

Case 1: |FEAS | ă m. Notice that since there are fewer than m feasible arms,

SUBOPT “ H and we have that OPT “ FEAS.
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By our observation (i), TOPτ Ă FEAS “ OPT.

Next, we show that OPT Ă TOPτ . Let i P OPT. Then, by observation (ii) i P Eτ .

Since TOPτ Ă OPT and |OPT | ă m, |TOPτ | ă m. Since |TOPτ | ă m, the definition of

TOPτ in line 6 of the algorithm implies that |TOPτ | “ |Eτ | and TOPτ Ă Eτ . Therefore,

TOPτ “ Eτ so i P TOPτ , which establishes the claim.

Case 2: |FEAS | ě m. By observation (i), TOPτ Ă FEAS, which implies that

TOPτ X INFEAS “ H. Next, we show that TOPτ X SUBOPT “ H. Towards a contra-

diction, suppose that there exists i P TOPτ X SUBOPT. Then, since |OPT | “ m and

|TOPτ | “ m by (ii), there exists j P OPTXTOPc
τ . Since OPT Ă Eτ by observation

(ii), j P Eτ . Then, by line 6 defining TOPτ , |Eτ | ą m, so the algorithm must termi-

nate with the stopping condition: TOPt Ă Ft and miniPTOPt c
J
pµi,Niptq ´ UcpNiptq, δq ě

maxjPTOPct XEt c
J
pµj,Njptq ` UcpNjptq, δq. By the stopping condition, we have that

cJµi ě c
J
pµi,Nipτq ´ UcpNipτq, δq (3.61)

ě min
lPTOPτ

cJpµl,Nkpτq ´ UcpNlpτq, δq (3.62)

ě max
kPTOPcτ XEτ

cJpµk,Nkpτq ` UcpNkpτq, δq (3.63)

ě cJpµj,Njpτq ` UcpNjpτq, δq (3.64)

ě cJµj (3.65)

where lines (3.61) and (3.65) follow by (3.30) and (3.63) follows by the stopping condition.

Thus, cJµi ě cJµj, which is contradicts the assumption pν, P, c,mq P M. Therefore, the

claim TOPτ X SUBOPT “ H follows.

Note that TOPτ X INFEAS “ H and TOPτ X SUBOPT “ H imply that TOPτ Ă OPT.

Since OPT Ă Eτ and |FEAS | ě m, |TOPτ | “ m. Thus, it follows that TOPτ “ OPT and

correctness follows.

Step 2: pS Ă SUBOPT and pI Ă INFEAS. First, we show that pS Ă SUBOPT. If pS “

H, there is nothing to show so suppose that pS ‰ H. Let i P pS. Since i P pS “ TOPc
τ XEτ , we

cannot have that TOPτ “ Fτ and Fτ “ Eτ . So, the algorithm terminates with the stopping

condition: TOPt Ă Ft and miniPTOPt c
J
pµi,Niptq ´ UcpNiptq, δq ě maxjPTOPct XEt c

J
pµj,Njptq `
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UcpNjptq, δq. Then, using the stopping condition,

cJµi ď c
J
pµi,Nipτq ` UcpNjpτq, δq (3.66)

ď min
kPTOPt

cJpµk,Nkptq ´ UcpNkptq, δq (3.67)

ď min
kPOPT

cJµk (3.68)

where lines (3.66) and (3.68) follow by (3.30) and line (3.67) follows by the stopping condition.

Thus, i P SUBOPT by the assumption pν, P, c,mq PM.

Next, we show that pI Ă INFEAS. Let i P pI. Then, TestFpi, Nτ piqq “ False. By

hypothesis, this implies that µi R P , so i P INFEAS.

3.12 Upper Bounds for Three Instances of TF-LUCB

In the following three sections, we prove Theorem 10. We prove a separate theorem for each

statement in Theorem 10: namely, Theorem 11, Theorem 12, and Theorem 13. Each proof

has a similar structure: (i) define a good event that holds whp, (ii) show that on this event,

the TestF subroutine in question does not return the wrong answer, and (iii) show that after

enough samples have been taken from the distribution, the TestF subroutine in question

determines whether the mean of the distribution belongs to the set.

We introduce the following definition.

Definition 4. Let Z Ă RD and ε ą 0. N Ă Z is an ε-net of Z if for all x P Z, there exists

y P N such that }x´ y}2 ď ε. Let N Ă Z be an ε-net of Z. We say that N is minimal if,

for any other ε-net O of Z, it holds that |O| ě |N |.
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3.12.1 Proof of Upper Bound for TF-LUCB-B

Theorem 11. Let δ ą 0 and pν, P, c,mq PM. With probability at least 1´ δ, TF-LUCB-B

returns ppO,pS,pIq such that pO “ OPT, pS Ă SUBOPT, pI Ă INFEAS, and

τ ď min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTc
J
pµj ´ µiq,

K

δ
q `

ÿ

iPI

DF p distpµi, BP q,
K

δ
q

(3.69)

`
ÿ

iPOPT
maxpF pminjPScJpµi ´ µjq,

K

δ
q, DF p distpµi, BP q,

K

δ
qq

ı

. (3.70)

where c is a universal positive constant.

Proof. By Theorem 9, it suffices to show that for any pξ, Rq P N where ξ is σ-sub-Gaussian

and has mean µ P RD, with probability at least 1´ δ
2K , TestF-B returns True only if µ P R

and returns False only if µ R R and after at most

cσ2D distpµ, BRq´2 logplogp distpµ, BRq´2
q
K

δ
q

pulls for some universal positive constant c, it returns either True or False.

Step 1: Define the event. Let pµt denote the empirical mean of ξ after t samples.

Define the event B “ t@t P N : }pµt ´ µ}2 ď Uballpt, δqu. Let N be a minimal 1
2 -net of SD´1.

Observe that since for any y P N , }y}2 “ 1 and νi is σ-sub-Gaussian, if X „ νi, then

›

›yJX
›

›

ψ2
ď }X}ψ2

ď σ

so that yJX is σ-sub-Gaussian.

Then,

PrpBc
q “ PrpDt P N : }pµt ´ µ}2 ą Uballpt, δqq (3.71)

“ PrpDt P N, Dy P N : |yJppµt ´ µq| ą
1
2 Uballpt, dqq (3.72)

ď
ÿ

yPN
PrpDt P N : |yJppµt ´ µq| ą

1
2 Uballpt, dqq (3.73)

ď 5D δ

5D2K (3.74)

ď
δ

2K , (3.75)
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where line (3.72) follows by Lemma 14 and line (3.74) follows by Lemma 20 and since Lemma

15 implies that |N | ď 5D. So, PrpBq ě 1´ δ
2K . For the remainder of the proof, we suppose

that B occurs.

Step 2: An incorrect answer is never returned. First, we consider the case µ P R.

First, we show that TestF-B returns only either True or ?. Towards a contradiction, suppose

that TestF-Bptq “ False. Then, since µ P R and event B,

Uballpt, δq ă distppµt, Rq ď }pµt ´ µ}2 ď Uballpt, δq,

which is a contradiction. Thus, TestF-B returns either True or ?.

Next, consider the case µ P Rc; the proof is very similar to the case µ P R. Towards a

contradiction, suppose that TestF-Bptq “ True. Then, since µ P Rc and event B,

Uballpt, δq ă distppµt, Rc
q ď }pµt ´ µ}2 ď Uballpt, δq,

which is a contradiction. Thus, TestF-B returns either False or ?.

Step 3: Bound the sample complexity. Next, we show that TestF-Bptq “ returns

either True or False for all

t ě cσ2D distpµ, BRq´2 logplogp distpµ, BRq´2qK

δ
q

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uballpρ, δq ă
distpµ, BRq

2 .

By Lemma 21, ρ ď cσ2D distpµ, BRq´2 logp logp distpµ,BRq´2q2K
δ

q for some universal positive

constant c. Let t ě ρ. Towards a contradiction, suppose that TestF-Bpi, tq “ ?. Then,

distppµt, Rq ď Uballpt, δq and distppµt, Rcq ď Uballpt, δq so that by Lemma 19, there exists

x P BR such that }pµt ´ x}2 ď Upt, δq. Then, by the triangle inequality and event B,

}µ´ x}2 ď }µ´ pµt}2 ` }pµt ´ x}2

ď Uballpt, δq ` Uballpt, δq

ă distpµ, BRq

ď }µ´ x}2 ,
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which is a contradiction. Thus, for all t ě ρ, TestF-Bptq returns True or False. The result

follows.

3.12.2 Proof of Upper Bound for TF-LUCB-CB

Define

Npoly “ tpξ, Rq P N : R is a polyhedronu.

Theorem 12. Let δ ą 0, P “ tx P RD : Ax ď bu, and pν, P, c,mq PM. With probability at

least 1´δ, TF-LUCB-CB returns ppO,pS,pIq such that pO “ OPT, pS Ă SUBOPT, pI Ă INFEAS,

and

τ ď min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTc
J
pµj ´ µiq,

K

δ
q `

ÿ

iPI

DF p distpµi, BP q,
K

δ
q

(3.76)

`
ÿ

iPOPT
maxpF pminjPScJpµi ´ µjq,

K

δ
q, F p distpµi, BP q,

KM

δ
qq

ı

. (3.77)

where c is a universal positive constant.

Proof. By Theorem 9, it suffices to show that for any pξ, Rq P Npoly where ξ is σ-sub-Gaussian

and has mean µ P RD, with probability at least 1´ δ
2K , if µ P R, then TestF-CB only returns

either ? or True and for all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2
q
K

δ
q

where c is a universal positive constant, TestF-CBptq returns True, and if µ R R, then

TestF-CB only returns either ? or False and for all

t ě cσ2D distpµ, BRq´2 logplogp distpµ, BRq´2
q
KM

δ
q

where c is a universal positive constant, TestF-CBptq returns False.

Step 1: Define the event. For the sake of brevity, let Uballptq – Uballpt,
δ
2q and

Uconptq– Uconpt,
δ
2q. Let pµt denote the empirical mean of ξ after t samples. Define the event

B “t@t P N : }pµt ´ µ}2 ď Uballptqu

Xt@t P N, @s P rM s : |aJs pµt ´ µ| ď Uconptqu.
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Let N be a minimal 1
2 -net of SD´1. Observe that since for any y P N , }y}2 “ 1, for any

j P rM s, }aj}2 “ 1 and νi is σ-sub-Gaussian, if X „ νi, then for z P N Y taj : j P rM su

›

›zJX
›

›

ψ2
ď }X}ψ2

ď σ

so that zJX is σ-sub-Gaussian.

By the union bound, Lemma 20, and a similar argument as in (3.75),

PrpBc
q ď

δ

4K `
δ

4K “
δ

2K .

For the remainder of the proof, suppose that B occurs.

Step 2: µ P R. Suppose µ P R. First, we show that TestF-CB returns only either True

or ?. Towards a contradiction, suppose that TestF-CBptq “ False. Then, since µ P R and

event B,

Uballptq ă distppµt, Rq ď }pµt ´ µ}2 ď Uballptq,

which is a contradiction. Thus, TestF-CB returns either True or ?.

Next, we show that TestF-CBptq “ True for all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2
q
K

δ
q

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uconpρq ă
distpµ, BRq

2 “
minsPrMs bs ´ aJs µ

2 .

where the equality follows by Lemma 13. By Lemma 21,

ρ ď cσ2 distpµ, BRq´2 logp logp distpµ, BRq´2qKM

δ
q

for some universal positive constant c. Let t ě ρ. Fix r P rM s. Then, by event B,

aJr pµt ` Uconpt, δq ď a
J
r µ` 2Uconptq

ď aJr µ` br ´ a
J
r µ

“ br.

Thus, TestF-CBptq “ True.
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Step 3: µ P Rc. Suppose µ P Rc. Towards a contradiction, suppose that TestF-CBptq

returns True. Then, for all s P rM s, aJs pµt ` Uconptq ď bs. Then, by the event B,

bs ě a
J
s pµt ` Uconptq ě a

J
s µ

which contradicts the assumption that µ R R. Thus, TestF-CBptq only returns ? or False.

Next, we show that TestF-CBptq returns False for all

t ě cD distpµ, BRq´2 logplogp distpµ, BRq´2qK

δ
q

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uballpρq ă
distpµ, BRq

2 .

By Lemma 21, ρ ď cσ2D distpµ, BRq´2 logp logp distpµ,BRq´2q2K
δ

q for some universal positive

constant c. Let t ě ρ. Towards a contradiction, suppose that TestF-Bptq “ ?. Then,

distppµt, Rq ď Uballptq and distppµt, Rcq ď Uballptq, so there exists x P BR such that }pµt ´ x}2 ď

Uballptq. Then, by the triangle inequality and event B,

}µ´ x}2 ď }µ´ pµt}2 ` }pµt ´ x}2

ď Uballptq ` Uballptq

ă distpµ, BRq

ď }µ´ x}2 ,

which is a contradiction. Thus, for all t ě ρ, TestF-CBptq returns False. The result follows.

3.12.3 Proof of Upper Bound for TF-LUCB-C

First, we prove a more general version of Theorem 14 that allows for any polyhedron.

Theorem 13. Let δ ą 0, P “ tx P RD : Ax ď bu, and pν, P, c,mq PM. For all i P rKs

such that µi R P , let ∆̃i “ maxsPrMs aJs µi ´ bs. With probability at least 1´ δ, TF-LUCB-C

returns TOPτ such that TOPτ “ OPT and

τ ď min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTc
J
pµj ´ µiq,

K

δ
q `

ÿ

iPI

F p∆̃i,
KM

δ
q (3.78)

`
ÿ

iPOPT
maxpF pmin

jPS
cJpµi ´ µjq,

KM

δ
qq, F p distpµi, BP q,

KM

δ
qq

ı

. (3.79)

93



where c is a universal positive constant.

Proof. By Theorem 9, it suffices to show that for any pξ, Rq P Npoly where ξ is σ-sub-Gaussian

and has mean µ P RD, with probability at least 1´ δ
2K , if µ P R, then TestF-C only returns

either ? or True and for all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2
q
K

δ

where c is a universal positive constant, TestF-Cptq returns True, and if µ R R, then TestF-C

only returns either ? or False and for all

t ě cσ2∆̃´2 logplogp∆̃i
KM

δ
q

where ∆̃ “ maxsPrMs aJs µ ´ bs and c is a universal positive constant, TestF-Cptq returns

False.

Step 1: Define the event. Let pµt denote the empirical mean of ξ after t samples.

Define the event B “ t@t P N, @s P rM s : |aJs ppµt ´ µq| ď Uconpt, δqu.

Observe that since for any s P rM s, }as}2 “ 1 and νi is σ-sub-Gaussian, if X „ νi, then

›

›aJsX
›

›

ψ2
ď }X}ψ2

ď σ

so that aJsX is σ-sub-Gaussian.

Then, by Lemma 20,

PrpBc
q “ PrpDt P N, Ds P rM s : |aJs ppµt ´ µq| ą Uconpt, δqq

“M PrpDt P N : |aJs ppµt ´ µq| ą Uconpt, δqq

ďM
δ

2KM
“

δ

2K .

So, PrpBq ě 1´ δ
2K . For the remainder of the proof, we suppose that B occurs.

Step 2: µ P R. Suppose µ P R. Towards a contradiction, suppose that TestF-Cptq “

False. Then, there exists s P rM s such that aJs pµt ´ Uconpt, δq ą bs. Then, by the event B,

bs ă a
J
s pµt ´ Uconpt, δq ď a

J
s µ
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which contradicts the assumption that µ P R. Thus, TestF-C only returns either ? or True.

Next, we show that TestF-Cptq “ True for all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2
q
K

δ

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uconpρ, δq ă
distpµ, BRq

2 “
minsPrMs bs ´ aJs µ

2 .

where the equality follows by Lemma 13. By Lemma 21,

ρ ď cσ2 distpµ, BRq´2 logp logp distpµ, BRq´2qKM

δ
q

for some universal positive constant c. Let t ě ρ. Fix r P rM s. Then, by the event B,

aJr pµt ` Uconpt, δq ď a
J
r µ` 2Uconpt, δq

ď aJr µ` br ´ a
J
r µ

“ br.

Thus, TestF-Cptq “ True.

Step 3: µ P Rc. Next, suppose µ P Rc. Let s P rM s such that ∆̃ “ aJs µ´ bs. Towards

a contradiction, suppose that TestF-Cptq returns True. Then, aJs pµt ` Uconpt, δq ď bs. Then,

by the event B,

bs ě a
J
s pµt ` Uconpt, δq ě a

J
s µ

which contradicts the assumption that µ R R and our choice of s P rM s. Thus, TestF-Cptq

only returns ? or False.

Next, we show that TestF-Cptq “ False for all t ě cσ2∆̃´2 logp logp∆̃´2qKM
δ

q where c is a

universal positive constant. Let ρ denote the smallest integer such that

Uconpτ, δq ă
∆̃
2 .

By Lemma 21, ρ ď cσ2∆̃´2 logp logp∆̃´2qKM
δ

q for some universal positive constant c. Let t ě ρ.

Then, by the event B

aJs pµt ´ Uconpt, δq ě a
J
s µ´ 2Uconpt, δq

ě aJs µ´ pa
J
s µ´ bsq

“ bs.
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Thus, TestF-Cptq “ False.

In general, ∆̃i can be arbitrarily smaller than distpµi, P q, as indicated by the following

Proposition.

Proposition 3. For all M ą 0 and for all ε ą 0, there exists a polyhedron P “ tx P RD :

Ax ď bu and x0 P RD such that distpx0, P q ěM and maxi“1,...,M distpx0, tx P RD : aJi x ď

biuq ď ε.

Proof of Proposition 12. Consider the case D “ 2. Fix M ą 0 and ε ą 0. Consider

Pα “ tx P R2 : eJ2 x ě 0, pαe1 ` p1´ αqe2q
Jx ě 0u

where α P p0, 1q. Let x0 “ ´Me1. Then, for sufficiently small α P p0, 1q, we have that

distpx0, P q ěM and distpx0, tx P RD : pαe1 ` p1´ αqe2q
Jx ě 0uq ď ε

However, the Theorem 14 shows that it has good performance in the setting where

aJi aj “ 0 for all i ‰ j P rKs.

Theorem 14. Let δ ą 0, P “ tx P RD : Ax ď bu such that for any l ‰ k P rKs, aJl ak “ 0,

and pν, P, c,mq PM. For each i P rKs such that µi R P , define vi “ |tj : aJj µi ą bju|. With

probability at least 1´ δ, TF-LUCB-C returns ppO,pS,pIq such that pO “ OPT, pS Ă SUBOPT,
pI Ă INFEAS, and τ ď

min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTc
J
pµj ´ µiq,

K

δ
q `

ÿ

iPI

viF p distpµi, P q,
KM

δ
q (3.80)

`
ÿ

iPOPT
maxpF pminjPScJpµi ´ µjq,

KM

δ
q, F p distpµi, BP q,

KM

δ
q

ı

. (3.81)

Proof of Theorem 14. Let l P rKs such that µl R P . Without loss of generality, by relabeling

a1, . . . ,aM , let

rrs “ tj P rKs : aJj µi ą bju.

Define

Si “ tx P RD : aJi x “ biu

S “ Xi“1,...,rSi
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We will show that

distpµl, P q2 ď distpµl, Sq2 ď r max
i“1,...,r

distpµl, Siq2;

Then, the result will following by plugging the above inequality into the upper bound (3.79)

in the statement of Theorem 13. By relabeling the subspaces, we may assume without loss

of generality that

max
i“1,...,r

distpµl, Siq “ distpµl, S1q.

Define

x0 “ µl,

x1 “ ProjS1px0q,

xi`1 “ ProjSi`1pxiq.

We claim that for all i P rrs, xi “ x0 `
ři
j“1pbj ´ a

J
j x0qaj. We prove this inductively.

By the closed form solution of the distance from a point to a hyperplane and }aj}2 “ 1 for

all j P rM s (Boyd and Vandenberghe, 2004),

x1 “ x0 ` pb1 ´ a
J
1 x0qa1,

which shows that base case. Next, we show the inductive step; suppose xi “ x0`
ři
j“1pbj ´

aJj x0qaj. Then,

xi`1 “ xi ` pbi`1 ´ a
J
i`1xiqai`1

“ x0 `

i
ÿ

j“1
pbj ´ a

J
j x0qaj ` pbi`1 ´ a

J
i`1rx0 `

i
ÿ

j“1
pbj ´ a

J
j x0qajsqai`1

“ x0 `

i`1
ÿ

j“1
pbj ´ a

J
j x0qaj

where we used the assumption that aJi`1aj “ 0 for all j ‰ i ` 1. Thus, the claim follows.

Note that this implies that xr P S.

Next, we note that for i ‰ j,

pxi ´ xi`1q
J
pxj ´ xj`1q “ r´pbi`1 ´ a

J
i`1x0qai`1s

J
r´pbj`1 ´ a

J
j`1x0qaj`1s “ 0.
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Then, by the pythagorean theorem,

distpx0, Sq
2
ď }x0 ´ xr}

2
2

“ }px0 ´ x1q ` px1 ´ x2q ` . . .` pxr´1 ´ xrq}
2
2

“

r
ÿ

i“1
}xi´1 ´ xr}

2
2

ď r distpx0, S1q

“ r max
i“1,...,r

distpx0, Siq.

Next, we show that distpµl, P q ď distpµl, Sq. It suffices to show that xr P P . For

s P rrs, aJs xr “ bs by construction, so let s P rM szrrs. Then, since aJs ak “ 0 for all k P rrs,

it follows that

aJs xr “ a
J
s x0 `

r
ÿ

j“1
pbj ´ a

J
j x0qa

J
s ai ď bs ` 0.

Thus, it follows that distpµl, P q ď distpµl, Sq.

3.13 Alternative Lower Bound

To begin, we discuss our conjecture that there is a small gap between δ- PAC and δ- PAC-EXPLANATORY

algorithms. Essentially a δ- PAC algorithm that is not δ- PAC-EXPLANATORY is allowed

to rule out suboptimal feasible arms by incorrectly concluding that they are infeasible and

to make the analogous mistake for infeasible arms with reward greater than maxpmqjPFEASc
Jµj.

We do not believe that this affords significant savings in sample complexity since δ- PAC

algorithms typically use confidence bounds and to satisfy the δ- PAC criterion, these confi-

dence bounds must be strong enough to determine that arms in OPT are feasible and have

optimal rewards and to rule out every arm in OPTc as either suboptimal or infeasible–all

without prior knowledge of the number of infeasible or suboptimal arms. Nevertheless, we

leave this as an open question.

Next, we discuss the differences between Theorems 7 and 8. Since any δ- PAC-EXPLANATORY

algorithm wrt M is δ- PAC wrt M, we expect the lower bound in Theorem 7 to be at least

as large as the lower bound in Theorem 8, and this is in fact the case. The main dif-

ference between the bounds occurs in the terms corresponding to i P OPT. The term
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minjPOPTcXFEAS c
Jpµi ´ µjq in Theorem 8 is replaced with minjPS cJpµi ´ µjq where S Ě

OPTc
XFEAS. Essentially, in Theorem 7, it is required to show that every arm in OPT

has reward greater than all arms that are ruled out as suboptimal (i.e., belong to S),

whereas in Theorem 8, these arms must only be shown to have reward greater than arms in

FEASXOPTc. We conjecture that Theorem 8 is loose in this respect since intuitively if an

algorithm rules out an arm by concluding that it is suboptimal, then regardless of whether

the arm is feasible, the algorithm must determine that the arms in OPT have reward greater

than it. To see the difference between theorems 7 and 8, consider the case where K “ 3,

m “ 1, cJµ1 ą c
Jµ2 ą c

Jµ3, arms 1 and 3 are feasible and arm 2 is feasible. If arm 2 is very

close to the boundary, then it may be much easier to show that arm 2 is suboptimal than to

show that it is infeasible. In this case, the term reflecting the difficulty of showing that arm

1 is optimal will differ in the two theorems. Specifically, in this case, OPTc
XFEAS “ t3u

and S “ t2, 3u, so

min
jPOPTcXFEAS

cJpµ1 ´ µjq “ c
J
pµ1 ´ µ3q ą c

J
pµ1 ´ µ2q “ min

jPS
cJpµi ´ µjq.

Next, we prove Theorem 8. The proof has many similarities with the proof of Theorem

7. Recall the notation that for a given problem pν, P, c,mq, we define

FEASpν, P, c,mq “ ti P rKs : µi P P u, INFEASpν, P, c,mq “ FEASpν, P, c,mqc,

OPTpν, P, c,mq “ ti P FEASpν, P, c,mq : cJµi ě maxpmqjPFEASpν,P,c,mq c
Jµju,

SUBOPTpν, P, c,mq “ ti P rKs : cJµi ă maxpmqjPFEASpν,P,c,mq c
Jµju.

Proof of Theorem 8. Fix δ ą 0. Let pν, P, c,mq satisfy the hypotheses of the Theorem

statement; note that these properties imply that pν, P, c,mq PM. Let A denote a δ- PAC

algorithm with stopping time τ .

In each of the next steps, we will define a new problem to obtain a lower bound. To avoid

notational clutter, we will redefine the symbols µ1i, ν 1i, and νpiq in each step. The context

should make their meaning clear.

Step 1.a: reward bound for i P OPT. Fix i P OPT. First, we show that

EνrNipτqs ě 2 lnp 1
2.4δ qr min

jPFEASXOPTc
cJpµi ´ µjq ` εs

´2
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for a sufficiently small ε ą 0. If FEASXOPTc
“ H, minjPFEASXOPTc c

Jpµi ´ µjq “ ´8 by

definition and there is nothing to show. So, suppose that FEASXOPTc
‰ H. Define

j0 “ arg max
jPFEASXOPTc

cJµj.

Define for all j P rKs

µ1j “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˝

µi,1 ´ µj0,1 ´ ε

µi,2:D

˛

‹

‚

if j “ i

µj if j ‰ i

ν 1j “ Npµ1j, IDq.

where ε ą 0 is chosen sufficiently small such that for any δ P r0, εq cJµ1i ` δ ‰ cJµ1j for all

j ‰ i (which is possible since cJµl ‰ cJµk for all l ‰ k P rKs). Define νpiq “ pν 11, . . . , ν 1Kq

and consider the problem pνpiq, P, c,mq. We claim that pνpiq, P, c,mq PM. Since µi R BP

and BP “ BpR ˆ P 1q “ R ˆ BP 1 for some P 1 Ă RD´1, µ1i R BP . Further, by construction,

cJµ1i ‰ c
Jµ1j for all j ‰ i. Thus, none of the arms have means on the boundary of P and

all of the rewards of the arms are distinct, so pνpiq, P, c,mq PM.

Consider the event B “ ti P pOu. Define OPTi “ OPTpνpiq, P, c,mq and FEASi “

FEASpνpiq, P, c,mq. Observe that i R OPTi since j0 P FEASi and cJµ1i ă cJµ1j0 “

maxjPFEASXOPTc c
Jµj., so that there are m feasible arms with reward greater than cJµ1i.

Then, since A is δ- PAC wrt to M, pνpiq, P, c,mq PM, and arm i R OPTi, we have that

PrνpiqpBq ď PrνpiqpOPT ‰ pOq ď δ. (3.82)

Further, since A is δ- PAC wrt M,

Prνpi P pOq ě PrνpOPT “ pOq ě 1´ δ. (3.83)
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Then,

1
2rc

J
pµi ´ µj0q ` εs

2EνrNipτqs “ KLpνi, ν 1iqEνrNipτqs (3.84)

ě dpPrνpBq,PrνpiqpBqq (3.85)

ě dpPrνpBq, δq (3.86)

ě dp
1´ δ

2 , δq (3.87)

ě lnp 1
2.4δ q. (3.88)

Line (3.84) follows by the formula for the KL-divergence of two multivariate normal distribu-

tions, (3.85) follows by Lemma 11, (3.86) follows since x ÞÑ dpx, yq is increasing when x ą y,

(3.82), (3.83), and δ ă .1, (3.87) follows since y ÞÑ dpx, yq is decreasing when x ą y, (3.82),

(3.83), and δ ă .1, and (3.88) follows by Lemma 18. The claim follows by rearranging the

inequality.

Step 1.b: feasibility bound for i P OPT. A similar argument to step 2.b from the

proof of Theorem 7 yields

1
2p distpµi, BP q ` εq2EνrNipτqs ě lnp 1

2.4δ q. (3.89)

Step 2: i P FEASXOPTc.

This step is very similar to step 3 of the proof of Theorem 7 and yields

lnp 1
2.4δ q ď

1
2rc

J
pµj0 ´ µiq ` εs

2EνrNipτqs. (3.90)

Step 3: i P INFEASXSUBOPTc. Since P ‰ RD and P is nonempty, by Lemma 16

BP is nonempty. Since in addition BP is closed, by Lemma 12, there exists τi P ProjBP pµiq.

By definition of M, since τi P BP , for every ε ą 0, Bεpτiq X P ˝ ‰ H. Thus, for sufficiently

small ε ą 0, there exists a direction v P RD with }v}2 “ 1 such that τi ` εv P P ˝. Since by

definition ofM, P “ RˆP 1 for some P 1 Ă RD´1, we can choose v such that v1 “ 0. Define

for all j P rKs

µ1j “

$

’

&

’

%

τi ` εv if j “ i

µj if j ‰ i

ν 1j “ Npµ1j, IDq.
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Define νpiq “ pν 11, . . . , ν 1Kq and consider the problem pνpiq, P, c,mq. It follows that pνpiq, P, c,mq P

M by a similar argument that showed in step 2.b of the proof of Theorem 7 that when

i P OPT, pνpiq, P, c,mq PM.

Define the event B “ ti R pOu. Define OPTi “ OPTpνpiq, P, c,mq and SUBOPTi “

SUBOPTpνpiq, P, c,mq. Then, i P OPTi since µ1i P P and i P SUBOPTc
i implies that

cJµ1i ě maxpmqlPFEAS c
Jµ1l. Thus, since A is δ- PAC wrt M,

PrνpiqpBq ď PrνpiqppO ‰ OPTq ď δ, and PrνpBq ě 1´ δ.

Therefore, by a series of inequalities similar to those in (3.23)-(3.26) in ste 2.b of the proof

of Theorem 7,

lnp 1
2.4δ q ď

1
2p distpµi, P q ` εq2EνrNipτqs. (3.91)

Step 4: i P INFEASXSUBOPT. If INFEASX SUBOPT “ H, there is nothing

to show. Thus, we may suppose without loss of generality that INFEASX SUBOPT ‰ H.

Then, since in particular SUBOPT ‰ H, there are m feasible arms and we may define

j0 “ arg maxpmqlPFEASc
Jµl.

By the same argument at the beginning of Step 3, there exists τi P ProjBP pµiq and for

sufficiently small ε ą 0, there exists a direction v P RD with }v}2 “ 1 and v1 “ 0 such that

τi ` εv P P
˝. Define for all j P rKs

µ1j “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˝

µi,1 ` µj0,1 ` ε

τi,2:D ` εv2,D

˛

‹

‚

if j “ i

µj if j ‰ i

ν 1j “ Npµ1j, IDq.

where we choose ε ą 0 sufficiently small so that for any δ P r0, εq, cJµ1i´δ ‰ cJµ1j for all j ‰ i

(which is possible since cJµl ‰ cJµk for all l ‰ k P rKs). Then, define νpiq “ pν 11, . . . , ν 1Kq

and consider the problem pνpiq, P, c,mq. Using arguments similar to those in step 1, it follows

that pνpiq, P, c,mq PM.
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Consider the event B “ ti R pOu. Then, PrνpBq ě 1 ´ δ. Define for the sake of brevity

OPTi “ OPTpνpiq, P, c,mq. Observe that µ1i P P and cJµ1i ą cJµ1j0 , so that i P OPTi.

Then, since A is δ- PAC wrt M, PrνpiqpBq ď δ. Then,

lnp 1
2.4δ q ď KLpνi, νpεqi,P,cqEνrNipτqs (3.92)

“
1
2p distpµi, P q ` εq2 ` rctpµi ´ µj0q ` εs2sEνrNipτqs (3.93)

ď maxpp distpµi, P q ` εq2, rctpµi ´ µj0q ` εs2qEνrNipτqs (3.94)

where line (3.92) follows by a series of inequalities similar to (3.84)-(3.88), and line (3.93)

follows by the definition of KL divergence of multivariate normal distributions.

Step 5: Putting it together. Using Eνrτ s “
řK
i“1 EνrNipτqs and inequalities (3.88).

(3.89), (3.90), and (3.91), we establish for all sufficiently small ε ą 0,

Eνrτ s ě2 lnp 1
2.4δ q

”

ÿ

iPOPT
maxpr min

jPOPTcXFEAS
cJpµi ´ µjq ` εs

´2, r distpµi, BP q ` εs´2
q

`
ÿ

iPOPTcXFEAS
r min
jPOPT

cJpµj ´ µiq ` εs
´2
`

ÿ

iPINFEASX SUBOPTc
r distpµi, P q ` εs´2

`
ÿ

iPINFEASX SUBOPT

1
2 minpr min

jPOPT
cJpµj ´ µiq ` εs

´2, r distpµi, P q ` εs´2
q

ı

.

Since this bound holds for all ε ą 0 sufficiently small, letting ε ÝÑ 0 on the RHS of the

above inequality establishes the result.

3.14 Technical Lemmas

We use the following lemma from Kaufmann et al. (2016b). Although they prove it for

the case where arms are associated with scalar distributions, the proof generalizes to multi-

dimensional distributions by simply replacing the scalar-valued distributions in the proof

with vector-valued distributions. Let It P rKs denote the arm chosen by an agent at

time t and Xt „ νIt . Let Ft “ σpI1,X1, . . . , It,Xtq, i.e., the sigma-algebra generated

by I1,X1, . . . , It,Xt.
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Lemma 11. Let ν and ν 1 be two bandit models with K arms such that for all a, the dis-

tributions νa and ν 1a are mutually absolutely continuous. Let τ denote a stopping time wrt

pFtq. Then,

K
ÿ

i“1
EνrNipτqsKLpνa, ν 1aq ě sup

EPFτ
dpPrνpEq,Prν1pEqq

Lemma 12. Let x P RD and A Ă RD be a closed nonempty set. Then, ProjApxq is

nonempty.

Proof. Let r ą 0 large enough such that B̄rpxq X A ‰ H. Then, observe that there exists

y P ProjAXB̄rpxqpxq since A X B̄rpxq is a compact set and }¨}2 is continuous. Towards a

contradiction, suppose there exists z P A such that

}z ´ x}2 ă }y ´ x}2 .

Then, z P A X B̄rpxq, which implies that y R ProjAXB̄rpxqpxq, a contradiction. Thus, for all

z P A,

}y ´ x}2 ď }x´ y}2 .

Thus, y P ProjApxq.

Lemmas 13 and 14 appear in Katz-Samuels and Scott (2018). For the sake of complete-

ness, we restate the proof.

Lemma 13. Let P “ tx P RD : Ax ď bu with A P RMˆD. Let µ P P . Then,

dispµ, BP q “ min
i“1,...,M

dispµ, tx : aJi x “ biuq.

Proof. It is not hard to establish that BP “ P X pYMi“1tx : aJi x “ biuq. We claim that

dispµ,YMi“1tx : aJi x “ biuq “ dispµ, P X pYMi“1tx : aJi x “ biuqq.

Since YMi“1tx : aJi bx “ biu is closed, there exists y P YMi“1tx : aJi bx “ biu such that

}µ´ y}2 “ dispµ,YMi“1tx : aJi bx “ biuq.
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We claim that y P P . Suppose not (towards a contradiction). Then, there exists θ P p0, 1q

such that z “ p1´ θqµ` θy P BP . Then,

dispµ, pYMi“1tx : aJi x “ biuqq ď }z ´ µ}2 ă }y ´ µ}2 “ dispµ,YMi“1tx : aJi bx “ biuq,

which is a contradiction, establishing the claim. Then,

min
i“1,...,M

dispµ, tx : aJi x “ biuq “ dispµ,YMi“1tx : aJi x “ biuq

“ dispµ, P X pYMi“1tx : aJi x “ biuqq

“ dispµ, BP q.

Lemma 14. Let ε ą 0 and Nε be an ε-net of SD´1. For any y P RD,

}y}2 ď
1

1´ ε sup
zPNε

yJz.

Proof. Let z0 P Nε such that
›

›

›

y
}y}2

´ z0

›

›

›

2
ď ε. Then, by Cauchy-Schwarz,

}y}2 “
yJy

}y}2
“ yJp

y

}y}2
´ z0q ` y

Jz0 ď }y}2

›

›

›

›

y

}y}2
´ z0

›

›

›

›

2
` yJz0 ď ε }y}2 ` y

Jz0.

Rearranging the inequality, we obtain

}y}2 ď
1

1´ εy
Jz0 ď

1
1´ ε sup

zPNε

yJz.

The following Lemma appears in Vershynin et al. (2017) (see Corollary 4.2.13).

Lemma 15. Let ε ą 0 and Nε be a minimal ε-net of SD´1. Then, |Nε| ď p2
ε
` 1qD.

Lemma 16. Suppose A Ă RD is nonempty and A ‰ RD. Then, A has nonempty boundary.

Proof. Suppose that A has empty boundary. Then, for every x P A, there exists a sufficiently

small ball B containing x such that B Ă A and for every y P Ac, there exists a sufficiently

small ball B1 containing y such that B1 Ă Ac. Then, A and Ac are both open sets, which

contradicts the assumption that A is nonempty and A ‰ RD.
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Recall that dpx, yq– x logpx
y
q ` p1´ xq logp1´x

1´y q.

Lemma 17. For x ď .1,

dp
1´ x

2 , xq “
1´ x

2 lnp1´ x2x q `
1` x

2 lnp 1` x
2p1´ xqq ě

1
15 lnp 1

2xq.

Proof. We note that the term

1` x
2 lnp 1` x

2p1´ xqq “
1` x

2 plnp1` xq ´ lnp2p1´ xqqq

is increasing in x P p0, 1q. Thus, for all x P p0, 1q,

1` x
2 plnp1` xq ´ lnp2p1´ xqqq ě 1

2 lnp1{2q ě ´.35.

Next, for x ď .1,

1´ x
2 lnp1´ x2x q “

1´ x
2 rlnp1´ xq ` lnp 1

2xqs

ě
1´ x

2 rlnp0.9q ` lnp 1
2xqs

ě
1
2 ¨ p´0.106q ` 1´ x

2 lnp 1
2xq

ě
1
2 ¨ p´0.106q ` 1

3 lnp 1
2xq.

Then, putting it together, for x ď .1,

1` x
2 lnp 1` x

2p1´ xqq `
1´ x

2 lnp1´ x2x q ě
1
3 lnp 1

2xq ´ 0.35´ 1
2 ¨ p0.106q

ě
1
3 lnp 1

2xq ´
4
15 lnp 1

2xq

“
1
15 lnp 1

2xq.

where we used the fact that 4
15 lnp 1

2xq ě 0.403 for all x ď 0.1.

The following Lemma is from Kaufmann et al. (2016b).

Lemma 18. For any x P r0, 1s, dpx, 1´ xq ě lnp 1
2.4xq.

Lemma 19. Let P Ă RD and let x P P and y P P c. Then, there exists θ P r0, 1s such that

θx` p1´ θqy P BP .
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Proof. Since x P P and y P P c, by Lemma 16, BP ‰ H. Consider the following sequence,

which resembles binary search.

x0 “ x

x1 “ y

x2 “
1
2px` yq

xn “

$

&

%

1
2xn´1 `

1
2xminpk:@lPtk`1,...,n´1u,xlPP q : xn´1 P P

1
2xn´1 `

1
2xminpk:@lPtk`1,...,n´1u,xlPP cq : xn´1 P P

c
.

txnu is clearly a Cauchy sequence so that it has a a limit x̄ “ θx` p1´ θqy P BP for some

θ P r0, 1s. If for every N P N, there exist n,m ě N such that xn P P and xm P P c, then it is

clear that x̄ P BP . Suppose that there exists N such xN P P and for every n ą N , xn R P

(the other case is similar). Then, it is clear that x̄ “ xN and that every open ball containing

x̄ contains some point not in P , so that x̄ P BP .

We use the anytime confidence interval from Kaufmann et al. (2016b).

Lemma 20. Let X1, X2, . . . be i.i.d. zero-mean sub-Gaussian random variables with scale

σ ą 0 and δ P p0, 1q. Then,

PrpDt : |1
t

J
ÿ

s“1
Xs| ě σ

c

2 logp1{δq ` 6 log logp1{δq ` 3 log logpetq
t

q ď δ.

Recall that Upt, δq “ σ
b

2 logp1{δq`6 log logp1{δq`3 log logpetq
t

. We use the following fact from

Jamieson and Jain (2018).

Lemma 21. Let ∆ P p0, 1q and δ P p0, 1q. There is a universal constant c ą 0 such that if

N ě c∆´2 logp logp∆´2q

s
q

then UpN, sq ď ∆.

3.15 TF-LUCB with Tolerance

In this section, we present a variant of TF-LUCB that tolerates some violation of the con-

straints and some suboptimality: TF-LUCB-Tol. TF-LUCB-Tol also takes as input two
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scalars εP and εc, which quantify how much the algorithm tolerates a violation of the con-

straints and suboptimality, respectively. The main difference is that TestF-Tol also takes as

input εP and the stopping condition associated with the rewards is now

min
iPTOPt

cJpµi,Niptq ´ UcpNiptq, δq ` εc ě max
jPTOPct XEt

cJpµj,Njptq ` UcpNjptq, δq.

Next, we introduce variants of TestF-B and TestF-C that allow for a tolerance. TestF-B-Tol

now returns True if BUballpt,δqppµi,tq intersects P and P c and Uballpt, δq ď
εP
2 . Since the diam-

eter of BUballpt,δqppµi,tq is 2Uballpt, δq, this guarantees that on an event where the confidence

bounds work appropriately, we only accept µi such that distpµi, P q ď εP . TestF-C-Tol tol-

erates violations on a constraint-basis instead. Now, it accepts arms if Uconpt, δq ď
εP
2 . Thus,

assuming an event on which the confidence bounds work appropriately, it only tolerates

mistakes on arms such that for every constraint j P rM s, aJj µi ď bj ` εP .

Algorithm 9 TestF-B-Tol:
Input: arm index i, number of pulls t, εP
if distppµi,t, P cq ą Uballpt, δq then

return True

else if distppµi,t, P q ą Uballpt, δq then

return False

else if Uballpt, δq ď
εP
2 then

return True

else

return ?

end if

Algorithm 10 TestF-C-Tol:
Input: arm index i, number of pulls t, εP
if Apµi,t ` Uconpt, δq1 ď b then

return True

else if Apµi,t ´ Uconpt, δq1 � b then

return False

else if Uconpt, δq ď
εP
2 then

return True

else

return ?

end if
Proving the upper bound for this algorithm would have a similar structure to what we

have done in this paper. One subtlety is that finding the top m feasible arms depends on

which arms we consider to be feasible so that accepting as feasible an arm that is in fact

infeasible might make the problem more difficult. We conjecture that the upper bound would

reflect this subtlety. We leave the proof of an upper bound of this to future work.

However, as a practical consideration, we also note that accepting as feasible an arm

that is in fact infeasible might make the problem much easier. We conjecture that in most
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Algorithm 8 TF-LUCB-Tol: Top-m Feasible Upper Confidence Bound algorithm
1: Input: TestF, sub-Gaussian norm bound σ, confidence δ, εP , εc
2: for t “ 1, 2, . . . do

3: Ft ÐÝ ti P rKs : TestFpi, Niptq, εP q “ Trueu # arms that are determined to be

feasible whp

4: Gt ÐÝ ti P rKs : TestFpi, Niptq, εP q “ ?u# arms that have not be determined to be

feasible or infeasible whp

5: Et ÐÝ Ft YGt # arms that are not ruled out as infeasible whp

6: TOPt ÐÝ arg maxZĂEt,|Z|“minpm,|Et|q
ř

iPZ c
J
pµi,Niptq

7: if TOPt “ Ft and Ft “ Et then

8: return pTOPt,TOPc
t XEt, E

c
t q

9: else if TOPt Ă Ft and miniPTOPt c
J
pµi,Niptq ´ UcpNiptq, δq ` εc ě

maxjPTOPct XEt c
J
pµj,Njptq ` UcpNjptq, δq then

10: return pTOPt,TOPc
t XEt, E

c
t q

11: else if TOPt Ă Ft then

12: ht “ arg miniPTOPt c
J
pµi,Niptq ´ UcpNiptq, δq

13: else if TOPt Ć Ft then

14: ht “ arg miniPTOPtXGt c
J
pµi,Niptq ´ UcpNiptq, δq

15: end if

16: if TOPc
t XEt ‰ H then

17: lt “ arg maxjPTOPct XEt c
J
pµj,Njptq ` UcpNjptq, δq

18: Pull arm lt

19: end if

20: Pull arm ht

21: end for

applications, there is no a priori reason to believe that doing this would make the problem

easier or more difficult. Furthermore, this issue could be somewhat alleviated by allowing a

tolerance for suboptimality.
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3.16 Pseudocode for algorithms TF-AE and FFAF

Algorithm 11 TF-AE: Top-m Feasible Action Elimination
1: Input: TestF, sub-Gaussian norm bound σ, confidence δ

2: tÐÝ 1

3: while True do

4:

5: Ft ÐÝ ti P rKs : TestFpi, Niptqq “ Trueu # arms that are determined to be feasible

whp

6: Gt ÐÝ ti P rKs : TestFpi, Niptqq “ ?u# arms that have not be determined to be

feasible or infeasible whp

7: Et ÐÝ Ft YGt # arms that are not ruled out as infeasible whp

8: Ht ÐÝ ti P rKs : |tj P Ft : cJpµj,Njptq´UcpNjptq, δq ě c
J
pµi,Niptq`UcpNiptq, δqu| ă mu

9: Qt ÐÝ Et XHt

10: for i P Qt do

11: pull arm i

12: tÐÝ t` 1

13: end for

14: if Et “ Ft and |Ft| ă m then

15: return Ft

16: else if Qt Ă Ft and |Qt| “ m then

17: return Qt

18: end if

19: end while

For FFAF, we require that it find the the feasible arms with probability at least 1 ´ δ
2

and, then, to find the best arms among those with probability at least 1 ´ δ
2 . Thus, we

require that TestF output the correct answer with probability at least 1 ´ δ
2K . We modify

the confidence bound for the rewards in the second stage since in that stage there are only

|Ft| arms among which the m arms with the largest rewards must be identified.
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Algorithm 12 FFAF: Find Feasible Arms First
1: Input: TestF, sub-Gaussian norm bound σ, confidence δ

2: tÐÝ 1

3: for i P rKs do

4: while TestFpi, Niptqq “? do

5: Pull arm i

6: tÐÝ t` 1

7: end while

8: end for

9: Ft ÐÝ ti P rKs : TestFpi, Niptqq “ Trueu # arms that are determined to be feasible

whp

10: if |Ft| ď m then

11: return Ft

12: end if

13: Ucps, δq– Ups, δ
2|Ft|q

14: while True do

15: TOPt “ arg maxZĂFt,|Z|“m
ř

iPZ c
J
pµi,Niptq

16: if miniPTOPt c
J
pµi,Niptq ´ UcpNiptq, δq ě maxjPTOPct XFt c

J
pµj,Njptq ` UcpNjptq, δq then

17: return TOPt

18: end if

19: ht “ arg miniPTOPt c
J
pµi,Niptq ´ UcpNiptq, δq

20: lt “ arg maxjPTOPct XFt c
J
pµj,Njptq ` UcpNjptq, δq

21: Pull arms ht and lt

22: tÐÝ t` 1

23: end while
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Chapter 4

The True Sample Complexity of

Identifying Good Arms

We consider two multi-armed bandit problems: (i) given an ε ą 0, identify an arm with

mean that is within ε of the largest mean and (ii) given a threshold µ0 and k, minimize the

time to identify k arms with means larger than µ0. Existing lower bounds and algorithms

for the PAC framework suggest that both of these problems require Ωpnq samples. However,

we argue that these definitions not only conflict with how these algorithms are used in

practice, but also that these results disagree with strong intuition that says (i) requires

only Θp n
m
q samples where m “ |ti : µi ą maxiPrns µi ´ εu| and (ii) requires Θp n

m
kq samples

where m “ |ti : µi ą µ0u|. We provide definitions that formalize these intuitions, obtain

lower bounds that match the above sample complexities, and develop explicit, practical

algorithms that achieve nearly matching upper bounds. This Chapter is joint work with

Kevin Jamieson.

4.1 Introduction

Define a multi-armed bandit instance ρ as a collection of n distributions over R where the

jth sample from the ith distribution ρi is an iid random variable Xi,j „ ρi with ErXi,js “ µi.

Proceeding in rounds, at round t a player selects an index It P rns :“ t1, . . . , nu, immediately

observes XIt,t, and then outputs a set pSt Ď rns. With respect to the filtration pFtqtPN
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where Ft “ tpIs, XIs,s, pSsq : 1 ď s ď tu, It is Ft´1 measurable while XIs,s and pSt are Ft
measurable, each with possibly additional external sources of randomness. Informed by past

observations Ft´1 up to time t ´ 1, at round t the player chooses which distribution ρIt to

observe a sample from in order to accomplish a predetermined objective for pSt as quickly as

possible (i.e., minimizing the total number of observed samples).

Two important problems that arise in this setting are (i) identifying an arm with the

largest mean (commonly referred to as best arm identification) and (ii) identifying all of the

arms with means above a given threshold µ0 P R. Applications of (i) include drug or material

design in the presence of noisy experiments. Applications of (ii) include genetic screens where

individual genes are inhibited to infer a causal dependence to some experimentally measured

phenotype relative to a control wild-type phenotype; typically multiple genes are identified

as influencing the phenotype.

Unfortunately solving these problems requires an impractical number of samples, espe-

cially if the number of arms is large. In practice, it is often sufficient to solve relaxations of

these problems. For example, if it enables significant savings, identifying a nearly optimal

material design is satisfactory and, similarly, a scientist is typically content to discover a few

of the important genes for a phenotype. These relaxations can be formalized as follows:

1. Identifying an ε-good mean: for a given ε ą 0, minimize τ such that the index
pSt P rns satisfies µ

pSt
ą maxiPrns µi ´ ε for all t ě τ with high probability.

2. Identifying means above a threshold µ0: for a given threshold µ0 P R and k P rns,

minimize τk such that the set pSt Ď rns satisfies |pSt X ti : µi ą µ0u| ě minpk, |ti : µi ą

µ0u|q for every t ě τk subject to pSs X ti : µi ď µ0u “ H for all times s with high

probability1.

Note that in the first problem we allow pSt R ti : µi ą µ1 ´ εu for some times t but for the

second we require pSt Ď ti : µi ą µ0u for all times t with high probability. That is, the first

problem allows mistakes while the second does not.
1The constraint pSs X ti : µi ď µ0u “ H is known as a family-wise error rate (FWER) condition. We

will also consider a more relaxed condition known as false discovery rate (FDR) which controls the size of

Er|pSs X ti : µi ď µ0u|{|pSs|s
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The goal of this work is to characterize the number of samples that are necessary and

sufficient to achieve these objectives. The difficulty of the objectives are closely related,

which we now describe. For a fixed set of means µ1 ě ¨ ¨ ¨ ě µn and any threshold µ0 there

exists an ε “ µ1 ´ µ0 so that tµi : µi ą µ1 ´ εu “ tµi : µi ą µ0u. Thus, identifying k

arms above the threshold µ0 is equivalent to identifying k ε-good means for ε “ µ1 ´ µ0.

Consequently, if m “ |ti P rns : µi ą µ1 ´ εu| then we can study lower bounds on the sample

complexity of both problems simultaneously by considering the necessary number of samples

required to identify k of the m largest means (i.e., to have pSt Ă rms with |pSt| “ k) for any

value of 1 ď k ď m. However, while considering m is a useful tool for analysis, it should be

stressed that m is never known to the algorithm and must be adapted to and, in

fact, such knowledge significantly simplifies this problem. For the following discussion, one

can take k “ 1 for simplicity.

If there is just a single ε-good distribution out of the total n so that m “ 1, then any

strategy will have to sample from about n distributions before coming across the unique ε-

good distribution. However, if there are 1 ă m ď n means which are ε-good then choosing to

sample from distributions uniformly at random will eventually take a sample from an ε-good

distribution about m times faster than if there were just a single good distribution. Thought

of a different way, if at least n{m indices are drawn uniformly at random from t1, . . . , nu then

with constant probability at least one of them will be ε-good. Thus, when there are m ε-good

distributions, one should expect the number of samples to identify an ε-good distribution to

scale as n{m, not n. In an extreme case, if m is Θpnq so that a linear number of

the distributions are ε-good, then one should expect the number of samples to

identify an ε-good distribution to be constant with respect to n. Similarly, if there

are m means above the threshold µ0, then one would expect the number of samples required

to identify at least 1 ď k ď m of them should scale like k n
m

, not n.

Unfortunately, confirmation of this intuition in sample complexities that depend on m

and are potentially independent of n is almost entirely absent from the existing literature for

both of the above problems. In the case of identifying arms above a threshold, only the case

of identifying all k “ m arms above the threshold has been addressed, ignoring the reality

that only rarely is it possible to identify all of m as they require often impractical Ωpnq
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sample complexities. In the case of identifying an ε-good arm, using the definitions accepted

hitherto by the community, one can prove information theoretic lower bounds that conflict

with the above intuition, as we discuss below. This chapter aims to develop definitions,

algorithms, and lower bounds that confirm the necessary and sufficient conditions

for obtaining the intuitive sample complexities expected. Identifying means above

a threshold will be addressed in the coming sections. But for now we turn our attention to

identifying an ε-good arm.

4.1.1 Revisiting identifying an ε-good arm

Identifying an ε-good arm with high probability in the multi-armed bandit literature has

been studied by dozens of works over the past several decades. We begin by considering

the standard definition under which the sample complexity of identifying an ε-good arm is

characterized.

Definition 5. We say an algorithm is pε, δq-PAC (Probably Approximately Correct)

on P if, when executed on any bandit instance ρ P P, with probability at least 1 ´ δ the

algorithm terminates at a stopping time τPAC with respect to pFqtPN and outputs an ε-good

arm.

One typically takes P to be quite large, like the space of all distributions with sub-

Gaussian tails, or for lower bounds P “ tN pµ1, σ2Iq : µ1 P Rnu. For a given ε, δ, instance ρ,

and an instance space P , one lower bounds EρrτPACs for any pε, δq-PAC algorithm. Specif-

ically, known lower bounds Kaufmann et al. (2016a); Mannor et al. (2004) imply that for

a sufficiently rich P we have that any pε, δq-PAC algorithm has an expected sample

complexity ErτPACs of at least n, regardless of m the number of ε-good distribuions

there are among the n. This is necessary because an pε, δq-PAC algorithm must prove that

any output arm pi satisfies µ
pi ě µ1 ´ ε, but the value of µ1 is not known a priori, so the

algorithm must pull every arm about at least once to verify that pi is indeed ε-good2. Con-

trast this with the above discussion where we were merely concerned with how quickly an
2We note that if P is structured enough like in linear bandits, it is possible to identify and verify an

ε-good arm with a sample complexity that does not scale linearly with n.
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algorithm could start outputting an ε-good arm, with no condition of verifying that it is

ε-good.

In this work, we argue that simple regret is the metric of merit Bubeck et al. (2011).

Definition 6. We say an algorithm is pε, δq-SimplePAC on P if, when executed on any

bandit instance ρ P P, there exists a stopping time τsimple wrt pFqtPN such that Ppτsimple ă

8q “ 1 and with probability at least 1 ´ δ the algorithm outputs an ε-good arm at every

t ě τsimple.

Analogous to above, for a given P and ρ P P we would like to lower bound Eρrτsimples for

any pε, δq-SimplePAC algorithm. We emphasize τsimple is for analysis purposes only and is

unknown to the algorithm, and the algorithm never stops taking samples and recommending

sets pSt. Clearly, if an algorithm is pε, δq-PAC for an instance ρ then it is also pε, δq-SimplePAC

for ρ since we may take τsimple “ τPAC and output the arm identified at τPAC at all t ě τPAC .

However, the above discussion suggests that τsimple may be significantly smaller than τPAC

since the former is just a time after which an algorithm only outputs ε-good arms, and the

latter is when the algorithm provides an additional guarantee that that recommended arm is

actually ε-good. Indeed, when m “ n{2 then we will see examples where τsimple “ Op1q while

τPAC “ Ωpnq. To define such a stopping time τsimple, we will use knowledge of the behavior

of the algorithm (e.g., how pSt is constructed) and of the true means of the problem instance.

In particular, we will essentially define τsimple to be the first time that some ε-good arm i is

pulled on the order of pµ1´ ε´ µiq
´2 times and we will show that whp for all t ě τsimple the

algorithm only outputs ε-good arms. The next section provides real-world case studies that

illustrate how algorithms designed for PAC are inferior in practice relative to our proposed

algorithm that is designed for SimplePAC.

4.1.2 Related work

Lower bounds: pε, δq ´ PAC for identifying k ε-good arms

Kaufmann et al. (2016a) proved the following theorem which characterizes the sample com-

plexity for ε-good arm identification k “ 1,m ě 1 and multiple identifications above a
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threshold µ0 in the special case of k “ m (in general, we are interested in any 1 ď k ď m)

in the pε, δq-PAC setting.

Theorem 15 (Kaufmann et al. (2016a)). Fix ε, δ ą 0, and a vector µ P Rn. Fix a bandit

instance ρ of n arms where the ith distribution equals ρipµq “ N pµi, 1q, a Gaussian distribu-

tion with mean µi and variance 1. Assume without loss of generality that µ1 ě µ2 ě ¨ ¨ ¨ ě µn

and let m “ |ti P rns : µi ě µ1 ´ εu| so that µi ě µ1 ´ ε for all i P rms. If algorithm A

returns k “ 1 arms of the top m arms and is pε, δq-PAC on P “ tN pµ1, Iq : µ1 P Rnu then

Eρ
”

n
ÿ

i“1
TipτPACq

ı

ě 1
2 logp1{2.4δq

´

pm´ 1qε´2
`

n
ÿ

i“m`1
pµ1 ´ µiq

´2
¯

pk “ 1q

Under the same conditions, if A returns k “ m arms then

Eρ
”

n
ÿ

i“1
TipτPACq

ı

ě 2 logp1{2.4δq
´

m
ÿ

i“1
pµi ´ µm`1q

´2
`

n
ÿ

i“m`1
pµm ´ µiq

´2
¯

pk “ mq

Note that by the definition of m we have that µm ´ µm`1 ą 0. We emphasize that the

sample complexity of Theorem 15 for both k “ 1 or k “ m is necessarily Ωpnq regardless

of the number of ε-good arms m. As discussed below, the k “ 1 lower bound is achievable

up to log log factors Karnin et al. (2013). The special case of k “ m is notably the TOP-

k identification problem where lower bounds were recently sharpened with additional log

factors independently by Simchowitz et al. (2017b); Chen et al. (2017b). In particular, if for

some µ0 we have µi “ µ0` ε for i ď m and µi “ µ0 for i ă m then their lower bounds on the

expected sample complexity scale like kε´2 logpn ´ kq ` pn ´ kqε´2 logpkq, which is always

larger than nε´2 that is predicted by the above theorem.

Lower bounds: Towards pε, δq-SimplePAC

The limitations of a definition like PAC that requires verifying that the correct hypothesis is

returned has been observed before in the active binary classification literature Balcan et al.

(2010). To illustrate, consider a “noiseless” bandit game where sampling the ith arm returns

a deterministic value µi P t0, 1u. If the player knew that the µi were non-increasing (i.e.,

µi “ 1 for i ď m and µi “ 0 for i ą m) but not the number of 1’s equal to m, then binary

search could identify the top-m arms (and the index of the transition) with just log2pnq total
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samples. However, if the player didn’t know they were non-decreasing, then to even verify

that the first m were indeed 1 and the last n´m means were 0 would require n samples. The

idea is that the player could run binary search and in the favorable case in which the first m

arms were equal to 1 and the remaining 0, the algorithm could start outputting the top-m

arms with just log2pnq pulls (SimplePAC) but not be able to verify it with a certificate until

n pulls are taken (PAC).

In the Simple-PAC definition, for a given instance ρ we wish to lower bound Eρrτsimples.

However, we would like to avoid trivial algorithms that output an index deterministically

that happens to be an ε-good arm by sheer luck. To remove these trivial cases, we adopt the

random permutation model of Simchowitz et al. (2017b); Chen et al. (2017b). Let Sn denote

the set of permutations over rns so that for any π P Sn, πpiq denotes the index that i is mapped

to under π. For a bandit instance ρ “ pρ1, . . . , ρnq let πpρq “ pπpρ1q, πpρ2q, . . . , πpρnqq so

that EπpρqrTπpiqptqs denotes the expected number of samples taken by the algorithm up to

time t from the arm with mean µi when run on instance πpρq. At the start of the game

the algorithm is given a permutation π of the arms chosen uniformly at random from Sn

which we denote as π „ Sn. Thus, the sample complexity of interest is the expected number

of samples taken by the algorithm under πpρq averaged over all possible π P Sn, which we

denote as Eπ„SnrEπpρqrτSimpless “ Eπ„SnrEπpρqr
řn
i“1 TπpiqpτSimpleqss.

The works of Simchowitz et al. (2017b); Chen et al. (2017b) considered this model inde-

pendently to improve the lower bounds of the Top-k problem discussed above (i.e., k “ m).

Remarkably, they proved lower bounds for algorithms that knew the set of means tµ1, . . . , µnu

but just not which mean is assigned to which arm. The conclusions of these works was that

if merely constant confidence is desired (e.g., δ “ 0.01) then the sample complexity for these

two settings (the means known a priori, or not) are equal up to constants. To obtain this

result, at the heart of the analysis of Chen et al. (2017b) is a clever application of Lemma 1

of Kaufmann et al. (2016a). On the other hand, Simchowitz et al. (2017b) obtained the

result for best-arm identification using a more general framework known as the Simulator

argument that we appeal to in this work.

This previous paragraph is still in the PAC setting and by the above theorem, cases

k “ 1 and k “ m have a sample complexity of Ωpnq. As suggested in the introduction, when
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k ă m we should expect that sample complexities of Θpkn{mq are possible for the Simple-

PAC setting. In the context of proving lower bounds, going from identifying all ε-good arms

(k “ m) to merely 1 ď k ă m ε-good arms is non-trivial because whereas in the former

there was only one way for the algorithm to be correct, in the latter there are precisely
`

m
k

˘

subsets of ε-good arms that are equally correct.

Related problem settings have also aimed to identify multiple arms Chaudhuri and

Kalyanakrishnan (2017, 2019). Specifically, given a tolerance η ě 0, they say an arm i

is pη,mq-optimal if µi ě µm ´ η. The objective, given m and η as inputs to the algorithm,

is to identify k pη,mq-optimal arms with probability at least 1 ´ δ. The case when η “ 0

and m “ |ti : µi ą µ1´ εu| coincides with our setting, with the critical difference that in our

setting the algorithm never has knowledge of m. Note that our setting is significantly more

difficult because we have no guide to how many arms we need to sample in order to obtain

an ε-good arm. Nevertheless, this setting is still relevant from a lower bound perspective for

which they prove worst-case instance results for η ą 0. In contrast, in this work we prove

instance-specific lower-bounds that directly apply to their setting.

Upper bounds: Algorithms for ε-good identification

While for lower bounds we can characterize the difficulty of identifying k “ 1 ε-good arm

or 1 ď k ď m arms above a threshold µ0 with a single unifying problem statement as

the difficulty of identifying k of the m largest arms, for upper bounds we require explicit

algorithms that differ slightly depending on the problem in question. We first address the

problem of identifying an ε-good arm (i.e., k “ 1 arms within top m).

With a union bound, one can easily design an pε, δq-PAC algorithm with sample com-

plexity of nε´2 logpn{δq that samples each arm the same number of times and can identify

any number 1 ď k ď m of ε-good arms. Remarkably, Even-Dar et al. (2006) proposed Me-

dian Elimination, a pε, δq-PAC algorithm with sample complexity nε´2 logp1{δq. In addition,

Even-Dar et al. (2006) proposed a very simple elimination or “Chernoff racing” strategy that

has a sample complexity of
řn
i“1 ∆´2

i,ε logpn logp∆´2
i,ε qq where ∆i,ε “ maxtmaxj µj ´ µi, εu. A

decade later Karnin et al. (2013) showed a gap-dependent sample complexity without the

extraneous logpnq, i.e.,
řn
i“1 ∆´2

i,ε logplogp∆´2
i,ε qq which notably used Median Elimination as
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a sub-routine but was impractical for real-world use (the leading constants are in the tens

of thousands and are reflected in the empirical performance of the algorithm). In the years

that followed, for the best-arm identification scenario with ε “ 0, numerous works proposed

alternative schemes to Karnin et al. (2013) that achieved equally favorable sample com-

plexity upper bounds (up to constants) but were practically useful Jamieson et al. (2014b),

shaved off log log factors Chen et al. (2017b), and optimized asymptotic constants Garivier

and Kaufmann (2016).

A closely related problem is known as the infinite armed-bandit problem where the

player has access to an infinite pool of arms such that when a new arm is requested, its mean

is drawn iid from a distribution ν. Nearly all of this work makes parametric assumptions

about ν in some way Berry et al. (1997); Wang et al. (2009); Carpentier and Valko (2015);

Chandrasekaran and Karp (2014); Jamieson et al. (2016). For example, for a drawn arm with

random mean µ it is assumed Ppµ ď xq ě cpx´ µ˚q
β for some fixed parameters c, µ˚, β that

are known (or not). Given an infinite armed bandit algorithm that can identify an ε-good arm

for arbitrary arm distribution ν could be used, in principle, to solve the problem of interest

of this paper by taking νpxq “ 1
n

řn
i“1 1tµi ď xu. The only algorithm that we are aware

of that provides guarantees for general arm distribution ν is Hyperband of Li et al. (2017).

However, this algorithm was designed for a much more general setting and cannot leverage the

particular stochastic structure of our problem (e.g., empirical Bernstein confidence intervals)

and was not designed to take a fixed confidence δ as input, and it thus could waste samples

trying to drive its error probability to zero when just δ sufficed. Nevertheless, our proposed

algorithms are inspired by Hyperband’s hedging strategy of considering different-sized sets

of randomly sampled arms.

Upper bounds: Algorithms for identifying means above µ0.

As alluded to before, in the special case of k “ m this is known as the Top-k problem.

However, algorithms for Top-k require k as input, but of course, m is unknown so it is

impossible to set k “ m a priori, making these algorithm inapplicable in practice. Thus, the

relevant problem statement here is identifying 1 ď k ď m arms above the known threshold

µ0.
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Identifying all arms with means above a threshold µ0 with high probability is known as

the threshold bandit problem Locatelli et al. (2016b); Mukherjee et al. (2017). Specifi-

cally, these works take a time-horizon T and threshold µ0 as input, and sample arms in such

a way as to maximize the probability of classifying all arms correctly above or below the

threshold µ0 (i.e., the k “ m setting). These works explicitly assume no arms are equal to

µ0 and penalize incorrectly predicting a mean above or below the threshold equally. If an

arm’s mean is arbitrarily close to, or equal to, µ0 the required time horizon T of these works

to obtain a non-trivial probability of success is unbounded.

The most related work to this paper is Jamieson and Jain (2018) which proposes an

algorithm that takes a confidence δ and threshold µ0 as input and characterizes the total

number of samples taken before all k “ m arms with means above the threshold are output

with probability at least 1 ´ δ for all future times, that is, the k “ m SimplePAC setting.

Witnessed by the lower bounds of Simchowitz et al. (2017b); Chen et al. (2014b), the proven

sample complexity for this k “ m case is essentially tight up to log log factors. However,

a weakness of this work is that it is silent on the issue of identifying just a subset of size

k ď m means above the threshold. This is a significant gap because if some means above

the threshold are much larger than others, they will clearly be detected earlier, and it is not

clear that the proposed algorithm identifies any 1 ď k ď m in a near-optimal way or just

all m at a particular time. The work of Jamieson and Jain (2018) also notably relaxed the

family-wise error rate (FWER) PpX8t“1t
pSt Ď ti : µi ď µ0uuq ě 1 ´ δ to merely a bounded

false-discovery rate (FDR): maxt E
”

|pStXti:µiďµ0u|

|pSt|

ı

ď δ. Using the more relaxed error criterion

of FDR versus FWER, it was shown that nearly all m arms above the threshold could be

identified substantially faster.

4.2 Lower bounds

As pointed out in the introduction, for any threshold µ0 there exists an ε “ µ1´µ0. Thus, if

m “ |ti : µi ą µ1 ´ εu| then a lower bound for identifying an ε-good arm or k arms above a

threshold µ0 is implied by a lower bound to identify k arms among the m largest means for

any 1 ď k ď m. The next theorem handles all 1 ď k ď m cases simultaneously for a specific
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instance (i.e., not worst-case).

Theorem 16. Fix ε, δ ą 0, and a vector µ P Rn. Consider n arms where rewards from

the ith arm are distributed according to N pµi, 1q, a Gaussian distribution with mean µi and

variance 1. Assume without loss of generality that µ1 ě µ2 ě ¨ ¨ ¨ ě µn and let m “ |ti P

rns : µi ą µ1 ´ εu| so that µi ą µ1 ´ ε for all i P rms. For every permutation π P Sn

let τπ be a stopping time with respect to the filtration generated by the algorithm playing

on instance πpρq at which time the algorithm outputs a set pSτπ Ď rns with |pSτπ | “ k. If

PπpρqppSτπ Ă πprmsqq ě 1´ δ, then

Eπ„SnEπpρq
”

n
ÿ

i“1
Tπpiqpτπq

ı

ě p1{8´ δq2
´

´ pµ1 ´ µm`1q
´2
` k

m

n
ÿ

i“m`1
pµ1 ´ µiq

´2
¯

.

Remark 1. By definition, pµ1 ´ µm`1q
´2 ď ε´2 so aside from pathological cases such as

µ1 ´ µi " ε for all i ą m` 1 the lower bound will be positive and non-trivial. For example,

suppose m ď n{2 arms have means equal to µ0 ` ε while the remaining have means equal to

µ0. Then Theorem 16 implies that to identify any k of the top m arms requires about k n
m
ε´2

samples.

4.3 Algorithm and Upper Bounds

Algorithm 13 simultaneously handles both the identification of an ε-good arm (Line 14)

and the identification of multiple arms above a threshold µ0 (Line 17). This emphasizes

the fact that until the first arm is determined to be above a threshold, the algorithm is

essentially acting identically to a near-optimal best-arm identification algorithm Jamieson

et al. (2014b) since the same arm It is pulled for all objectives. Furthermore, if the multiple

identifications variant of the algorithm has identified a subset of the arms as belonging toH1,

then it continues to act as a near optimal best arm identification algorithm on the remaining

arms. The similarities between the algorithms for these distinct problems reflect the deep

connection between these two problems.

We introduce some notation. Let Ni,rptq be the number of times arm i has been pulled

in bracket r up to time r. Let pµi,r,t be the empirical mean of arm i in bracket r after t pulls

(for the purposes of simplifying the analysis of the algorithm, observations from arms are not
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shared across brackets). Let Upt, δq “ c
b

1
t

logplogptq{δq be an anytime confidence bound

(thus, satisfiying for any r P N and i P rns PpX8t“1|pµi,r,t´µi| ď Upt, δqq ě 1´ δ) based on the

law of the iterated logarithm (LIL), a fundamental component of pure-exploration stochastic

bandits for which the constant c is ever-improving Jamieson et al. (2014b); Kaufmann et al.

(2016a). We use the term bracket to denote a subset of the arms.

The algorithm opens progressively larger brackets over time. It cycles through the open

brackets, at each round pulling an arm in the chosen bracket with the largest upper confidence

bound. Each bracket l consist of 2l arms chosen uniformly at random from rns and is opened

after pl´ 1q2l´1 rounds, that is, after the algorithm has pulled each arm in the l´ 1 bracket

once. We note that while samples are not shared between brackets to facilitate the theoretical

analysis, in practice samples should be shared.

Depending on the objective, the algorithm uses different criteria for suggesting sets of

arms. If the goal is to output an ε-good arm, then the algorithm chooses an arm Ot that

maximizes a lower confidence bound (Line 14). For the problem of multiple identifications

above a threshold, various guarantees are possible. In the main body of the paper, we

focus on a kind of guarantee that we call FDR-TPR (false discovery rate-true positive rate)

(Jamieson and Jain, 2018), which guarantees approximate identification in the sense that the

expected number of correctly identified arms is large and the expected number of mistakes

is small (see Theorem 20 for a precise statement). For this goal, the algorithm builds a set

St (Line 17) based on the Benjamini-Hochberg procedure developed for multi-armed bandits

in Jamieson and Jain (2018). In the Appendix, we provide algorithms that have stronger

guarantees but are less practical.

4.3.1 Upper Bound for Identifying an ε-good mean

To make our upper bound more digestible, we use “.” to hide constants and doubly log-

arithmic factors. In Appendix, we will restate the the theorems with doubly logarithmic

factors. For the sake of simplicity, we will assume that the distributions are sub-gaussian

with sub-gaussian norm at most 1.

As argued in the introduction, in the SimplePAC setting if there are m ε-good arms, one
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Algorithm 13 Subsampling Algorithm: ε-good arm identification and FDR-TPR
1: δr “ δ

r2 , δ1r “ δr

6.4 logp36{δrq
R0 “ 0, l “ 0, S0 “ H

2: for t “ 1, 2, . . . do

3: if t ě 2ll then

4: Let Al`1 be a random set of size minp2l`1, nq in rns

5: l “ l ` 1

6: end if

7: Rt “ rpRt´1 ` 1qmodls ` 1

8: if there exists i P ARt
zSt such that Ni,Rt

ptq ““ 0 then

9: Pull arm It “ argminiPARt zSt
Ni,Rtptq

10: else

11: Pull arm It “ argmaxiPARt zSt
pµi,Rt,Ni,Rt ptq

` UpNi,Rt
ptq, δq

12: end if

13: if Best Arm Identification then

14: Ot “ argmaxiPAr for some rďlpµi,r,Ni,rptq ´ UpNi,rptq,
δ

|Ar|r2 q % Best-arm Thm.17

15: else if FDR-TPR then

16: sppq “ ti P ARt
: pµi,Rt,Ni,Rt ptq

´ UpNi,Rt
ptq, p

|ARt |
δ1Rt

ě µ0u

17: St`1 “ St Y spppq where pp “ maxtp P r|ARt |s : |sppq| ě pu % FDR Thm.20

18: end if

19: end for

would expect to identify an ε-good arm about m times faster than if there were just one.

It turns out that its a bit more subtle than that because many of those ε-good arms may

be nearly indistinguishable from µm`1, the largest mean that is not ε-good. To capture this

observation in the sample complexity of our algorithm we introduce a novel definition for

the gaps of the arms.

Let ε ą 0 and γ P p0, εq. Define Gγ “ ti P rns : µi ě µ1 ´ γu and define the gaps wrt to ε

and γ as follows:

∆i,ε,γ “

$

’

’

’

’

’

&

’

’

’

’

’

%

µi ´ µm`1 i ď |Gγ|

maxpµ|Gγ | ´ µi, µi ´ µm`1q |Gγ| ă i ď m

µ|Gγ | ´ µi i ě m` 1

.

We note that as γ decreases on pε, 0q we have that |Gγ| decreases from m to 1. On the other

hand, the defined gaps only increase as γ decreases. The gaps of the arms in t|Gγ|`1, . . . ,mu
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behave essentially as µ|Gγ | ´ µm`1 as demonstrated by the inequality

µ|Gγ | ´ µm`1

2 ď maxpµ|Gγ | ´ µi, µi ´ µm`1q ď µ|Gγ | ´ µm`1.

Figure 4.1 illustrates the |Gγ| sets making it easy to visualize the gaps.

Next, we introduce a function to characterize the number of samples required by an

individual bracket to identify an ε-good arm. For all ε ą 0 define

rUεpγq :“ 1
|Gγ|

´
m
ÿ

j“1
∆´2
j,ε,γ logp n

|Gγ |
{δq `

n
ÿ

j“m`1
∆´2
j,ε,γ logp1{δq

¯

,

rUε :“ rUεpεq .
1
m

´
m
ÿ

j“1
pµi ´ µm`1q

´2 logp n
m
{δq `

n
ÿ

j“m`1
pµm ´ µjq

´2 logp1{δq
¯

rUεpγq bounds the expected number of samples required by a bracket of size Θp n
|Gγ |
q to identify

an ε-good arm when (i) one of its arms is γ-good and (ii) the empirical means of the arms

in the bracket concentrate well enough.

Now, we present our upper bound for ε-good identification.

Theorem 17 (ε-good identification). Let δ ď 0.025 and ε ą 0. Then, Algorithm 13 has the

property that there exists a stopping time τ wrt pFqtPN such that

Erτ s . min
γPp0,εq

rUεpγq logprUεpγq `∆´2
m,ε,γq (4.1)

. rUε logprUε ` pµm ´ µm`1q
´2
q (4.2)

and PpDs ě τ : µOs ď µ1 ´ εq ď 2δ.

Remark 2. Assume the setting of Theorem 17. If m arms have means equal to µ0 ` ε

while the remaining have means equal to µ0 then defining Ū :“ n
m
ε´2 logp1{δq, we have that

Erτ s . Ū logpŪq. This intuitively agrees with the sample complexity arguments made in the

introduction of this paper and matches the lower bound of above up to log factors.

To interpret Theorem 17, we begin by considering the more digestible bound of equation

(4.2). The term rUε bounds the expected number of rounds it takes for a bracket of size Θp n
m
q

to identify an ε-good arm when one of these arms is ε-good. The extra logprUεq factor reflects

the cost of not knowing m in advance and having to adapt to it.
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In many situations the bound of Equation 4.2 is woefully loose because while it suffices

to sample just Θp n
m
q arms to get an ε-good arm with constant probability, it may be advan-

tageous to sample many more than this in hopes of getting an arm with a mean much closer

to µ1 than µ1 ´ ε. Figure 4.1 illustrates a bandit instance that demonstrates this tradeoff

for a particular γ P p0, εq. Informally, if one randomly chooses n
m

arms then one expects the

highest mean amongst these to be have an index in t|Gγ| ` 1, . . . ,mu whose mean is very

close to the bottom n´m arms requiring an enormous number of samples to distinguish this

top arm from the bottom n´m. On the other hand, if one randomly chooses n
|Gγ |

arms then

one expects the highest mean amongst these to have an index in t1, . . . , |Gγ|u whose mean is

substantially larger than the means of the bottom n´m arms requiring far few samples to

distinguish it from the bottom n´m. Thus, there is a problem-dependent tradeoff between

how many arms to sample and an effective strategy must naturally adapt to it.

The minimization problem in the bound in Equation 4.1 says that Algorithm 13 uses

a bracket with the optimal number of arms to identify an ε-good arm. The case γ “ ε

captures the case where the algorithm considers Θp n
m
q arms and identifies one of these as

ε-good. As γ decreases to 0, the algorithm considers more arms but the gaps of the arms

increase, reflecting that it is likely to find a better arm to identify as ε-good.

One potential drawback of our framework is that a practitioner might feel uncomfortable

not knowing when to stop the algorithm. We have several responses to this concern. First,

the lower confidence bound of the suggested arm Ot provides a lower bound for µOt and thus

provides an indication of its quality, so the practitioner may decide to stop once this lower

bound is suitably large. Second, it is possible to design an algorithm that nearly optimal

according to both the PAC and the SimplePAC criteria. Consider the following Theorem

on Algorithm 15 described in the Appendix, which combines Algorithm 13 and LUCB from

Kalyanakrishnan et al. (2012a).

Theorem 18. Let ρ be a problem instance and let δ ď 0.025 and ε1, ε2 ą 0. Let pFtqtPN be

the filtration generated by running Algorithm 15 with input ε1 on ρ. There is a stopping time

τsimple wrt pFtqtPN such that

Erτsimples . min
γPp0,ε2q

Uε2pγq logpUε2pγq `∆´2
m,ε2,γq (4.3)
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and PpDs ě τsimple : µ
pis
ď µ1 ´ ε2q ď 2δ. Furthermore, there exists a stopping time τPAC wrt

pFtqtPN such that

ErτPACs . Hε{2 logpH
ε{2

δ
q (4.4)

where Hγ “
ř

iPrns maxpµ1 ´ µi, γq
´2 and at time τPAC the Algorithm 15 terminates and

returns an arm piτPAC such that Ppµ
piτPAC

ď µ1 ´minpε1, ε2qq ď 3δ.

To interpret the Theorem 18, suppose that ε1 ą ε2 ą 0 are such that Erτsimples ď

Erτsimples. Then, Theorem 18 says that Algorithm 15 with input ε1 starts outputting an

ε2-good arm in nearly optimal time and certifies that it is an ε1-good arm in nearly optimal

optimal. Thus, Algorithm 15 achieves the best of both worlds.

Finally, there is another interpretation of Algorithm 13 when it is applied in a fixed hori-

zon setting. Consider the following problem that lies between the fixed confidence setting

and fixed budget setting: given a failure probability δ ą 0, time horizon T P N, and permis-

sible approximation ε ą 0, find an arm pi that satisfies µ
pi ě µ1 ´ ε with probability at least

1´δ using at most T samples. Algorithm 13 essentially solves this problem, as demonstrated

by the following Theorem.

Theorem 19. Let δ ď 0.025 and T P N. Define

UBpε1q “ min
γPp0,ε1q

1
δ
rUε1pγq logprUε1pγq `∆´2

m,ε1,γq,

ε “ minpε1 : ε1 ą 0 : UBpε1q ď T q.

Then, PpµOT ď µ1 ´ εq ď 3δ.

Thus, the practitioner can interpret Algorithm 13 as an anytime algorithm that minimizes

simple regret over a time horizon T subject to a probability of error constraint δ. It is worth

noting that an algorithm that optimizes the pε, δq-PAC does not admit such an interpretation

since it minimizes certified simple regret subject to a probability of error constraint δ.

4.3.2 Upper Bound for Identifying means above a threshold µ0

Next we present our upper bounds on multiple identifications above a threshold with a FDR-

TPR guarantee, deferring our stronger guarantees (for our less practical algorithms) until
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Figure 4.1: Our sample complexity result relies on a trade-off between the number of arms

above a certain critical value and the defined gaps as a function of this critical value. (Left)

Illustration of Gγ sets that define gaps for identifying an ε-good arm. (Right) Illustration of

H1,ε sets that define gaps for identifying means above a threshold µ0.

the Appendix. To begin, we introduce some notation. Define

H1 “ ti P rns : µi ą µ0u and H0 “ ti P rns : µi ď µ0u.

H1 consists of the arms that we wish to identify and H0 of all the other arms. Finally, we

define

H1,ε “ ti P rns : µi ě µ0 ` εu, ∆i “ ∆i,0, and ∆i,ε “

$

’

&

’

%

maxpµi ´ µ0, εq i P H1

µ0 ´ µi `maxpε,∆q i P H0

where ∆ “ miniPH1 µi ´ µ0 is the gap of the arm in H1 that is closest to µ0. The set H1,ε

(illustrated in Figure 4.1) and the gaps ∆i,ε will respectively play an analogous role to the

set Gγ and gaps ∆i,ε,γ in our results for finding ε-good arms.

Next, we introduce two functions to characterize the number of samples required for an

individual bracket to identify k arms in H1. For all ε ą 0 define

rSkpεq :“ k

|H1,ε|

´

ÿ

iPH1

∆´2
i,ε logp n

|H1,ε|
k{δq `

ÿ

iPH0

∆´2
i,ε logp1{δq

¯

rSk :“ rSkp∆q “
k

|H1|

´

ÿ

iPH1

∆´2
i logp n

|H1|
k{δq `

ÿ

iPH0

∆´2
i logp1{δq

¯

rTkpεq :“ n

|H1,ε|
kmaxpε,∆q´2 log p1{δq , rTk :“ Tkp∆q “

n

|H1|
k∆´2 logp1{δq.
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rSkpεq bounds the expected number of samples a bracket of size Θp nk
|H1,ε|

q requires to identify k

arms satisfying µi ą µ0 when (i) at least k of its arms have means satisfying µi ě µ0` ε and

(ii) the empirical means of the arms in the bracket concentrate well. rTkpεq plays a similar

role but removes a logarithmic factor on the arms in H1 at the cost of losing the dependence

on the individual gaps.

Now, we have the tools to present our Theorem.

Theorem 20 (FDR-TPR). Let δ ď .025. Let k ď |H1|. Then, Algorithm 13 has the property

that for all t P N, Er |StXH0|
|St|^1 s ď 2δ and there exists a stopping time τk wrt pFqtPN such that

Erτks . min
εě∆:|H1,ε|ěk

rSkpεq logrrSkpεq ` ε´2
qs (4.5)

. rSk logrrSk `∆´2
qs, and (4.6)

Erτks . min
εě∆:|H1,ε|ěk

rTkpεq logprTkpεqq (4.7)

. rTk logprTkq (4.8)

and for all t ě τk, Er|St XH1|s ě p1´ δqk.

Consider the gap-dependent bounds in the inequalities (4.5) and (4.6). Analogous to the

ε-good arm identification upper bound, the bound in inequality (4.6) is more accessible (but

potentially much looser) than the bound in line (4.5). The quantity rSk upper bounds the

expected number of samples required for a bracket of size Θp n
m
kq to identify k arms with

means µi ą µ0. The extra logprSkq reflects the cost of not knowing |H1| and adapting to it.

Paralleling ε-good arm identification, in the problem of identifying k arms with means above

a threshold it may be useful to consider more than Θp n
m
kq arms in order to find k that are

easier to identify as being larger than the threshold. Indeed, the example in and discussion

concerning Figure 4.1 apply directly to this problem as well. The minimization problems in

the bounds in line (4.5) shows that the algorithm adapts to a problem instance, finding the

optimal number of arms to consider. As ε increases, more arms are considered but the gaps

of the arms grow. For example, for arms with i P H1, the gaps are maxpµi ´ µ0, εq while for

arms with i P H0, the gaps are µ0 `maxpε,∆q ´ µi.

The inequalities (4.7) and (4.8) sacrifice the dependence on the individual gaps in order

to eliminate an additional logarithmic factor on the arms in H1. Similarly to the discussion
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concerning the inequalities (4.5) and (4.6), the inequality (4.7) is far tighter than (4.8) but

less digestible.

4.3.3 A note about our proof techniques

While our proofs are relegated to the appendices due to space restrictions, we briefly comment

on their novel aspects. First, our upper bounds scale as logp1{δq which arises due to requiring

concentration of measure on subsets of the observations of the arms. We do not rely on a high

probability event that a particular bracket includes some number of good arms which would

result in a log2
p1{δq that is common in other related results Chaudhuri and Kalyanakrishnan

(2017); Aziz et al. (2018); Chaudhuri and Kalyanakrishnan (2019); this unfortunately results

in a remarkably more technical and challenging proof. Second, our lower bounds for general

1 ď k ď m employed the use of a slightly extended version of the so-called Simulator

argument that is a general framework for developing lower bounds for adaptive sampling

problems Simchowitz et al. (2017b). This is the first instance to our knowledge that the

argument has been used to lower bound the number of samples for such combinatorial settings

where many outcomes are potentially correct (i.e., any k of m) and shows great promise for

proving tight lower bounds for other pure-exploration combinatorial bandit settings Cao

et al. (2015); Chen et al. (2014b).

4.4 Proof of lower bounds

We now briefly provide some intuition behind the proof. Suppose m ą 1 and k “ 1 and

consider the easier problem where the permutation set averaged over is just the identity

permutation π1 “ p1, 2, . . . , nq and the permutation π2 that swaps t1, . . . ,mu and some fixed

σ Ă rnszrms with |σ| “ m. That is, the algorithm knows the instance it is playing is either

π1pρq “ ρ or π2pρq where ρ is known but the permutation π1 or π2 is not. Information

theoretic arguments say that at least τ « miniPσpµ1 ´ µiq
´2 observations from rms Y σ are

necessary in order to determine whether the underlying instance is π1pρq versus π2pρq. But if

the algorithm cannot distinguish between π1 and π2 with fewer than τ samples, then we can

also argue that if π1 and π2 are chosen with equal probability, then taking nearly τ samples
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from the arms in σ with sub-optimal means is unavoidable in expectation. The choice of σ

was arbitrary and there are n
m
´1 disjoint choices (e.g., tm`1, . . . , 2mu, t2m`1, . . . , 3mu, . . . )

resulting in a lower bound of about 1
m

řn
i“m`1pµ1 ´ µiq

´2.

The k ą 1 case is trickier because if we used just π1 and π2 as above, as soon as we found

just one ε-good arm (and thus being able to accurately discern whether the instance is π1pρq

or π2pρq) the algorithm would immediately know of m´ 1 other ε-good arms. To overcome

this, we choose a large enough set σ Ă rms such that σ X pS is non-empty with constant

probability on the identity permutation. This way, if we swap this set σ Ă rms with some

other set in rnszrms of size |σ|, then the algorithm would error with constant probability

on this alternative permutation. The next lemma guarantees the existence of such a set of

size rm{ks and the final result follows from the fact that there are about n
rm{ks

such disjoint

choices in rnszrms.

We introduce the following notation: for any j ď m let
`

rms
j

˘

denote all subsets of

t1, . . . ,mu of size j.

Lemma 22. Fix m P N and let S be a random subset of size k ď m drawn from an arbitrary

distribution over
`

rms
k

˘

. For any ` ď m ´ k there exists a subset σ Ă rms with |σ| “ ` such

that

Ppσ X S ‰ Hq ě 1´
ˆ

m´ k

`

˙

{

ˆ

m

`

˙

ě 1´ e´`k{m

If ` ą m´ k then Ppσ X S ‰ Hq “ 1.

Proof. Because the max of a set of positive numbers is always at least the average, we have

max
σPprms` q

Ppσ X S ‰ Hq ě
1
`

m
`

˘

ÿ

σPprms` q

Ppσ X S ‰ Hq

“
1
`

m
`

˘

ÿ

σPprms` q

ÿ

sPprmsk q

PpS “ sq1tσ X s ‰ Hq

“
1
`

m
`

˘

ÿ

sPprmsk q

PpS “ sq
ÿ

σPprms` q

1tσ X s ‰ Hq

“
1
`

m
`

˘

ÿ

sPprmsk q

PpS “ sq

ˆˆ

m

`

˙

´

ˆ

m´ k

`

˙˙

“ 1´
ˆ

m´ k

`

˙

{

ˆ

m

`

˙
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where the last line follows from the fact that
ř

sPprmsk q
PpS “ sq “ 1 because it is a probability

distribution. Now
ˆ

m´ k

`

˙

{

ˆ

m

`

˙

“
pm´ kq! pm´ `q!
pm´ k ´ `q!m!

“

k´1
ź

i“0

m´ i´ `

m´ i
“

k´1
ź

i“0

ˆ

1´ `

m´ i

˙

ď

k´1
ź

i“0

ˆ

1´ `

m

˙

ď e´`k{m.

Fix any σ Ă rms with |σ| “ rm{ks that satisfies Pρ
´

pS X σ ‰ H
¯

ě 1 ´ e´1 (which

must exist by the above lemma). Now fix any σ1 Ă rnszrms with |σ1| “ |σ| and define ρ1 as

swapping the arms of σ and σ1, maintaining their relative ordering of the indices within the

sets. Note that by the correctness assumption at the relative stopping times of ρ and ρ1 we

have

PρppS Ă rmsq ě 1´ δ, Pρ1ppS X σ ‰ Hq ď δ, PρppS X σ ‰ Hq ě 1´ e´1

which implies

TVpPρ,Pρ1q “ sup
E
|PρpEq ´ Pρ1pEq| ě |PρppS X σ ‰ Hq ´ Pρ1ppS X σ ‰ Hq| ě 1´ δ ´ e´1.

(4.9)

Remark 3. Given (4.9), one is tempted to apply Pinsker’s inequality to obtain the right-

hand-side of Lemma 1 from Kaufmann et al. (2016a) and then provide a lower bound on

Eρr
ř

iPσYσ1 Tis. The difficulty here is that once we cover rnszrms with alternative σ1 sets, they

would all share the same σ in this lower bound, which will end up being opnq. Alternatively,

one could consider using the technique of Chen et al. (2017b) which compares a given instance

to a degenerate instance where the means of σ1 would be copied to σ and argue that the

probability of error is at least 1{2 since there truly is no difference. This strategy is successful

if k “ 1 so that |σ| “ m but breaks down when k ą 1 because one cannot reason about what

the algorithm would have to do if the means of σ were changed like one could if k “ 1.

Consequently, we employ the use of the Simulator argument from Simchowitz et al. (2017b)

that is much more powerful at the cost of the introduction of some machinery.
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The Simulator (background)

The simulator argument is a kind of thought experiment where the player is playing against

a non-stationary distribution. In the real game when the player pulls arm It “ i arm at time

t she observes a sample from the ith distribution of instance ρ: Xi,t „ ρi. However, when

playing against the simulator she observes a sample form the ith distribution of an instance

denoted Simpρ, tI1, . . . , Ituq that depends on all past requests: Xi,t „ Simpρ, tI1, . . . , Ituqi

with probability law Q given ρ, tIs “ isu
t
s“1. That is, instead of receiving rewards from a

stationary distribution ρ at each time t, the simulator is an instance that depends on all the

indices of past pulls (but not their values). For any set A Ă R define

PSimpρ,pi1,...,itqq pXit P Aq :“ Q
`

Xit P A|ρ, tIs “ isu
t
s“1

˘

.

We allow the algorithm to have internal randomness with probability law P so that for

B Ă rns define

PAlgppi1,x1,...,it´1,xt´1qq pIt P Bq :“ P
`

It P B|tIs “ is, XIs “ xsu
t´1
s“1

˘

so that for any event E P FT we define

PAlg,SimpρqpEq

:“
ÿ

i1,...,iT

ż

x1,...,xT

1E
T
ź

t“1
Q
`

XIt “ xt|ρ, tIs “ isu
t
s“1

˘

P
`

It “ it|tIs “ is, XIs “ xsu
t´1
s“1

˘

dx1 . . . dxT

“
ÿ

i1,...,iT

ż

x1,...,xT

1E
T
ź

t“1
PSimpρ,pi1,...,itqq pXIt “ xtqPAlgppi1,x1,...,it´1,xt´1qq pIt “ itq dx1 . . . dxT
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so that for any T we have KL
`

PAlg,Simpρq,PAlg,Simpρ1q
˘

“

ÿ

i1,...,iT

ż

x1,...,xT

PAlg,SimpρqptIs “ is, XIs “ xsu
T
s“1q log

ˆ

PAlg,SimpρqptIs “ is, XIs “ xsu
T
s“1q

PAlg,Simpρ1qptIs “ is, XIs “ xsuTs“1q

˙

dx1 . . . dxT

“
ÿ

i1,...,iT

ż

x1,...,xT

PAlg,SimpρqptIs “ is, XIs “ xsu
T
s“1q log

˜

śT
t“1 PSimpρ,pi1,...,itqq pXIt “ xtq

śT
t“1 PSimpρ1,pi1,...,itqq pXIt “ xtq

¸

dx1 . . . dxT

“

T
ÿ

t“1

ÿ

i1,...,iT

ż

x1,...,xT

PAlg,SimpρqptIs “ is, XIs “ xsu
T
s“1q log

ˆ

PSimpρ,pi1,...,itqq pXIt “ xtq

PSimpρ1,pi1,...,itqq pXIt “ xtq

˙

dx1 . . . dxT

“

T
ÿ

t“1

ÿ

i1,...,iT

PAlg,SimpρqptIs “ isu
T
s“1q

ż

xt

PSimpρ,pi1,...,itqq pXIt “ xtq log
ˆ

PSimpρ,pi1,...,itqq pXIt “ xtq

PSimpρ1,pi1,...,itqq pXIt “ xtq

˙

dxt

“

T
ÿ

t“1

ÿ

i1,...,iT

PAlg,SimpρqptIs “ isu
T
s“1qKL

`

PSimpρ,pi1,...,itqq,PSimpρ1,pi1,...,itqq
˘

“
ÿ

i1,...,iT

PAlg,SimpρqptIs “ isu
T
s“1q

T
ÿ

t“1
KL

`

PSimpρ,pi1,...,itqq,PSimpρ1,pi1,...,itqq
˘

ď max
i1,...,iT

T
ÿ

t“1
KL

`

PSimpρ,pi1,...,itqq,PSimpρ1,pi1,...,itqq
˘

The simulator will be defined so that the right hand side is always finite for any T . When

it is clear from context we will simply write PρpEq or PSimpρqpEq to represent PAlg,ρpEq or

PAlg,SimpρqpEq, respectively. Let Ωt “ tI1, . . . , Itu denote the history of all arm pulls requested

by the player up to time t. Note that Ωt is a multi-set so that |Ωt| “ t.

Definition 7. We say an event W is truthful under a simulator Sim with respect to instance

ρ if for all events E P FT

PρpE XW q “ PSimpρ,ΩT qpE XW q.

Lemma 23 (Simchowitz et al. (2017b)). Let ρp1q and ρp2q be two instances, Simp¨, ¨q be a

simulator, and let Wi be two truthful FT -measureable events under Simpρpiq,ΩT q for i “ 1, 2

where ΩT is the history of pulls up to a stopping time T . Then

Pρp1qpW c
1 q ` Pρp2qpW c

2 q ě TVpρp1q, ρp2qq ´Q
`

KL
`

PAlg,Simpρp1qq,PAlg,Simpρp2qq
˘˘

where Qpβq “ mint1´ 1
2e
´β,

a

β{2u.
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Constructing the Simulator

Recall the definitions of ρ, ρ1 and σ, σ1 from above. For some τ P N and multiset Ω of requested

arm pulls, define WσpΩq “ t
ř

iPΩ 1ti P σu ď τu and Wσ1pΩq “ t
ř

iPΩ 1ti P σ1u ď τu. For

these events, an instance ν P tρ, ρ1u, and any multiset Ωt denoting the indices the player has

played up to the current time t, define a simulator

Simpν,Ωtqi “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

νi if i R σ Y σ1

νi if i P σ Y σ1, WσpΩtq XWσ1pΩtq

ρi if i P σ, W c
σpΩtq YW

c
σ1pΩtq

ρσpσ1´1piqq if i P σ1, W c
σpΩtq YW

c
σ1pΩtq

where σpiq denotes the ith element of σ and σ´1piq P t1, . . . , |σ|u so that σpσ´1piqq “ i for any

i P σ, and σpσ1´1piqq P σ for any i P σ1. Note that Simpν,Ωtqi and νi potentially differ only on

those arms i P σ1, and only if W c
σpΩtqYW

c
σ1pΩtq :“ maxt

ř

jPΩt 1tj P σu,
ř

jPΩt 1tj P σ
1uu ą τ .

That is, if maxt
ř

jPΩt 1tj P σu,
ř

jPΩt 1tj P σ
1uu ą τ then Simpρ,Ωtqi “ Simpρ1,Ωtqi for all

i P rns. On the other hand, if WσpΩtqXWσ1pΩtq :“ maxt
ř

jPΩt 1tj P σu,
ř

jPΩt 1tj P σ
1uu ď τ

then Simpν,Ωtqi “ ν for ν P tρ, ρ1u. Thus, WσpΩtq and Wσ1pΩtq are both truthful under

Simpν,Ωtqi for ν P tρ, ρ1u. Using these observations, we can easily upper bound the KL

divergence:

max
i1,...,iT Prns

T
ÿ

t“1
KL

`

Simpρ, tisuts“1q, Simpρ1, tisuts“1q
˘

ď max
iPσ

τKLpρi, ρ
1
iq `max

jPσ1
τKLpρj, ρ

1
jq

“ max
i“1,...,`

τpµσpiq ´ µσ1piqq
2.

As shown in (Simchowitz et al., 2017b, Lemma 1) averaging over all permutations is

equivalent to constructing a symmeterized version of the algorithm such that given any

bandit instance, the algorithm randomly permutes the arms internally and then after making

its set selection, returns the set inverted by the randomly chosen permutation. This modified

algorithm is symmetric in the sense that

Pρppi1, . . . , iT , sq “ pI1, . . . , IT , pSqq “ Pπpρqppi1, . . . , iT , , sq “ pπpI1q, . . . , πpIT q, πppSqqq.

In what follows, we assume the algorithm is symmetric which, in particular, implies

PρpW c
σ1q ` Pρ1pW c

σq “ 2PρpW c
σ1q.
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Putting all the pieces together we have

Pρ

˜

ÿ

iPσ1

Ti ą τ

¸

“ PρpW c
σ1q “

1
2 pPρpW

c
σ1q ` Pρ1pW c

σqq

ě
1
2

ˆ

1´ δ ´ e´1
´
b

τ max
i“1,...,`

pµσpiq ´ µσ1piqq2{2
˙

ą
1
8 ´ δ

if τ “ 1
2 maxi“1,...,`pµσpiq´µσ1piqq

2 . By Markov’s inequality, Eρr
ř

iPσ1 Tis ě τPρ p
ř

iPσ1 Ti ą τq.

Noting that σ1 Ă rnszrms was arbitrary, we apply the above calculation for all connected

subsets of size rm{ks.

Eρ

«

n
ÿ

i“m`1
Ti

ff

ě p1{8´ δq
pn´mqk{m

ÿ

r“1
pµ1 ´ µm`rm{kq

´2

ě p1{8´ δq k
m

n
ÿ

i“m`m{k`1
pµ1 ´ µiq

´2

ě p1{8´ δq
«

´pµ1 ´ µm`1q
´2
`
k

m

n
ÿ

i“m`1
pµ1 ´ µiq

´2

ff

4.5 Additional Algorithms

In this section, we briefly introduce two additional algorithms that are very similar to the

Algorithm 13 presented earlier but have stronger guarantees for the task of identifying means

above a threshold. A FWER-TPR (family-wise error rate-true positive rate) guarantee

outputs a set Qt such that PpDt : Qt X H0 ‰ Hq ď cδ and Er|Qt X H1|s ě p1 ´ δqk for

large enough t. In words, it does not allow mistakes, but it allows for only identification

of the arms above the threshold only in expectation. A FWER-FWPD (family-wise error

rate-family-wise probability of detection) guarantee is stronger since it requires that the

outputted set Rt satisfies PpDt : Rt XH0 ‰ Hq ď cδ and |Rt XH1| ě k for large enough t.

For more formal examples of these guarantees, see Theorems 22 and 24.

The algorithm suggests different sets depending on the objective. If FWER-TPR is

desired, the algorithm maintains a set Qt and adds arms whose lower confidence bounds are

above the threshold µ0 (Line 12). If FWER-FWPD is the goal, then an additional arm Jt is
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Algorithm 14 Subsampling Algorithm: FWER-TPR and FWER-FWPD
1: δr “ δ

r2 , δ1r “ δr

6.4 logp36{δrq
R0 “ 0, l “ 0, S0 “ H, Q0 “ H

2: for t “ 1, 2, . . . do

3: if t ě 2ll then

4: Let Al`1 be a random set of size minp2l`1, nq in rns

5: l “ l ` 1

6: end if

7: Rt “ rpRt´1 ` 1qmodls ` 1

8: if there exists i P ARt
zSt such that Ni,Rt

ptq ““ 0 then

9: Pull arm It “ argminiPARt zSt
Ni,Rtptq

10: else if FWER-TPR then

11: Pull arm It “ argmaxiPARt zQt
pµi,Rt,Ni,Rt ptq

` UpNi,Rt
ptq, δq

12: Qt`1 “ Qt Y ti P ARt
: pµi,Rt,Ni,Rt ptq

´ UpNi,Rt
ptq, δ

|ARt |R
2
t
q ě µ0u % FWER Thm.22

13: else if FWER-FWPD then

14: ξt,Rt “ maxt2|St XARt |,
5

3p1´4δRt q
logp1{δRtqR

2
t u

15: Pull arm It “ argmaxiPARt zSt
pµi,Rt,Ni,Rt ptq

` UpNi,Rt
ptq, δ

ξt,Rt
q

16: sppq “ ti P ARt
: pµi,Rt,Ni,Rt ptq

´ UpNi,Rt
ptq, p

|ARt |
δ1Rt

ě µ0u

17: St`1 “ St Y spppq where pp “ maxtp P r|ARt |s : |sppq| ě pu

18: if St XARt ‰ H then

19: νt,Rt
“ maxp|St XARt

|, 1q

20: Pull arm Jt “ argmaxiPStXARt zRt
pµi,Rt,Ni,Rt ptq

` UpNi,Rt
ptq,

δRt

νt,Rt
q

21: χt,Rt
“ |ARt

| ´ p1´ 2δ1Rt
p1` 4δ1Rt

qq|St XARt
| `

4p1`4δ1
Rt
q

3 logp5 log2p|ARt
|{δ1Rt

q{δ1Rt
q

22: Rt`1 “ Rt Y ti P St XARt : pµi,Rt,Ni,Rt ptq
´ UpNi,Rtptq,

δ
χt,Rt

q ě µ0u % FWER Thm.24

23: end if

24: end if

25: end for

pulled each time based on an upper confidence bound criterion and arms are accepted into

the set Rt`1 (Line 22) if their lower confidence bound is above the threshold µ0.

4.6 Proofs of Upper Bounds

The proofs for the FDR-TPR result (The proof of Theorem 21 in Section 4.6.1 should be

read first. Then, one can read the proofs for any of the other results. We introduce some

notation that we used throughout the proofs. We use c to denote a positive constant whose
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value may change from line to line. Define

ρi,r “ suptρ P p0, 1s : X8t“1t|pµi,r,t ´ µi| ď Upt, ρquu.

We note that tρi,ruiPrns,rPN are independent and Ppρi,r ď δq ď δ since by definition of Up¨, ¨q

for any bracket r P N and α P p0, 1q, PpX8t“1t|pµi,r,t ´ µi| ď Upt, αqq ě 1´ α. We define

Ir “ ti P H1 X Ar : ρi,r ď δu.

to be those arms whose empirical means concetrate well in the sense that ρi,r ď δ. We also

define U´1pγ, δq “ minpt : Upt, δq ď γq. It can be shown for a sufficiently large constant c

that U´1pγ, δq ď cγ´2 logplogpγ´2q{δq.

4.6.1 Proof of FDR-TPR

Recall the following definitions:

H1,ε “ ti P rns : µi ě µ0 ` εu, and ∆i,ε “

$

’

&

’

%

maxpµi ´ µ0, εq i P H1

µ0 ´ µi `maxpε,∆q i P H0

and ∆ “ miniPrns µi´µ0. We restate Theorem 20 with the doubly logarithmic terms. We only

consider the gap-independent upper bound here (inequality (4.7)); in the following section,

we will prove a stronger result, which will imply inequality (4.5).

Theorem 21. Let δ ď .025. Let k ď |H1|. For ε ě ∆ define

Tkpεq :“ n

|H1,ε|
kε´2 log

´

logp n
|H1,ε|

kq logpε´2
q{δ

¯

Then, Algorithm 13 has the property that for all t P N, Er |StXH0|
|St|^1 s ď 2δ and there exists a

stopping time τk wrt pFqtPN such that

Erτks ď c min
εě∆:|H1,ε|ěk

Tkpεq logpTkpεqq (4.10)

where c is a universal constant and for all t ě τk, Er|St XH1|s ě p1´ δqk.

We briefly sketch the proof. Let ε0 ě ∆ such that |H1,ε0 | ě k minimize the upper

bound (4.10). Then, there exists a bracket r0 with size Θp n
|H1,ε0 |

kq such that with constant
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probability Ar0 has at least k arms in H1,ε0 and the empirical means concentrate well enough

(defined formally in Lemma 25 as the event Er0 :“ Eε0,r0 X E0,r0 X E1,r0). The argument

controls Erτks by partitioning the sample space according to which bracket r0` s is the first

such that the good event Er0`s occurs, i.e., according to tEr0 , E
c
r0 X Er0`1, E

c
r0 X Ec

r0`1 X

Er0`2, ...u. Lemma 25 shows that Er1tEr0uτr0,ks has the same upper bound as (4.10) and that

Er1tEr0`suτr0`s,ks has an upper bound that is larger than line (4.10) by a factor exponential

in s. On the other hand, because the brackets are independent and growing in size, the

probability of Er0`s X pX
s´1
r“0E

c
r0`rq decreases exponentially in s, enabling control of the

exponential increase in Er1tEr0`suτr0`s,ks and, by extension, Erτks.

Lemma 24 bounds the false discovery rate of Algorithm 13.

Lemma 24. For all t P N, Er |StXH0|
|St|^1 s ď 2δ.

Proof.

Er
|St XH0|

|St| ^ 1 s ď Er
ř8

l“1 |St X Al XH0|

|St| ^ 1 s

ď

8
ÿ

l“1
Er
|St X Al XH0|

|St X Al| ^ 1 s

ď δ
8
ÿ

l“1

1
l2

“ δ
π2

6

where we used Lemma 1 of Jamieson and Jain (2018).

Lemma 25, below, is the key result for establishing Theorem 21. For some ε0 ě ∆ such

that |H1,ε0 | ě k, it bounds the expected number of iterations that it takes bracket r to add

k arms to the set St when the events Eε0,r X E0,r X E1,r occur where

Eε0,r “ t|H1,ε0 X Ar| ě ku,

E0,r “ t
ÿ

iPH0XAr

∆´2
i,ε0 logp 1

ρi,r
q ď 5

ÿ

iPH0XAr

∆´2
i,ε0 logp1

δ
qu,

E1,r “ t
ÿ

iPH1,ε0XAr

∆´2
i,ε0 logp 1

ρi,r
q ď 5

ÿ

iPH1,ε0XAr

∆´2
i,ε0 logp1

δ
qu.
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Event Eε0,r says that there are at least k arms in Ar with µi ě µ0 ` ε0. The event E0,r says

that the empirical means of the arms in H0 X Ar concentrate well on the whole; event E1,r

makes the analogous claim about H1,ε0 X Ar. We remark that the the events E0,r and E1,r

allow us to avoid using a union bound.

Lemma 25. Fix δ ă 0.025. Fix k ď |H1| and any ε0 ą 0 such that |H1,ε0 | ě k. Then, there

exists a random variable τk such that for all t ě τk, Er|St XH1|s ě p1´ δqk, and

Er1tEε0,r X E0,r X E1,ruτks ď cr2r´1
pr ´ 1q ` |Ar|ε´2

0 logpr logpε´2
0 q

δ
q logp|Ar|ε´2

0 logpr logpε´2
0 q

δ
qqs

(4.11)

where c is a universal constant.

Proof. Step 1: Define stopping time. Define

τk “ minpt P NY t8u : Ds such that |As XH1,ε0 | ě k and Is X As XH1 Ă Stq.

Observe that for all t ě τk, Er|St XH1|s ě p1´ δqk since for t ě τk

Er|St XH1|s ě Er|Is X As XH1|s ě p1´ δq|As XH1| ě p1´ δqk.

Step 2: Relate to bracket r.

Fix r P N. In the interest of brevity, define E :“ Eε0,rXE0,rXE1,r and since we will only

focus on bracket r, write pµi,t, Niptq, I, and ρi instead of pµi,r,t, Ni,rptq, Ir, and ρi,r. We will

bound the number of rounds until I X Ar XH1 Ă St. Define

T “ |tt P N : I X Ar XH1,ε0 Ć St and Rt “ ru|,

i.e., the number of rounds that the algorithm works on the rth bracket and IXArXH1 Ć St.

Next, we bound the number of brackets r` s that are opened before IXArXH1,ε0 Ă St.

The r ` 1 bracket is opened after bracket r is sampled 2r times and similarly the r ` sth

bracket is opened after bracket r is sampled
řs´1
i“0 2r`i ě 2r`s´1 times. Thus,

2r`s´1
ď T ùñ r ` s´ 1 ď logpT q.

So while I X Ar XH1 Ć St, every time bracket r is sampled, at most logpT q total brackets

are sampled. Thus, we have that once the algorithm starts working on bracket r, after

logpT qT (4.12)
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additional rounds, we have that I X Ar XH1,ε0 Ă St.

We note that after 2r´1pr ´ 1q rounds, the algorithm starts working on bracket r. Thus,

1tEuτk ď r2r´1
pr ´ 1q ` 1tEu logpT qT s

“ r2r´1
pr ´ 1q ` logp1tEuT q1tEuT s (4.13)

Step 3: Bounding 1tEuT . Note that we can write

1tEuT “ 1tEu
8
ÿ

t“1
1tH1,ε0 X I X Ar Ć St, Rt “ ru

“ 1tEu
8
ÿ

t:Rt“r
1tH1,ε0 X I X Ar Ć Stu

ď 1tEu
8
ÿ

t:Rt“r
1tH1,ε0 X I X Ar Ć St, It P H0u

` 1tH1,ε0 X I X Ar Ć St, It P H1 XHc
1,ε0u ` 1tIt P H1,ε0u

ď 1tEu
8
ÿ

t:Rt“r
1tH1,ε0 X I X Ar Ć St, It P H0u

` 1tH1,ε0 X I X Ar Ć St, It P H1 XHc
1,ε0 , pµIt,NIt ptq ă µ0 `

ε0
2 u

` 1tIt P H1 XHc
1,ε0 , pµIt,NIt ptq ě µ0 `

ε0
2 u ` 1tIt P H1,ε0u

To begin, we bound the first sum.

For any j P I XH1,ε0 X Ar we have ρj ě δ by definition, so

pµj,Niptq ` UpNjptq, δq ě µj ´ UpNjptq, ρjq ` UpNjptq, δq ě µj ě µ0 ` ε0.

For any i P H0 X Ar,

pµi,Niptq ` UpNiptq, δq ď µi ` UpNiptq, ρiq ` UpNiptq, δq ď µi ` 2UpNiptq, ρiδq.

Thus, recalling the definition ∆ “ minjPH1 µj´µ0 and ∆i,ε0 ě µ0´µi`maxt∆, ε0u, we have

that pµi,Niptq ` UpNiptq, δq ď µ0 ` ε0 if Niptq ě U´1p
∆i,ε0

2 , ρiδq, so that arm i would not be
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pulled this many times as long as H1,ε0 X I X Ar Ć St. Thus,

1tEu
8
ÿ

t:Rt“r
1tH1,ε0 X I X Ar Ć St, It P H0u (4.14)

ď 1tEu
ÿ

iPH0XAr

U´1
p
∆i,ε0

2 , ρiδq

ď 1tEu
ÿ

iPH0XAr

c∆´2
i,ε0 logp

logp∆´2
i,ε0q

δρi
q

“ 1tEu
ÿ

iPH0XAr

c∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
q ` c∆´2

i,ε0 logp 1
ρi
q

ď 1tEu
ÿ

iPH0XAr

c1∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
q

ď
ÿ

iPH0XAr

c1∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
q (4.15)

where the second to last inequality follows from Er,0 Ď E.

Next, we consider the second sum. If H1,ε0 X I X Ar Ć St, for any arm i satisfying

pµi,Niptq ă µ0 `
ε0
2 , we have that

pµi,Niptq ` UpNiptq, δq ă µ0 `
ε0
2 ` UpNiptq, δq

so that if Niptq ě U´1p ε02 , δq, then arm i is not pulled again until H1,ε0 X I XAr Ă St. Thus,
8
ÿ

t:Rt“r
1tH1,ε0 X I X Ar Ć St, It P H1 XHc

1,ε0 X Ar, pµIt,NIt ptq ă µ0 `
ε0
2 u

ď
ÿ

iPH1XHc
1,ε0

XAr

U´1
p
ε0
2 , δq

ď c|H1 XHc
1,ε0 X Ar|ε

´2
0 logp logpε´2

0 q

δ
q.

Next, we bound the final summands

1tEu
8
ÿ

t:Rt“r
1tIt P H1 XHc

1,ε0 , pµIt,NIt ptq ě µ0 `
ε0
2 u ` 1tIt P H1,ε0u.

Let p ď |Ar|. If j P H1 XHc
1,ε0 X Ar and pµj,Njptq ě µ0 `

ε0
2 , then

pµj,Njptq ´ UpNjptq, δ
1
r

p

|Ar|
q ě µ0 `

ε0
2 ´ UpNjptq, δ

1
r

p

|Ar|
q

so that pµj,Njptq ´ UpNjptq, δ
1
r

p
|Ar|
q ě µ0 if Niptq ě U´1p ε2 , δ

1
r

p
|Ar|
q, which implies that j P sppq.
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Next, if j P H1,ε0 X Ar, then

pµj,Njptq ´ UpNjptq, δ
1
r

p

|Ar|
q ě µj ´ UpNjptq, ρjq ´ UpNjptq, δ

1
r

p

|Ar|
q

ě µj ´ 2UpNjptq, ρjδ
1
r

p

|Ar|
q

so that pµj,Njptq ´ UpNjptq, δ
1
r

p
|Ar|
q ě µ0 if Niptq ě U´1p

µj´µ0
2 , ρjδ

1
r

p
|Ar|
q, which implies that

j P sppq.

While there is some p associated with each arm when it is added to sppq and then

consequently to St, we don’t know the order in or time at which particular arms are added.

However, in the worst case, the arms of H1 are added one at a time to St instead of in a big

group so that the first reqires p “ 1, the second p “ 2, etc. Letting Γ “ tf : f : H1 ÝÑ
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r|H1|s is a bijectionu,

1tEu
8
ÿ

t:Rt“r
1tIt P H1 XHc

1,ε0 , pµIt,NIt ptq ě µ0 `
ε0
2 u ` 1tIt P H1,ε0u

ď 1tEucmax
σPΓ

ˆ

ÿ

jPH1XHc
1,ε0

XAr

U´1
p
ε

2 , δ
1
r

σpjq

|Ar|
q `

ÿ

jPH1,ε0XAr

U´1
p
µj ´ µ0

2 , ρjδ
1
r

σpjq

|Ar|
q

˙

ď 1tEucmax
σPΓ

ˆ

ÿ

jPH1XHc
1,ε0

XAr

∆´2
j,ε0 logp |Ar|

σpjq

logp∆´2
j,ε0q

δ1r
q (4.16)

`
ÿ

jPH1,ε0XAr

∆´2
j,ε0 logp |Ar|

σpjq

logp∆´2
j,ε0q

ρjδ1r
q

˙

“ 1tEucmax
σPΓ

ˆ

ÿ

jPH1XHc
1,ε0

XAr

∆´2
j,ε0 logp |Ar|

σpjq

logp∆´2
j,ε0q

δ1r
q

`
ÿ

jPH1,ε0XAr

∆´2
j,ε0 logp |Ar|

σpjq

logp∆´2
j,ε0q

δ1r
q `

ÿ

jPH1,ε0XAr

∆´2
j,ε0 logp 1

ρj
q

˙

“ 1tEucmax
σPΓ

ˆ

ÿ

jPH1XHc
1,ε0

XAr

∆´2
j,ε0 logp |Ar|

σpjq

logp∆´2
j,ε0q

δ1r
q

`
ÿ

jPH1,ε0XAr

∆´2
j,ε0 logp |Ar|

σpjq

logp∆´2
j,ε0q

δ1r
q ` 5

ÿ

jPH1,ε0XAr

∆´2
j,ε0 logp1

δ
q

˙

ď c1 max
σPΓ

ÿ

iPH1XAr

∆´2
i,ε0 logp |Ar|

σpiq
r2 logp∆´2

i,ε0q

δ
q (4.17)

ď c1
|H1XAr|
ÿ

i“1
ε´2

0 logp |Ar|
i
r2 logpε´2

0 q

δ
q

ď c2|Ar|ε
´2
0 logpr logpε´2

0 q

δ
q (4.18)

where the last line follows from the fact that for any p ď |Ar|,
řp
i“1 logp |Ar|

i
q ď |Ar|.

Step 4: finishing bound (4.11). Using lines (4.18) and (4.13),

1tEuτr,k ď c1r2r´1
pr ´ 1q ` logp|Ar|ε´2

0 logpr logpε´2
0 q

δ
qq|Ar|ε

´2
0 logpr logpε´2

0 q

δ
qs

deterministically, which yields line (4.11).

Proof of Theorem 21. As in the proof of Lemma 25, define

τk “ minpt P NY t8u : Ds such that |As XH1,ε0 | ě k and Is X As XH1 Ă Stq.
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As was argued in the proof of Lemma 25, for all t ě τk, Er|St X H1|s ě p1 ´ δqk since for

t ě τk.

Step 1: A lower bound on the probability of a good event. Define Er “ Eε0,r X

E0,rXE1,r. We note that since tρi,ruiPrns,rPN are independent, tErurPN are independent events.

Let ε0 P r0, 1 ´ µ0q such that nε0 ě k minimize (4.10). Let r0 be the smallest integer such

that

minp40 n

nε0
k, nq ď 2r0 ď 80 n

nε0
k,

Note that if 2r0 ě n, then the bracket r0 has n arms.

Next, we bound PpEc
ε0,r0q. If 2r0 ě n, then PpEc

ε0,r0q “ 0, so assume that 2r0 ă n. Note

that since the elements of Ar0 are chosen uniformly from rns and |Ar0 | “ 2r0 ě 40 n
|H1,ε0 |

k we

have that

Er|H1,ε0 X Ar0 |s “
|H1,ε0 |

n
|Ar0 |

ě 40k.

Then, by a Chernoff bound for hypergeometric random variables,

Pp|H1,ε0 X Ar0 | ď 20kq ď expp´1
840kq ď expp´5q.

Thus, Eε0,r0 occurs with probability at least 1´ expp´5q. Furthermore, we note that for any

r ě r0, PpEc
ε0,rq ď expp´5q.

Furthermore, by Lemma 8 of Jamieson and Jain (2018), for any r P N and i “ 0, 1,

PpEc
i,rq “ ErPpEc

i,r|Arqs ď δ.

Finally, note that for every r ě r0 and any δ ď 0.025 we have

PpEc
rq ď expp´5q ` 2δ ď 1

16 .

Furthermore, we claim that PpX8l“r0E
c
l q “ 0. Let s ě r0; then, using the independence

between brackets,

PpX8l“r0E
c
l q ď PpXsl“r0E

c
l q “

1
16s ÝÑ 0
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as s ÝÑ 8, proving the claim.

Step 2: Gap-Independent bound on the number of samples. For the sake of

brevity, write τ instead of τk. Then, by the independence between brackets, Y8r“r0Er X

pXr0ďlărE
c
l q occurs with probability 1, and line 4.11 of Lemma 25,

Erτ s

“ Erτ1tY8r“r0Er X pXr0ďlărE
c
l qus

ď

8
ÿ

r“r0

Erτ1tEr X pXr0ďlărE
c
l qus

“

8
ÿ

r“r0

Erτ1tErusPpXr0ďlărE
c
l q

ď

8
ÿ

r“r0

r2r´1
pr ´ 1q ` logp|Ar|ε´2

0 logpr logpε´2
0 q

δ
qq|Ar|ε

´2
0 logpr logpε´2

0 q

δ
qqs

1
16r´r0

ď

8
ÿ

s“0
r2r0 ¨ 2spr0 ` sq

` logp2s|Ar0 |ε
´2
0 logppr0 ` sq

logpε´2
0 q

δ
qq2s|Ar0 |ε

´2
0 logppr0 ` sq

logpε´2
0 q

δ
qqs

1
16s

We note that

logppr0 ` sq
logpε´2

0 q

δ
qq ď crlogpr0

logpε´2
0 q

δ
qq ` logps logpε´2

0 q

δ
qqs

ď c1 logpr0
logpε´2

0 q

δ
qq ` c logpsq

and

logp2s|Ar0 |ε
´2
0 logppr0 ` sq

logpε´2
0 q

δ
qq

“ logp|Ar0 |ε
´2
0 logppr0 ` sq

logpε´2
0 q

δ
qq ` s

ď logp|Ar0 |ε
´2
0 c1 logpr0

logpε´2
0 q

δ
q ` c logpsqq ` s

ď c2 logp|Ar0 |ε
´2
0 logpr0

logpε´2
0 q

δ
qqq ` c3 logplogpsqq ` s

ď c2 logp|Ar0 |ε
´2
0 logpr0

logpε´2
0 q

δ
qqq ` c4s
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Then,
8
ÿ

s“0
logp2s|Ar0 |ε

´2
0 logppr0 ` sq

logpε´2
0 q

δ
qq2s|Ar0 |ε

´2
0 logppr0 ` sq

logpε´2
0 q

δ
qq

1
16s

ď

8
ÿ

s“0
rc2 logp|Ar0 |ε

´2
0 logpr0

logpε´2
0 q

δ
qqq ` c4ss|Ar0 |ε

´2
0 rc

1 logpr0
logpε´2

0 q

δ
qq ` c logpsqs 1

8s

ď c2c1 logp|Ar0 |ε
´2
0 logpr0

logpε´2
0 q

δ
qqq|Ar0 |ε

´2
0 logpr0

logpε´2
0 q

δ
qq

` c41 logp|Ar0 |ε
´2
0 logpr0

logpε´2
0 q

δ
qqq|Ar0 |ε

´2
0

` c42|Ar0 |ε
´2
0 logpr0

logpε´2
0 q

δ
qq ` `c43|Ar0 |ε

´2
0

ď c44 logp|Ar0 |ε
´2
0 logpr0

logpε´2
0 q

δ
qqq|Ar0 |ε

´2
0 logpr0

logpε´2
0 q

δ
qq

Plugging in |Ar0 | and r0 yields the gap independent bound.

4.6.2 Proof of FWER-TPR

In this section, we prove an upper bound for the FWER-TPR version of our Algorithm (see

Algorithm 14). We note that the upper bound (4.5) in Theorem 20 follows as a corollary

since whenever the FWER-TPR version of our Algorithm 14 accepts an arm, the FDR-TPR

version of our Algorithm 13 accepts the same arm.

Theorem 22. Let δ ď .025. Let k ď |H1|. For all ε ą 0 define

Skpεq :“ k

|H1,ε|

´

ÿ

iPH1

∆´2
i,ε logp n

|H1,ε|
k logp∆´2

i,ε q{δq `
ÿ

iPH0

∆´2
i,ε logplogp∆´2

i,ε q{δq
¯

.

Then, Algorithm 14 has the property that PpDt : Qt X H0 ‰ Hq ď 2δ and there exists a

stopping time τk wrt pFqtPN such that

Erτks ď c min
εě∆:|H1,ε|ěk

Spεq logrSpεq ` ε´2 logp n
|H1,ε|

k logpε´2
q{δqs (4.19)

and for all t ě τk, Er|Qt XH1|s ě p1´ δqk.

Lemma 26. Fix δ ă 0.025. Fix k ď |H1| and any ε0 ą 0 such that |H1,ε0 | ě k. Define for

any r P N,

Ur :“ minp2r, nq
n

r
ÿ

iPH1

∆´2
i,ε0 logpminp2r, nqr

logp∆´2
i,ε0q

δ
qq `

ÿ

iPH0

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
qs.
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Then, there exists a random variable τk such that for all t ě τk, Er|Qt X H1|s ě p1 ´ δqk,

and

Er1tEε0,r X E0,r X E1,ruτks ď cr2r´1
pr ´ 1q ` Ur logpUr ` ε´2

0 logpminp2r, nqr logpε´2
0 q

δ
qqqs

(4.20)

where c is a universal constant.

Proof. Step 1: Define stopping time. Define

τk “ minpt P NY t8u : Ds such that |As XH1,ε0 | ě k and Is X As XH1 Ă Qtq.

Observe that for all t ě τk, Er|Qt XH1|s ě p1´ δqk since for t ě τk

Er|Qt XH1|s ě Er|Is X As XH1|s ě p1´ δq|As XH1| ě p1´ δqk.

Let r P N. Define

T “ |tt P N : I X Ar XH1,ε0 Ć Qt and Rt “ ru|,

By the same argument used in Lemma (25) to obtain line (4.13),

1tEuτk ď r2r´1
pr ´ 1q ` logp1tEuT q1tEuT s. (4.21)

We can use the same argument that was used to obtain line (4.17) in Lemma 25 by the

lower bounds 1 ď σpiq and p ě 1 to obtain

1tEuT ď c

ˆ

ÿ

iPH0XAr

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
q (4.22)

` |H1 XHc
1,ε0 X Ar|ε

´2
0 logp logpε´2

0 q

δ
q `

ÿ

iPH1XAr

∆´2
i,ε0 logp|Ar|r2 logp∆´2

i,ε0q

δ
q

˙

ď c1r
ÿ

iPH0XAr

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
q `

ÿ

iPH1XAr

∆´2
i,ε0 logp|Ar|r

logp∆´2
i,ε0q

δ
qs (4.23)

:“ c1Sr (4.24)

where the second inequality follows from the fact that ∆i,ε0 “ ε0 for all i P H1 XHc
1,ε0 X Ar

so the third term absorbs the second.
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Using lines (4.23) and (4.21),

1tEuτk ď cr2r´1
pr ´ 1q ` logpSrqSrs

but note that now the bound depends on the particular random elements of Ar X H0 and

Ar XH1.

Step 2: Bounding ErlogpSrqSrs. Next, taking the expectation of both sides and focus-

ing on the expectation of the second term,

ErlogpSrqSrs “
ÿ

iPH0

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
qEr1ti P Aru logpSrqs

`
ÿ

iPH1

∆´2
i,ε0 logp|Ar|r2 logp∆´2

i,ε0q

δ
qEr1ti P Aru logpSrqs.

It suffices to bound the first sum since the argument for the second is the same.

Er1tj P Aru logpSrqs “ ErlogpSrq|j P Ars
minp2r, nq

n
(4.25)

ď logpErSr|j P Arsq
minp2r, nq

n
(4.26)

“ logpminp2r ´ 1, n´ 1q
n´ 1 r

ÿ

iPH1

∆´2
i,ε0 logpminp2r, nqr

logp∆´2
i,ε0q

δ
qq

`
ÿ

iPH0zj

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
qs `∆´2

j,ε0 logp
logp∆´2

j,ε0q

δ
qq

minp2r, nq
n

(4.27)

ď logpSr `∆´2
j,ε0 logp

logp∆´2
j,ε0q

δ
qq

minp2r, nq
n

, (4.28)

where line (4.25) follows by the law of total expectation, line (4.26) follows by Jensen’s

inequality, and line (4.28) follows since a
b
ď a`1

b`1 if a ď b. Thus, collecting terms,

Er1tEε0,r X E0,r X E1,ruτr,ks ď Ur logpUr ` ε´2
0 logpminp2r, nqr logpε´2

0 q

δ
qq

yielding line (4.20).

Proof of Theorem 22. Step 1: Showing PpDt : Qt XH0 ‰ Hq ď 2δ. First, we show that
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PpDt : Qt XH0 ‰ Hq ď 2δ.

PpDt : Qt XH0 ‰ Hq ď

8
ÿ

r“1
PpDt : Qt X Ar XH0 ‰ Hq

ď

8
ÿ

r“1
PpDt P N and i P H0 X Ar : pµi,r,Ni,rptq ´ UpNi,rptq,

δ

|Ar|r2 q ě µ0q

ď

8
ÿ

r“1
PpDt P N and i P H0 X Ar : pµi,r,Ni,rptq ´ UpNi,rptq,

δ

|Ar|r2 q ě µiq

ď

8
ÿ

r“1
|Ar XH0|

δ

|Ar|r2

ď

8
ÿ

r“1

δ

r2

ď δ
π2

6

Step 2: Defining the stopping time. As in the proof of Lemma 26, define

τk “ minpt P NY t8u : Ds such that |As XH1,ε0 | ě k and Is X As XH1 Ă Qtq.

As was argued in the proof of Lemma 26, for all t ě τk, Er|Qt XH1|s ě p1 ´ δqk since for

t ě τk.

Step 3: A lower bound on the probability of a good event. Define Er “ Eε0,r X

E0,rXE1,r. We note that since tρi,ruiPrns,rPN are independent, tErurPN are independent events.

Let ε0 ą 0 such that |H1,ε0 | ě k minimize (4.19). Let r0 be the smallest integer such that

minp40 n

nε0
k, nq ď 2r0 ď 80 n

nε0
k,

Note that if 2r0 ě n, then the bracket r0 has n arms.

As was argued in the proof of Theorem 21 we have that

PpEc
rq ď expp´5q ` 2δ ď 1

16 .

and that PpX8l“r0E
c
l q “ 0.

Step 4: Gap-Dependent bound on the number of samples. For the sake of brevity,

write τ instead of τk. Then, by the independence between brackets and Y8r“r0ErXpXr0ďlărE
c
l q
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occurs with probability 1,

Erτ s “ Erτ1tY8r“r0Er X pXr0ďlărE
c
l qus

ď

8
ÿ

r“r0

Erτ1tEr X pXr0ďlărE
c
l qus

“

8
ÿ

r“r0

Erτ1tErusPpXr0ďlărE
c
l q

ď

8
ÿ

r“r0

cr2r´1
pr ´ 1q ` Ur logpUr ` ε´2

0 logpminp2r, nqr logpε´2
0 q

δ
qqqs

1
16r´r0

ď

8
ÿ

r“r0

cr2r´r0 ¨ 2r0´1
pr ´ 1q ` 4r´r0Ur0 logp4r´r0Ur0 ` ε

´2
0 logp2r0 ¨ 2r´r0r

logpε´2
0 q

δ
qqqs

1
16r´r0

where we used Lemma 25 and the fact that 4sUr ě Ur`s for any s ě 1, which holds by the

following argument

4sUr “ 4sminp2r, nq
n

r
ÿ

iPH1

∆´2
i,ε0 logpminp2r, nqr

logp∆´2
i,ε0q

δ
qq `

ÿ

iPH0

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
qs

ě
minp2r`s, nq

n
r
ÿ

iPH1

∆´2
i,ε0 logpminp2r2s , nqr

logp∆´2
i,ε0q

δ
qq `

ÿ

iPH0

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
qs

ě
minp2r`s, nq

n
r
ÿ

iPH1

∆´2
i,ε0 logpminp2r`s, nqr

logp∆´2
i,ε0q

δ
qq `

ÿ

iPH0

∆´2
i,ε0 logp

logp∆´2
i,ε0q

δ
qs

“ Ur`s.

Next, we bound the first term.
8
ÿ

r“r0

2r´r0 ¨ 2r0´1
pr ´ 1q 1

16r´r0
ď

8
ÿ

r“r0

2r0´1
pr0 ` r ´ r0q

1
8r´r0

ď c2r0´1r0 `

8
ÿ

r“r0

2r0´1pr ´ r0q

8r´r0

ď c12r0´1r0
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Next, we bound the second term.
8
ÿ

r“r0

1
4r´r0

Ur0 logp4r´r0Ur0 ` ε
´2
0 logp2r0 ¨ 2r´r0ps` r0q

logpε´2
0 q

δ
qqq

“

8
ÿ

s“0

1
4sUr0 logp4sUr0 ` ε

´2
0 logp2r0 ¨ 2sps` r0q

logpε´2
0 q

δ
qqq

ď

8
ÿ

s“0

1
4sUr0 logp4sUr0 ` c

1ε´2
0 logp2r0r0

logpε´2
0 q

δ
qq ` c1sq

ď Ur0

8
ÿ

s“0

1
4s rc

2 logp4sUr0 ` c
1ε´2

0 logp2r0r0
logpε´2

0 q

δ
qqq ` c3 logpsqs

ď Ur0

8
ÿ

s“0

1
4s rc

2 logpUr0 ` c
1ε´2

0 logp2r0r0
logpε´2

0 q

δ
qqq ` c2 logp4sq ` c3 logpsqs

ď c4Ur0 logpUr0 ` ε
´2
0 logp2r0r0

logpε´2
0 q

δ
qqq

where we used

logp2r0 ¨ 2sps` r0q
logpε´2

0 q

δ
qq “ logp2r0ps` r0q

logpε´2
0 q

δ
qq ` cs

ď c1 logp2r0r0
logpε´2

0 q

δ
qq ` c1 logp2r0s

logpε´2
0 q

δ
qq ` cs

ď c2 logp2r0r0
logpε´2

0 q

δ
qq ` c4s

Finally, the result follows from noting that Ur0 ď cSpε0q for some universal constant c

and

2r0r0 ď c
n

nε0
k logp n

nε0
kq ď cSpε0q logpSpε0qq

where the last inequality follows since ∆´2
i,ε0 ě 1 for all i P rns.

4.6.3 Proof of ε-Good Arm Identification

Recall the relevant notation. For a fixed ε ą 0 define m “ ti P rns : µi ą µi ´ εu. For any

γ P p0, εq define Gγ “ ti P rns : µi ě µ1 ´ γu and define the gaps wrt to ε and γ as follows:

∆i,ε,γ “

$

’

’

’

’

’

&

’

’

’

’

’

%

µi ´ µm`1 i ď |Gγ|

maxpµ|Gγ | ´ µi, µi ´ µm`1q |Gγ| ă i ď m

µ|Gγ | ´ µi i ě m` 1

.
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Note that as γ decreases on pε, 0q the gaps only increase but |Gγ| decreases. We restate

Theorem 17 with the doubly logarithmic terms.

Theorem 23. Let δ P p0, 1q. For all ε ą 0 define

Uεpγq :“ 1
|Gγ|

´
m
ÿ

j“1
∆´2
j,ε,γ logp n

|Gγ |
logp∆´2

j,ε,γq{δq `
n
ÿ

j“m`1
∆´2
j,ε,γ logplogp∆´2

j,ε,γq{δq
¯

.

Then, Algorithm 13 has the property that there exists a stopping time τ wrt pFqtPN such that

Erτ s ď c min
γPp0,εq

Uεpγq logpUεpγq `∆´2
m,ε,γ logp n

|Gγ |
logp∆´2

m,ε,γq{δqq (4.29)

ď cUε logpUε ` pµm ´ µm`1q
´2 logp n

m
logppµm ´ µm`1q

´2
q{δqq (4.30)

and PpDs ě τ : µOs ď µ1 ´ εq ď 2δ.

Lemma 27 is the key intermediate result in the proof of Theorem 23; its role is similar

to that of Lemma 25 in the proof of Theorem 21 and the proof is technically similar to the

proof of Lemma 25. For any r P N define the events

Fr,1 “ tAr XGγ ‰ Hu

Fr,2 “ t
ÿ

iPAr:µiă
µ|Gγ |

`µm`1
2

∆´2
i,γ logp 1

ρi,r
q ď 5

ÿ

iPAr:µiă
µ|Gγ |

`µm`1
2

∆´2
i,γ logp1

δ
qu,

Fr,3 “ tDi0 P Ar XGγ s.t.@t P N : |pµi0,r,t ´ µi0 | ď Upt, δqu.

Fr,1 says that there is at least one γ-good arm in bracket r. Fr,2 allows us to avoid a union

bound and says that most of the arms in bracket r have large ρi,r. Finally, Fr,3 says that at

least one of the arms that is γ-good and and in rth bracket concentrates well in the sense

that ρi,r ě δ.

Lemma 27. Let ε ą 0, γ P p0, εq, and r P N. Define

Yr “
minp2r, nq

n
r

ÿ

j:µjďµ1´ε

∆´2
j,ε,γ logp

logp∆´2
j,ε,γq

δ
q `

ÿ

j:µjąµ1´ε

∆´2
j,ε,γ logp|Ar|r

logp∆´2
j,ε,γq

δ
qs

Then, there exists a random variable τ such that PpDs ě τ : µOs ď µ1 ´ εq ď 2δ, and

Er1tFr,1 X Fr,2 X Fr,3uτ s ď cr2r´1
pr ´ 1q ` Yr logpYr `∆´2

m,ε,γ logp|Ar|r
logp∆´2

m,ε,γq

δ
qs. (4.31)
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Proof. Step 1: Define stopping time. Our strategy is to define a stopping time τ that

says that some arm i that is ε-good has been sampled enough times so that its confidence

bound is sufficiently small and then to show that with high probability for all t ě τ , (i) the

lower confidence bound of arm i is above µm`1 and (ii) the algorithm always outputs an

ε-good arm. To this end, define

τ “ mintt P NY t8u : Ds P N and Di P As s.t. µi ě
µ|Gγ | ` µm`1

2
and Ni,sptq ě U´1

p
∆i,ε,γ

4 ,
δ

|As|s2 qu.

We claim that PpDt ě τ : µOt ă µ1 ´ εq ď 2δ. Define the event

F “ t@t P N, s P N, and i P As : |pµi,s,t ´ µi| ď Upt,
δ

|As|s2 qu.

By a union bound, F occurs with probability at least 1´2δ. Suppose F occurs and let t ě τ .

Then, since t ě τ , there exists a bracket s and an arm i P As such that µi ě
µ|Gγ |`µm`1

2 and

Ni,sptq ě U´1p
∆i,ε,γ

4 , δ
|As|s2 q. Then by event F ,

pµi,s,Ni,sptq ´ UpNi,sptq,
δ

|As|s2 q ě µi ´ 2UpNi,sptq,
δ

|As|s2 q

ą µi ´
∆i,ε,γ

2
ě µm`1.

Towards a contradiction, suppose that there exists a bracket s0 P N and another arm j P As0

(j ‰ i) such that µj ď µ1 ´ ε and the algorithm outputs j at time t. Then, by event F ,

µj ě pµj,s0,Nj,s0 ptq
´ UpNj,s0ptq,

δ

|As0 |s
2
0
q ě pµi,s,Ni,sptq ´ UpNi,sptq,

δ

|As|s2 q ą µm`1 ě µj,

which is a contradiction. Thus, PpDt ě τ : µOt ă µ1 ´ εq ď 2δ.

Step 2: Relating τ to bracket r. Next, we bound Er1tFr,1 X Fr,2 X Fr,3uτ s. For the

sake of brevity, define Fr :“ Fr,1XFr,2XFr,3 and since we will only focus on bracket r, write

pµi,t, Niptq, and ρi instead of pµi,r,t, Ni,rptq, and ρi,r. Define

T “ |tt P N : Rt “ r and @i P Ar s.t. µi ě
µ|Gγ | ` µm`1

2 and Niptq ě U´1
p
∆i,ε,γ

4 ,
δ

|Ar|r2 qu|,
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i.e., the number of rounds that the algorithm works on the rth bracket and there does not

exist i P Ar s.t. µi ě
µ|Gγ |`µm`1

2 and Niptq ě U´1p
∆i,ε,γ

2 , δ
|Ar|r2 q. By the same argument given

in line (4.13) in Lemma 25, we have that

1tFruτ ď cr2r´1
pr ´ 1q ` logpT1tFruqT1tFrus.

Step 3: Bounding T1tFru. In the interest of brevity, define F ptq “ t@i P Ar s.t. µi ě
µ|Gγ |`µm`1

2 and Niptq ě U´1p
∆i,ε,γ

4 , δ
|Ar|r2 qu. Then,

1tFruT ď 1tFru
8
ÿ

t“1
1tRt “ r, F ptqu

ď 1tFru
8
ÿ

t:Rt“r
1tµIt ă

µ|Gγ | ` µm`1

2 u ` 1tµIt ě
µ|Gγ | ` µm`1

2 , F ptqu

We bound each sum separately. Note that by Fr,3 there exists an i0 P Ar XGγ such that

pµi0,Ni0 ptq ` UpNi0ptq, δq ě µi0 ě µ1 ´ γ. (4.32)

Let j such that µj ă
µ|Gγ |`µm`1

2 . Then,

pµj,Njptq ` UpNjptq, δq ď µj ` UpNjptq, ρjq ` UpNjptq, δq ď µj ` 2UpNjptq, ρjδq.

Thus, line (4.32) implies that if Njptq ě U´1p
∆j,ε,γ

4 , ρjδq, arm j is not pulled since in that

case

pµj,Njptq ` UpNjptq, δq ď µj ` 2UpNjptq, ρjδq ď µj `
∆j,ε,γ

2 ď µ|Gγ |.

Thus, by arguments made throughout this paper (e.g., line (4.15) of the proof of Lemma

25) and the event Fr,2,

8
ÿ

t:Rt“r
1tµIt ď µ1 ´ εu ď c

ÿ

jPAr:µjă
µ|Gγ |

`µm`1
2

∆´2
j,ε,γ logp

logp∆´2
j,ε,γq

δ
q

Finally, by event F we clearly have
8
ÿ

t:Rt“r
1tµIt ě

µ|Gγ | ` µm`1

2 , F ptqu ď c
ÿ

jPAr:µjě
µ|Gγ |

`µm`1
2

∆´2
j,ε,γ logp|Ar|r

logp∆´2
j,ε,γq

δ
q
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Thus,

1tFruT ď cr
ÿ

jPAr:µjă
µ|Gγ |

`µm`1
2

∆´2
j,ε,γ logp

logp∆´2
j,ε,γq

δ
q

`
ÿ

jPAr:µjě
µ|Gγ |

`µm`1
2

∆´2
j,ε,γ logp|Ar|r

logp∆´2
j,ε,γq

δ
qs

ď cr
ÿ

jPAr:µjďµ1´ε

∆´2
j,ε,γ logp

logp∆´2
j,ε,γq

δ
q `

ÿ

jPAr:µjąµ1´ε

∆´2
j,ε,γ logp|Ar|r

logp∆´2
j,ε,γq

δ
qs

:“ cXr

Then, using the same argument from lines (4.25)-(4.28), we have that

EXr logpXrq ď cYr logpYr `∆´2
m,ε,γ logp|Ar|r

logp∆´2
m,ε,γq

δ
qs

Thus, putting it together,

Er1t1tFruτ s ď cr2r´1
pr ´ 1q ` Yr logpYr `∆´2

m,ε,γ logp|Ar|r
logp∆´2

m,ε,γq

δ
qs

Proof of Theorem 23. Let γ0 P p0, εq minimize the optimization problem in line (4.30). Let

r0 such that be the smallest integer such that

minp40 n

|Gγ0q|
, nq ď 2r0 ď 80 n

|Gγ0|
.

Next, we bound PppFr0,1XFr0,2XFr0,3q
cq. By a union bound and the law of total probability,

PppFr0,1 X Fr0,2 X Fr0,3q
c
q ď PpF c

r0,1 X F
c
r0,3q ` PpF

c
r0,2q

ď PpF c
r0,1q ` PpF

c
r0,3|Fr,1q ` PpF

c
r0,2q

ď 2δ ` PpF c
r0,1q

ď 2δ ` expp´5q

ď
1
16

The rest of the proof proceeds as the proof of Theorem 21 starting at step 2.
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4.6.4 Proof of FWER-FWPD

Finally, we present a Theorem for the FWER-FWPD version of Algorithm 14. Although

it is possible to use the ideas from the other upper bound proofs to establish a result that

depends on the distribution of the arms in H1, for simplicity our upper bound is in terms of

∆ “ miniPH1 µi ´ µ0 and m.

Theorem 24. Let δ P p0, 1
600q. Let k ď |H1|. Define

rVk :“ p n
m
k ´ kq∆´2 logpmaxpk, log logp n

m
k

1
δ
qq logp∆´2

q logp n
m
kq{δq

` k logpmaxp n
m
k ´ p1´ 2δp1` 4δqqk, log logp n

m
k

1
δ
qq logp∆´2

q logp n
m
kq{δqs

. p
n

m
k ´ kq∆´2 logpk{δq ` k logp

n
m
k ´ p1´ 2δp1` 4δqqk

δ
q

Furthermore, define

λk “ minpt P N : |Rt XH1| ě kq.

Then, Algorithm 14 has the property that PpDt P N : Rt XH0 ‰ Hq ď 10δ and

Erλks ď c logprVkqrVk.

Lemma 28. Let δ P p0, .01q. Let k ď |H1|. Let r P N such that 2r ě k. Define

λr “ minpt P N : |Rt X Ar XH1| ě kq.

Define

Vr :“ p2r ´minp|H1|,
|H1|

n
2rqq∆´2 logpmaxpminp|H1|,

|H1|

n
2rq, log logpr2r{δqq logp∆´2

qr{δq

`minp|H1|,
|H1|

n
2rq logpmaxp2r ´ p1´ 2δp1` 4δqqminp|H1|,

|H1|

n
2rq, log logpr2

r

δ
qq logp∆´2

qr{δqs

Then with probability at least 1´ 6δ ´ 2 expp´2r´3q ´ Pp|Ar XH1| ă kq,

λr ď cp2r´1
pr ´ 1q ` logpVrqVrq.

Proof. Step 1: Definitions and events. Recall Rt is the bracket chosen at time t and

define

T “ |tt P N : Ar XH1 Ć Rt and Rt “ ru|,
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i.e., the number of rounds that the algorithm works on the rth bracket and Ar XH1 Ć Rt.

Define the events

Σr,1 “ t|Ar XH1| ě ku

Σr,2 “ t|Ar XH1| ď minp|H1|,
|H1|
n

2r`1
qqu

Σr,3 “ t|Ar XH1| ě minp|H1|,
|H1|
n

2r´1
qqu

If 2r`1 ě n, then |Ar XH1| ď |H1| implies PpΣc
r,2q “ 0. Therefore, suppose 2r`1 ă n. Then,

by multiplicative Chernoff for hypergeometric random variables,

PpΣc
r,2q “ Pp|Ar XH1| ą

|H1|

n
2r`1

q ď expp´|H1|

n
2r´2

q ď expp´2r´2
q

Similarly, if 2r ě n, then |Ar| “ n and PpΣc
r,2q “ 0. Therefore, suppose 2r ă n.

PpΣc
r,3q “ Pp|Ar XH1| ă

|H1|

n
2r´1

qq ď expp´|H1|

n
2r´3

q ď expp´2r´3
q

Since the algorithm essentially runs the FWER-FWDP version of the algorithm from

Jamieson and Jain (2018) on each bracket r with confidence δ{r2, we can apply Theorem 4

of Jamieson and Jain (2018) directly to obtain that there exists an event Σr,4, which only

depends on the samples of the arms in bracket r, such that PpΣc
r,4q ď 6δ and on Σr,4

T ď crp|Ar| ´ |Ar XH1|q∆´2 logpmaxp|Ar XH1|, log logp|Ar|{δrqq logp∆´2
q{δrq

` |Ar XH1|∆´2 logpmaxp|Ar| ´ p1´ 2δrp1` 4δrq|Ar XH1|, log logp |Ar|
δr
qq logp∆´2

q{δrqs.

This roughly says T . p|Ar| ´ |Ar XH1|q∆´2 logp|Ar XH1|{δq ` |Ar XH1|∆´2 logpp|Ar| ´

|Ar XH1|q{δq.

Step 2: Bounding λr. In what follows, assume Σr,1 X Σr,2 X Σr,3 X Σr,4 occur which

happens with probability at least

1´ 6δ ´ 2 expp´2r´3
q ´ PpΣc

r,1q.

By the same argument given in lines (4.12) and (4.13), event Σr,1 implies that

λr ď cp2r´1
pr ´ 1q ` logpT qT q.
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Furthermore, using Σr,2 X Σr,3 X Σr,4,

T ďcrp|Ar| ´ |Ar XH1|q∆´2 logpmaxp|Ar XH1|, log logp|Ar|{δrqq logp∆´2
q{δrq

` |Ar XH1|∆´2 logpmaxp|Ar| ´ p1´ 2δrp1` 4δrqq|Ar XH1|, log logp |Ar|
δr
qq logp∆´2

q{δrqs

ďc1rp|Ar| ´ |Ar XH1|q∆´2 logpmaxp|Ar XH1|, log logpr|Ar|{δqq logp∆´2
qr{δq

` |Ar XH1|∆´2 logpmaxp|Ar| ´ p1´ 2δp1` 4δqq|Ar XH1|, log logpr|Ar|
δ
qq logp∆´2

qr{δqs

ďc2rp2r ´minp|H1|,
|H1|

n
2rqq∆´2 logpmaxpminp|H1|,

|H1|

n
2rq, log logpr2r{δqq logp∆´2

qr{δq

`minp|H1|,
|H1|

n
2rq∆´2 logpmaxp2r ´ p1´ 2δp1` 4δqq

¨minp|H1|,
|H1|

n
2rq, log logpr2

r

δ
qq logp∆´2

qr{δqs

Proof of Theorem 24. We note that the algorithm essentially runs the FWER-FWDP version

of the algorithm from Jamieson and Jain (2018) on each bracket r with confidence δ{r2.

Therefore, by Theorem 4 from Jamieson and Jain (2018),

PpDt P N : Ar XRt XH0 ‰ Hq ď 6 δ
r2

Thus,

PpDt P N : Rt XH0 ‰ Hq ď PpDt P N, r P N : Ar XRt XH0 ‰ Hq

ď
ÿ

rPN
PpDt P N : Ar XRt XH0 ‰ Hq

ď
ÿ

rPN
6 δ
r2

ď 10δ.

Let r0 P N be the smallest integer such that r0 ě 6 and

minp40 n
m
k, nq ď 2r0 ď 80 n

m
k.

If 2r0 ě n, then Pp|Ar XH1| ă kq “ 0. Otherwise,by multiplicative Chernoff for hypergeo-

metric random variables,

Pp|Ar XH1| ă kq ď expp´5q.
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In the interest of brevity, define Σr “ Σr,1 X Σr,2 X Σr,3 X Σr,4. Observe that tΣrurPN are

mutually independent. Further, using δ P p0, 1
600q, for all brackets r ě r0, the events occur

which happens with probability at least

PpΣc
rq ď 6δ ` 2 expp´2r´3

q ` PpΣc
r,1q ď

1
16

The rest of the proof proceeds as in Step 2 of the proof of Theorem 21.

4.7 Best of both Worlds Algorithm for ε-Good Arm

Identification

We consider the version of LUCB from Kalyanakrishnan et al. (2012a). Let LUCB(ε) denote

the LUCB algorithm that terminates once it finds an ε-good arm. Let βpt, δq denote the

confidence bound used in Kalyanakrishnan et al. (2012a); although, it is possible to tighten

these confidence bounds, for the sake of simplicity and brevity we use theirs so that we can

appeal to their sample complexity results. Algorithm 15 takes a desired tolerance ε ą 0 as

input, runs LUCB(ε) and the ε-good arm identification version of Algorithm 13 in parallel

without sample sharing between the algorithms,3, and outputs an arm pit at every iteration.

This armpit is the arm Ot suggested by Algorithm 13 for every iteration until the termination

condition of LUCB(ε) obtains at which point algorithm 15 decides whether to output Ot or

the arm suggested by LUCB(ε). Let pµi,t denote the empirical mean at time t of arm i based

on the samples collected by LUCB(ε) and Ni,t denote the number of pulls of arm i at time

t by LUCB(ε).

Proof of Theorem 18. Theorem 6 of Kalyanakrishnan et al. (2012a) implies that there exists

a stopping time τPAC wrt pFtqtPN such that at time τPAC the Algorithm 15 terminates and

(4.4) holds. Theorem 17 implies the existence of stopping time τsimple wrt pFtqtPN such that

(4.3) holds and PpDs ě τsimple : µOs ď µ1 ´ ε2q ď 2δ.

It remains to show that when the Algorithm 15 terminates at t “ τPAC , Ppµ
piτPAC

ď

3Samples should be shared in practice.

160



µ1 ´minpε1, ε2qq ď 3δ. Define the event

F “ t@t P N, s P N, and i P As : |pµi,s,t ´ µi| ď Upt,
δ

|As|s2 qu.

By a union bound, F occurs with probability at least 1´ 2δ. By the argument in Step 1 of

the proof of Lemma 27, on F , for all t ě τsimple

maxrPNpµOt,r,NOt,rptq ´ UpNOt,rptq,
δ

|Ar|r2 q ą max
i:µďµ1´ε2

µi.

Next, define the event

E “ t@t P N and @i P rns : |pµi,t ´ µi| ď βpt, δqu

By Theorem 1 of Kalyanakrishnan et al. (2012a), PpEq ě 1´ δ and on E,

pµ
pj,N

pjpτPACq
´ βpN

pjpτPACq, δq ą µ1 ´ ε1

Suppose F and E occur, which by a union bound occur with probability at least 1 ´ 3δ.

Either piτPAC “ pj or piτPAC “ OτPAC . Suppose piτPAC “ pj. Then,

µ
piτPAC

“ µ
pj

ě pµ
pj,N

pjpτPACq
´ βpN

pjpτPACq, δq

ą maxrPNpµOt,r,NOt,rptq ´ UpNOt,rptq,
δ

|Ar|r2 q

ě max
i:µďµ1´ε2

µi,

which implies that µ
piτPAC

ě µ1 ´ minpε1, ε2q. A similar argument proves the case piτPAC “

OτPAC .
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Algorithm 15 Best of both Worlds Algorithm: ε-Good Arm Identification
1: Input: ε ą 0

2: for t “ 1, 2, . . . do

3: Pull arm according to sampling rule given by the ε-good arm identification version of Algorithm 13

4: Pull arm according to sampling rule given by LUCB(ε)

5: Let Ot be the arm returned by the ε-good arm identification version of Algorithm 13

6: if LUCB(ε) terminates then

7: Let pj denote the arm returned by LUCB(ε)

8: r0 “ argmaxrPNpµOt,r,NOt,rptq ´ UpNOt,rptq,
δ

|Ar|r2 q

9: if pµOt,r0,Ni,rptq ´ UpNOt,r0ptq,
δ

|Ar0 |r
2 q ě pµ

pj,N
pjptq
´ βpN

pjptq, δq then

10: Set pit “ Ot

11: else

12: Set pit “ pj

13: end if

14: Output pit and terminate.

15: else

16: Set pit “ Ot

17: Output pit
18: end if

19: end for
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Chapter 5

Decontamination of Mutual

Contamination Models

Many machine learning problems can be characterized by mutual contamination models. In

these problems, one observes several random samples from different convex combinations of

a set of unknown base distributions and the goal is to infer these base distributions. This

Chapter considers the general setting where the base distributions are defined on arbitrary

probability spaces. I examine three popular machine learning problems that arise in this

general setting: multiclass classification with label noise, demixing of mixed membership

models, and classification with partial labels. In each case, I give sufficient conditions for

identifiability and present algorithms for the infinite and finite sample settings, with asso-

ciated performance guarantees. This Chapter is joint work with Clayton Scott and Gilles

Blanchard, and it was published in the Journal of Machine Learning Research in 2019.

5.1 Introduction

In many machine learning problems, the learner observes several random samples from dif-

ferent mixtures of unknown base distributions, with unknown mixing weights, and the goal

is to infer these base distributions. Examples include binary classification with label noise,

multiclass classification with label noise, classification with partial labels, and topic mod-

eling. The goal of this paper is to develop a unified framework and set of tools to study
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statistical properties of these problems in a very general setting.

To this end, we use the general framework of mutual contamination models (Blanchard

and Scott, 2014). In a mutual contamination model, there are L distributions P1, . . . , PL

called base distributions. The learner observes M random samples

X i
1, . . . , X

i
ni

i.i.d.
„ P̃i “

L
ÿ

j“1
πi,jPj (5.1)

where i “ 1, . . . ,M , πi,j ě 0, and
ř

j πi,j “ 1. Here πi,j is the probability that an instance of

the contaminated distribution P̃i is a realization of Pj. The πi,js and Pjs are unknown and

the P̃is are observed through data. In this work, we avoid parametric models and assume

that the sample space is arbitrary. The model can be stated concisely as

P̃ “ ΠP (5.2)

where P “ pP1, . . . , PLq
T , P̃ “ pP̃1, . . . , P̃Mq

T , and Π “

´

πi,j

¯

is an M ˆ L matrix that we

call the mixing matrix.

In this paper we study decontamination of mutual contamination models, which is the

problem of recovering, or estimating, the base distributions P from the contaminated dis-

tributions P̃ from which data are observed, without knowledge of the mixing matrix Π. We

focus our attention on three specific types of mutual contamination models, all of which de-

scribe modern problems in machine learning: multiclass classification with label noise, demix-

ing of mixed membership models and classification with partial labels. We will demonstrate

that these three decontamination problems can be addressed using a common set of concepts

and techniques. Before elaborating our contributions in detail, we first offer an overview of

the three specific mutual contamination models, and associated decontamination problems,

that we study.

Multiclass Classification with Label Noise: In multiclass classification with label

noise, M “ L and the goal is to recover P . Each Pi represents the distribution of a class

of examples. The learner observes training examples with noisy labels, that is, realizations

from the P̃js. This problem arises in nuclear particle classification (Scott et al., 2013). When

one draws samples of a specific particle, it is impossible to remove other types of particles

from the background. Thus, each example is drawn from a mixture of the different types of

particles.
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Demixing of Mixed Membership Models: We consider the following decontamina-

tion problem in mixed membership models: given a sample from each P̃i, recover P up to

a permutation. We refer to this decontamination problem as demixing of mixed membership

models. This problem arises in the task of automatically uncovering the thematic topics of

a corpus of documents. Under the mixed membership model approach, the words of each

document are thought of as being drawn from a document-specific mixture of topics. Specif-

ically, documents correspond to the P̃is and the topics to the Pis. This approach is also

referred to as topic modeling. As we discuss in the next section, our theory significantly

generalizes existing topic modeling theoretical guarantees.

Classification with Partial Labels:1 In classification with partial labels, each data

point is labeled with a partial label Y Ă t1, . . . , Lu; the true label is in Y , but it is not known

which label is the true one. In our setup, we view the ith random sample as having partial

label Yi – tj : πi,j ą 0u and being distributed according to P̃i “
ř

jPYi
πi,jPj. Thus, the

learner observes training examples from the contaminated distributions P̃ and the partial

label matrix Π` “ p1tΠi,j ą 0uq, and the goal is to recover P .

There are many applications of classification with partial labels because often abundant

sources of data are naturally associated with information that can be interpreted as partial

labels. For example, consider the task of face recognition. On the internet, there are many

images with captions that indicate who is in the picture but do not indicate which face

belongs to which person. A partial label could be formed by associating each face with the

names of the individuals appearing in the same image (Cour et al., 2011).

Although our work emphasizes recovery of P , it is also possible to think of decontami-

nation of mutual contamination models as concerned with estimation of the mixing matrix

Π. This estimate of Π could be used as a plug-in for recently developed debiased losses for

multiclass classification with label noise and classification with partial labels, which require

knowledge of Π (Cid-Sueiro, 2012; Menon et al., 2015b; van Rooyen and Williamson, 2015;

Patrini et al., 2017).

In this paper, we make the following contributions: (i) We give sufficient conditions on
1Classification with partial labels has also been referred to as the “superset learning problem” or the

“multiple label problem” (Liu and Dietterich, 2014).
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P , Π, and Π` for identifiability of the three problems. (ii) We establish necessary conditions

that in some cases match or are similar to the sufficient conditions. (iii) We introduce novel

algorithms for the infinite and finite sample settings. These algorithms are nonparametric

in the sense that they do not model Pi as a probability vector or other parametric model.

Our algorithmic contributions show that while all three problems can be described in a

unified way, the special structure of multiclass classification with label noise allows for a

substantially simpler algorithm. (iv) We develop novel estimators for distributions obtained

by iteratively applying the κ˚ operator (defined below). (v) Finally, our framework gives rise

to several novel geometric insights about each of these three problems and leverages concepts

from affine geometry, multilinear algebra, and probability.

5.1.1 Notation

Let Z` denote the positive integers. For n P Z`, let rns “ t1, . . . , nu. If x P RK , let xi
denote the ith entry of x. If xj P RK , then xj,i denotes the ith entry of xj. Let ei denote

the length L vector with 1 in the ith position and zeros elsewhere. Let πi P ∆L Ă RL be

the transpose of the ith row of Π where ∆L denotes the pL ´ 1q-dimensional simplex, i.e.,

∆L “ tµ “ pµ1, . . . , µLq
T P RL |

řL
i“1 µi “ 1 and @i : µi ě 0u. Let ∆M

L denote the product of

M pL´1q-dimensional simplices, viewed as the space of M ˆL row-stochastic matrices. Let

P denote the space of probability distributions on a measurable space pX , Cq. Let supppF q

denote the support of a distribution F on a Borel space.

5.2 Related Work

Our work makes various contributions to the statistical understanding of multiclass clas-

sification with label noise, demixing of mixed membership models, and classification with

partial labels. In the following subsections, we discuss how our results improve upon and

relate to previous results in the literature.
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5.2.1 Multiclass Classification with Label Noise

There has not been much work on classification with multiclass label noise. By contrast,

label noise in the binary setting has received a fair amount of attention. For a review of work

prior to 2013, see Scott et al. (2013). More recently, Natarajan et al. (2013) considered the

binary label noise case where the label noise rates are known (in our case, the label noise rates

are unknown). van Rooyen and Williamson (2015) generalized the work of Natarajan et al.

(2013) to the multiclass case, but again assumed that the mixing proportions are known.

Recent work has proposed various algorithms for the binary setting where the label noise

rates are unknown (Scott, 2015; van Rooyen et al., 2015; Menon et al., 2015a), but these

algorithms have not been generalized to the multiclass case. Menon et al. (2016) consider the

binary setting with instance-dependent corruption, but they assume that the class probability

functions take the form of a single-index model, whereas we make no parametric assumptions

on the Pis. Ghosh et al. (2017) consider multiclass label noise, but they make two restrictive

assumptions: (i) in the infinite sample setting, they assume that there exists some function

belonging to the chosen hypothesis class that attains 0 risk and (ii) in the finite sample

setting, they assume that the label noise is symmetric, i.e., there exists a constant c P p0, 1q

such that πi,j “ c
L´1 for all i ‰ j. Patrini et al. (2017) also study the multiclass setting,

but they assume that if their neural network has access to sufficiently many samples, it

can perfectly model PrpỸ “ k |xq where x is a given feature vector and Ỹ is a corrupted

label. Unlike most previous work that aims to learn a classifier, our focus is on estimating

the base distributions. Given these estimates, one could then design a classifier to optimize

some performance measure. See, for example, Section 4.3 of our initial work on this subject

(Blanchard and Scott, 2014).

Another approach for modeling random label noise, in addition to the mutual contam-

ination model, is the label flipping model. Indeed, several of the above-cited papers adopt

this setting. In this model, the label Y of a data point is flipped independently of its features

X and

µl,k – PrpỸ “ k |Y “ lq

gives the probability that a data point with true label Y “ l is corrupted to have an observed
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label Ỹ “ k. Under the assumption that Y and X are jointly distributed, the µl,ks can be

related to the πi,js via Bayes’ rule. We choose to study the mutual contamination model

because we find it more convenient to study the question of identifiability.

In this paper, we extend Scott et al. (2013), which examined binary classification with

label noise (the case where M “ L “ 2). The multiclass setting is significantly more

challenging and, as such, requires novel sufficient conditions and mathematical notions. In

particular, Scott et al. (2013) use the notion of irreducibility of distributions as one of their

sufficient conditions.

Definition 8. For distributions G and H, we say that G is irreducible with respect to H if

it is not possible to write G “ γH ` p1´ γqF where F is a distribution and 0 ă γ ď 1.

Definition 9. For distributions G and H, we say that G and H are mutually irreducible if

G is irreducible with respect to H and H is irreducible with respect to G. We denote

IR “ tpG,Hq : G and H are mutually irreducible distributionsu.

Scott et al. (2013) require that P1 and P2 are mutually irreducible. To treat the multiclass

setting, we introduce a generalization of mutual irreducibility, namely joint irreducibility.

The work presented below on multiclass label noise originally appeared in a conference

paper (Blanchard and Scott, 2014). The purpose of the present paper is to demonstrate that

the framework developed in that paper can be extended to the other two decontamination

problems, and to provide a unified presentation of the three settings. In particular, the joint

irreducibility assumption plays a pivotal role in all three settings, as does the task of mixture

proportion estimation. However, the decontamination procedures for the latter two problems

are substantially more complicated than for multiclass classification with label noise.

5.2.2 Demixing Mixed Membership Models

Mixed membership models have become a powerful modeling tool for data where data points

are associated with multiple distributions. Applications have appeared in a wide range

of fields including image processing (Li and Perona, 2005), population genetics (Pritchard

et al., 2000), document analysis (Blei et al., 2003), and surveys (Berkman et al., 1989).
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One particularly popular application is topic modeling on a corpus of documents, such as

the articles published in the journal Science. Topic modeling is closely related to demixing

of mixed membership models and our work may be viewed as studying topic modeling on

general domains.

In topic modeling, the base distributions Pi correspond to topics and the contaminated

distributions P̃i to documents, which are regarded as mixtures of topics. In most cases, the

Pis are assumed to have a finite sample space. A variety of approaches have been proposed

for topic modeling. The most common approach assumes a generative model for a corpus of

documents and determines the maximum likelihood fit of the model given data. However,

because maximum likelihood is NP-hard, these approaches must rely on heuristics that can

get stuck in local minima (Arora et al., 2012).

Recently, a trend towards algorithms for topic modeling with provable guarantees has

emerged. Most of these methods rely on the separability assumption (SEP) and its vari-

ants (Donoho and Stodden, 2003; Arora et al., 2012, 2013; Ding et al., 2013, 2014; Recht

et al., 2012; Huang et al., 2016). According to (SEP), P1, . . . , PL are distributions on a

finite sample space and for every i P t1, . . . , Lu, there exists a word x P supppPiq such that

x R Yj‰i supppPjq. Our requirement that P1, . . . , PL are jointly irreducible is a natural gener-

alization of separability of P1, . . . , PL, as we will argue below. Specifically, if P1, . . . , PL have

discrete sample spaces, separability and joint irreducibility coincide; however, if P1, . . . , PL

are continuous, under joint irreducibility, P1, . . . , PL can have the same support.

A key ingredient in these algorithms is to use the assumption of a finite sample space

to view the distributions as probability vectors in Euclidean space; this leads to approaches

based on non-negative matrix factorization (NMF), linear programs, and random projections

(Donoho and Stodden, 2003; Arora et al., 2012, 2013; Ding et al., 2013, 2014; Recht et al.,

2012; Huang et al., 2016). However, more general distributions cannot be viewed as finite-

dimensional vectors. Therefore, topic modeling on general domains requires new techniques.

Our work seeks to provide such techniques.

Topic modeling on general domains has several applications, including in high-energy

physics (Metodiev and Thaler, 2018a,b). In collider data, quantum chromodynamics causes

data samples to be a mixture of different types of particles, where the underlying fraction of
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the particle type is unknown. In this setting, it is of interest to recover information about

each of the particles. Recently, Metodiev and Thaler (2018b) applied the Demix algorithm,

Algorithm 19 in the current paper, to this problem in the case M “ L “ 2.

Topic modeling on general domains is also relevant to recent empirical research on topic

modeling with word embeddings, e.g., (Das et al., 2015; Li et al., 2016b,a; Xun et al., 2017;

Zhao et al., 2018). Word embeddings map words to vectors in Rd in a semantically and

syntactically meaningful way. Their use has been pivotal to the state-of-art performance of

many algorithms in NLP (Luong et al., 2013). Several algorithms for topic modeling with

word embeddings model the topics as multivariate Gaussian distributions in order to handle

words that do not belong to the vocabulary of the training dataset (Das et al., 2015; Xun

et al., 2017). Whereas current topic modeling algorithms with theoretical guarantees do not

cover such a modeling approach, the generality of our algorithms does.

5.2.3 Classification with Partial Labels

Classification with partial labels has had two main formulations in previous work (Liu and

Dietterich, 2014). In one formulation (PL-1), instances from each class are drawn inde-

pendently and the partial label for each instance is drawn independently from a set-valued

distribution. In another formulation (PL-2), training data are in the form of bags where

each bag is a set of instances and the bag has a set of labels. Each instance belongs to a

single class, and the set of labels associated with the bag is given by the union of the labels of

the instances in the bag. Our framework is similar to (PL-2), although it does not assume

a joint distribution on the features of instances and the partial labels.

Most work takes an empirical risk minimization approach to classification with partial

labels (Jin and Ghahramani, 2002; Nyugen and Caruana, 2008; Cour et al., 2011; Liu and

Dietterich, 2012). Typically, these algorithms aim to pick a classifier that minimizes the

partial label error : the probability that a given classifier assigns a label to a training instance

that is not contained in the partial label associated with the training instance. By contrast,

our approach is to estimate the base distributions. One could then use these estimates to

train a classifier under some performance measure.

There has not been much theoretical work on developing a statistical understanding of
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classification with partial labels. Cid-Sueiro (2012) and van Rooyen and Williamson (2015)

develop methods for classification with partial labels that require knowledge of the mixing

proportions, e.g., the probability that a label is in a partial label, given the true label. In

this work, we make the more realistic assumption that the mixing proportions are unknown.

Liu and Dietterich (2014) consider the question of learnability where the mixing propor-

tions are unknown. They consider two main sufficient conditions for learnability of a partial

label problem. First, they require that for every label l P rLs, the probability that l occurs

with any particular distinct label l1 is less than 1. Our condition on the partial label (de-

scribed in the next Section) is considerably weaker. For example, it permits the case where

there are two labels l ‰ l1 such that whenever l occurs in a partial label, l1 also occurs.

The second sufficient condition of Liu and Dietterich (2014) is based on the class dis-

tributions, partial label distributions and the hypothesis class of choice. It requires that

every hypothesis that attains zero partial label error also attains zero true error. While

this condition may be useful for the selection of a suitable hypothesis class for an ERM

approach, it is important to develop interpretable sufficient conditions that only depend on

the characteristics of a partial label problem. Our work provides such conditions.

We also note that Liu and Dietterich (2014) consider the realizable case, that is, the case

where the supports of P1, . . . , PL do not overlap. By contrast, we make the significantly

weaker assumption that P1, . . . , PL are jointly irreducible, which allows P1, . . . , PL to have

the same support. Thus, our work addresses the agnostic case in classification with partial

labels.

5.3 Sufficient Conditions for Identifiability

We can think of each problem as requiring a specific factorization of P̃ in terms of P and

Π. We say P̃ is factorizable if there exists pΠ,P q P ∆M
L ˆ PL such that P̃ “ ΠP ; we

call pΠ,P q a factorization of P̃ . Multiclass classification with label noise requires a specific

ordering of the elements of P ; classification with partial labels requires that Π is consistent

with Π` and a specific ordering of the elements of P .

A factorization is not guaranteed to exist. For example, there is no factorization in the
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case where M “ 3, L “ 2, and P̃1, P̃2, P̃3 are linearly independent. When a factorization

exists, in general it is not unique. For instance, consider the case where L “M , pΠ,P q solves

(5.2), and Π is not a permutation matrix. Then, another solution is P̃ “ IP̃ . Furthermore,

there are infinitely many solutions in the following general case.

Proposition 4. Suppose that P̃ has at least two distinct P̃js and has a factorization pΠ,P q.

If there is some P̃i in the interior of convpP1, . . . , PLq, then there are infinitely many distinct

non-trivial factorizations of P̃ .

Proof. Without loss of generality, suppose that i “ 1 and P̃1 ‰ P̃2. Then, since P̃1 is

in the interior of convpP1, . . . , PLq, there is some δ ą 0 such that for any α P p1, 1 ` δq,

Qα “ αP̃1`p1´αqP̃2 is a distribution. Then, convpP̃1, . . . , P̃Lq Ď convpQα, P̃2, . . . , P̃Lq and,

consequently, there is some Π1 P ∆L
L such that pΠ1, pQα, P̃2, . . . , P̃Lq

T q solves (5.2). Clearly,

by varying α, there are infinitely many solutions to (5.2).

Identifiability of each problem is equivalent to the existence of a unique factorization

for that problem. Therefore, to establish identifiability for the three problems, we must

impose conditions on pΠ,P q and Π`. To this end, we use the notion of joint irreducibility

of distributions.

Definition 10. The distributions tPiu1ďiďL are jointly irreducible iff the following equivalent

conditions hold

(a) For all I Ă rLs such that 1 ď |I| ă L, and εi such that εi ě 0 and
ř

iPI εi “
ř

iRI εi “ 1,

p
ÿ

iPI

εiPi,
ÿ

iRI

εiPiq P IR.

(b)
řL
i“1 γiPi is a distribution implies that γi ě 0 @i.

Conditions (a) and (b), whose equivalence was established by Blanchard and Scott (2014),

give two ways to think about joint irreducibility. Condition (a) says that every convex

combination of a subset of the Pis is irreducible (see Section 5.2.1) with respect to every

convex combination of the other Pis. Condition (b) says that if a distribution is in the span

of P1, . . . , PL, it is in their convex hull. Joint irreducibility holds when each Pi has a region
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of positive probability that does not belong to the support of any of the other Pis; thus,

separability (see Section 5.2.2) of the Pis entails joint irreducibility of P1, . . . , PL. However,

the converse is not true: the Pis can have the same support and still be jointly irreducible

(e.g., Pis Gaussian with a common variance and distinct means (Scott et al., 2013)).

For all three problems, we assume that

(A) P1, . . . , PL are jointly irreducible.

Henceforth, unless we say otherwise, P1, . . . , PL are assumed to be jointly irreducible. In Ap-

pendix 5.13, we provide experiments on real-world datasets that suggest that this assumption

is reasonable.

We make different assumptions on Π for each of the three problems. For multiclass

classification with label noise, we assume that

(B1) Π is invertible and Π´1 is a matrix with strictly positive diagonal entries and non-

positive off-diagonal entries.

According to Lemma 29 below, this assumption essentially says that the problem has low

noise in the sense that for each i, P̃i mostly comes from Pi. In particular, each Pi can be

recovered by subtracting small multiples of P̃j, j ‰ i from P̃i. For example, consider the

following case where Π satisfies (B1). Suppose that there is a “common background noise”

c P ∆L that appears in different proportions in each of the distributions; formally, we have

πi “ γic`p1´ γiqei with γi P r0, 1q. In other words, we shift each of the vertices ei towards

a common point c (see panel (iii) of Figure 5.1). See Blanchard and Scott (2014) for a proof

that this setup satisfies (B1). In the binary case where M “ L “ 2, (B1) is equivalent to

the simple condition that π1,1 ` π2,2 ă 1. This assumption roughly says that in expectation

the majority of labels are correct. In Section 5.4.3, we present Lemma 29, which gives a

geometric interpretation of (B1).

For the demixing problem, we assume that

(B2) Π has full column rank.

We note that (B2) is considerably weaker than (B1), e.g., it allows M ą L. Of course,

it is natural to demand a weaker sufficient condition for demixing the mixed membership
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problem than muliticlass classification with label noise because the goal of the former problem

is to recover any permutation of P while the goal of the latter is to recover P exactly.

Nevertheless, the identifiability analysis to establish (B2) as a sufficient condition is also

significantly more involved than the analysis of (B1).

For classification with partial labels, we assume that

(B3) Π has full column rank and the columns of Π` are unique.

The assumption that the columns of Π` are unique says that there are no two classes that

always appear together in the partial labels. In Appendix 5.9, we argue that several of the

above conditions are also necessary, or are not much stronger than what is necessary.

5.4 Algorithms for the Population Case

In this section, to establish that the above conditions are indeed sufficient for identifiability,

we give a population case analysis of the three problems. The results on multiclass classifi-

cation with label noise appeared in a conference paper (Blanchard and Scott, 2014); we refer

the reader to that paper for the proofs.

5.4.1 Background

This paper relies on the following quantity from Blanchard et al. (2010).

Definition 11. Given probability distributions F0, F1, define

κ˚pF0 |F1q “ maxtκ P r0, 1s| D a distribution G s.t. F0 “ p1´ κqG` κF1u.

The following Proposition from Blanchard et al. (2010) establishes some useful properties

of κ˚.

Proposition 5. Given probability distributions F0, F1 on a measurable space pX , Cq, if F0 ‰

F1, then κ˚pF0 |F1q ă 1 and the above maximum is attained for a unique distribution G

(which we refer to as the residue of F0 wrt. F1). Furthermore, the following equivalent

characterization holds:

κ˚pF0 |F1q “ inf
CPC,F1pCqą0

F0pCq

F1pCq
.
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Note that κ˚pF0 |F1q “ 0 iff F0 is irreducible wrt F1. κ˚pF0 |F1q can be thought of as the

maximum possible proportion of F1 in F0. We can think of 1 ´ κ˚pF0 |F1q as a statistical

distance since it is non-negative and equal to zero if and only if F0 “ F1. We refer to κ˚ as the

two-sample κ˚ operator. To obtain the residue of F0 wrt F1, one computes Residue(F0 |F1)

(see Algorithm 16); this is well-defined under Proposition 5 when F0 ‰ F1.

In order to gain intuition about κ˚, we briefly discuss how it can be used to recover Π´1

in the case L “ 2. Under conditions discussed above (Scott et al., 2013), it holds that

P̃1 “ p1´ κ1qP1 ` κ1P̃2, and

P̃2 “ p1´ κ2qP2 ` κ2P̃1.

and κ1 “ κ˚pP̃1 | P̃2q and κ2 “ κ˚pP̃2 | P̃1q. By rearranging this system of equations, we can

write

P “ Π´1P̃ “

¨

˝

1
1´κ1

´ κ1
1´κ1

´ κ2
1´κ2

1
1´κ2

˛

‚P̃ .

Next, we turn to the multi-sample generalization of κ˚, which we call the multi-sample

κ˚ operator.

Definition 12. Given distributions F0, . . . , FK, define

κ˚pF0 |F1, . . . , FKq “ max
µP∆K

κ˚pF0 |

K
ÿ

i“1
µiFiq

“max
´

K
ÿ

i“1
νi : νi ě 0,

K
ÿ

i“1
νi ď 1, D distribution G s.t. F0 “ p1´

K
ÿ

i“1
νiqG`

K
ÿ

i“1
νiFi

¯

. (5.3)

Blanchard and Scott (2014) establish the equivalence in line (5.3), as well as Lemma 43,

which shows that the outer maximum is always attained at some µ P ∆K , i.e., κ˚ is well-

defined. Although there is always a G achieving the max, it is not necessarily unique.

Any G attaining the maximum is called a maximizer of κ˚pF0 |F1, . . . , FKq. The algorithm

MultiResidue(F0 | tF1, . . . , FKu) returns one of these G (see Algorithm 17). If G is unique,

we call G the multi-sample residue of F0 with respect to tF1, . . . , FKu. Under our proposed

sufficient conditions, certain residues are shown to exist, and our decontamination methods

compute such residues via Algorithm 17. In Section 5.4.3, we discuss Lemma 29, which
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Algorithm 16 Residue(F0 |F1)
1: κÐÝ κ˚pF0 |F1q

2: return F0´κF1
1´κ

Algorithm 17 MultiResidue(F0 | tF1, . . . , FKu)
1: pν1, . . . , νKq

T ÐÝ pν 11, . . . , ν
1
Kq

T achieving the maximum in κ˚pF0 |F1, . . . , FKq

2: return F0´
řK
i“1 νiFi

1´
řK
i“1 νi

establishes useful conditions under which a multi-sample residue exists and is equal to one

of the vertices of ∆L.

In general, one cannot express the multi-sample version of κ˚ in terms of the two-sample

version. However, it is possible in some special cases. For example, if one had access to

feasible ν1, . . . , νK that attain the optimum in (5.3), then it holds that κ˚pF0 |F1, . . . , FKq “

κ˚pF0 |
řK
i“1 νiFi
řK
i“1 νi

q. Further, it is possible to replace the multi-sample κ˚ with several calls of

the two-sample κ˚ when K “ L´1, Fi “ Pi for all i ‰ 0 and F0 “
řL
i“1 αiPi where

ř

i αi “ 1

and @i αi ą 0 (see Lemmas 34 and 41).

We remark that in previous work that assumes Pi are probability vectors, distributions

are compared using lp distances. By contrast, in our setting of general probability spaces,

we use κ˚ to compare different distributions.

5.4.2 Mixture Proportions

Recall that we assume that P1, . . . , PL are jointly irreducible. If η P RL and Q “ ηTP ,

we say that η is the mixture proportion of Q. Since by Lemma 44, joint irreducibility of

P1, . . . , PL implies linear independence of P1, . . . , PL, mixture proportions are well-defined,

i.e., the mixture proportions are unique.

An important feature of our decontamination strategy is recovering various mixture pro-

portions in the simplex ∆L. To make this precise, we introduce the following definitions. If

i P rLs, we say that convptej : j ‰ iuq is a face of the simplex ∆L; if A Ă rLs and |A| “ k,

we also say that convptej : j P Auq is a k-face of ∆L. If η P RL, Q is a distribution, and

Q “ ηTP , we say that N pQq “ N pηq “ tj : ηj ą 0u is the support set of η or the support
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set of Q. Note that by joint irreducibity, N pηq consists of the indices of all the nonzero

entries in the mixture proportion η. Finally, for ηi P ∆L, and Qi “ η
T
i P for i “ 1, 2, we say

that the distributions Q1 and Q2 (or the mixture proportions η1 and η2) are on the same

face of the simplex ∆L if there exists j P rLs such that η1,η2 P convptek : k ‰ juq.

The heart of our approach is that under joint irreducibility, one can interchange distri-

butions Q1, . . . , QK and their mixture proportions η1, . . . ,ηK , as indicated by the following

Proposition. We note that it is valid to to apply the κ˚ operator to η1, . . . ,ηK since they

can be viewed as discrete probability distributions over rLs.

Proposition 6. Let Qi “ ηTi P for i P rLs and ηi P ∆L. Suppose η1, . . . ,ηL are linearly

independent and P1, . . . , PL are jointly irreducible. Then,

1. for any i P rLs and A Ď rLsztiu, κ˚pQi | tQj : j P Auq “ κ˚pηi | tηj : j P Auq ă 1,

2. for any i P rLs and A Ď rLsztiu, a maximizer of κ˚pQi | tQj : j P Auq exists, and

3. γ P ∆L is a maximizer to κ˚pηi | tηj : j P Auq if and only if G “ γTP is a maximizer

to κ˚pQi | tQj : j P Auq.

In words, this proposition says that the optimization problem given by κ˚pQi | tQj : j P Auq

is equivalent to the optimization problem given by κ˚pηi | tηj : j P Auq. Thus, joint irre-

ducibility of P1, . . . , PL and linear independence of the mixture proportions enable a reduction

of each of the three problems to a geometric problem where the goal is to recover the vertices

of a simplex by applying κ˚ to points (i.e., the mixture proportions) in the simplex. This

makes the figures below valid for general distributions (see Figures 5.1, 5.2, 5.3, and 5.4).

5.4.3 Multiclass Classification with Label Noise

Our algorithm for multiclass classification with label noise is by far the simplest of the three.

It simply computes a maximizer of κ˚pP̃i | tP̃j : j ‰ iuq for every i P rLs.

Theorem 25. Let P1, . . . , PL be jointly irreducible and Π satisfy (B1). Then,

Multiclass(P̃1, . . . , P̃L) returns Q P PL such that Q “ P .

177



Algorithm 18 Multiclass(P̃1, . . . , P̃L)
1: for i “ 1, . . . , L do

2: Qi ÐÝ MultiResiduepP̃i | tP̃j : j ‰ iuq

3: end for

4: return pQ1, . . . , QLq
T

The proof of this result has two main ideas. First, it applies the one-to-one correspon-

dence established in Proposition 6 between the maximizers of κ˚pP̃i | tP̃j : j ‰ iuq and the

maximizers of κ˚pπi | tπj : j ‰ iuq.

Second, the proof shows that κ˚pπi | tπj : j ‰ iuq is well-behaved in the sense that the

residue of πi wrt tπj : j ‰ iu is ei. The key idea is encapsulated in the following Lemma

from Blanchard and Scott (2014).

Lemma 29. (Blanchard and Scott, 2014) The following conditions on π1, . . . ,πL are

equivalent:

1. For each i, the residue of πi with respect to tπj, j ‰ iu is ei.

2. For every i there exists a decomposition πi “ κiei ` p1´ κiqπ1i where κi ą 0 and π1i is

a convex combination of πj for j ‰ i.

3. Π is invertible and Π´1 is a matrix with strictly positive diagonal entries and nonpos-

itive off-diagonal entries.

This lemma establishes that under (B1), for each i, the residue of πi with respect to tπj, j ‰

iu is ei. The main step in the proof of this Lemma is establishing that 3 implies 1. The

argument identifies the residue of πi with respect to tπjuj‰i by reformulating the linear

program in κ˚pπi | tπjuj‰iq such that the objective is to maximize etiΠ´1γ subject to some

appropriately defined constraint. By the structure of Π´1 assumed in (B1), it follows that

the γ P ∆L that maximizes this objective is ei, and it can further be shown that this

maximizer satisfies the other constraints.

Thus, combining the above two ideas yields the result. In addition, Lemma 29 provides

geometric intuition as to when (B1) is satisfied through condition 2. Figure 5.1 illustrates
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(i) (ii) (iii)

Figure 5.1: Illustration of the (B1) when there are L “ 3 classes where ei denotes the

ith unit vector. Panel (i): Low noise, Π recoverable. Each πl can be written as a convex

combination of el and the other two πj (with a positive weight on el), depicted here for l “ 1.

Panel (ii): High noise, Π not recoverable. Panel (iii): The setting of “common background

noise” described in the text.

the case L “ 3. See Panel (i) for an example where condition (b) is satisfied and Panel (ii)

for an example where (b) is not satisfied.

5.4.4 Demixing Mixed Membership Models

In this section, we assume that M “ L; we consider the nonsquare case in the appendix. For

certain simple cases of mixture proportions, a straightforward resampling strategy can be

used to reduce the problem of demixing mixed membership models to multiclass classification

with label noise. For example, suppose that there are L “ 3 classes and

Π “

¨

˚

˚

˚

˝

1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

˛

‹

‹

‹

‚

. (5.4)

Inspection shows that the inverse of Π does not satisfy the condition in (B1) and, therefore,

one cannot simply apply Algorithm 18. A simple procedure to circumvent this issue is to

resample from the contaminated distributions to obtain the following distributions:

Q̃1 “
1
2 P̃1 `

1
2 P̃2, Q̃2 “

1
2 P̃1 `

1
2 P̃3, and Q̃3 “

1
2 P̃2 `

1
2 P̃3.
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Then, it can be shown that the resulting mixing matrix

Π̃ “

¨

˚

˚

˚

˝

1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

˛

‹

‹

‹

‚

associated with the Q̃is satisfies the conditions of Lemma 29 so that Multiclass(Q̃1, Q̃2, Q̃3)

gives the desired solution. However, this approach breaks down for most possible mixing

matrices. Thus, the challenge is to develop an algorithm that works for a large class of

mixture proportions and does not rely on knowledge of the mixture proportions. To meet

this challenge, we propose the Demix algorithm.

The Demix algorithm is recursive. Let S1, . . . , SK denote K contaminated distributions.

In the base case, the algorithm takes as its input two contaminated distributions S1 and

S2. It returns Residue(S1 |S2) and Residue(S2 |S1), which are a permutation of the two

base distributions (see Figure 5.2). When K ą 2, Demix uses a subroutine FindFace (see

Algorithm 20) to find K ´ 1 distributions R2, . . . , RK on the same pK ´ 1q-face. FindFace

iteratively generates candidates for distributions on the same pK ´ 1q-face, which it tests

using FaceTest (see Algorithm 21). FaceTestpS1, . . . , SK´1q determines whether a set of

distributions S1, . . . , SK´1 are on the interior of the same face by using the two-sample κ˚

operator; equivalently, it tests whether there exists a pair of distributions Si and Sj such

that Si is irreducible with respect to Sj. Once Demix finds K ´ 1 distributions R2, . . . , RK

on the same pK ´ 1q-face, it recursively applies Demix to R2, . . . , RK to obtain distributions

Q1, . . . , QK´1 that are a permutation of K ´ 1 of the base distributions. Subsequently, the

algorithm computes a maximizer QK of κ˚p 1
K

řK
i“1 Si |Q1, . . . , QK´1q. Since Q1, . . . , QK´1

are a permutation of K ´ 1 of the base distributions, the maximizer QK is guaranteed to

be unique and to be the remaining base distribution (see Figure 5.3 for an execution of the

algorithm).

A number of remarks are in order regarding the Demix algorithm. First, although we

compute the residue of 1
n
Si `

n´1
n
Q wrt S1 for each i ‰ 1, there is nothing special about the

distribution S1. We could replace S1 with any Sj where j P rKs, provided that we adjust the

rest of the algorithm accordingly. Second, we can replace the sequence tn´1
n
u8n“1 with any

sequence αn Õ 1. Finally, we could replace line 7 with the following sequence of steps: for
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Algorithm 19 Demix(S1, . . . , SK)
Input: S1, . . . , SK are distributions

1: if K “ 2 then

2: return pResiduepS1 |S2q,ResiduepS2 |S1qq
T

3: else

4: pR2, . . . , RKq
T ÐÝ FindFacepS1, . . . , SKq

5: pQ1, . . . , QK´1q
T ÐÝ DemixpR2, . . . , RKq

6: QK ÐÝ
1
K

řK
i“1 Si

7: QK ÐÝ MultiResiduepQK |Q1, . . . , QK´1q

8: return pQ1, . . . , QKq
T

9: end if

Algorithm 20 FindFace(S1, . . . , SK)
Input: S1, . . . , SK are distributions

1: QÐÝ uniformly distributed element in convpS2, . . . , SKq

2: for n “ 1, 2, . . . do

3: Set Ri ÐÝ Residuep 1
n
Si `

n´1
n
Q |S1q for all i P t2, . . . , Ku

4: if FaceTestpR2, . . . , RKq then

5: return pR2, . . . , RKq
T

6: end if

7: end for

i “ 1, . . . , K ´ 1, compute QK ÐÝ ResiduepQK |Qiq (see Lemma 41). Then, the algorithm

would only use the two-sample κ˚ operator. We use such an algorithm in the finite-sample

setting.

We also remark that a simplified version of Demix solves the demixing mixed membership

models problem if we assume (B1) from the multiclass label noise setting. In that case,

finding L ´ 1 distributions on the same face can be accomplished by simply computing

Qi ÐÝ MultiResidue(P̃i | tP̃juj‰i) for i “ 2, . . . , L. Indeed, then, each Qi is equal to Pi and

P1 can be obtained by computing MultiResiduepP̃1 | tQjuj“2,...,Lq.

We establish the following theorem.
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Algorithm 21 FaceTest(S1, . . . , SK)
1: Set Zi,j – 1tκ˚pSi |Sjq ą 0u for all i and j

2: if Z has a zero off-diagonal entry then

3: return 0

4: else

5: return 1

6: end if

Theorem 26. Let P1, . . . , PL be jointly irreducible and Π have full column rank. Then, with

probability 1, DemixpP̃ q returns a permutation of P .

We briefly sketch three key aspects of the proof. First, in the FindFace subroutine, sam-

pling Q uniformly at random from convpS2, . . . , SKq ensures that w.p. 1 ResiduepQ |S1q

is on the interior of a face of the simplex. Then, conditional on this event, we show that

by a continuity property of Residuep¨ |S1q there is a large enough n such that R2, . . . , RK

are on the same face of the simplex ∆K´1 (see panels (c) and (d) of Figure 5.3). Second,

Proposition 11 in Appendix 5.10 establishes that the subroutine FaceTestpR2, . . . , RKq re-

turns 1 if and only if R2, . . . , RK are on the same face of the simplex. Combining the above

two observations implies that eventually FindFace(S1, . . . , SK) terminates at which point

tRkukPrKszt1u Ă tPkukPrKsztlu for some l P rKs. The final key observation is that tRkukPrKszt1u

and tPkukPrKsztlu form an instance of the demixing problem that satisfies the sufficient con-

ditions (A) and (B2) (see Figure 5.2). Therefore, this instance can be solved recursively.

5.4.5 Classification with Partial Labels

As in the case of demixing mixed membership models, a simple resampling strategy works in

certain nice settings of classification with partial labels. For example, consider an instance of

classification with partial labels with the mixing matrix from equation (5.4). The resampling

procedure that yields Q̃1, Q̃2, Q̃3 (described in Section 5.4.4) also works here. Nevertheless, as

in demixing mixed membership models, this approach does not meet our goal of an algorithm

that solves a broad class of mixing matrices and partial labels.

Indeed, we observe that the partial labels do not provide enough information for choosing
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Figure 5.2: In (a), we consider a demixing problem where there are two classes and M “ L

(the base case of Algorithm 19). The diamonds represent the mixture proportions of P̃1

and P̃2. The circles represent the base distributions. In (b), the residue of a contaminated

distribution wrt the other contaminated distribution is computed (line 3), yielding a base

distribution. In (c), the residue is computed again switching the roles of the contaminated

distributions (line 4); this yields the remaining base distribution.

the resampling weights. Consider another instance of the problem with the same partial label

matrix:

Π “

¨

˚

˚

˚

˝

1
10

9
10 0

9
10 0 1

10

0 1
10

9
10

˛

‹

‹

‹

‚

. (5.5)

Applying the resampling approach to (5.5) can be shown to fail by observing that the inverse

of the resampled mixing matrix does not satisfy condition 3 of Lemma 29. Thus, although

the problem instances (5.4) and (5.5) have the same partial label matrix, the resampling

procedure only works for one of these.

Next, we turn to presenting an algorithm that solves classification with partial labels for a

wide class of mixing matrices and partial labels. We propose the PartialLabel algorithm (see

Algorithm 22). PartialLabel proceeds by iteratively creating sets of candidate distributions

W – pW1, . . . ,WLq
T via the subroutine CreateCandidates (see Algorithm 23). Given each

W , it runs an algorithm VertexTest (see Algorithm 24) that uses P̃ and the partial label

matrix Π` to determine whether W is a permutation of the base distributions P . If W is a

permutation of P , VertexTest constructs the corresponding permutation matrix for relating

these distributions. If not, it reports failure and the PartialLabel algorithm increments k
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Figure 5.3: In (a), we consider a demixing problem where there are three classes and M “ L.

The diamonds represent the mixture proportions of P̃1, P̃2 and P̃3. In (b), the blue circle is

a random distribution chosen in the convex hull of two of the distributions (line 7). In (c),

two of the distributions are resampled so that their residues wrt the other distribution are

on the same face of the simplex (lines 12-15). In (d), these particular residues are computed

(lines 12-15). In (e), two of the distributions are demixed (lines 3-5). In (f), the residue of

the final distribution wrt the final two demixed distributions is computed to obtain the final

demixing (line 18-21).

and finds another set of candidate distributions.

The VertexTest algorithm proceeds as follows on a vector of candidate distributions

Q– pQ1, . . . , QLq
T . First, it determines whether there are two distinct distributions Qi, Qj

such that Qi is not irreducible wrt Qj, in which caseQ cannot be a permutation of P . If there

is such a pair, it reports failure. Otherwise, it forms the matrix Zi,j – 1tκ˚pP̃i |Qjq ą 0u

and uses any algorithm that finds a permutation C (if it exists) of the columns of Z to

match the columns of Π`. If such a permutation C exists, it returns CT and, as we show

in Lemma 35, CTQ “ P ; otherwise, VertexTest reports failure.

We remark that finding the permutation in line 6 of Algorithm 24 is not NP-hard. One

algorithm (but most likely not the most efficient) proceeds as follows: define a total ordering

on the columns of binary matrices. Sort the columns of Z and Π` according to this total
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Algorithm 22 PartialLabel(Π`, pP̃1, . . . , P̃Mq
T )

1: for i “ 1, . . . , L do

2: Qi ÐÝ uniformly random distribution in convpP̃1, . . . , P̃Mq

3: end for

4: for k “ 2, 3, . . . do

5: pW1, . . . ,WLq
T ÐÝ GenerateCandidatespk, pQ1, . . . , QLq

T q

6: pFoundVertices, Cq ÐÝ VertexTestpΠ`, P̃1, . . . , P̃M ,W1, . . . ,WLq

7: if FoundVertices then

8: return CpW1, . . . ,WLq
T

9: end if

10: end for

Algorithm 23 GenerateCandidates(k, pQ1, . . . , QLq
T )

1: Set Wi ÐÝ Qi for all i P rKs

2: for i “ 1, . . . , L do

3: Q̄i ÐÝ
1

L´1r
ř

jąiQj `
ř

jăiWjs

4: Wi ÐÝ MultiResiduep 1
k
Qi ` p1´ 1

k
qQ̄i | tQjująi Y tWjujăiq

5: end for

6: return pW1, . . . ,WLq
T

ordering. Check whether the resulting matrices are equal.

The following theorem gives our identification result for classification with partial labels.

Theorem 27. Suppose that P1, . . . , PL are jointly irreducible, Π has full column rank, and

the columns of Π` are unique. Then, PartialLabelpΠ`, pP̃ qT q returns R P PL such that

R “ P .

There are two key ideas to the proof of Theorem 27. First, the randomization in line 2

of Algorithm 22 ensures through a linear independence argument that with probability 1,

the operation MultiResiduep 1
k
Qi`p1´ 1

k
qQ̄i | tQjująiYtWjujăiq in line 4 of Algorithm 23 is

well-defined. Second, in the GenerateCandidates algorithm, let Qj “ τ
T
j P and Wj “ γ

T
j P .

We make the simple observation that the affine hyperplane given by γ1, . . . ,γi´1, τi`1, . . . , τL

bisects ∆L such that τi and a nonempty subset of te1, . . . , eLuztγ1, . . . ,γi´1u are in the same
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Algorithm 24 VertexTestpΠ`, pP̃1, . . . , P̃Mq
T , pQ1, . . . , QLq

T q

1: Form the matrix Yi,j – 1tκ˚pQi |Qjq ą 0u

2: if Y has a non-zero off-diagonal entry then

3: return p0,0q

4: end if

5: Form the matrix Zi,j – 1tκ˚pP̃i |Qjq ą 0u

6: Use any algorithm that finds a permutation matrix C such that ZC “ Π` (if it exists)

7: if such a permutation matrix C exists then

8: return p1,CT q

9: else

10: return p0,0q

11: end if

halfspace. Using this observation, we show that for large enough k, Wi is one of the base

distributions and is distinct from all Wj with j ă i.

The VertexTest algorithm connects the demixing problem and classification with partial

labels by showing that any algorithm that solves the demixing problem can be used as a

subroutine to solve classification with partial labels. For example, consider the following

algorithm for classification with partial labels. First, use the Demix algorithm to obtain a

permutation Q of the base distributions P . Second, use VertexTest to find the permutation

matrix relatingQ and P . This alternate algorithm is the basis of our finite sample algorithm

for classification with partial labels (see Section 5.5.3 for a more thorough discussion).

5.5 Estimators for the Finite Sample Setting

In this section, we develop the estimation theory to treat the three problems in the finite

sample setting. Let X “ Rd be equipped with the standard Borel σ-algebra C and P̃1, . . . , P̃L

be probability distributions on this space. Suppose that we observe for i “ 1, . . . , L,

X i
1, . . . , X

i
ni

i.i.d.
„ P̃i.
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Figure 5.4: (a) depicts an instance of the partial label problem where there are L “ 3 classes,

M “ 3 partial labels, and each partial label only contains two of the classes. In (a), the red

diamonds represent the mixture proportions of the distributions P̃1, P̃2, P̃3. In (b), three dis-

tributions Q1, Q2, Q3 are sampled uniformly randomly from the convex hull of P̃1, P̃2, P̃3; the

blue circle, black triangle, and green square represent their mixture proportions. Figures (c)-

(h) show how the algorithm generates a set of candidate distributions pW p2q
1 ,W

p2q
2 ,W

p2q
3 qT

with k “ 2. In (h), PartialLabel runs VertexTest on pW p2q
1 ,W

p2q
2 ,W

p2q
3 qT and determines

that pW p2q
1 ,W

p2q
2 ,W

p2q
3 qT is not a permutation of pP1, P2, P3q

T . In (i)-(o), PartialLabel be-

gins again with Q1, Q2, Q3 and executes the same series of steps with k “ 3, generating

pW
p3q
1 ,W

p3q
2 ,W

p3q
3 qT . In (o), it runs VertexTest on pW p3q

1 ,W
p3q
2 ,W

p3q
3 qT and determines that

pW
p3q
1 ,W

p3q
2 ,W

p3q
3 qT is a permutation of pP1, P2, P3q

T .

Let E be any Vapnik-Chervonenkis (VC) class with VC-dimension V ă 8, containing the set

of all open balls, all open rectangles, or some other collection of sets that generates the Borel

σ-algebra C. For example, E could be the set of all open balls wrt the Euclidean distance, in

which case V “ d` 1. Define εipδiq ” 3
b

V logpni`1q´logpδi{2q
ni

for i “ 1, . . . , L. Our estimators
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are based on the VC inequality (Devroye et al., 1996). This inequality says that for each

i P rLs, and δ ą 0, the following holds with probability at least 1´ δ:

sup
EPE

|P̃ipEq ´ P̃
:
i pEq| ď εipδq

where the empirical distribution is given by P̃ :i pEq “ 1
ni

řni
j“1 1tX i

j P Eu.

5.5.1 Multiclass Classification with Label Noise

Let F :0 , . . . , F :M denote the empirical distributions based on i.i.d. random samples from

respective distributions F0, . . . , FM . We introduce the following estimator of the multi-

sample κ˚:

pκpF :0 |F
:
1 , . . . , F

:

Mq “ max
µP∆M

inf
EPE

F :0 pEq ` ε0p
1
n0
q

p
řM
i“1 µiF

:
i pEq ´

ř

i µiεip
1
ni
qq`

(5.6)

where the ratio is defined to be 8 when the denominator is zero. This estimator arises from

applying the VC inequality to the following expression:

κ˚pF0 |F1, . . . , FMq “ max
µP∆M

κ˚pF0 |

M
ÿ

i“1
µiFiq “ max

µP∆M

inf
EPE,

řM
i“1 µiFipEqą0

F0pEq
řM
i“1 µiFipEq

,

where the last equality uses Proposition 5. Let pµ denote a point where the maximum is

achieved in (5.6). Then, pν – pκpµ estimates the vector pν1, . . . , νMq attaining the maximum

in (5.3). See Proposition 2 of Blanchard and Scott (2014) to find a proof that the proposed

estimator is consistent.

Based on this estimator, we introduce estimators that under the assumptions of Theorem

25 converge to the base distributions uniformly in probability. Let n ” pn1, . . . , nLq; we write

n ÝÑ 8 to indicate that mini ni ÝÑ 8.

Theorem 28. Let ppνi,jqj‰i be a vector attaining the maximum in the definition of pκi –

pκpP̃ :i | tP̃
:
j : j ‰ iuq and

pQi “
P̃ :i ´

ř

j‰i pνi,jP̃
:
j

1´ pκi
.

Then, under the assumptions of Theorem 25, @i “ 1, . . . , L, supEPE |
pQipEq ´ PipEq|

i.p.
ÝÑ 0

as n ÝÑ 8.
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Algorithm 25 ResidueHat( pF | pH)
Input: pF , pH are estimates of F,H

1: pκÐÝ pκp pF | pHq

2: return pF´pκp1´ pHq
1´pκ

5.5.2 Demixing Mixed Membership Models

In this section, we develop a novel estimator that can be used to extend the Demix algorithm

to the finite sample case. Uniform convergence results typically assume access to i.i.d.

samples. The challenge of developing an estimator for Demix is that because of the recursive

nature of the Demix algorithm, we cannot assume access to i.i.d. samples to estimate every

distribution that arises. Nonetheless, we show that uniform convergence of distributions

propagates through the algorithm if we employ an estimator of κ˚ with a known rate of

convergence.

Let pF and pH be estimates of distributions F and H, respectively. We introduce the

following estimator:

pκp pF | pHq “ inf
EPE

pF pEq ` γn

p pHpEq ´ γnq`

where γn “
řL
i“1 εip

1
ni
q. Our estimator is closely related to the estimator from Blanchard

et al. (2010): if pF and pH are empirical distributions, e.g., pF “ P̃ :i and pH “ P̃ :j , then their

estimator for κ˚pF |Hq is infEPE
pF pEq`εip

1
ni
q

p pHpEq´εjp
1
nj
qq`

. Note that our proofs only require that γn

include the terms εip 1
ni
q corresponding to P̃i that the estimators pF and pH use samples from;

to simplify presentation, however, we include all the terms, which leads to bounds that are

looser by only a constant factor.

Based on the estimator pκ, we introduce the following estimator of the residue of F wrt

H.

Definition 13. Let pF and pH be estimators of F and H, respectively, where F ‰ H and let

G ÐÝ ResiduepF |Hq and pG ÐÝ ResidueHatp pF | pHq. We call pG a ResidueHat estimator of

order k ě 1 if (i) F,H P convpP1, . . . , PLq, and (ii) at least one of pF and pH is a ResidueHat

estimator of order k ´ 1 and the other is either an empirical distribution or a ResidueHat
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Algorithm 26 DemixHat(pS1, . . . , pSK | ε)
Input: pS1, . . . , pSK are ResidueHat estimates

1: if K “ 2 then

2: return pResidueHatppS1 | pS2q,ResidueHatppS2 | pS1qq
T

3: else

4: pR2, . . . , RKq
T ÐÝ FindFaceHatppS1, . . . , pSK | εq

5: p pQ1, ¨ ¨ ¨ , pQK´1q
T ÐÝ DemixHatp pR2, ¨ ¨ ¨ , pRKq

6: pQK ÐÝ
1
K

řK
i“1

pSi

7: for i “ 1, . . . , K ´ 1 do

8: pQK ÐÝ ResidueHatp pQK | pQiq

9: end for

10: return p pQ1, ¨ ¨ ¨ , pQKq
T

11: end if

estimator of order less than or equal to k´ 1. We call pG a ResidueHat estimator of order 0

if (i) holds, and pF and pH are empirical distributions.

Note that the above definition is recursive and matches the recursive structure of the Demix

algorithm. We suppress the qualifier “of order k” when it is not relevant.

To use ResidueHat estimators to estimate the Pis, we build on the rate of convergence

result from Scott (2015). In Scott (2015), a rate of convergence was established for an esti-

mator of κ˚ using empirical distributions; we extend these results to our setting of recursive

estimators and achieve the same rate of convergence. To ensure that this rate of convergence

holds for every estimate in our algorithm, we introduce the following condition.

(A2) P1, . . . , PL are such that @i supppPiq * Yj‰i supppPjq.

Note that this assumption implies joint irreducibility and is a natural generalization of the

separability assumption.

The following result establishes sufficient conditions under which ResidueHat estimates

converge uniformly.
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Algorithm 27 FindFaceHat(pS1, . . . , pSK | ε)
Input: pS1, . . . , pSK are ResidueHat estimates

1: pQÐÝ uniformly distributed random element from convppS2, . . . , pSKq

2: for n “ 2, 3, . . . do

3: Set pRi ÐÝ ResidueHatp 1
n
pSi `

n´1
n

pQq | pS1q for all i P t2, . . . , Ku

4: if FaceTestHatp pR2, ¨ ¨ ¨ , pRK | εq then

5: return p pR2, ¨ ¨ ¨ , pQKq
T

6: end if

7: end for

Algorithm 28 FaceTestHat( pQ1, ¨ ¨ ¨ , pQK | ε)

1: Set Zi,j – 1tpκp pQi | pQjq ą εu for i ‰ j

2: if Z has a zero off-diagonal entry then

3: return 0

4: else

5: return 1

6: end if

Proposition 7. If P1, . . . , PL satisfy (A2) and pG is a ResidueHat estimator of a distribution

G P convpP1, . . . , PLq, then supEPE |
pGpEq ´GpEq|

i.p.
ÝÑ 0 as n ÝÑ 8.

Based on the ResidueHat estimators, we introduce an empirical version of the Demix

algorithm—DemixHat (see Algorithm 26). The main differences are that (i) we replace the

Residue function with the ResidueHat function, (ii) we replace line 7 in the Demix algorithm

with a sequence of applications of the two-sample κ˚ operator, as mentioned just before

Theorem 26, and (iii) DemixHat requires specification of a hyperparameter ε P p0, 1q. We

replace the multi-sample κ˚ with the two-sample κ˚ because there is no known estimator with

a rate of convergence for the multi-sample κ˚, and the rate of convergence is essential to our

consistency proof. The hyperparameter ε gives a tradeoff between runtime and accuracy. The

runtime increases with increasing ε, but the amount of uncertainty about whether DemixHat

executes successfully decreases with increasing ε.
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Algorithm 29 PartialLabelHatpΠ`, pP̃ :1 , . . . , P̃
:

Mq
T | εq

1: p pQ1, . . . , pQLq
T ÐÝ DemixHatpP̃ :1 , . . . , P̃ :M | εq

2: pFoundVertices,Cq ÐÝ VertexTestHatpΠ`, pP̃ :1 , . . . , P̃
:

Mq
T , p pQ1, . . . , pQLq

T q

3: return Cp pQ1, . . . , pQLq
T

We now state our main estimation result.

Theorem 29. Let δ ą 0 and ε P p0, 1q. Suppose that P1, . . . , PL satisfy (A2) and Π has

full rank. Then, with probability tending to 1 as n ÝÑ 8, DemixHat(P̃ :1 , . . . , P̃ :L | ε) returns

p pQ1, . . . , pQLq for which there exists a permutation σ : rLs ÝÑ rLs such that for every i P rLs,

sup
EPE

| pQipEq ´ PσpiqpEq| ă δ.

5.5.3 Classification with Partial Labels

In this section, we present a finite sample algorithm for the decontamination of a partial

label model (see Algorithm 29). This algorithm is based on a different approach from Par-

tialLabel (Algorithm 22): it combines DemixHat with an empirical version of the VertexTest

algorithm (see Algorithm 32). The reason for this is that we have an estimator with a rate

of convergence for the two-sample κ˚, whereas there is no known estimator with a rate of

convergence for the multi-sample κ˚. We leverage this rate of convergence to prove the

consistency of our algorithm.

We make an assumption that simplifies our algorithm: Π` satisfies

(D) there does not exist i, j P rLs such that Π`
i,: “ e

T
j .

In words, this says that there is no contaminated distribution P̃i and base distribution Pj such

that P̃i “ Pj. We emphasize that we make this assumption only to simplify the presentation

and development of the algorithm; one can reduce any instance of a partial label model

satisfying (B3) and (A) to an instance of a partial label model that also satisfies (D). We

defer the sketch of this reduction to Section 5.11.3.

We now state our main estimation result for classification with partial labels.

192



Theorem 30. Let δ ą 0 and ε P p0, 1q. Suppose that P1, . . . , PL satisfy (A2), Π has full

rank, the columns of Π` are unique and Π` satisfies (D). Then, with probability tending to

1 as n ÝÑ 8, PartialLabelHat(Π`, pP̃ :1 , . . . , P̃
:

Mq
T | ε) returns p pQ1, . . . , pQLq

T such that for

every i P rLs,

sup
EPE

| pQipEq ´ PipEq| ă δ.

5.5.4 Sieve Estimators

In the preceding, we have assumed a fixed VC class to simplify the presentation. However,

these results easily extend to the setting where E “ Ek and k ÝÑ 8 at a suitable rate

depending on the growth of the VC dimensions Vk. This allows for the Pis to be estimated

uniformly on arbitrarily complex events, e.g., Ek is the set of unions of k open balls.

5.6 Discussion

In this paper, we have studied the problem of how to recover the base distributions P from

the contaminated distributions P̃ without knowledge of the mixing matrix Π. We used a

common set of concepts and techniques to solve three popular machine learning problems that

arise in this setting: multiclass classification with label noise, demixing of mixed membership

models, and classification with partial labels. Our technical contributions include: (i) We

provide sufficient and sometimes necessary conditions for identifiability for all three problems.

(ii) We give nonparametric algorithms for the infinite and finite sample settings. (iii) We

provide a new estimator for iterative applications of κ˚ that is of independent interest. (iv)

Finally, our work provides a novel geometric perspective on each of the three problems.

Our results improve on what was previously known for all three problems. For multi-

class classification with label noise and unknown Π, previous work had only considered the

case M “ L “ 2. Our work achieves a generalization to arbitrarily many distributions.

For demixing of mixed membership models, previous algorithms with theoretical guarantees

required a finite sample space. Our work allows for a much more general set of distribu-

tions. Finally, for classification with partial labels, previous work on learnability assumed
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the realizable case (non-overlapping P1, . . . , PL) and assumed strong conditions on label co-

occurence in partial labels. Our analysis covers the agnostic case and a much wider set of

partial labels.

Our work has also highlighted the advantages and disadvantages associated with the

two-sample κ˚ operator and multi-sample κ˚ operator, respectively. Algorithms that only

use the two-sample κ˚ operator have the following two advantages: (i) the geometry of the

two-sample κ˚ operator is simpler than the geometry of the multi-sample κ˚ operator and,

as such, can be more tractable. Indeed, in recent years, several practical algorithms for

estimating the two-sample κ˚ have been developed (see Jain et al. (2016) and references

therein). (ii) We have estimators with established rates of convergence for the two-sample

κ˚ operator, but not for the multi-sample κ˚ operator. On the other hand, algorithms that

use the multi-sample κ˚ operator have fewer steps.

The aims of this work are mainly theoretical, but we believe that our work can inform

practical algorithms. First, we note that while we have emphasized recovery of P , another

interpretation is that our work deals with estimating Π. One can then plug our estimate of Π

into corrected losses for multiclass classification with label noise and classification with par-

tial labels that require knowledge of Π (Cid-Sueiro, 2012; Menon et al., 2015b; van Rooyen

and Williamson, 2015; Patrini et al., 2017). Thus, in general, our work can be applied in

this two-stage approach. Second, when L or M are small, the Demix algorithm is practical.

For example, Metodiev and Thaler (2018b) apply the Demix algorithm to a high-energy

physics application where L “ M “ 2. It is of interest to examine more generally whether

variants of Demix work when M or L are small. Third, we conjecture that our analysis

suggests novel principles for designing algorithms. For example, an alternative approach to

the three problems in question is to embed the contaminated distributions in a reproducing

kernel Hilbert Space and to estimate the Π matrix by setting up an optimization problem

(e.g., see Ramaswamy et al. (2016) for the setting where there are two distributions). One

of our necessary conditions, maximality (see Appendix 5.9), suggests formulating the opti-

mization problem to search for base distributions that (i) explain the observed contaminated

distributions and (ii) whose convex hull is as large as possible. In this way, we believe that

our general treatment of these three problems that arise in mutual contamination models
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provides intuitions that could be useful for designing new algorithms.

Although our experiments in Appendix 5.13 suggest that joint irreducibility of the base

distributions is a reasonable assumption, it is nevertheless worthwhile to consider what

questions arise if the base distributions are not exactly jointly irreducible. We see two possible

research directions. First, one could perform a stability analysis: when the base distributions

are not jointly irreducible, but are nearly jointly irreducible (in some sense that would need

to be defined precisely), does the estimate of Π remain close to the true Π? A second

research question is to reinterpret the problem of demixing of mixed membership models as

a dimensionality reduction problem. That is, given a large set of distributions, one could

seek to represent them as convex combinations of a small set of irreducible base distributions.

Then, the challenge would be to define an appropriate measure of approximation quality and

to determine whether our approach could be useful for designing a consistent algorithm for

the best approximation.

5.7 Outline of Chapter Appendix

To begin, we introduce additional notation for the appendices. In Section 5.9, we discuss

how strong our sufficient conditions are and present factorization results that suggest that

they are reasonable. In Section 5.10, we give our identifiability analysis of demixing mixed

membership models and classification with partial labels. In Section 5.11, we prove our

results on the ResidueHat estimator, as well as the finite sample algorithms for demixing

mixed membership models and classification with partial labels. In Section 5.12, we state

some lemmas from related papers that we use in our arguments.

5.8 Notation for Appendices

Let A Ă Rd be a set. Let affA denote the affine hull of A, i.e., affA “ t
řK
i“1 θixi|x1, . . . ,xK P

A,
řK
i“1 θi “ 1u. A˝ denotes the relative interior of A, i.e., A˝ “ tx P A|Bpx, rq X affA Ď

A for some r ą 0u. Then, BA denotes the relative boundary of A, i.e., BA “ AzA˝. In

addition, let }¨} denote an arbitrary finite-dimensional norm on RL. For two vectors, x,y P
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RK , define

minpxT ,yT q “ pminpx1, y1q, . . . ,minpxK , yKqq.

x ě y means xi ě yi @i P rKs.

For distributions Q1, . . . , Qk, we use convpQ1, . . . , QKq
˝ to denote the relative interior of

their convex hull and have that

convpQ1, . . . , QKq
˝
“ t

K
ÿ

i“1
αiQi : αi ą 0,

K
ÿ

i“1
αi “ 1u.

Note that when Q1, . . . , QK are discrete distributions, this definition coincides with the

definition of the relative interior of a set of Euclidean vectors.

We use the following affine mapping throughout the paper: mνpx,yq “ p1 ´ νqx ` νy

where x,y P RL and ν P r0, 1s. Overloading notation, when Q1 and Q2 are distributions,

we define mνpQ1, Q2q “ p1 ´ νqQ1 ` νQ2. Note that if η1,η2 P ∆L and Q1 “ ηT1 P and

Q2 “ η
T
2 P , then mνpη1,η2q is the mixture proportion for the distribution mνpQ1, Q2q.

5.9 Factorization Results

In this section, we discuss whether our sufficient conditions are necessary. For the problems

of demixing mixed membership models and classification with partial labels, we provide

factorization results that suggest that our sufficient conditions are not much stronger than

what is necessary.

5.9.1 Multiclass Classification with Label Noise

Our sufficient condition (B1) for multiclass classification with label noise is not necessary.

Rather, (B1) is one of several possible sufficient conditions, and one that reflects a low

noise assumption as illustrated in Figure 5.1. Consider the case L “ M “ 2 where (B1) is

equivalent to π1,2 ` π2,1 ă 1. Recovery is still possible if π1,2 ` π2,1 ą 1 since one can simply

swap P̃1 and P̃2 in a decontamination procedure. π1,2 ` π2,1 ă 1 is only necessary if one

assumes that most of the training labels are correct, which is what π1,2`π2,1 ă 1 essentially

says. For larger L “ M , (B1) says in a sense that most of the data from P̃i come from Pi
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for every i. Other sufficient conditions are possible (as in the binary case), but these would

require at least one P̃i to contain a significant portion of some Pj, j ‰ i. Regarding (A),

Blanchard et al. (2016) study the question of necessity for joint irreducibility in the case

L “M “ 2 and show that under mild assumptions on the decontamination procedure, joint

irreducibility is necesssary.

5.9.2 Demixing Mixed Membership Models

Recall the definition of a factorization: P̃ is factorizable if there exists pΠ,P q P ∆M
L ˆ PL

such that P̃ “ ΠP ; we call pΠ,P q a factorization of P̃ .

Our sufficient conditions are not much stronger than what is required by factorizations

that satisfy the two forthcoming desirable properties.

Definition 14. We say a factorization pΠ,P q of P̃ is maximal (M) iff for all factorizations

pΠ1,P 1q of P̃ with P 1 “ pP 11, . . . , P
1
Lq
T P PL, it holds that tP 11, . . . , P 1Lu Ď convpP1, . . . , PLq.

In words, P “ pP1, . . . , PLq
T is a maximal collection of base distributions if it is not possible

to move any of the Pis outside of convpP1, . . . , PLq and represent P̃ .

Definition 15. We say a factorization pΠ,P q of P̃ is linear (L) iff tP1, . . . , PLu Ď

spanpP̃1, . . . , P̃Mq.

We believe that (L) is a reasonable requirement because it holds in the common situation

in which there exist πi1 , . . . ,πiL that are linearly independent. Then for I “ ti1, . . . , iLu, we

can write P̃I “ ΠIP where ΠI is the submatrix of Π containing only the rows indexed by

I and P̃I is similarly defined. Then, ΠI is invertible and P “ Π´1
I P̃I .

Factorizations that satisfy (A) and (B2) are maximal and linear.

Proposition 8. Let pΠ,P q be a factorization of P̃ . If pΠ,P q satisfies (A) and (B2), then

pΠ,P q satisfies (M) and (L).

Proof. We first show that pΠ,P q satisfies (L). By hypothesis, P1, . . . , PL are jointly irre-

ducible. By Lemma 44, P1, . . . , PL are linearly independent. Since by hypothesis Π has full

rank, there exist L rows in Π, πi1 , . . . ,πiL , that are linearly independent. By Lemma 44,
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P̃i1 , . . . , P̃iL are linearly independent. Since ΠP “ P̃ , spanpP̃1, . . . , P̃Mq Ď spanpP1, . . . , PLq.

Since dim spanpP̃1, . . . , P̃Mq ě L, we have spanpP̃1, . . . , P̃Mq “ spanpP1, . . . , PLq. Therefore,

pΠ,P q satisfies (L).

Now, we show that pΠ,P q satisfies (M). Suppose that there is another solution

pΠ1,P 1q with P 1 “ pP 11, . . . , P
1
Lq
T such that Π1P 1 “ P̃ and with some P 1i such that

P 1i R convpP1, . . . , PLq. We claim that P 1i R spanpP1, . . . , PLq. Towards a contradic-

tion, suppose that P 1i P spanpP1, . . . , PLq so that we can write P 1i “
řL
i“1 aiPi. Then,

at least one of the ai is negative since, by assumption, P 1i R convpP1, . . . , PLq. But,

by joint irreducibility of P1, . . . , PL, P 1i is not a distribution, which is a contradiction.

So, the claim follows. But, then, since spanpP1, . . . , PLq “ spanpP̃1, . . . , P̃Mq, we must

have that spanpP̃1, . . . , P̃Mq Ď spanpP 11, . . . , P 1i´1, P
1
i`1, . . . , PLq, which is impossible since

dim spanpP̃1, . . . , P̃Mq “ L.

Maximal and linear factorizations imply conditions that are not much weaker than our

sufficient conditions.

Theorem 31. Let pΠ,P q be a factorization of P̃ . If pΠ,P q satisfies (M), then

(A1) @i, Pi is irreducible with respect to every distribution in convptPj : j ‰ iuq.

If pΠ,P q satisfies (L), then

(B1) rankpΠq ě dim spanpP1, . . . , PLq.

Proof. (A1) We prove the contrapositive. Suppose that there is some Pi and Q P convptPj :

j ‰ iuq with Q “
ř

j‰i βjPj such that Pi is not irreducible wrt Q. Then, there is some

distribution G and γ P p0, 1s such that Pi “ γQ` p1´ γqG.

Suppose γ “ 1. Then, Pi “ Q P convptPk : k ‰ iuq. But, then P̃1, . . . , P̃M P convptPj :

j ‰ iu Y tRuq for any distribution R R convpP1, . . . , PLq. This shows that pΠ,P q does

not satisfy (M).

Therefore, assume that γ P p0, 1q. Either G P convpP1, . . . , PLq or G R

convpP1, . . . , PLq. Suppose that G P convpP1, . . . , PLq. Then, there exist α1, . . . , αL

all nonnegative and summing to 1 such that

Pi “ γQ` p1´ γqpα1P1 ` . . .` αLPLq.
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Therefore, Pi P convptPk : k ‰ iuq. Then, by the argument in the previous paragraph,

pΠ,P q does not satisfy (M).

Now, suppose that G R convpP1, . . . , PLq. Since Pi P convpG,Qq and Q P convptPj :

j ‰ iuq, we have that convptPj : j ‰ iuYtGuq Ą convpP1, . . . , PLq. Then, P̃1, . . . , P̃M P

convptPj : j ‰ iu Y tGuq. This shows that pΠ,P q does not satisfy (M). The result

follows.

(B1) Clearly, dim spanpP̃1, . . . , P̃Mq ď dim spanpP1, . . . , PLq since P̃i “ πTi P for all i P rM s.

Since pΠ,P q satisfies (L), spanpP1, . . . , PLq Ă spanpP̃1, . . . , P̃Lq, which implies that

dim spanpP1, . . . , PLq ď dim spanpP̃1, . . . , P̃Mq.

Therefore, dim spanpP̃1, . . . , P̃Mq “ dim spanpP1, . . . , PLq. Then, since P̃1, . . . , P̃M P

rangepΠq, dim spanpP1, . . . , PLq ď dim range Π. By Result 3.117 of Axler (2015),

rankpΠq “ dim range Π ě dim spanpP1, . . . , PLq.

As a corollary, Theorem 31 implies that if there is a linear factorization pΠ,P q of P̃ and

P1, . . . , PL are linearly independent, then there must be at least as many contaminated

distributions as base distributions, i.e., M ě L. Also, note that (A1) appears as a sufficient

condition in Sanderson and Scott (2014).

By comparing (A) with (A1) and (B2) with (B1), we see that the proposed sufficient

conditions are not much stronger than (M) and (L) require. Since joint irreducibility of

P1, . . . , PL entails their linear independence by Lemma 44, under (A), (B2) and (B1) are the

same. (A) differs from (A1) in that it requires that a slightly larger set of distributions are

irreducible with respect to convex combinations of the remaining distributions. Specifically,

under (A), every convex combination of a subset of the Pis is irreducible with respect to every

convex combination of the other Pis whereas (A1) only requires that every Pi be irreducible

with respect to every convex combination of the other Pis.
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5.9.3 Classification with Partial Labels

Most of our definitions and results for classification with partial labels parallel those of

demixing mixed membership models. We say that P̃ is Π`-factorizable if there exists a pair

pΠ,P q P ∆M
L ˆ PL that solves (5.2) such that Π is consistent with Π`; we call pΠ,P q an

Π`-factorization of P̃ . We say a partial label model is identifiable if given pP̃ ,Π`q, P̃ has

a unique Π`-factorization pΠ,P q.

Our definitions of maximal and linear Π`-factorizations resemble definitions 14 and 15.

Definition 16. We say a Π`-factorization pΠ,P q of P̃ is maximal (M) iff for all Π`-

factorizations pΠ1,P 1q of P̃ with P 1 “ pP 11, . . . , P
1
Lq
T P PL, it holds that tP 11, . . . , P 1Lu Ď

convpP1, . . . , PLq.

Definition 17. We say a Π`-factorization pΠ,P q of P̃ is linear (L) iff tP1, . . . , PLu Ď

spanpP̃1, . . . , P̃Mq.

Similarly, Π`-factorizations that satisfy (A) and (B3) are maximal and linear. The

proof is identical and, accordingly, omitted.

Proposition 9. Let pΠ,P q be a Π`-factorization of P̃ . If pΠ,P q satisfies (A) and (B3),

then pΠ,P q satisfies (M) and (L).

Linear Π`-factorizations must satisfy (B1); indeed, the proof is identical to the proof for

linear factorizations. However, maximal Π`-factorizations need not satisfy (A1). Consider

the following counterexample. Let Q1 „ unifp0, 2q and Q2 „ unifp1, 3q. Let P1 “
2
3Q1`

1
3Q2,

P2 “
1
3Q1 `

2
3Q2, P̃1 “ P1, and P̃2 “ P2. Then, Π` “ I2—the identity matrix. Then, any

pΠ1,P 1q that satisfies (5.2) and is consistent with Π` must be such that pP1, P2q
T “ P 1.

Therefore, (M1) is satisfied. But, clearly, (A1) is not satisfied.

In summary, we are unable to offer a necessary condition that is close to (A). On the

other hand, (B3) is necessary.

Proposition 10. Let pΠ,P q be an Π`-factorization of P̃ . If pP̃ ,Π`q is identifiable, then

the columns of Π` are distinct.
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Proof. First, suppose pP̃ ,Π`q is identifiable. Then, we can write P̃ “ ΠP where Π is

consistent with Π`. We claim that for all i ‰ j, Pi ‰ Pj. To the contrary, suppose that

there exists i ‰ j such that Pi “ Pj. Without loss of generality, suppose i “ 1, j “ 2. Then,

we can write

P̃ “

´

2Π:,1 Π:,3 . . . Π:,L

¯

¨

˚

˚

˚

˚

˚

˚

˝

P1

P3
...

PL

˛

‹

‹

‹

‹

‹

‹

‚

,

which contradicts the uniqueness of P and Π.

Next, we give a proof by contraposition. Suppose that there exists i ‰ j such that

Π`
:,i “ Π`

:,j. Without loss of generality, let i “ 1 and j “ 2. Suppose that pΠ,P q is

consistent with Π` and solves P̃ “ ΠP . Then, the pair pΠ1,P 1q given by

Π1
“

´

Π:,2 Π:,1 Π:,3 . . . Π:,L

¯

P 1
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

P2

P1

P3
...

PL

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

solves P̃ “ Π1P 1 and is consistent with Π`. If P1 “ P2, then pP̃ ,Π`q is not identifiable, so

we may rule out this case. Therefore, P 1 ‰ P , yielding the result.

5.10 Identification

In this section, we establish our identification results, i.e., Theorems 26 and 27. We begin

by proving Proposition 6. Second, we prove a set of useful lemmas in Section 5.10.2. Third,

we present our results on demixing mixed membership models in Section 5.10.3. Finally, we

present our results on classification with partial labels in Section 5.10.4.
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5.10.1 Proof of Proposition 6

Proof. We prove the claims in order.

1. Without loss of generality, suppose i “ 1 and let A “ rLszt1u. There is at least one

point attaining the maximum in the optimization problem κ˚pη1 | tηj : j ‰ 1uq by

Lemma 43. Take a G that achieves the maximum in κ˚pQ1 | tQj : j ‰ 1uq, which exists

also by Lemma 43. Then, we can write:

Q1 “ p1´
ÿ

jě2
µjqG`

ÿ

jě2
µjQj. (5.7)

Note that since η1, . . . ,ηL are linearly independent and P1, . . . , PL are jointly irre-

ducible, Q1, . . . , QL are linearly independent by Lemma 44. Therefore, κ˚pQ1 | tQj :

j ‰ 1uq “
ř

jě2 µj ă 1 because, if not, Q1 “
ř

jě2 µjQj.

Further, any G that satisfies (5.7) has the form
řL
i“1 γiPi because (5.7) implies that

G P spanpQ1, . . . , QLq and each Qi P convpP1, . . . , PLq by hypothesis. The γi must

sum to one, and we have that they are nonnegative by joint irreducibility. That is,

γ ”
´

γ1, . . . , γL

¯T

is a discrete distribution. Then, the above equation is equivalent to

ηT1 P “ p1´
ÿ

jě2
µjqγ

TP `
ÿ

jě2
µjη

T
j P . (5.8)

Since P1, . . . , PL are jointly irreducible, P1, . . . , PL are linearly independent by Lemma

44. By linear independence of P1, . . . , PL, we obtain

η1 “ p1´
ÿ

jě2
µjqγ `

ÿ

jě2
µjηj. (5.9)

Consequently, κ˚pQ1 | tQj : j ‰ 1uq “ κ˚pη1 | tηj : j ‰ 1uq ă 1. This completes the

proof of statement 1.

2. This result follows immediately from Lemma 43.

3. By equations (5.8) and (5.9), there is a one-to-one correspondence between the max-

imizer G to κ˚pQ1 | tQj : j ‰ 1uq and the maximizer γ to κ˚pη1 | tηj : j ‰ 1uq. The

one-to-one correspondence is given by G “ γTP .
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5.10.2 Lemmas for Identification

We present some technical results that are used repeatedly for our identification results.

Lemma 30 gives us some useful properties of the two-sample κ˚ that we exploit in the

PartialLabel and Demix algorithms. Statement 1 gives an alternative form of κ˚. Statement

2 gives the intuitive result that the residues lie on the boundary of the simplex. Statement

3 gives a useful relation for determining whether two mixture proportions are on the same

face; we use this relation extensively in our algorithms.

Lemma 30. Let F1, . . . , FK be jointly irreducible distributions with F “ pF1, . . . , FKq
T ,

Q1, Q2 be two distributions such that Qi “ η
T
i F where ηi P ∆K for i “ 1, 2 and η1 ‰ η2.

Let R be the residue of Q1 wrt Q2 and R “ µTF .

1. There is a one-to-one correspondence between the optimization problem in κ˚pQ1 |Q2q

and the optimization problem

maxpα ě 1|D a distribution G s.t G “ Q2 ` αpQ1 ´Q2qq

via α “ p1´ κq´1.

2. µ P B∆K.

3. N pη2q * N pη1q if and only if R “ Q1 if and only if κ˚pQ1 |Q2q “ 0.

Proof. We note that we may assume that R “ µTF since by definition of the residue,

R P spanpQ1, Q2q and Q1, Q2 P convpF1, . . . , FKq.

1. Consider the linear relation: Q1 “ p1 ´ κqG ` κQ2 where κ P r0, 1s. Since F1, . . . , FK

are jointly irreducible and η1 and η2 are linearly independent, Q1 and Q2 are linearly

independent by Lemma 44. Therefore, κ ă 1. We can rewrite the relation as

G “
1

1´ κQ1 ´
κ

1´ κQ2 “ αQ1 ` p1´ αqQ2

where α “ 1
1´κ . The equivalence follows.
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2. Since R is the residue of Q1 wrt Q2, by Proposition 6, µ is the residue of η1 wrt η2

and µ P ∆K . Therefore, by statement 1 in Lemma 30, µ is such that α˚ is maximized

subject to the following constraints:

µ “ p1´ α˚qη2 ` α
˚η1

α˚ ě 1

µ P ∆K .

Suppose that mini µi ą 0. Then,

µ “ p1´ α˚qη2 ` α
˚η1 “ η2 ` αpη1 ´ η2q ą 0

so that there is some ε ą 0 such that

µ1 “ p1´ α˚ ´ εqη2 ` pα
˚
` εqη1

α˚ ` ε ě 1

µ1 P ∆K .

But, this contradicts the definition of α˚ and µ. Therefore, mini µi “ 0. Consequently,

µ P B∆K .

3. By definition of κ˚, it is clear that R “ Q1 if and only if κ˚pQ1 |Q2q “ 0. Therefore,

it suffices to show that N pη2q * N pη1q if and only if κ˚pQ1 |Q2q “ 0. Suppose

N pη2q * N pη1q. Then, there must be i P rKs such that η2,i ą 0 and η1,i “ 0. For any

α ą 1,

min
iPrKs

p1´ αqη2,i ` αη1,i ă 0;

but, this violates the constraint of the optimization problem. Therefore, α “ 1.

By statement 1 in Lemma 30, κ˚pη1 |η2q “ 0. By statement 1 of Proposition 6,

κ˚pQ1 |Q2q “ κ˚pη1 |η2q “ 0.

Now, suppose N pη2q Ď N pη1q. Then, for any i P rKs, if η2,i ą 0, then η1,i ą 0. Then,

there is α ą 1 sufficiently close to 1 such that

min
iPrKs

η2,i ` αpη1,i ´ η2,iq ě 0.
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By statement 1 in this Lemma, κ˚pη1 |η2q ą 0. By statement 1 of proposition 6,

κ˚pQ1 |Q2q “ κ˚pη1 |η2q ą 0.

Lemma 31. Let 0 ď k ă L. If v1, . . . ,vk P ∆L are linearly independent and wk`1, . . . ,wL P

∆L are random vectors drawn independently from the uniform distribution on a set A Ă ∆L

with positive pL´1q-dimensional Lebesgue measure, then v1, . . . ,vk,wk`1, . . . ,wL are linearly

independent with probability 1.

Proof. We prove the result inductively. To begin, we prove the base case, i.e. v1, . . . ,vk,wk`1

are linearly independent w.p. 1. It suffices to show that wk`1 R spanpv1, . . . ,vkq w.p. 1.

Thus, it is enough to show that spanpv1, . . . ,vkq X A has pL ´ 1q-dimensional Lebesgue

measure 0. Since

spanpv1, . . . ,vkq X A Ă spanpv1, . . . ,vkq X∆L,

it suffices to show that spanpv1, . . . ,vkq X∆L has pL´ 1q-dimensional Lebesgue measure 0.

Next, we claim that spanpv1, . . . ,vkq X∆L Ď affpv1, . . . ,vkq. Let
řk
i“1 αivi P ∆L. Since

vi P ∆L for all i P rks, we can write vi “
řL
j“1 βi,jei where βi,j ě 0 and

řL
j“1 βi,j “ 1. Then,

since
řk
i“1 αivi “

řk
i“1 αi

řL
j“1 βi,jej P ∆L, it holds that

1 “
k
ÿ

i“1
αi

L
ÿ

j“1
βi,j “

k
ÿ

i“1
αi.

Thus,
řk
i“1 αivi P affpv1, . . . ,vkq, establishing the claim.

Thus, it suffices to show that affpv1, . . . ,vkq has pL ´ 1q-dimensional Lebesgue measure

0. affpv1, . . . ,vkq has affine dimension at most k ´ 1. Since it is not possible to fit a pL´ 1q

dimensional ball in an affine subspace of affine dimension k ´ 1 ă L´ 1, affpv1, . . . ,vkq has

pL´ 1q-dimensional Lebesgue measure 0. Thus, with probability 1, wk`1 R spanpv1, . . . ,vkq.

This establishes the base case.

The inductive step follows by a union bound and a similar argument to the base case.

Thus, the result follows.
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5.10.3 Demixing Mixed Membership Models

In this section, we prove our identification result for demixing mixed membership models,

i.e., Theorem 26. First, we present technical lemmas in Section 5.10.3. Second, in Section

5.10.3, we present the key subroutine FaceTest and prove that it behaves as desired. Third,

we prove Theorem 26 in Section 5.10.3. Finally, in Section 5.10.3, we extend our results to

the nonsquare case (where M ą L).

Lemmas

Lemma 32 establishes an intuitive continuity property of the two-sample version of κ˚ and

the residue. Recall that }¨} denotes an arbitrary finite-dimensional norm on RL.

Lemma 32. Let η1,η2 P ∆L be distinct vectors and let µ be the residue of η2 wrt η1. Let

γn P ∆L be a sequence such that }γn ´ η2} ÝÑ 0 as n ÝÑ 8, and let τn be the residue of

γn wrt η1. Then,

1. limnÝÑ8 κ
˚pγn |η1q “ κ˚pη2 |η1q, and

2. limnÝÑ8 }τn ´ µ} “ 0.

3. If, in addition, ρn P ∆L is a sequence such that }ρn ´ η2} ÝÑ 0 as n ÝÑ 8 and

N pη2q “ N pγnq “ N pρnq for all n. Then, limnÝÑ8 κ
˚pγn |ρnq “ 1.

Proof. 1. In order to apply the residue operator κ˚ to η1,η2,γn we think of η1,η2,γn as

discrete probability distributions. By Proposition 5,

κ˚pη2 |η1q “ min
i, η1,ią0

η2,i

η1,i
.

Clearly, there is a constant δ ą 0 such that mini,η1,ią0 η1,i ą δ. Let ε ą 0. By

the equivalence of norms on finite-dimensional vector spaces, there exists a constant

C ą 0 such that }¨}
8
ď C }¨} where }¨}

8
denotes the supremum norm. Thus, since

}γn ´ η2} ÝÑ 0 as n ÝÑ 8, we can let n large enough such that |γn,i ´ η2,i| ď ε for

all i P rLs. Then,

κ˚pγn |η1q “ min
i,η1,ią0

γn,i
η1,i

ď min
i,η1,ią0

η2,i ` ε

η1,i

ď κ˚pη2 |η1q `
ε

δ
.
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Similarly,

κ˚pγn |η1q “ min
i,η1,ią0

γn,i
η1,i

ě
η2,i ´ ε

η1,i

ě κ˚pη2 |η1q ´
ε

δ
.

Since ε ą 0 was arbitrary, statement 1 follows.

2. Write µ “ κη2 ` p1 ´ κqη1 and τn “ κnγn ` p1 ´ κnqη1 where κ “ κ˚pη2 |η1q and

κn “ κ˚pγn |η1q. Then, by the triangle inequality,

}µ´ τn} ď }κη2 ´ κnγn} ` }p1´ κqη1 ´ p1´ κnqη1}

ď |κ´ κn| }η2} ` |κn| }η2 ´ γn} ` |κ´ κn| }η1} ÝÑ 0

as n ÝÑ 8.

3. W.l.o.g., suppose that rKs “ N pη2q “ N pγnq “ N pρnq where K ď L. Observe that

κ˚pγn |ρnq “ min
i, ρn,ią0

γn,i
ρn,i

“ min
iPrKs

γn,i
ρn,i

There exists a constant δ ą 0 such that miniPrKs η2,i ě δ. Let δ ą ε ą 0. By the

equivalence of norms on finite-dimensional vector spaces, we can let n large enough

such that |γn,i ´ η2,i| ď ε and |ρn,i ´ η2,i| ď ε for all i P rLs. Then,

κ˚pγn |ρnq “ min
iPrKs

γn,i
ρn,i

ď min
iPrKs

η2,i ` ε

η2,i ´ ε

ď
η2,i ` ε

η2,i ´ ε

for any i P rKs, which goes to 1 as ε ÝÑ 0. Similarly,

κ˚pγn |ρnq “ min
iPrKs

γn,i
ρn,i

ě min
iPrKs

η2,i ´ ε

η2,i ` ε
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Since for any i P rKs,

η2,i ´ ε

η2,i ` ε
ÝÑ 1

as ε ÝÑ 0, the above lower bound goes to 1 as ε ÝÑ 0. Thus, statement 3 follows.

Lemma 33 guarantees that certain operations in the Demix algorithm preserve linear

independence of the mixture proportions. The proof uses tools from multilinear algebra.

Lemma 33. Let τ1, . . . , τK P ∆K be linearly independent and P1, . . . , PK be jointly irre-

ducible. Let Qi “ τ
T
i P for i P rKs. Then for any i, j P rKs such that i ‰ j,

1. If η “
řK
k“1 akτk with aj ‰ 0, then τ1, . . . , τj´1,η, τj`1, . . . , τK are linearly indepen-

dent.

2. Let Rk be the residue of Qk with respect to Qj for all k P rKsztju. Then, Rk “ η
T
k P

where ηk P ∆L and η1, . . . ,ηj´1, τj,ηj`1, . . . ,ηK are linearly independent.

3. Let τ ˚ P convpτ1, . . . , τkq
˝ and ηi P convpτi, τ ˚q˝ for i P rks where k ď K. Then,

η1,η2, . . . ,ηk, τk`1, . . . , τK

are linearly independent.

Proof. We use the multilinear expansion and usual properties of determinants.

1. Viewing each τi as a column vector,

detpτ1, . . . , τj´1,
ÿ

k

akτk, τj`1, . . . , τKq “ aj detpτ1, . . . , τKq ‰ 0.

2. Linear independence of τ1, . . . , τK implies that the Q1, . . . , QK are distinct. Hence, by

Proposition 5, we can write ηk “ p1 ´ αkqτj ` αkτk where αk ‰ 0 @k ‰ j. Then, it

holds that

detpη1, . . . ,ηj´1, τj,ηj`1, . . . ,ηKq “

˜

ź

i‰j

αi

¸

detpτ1, . . . , τKq ‰ 0.
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3. Since ηj “ p1´αjqτ ˚`αjτj where αj P p0, 1q for all j ď k, and τ ˚ “
ř

i βiτi, it holds

detpη1, . . . ,ηk´1, τk, . . . , τKq “

˜

1`
k
ÿ

j“1

p1´ αjq
αj

βj

¸˜

k
ź

i“1
αi

¸

detpτ1, . . . , τKq ‰ 0.

Lemma 34 gives a condition on the mixture proportions under which the multi-sample

residue is unique. Lemma 2 in Blanchard and Scott (2014) is very similar and is proved in

a very similar way. We give a useful generalization here that reproduces many of the same

details.

Lemma 34. Let l, k P rLs. Let τ1, . . . , τL P ∆L be linearly independent. We have that

condition 1 implies condition 2 and condition 2 implies condition 3.

1. There exists a decomposition

τl “ κek ` p1´ κqτ 1l

where κ ą 0 and τ 1l P convptτj : j ‰ luq. Further, for every ei such that i ‰ k, there

exists a decomposition

ei “
L
ÿ

j“1
ajτj

such that al ă 1
κ

.

2. Let

T “

¨

˚

˚

˚

˝

τ T1
...

τ TL

˛

‹

‹

‹

‚

;

the matrix T is invertible and T´1 is such that pT´1ql,k ą 0 and pT´1ql,i ď 0 for i ‰ k

and pT´1ql,k ą pT
´1qj,k for j ‰ l. In words, the pl, kqth entry in T´1 is positive, every

other entry in the lth row of T´1 is nonpositive and every other entry in the kth column

of T´1 is strictly less than the pl, kqth entry. 2

2pT´1qi,j is the iˆ j entry in the matrix T´1.
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3. The residue of τl with respect to tτj, j ‰ lu is ek.

Proof. Without loss of generality, let l “ 1 and k “ 2. By relabeling the vectors e1, . . . , eL,

we can assume without loss of generality that k “ 1. First, we show that condition 1 implies

condition 2. Suppose that condition 1 holds. Then, there exists κ ą 0 such that

τ1 “ κe1 ` p1´ κq
L
ÿ

i“2
µiτi

with µi ě 0 for i P rLszt1u. Then,

e1 “
1
κ
pτ1 ´

ÿ

iě2
p1´ κqµiτiq.

Hence, the first row of T´1 is given by 1
κ
p1,´p1 ´ κqµ2, ¨ ¨ ¨ ,´p1 ´ κqµLq. This shows that

the first row is such that pT´1q1,1 ą 0 and pT´1q1,i ď 0 for i ‰ 1.

Consider ei such that i ‰ 1. Then, we have the relation: ei “
řL
j“1 ajτj, which gives the

ith row of T´1. By assumption, a1 ă
1
κ
, so the pi, 1qth entry is strictly less than the p1, 1qth

entry. Hence, 2 follows.

Now, we prove that condition 2 implies condition 3. Suppose condition 2 is true. Con-

sider the optimization problem

max
ν,γ

L
ÿ

i“2
νi s.t. τ1 “ p1´

ÿ

iě2
νiqγ `

L
ÿ

i“2
νiτi

over γ P ∆L and ν “ pν2, ¨ ¨ ¨ , νLq P CL´1 “ tpν2, ¨ ¨ ¨ , νLq : νi ě 0;
řL
i“2 ν ď 1u.

By the same argument given in the proof of Lemma 2 of Blanchard and Scott (2014),

this optimization problem is equivalent to the program

max
γP∆L

eT1 pT
T
q
´1γ s.t. νppT T

q
´1γq P CL´1

where νpηq – η´1
1 p´η2, ¨ ¨ ¨ ,´ηLq. The above objective is of the form aTγ where a is the

first column of T´1. Since l “ 1, by assumption, for every i ‰ 1, T´1
1,1 ą T

´1
i,1 . Therefore,

the unconstrained maximum over γ P ∆L is attained uniquely by γ “ e1. Notice that

pT T q´1e1 is the first row of T´1. Denote this vector b “ pb1, ¨ ¨ ¨ , bLq. We show that

νpbq “ b´1
1 p´b2, ¨ ¨ ¨ ,´bLq P CL´1. By assumption, b has its first coordinate positive and the
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other coordinates are nonpositive. Therefore, all of the components of νpbq are nonnegative.

Furthermore, the sum of the components of νpbq is
L
ÿ

i“2

´bi
b1
“ 1´

řL
i“1 bi
b1

“ 1´ 1
b1
ď 1.

The last equality follows because the rows of T´1 sum to 1 since T is a stochastic matrix.

Then, we have νppT T q´1e1q P CL´1. Consequently, the unique maximum of the optimization

problem is attained for γ “ e1. This establishes 3.

The FaceTest Algorithm

Next, we consider the main subroutine in the Demix algorithm: the FaceTest algorithm (see

Algorithm 21). Proposition 11 establishes that FaceTest(Q1, . . . , QK) returns 1 if and only

if Q1, . . . , QK are in the relative interior of the same face of the simplex.

Proposition 11. Let Qj “ ηTj P for ηj P ∆K and all j P rKs. Let P1, . . . , PK be jointly

irreducible, Q1, . . . , QK P convpP1, . . . , PKq be distinct, and for each i P rKs, let ηi lie in the

relative interior of one of the faces of ∆K. FaceTest(Q1, . . . , QK) returns 1 if and only if

η1, . . . ,ηK lie in the relative interior of the same face of ∆K.

Proof. Suppose that η1, . . . ,ηK lie on the relative interior of the same face of ∆K . Then,

N pQ1q “ . . . “ N pQKq. By statement 3 of Lemma 30, κ˚pQi |Qjq ą 0 for all i ‰ j. Hence,

FaceTest(Q1, . . . , QK) returns 1.

Suppose that Q1, . . . , QK do not all lie on the relative interior of the same face. Then,

there exists Qi, Qj (i ‰ j) that do not lie on the relative interior of the same face. Without

loss of generality, suppose that N pQjq * N pQiq. Then, by statement 3 of Lemma 30,

κ˚pQi |Qjq “ 0. Hence, FaceTest(Q1, . . . , QK) returns 0.

The Demix Algorithm

Proof of Theorem 26. Let K ď L, γi P ∆L for all i P rKs, Si “ γTi P for all i P rKs, and

Γ “

¨

˚

˚

˚

˝

γT1
...

γTK

˛

‹

‹

‹

‚

.
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We claim that for any ti1, . . . , iKu Ă rLs and tS1, . . . , SKu Ă convpPi1 , . . . , PiK q, if P1, . . . , PL

are jointly irreducible, and Γ has full row rank, then w.p. 1 Demix(S1, . . . , SK) returns a

permutation of pPi1 , . . . , PiK q. If the claim holds, then setting K “ L and putting P̃i “ Si

yields the result. We prove the claim by induction on K.

Consider the base case: K “ 2. Suppose that tS1, S2u Ă convpP1, P2q (the other cases are

similar). Note that γ1 ‰ γ2 by linear independence of γ1 and γ2. Either γ1 P convpe1,γ2q

or γ1 P convpe2,γ2q. Suppose γ1 P convpe1,γ2q. Condition 2 of Lemma 29 is satisfied so

that e1 is the residue of γ1 with respect to γ2 and e2 is the residue of γ2 with respect to γ1.

Thus, by statement 3 of Proposition 6, P1 is the residue of S1 with respect to S2 and P2 is

the residue of S2 with respect to S1. If γ1 P convpe2,γ2q, then similar reasoning establishes

that P2 is the residue of S1 with respect to S2 and P1 is the residue of S2 with respect to S1.

Thus, the base case follows.

Suppose L ě K ą 2. The inductive hypothesis is:

Inductive Hypothesis: for any ti1, . . . , iK´1u Ă rLs and tS1, . . . , SK´1u Ă

convpPi1 , . . . , PiK´1q, if P1, . . . , PL are jointly irreducible and Γ has full row rank, then

w.p. 1 Demix(S1, . . . , SK´1) returns a permutation of pPi1 , . . . , PiK´1q.

Suppose that tS1, . . . , SKu Ă convpP1, . . . , PKq (the other cases are similar). Set Ξ “

convpe1, . . . , eKq. With probability 1, Q P convpS2, . . . , SKq
˝. We can write Q “ ηTP

where η is a uniformly distributed random vector in convpγ2, . . . ,γKq. Let R be the residue

of Q with respect to S1. By statement 3 of Proposition 6, we can write R “ λTP where λ

is the residue of η with respect to γ1. By statement 2 of Lemma 30, λ P BΞ.

Step 1: We claim that with probability 1, there is l P rKs such that λ P convptej : j P

rKsztluuq˝. Let Bi,j “ convptγ1uYtek : k P rKszti, juuq where i, j P rKs and i ‰ j and

let C “ convpγ2, . . . ,γKq. First, we argue that C X Bi,j has affine dimension at most

K´3.3 Since γ2, . . . ,γK are linearly independent, C has affine dimension K´2. Since

tek : k P rKszti, juu are linearly independent, Bi,j has affine dimension K´2 or K´3.

If Bi,j has affine dimension K´3, then CXBi,j has affine dimension at most K´3. So,
3Note that if v1, . . . ,vn P RL are linearly independent and n ď L, then affpv1, . . . ,vnq has affine dimension

n´ 1.
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suppose that Bi,j has affine dimension K ´ 2. If C X Bi,j has affine dimension K ´ 2,

then affC “ affBi,j. Then, in particular, γ1 P affC. But, this contradicts the linear

independence of γ1, . . . ,γK . Therefore, C XBi,j has affine dimension at most K ´ 3.

Because C has affine dimension K ´ 2 and η is a uniformly distributed random vector

in C, with probability 1, η R Yi,jPrKs,i‰jBi,j. Since γ1 P Bi,j for all i, j P rKs and

η P convpλ,γ1q by definition, the convexity of Bi,j implies that λ R Yi,jPrKs,i‰jBi,j.

Since λ P BΞ, the claim follows.

Step 2: Let Rpnqi be the residue of mn´1
n
pSi, Qq with respect to S1. We claim that there is

some finite integer N ě 2 such that for all n ě N ,

FaceTestpRpnq2 , . . . , R
pnq
K q

returns 1. By Proposition 11, this is equivalent to the statement that there exists

N ě 2 such that for all n ě N , the mixture proportions of Rpnq2 , . . . , R
pnq
K are on the

relative interior of the same face. Let mn´1
n
pSi, Qq “ pτ

pnq
i qTP for i P rKszt1u; note

that τ pnqi “ 1
n
γi `

n´1
n
η and, consequently, τ pnqi P Ξ. Since η P convpγ2, . . . ,γKq

˝ with

probability 1, τ pnqi P convpγi,ηq˝ for all i P rKszt1u and n P N, and γ1, . . . ,γK are

linearly independent, it follows that for all n P N with probability 1, γ1, τ
pnq
2 , . . . , τ

pnq
K

are linearly independent by statement 3 in Lemma 33. Fix i P rKszt1u. It suffices to

show that there is large enough N such that for n ě N , Residuepmn´1
n
pSi, Qq |S1q “

R
pnq
i is on the same face as R. Let Rpnqi “ pµ

pnq
i q

TP ; by statement 3 of Proposition 6,

µ
pnq
i is the residue of τ pnqi with respect to γ1 and by statement 2 of Lemma 30 µpnqi P Ξ.

It suffices to show that N pµpnqi q “ N pλq, i.e., every µpnqi is on the same face as λ.

As n ÝÑ 8, τ pnqi “ p1 ´ n´1
n
qγi `

n´1
n
η ÝÑ η, hence by statement 2 in Lemma 32,

›

›

›
µ
pnq
i ´ λ

›

›

›
ÝÑ 0. Since with probability 1, λ P convptej : j P rKsztluuq˝ for some l

(step 1), it follows that for large enough n, µpnqi P convptej : j P rKsztluuq˝.

Step 3: Assume that n is sufficiently large such that Rpnq2 , . . . , R
pnq
K are on the same face. The

algorithm recurses on R
pnq
2 , . . . , R

pnq
K . Since γ1, τ

pnq
2 , . . . , τ

pnq
K are linearly independent,

it follows by statement 2 in Lemma 33 that µpnq2 , . . . ,µ
pnq
K are linearly independent.

Suppose wlog that tRpnq2 , . . . , R
pnq
K u Ă tP1, . . . , PK´1u. Then, by the inductive hypothe-
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Algorithm 30 NonSquareDemix(P̃1, . . . , P̃M)
1: R1, . . . , RL ÐÝ independently uniformly distributed elements in convpP̃1, . . . , P̃Mq

2: pQ1, . . . , QLq
T ÐÝ Demix(R1, . . . , RL)

3: return pQ1, . . . , QLq
T

sis, if pQ1, . . . , QK´1q ÐÝ DemixpRpnq2 , . . . , R
pnq
K q, then pQ1, . . . , QK´1q is a permutation

of pP1, . . . , PK´1q. Note that 1
K

řK
i“1 Si P convpP1, . . . , PKq

˝ since Γ has full rank by

assumption.

Write Qi “ ρ
T
i P for i P rKs. Then, there exists of a permutation σ : rK´1s ÝÑ rK´1s

such that ρi “ eσpiq. Since ρK P Ξ˝ and ρi “ eσpiq for i ď K ´ 1, the conditions in

statement 1 of Lemma 34 are satisfied. Therefore, by Lemma 34, the residue of ρK
with respect to tρ1, . . . ,ρK´1u is eK . Then, by statement 3 of Proposition 6, the

residue of QK with respect to tQ1, . . . , QK´1u is PK . This completes the inductive

step.

The Non-Square Demix Algorithm

Now, we examine the non-square case of the demixing problem (M ą L). Note that knowl-

edge of L is needed since one must resample exactly L distributions in order to run the

square Demix algorithm.

Corollary 2. Suppose M ą L. Let P1, . . . , PL be jointly irreducible and Π have full

rank. Then, with probability 1, NonSquareDemixpP̃1, . . . , P̃Mq returns pQ1, . . . , QLq such that

pQ1, . . . , QLq is a permutation of pP1, . . . , PLq.

Proof. We can write Ri “ τ Ti P where τi P ∆L and i “ 1, . . . , L. τ1, . . . , τL are drawn

uniformly independently from a set with positive pL ´ 1q-dimensional Lebesgue measure

since Π has full rank by hypothesis. By Lemma 31, τ1, . . . , τL are linearly independent

with probability 1. Then, by Theorem 26, with probability 1, Demix(R1, . . . , RL) returns a

permutation of pP1, . . . , PLq.
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5.10.4 Classification with Partial Labels

In this section, we present our identification result for classification with partial labels,

i.e., Theorem 27. To begin, in Section 5.10.4, we prove an important lemma for the main

subroutine of the algorithm PartialLabel: VertexTest (algorithm 24). Second, in Section

5.10.4, we present the proof of Theorem 27.

VertexTest Algorithm

Lemma 35 establishes that the VertexTest algorithm determines whether one vector of dis-

tributions is a permutation of another vector of distributions.

Lemma 35. Let η1, . . . ,ηL P ∆L and Qi “ ηTi P for i P rLs and Q “ pQ1, . . . , QLq
T .

Suppose that P1, . . . , PL are jointly irreducible, Π has full column rank, and the columns of

Π` are unique. Then, VertexTestpΠ`, P̃ ,Qq returns p1,CT q with C a permutation matrix

if and only if Q is a permutation of P . Further, if VertexTestpΠ`, P̃ ,Qq returns p1,CT q,

then CTQ “ P .

Proof. If Q “ pQ1, . . . , QLq
T is such that DTQ “ P where D is a permutation matrix, then

it is clear that VertexTestpΠ`, pP̃1, . . . , P̃Mq
T , pQ1, . . . , QLq

T q returns p1,CT q for some per-

mutation matrix C since the entries of Π` are Π`
i,j “ 1tκ˚pP̃i |Pjq ą 0u. Since DTQ “ P ,

clearly, ZD “ Π`. But since the columns of Π` are unique, there is a unique permutation

of the columns of Z to obtain the columns of Π`. Therefore, D “ C.

Consider the “only if” direction. We use the notation from Algorithm 24. Suppose

Algorithm 24 has returned p1,CT q where C is a permutation matrix. W.l.o.g. (reordering

the Qi) we can assume that C is the identity and thus Z “ Π`.

In the sequel denote φpxq :“ 1tx ą 0u and φpM q the entry-wise application of φ to the

matrix or vector M . We denote v ĺ w when all entries of v are less than or equal to

the corresponding entries of w (where v and w are vectors). This is a partial order, which

will be used only for 0 ´ 1 vectors below (essentially to denote support inclusion). W.l.o.g.

(reordering the Pi) we can assume that the columns of Π` are reordered in some sequence

compatible with ĺ in decreasing order, i.e. such that if Π`
:,j ĺ Π`

:,i, then i ď j.

215



Introduce the following additional notation: let Λ be the matrix with rows Λi,: “ φpηTi q.

Observe that by statement 3 of Lemma 30, for any i, j, k, κ˚pP̃i|Qjq ą 0 and κ˚pQj|Pkq ą 0

implies κ˚pP̃i|Pkq ą 0. Note that we can write Λj,k “ 1tκ˚pQj |Pkq ą 0u and Π`
j,k “

1tκ˚pP̃j |Pkq ą 0u. Thus, we must have φpZΛq ĺ Π`.

We now argue that this implies that Λ is sub-diagonal, i.e., Λij “ 0 for i ă j. Let i ă j.

If Λij ą 0, then Z:,i ĺ Π`
:,j by the above relation. Since Z “ Π`, this implies Π`

:,i ĺ Π`
:,j,

which implies j ď i by the assumed ordering of the columns of Π`, a contradiction. Hence

Λij “ 0 for i ă j.

Now, since the matrix Y (line 1 of Algorithm 24) is diagonal, Statement 3 of Lemma 1

gives that for any i ‰ j we have Λi,: � Λj,:. One can conclude by a straightforward recursion

that since Λ is sub-diagonal, this implies that Λ is in fact diagonal. Start with the first

row Λ1,: which must be p1, 0, . . . , 0qT (by sub-diagonality). Since Λ1,: � Λj,: for j ą 1, this

implies the first column Λ:,1 is also p1, 0, . . . , 0q. The subsequent columns/rows are handled

in the same way.

Hence Λ is the identity, which implies that Q “ P .

Proof of Theorem 27

Proof. We adopt the notation from the description of Algorithm 22 with the exception that

we make explicit the dependence on k by writing W pkq
i instead of Wi and Q̄pkqi instead of Q̄i.

We show that there is a K such that for all k ě K, pW pkq
1 , . . . ,W

pkq
L qT is a permutation of

pP1, . . . , PLq
T . Then, the result will follow from Lemma 35.

Let Qi “ τ
T
i P , Q̄pkqi “ τ̄

pkqT

i P , and W pkq
i “ γ

pkqT

i P . Further, let 0 ď n ă L, ti1, . . . , inu Ă

rLs, l ‰ j P rLs, and define the following events wrt the randomness of τ1, . . . , τL:

Ei1,...,in “ tei1 , . . . , ein , τn`1, . . . , τL are linearly independentu

E “ Xti1,...,inuĂrLs,0ďnăLEi1,...,in

Fl,j “ tel ´ ej, τ2, . . . , τL are linearly independentu

F “ Xl‰jPrLsFl,j

Gl,j
i1,...,in´1 “ tel ´ ej, ei1 , . . . , ein´1 , τn`1, . . . , τL are linearly independentu

G “ Xti1,...,in´1uĂrLs,0ďnăL,l‰jPrLszti1,...,in´1uG
l,j
i1,...,in´1 .
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By Lemma 31, for any 0 ď n ă L, ti1, . . . , inu Ă rLs, the event Ei1,...,in occurs with probability

1. Similarly, by Lemma 31, for any l ‰ j P rLs, the event Fl,j occurs with probability

1. Finally, by Lemma 31, for any 0 ď n ă L, ti1, . . . , in´1u Ă rLs and any l ‰ j P

rLszti1, . . . , in´1u, the event Gl,j
i1,...,in´1 occurs with probability 1. Hence, the event EXF XG

occurs with probability 1. For the remainder of the proof, assume event E X F XG occurs.

We prove the claim inductively. We show that for all n ď L there exists Kn such that if

k ě Kn, then W
pkq
1 , . . . ,W pkq

n are distinct base distributions.

Base Case: n “ 1. We will apply Lemma 34. By event E, τ1, . . . , τL are linearly inde-

pendent. Therefore, affpτ2, . . . , τLq gives a hyperplane with an associated open halfspace H

that contains τ1 and at least one ej. Inspection of Line 3 of Algorithm 23 shows that τ̄ pkq1

is simply the average of τ2, . . . , τL and does not depend on k. Thus, there exists K1 such

that for all k ě K1, if ej PH , then λk – 1
k
τ1`

k´1
k
τ̄
pkq
1 P convpej, τ2, . . . , τLq

˝. Fix k ě K1.

Then, by event E, for all ej PH , there exists a unique κj ą 0 and unique aj,2, . . . , aj,L such

that

λk “ κjej `
L
ÿ

i“2
aj,iτi

“ κjej ` p1´ κjqτ̃j

where τ̃j P convpτ2, . . . , τLq is unique. We claim that for all i ‰ j and tei, eju ĂH , κi ‰ κj.

Suppose to the contrary that there is i ‰ j such that tei, eju ĂH and κi “ κj “ κ. Then,

λk “ κei ` p1´ κqτ̃i

λk “ κej ` p1´ κqτ̃j.

Then, p1´κqpτ̃j ´ τ̃iq´κpei´ejq “ 0, from which it follows that ei´ej P spanpτ2, . . . , τLq.

But, by event F , ei ´ ej, τ2, . . . , τL are linearly independent and, hence, we have a contra-

diction. Thus, the claim follows.

Consequently, there is a unique j that minimizes κj. Note that for all ei R H , if we

write ei “
ř

lě2 alτl ` a1λk, then a1 ď 0. Then, by Lemma 34, ej is the residue of λk with

respect to τ2, . . . , τL. Therefore, by Proposition 6, MultiResiduep 1
k
Q1 ` p1´ 1

k
qQ̄1 | tQjują1q

is well-defined and if W pkq
1 ÐÝ MultiResiduep 1

k
Q1 ` p1´ 1

k
qQ̄1 | tQjują1q, W pkq

1 is one of the

base distributions. This establishes the base case.
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The Inductive Step: The proof is similar to the base case. Suppose that there ex-

ists Kn´1 such that for all k ě Kn´1, W
pkq
1 , . . . ,W

pkq
n´1 are distinct base distributions.

Let ti1, . . . , in´1u Ă rLs denote the indices of the base distributions that are equal to

W
pkq
1 , . . . ,W

pkq
n´1 under the inductive hypothesis. By the event E, ei1 , . . . , ein´1 , τn, . . . , τL

are linearly independent. Hence, affpei1 , . . . , ein´1 , τn`1, . . . , τLq gives a hyperplane with

an associated open halfspace Hi1,...,in´1 such that τn P Hi1,...,in´1 . We claim that there is

ej R tei1 , . . . , ein´1u such that ej P Hi1,...,in´1 . Suppose not. Then, e1, . . . , eL P H
c
i1,...,in´1

and τn P Hi1,...,in´1 , which implies that τn R ∆L´1. This is a contradiction, so the claim

follows.

Define

λ
pi1,...,in´1q
k –

1
k
τn ` r

k ´ 1
k
s

1
L´ 1p

ÿ

sąn

τs `
ÿ

săn

eisq.

There exists an integer Kpi1,...,in´1q
n such that if k ě Kpi1,...,in´1q

n , then for all ej P Hi1,...,in´1 ,

λ
pi1,...,in´1q
k P convpej, ei1 , . . . , ein´1 , τn`1, . . . , τLq

˝. Set

Kn – maxp max
ti1,...,in´1uĂrLs

pKpi1,...,in´1q
n q, Kn´1q.

Fix k ě Kn. Define

λk –
1
k
τn ` r

k ´ 1
k
sτ̄ pkqn

“
1
k
τn ` r

k ´ 1
k
s

1
L´ 1p

ÿ

sąn

τs `
ÿ

săn

γpkqs q.

By the inductive hypothesis, k ě Kn´1, and Proposition 6, there exists ti1, . . . , in´1u Ă rLs

such that γpkqj “ eij for all j P rn ´ 1s. For the sake of abbreviation, let H “ Hi1,...,in´1 .

Thus, τn P H and there exists ej P H such that ej R tei1 , . . . , ein´1u. Hence, by our choice

of Kn, for every ej PH

λk “ λ
pi1,...,in´1q
k P convpej, ei1 , . . . , ein´1 , τn`1, . . . , τLq

˝.

By event E for all ej P H , there is a unique κj ą 0 and unique

aj,1, . . . , aj,n´1, aj,n`1, . . . , aj,L ą 0 such that

λk “ κjej `
ÿ

lăn

aj,ieil `
ÿ

ląn

aj,lτl

“ κjej ` p1´ κjqτ̃j
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where τ̃j P convpei1 , . . . , ein´1 , τn`1, . . . , τLq is unique.

We claim that for all l ‰ j such that tel, eju Ă H , κl ‰ κj. Suppose to the contrary

that there exists l ‰ j such that tel, eju ĂH and κl “ κj “ κ. Then,

λk “ κel ` p1´ κqτ̃i “ κej ` p1´ κqτ̃j.

This implies that el ´ ej P spanpei1 , . . . , ein´1 , τn`1, . . . , τLq. Observe that tel, eju Ă H

implies that el R tei1 , . . . , ein´1u and ej R tei1 , . . . , ein´1u. Thus, event G implies that el ´

ej, ei1 , . . . , ein´1 , τn`1, . . . , τL are linearly independent. Therefore, we have a contradiction,

establishing the claim.

Consequently, there is a unique j that minimizes κj. Note that for all el R H ,

if we write el “
ř

măn ameim `
ř

mąn amτm ` anλk, then an ď 0. Then, by Lemma

34, ej is the residue of λk with respect to γ
pkq
1 , . . . ,γ

pkq
n´1, τn`1, . . . , τL. Therefore, by

Proposition 6, MultiResiduep 1
k
Qn ` p1 ´ 1

k
qQ̄n | tQjująn Y tW

pkq
j ujănq is well-defined and

if Wn ÐÝ MultiResiduep 1
k
Qn ` p1 ´ 1

k
qQ̄n | tQjująn Y tW

pkq
j ujănq, W pkq

n is one of the base

distributions. Since ej P H implies that ej R tei1 , . . . , ein´1u, it follows that W pkq
1 , . . . ,W pkq

n

are distinct base distributions. This establishes the inductive step.

The result follows from applying Lemma 35.

5.11 Estimation

In this section, we present the estimation results of our paper. To begin, in Section 5.11.1,

we present the proof of sufficient conditions under which ResidueHat estimators converge

uniformly in probability (Proposition 7). Second, in Section 5.11.2, we prove our main

estimation result for demixing mixed membership models (Theorem 29). Finally, in Section

5.11.3, we prove our main estimation result for classification with partial labels (Theorem

30).

5.11.1 ResidueHat Results

Let A1, A2, . . . denote positive constants whose values may change from line to line. We

introduce the following definitions.
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Definition 18. Let pF and pH be ResidueHat estimators of F and H, respectively, where

F ‰ H and let GÐÝ ResiduepF |Hq and pGÐÝ ResidueHatp pF | pHq. If pG is a ResidueHat es-

timator of order 0, we say its distributional ancestors are tF,Hu and define ancestorsp pGq–

tF,Hu. If pG is a ResidueHat estimator of the kth order, we define its distributional ancestors

to be ancestorsp pGq “ ancestorsp pF q Y ancestorsp pHq.

The constants in our bounds depend on the distributional ancestors.

Definition 19. We say that the distribution F satisfies the support condition (SC) with

respect to H if there exists a distribution G and γ P r0, 1q such that supppHq * supppGq and

F “ p1´ γqG` γH.

Definition 20. If

sup
EPE

| pF pEq ´ F pEq|
i.p.
ÝÑ 0

as n ÝÑ 8, we say that pF ÝÑ F uniformly (or pF converges uniformly to F ) with respect

to E.

Definition 21. Let pF be a ResidueHat estimator of a distribution F . We say that pF satisfies

a Uniform Deviation Inequality (UDI) with respect to E if for all ε ą 0, there exist constants

A1,ε, A2,ε ą 0 and N depending on ancestorsp pF q such that if n ěN , then for all E P E

| pF pEq ´ F pEq| ă A1,εγn ` ε

with probability at least 1´ A2,ε
ř

iPrLs
1
ni

Henceforth, for the purposes of abbreviation, we will only say that a ResidueHat estimator

satisfies a Uniform Deviation Inequality (UDI) and omit “with respect to E” because the

context makes this clear.

Definition 22. Let pF and pH be ResidueHat estimators. We say that pκp pF | pHq satisfies a Rate

of Convergence (RC) with respect to E if for all ε ą 0, there exists constants A1,ε, A2,ε ą 0

and N depending on ancestorsp pF q Y ancestorsp pHq such that for n ěN ,

|pκp pF | pHq ´ κ˚pF |Hq| ď A1,εγn ` ε

with probability at least 1´ A2,ε
ř

iPrLs
1
ni

.
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Lemma 36 gives sufficient conditions under which F satisfies (SC) with respect to H.

Lemma 36. Let P1, . . . , PL satisfy (A2) and let F,H P convpP1, . . . , PLq such that F ‰ H.

Then, F satisfies (SC) with respect to H.

Proof. Let A “ arg minp|B| : B Ď tP1, . . . , PLu, F,H P convpBqq. Without loss of generality,

suppose that A “ tP1, . . . , PKu. F either lies on the boundary of convpP1, . . . , PKq or doesn’t.

If F lies on the boundary of convpP1, . . . , PKq, then H P convpP1, . . . , PKq
˝ by minimality of

A. Then, we pick G “ F and γ “ 0 to obtain F “ p1´ γqF ` γH. Since P1, . . . , PL satisfy

(A2), supppHq * supppF q.

Now, suppose that F P convpP1, . . . , PKq
˝. Let G ÐÝ ResiduepF |Hq; we can write

F “ p1 ´ γqG ` γH for γ P r0, 1q since F ‰ H. Then, by Statement 2 of Lemma 30

and statement 3 of Proposition 6, G is on the boundary of convpP1, . . . , PKq. Without

loss of generality, suppose that G P convpP1, . . . , PK´1q. Since F “ p1 ´ γqG ` γH P

convpP1, . . . , PKq
˝, and G P convpP1, . . . , PK´1q, H R convpP1, . . . , PK´1q. Since P1, . . . , PL

satisfy (A2), supppHq * supppGq. This completes the proof.

Lemma 37 gives sufficient conditions under which an estimator pG satisfies a (UDI).

Lemma 37. Let

1. F and H be distributions such that F ‰ H,

2. GÐÝ ResiduepF |Hq, and

3. pGÐÝ ResidueHatp pF | pHq.

If pκp pF | pHq satisfies a (RC), pH satisfies a (UDI), and pF satisfies a (UDI), then pG satisfies

a (UDI).

Proof. For the sake of abbreviation, let pκ “ pκp pF | pHq, κ˚ “ κ˚pF |Hq, pα “ 1
1´pκ and α˚ “

1
1´κ˚ . Let ε ą 0. We claim that there are constants A1,ε, A2,ε ą 0 such that for sufficiently

large n,

Prp|pα ´ α˚| ă A1,εγn ` εq ě 1´ A2,ε
ÿ

iPrLs

1
ni
. (5.10)
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Let δ “ εp1´κ˚q2
2 . Since pκ satisfies a (RC), there exists constants A1,δ, A2,δ ą 0 such that for

large enough n,

|pκ´ κ˚| ď A1,δγn ` δ

with probability at least 1´A2,δ
ř

iPrLs
1
ni

. Since F ‰ H, κ˚ ă 1 by Proposition 5, so we can

let n large enough so that

1
p1´ κ˚qp1´ pκq

ď 2 1
p1´ κ˚q2

with high probability. Then, on this same event, for large enough n,

|
1

1´ κ˚ ´
1

1´ pκ
| ď

A1,δγn ` δ

p1´ κ˚qp1´ pκq

ď 2A1,δγn ` δ

p1´ κ˚q2

ď 2 A1,δγn
p1´ κ˚q2 ` ε.

Thus, we obtain the claim.

We can write G “ αF ` p1´ αqH with α ě 1. Then, by the triangle inequality,

| pG´G| “ |pα pF ` p1´ pαq pH ´ αF ´ p1´ αqH|

ď |pα pF ´ αF | ` |p1´ pαq pH ´ p1´ αqH|

“ |pα pF ´ pαF ` pαF ´ αF | ` |p1´ pαq pH ´ p1´ pαqH ` p1´ pαqH ´ p1´ αqH|

ď |pα|| pF ´ F | ` |pα ´ α| ` |1´ pα|| pH ´H| ` |pα ´ α|.

Since pF satisfies a (UDI), pH satisfies a (UDI), inequality (5.10) holds, and |pα| and |1´ pα|

are bounded in probability, the result follows by an application of a union bound and picking

the εs in the uniform deviation inequalities appropriately for each term.

Lemma 38 gives sufficient conditions under which pκ satisfies (RC).

Lemma 38. Let F and H be distributions such that F ‰ H. If

• F satisfies (SC) with respect to H,

• pF satisfies (UDI), and
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• pH satisfies (UDI),

then pκp pF | pHq satisfies (RC).

Proof. For abbreviation, let κ˚ “ κpF |Hq and pκ “ pκp pF | pHq.

We first prove the upper bound. F satisfies (SC) with respect to H, so there exists a

distribution G such that F “ p1 ´ γqG ` γH for some γ P r0, 1q and supppHq * supppGq.

Therefore, we have that G is irreducible with respect to H and, by Proposition 5, κ˚ “ γ.

Let δ ą 0 (to be chosen later). Since by hypothesis pF and pH satisfy (UDI), there

exist constants A1,δ, A2,δ ą 0 such that for large enough n, with probability at least 1 ´

A1,δr
ř

iPrLs
1
ni
s, for all E P E ,

| pF pEq ´ F pEq| ă A2,δγn ` δ (5.11)

| pHpEq ´HpEq| ă A2,δγn ` δ. (5.12)

Without loss of generality, let A1,δ, A2,δ ą 1.

Pick R P E such that HpRq ą 0. By inequality (5.12), there exists N1 such that n ěN1

implies that pHpRq ´ γn ą 0 with high probability. This implies that for n ěN1, pκ is finite.

Let ε ą 0. By definition of pκ, there exists E P E such that

ε

2 ` pκ ě
pF pEq ` γn

p pHpEq ´ γnq`
.

Since pκ is finite, we have that pHpEq ą γn and HpEq ą 0. Then,

ε

2 ` pκ ě
pF pEq ` γn
pHpEq ´ γn

ě
F pEq ´ pA2,δ ´ 1qγn ´ δ
HpEq ` pA2,δ ´ 1qγn ` δ

ě
γHpEq

HpEq ` pA2,δ ´ 1qγn ` δ
´

pA2,δ ´ 1qγn
HpEq ` pA2,δ ´ 1qγn ` δ

´
δ

HpEq ` pA2,δ ´ 1qγn ` δ

ě
γHpEq

HpEq
´
pA2,δ ´ 1qγn ` δ

HpEq
´

pA2,δ ´ 1qγn
HpEq ` pA2,δ ´ 1qγn ` δ

´
δ

HpEq ` pA2,δ ´ 1qγn ` δ

ě κ˚ ´ 2pA2,δ ´ 1qγn
HpEq

´ 2 δ

HpEq
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where in the second to last inequality we used the elementary fact that if a, b, c ą 0 and

a ď b, then a
b`c

ě a
b
´ c

b
. Picking δ “ HpEqε

4 , we obtain the upper bound.

The proof of the other direction of the inequality is very similar to the proof of Theorem

2 in Scott (2015). By hypothesis, F satisfies (SC) with respect to H, so there exists a

distribution G such that F “ p1 ´ γqG ` γH for some γ P r0, 1q and supppHq * supppGq.

Therefore, we have that G is irreducible with respect to H and, by Proposition 5, κ˚pF |Hq “

γ. For abbreviation, let κ˚ “ κ˚pF |Hq and pκ “ pκp pF | pHq. Since supppHq * supppGq, there

exists an open set O such that

F pOq

HpOq
“ p1´ γqGpOq

HpOq
` γ “ κ˚.

Then, since E contains a generating set for the standard topology on Rd, there exists E P E

such that

F pEq

HpEq
“ κ˚.

Let δ ą 0 such that δ ď 1
4HpEq. Since by hypothesis pF and pH satisfy (UDI), there

exist constants A3,δ, A4,δ ą 0 such that for large enough n, with probability at least 1 ´

A3,δr
ř

iPrLs
1
ni
s,

pκ ď
F pEq ` A4,δγn ` δ

pHpEq ´ A4,δγn ´ δq`

ď
F pEq ` ε

pHpEq ´ εq`

where ε “ 2A4,δγn ` δ. The rest of the proof is identical to the proof of Theorem 2 from

Scott (2015) and, therefore, we omit it.

The following theorem gives sufficient conditions under which a ResidueHat estimator

satisfies (UDI). It is the basis of Proposition 7.

Lemma 39. If P1, . . . , PL satisfy (A2) and pG is a ResidueHat estimator of order k of a

distribution G P convpP1, . . . , PLq, then pG satisfies (UDI).

Proof. Let pG ÐÝ ResidueHatp pF | pHq where G ÐÝ ResidueHatpF |Hq, F ‰ H, F,H P

convpP1, . . . , PLq and pF , pH are ResidueHat estimators of F and H respectively. We use
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induction on k. Suppose k “ 0. Then, pF and pH are empirical distributions. Therefore, the

VC inequality applies to pF and pH. Consequently, pF and pH satisfy (UDI). Since P1, . . . , PL

satisfy (A2), F,H P convpP1, . . . , PLq and F ‰ H, by Lemma 36, F satisfies (SC) with

respect to H. Then, by Lemma 38, pκp pF | pHq satisfies (RC). Then, all of the assumptions of

Lemma 37 are satisfied, so pG satisfies (UDI). Note that G P convpP1, . . . , PLq by Proposition

6.

The inductive step pk ą 0q follows by similar reasoning. The difference is that instead

of applying the VC inequality to pF and pH, we use the fact that pF and pH are ResidueHat

estimators of order k ´ 1 and, therefore, satisfy (UDI) by the inductive hypothesis.

Proof of Proposition 7. Let 0 ă δ ă ε. By Lemma 39, pG satisfies (UDI). Consequently,

there exist constants A1,δ, A2,δ ą 0 such that for large enough n with probability at least

1´ A1,δ
ř

iPrLs
1
ni

, pG satisfies for every E P E ,

| pGpEq ´GpEq| ď A2,δγn ` δ “ A2,δ
ÿ

iPrLs

εip
1
ni
q ` δ ÝÑ δ ă ε.

5.11.2 Demixing Mixed Membership Models

In this section, we prove our main estimation result for demixing mixed membership models,

i.e., Theorem 29. First, in Section 5.11.2, we present an important lemma for FaceTestHat.

Second, in Section 5.11.2, we present an empirical version of Demix and prove Theorem 29.

The FaceTestHat Algorithm

The following establishes that FaceTestHat behaves as desired.

Lemma 40. Let ε P p0, 1q. For all j P rKs, let Qj “ ηTj P and ηj P ∆K such that every

ηj lies in the relative interior of the same face of ∆K. Let P1, . . . , PK satisfy (A2), and

Q1, . . . , QK P convpP1, . . . , PKq be distinct. Let pQi be a ResidueHat estimate of Qi @i P rKs.

1. With probability tending to 1 as n ÝÑ 8, if FaceTestHat( pQ1, ¨ ¨ ¨ , pQK | ε) returns 1,

then η1, . . . ,ηK are in the relative interior of the same face.
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2. Let κ˚i,j “ κ˚pQi |Qjq. If η1, . . . ,ηK are in the relative interior of the same

face and mini,j κ˚i,j ą ε, then with probability tending to 1 as n ÝÑ 8,

FaceTestHat( pQ1, ¨ ¨ ¨ , pQK | ε) returns 1.

Proof. Let ε ą 0, κ˚i,j “ κ˚pQi |Qjq and pκi,j “ pκp pQi | pQjq. Since P1, . . . , PK satisfy (A2)

and Qi ‰ Qj, by Lemma 36, Qi satisfies (SC) wrt Qj. Since pQi and xQj are ResidueHat

estimators, pQi and pQj satisfy (UDI) (Lemma 39). Then, by Lemma 38 pκi,j satisfies (RC).

1. We prove the contrapositive. Suppose that Q1, . . . , QK are not in the relative interior

of the same face. Then, by Proposition 11, FaceTestpQ1, . . . , QKq returns 0, which

occurs if and only if there exist i ‰ j such that κ˚i,j “ 0. Since pκi,j satisfies (RC), as

n ÝÑ 8, with probability tending to 1, pκi,j ÝÑ 0. This completes the proof.

2. If mini,j κ˚i,j ą ε, then as n ÝÑ 8, with probability tending to 1, mini,j pκi,j ą ε.

The DemixHat Algorithm

The DemixHat algorithm (see Algorithm 26) differs from the Demix algorithm in that (i)

it requires the specification of a constant ε P p0, 1q and (ii) it only uses the two-sample

κ˚ operator. In the interest of clarity, we state the population version of the algorithm

DemixHat, which we call Demix2. The only difference between Demix and Demix2 is that

line 7 in Demix has been replaced with lines 6-8 in Demix2.

Lemma 41 establishes that it is possible to replace line 7 of the Algorithm 19 with the

sequence of applications of the two-sample κ˚ in lines 6-8 of Algorithm 31, without changing

the conclusion of Theorem 26.

Lemma 41. Let ti1, . . . , iKu Ă rLs be distinct indices. Let P1, . . . , PL be jointly irreducible,

pQ1, . . . , QK´1q be a permutation of pPi1 , . . . , PiK´1q and Q1
K P convpPi1 , . . . , PiK q˝. Define

the sequence

Qi
K ÐÝ ResiduepQi´1

K |Qi´1q;

then, QK
K “ PiK .
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Algorithm 31 Demix2(S1, . . . , SK)
Input: S1, . . . , SK are distributions

1: if K “ 2 then

2: return pResiduepS1 |S2q,ResiduepS2 |S1qq
T

3: else

4: pR2, . . . , RKq
T ÐÝ FindFacepS1, . . . , SKq

5: pQ1, . . . , QK´1q
T ÐÝ Demix2pR2, . . . , RKq

6: for i “ 1, . . . , K ´ 1 do

7: QK ÐÝ ResiduepQK |Qiq

8: end for

9: return pQ1, . . . , QKq
T

10: end if

Proof. Relabel the distributions so that Qj “ Pj. Let µi denote the mixture proportion of

Qi
K and ej the mixture proportion of Pj. Write µ1 “

řK
i“1 αiei. We claim that µk “

ř

iěk αiei
ř

iěk αi

for all k ď K. We prove this inductively. The base case k “ 1 follows since
ř

iě1 αi “ 1.

Next, we prove the inductive step. Suppose that µk´1 “
ř

iěk´1 αiei
ř

iěk´1 αi
. By Proposition 6, the

mixture proportion of Qk
K , µk, is the residue of µk´1 with respect to ek´1. By statement 1

of Lemma 30, we can write

µk “ ek´1 ` α
˚
pµk´1 ´ ek´1q

“
r
ř

iěk´1 αip1´ α˚q ` α˚αk´1sek´1 ` α
˚
ř

iěk αiei
ř

iěk´1 αi

where

α˚ “
1

1´ κ˚pµk´1 | ek´1q

and we have used the inductive hypothesis µk´1 “
ř

iěk´1 αiei
ř

iěk´1 αi
. α˚ is the value of the following

optimization problem (in statement 1 of Lemma 30):

maxpα ě 1 | DG,G “ µk´1 ` αpek´1 ´ µk´1qq.

Inspection of the above optimization problem reveals that α˚ “
ř

iěk´1 αi
ř

iěk αi
. Plugging this into

the above equation gives µk “
ř

iěk αiei
ř

iěk αi
. This establishes the claim.
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Setting k “ K, it follows that µK “ αKeK
αK

“ eK .

Corollary 3. Let P1, . . . , PL be jointly irreducible and Π have full column rank. Then, with

probability 1, Demix2pP̃ q returns a permutation of P .

Proof of Theorem 29. Note that every estimator of a distribution in the DemixHat algorithm

is a ResidueHat estimator since (i) the Demix2 algorithm 31 only considers distributions that

are in convpP1, . . . , PLq and (ii) only computes Residue(F |H) if F ‰ H. To see why (ii)

is true, consider: the Demix2 algorithm computes Residue(¨ | ¨) at lines 2 and 7 in Demix2

and line 3 in FindFace. In the proof of Theorem 26, we showed that S1, . . . , SK are always

linearly independent and therefore distinct. This implies that in lines 2 and 7 in Demix2

and line 3 in FindFace, the residue function is called on distinct distributions. Thus, every

estimator of a distribution of the DemixHat algorithm satisfies the assumptions of Lemma

39.

First, we argue that the order of the ResidueHat estimators is bounded; this implies that

the constants in the uniform deviation inequalities associated with the ResidueHat estimators

are bounded. We give a very loose bound. DemixHat calls itself at most L´ 1 times and in

each call recurses on at most L´1 ResidueHat estimators and calculates at most L´1 more

ResidueHat estimators. Therefore, each ResidueHat estimator has order at most pL´ 1q3.

Second, let Ai denote the event that DemixHat recurses on i distributions lying in the

relative interior of an i-face in the pL´ iqth recursive call. We show that the event XL´1
i“2 Ai

occurs with probability tending to 1 as n ÝÑ 8. Consider AL´1. Let pR
pnq
i denote the

estimate of the ith distribution in line 3 in the nth iteration of the for loop in Algorithm

27 and let Rpnqi denote the corresponding distribution. Let κ˚i,j,n “ κ˚pR
pnq
i |R

pnq
j q. From

the proof of Theorem 26, there exists an integer N1 ě 0 such that for n ě N1, Rpnqi lies in

the relative interior of the same face for all i “ 2, . . . , L. Further, using the notation from

the proof of Theorem 26, we have that the mixture proportions of the Rpnqi s, i.e., the µpnqi s,

converge to a common λ on this face, i.e., for all i “ 2, . . . , L,
›

›

›
µ
pnq
i ´ λ

›

›

›
ÝÑ 0. Thus, by

statement 3 of Lemma 32, for all i ‰ j P rLszt1u κ˚pµpnqi |µ
pnq
j q ÝÑ 1. Hence, there exists

N2 ě N1 such that κ˚pµpN2q
i |µ

pN2q
j q ą ε for all i ‰ j. By statement 1 of Lemma 40 and

a union bound argument, with probability increasing to 1, FaceTestHatp pRpnq2 , . . . , pR
pnq
L | εq
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returns 0 for all n ă N1 since Rpnq2 , . . . , R
pnq
L are not on the relative interior of the same face.

Thus, with probability tending to 1, FaceTest does not make the mistake to return 1 before

the distributions Rpnq2 , . . . , R
pnq
L are on the relative interior of the same face. By statement

2 of Lemma 40, with probability tending to 1 as n ÝÑ 8, FaceTestHatp pRpN2q
2 , . . . , pR

pN2q
L | εq

returns 1. Hence, with probability increasing to 1, the event AL´1 occurs. Applying the

same argument to Ai for i ă L ´ 1 and taking the union bound shows that XL´1
i“2 Ai occurs

with probability tending to 1 as n ÝÑ 8.

Now, we can complete the proof. Under the assumptions of Theorem 26, there is a

permutation σ such that for each distribution Qi estimated by pQi, Pσpiq “ Qi. By Proposition

7, as n ÝÑ 8, pQi converges uniformly to Qi. The result follows.

5.11.3 Classification with Partial Labels

In this section, we prove Theorem 30. To begin, we briefly sketch an argument that one

can reduce any instance of a partial label model satisfying (B3) and (A) to an instance of

a partial label model that also satisfies (D). Let J “ ti : Π`
i,: “ eTj for some j P rLsu “

tj1, . . . , jku, the set of indices of contaminated distributions that are equal to some base

distribution. Compute ResiduepP̃i | P̃j1q for i P rLszJ if there is l such that Π`
i,l “ Π`

j1,l “ 1.

Replace P̃i with ResiduepP̃i | P̃j1q (and call it P̃i for simplicity of presentation). Update Π`

and remove j1 from J . Repeat this procedure until J is empty. Then, there will be pL´ |J |q

P̃i lying in a pL ´ |J |q-face of ∆L that are not equal to any of the base distributions and

the other contaminated distributions will be equal to base distributions. Then, it suffices to

solve the instance of the partial label model on the pL´ |J |q-face, which satisfies (D).

Next, we introduce VertexTestHat (Algorithm 32), an empirical version of VertexTest,

and prove that it satisfies a useful consistency property.

Lemma 42. Suppose that P1, . . . , PL satisfy (A2), Π has full column rank, the columns

of Π` are unique and Π` satisfies (D). Let pQ1, . . . , pQL be ResidueHat estimators of

Q1, . . . , QL, respectively. Suppose that pQ1, . . . , QLq is a permutation of pP1, . . . , PLq. Then,

with probability tending to 1 as n ÝÑ 8, VertexTestHatpΠ`, pP̃ :1 , . . . , P̃
:

Mq
T , p pQ1, . . . , pQLq

T q

returns a permutation matrix C such that @i, Ci,:p pQ1, . . . , pQLq
T is a ResidueHat estimator
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Algorithm 32 VertexTestHatpΠ`, pP̃ :1 , . . . , P̃
:

Mq
T , p pQ1, . . . , pQLq

T q

1: Form the matrix xMi,j – pκpP̃ :i | pQjq

2: Let |Π`| denote the number of nonzero entries in Π`

3: Form the matrix pZ by making the |Π`| largest entries of xM equal to 1 and the rest of

its entries equal to 0

4: Use any algorithm that finds a permutation matrix C such that pZC “ Π` (if it exists)

5: if such a permutation matrix C exists then

6: return p1,CT q

7: else

8: return p0,0q

9: end if

of Pi.

Proof. Define pκi,j – pκpP̃ :i | pQjq and κ˚i,j – κ˚pP̃i |Qjq. We claim that pκi,j satisfies a (RC).

Since P1, . . . , PL satisfy (A2) and by assumption (D) Qj ‰ P̃i, by Lemma 36, P̃i satisfies

(SC) wrt Qj. Since P̃ :i is an empirical distribution, P̃ :i satisfies a (UDI). Since pQj is a

ResidueHat estimator, pQj satisfies a (UDI) by Lemma 39. Therefore, the hypotheses of

Lemma 38 are satisfied and pκi,j satisfies a (RC).

Form the matrix Zi,j “ 1tκ˚pP̃i |Qjq ą 0u as in Algorithm 24. Since Q1, . . . , QL

are a permutation of P1, . . . , PL, Z is formed by permuting the columns of Π` ap-

propriately. Thus, there are |Π`| pi, jq pairs such that κi,j ą 0 and the rest are

such that κi,j “ 0. Then, using Lemma 38 and a union bound, with probability

tending to 1 as n ÝÑ 8, pκi,j is among the |S| largest values in the matrix xM if

and only if κi,j ą 0. On this event, VertexTestHatpΠ`, pP̃ :1 , . . . , P̃
:

Mq
T , p pQ1, . . . , pQLq

T q

and VertexTestpΠ`, pP̃1, . . . , P̃Mq
T , pQ1, . . . , QLq

T q return the same output. Since

pQ1, . . . , QLq is a permutation of pP1, . . . , PLq by hypothesis, by Lemma 35

VertexTestpΠ`, pP̃1, . . . , P̃Mq
T , pQ1, . . . , QLq

T q returns p1,CT q such thatCT pQ1, . . . , QLq
T “

P . The result follows.

Proof of Theorem 30. Let p pQ1, . . . , pQLq ÐÝ DemixHatpP̃ :1 , . . . , P̃ :M | εq. By Theorem 29, w.p.

tending towards 1 as n ÝÑ 8, there exists a permutation σ : rLs ÝÑ rLs such that for every
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i P rLs,

sup
EPE

| pQipEq ´ PσpiqpEq| ă δ.

From the proof of Theorem 29, each pQi is a ResidueHat estimator. The assumptions of

Lemma 42 are satisfied. The result follows immediately from Lemma 42.

5.12 Previous Results

Lemma 43 (Lemma A.1 (Blanchard and Scott, 2014)). The maximum operation in the

definition of κ˚ and pκ (lines (5.3) and (5.6), respectively) is well-defined, that is, the outside

supremum is attained at at least one point.

Lemma 44 (Lemma B.1 (Blanchard and Scott, 2014)). If Π satisfies (B1), then π1, . . . ,πL

are linearly independent. If P1, . . . , PL are jointly irreducible, then they are linearly indepen-

dent. If π1, . . . ,πL are linearly independent and P1, . . . , PL are linearly independent, then

P̃1, . . . , P̃L are linearly independent.

5.13 Experiments

In this Section, we perform experiments that suggest that joint irreducibility of P1, . . . , PL

is a reasonable assumption. In particular, our experiments suggest that on the datasets

in question, (A2) holds (which is a strictly stronger condition than joint irreducibility).

We consider three datasets: classes 1, 2, and 3 of MNIST (LeCun et al., 1998), the Iris

dataset (Fisher, 1936), and the Breast Cancer Wisconsin (Diagnostic) Data Set (Dheeru and

K. Taniskidou, 2017). We use the Spectral Support Estimation algorithm (De Vito et al.,

2010; Rudi et al., 2014) to estimate the support of each class in each dataset. We split each

dataset into training, validation, and test sets, applying the algorithm to the training set,

using the validation set to pick the hyperparameters, and evaluating the performance on the

test set. We average our results over 60 trials where in each trial we randomly permute the

dataset, thus altering the training, validation, and test sets. Let pSi denote an estimate of

the support of class i. Tables 5.1, 5.3, and 5.5 display an estimate of the probability that
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a point sampled from Pi belongs to the estimate of the support pSi. They indicate that the

Spectral Support Estimation has reasonably good performance in producing pSis containing

the support of the associated class. Tables 5.2, 5.4, and 5.6 use the pSi to estimate the

quantity Prx„Pipx P Yj‰i supppPjqq, which must be strictly less than 1 for (A2) to hold. We

find that our estimates are considerably less than 1, which suggests that joint irreducibility

holds on these datasets.
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i “ 1 i “ 2
xPrx„Pipx P pSiq 0.87 0.89

Table 5.1: Cancer Support Results.

i “ 1 i “ 2
xPrx„Pipx P Yj‰i pSjq 0.18 0.38

Table 5.2: Cancer Separability Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P pSiq 0.86 0.84 0.84

Table 5.3: Iris Support Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P Yj‰i pSjq 0.0 0.17 0.19

Table 5.4: Iris Separability Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P pSiq 0.98 0.87 0.83

Table 5.5: MNIST Support Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P Yj‰i pSjq 0.08 0.17 0.14

Table 5.6: MNIST Separability Results.
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Chapter 6

Nonparametric Preference

Completion

In this Chapter, I consider the task of collaborative preference completion: given a pool of

items, a pool of users and a partially observed item-user rating matrix, the goal is to recover

the personalized ranking of each user over all of the items. Our approach is nonparametric:

I assume that each item i and each user u have unobserved features xi and yu, and that

the associated rating is given by gupfpxi, yuqq where f is Lipschitz and gu is a monotonic

transformation that depends on the user. I propose a k-nearest neighbors-like algorithm

and prove that it is consistent. To the best of our knowledge, this is the first consistency

result for the collaborative preference completion problem in a nonparametric setting. Fi-

nally, I demonstrate the performance of my algorithm with experiments on the Netflix and

Movielens datasets. This Chapter is joint work with Clayton Scott and was presented at the

International Conference on Artificial Intelligence and Statistics in 2018.

6.1 Introduction

In the preference completion problem, there is a pool of items and a pool of users. Each user

rates a subset of the items and the goal is to recover the personalized ranking of each user

over all of the items. This problem is fundamental to recommender systems, arising in tasks

such as movie recommendation and news personalization. A common approach is to first
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estimate the ratings through either a matrix factorization method or a neighborhood-based

method and to output personalized rankings from the estimated ratings (Koren et al., 2009;

Zhou et al., 2008; Ning et al., 2011; Breese et al., 1998). Recent research has observed a

number of shortcomings of this approach (Weimer et al., 2007; Liu and Yang, 2008); for

example, many ratings-oriented algorithms minimize the RMSE, which does not necessarily

produce a good ranking (Cremonesi et al., 2010). This observation has sparked a number

of proposals of algorithms that aim to directly recover the rankings (Weimer et al., 2007;

Liu and Yang, 2008; Lu and Negahban, 2014; Park et al., 2015; Oh et al., 2015; Gunasekar

et al., 2016). Although these ranking-oriented algorithms have strong empirical performance,

there are few theoretical guarantees to date and they all make specific distributional assump-

tions (discussed in more detail below). In addition, these results have focused on low-rank

methods, while ranking-oriented neighborhood-based methods have received little theoretical

attention.

In this chapter, we consider a statistical framework for nonparametric preference com-

pletion. We assume that each item i and each user u have unobserved features xi and yu,

respectively, and that the associated rating is given by gupfpxi, yuqq where f is Lipschitz

and gu is a monotonic transformation that depends on the user. We make the following

contributions. (i) We propose a simple k-nearest neighbors-like algorithm, (ii) we provide,

to the best of our knowledge, the first consistency result for ranking-oriented algorithms in

a nonparametric setting, and (iii) we provide a necessary and sufficient condition for the

optimality of a solution (defined below) to the preference completion problem.

6.2 Related Work

The two main approaches to preference completion are matrix factorization methods (e.g.,

low-rank approximation) and neighborhood-based methods. Recently, there has been a

surge of research with many theoretical advances in low-rank approximation for collabora-

tive filtering, e.g., (Recht, 2011; Keshavan et al., 2010). These methods tend to focus on

minimizing the RMSE even though applications usually use ranking measures to evaluate

performance. While recent work has developed ranking-oriented algorithms that outperform
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ratings-oriented algorithms (Gunasekar et al., 2016; Liu and Yang, 2008; Rendle et al., 2009;

Pessiot et al., 2007; Cremonesi et al., 2010; Weimer et al., 2007), many of these proposals lack

basic theoretical guarantees such as consistency. A recent line of work has begun to fill this

gap by establishing theoretical results under specific generative models. Lu and Negahban

(2014) and Park et al. (2015) provided consistency guarantees using a low-rank approach

and the Bradley-Terry-Luce model. Similarly, Oh et al. (2015) established a consistency

guarantee using a low rank approach and the MultiNomial Logit model. By contrast, our

approach forgoes such strong parametric assumptions.

Neighborhood-based algorithms are popular methods, e.g. (Das et al., 2007), because

they are straightforward to implement, do not require expensive model-training, and gener-

ate interpretable recommendations (Ning et al., 2011). There is an extensive experimental

literature on neighborhood-based collaborative filtering methods. The most common ap-

proach is the user-based model; it is based on the intuition that if two users give similar

ratings to items in the observed data, then their unobserved ratings are likely to be sim-

ilar. This approach employs variants of k nearest-neighbors. Popular similarity measures

include the Pearson Correlation coefficient and cosine similarity. There are a large number

of schemes for predicting the unobserved ratings using the k nearest neighbors, including

taking a weighted average of the ratings of the users and majority vote of the users (Ning

et al., 2011).

Recently, researchers have sought to develop neighborhood-based collaborative filtering

algorithms that aim to learn a personalized ranking for each user instead of each user’s

ratings (Liu and Yang, 2008; Wang et al., 2014, 2016). Eigenrank, proposed by Liu and

Yang (2008), is structurally similar to our algorithm. It measures the similarity between users

with the Kendall rank correlation coefficient, a measure of the similarity of two rankings.

Then, it computes a utility function ψ : rn1s ˆ rn1s ÝÑ R for each user that estimates his

pairwise preferences over the items. From the estimated pairwise preferences, it constructs a

personalized ranking for each user by either using a greedy algorithm or random walk model.

In contrast, our algorithm uses the average number of agreements on pairs of items to measure

similarity between users and a majority vote approach to predict pairwise preferences.

Neighborhood-based collaborative filtering has not received much theoretical attention.
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Kleinberg and Sandler (2003, 2004) model neighborhood-based collaborative filtering as a la-

tent mixture model and prove consistency results in this specific generative setting. Recently,

Lee et al. (2016), who inspired the framework in the current chapter, studied rating-oriented

neighborhood-based collaborative filtering in a more general nonparametric setting. Their

approach assumes that each item i and each user u have unobserved features xi and yu, re-

spectively, and that the associated rating is given by fpxi, yuq where f is Lipschitz, whereas

we assume that the associated rating is given by gupfpxi, yuqq where gu is a user-specific

monotonic transformation. As we demonstrate in our experiments, their algorithm is not

robust to monotonic transformations of the columns, but this robustness is critical for many

applications. For example, consider the following implicit feedback problem (Hu et al., 2008).

A recommender system for news articles measures how long users read articles as a proxy for

item-user ratings. Because reading speeds and attention spans vary dramatically, two users

may actually have very similar preferences despite substantial differences in reading times.

Even though our method is robust to user-specific monotonic transformations, we do not

require observing many more entries of the item-user matrix than Lee et al. (2016) in the

regime where there are many more users than items (e.g., the Netflix dataset). If there are

n1 items and n2 users, Lee et al. (2016) requires that there exists 1
2 ą α ą 0 such that the

probability of observing an entry is greater than maxpn´
1
2`α

1 , n´1`α
2 q, whereas we require

that this probability is greater than maxpn´
1
2`α

1 , n
´ 1

2`α
2 q.

Our work is also related to the problem of Monotonic Matrix Completion (MMC) where

a single monotonic Lipschitz function is applied to a low rank matrix and the goal is rating

estimation (Ganti et al., 2015). In contrast, we allow for distinct monotonic, possibly non-

Lipschitz functions for every user and pursue the weaker goal of preference completion.

To the best of our knowledge, there is no theoretically supported, nonparametric method

for preference completion. Our work seeks to address this issue.
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6.3 Setup

Notation: Define rns “ t1, . . . , nu. Let Ω Ă rn1s ˆ rn2s. If X P Rn1ˆn2 , let PΩpXq P

pR Y t?uqn1ˆn2 be defined as rPΩpXqsi,j “

$

&

%

Xi,j if pi, jq P Ω

? if pi, jq R Ω
. If f is some function and

U a finite collection of objects belonging to the domain of f , let maxplquPUfpuq denote the lth

largest value of f over U . Let Bernppq denote a realization of a Bernoulli random variable with

parameter p. For a metric space M with metric dM, let Bεpzq “ tz
1 PM : dMpz, z

1q ă εu.

We use bold type to indicate random variables. For example, z denotes a random variable

and z a realization of z.

Nonparametric Model: Suppose that there are n1 items and n2 users. Furthermore,

1. The items are associated with unobserved features x1, . . . ,xn1 P X , and the users

are associated with unobserved features y1, . . . ,yn2 P Y where X and Y are compact

metric spaces with metrics dX and dY , respectively.

2. x1, . . . ,xn1 ,y1, . . . ,yn2 are independent random variables such that x1, . . . ,xn1
i.i.d.
„ PX

and y1, . . . ,yn2
i.i.d.
„ PY where PX and PY denote Borel probability measures over X

and Y , respectively. We assume that for all ε ą 0 and y P Y , PYpBεpyqq ą 0.

3. The complete ratings matrix is H – rhupxi, yuqsiPrn1s,uPrn2s where hu “ gu ˝ f ,

f : X ˆ Y ÝÑ R is a Lipschitz function with respect to the induced metric

dXˆYppx1, y1q, px2, y2qq – maxpdX px1, x2q, dYpy1, y2qq with Lipschitz constant 1,1 i.e.,

@y1, y2 P Y and @x1, x2 P X , |fpx1, y1q ´ fpx2, y2q| ď maxpdX px1, x2q, dYpy1, y2qq, and

gu is a nondecreasing function. Note that each hu need not be Lipschitz.

4. Each entry of the matrix H is observed independently with probability p. Let Ω Ă

rn1s ˆ rn2s be a random variable denoting the indices of the observed ratings.

Whereas Lee et al. (2016) considers the task of completing a partially observed matrix

F – rfpxi, yuqsiPrn1s,uPrn2s when txiuiPrn1s and tyuuuPrn2s are unobserved, we aim to recover the

ordering of the elements in each column of H when txiuiPrn1s and tyuuuPrn2s are unobserved.
1We could develop our framework with an arbitrary Lipschitz constant L, but for ease of presentation,

we fix L “ 1.
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In our setup, we view F as an ideal preference matrix representing how much users like

items and H as how those preferences are expressed based on user-specific traits (see the

news recommender system example in Section 6.2).

This framework subsumes various parametric models. For example, consider a matrix

factorization model that assumes that there is a matrix H P Rn1ˆn2 of rank d ď minpn1, n2q

such that user u prefers item i to item j if and only if Hi,u ą Hj,u. Then, we can factorize H

such that Hi,u “ xtiyu where xi, yu P Rd for all i P rn1s and u P rn2s. In our setup, we have

fpxi, yuq “ xtiyu and gupzq “ z.

Task: Let Sn1 “ tσ : σ : rn1s ÝÑ rn1s, σ is a permutationu denote the set of permuta-

tions on n1 objects. We call σ P Sn1 a ranking. Let Sn1ˆn2 “ pSn1qn2 . That is, σ P Sn1ˆn2

if σ : rn1s ˆ rn2s ÝÑ rn1s and for fixed u P rn2s, σp¨, uq is a permutation on rn1s. We call

σ P Sn1ˆn2 a collection of rankings. Let ε ą 0. Our goal is to learn σ P Sn1ˆn2 that minimizes

the number of pairwise ranking disagreements per user with some slack, i.e.,

disεpσ,Hq “
n2
ÿ

u“1

ÿ

iăj

1t|fpxi, yuq ´ fpxj, yuq| ą εu1tphupxi, yuq ´ hupxj, yuqqpσpi, uq ´ σpj, uqq ă 0u.

6.4 Algorithm

Our algorithm, Multi-Rank (Algorithm 33), has two stages: first it estimates the pairwise

preferences of each user and, second, it constructs a full ranking for each user from its

estimated pairwise preferences. In the first stage, Multi-Rank computes A P t0, 1un2ˆn1ˆn1

where Au,i,j “ 1 denotes that user u prefers item i to item j and Au,i,j “ 0 denotes that

user u prefers item j to item i. If a user has provided distinct ratings for a pair of items,

Multi-Rank fills in the corresponding entries of A. Otherwise, Multi-Rank uses a subroutine

called Pairwise-Rank that we will describe shortly. Once Multi-Rank has constructed A, it

applies the Copeland ranking procedure to the pairwise preferences of each user (discussed

at the end of the section).

The Pairwise-Rank algorithm predicts whether a user u prefers item i to item j or vice

versa. It is similar to k-nearest neighbors where we use the forthcoming ranking measure as
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Algorithm 33 Multi-Rank
1: Input: PΩpHq, β ě 2, k ą 0

2: for u P rn2s, i, j P rn1s, i ă j do

3: if pi, uq P Ω, pj, uq P Ω and Hi,u ‰ Hj,u then

4: Set Au,i,j “ 1tHi,u ą Hj,uu

5: Set Au,j,i “ 1´ Au,i,j
6: else

7: Set Au,i,j “ Pairwise-Rankpu, i, j, β, kq

8: Set Au,j,i “ 1´ Au,i,j
9: end if

10: end for

11: for u P rn2s do

12: pσu “ CopelandpAu,:,:q

13: end for

14: return pσ – ppσ1, . . . , pσn2q

our distance measure. Let Npuq denote the set of items that user u has rated, i.e.,

Npuq “ tl : pl, uq P Ωu,

and Npu, vq “ Npuq X Npvq denote the set of items that users u and v have both rated.

Viewing Npu, vq as an ordered array where Npu, vqr`s denotes the p`` 1qth element, let

Ipu, vq “ tps, tq : s “ Npu, vqr`s, t “ Npu, vqr`` 1s for some ` P t2k : k P NY t0uuu.

In words, Ipu, vq is formed by sorting the indices of Npu, vq and selecting nonoverlapping

pairs in the given order. Note that there is no overlap between the indices in the pairs in

Ipu, vq.2 Fix yu, yv P Y . If Ipu, vq “ H, define Ru,v “ 0 and if Ipu, vq ‰ H, let Ru,v –

1
|Ipu, vq|

ÿ

ps,tqPIpu,vq

1tphupxs, yuq ´ hupxt, yuqqphvpxs, yvq ´ hvpxt, yvqq ě 0u

denote the fraction of times that users u and v agree on the relative ordering of item pairs

belonging to Ipu, vq. In practice, one can simply compute this statistic over all pairs of
2We select nonoverlapping pairs to preserve independence in the estimates for the forthcoming analysis.
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commonly rated items. Observe that ρpyu, yvq–

ErRu,v|Ipu, vq ‰ H,yu “ yu,yv “ yvs “ Prxs,xt„PX prhupxs, yuq ´ hupxt, yuqs

ˆrhvpxs, yvq ´ hvpxt, yvqs ě 0q

i.e., ρpyu, yvq is the probability that users u and v with features yu and yv order two random

items in the same way.

We apply Pairwise-Rank (Algorithm 34) to a user u and a pair of items pi, jq if the user

has not provided distinct ratings for items i and j. Pairwise-Rank(u, i, j, β, k) finds users

that have rated items i and j, and have rated at least β items in common with u. If there

are no such users, Pairwise-Rank flips a coin to predict the relative preference ordering. If

there are such users, then it sorts the users in decreasing order of Ru,v and takes a majority

vote over the first k users about whether item i or item j is preferred. If the vote results in

a tie, Pairwise-Rank flips a coin to predict the relative preference ordering.

Algorithm 34 Pairwise-Rank
1: Input: u P rn2s, i P rn1s, j P rn1s, β ě 2, k P N

2: W i,j
u pβq “ tv P rn2s : |Npu, vq| ě β, pi, vq, pj, vq P Ωu

3: Sort W i,j
u pβq in decreasing order of Ru,v and let V be the first k elements.

4: if V “ H then

5: return Bernp1
2q

6: end if

7: @v P V , set Pv “ 1thvpxi, yvq ą hvpxj, yvqu ´ 1thvpxi, yvq ă hvpxj, yvqu

8: if
ř

vPV Pv ą 0 then

9: return 1

10: else if
ř

vPV Pv ă 0 then

11: return 0

12: else

13: return Bernp1
2q

14: end if

Next, Multi-Rank converts the pairwise preference predictions of each user into a full

estimated ranking for each user. It applies the Copeland ranking procedure (Algorithm 35)–
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an algorithm for the feedback arc set problem in tournaments (Copeland, 1951; Coppersmith

et al., 2006) to each user-specific set of pairwise preferences. The Copeland ranking procedure

simply orders the items by the number of times an item is preferred to another item. It is

possible to use other approximation algorithms for the feedback arc set problem such as

Fas-Pivot from Ailon et al. (2008).

Algorithm 35 Copeland
1: Input: A P t0, 1un1ˆn1

2: for j P rn1s do

3: Ij “
řn1
i“1,i‰j Aj,i

4: end for

5: return σ P Sn1 that orders items in decreasing order of Ij

6.5 Analysis of Algorithm

The main idea behind our algorithm is to use pairwise agreements about items to infer

whether two users are close to each other in the feature space. However, this is not possible

in the absence of further distributional assumptions. The Lipschitz condition on f only

requires that if users u and v are close to each other, then maxz |fpz, yuq ´ fpz, yvq| is small.

Proposition 12 shows that there exist functions arbitrarily close to each other that disagree

about the relative ordering of almost every pair of points.

Proposition 12. Let X “ r0, 1s and PX be the Lebesgue measure over X . For every ε ą 0,

there exist functions f, g : X ÝÑ R such that maxxPr0,1s |fpxq´ gpxq| “ }f ´ g}8 ď ε and for

almost every pair of points px, x1q P r0, 1s2, fpxq ą fpx1q iff gpxq ă gpx1q.

Thus, we make the following mild distributional assumption.

Definition 23. Fix y P Y and let fypxq– fpx, yq. Let r be a positive nondecreasing function.

We say y is r-discerning if @ε ą 0, Prx1,x2„PX p|fypx1q ´ fypx2q| ď 2εq ă rpεq.

This assumption says that the probability that fypx1q and fypx2q are within ε of each

other decays at some rate given by r. In a sense, it means that users perceive some difference
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between most randomly selected items with different features, although the difference might

be masked by the transformation gu.

We also assume that if two users are not close to each other in the latent space, then

they must have some disagreements. Definition 24 requires that the nonparametric model

is economical (i.e., not redundant) in the sense that different parts of the feature space

correspond to different preferences.

Definition 24. Fix y P Y. Let ε, δ ą 0. We say that y is pε, δq-discriminative if z P Bεpyq
c

implies that ρpy, zq ă 1´ δ.

These assumptions are satisfied under many parametric models. Proposition 13 provides

two illustrative examples under a matrix factorization model. We briefly note that, as we

show in the supplementary material, fpx, yq “ xty and fpx, yq “ }x´ y}2 are equivalent

models by adding a dimension.

Proposition 13. Consider pRd, }¨}2q. Let fpx, yq “ }x´ y}2 and gup¨q be strictly increasing

@u P rn2s.

1. Let X “ Y “ tx P Rd : }x}2 ď 1u, PX be the uniform distribution and for all y P Y

define rypεq “ supzPr0,2sPX pBzpyqzBz´4εpyqq. Then, for all y P Y, y is ry-discerning.

Further, define for all ε ą 0, δε “ infvPY 2PX pB ε
2
pvqq2. Then, for all yu P Y and for

all ε ą 0, yu is pε, δεq-discriminative.

2. Let X Ă Rd be a finite collection of points, PX be uniform over X , and for all y P Y

define rypεq “
|tpx,x1qPXˆX :|}y´x}´}y´x1}|ď2εu|

|X |2 . Then, for all y P Y, y is ry-discerning.

Next, suppose Y is a finite collection of points and every pair of distinct y, y1 P Y

disagree about at least C pairs of items. Let δ “ C
|X |2 . For all yu P Y and for all ε ą 0,

yu is pε, δq-discriminative.

Our analysis uses two functions to express problem-specific constants. First, let τ :

R`` ÝÑ p0, 1s be defined as τpεq “ infy0PY Pry„PY pdYpy0,yq ď εq. Second, let κ : R`` ÝÑ

p0, 1s be such that κpεq “ infy0PY Pry„PY pdYpy0,yq ą εq. Our assumption that for all δ ą 0

and y P Y , PYpBδpyqq ą 0 ensures that τp¨q ą 0 and κp¨q ă 1 (see Lemma 47). If PY is
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uniform over the unit cube in pRd, }¨}
8
q, then τpεq “ minp1, εqd and if Y is a finite collection

of points, then τpεq “ minyPY PYpyq (Lee et al., 2016).

Our model captures the intrinsic difficulty of a problem instance as follows. rp¨q and τp¨q

together control the probability of sampling nearby users with similar preferences. pε, δq-

discriminative captures how often users u and v must agree in order to infer that yu and yv
are close in the latent space and, thus, maxz |fpz, yuq ´ fpz, yvq| ď ε.

6.5.1 Continuous Ratings Setting

Our analysis deals with the case of continuous ratings and the case of discrete ratings sep-

arately. In this section, we prove theorems dealing with the continuous case and in the

next section we give analogous results with similar proofs for the discrete case. Theorem 32

establishes that with probability tending to 1 as n2 ÝÑ 8, Multi-Rank outputs pσ P Sn1ˆn2

such that dis2εppσ,Hq “ 0.

Theorem 32. Suppose @u P rn2s, gupzq is strictly increasing. Let ε, δ ą 0, η P p0, ε2q.

Suppose that almost every y P Y is p ε2 , δq-discriminative. Let r be a positive nondecreasing

function such that rp ε2q ě δ and rpηq ă δ
2 . Suppose that almost every y P Y is r-discerning.

Let 0 ă α ă 1
2 . If p ě maxpn´

1
2`α

1 , n
´ 1

2`α
2 q, n1p

2 ě 16, and n2 is sufficiently large, then

Multi-Rank with k “ 1 and β “ p2n1
2 outputs pσ P Sn1ˆn2 such that

Prtxiu,tyuu,Ωpdis2εppσ,Hq ą 0q ďn2

ˆ

n1

2

˙

r2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q

` expp´ppn2 ´ 1qp2

2 qτpηqq ` 3pn2 ´ 1qp2 expp´δ
2n1p

2

20 qs.

A couple of remarks are in order. First, if ε and δ are small, then η must be correspond-

ingly small. η represents how close a user yv must be to a user yu in the feature space to

guarantee that the ratings of yv can be used to make inferences about the ranking of user yu.

Second, whereas we require that p ě n
´ 1

2`α
2 , Lee et al. (2016) require that p ě n´1`α

2 . We

conjecture that this stronger requirement is fundamental to our algorithm since v P W i,j
u pβq

only if v has rated both items i and j, which v does with probability p2. However, there

may be another algorithm that circumvents this issue. Theorem 32 implies the following

Corollary.
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Corollary 4. Assume the setting of Theorem 32. If n2 ÝÑ 8, p ě maxpn´
1
2`α

1 , n
´ 1

2`α
2 q,

and nC1
2 ě n1 ě C2 logpn2q

1
2α for any constant C1 ą 0 and some constant C2 ą 0 depending

on α, then Prtxiu,tyuu,Ωpdis2εppσ,Hq ą 0q ÝÑ 0 as n2 ÝÑ 8.

Note that the growth rates of n1, n2 and p imply that the average number of rated items

by each user pn1 must grow as C logpn2q
1
2`

1
4α for some universal constant C ą 0.

Next, we sketch the proof. The main part of the analysis deals with establishing a

probability bound of a mistake by Pairwise-Rank for a specific user u and a pair of items

i and j when |fpxi,yuq ´ fpxj,yuq| ą ε. First, we establish that w.h.p. |W i,j
u pβq| is large,

i.e., there are many users that have rated i and j and many other items in common with

u. Second, using standard concentration bounds, it is shown that for every v P W i,j
u pβq,

Ru,v concentrates around ρpu, vq. Since β ÝÑ 8, this estimate converges to ρpu, vq. Third,

we show that eventually we sample a point from Bηpyuq. Further, if yv P Bηpyuq and

yw P B ε
2
pyuq

c (note η ď ε
2), then since yu is p ε2 , δq-discriminative w.p. 1, by our choice

of η, ρpyu,yvq ą ρpyu,ywq `
δ
2 . Thus, by concentration bounds, Ru,v ą Ru,w. Therefore,

Pairwise-Rank with k “ 1 uses the preference ordering of a user in B ε
2
pyuq on items i and

j to make the prediction. The Lipschitzness of f and our assumption that gv is strictly

increasing imply that this prediction is correct. It is possible to extend this argument to

handle the case when k ą 1.

6.5.2 Discrete Ratings Setting

Let N ą 0 and suppose that |fpx, yq| ď N @x P X , @y P Y . Suppose that there are L

distinct ratings and let G denote the set of all step functions of the form

gupxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 : x P r´N, au,1q

2 : x P rau,1, au,2q
...

L : x P rau,L´1, N s

.

We assume that for all u P rn2s, gu P G and that the rating thresholds are random, i.e.,

pa1,1, . . . ,a1,L´1q, . . . , pan2,1, . . . ,an2,L´1q
i.i.d.
„ Pr´N,NsL´1 . We write g1, . . . , gn2

i.i.d.
„ PG and
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we assume that tguuuPrn2s is independent from txiuiPrn1s, tyuuuPrn2s, and Ω. Let Pl denote

the marginal distribution of au,l for all u P rn2s. We make the following assumption.

Definition 25. We say that PG is diverse if for every open interval I Ă r´N,N s there exists

l such that PlpIq ą 0.

Let dR denote a metric on R; fix u P rn2s and let γpεq “ infzPr´N,NsPtau,lulPrL´1spDl P

rL ´ 1s : dRpz,au,lq ď εq. The aforementioned assumption ensures via a measure theoretic

argument that γpεq ą 0 for all ε ą 0 (see Lemma 47 in the Appendix).

Theorem 33. Let ε, δ ą 0 and η P p0, ε4q. Suppose that PG is diverse and that almost every

y P Y is p ε4 , δq-discriminative. Let r be a positive nondecreasing function such that rp ε4q ě δ

and rpηq ă δ
2 . Suppose that almost every y P Y is r-discerning. Let 1

2 ą α ą α1 ą 0. If

p ě maxpn´
1
2`α

1 , n
´ 1

2`α
2 q, n1p

2 ě 16, n1 ě C1 logpn2q
1

2α for some constant C1, and n2 is

sufficiently large, Multi-Rank with k “ nα
1

2 and β “ p2n1
2 outputs pσ such that

Prtxiu,tyuu,tau,lu,Ωpdis2εppσ,Hq ą 0q

ďn2

ˆ

n1

2

˙

r2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q ` 2 expp´γp ε4qkq

`
1

1´ rp ε2q
r3pn2 ´ 1qp2 expp´δ

2n1p
2

20 q

` exppr1´ κp ε4q ` τpηq ` logp3pn2 ´ 1qp2

2 qsk ´ k logpkq ´ τpηqpn2 ´ 1qp2

2 qss.

Corollary 5. Assume the setting of Theorem 33. If p ě maxpn´
1
2`α

1 , n
´ 1

2`α
2 q, k “ nα

1

2 , and

nC1
2 ě n1 ě C2 logpn2q

1
2α for any constant C1 ą 0 and some constant C2 ą 0 depending on

α, then Prtxiu,tyuu,Ωpdis2εppσ,Hq ą 0q ÝÑ 0 as n2 ÝÑ 8.

The bulk of the analysis for the discrete ratings setting is similar to the continuous rating

setting and, once again, mainly deals with the analysis of Pairwise-Rank for a user u and

items i and j. Since the ratings are discrete, although users that are sufficiently close to user

u in the feature space agree about the ordering of items i and j, we need to show that at

least one of these neighbors does not give the same rating to items i and j. To this end, we

show that eventually k nearby points are sampled: yv1 , . . . ,yvk P Bηpyuq. Conditional on

|fpxi,yuq´ fpxj,yuq| ą ε, using the Lipschitzness of f , pfpxi,yvqq, fpxj,yvqqq has length at
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least ε
2 . Finally, since PG is diverse, a concentration argument wrt gv1 , . . . , gvk implies that

w.h.p. there exists q P rks and l P rL ´ 1s such that avq ,l P pfpxi,yvqq, fpxj,yvqqq. Thus,

user vq provides distinct ratings for items i and j.

6.6 A Necessary and Sufficient Condition for

disεpσ,Hq “ 0

In this section, we characterize the class of optimal collections of rankings, i.e., σ P Sn1ˆn2

such that disεpσ,Hq “ 0. We show roughly that a collection of rankings σ is optimal in the

sense that disεpσ,Hq “ 0 if and only if σ agrees with the observed data and σ gives the same

ranking to users that are close to each other in the latent space Y . To study this question,

we consider the regime where the number of items n1 is fixed, the probability of an entry

being revealed p is fixed, and the number of users n2 goes to infinity.

Consider the following notion, which is the main ingredient in our necessary and sufficient

condition:

Definition 26. Let ε ą 0 and T Ă rn1s ˆ rn1s ˆ rn2s. σ P Sn1ˆn2 is an ε-consistent

collection of rankings over T if @i ‰ j P rn1s, u ‰ v P rn2s such that pi, j, uq, pi, j, vq P T and

dYpyu, yvq ď ε, it holds that σpi, uq ă σpj, uq ðñ σpi, vq ă σpj, vq. If σ is an ε-consistent

collection of rankings over rn1s ˆ rn1s ˆ rn2s, then we simply say that σ is an ε-consistent

collection of rankings.

In words, a collection of rankings is ε-consistent if it gives the same ranking to users that

are within ε of each other in the latent space.

We introduce the following objective function: xdispσ,Hq–
n2
ÿ

u“1

ÿ

iăj:pi,uq,pj,uqPΩ
1tphupxi, yuq ´ hupxj, yuqqpσpi, uq ´ σpj, uqq ă 0u.

Once again, we analyze separately the continuous rating and discrete rating settings. With

respect to the continuous rating setting, Theorems 34 and 36 roughly imply that with proba-

bility tending to 1 as n2 ÝÑ 8, a collection of rankings σ P Sn1ˆn2 that minimizes xdisp¨, Hq
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is ε
2 -consistent if and only if disεpσ,Hq “ 0. A similar statement holds for the discrete rating

setting.

To begin, we present our sufficient conditions.

Theorem 34. Assume the continuous rating setting. Let ε ą 0 and suppose that for all u P

rn2s, gup¨q is strictly increasing. With probability increasing to 1 as n2 ÝÑ 8, if σ P Sn1ˆn2

is ε
2-consistent and minimizes xdisp¨, Hq, then disεpσ,Hq “ 0.

Theorem 35. Assume the discrete rating setting and that PG is diverse. Let ε ą 0. With

probability increasing to 1 as n2 ÝÑ 8, if σ P Sn1ˆn2 is ε
8-consistent and minimizes xdisp¨, Hq,

then disεpσ,Hq “ 0.

The proofs for the continuous and discrete cases are similar. We briefly sketch the

argument for the continuous case. Since Y is compact, there is a finite subcover of Y with

open balls with diameter at most ε
2 . As n2 ÝÑ 8, with probability increasing to 1, for every

open ball O belonging to the finite subcover and for every pair of distinct items i, j P rn1s,

there is some user u P O that has rated i and j. Then, on this event, it can be shown that

if disεpσ,Hq ą 0, then xdispσ,Hq ą 0. Thus, using the contrapositive, the result follows.

Theorem 36 gives our necessary condition.

Theorem 36. Let ε ą 0 and σ P Sn1ˆn2 such that disεpσ,Hq “ 0. Let T “ tpi, j, uq P

rn1sˆrn1sˆrn2s : |fpxi, yuq´fpxj, yuq| ą ε, hpxi, yuq ‰ hpxj, yuqu. Then, σ is an ε-consistent

collection of rankings over T .

Theorem 36 shows that in our general setting, learning the correct collection of rankings

requires giving the same ranking to nearby users. In particular, this provides an intuition on

the kind of embedding that matrix factorization learns. Theorem 36 only applies to items

i, j and user u if there is a large enough difference in the underlying values given by f . The

proof follows by the Lipschitzness of f and algebra.

6.7 Experiments

In this section, we examine the empirical performance of Multi-Rank. It is well-known that

matrix factorization methods tend to outperform neighborhood-based methods. Neverthe-
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Dataset Method Kendall Tau Spearman Rho NDCG@5 Precision@5

MRW 0.3156 (0.0021) 0.4012 (0.0029) 0.7104 (0.0010) 0.4492 (0.0018)

MR 0.3105 (0.0021) 0.3963 (0.0030) 0.7063 (0.0038) 0.4457 (0.0044)

LA 0.3271 (0.0018) 0.4153 (0.0022) 0.7136 (0.0026) 0.4570 (0.0041)

AltSVM 0.3271 (0.0007) 0.4173 (0.0008) 0.7022 (0.0015) 0.4365 (0.0036)

Netflix RMC 0.3288 (0.0017) 0.4178 (0.0020) 0.7204 (0.0006) 0.4581 (0.0048)

MRW 0.3933 (0.0010) 0.5009 (0.0013) 0.7769 (0.0066) 0.6083 (0.0096)

MR 0.3924 (0.0011) 0.4999 (0.0013) 0.7735 (0.0061) 0.6021 (0.0063)

LA 0.3993 (0.0009) 0.5075 (0.0012) 0.7767 (0.0058) 0.6071 (0.0080)

AltSVM 0.4099 (0.0008) 0.5219 (0.0010) 0.8002 (0.0042) 0.6417 (0.0067)

Movielens RMC 0.4041 (0.0004) 0.5139 (0.0006) 0.8068 (0.0030) 0.6485 (0.0029)

Table 6.1: Netflix and MovieLens Results. On the Netflix dataset, MR usually used β “ 5

and k P r13, 19s. MRW usually used β “ 9 and k P r16, 23s. On the MovieLens dataset, MR

usually used β “ 10 and k P r7, 13s. MRW usually used β “ 12 and k P r13, 17s.

less, neighborhood-based methods remain popular in situations where practitioners want an

easy-to-implement method, to avoid expensive model-building, and to be able to interpret

predictions easily (Ning et al., 2011). Furthermore, it has been observed that for the task of

matrix completion, (i) matrix factorization methods and neighborhood-based methods have

complementary strengths and weaknesses and (ii) performance gains can be achieved by

merging these methods into a single algorithm (Bell and Koren, 2007; Koren, 2008). Yet, it

is non-trivial to generalize ideas for combining matrix factorization and neighborhood-based

methods in the matrix completion setting to the preference completion setting. In light of

this discussion, the purpose of our experiments is not to demonstrate the superiority of our

method over matrix factorization methods, but to compare the performance of our algorithm

with the state-of-the-art.

We compared the performance of our algorithm (MR) and a weighted version of our

algorithm (MRW) where votes are weighted by Ru,v against Alternating SVM (AltSVM)

(Park et al., 2015), Retargeted Matrix Completion (RMC) (Gunasekar et al., 2016), and the

proposed algorithm in (Lee et al., 2016) (LA). We chose AltSVM and RMC because they

are state-of-the-art matrix factorization methods for preference completion and we chose LA

because its theoretical guarantees are similar to our guarantees for Multi-Rank and it was
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Dataset Method Kendall Tau Spearman Rho NDCG@5 Precision@5

MRW 0.2736 (0.0017) 0.3327 (0.0021) 0.8063 (0.0031) 0.7849 (0.0034)

MR 0.2677 (0.0019) 0.3255 (0.0023) 0.7980 (0.0034) 0.7764 (0.0008)

LA 0.2786 (0.0022) 0.3387 (0.0027) 0.8024 (0.0024) 0.7843 (0.0018)

AltSVM 0.2743 (0.0015) 0.3335 (0.0018) 0.7949 (0.0023) 0.7768 (0.0023)

Netflix RMC 0.2856 (0.0017) 0.3473 (0.0021) 0.8052 (0.0038) 0.7861 (0.0032)

MRW 0.3347 (0.0015) 0.4090 (0.0018) 0.8903 (0.0059) 0.8810 (0.0059)

MR 0.3343 (0.0017) 0.4085 (0.0021) 0.8879 (0.0052) 0.8792 (0.0061)

LA 0.3395 (0.0017) 0.4149 (0.0020) 0.8908 (0.0085) 0.8845 (0.0078)

AltSVM 0.3451 (0.0016) 0.4217 (0.0020) 0.9070 (0.0056) 0.8982 (0.0056)

Movielens RMC 0.3504 (0.0014) 0.4281 (0.0017) 0.9140 (0.0026) 0.9051 (0.0032)

Table 6.2: Quantized Netflix and MovieLens Results. On the Netflix dataset, MR usually

used β “ 5 and k “ 22. MRW usually used β P r9, 10s and k P r27, 31s. On the MovieLens

dataset, MR usually used β P r10, 13s and k P r10, 19s. MRW usually used β P r8, 11s and

k P r16, 23s.

Dataset Method Kendall Tau Spearman Rho NDCG@5 Precision@5

Netflix LA 0.1798 (0.0034) 0.2300 (0.0040) 0.5962 (0.0022) 0.3322 (0.0053)

MovieLens LA 0.2404 (0.0098) 0.3092 (0.0123) 0.6543 (0.0138) 0.4435 (0.0163)

Table 6.3: Monotonically Transformed Netflix and MovieLens Results. We only display the

results for LA since the other methods are invariant to monotonic transformations of the

columns.

shown to be superior to item-based and user-based neighborhood methods (Lee et al., 2016).

We used grid search to optimize the hyperparameters for each of the algorithms using a

validation set.

We use the ranking metrics Kendall Tau, Spearman Rho, NDCG@5, and Precision@5.

Kendall Tau and Spearman Rho measure how correlated the predicted ranking is with the

true ranking. The other metrics measure the quality of the predicted ranking at the top of

the list. For Precision@5, we deem an item relevant if it has a score of 5. For all of these

metrics, higher scores are better. See Liu (2009) for a more detailed discussion of these

metrics. The numbers in parentheses are standard deviations.

We use the Netflix and MovieLens 1M datasets. We pre-process the data in a similar way
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to Liu and Yang (2008). For the Netflix dataset, we take the 2000 most popular movies and

randomly selected 4000 users that had rated at least 100 of these movies. For both datasets,

we randomly subsample the ratings 5 times in the following way: we randomly shuffled the

(user-id, movie, rating) triples and split 40% into a training set, 15% into a validation set,

and 45% into a test set. For the Netflix dataset, we drop users if they have fewer than 50

ratings in the training set and fewer than 10 ratings in either the validation set or the test

set. For the MovieLens dataset, we drop users if they have fewer than 100 ratings in the

training set and fewer than 50 ratings in either the validation set or the test set. Table 6.1

shows that although MRW does not have the best performance, it outperforms AltSVM on

NDCG@5 and Precision@5 on the Netflix dataset and LA on NDCG@5 and Precision@5 on

the MovieLens dataset.

In addition, we quantized the scores of both datasets to 1 if the true rating is less than or

equal to 3 and to 5 otherwise (see Table 6.2). Here, MR and MRW have the same amount

of information as LA and RMC. On the Netflix dataset, MRW performed the best on the

NDCG@5 measure.

Finally, we considered a setting where a company performs A{B testing on various rating

scales (e.g., 1-5, 1-10, 1-50, 1-100) and wishes to use all of the collected data to predict

preferences. To model this situation, for each user, we randomly sampled a number a P

t1, 2, 10, 20u and b P ra´ 1s Y t0u, and transformed the rating r ÞÑ a ¨ r´ b. Table 6.3 shows

that on the monotonically transformed versions of the Netflix and MovieLens datasets, LA

performs dramatically worse. This is unsurprising since it is well-known that the performance

of rating-oriented neighborhood-based methods like LA suffers when there is rating scale

variance (Ning et al., 2011).

6.8 Chapter Appendix Outline

In Section 6.9, we give the counterexample establishing Proposition 12 and give theorem

proofs for the continuous rating setting. In Section 6.10, we give theorem proofs for the

discrete rating setting. In Section 6.11, we prove the lemmas used in our theorem proofs,

beginning with lemmas common to both the continuous rating setting and discrete rating
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setting and, then, presenting the lemmas on the continuous rating setting and discrete rating

setting, separately. In Section 6.12, we provide the proofs of the necessary and sufficient

conditions. In Section 6.13, we prove Proposition 13 and that the models fpx, yq “ xty and

fpx, yq “ }x´ y}2 are equivalent by adding a dimension. Finally, in Section 6.14, we give

some bounds that we use in the proofs for reference.

Unless otherwise indicated, all probability statements are with respect to txiuiPrn1s Y

tyuuuPrn2s YΩ in the continuous ratings setting and with respect to txiuiPrn1s Y tyuuuPrn2s Y

tau,luuPrn2s,lPrL´1s YΩ in the discrete ratings setting.

6.9 Proofs for Section 6.5.1

To begin, we introduce some additional notation. When yu and yv are random, we write

Ru,v instead of Ru,v for emphasis.

Proof of Proposition 12. Consider the functions

fpzq “

$

&

%

εz : z P r0, 1
2s

εp1´ zq : z P p1
2 , 1s

and

gpzq “

$

&

%

´εz : z P r0, 1
2s

εpz ´ 1q : z P p1
2 , 1s

Next, we analyze Pairwise-Rank (PR), bounding the probability that Pairwise-Rank

cannot distinguish between items i and j when |fpxi, yuq ´ fpxj, yuq| ą ε, i.e., the event

Dε
u,i,j – tfpxi,yuq ` ε ă fpxj,yuqu X tPRpu, i, j, β, kq “ 1quq

Y tfpxi,yuq ą fpxj,yuq ` εu X tPRpu, i, j, β, kq “ 0uq.

Theorem 37. Suppose @u P rn2s, gupzq is strictly increasing. Let ε, δ ą 0 and η P p0, ε2q.

Suppose that almost every y P Y is p ε2 , δq-discriminative. Let r be a positive nondecreasing

function such that rp ε2q ě δ and rpηq ă δ
2 . Suppose that almost every y P Y is r-discerning.
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Let 0 ă α ă 1
2 . If p ě maxpn´

1
2`α

1 , n
´ 1

2`α
2 q, n1p

2 ě 16, and n2 is sufficiently large, for all

u P rn2s and i ‰ j P rn1s, the output of Pairwise-Rank with k “ 1 and β “ p2n1
2 is such that

Prtxiu,tyuu,ΩpDε
u,i,jq ď 2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q

` expp´ppn2 ´ 1qp2

2 qτpηqq ` 3pn2 ´ 1qp2 expp´δ
2n1p

2

20 q.

The structure of the proof of Theorem 37 is similar to the proof of Theorem 1 from Lee

et al. (2016). The lemmas are distinct, however.

Proof of Theorem 37. Fix u P rn2s, i, j P rn1s such that i ‰ j. Define:

W i,j
u pβq “ tv P rn2s : |Npu, vq| ě β, pi, vq, pj, vq P Ωu.

Further, define the events:

A “ t|W i,j
u pβq| P r

pn2 ´ 1qp2

2 ,
3pn2 ´ 1qp2

2 su,

B “ t max
vPW i,j

u pβq
ρpyu,yvq ě 1´ δ

2u,

C “ t|Ruv ´ ρpyu,yvq| ď
δ

4 , @v P W
i,j
u pβqu.

By several applications of the law of total probability, we have that

PrpDε
u,i,jq “ PrpDε

u,i,j|A,B,CqPrpA,B,Cq ` PrpDε
u,i,j|pAXB X Cq

c
qPrppAXB X Cqcq

ď PrpDε
u,i,j|A,B,Cq ` PrpAcq ` PrppAXB X Cqc|Aq

ď PrpDε
u,i,j|A,B,Cq ` PrpAcq ` PrpBc

|Aq ` PrpCc
|A,Bq.

We will upper bound each term in the above bound. By Lemma 51, PrpDε
u,i,j|A,B,Cq “ 0.

Setting λ “ 1
2 in Lemma 45 yields that

PrpAcq “ Prp|W i,j
u pβq| R r

pn2 ´ 1qp2

2 ,
3pn2 ´ 1qp2

2 sq

ď 2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q.

Lemma 49 yields that

PrpBc
|Aq “ Prp max

vPW i,j
u pβq

ρpyu,yvq ă 1´ δ

2 |Aq ď Prp max
vPW i,j

u pβq
ρpyu,yvq ă 1´ rpηq|Aq

ď r1´ τpηqs
pn2´1qp2

2 (6.1)

ď expp´ppn2 ´ 1qp2

2 qτpηqq. (6.2)
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Line (6.1) follows by Lemma 49 since conditional on A, W i,j
u pβq ě

pn1´1qp2

2 and line (6.2)

follows by the inequality 1´ x ď expp´xq. Since by hypothesis α P p0, 1
2q is fixed such that

p ě maxpn´
1
2`α

1 , n
´ 1

2`α
2 q, there exists a sufficiently large n2 such that line (6.2) is less than

1
2 . Then, by Bayes rule, the union bound, and Lemma 50,

PrpCc
|A,Bq ď

PrpCc|Aq

PrpB|Aq ď 2 PrpCc
|Aq

“ 2 PrpDv P W i,j
u pβq, |Ruv ´ ρpyu,yvq| ą

δ

4 |Aq

ď 3pn2 ´ 1qp2 expp´δ
2

4

Z

β

2

^

q

“ 3pn2 ´ 1qp2 expp´δ
2

4

Z

n1p
2

4

^

q

ď 3pn2 ´ 1qp2 expp´δ
2n1p

2

20 q

where the last line follows because n1p
2 ě 16 and @x ě 16,

X

x
4

\

ě x
5 . Putting it all together,

we have

PrpDε
u,i,jq ď 2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q

` expp´ppn2 ´ 1qp2

2 qτpηqq ` 3pn2 ´ 1qp2 expp´δ
2n1p

2

20 q

Proof of Theorem 32. For any u P rn2s, i ‰ j P rn1s, define the event

Errorεu,i,j “ ptfpxi,yuq ` ε ă fpxj,yuqu X tAu,i,j “ 1uq

Y ptfpxi,yuq ą fpxj,yuq ` εu X tAu,i,j “ 0uq.

Suppose that there exists u P rn2s and distinct i, j P rn1s such that Errorεu,i,j occurs. Without

loss of generality suppose that fpxi,yuq ` ε ă fpxj,yuq, and Au,i,j “ 1. Then, inspection of

the Multi-Rank algorithm reveals that 1 “ Au,i,j “ Pairwise-Rankpu, i, j, β, kq. Thus, Dε
u,i,j
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occurs. Therefore, by Theorem 38 and the union bound,

PrpDu P rn2s, i ‰ j P rn1s s.t. Errorεu,i,jq

ď PrpDu P rn2s, i ‰ j P rn1s s.t. Dε
u,i,jq

ď n2

ˆ

n1

2

˙

r2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q

` expp´ppn2 ´ 1qp2

2 qτpηqq ` 3pn2 ´ 1qp2 expp´δ
2n1p

2

20 qs.

Now, suppose that @u P rn2s and i, j P rn1s such that i ‰ j, pErrorεu,i,jqc occurs. Then, by

Lemma 46, pσ “ ppσ1, . . . , pσn2q with pσu “ CopelandpAu,:,:q satisfies dis2εppσ,Hq “ 0.

Proof of Corollary 4. Ignoring constants, the two dominant terms in the bound in Theorem

32 are of the form n2
1n2 expp´n2p

2q and n2
1n

2
2 expp´n1p

2q. Then, under the conditions of

Theorem 37, as n2 ÐÝ 8

n2
1n2 expp´n2p

2
q ď expp2 logpn1q ` logpn2q ´ n

2α
2 q

ď exppp1` 2C1q logpn2q ´ n
2α
2 q ÝÑ 0.

Now, observe that

n2
1n

2
2 expp´n1p

2
q “ expp2 logpn2q ` 2 logpn1q ´ n1p

2
q

ď expp2 logpn2q ` 2 logpn1q ´ n
2α
1 q

ď expp4 maxplogpn2q, logpn1qq ´ n
2α
1 q

Suppose that n1 ě n2. Then, clearly, the limit of the RHS as n2 ÝÑ 8 is 0. Now, suppose

that n1 ă n2. Then, if C2α
2 ą 4, then as n2 ÝÑ 8,

n2
2n

2
1 expp´n1p

2
q ď expp4 logpn2q ´ n

2α
1 q

ď exppr4´ C2α
2 s logpn2qq ÝÑ 0.
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6.10 Proofs for Section 6.5.2

To begin, because the model for the discrete ratings section is different, we introduce new

notation in the interest of clarity. Fix yu, yv P Y . Define

ρ1pyu, yvq “ Prgu,gv ,xs,xtrgupfpxs, yuqq ´ gupfpxt, yuqqsrgvpfpxs, yvqq ´ gvpfpxt, yvqqs ě 0q.

Note that in this setting, the meaning of pε, δq-discriminative is slightly different.

Definition 27. Fix y P Y. Let ε, δ ą 0. We say that y is pε, δq-discriminative if z P Bεpyq
c

implies that ρ1py, zq ă 1´ δ.

In a sense, the notion requires in addition that the distribution of the monotonic functions

reveals some differences in the preferences of the users.

Unless otherwise indicated, all probability statements are with respect to txiuiPrn1s Y

tyuuuPrn2s Y tau,luuPrn2s,lPrL´1s YΩ. Next, we prove a theorem that is analogous to Theorem

37. Recall the notation:

Dε
u,i,j – ptfpxi,yuq ` ε ă fpxj,yuqu X tPRpu, i, j, β, kq “ 1quq

Y ptfpxi,yuq ą fpxj,yuq ` εu X tPRpu, i, j, β, kq “ 0uq.

Theorem 38. Let ε, δ ą 0 and η P p0, ε4q. Suppose that PG is diverse and that almost every

y P Y is p ε4 , δq-discriminative. Let r be a positive nondecreasing function such that rp ε4q ě δ

and rpηq ă δ
2 . Suppose that almost every y P Y is r-discerning. Let 1

2 ą α ą α1 ą 0. If

p ě maxpn´
1
2`α

1 , n
´ 1

2`α
2 q, n1p

2 ě 16, n1 ě C1 logpn2q
1

2α for some suitable universal constant

C1, and n2 is sufficiently large, for all u P rn2s and i ‰ j P rn1s, the output of Pairwise-Rank

with k “ nα
1

2 and β “ p2n1
2 is such that

Prtxiu,tyuu,tau,lu,ΩpDε
u,i,jq ď2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q ` 2 expp´γp ε4qkq

`
1

1´ rp ε2q
r3pn2 ´ 1qp2 expp´δ

2n1p
2

20 q

` exppr1´ κp ε2q ` τpηq ` logp3pn2 ´ 1qp2

2 qsk

´k logpkq ´ τpηqpn2 ´ 1qp2

2 qs.
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Proof of Theorem 38. Fix u P rn2s, i, j P rn1s such that i ‰ j. Define:

W i,j
u pβq “ tv P rn2s : |Npu, vq| ě β, pi, vq, pj, vq P Ωu.

Further, define the events:

A “ t|W i,j
u pβq| P r

pn2 ´ 1qp2

2 ,
3pn2 ´ 1qp2

2 su,

B “ tmaxpkq
vPW i,j

u pβq
ρ1pyu,yvq ě 1´ δ

2u,

C “ t|Ruv ´ ρ
1
pyu,yvq| ď

δ

4 , @v P W
i,j
u pβqu

E “ t|fpxi,yuq ´ fpxj,yuq| ą εu

M “ tDv P W i,j
u pβq s.t. ρ1pyu,yvq ě 1´ δ

2 and Dl P rL´ 1s s.t. av,l P pfpxj,yvq, fpxi,yvqqu

By several applications of the law of total probability, we have that

PrpDε
u,i,jq ďPrpDε

u,i,j|Eq ` PrpDε
u,i,j|E

c
q

“PrpDε
u,i,j|Eq

ďPrpDε
u,i,j|A,B,C,M,Eq ` PrpAc|Eq ` PrpBc

|A,Eq

`PrpCc
|A,B,Eq ` PrpM c

|A,B,C,Eq

“PrpDε
u,i,j|A,B,C,M,Eq ` PrpAcq ` PrpBc

|A,Eq (6.3)

`PrpCc
|A,B,Eq ` PrpM c

|A,B,C,Eq

Line (6.3) follows from the independence of Ω from txsusPrn1s and tyvuvPrn2s. We will bound

each term in the above upper bound. By Lemma 56,

PrpDε
u,i,j|A,B,C,M,Eq “ 0. (6.4)

Setting λ “ 1
2 in Lemma 45 yields that

PrpAcq “ Prp|W i,j
u pβq| R r

pn2 ´ 1qp2

2 ,
3pn2 ´ 1qp2

2 sq

ď 2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q. (6.5)
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Next, we bound PrpBc|A,Eq. By Bayes theorem,

PrpBc
|A,Eq ď

PrpBc|Aq

PrpE|Aq

“
PrpBc|Aq

PrpEq (6.6)

ă
PrpBc|Aq

1´ rp ε2q
. (6.7)

Line (6.6) follows from the independence of Ω from txsusPrn1s and tyvuvPrn2s. Line (6.7)

follows since by hypothesis almost every y P Y is r-discerning.

Since almost every y P Y is p ε4 , δq-discriminative and r-discerning, and η ą 0 is such that

rpηq ă δ
2 , Lemma 53 yields that

PrpBc
|Aq “ Prpmaxpkq

vPW i,j
u pβq

ρ1pyu,yvq ă 1´ δ

2 |Aq

ď Prpmaxpkq
vPW i,j

u pβq
ρ1pyu,yvq ă 1´ rpηq|Aq

ď exppp1´ κp ε4q ` τpηq ` logp3pn2 ´ 1qp2

2 qqk ´ k logpkq ´ τpηqpn2 ´ 1qp2

2 qq.

(6.8)

Next, we bound PrpCc|A,B,Eq. By Bayes theorem,

PrpCc
|A,B,Eq ď

PrpCc|A,Bq

PrpE|A,Bq .

Fix yu “ yu r-discerning such that A and B occur. Then, since txsusPrn1s, tyvuvPrn2s, and Ω

are independent and yu is r-discerning,

PrtyvuvPrn2s,txsusPrn1s,Ω
p|fpxi, yuq ´ fpxj, yuq| ą ε|yu “ yuq

“ Prxi,xjp|fpxi, yuq ´ fpxj, yuq| ą ε|yu “ yuq

“ Prxi,xjp|fpxi, yuq ´ fpxj, yuq| ą εq ą 1´ rp ε2q.

Since the above bound holds for all yu such that AXB holds, taking the expectation of the

above bound with respect to yu over the set AXB gives

Prp|fpxi,yuq ´ fpxj,yuq| ą ε|A,Bq ą 1´ rp ε2q.

Thus,

PrpCc
|A,B,Eq ă

PrpCc|A,Bq

1´ rp ε2q
. (6.9)
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Since by hypothesis 1
2 ą α ą α1 ą 0, p ě maxpn´

1
2`α

1 , n
´ 1

2`α
2 q and k “ nα

1

2 , if n2 is

sufficiently large, the bound in line (6.8) is less than 1
2 . Then, by Bayes rule, the union

bound, and Lemma 54,

PrpCc
|A,Bq ď

PrpCc|Aq

PrpB|Aq ď 2 PrpCc
|Aq

“ 2 PrpDv P W i,j
u pβq, |Ruv ´ ρ

1
pyu,yvq| ą

δ

4 |Aq

ď 3pn2 ´ 1qp2 Prp|Ruv ´ ρ1pyu,yvq| ą
δ

4 |Aq (6.10)

ď 3pn2 ´ 1qp2 expp´δ
2

4

Z

β

2

^

q

“ 3pn2 ´ 1qp2 expp´δ
2

4

Z

n1p
2

4

^

q

ď 3pn2 ´ 1qp2 expp´δ
2n1p

2

20 q (6.11)

where line (6.10) follows by the union bound and line (6.11) follows because n1p
2 ě 16 and

@x ě 15,
X

x
4

\

ě x
5 .

Since by hypothesis 1
2 ą α ą 0, p ě maxpn´

1
2`α

1 , n
´ 1

2`α
2 q, and n1 ě C1 logpn2q

1
2α for some

constant C1, if n2 is sufficiently large, the bound in line (6.9) is eventually less than 1
2 . Thus,

using Bayes rule and Lemma 55,

PrpM c
|A,B,C,Eq ď

PrpM c|A,B,Eq

PrpC|A,B,Eq

ď 2 PrpM c
|A,B,Eq

ď 2 expp´γp ε4qkq. (6.12)

Putting together lines (6.3), (6.4), (6.5), (6.7), (6.8), (6.9), (6.11), and (6.12) we have

PrpDε
u,i,jq ď2 expp´pn2 ´ 1qp2

12 q ` pn2 ´ 1q expp´n1p
2

8 q ` 2 expp´γp ε4qkq

`
1

1´ rp ε2q
r3pn2 ´ 1qp2 expp´δ

2n1p
2

20 q

` exppr1´ κp ε4q ` τpηq ` logp3pn2 ´ 1qp2

2 qsk ´ k logpkq ´ τpηqpn2 ´ 1qp2

2 qs.

Proof of Theorem 33. The proof follows the same steps as the proof of Theorem 32, but

applies Theorem 38 instead of Theorem 37.
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Proof of Corollary 5. The only new term that did not appear in Corollary 5 is, ignoring

constants, of the form

n2
2n

2
1 expplogpn2p

2
qk ´ k logpkq ´ n2p

2
q.

Using α ą α1 and n1 ď C1n2, as n2 ÝÑ 8,

n2
2n

2
1 expplogpn2p

2
qk ´ k logpkq ´ n2p

2
q

ď expp2 logpn2q ` 2 logpn1q ` logpn2α
2 qn

α1

2 ´ n
α1

2 logpn2qα
1
´ n2α

2 q

ď exppp2` 2C1q logpn2q ` p2α ´ α1q logpn2qn
α1

2 ´ n
2α
2 q

ÝÑ 0

6.11 Technical Lemmas

We separate the lemmas into three sections: lemmas for both the continuous and discrete

rating settings, lemmas for the continuous rating setting, and lemmas for the discrete rating

setting.

6.11.1 Lemmas Common to the Continuous Rating Setting and

the Discrete Rating Setting

Lemma 45 establishes that for a user u P rn2s and distinct items i, j P rn1s, with high

probability there are many other users that have rated items i and j and many items in

common with user u. It is similar to Lemma 1 from Lee et al. (2016).

Lemma 45. Fix u P rn2s, i ‰ j P rn1s, and let λ ą 0 and 2 ď β ď n1p2

2 . Let W i,j
u pβq “ tv P

rn2s : |Npu, vq| ě β, pi, vq, pj, vq P Ωu. Then,

PrΩp|W
i,j
u pβq| R rp1´ λqpn2 ´ 1qp2, p1´ λqpn2 ´ 1qp2

sq

ď 2 expp´λ
2pn2 ´ 1qp2

3 q ` pn2 ´ 1q expp´n1p
2

8 q.
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Proof. Define the following binary variables for all v P rn2sztuu. Ev “ 1 if |Npu, vq| ě β

and 0 otherwise, Fv “ 1 if pi, vq P Ω and 0 otherwise, and Gv “ 1 if pj, vq P Ω and 0

otherwise. Observe that |W i,j
u pβq| “

ř

v‰uEvFvGv. Fix 0 ď a ă b ď n2 ´ 1. Observe that if
ř

v‰u FvGv P ra, bs and
ř

v‰uEv “ n2 ´ 1, then |W i,j
u pβq| P ra, bs. Thus, the contrapositive

implies that for any 0 ď a ă b ď n2 ´ 1,

PrΩp|W
i,j
u pβq| R ra, bsq ď PrΩp

ÿ

v‰u

FvGv R ra, bs Y
ÿ

v‰u

Ev ă n2 ´ 1q

ď PrΩp
ÿ

v‰u

FvGv R ra, bsq ` PrΩp
ÿ

v‰u

Ev ă n2 ´ 1q.

ř

v‰u FvGv is a binomial random variable with parameters n2 ´ 1 and p2. Letting a “

p1 ´ λqpn2 ´ 1qp2 and b “ p1 ` λqpn2 ´ 1qp2, Chernoff’s multiplicative bound (Proposition

17) yields that

PrΩp
ÿ

v‰u

FvGv R rp1´ λqpn2 ´ 1qp2, p1` λqpn2 ´ 1qp2
sq ď 2 expp´λ

2pn2 ´ 1qp2

3 q.

Since Npu, vq is binomial with parameters n1 and p2, by Chernoff’s multiplicative bound

(Proposition 17),

PrΩpEv “ 0q “ PrΩpNpu, vq ď βq

ď PrΩpNpu, vq ď
n1p

2

2 q

ď expp´n1p
2

8 q.

Then, by the union bound,

PrΩp
ÿ

v‰u

Ev ă n2 ´ 1q “ PrΩpDv P rn2sztuu : Ev “ 0q

ď pn2 ´ 1q expp´n1p
2

8 q.

To convert the pairwise comparisons to a ranking, we use the Copeland ranking procedure

(Algorithm 35 in the main document). Lemma 46 establishes that if the output of the

Pairwise-Rank algorithm is such that for all i, j P rn1s and u P rn2s, Dε
u,i,j does not occur,

then applying the Copeland ranking procedure to A (as defined in Multi-Rank) yields a pσ

such that dis2εppσ,Hq “ 0.
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Lemma 46. Let ε ą 0, u P rn2s, A as defined in Multi-Rank (Algorithm 33), and pσu “

CopelandpAu,:,:q. If for all i ‰ j P rn1s fpxi, yuq ą fpxj, yuq ` ε implies that Au,i,j “ 1,

then for all i ‰ j P rn1s hupxi, yuq ą hupxj, yuq and fpxi, yuq ą fpxj, yuq ` 2ε implies that

pσupiq ą pσupjq.

Proof. Let i ‰ j P rn1s such that hupxi, yuq ą hupxj, yuq and fpxi, yuq ą fpxj, yuq ` 2ε. Let

l P rn1s such that l ‰ i and l ‰ j. We claim that if Au,i,l “ 0, then Au,j,l “ 0. If Au,i,l “ 0,

then by the hypothesis fpxi, yuq ď fpxl, yuq ` ε. Then,

fpxj, yuq ` 2ε ă fpxi, yuq ď fpxl, yuq ` ε

so that fpxj, yuq ` ε ă fpxl, yuq. Then, by the hypothesis, Au,j,l “ 0, establishing the claim.

The contrapositive of the claim is that if Au,j,l “ 1, then Au,i,l “ 1. Then,

Ij “
n1
ÿ

l“1,l‰j
Au,j,l “

n1
ÿ

l“1,lRtj,iu
Au,j,l ď

n1
ÿ

l“1,lRtj,iu
Au,i,l “ Ii ´ 1 ă Ii

so that pσupiq ą pσupjq.

Recall the definition of our problem-specific constants: τpεq “ infy0PY PryupdYpy0,yuq ď

εq, κpεq “ infy0PY PryupdYpy0,yuq ą εq, and γpεq “ infzPr´N,NsPtau,lulPrL´1spDl P rL ´ 1s :

dRpz,au,lq ď εq. Lemma 47 establishes that under our assumptions, for all ε ą 0, τpεq ą 0,

κpεq ă 1, and γpεq ą 0.

Lemma 47. If there exists ε ą 0 such that τpεq “ 0, or κpεq “ 1, then there exists a point

z P Y such that PYpBεpzqq “ 0. Similarly, if there exists ε ą 0 such that γpεq “ 0, then there

exists z P r´N,N s such that PlpBεpzqq “ 0 for all l P rL´ 1s.

Proof. Let ε ą 0 and suppose τpεq “ 0. Then, there exists a sequence of points z1, z2, . . . P Y

such that for every n, PYpBεpznqq ď
1
n
. Since Y is compact by assumption, there exists a

convergent subsequence zi1 , zi2 , . . . to z.

We claim that for all z1 P Y , there exists a sufficiently large N such that z1 P BεpziN q

if and only if z1 P Bεpzq. Fix z1 P Bεpzq. Since Bεpzq is open, there exists δ ą 0 such that

dYpz, z
1q ă δ ă ε. Let N large enough such that dYpz, ziN q ď ε ´ δ. Then, by the triangle

inequality,

dpz1, ziN q ď dpz1, zq ` dpziN , zq ď δ ` ε´ δ “ ε
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so that z1 P BεpziN q. A similar argument shows the other direction of the claim. Since a

probability space has finite measure, by the dominated convergence theorem,

PYpBεpzqq “ lim
nÝÑ8

PYpBεpzinqq ď lim
nÝÑ8

1
in
“ 0.

Next, suppose κpεq “ 1. Then, there exists a sequence of points z1, z2, . . . P Y such that

for every n, PYpBεpznq
cq ě 1 ´ 1

n
. Then, for every n, PYpBεpznqq ď

1
n

A similar argument

from the τp¨q case using the dominated convergence theorem shows that PYpBεpzqq “ 0.

Since r´N,N s is compact and γ has a similar definition to τ , the result for γp¨q follows

by an argument similar to the one used for the τp¨q case.

6.11.2 Lemmas for Continuous Rating Setting

Lemma 48 uses the notion of r-discerning to relate the distance between points in Y and to

a lower bound on ρpyu, yvq.

Lemma 48. Let r be a positive nondecreasing function. If yu P Y is r-discerning, then for

any ε ą 0, if yv P Bεpyuq, then ρpyu, yvq ą 1´ rpεq.

Proof. Suppose that dpyu, yvq ď ε. Suppose that xi “ xi and xj “ xj such that |fpxi, yuq ´

fpxj, yuq| ą 2ε and without loss of generality suppose that hupxi, yuq ě hupxj, yuq. Then,

since f is Lipschitz,

fpxi, yvq ě fpxi, yuq ´ ε ą fpxj, yuq ` ε ě fpxj, yvq.

Hence, hvpxi, yvq ě hvpxj, yvq. Thus,

ρpyu, yvq ě Prxi,xjp|fpxi, yuq ´ fpxj, yuq| ą 2εq ą 1´ rpεq,

where the last inequality follows from the hypothesis that yu is r-discerning. Thus, we

conclude the result.

Lemma 49 establishes that if S Ă rn2sztuu is a large enough set, then with high probability

there is at least one element yv in S that tends to agree with yu.
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Lemma 49. Let r be a positive non-decreasing function and suppose that almost every y P Y

is r-discerning. Let S Ă rn2sztuu. Then, @ε ą 0,

Pryv ,yupmax
vPrSs

ρpyv,yuq ď 1´ rpεqq ď r1´ τpεqs|S|.

Proof. Fix yu “ yu P Y that is r-discerning. By Lemma 48, if yv “ yv is such that

dpyu, yvq ď ε, then ρpyu, yvq ą 1´ rpεq. Hence,

Pryvpdpyu,yvqq ď εq ď Pryvpρpyu,yvq ą 1´ rpεqq.

Then,

Pryvpρpyu,yvq ď 1´ rpεqq ď Pryvpdpyu,yvqq ą εq “ 1´ Pryvpdpyu,yvqq ď εq ď 1´ τpεq.

The RHS does not depend on yu, and yv,yu are independent and almost every y P Y is

r-discerning, so we can take the expectation with respect to yu to obtain

Pryv ,yupρpyv,yuq ď 1´ rpεqq ď 1´ τpεq. (6.13)

Finally,

PrtyvuvPS ,yupmax
vPrSs

ρpyv,yuq ď 1´ rpεqq “ Pryv ,yupρpyv,yuq ď 1´ rpεqq|S|

ď r1´ τpεqs|S|,

where the first equality follows from the independence of y1, . . . ,yn2 and the inequality

follows from line (6.13).

Lemma 50 establishes that Ru,v concentrates around ρpyu,yvq.

Lemma 50. Let u ‰ v P rn2s, i ‰ j P rn1s, η ą 0, β ě 2, and W i,j
u pβq be defined as in

Lemma 45. Then,

Prp|Ru,v ´ ρpyu,yvq| ą
η

4 |v P W
i,j
u pβqq ď 2 expp´η

2

4

Z

β

2

^

q.

Proof. Fix yu “ yu and yv “ yv. Recall that if Ipu, vq ‰ H, then

Ru,v “
1

|Ipu, vq|

ÿ

ps,tqPIpu,vq

1tphupxs, yuq ´ hupxt, yuqqphvpxs, yvq ´ hvpxt, yvqq ě 0u.
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Since Ipu, vq consists of pairs of indices that do not overlap, conditioned on yu “ yu,yv “ yv,

and any nonempty Ipu, vq, t1tphupxs, yuq ´ hupxt, yuqqphvpxs, yvq ´ hvpxt, yvqq ě 0u : ps, tq P

Ipu, vqu is a set of independent random variables. Further, each has mean ρpyu, yvq. Thus,

by Chernoff’s bound (Proposition 16),

Prp|Ru,v ´ ρpyu, yvq| ą
η

4 |yu “ yu,yv “ yv, Ipu, vqq ď expp´η
2

2 |Ipu, vq|q

When v P v P W i,j
u pβq, |Ipu, vq| ě

X

β
2

\

. Since the above bound holds for all yu, yv, it follows

that

Prp|Ru,v ´ ρpyu,yvq| ą
η

4 |v P W
i,j
u pβqq ď 2 expp´η

2

4

Z

β

2

^

q.

Lemma 51 establishes that conditional on A,B,C (defined in the proof of Theorem 37),

the event Dε
u,i,j does not occur with probability 1.

Lemma 51. Under the setting described in Theorem 37, let u P rn2s and i ‰ j P rn1s. Then,

PrpDε
u,i,j|A,B,Cq “ 0.

Proof. Define the events

E1 “ tfpxi,yuq ` ε ă fpxj,yuqu

E2 “ tfpxi,yuq ą fpxj,yuq ` εu

By the union bound and law of total probability,

PrpDε
u,i,j|A,B,Cq ď PrpPRpu, i, j, β, kq “ 1X E1|A,B,Cq

` PrpPRpu, i, j, β, kq “ 0X E2|A,B,Cq

ď PrpPRpu, i, j, β, kq “ 1|A,B,C,E1q

` PrpPRpu, i, j, β, kq “ 0|A,B,C,E2q.

The argument for bounding each of these is similar and, thus, we bound the term

PrpPRpu, i, j, β, kq “ 1|A,B,C,E1q.

Fix tyv “ yvuvPrn2s r-discerning and p ε2 , δq-discriminative, txs “ xsusPrn1s, and Ω “ Ω

such that the event AXBXCXE1 occurs. We claim that Pairwise-Rank puts V “ tvu (see

265



Algorithm 34 for definition of V ) such that yv P B ε
2
pyuq. On the event B, there is v P W i,j

u pβq

with ρpyu, yvq ě 1´ δ
2 . Since yu is p ε2 , δq-discriminative, it follows that yv P B ε

2
pyuq. Suppose

that w P W i,j
u pβq such that yw P B ε

2
pyuq

c. Since yu is p ε2 , δq-discriminative, ρpyw, yuq ă 1´ δ.

Then,

Rw,u ď ρpyw, yuq `
δ

4 (6.14)

ă 1´ 3
4δ

ď ρpyu, yvq ´
δ

4
ď Ru,v (6.15)

where lines (6.14) and (6.15) follow by event C and v, w P W i,j
u pβq. Thus, the claim follows.

Conditional on E1, we have that fpxi, yuq ` ε ă fpxj, yuq. Then, using the Lipschitzness of

f ,

fpxi, yvq ď fpxi, yuq `
ε

2 ă fpxj, yuq ´
ε

2 ď fpxj, yvq.

Since gv is strictly increasing by hypothesis, hvpxi, yvq ă hvpxj, yvq. Thus, Pairwise-Rank

with k “ 1 outputs 0. Consequently,

PrpPRpu, i, j, β, kq “ 1|A,B,C,E1, tyv “ yvuvPrn2stxs “ xsusPrn1s,Ω “ Ωq “ 0

Since almost every y P Y is r-discerning and p ε2 , δq-discriminative, taking the expectation

wrt tyvuvPrn2s, txsusPrn1s, Ω on the set AXBXCXE1 of the last equality gives the result.

6.11.3 Lemmas for Discrete Rating Setting

Lemma 52 is the analogoue of Lemma 48 for the discrete case. The proof is very similar.

Lemma 52. Let r be a positive non-decreasing function. If yu P Y is r-discerning, then for

any ε ą 0, if yv P Bεpyuq, then ρ1pyu, yvq ą 1´ rpεq.

Proof. Suppose yv is such that dpyu, yvq ď ε. We claim that under this assumption

ρ1pyu, yvq ě Prxi,xjp|fpxi, yuq ´ fpxj, yuq| ą 2εq. (6.16)
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Fix gu “ gu and gv “ gv, and xi “ xi and xj “ xj such that |fpxi, yuq ´ fpxj, yuq| ą 2ε.

Without loss of generality, suppose that hupxi, yuq ě hupxj, yuq. Then, since f is Lipschitz,

fpxi, yvq ě fpxi, yuq ´ ε ą fpxj, yuq ` ε ě fpxj, yvq.

Hence, hvpxi, yvq ě hvpxj, yvq, establishing that

ρ1pyu, yv|gu “ gu, gv “ gvq

“ Prxi,xjprgupfpxi, yuqq ´ gupfpxj, yuqqsrgvpfpxi, yvqq ´ gupfpxj, yvqqs ě 0q

ě Prxi,xjp|fpxi, yuq ´ fpxj, yuq| ą 2εq. (6.17)

Since tgu, gv,xi,xju are independent, taking the expectation with respect to gu and gv in

line (6.17) establishes line (6.16). Thus,

ρ1pyu, yvq ě Prxi,xjp|fpxi, yuq ´ fpxj, yuq| ą 2εq ą 1´ rpεq,

where the last inequality follows from the hypothesis that yu is r-discerning.

Lemma 53 is the analogoue of Lemma 49 for the discrete case.

Lemma 53. Let ε, δ ą 0. Let r be a positive nondecreasing function such that rpεq ě δ

and rpηq ă δ for some η ą 0. Suppose that almost every y P Y is pε, δq-discriminative and

r-discerning. Let R2 ě R1 ě 0 be constants. Then, for any S Ă rn2s depending on Ω and

k ď R1,

Pryv ,yupmaxpkqvPrSsρ
1
pyv,yuq ď 1´ rpηq |R1 ď |S| ď R2q

ď exppp1´ κpεq ` τpηq ` logpR2qqk ´ k logpkq ´ τpηqR1q|R1 ď |S| ď R2q.

Proof. Let Cη “ Pryv ,yupρ1pyv,yuq ď 1´ rpηqq.

Claim: Cη ď 1´ τpηq.

Fix yu “ yu P Y r-discerning. By Lemma 52, if yv “ yv is such that dpyu, yvq ď ε, then

ρ1pyu, yvq ą 1´ rpεq. Hence,

Pryvpdpyu,yvqq ď εq ď Pryvpρ1pyu,yvq ą 1´ rpεqq.
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Then,

Pryvpρ1pyu,yvq ď 1´ rpεqq ď Pryvpdpyu,yvqq ą εq “ 1´ Pryvpdpyu,yvqq ď εq ď 1´ τpεq,

where the last inequality follows by the definition of τp¨q. The RHS does not depend on yu,

and yv,yu are independent, so we can take the expectation with respect to yu to establish

the claim.

Claim: 1´ Cη ď 1´ κpεq.

Since almost every y P Y is pε, δq-discriminative and rpηq ă δ, Y is almost-everywhere

pε, rpηqq-discriminative. Fix yu “ yu such that yu is pε, rpηqq-discriminative. Then, @yv P Y ,

ρ1pyu, yvq ą 1´ rpηq implies that dYpyu, yvq ď ε. Thus,

Pryvpρ1pyu,yvq ą 1´ rpηqq ď PryvpdYpyu,yv ď εq

“ 1´ PryvpdYpyu,yvq ą εq

ď 1´ κpεq.

Since the RHS does not depend on yu, and yu and yv are independent, we can take the

expectation with respect to yu to establish the claim.
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Main Probability Bound: Fix Ω “ Ω such that R1 ď |S| ď R2.

Pryv ,yupmaxpkqvPrSsρ
1
pyv,yuq ď1´ rpηq|Ω “ Ωq

“

k´1
ÿ

l“0

ˆ

|S|

l

˙

C |S|´lη p1´ Cηql

ďk max
lPt0,...,k´1u

ˆ

|S|

l

˙

C |S|´lη p1´ Cηql

ďk max
lPrk´1sYt0u

ˆ

|S|

l

˙

p1´ τpηqq|S|´lp1´ κpεqql

ďk max
lPt0,...,k´1u

p
|S|e

l
q
l
p1´ τpηqq|S|´lp1´ κpεqql (6.18)

ďk max
lPt0,...,k´1u

exppl ` l logp |S|
l
q ´ τpηqr|S| ´ ls ´ κpεqlq (6.19)

“k max
lPt0,...,k´1u

exppr1´ κpεq ` τpηqsl ` l logp |S|
l
q ´ τpηq|S|qq

ďk exppr1´ κpεq ` τpηqsk ` k logp |S|
k
q ´ τpηq|S|qq (6.20)

“ exppr1´ κpεq ` τpηq ` logp|S|qsk ´ k logpkq ´ τpηq|S|qq

ď exppr1´ κpεq ` τpηq ` logpR1qsk ´ k logpkq ´ τpηqR2qq

where line (6.18) follows from the the inequality
`

n
k

˘

ď pne
k
qk, line (6.19) follows from the

inequality p1´xq ď expp´xq, and line (6.20) follows since |S| ě k and 1´κpεq ą 0 by Lemma

47. Finally, we can take the expectation with respect to Ω “ Ω over the set R1 ď |S| ď R2

to conclude the result.

Lemma 54 is the analogoue of Lemma 50 for the discrete case.

Lemma 54. Consider the discrete ratings setting. Let u ‰ v P rn2s, i ‰ j P rn1s, η ą 0,

β ě 2, and W i,j
u pβq be defined as in Lemma 45. Then,

Prp|Ru,v ´ ρ1pyu,yvq| ą
η

4 |v P W
i,j
u pβqq ď 2 expp´η

2

4

Z

β

2

^

q.

Proof. Fix yu “ yu, yv “ yv, and gu “ gu, gv “ gv. Recall that if Ipu, vq ‰ H, then

Ru,v “
1

|Ipu, vq|

ÿ

ps,tqPIpu,vq

1trhupxs, yuq ´ hupxt, yuqsrhvpxs, yvq ´ hvpxt, yvqs ě 0u.
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Since Ipu, vq consists of pairs of indices that do not overlap, conditioned on yv “ yv, yu “ yu,

gu “ gu, gv “ gv and any nonempty Ipu, vq,

t1tpgupfpxs, yuqq ´ gupfpxt, yuqqqpgvpfpxs, yvqq ´ gvpfpxt, yvqqq ě 0u : ps, tq P Ipu, vqu

is a set of independent random variables. Further, each has mean ρ1pyu, yv|gu “ gu, gv “ gvq.

Thus, by Chernoff’s bound (Proposition 16),

Prp|Ru,v ´ ρ
1
pyu, yv|gu “ gu, gv “ gvq| ą

η

4 |yu “ yu,yv “ yv, gu “ gu, gv “ gv, Ipu, vqq

ď expp´η
2

2 |Ipu, vq|q

When v P v P W i,j
u pβq, |Ipu, vq| ě

X

β
2

\

. Since the above bound holds for all yu,yv, gugv, it

follows that

Prp|Ru,v ´ ρ1pyu,yvq| ą
η

4 |v P W
i,j
u pβqq ď 2 expp´η

2

4

Z

β

2

^

q.

Lemma 55. Let ε, δ ą 0, 1
2 ą α ą α1 ą 0, and r be a positive nondecreasing function such

that rp ε4q ě δ and rpηq ă δ
2 for some η ą 0. Suppose that almost every y P Y is r-discerning

and p ε4 , δq-discriminative. Fix u P rn2s, i ‰ j P rn1s, and k ď pn2´1qp2

2 . As in the proof of

Theorem 38, define

A “ t|W i,j
u pβq| P r

pn2 ´ 1qp2

2 ,
3pn2 ´ 1qp2

2 su,

B “ tmaxpkq
vPW i,j

u pβq
ρ1pyu,yvq ě 1´ δ

2u,

E “ t|fpxi,yuq ´ fpxj,yuq| ą εu

M “ tDv P W i,j
u pβq s.t. ρ1pyu,yvq ě 1´ δ

2 and Dl P rL´ 1s s.t. av,l P pfpxj,yvq, fpxi,yvqqu.

Then,

PrpM c
|A,B,Eq ď expp´γp ε4qkq.

Proof. Fix tyv “ yvuvPrn2s r-discerning and p ε4 , δq-discriminative, Ω “ Ω, and txs “ xsusPrn1s

such that A X B X E holds. Let R “ tv P rn2sztuu : v P W i,j
u pβq and ρ1pyu, yvq ě 1 ´ δ

2u.

270



Events A and B imply that |R| ě k. Since yu is p ε4 , δq-discriminative and for all v P R,

ρ1pyu, yvq ě 1´ δ
2 , it follows that for all v P R, yv P B ε

4
pyuq.

By E, |fpxi, yuq ´ fpxj, yuq| ą ε. Suppose that fpxi, yuq ą fpxj, yuq ` ε (the other case is

similar). Then, by Lipschitzness of f , for all v P R

fpxj, yvq ď fpxj, yuq `
ε

4 ă fpxi, yuq ´
3
4ε ď fpxi, yvq ´

ε

2 .

Thus, for all v P R, pfpxj, yvq, fpxi, yvqq is an open interval of length at least ε
2 . Fix v1 P

rn2sztuu. Since R is a finite set, the following is well-defined:

I – arg min
JPtpfpxj ,yvq,fpxi,yvqq:vPRu

Prtav1,lulPrL´1spDl P rL´ 1s s.t. av1,l P Jq. (6.21)

Then,

Prtav,lup@v P R, @l P rL´ 1s, av,l R pfpxj, yvq, fpxi, yvqq|tyv “ yvuvPrn2s,Ω “ Ω, txs “ xsusPrn2sq

“ Prtav,lup@v P R, @l P rL´ 1s, av,l R pfpxj, yvq, fpxi, yvqqq (6.22)

ď Prtav,lup@v P R, @l P rL´ 1s, av,l R Iq (6.23)

“ Prtav1,lulPrL´1sp@l P rL´ 1s, av1,l R Iqk (6.24)

“ r1´ Prtav1,lulPrL´1spDl P rL´ 1s s.t. av1,l P Iqsk

ď p1´ γp ε4qq
k (6.25)

ď expp´γp ε4qkq. (6.26)

Line (6.22) follows from the independence of tyvuvPrn2s, Ω, and txsusPrn1s from

tav,luvPrn2s,lPrL´1s. Line (6.23) follows from the definition of I in line (6.21) and because the

monotonic functions tgvuvPrn2s are identically distributed. Line (6.24) follows since tgvuvPR
are i.i.d., line (6.25) follows from the definition of γ, and line (6.26) follows from the in-

equality 1 ´ x ď expp´xq. Note that since PG is diverse by hypothesis, by Lemma 47,

γp ε4q ą 0.

Since tyvuvPrn2s, Ω Y txsusPrn1s, and tav,luvPrn2s,lPrL´1s are independent and almost every

y P Y is r-discerning and p ε4 , δq-discriminative, taking the expectation of line (6.26) with

respect to tyvuvPrn2s, Ω, and txsusPrn1s over AXB X E finishes the proof.
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Lemma 56 gives a bound on the probability of Dε
u,i,j conditional on AXB XC XE XM

(defined in the proof of Theorem 38).

Lemma 56. Under the setting described in Theorem 38, let u P rn2s and i ‰ j P rn1s. Then,

PrpDε
u,i,j|A,B,C,E,Mq “ 0.

Proof. Define the sets

E1 “ tfpxi,yuq ` ε ă fpxj,yuqu

E2 “ tfpxi,yuq ą fpxj,yuq ` εu.

Then, by the union bound and the law of total probability,

PrpDε
u,i,j|A,B,C,E,Mq ď PrpPRpu, i, j, β, kq “ 1X E1|A,B,C,E,Mq

` PrpPRpu, i, j, β, kq “ 0X E2|A,B,C,E,Mq

ď PrpPRpu, i, j, β, kq “ 1|A,B,C,E1,Mq

` PrpPRpu, i, j, β, kq “ 0|A,B,C,E2,Mq.

The argument for bounding each of these terms is similar, so we only bound

PrpPRpu, i, j, β, kq “ 1|A,B,C,E1,Mq.

Fix tyv “ yvuvPrn2s r-discerning and p ε4 , δq-discriminative, txs “ xsusPrn1s, Ω “ Ω, and

tav,l “ av,luvPrn2s,lPrL´1s such that A X B X C X E1 X M occurs . We claim that the set

V in Pairwise-Rank consists of v1, . . . , vk P W
i,j
u pβq such that for all l P rks, yvl P B ε

4
pyuq.

The event B implies that there are v1, . . . , vk such that for all l P rks, ρ1pyu, yvlq ě 1 ´ δ
2 .

Then, since yu is p ε4 , δq-discriminative, it follows that yv1 , . . . , yvk P B ε
4
pyuq. Suppose that

w P W i,j
u pβq such that yw P B ε

4
pyuq

c. Then, since yu is p ε4 , δq-discriminative, it follows that

that ρ1pyu, ywq ă 1´ δ. Then, for all l P rks,

Rw,u ď ρ1pyw, yuq `
δ

4 (6.27)

ă 1´ 3
4δ

ď ρ1pyu, yvlq ´
δ

4
ď Ru,vl (6.28)
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where lines (6.27) and (6.28) follow by event C and vl, w P W
i,j
u pβq. Thus, Pairwise-Rank

selects v1, . . . , vk P W
i,j
u pβq such that for all l P rks, yvl P B ε

4
pyuq. Thus, the claim follows.

Event E1 implies that fpxi, yuq ` ε ă fpxj, yuq. Fix l P rks. Then, by the Lipschitzness

of f ,

fpxi, yvlq ď fpxi, yuq `
ε

4 ă fpxj, yuq ´
3ε
4 ď fpxj, yvlq ´

ε

2 .

Hence, @l P rks, fpxi, yvlq ` ε
2 ă fpxj, yvlq and hvlpxi, yvlq ď hvlpxj, yvlq. Then, event M

implies that there is some l P rks such that hvlpxi, yvlq ă hvlpxj, yvlq. Thus, the majority vote

outputs the correct result. Thus,

PrpPRpu, i, j, β, kq “ 1|A,B,C,E1,M,

tyv “ yvuvPrn2s, txs “ xsusPrn1s,

Ω “ Ω, tav,l “ av,luvPrn2s,lPrL´1sq “ 0. (6.29)

Since line (6.29) holds for all tyvuvPrn2s r-discerning and p ε4 , δq-discriminative,

tav,luvPrn2s,lPrL´1s, txsusPrn1s, Ω conditioned on the set the set A X B X C X E1 X M and

almost every y P Y is r-discerning and p ε4 , δq-discriminative, the result follows.

6.12 Proofs for Section 6.6

Proof of Theorem 34. By compactness of Y , there exists a finite subcover tC1, . . . , Cnu of

Y where each open ball Ci has diameter ε
2 . Since by assumption, for all r ą 0 and y P Y ,

PYpBrpyqq ą 0, we have that PYpCiq ą 0 for all i “ 1, . . . , n. Let Qn2 denote the event

that for every l P rns and i, j P rn1s, there exists u P rn2s such that yu P Cl and we observe

pi, uq P Ω and pj, uq P Ω. Since p ą 0, as n2 ÝÑ 8, PrpQn2q ÝÑ 1.

Let txi “ xiuiPrn1s, tyu “ yuuuPrn2s, and Ω “ Ω such that Qn2 occurs. Let σ P Sn1ˆn2 be

an ε
2 -consistent minimizer of xdisp¨, Hq over the sample. Towards a contradiction, suppose

there exists yu and i ‰ j P rn1s such that σpi, uq ă σpj, uq, hupxi, yuq ą hupxj, yuq, and

fpxi, yuq ą fpxj, yvq ` ε. Without loss of generality, suppose that yu P C1.

Since Qn2 occurs by assumption, there exists v P rn2s such that yv P C1 and pi, vq, pj, vq P

Ω. Since σ is an ε
2 -consistent collection of rankings and the diameter of C1 is ε

2 , σ gives the
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same ranking to yu and yv. Then, since σpi, uq ă σpj, uq, it follows that σpi, vq ă σpj, vq. By

Lipschitzness of f ,

fpxi, yvq ě fpxi, yuq ´
ε

2 ą fpxj, yuq `
ε

2 ě fpxj, yvq. (6.30)

Since gv is strictly increasing, line (6.30) implies that hvpxi, yvq ą hvpxj, yvq. Thus, σ is not

a minimizer of xdisp¨, Hq–a contradiction. Thus, @u P rn2s and i ‰ j P rn1s if σpi, uq ă σpj, uq

and hupxi, yuq ą hupxj, yuq, then fpxi, yuq ď fpxj, yuq ` ε, implying that disεpσ,Hq “ 0.

Proof of Theorem 35. Fix txi “ xiuiPrn1s. By compactness of Y , there exists a finite subcover

tC1, . . . , Cnu of Y where each open ball Ci has diameter ε
8 . For every l P rns, fix zl P Cl and

define Pl “ tpi, jq : fpxi, zlq ą fpxj, zlq `
ε
2u.

Fix l P rns and pi, jq P Pl. Let Ql,i,j
n2 denote the event that there exists yu P Cl with

pi, uq, pj, uq P Ω and au,q P pfpxj,yuq, fpxi,yuqq for some q P rL´ 1s. Further, define

Qn2 “ XlPrns,pi,jqPPlQ
l,i,j
n2 .

Observe that by the Lipschitzness of f , for every z P Cl, if pi, jq P Pl, then fpxi, zq ą fpxj, zq`

ε
4 . Since n is fixed and finite, |Pl| is fixed and finite, and the probability of observing a rating,

p, is fixed, there exists a positive constant C ą 0 such that Pryu,ΩpQl,i,j
n2 | txs “ xsusPrn1sq ě C.

Thus, PrpQl,i,j
n2 | txs “ xsusPrn1sq ÝÑ 1 as n2 ÝÑ 8. Then, by the union bound,

lim
n2ÝÑ8

Pryu,ΩprQn2s
c
| txs “ xsusPrn1sq ď lim

n2ÝÑ8
n

ˆ

n1

2

˙

Pryu,ΩprQl,i,j
n2 s

c
| txs “ xsusPrn1sq

“ 0.

Since Er1tQn2u|txiuiPrn1ss ď 1, by the dominated convergence theorem,

lim
n2ÝÑ8

PrpQn2q “ lim
n2ÝÑ8

EtxiuEr1tQn2u|txiuiPrn1ss

“ Etxiu lim
n2ÝÑ8

Er1tQn2u|txiuiPrn1ss

“ 1

Now, condition on txi “ xiuiPrn1s, tyu “ yuuuPrn2s,Ω “ Ω, tau,l “ au,luuPrn2s,lPrL´1s such

that Qn2 happens. Let σ P Sn1ˆn2 be an ε
8 -consistent minimizer of xdisp¨, Hq. Towards a

contradiction, suppose there exists yu and i ‰ j P rn1s such that σpi, uq ă σpj, uq, hupxi, yuq ą
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hupxj, yuq, and fpxi, yuq ą fpxj, yvq ` ε. Without loss of generality, suppose that yu P C1.

We have that pi, jq P P1 since

fpxi, z1q ě fpxi, yuq ´
ε

8
ě fpxj, yuq `

7
8ε

ě fpxj, z1q `
3
4ε.

Therefore, the event Qn2 implies that there exists yv P C1 such that pi, vq, pj, vq P Ω and

there exists av,q P pfpxj, yvq, fpxi, yvqq. By the Lipschitzness of f , fpxj, yvq ă fpxi, yvq, so

that hpxj, yvq ă hpxi, yvq. Since σ is ε
8 -consistent, σpi, vq ă σpj, vq. But, then σ is not a

minimizer of xdisp¨, Hq over the sample–a contradiction. Thus, @u P rn2s and i ‰ j P rn1s

if σpi, uq ă σpj, uq and hupxi, yuq ą hupxj, yuq, then fpxi, yuq ď fpxj, yuq ` ε, implying that

disεpσ,Hq “ 0.

Proof of Theorem 36. Let x1 “ x1, . . . ,xn1 “ xn1 ,y1 “ y1, . . . ,yn2 “ yn2 . Towards a con-

tradiction, suppose that σ is not an ε-consistent collection of rankings over T . Then, there

exists i, j P rn1s and u, v P rn2s such that pi, j, uq, pi, j, vq P T and

dYpyu, yvq ď ε, (6.31)

σpj, uq ă σpi, uq, (6.32)

σpj, vq ą σpi, vq. (6.33)

Further, by definition of T ,

|fpxj, yuq ´ fpxi, yuq| ą ε (6.34)

|fpxi, yvq ´ fpxj, yvq| ą ε. (6.35)

hpxi, yuq ‰ hpxj, yuq (6.36)

hpxi, yvq ‰ hpxj, yvq (6.37)

Since disεpσ,Hq “ 0 by hypothesis, and by inequalities (6.32), (6.33), (6.34), (6.35), (6.36),

and (6.37) it follows that hpxj, yuq ă hpxi, yuq and hpxi, yvq ă hpxj, yvq. Thus, by mono-
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tonicity of gu, gv,

ε` fpxj, yuq ă fpxi, yuq,

ε` fpxi, yvq ă fpxj, yvq.

Then,

fpxi, yuq ´ fpxi, yvq “ fpxi, yuq ´ fpxj, yuq ` fpxj, yuq ´ fpxj, yvq ` fpxj, yvq ´ fpxi, yvq

ą 2ε` fpxj, yuq ´ fpxj, yvq.

Then, rearranging the above equation and applying the Lipschitzness of f , we have that

2ε ă fpxj, yvq ´ fpxj, yuq ` fpxi, yuq ´ fpxi, yvq ď 2dYpyv, yuq,

which contradicts inequality (6.31).

6.13 Proof of Proposition 13 and other Results

In the following proposition, we give a simple illustrative example of a 1-Lipschitz function

that is pε, δq-discriminative and r-discerning.

Proposition 14. Let X “ r0, 1s, Y “ r0, 1s, PX be the Lebesgue measure over X , and PY

be the Lebesgue measure over Y. Suppose that for all u P rn2s, gu is strictly increasing.

Consider the function

fpx, yq “

$

&

%

x : x P r0, ys

y ´ x : x P py, 1s

Then, for all 1 ą ε ą 0, every y P Y is pε, ε2q-discriminative. Further, there exists a positive

nondecreasing r such that limrÝÑ0 rpzq “ 0 and every y P Y is r-discerning.

Proof. Let ε P p0, 1q and suppose that |y1´ y2| “ ε. Without loss of generality, suppose that

y1 ă y2. Then, when x1 ă x2 P py1, y1 ` εq, fpx1, y1q ą fpx2, y1q and fpx1, y2q ă fpx2, y2q.

Since gu is strictly increasing, h1px1, y1q ą h1px2, y1q and h2px1, y2q ă h2px2, y2q. Since

PX ˆ PX ppy1, y1 ` εq ˆ py1, y1 ` εqq “ ε2, it follows that ρpy1, y2q ă 1´ ε2.

Clearly, there exists a positive nondecreasing r such that limrÝÑ0 rpzq “ 0 and every

y P Y is r-discerning.
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This example can easily be generalized to fpx, yq “ }x´ y}2. The following proposition

shows that by adding a dimension, the model fpx,yq “ xty with x,y P Rd is a special

case of the model fpx̃, ỹq “ }x̃´ ỹ}2 with x̃, ỹ P Rd`1. A similar construction in the other

direction exists.

Proposition 15. Let x1, . . . ,xn1 P Rd and y1, . . . ,yn2 P Rd. There exist x̃1, . . . , x̃n1 P Rd`1

and ỹ1, . . . , ỹn2 P Rd`1 such that @u P rn2s and @i ‰ j P rn1s, xtiyu ą xtjyu if and only if

}x̃i ´ ỹu}2 ą }x̃j ´ ỹu}2.

Proof. Let B “ maxiPrn1s }xi}2. For all i P rn1s, there exists γi ě 0 such that x̃i – pxti, γiq
t

and }x̃i}2 “ B (by continuity and monotonicity of }¨}2). For all u P rn2s, define ỹu “

p´ytu, 0qt.

Fix u P rn2s and i ‰ j P rn1s. Then,

}x̃i ´ ỹu}
2
2 ´ }x̃j ´ ỹu}

2
2 “ }x̃i}

2
2 ` }ỹu}

2
2 ´ 2x̃tiỹu ´ p}x̃j}

2
2 ` }ỹu}

2
2 ´ 2x̃tjỹuq

“ ´2x̃tiỹu ` 2x̃tjỹu

“ xtiyu ´ x
t
jyu.

The result follows.

Proof of Proposition 13. 1. Consider a fixed y P Y . Fix x2 “ x2 P X . Then,

Prx1p| }x1 ´ y}2 ´ }x2 ´ y}2 | ď 2εq ď Prx1px1 P B}x2´y}`2εpyqzB}x2´y}´2εpyqq

ď sup
zPr0,2s

PX pBzpyqzBz´4εpyqq

“ rpεq

Taking the expectation with respect to x2 establishes the first part of this result.

Fix yu P Y and ε ą 0 and set δ “ 2PX pB ε
2
pyuqq

2. Fix yv P Bεpyuq
c X Y . If x1 “ x1 P

B ε
2
pyuq and x2 “ x2 P B ε

2
pyvq, then

rfpx1, yuq ´ fpx2, yuqsrfpx1, yvq ´ fpx2, yvqs ă 0.

A similar argument applies to the case x1 “ x1 P B ε
2
pyvq and x2 “ x2 P B ε

2
pyuq. Thus,

since by hypothesis, gu is strictly increasing for all u P rn2s,

ρpyu, yvq ă 1´ δ.
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2. Both results follow immediately.

6.14 Useful Bounds

Proposition 16 (Chernoff-Hoeffding’s Bound). Let X1, . . . , Xn be independent random vari-

ables with Xi P rai, bis. Let X̄ “ 1
n

řn
i“1Xi. Then,

Prp|X̄ ´ ErX̄s| ě tq ď 2 expp´ 2n2t2
řn
i“1pbi ´ aiq

2 q.

Proposition 17 (Chernoff’s multiplicative bound). Let X1, . . . , Xn be independent random

variables with values in r0, 1s. Let X “
řn
i“1Xi. Then, for any ε ą 0,

PrpX ą p1` εqErXsq ă expp´ε
2ErXs

3 q,

PrpX ă p1´ εqErXsq ă expp´ε
2ErXs

2 q.
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Chapter 7

Conclusion: Future Work

7.1 Any m-Feasible Arm Identification

An important limitation of the feasible arm identification problem is that it requires the

identification of all satisfactory arms, i.e., with means belonging to a given polyhedron. In

many applications, it suffices to find a given number of arms that satisfy the criteria. For

example, in crowdsourcing, it is often of interest to hire specific number of workers that

have a sufficiently high probability of giving the correct answer and respond on average at

a suitable pace. As another example, in A/B testing, a common goal is to identify one of a

set of options as performing better than a baseline on several metrics.

For future work, I plan to consider the any-m feasible arm identification problem: there

are K multidimensional arms and a polyhedron P , and the goal is to find m arms with means

belonging to the polyhedron. Presumably, one could design much more efficient algorithms

than the algorithms that we designed for any m-feasible arm identification.

7.2 Nonparametric Preference Completion from Pair-

wise Comparisons

While our work on preference completion considers the setting where ratings of items are

available, often judgments are made in the form of pairwise comparisons. Thus, it is natural
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to consider the problem of nonparametric preferences with pairwise comparisons as the input.

Next, we formalize the problem. Suppose there are n1 items and n2 users. Let

M “ tM P r0, 1sn1ˆn1 : M `MT
“ 1u

Mst “ tM P r0, 1sn1ˆn1 : Mi,j ą
1
2 and Mj,k ą

1
2 ùñMi,k ą

1
2u.

For a given M PM, we interpret Mi,j as the probability that item i is preferred to item j.

Mst is the set of such matrices that satisfies a transitivity property, namely, that if item i

tends to be preferred to item j and item j tends to be preferred to item k then item i tends

to be preferred to item k.

Let Y denote a compact metric space with metric dp¨, ¨q. Suppose we have a mapping

P : Y ÝÑMs,t that is 1-Lipschitz, i.e., satisfies the following property:

}P pyq ´ P py1q}F ď dpy, y1q.

Fix yi P Y . We interpret P pyqi,j in the following way:

P pyqi,j “ Prp user i with feature vector y prefers item i to item jq.

Let P be a probability measure on Y . We assume that y1, . . . ,yn2 „ PY (where yis are

unobserved) and for every u P rn2s and distinct i, j P rn1s, we observe Xu,i,j „ BernpP pyuqi,jq

with probability p.

An algorithm outputs σ : rn1s ˆ rn2s ÝÑ rn1s where for fixed u P rn2s, σp¨, uq is a

permutation on rn1s. The performance measure is:

dispσ, tP pyuquuPrn2sq “
ÿ

uPrn2s

ÿ

iăj

1tP pyuqi,j ą
1
2 and pσpu, iq ă σpu, jqu

`1tP pyuqi,j ă
1
2 and pσpu, iq ą σpu, jqu.

We conjecture that it is possible to show that a variant of Multi-Rank from our work on

nonparametric preference completion is consistent in this setting.
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