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ABSTRACT

Computational Fluid Dynamics (CFD) serves as a valuable complement to analytical and exper-

imental methods in the study of fluid mechanics. However, the engineering and fundamental re-

search communities are continually plagued by the conflict between solution accuracy and com-

putational resource availability. Increasingly accurate simulations demand more computational

memory and more wall time, so many flows of interest, particularly turbulent flows at moderate

to high Reynolds numbers, cannot be simulated with high fidelity. This issue motivates further

development of high-order CFD methods, which promise to deliver better return on investment

with respect to accuracy versus computational resource consumption compared to second-order

methods (the standard in applied CFD). In the high-order community, the discontinuous Galerkin

(DG) method is a popular approach due to its capability for arbitrarily high orders of accuracy and

near-trivial extension to unstructured meshes and distributed-memory architectures. In this work,

the state-of-the-art DG method is paired with a relatively new tool known as the recovery operator.

The objective is to improve the resolution properties of the DG method in the context of advection-

diffusion systems (such as the compressible Navier-Stokes equations), thereby facilitating more

accurate simulations of turbulent flows for a given gridpoint count and solution order p.

To discretize the advective fluxes of the governing PDE(s), a biased version of the recovery

operator is combined with the traditional upwind DG formulation. This simple modification im-

proves the DG method’s order of accuracy while retaining its well-regarded tendency to damp away

spurious nonphysical oscillations. Where the traditional upwind DG formulation approximates the

exact translation operator with order 2p + 1 accuracy, the new scheme achieves order 2p + 2 ac-

curacy. Optimal convergence is achieved in the global L2 norm. For the diffusive flux terms, the

recovery operator is combined with the traditional mixed formulation to leverage the extraordinary

xviii



accuracy of the recovery operator while maintaining stability on a compact computational stencil.

The result of our efforts is a new advection-diffusion discretization, now known as the Recovery-

assisted DG method. Detailed analysis and a comprehensive suite of test problems are presented

to demonstrate that for flows containing a broad range of length scales, the new approach is con-

sistently more accurate than the state-of-the-art DG method for the compressible Navier-Stokes

equations. As a bonus topic, we show how the familiar Fourier analysis technique can be extended

to predict the performance of Flux Reconstruction methods (including a novel Recovery-assisted

formulation) on unstructured meshes.

Overall, this study indicates that with regard to error minimization at fixed computational cost,

manipulation of interface flux terms in the DG weak form is a reliable path to scheme improvement;

in our case, the performance gain is achieved via the recovery operator. Fourier analysis proves

the Recovery-assisted method superior to the conventional approach for linear problems. The

exceptional performance of the new method extends to 3D turbulence simulations, validating the

general scheme development philosophy of performing detailed analysis with simple model PDEs.

By design, the Recovery-assisted method is relatively easy to implement in an existing DG code

and avoids a prohibitive increase in computational cost; these traits, combined with the method’s

superior resolution properties, make it a valuable new tool for CFD analysis.
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CHAPTER 1

Introduction

The engineering design process frequently mandates understanding and prediction of both low and

high speed flows. While there are accepted sets of partial differential equations (PDEs) for pre-

diction of flow features around and within engineered devices, these equations are typically too

complicated (specifically, coupled and nonlinear) to be solved by hand, and engineers have histor-

ically relied on two methods for predicting flow behavior. The more convenient method is to work

with highly simplified versions (low-fidelity models) of the governing PDEs, allowing decent pre-

diction of flow patterns either by hand or with inexpensive computer programs. Examples include

potential flow analysis and panel methods for lift calculations. On the other hand, it is typical to de-

sign a scale model of the device (such as a submarine), place it in a wind/water tunnel, and observe

the flow. This approach is costly not only because the scale model must be constructed, but also

because high-quality flow measurement devices are expensive. Moving past the usage of inexpen-

sive models and vehicle-specific experiments, engineers are also aided by the collective knowledge

of the general fluid dynamics research community. However, to build a sufficient understanding of

fundamental flow physics processes (such as cavitation erosion or fluid mixing), fluid dynamicists

are also faced with a difficult choice: either struggle with the analysis of complicated PDEs or

conduct physical experiments to gain insight.

Nowadays, analysis and physical experimentation are routinely complemented by approximate

solutions of the governing PDEs, computed via specialized numerical algorithms, thereby stream-

lining the research and design processes. This approach is known as Computational Fluid Dynam-
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ics (CFD). It is a constantly evolving field of study because present methods are far from being

adequate to accurately predict flow physics around all possible vehicle designs in all flow regimes;

see van Leer & Powell [103] for a brief history of the field. In the academic research commu-

nity, where the priority is to better understand fundamental fluid dynamics processes rather than

device-specific flow patterns, CFD practitioners frequently rely on the general class of high-order

methods to facilitate efficient usage of computational resources when pursuing high-fidelity com-

putational results. Generally, an approximate solution obtained via CFD contains some amount of

error; if the error in the solution is judged to be too large, the computational setup is adjusted (via

mesh refinement) to devote more computational resources to the simulation. If the CFD method

works as designed, the increased use of resources yields a decrease in the simulation error (in

technical terms, this property is known as consistency). However, different methods achieve dif-

ferent amounts of error reduction. The general idea of high-order methods is to maximize the

amount of error reduction as more computational resources are devoted to the simulation. High-

order methods have yet to be wholheartedly embraced by industry (where robustness is prioritized

over computational efficiency), but they are an indispensable component of the academic research

process.

We provide a concrete example to show the value of high-order methods. The transport of

an isentropic vortex in uniform inviscid flow (test problem C1.6 in [111]) is simulated through

one translational period using a conventional DG spatial discretization (to be fully described in

Chapter 2) in a variety of configurations. Three particular versions are included in this study:

conDG(p = 1), conDG(p = 2), and conDG(p = 3). Each discretization is applied on a variety

of mesh resolutions. The conDG method includes a special parameter p; when this parameter is

increased, the method’s order of accuracy is increased. Figure 1.1 plots the error of each simulation

versus the computational cost. In Figure 1.1a, computational cost is quantified in terms of the

number of “degrees of freedom”, which are directly correlated (but not linearly correlated) with

the memory usage of the code. In Figure 1.1b, cost is instead quantified by computational wall

time. Each point on each plot corresponds to a single simulation. In the case of a relatively low-
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Figure 1.1: Sample refinement study. On the left, the cell-average error ECA in the velocity is
plotted against the inverse of the square root of the degree-of-freedom count, nDOF. On the right,
the error is plotted against computational wall time. The highest order scheme, conDG(p = 3),
provides the lowest error for a fixed amount of computational resources, making it the best scheme
in this test.

order method (the p = 1 case), the decrease in error is relatively shallow as the computational

cost increases. As the order of the method improves, the slope of the error-vs.-cost curve becomes

steeper, indicating more substantial decreases in error relative to the computational cost. The slope

of the error-vs.-cost curve on the log-log plot for a particular method is the order of convergence

(also commonly referred to as the order of accuracy) in the particular error norm employed. The

ideal method would be one which produces an error-free simulation with zero wall time, but that

is impossible, so high-order schemes are pursued to minimize error at a given computational cost.

In practice, the term “high-order” usually refers to methods whose order of convergence is greater

than two. However, there are some who see 2nd order methods as high-order as well, so it is not

a well-defined criterion; the exact definition is not important. What is important is that increasing

the numerical scheme’s order of accuracy is an avenue towards simultaneous minimization of both

error and computational cost. Note that in Figure 1.1, for a given computational cost (in terms of

either wall time or DOF count), the error in the numerical solution is minimized by maximizing

the order of accuracy. This advantage motivates the study of high-order CFD methods. We point

out that the lowest-order method in Figure 1.1 (specifically the p = 1 configuration), achieves 3rd
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order convergence in the particular norm employed; presently, the industry standard is 2nd order

methods while the research community tends to show greater interest in high-order methods.

The Navier-Stokes equations are viewed by most as the governing differential equations for

fluids and are consequently closely linked with the development of CFD. These equations are part

of a general class of equations known as advection-diffusion (or convection-diffusion) systems.

Advection refers to the transport of certain quantities; for example, a pollutant in a river is carried

downstream by the velocity field of the water. In another example, oceanic currents serve to re-

distribute heat on a global scale; in fact, global climate simulation/modelling is one of the primary

drivers for the development of sophisticated CFD methods [73]. In contrast, diffusion refers to

the spreading of a certain quantity independent of a directional transport mechanism. Returning to

the example of a pollutant in a river, the pollutant can be expected to spread from regions of high

concentration to regions of low concentration (like dye in a cup of water), and this spread of the

pollutant is diffusion. In reality, the advection and diffusion processes tend to be present together:

as the pollutant is transported downstream by the water velocity, it can spread from one bank of

the river to the other (transverse to the water’s velocity vector) by diffusion. In this work, while

the ultimate target of the proposed discretizations is the compressible Navier-Stokes equations, the

methods proposed are thought of more generally in terms of advection-diffusion systems to aid in

analysis and simplify the potential extension past the compressible Navier-Stokes equations.

This thesis is devoted to the study of a particular high-order method, known as the discontinu-

ous Galerkin (DG) method, in the context of the compressible Navier-Stokes equations and other

advection-diffusion systems. The DG method was originally proposed [88] as a special variant

of the finite element approach and is popular for a variety of reasons, the main one being that is

has the capability of arbitrarily high orders of accuracy on nontrivial geometries. Compared to

the commonly applied continuous finite element approach, the DG method has the advantage of

a block-diagonal global mass matrix; see [108, 1, 61, 105] for discussion of the continuous finite

element approach alongside the DG method. However, it is our opinion that the conventional DG

discretization for advection-diffusion problems does not make the best use of the information avail-
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able in the computational stencil, and there is ample room for method improvement (with regard

to accuracy versus cost) by thoughtful manipulation of the base discretization. The overall goal

of this thesis is to provide a more accurate version of the conventional DG discretization while

avoiding a prohibitive increase in computational cost. We now discuss the motivation for working

with numerical methods and the DG method in particular; then, Chapter 1 will be closed with an

outline of the rest of this document.

1.1 Turbulence: Our Motivation for Method Development

Considering the difficulty involved in the development and testing of numerical methods for PDEs,

it is quite reasonable to ask why anyone should be working on numerical methods at all. The an-

swer to this question varies across disciplines; our immediate motivation for working on numerical

methods is the general field of fluid mechanics. One of the fundamental issues that make fluids

difficult to predict is the presence of turbulence. For the layperson, turbulence is best described as

chaotic, unsteady fluid motion on a variety of length scales that are smaller than the characteristic

length of the overall flow field. For example, in the case of a hurricane, the characteristic length

scale is the hurricane diameter (a few hundred miles). At a much smaller length scale, a human

observer on the beach where the hurricane makes landfall will experience unsteady gusts in the

air velocity; while the sustained wind speed may be around 70 mph, the wind could momentarily

gust to higher speeds or lull to lower speeds. These unsteady, seemingly chaotic wind velocity

fluctuations occur over a length scale much smaller than the hurricane diameter, thus the overall

flowfield is turbulent.

Empirical evidence demonstrates that the presence of turbulence, despite the fact that it is

characterized by velocity fluctuations over relatively small length scales, affects the behavior of

the large-scale mean flow. An outstanding example of this phenomena (typically presented to

undergraduate engineering students) is pipe flow. For a horizontal, constant-area pipe, fluid must

be pushed through the pipe by a pressure difference (denoted ∆p) across the full length of the pipe.

The necessary pressure difference overcomes the viscous drag exerted by the pipe wall on the
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moving fluid. The drag itself is known to scale with the empirical Darcy friction factor [87]. This

friction factor itelf depends on the Reynolds number, Re = VD
ν

; V is the mean fluid velocity in the

pipe, D is the pipe diameter, and ν is the dynamic viscosity. Larger Reynolds numbers correspond

to larger levels of turbulence in the flow field. The fact that the friction factor depends on the

Reynolds number indicates that the level of drag depends on the level of turbulence inside the

pipe, despite the fact that turbulent flow structures tend to be smaller than the diameter of the pipe.

In the case of pipe flow, numerous physical experiments have made it possible for engineers to

predict pipe drag (and the necessary pressure difference ∆p) with sufficient accuracy for the design

process across a broad range of Reynolds numbers. The quantitative influence of turbulence on

other physical systems, such as a large airplane descending to land or the combustion of fuel-air

mixture in a scramjet, is more difficult to predict.

The presence of turbulence can be explained by analysis of the Navier-Stokes equations. In-

spection of the incompressible version of the Navier-Stokes equations in wavenumber space [85]

indicates that when two flow features of distinct length scales interact, they produce a third flow

feature of a different length scale. Thus, in a turbulent flowfield, coherent structures of different

length scales are constantly being created, evolving, and getting dissipated away. As the Reynolds

number increases (meaning the fluid momentum becomes an increasingly dominant player against

the fluid’s dissipation properties), the fluid structures exist across a greater span of length scales.

For an example of this phenomena, see Figure 1.2, taken from [77]. As the Reynolds number of the

pipe flow increases, the coherent flow structures become smaller and smaller. To capture the entire

system by numerical simulation (and be sure that full-scale system properties such as viscous drag

and mixing rates are being properly predicted), the spatial domain must encompass the entire pipe

diameter while also being able to properly resolve the formation and evolution of flow structures

that are orders of magnitude smaller than the pipe diameter. This issue leads to astronomically high

DOF counts (nDOF ≥ 100, 000, 000 is not rare) in high-fidelity numerical simulations of turbulent

flows. Thus, it is necessary to work towards numerical methods that minimize the necessary DOF

count for a given level of accuracy. High-order CFD methods are naturally suited for this task.
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Figure 1.2: Illustration of pipe flow, taken with permission from Mullin [77]. As the pipe Reynolds
number is increased, turbulent flow structures appear at smaller length scales.

1.2 The DG Method and Turbulence

Computational studies of turbulent flows on simple geometries (“turbulence in a box”) are com-

mon in the academic research community as a means to better understand turbulent flow dynamics

across various regimes (compressible vs. incompressible, singlefluid vs. multifluid, etc.). We

are particularly interested in simulations of the compressible case, where the fluid’s ability to ex-

pand and compress influences the exchange of energy across different length scales [109]. On

the more applied side, the engineering design process frequently mandates consideration of tur-

bulent flow dynamics on nontrivial geometries such as aircraft wings, turbine blades, and vortex

generators that operate in the compressible regime. A particulary fascinating intersection of turbu-

lent flow dyanamics and compressible phenomena is turbulent shock-wave/boundary-layer inter-

action [25, 78], which can hinder aircraft performance by facilitating oscillatory flow features on

lifting surfaces and within high-speed engine inlets.

In the industrial setting, the Reynolds-averaged Navier-Stokes (RANS) approach tends to be

favored for moderate solution quality at tolerable computational cost, as it models the effects of

small-scale turbulent flow features without requiring the spatial discretization to properly resolve
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these features. However, thorough understanding of the underlying turbulent interactions requires

physical experimentation alongside high-fidelity computational results obtained via unsteady large

eddy simulation (LES) and/or direct numerical simulation (DNS) of the compressible Navier-

Stokes equations. In the case of LES, some of the turbulent length scales are properly resolved

by the grid while the smallest scales are modelled. In the case of DNS, all turbulent length scales

are properly resolved in order to provide the most authoritative description of the flow. Unfor-

tunately, as the Reynolds number of the flow is raised, the necessary gridpoint count grows with

it. Thus, high-fidelity simulations are restricted by computational cost to relatively low Reynolds

numbers, and this limitation hinders our understanding of turbulent flows. In the interest of bene-

fitting the general fluid dynamics community, it is worthwhile to continue developing and building

improved CFD codes for high-fidelity compressible turbulence simulations. Such codes should

ideally meet the following requirements:

• Efficient scaling on large distributed-memory architectures, to ensure efficient resource uti-

lization in massively parallel simulations.

• High-order accuracy, allowing a more accurate simulation than a low-order scheme at a given

gridpoint count.

• Applicability to unstructured meshes, preferably allowing high-order accuracy on nontrivial

geometries.

The DG method meets these requirements, making it a promising candidate for the job.

However, the DG method is not the only candidate for the discretization of these types of prob-

lems. In fact, limited evidence indicates that the conventional DG discretization offers little to no

advantage over high-order finite volume schemes for compressible turbulence simulations [72].

One would expect that this shortcoming could be overcome by the DG method’s theoretical ca-

pability for an arbitrarily high order of accuracy: for a sufficiently smooth problem and a given

level of error, the DOF count necessary to achieve that error is expected to decrease as the so-

lution polynomial order p is raised and the mesh is coarsened [111, 110], as demonstrated in

8



Figure 1.1. Unfortunately, this advantage is diminished by practical considerations. First, a high-p

discretization is effective only if the coarsened mesh is of high quality, but the generation of high-

quality meshes for high-p discretizations has proven to be a difficult task and remains an active

research area [41, 111]. Additionally, for highly compressible flows [72] (where shocklets may

be present), evidence shows that h-refinement, while keeping p relatively small, is more efficient

than p-refinement for minimizing error at a given DOF count. The work of Chapelier et al. [21] in

the incompressible regime suggests that h-refinement is more effective than p-refinement for min-

imizing error in simulations of wall-bounded viscous flows at a fixed DOF count, at least for the

p values typically chosen in the DG method. For nonlinear PDE problems, the reduced numerical

dissipation of high-p discretizations tends to worsen the aliasing issue, necessitating stabilization

through a variety of methods [11, 36, 114] that tend to complicate the spatial discretization and/or

significantly raise the computational cost. There is also the widely studied issue of suppressing

Gibbs oscillations in regions of steep gradients [33, 118, 23, 6, 81], which tends to become more

inconvenient as the solution order is raised. Furthermore, in the case of unsteady flows, the order

of the temporal discretization scheme is rarely greater than 4th order. Due to the relatively high

truncation error in time, a CFD code with better than 4th order accuracy in space acts with reduced

effectiveness. With these issues in mind, while exploiting the extraordinary performance gains of

p-refinement where possible, it is also worthwhile to develop alternative DG discretizations that

reduce the error at a given p compared to the conventional DG discretization (as opposed to rely-

ing exclusively on p-refinement) while maintaining a compact computational stencil and avoiding

a severe increase in computational cost.

1.3 Goal, Document Outline, and List of Schemes

The goal of this thesis is to improve upon the conventional DG discretization for advection-

diffusion problems with regard to accuracy versus computational cost at a given polynomial or-

der p. The proposed DG variants are designated Recovery-assisted DG schemes owing to their

utilization of a relatively new idea known as Recovery [102] and the associated recovery opera-
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tor. Our motivation for including the recovery operator is simple: the solution representation in

the DG method is multivalued at certain locations (known as interfaces), and as will be shown in

Chapter 2, solution quantities must be approximated at the interfaces. The recovery operator intel-

ligently interprets the discontinuous DG approximation near an interface to build an exceedingly

accurate estimate for the solution along the interface. We hypothesized that by careful application

of the recovery operator, the truncation error of the full DG spatial discretization at a given p could

be substantially reduced for both advection and advection-diffusion problems. The core of this

document methodically tells the story of the methods built to test this hypothesis.

Before moving on, we address the caveat of unstructured versus structured meshes. The ma-

jority of the analysis and testing in this document is aimed at high-fidelity simulations on uniform

structured meshes, where one could certainly employ the global spectral/pseudospectral method

(within parallel efficiency constraints) or a high-order finite difference scheme to beat the perfor-

mance of the DG method in terms of accuracy versus simulation cost. However, for maximum

versatility, a CFD code should be able to handle structured and unstructured meshes. Towards this

end, we focus on improving the DG method’s accuracy on structured meshes while maintaining its

applicability to unstructured meshes. The Recovery-assisted DG schemes are built to achieve this

goal (as will be made apparent in this document), but their robustness on unstructured meshes has

not been explored in detail and remains an open issue.

The remaining layout is as follows. In Chapter 2, the DG spatial discretization is summarized

and a pair of simple test problems is presented. The tests indicate that while the DG method per-

forms well for the linear advection equation, a naive implementation fails to properly discretize

the linear diffusion equation. A discussion on Fourier analysis (sometimes called von Neumann

wavenumber analysis) is presented. Then, the Recovery concept [102] is introduced; the original

implementation of the recovery operator is described and an alternative derivative-based imple-

mentation is proposed.

The Recovery-based DG schemes of Lo [67] (descended from the original Recovery DG

method of van Leer & Nomura [102]) are built specifically to maximize accuracy on scalar dif-
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fusion problems; they represent the most direct application of the Recovery concept in the DG

framework. They achieve impressive convergence rates for parabolic PDE problems. However,

the Recovery-based DG approach requires a non-compact stencil to achieve stable and consistent

treatment of shear diffusion terms, which appear in the compressible Navier-Stokes equations; ad-

ditionally, implementation in an existing DG code is a painfully invasive procedure. In response,

Chapter 3 presents our Interface Gradient Recovery family of schemes for parabolic PDEs. We

combine the Recovery concept with the commonly applied mixed formulation to build a family

of schemes that compare favorably to common DG methods for parabolic PDEs (with respect to

accuracy) but are less intrusive to implement than the Recovery-based DG schemes of Lo [67].

Moving away from parabolic PDEs, Chapter 4 reviews the Interface-Centered-Binary (ICB)

reconstruction schemes of Khieu & Johnsen [56] for advection problems (hyperbolic PDEs). The

ICB schemes employ a biased version of the recovery operator to facilitate stable discretization of

the linear advection equation. We analyze and test a trio of schemes within the ICB reconstruction

framework; these schemes tend to achieve an advantage in accuracy compared to the conventional

upwind DG discretization for advection.

Our favorite advection and diffusion schemes from Chapter 3 and Chapter 4 are combined

in Chapter 5 to form the family of Recovery-assisted DG schemes for advection-diffusion prob-

lems, such as the compressible Navier-Stokes equations. These Recovery-assisted DG schemes

are the centerpiece of the thesis. We employ a recently proposed form of Fourier analysis to pre-

dict scheme performance over a broad range of Peclet numbers, showing that the new advection-

diffusion schemes compare favorably to a conventional DG approach in terms of accuracy. The

new schemes are evaluated with a set of test problems. These demonstrations are necessary in

order to verify that the Recovery-assisted DG schemes’ advantages, predicted in Fourier analysis,

carry over to the nonlinear compressible Navier-Stokes equations.

Overall, Chapter 3, Chapter 4, and Chapter 5 form the core of our thesis work. Chapter 6

and Chapter 7 present exciting miscellaneous topics. Chapter 6 examines the Recovery-based DG

methods of van Leer, Nomura, and Lo [102, 67, 69, 57, 101, 68] for parabolic PDEs. A pair of
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boundary schemes is proposed for the application of Dirichlet and Neumann boundary conditions;

a comparison of different boundary schemes is carried out through a simple test problem. Leaving

the DG framework behind, Chapter 7 shows how the Recovery concept can be applied in the

relatively new Flux Reconstruction (FR) framework [46, 47] to obtain an attractive FR scheme for

parabolic PDEs. Additionally, the Fourier analysis technique is extended to irregular mesh layouts,

as one would expect to encounter on the unstructured meshes that are typical in design-related CFD

analysis scenarios. Chapter 8 closes the thesis with some concluding remarks and ideas for future

research.

To orient the reader, Figure 1.3 lists our proposed schemes next to established approaches for

advection problems, diffusion problems, and advection-diffusion problems. For advection prob-

lems, the ICB approaches upgrade the upwind DG approach for advection with a biased version of

the recovery operator. On the other end of the diagram, the Interface Gradient Recovery family rep-

resents a compromise between the versatilty of the mixed formulation and the accuracy of Lo’s [67]

Recovery-based DG schemes. A conventional DG discretization for advection-diffusion problems

is obtained by combining the upwind DG discretization for advection with the BR2 scheme [8] (or

a similar scheme such as interior penalty [3, 40]) for diffusion. The Recovery-assisted DG schemes

for advection-diffusion are formed by combining the ICB schemes (for the advective fluxes) with

a compact member of the Interface Gradient Recovery family (for the diffusive fluxes).
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Figure 1.3: Summary of proposed schemes. Novel schemes are listed in blue text while previously
existing approaches are listed in red text. A DG scheme for advection-diffusion problems is formed
by combining an advection scheme (from the left side of the diagram) with a diffusion scheme
(from the right side of the diagram).
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CHAPTER 2

Fundamental Concepts

2.1 Chapter Overview

This chapter has four purposes. The first is to introduce the governing partial differential equations

(PDEs) that make an appearance in this work. The second purpose is to introduce the discon-

tinuous Galerkin (DG) method. We will demonstrate the method’s excellent performance for the

linear advection equation in 1D, then show that a naive application of the method fails to properly

discretize the 1D heat equation. Third, the Fourier analysis technique, which has been crucial to

the analysis of the DG variants proposed in this work, is reviewed. Fourth, the recovery opera-

tor [102] is described. The recovery operator is a tool to be applied within the DG method. It is

described in detail to allow for a lucid explanation of DG variants in later chapters. Additionally,

the Recovery section of this chapter introduces the novel derivative-based implementation of the

recovery operator. Those already familiar with the compressible Navier-Stokes equations and the

DG spatial discretization need only read Section 2.4 and Section 2.6.

2.1.1 Novelty and Articles

Each chapter begins with a statement on novelty to summarize our contributions and list relevant

conference proceedings and/or journal articles. This chapter contains two novel concepts. The

first novelty is the Lagrange ICB reconstruction technique in Section 2.6. The Lagrange ICB

reconstruction is a modification of Khieu & Johnsen’s [56] icbp[0] technique. The second novelty
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is the derivative-based implementation of the Recovery operator, which was inspired by the bilinear

form of the RDG-2x scheme [104].

The derivative-based recovery implementation is proposed in the following journal article,

which is presently in preparation:

• P. E. Johnson, L. H. Khieu, & E. Johnsen, A Compact Recovery-Assisted Discontinuous

Galerkin Method for the Compressible Navier-Stokes Equations, in preparation.

2.1.2 Usage of Recovery

In addition to a statement on novelty, each chapter begins with a statement on how the Recovery

concept (to be explained in Section 2.6) is utilized. It will be explicitly stated whether the recovery

operations are applied in the derivative-based or inner-product based implementations.

2.2 Governing Equations

This section describes all of the partial differential equations (PDEs) that make an appearance

in this work. The state variable is denoted U and is a function of space x and time t such that

U = U(x, t). For our purposes, the PDEs are always cast in the following form:

∂U
∂t

+ ∇ ·Q (U,∇U) = S(x, t), (2.1)

whereQ is referred to as the flux. In general, it depends on both the solution U and its gradient ∇U.

The boldface notation has been chosen to indicate that the flux Q is typically a vector, even when

the state variable U is a scalar. Certain test cases also include a nonzero source term S, which is

independent of U for all cases considered in this work.

In this section, the letter p makes an appearance as the variable for pressure of an ideal gas.

This p is completely unrelated to the polynomial order p that will appear later in the description of

the discontinuous Galerkin method.
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2.2.1 1D Diffusion Equation

The 1D diffusion equation features a single variable U constrained as follows:

∂U
∂t

=
∂

∂x

(
µ
∂U
∂x

)
, (2.2)

where µ is the diffusivity. Making use of a diffusive flux G, an equivalent statement is

∂U
∂t
−
∂G

∂x
= 0 where G = µ

∂U
∂x

. (2.3)

If µ is constant, then in the absence of a source (forcing) term, U(x, t) tends towards a straight

line as t approaches infinity, effectively smoothing away any oscillations. The equation is more

difficult to solve when µ is not constant. The 1D diffusion equation is parabolic and serves as a

highly simplified model of the diffusive terms in the compressible Navier-Stokes equations.

2.2.2 1D Linear Advection Equation

The 1D advection equation features a single variable U constrained as follows:

∂U
∂t

+
∂F

∂x
= 0 where F = aU, (2.4)

with a being the advection speed. In this work, a is kept constant, so we are working with the

1D linear advection equation. In the case of periodic boundary conditions, the solution of this

equation is U(x, t) = U(x− at, 0) where U(x, 0) is the initial condition. The 1D advection equation

is hyperbolic and serves as a highly simplified model of the inviscid terms in the compressible

Navier-Stokes equations.
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2.2.3 1D Linear Advection-Diffusion Equation

Combining the linear advection equation and the 1D diffusion equation yields the linear advection-

diffusion equation:

∂U
∂t

+
∂(F − G)

∂x
= 0 where F = aU and G = µ

∂U
∂x

. (2.5)

This equation is a highly simplified model of the compressible Navier-Stokes equations. It is the

prototypical advection-diffusion system, exhibitting mixed hyperbolic/parabolic behavior due to

the transport mechanism of the advection equation and the smoothing behavior of the diffusion

equation.

2.2.4 Multidimensional Linear Advection Equation

The general multidimensional linear advection equation features a single variable U constrained

as follows, where ND is the number of spatial dimensions:

∂U
∂t

+ ∇ · F = 0 where F =


v1U for ND = 1

(v1U , v2U) for ND = 2

(v1U , v2U , v3U) for ND = 3


. (2.6)

In this case, V = (v1, v2, v3) the the velocity vector; it governs the transport of the scalar variable

U. As with the 1D version, this equation is hyperbolic.

2.2.5 Multidimensional Diffusion Equation

Typically, studies of diffusion in 2D and 3D focus on the scalar Laplacian equation. To model the

difficulties of capturing the viscous stress tensor in the Navier-Stokes equations, we allow for a

shear term in the diffusion equation. Again, ND is the number of spatial dimensions and the single
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variable U = U(x, t) is constrained according to a generalized Fourier law:

∂U
∂t
− ∇ ·G = S where G = (D∇U)T , (2.7)

with D being the diffusivity matrix. The diffusivity matrix scales with the diffusivity µ and is

constructed as follows:

D =



µ, for ND = 1 µ µθ

µθ µ

 , for ND = 2


µ µθ µθ

µθ µ µθ

µθ µθ µ

 , for ND = 3



, (2.8)

where θ is known as the shear factor in this work. When θ = 0, this equation is the scalar Laplacian.

Many of the schemes explored in this work exhibit different stability properties depending on the

value of θ.

2.2.6 The Euler Equations

The Euler equations govern ideal gas flow in the limit of vanishing viscosity. The conservative

form of the equation is employed here. The conserved variables are stored in a vector U that

contains the density, momentum, and energy of the gas. In the 1D case,

∂U
∂t

+ ∇ · F = 0 where U =


ρ

ρv1

Eg

 and F =


ρv1

ρv2
1 + p

v1

(
Eg + p

)
 . (2.9)

In this equation, ρ is the density (mass per volume) of the fluid, v1 is its velocity in the x direction

(such that ρv1 is the momentum), and Eg is the energy density (energy per volume), typically just

referred to as the energy. The pressure p is linked to the conserved variables via an equation of

18



state. The letter p here has nothing to do with the polynomial order in the DG spatial discretization.

The equations can be written in a single, compact form for the general multidimensional case, but

in the interest of clarity, the 2D and 3D versions are reported separately in this section. In the 2D

case,

∂U
∂t

+ ∇ · F = 0 where U =



ρ

ρv1

ρv2

Eg


, F =





ρv1

ρv2
1 + p

ρv1v2

v1

(
Eg + p

)


,



ρv2

ρv1v2

ρv2
2 + p

v2

(
Eg + p

)




, (2.10)

with v2 being the velocity component in the y direction and ρv2 being the corresponding momentum

term. In the 3D case,

∂U
∂t

+ ∇ ·F = 0 where U =



ρ

ρv1

ρv2

ρv3

Eg


, F =





ρv1

ρv2
1 + p

ρv1v2

ρv1v3

v1

(
Eg + p

)


,



ρv2

ρv1v2

ρv2
2 + p

ρv2v3

v2

(
Eg + p

)


,



ρv3

ρv1v3

ρv2v3

ρv2
3 + p

v3

(
Eg + p

)




, (2.11)

with v3 being the velocity component in the z direction and ρv3 being the corresponding momentum

term. The equation of state for the pressure p is as follows:

p =


(γ − 1)

(
Eg −

ρ

2v2
1

)
for ND = 1

(γ − 1)
(
Eg −

ρ

2

(
v2

1 + v2
2

))
for ND = 2

(γ − 1)
(
Eg −

ρ

2

(
v2

1 + v2
2 + v2

3

))
for ND = 3


, (2.12)

which can be written in compact form as p = (γ − 1)
(
Eg −

ρ

2vivi

)
where the repeated index in-

dicates summation. The parameter γ is the ratio of specific heats; for all work presented in this

document, γ = 1.4.
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2.2.7 The Compressible Navier-Stokes Equations

The compressible Navier-Stokes equations are obtained by adding physical diffusive flux terms

(sometimes called the viscous flux terms) to the Euler equations. The vector of conserved variables,

U, is the same as that used for the Euler equations. In addition to the pressure p, these equations

involve the fluid temperature T which is governed by the ideal gas law, p = ρRgT , where Rg is the

gas constant. Temperature diffuses according to Fourier’s law with thermal conductivity Λ =
µCp

Pr .

The parameters Cp and Pr are the specific heat (at constant pressure) and the Prandtl number,

respectively. The specific heat is related to the gas constant (Rg) and the ratio of specific heats (γ)

as Cp =
γRg

γ−1 . The conserved variables are governed as follows:

∂U
∂t

+ ∇ · (F −G) = 0, (2.13)

where the inviscid flux F is taken from the Euler equations. It remains to define the diffusive flux,

G. In compact form, the diffusive flux takes the following form:

G =


0

τ

τ · V + Λ (∇T )T

 where τi j = µ

(
∂vi

∂x j
+
∂v j

∂xi
−

2
3
∂vk

∂xk
δi j

)
. (2.14)

The term τ is the viscous stress tensor; it bears some resemblance to the flux for the multidimen-

sional diffusion equation (Eq. 2.7). In the definition of τ, we have taken the usual approach of

assuming the bulk viscosity to be zero (i.e., Stokes’ assumption); see Buresti [18] for a concise,

modern discussion of this assumption. The term (∇T )T is the transpose of the temperature gradient

(not the temperature gradient raised to a power T ). The diffusive flux in the 2D case is explicitly
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stated here for the reader’s convenience:

G = [Gx , G
y] where

G
x =



0

2µ
3

(
2 ∂
∂xv1 −

∂
∂yv2

)
µ
(
∂
∂yv1 + ∂

∂xv2

)
v1

(
2µ
3

(
2 ∂
∂xv1 −

∂
∂yv2

))
+ v2

(
µ
(
∂
∂yv1 + ∂

∂xv2

))
+ Λ∂T

∂x


,

G
y =



0

µ
(
∂
∂yv1 + ∂

∂xv2

)
2µ
3

(
2 ∂
∂yv2 −

∂
∂xv1

)
v2

(
2µ
3

(
2 ∂
∂yv2 −

∂
∂xv1

))
+ v1

(
µ
(
∂
∂yv1 + ∂

∂xv2

))
+ Λ∂T

∂y


.

(2.15)

The compressible Navier-Stokes equations are coupled and nonlinear, which makes them difficult

to solve by hand; a general closed-form analytical solution has thus far evaded the human race.

2.3 The Discontinuous Galerkin (DG) Method in 1D

This section gives an explanation of the discontinuous Galerkin (DG) method in the context of the

1D linear advection equation (Eq. 2.4). The method was originally proposed by Reed & Hill [88]

as a special version of the finite element approach; the 1D version for the linear advection equation

can also be found in van Leer’s high-order generalizations [100] of the original Godunov scheme.

The semi-discrete approach is taken, meaning that the DG method functions as a tool with which

to transform a partial differential equation (PDE) into a system of ordinary differential equations

(ODEs) in time, which are then solved by the user’s method of choice. Assume spatially peri-

odic boundary conditions and take the solution to be set to some initial condition UIC at t = 0:

U(x, 0) = UIC(x). The solution U is to be approximated by Uh(x, t), which is defined as a piece-
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(b) The discontinuous polyno-
mial Uh(x) with p = 2.

Figure 2.1: Domain decomposition demonstration. The domain Ω = {x | x ∈ [0, 1]} is parti-
tioned into five equally spaced, distinct elements with h = 1

5 . Vertical gray lines indicate ele-
ment interfaces. In the right figure, the discontinuous polynomial Uh approximates the function
U(x) = x sin(6πx), and each element’s polynomial is granted a distinct color.

wise continuous polynomial; the technique for forming this polynomial requires the use of domain

subdivisions known as elements.

Given the 1D spatial domain, Ω = {x | x ∈ [0, L]}, partition it into M non-overlapping sub-

intervals, known as elements and labelled Ωm, such that Ω = ∪M
m=1Ωm as shown in Figure 2.1a.

Each element Ωm has a left boundary and a right boundary. For example, the left boundary of Ω2

in Figure 2.1a sits at x2 = 0.2 and the right boundary sits at x3 = 0.4. At both of these boundaries,

also known as interfaces, Ω2 interfaces with other elements in the domain.

Take each element Ωm to be mapped to a reference element, Ωre f , which exists in the bi-unit

interval and is spanned by reference coordinate ξ such that Ωre f = {ξ | ξ ∈ [−1, 1]}. Let φre f be a

degree-p polynomial basis (with p + 1 members) in the reference element. For example, if p = 2,

then φre f = {1, ξ, ξ2} is an acceptable choice. Given the physical left endpoint of Ωm, labelled

xm, and the element width, labelled hm, the mapping between the reference element Ωre f and the
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physical element Ωm takes the following form:

ξ (x) = −1 +
2

hm
(x − xm) , (2.16a)

x (ξ) = xm +
hm

2
(ξ + 1) . (2.16b)

Let each Ωm have its own set of basis functions φk
m which are nonzero on Ωm and equal to zero

outside Ωm:

φk
m (x ∈ Ωm) = φk

re f (ξ(x)) ∀k ∈ {0, 1, ..., p},

φk
m (x < Ωm) = 0 ∀k ∈ {0, 1, ..., p},

(2.17)

where the subscript m indicates that the basis function is native to Ωm. The element’s collection of

basis functions is denoted with boldface: φm = {φ0
m, φ

1
m, ..., φ

p
m}. Now, the necessary pieces are in

place to desribe the discontinuous polynomial Uh:

Uh (x ∈ Ωm, t) = Uh
m(x, t) =

p∑
k=0

Ûk
m(t)φk

m(x). (2.18)

The global approximation Uh is described at any time t by the collection of coefficients Û(t), which

are known as the degrees of freedom (DOFs), and the basis functions φ, which are independent of

time. An example approximation Uh is given in Figure 2.1b; note that Uh is multi-valued along

interfaces, as there are no continuity constraints in the basis functions φ or the approximation Uh.

In general, it is impossible for Uh to satisfy the governing differential equation (Eq. 2.4 in the

present example) for all x and all t, so we attempt to satisfy it in the integral sense instead:

∫
Ω

φk
m

(
∂U
∂t

+ a
∂U
∂x

)
dx = 0 ∀m ≤ M, ∀k ≤ p. (2.19)

Given the fact that each φk
m is nonzero over exactly one Ωm, the constraints are addressed in an
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element-by-element fashion:

∫
Ωm

φk
m

(
∂U
∂t

+ a
∂U
∂x

)
dx = 0 ∀Ωm ∈ Ω, ∀k ≤ p. (2.20)

We substitute the polynomial approximation Uh for U and perform an integration by parts to obtain

the DG weak form:

∫
Ωm

φk
m
∂Uh

∂t
dx +

[
φk−

m
˜aU

]
|xm+hm
xm

−

∫
Ωm

∂φk
m

∂x
aUhdx = 0 ∀Ωm ∈ Ω, ∀k ≤ p. (2.21)

The term φk−
m is the limit of φk

m as the element boundary is approached from inside Ωm; recall that

since φk
m goes to zero outside the element, it is in fact multivalued at x = xm and x = xm + hm. The

DG weak form requires that an approximation for the aU term be populated along each interface;

this task is not trivial because the DG approximation is, in general, multivalued along interfaces,

hence aUh is also multivalued. The tilde mark above the interface aU term is the notation used

in this work to indicate that a common value must be specified for aU along the interface. Both

elements sharing this interface must make use of this single aU approximation when populating

the DG weak form (Eq. 2.21). In the DG community, the task of calculating the interface flux value

is generally handled by a Riemann solver [99, 90]; a more detailed discussion of this task is given

in Chapter 4.

The terms in Eq. (2.21) are grouped into a residual term and a mass matrix term. For notational

ease, we take the indexing of rows and columns in matrices and vectors to start at zero, i.e. the first

row is designated row 0, the second row is designated row 1, etc. Define the residual vector Rm for

element Ωm as

Rrow
m =

[
φrow−

m
˜aU

]
|xm+hm
xm

−

∫
Ωm

∂φrow
m

∂x
aUhdx (2.22)

and the mass matrixMm for element Ωm as

Mrow,col
m =

∫
Ωm

φrow
m φcol

m dx. (2.23)
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Assuming the DOFs Û(t) to be known at time t, the terms in the residual vector Rm for each Ωm

are immediately available, assuming one has a rule for determining ˜aU along interfaces. Making

use of the mass matrix, Eq. (2.21) is written in matrix-vector form for each Ωm:

Mm
d
dt



Û0
m

Û1
m

...

Û p
m


= −



R0
m

R1
m

...

Rp
m


. (2.24)

Eq. (2.24) provides the means to establish the time derivatives of the DOF vector Ûm given the

residual vector Rm. Now, instead of a partial differential equation (Eq. 2.4), the DG spatial dis-

cretization has been used to formulate a system of ODEs for the DOFs Û.

The discretization scheme for the governing PDE is not complete until a method is chosen to

solve the system of ODEs for the DOFs Û. As an example, the forward Euler method is demon-

strated here:
Ûm (t + ∆t) − Ûm(t)

∆t
= −M−1

m Rm(Û(t)), (2.25)

where ∆t is known as the timestep size. We emphasize that the complete residual vector R depends

on the known DOF vector Û(t). The practice of evolving the system from time t to time t + ∆t is

known as time integration, and the forward Euler method is the simplest possible scheme.

The main reason for the popularity of the DG method is that the order of accuracy scales with

the solution order p. In the case of the linear advection equation, the DG spatial discretization ap-

proximates the exact translation operator with order 2p + 1 accuracy. To achieve this performance,

the interface term ˜aU, known as the interface flux, must be properly approximated. By taking ˜aU

from the “upwind” side of the interface (meaning the left element if a > 0 and the right element

if a < 0), order 2p + 1 accuracy is achieved. The practice of upwinding can be justified either by

physical intiuition or mathematical properties. From a physics perspective, if two solution states,

UL and UR, are present at the same location at a given time, then the expected solution state at
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the specific location after some infinitessimal amount of time has passed depends on which way

the advection velocity a is pointing. From a numerical methods perspective, the practice of up-

winding introduces some numerical dissipation that proves useful for damping away nonphysical

oscillations in underresolved simulations; see Brooks & Hughes [16] or Brezzi et al. [14] for el-

egant explanations of this connection. It is also possible to populate ˜aU by taking the average of

Uh from the two sides of the interface; this technique is known as a central scheme. The central

scheme is generally frowned upon in the DG community. With regard to implementation, the typ-

ical approach for populating the integrals that appear in the DG weak form (Eq. 2.21) is Gaussian

quadrature, with the number of Gaussian quadrature nodes being chosen appropriately high for the

solution order p. It is also possible to solve the integrals analytically in terms of the DOFs Û, but

that approach is cumbersome and memory-intensize for nonlinear flux laws.

A demonstration of the method’s performance for the 1D linear advection equation is presented.

The spatial domain is x ∈ [0, 2π], the advection speed is a = π, the initial condition is U(x, 0) =

sin(x), and the equation is simulated from t = 0 to t = 8 (four translational periods). Time

integration is handled by the 8th order explicit Runge-Kutta scheme of Prince & Dormand [86]. In

Figure 2.2, we present the error in the global L2 norm, labelled EG and calculated as follows:

EG =

√√
M∑

m=1

∫
Ωm

(
Uh − U

)2 dx. (2.26)

The horizontal axis in the the first plot is the characteristic mesh width, h̃ = 1
nDOF , where nDOF =

(M)(p + 1) is the number of DOFs present in a given simulation with M being the number of

elements. At a fixed DOF count, the DG method becomes more accurate as the solution order

p is increased. The expected behavior is for the DG scheme to achieve order p + 1 convergence,

and that behavior is observed in Figure 2.2a. Error is plotted against computational wall time in

Figure 2.2b, demonstrating that the higher p simulations give smaller error for a given allocation

of wall time.
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Figure 2.2: Mesh Refinement study for 1D scalar advection equation under spatially periodic
boundary conditions. The numerical scheme is the conventional DG scheme with an upwind flux at
interfaces. Approximate convergence rates are denoted with m and a dotted gray line; the expected
behavior is m = p + 1 with respect to characteristic mesh width h̃.

2.3.1 Naive Extension to Diffusion Problems

Moving away from the linear advection case, suppose instead that the governing differential equa-

tion is the 1D heat equation (Eq. 2.2). The flux G depends on the solution gradient, unlike the

linear advection case where the flux depends on U. Given the DG weak form for some element

Ωm,

∫
Ωm

φk
m
∂

∂t

 p∑
n=0

Ûn
mφ

n
m

 dx =
[
φk−

m G̃
]
|xm+hm
xm

−

∫
Ωm

(
∂

∂x
φk

m

)
(G)dx, ∀φk

m ∈ φm, (2.27)

the most natural approach is to directly differentiate the DG polynomial Uh over the interior of Ωm

to calculate the gradient (for the fluxG), then take the average gradient at each interface to calculate

the interface flux, denoted {{∇Uh}}. The task is simple because the DOFs can be multiplied against
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(a) Naive DG, p = 1.
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(b) 2nd order FV.

Figure 2.3: Results from unsteady heat equation test, spatially periodic domain. The naive DG
scheme converges to an incorrect solution as the mesh is refined; the 2nd order finite volume ap-
proach gives a satisfactory solution.

the derivatives of the basis functions to approximate the gradient:

∂Uh
m

∂x
=

p∑
n=0

Ûn
m
∂φn

m

∂x
. (2.28)

We refer to this approach as the naive scheme. The resulting residual vector for each Ωm is

Rrow
m = −

[
φrow−

m µ{{∇Uh}}
]
|xm+hm
xm

+

∫
Ωm

∂φ(row)
m

∂x
µ

 p∑
n=0

Ûn
m
∂φn

m

∂x

 dx. (2.29)

Unfortunately, the naive approach is unstable and inconsistent regardless of p [117], meaning

that as the mesh is refined, the numerical approximation Uh tends towards an erroneous solution

as opposed to approaching the exact solution. In Figure 2.3, the naive DG approach with p = 1

is compared to a second-order finite volume (FV) scheme. The 1D diffusion equation (Eq. 2.2)

is simulated with periodic boundary conditions, diffusivity µ = 1, and initial condition U(x, 0) =

sin(x) from t = 0 to t f inal = 2.0 over the domain x ∈ [0, 2π]. As the grid is refined (from M = 8

to M = 64 elements), the DG approximation approaches an erroneous solution while the FV

scheme closely matches the exact solution for both mesh sizes. Due to the failure of the naive

approach, many modifications to the DG method have been proposed to handle diffusive PDE
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behavior [102, 35, 40, 3, 116, 9, 8, 82, 13, 26] (see Arnold et al. [4] for a thorough summary of

legacy approaches), and the Interface Gradient Recovery schemes of Chapter 3 are our entry to this

set of modifications.

2.4 Fourier Analysis

Fourier analysis (sometimes called von Neumann wavenumber analysis) is a tool used to predict

the performance of a spatial discretization. This section describes a basic implementation of the

technique for the model equations in 1D to set the stage for more sophisticated techniques in later

chapters. In this work, Fourier analysis is applied exclusively to the spatial discretization, ignoring

the implications of the time integration scheme in the fully discrete form. The overall goal is to

express the DG spatial discretization as a matrix whose eigenvalues give an indication of scheme

performance. We describe Fourier analysis in the context of DG, but it is applicable to other spatial

discretizations as well and can be used to compare different spatial discretizations [2]. Fourier

analysis of the DG method (and the closely related Flux Reconstruction method) is quite common.

The most simple approach is to judge scheme accuracy by judging only the consistent eigenvalue

and whether or not the scheme is stable by the real components of the full eigenvalue spectrum [56,

55, 117]. More involved analyses discuss the implications of the full eigensystem of the update

matrix on solution accuracy [39]. While scheme accuracy is usually expressed in terms of the

consistent eigenvalue’s order of accuracy, the accuracy can instead be quantified by inspecting error

growth rates across a collection of wavenumbers [112, 76]. In rare scenarios, analysis extends to

the influence of boundary conditions [75] and the role of the time integration scheme in the fully

discrete form [106]. In this section, we review the simplest possible Fourier analysis approach for

discontinuous finite element methods; the more complicated resolving efficiency technique [112]

will be described and employed in Chapter 4.

Let the governing PDE be either the 1D linear advection equation (Eq. 2.4) or the 1D linear

diffusion equation (Eq 2.2) under spatially periodic boundary conditions. Additionally, assume

each element to be of uniform width h. Taking Q to be the flux function (either Q = aU or
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Q = −µ ∂
∂xU), consider the DG weak form for element Ωm:

∫
Ωm

φk
m
∂Uh

∂t
dx +

[
φk−

m Q̃
]
|xm+h
xm
−

∫
Ωm

∂φk
m

∂x
Qdx = 0 ∀φk

m ∈ φm. (2.30)

Due the the common flux term (Q̃) along the interfaces of Ωm, the DG weak form for Ωm generally

involves information from Ωm−1 (the element left of Ωm) and Ωm+1 (the element right of Ωm). Thus,

with the flux law being linear, the DG weak form can be rewritten in matrix-vector form using

Ûm−1, Ûm, and Ûm+1:
d
dt

Ûm = DLÛm−1 + DCÛm + DRÛm+1, (2.31)

where the matrices DL, DC, and DR are specific to the DG spatial discretization of order p. We

refer to these matrices as the differentiation matrices. Next, the initial condition is taken to be a

Fourier mode of dimensional wavenumber ω′:

U (x, 0) = exp
(
iω′x

)
, (2.32)

where i =
√
−1. The DOFs in the three-cell stencil Ωm−1, Ωm, Ωm+1 are assumed to adhere to the

following form in accordance with the initial condition:

Ûm+J = exp (iJω) Ûm, (2.33)

where ω = ω′h is the nondimensionalized wavenumber. Large ω corresponds to a relatively large

mesh spacing h (a coarse mesh, with few DOFs) and small ω corresponds to a relatively small

mesh spacing h (a fine mesh, with many DOFs). Eq. (2.33) is substituted into Eq. (2.31):

d
dt

Ûm =
(
exp(−iω

)
DL + DC + exp(iω)DR)Ûm, (2.34)

forming a system of p + 1 ordinary differential equations (ODEs) governing the evolution of the

DOFs Ûm. The differentiation matrices are combined into a single update matrix, denoted A,
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which is itself a function of the nondimensionalized wavenumber ω. Additionally, based on the

governing PDE under consideration, certain scalar factors are extracted from the differentiation

matrices and put in front of the update matrix:

Linear advection:
a
h
A(ω) = exp (−iω) DL + DC + exp (iω) DR, (2.35a)

Linear diffusion:
µ

h2A (ω) = exp (−iω) DL + DC + exp (iω) DR. (2.35b)

The system of ODEs (Eq. 2.34) is rewritten in simpler form:

Linear advection:
d
dt

Ûm =
a
h
A (ω) Ûm, (2.36a)

Linear diffusion:
d
dt

Ûm =
µ

h2A (ω) Ûm. (2.36b)

The update matrix A (ω) governs the evolution of the DOFs Ûm; it depends on the spatial dis-

cretization but not the time integration scheme. The eigenvalues of the update matrix are them-

selves functions of the wavenumber ω and yield three crucial pieces of information:

• If the real component of any eigenvalue ofA is positive for anyω, then the spatial discretiza-

tion is unstable, meaning that the numerical approximation Uh will grow in an unbounded

fashion. Such behavior is undesirable.

• Among the eigenvalues ofA (ω), one will match the exact eigenvalue, either λex(ω) = 0− iω

for linear advection or λex(ω) = −ω2 +0i for linear diffusion, as ω approaches zero. This one

eigenvalue is known as the consistent eigenvalue (also referred to as the principal eigenvalue)

and labelled λcon(ω). The better the consistent eigenvalue matches the exact eigenvalue, the

more accurate the scheme is.

• In the case of explicit time integration, the maximum stable timestep size scales as h
ρs

for

linear advection or h2

ρs
for linear diffusion, where ρs, known as the spectral radius, is the

maximum magnitude of any of the p + 1 eigenvalues ofA(ω) over all ω.

The order of accuracy and the spectral radius are now discussed in detail.
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Figure 2.4: Eigenvalues ofA(ω) for the conventional upwind DG scheme with p = 3. For each ω,
the exact eigenvalue is plotted as the dotted red line, and the p+1 = 4 eigenvalues ofA(ω) are plot-
ted as solid lines. In addition to plotting the real and imaginary components versus wavenumber,
we plot the eigenvalues on the complex plane.

2.4.1 Order of Accuracy

Under the chosen setup, with U(x, 0) = exp
(
iωh x

)
, the exact solution is as follows:

Linear advection: U(x, t) = exp
(
−

iωat
h

)
exp

( iωx
h

)
Linear diffusion: U(x, t) = exp

(
−

(
ω

h

)2
t
)

exp
( iωx

h

)
.

(2.37)

These exact solutions correspond to either λex(ω) = −iω (for linear advection) or λex(ω) = −ω2

(for linear diffusion) as eigenvalues of A. In the case of the DG method, this exact eigenvalue is

not present inA. Instead, if the method is implemented properly, there is one eigenvalue, namely

the consistent eigenvalue (designated λcon), that closely approximates λex(ω) as ω → 0. This

occurrence is illustrated in Figure 2.4, which shows the eigenvalues of the conventional upwind

DG discretization with p = 3 for the linear advection equation. Note that while the consistent

eigenvalue closely approximates λex near ω = 0, the other eigenvalues do not. The eigenvalues

are in general complex, hence the need to plot both the imaginary component (Figure 2.4b) and

the real component (Figure 2.4a). Also, note that instead of using ω on the horizontal axis, the

plots use ω
p+1 instead. Plotting the eigenvalues against ω

p+1 allows comparison of DG schemes of

different p from a per-gridpoint perspective.
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To evaluate scheme accuracy, the consistent eigenvalue is cast as a Taylor expansion involving

coefficients ĉ:

λcon(ω) =

∞∑
n=0

ĉnω
n, (2.38)

such that the error in the consistent eigenvalue is also a Taylor expansion:

d(ω) =
λcon(ω) − λex(ω)

λex(ω)
=

∞∑
n=0

d̂nω
n. (2.39)

If the spatial discretization is consistent, then d̂0 = 0. Additionally, the coefficients d̂ are zero up

to some particular index, designated L:

d(ω) =
λcon(ω) − λex(ω)

λex(ω)
=

∞∑
n=L

d̂nω
n. (2.40)

If d̂L , 0 is the first nonzero coefficient, then the scheme’s order of accuracy is L. The higher

the order of accuracy is, the smaller the error in λcon is near ω = 0. We follow the approach

of Huynh [46, 47] to obtain the order of accuracy L: the difference d(ω) is measured at discrete

values of ω, and the rate with which d(ω) approaches zero as ω → 0 yields the order of accuracy

L. Using an upwind flux at interfaces, the conventional DG method achieves order 2p + 1 accuracy

(this result can also be obtained outside of Fourier analysis, see the explanation by Roe [91]). In

the case of the linear diffusion equation, most DG methods achieve order 2p accuracy. It is the

goal of the DG variants proposed in this work to push the discretized advection/diffusion operator

closer to the exact eigenvalue for a given solution order p, so Fourier analysis immediately follows

the proposal of any new scheme.

2.4.2 Order of Accuracy vs. Rate of Convergence

In this document, since more than one error norm is employed for scheme evaluation, the term

order of convergence or rate of convergence is used to describe the behavior of particular error

norms in mesh refinement studies. The term “order of accuracy” is employed exclusively to refer
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to the behavior of the principal eigenvalue in Fourier analysis. This behavior goes against the

typical practice in the finite element community, which is to use the term “order of accuracy” to

describe convergence rates in the global L2 norm.

The distinction is necessary because Fourier analysis only measures how well a spatial dis-

cretization replicates the exact eigenvalue of the governing PDE. In contrast, when a simulation’s

error is measured by the global L2 norm or a similar quantity, the error depends not only on

how well the spatial discretization replicates the governing PDE, but also how well the finite-

dimensional approximation Uh can replicate a globally smooth exact solution. Consider the differ-

ence between the exact solution U and the discontinuous polynomial approximation Uh:

E(x) = U(x) − Uh(x), (2.41)

where E(x) denotes the error at a particular location x. Now, let Pφ(U) be the projection of the

exact solution U onto the polynomial basis φ, such that

∫
Ω

φk
m

(
Pφ (U) − U

)
dx = 0, ∀φk

m ∈ φ. (2.42)

The error is thus rewritten:

E(x) =
(
Pφ (U) + U − Pφ (U)

)
− Uh, (2.43a)

E(x) =
(
Pφ (U) − Uh

)
+

(
U − Pφ (U)

)
. (2.43b)

If the update scheme in the DG discretization were perfect, we would have
(
Pφ (U) − Uh

)
= 0.

However, E(x) would still, in general, be nonzero because the basis φ cannot capture all possible

functions U(x); in other words, U − Pφ(U) , 0. The consequence is that the global L2 norm is

typically limited to rate of convergence m = p + 1 even though the order of accuracy for the linear

advection equation is 2p + 1 according to Fourier analysis.
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2.4.3 Spectral Radius

The spectral radius ρs for a given DG spatial discretization is defined as follows:

ρs = max (|λn (ω) |) for n ∈ {0, 1, ..., p} and ω ∈ [0,∞) , (2.44)

where λn(ω) is the nth eigenvalue ofA at a specific ω. It is obtained by calculating all p + 1 eigen-

values of A for some discrete set of wavenumbers ω, then identifying the maximum eigenvalue

magnitude. The behavior of the eigenvalues is periodic in ω, so the spectral radius can be iden-

tified by discretizing the wavenumbers in the range ω ∈ [0, 2π(p + 1)] instead of ω ∈ [0,∞). In

practice, when the DG spatial discretization is paired with explicit time integration, the maximum

stable timestep size depends on both the eigenvalue spectrum ofA and the chosen time integration

scheme (i.e., forward Euler, Runge-Kutta, Adams-Bashforth). However, regardless of the explicit

time integration technique, the maximum allowable timestep size scales as h
ρs

for linear advection

and h2

ρs
for linear diffusion. The review of Fourier analysis is now complete.

2.5 The Discontinuous Galerkin (DG) Method in 2D and 3D

The explanation of DG is now extended to the multidimensional case for a general hyperbolic PDE

system with flux F . As described in detail by Cockburn & Shu [27], the Discontinuous Galerkin

(DG) method in its semi-discrete form is appropriate for either steady-state or time resolved sim-

ulations of hyberbolic PDE systems on arbitrary element geometries and can be extended to ar-

bitrarily high orders of accuracy. Some of the information here is redundant with Section 2.3 to

clarify the transition from the 1D case to the multidimensional case. The full extension to an

advection-diffusion system is made in Chapter 5.
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2.5.1 Geometry Considerations

Given a polygonal spatial domain Ω, the domain is partitioned in to a set of non-overlapping

subdomains (elements) such that ∩M
m=1Ωe = ∅ and ∪M

m=1Ωe = Ω, where Ωe denotes the closure, i.e.,

Ωm = Ωm ∪ ∂Ωm. The boundary of the Ωm is denoted ∂Ωm. With regard to notation, the boldface x

denotes a location in ND-dimensional space, where ND is the number of spatial dimensions (either

1, 2, or 3 in this work). Each element’s set of basis functions φm is a polynomial basis of at most

degree p in a given direction and contains K members.

In this work, the DG method is always applied with uniform polynomial order for all elements.

This constraint discards the possible benefits of an hp-adaptive mesh refinement procedure. For

quadrilateral elements in 2D and hexahedral elements in 3D, a full tensor product basis of degree

p in each direction is employed, such that K = (p + 1)ND , where ND is the number of spatial

dimensions. For simplex (triangular) elements in 2D, K = 1
2 (p + 1)(p + 2). As with the 1D

case, each element in the physical domain is mapped to the single reference element, Ωre f , which

is spanned by an appropriate choice of reference coordinates. We consider only straight-edged

elements, such that the geometry of a given Ωm is completely defined by the NV vertices of the

element. The reference element should have the same vertex count as the corresponding physical

element. In the case of 2D quadrilateral elements, given a point ξ ∈ [−1, 1]2 on the reference

square Ωre f , the corresponding physical location x(ξ) on a quadrilateral element Ωm is defined as

follows:

x (ξ, η)

y (ξ, η)

 =
1
4

xv1 xv2 xv3 xv4

yv1 yv2 yv3 yv4





(1 − ξ) (1 − η)

(1 + ξ) (1 − η)

(1 + ξ) (1 + η)

(1 − ξ) (1 + η)


, (2.45)

where xv1, xv2, xv3, and xv4 are the four vertices of Ωm. If instead the domain is partitioned with tri-

angular (simplex) elements, and an equilateral triangle with vertices {
(
−1,− 1

√
3

)
,
(
1,− 1

√
3

)
,
(
0, 2
√

3

)
}
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is used as the reference element, the transformation takes the following form:

x (ξ, η)

y (ξ, η)

 =

xv1 xv2 xv3

yv1 yv2 yv3




1
3 −

ξ

2 −
η

2
√

3

1
3 +

ξ

2 −
η

2
√

3

1
3 +

η
√

3

 . (2.46)

For both cases, the mapping between the physical and reference coordinates is differentiated to

produce the Jacobian matrix for each element:

Jm (ξ, η) =


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 , (2.47)

which in general varies over the element. The Jacobian matrix is necessary to calculate the gra-

dients of the basis functions, φ, on the physical elements. The basis functions are defined as

polynomials in the reference coordinates on Ωre f , so their derivatives with respect to the refer-

ence coordinates are known. The Jacobian matrix and its inverse provide the means to transform

derivatives between the reference coordinates and the physocal coordinates. In the 2D case, we

have [
∂φk

m
∂ξ

∂φk
m

∂η

]
=

[
∂φk

m
∂x

∂φk
m

∂y

]
Jm , ∴

[
∂φk

m
∂x

∂φk
m

∂y

]
=

[
∂φk

m
∂ξ

∂φk
m

∂η

]
Jm
−1 (2.48)

for some basis function φk
m of element Ωm.

Integrals in physical space are computed using the reference element and the Jacobian matrix.

Given a particular physical element Ωm and the corresponding Jacobian matrix Jm,

∫
Ωm

f dx =

∫
Ωre f

f |Jm|dξ, (2.49)

where |Jm| is the determinant of the element’s Jacobian matrix.
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2.5.2 The Spatial Discretization

Consider an initial-value problem of the form

U(x, 0) = UIC(x), (2.50a)

∂U
∂t

+ ∇ · F (U) = 0, (2.50b)

subject to appropriate boundary conditions, where F (U) is the flux function. Instead of each

element having p + 1 basis functions, each element is now said to have K basis functions and K

DOFs, where K depends on the element geometry and the solution order p. The approximation Uh

is again a piecewise continuous polynomial defined by time-dependent DOFs and space-dependent

basis functions:

Uh (x ∈ Ωm, t) = Uh
m(x, t) =

K−1∑
k=0

φk
m(ξ(x))Ûk

m(t). (2.51)

As with the 1D case, each φk
m is nonzero only over Ωm. The goal of the polynomial approximation

Uh is to satisfy the governing PDE and the initial condition in the integral sense over the spatial

domain Ω:

∫
Ω

v
(
∂

∂t
U + ∇ · F (U)

)
dx = 0, ∀v ∈ φ, (2.52a)∫

Ω

v (U (x, 0) − UIC (x)) dx = 0, ∀v ∈ φ, (2.52b)

where φ denotes the collection of all of the basis functions for all elements. As with the 1D

case, we substitute in Uh for U, split the integrals into individual element integrals, and perform

integration by parts to obtain the DG weak form:

∫
Ωm

φk
m
∂

∂t

K−1∑
n=0

Ûn
mφ

n
m

 dx = −

∫
∂Ωm

φk−
m

(
F̃ · n−m

)
ds +

∫
Ωm

∇φk
m · Fdx, ∀φk

m ∈ φm, ∀Ωm ∈ Ω,

(2.53)
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which yields a total of K × M constraints per field variable for the vector of DOF time derivatives,

d
dt Û. The n−m term is the outward normal vector from Ωm along ∂Ωm.

The interface flux F̃ must be single-valued along each interface to enforce flux continuity; it

is calculated from the competing DG approximations along each interface, as with the 1D case.

The presence of two solution states at a given location along an interface is known as a Riemann

problem. Given two approximations (call them UL and UR) at a given location on an interface, the

DG weak form requires that a single value for the flux be chosen. In the linear advection case,

one may simply take the U value from the upwind side of the interface and use it to calculate the

flux. For a general hyperbolic system of equations, population of F̃ requires the use of an exact or

approximate Riemann solver. As its name suggests, the Riemann solver’s purpose is to calculate

the interface flux F̃ based on the Riemann problem introduced by the two competing solution

states. In this work, we write

F̃ = Rie (UL,UR,n) (2.54)

to denote the application of the Riemann solver at a given point along a given interface. The

necessary arguments to the Riemann solver are the solution state on the left side of the interface

(denoted UL), the solution state on the right side of the interface (denoted UR), and the interface’s

normal vector (denoted n), which points outwards from the left region. For a lucid explanation

of approximate Riemann solvers (and the exact Riemann solver) for ideal compressible flow (i.e.,

the Euler equations), see the textbook of Toro [99]. Let x0 be a given point along the interface

I = ∂ΩA ∩ ∂ΩB shared by ΩA and ΩB. In the conventional DG discretization, the interface flux is

calculated as follows:

F̃ |x0 = Rie
(
Uh

A|x0 ,U
h
B|x0 ,n

−
A

)
, (2.55)

where n−A is the outward normal from ΩA at x0. The solution states Uh
A|x0 and Uh

B|x0 are the limits

of Uh
A and Uh

B as x0 is approached from inside ΩA and inside ΩB, respectively. In Chapter 4, it will

be shown how this procedure can be modified to improve the accuracy of the DG method.

Over the interior of each Ωm, F is directly calculated using the DG approximation, Uh
m. To
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discretize the left-hand side of Eq. (2.53), each element’s K × K mass matrix,

Mrow,col
m =

∫
Ωm

φ(row)
m φ(col)

m dx, (2.56)

is employed to isolate the time derivatives of the DOFs. The right-hand side of Eq. (2.53) is

assembled in the K-row residual vector Rm for each Ωm and combined with the mass matrix to

form a system of ODEs:

Rrow
m

(
Uh

)
=

∫
∂Ωm

φ(row−)
m

(
F̃ · n−m

)
ds −

∫
Ωm

∇φ(row)
m · F

(
Uh

m

)
dx, (2.57a)

d
dt

Ûm =Mm
−1

(
−Rm

(
Uh

))
, ∀Ωm ∈ Ω. (2.57b)

The resulting system of ODEs in time (Eq. 2.57b) is discretized with an explicit Runge-Kutta

method (a family that includes the forward Euler method) to integrate the system forward in time.

As with the 1D case, the integrals appearing in the weak form are populated by a Gaussian quadra-

ture rule with a sufficient number of points to complement the polynomial order p. We use the

typical approach of populating the flux at the set of quadrature points, then using the resulting

distribution of the flux to calculate the integrals.

In this description of the DG method, a few outstanding issues have been overlooked. These

include the destabilization of the method in the presence of physical discontinuities (such as shock

waves), the issue of polynomial aliasing when the flux law is nonlinear, and the need for precon-

ditioners when the spatial discretization is paired with an implicit time integration scheme. As the

goal of this thesis is to improve the accuracy of the DG spatial discretization itself, which serves

as the foundation of a DG-based CFD solver, the presented explanation is sufficient.

2.5.3 Compactness

An important feature of the conventional DG discretization is that the residual for the DOFs in

a given element depend only on the DOFs in that element and its face-connected neighbors, as
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Figure 2.5: Stencil illustration. To form the residual in the center element (Ω0), a scheme with a
compact stencil (i.e., conventional upwind DG for advection) requires information only from the
face-connected (nearest) neighbors (X) of Ω0. In the Cartesian case, certain non-compact schemes
(such as the RDG-1x++CO scheme that we work with in Chapter 6) can be optimized to use only
the vertex-connected neighbors of Ω0 (X, Y). Schemes with non-compact stencils generally require
information from an extra layer of elements (X, Y , Z) compared to the compact case.

illustrated in Figure 2.5. In other words, the stencil is compact. In the case of hyperbolic PDEs,

there exist reconstruction schemes, such as the PN PM approach of Dumbser [31], the cell-centered

reconstruction schemes of Khieu & Johnsen [56], and the reconstructed DG scheme of Luo et

al. [70] that extend the stencil past the face-connected neighbors in the interest of improving the

spatial discretization’s accuracy. In the case of parabolic PDEs, since the mixed formulation (de-

tailed in Chapter 4) involves solving a pair of first-order systems during each residual evaluation,

it is not rare to encounter non-compact DG schemes. A compact scheme is advantageous for com-

putational efficiency, especially in the parallelized case where element DOFs must be exchanged

across different processing cores. The three Recovery-assisted DG schemes revealed in Chapter 5

for advection-diffusion problems all maintain a compact computational stencil.

2.6 The Recovery operator

This section describes the recovery operator [102] within the DG framework. Application of the

recovery operator is detailed in Chapters 3, 4, 5, 6, and 7; in this section, our only interest is a

thorough description of the operator itself. In the construction of our Recovery-assisted schemes

for advection-diffusion problems, the recovery operator is employed exclusively as a tool to ap-

proximate the solution U along element-element interfaces. The Recovery concept originates from

an important observation [102]: the discontinuous polynomial form of Uh is an attempt to repli-

cate some globally smooth, underlying exact solution U. The recovery operator is an intelligent
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Figure 2.6: The Recovery process in 2D. The recovery operator projects the discontinuous DG
polynomial Uh into a smooth polynomial basis ψ to “recover” the smooth exact solution U. Plotted
result uses a p = 2 (K = 9) discretization on Cartesian elements. While the DG approximation Uh

is discontinuous along the interface between the elements, the recovered solution is smooth across
the entire union.

attempt to “recover” this underlying exact solution over a subdomain of the global spatial domain

Ω. For reasons of practicality, this subdomain is always chosen to be the union of just two adjacent

elements. An alternative perspective is cast as a question: given some DG approximation Uh, what

would the solution look like if two adjacent elements (ΩA and ΩB) were combined into a single,

larger element, without discarding any of the information contained in ÛA and ÛB? The answer

to this question is the recovered solution, which preserves all the information of ÛA and ÛB in the

formation of a smooth polynomial over ΩA ∪ ΩB. The idea is illustrated in Figure 2.6, adapted

from Johnson & Johnsen [49]. The discontinuous polynomial Uh approximates the underlying

smooth exact solution, U. When the DG approximation Uh is fed through the recovery operator,

it produces a smooth polynomial f that shows excellent agreement with the exact solution U over

the union ΩA ∪ΩB. With the basic idea now understood, the recovery procedure is described from
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I

Figure 2.7: Setup of two neighboring elements in 1D, linked by I = ∂ΩA ∩ ∂ΩB.

a technical perspective, beginning with the 1D case.

2.6.1 Recovery in 1D

Let ΩA and ΩB be a pair of neighboring elements of widths hA and hB, respectively, sharing an

interface I = ∂ΩA ∩ ∂ΩB, as shown in Figure 2.7. The DG approximation in each element is a

degree p polynomial with K = p + 1 DOFs. In addition to the DG bases φA and φB in the two

elements, we introduce the Recovery basis:

ψ = {ψm(r) = Lm(r) | m ∈ {0, 1, ...KR − 1}}, (2.58)

where Lm(r) is the degree m Legendre polynomial and r is a function of x. Specifically,

r(x) =
(x − xI) · n−A
min (hA, hB)

. (2.59)

As demonstrated in Figure 2.7, r originates at the interface and is known as the recovery coordinate.

The dimension of the recovery basis, denoted KR, depends on the type of recovery. Regardless of

the type of recovery, the basis ψ is supported over ΩA ∪ ΩB and is smooth across the entire union.

Let W(r) be a smooth polynomial in the recovery basis:

W(r) =

KR−1∑
m=0

ψm(r)Ŵm, (2.60)

43



where the coefficients Ŵ are constrained according to the following two sets of equations:

∫
ΩA

(
W − Uh

A

)
Θk

Adx = 0, ∀k ∈ {0, 1, ...,NA − 1}, (2.61a)∫
ΩB

(
W − Uh

B

)
Θk

Bdx = 0, ∀k ∈ {0, 1, ...,NB − 1}. (2.61b)

These equations constrain the approximation W to be indistinguishable from Uh, in the weak sense,

with respect to the testing functions ΘA and ΘB. The polynomial W is subject to NA constraints

in ΩA and NB constraints in ΩB. The test functions Θ depend on the particular type of recovery.

To match the dimension of ψ to the number of constraints, KR = NA + NB. The constraints of

Eq. (2.61) yield the following linear system for a given field variable:



∫
ΩA
ψcolΘ0

Adx∫
ΩA
ψcolΘ1

Adx
...∫

ΩA
ψcolΘ

NA−1
A dx

− − − − −−∫
ΩB
ψcolΘ0

Bdx∫
ΩB
ψcolΘ1

Bdx
...∫

ΩB
ψcolΘ

NB−1
B dx

︸                ︷︷                ︸
KR × KR



Ŵ0

Ŵ1

...

ŴKR−1


=



∫
ΩA
φcol

A Θ0
Adx

[
0
]
1×K∫

ΩA
φcol

A Θ1
Adx

[
0
]
1×K

...
...∫

ΩA
φcol

A Θ
NA−1
A dx

[
0
]
1×K

− − − − − −

[0]1×K

∫
ΩB
φcol−K

B Θ0
Bdx

[0]1×K

∫
ΩB
φcol−K

B Θ1
Bdx

...
...

[0]1×K

∫
ΩB
φcol−K

B Θ
NB−1
B dx

︸                                           ︷︷                                           ︸
KR × 2K

ÛA

ÛB

 , (2.62)

which is inverted to solve for the coefficient vector Ŵ. Then, the coefficients are multiplied by the

recovery basis functions (Eq. 2.60) to yield the solution along the interface. In practice, this entire

process is stored in the discrete recovery operator, R, for a given interface:

W(r = 0) = R

ÛA

ÛB

 , (2.63)

44



where R has only one row but 2K columns. The formation of the discrete recovery operator R

is described in Appendix A for the interested reader. With the implementation understood, the

classical (full-order) and biased recovery types are described in the context of Eq. (2.61).

2.6.2 Classical (Full-Order) Recovery

In this case, the testing functions are taken from the DG solution basis: Θk
A(x) = φk

A(x) for all

k < K in ΩA, and in ΩB, Θk
B(x) = φk

B(x) for all k < K. Weak equivalence is enforced with respect

to all functions in the DG solution space: NA = NB = K. The dimension of the recovery basis

is KR = 2K. In this case, W is the recovered solution, denoted f (in keeping with the convention

of van Leer & Nomura [102]). This approach is known as full-order recovery because the total

constraint count matches the DOF count in the union of the two elements. It is the original form

of the recovery procedure and has been used [67] to build many attractive DG schemes for the

diffusion equation (Eq. 2.7).

2.6.3 Biased Recovery

Khieu & Johnsen [56] note that either NA or NB can be taken to be less than K in Eq. (2.61) and the

approximation W is usually more accurate (closer to the underlying exact solution) than either Uh
A

or Uh
B at the interface. The biased recovery operator is applied to form their interface-centered bi-

nary (ICB) reconstruction scheme, specifically the approach labelled icbp[0]. The biased recovery

approach builds two reconstructions over U = ΩA ∪ ΩB. The A-biased reconstruction W = U ICB
A

closely resembles Uh
A but contains some information from ΩB; in contrast, the B-biased recon-

struction W = U ICB
B closely resembles Uh

B but contains some information from ΩA. This biasing is

achieved as follows:

• For the A-biased solution, NA = K, NB = 1, Θk
A = φk

A ∀k < K, and Θ0
B = 1. Consequently,

over ΩB, U ICB
A and Uh have the same average. Over ΩA, U ICB

A and Uh are weakly equivalent

with respect to φA.
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• In contrast, for the B-biased solution, NA = 1, NB = K, Θk
B = φk

B ∀k < K, and Θ0
A = 1.

Consequently, over ΩA, U ICB
B and Uh have the same average. Over ΩB, U ICB

B and Uh are

weakly equivalent with respect to φB.

This approach [56], where Θ = 1 in the non-dominant element, is labelled Modal ICB, abbreviated

ICBM. We coined the term Modal ICB because Θ = 1 is the zeroth mode of a modal polynomial

expansion. The reason that the biased recovery approach is restricted to NB = 1 (for the A-biased

reconstruction) and NA = 1 (for the B-biased reconstruction) is that employing a higher-order

approximation W produces an unstable numerical scheme for the linear advection equation, as

discovered by Khieu & Johnsen [56] and verified by Frahan & Johnsen [43] through p = 5. The

numerical scheme resulting from the use of Modal ICB inside the DG framework will be discussed

in Chapter 4.

In [51], we introduced a small alteration to the biased recovery operation. Consider the A-

biased reconstruction, W = U ICB
A . Again taking NA = K and NB = 1, let Θk

A(x) = φk
A(x) ∀k < K.

Now, in contrast to the Modal ICB approach, define ΘB = `B to be the degree-p Lagrange basis

whose interpolation points are the set of p + 1 Gauss-Legendre points in ΩB; such a basis is

illustrated in Figure 2.8. To apply the single constraint in ΩB, take Θ0
B = `0

B to be the Lagrange

polynomial that is unity at the Gauss-Legendre point closest to the interface. Similarly, the B-

biased reconstruction is obtained by taking Θk
B(x) = φk

B(x) ∀k < K and setting the single weighting

function in ΩA to be the Lagrange polynomial that is unity at the Gauss-Legendre point closest to

the interface. Due to the choice of a Lagrange testing basis for Θ (regardless of the solution basis

φ), this reconstruction approach is labelled Lagrange ICB. The benefits of this particular biased

recovery technique are explored in Chapter 4.

2.6.4 Comparison of Recovery Types in 1D

The three flavors of recovery (full-order, Modal ICB, and Lagrange ICB) are summarized in Ta-

ble 2.1. Figure 2.9 shows the behavior of the three types of recovery when applied to the same dis-

continuous approximation Uh. Away from the interface, the ICB reconstructions diverge severely
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Figure 2.8: Lagrange testing functions ` for the Lagrange ICB discretization, plotted on the unit
interval. The solid red line (—) is taken as `0

B when performing A-biased recovery. The dot-dash
blue line (– - – - –) is taken as `0

A when performing B-biased recovery. The remaining Lagrange
polynomials (dotted black lines, – – – –) are unused.
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(a) Classical recovery. Key:
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(b) Modal ICB recovery. Key:
U ICBM

A : – - – ; U ICBM
B : – – –.
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(c) Lagrange ICB recovery. Key:
U ICBL

A : – - – ; U ICBL
B : – – – .

Figure 2.9: Sample recovered solutions for p = 2 with ΩA = {x ∈ (−1, 0)}, ΩB = {x ∈ (0, 1)}, and
xI = 0. The DG approximation Uh (solid black lines,—) is initialized via Galerkin equivalence
(Eq. 5.2c) to an initial condition, UIC(x) = ex sin2(πx). Then, the various recovery operators are
applied to the DG data to reconstruct the underlying smooth solution.

from the exact solution; this property is tolerable because ultimately, the only purpose of the ICB

procedure (to be elaborated on in Chapter 4) is to produce an accurate approximation along the

interface I = ∂ΩA ∩ ∂ΩB.
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2.6.5 Extension to Multiple Spatial Dimensions

The description of the full-order recovery operator is now extended to the 2D case, from which the

reader can properly extrapolate the 3D implementation on Cartesian elements. The necessary mod-

ifications for the biased recovery procedure (Modal ICB) in 2D are discussed afterwards. Suppose

Uh to be a degree-p polynomial in each element. For a given union of face-connected elements ΩA

and ΩB linked by interface I = ∂ΩA ∩ ∂ΩB, the recovered solution fI (particular to the interface)

is a polynomial expansion in the basis ψ:

fI(r, s) =

KR−1∑
n=0

f̂ n
I
ψn(r, s), ψ = {ψn(r, s) = La(r)Lb(s), (a, b) ∈ {0, ..., pr} × {0, ..., ps}}, (2.64)

where L j(ζ) represents the Legendre polynomial of degree j taken at location ζ. Any other degree

2p + 1 hierarchical polynomial basis set is also acceptable. In our implementation, to maximize

robustness on non-Cartesian meshes, the recovery coordinates r and s originate at the average

location (x0) of the two element centroids, with r running along the axis connecting the centroids

and s being the tangential coordinate, as shown in Figs. 2.10a and 2.10c for Cartesian and simplex

elements, respectively. The recovery coordinates are scaled such that the maximum magnitudes

of both r and s are unity over ΩA ∪ ΩB; the two-component vector containing r and s is denoted

r = (r, s). The recovery process requires that the recovery coordinates r = (r, s) be obtainable as a

function of the physical coordinates x. This transformation, r = C(x − x0), requires knowledge of

the vertices of the two elements and is described in detail by Lo [67]. Given a physical location x,

Table 2.1: Forms of Recovery, constrained according to Eq. (2.61).

Scheme Solution ΘA ΘB NA NB KR

Classical (full-order) W = f φA φB K K 2K

Modal ICB W = U ICBM
A φA 1 K 1 K + 1

Modal ICB W = U ICBM
B 1 φB 1 K K + 1

Lagrange ICB W = U ICBL
A φA `B K 1 K + 1

Lagrange ICB W = U ICBL
B `A φB 1 K K + 1
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Figure 2.10: (a) A pair of neighboring Cartesian elements ΩA and ΩB. (b) Sample p = 2 recovery
bases ψ for the 1D case and the 2D Cartesian case. (c) A pair of neighboring simplex elements ΩA

and ΩB. (d) Sample p = 2 recovery basis ψ for the simplex case. Here, x̄ marks the centroid of
each element, and x̄0 is the average position of the two centroids.

we first calculate the path between x0 and x. Then, the ND-component path vector is rotated and

scaled through the transformation matrix C to yield the corresponding recovery coordinates r.

The arrangement of ψ, specifically the values of the index limits pr and ps in Eq. (2.64), de-

pends on the element geometry. For 1D elements, (pr, ps) = (2p + 1, 0). For 2D quadrilateral

elements, (pr, ps) = (2p + 1, p), and ψ is formed as an anisotropic tensor product basis; the two ar-

rangements are illustrated in Fig. 2.10b. For illustrative purposes, the recovery basis is constructed

via a tensor product basis from the 1D Taylor basis. In the case of 2D simplex elements, pr de-

pends on the index b (see Eq. 2.64 for the role of b); specifically, pr = 2(p − b) + 1 with ps = p.

This setup is illustrated in Fig. 2.10d. So far, the 3D extension of the method has only addressed

hexahedral elements. In this case, the tensor product recovery basis is degree 2p + 1 in the face-

normal direction and degree p in the two face-tangential directions, such that the dimension of the

recovery basis is KR = 2(p + 1)3.

Given the recovery basis ψ, the coefficients f̂I of the recovered solution are constrained by

requiring equality between Uh and fI in the weak sense over ΩA and ΩB. Specifically, with respect

to test functions φk
A(x) and φk

B(x), the interface’s recovered function fI satisfies K equivalence
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relations over each element:

∫
ΩA

(
fI − Uh

A

)
φk

Adx = 0 and
∫

ΩB

(
fI − Uh

B

)
φk

Bdx = 0, ∀k ∈ {0, ...,K − 1}. (2.65)

In practice, the recovery constraints (Eq. 2.65) are recast in matrix-vector form such that the recov-

ery coefficients f̂I are obtainable directly from the DG DOFs ÛA and ÛB of the two neighboring

elements through a matrix-vector multiplication. Once the coefficients f̂I are known for the shared

interface I, they are combined with the basis ψ according to Eq. (2.64) to form the recovered

polynomial across the interface. Specifically, given the interface’s quadrature points r1 through

rQS , where QS is the number of quadrature points on the interface, the discrete recovery operator

R yields the distribution of the recovered solution given the neighboring solution DOFs:



fI (r1)

fI (r2)
...

fI
(
rQS

)


= R

ÛA

ÛB

 . (2.66)

The elements of R do not depend on ÛA or ÛB. We write fI = R(Uh
A,U

h
B) to denote the application

of the full-order recovery procedure along interface I = ∂ΩA ∩ ∂ΩB. The interested reader is

directed to Appendix A for additional details regarding the formation of the discrete recovery

operator.

The application of the biased recovery schemes in 2D and 3D requires an abbreviated set of

testing functions compared to the classical recovery case. The 2D version of the Modal ICB

recovery operator is utilized for the novel GR-VI scheme in Chapter 3, so it is covered here.

The biased recovery approach is not useful on simplex elements (in our experience, it always

yields unstable schemes), so we only cover the quadrilateral case. As with full-order recovery, the

recovery basis is a smooth polynomial basis over U = ΩA ∪ ΩB. The basis ψ is formed from a
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hierarchical modal basis set, such as the Legendre polynomials:

U ICB
{A/B}(r, s) =

KR−1∑
n=0

Ŵn
{A/B}ψ

n(r, s), ψ = {ψn(r, s) = La(r)Lb(s), (a, b) ∈ {0, ..., pr} × {0, ..., ps}}.

(2.67)

For the Modal ICB operator in 2D, pr = p+1 and ps = p. Thus, KR = (p+2)(p+1). The A-biased

ICB reconstruction for an interface on a 2D quadrilateral mesh is constrained as follows:

∫
ΩA

(
U ICB

A − Uh
A

)
φk

Adx = 0, ∀φk
m ∈ φm, (2.68a)∫

ΩB

(
U ICB

A − Uh
B

)
Lk(s)dx = 0, ∀k ∈ {0, 1, ..., p}, (2.68b)

where s is the tangential recovery coordinate and Lk(s) is the degree-k Legendre polynomial eval-

uated at s. A similar approach holds for the B-biased reconstruction along a particular interface.

2.6.6 Derivative-Based Recovery

The recovery approach detailed so far (for both the full-order and biased recovery types) shall

henceforth be referred to as the inner-product based implementation of recovery because of the

appearance of the integrals in the linear system of recovery constraints (Eq. 2.62). It is the original

implementation by van Leer & Nomura [102]. The inner-product based implementation requires

(i) the formation of the recovery coordinate, (ii) the formation of the recovery basis, and (iii) the

formation and inversion of a linear system for each element-element interface in the domain. While

these operations are simple in the 1D case, they become cumbersome in the multidimensional case,

and personal experience showed that implementation in an existing DG code is a painfully invasive

procedure. In addition to being cumbersome to implement [52], this procedure can lead to an ill-

conditioned discrete recovery operator R on non-Cartesian meshes in the multidimensional case,

which threatens scheme stability.

In response to the difficulties of the inner-product approach to recovery, we searched for an al-

ternate definition of the discrete recovery operator, subject to two requirements. First, the alternate
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definition must be free of the recovery basis and the inversion of the associated linear system in

Eq. (2.62). Second, the new approach must replicate the accuracy of the typical recovery system

on 1D meshes and 2D Cartesian meshes while being easy to generalize to multiple dimensions.

These goals are achieved by defining the discrete recovery operator R based on derivative jumps

along interfaces instead of Eq. (2.61). In this section, the reasoning behind the new approach is

presented and the new, derivative-based recovery implementation is cast in a form that is appli-

cable in any number of spatial dimensions. This new implementation is applicable to all types of

recovery (full-order and biased).

Consider the full-order recovery operator in 1D with p = 1 (K = 2, KR = 4) on a uniform

mesh with element width h. Let ΩB be the element bordering ΩA to the right. Take the DG solution

basis to be the Lagrange basis with nodes at the element endpoints, with Û0
e being the left endpoint

solution and Û1
e being the right endpoint solution for a given Ωe. The discrete recovery operator

(formed via the inner-product implementation, Eq. 2.62) takes the following form:

R =
1

12

[
1 5 5 1

]
. (2.69)

Thus, the value of the recovered solution at the interface (r = 0) is:

f (0) =
1

12
(Û0

A + 5Û1
A + 5Û0

B + Û1
B). (2.70)

Consider that both elements contribute approximations for the solution and its first derivative at

the interface, I = ∂ΩA ∩ ∂ΩB:

 Uh
A

∂
∂xUh

A


x=xI

=

 Û1
A

1
h (Û1

A − Û0
A)

 ,

 Uh
B

∂
∂xUh

B


x=xI

=

 Û0
B

1
h (Û1

B − Û0
B)

 . (2.71)

The recovered solution (Eq. 2.70) is recast in terms of the interface quantities of Eq. (2.71):

f (0) =
1
2

(Uh
A −

h
6
∂

∂x
Uh

A)|x=xI +
1
2

(Uh
B +

h
6
∂

∂x
Uh

B)|x=xI , (2.72)
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demonstrating that the recovered solution is set according to (i) the average of the solution traces

Uh
{A,B} at the interface and (ii) the jump in the first derivative. Thus, it is possible to form the

interface approximation f (0) by adding a derivative-based correction to the solution average at the

interface. Eq. (2.72) holds regardless of the choice of basis functions, but it is specific to the case

where hA = hB = h and p = 1. In general, hA , hB.

Maintaining the assumption of a 1D mesh, suppose that ΩB is either left or right of ΩA. For both

the full-order and biased recovery schemes (taking ΩA to be the dominant element), the derivative-

based recovery operator depends on recovery weights C and takes the following form for arbitrary

solution order p:

W(0) =
(
C0Uh

A + (1 −C0)Uh
B

)
|x=xI +

p∑
j=1

C j

(
∂ j

∂r j U
h
A −

∂ j

∂r j U
h
B

)
|x=xI , (2.73)

where the derivatives are evaluated by direct differentiation of the DG basis functions and all quan-

tities are evaluated at the interface. The derivatives are written in terms of the recovery coordinate

r (Eq. 2.59), which points out of ΩA into ΩB. As the difference in the derivatives tends to zero,

the interface approximation tends towards a linear combination of Uh
A and Uh

B. In cases where the

derivative differences are nonzero, the recovery operator uses the jumps in the derivatives to form

a correction to the interface approximation. This behavior is not surprising; the inner-product ap-

proach to recovery, by enforcing weak equivalence relations involving all DOFs of the neighboring

pair of elements, considers the full modal behavior of Uh over ΩA ∪ ΩB. The derivative-based ap-

proach achieves the same goal by considering not just the values of Uh
A and Uh

B at the interface, but

also all of the nonzero spatial derivatives contained in the finite-dimensional solution space.

The recovery weights C are themselves functions of both the type of recovery (full-order or

biased) and a mesh uniformity index, Q = hA−hB
hA+hB

. The index Q goes to zero as hA → hB and

approaches Q = ±1 as the difference hA − hB grows. For all types of recovery, we built the inner-

product based discrete recovery operator (using the linear system of Eq. 2.62) for a variety of mesh
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Figure 2.11: Recovery weights for classical recovery with p = 2. Coefficients extracted from
the inner-product recovery operator are denoted by red triangles (B) while the black line is the
five-point interpolation used to build the derivative-based recovery operator.

uniformity indices, inspected the weights C, and built interpolating polynomials,

C j(Q) =

N−1∑
n=0

Ĉn
j Q

n, (2.74)

where the interpolation coefficients Ĉn
j depend on p and the particular type (full-order, Modal ICB,

or Lagrange ICB) of recovery, with N being an appropriately high interpolation order. While an

analytical form may exist for the weights, the resulting equations would likely be exceedingly

complicated, so we chose the interpolation approach instead. The interpolations are described and

tabulated in the appendices for implementation. Alternatively, Section 2.6.6.1 describes a way to

circumvent the interpolation when implementing derivative-based recovery. Fig. 2.11 illustrates

the weights C0, C1, and C2 for the full-order recovery approach with p = 2. The recovery weights

are predicted using a six-point interpolation; see Appendix B for the details.

By inspection of the derivative-based recovery implementation, we discovered that full-order

recovery makes no use of even-order solution derivatives on evenly-spaced meshes. For example,

observe that in Figure 2.11, C2 = 0 when Q = 0. Similarly, for the p = 4 and p = 5 cases,

C2 = C4 = 0 when Q = 0. This analysis unveiled another previously unreported feature of

recovery: as Q → −1, C0 → 1; consequently, as hA becomes much smaller than hB, the recovered

function tends towards Uh
A instead of 1

2 (Uh
A + Uh

B).

The derivative-based implementation can accommodate the biased recovery types (Modal and
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Figure 2.12: Recovery weights for A-biased Modal ICB reconstruction with p = 2. Weights
extracted from the inner-product recovery operator are denoted by red triangles (B) while the black
line is the eight-point interpolation used to build the derivative-based recovery operator.
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Figure 2.13: Recovery weights for A-biased Lagrange ICB reconstruction with p = 2. Weights
extracted from the inner-product recovery operator are denoted by red triangles (B) while the black
line is the piecewise interpolation (five-point for Q < 0, two-point for Q > 0) used to build the
derivative-based recovery operator.

Lagrange ICB) just as easily as the full-order recovery operator; the type of recovery governs

the recovery weights C. Figure 2.12 illustrates the weights of the Modal ICB operator for p =

2. In contrast to the full-order recovery operator, the weights are no longer symmetric about

Q = 0, indicating a bias towards the dominant element in the ICB reconstruction. An eight-point

interpolation is required to achieve a satisfactorily accurate C j(Q) polynomial for all cases, and

the coefficients are listed in Appendix C. Figure 2.13 illustrates the weights of the Lagrange ICB

operator for p = 2. Note the sharp corner at Q = 0, requiring a piecewise interpolation approach;

the interpolation coefficients are given in Appendix D.

While the derivative-based implementation sheds some insight on the recovery concept, it is of
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little practical use in the 1D case. Given a particular type of recovery, the inner-product form is

easy to implement in 1D, and our experience suggests that the associated linear system (Eq. 2.62)

is sufficiently well-conditioned to maintain stability even on nonuniform meshes. However, in the

multidimensional case, the inner-product approach, in addition to being difficult to implement, can

affect scheme stability via poor conditioning of the associated linear system. Thus, the derivative-

based approach becomes useful in 2D and 3D as a way to exploit the accuracy of the recovery

operation without the difficulties of the inner-product approach.

To extend the derivative-based implementation to the multidimensional case, the face-normal

recovery coordinate r is needed. Consider a point xI along the shared interface I = ∂ΩA ∩ ∂ΩB.

Taking x = (x1, x2, x3) to denote the traditional Cartesian coordinates of a point in space, we

denote the face’s normal vector (pointing from ΩA to ΩB) as n = (n1, n2, n3) and the interface point

as xI = (xI,1, xI,2, xI,3). Given some mesh width h̃ for the two elements, the face-normal recovery

coordinate is defined as

r (x1, x2, x3) =
1
h̃

ND∑
d=1

(
xd − xI,d

)
(nd) . (2.75)

With the face-normal recovery coordinate defined, the interface approximation takes the same form

as the 1D case:

W |x=xI =
(
C0Uh

A + (1 −C0)Uh
B

)
|x=xI +

p∑
j=1

C j

(
∂ j

∂r j U
h
A −

∂ j

∂r j U
h
B

)
|x=xI . (2.76)

In practice, the derivatives w.r.t. r in Eq. (2.76) are populated via the derivatives of the DG basis

functions:
∂ j

∂r j U
h
e =

K−1∑
k=0

Ûk
e
∂ j

∂r jφ
k
e, (2.77)

requiring the derivatives of the DG basis functions w.r.t r. Since the transformation from x to r is

linear, each ∂ j

∂r jφ is obtained as follows:

∂φ

∂r
= h̃

ND∑
a=1

na
∂φ

∂xa
,
∂2φ

∂r2 = h̃2
ND∑
a=1

ND∑
b=1

nanb
∂2φ

∂xa∂xb
,
∂3φ

∂r3 = h̃3
ND∑
a=1

ND∑
b=1

ND∑
c=1

nanbnc
∂3φ

∂xa∂xb∂xc
, etc.

(2.78)
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The mesh width h̃ in Eq. (2.75) and Eq. (2.78) should account for both the orientation of the

interface and the geometry of each of the surrounding elements ΩA and ΩB. As an element’s

geometric Jacobian matrix,

Je =

[
∂xrow
∂ξcol

]
, (2.79)

provides a measure of the mesh width in each direction, it should be included in the calculation

of he for each element. Let L be the length of the reference element; for example, if the reference

element is the bi-unit square, L = 2. For each element, the mesh width he (specific to the interface

point xI) is defined as

he = L
√

l2
1 + l2

2 , where
[
l1 l2

]
=

[
n1 n2

]
Je if ND = 2, (2.80a)

he = L
√

l2
1 + l2

2 + l2
3 , where

[
l1 l2 l3

]
=

[
n1 n2 n3

]
Je if ND = 3, (2.80b)

with the element’s Jacobian matrix Je evaluated at xI. For a given point along the interface

I = ∂ΩA ∩ ∂ΩB, the associated mesh width is h̃ = min(hA, hB). Other methods of measuring h may

be acceptable but have not been tested.

2.6.6.1 Summary and Limitations of Derivative-Based Recovery

We summarize the application of the derivative-based form of recovery; it is applied whenever a

solution approximation is needed at an interface quadrature point. For a given quadrature point

on a given interface, the mesh widths hA and hB are calculated according to Eq. (2.80). Then, the

mesh uniformity index Q = hA−hB
hA+hB

is plugged into the C interpolation (see Appendices A, B, and

C) to yield the weights C. Next, given the common mesh width h̃ = min(hA, hB) and the weights

C, the derivatives of the basis functions are used to cast the interface approximation (Eq. 2.76) in

matrix-vector form:

W |x=xI =
(
C0Uh

A + (1 −C0)Uh
B

)
|x=xI +

p∑
j=1

C j

(
∂ j

∂r j U
h
A −

∂ j

∂r j U
h
B

)
|x=xI = RDB

ÛA

ÛB

 , (2.81)
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such that the interface approximation W is immediately available at the interface through a matrix-

vector multiplication. In practice, the derivative-based discrete recovery operatorRDB is calculated

for each interface quadrature point and stored during initialization. Then, whenever a recovered

solution is required in the formation of the DG residual, it is immediately available from a matrix-

vector multiplication. The computational cost of this operation is discussed in Chapter 4.

Before moving on, we note that there is a way to bypass interpolation of the weights C. Given

hA and hB for an interface quadrature point in the multidimensional case, the weights C can be

obtained as follows. First, set up a pair of 1D elements Ω1D
A and Ω1D

B with lengths hA and hB. Then,

use the inner-product approach to build the corresponding discrete recovery operator R1D. With

knowledge of the basis functions on Ω1D
A and Ω1D

B , the coefficients C are then extracted from R1D

and plugged into the multidimensional derivative-based recovery operator RDB (Eq. 2.81).

So far, the derivative-based approach has only proven useful on 1D elements, 2D quadrilateral

elements, and 3D hexahedral elements. On 2D simplex elements, we have been unable to replicate

the performance of the inner-product based approach with the derivative-based implementation.

This shortcoming may be due to how the element width h̃ is calculated. It may also be related

to the lack of the full tensor product basis on the simplex element. Due to this limitation in the

derivative-based implementation, the Recovery-assisted DG schemes of Chapter 5 are restricted to

quadrilateral meshes in 2D and hexahedral meshes in 3D.
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CHAPTER 3

The Interface Gradient Recovery Family

3.1 Chapter Overview

In response to the failure of the naive diffusion scheme described in Section 2.3.1, this chapter

describes our attempts to construct attractive DG schemes for parabolic PDE (diffusion) problems.

Outside of our work, there are established DG methods for handling diffusion problems in a sta-

ble manner; however, established DG methods for parabolic PDEs suffer from a trio of ailments.

First, where the standard DG method for hyperbolic PDEs achieves order 2p+1 convergence in ei-

ther cell-average or functional error measurements, the modifications for parabolic PDEs generally

achieve only order 2p convergence [40]. Second, when explicit time integration is used, as is com-

mon in unsteady flow physics problems, small timestep sizes are required for numerical stability,

thus increasing the necessary number of timesteps to solve an unsteady problem. Third, the need to

accurately approximate the solution gradient along element interfaces often results in schemes with

non-compact stencils, i.e., stencils extending beyond nearest neighbors (see Figure 2.5). These ail-

ments are not always simultaneously present; for instance, where the BR2 [8] and IP [3] methods

are plagued by the first two ailments but maintain a compact stencil, the Local DG [26] (LDG)

and Recovery DG [69] methods introduce non-compact stencils in the multidimensional case, thus

increasing the computational costs and parallel communication requirements. Certain versions of

Recovery DG can be implemented with a compact stencil for the Laplacian diffusion problem and

achieve unrivaled orders of accuracy alongside relatively small spectral radii. Unfortunately, for
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shear-diffusion problems, which model the viscous stress tensor of the compressible Navier-Stokes

equations, the analysis of Lo [67] shows that Recovery DG requires a non-compact stencil for con-

sistency. Additionally, our experimentation with the Recovery DG family showed that the compact

schemes are unstable for p > 2 in the shear-diffusion case.

We formed the Interface Gradient Recovery (IGR) family of schemes to attempt to improve

on previous DG schemes for discretization of diffusion problems with respect to the issues listed

above. From conception, the goal of the family was to take advantage of the accuracy of the

recovery operator without suffering the disadvantages of Lo and van Leer’s [67] Recovery-based

DG (RDG) methods, which represent the most direct application of the recovery concept in the

DG framework. These disadvantages include a non-compact stencil for general 2D diffusion laws

and difficulty maintaining high orders of accuracy under Dirichlet/Neumann boundary conditions.

The IGR approach works around these shortcomings by applying the Recovery concept within the

mixed formulation. This chapter will demonstrate that the usage of the mixed formulation allows

the numerical scheme to benefit from the accuracy of the recovery operator while bypassing the

differentiation of the recovered solution, which is actually the cause of the Recovery DG family’s

shortcomings for shear diffusion [67]. The new schemes are described and analyzed alongside the

established BR2 [8] and Local DG [26] methods, which are the state-of-the-art in DG methods for

diffusion problems.

3.1.1 Novelty and Articles

All of the proposed schemes in the Interface Gradient Recovery (IGR) family are new. The related

High-Accuracy-Gradient (HAG) scheme introduced in this chapter is also new. The idea of com-

bining the recovery operator with the mixed formulation had previously not been explored. We

note that the term “Gradient Recovery” has been used outside our research to refer to certain post-

processing strategies [28, 95] that have nothing to do with van Leer, Nomura, and Lo’s [102, 67]

recovery operator, which is the operator employed to form the IGR schemes.

The material of this chapter appears in one AIAA conference manuscript, one submitted JCP
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article, and one in-preparation article:

• P. E. Johnson & E. Johnsen, A New Family of Discontinuous Galerkin Schemes for Diffusion

Problems, AIAA Paper 2017-3444.

• P. E. Johnson & E. Johnsen, The Compact Gradient Recovery Discontinuous Galerkin Method

for Diffusion Problems, JCP Manuscript Number JCOMP-D-19-00070, under review.

• P. E. Johnson & E. Johnsen, A Simple, Optimally Convergent Replacement for the BR1 Dis-

continuous Galerkin Method with 2D Fourier Analysis, in preparation.

3.1.2 Usage of Recovery

The schemes of this chapter employ the full-order and biased forms of the recovery operator.

These two types of recovery are applied exclusively in the inner-product based implementation

as opposed to the derivative-based approach of Section 2.6.6. For the 2D test cases, the recovery

operators are implemented as detailed in Section 2.6.5.

3.2 The Mixed Formulation

The IGR schemes are built in the DG framework, so the overall setup is the same as described in

Section 2.5; the complete spatial domain Ω is partitioned into M non-overlapping elements, linked

by interfaces. The numerical approximation Uh is a smooth polynomial over the interior of each

element Ωe described by K DOFs Ûe and K basis functions φe. Consider an unsteady PDE system

with a diffusive flux function G,
∂

∂t
U = ∇ ·G(U,∇U), (3.1)

to be satisfied in the weak sense over each element Ωm. The DG weak form for the general multi-

dimensional case (3.2) is repeated here with the addition of an auxiliary variable, σ:

∫
Ωm

φk
m
∂

∂t
Uhdx =

∫
∂Ωm

φk−
m (G̃·n−m)ds−

∫
Ωm

(∇φk
m)·(G(Uh

m,σm))dx ∀φk
m ∈ φm, ∀Ωm ∈ Ω. (3.2)
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The term n−m is the outward normal along the boundary of an element, and the integration coor-

dinate s traverses the perimeter of the element. In Eq. (3.2), the auxiliary variable σ has been

introduced as an approximation for the solution gradient. The population of the flux G at the

quadrature points requires a sufficiently accurate approximation for the solution gradient, hence the

introduction of the auxiliary variable. The strategy of introducing the auxiliary variable is known

as the mixed formulation; see Arnold et al. [4], Cockburn & Shu [26], or Bassi & Rebay [10] for

additional in-depth explanation.

Like the approximate solution Uh, the auxiliary variable is constructed by multiplying coeffi-

cients against the DG basis functions:

∇Uh(x ∈ Ωm) ≈ σm(x) =

K−1∑
k=0

φk
m(x) σ̂k

m. (3.3)

The auxiliary variable is an approximation for the gradient, which has one component for each

spatial dimension, so while φk
m is a scalar, each coefficient σ̂k

m has one component per spatial di-

mension, per field variable. The auxiliary variable is used to define the gradient for the diffusive

flux function G(U,∇U); it is a finite-dimensional projection of ∇Uh, constrained to be indistin-

guishable from the gradient of the global DG solution Uh (i.e., ∇Uh − σ = 0) in the weak sense.

As with the DG weak form, the enforcement of this condition takes advantage of an integration by

parts: ∫
Ωm

φk
mσmdx =

∫
∂Ωm

φk−
m (Ũ · n−m)ds −

∫
Ωm

Uh
m∇φ

k
edx ∀φk

m ∈ φm. (3.4)

Within the mixed formulation, the particular discretization scheme for the diffusive conservation

law is completely described once the common interface solution Ũ (in Eq. 3.4) and common inter-

face flux G̃ (in Eq. 3.2) are defined. Similar to the common interface flux, the common interface

solution Ũ must take the same value for both elements sharing an interface (as opposed to Uh,

which generally is discontinuous across interfaces). For a list of Ũ and G̃ choices corresponding

to various DG schemes for diffusion, see Arnold et al.[4].

It is typical, though not necessary, to perform a second integration by parts step on Eq. (3.4).
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Define the broken gradient, ∇hUh, as follows:

∇hUh(x ∈ Ωm) = ∇hUh
m(x) =

K−1∑
k=0

Ûk
m∇φ

k
m, (3.5)

where the ∇ operator refers to the gradient in physical space. The broken gradient ∇hU is in general

multivalued (discontinuous) along interfaces. Consider the following identity, exploited by Bassi

et al. [8] in the formation of the BR2 scheme:

∫
Ωe

Uh
m∇φ

k
mdx =

∫
∂Ωm

φk−
m Uh−

m · n
−
mds −

∫
Ωm

φk
m∇

hUh
mdx ∀φk

m ∈ φm. (3.6)

By substituting Eq. (3.6) into Eq. (3.4), we obtain the constraining equation for σm in terms of the

broken gradient and an interface-based correction:

∫
Ωe

σmφ
k
mdx =

NF∑
F=1

∫
Im,F

φk−
m (Ũ − Uh−

m )n−Fds +

∫
Ωm

φk
m∇

h(Uh
m)dx ∀φk

m ∈ φm, (3.7)

where each Im,F is one of the NF interfaces constituting ∂Ωm and n−F is the outward normal from Ωm

along the interface. Eq. (3.7) demonstrates that the difference σm − ∇
h(Uh

m) depends on a penalty

term along each interface that goes to zero as Ũ approaches Uh
m. This correction remedies the loss

of information inherent in the differentiation of Uh
m by allowing exchange of information across

interfaces. With regard to implementation, both Eq. (3.4) and Eq. (3.7) are acceptable.

The common interface flux is obtained as follows: a common interface gradient σ̃ is determined

for each quadrature point along a given interface, and that gradient is plugged into the diffusive

flux law to yield the interface gradient: G̃ = G(Ũ, σ̃). There are additional pieces of the mixed

formulation that will be necessary before introducing the compact members of the IGR family.

However, for the non-compact members of the IGR family, all necessary components of the mixed

formulation are ready, so we will now demonstrate how the Recovery concept can be combined

with the mixed formulation to form the majority of the IGR family.
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3.3 The Non-Compact IGR Schemes

Two special operators are used to define the common interface solution Ũ and common interface

gradient σ̃; these operators are the full-order recovery operator R(Uh
A,U

h
B) and the biased recovery

operator, denoted BA/B(Uh
A,U

h
B), as defined in Section 2.6. In this chapter, we exclusively make use

of the Modal ICB version of the biased recovery operator, excluding the Lagrange ICB reconstruc-

tion. The notation B[] indicates the dominant element in the biased recovery operator: BA indicates

the A-biased reconstruction and BB indicates the B-biased reconstruction. These operators are

listed in Table 3.1. Table 3.2 lists the non-compact members of the IGR family and distinguishes

them according to the strategies employed for calculating Ũ and σ̃. Along an interface of an ele-

ment Ωe, y+ indicates that the interface value for some quantity y is set by the interface trace from

the neighbor element, while y− indicates that the interface value for y is set from Ωe. For a given

interface, yA and yB denote the interface traces of the discontinuous polynomial approximations

for the quantity y from the left and right elements, respectively. Following previous convention in

DG methods, {{y}} = 1
2 (yA + yB) indicates the average of the traces from the neighboring elements.

The Local DG (LDG) method of Cockburn & Shu [26] (with one-sided fluxes, denoted LDG-OS)

and the first scheme of Bassi & Rebay [10] (BR1) are also shown for comparison. The first seven

IGR schemes, labelled GR-I through GR-VII, have non-compact stencils. Note that the recovery

operators are employed for both Ũ and σ̃; since σm for a given Ωm uses the same polynomial form

as Uh
m, the recovery operator built to approximate Ũ from Uh

A and Uh
B can be directly applied to

approximate σ̃ from σA and σB. The family designation “Interface Gradient Recovery” is based

on the fact that most of these schemes make some use of the Recovery concept when calculating

Table 3.1: Interface recovery operators in terms of input, output, and constraint count.

Operator Input Output Constraints, ΩA Constraints, ΩB

R(UA,UB) ÛA, ÛB Ũ K K

BA(UA,UB) ÛA, ÛB Ũ K (p + 1)ND−1

BB(UA,UB) ÛA, ÛB Ũ (p + 1)ND−1 K
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the common interface gradient.

We now explain our reasoning for the formation of these schemes. The goal of Eq. (3.7) is to

form a gradient approximation, σ, that is closer to the gradient of the underlying exact solution

U than the broken gradient ∇hUh. We hypothesized that by pushing the interface term Ũ towards

the exact solution, we could optimize the accuracy of the σ variable. Of course, one does not,

in general, have access to the exact solution U in the middle of a simulation. By intelligently

combining information from the two elements neighboring an interface, the recovery operator

represents the best attempt to recover the underlying, smooth, exact solution U along the interface.

Thus, we hypothesized that by using the recovery operator to calculate the common interface term

Ũ in the auxiliary weak form (Eq. 3.7), we could obtain DG schemes that are more accurate than

the state-of-the-art for diffusion problems. By similar reasoning, the recovery operator has also

been empoyed to calculate the interface gradient σ̃ along each interface I = ∂ΩA ∩ ∂ΩB from the

neighboring gradient approximations σA and σB. As the combination of the Recovery concept

with the mixed formulation had never before been explored, we decided to form many different

IGR schemes, all using the full-order and biased recovery operators in slightly different manners,

to identify the best way to combine the Recovery concept with the mixed formulation.

Table 3.2: Configurations of non-compact DG schemes for diffusion. Schemes are described in
terms of how common quantities Ũ and σ̃ are calculated along interface I = ∂ΩA ∩ ∂ΩB. GR-I
through GR-VII are the non-compact members of the IGR family.

Method Ũ σ̃

GR-I {{U}} R(σA, σB)

GR-II R(UA,UB) R(σA, σB)

GR-III R(UA,UB) {{σ}}

GR-IV UA R(σA, σB)

GR-V U+ R(σA, σB)

GR-VI BA(UA,UB) BB(σA, σB)

GR-VII UA BA(σA, σB)

LDG-OS UA σB

BR1 {{U}} {{σ}}
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Note that the GR-V scheme uses the exterior solution trace, U+, to set the common solution

along a given interface. Thus, two elements sharing an interface end up using different values of

Ũ along the shared interface when solving for σ. The scheme represents a test on the necessity

of using a consistent value of Ũ along a given interface; it is an excellent example of what not to

do. Two of the IGR schemes (GR-VI and GR-VII) make use of the biased version of the recovery

operator; this practice reduces the flow of information compared to the full-order recovery operator.

As the flow of information is reduced, the element Ωe gains more authority over its update vector

d
dt Ûe.

3.4 The Compact IGR Schemes

There are three compact schemes in the IGR family, bearing the general label Compact Gradient

Recovery, abbreviated CGR. These schemes are the standard CGR scheme, the CGR-Light vari-

ant, and the CGR-Heavy variant. This section covers the CGR schemes and the High-Accuracy-

Gradient (HAG) scheme, which is a largely experimental relative of the IGR family but not a

member, strictly speaking.

The reason that the non-compact members of IGR (and the BR1 scheme, as noted by Bassi

et al. [8]) are non-compact is the common interface gradient calculation. The general trend of

these schemes is that the auxiliary variable σ is employed when calculating the common interface

gradient. Consider five adjacent elements on a 1D geometry: Ωm−2, Ωm−1, Ωm, Ωm+1, and Ωm+2.

The auxiliary variable σ in a given element makes use of the DOFs in the immediate three-cell

stencil: σm−1 = H(Ûm−2, Ûm−1, Ûm), σm = H(Ûm−1, Ûm, Ûm+1), and σm+1 = H(Ûm, Ûm+1, Ûm+2)

whereH is the operation that obtains the auxiliary variable from the available DOFs. The interface

flux G̃ on the left interface of Ωm depends on {σm−1,σm} while the flux on the right interface of Ωm

depends on {σm,σm+1}. Thus, because of the information required to form the auxiliary variable

in each element, the update scheme for Ωm depends on Ûm−2, Ûm−1, Ûm, Ûm−1, and Ûm+2. In other

words, the update scheme is non-compact. For computational efficiency and minimal invasiveness

in the implementation process, it is preferable that the diffusion scheme make use of a compact
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stencil.

In the construction of the CGR and HAG schemes, an extra variable known as the semi-

connected gradient is introduced to prevent the scheme from becoming non-compact. Consider an

element Ωe with NF sides, such that ∂Ωe = ∪
NF
F=1Ie,F , where Ie,F is the F th edge/face of Ωe. There is

one semi-connected gradient for each interface of each element; ultimately, these semi-connected

gradients are not stored in memory, but they serve as crucial building blocks for a compact version

of the mixed formulation. The semi-connected gradient, like the auxiliary polynomial, is built in

the discontinuous polynomial space φ, such that for a given interface Ie,F of a given element Ωe,

ge,F(x) =

K−1∑
n=0

φn
e(x) ĝn

e,F . (3.8)

The semi-connected gradient is constrained by a modified version of Eq. (3.7). Instead of allowing

a correction Ũ −Uh−
e to be enforced along all NF interfaces, the semi-connected gradient ge,F only

makes use of the jump term along Ie,F:

∫
Ωe

ge,Fφ
k
edx = χ

∫
Ie,F

φk−
e (Ũ − Uh−

e )n−e ds +

∫
Ωe

φk
e∇

h(Uh
e )dx ∀φk

e ∈ φe, (3.9)

where Ũ is the distribution of the common interface solution along Ie,F . The variable ge,F is

called the semi-connected gradient because it includes information only from Ωe and the element

sharing interface Ie,F as opposed to including information from all neighbors of Ωe (in which case

it would be fully connected). The interface-based correction in Eq. (3.9) is often cast as a local

lifting operator (see [8, 15, 4, 13, 82]).

The scalar χ is the jump parameter. Usually, it is taken larger than unity to compensate for

the fact that Eq (3.9) includes an interface correction from only one of the NF interfaces of Ωe.

Increasing the χ value amplifies the influence that the jump Ũ −Uh−
e exerts on the semi-connected

gradient. In cases where this jump is large, the semi-connected gradient becomes large, which

leads to large values of the diffusive interface flux G̃. The artificial inflation of the diffusive flux

can be helpful for numerical stability, so we keep χ in the discretization as a tunable parameter.
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We favor χ = 2 for reasons that will be apparent after Fourier analysis.

For each non-boundary interface I, there are two elements sharing the interface. Consider a

non-boundary interface I = ∂ΩA ∩ ∂ΩB. Each of the two elements (ΩA and ΩB) has one semi-

connected gradient associated with the interface. In the CGR scheme, the recovery operator is

applied to these two semi-connected gradient polynomials to calculate the common gradient, hence

the name “Compact Gradient Recovery”. If interface I = ∂ΩA ∩ ∂ΩB influences gA,FA of ΩA

and gB,FB of ΩB, then σ̃I = R(gA,FA , gB,FB) in the standard CGR scheme. The benefit of the

semi-connected gradients is that since gA,FA and gB,FB depend only on ÛA and ÛB, the stencil is

compact. Thus, the extra complication of the semi-connected gradient is justified. Appendix F

presents a sample implementation of the interface gradient calculation.

The precise designs of the different CGR schemes and the related HAG scheme are now de-

scribed; the conventional BR2 scheme [8] also fits nicely into this framework. Within the mixed

formulation, a compact scheme is distinguished by three features. The first is the common in-

terface solution Ũ for the auxiliary weak form (Eq. 3.4). The second is the interface correction

term COR(χ,Uh) in the following constraint equation, generalized from Eq. (3.9) for the semi-

connected gradients:

∫
Ωe

ge,Fφ
k
edx =

∫
Ie,F

φk−
e COR(χ,Uh)n−Fds +

∫
Ωe

φk
e∇

h(Uh
e )dx ∀φk

e ∈ φe. (3.10)

The third feature is the calculation of the interface gradient from the semi-connected gradients

along each interface. The variants of the CGR scheme, the new HAG scheme, and the conventional

BR2 scheme [8] are described in Table 3.3. In addition to the standard CGR method, there exist two

variants: CGR-Heavy and CGR-Light. The Heavy formulation makes more use of the recovery

procedure than the original CGR method. The Light formulation minimizes the use of Recovery

to simplify the implementation process. The HAG scheme is a counterpoint to CGR-Light: both

schemes make minimal use of the recovery operator, but HAG employs Recovery for the common

interface solution while CGR-Light employs Recovery for the common interface gradient. These

different schemes allowed us to explore the effect of the recovery operator on different terms in the
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mixed formulation. The naive scheme covered in Section 2.3.1 is also reported in Table 3.3; the

notation U− in the Ũ column indicates that each element uses its own interface solution trace for

Ũ in Eq. 3.4, thereby ignoring the information of neighboring elements.

We remark that the description of BR2 given here is slightly different than the primal form

described by Bassi et al. [8]. Where our description calculates an average gradient at the interface

and feeds that average gradient σ̃ to the flux law, the primal form of the BR2 scheme [8] calculates

G along both sides of the interface using the semi-connected gradients, then takes the average of

the two fluxes. The two BR2 implementations are equivalent in the case of a linear flux law.

3.5 Boundary conditions

For any IGR scheme (and the HAG scheme as well), the common interface solution along a Dirich-

let boundary interface is set by the Dirichlet condition, thus Ũ = CD is immediately available;

however, the interface gradient σ̃ must be approximated. We apply the approach of Bassi et al. [8].

Consider a boundary interface, ID, on which the Dirichlet condition is CD. For the element ΩB

whose perimeter ∂ΩB includes ID, we solve for gB,ID with the correction term in Eq. (3.10) set

to COR(χ,Uh) = χ(CD − Uh−
B ), where gB,ID is the semi-connected gradient associated with the

Dirichlet interface. Then, gB,ID is applied to calculate G along ID. The relatively simple Neu-

Table 3.3: Common interface solution Ũ, correction term COR (Eq. 3.10), and common interface
gradient σ̃ along face FA of ΩA, where IA,FA = ∂ΩA ∩ ∂ΩB, for different schemes. The interface is
face FB of ΩB. {{U}} = 1

2 (Uh
A + Uh

B) along the interface.

Scheme Ũ(IA,FA) COR(χ,Uh) σ̃(IA,FA)

CGR R(Uh
A,U

h
B) χ

2 (U+ − U−) R(gA,FA , gB,FB)

CGR-Heavy R(Uh
A,U

h
B) χ(Ũ − U−) R(gA,FA , gB,FB)

CGR-Light {{Uh}}
χ

2 (U+ − U−) R(gA,FA , gB,FB)

HAG R(Uh
A,U

h
B) χ

2 (U+ − U−) 1
2 (gA,FA + gB,FB)

BR2 {{Uh}}
χ

2 (U+ − U−) 1
2 (gA,FA + gB,FB)

Naive U− 0 1
2 (∇hUh

A + ∇hUh
B)
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mann case (where ∇U · n is given) is ignored in this work. The described boundary procedure is

applicable for both the compact and non-compact versions of the IGR family.

3.6 Fourier Analysis, 1D Diffusion Equation

For Fourier analysis of the IGR family, we maintain the assumption of a p-uniform grid with

constant mesh spacing h. The governing conservation law is the heat equation with diffusivity of

unity:
∂U
∂t

= µ
∂2U
∂x2 . (3.11)

As with Section 2.4, the solution is assumed to be a Fourier mode of nondimensionalized wavenum-

ber ω, and we restrict ourselves to the 1D case such that K = p + 1. However, the stencil for a

non-compact scheme, in general, includes the middle element and the two elements on each side

of it (for a total of five elements in the stencil). Thus, the update matrix is built as follows:

d
dt

Ûm = DLLÛm−2 + DLÛm−1 + DCÛm + DRÛm+1 + DRRÛm+2, (3.12a)

µ

h2A(ω) = exp(−2iω)DLL + exp(−iω)DL + DC + exp(iω)DR + exp(2iω)DRR. (3.12b)

The DG update scheme is rewritten in terms of a K × K update matrixA(ω):

d
dt

Ûm =
µ

h2A(ω)Ûm. (3.13)

As described in Section 2.4, the scheme’s order of accuracy, stability property, and spectral ra-

dius (at a given p) are calculated based on the eigenvalue spectrum of A(ω). Figure 3.1 shows

three example eigenvalue plots; these particular cases are the GR-II, LDG-OS, and CGR(χ = 1)

schemes with p = 2. The real components of each of the K = 3 eigenvalues are plotted versus

ω. For GR-II and CGR, the maximum magnitude of any of the eigenvalues ofA is approximately

ρs = 26.5; the spectral radius of the LDG-OS scheme is much higher. Fourier analysis has been

performed for all members of the IGR family; the spectral radii and orders of accuracy are shown
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Figure 3.1: Eigenvalues of the update matrixA(ω) for various diffusion schemes in the p = 2 case.
The dotted red line is the exact eigenvalue for heat equation, λex = −ω2.

in Tables 3.4 and 3.5 for p ∈ {1, 2, 3, 4, 5}. The properties of established DG methods are also listed

for comparison.

Out of all the schemes analyzed, the GR-V scheme is the only one to exhibit inconsistency

(p = 1) or instability (p = 5). This undesirable behavior confirms that it is poor form to let

different elements use different Ũ values along a shared interface. The GR-IV and GR-VII methods

show order 2p + 1 accuracy; for both schemes, the consistent eigenvalue has a nonzero imaginary

component that converges to zero at rate 2p + 1, so while the real component of λcon is order 2p + 2

Table 3.4: Order of accuracy from Fourier analysis. X indicates an unstable scheme. For each
CGR scheme (and the HAG scheme), order of accuracy is independent of χ.

Scheme p = 1 p = 2 p = 3 p = 4 p = 5
GR-I 2 6 6 10 10
GR-II 4 8 10 14 16
GR-III 2 6 6 10 10
GR-IV 3 5 7 9 11
GR-V 0 2 2 4 X
GR-VI 4 6 8 10 12
GR-VII 3 5 7 9 11
CGR-Heavy 4 4 8 8 12
CGR 4 4 8 8 12
CGR-Light 2 4 6 8 10
HAG 4 4 8 8 12
LDG-OS 4 6 8 10 12
BR2 2 4 6 8 10
BR1 2 6 6 10 10
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accurate, the imaginary component reduces the schemes to order 2p + 1 accuracy.

There are certain scheme similarities and peculiarities worth commenting on. The GR-II

scheme is by far the most accurate in the 1D case; it achieves order 3p + 1 accuracy for odd p

and order 3p + 2 accuracy for even p. The reduced accuracy of the GR-I and GR-III schemes

indicates that for a non-compact scheme, the recovery operator must be employed for both the

common interface solution and the common interface gradient to achieve a performance advantage

over BR1. The GR-VI method, by employing the biased recovery operator instead of the full-order

recovery operator, is reduced to order 2p + 2 accuracy. The BR1, HAG, CGR, and CGR-Heavy

schemes all show irregular behavior in the order of accuracy, achieving either order 2p or order

2p + 2 accuracy depending on whether p is even or odd. With χ = 1, the BR2 and CGR-Light

schemes perform nearly identically (the single point where they differ is the p = 1 case). The

CGR-Heavy scheme and the standard CGR scheme perform identically in the 1D case and are

especially attractive in the case of odd p; they offer order 2p + 2 accuracy while having the small-

est spectral radii of all schemes analyzed. The HAG scheme matches the CGR scheme in order

of accuracy even though it does not make use of the recovery operator in the calculation of the

common interface gradient. This performance suggests that for compact diffusion schemes, the

Table 3.5: Spectral radius, ρs = |(λ)|max, rounded up to the nearest integer. X indicates an unstable
scheme. HAG, BR2, and the CGR schemes are implemented with χ = 1.

Scheme p = 1 p = 2 p = 3 p = 4 p = 5
GR-I 13 60 171 381 739
GR-II 9 27 54 90 135
GR-III 7 60 171 381 739
GR-IV 7 60 171 381 739
GR-V 19 60 171 381 X
GR-VI 7 98 336 859 1832
GR-VII 24 114 377 940 1974
CGR-Heavy(χ = 1) 9 27 50 86 132
CGR(χ = 1) 9 27 50 86 132
CGR-Light(χ = 1) 12 60 171 381 739
HAG(χ = 1) 12 42 123 282 564
LDG-OS 36 149 439 1046 2143
BR2(χ = 1) 14 60 171 381 739
BR1 16 64 177 388 747
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strategy used to calculate the interface gradient has little effect on scheme accuracy; instead, it is

the strategy for calculating Ũ in the auxiliary weak form that governs scheme accuracy.

The peculiar stairstepping behavior in the orders of accuracy of CGR and HAG is connected

to the traits of the recovery operator. In the analysis of the derivative-based implementation of the

recovery operator (see Section 2.6.6 and Appendix B), it was discovered that on uniform meshes,

the even-order recovery wieghts (C2,C4) are always zero. Thus, the recovery operator is ignorant

of the 2nd and 4th spatial derivatives in the interface-normal direction; consequently, it is not

shocking that the order of accuracy stays constant when moving from odd p to even p.

3.7 Numerical Test: 1D Heat Equation

The family of IGR schemes is evaluated by simulating the 1D diffusion equation (Eq. 2.2) with

unity diffusivity and periodic boudary conditions. While the 1D diffusion equation is not of much

practical interest, it serves as an effective filter to identify which IGR schemes are worth pursuing in

more complicated implementations. For this particular test, the initial condition is U(x, 0) = sin(x)

and the spatial domain is Ω = [0, 2π] with periodic boundary conditions. A uniform grid is used

in all cases, such that ∆x = 2π
M , where M is the number of elements. Each method is applied to

simulate the system from t = 0 to t f = 2 using the explicit 8th order Runge-Kutta scheme of Prince

and Dormand [86]. Two error metrics are used for the investigation: the L2 error in cell averages,

denoted ECA, and the global L2 error norm, denoted EG:

ECA =

√√
1
M

M∑
e=1

(U
h
e − Ue)2 , EG =

√√
M∑

e=1

∫
Ωe

(Uh
e − U)2dx. (3.14)

The cell averages of the DG and exact solutions are denoted U
h
e and Ue, respectively, in each

element Ωe. All error measurements are obtained by comparing the DG solution at the final time,

Uh(x, 2), to the exact solution at the final time, U(x, 2) = exp(−2) sin(x). Every scheme is run

on a set of successively refined meshes for p ∈ {1, 2, 3}, and the error’s order of convergence is
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measured in both norms.

This test revealed that some of the IGR methods are sub-optimal in the global error norm,

meaning that the order of convergence in EG is less than p+1 for at least one choice of p ∈ {1, 2, 3}.

These schemes are GR-I, GR-III, and GR-V. Additionally, the BR1 scheme is sub-optimal; this fact

is known within the DG communuty and was confirmed by the test. Given the sub-optimal nature

of BR1, it is not surprising that GR-I and GR-III, which bear close resemblance to BR1, were

also sub-optimal. All of the remaining schemes from Table 3.4 are optimal in the global error

norm, meaning that order p + 1 convergence is achieved. We refer to these remaining schemes as

EG-optimal to denote their optimal behavior in the global L2 norm.

The convergence behavior in ECA is now explored. Table 3.6 lists the number of elements M,

the cell-average error ECA, and the rate of convergence in ECA for the grid refinement study of

the GR-II scheme; the rate of convergence is measured between each successive pair of meshes for

each discretization order p. From the tabulated data, it is evident that GR-II converges at rates four,

eight, and ten for p = 1, p = 2, and p = 3, respectively. The convergence rates of all of the other

EG-optimal schemes were determined in the same manner and are listed in Table 3.7. For many

schemes, the convergence rates in ECA match the orders of accuracy given by Fourier analysis; in

other cases, the two values are mismatched. For example, in the case of the GR-VII scheme, ECA

converges with order 2p + 1 for p ∈ {1, 2}, but order 2p + 2 for p = 3; alternatively, LDG-OS

is order 2p + 2 accurate from Fourier analysis, but sometimes only converges at rate 2p + 1 in

ECA. Based on the results of this test, the only IGR schemes implemented in the multidimensional

case are GR-II, GR-VI, the HAG scheme, and the CGR schemes. The rest of the schemes, while

interesting, are not worth pursuing in the multidimensional case.

Table 3.6: GR-II Performance, 1D heat equation.

p M ECA Rate p M ECA Rate p M ECA Rate
1 10 4.58E − 05 − 2 10 3.05E − 09 − 3 3 6.46E − 08 −

1 20 2.87E − 06 3.99 2 20 1.16E − 11 8.04 3 4 3.38E − 09 10.26
1 30 5.68E − 07 4.00 2 30 4.50E − 13 8.01 3 6 5.92E − 11 9.97
1 40 1.80E − 07 4.00 2 40 5.00E − 14 7.64 3 8 3.35E − 12 9.98
1 50 7.37E − 08 4.00 2 50 1.00E − 14 7.21 3 10 3.60E − 13 10.00
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3.7.1 Effect of the Jump Parameter (χ)

Supplementary analysis and testing was performed on the HAG, BR2, and CGR schemes with the

jump parameter set to χ = 100. Fourier analysis (data not shown) indicates that with χ = 100, the

BR2 scheme is always order 2p accurate. The HAG and CGR schemes are order 2p + 2 accurate

for odd p and order 2p accurate for even p. This behavior is the same as what was observed with

χ = 1 and χ = 2. The heat equation test was repeated with the HAG, BR2, and CGR schemes,

all implemented with χ = 100. The error is reported in the global L2 error and the cell-average

error in Figure 3.2 and Figure 3.3, respectively. The results indicate that the convergence rates are

unaffected by the substantial ampification of the jump parameter.

3.8 Fourier Analysis: 2D Shear Diffusion Equation

The IGR schemes were proposed with the ultimate purpose of discretizing the viscous terms in the

compressible Navier-Stokes equations (Eq. 2.14); the viscous stress tensor τ contains shear terms

that distinguish it from the prototypical Laplacian diffusion equation. Thus, to predict scheme

performance for the viscous terms of the compressible Navier-Stokes equations, we performed

Table 3.7: Convergence rates in ECA for 1D heat equation test. Schemes dependent on χ achieve
the same rates of convergence regardless of χ, assuming χ ≥ 1. Only EG-optimal schemes are
included.

Method p Rate Method p Rate Method p Rate
GR-II 1 4 GR-II 2 8 GR-II 3 10
GR-IV 1 3 GR-IV 2 5 GR-IV 3 8
GR-VI 1 4 GR-VI 2 6 GR-VI 3 8
GR-VII 1 3 GR-VII 2 5 GR-VII 3 8
CGR-Heavy(χ = 1) 1 4 CGR-Heavy(χ = 1) 2 4 CGR-Heavy(χ = 1) 3 8
CGR-Heavy(χ = 2) 1 4 CGR-Heavy(χ = 2) 2 4 CGR-Heavy(χ = 2) 3 8
CGR(χ = 1) 1 4 CGR(χ = 1) 2 4 CGR(χ = 1) 3 8
CGR(χ = 2) 1 4 CGR(χ = 2) 2 4 CGR(χ = 2) 3 8
CGR-Light(χ = 1) 1 2 CGR-Light(χ = 1) 2 4 CGR-Light(χ = 1) 3 6
HAG(χ = 1) 1 4 HAG(χ = 1) 2 4 HAG(χ = 1) 3 8
BR2(χ = 2) 1 2 BR2(χ = 2) 2 4 BR2(χ = 2) 3 6
BR2(χ = 1) 1 2 BR2(χ = 1) 2 4 BR2(χ = 1) 3 6
LDG-OS 1 3 LDG-OS 2 6 LDG-OS 3 7
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Figure 3.2: Convergence study in global L2 error for 1D heat equation test with χ = 100. Dashed
gray lines: convergence rates m. Symbol Key: BR2:◦, CGR-Heavy:., HAG:�.
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Figure 3.3: Convergence study in cell-average error for 1D heat equation test with χ = 100. Dashed
gray lines: convergence rates m. Symbol Key: BR2:◦, CGR-Heavy:., HAG:�.

Fourier analysis with the 2D shear diffusion equation (Eq. 2.7) taken as the governing differential

equation:

∂U
∂t

= ∇ ·


1 θ

θ 1



∂U
∂x

∂U
∂y




T

=
∂2U
∂x2 +

∂2U
∂y2 + 2θ

∂2U
∂x∂y

, (3.15)

where the diffusivity is set to unity and the shear factor θ is left as a parameter. Previous analysis

of the RDG-1x++CO version of Recovery-based DG method [69] for the shear diffusion equation

(Eq. 3.15) used θ = 1
2 . However, we believe θ = 1

6 to be a more reasonable choice for modeling

the behavior of the compressible Navier-Stokes equations. Consider the governing equation for

the x component of momentum in the 2D compressible Navier-Stokes equations (Eq. 2.13), with
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Figure 3.4: Element orientations employed for Fourier analysis. In the Cartesian case (a), there are
five elements in the stencil of Ω0, each a square of side length ∆x. In the structured simplex case
(b, c), each element is part of a two-element square block of side length ∆x for both the lower-left
to upper-right diagonal (b) and the lower-right to upper-left diagonal (c) cases.

the derivatives of the viscous stress tensor expanded as velocity derivatives under the assumption

of constant viscosity:

∂

∂t
(ρv1) +

∂

∂x
(ρv2

1 + p) +
∂

∂y
(ρv1v2) = µ(

∂2v1

∂x2 +
∂2v1

∂y2 +
1
3
∂2v1

∂x2 +
1
3
∂2v2

∂x∂y
). (3.16)

This equation contains the scalar Laplacian of v1, an extra ∂2v1
∂x2 term, and the cross-derivative of v2

(the y component of velocity). Assuming the gradients of v1 and v2 to be of similar magnitudes, the

1
3 in front of the cross-derivative of v2 corresponds to a choice of θ = 1

6 in the scalar shear diffusion

equation (Eq. 3.15), hence our decision to apply θ = 1
6 in this analysis. We include results with

θ = 1
2 as well for comparison to the RDG class of schemes [67].

Fourier analysis is performed on multiple geometries: first a Cartesian mesh, then two similar

meshes of simplex (triangular) elements, as illustrated in Figure 3.4. The initial condition is taken

as U(x, y, 0) = exp(iω′x + iω′y), where ω′ is the dimensional wavenumber; a more thorough

analysis would involve taking the wavenumbers in x and y to be independent parameters. In our

experience, a scheme that is stable under the given initial condition is also stable for different

choices of the x and y wavenumbers. The analysis procedures and results are reported separately

for the Cartesian and simplex cases.
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3.8.1 Cartesian Elements

The description of the Fourier analysis procedure is restricted to the compact case; the analysis

of the non-compact schemes is a tedious but straightforward extension. We focus on a specific

element, Ω0, with the stencil shown in Fig. 3.4a. Defining a new variable β = ω′∆x, where ∆x

is the element side length and β is the nondimensional wavenumber per element, the degrees of

freedom in the stencil (Figure 3.4a) adhere to the form



ÛN

ÛS

ÛE

ÛW

Û0


=



exp(iβ)Û0

exp(−iβ)Û0

exp(iβ)Û0

exp(−iβ)Û0

Û0


. (3.17)

The update scheme for Ω0 is rewritten as a single matrix-vector multiplication,

d
dt

Û0 =
1

(∆x)2A(θ, β)Û0, (3.18)

where the update matrix A, in addition to depending on the particular DG method employed,

depends on the nondimensional wavenumber β and the shear factor θ.

As with the 1D case, the eigenvalues of A inform us of the stability of the scheme, the

spectral radius ρs, and the leading order of the error. For a given wavenumber, the update ma-

trix still contains a single consistent eigenvalue. Sample eigenvalue spectra for the standard

CGR scheme are displayed in Fig. 3.5. As β approaches zero, the consistent eigenvalue approxi-

mates the exact eigenvalue, λex = −2β2(1 + θ), corresponding to the exact solution of Eq. (3.15),

U(x, y, t) = exp(−2(1 + θ)(ω′)2t) exp(iω′x + iω′y). Given the consistent eigenvalue, the strategy for

determining the order of accuracy is the same as the 1D case (Section 3.6). Stability information

is obtained for p ≤ 7, and the order of accuracy is calculated for p ≤ 5; for p > 5, our approach

is unable to authoritatively identify the order of accuracy because the difference between the exact
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Figure 3.5: Eigenvalues of the CGR update scheme with p = 2, χ = 2, and θ ∈ {0, 1
6 ,

1
2 } on Grid 1

(Cartesian). The dashed red line in shows the exact eigenvalue, λex(β) = −2β2(1 + θ). For all three
cases, the spectral radius is ρs = 153 and the order of accuracy is 4.

and consistent eigenvalues drops below machine precision in the neighborhood of β = 0.

The results of Fourier analysis on the Cartesian grid are reported in three tables. Table 3.8

reports the spectral radii of the CGR and BR2 schemes; all of these schemes have compact sten-

cils. Table 3.9 includes the spectral radii of Lo’s [69] RDG-1x++CO scheme, copied from his

thesis [67], alongside the spectral radii of the GR-II, GR-VI, BR1, and HAG schemes; the HAG

scheme is the only compact approach on this table. For shear diffusion problems, RDG-1x++CO

scheme is the best version of Recovery-based DG [69]. Note that the non-compact schemes re-

ported in Table 3.9 do not make use of the χ parameter; recall that χ is part of the semi-connected

gradient calculation, so it plays no role in the non-compact schemes. Table 3.10 reports the orders

of accuracy of all schemes analyzed. The order of accuracy was found to be independent of θ and

χ, assuming stability.

The spectral radius has been normalized by p2; the tabulated quantity is thus ρs
p2 . The standard

CGR scheme and the CGR-Heavy variant perform identically in terms of spectral radius, stability,

and order of accuracy on Cartesian elements, so the Heavy scheme is omitted from Table 3.8. Our

analysis reveals that the stability and the spectral radii of a scheme depend on the shear factor θ

and the size of the jump parameter χ. The shear term θ destabilizes certain CGR configurations

when χ = 1; by increasing χ, stability is restored. However, the spectral radius grows with χ, so if

explicit time integration is employed, it is advantageous to keep χ near the minimum stable value.
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This relationship is illustrated in Fig. 3.6 for the standard CGR scheme with p = 3 and p = 7.

We generally recommend the choice of χ = 2 when implementing the CGR and HAG schemes in

2D and 3D. The commonly applied BR2 scheme is similar to the CGR scheme in that the spectral

radius grows with both θ and χ; this effect is known within the DG community [82], so it is not a

surprising trait in the CGR schemes. For a given choice of θ and χ, CGR systematically exhibits

a smaller spectral radius than BR2, allowing larger timestep sizes in the case of explicit time inte-

gration; this advantage in spectral radius grows with increasing polynomial order p. The spectral

radius of CGR-Light varies between that of standard CGR and BR2; this behavior is expected

because CGR-Light is more similar to the BR2 discretization than the other CGR schemes. The

HAG scheme (reported in Table 3.9) exhibits similar spectrall radii to the BR2 scheme.

Concerning accuracy, the CGR-Light variant and BR2 are always order 2p accurate. Standard

Table 3.8: Cartesian Analysis, Grid 1: Spectral radii of various schemes normalized by p2 for the
shear diffusion equation. The dash symbol indicates an unstable scheme. CGR-Light is abbreviated
CGR-L. CGR-Heavy and standard CGR perform identically.

χ = 1 χ = 2 χ = 4
p θ CGR CGR-L BR2 CGR CGR-L BR2 CGR CGR-L BR2
1 0 16.3 24.0 26.6 48.0 48.0 72.0 120.0 120.0 168.0
2 0 13.1 30.0 30.0 38.1 38.1 73.0 105.6 105.6 181.0
3 0 11.0 37.8 37.8 39.8 39.8 93.3 117.8 117.8 235.2
4 0 10.6 47.5 47.5 43.3 47.5 121.9 136.4 136.4 308.8
5 0 10.5 59.1 59.1 46.7 59.1 157.1 158.1 158.1 398.0
6 0 10.4 72.4 72.4 50.6 72.4 198.2 181.7 181.7 501.6
7 0 10.0 87.5 87.5 56.3 87.5 244.9 206.7 206.7 619.2
1 1/6 18.6 24.9 29.5 48.0 48.0 72.0 120.0 120.0 168.0
2 1/6 15.4 30.5 32.2 38.1 38.6 73.0 105.6 105.6 181.0
3 1/6 – 38.2 40.7 39.8 42.0 93.3 117.8 117.8 235.2
4 1/6 – – 51.3 43.5 49.4 122.0 136.5 136.4 308.8
5 1/6 – – 64.1 47.4 59.8 157.2 158.2 158.1 398.0
6 1/6 – – 79.0 51.6 72.8 198.3 181.8 181.7 501.6
7 1/6 – – 95.8 57.5 87.6 245.1 206.9 206.6 619.2
1 1/2 24.1 30.0 36.1 32.3 37.3 50.7 120.0 120.0 168.0
2 1/2 – – 41.3 26.6 36.0 51.3 105.6 105.6 181.0
3 1/2 – – 52.2 28.1 42.7 64.0 118.0 117.9 235.3
4 1/2 – – 65.9 30.9 51.3 82.6 136.8 136.4 309.0
5 1/2 – – – 34.6 61.9 106.2 158.8 158.0 398.2
6 1/2 – – – 38.7 74.3 133.9 182.9 181.3 502.0
7 1/2 – – – – 88.4 165.5 208.4 205.8 619.7
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CGR and the Heavy variant are order 2p + 2 accurate for odd p and order 2p accurate for even

p. Thus, while maintaining a nearest-neighbors stencil, standard CGR and CGR-Heavy achieve

equal to or greater order of accuracy than the BR2 scheme. We expected this behavior based on

the 1D analysis, but an analysis in the 2D case, with the shear diffusion equation, was necessary to

be sure. The HAG scheme also achieves order 2p + 2 accuracy for odd p.

Table 3.9: Cartesian Analysis, Grid 1: Spectral radii of various schemes normalized by p2 for
the shear diffusion equation. The dash symbol indicates an unstable scheme.

Noncompact Compact
p θ RDG-1x++CO GR-II GR-VI BR1 HAG(χ = 1) HAG(χ = 2) HAG(χ = 4)
1 0 30.0 9.0 32.0 16.0 24.0 72.0 168.0
2 0 16.5 13.1 69.0 31.3 21.0 73.1 181.0
3 0 15.0 10.1 97.5 26.3 27.2 93.3 235.3
4 0 13.6 10.0 128.9 48.0 35.1 122.0 308.9
5 0 12.1 10.6 171.4 45.1 45.0 157.2 398.0
6 0 unknown 8.6 218.1 72.7 56.8 198.2 501.6
7 0 unknown 10.0 273.7 70.6 70.2 245.0 619.2
1 1/2 33.7 9.0 48.0 16.0 30.5 72.0 168.0
2 1/2 21.9 19.7 56.4 47.0 32.6 73.1 181.0
3 1/2 18.8 15.0 96.4 37.7 – 95.6 235.4
4 1/2 17.4 15.0 158.7 71.9 – 122.6 309.1
5 1/2 16.5 15.9 234.6 66.4 – 158.4 398.5
6 1/2 unknown 13.2 270.0 109.1 – – 502.3
7 1/2 unknown 15.1 365.3 104.8 – – 620.2

Table 3.10: Cartesian Analysis, Grid 1: Orders of accuracy, independent of θ.

p = 1 2 3 4 5
GR-II 4 8 10 14 16

GR-VI 4 6 8 10 12
CGR-Heavy 4 4 8 8 12

CGR 4 4 8 8 12
CGR-Light 2 4 6 8 10

HAG 4 4 8 8 12
BR1 2 6 6 10 10
BR2 2 4 6 8 10

RDG-1x++CO 4 8 10 14 16
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Figure 3.6: Cartesian analysis, Grid 1: Spectral radius normalized by p2 for the CGR scheme.
The region corresponding to unstable configurations is colored black. The stairstep pattern is a
numerical artifact corresponding to limited resolution in (θ, χ) space.

3.8.2 Simplex Elements

Fourier analysis has also been conducted on simplex elements. Numerical testing on simplex ele-

ments showed the GR-II scheme to be unstable. Additionally, the GR-VI scheme’s biased recovery

operation cannot be applied on simplex elements, where a tensor product basis is unavailable. The

Recovery DG method has been extended to simplex elements in a stable manner for shear dif-

fusion [57], but the resulting scheme involves an abundance of extra constraints in the solution

enhacement step of the scheme, which we prefer to avoid. Thus, the Fourier analysis on simplex

elements is limited to the CGR schemes, the HAG scheme, and the BR2 scheme. The approach

taken here is similar to that of Castonguay et al. [20] to analyze their energy-stable flux recon-

struction scheme. Grid 2 (Fig. 3.4b) and Grid 3 (Fig. 3.4c) are used for the analysis. We consider

two grids because, for θ , 0, scheme performance depends on the orientation of the elements. We

first focus on Grid 2, where the diagonal runs up to the right. Each element in Grid 2 belongs to

a square pair (or block) of elements; and element block’s DOF collection is denoted with two hats

instead of one:

ˆ̂UN =

ÛN1

ÛN2

 , ˆ̂UW =

ÛW1

ÛW2

 , ˆ̂US =

ÛS1

ÛS2

 , ˆ̂UE =

ÛE1

ÛE2

 , ˆ̂U0 =

Û01

Û02

 . (3.19)
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As with the analysis on Cartesian elements, the initial condition is assumed to be a Fourier mode

so that the DOFs in the five blocks obey the following form:



ˆ̂UN

ˆ̂US

ˆ̂UE

ˆ̂UW

ˆ̂U0


=



exp(iβ) ˆ̂U0

exp(−iβ) ˆ̂U0

exp(iβ) ˆ̂U0

exp(−iβ) ˆ̂U0

ˆ̂U0


. (3.20)

Next, the update scheme for each element is expressed in matrix form. For example, the update

scheme for element Ω01 depends on Û01, Û02, ÛS 2, and ÛE2 as follows:

d
dt

Û01 =D01
01

Û01 +D01
02

Û02 +D01
S2

ÛS 2 +D01
E2

ÛE2, (3.21)

whereDm
n contains the contribution of Ωn to the residual of Ωm. Fourier analysis requires formation

of the following matrices: D01
01

, D01
02

, D01
S2

, D01
E1

, D02
02

, D02
01

, D02
N1

, and D02
W1

. Once these matrices

are formed, they are combined with Eq. (3.20) and Eq. (3.19) to form the amplification matrix:

d
dt

Û01

Û02

 =
d
dt

ˆ̂U0 =A(θ, β) ˆ̂U0. (3.22)

The dimension of the amplification matrix is 2K×2K, where K = 1
2 (p+1)(p+2) is the DOF count

per element, because it accounts for the update schemes of two elements. As with the Cartesian

case, the eigenvalue spectrum of A is inspected to determine (i) whether or not the scheme is

linearly stable, (ii) the scheme’s order of accuracy, and (iii) the spectral radius. In the case of Grid

3 (Fig. 3.4c), the setup is similar but the amplification matrixA takes a different form due to the

altered grid orientation.

Table 3.11 reports the calculated orders of accuracy. On simplex elements, the CGR schemes

and the HAG scheme are reduced to order 2p accuracy, like the BR2 scheme. Assuming scheme
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stability, the orders of accuracy are unaffected by the jump parameter χ and the shear factor θ.

Table 3.12 and Table 3.13 present the spectral radii for the CGR, HAG, and BR2 schemes on

the two grid configurations tested. As with the Cartesian case, the stability of a scheme depends

on the combination of p, θ, and χ. However, unlike the Cartesian case, the shear factor θ actually

has a stabilizing effect on Grid 2. We suspected this trend to be related to the grid orientation, so

Fourier analysis on Grid 3 was performed as well. For the scalar Laplacian case (θ = 0), scheme

performance is independent of the grid orientation, but in the shear diffusion cases (θ = 1
6 and

θ = 1
2 ), the spectral radii are substantially increased on Grid 3 compared to Grid 2. The cause of

this behavior is the G̃ ·n term in the DG weak form; when the shear term is present, the magnitude

of G̃ · n depends heavily on the orientation of an interface. On Grid 3, where the diagonal runs up

to the left, the magnitude of the interface flux term is maximized, leading to larger overall spectral

radii compared to Grid 2.

For sufficiently high p, some CGR schemes are unstable regardless of the size of the χ pa-

rameter, as verified by repeating the analysis up to χ = 6 (data not shown). The standard CGR

scheme remains stable through p = 6 with sufficiently large χ; for p > 6, the only stable CGR

scheme is the CGR-Light variant. For a given value of χ and solution order p, the CGR schemes

consistently yield smaller spectral radii than the BR2 scheme. Overall, the main thing that stands

out is the lack of stable CGR schemes when χ is set to 1; higher χ values are necessary to stabi-

lize the approach. Our conclusion is that on simplex elements, the standard CGR method should

be applied with χ = 2 and p < 4 to achieve stability while minimizing the spectral radius when

solving the compressible Navier-Stokes equations. The CGR-Heavy scheme should be avoided on

simplex meshes. Where robustness is a priority, the commonly applied BR2 scheme remains the

Table 3.11: Simplex Analysis, Grids 2 and 3: Orders of accuracy, regardless of θ.

p = 1 2 3 4 5
CGR-Heavy 2 4 6 8 10

CGR 2 4 6 8 10
CGR-Light 2 4 6 8 10

HAG 2 4 6 8 10
BR2 2 4 6 8 10
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best choice.

Table 3.12: Simplex Analysis, Grids 2 and 3, χ ≤ 2: Spectral radii normalized by p2 for the shear
diffusion equation. The dash symbol indicates an unstable scheme. CGR-Heavy and CGR-Light
are abbreviated CGR-H and CGR-L, respectively.

χ = 1 χ = 2
p θ Grid CGR-H CGR CGR-L HAG BR2 CGR-H CGR CGR-L HAG BR2
1 0 2, 3 47.7 49.3 54.9 65.5 66.7 116.9 115.9 117.1 154.8 156.0
2 0 2, 3 – 35.8 43.0 50.8 50.9 84.6 88.1 87.2 133.2 131.8
3 0 2, 3 – – – 57.9 57.9 84.5 89.5 88.9 148.9 147.9
4 0 2, 3 – – – 70.9 70.3 95.4 103.9 103.0 182.9 180.8
5 0 2, 3 – – – – 86.4 – 119.7 119.0 221.5 219.3
6 0 2, 3 – – – – 105.1 – 141.2 140.0 270.9 267.6
7 0 2, 3 – – – – 126.6 – – 162.3 – 319.8
1 1/6 2 42.6 44.6 50.6 58.0 59.1 104.5 104.1 104.5 135.6 136.6
2 1/6 2 29.2 31.5 37.6 45.0 44.9 75.9 79.8 79.3 117.5 116.4
3 1/6 2 – – – 51.2 51.4 74.9 80.5 80.2 129.6 128.7
4 1/6 2 – – – 62.4 62.2 84.4 93.7 93.3 159.9 158.1
5 1/6 2 – – – 76.9 76.4 – 107.8 107.7 192.4 190.5
6 1/6 2 – – – – 92.8 – 127.4 127.0 236.0 233.1
7 1/6 2 – – – – 111.7 – 147.5 147.4 – 277.4
1 1/6 3 53.7 54.6 60.0 73.0 74.4 129.5 128.5 129.9 174.1 175.5
2 1/6 3 – – – 57.0 57.5 93.5 96.7 95.4 149.7 148.3
3 1/6 3 – – – 65.0 64.8 93.6 97.7 97.5 169.0 167.9
4 1/6 3 – – – 79.8 78.6 106.8 114.7 113.2 207.3 205.0
5 1/6 3 – – – – 97.0 – 131.6 130.5 – 249.8
6 1/6 3 – – – – 117.7 – 155.9 153.8 308.0 304.4
7 1/6 3 – – – – 142.2 – – 177.8 – 364.7
1 1/2 2 34.8 36.5 44.5 43.5 44.2 81.9 84.3 84.7 102.0 102.0
2 1/2 2 22.0 23.9 30.6 34.9 35.6 60.2 64.9 65.3 91.0 91.0
3 1/2 2 21.8 25.0 33.4 39.7 39.9 58.1 65.0 66.2 97.8 97.8
4 1/2 2 – – – 47.9 48.4 65.0 76.2 77.2 122.2 122.2
5 1/2 2 – – – 59.2 59.3 72.4 87.7 89.4 144.9 144.8
6 1/2 2 – – – 71.7 72.1 82.2 104.2 106.1 179.1 179.1
7 1/2 2 – – – – 86.8 – 121.2 123.4 – 210.8
1 1/2 3 – – – 88.2 90.0 155.1 154.1 155.8 213.1 214.8
2 1/2 3 – – – 71.2 71.1 112.0 114.7 112.9 184.0 182.7
3 1/2 3 – – – 79.8 79.1 – 118.8 118.5 210.5 209.3
4 1/2 3 – – – – 96.6 130.2 137.3 135.0 258.2 255.7
5 1/2 3 – – – – 118.9 – – 155.8 – 313.1
6 1/2 3 – – – – – – – 183.3 – 381.4
7 1/2 3 – – – – – – – 211.7 – 458.1
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3.8.3 Remarks

On Cartesian meshes, multiple members of the IGR family provide superior performance com-

pared to the BR1 and BR2 schemes, which serve as representatives of conventional DG approaches

Table 3.13: Simplex Analysis, Grids 2 and 3, χ > 2: Spectral radii normalized by p2 for the shear
diffusion equation. The dash symbol indicates an unstable scheme. CGR-Heavy and CGR-Light
are abbreviated CGR-H and CGR-L, respectively.

χ = 3 χ = 4
p θ Grid CGR-H CGR CGR-L HAG BR2 CGR-H CGR CGR-L HAG BR2
1 0 2, 3 189.3 187.8 189.0 244.3 245.5 261.8 259.9 261.0 333.9 335.0
2 0 2, 3 140.9 145.8 144.6 216.2 214.9 197.6 203.9 202.5 299.4 298.1
3 0 2, 3 140.6 147.6 146.4 244.2 243.3 197.5 206.5 205.1 340.3 339.3
4 0 2, 3 159.6 172.3 170.6 300.9 298.9 224.8 241.3 239.4 420.1 418.2
5 0 2, 3 – 197.5 195.5 365.6 363.6 – 276.1 273.7 511.8 509.9
6 0 2, 3 – 234.1 231.6 446.9 443.9 – 327.5 324.5 625.8 623.1
7 0 2, 3 – – 266.9 – 531.1 – – 373.4 – 746.5
1 1/6 2 168.2 168.2 168.1 213.4 214.3 232.0 232.4 232.2 291.2 292.1
2 1/6 2 126.1 131.8 130.9 190.2 189.1 176.4 183.8 182.8 263.0 261.8
3 1/6 2 124.5 132.7 131.8 211.1 210.2 174.6 185.2 184.1 293.3 292.3
4 1/6 2 141.4 155.5 154.4 261.3 259.4 198.9 217.4 216.1 363.5 361.7
5 1/6 2 – 177.9 176.6 314.6 312.7 – 248.3 246.6 438.5 436.6
6 1/6 2 – 211.5 210.0 385.8 383.0 – 295.6 293.6 537.8 535.1
7 1/6 2 – – 242.0 – 455.6 – – 337.9 – 637.1
1 1/6 3 210.7 209.2 210.6 275.5 276.8 291.9 290.0 291.3 376.8 378.1
2 1/6 3 156.4 160.6 159.1 243.7 242.4 219.7 225.0 223.5 337.9 336.6
3 1/6 3 156.7 162.3 161.6 278.5 277.5 221.2 228.1 227.3 388.8 387.8
4 1/6 3 178.5 190.1 187.9 342.9 340.8 251.7 266.5 264.1 479.9 478.0
5 1/6 3 – 217.3 215.4 418.9 416.8 – 304.5 302.3 587.9 586.0
6 1/6 3 – 258.1 254.7 511.6 508.6 – 361.3 357.5 718.6 716.0
7 1/6 3 – – 293.4 – 610.4 – – 411.3 – 860.3
1 1/2 2 131.7 135.5 135.7 162.0 162.0 181.6 186.7 186.8 222.0 222.0
2 1/2 2 99.3 106.7 107.0 147.2 147.2 138.3 148.4 148.6 203.3 203.3
3 1/2 2 95.9 107.0 107.6 158.1 158.1 134.0 149.0 149.4 218.7 218.6
4 1/2 2 108.9 126.3 127.0 198.3 198.3 152.8 176.3 176.8 274.7 274.7
5 1/2 2 120.4 144.7 145.6 234.0 233.9 168.7 201.5 202.2 323.7 323.7
6 1/2 2 139.3 173.1 174.2 290.1 290.1 196.0 241.5 242.3 401.9 401.9
7 1/2 2 – – 201.5 – 339.8 – – 279.7 – 469.8
1 1/2 3 253.9 252.5 254.2 338.2 339.8 352.8 350.9 352.6 463.3 464.9
2 1/2 3 188.4 191.6 189.8 300.9 299.7 265.6 269.6 267.8 418.0 416.9
3 1/2 3 191.8 195.7 194.5 348.8 347.8 270.4 276.2 275.0 488.0 487.0
4 1/2 3 217.4 227.4 224.5 430.0 428.0 307.2 319.7 316.6 603.5 601.6
5 1/2 3 – 261.1 258.4 – 526.3 – 366.8 363.9 – 741.7
6 1/2 3 – – 303.9 – 642.7 – – 427.7 – 907.2
7 1/2 3 – – 350.3 – 773.5 – – 492.6 – 1093.2
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for 2D diffusion problems. The GR-II scheme provides extraordinarily high orders of accuracy and

small spectral radii. Among the compact schemes, the standard and heavy CGR schemes, as well

as the related HAG scheme, achieve order 2p + 2 accuracy for odd p. This behavior compares

favorably to the order 2p accuracy exhibited by the BR2 scheme, which serves as a representative

for established compact DG schemes for diffusion. Analysis across various shear factors θ and

jump parameters χ demonstrated that it is sometimes necessary to increase χ past unity in order to

maintain stability.

On simplex meshes, the CGR and HAG schemes lose much of their appeal. For both of the grid

configurations tested, it is common to encounter unstable CGR schemes, even when the shear factor

is set to θ = 0. Additionally, the order of accuracy is fixed at 2p. For a given jump parameter χ,

the HAG and CGR schemes usually provide smaller spectral radii than the BR2 scheme. However,

since BR2 is typically stable for χ = 1 where the CGR schemes are not, it can be applied with

smaller spectral radii. Based solely on spectral radius and order of accuracy, the CGR schemes do

not appear worth implementing on simplex elements; we provide a set of numerical test problems

in the next section to allow the reader to decide whether or not implementing these schemes is

worth the trouble.

3.9 Numerical Tests: Linear 2D Diffusion

The IGR family’s performance is now evaluated on a set of 2D diffusion problems. Moving forward

from analysis, we decided to focus on the CGR scheme rather than the non-compact members of

IGR, so the non-compact IGR schemes are omitted from some test cases. In distributed-memory ar-

chitectures, a non-compact scheme requires more cross-processor communication than a compact

scheme, which interferes with computational efficiency. Additionally, the non-compact schemes

for diffusion are more invasive to code than the compact HAG and CGR schemes, as the inter-

face gradient σ̃ on a given element interface must account for information from all of the other

interfaces on that element.

The test cases are summarized in Table 5.3 and involve both periodic and Dirichlet boundary
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conditions; the new schemes are compared to the established BR1, BR2, and Local DG (LDG)

schemes. All cases are unsteady, and the error is measured at the end of the simulation, t = t f inal.

For all test cases, the standard CGR method is compared to BR2, the gold standard for diffusion on

a nearest-neighbor stencil; comparisons between the standard CGR approach and its Heavy/Simple

variants are discussed in Section 3.10. The GR-II, GR-VI, and HAG schemes are also tested on

select problems. The most important test cases in this section are cases 2 and 4, so the non-compact

IGR members are tested alongside the CGR and BR2 schemes for those cases. The polynomial

orders employed are p = {1, 2, 3} and unless otherwise indicated, the jump parameter is χ = 2

regardless of mesh geometry and polynomial order. With the exception of case 3B, the spatial

domain for all cases is a 2π × 2π square.

Each test case involves a mesh refinement study with p ∈ {1, 2, 3} across a set of six mesh

resolutions. Each mesh is characterized by directional resolution R, which is the number of ele-

ments in each direction. A Cartesian mesh has M = R2 elements and a simplex mesh has M = 2R2

elements. The mesh resolutions applied for both simplex and Cartesian meshes are listed in Ta-

ble 3.15. Sample meshes with R = 8 elements per direction are shown in Fig. 3.7. In addition

to Cartesian meshes, we demonstrate scheme performance on structured uniform and nonuniform

simplex meshes as well as randomly perturbed quadrilateral elements. The uniform meshes parti-

tion the 2π square while the nonuniform simplex meshes (for case 3B) partition the quadrilateral

defined by the following four vertices: (x, y) = {(0, 0), (2π, 0), ( 3
2π,

3
2π), ( 1

2π, 2π)}.

Table 3.14: Summary of the test cases.

Test Case Governing Equation Boundary
Conditions

Mesh (See Fig. 3.7) Schemes Tested

1 scalar Laplacian diffusion periodic Cartesian CGR, BR2
2A scalar shear diffusion periodic Cartesian CGR, BR2, LDG,

BR1, GR-II, GR-VI
2B scalar shear diffusion Dirichlet Cartesian CGR, BR2
3A scalar shear diffusion periodic uniform simplex CGR, BR2
3B scalar shear diffusion Dirichlet nonuniform simplex CGR, BR2
4 scalar shear diffusion periodic r.p. quad CGR, BR2, LDG,

BR1, GR-II, GR-VI,
HAG
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(a) M = 8 × 8 Cartesian mesh
with ∆x = 2π/8 for cases {1, 2}.
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(b) M = (2×8)×8 uniform sim-
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(c) M = (2 × 8) × 8 nonuniform
simplex mesh for case 3B.
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(d) M = 8 × 8 randomly per-
turbed quad mesh for case 4.

Figure 3.7: Sample meshes with R = 8 elements per direction.

The governing PDE is the scalar diffusion equation:

∂U
∂t

=
∂2U
∂x2 +

∂2U
∂y2 + 2θ

∂2U
∂x∂y

+ S(x, t), (3.23)

Table 3.15: Mesh resolutions in terms of directional resolution R and element count M.

p Element Type R M
1 Cartesian {8, 12, 16, 24, 32, 48} {64, 144, 256, 576, 1024, 2304}
2 Cartesian {5, 8, 10, 16, 21, 32} {25, 64, 100, 256, 441, 1024}
3 Cartesian {4, 6, 8, 12, 16, 24} {16, 36, 64, 144, 256, 576}
1 Simplex {8, 12, 16, 24, 32, 48} {128, 288, 512, 1152, 2048, 4608}
2 Simplex {5, 8, 10, 16, 21, 32} {50, 128, 200, 512, 882, 2048}
3 Simplex {4, 6, 8, 12, 16, 24} {32, 72, 128, 288, 512, 1152}
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where the shear factor θ is zero for case 1 (Laplacian diffusion) and θ = 1
6 for cases 2, 3 and 4

(shear diffusion). For the initial condition U(x, y, 0) = 1 + sin(x) sin(y), the manufactured source

term S(x, t), determined exactly from Eq. (3.23), forces the solution to the exact, time-accurate

solution, U(x, y, t) = 1 + exp(−2t) sin(x) sin(y). The final time is t f inal = 0.5.

Once initialized, the solution is advanced in time using explicit Runge-Kutta schemes. The

standard fourth-order, four-stage method (RK4) is used for p < 3 and the fifth-order, six-stage

approach of Cash & Karp [19] for p = 3. The timestep is set to satisfy the stability constraints

from Section 3.8,

∆t = ν
h2

m

µ
, ν = 0.9

CRK

ρs
, (3.24)

where for stability CRK = 2.8 (RK4) and CRK = 3.2 (RK5). The number of timesteps and thus the

wall time are directly proportional to the spectral radius.

Three different error norms are evaluated at t = t f inal in each simulation to illustrate different

convergence behaviors. The first norm is the global L2 error in the solution (EG) and the second is

the error in the cell-averages (ECA):

EG =

√√
M∑

m=1

∫
Ωm

(Uh
m(x) − U(x))2dx , ECA =

√√
1
M

M∑
m=1

(U
h
m − Um)2, (3.25)

where M is the number of elements. U
h
m and Um are the averages of the numerical and exact

solutions, respectively, over element Ωm. The cell-average error is naturally suited to comparing

the performance of DG to that of finite volume methods. The third norm is the functional error

norm, which compares global integral quantities:

EJ = |

M∑
m=1

∫
Ωm

κ(x)U(x)dx −
M∑

m=1

∫
Ωm

κ(x)Uh(x)dx|, (3.26)

where κ(x) is some kernel function over Ω.

These error norms complement each other’s downsides. The functional error norm EJ has the

advantage of being easy to calculate when an exact solution is unavailable; instead, a resolved
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calculation (on a fine mesh) can be substituted into the first integral in Eq. (3.26) to establish

a reference value for
∫
κUdx. However, the functional error can give a deceptively favorable

evaluation of a numerical solution depending on the kernel function, κ; for example, if κ = 1, the

functional error depends only on the average of the global solution, and EJ = 0 becomes a likely

event in this case, regardless of the upper bound of Uh − U. In this section, the kernel function

is κ(x, y) = sin(x/4) sin(3y/4) + sin(xy/2) for all test cases. Assuming a kernel κ with a sufficient

number of nonzero derivatives, we experimentally verified that the convergence behavior is nearly

independent of κ. However, any given test problem has different requirements on κ to prevent

deceptively high convergence rates. On the other hand, the global L2 error norm consistently yields

an authoritative quantification of how accurate the numerical solution is throughout the domain.

However, its convergence rate is always limited to order p + 1 because of the finite-dimensional

nature of Uh, regardless of the quality of the update scheme. Hence, while it is handy for showing

the improvement of a DG scheme as p increases, the global L2 norm is not an ideal tool for

comparing numerical schemes at a given p. In contrast, the cell-average error ECA exclusively

inspects the behavior of a single mode in each element (the average), and this particular mode

is included in the DG basis regardless of the DG solution order p. Hence, the cell-average error

measures how effective the DG update scheme is without being affected by the finite-dimensional

nature of Uh.

For all error norms, QV = 10 × 10 quadrature points over each element regardless of p to

calculate the errors. Convergence is measured with respect to the characteristic mesh width, h̃ =

1/
√

nDOF, where nDOF = M × K is the number of degrees of freedom. In many applications,

the quantity of interest depends on the solution gradient ∇U rather than the solution U itself, e.g.,

skin friction or heat flux. Errors in the solution gradient are discussed in Section 3.10.
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Figure 3.8: Convergence study for test case 1 (scalar Laplacian diffusion with periodic boundary
conditions on a Cartesian mesh). Dashed gray lines: convergence rates m; closed symbols: CGR;
open symbols: BR2 ; (p1:◦, p2:�,p3:.).

3.9.1 Test 1: Laplacian diffusion on a uniform Cartesian mesh with periodic

boundary conditions

We first consider linear Laplacian diffusion (θ = 0) on a uniform Cartesian mesh with periodic

boundary conditions. Fig. 3.8 shows the global L2 error, the cell-average error, and the functional

error across all meshes for p ∈ {1, 2, 3}. In the global L2 error, both CGR and BR2 achieve the

optimal rate of convergence, p + 1. In the functional and cell-average error norms, where BR2

converges with order 2p, CGR converges with order 2p + 2 for odd p and order 2p for even p. In

the p = 2 case, the errors of BR2 and CGR are nearly identical in all norms. For odd polynomial

order p, the CGR scheme is superior in all three error norms. The p = 1 CGR discretization is

particularly impressive, as it matches the p = 2 discretizations in the cell-average error for a given

characteristic mesh width. The convergence rates in the cell-average and functional errors match

the orders of accuracy obtained via Fourier analysis.
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3.9.2 Test 2: Shear diffusion on a uniform Cartesian mesh with different

boundary conditions

We consider shear diffusion with θ = 1
6 on a uniform Cartesian mesh with periodic (case 2A)

and Dirichlet (case 2B) boundary conditions. The CGR scheme was engineered precisely for the

purpose of maintaining stability and consistency on a compact stencil for shear diffusion problems

while exploiting the recovery operator, so this test case serves as a crucial scheme benchmark. This

test case, in addition to showing a demonstraton between the CGR and BR2 schemes, is employed

to evaluate the performance of the non-compact GR-II and GR-VI schemes.

We discuss the non-compact schemes first. Figure 3.9 shows the errors of various non-compact

DG schemes in the global L2 error norm for this particular problem. The LDG, GR-II, and GR-

VI schemes maintain optimal convergence in the global L2 norm. In contrast, the BR1 scheme is

sub-optimal for odd p; this deficiency is well known in the DG community. In the functional error

norm, shown in Figure 3.10, the two IGR schemes (GR-II and GR-VI) consistently achieve order

2p + 2 convergence. The BR1 scheme achieves order 2p convergence for odd p and order 2p + 2

convergence for p = 2. The LDG scheme is typically order 2p + 2 convergent, but it achieves

6th order convergence in the functional error for p = 1. This exceptionally high convergence rate

occurred for various choices of the kernel function. Figure 3.11 shows the cell-average errors of

the non-compact schemes. The GR-II scheme consistently achieves order 2p + 2 convergence;

the other three schemes are less accurate, with GR-VI performing better than the established LDG

and BR1 schemes. Overall, the GR-II and GR-VI schemes tend to produce more accurate results

across the different error norms than the established BR1 and LDG methods. Thus, we see these

non-compact approaches as viable improvements over the BR1 and LDG schemes on Cartesian

meshes for developers who are willing to tolerate a non-compact stencil.

Figure 3.12 and Figure 3.13 show the global, cell-average, and functional error norms achieved

with the CGR and BR2 approaches across all mesh resolutions for the scalar shear diffusion prob-

lem with periodic (case 2A) and Dirichlet (case 2B) boundary conditions; the latter are constant
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Figure 3.9: Convergence study in global L2 error for test case 2A (shear diffusion with periodic
boundary conditions on a Cartesian mesh) using various non-compact schemes. Dashed gray lines:
convergence rates m. Symbol Key: BR1:◦, GR-II:., LDG:?, GR-VI:�.

in space and time (CD = 1) and are implemented based on the approach of Section 3.5. With both

types of boundary conditions, the results for the global and functional error norms are very similar

to those obtained in test 1 for Laplacian diffusion. However, there is a significant difference in

the behavior of the cell-average error. Where the CGR scheme achieves order 2p + 2 convergence

in the cell-average error norm for p = 3 in case 1, it achieves only order 2p convergence in the

present test. This change indicates that at least with respect to the cell averages the CGR update

scheme can become less accurate in the presence of shear diffusion. Nevertheless, even though the

convergence rates are the same, the error magnitude with CGR remains smaller than that with BR2

for p = 3. The presented results indicate that on Cartesian meshes CGR achieves order 2p + 2

convergence in the functional error for odd p while maintaining a compact stencil. Additionally,

no degradation in convergence rates is observed when using Dirichlet boundary conditions.

3.9.3 Test 3: Shear diffusion on a structured simplex mesh with different

boundary conditions

To assess our approach on different meshes, we consider shear diffusion with θ = 1
6 on a structured

simplex mesh with periodic (case 3A) and Dirichlet (case 3B) boundary conditions. For a given

p, since there are fewer degrees of freedom (and fewer nonzero testing functions) per element,
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Figure 3.10: Convergence study in functional error for test case 2A (shear diffusion with periodic
boundary conditions on a Cartesian mesh) using various non-compact schemes. Dashed gray lines:
convergence rates m. Symbol Key: BR1:◦, GR-II:., LDG:?, GR-VI:�.
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Figure 3.11: Convergence study in cell-average error for test case 2A (shear diffusion with periodic
boundary conditions on a Cartesian mesh) using various non-compact schemes. Dashed gray lines:
convergence rates m. Symbol Key: BR1:◦, GR-II:., LDG:?, GR-VI:�.

we expect some degradation in convergence rates when going from a Cartesian implementation

to simplex elements. As with the tests on Cartesian elements, the BR2 and CGR schemes are

implemented with χ = 2. Though this value goes against the general recommendation of setting

χ equal to the number of sides per element when implementing BR2, we witness no change in

convergence behavior when the test is repeated with χ > 2. The quadrature is still performed with

QV = (p + 1)2 points on each element by taking the quadrature grid from an order p Cartesian

element and collapsing the reference square to a right triangle [74].

We first consider the periodic problem (case 3A) on the simplex mesh shown in Fig. 3.7b;
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Figure 3.12: Convergence study for test case 2A (scalar shear diffusion with periodic boundary
conditions on a Cartesian mesh) with compact schemes. Dashed gray lines: convergence rates m;
closed symbols: CGR; open symbols: BR2; (p1:◦, p2:�,p3:.).

10
-2

10
-1

10
-10

10
-5

10
0

m = 2

m = 3

m = 4

(a) Global error.

10
-2

10
-1

10
-10

10
-5

10
0

m = 2

m = 4

m =
6

(b) Cell-average error.

10
-2

10
-1

10
-10

10
-5

10
0

m = 2

m = 4

m =
6

m =
8

(c) Functional error.

Figure 3.13: Convergence study for test case 2B (scalar shear diffusion with Dirichlet boundary
conditions on a Cartesian mesh). Dashed gray lines: convergence rates m; closed symbols: CGR;
open symbols: BR2 ; (p1:◦, p2:�,p3:.).

the mesh refinement study for all p is presented in Fig. 3.14. As with the Cartesian case, both

schemes achieve optimal convergence rates in the global L2 error. The rate of convergence is 2p in

the functional and cell-average errors regardless of the polynomial order p; while the convergence

rates between CGR and BR2 are the same in the functional error, CGR consistently exhibits a

smaller error. This experiment has been repeated with a mesh where the diagonals run up and to

the left (instead of up and to the right), with similar results.
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Figure 3.14: Convergence study for test case 3A (scalar shear diffusion with periodic boundary
conditions on a uniform simplex mesh). Dashed gray lines: convergence rates m; closed symbols:
CGR; open symbols: BR2; (p1:◦, p2:�,p3:.).

For Dirichlet conditions (case 3B), we consider a more challenging mesh, the non-square poly-

gon shown in Fig. 3.7c. For a given mesh resolution R, the domain is split into M = R × R

quadrilateral elements. Then, each quadrilateral is split along the shorter of its two diagonals to

produce the simplex mesh. The Dirichlet condition varies in time and space along the boundary,

where the exact solution is prescribed. Thus, in addition to illustrating that the CGR scheme can

handle the application of a Dirichlet boundary condition on a nonuniform mesh, this problem eval-

uates the scheme’s ability to represent a non-constant Dirichlet distribution. As with the Cartesian

case, the boundary procedure described in Section 3.5 is applied. The mesh refinement study is

presented in Fig. 3.15. Both schemes experience degradation in the convergence rate of the cell-

average error, but scheme performance is otherwise similar to the spatially periodic, uniform-mesh

case. This result is encouraging, as it shows that the benefits of the Recovery concept in its full

form can extend beyond uniform meshes.

3.9.4 Test 4: Shear diffusion on randomly perturbed quadrilateral mesh

with periodic boundary conditions

We repeat test 2A (scalar shear diffusion with θ = 1
6 , periodic boundary conditions) but alter the

mesh. For a given mesh resolution (M = R2), each interior element vertex in the Cartesian mesh is
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Figure 3.15: Convergence study for test case 3B (scalar shear diffusion with Dirichlet boundary
conditions on a nonuniform simplex mesh). Dashed gray lines: convergence rates m; closed sym-
bols: CGR; open symbols: BR2; (p1:◦, p2:�,p3:.).

randomly perturbed up to h
4 in the x direction and h

4 in the y direction, where h = 2π
R is the element

width. To account for the spatially varying Jacobian matrix, the quadrature rule is increased to

QV = (p + 2)2 points per element volume and QS = p + 2 points per interface. The goal of this

test is to predict scheme performance on unstructured meshes, which are typical in design-related

analysis. The schemes tested are the CGR-Heavy, standard CGR, HAG, GR-II, GR-VI, BR2, BR1,

and LDG schemes. The compact HAG scheme achieved similar error to the CGR schemes in the

1D test case and has been applied here as a test of robustness; the CGR-Heavy scheme is included

to determine whether it performs the same as the standard CGR approach on a non-Cartesian

quadrilateral mesh.

We first discuss the non-compact schemes. Figure 3.16 and Figure 3.17 plot the global L2 and

cell-average errors, respectively. Note that some data points are missing, for example the GR-VI

error on the second-finest mesh in the p = 3 case. These missing entries correspond to astronomi-

cally large errors in cases where the schemes were revealed to be unstable. The GR-II and GR-VI

schemes cannot be trusted to maintain stability on a non-Cartesian mesh. For our particular mesh

setup, GR-II is unstable for p > 1 and GR-VI is unstable for p > 2, while the established LDG and

BR1 schemes maintained stability. Clearly, stability on the Cartesian mesh (guaranteed by Fourier

analysis) does not guarantee stability on a mesh of perturbed quadrilateral meshes. When stable,
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Figure 3.16: Convergence study in global L2 error for test case 4 (shear diffusion with periodic
boundary conditions on a perturbed quadrilateral mesh) using various non-compact schemes. Miss-
ing data points correspond to unstable configurations. Dashed gray lines: convergence rates m.
Symbol Key: BR1:◦, GR-II:., LDG:?, GR-VI:�.
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Figure 3.17: Convergence study in cell-average error for test case 4 (shear diffusion with peri-
odic boundary conditions on a perturbed quadrilateral mesh) using various non-compact schemes.
Missing data points correspond to unstable configurations. Dashed gray lines: convergence rates
m. Symbol Key: BR1:◦, GR-II:., LDG:?, GR-VI:�.

all schemes achieve optimal convergence in the global L2 norm; order p + 1 convergence is also

observed in the cell-average error. When the GR-VI and GR-II schemes maintain stability, they

are more accurate than the LDG and BR1 schemes. However, their tendency towards instability is

a liability, so we recommend GR-VI and GR-II on Cartesian meshes only. It is our hope that future

studies uncover a way to stabilize these promising schemes.

We now discuss the compact schemes. With the default choice of χ = 2, the CGR-Heavy and
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Figure 3.18: Convergence study in global L2 error for test case 4 (shear diffusion with periodic
boundary conditions on a perturbed quadrilateral mesh) using various compact schemes. Dashed
gray lines: convergence rates m. Symbol Key: BR2:◦, CGR-Heavy:., standard CGR:?,
HAG:�.

standard CGR schemes were unstable for p > 2. Thus, they are instead applied with χ = 4 for

this particular test case. In contrast, the HAG scheme and the established BR2 scheme maintained

stability with χ = 2. Figure 3.18 shows that all four of these compact schemes maintain optimal

convergence in the global L2 norm. In the cell-average error (Figure 3.19), the convergence rate

is again m = p + 1. In general, the differences in accuracy are small, but where differences

are apparent, the BR2 scheme is the least accurate scheme and CGR-Heavy is the most accurate

scheme.

3.10 Further Evaluation and Discussion of CGR Schemes

This section provides further inspection of the CGR scheme and its light/heavy variants. In addition

to discussing computational cost and comparing the three CGR schemes, we inspect the standard

CGR scheme’s error in the solution gradient.

3.10.1 Floating Point Operations

It is common to employ a nodal basis in DG, with the interpolation nodes being the Lobatto points

(in 1D) or a 2D/3D tensor product grid built from the Lobatto points. Here, we estimate the
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Figure 3.19: Convergence study in cell-average error for test case 4 (shear diffusion with periodic
boundary conditions on a perturbed quadrilateral mesh) using various compact schemes. Dashed
gray lines: convergence rates m. Symbol Key: BR2:◦, CGR-Heavy:., standard CGR:?,
HAG:�.

flop count for a residual calculation, including multiplication by the inverse mass matrix, on a

2D quadrilateral element, assuming a nodal basis, with scalar Laplacian diffusion (no advection)

as the flux law. In this case, K = (p + 1)2. Table 3.16 lists the flop count per residual calculation

substep for both the BR2 scheme and the standard CGR scheme; the quadrature node counts for the

volume integrals (QV per element) and surface integrals (QS per face) are included as parameters.

Costwise, the only difference between the two schemes is the calculation of Ũ, where CGR uses

the discrete recovery operator (see Appendix A); BR2 has a cost advantage here, as an element’s

solution on an interface quadrature point involves only the DOFs lying along the interface. Note

that for interface-related calculations, the overall workload is typically shared between a pair of

elements, hence the occasional division by 2 in the flop counts of individual processes. Table 3.17

gives the estimated flop count per DOF per residual evaluation (using the formulae of Table 3.16)

for p = 1 through p = 5 with QS = p + 1 and QV = K. The Ũ calculation is a relatively small part

of the overall cost to compute the residual, so the computational cost penalty incurred by CGR is

less than ten percent.
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3.10.2 Error in Solution Gradient

The BR2 and CGR schemes are compared based on the global and functional errors in the x and

y derivatives. The broken gradient ∇hU (see Eq. 3.5) is applied to measure the gradient of the

numerical solution Uh; then, either the x component or y component of ∇hU is compared to the

derivative of the exact solution. The error is measured using the broken gradient instead of the

auxiliary polynomial because the procedure for forming the broken gradient from Û is identical

for BR2 and CGR, while the procedure for the formation of σ differs between the methods. The

error in each derivative is measured using both the global and functional errors; the functional

error uses the same kernel κ used to measure the error in U. Fig. 3.20 shows these errors in ∂U
∂x

from test case 2B; because of the symmetry of this problem, we omit the error in the y derivative.

In the global error norm, both BR2 and CGR produce a convergence rate m = p; this behavior is

expected, as the broken gradient ∇hU is a degree p−1 polynomial. In the functional error norm, for

Table 3.16: Floating point operations per element (2D quadrilateral) per procedure. K = (p + 1)2,
QV is number of volume quadrature points, QS is number of quadrature points on each interface,
NF = 4 is number of sides, ND = 2 is number of spatial dimensions.

Step Calculation Flops (BR2) Flops (CGR)

1 Ũ, interface quadr. points NF × QS × 4(p + 1)/2 NF × QS × 4K/2
2 σ, interior quadr. points ND × QV × (2K + 2NF × QS ) ND × QV × (2K + 2NF × QS )
3 G(σ), interior quadr. points ND × QV ND × QV

4-5 σ̃, interface quadr. points NF × ND × QS × 4K/2 NF × ND × QS × 4K/2
6 G(σ̃), interface quadr. points ND × NF × QS ND × NF × QS

7 d
dt Û, given G distribution K × (2ND × QV + NF × 2QS + 3K) K × (2ND × QV + NF × 2QS + 3K)

Table 3.17: Total flop count per DOF to populate DG residual given Û.
K = (p + 1)ND , QV = K, QS = p + 1, NF = 4, ND = 2.

p Flops (BR2) Flops (CGR) CGR Flops
BR2 Flops

1 114 122 1.070
2 195.7 211.7 1.082
3 300 324 1.080
4 426.6 458.6 1.075
5 575.3 615.3 1.070
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Figure 3.20: Convergence study in ∂U
∂x for test case 2B (scalar shear diffusion with Dirichlet bound-

ary conditions on a Cartesian mesh). Dashed gray lines: convergence rates m; closed symbols:

CGR; open symbols: BR2 (p1:◦, p2:�, p3:.).

both BR2 and CGR, the x derivative converges at rate m = 2 for p = 1 and p = 2, then jumps to rate

m = 4 for the p = 3 case. However, while the convergence rates are similar, the gradient error of

the CGR scheme is consistently smaller than that of the BR2 scheme. Figs. 3.21 and 3.22 show the

global and functional error norms for the x and y derivatives in test case 3B; due to the asymmetry

of the domain in this test case (see Fig. 3.7c), we show errors in both derivative components. BR2

and CGR perform similarly in this test case. These results suggest that with regard to gradient

accuracy, CGR is more accurate than BR2 when the mesh is Cartesian and behaves similarly to

BR2 when mesh uniformity is lost.

3.10.3 CGR variants

Figs. 3.23 and 3.24 show mesh refinement studies using the three CGR variants (standard CGR,

CGR-Heavy, and CGR-Light) to solve the scalar shear diffusion problem on Cartesian (case 2A)

and uniform simplex (case 3A) meshes, respectively, with periodic boundary conditions for p = 1

and p = 3. On Cartesian elements, the CGR-Heavy variant gives identical results to the standard

CGR scheme while CGR-Light is less accurate. On simplex elements, the Heavy variant is more
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Figure 3.21: Convergence study in ∂U
∂x for test case 3B (scalar shear diffusion with Dirichlet bound-

ary conditions on a nonuniform simplex mesh). Dashed gray lines: convergence rates m; closed

symbols: CGR; open symbols: BR2 (p1:◦, p2:�, p3:.).
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Figure 3.22: Convergence study in ∂U
∂y for test case 3B (scalar shear diffusion with Dirichlet bound-

ary conditions on a nonuniform simplex mesh). Dashed gray lines: convergence rates m; closed

symbols: CGR; open symbols: BR2 (p1:◦, p2:�, p3:.).

accurate than the standard CGR scheme but does not offer improved convergence rates. However,

the standard CGR method is more robust under nonuniform mesh geometry, such as that used for

case 3B.
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Figure 3.23: Convergence study in U for test case 2A (scalar shear diffusion with periodic bound-

ary conditions on a Cartesian mesh) with standard CGR and the Heavy/Light variants. Dashed

gray lines: convergence rates m; open symbols: p = 1; closed symbols: p = 3 (CGR-Light:◦,

CGR-Standard:�, CGR-Heavy:.).

Implemented in the mixed formulation, the three CGR schemes exhibit different levels of ac-

curacy depending on the application of the recovery operation; BR2 does not employ Recovery but

rather uses an arithmetic average to calculate interface terms. CGR-Light makes minimal use of the

recovery operation, leveraging it only to calculate the interface gradient from the semi-connected

gradients of neighboring elements. Fourier analysis and computational results indicate that this

sparse application of the recovery operation provides no benefit in accuracy compared to the BR2

approach. In contrast to CGR-Light, the CGR-Heavy variant and the standard CGR scheme make

use of the recovery operation when populating the auxiliary variable by setting Ũ = R(Uh
A,U

h
B).

Consequently, the gradient approximation used to calculate the fluxes for the element interior inte-

grals is far more accurate than with CGR-Light and BR2. The improved accuracy of the fluxes over

the element interiors is the feature that allows CGR-Heavy, standard CGR, and the HAG scheme

to achieve greater accuracy (order 2p + 2 for odd p).
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Figure 3.24: Convergence study in U for test case 3A (scalar shear diffusion with periodic bound-

ary conditions on a uniform simplex mesh) with standard CGR and the Heavy/Light variants.

Dashed gray lines: convergence rates m; open symbols: p = 1; closed symbols: p = 3 (CGR-

Light:◦, CGR-Standard:�, CGR-Heavy:.).

3.11 Chapter Conclusion

The Interface Gradient Recovery (IGR) discontinuous Galerkin family for discretizing diffusion

problems, obtained by combining the Recovery concept with the mixed formulation, contains

multiple attractive numerical schemes. In particular, the GR-II scheme stands out as having small

spectral radii and high orders of accuracy relative to the established BR1 and LDG schemes. The

GR-II, GR-VI, and CGR methods of the family have been shown to generalize to 2D problems and

perform well on Cartesian elements. Fourier analysis and computional test cases revealed that as

we suspected, the use of the recovery operator in the calculation of ambiguous interface flux terms

yields relatively accurate mixed formulation schemes compared to the established LDG, BR1, and

BR2 approaches. However, the GR-II and GR-VI methods are unsuitable for non-Cartesian ele-

ments.

We favor the standard CGR method on account of many properties: it has smaller spectral radii

than established DG schemes across all values of p analyzed, it is order 2p + 2 accurate for odd

p, and it appears robust on both simplex and Cartesian elements. Perhaps most importantly, it
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maintains the compact computational stencil of the conventional DG advection scheme. The HAG

scheme offers the same orders of accuracy as the standard CGR scheme while being more robust,

but it has larger spectral radii, which becomes disadvantageous when explicit time integration

is employed. The CGR-Heavy scheme provides superior performance compared to HAG and the

standard CGR scheme on perturbed quadrilateral elements while being equivalent to standard CGR

on Cartesian elements, so the CGR-Heavy variant was chosen as our designated diffusion scheme

in the formation of the Recovery-assisted advection-diffusion schemes of Chapter 5.
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CHAPTER 4

Recovery-assisted Advection Schemes

4.1 Chapter Overview

In the previous chapter, we showed how the Recovery concept can be applied to form DG schemes

that achieve an accuracy advantage over conventional DG approaches for diffusion problems. How-

ever, in the discretization of an advection-diffusion problem, the scheme used to capture the diffu-

sive flux terms is only a piece of the complete discretization; one must also employ a scheme to

properly capture the advective terms. This chapter is devoted to the study of advection schemes

that can achieve an accuracy advantage over the conventional DG method.

Fourier analysis indicates that the conventional DG method (with an upwind flux at interfaces)

is order 2p + 1 accurate for the linear advection equation. The interface-centered binary (ICB) re-

construction schemes of Khieu & Johnsen [56] improve this order of accuracy to 2p + 2 in a stable

fashion with a biased version of the recovery operator. Cell-centered reconstruction schemes were

also proposed by Khieu & Johnsen [56], with extraordinarily high orders of accuracy, but we did

not pursue further development of those schemes because they exhibit non-compact computational

stencils. Instead, we devoted our efforts to further analysis and development of the ICB recon-

struction approach for advection problems. We refer to the original ICB scheme as Modal ICB to

distinguish it from our newer approach, known as Lagrange ICB. After describing these schemes,

we inspect them via Fourier analysis and linear advection test problems. We also demonstrate

scheme performance for the 1D Euler equations to show that when paired with an appropriate lim-
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iting scheme, the ICB discretizations maintain stability in the presence of physical discontinuities.

We note that the practice of applying reconstructions to improve the accuracy of the basic

DG method for advection problems has been applied in the reconstructed DG method [70, 79]

and the PN PM method of Dumbser [31]. Henry de Frahan also experimented with variations of

the interface-centered binary reconstruction schemes in his thesis [42]. All three of these listed

approaches lead to non-compact computational stencils, hence the decision to pursue the analysis

and alteration of the original ICB approach instead.

4.1.1 Novelty and Articles

The Lagrange ICB scheme is a novel ICB variant, inspired by the older approach (namely Modal

ICB) of Khieu & Johnsen [56]. As the Lagrange ICB approach was only recently proposed [51],

we are the first to perform Fourier analysis on the scheme. Additionally, this chapter contains the

first formal evaluation of the Modal and Lagrange ICB schemes under the influence of a limiting

scheme (for shock-capturing).

The material of this chapter appears in one AIAA conference manuscript and one in-preparation

article:

• P. E. Johnson & E. Johnsen, A Compact Discontinuous Galerkin Method for Advection-

Diffusion Problems, AIAA Paper 2018-1091.

• P. E. Johnson, L. H. Khieu, & E. Johnsen, A Compact Recovery-Assisted Discontinuous

Galerkin Method for the Compressible Navier-Stokes Equations, in preparation.

4.1.2 Usage of Recovery

The novel schemes in this chapter employ the biased form of the recovery operator in both the

Modal ICB and Lagrange ICB configurations (Section 2.6.3). Without exception, the recovery

operators are applied in the derivative-based implementation of Section 2.6.6.
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4.2 Scheme Design

The ICB schemes for advection upgrade the conventional upwind DG scheme for hyperbolic PDEs

with the biased recovery operation (introduced in Section 2.6). The goal of the biased recovery

operators is to retain the upwinding capability of the conventional DG scheme while improving

accuracy. Since the biased reconstruction process involves two reconstructions (one biased towards

each element) for each interface, a solution jump is retained at the interface, allowing sufficient

numerical dissipation to be introduced via the practice of upwinding. Usage of the full-order

recovery operator is not prudent for advection problems because if the recovered solution is applied

to calculate the common interface flux, then the upwinding capability of the DG discretization is

removed due to the lack of any jumps in the smooth recovered solution.

Since the Modal and Lagrange varieties of the biased recovery operators were already de-

scribed (Section 2.6), the description of the new advection schemes is a simple matter. Consider a

hyperbolic PDE problem expressed in conservation law form,

∂U
∂t

+ ∇ · F = 0, (4.1)

to be satisfied by the DG polynomial approximation Uh. The DG weak form constraining the

evolution of the DOFs Û is repeated here:

∫
Ωm

φk
m
∂

∂t
(

K−1∑
n=0

Ûn
mφ

n
m)dx = −

∫
∂Ωm

φk−
m (F̃ · n−m)ds +

∫
Ωm

∇φk
m · Fdx, ∀φk

m ∈ φm, ∀Ωm ∈ Ω.

(4.2)

The only ambiguity is the definition of the common flux F̃ along interfaces. The strategy for

calculating this flux is what distinguishes the ICB schemes from the conventional DG scheme.

Consider a quadrature point xg along an interface I = ∂ΩA ∩ ∂ΩB shared by ΩA and ΩB. Let UL
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and UR be the competing limits of Uh, from inside ΩA and ΩB, respectively, at xg:

UL = lim
x→xg

Uh
A , UR = lim

x→xg
Uh

B. (4.3)

In the conventional “upwind DG” approach, the flux F̃ is calculated using an exact or approximate

Riemann solver (recall Section 2.5), effectively introducing some dissipation via upwinding: F̃ =

Rie(UL,UR,n−A). A central DG scheme, which is dissipation-free, is formed by instead taking the

interface flux to be the average of the individual fluxes determined from the left and right solution

states: F̃ = 1
2 (F (UL) + F (UR)).

The Modal and Lagrange ICB schemes for advection also make use of the Riemann solver, and

as suggested by the scheme names, it is at this point that we make use of the biased reconstruction

operations detailed in Section 2.6. Considering the same interface quadrature point xg, the left and

right solution states are taken from the two ICB reconstructions over the union ΩA ∪ΩB:

UL = lim
x→xg

U ICB
A , UR = lim

x→xg
U ICB

B , (4.4)

where U ICB
A is the A-biased reconstruction and U ICB

B is the B-biased reconstruction. Again, the

interface flux is calculated using the Riemann solver: F̃ = Rie(UL,UR,n−A). The Modal and

Lagrange ICB schemes are distinguished by the type of biased recovery used to form U ICB, either

Modal or Lagrange. The change in the interface flux calculation is the only difference between the

conventional upwind DG approach and the ICB schemes. The various DG schemes for advection

are summarized in Table 4.1. For element edges coincident with the Dirichlet boundary ∂ΩD, the

advective flux is set based on the boundary trace of Uh and the specified boundary condition.

With regard to compactness, the ICB reconstructions particular to an interface use informa-

tion only from the neighboring elements ΩA and ΩB; thus, the interface flux F̃ depends only on

ÛA and ÛB. The ICB schemes therefore maintain the compact, nearest-neighbors stencil of the

conventional upwind DG method.

In addition to the two main Modal and Lagrange ICB schemes, we also introduce the “Cut” ICB
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scheme, abbreviated ICBC. The ICBC scheme is a modification of the Modal ICB approach. To

obtain ICBC from Modal ICB, set Cp = 0 in the derivative-based recovery operator (Eq. 2.76). This

procedure removes the highest available derivative term from the interface solution approximation,

hence the designation “Cut” ICB. Experimentation demonstrated that on unstructured meshes, the

removal of the top derivative term by setting Cp = 0 can be helpful for numerical stability. Indeed,

there may be an abundance of attractive DG schemes available by various combinations of recovery

weights C in the derivative-based interface approximation (Eq. 2.76).

4.2.1 Relationships among ICB, central DG, and upwind DG

In the case of the 1D linear advection equation, the usage of the derivative-based recovery approach

in the DG weak form (Eq. 4.2) produces the following scheme, assuming a > 0 and the use of the

upwind flux at each interface:

∫
Ωm

φk
m
∂U
∂t

dx −
∫

Ωm

aUh
m

dφk
m

dx
dx +

[
aφk−

m C0UL

]xm+h

xm

+
[
aφk−

m (1 −C0)UR

]xm+h

xm

+

p∑
j=1

C jh j

[
aφk−

m

[[
∂ jU
∂x j

]] ]xm+h

xm

= 0 ∀φk
m ∈ φm, ∀Ωm ∈ Ω.

(4.5)

Table 4.1: Summary of advection schemes. The distinguishing procedure is the technique for the
advective interface flux F̃ along each interface I = ∂ΩA ∩ ∂ΩB.

Scheme Abbreviation F̃ F |x∈Ωm

conventional (upwind) DG conDG Rie(Uh
A,U

h
B,n

−
A) F (Uh

m)

Modal ICB ICBM Rie(U ICBM
A ,U ICBM

B ,n−A) F (Uh
m)

Lagrange ICB ICBL Rie(U ICBL
A ,U ICBL

B ,n−A) F (Uh
m)

Cut ICB ICBC Rie(U ICBC
A ,U ICBC

B ,n−A) F (Uh
m)

central DG cenDG 1
2 (F (Uh

A
) + F (Uh

B
)) F (Uh

m)
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Recall that xm and xm + h are the left and right endpoints, respectively, of Ωm. For a given interface

(either the left or right boundary of Ωm), UL is the limit of Uh from the left side of the interface

and UR is the limit of Uh from the right side of the interface. The weights C0, C1, etc. are

the recovery weights in the derivative-based interface approximation (Eq. 2.76); recall that these

weights depends on the particular type of biased recovery employed. In the a > 0 case, it is the left

element’s ICB reconstruction that is employed to calculate F̃ . Following convention, given some

quantity v that is multivalued at an interface, [[v]] = vL − vR. Further manipulation yields

∫
Ωm

φk
m
∂U
∂t

dx −
∫

Ωm

aUh
m

dφk
m

dx
dx +

[
aφk−

m

(
{{U}} + [[U]]

(
C0 −

1
2

) ) ]xm+h

xm

+

p∑
j=1

C jh j

[
aφk−

m

[[
∂ jU
∂x j

]] ]xm+h

xm

= 0 ∀φk
m ∈ φm, ∀Ωm ∈ Ω,

(4.6)

where {{U}} = 1
2 (UL+UR) denotes the arithmetic average at an interface. It is evident from Eq. (4.6)

that by using the derivative-based recovery form to populate the interface solution traces, we are

adding interface derivative terms to the DG weak form. The conventional upwind DG scheme and

the central DG scheme correspond to C j = 0 ∀ j > 0. The choice C0 = 1 corresponds to the upwind

scheme and C0 = 1
2 corresponds to the central scheme. When the biased recovery approach is

employed (as in the Modal or Lagrange ICB schemes), the recovery weights C j become nonzero for

j > 0. Clearly, the ICB approaches cannot be replicated simply by mixing the upwind and central

DG schemes, as the ICB approach adds terms not seen in the DG weak form for either the upwind

or central DG schemes. We note that the idea of adding derivative terms to the DG weak form was

mentioned by Gassner et al. [37] in the analysis of the diffusive generalized Riemann problem and

by Zhang et al. [116] in the formation of the direct discontinuous Galerkin method for diffusive

flux terms, suggesting a connection to the many DG variants proposed in this document. The

higher-order spatial derivative terms are also present in the ADER-DG schemes [32] for advection

problems; however, the ADER-DG approach employs the spatial derivatives as a means to close

the fully discrete space-time discontinuous Galerkin method, so a direct connection to the ICB
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advection schemes is unlikely.

4.3 Fourier Analysis

The schemes listed in Table 4.1 were inspected in the context of the 1D linear advection equation

with the standard Fourier analysis approach detailed in Section 2.4. For a thorough compari-

son of advection schemes, the standard Fourier analysis approach is insufficient, so in addition to

identifying stability, spectral radius, and order of accuracy, we employed the wavenumber resolu-

tion analysis of Watkins et al. [112]. Where the order of accuracy calculation from the standard

Fourier analysis technique characterizes the consistent eigenvalue’s behavior in the limit of ω→ 0,

the wavenumber resolution analysis includes all of the eigenvalues and can provide a measure of

scheme performance over moderate wavenumbers.

4.3.1 Stability and Spectral Radius

All schemes analyzed are linearly stable, meaning that the eigenvalues of the update matrix A

remain nonpositive. Table 4.2 lists the spectral radii and orders of accuracy of the five DG schemes

described in Table 4.1. With respect to the spectral radius, the Lagrange ICB method offers dra-

matic improvement over the other schemes analyzed, which is an attractive property for those

interested in explicit time integration. We note that spectral radius is not the sole determining fac-

tor in the timestep size; the timestep must be sufficiently small that the eigenvalues of the spatial

discretization lie completely within the Fourier footprint of the explicit time integration scheme.

Table 4.2: Spectral Radii (ρs) and orders of accuracy (o.o.a.) for the DG advection schemes.

Scheme: conDG Modal ICB Lagrange ICB cenDG Cut ICB
p ρs o.o.a. ρs o.o.a. ρs o.o.a. ρs o.o.a. ρs o.o.a.
1 6.0 3 4.0 4 3.0 3+ 4.0 2 4.5 3
2 11.8 5 9.0 6 5.5 6 8.0 6 10.8 5
3 19.2 7 15.5 8 8.4 7+ 13.3 6 15.5 7
4 27.8 9 23.2 10 11.8 10 19.7 10 24.7 9
5 37.8 11 32.1 12 15.6 11+ 27.3 10 32.1 11
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Thus, while the timestep size scales inversely with the spectral radius, the precise limit on the

timestep size also depends on the time integration scheme.

The astute reader may wonder why the biased recovery approach in 1D always uses a degree

p + 1 polynomial for each reconstruction; presumably, the accuracy of the advection scheme could

be improved by raising the degree of the biased recovered solution. Khieu & Johnsen [56] explored

this issue; their results show that regardless of the solution order p, the Modal ICB advection

scheme becomes unstable if the degree of the reconstructed polynomial is greater than p + 1.

Our analysis with the Lagrange ICB scheme yielded the same conclusion: if the reconstructed

polynomial is greater than degree p + 1, the ICB advection scheme is unstable.

4.3.2 Order of Accuracy

The orders of accuracy are listed in Table 4.2. Using the strategy outlined in Section 2.4, we

encountered difficulty determining the order of accuracy of the Lagrange ICB scheme. For the

p = 1, p = 3, and p = 5 cases, the method’s order of accuracy seems to sit between order 2p + 1

and order 2p + 2, hence the tabulated orders of accuracy 3+, 7+, and 11+. This difficulty was part

of our motivation to instead pursue the wavenumber resolution technique. The Modal ICB scheme

is always order 2p + 2 accurate. The conventional upwind DG scheme is always order 2p + 1

accurate. Thus, the ICB schemes provide an accuracy advantage.

4.3.3 Wavenumber Resolution

We briefly describe the wavenumber resolution analysis technique of Watkins et al. [112] and apply

it to compare the advection schemes. To begin, diagonalize the update matrix:

A(ω) = VΛV−1, (4.7)

where V is the K×K collection of eigenvectors and Λ is the diagonal matrix of eigenvalues, where

K = p+1 is the number of DOFs per element. Now, take Ωm to be the element whose left endpoint
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is x = 0. Using a nodal basis with the interpolation points being the K Gauss-Legendre points in

each element, the DG degrees of freedom of the initial condition’s projection are

Ûm(ω, 0) =



exp(iωξ0)

exp(iωξ1)
...

exp(iωξp)


, (4.8)

where ξk is the kth Gauss-Legendre point on the unit reference element. With the initial condi-

tion Ûm(ω, 0) defined, the first-order system of ordinary differential equations (Eq. 2.36a) has the

solution:

Ûm(ω, t) = V exp(Λt)V−1Ûm(ω, 0). (4.9)

Now, let β be the K × 1 vector of expansion coefficients necessary to write the initial condition in

terms of the eigenvectors:

Vβ = Ûm(ω, 0). (4.10)

Given the eigenvector expansion coefficients β, Watkins et al. [112] derive an upper bound on the

initial growth rate of the error, labelled E:

E(ω) =
1√

p + 1

p+1∑
n=1

|βn||λn − λ
ex|. (4.11)

In this equation, λn is the nth eigenvalue of A and βn is the nth entry of β for a given ω. In the

immediate case of 1D linear advection, the exact eigenvalue is λex(ω) = −iω.

Given some error tolerance ε, there exists a cutoff wavenumber ω f such that E(ω) ≤ ε for all

ω ∈ [0, ω f ]. The resolving efficiency [112] is then defined as

η =
ω f

(p + 1)π
. (4.12)

The resolving efficiency calculation involves the full eigenvalue spectrum ofA. The vector β(ω)
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determines which eigenvalues are active at a given wavenumber ω, so there is no need to desig-

nate the principal eigenvalue in the analysis process. The resolving efficiency corresponds to the

maximum wavenumber that can be properly advected within the given error tolerance. In other

words, for a fixed number of gridpoints, a scheme with relatively high resolving efficiency will

do a better job tracking small-scale flow features. As the goal of this thesis is the development of

numerical schemes for LES and DNS of turbulent flows, broadband wavenumber resolution is of

great interest to us, so the wavenumber analysis approach described is a valuable tool.

Table 4.3 lists the resolving efficiencies of various DG spatial discretizations for a tolerance

ε = 1
10 . Table 4.4 repeats the test with ε = 2. For a given tolerance ε, a resolving efficiency of

η = 1 indicates that all wavenumbers that can be properly projected onto the grid (as opposed to

excessively high wavenumbers, which are aliased to lower wavenumbers) are transmitted with er-

ror growth rate less than ε. Note that Modal ICB and Cut ICB yield similar resolving efficiencies,

indicating that while Modal ICB has a higher order of accuracy, the removal of the Cp term does

not substantially affect the scheme’s resolving efficiency. The central DG scheme achieves better

resolving efficiency than the conventional upwind DG scheme because the central scheme has zero

dissipation error; however, as is shown in Section 4.4, this lack of numerical dissipation is ulti-

mately unfavorable. The Lagrange ICB scheme generally achieves superior resolving efficiencies

compared to the other schemes tested.

4.3.4 Dispersion/Dissipation

Figure 4.1 shows the imaginary components of the principal eigenvalues of the advection schemes

for p ≤ 3. The real (dissipative) components of the eigenvalues are reported in Fig. 4.2. Over-

Table 4.3: Resolving Efficiencies of Advection Schemes with ε = 1
10 .

Scheme: conDG Modal ICB Lagrange ICB cenDG Cut ICB
p = 1: 0.094 0.187 0.274 0.094 0.094
p = 2: 0.136 0.194 0.278 0.167 0.143
p = 3: 0.167 0.211 0.312 0.203 0.195
p = 4: 0.190 0.224 0.318 0.191 0.245
p = 5: 0.213 0.240 0.332 0.249 0.253
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Figure 4.1: Imaginary component of the principal eigenvalue versus effective wavenumber. The
exact eigenvalue, λ = 0 − iω, represents perfect translation of the initial condition. Symbol Key:
Exact Eigenvalue: — ; conDG:◦ ; ICBM:� ; ICBL:. ; ICBC:F.

all, the ICB schemes achieve superior accuracy compared to the conventional approach thanks not

only to reduced dissipation, but also smaller dispersion error over small to moderate wavenumbers.

Among the ICB schemes, Modal ICB is substantially more dissipative than Lagrange ICB, but both

introduce some dissipation due to the upwinding behavior facilitated by the biased reconstruction

process. These results show that the ICB schemes maintain an important property of the conven-

tional upwind DG approach: when the dispersion error becomes large, numerical dissipation is

also present to damp away spurious waves. The application of numerical dissipation in CFD is a

topic of debate, but it is generally viewed as beneficial when applied in small doses.

4.4 Numerical Tests

Four numerical tests are employed to evaluate the various DG schemes for advection. These

test cases are relatively simple; the more advanced test cases are reserved for the full advection-

Table 4.4: Resolving Efficiencies of Advection Schemes with ε = 2.

Scheme: conDG Modal ICB Lagrange ICB cenDG Cut ICB
p = 1: 0.461 0.554 0.675 0.751 0.544
p = 2: 0.371 0.434 0.598 0.354 0.464
p = 3: 0.364 0.406 0.535 0.420 0.425
p = 4: 0.362 0.397 0.507 0.505 0.397
p = 5: 0.361 0.390 0.509 0.360 0.385
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Figure 4.2: Real component of the principal eigenvalue versus effective wavenumber. The exact
eigenvalue, λ = 0 − iω, represents perfect translation of the initial condition. Symbol Key: Exact
Eigenvalue: — ; conDG:◦ ; ICBM:� ; ICBL:. ; ICBC:F.

diffusion schemes discussed in Chapter 5.

4.4.1 Test 1: Linear Advection of a Sine Wave

The spatial domain for this test is Ω = x ∈ [0, 4π) with spatially periodic boundary conditions.

The initial condition is U(x, 0) = sin( x
2 ). Regardless of spatial discretization, the time integration

scheme is the explicit 8th order scheme of Prince & Dormand [86]. The advection speed is a = π

and the problem is simulated from t = 0 to t f inal = 80, corresponding to 20 translational periods.

The ICBC, cenDG, conDG, ICBM, and ICBL schemes are included. The mesh refinement study

is presented in Figure 4.3 and Figure 4.4 for p ∈ {1, 3, 5}; both the global L2 and cell-average error

norms are plotted against the characteristic mesh width, h̃ = 1
nDOF . In this case, most configura-

tions achieve order p + 1 convergence in the global L2 norm. Note that the conDG scheme with

p = 1 maintains third order convergence in the global L2 norm. This behavior occurs because

the solution is sufficiently underresolved that the dominant error in Uh comes from the evolution

scheme itself, not the finite-dimensional solution representation. In contrast, for the more accurate

ICBL scheme, the finite-dimensional solution representation is the dominant source of error, so

the proper asymptotic rate of convergence (m = p + 1 = 2) is observed on the finer meshes. The

convergence rates in the cell-average error tend towards the orders of accuracy from Fourier anal-

ysis, which is typical. The cell-average error in the p = 5 cases behaves irregularly because for the
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Figure 4.3: Test 1 (Linear advection of a sine wave): Mesh refinement study in global L2 error.
Gray lines illustrate convergence rates, denoted m.
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Figure 4.4: Test 1 (Linear advection of a sine wave): Mesh refinement study in cell-average error.
Gray lines illustrate convergence rates, denoted m.
Symbol Key: conDG:◦ ; ICBM:� ; ICBL:. ; ICBC:F; cenDG: ♦.

exceptionally long simulation time employed, the buildup of roundoff error becomes significant

relative to the truncation error.

4.4.2 Test 2: Linear Advection of a Gaussian Pulse

This test case is identical to the first except that the initial condition is U(x, 0) = exp(−4(x − 2π)2)

and the mesh resolutions are finer. All other test parameters are held the same. Sample results

are presented in Figure 4.5 to demonstrate scheme behavior. For a given mesh resolution, the

lower wavenumber components are advected properly while the higher wavenumbers cannot be

resolved properly; they are either dissipated away or remain in the system forever and manifest as

spurious oscillations, as with the dissipation-free central DG scheme. A mesh refinement study
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Figure 4.5: Test 2 (Linear advection of a Gaussian pulse): Numerical solutions for Gaussian pulse
problem with p = 3, M = 16 elements. The Lagrange ICB result shows less dissipation error than
the conventional DG result and less dispersion error than the central scheme.
Symbol/Color Key: Exact: — ; conDG:–◦– ; cenDG: -.♦-. ; ICBL:–.–.
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Figure 4.6: Test 2 (Linear advection of a Gaussian pulse): Mesh refinement study in global L2

error. Gray lines illustrate convergence rates, denoted m.
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is presented in Figure 4.6 and Figure 4.7 for p ∈ {1, 3, 5}. All three of the ICB schemes achieve

optimal convergence (order p + 1) in the global L2 norm. Overall, the Modal and Lagrange ICB

schemes offer the best performance; the central DG scheme exhibits the worst performance.
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Figure 4.7: Test 2 (Linear advection of a Gaussian pulse): Mesh refinement study in cell-average
error. Gray lines illustrate convergence rates, denoted m.
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4.4.3 Test 3: Linear Advection of Sine Wave, Limiter Active

This test case is identical to test 1 with the exception of one alteration. The basic DG advection

scheme, whether it be central DG, conventional upwind DG, or an ICB variant, is supplemented

with a limiter. The hierarchical limiting scheme of Krivodonova [64] is employed to limit the

discontinuous polynomial Uh after each Runge-Kutta substep and at the end of each timestep.

While a limiter is not necessary for stable simulation of the linear advection equation, it becomes

necessary for the Euler equations. The purpose of this test, where the limiter is paired with the

scalar advection equation, is to evaluate the accuracy of the ICB schemes when a limiting scheme

is applied. The mesh refinement study is presented in Figure 4.8 and Figure 4.9 for p ∈ {1, 2, 3}.

All three of the ICB schemes achieve optimal convergence (order p + 1) in the global L2 norm.

The central DG scheme performs poorly; the ICB and conventional DG schemes achieve nearly

identical performance. The limiter reduces the convergence rate in the cell-average error to m =

p + 1.

4.4.4 Test 4: Sod Problem

This test case features the 1D Euler equations (Eq. 2.9). It was proposed as a benchmarking

problem in Sod’s survey of numerical schemes for hyperbolic conservation laws [94]. The spatial

122



10
-2

10
-1

10
-10

10
-5

10
0

p = 1

m = 2

10
-2

10
-1

10
-10

10
-5

10
0

p = 2

m = 3

10
-2

10
-1

10
-10

10
-5

10
0

p = 3

m = 4

Figure 4.8: Test 3 (Linear advection of a Sine wave with limiter): Mesh refinement study in global
L2 error. Gray lines illustrate convergence rates, denoted m.
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Figure 4.9: Test 3 (Linear advection of a Sine wave with limiter): Mesh refinement study in cell-
average error. Gray lines illustrate convergence rates, denoted m.
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domain is x ∈ [0, 1] and the initial condition is defined in the primitive variables as follows:

[
ρ u p

]T

=


[
1 0 1

]T

for x < 1
2[

0.125 0 0.1
]T

for x ≥ 1
2

 . (4.13)

The SLAU2 flux [58] is employed as the Riemann solver for the interface fluxes. The boundaries

are zero-penetration walls. Explicit time integration is employed via the standard four-stage RK4

scheme. Slope limiting is necessary to maintain stability on this problem; the slope limiting scheme

affects the quality of the results, so we employ two slope limiting approaches. The first approach

is the moment-based limiter of Krivodonova [64], abbreviated MK. The second approach is the

hierarchical reconstruction scheme of Henry de Frahan et al. [44], abbreviated HR. No sensor is

applied; instead, the limiter is applied to every element after every residual evaluation and at the
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Figure 4.10: Test 4B (Sod problem, MK Limiter): Density profile at t = 0.2 in Sod problem with
MK limiter. Color Key: Reference: — ; conDG: — ; ICBM:— ; ICBL: —.
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Figure 4.11: Test 4A (Sod problem, HR Limiter): Density profile at t = 0.2 in Sod problem with
HR limiter. Color Key: Reference: — ; conDG: — ; ICBM:— ; ICBL: —.

end of each explicit timestep. The flow is simulated to t f inal = 0.2. The exact solution consists

of three traveling waves: the left-running rarefaction, the right-running contact discontinuity, and

the right-running shock wave. Density profiles at t = t f inal for p ∈ {1, 2, 3}, using 192 DOFs

per field variable, are shown in Figure 4.10 (using the moment-based limiter) and Figure 4.11

(using the hierarchical reconstruction limiter). Regardless of the limiting scheme, the Modal ICB

and conventional DG results are nearly identical at a given p; the Lagrange ICB scheme exhibits

sharper profiles at the physical discontinuities. However, the Lagrange ICB scheme tends to exhibit

nonphysical solution features in the wake of the shock wave, so the sharper feature resolution
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comes at a cost. Note that for a fixed DOF count, the higher p results are more smeared than the

p = 1 case. While this effect is not always apparent in slope limiting schemes, it underscores the

importance of optimizing scheme performance at a given p, since some cases demand h-refinement

over p-refinement.

4.4.5 Additional Testing and Limitation

Additional testing of the Modal and Lagrange ICB schemes on 2D and 3D Cartesian elements (data

not shown) demonstrated that they maintain the same accuracy advantages over the conventional

upwind approach as in the 1D case. The ICB schemes are also stable on non-Cartesian quadrilateral

elements when the derivative-based recovery implementation is employed. However, we were

unable to identify stable and sufficiently accurate applications of the biased recovery approach on

2D simplex meshes. Many different configurations of the recovery basis ψ were tested, and in the

rare cases where a particular configuration appeared stable, the ICB scheme appeared less accurate

than the conventional upwind DG method. To maximize the versatility of the new ICB advection

schemes, the deficiency on simplex elements needs to be addressed. However, the difficulty with

simplex elements does not render the ICB schemes completely useless on unstructured meshes, as

a single simplex element can always be split into three smaller quadrilateral elements.

4.5 Computational Cost

In one space dimension, the DG spatial discretization is typically implemented with Lagrange

polynomials as the basis functions and the Lobatto points taken as the solution points, where the

DOFs are stored. On quads in 2D and hexes in 3D, a tensor product grid of the 1D Lobatto points is

applied, and that organization is employed in our DG code. Thus, the calculation of the numerical

solution Uh along element boundaries is a relatively inexpensive process, as most of an element’s

basis functions are zero along a given element face. In contrast, the ICB schemes require the use

of the biased recovery operation along interfaces, making them more computationally expensive
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than the conventional upwind DG scheme. The computational cost difference is explored in this

section, and a simple 2D test case is submitted as evidence that the improved accuracy of the ICB

schemes is worth the extra computational work.

Table 4.5 describes the flop count per element necessary to calculate the spatial residual in

the discretization of the scalar advection equation in 1D, 2D (on quads), and 3D (on hexes) for a

given solution order p. Both the conventional DG and ICB schemes are included; the costs of all

ICB variants are identical. The numerical flop counts per DOF per residual evaluation in the 2D

and 3D cases (using the formulae from Table 4.5) are presented in Table 4.6. The severe increase

in flop count per DOF as the number of spatial dimensions increases is due to the coupling of a

single DOF’s update scheme to all of the other DOFs in the same element. This severe increase

could be mitigated by the line-based optimization proposed by Persson [83], but such a level of

computational optimization is beyond the scope of this thesis.

Regarding the difference between the conventional DG and ICB approaches, the jump in flop

Table 4.5: Floating point operations per element per residual evaluation to solve the scalar ad-
vection equation. K = (p + 1)ND , QV is number of interior quadrature points, QS is number of
quadrature points on each interface, NV = 2ND is number of sides per element, ND is number of
spatial dimensions.

Calculation conDG Flops ICB Flops
UL or UR, interface quadr. points NV × QS × 4(p + 1) NV × QS × 4K
Uh, interior quadr. points QV × 2K QV × 2K
F (Uh), interior quadr. points ND × QV ND × QV

F̃ (UL,UR,n), interface quadr. points ND × NV × QS ND × NV × QS
d
dt Û, given F distribution K × (2ND × QV + NV × 2QS + 3K) K × (2ND × QV + NV × 2QS + 3K)

Table 4.6: Flops per DOF per residual evaluation to solve the scalar advection equation with QV =

K, QS = (p + 1)ND−1.

ND = 2 ND = 3
p Flops (conDG) Flops (ICB) ICB Flops

conDG Flops Flops (conDG) Flops (ICB) ICB Flops
conDG Flops

1 66 90 1.364 172 244 1.419
2 117.7 157.7 1.340 450 630 1.400
3 188 244 1.298 951.5 1287.5 1.353
4 276.6 348.6 1.260 1741.6 2281.6 1.310
5 383.3 471.3 1.230 2886 3678 1.274
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count can exceed 40% in certain scenarios, demanding a quantitative efficiency study. Towards

this end, we conduct a pair of test cases (5A and 5B) with the 2D scalar advection equation with

vx = π and vy = π
2 :

∂

∂t
U + ∇ · F = 0 where F = (πU,

π

2
U). (4.14)

The spatial domain is the 2π square with periodic boundary conditions, the initial condition is

U(x, y, 0) = sin(x) sin(y), and the problem is simulated to t f inal = 4 so that the wave profile travels

two periods in the x direction and one period in the y direction. The mesh resolutions are given in

Table 4.7. The maximum allowable CFL number for each of the three advection schemes for each

p when using explicit RK4 time integration has been determined experimentally; the results are

given in Table 4.8. The constraint for stability was that the numerical solution remain stable for all

mesh resolutions listed in Table 4.7. These CFL numbers are problem-dependent, being influenced

by the temporal discretization scheme (explicit RK4 in this case) and the eigenvalue spectrum of

the spatial discretization scheme under the specific velocity profile.

Two mesh refinement studies are conducted. For case 5A, each simulation uses the CFL num-

ber corresponding to the conventional upwind DG scheme. Thus, for a given solution order p and

element count M, the three DG schemes use the same timestep size and thus require the same

number of timesteps to run to completion. In case 5B, each spatial discretization instead uses the

maximum allowable CFL number, taken from Table 4.8, such that the ICB schemes (which have

smaller spectral radii) require fewer timesteps than the conventional DG scheme to run to comple-

tion. The computational wall times are listed in tables 4.9, 4.10, and 4.11; all jobs were run on a

single 1.9 GHz Intel Xeon(R) CPU E5-2609 v3 processor. The global L2 error for each simulation

in case 5A is plotted against the wall time in Figure 4.12. The error’s order of convergence with

respect to the mesh resolution is limited to 4 because the explicit RK4 scheme is employed for the

temporal discretization. The cost grows as h−3, so the order of convergence in the error versus wall

time plots is limited to 4
3 . In test case 5A, while the ICB schemes are more expensive than con-

ventional DG for a given mesh resolution, the benefit in accuracy outweighs the wall time penalty.

Figure 4.13 shows the error versus the wall time for test case 5B. Note that due to the improvement
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in timestep size, the ICB schemes require less wall time than the uDG scheme on a given mesh. In

the p = 3 case, since the primary source of error is the temporal discretization and the Lagrange

ICB scheme allows substantially larger timestep sizes than the other two schemes, it exhibits larger

errors, but it maintains the same convergence rate.

In the 2D case, the maximum stable CFL number depends on the angle of the velocity vector.

In addition to identifying the maximum allowable CFL number with V = (π, π/2), we identified

the maximum CFL number for two additional cases: V = (π, 0) and V = (π, π). The resulting CFL

limits are tabulated in Table 4.12 and Table 4.13.

Table 4.7: Mesh resolutions for test cases 5A, 5B.

p Elements per direction (R) Element Count (M) DOF count (nDOF)
1 {16 , 32 , 64 , 128} {256 , 1024 , 4096 , 16384} {322 , 642 , 1282 , 2562}

2 {11 , 21 , 42 , 85} {121 , 441 , 1764 , 7225} {332 , 632 , 1262 , 2552}

3 {8 , 16 , 32 , 64} {64 , 256 , 1024 , 4096 } {322, 642 , 1282 , 2562}

Table 4.8: Maximum stable CFL numbers for test case 5B: scalar advection on 2D Cartesian grid.
The timestep size is set as ∆t = CFL × h

|V| , where h is the element width and V = (vx, vy) is the
velocity vector. The time integration scheme is explicit RK4.

p CFLconDG CFLICBM CFLICBL

1 0.34 0.52 0.73
2 0.17 0.23 0.39
3 0.10 0.13 0.26

Table 4.9: Wall time (seconds) for case 5A (CFL = CFLconDG) and case 5B (CFL = CFLMax)
with p = 1.

Case: 5A : CFLconDG 5B : CFLMax

Resolution: R = 16 R = 32 R = 64 R = 128 R = 16 R = 32 R = 64 R = 128
conDG wall time: 0.077 0.476 3.70 30.2 0.077 0.476 3.70 30.2

Modal ICB wall time: 0.079 0.509 3.88 34.3 0.056 0.341 2.60 22.2
Lagrange ICB wall time: 0.081 0.508 3.89 33.8 0.043 0.247 1.86 15.9
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Figure 4.12: Error versus computational wall time (in seconds) for test case 5A (2D scalar advec-
tion on Cartesian elements). Time integration is explicit RK4; timestep size set by CFLconDG for
all p for each scheme. Symbol Key: conDG:◦ ; ICBM:� ; ICBL: ..

Table 4.10: Wall time (seconds) for case 5A (CFL = CFLconDG) and case 5B (CFL = CFLMax)
with p = 2.

Case: 5A : CFLconDG 5B : CFLMax

Resolution: R = 11 R = 21 R = 42 R = 85 R = 11 R = 21 R = 42 R = 85
conDG wall time: 0.089 0.548 4.23 37.3 0.089 0.548 4.23 37.3

Modal ICB wall time: 0.108 0.629 4.83 45.2 0.086 0.481 3.66 34.2
Lagrange ICB wall time: 0.109 0.629 4.99 45.8 0.051 0.284 2.16 20.0

Table 4.11: Wall time (seconds) for case 5A (CFL = CFLconDG) and case 5B (CFL = CFLMax)
with p = 3.

Case: 5A : CFLconDG 5B : CFLMax

Resolution: R = 8 R = 16 R = 32 R = 64 R = 8 R = 16 R = 32 R = 64
conDG wall time: 0.125 0.897 7.02 66.0 0.125 0.897 7.02 66.0

Modal ICB wall time: 0.152 1.10 8.58 77.6 0.123 0.888 6.83 61.8
Lagrange ICB wall time: 0.151 1.10 8.64 77.9 0.067 0.464 3.71 32.6

Table 4.12: Maximum stable CFL numbers for scalar advection on 2D Cartesian grid with V =

(π, 0). The timestep size is set as ∆t = CFL× h
|V| , where h is the element width. The time integration

scheme is explicit RK4.

p CFLconDG CFLICBM CFLICBL

1 0.47 0.70 0.99
2 0.24 0.31 0.54
3 0.14 0.18 0.35
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Figure 4.13: Error versus computational wall time (in seconds) for test case 5B (2D scalar advec-
tion on Cartesian elements). Time integration is explicit RK4; timestep size set by CFLmax for all
p for each scheme. Symbol Key: conDG:◦ ; ICBM:� ; ICBL: ..

4.6 Chapter Conclusion

Three DG schemes for advection, in addition to the conventional upwind DG method and the less

popular central method, are summarized, analyzed, and tested. The three schemes covered are

the Modal ICB scheme, which was introduced by Khieu & Johnsen [56], and the new Lagrange

ICB and Cut ICB variants. All of the ICB schemes employ a biased recovery operation to build

interface solution approximations. In contrast, the conventional and central DG approaches use

the limits of the discontinuous polynomial Uh. The use of the biased recovery operation allows

the ICB schemes to achieve an accuracy advantage over the conventional DG approach while

maintaining a compact computational stencil and retaining the dissipation mechanism of the con-

ventional upwind discretization. The Lagrange ICB scheme is less dissipative than Modal ICB and

Table 4.13: Maximum stable CFL numbers for scalar advection on 2D Cartesian grid with V =

(π, π). The timestep size is set as ∆t = CFL× h
|V| , where h is the element width. The time integration

scheme is explicit RK4.

p CFLconDG CFLICBM CFLICBL

1 0.33 0.49 0.70
2 0.16 0.22 0.38
3 0.10 0.12 0.24
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achieves significantly better resolving efficiencies. The Cut ICB scheme is obtained by cutting the

top derivative correction term from the Modal ICB scheme and is less accurate than either Modal

ICB or Lagrange ICB. All three of the ICB schemes achieve optimal convergence in the global

L2 norm. The Modal and Lagrange ICB schemes consistently achieve better performance than

the conventional DG scheme for linear advection; additionally, when paired with an appropriate

slope limiting scheme, they maintained stability in the classical Sod shock tube problem. The next

chapter reveals the exceptional advection-diffusion schemes that result from combining the ICB

approaches of this chapter with the Compact Gradient Recovery scheme of the previous chapter.
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CHAPTER 5

Recovery-assisted DG methods for

Advection-Diffusion

5.1 Chapter Overview

The goal of this dissertation is the construction of a DG scheme for advection-diffusion problems

that improves upon the conventional DG approach with regard to accuracy. Up to this point, the

advection and diffusion discretizations were analyzed separately. In this chapter, the full advection-

diffusion discretizations resulting from the combination of the ICB schemes of Chapter 4 (which

use the biased recovery operation to improve the accuracy of the advective interface fluxes) and

the Compact Gradient Recovery (CGR) scheme of Chapter 3 (which uses the full-order recovery

operator to improve interface approximations in the mixed formulation) are analyzed in detail.

There are three schemes of interest, all carrying the designation Recovery-assisted DG (abbreviated

RAD), reflecting the pivotal role of the recovery operator in the discretization. One would expect

that compared to a conventional DG discretization, the combination of ICB (for advective terms)

and CGR (for diffusive terms) would yield an exceptional advection-diffusion scheme; we are now

prepared to explore this claim. Fourier analysis is performed on the new RAD schemes to evaluate

performance over a broad range of Peclet numbers. Then, the schemes are applied to solve a set

of advection-diffusion test problems, starting with the linear case and working up to the nonlinear

compressible Navier-Stokes equations in 2D and 3D.
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5.1.1 Novelty and Articles

Previous to our doctoral studies, the interface-centered binary (ICB) reconstruction schemes had

not been applied within an advection-diffusion discretization. This chapter represents the first

pairing of any ICB approach with an appropriate diffusion scheme (namely our CGR scheme)

alongside appropriate analysis of the resulting advection-diffusion discretization. Additionally,

to our knowledge this is the only study where the wavenumber resolution analysis of Watkins et

al. [112] is applied across a spectrum of Peclet numbers rather than just one or two Peclet numbers.

The material of this chapter appears in one AIAA conference manuscript and one in-preparation

article:

• P. E. Johnson & E. Johnsen, A Compact Discontinuous Galerkin Method for Advection-

Diffusion Problems, AIAA Paper 2018-1091.

• P. E. Johnson, L. H. Khieu, & E. Johnsen, A Compact Recovery-Assisted Discontinuous

Galerkin Method for the Compressible Navier-Stokes Equations, in preparation.

5.1.2 Usage of Recovery

The RAD schemes make use of the full-order recovery operator to handle the diffusive terms and

the biased recovery operator to handle the advective terms. These recovery operators are applied

exclusively in the derivative-based implementation of Section 2.6.6. The derivative-based recovery

implementation is not effective on simplex elements, so with regard to unstructured meshes, this

chapter is restricted to unstructured quadrilateral elements as opposed to unstructured simplex

elements.

5.2 The Discontinuous Galerkin Method for Advection-Diffusion

We re-state the DG weak form to allow lucid explanation of how the advection and diffusion

schemes work together. The spatial domain Ω is partitioned into a set of M non-overlapping
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elements, such that ∩M
e=1Ωe = ∅ and ∪M

e=1Ωe = Ω, where Ωe denotes the closure, i.e., Ωe = Ωe ∪

∂Ωe. Over each element, the solution is approximated as a degree-p polynomial Uh, cast as a

linear combination of K basis functions (denoted φk
e) and K DOFs (denoted Ûk

e). Additionally, the

auxiliary variable σ is built in the DG solution space:

Uh(x ∈ Ωe, t) = Uh
e (x, t) =

K−1∑
k=0

φk
e(ξ(x))Ûk

e(t) , σ(x ∈ Ωe) = σe(x) =

K−1∑
k=0

φk
e(ξ(x))σ̂k

e.

(5.1)

Taking the Bubnov-Galerkin approach, the solution basis φ (containing K × M members)

forms the testing basis with which to build the auxiliary weak form (Eq. 5.2a), the DG weak

form (Eq 5.2b), and the initial condition constraint (Eq 5.2c), each of which must be satisfied for

every basis function φk
e ∈ φ and over every element Ωe ∈ Ω:

∫
Ωe

φk
eσedx︸        ︷︷        ︸

A0

=

∫
∂Ωe

φk−
e Ũn−e ds︸             ︷︷             ︸
A1

−

∫
Ωe

Uh
e∇φ

k
edx︸          ︷︷          ︸

A2

, (5.2a)

∫
Ωe

φk
e
∂

∂t
Uh

e dx︸            ︷︷            ︸
B0

= −

∫
∂Ωe

φk−
e (F̃ · n−e )ds︸                  ︷︷                  ︸

B1

+

∫
Ωe

∇φk
e · Fdx︸            ︷︷            ︸

B2

+

∫
∂Ωe

φk−
e (G̃ · n−e )ds︸                 ︷︷                 ︸

B3

−

∫
Ωe

∇φk
e ·Gdx︸           ︷︷           ︸

B4

,

(5.2b)∫
Ωe

φk
eU

h
e (x, 0)dx =

∫
Ωe

φk
eUIC(x)dx. (5.2c)

Along any shared interface, both of the elements sharing the interface must use the same values of

U (in term A1), F (in term B1), and G (in term B3); the tilde mark above an interface quantity

(for example, Ũ instead of U) indicates that a common interface value is chosen from the multi-

valued DG approximation. As demonstrated in previous chapters, the strategies for calculating

these interface quantities distinguish DG schemes from eachother; the advection scheme (either

conventional upwind DG or ICB) determines how F̃ is calculated and the diffusion scheme de-

termines how G̃ and Ũ are calculated. Along ∂Ω, the interface quantities (F̃ , G̃, Ũ) provide the
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means to enforce boundary conditions. The update scheme consistent with Eq. (5.2) for the DOFs

Û is given in Table 5.1; we take the semi-discrete approach, where the DG spatial discretization is

used to calculate d
dt Û and the resulting system of ODEs is integrated forward in time.

5.3 Design of DG Schemes

A typical DG discretization for advection-diffusion is obtained by combining the conventional up-

wind DG approach for advection with the BR2 scheme [8] (which performs similarly to an optimal

interior penalty approach [40]) for diffusion. Using the separate advection and diffusion schemes

proposed in previous chapters, we form three additional advection-diffusion schemes: Recovery-

assisted DG scheme 1, abbreviated RAD1, is formed by using the Modal ICB reconstruction for the

advective fluxes and the Compact Gradient Recovery (CGR) scheme [50, 51] for diffusive terms.

Table 5.1: Procedure for updating the DG DOFs Û, governed by Eq. 5.2, in a time-accurate simu-
lation.

Step Action

1 Along each interface in the domain, calculate Ũ based on the pair of elements that
share the interface (for interior interfaces) or take Ũ from the Dirichlet condition
(for boundary interfaces).

2 ∀Ωe, solve the auxiliary weak form (Eq. 5.2a) to obtain σe. Then, use Uh
e and σe to

calculate the viscous flux, G, at all volume quadrature points (term B4).

3 ∀Ωe, populate F at all volume quadrature points (term B2) using the local DG
polynomial Uh

e .

4 Calculate F̃ and G̃ in terms B1 and B3.

5 Solve for the time derivatives d
dt Û using each element’s inverse mass matrix, with

Gaussian quadrature applied to populate the integrals of terms A1, A2, B1, B2, B3,
and B4.
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Recovery-assisted DG scheme 2, abbreviated RAD2, is formed by instead using the Lagrange

ICB reconstruction for the advective fluxes and the CGR scheme for the diffusive terms. Also

listed is a fourth scheme, RAD3, which is like RAD1 except that it uses the Cut ICB modification

of the Modal ICB reconstruction. These schemes are listed and summarized in Table 5.2 for the

reader’s convenience. The specific CGR configuration is the CGR-Heavy variant with χ = 2; while

CGR-Heavy is identical to the standard CGR scheme on Cartesian meshes, CGR-Heavy performs

slightly better on non-uniform quadrilateral meshes (see test case 4 in Chapter 3).

Regarding the diffusive flux G̃ along each interface, both the BR2 and CGR schemes use the

semi-connected gradient polynomials to build an approximation for the gradient along the inter-

face. Then, the common interface gradient, σ̃, is applied to calculate the diffusive flux along the

interface. See Table 3.3 in Section 3.4 for further information.

5.4 Fourier Analysis for Linear Advection-Diffusion

Fourier analysis is performed on the set of DG schemes for advection-diffusion (Table 5.2), focus-

ing on the conventional DG scheme (conDG) and the first two Recovery-assisted schemes (RAD1,

RAD2). The wavenumber resolution analysis employed in Section 4.3 is repeated here, except that

the governing differential equation is the 1D advection-diffusion equation as opposed to the advec-

tion equation. The analysis process is almost identical to that of linear advection; we describe the

necessary alterations here..

Table 5.2: Summary of advection-diffusion schemes in terms of individual advection (see Chap-
ter 4) and diffusion (see Chapter 3) components.

Scheme Abbreviation Advection Diffusion F̃ Ũ

conventional DG conDG upwind DG BR2 Rie(Uh
A,U

h
B,n

−
A) 1

2 (Uh
A + Uh

B)

Recovery-assisted DG 1 RAD1 Modal ICB CGR Rie(U ICBM
A ,U ICBM

B ,n−A) R(Uh
A,U

h
B)

Recovery-assisted DG 2 RAD2 Lagrange ICB CGR Rie(U ICBL
A ,U ICBL

B ,n−A) R(Uh
A,U

h
B)

Recovery-assisted DG 3 RAD3 Cut ICB CGR Rie(U ICBC
A ,U ICBC

B ,n−A) R(Uh
A,U

h
B)
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Take the governing equation to be the 1D linear advection-diffusion equation,

∂U
∂t

= −
∂

∂x
(F − G) with F = aU and G = µ

∂

∂x
U, (5.3)

where the advection speed a and diffusivity µ are constants. Let the domain be spatially periodic

(such that boundary conditions can be neglected) and partitioned into elements of uniform width

h. The DOFs are assumed to adhere to the following relation:

Ûe+j = exp(iω j)Ûe. (5.4)

The analysis must allow for different Peclet numbers; define the element-wise Peclet number as

Peh =
ah
µ
. (5.5)

The advection-dominated regime is Peh → ∞ and the diffusion-dominated regime is Peh → 0. For

a given choice of advection and diffusion schemes, let Da denote the differentiation matrices of

the advection scheme and letDd denote the differentiation matrices of the diffusion scheme. For a

given Peclet number (Peh) and wavenumber (ω), the differentiation matrices are combined to form

the single update matrix:

A(Peh, ω) =

j=1∑
j=−1

exp(iω j)(−PehD
a
e+ j +Dd

e+ j), (5.6)

such that by taking Eq. (5.4) into account, the update scheme is recast as a system of p+1 ordinary

differential equations:
d
dt

Ûe =
µ

h2A(Peh, ω)Ûe. (5.7)

The 1D advection-diffusion discretization is linearly stable if all eigenvalues ofA are non-positive;

this property holds for all schemes explored in this chapter. The spectral radius ρs is defined as

the maximum magnitude of any eigenvalue ofA for a fixed Peh and any possible ω. Keeping the

137



-150 -100 -50 0
-80

-60

-40

-20

0

20

40

60

80

(a) Peh = 1.

-1500 -1000 -500 0
-800

-600

-400

-200

0

200

400

600

800

(b) Peh = 100.

Figure 5.1: Eigenvalue spectrums (ω ∈ [0, 4π]) of various DG schemes with p = 2. Symbol Key:
conDG:◦ ; RAD1:� ; RAD2:..

diffusivity fixed at µ = 1 and varying the Peclet number, the allowable stable timestep scales as

h2

ρs
. Sample eigenvalue spectrums are illustrated in Fig. 5.1, showing that the Recovery-assisted

schemes (RAD1 and RAD2) yield smaller spectral radii than the conventional approach (conDG).

Note that in the chosen setup, spectral radius ρs grows with Peclet number.

Similar to the advection analysis in Section 4.3, for a given Peclet number and discrete wavenum-

ber ω,A is diagonalized:

A(Peh, ω) = VΛV−1. (5.8)

For a given wavenumber ω, the initial condition in Ωe, denoted Û(ω, 0), is recast in terms of the

eigenvectors:

β(ω) = V−1Û(ω, 0). (5.9)

The exact eigenvalue corresponding to the linear advection-diffusion equation is λex(ω, Peh) =

−iPehω − ω
2. The error growth rate is now a function of both the wavemumber ω and the Peclet

number:

E(Peh, ω) =
1√

p + 1

p+1∑
n=1

|λn(ω) − λex(ω, Peh)| |βn(ω)|, (5.10)

where βn(ω) is the nth entry of β(ω) and λn(ω) is the corresponding nth eigenvalue ofA(Peh, ω).

As before, given some tolerance ε, define the maximum resolved wavenumber ω f as a function
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of Peh according to :

E(Peh, ω) ≤ ε whenever 0 ≤ ω ≤ ω f (Peh). (5.11)

Then, the resolving efficiency η is defined as follows:

η(Peh) =
ω f (Peh)
π(p + 1)

. (5.12)

For scheme comparison, the resolving efficiencies of conDG, RAD1, and RAD2 have been cal-

culated over a discrete set of Peclet numbers spanning the domain [10−2, 103]. The tolerance in

Eq. (5.11) is scaled with the Peclet number:

ε(Peh) =


1
10 for Peh < 1,

Peh
10 for Peh ≥ 1.

(5.13)

This scaling is applied so that in the advective limit (Peh → ∞), the resolving efficiency ap-

proaches a finite limit point matching the resolving efficiencies of Section 4.3. The resolving effi-

ciencies of the conDG, RAD1, and RAD2 schemes with p ∈ {1, 2, 3, 4, 5} are plotted in Figures 5.2

through 5.6. Additionally, Figure 5.7 shows the resolving efficiencies for p = 4 and p = 5 when

the error tolerance is multiplied by 2, i.e., ε = 0.2 for Peh < 0 and ε = Peh
5 for Peh ≥ 0. This extra

plot is included to show that while the resolving eficiency grows with the error tolerance, the quali-

tative behavior of the schemes does not. The spectral radius, normalized by max(1, Peh), is plotted

alongside the resolving efficiencies in Figures 5.2 through 5.6. This normalization is applied to

force the plotted quantity to a finite limit point (as opposed to going to infinity) as Peh → ∞.

The presented analysis shows that the Recovery-assisted DG schemes achieve superior wavenum-

ber resolution compared to the conventional DG scheme. Between the Recovery-assisted schemes,

RAD2 offers better performance than the RAD1 method; this behavior was expected based on the

analysis of the ICBM and ICBL advection schemes in Section 4.3. For those interested in explicit

time integration, the RAD2 scheme offers the smallest spectral radii (largest allowable timestep)

while the conventional DG scheme has the largest spectral radii (smallest allowable timestep).
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The results of the analysis are unsurprising. Chapter 3 demonstrated that CGR is superior

to BR2 for pure diffusion problems. Chapter 4 demonstrated that the ICB schemes are superior

to the typical upwind DG approach for pure advection problems. Thus, one would expect that for

advection-diffusion problems, superior performance could be obtained by pairing the ICB schemes

with the CGR scheme. The presented analysis confirms this suspicion across a broad spectrum of

Peclet numbers, from the diffusion-dominated regime to the advection-dominated regime.
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5.5 Test Problems

5.5.1 Preliminaries

The RAD1 and RAD2 methods are evaluated through four test problems and compared to the

conventional DG approach. The first problem is scalar advection-diffusion in 1D. Then, the

dipole-wall collision problem studied by Orlandi [80] is simulated by discretization of the 2D

compressible Navier-Stokes equations; the dipole-wall interaction, in addition to demonstrating

our method’s ability to handle a realistic boundary condition, will be used to gauge scheme perfor-

mance on an unstructured quadrilateral mesh. The third problem is the Taylor-Green vortex on a

uniform mesh, simulated through discretization of the 3D compressible Navier-Stokes equations.

This flow tests a method’s ability to capture the transition to turbulence under periodic bound-

ary conditions. Then, compressible homogeneous isotropic turbulence (HIT) is simulated, again

testing each method’s ability to properly capture turbulent flow dynamics.

5.5.1.1 Time marching

Once initialized, the solution is advanced in time using explicit Runge-Kutta schemes. For the

scalar problem (case 1), the eighth-order, thirteen-stage explicit RK algorithm of Prince & Dor-
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mand [86] is chosen regardless of p to minimize temporal errors. For all other test cases, the

standard fourth-order, four-stage method (RK4) is applied. This approach sacrifices temporal ac-

curacy compared to the eighth-order approach but has been chosen to give an indication of how the

Recovery-assisted discretizations will perform in practical flow physics simulations, where exces-

sively high-order explicit RK schemes become impractical due to memory requirements. The time

step is determined based on CFL and VNN constraints as described in Appendix E. In all test cases,

regardless of the spatial discretization, the CFL and Von Neumann numbers are set according to

the upwind DG and BR2 approaches, respectively. By applying the same timestep sizes to the

conventional and RAD discretizations, we ensure honest comparison of the spatial discretizations

themselves.

5.5.1.2 Implementation

The RAD spatial discretizations have been implemented alongside the conventional DG approach

in a DG code developed at the University of Michigan, now known as the Recovery-assisted Michi-

gan DG code (RAMdG). Quadrature for both the mass matrix and the residuals in the DG weak

form (Eq. 5.2) is performed with (p + 1)ND Gaussian quadrature points over each element volume

and (p + 1)ND−1 Gaussian quadrature points over each interface. The basis functions (used for both

the solution and test spaces) are the Lagrange polynomials; in the 1D case, the nodes for the La-

grange basis are the p+1 Lobatto points, while in the 2D and 3D cases, the nodes are distributed on

a tensor product grid built from the 1D Lobatto points. The classical and biased reovery operators

Table 5.3: Summary of the test cases.

Test Case Governing Equation(s) Boundary Conditions Mesh
1A 1D scalar advection-diffusion periodic uniform
1B 1D scalar advection-diffusion periodic non-uniform
2A 2D compressible Navier-Stokes periodic & no-slip stretched Cartesian
2B 2D compressible Navier-Stokes periodic & no-slip uniform Cartesian
2C 2D compressible Navier-Stokes periodic & no-slip unstructured quadrilateral
3 3D compressible Navier-Stokes periodic uniform Cartesian
4 3D compressible Navier-Stokes periodic uniform Cartesian
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necessary for the CGR and ICB approaches, respectively, are implemented in the derivative-based

form detailed in Section 2.6.6. Advective interface fluxes are handled via the upwind flux for case

1 and the SLAU2 Riemann solver [58] for cases 2, 3 and 4. Parallelization is achieved via MPI;

the larger simulations in test cases 2 and 3 were executed on the Conflux cluster at the University

of Michigan and the Comet cluster of the XSEDE program. The software Gmsh [38] is used to

generate all meshes.

5.5.2 Test case 1: Scalar advection-diffusion in 1D

We discretize the 1D scalar advection-diffusion equation (Eq. 2.5) with a = π and µ = π/100.

While this equation is not particularly exciting, it serves as an important check for whether or

not the RAD schemes achieve optimal convergence in the global L2 norm. The spatial domain is

x ∈ [0, 8π]; periodicity is enforced along the left and right boundaries. The initial condition is

U(x, 0) = sin(x) and the exact time-accurate solution is U(x, t) = sin(x − at)e−µt, such that four

wavelengths are contained in the spatial domain. Once initialized in accordance with Eq. (5.2c),

the solution is marched forward in time to t f inal = 16 (two translational periods).

The conDG, RAD1, and RAD2 discretizations are tested on both uniform grids (case 1A) and

a non-uniform grid (case 1B). We first describe the uniform grid test. Each scheme is applied

with p ∈ {1, 2, 3} on a series of grids to perform a mesh refinement study. The grid resolutions

are given in Table 5.4 in terms of element count M and the total count of degrees of freedom,

nDOF = (p + 1)(M). For each simulation, the error is measured at t = t f inal and quantified in terms

of the global L2 error EG and the cell-average error ECA (see Eq. 3.14).

The error in the global L2 norm is plotted in Figure 5.8 against the characteristic mesh width

(h̃) for all simulations. All three methods studied achieve the optimal convergence rate (m = p+1).

Table 5.4: Mesh resolutions for test case 1A.

p Element Count (M) Degrees of Freedom (nDOF)
1 {16 , 32 , 64 , 128 , 256 , 512} {32 , 64 , 128 , 256 , 512 , 1024}
2 {10 , 22 , 42 , 86 , 170 , 342} {30 , 66 , 126 , 258 , 510 , 1026}
3 {8 , 16 , 32 , 64 , 128 , 256} {32 , 64 , 128 , 256 , 512 , 1024}
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Figure 5.8: Convergence study in global L2 error for test case 1A (scalar advection-diffusion on
uniform grid). Symbol Key: conDG:◦ ; RAD1:� ; RAD2:I. Dotted gray lines denote approximate
convergence rates m.

In the p = 1 case, our RAD schemes are clearly more accurate than the conDG approach, but for

p > 1, the differences in the global error norm are negligible. Instead, Figure 5.9 plots the error

in the cell-average error. The RAD schemes achieve 4th order convergence for p = 1 while the

conventional approach is limited to 3rd order convergence. For p = 2, all methods give similar

results in the cell-average error; this behavior is not unexpected, as previous analysis of the CGR

method (Section 3.6) shows that it performs nearly identically to BR2 for p = 2. In the p = 3

case, while all discretizations exhibit 8th order convergence on coarse meshes, the conventional

approach is limited to 5th order convergence on fine meshes while the new RAD discretizations

maintain 8th order convergence until machine precision becomes relevant on the finest mesh.

For test case 1B, the scalar advection-diffusion equation is instead solved on a non-uniform

mesh, illustrated in Figure 5.10. The mesh is split into four zones. For x ∈ [0, 2π] (zone 1),

the mesh contains eight elements with stretching ratio s = 1.2; specifically, given a left element

and a right element in this zone, we have hright

hle f t
= 1.2. The next zone, x ∈ [2π, 4π], contains

sixteen uniform elements. The third zone, x ∈ [4π, 6π] contains eight elements with stretching

ratio s = 1.25 and the remaining fourth zone contains eight elements with s = 0.8. The smallest

element is of width hmin = 0.3808 while the largest element is of width hmax = 1.51, corresponding

to element Peclet numbers of Peh = 38.08 and Peh = 151, respectively. In addition to predicting
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Figure 5.9: Convergence study in cell-average error for test case 1A (scalar advection-diffusion on
uniform grid). Symbol Key: conDG:◦ ; RAD1:� ; RAD2:I. Dotted gray lines denote approximate
convergence rates m.

the performance of the RAD discretizations on stretched mesh segments, this test features severe

jumps in element width. We perform a p-refinement study; with the element count fixed, each

spatial discretization is applied with p ∈ {1, 2, 3, 4, 5}. In addition to evaluating the schemes in

terms of the global and cell-average error, we employ a functional error,

EJ = |

M∑
m=1

∫
Ωm

κ(x)U(x)dx −
M∑

m=1

∫
Ωm

κ(x)Uh(x)dx|, (5.14)

where κ(x) = sin(1.1x) is the chosen kernel function. The errors from the p-refinement study are

presented on semilog plots in Figure 5.11. Spectral convergence is observed in all three error norms

as p is increased. While all methods perform similarly in the global L2 error, the RAD schemes

give superior performance in the cell-average and functional error norms. Figure 5.10 shows the

results of all three discretizations for p = 1. The RAD approaches are minimally dissipative (with

RAD1 being slightly more dissipative than RAD2) but stable on the non-uniform mesh, yielding

dramatic improvement over the conventional DG approach.

We also applied a central scheme, where the BR2 scheme for diffusion is paired with the central

DG scheme for advection. The central scheme produced unstable simulations on the non-uniform

mesh, indicating a clear divide between the simple central scheme and the minimally dissipative
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the polynomial order p is enriched while the grid (See Figure 5.10) is unchanged. Symbol Key:
conDG:◦ ; RAD1:� ; RAD2:I. The RAD schemes are superior for all p in all three error norms.

RAD approaches.

5.5.3 Test case 2: Dipole-Wall Interaction in 2D

The 2D dipole-wall interaction problem has previously been studied by Keetels et al. [54] to evalu-

ate the performance of an adaptive wavelet method for the incompressible Navier-Stokes equations

and by Chapelier et al. [21] to evaluate a conventional DG solver for the compressible Navier-
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Stokes equations. The spatial domain is the bi-unit square: (x, y) ∈ [−1, 1]2. The governing

equations are the compressible Navier-Stokes equations (Eq. 2.13). The boundaries at x = ±1 are

isothermal no-slip walls; spatial periodicity is enforced along the y = ±1 boundaries. The wall

temperature is set to the freestream temperature according to the ideal gas law: Twall = T∞ =
p∞

Rgρ∞
.

The fluid parameters are as follows: γ = 1.4, Rg = 287.15, Pr = 0.71, and µ = 0.001. The

initial condition is a quiescent freestream with a pair of vortices (the dipole) near the center of the

domain. The pair of vortices is initialized at (x1, y1) = (0,−0.1) and (x2, y2) = (0, 0.1). Each vortex

is characterized by the vorticity magnitude ωe, which is set to ωe = 299.528385375226 following

the example of Keetels et al. [54]. Given the vortex radius, r0 = 0.1, the initial velocity distribution

is given by:

v1(x, y, 0) = −
ωe

2
(y − y1)e−(r1/r0)2

+
ωe

2
(y − y2)e−(r2/r0)2

, (5.15a)

v2(x, y, 0) =
ωe

2
(x − x1)e−(r1/r0)2

−
ωe

2
(x − x2)e−(r2/r0)2

, (5.15b)

where r1 =
√

(x − x1)2 + (y − y1)2 is the distance to the first vortex and r2 =
√

(x − x2)2 + (y − y2)2

is the distance to the second vortex. The initial density is set constant at ρ0 = ρ∞ = 1. Following

the example of Chapelier et al. [21], the freestream pressure is set according to a Mach number

constraint. The kinetic energy in the domain at t = 0 is approximately KE(0) = 2, which yields

a characteristic velocity of |V| =
√

KE(0)/2 = 1. The initial pressure is set such that the Mach

number of the characteristic velocity is 1
100 : specifically, M∞ = |V|/

√
γp∞/ρ∞ = 0.01. This

constraint yields the freestream pressure, p∞. Then, the initial pressure field is set to be compatible

with the vortex dipole:

p0(x, y) = p∞ − (
ωer0

4
)2(exp[−2(r1/r0)2] + exp[−2(r2/r0)2]). (5.16)
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Following Keetels et al. [54], the Reynolds number is set according to the characteristic velocity

and the half-width (W = 1) of the domain:

Re =
ρ∞|V|W

µ
. (5.17)

The value of µ = 0.001 has been chosen to achieve Re = 1000, matching the simulations performed

by Keetels et al. [54] and Chapelier et al. [21]. With density, velocity, and pressure known over

the entire domain at t = 0, the vector of conserved variables, U = [ρ, ρv1, ρv2, E]T is known. The

DG DOFs are initialized according to Eq. (5.2c); this detail is important because if the DOFs are

instead initialized based on nodal equivalence, there may be severe errors in the initial values for

enstrophy and kinetic energy on coarse meshes.

Error quantification is performed by comparison to a reference simulation, run on a uniform

mesh with M = 3842 elements using the conventional DG discretization with p = 3. The de-

velopment of the flow is illustrated in Figure 5.12; we plot vorticity contours from our reference

simulation in the subdomain (x, y) ∈ [−1, 0]× [−1
2 ,

1
2 ]. Due to the cumulative velocity field created

by the two vortices, the dipole is propelled towards the isothermal no-slip wall at x = −1. As

the dipole approaches the wall, a thin boundary layer forms along the wall. During the dipole’s

collision with the wall, two new vortices are formed; the resulting four-vortex system is shown in

Figure 5.12c at t = 0.5.

For test cases 2A, 2B, and 2C, the quality of each solution is judged according to the enstrophy

history:

ξ(t) =
1
2

∫ 1

−1

∫ 1

−1
ω2

3dx, (5.18)

where ω3(x, t) = ∂
∂xv2 −

∂
∂yv1 is the z component of vorticity.

5.5.3.1 Case 2A: Stretched mesh

The three DG discretizations are compared on the structured, stretched mesh shown in Figure 5.13a.

The mesh has 64 elements in each direction for a total of M = 642 = 4096 elements. While the
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(a) t = 0.0. (b) t = 0.2. (c) t = 0.5.

Figure 5.12: Progression of dipole-wall interaction from the reference simulation (p = 3, conDG,
M = 3842); the plotted quantity is the z component of vorticity. The vortex pair is initially located
along x = 0. The cumulative velocity of the dipole forces both vortices towards the no-slip wall at
x = −1, and a small boundary layer develops. Once the dipole encounters the no-slip wall, a pair
of secondary vortices are formed. All three plots use the same colormap; each contour represents
∆ω = 20.
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(c) Unstructured, M = 1697.

Figure 5.13: Sample meshes for test cases 2A, 2B, and 2C. Test case 2A uses the stretched M = 642

mesh (element width ratio 1.05) while test case 2B uses a progression of uniform meshes. For test
case 2C, all simulations take place on the unstructured M = 1697 mesh, which has 72 elements
along the x = −1 edge, 18 elements along the x = 1 edge, and 34 elements along the y = ±1 edges.

element height (∆y = 2
64 ) is uniform, the element width ∆x is varied to achieve clustering near the

no-slip walls at x = ±1. The element widths for x > 0 and x < 0 are set according to a width ratio

of 1.05; for each pair of adjacent elements along a horizontal line, the larger element is 1.05 times

the width of the smaller element.

The enstrophy histories for p ∈ {1, 2, 3} are plotted in Figure 5.14; the enstrophy history from
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the reference calculation is included for comparison. For p > 1, all discretizations achieve excel-

lent resolution of the enstrophy peak at t = 0.35; in contrast, for t > 0.5, only the p = 3 simulations

properly predict the enstrophy. The advantage of the RAD schemes over the conventional DG ap-

proach in the p = 1 case is extraordinary. While the conventional approach never returns to the

initial enstrophy value of ξ = 800, the RAD schemes preserve the qualitative character of the

dipole-wall interaction.

The maximum enstrophy achieved by each simulation is plotted in Figure 5.15a against the

polynomial order p. The black line plotted at ξre f = 1550.2 denotes the maximum enstrophy

achieved by the reference simulation. Note that for p = 3, all three discretizations overpredict

the maximum enstrophy; similar behavior has been observed in test cases 2B and 2C. When the

simulation is severely underresolved, the maximum enstrophy is underpredicted, but as the res-

olution improves, the enstrophy is eventually overpredicted, then descends towards the reference

value as the resolution continues to improve. Figure 5.15b plots the relative error in the maximum

enstrophy,
Error(ξmax)

ξre f
=
ξmax − ξre f

ξre f
, (5.19)

versus the polynomial order p. Overall, the error decreases as the polynomial order p is increased.

The RAD1 method is the exception; for p = 2, it happens to be more accurate than all other

simulations in predicting the maximum enstrophy, but this configuration is a crossover point. When

the polynomial order is increased to p = 3, the RAD1 approach overshoots the maximum enstrophy

by the same amount as the RAD2 approach.

5.5.3.2 Case 2B: Uniform Mesh

We now perform a mesh refinement study using a series of uniform meshes. For p ∈ {1, 2, 3},

each DG spatial discretization is applied on a series of four uniform meshes such as that shown in

Figure 5.13b. Each mesh consists of M = R2 square elements, where R is the number of elements

in each direction and ∆x = ∆y = 2/R. The mesh resolutions used for each p, along with the DOF

counts, are listed in Table 5.5. The accuracy of each simulation is measured via the maximum
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Figure 5.14: Enstrophy versus time for test case 2A (dipole-wall collision on stretched mesh) with
M = 642 elements. Symbol Key: Reference Simulation: — ; conDG:◦ ; RAD1:� ; RAD2: ..
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Figure 5.15: Maximum enstrophy and error in maximum enstrophy versus polynomial order p for
test case 2A (dipole-wall collision on stretched mesh) with M = 642. The black line denotes the
maximum enstrophy level, ξre f = 1550.2, from the reference simulation.
Symbol Key: conDG: ◦ ; RAD1: � ; RAD2:I.

enstrophy achieved, as with test case 2A.

Figure 5.16 plots the enstrophy error versus the characteristic mesh width for p ∈ {1, 2, 3}. In

all cases, the relative enstrophy error converges to zero at rate m = 2. The RAD discretizations

are superior in the p = 1 case. Note that for a given characteristic mesh width h̃, the p = 2 and

p = 3 simulations achieve similar levels of error for all three DG discretizations. We attribute this

behavior to the thin boundary layer along x = −1; as noted by Chapelier et al. [21], h-refinement
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Figure 5.16: Mesh refinement study for test case 2B (dipole-wall collision on uniform mesh). Sym-
bol Key: conDG:◦ ; RAD1: � ; RAD2:I. The gray line shows the path of 2nd order convergence.

is often as effective or more effective than p-refinement for reducing error in regions of relatively

steep gradients.

In Figure 5.17a, the maximum enstrophy from each simulation is plotted against the charac-

teristic mesh width; all three DG discretizations for p ∈ {1, 2, 3} are presented on the same plot.

On coarse meshes (nDOF/eq. = {9216, 36864}), the RAD2 approach with p = 3 exhibits the

largest ξmax value. On the second-finest mesh (nDOF/eq. = 147456), five out of the nine total

configurations overshoot the reference enstrophy value, ξre f = 1550.2. Unsurprisingly, the four

configurations that do not overshoot are the three p = 1 configurations and the p = 2 conDG

configuration, which are the most dissipative of the nine configurations. Figure 5.17b collects the

relative enstrophy error from all nine DG configurations.

Table 5.5: Mesh resolutions for test case 2B.

p Elements per direction (R) Element Count (M) DOF per equation (nDOF/eq.)
1 {48 , 96 , 192 , 384} {2304 , 9216 , 36864 , 147456} {9216 , 36864 , 147456 , 589824}
2 {32 , 64 , 128 , 256} {1024 , 4096 , 16384 , 65536} {9216 , 36864 , 147456 , 589824}
3 {24 , 48 , 96 , 192} {576 , 2304 , 9216 , 36864} {9216 , 36864 , 147456 , 589824}
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Figure 5.17: Maximum enstrophy (a) and error in maximum enstrophy (b) for all simulations in test
case 2B (dipole-wall collision on uniform mesh). The black line denotes the maximum enstrophy
level, ξre f = 1550.2, from the reference simulation.

5.5.3.3 Case 2C: Unstructured mesh

We now perform a p-refinement study on a fixed unstructured mesh. The mesh is shown in Fig-

ure 5.13c. The mesh has 72 elements along the x = −1 wall, 18 elements along the x = 1 wall,

and 34 elements along each of the spatially periodic boundaries at y = ±1. The mesh consists

exclusively of quadrilateral elements. The unstructured quadrilateral mesh has a total of M = 1697

elements, putting it on the relatively coarse end of the mesh resolutions used for case 2B.

The RAD2 approach is absent from this test because it failed to maintain stability for any

polynomial order p while using the SLAU2 flux. Experimentation showed that stability could be

achieved by instead applying the dissipative Rusanov [92] flux. However, the other two meth-

ods performed well with the SLAU2 flux, so instead of using the Rusanov flux with all three

approaches, we excluded the less robust RAD2 scheme.

The conDG scheme is compared to the RAD1 scheme for p < 3. For the p = 3 case, the RAD1

scheme became unstable, so the RAD3 approach was applied instead. The enstrophy histories

with p ∈ {1, 2, 3} are given in Figure 5.18. In the p = 1 case, neither discretization exceeds the

initial enstrophy value of ξ(0) = 800. In Figure 5.19a, we plot the max enstrophy of each simula-
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Figure 5.18: Enstrophy versus time for test case 2C (dipole-wall collision on unstructured mesh)
with M = 1697 elements. Symbol Key: Reference Simulation: — ; conDG: ◦ ; RAD: �.

tion versus the polynomial order p. As p is increased on the fixed mesh, the maximum enstrophy

prediction improves, as expected. The relative enstrophy error is plotted versus polynomial order

in Figure 5.19b. For both p = 2 and p = 3, the chosen RAD method is more accurate than the

conventional DG approach. This result is encouraging, as it shows that the improved accuracy of

the Recovery-assisted philosophy extends not just to stretched meshes but to unstructured quadri-

lateral meshes as well. However, the need to switch from RAD1 to RAD3 when the polynomial

order exceeds 2 is troubling and provides an opening for future research.

Vorticity contours at t = 0.5 are plotted in Figure 5.20 and Figure 5.21 for p ∈ {1, 2, 3}. At t =

0.5, there should be four vortices present in each of these plots: the two initial vortices of the dipole

and the two secondary vortices formed from the dipole-wall collision (see Figure 5.12c). The p = 1

results suffer from significant asymmetry about the y = 0 line, and the conventional discretization

completely misses the formation of the secondary vortices; the RAD1 discretization, while not

properly prediciting the locations of the secondary vortices, does facilitate their formation. As the

polynomial order increases, both schemes tend towards a symmetric dipole-wall collision.

5.5.4 Test 3: Taylor-Green Vortex

The Taylor-Green vortex (TGV) is a popular benchmarking test for research-oriented CFD codes,

as the flow exhibits transition from a deterministic initial condition to anisotropic turbulence. The
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Figure 5.19: Maximum enstrophy (left) and error in maximum enstrophy (right) versus polynomial
order p for tet case 2C (dipole-wall interaction on unstructured mesh) with M = 1697 elements.
The black line denotes the maximum enstrophy level, ξre f = 1550.2, from the reference simulation.
Symbol Key: conDG:◦ ; RAD:�.
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Figure 5.20: Vorticity contours at t = 0.5 from the conDG simulations of the dipole-wall collision
on the unstructured M = 1697 mesh (test case 2C). The colormap and contour levels are the same
as Figure 5.12; each contour represents ∆ω = 20.

governing equations are the 3D compressible Navier-Stokes equations (Eq. 2.13), the spatial do-

main is (x, y, z) ∈ [−πL, πL]3, and spatial periodicity is enforced on all boundaries. The initial
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Figure 5.21: Vorticity contours at t = 0.5 from the RAD simulations of the dipole-wall collision
on the unstructured M = 1697 mesh (test case 2C). The colormap and contour levels are the same
as Figure 5.12; each contour represents ∆ω = 20.

condition is characterized by velocity V0, pressure p0, and density ρ0:

ρ = ρ0, (5.20a)

v1 = V0 sin (x/L) cos (y/L) cos (z/L) , (5.20b)

v2 = −V0 cos (x/L) sin (y/L) cos (z/L) , (5.20c)

v3 = 0, (5.20d)

p = p0 +
ρ0V2

0

16
(cos (2x/L) + cos (2y/L)) (cos (2z/L) + 2) . (5.20e)

The specific flow parameters in this study are L = 1, V0 = 1, and ρ0 = 1; the constant viscosity is

set to µ = 0.000625 such that the Reynolds number with respect to the characteristic length L is

Re =
ρ0V0L
µ

= 1600. The remaining fluid parameters are γ = 1.4, Rg = 273.15, and Pr = 0.71. This

setup is common for high-order CFD solvers [30, 96, 21]. The reference pressure p0 is set such that

V0 corresponds to a Mach number of 1
10 ; thus, p0 =

ρ0
γ

(10V0)2. We present a mesh refinement study

for p ∈ {1, 2, 3} on a set of uniform Cartesian meshes with ∆x = ∆y = ∆z. The mesh resolutions

are given in Table 5.6 and described as coarse, medium, or fine.

Each simulation is run to t = 10tc where tc = L/V0 is the convective time unit. The simulations

are compared according to the entrophy-based kinetic energy dissipation rate (KEDR), denoted ε
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and defined as follows:

ε = 2E
µ

ρ0
where E =

1
ρ0V

∫
Ω

ρ

2
(ω · ω)dx. (5.21)

This quantity is calculated from the velocity field, but it matches the kinetic energy dissipation

rate in the incompressible limit, hence the designation “enstrophy-based kinetic energy dissipation

rate.” The enstrophy-based KEDR is plotted in Figure 5.22 for the p = 1 case and compared to

the reference solution, which is calculated with a pseudospectral code [30] using 5123 DOF per

equation. The conventional DG discretization with p = 1 is widely regarded as being overly dissi-

pative, and that sentiment is reflected here; even on the fine grid (M = 1283), the enstrophy profile

from the conventional DG simulation bears little resemblance to that of the reference solution. For

p = 1, the less dissipative RAD discretizations offer dramatic improvement. Figure 5.23 shows the

enstrophy-based KEDR versus time for the p = 2 case. In this case, the RAD1 discretization per-

forms slightly better than the conventional approach while the RAD2 approach offers dramatically

improved performance.

Figure 5.24 shows the enstrophy-based KEDR versus time for the p = 3 case. In this case, due

to polynomial aliasing errors associated with the nonlinearity of the compressible Navier-Stokes

equations, simulations gave unreasonable results (sometimes even becoming unstable) when the

SLAU2 flux was employed. To stabilize the simulations, we switched to the highly dissipative

Rusanov flux [92]. Overintegration [63, 11] could also be employed to stabilize the simulations,

but with higher computational cost; in fact, to increase the quadrature precision by one point in

each direction, the number of volume quadrature points per element would have increased from

(p + 1)3 = 64 to (p + 2)3 = 125. Figure 5.24 shows the conDG discretization behaving as expected:

Table 5.6: Mesh resolutions for test case 3.

p Elements per direction (R) Element Count (M) DOF per equation (nDOF/eq.)
1 {32 , 64 , 128} {32768 , 262144 , 2097152} {643 , 1283 , 2563}

2 {21 , 42 , 85} {9261 , 74088 , 614125} {633 , 1263 , 2553}

3 {16 , 32 , 64} {4096 , 32768 , 262144} {643 , 1283 , 2563}
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Figure 5.22: Enstrophy-based KEDR versus time for test case 3 with p = 1.
Symbol Key: Reference Simulation: — ; conDG: ◦ ; RAD1: � ; RAD2: ..

for a given mesh width (fine, medium, or coarse), the p = 3 simulation is superior to the p = 1 and

p = 2 simulations. The only anomaly in the conDG results is that in the medium resolution case

(M = 323), the enstrophy-based KEDR is increasing at t = 10tc.

The relative error in the maximum enstrophy is plotted in Figure 5.25. Given the maximum

enstrophy, εmax, from a given simulation, the error is calculated as Error(εmax) = |εmax−εre f |, where

εre f = (0.129) ρ0
2µ is the maximum enstrophy from the reference simulation. Note that this error

norm can be deceptive; for the p = 3 case with M = 323, the RAD2 discretization has the highest

maximum enstrophy, but that maximum enstrophy occurs at t = 10tc, where the enstrophy should

be decreasing. Thus, the error norms presented in Figure 5.25 must be taken in context with the

profiles provided in Figures 5.22, 5.23, and 5.24. For p < 3, the RAD2 scheme is clearly superior

in capturing the enstrophy profile of the Taylor-Green vortex flow. Of the nine mesh configurations

used for the simulation (three polynomial orders by three mesh resolutions), eight show an identical

trend: the conDG discretization is the least accurate while the RAD2 scheme is the most accurate.

In contrast, for the finest mesh in the p = 3 progression, the conventional DG simulation is the

most accurate because the RAD simulations significantly overshoot the maximum enstrophy from

the reference simulation.
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Figure 5.23: Enstrophy-based KEDR versus time for test case 3 with p = 2.
Symbol Key: Reference Simulation: — ; conDG: ◦ ; RAD1: � ; RAD2: ..

0 2.5 5.0 7.5 10
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(a) p = 3, M = 163.

0 2.5 5.0 7.5 10
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(b) p = 3, M = 323.

0 2.5 5.0 7.5 10
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(c) p = 3, M = 643.

Figure 5.24: Enstrophy-based KEDR versus time for test case 3 with p = 3. These calculations
use a Rusanov flux instead of SLAU2.
Symbol Key: Reference Simulation: — ; conDG: ◦ ; RAD1: � ; RAD2: ..

5.5.5 Test 4: Decaying Compressible HIT

The 3D compressible Navier-Stokes equations are discretized to simulate the decay of compress-

ible homogeneous isotropic turbulence (HIT). This problem has been simulated by several authors.

Lee et al. [65] demonstrated that eddy shocklets occur at sufficiently high turbulent Mach number.

Johnsen et al. [48] employed the test case to compare different high-order discretizations for the

compressible Navier-Stokes equations; Honein & Moin [45] used it to study the effect of nonlinear

aliasing errors in finite-difference schemes. Here, we follow the setup of Lv and Ihme [72], who

employed the problem to compare an entropy-bounded DG method [71] to a finite-volume solver.
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Figure 5.25: Relative error in max enstrophy versus characteristic mesh width for test case 3.
Symbol Key: conDG: ◦ ; RAD1: � ; RAD2: ..

The descriptions of the initial condition and the simulation comparison procedure are relatively

verbose to allow for replication of our results.

As with the Taylor-Green vortex, the initial condition is specified in terms of the primitive

variables. The fluid’s ratio of specific heats is γ = 1.4, the gas constant is Rg = 1, and the Prandtl

number is Pr = 0.7. The spatial domain is x ∈ [0, 2π]3. The pressure and density are taken to be

spatially uniform at t = 0, i.e. p(x, 0) = p0 and ρ(x, 0) = ρ0. The initial velocity field is solenoidal

with zero mean flow and is set according to two parameters: the root-mean-square velocity urms

and the most energetic wavenumber k0. Given those two parameters, the velocity field is a sum of

Fourier modes adhering to the following energy spectrum:

Eu(k) = 16

√
2
π

u2
rms

k4

k5
0

exp(−2
k2

k2
0

). (5.22)

This model spectrum is the typical setup for compressible HIT studies. We import the velocity

field employed by the study of Lv & Ihme [72] and available online; the dominant wavenumber is

k0 = 4 and the rms velocity in each direction is unity. The flow is characterized by the turbulent

Mach number,

Mat =

√
3urms

c
, (5.23)
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where c is the intial speed of sound in the domain, and the Reynolds number,

Reλ =
ρ0urmsλ

µ0
, (5.24)

where ρ0 is the intial density, λ = 2
k0

is the Taylor microscale, and µ0 is the initial viscosity. The

initial density is ρ0 = 1. With the speed of sound being defined as c =
√
γp0/ρ0, the initial pressure

is set to

p0 =
ρ0

γ
(

√
3urms

Mat
)2 (5.25)

to satisfy the Mach number constraint. The viscosity µ is a function of temperature: µ = µre f ( T
Tre f

)0.76,

where T =
p
ρRg

. Taking the reference viscosity to be µre f = 0.0125, the reference temperature Tre f

is set so that the initial viscosity µ0 satisfies the chosen Reynolds number. The chosen Mach

and Reynolds numbers for this study are Mat = 0.3 and Reλ = 100; in this setup, the flow is

free of shock waves [45]. This particular setup was chosen to yield a direct comparison between

the Recovery-assisted and conventional DG discretizations without the complication of a shock-

capturing scheme. The eddy turnover time is τ = λ0/urms = 0.5. Each simulation is run to four

turnover times: t f inal = 4τ.

The initialization of the velocity field is now described in detail for the sake of replication; it re-

lied heavily on manipulating an imported velocity dataset. The imported dataset of Lv & Ihme [72]

consists of purely real velocity values on an evenly spaced grid of 257 points in each direction; the

field is spatially periodic, and the first and last entries along each 1D string of points were dupli-

cates. We removed the duplicate data to obtain the velocity field on a 2563 grid of evenly spaced

points, which we call the “reference” dataset. The discrete Fourier transform of the reference

dataset was calculated to determine the reference Fourier coefficients in 2563 wavenumber space;

these Fourier coefficients display certain symmetry properties due to the physical data being purely

real, but this symmetry was not exploited. The set of reference Fourier coefficients can be filtered

down to a smaller set of Fourier coefficients, with the highest-wavenumber components being cut

off. The 2563 set of Fourier coefficients was filtered to four specific resolutions: a 243 set of coeffi-
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cients, a 483 set of coefficients, a 963 set of coefficients, and a 1923 set of coefficients. Each of these

four sets of Fourier coefficients were sent through an inverse discrete Fourier transform to yield

purely real nodal velocity values on an evenly spaced grid. When the code runs an HIT simulation

with R gridpoints per direction on the 2π cube, the initial velocity field is initialized based on nodal

equivalence to the corresponding initial velocity distribution at R evenly spaced points across the

2π cube in each direction. One could instead initialize the flow field based on Galerkin equivalence

to the reference velocity dataset, but that approach would alias high-wavenumber components to

low-wavenumber components in Fourier space, potentially causing a severe mismatch between the

refererence velocity dataset and the initial DG DOFs on a coarse grid. Our approach is built specif-

ically to avoid this problem, as it enforces equivalence in the wavenumber domain up to a certain

cutoff wavenumber for each grid. Additionally, the chosen initialization strategy can be matched

to a finite-difference or spectral/pseudospectral code in a nodally exact manner.

The initial energy spectrum is presented in Figure 5.26a alongside the model energy spectrum

(Eq. 5.22). Figure 5.26b shows the initial velocity field on the z = 0 face. As the flow evolves, rela-

tively high-wavenumber velocity fluctuations arise, as illustrated in Figure 5.26c and Figure 5.26d

at t = 2τ and t = 4τ, respectively. The flow progression is also observable in Figure 5.26a, where

the energy spectrums at t = 2τ and t = 4τ are plotted alongside the initial energy spectrum. While

the overall kinetic energy of the flow decays in time, the energy is transferred from the large scales

towards the smaller scales (high wavenumbers). All results in Figure 5.26 are taken from the refer-

ence simulation. The reference simulation uses the RAD1 discretization with p = 2 on a Cartesian

mesh with nDOF/eq. = 2583 (86 elements per direction). At this resolution, the conDG, RAD1,

and RAD2 schemes yield identical results.

To compare the conventional DG approach to the Recovery-assisted schemes, the flow is sim-

ulated on a set of Cartesian meshes using nDOF/eq. = 483 (coarse mesh) and nDOF/eq. = 963

(fine mesh) with p ∈ {1, 2, 3}. The discretizations are compared in terms of the mass-averaged en-

strophy history and the kinetic energy dissipation rate. The mass-averaged enstrophy is computed
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(a) Velocity energy spectrum. (b) Velocity field on z = 0 face,
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(c) Velocity field on z = 0 face,
t = 2τ.
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Figure 5.26: Test 4: HIT flow overview. In subfigures b, c, and d, the plotted color indicates the
velocity component in the z direction. The transverse velocity components are displayed as small
arrows. As the flow progresses in time, kinetic energy is transferred to smaller length scales and
the overall kinetic energy decreases.

at the end of each timestep as follows:

<
ρ

2
ωiωi >=

∫
Ω

ρ

2ωiωidx

ρ0

∫
Ω

dx
, (5.26)
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(c) p = 3, M = 123.

Figure 5.27: Test 4: Kinetic energy dissipation rate vs. time with nDOF/eq. = 483.
Key: Reference: — ; conDG: − − − ; RAD1:−. − .− ; RAD2:−. − .− .

where repeated indices indicate summation over the three spatial dimensions and ω is the vorticity

vector. The kinetic energy dissipation rate (KEDR) is computed in the post-processing step. After

each timestep, the code outputs the kinetic energy, KE(t) =
∫

Ω

ρ

2vividx. In the post-processing step,

the kinetic energy history is differentiated in time with a four-point finite difference to calculate the

KEDR. The integration for kinetic energy and enstrophy is performed in an element-by-element

fashion using QV = (p + 1)2 quadrature points per element.

Figure 5.27 and Figure 5.28 report the KEDR and enstrophy, respectively, from the simulations

on the coarse mesh (nDOF/eq. = 483). The KEDR is normalized by KE(0)
τ

and the mass-averaged

enstrophy is normalized by u2
rms
λ2

0
. The RAD2 scheme provides superior results compared to the

RAD1 and conDG schemes for all tested solution orders p. Results from the simulations on the

fine mesh (nDOF/eq. = 963) are reported in Figure 5.29 and Figure 5.30. The Recovery-assisted

schemes provide superior performance compared to the conventional DG approach. Between the

two Recovery-assisted schemes, RAD2 consistently exhibits larger enstrophy levels, which is not

necessarily a positive attribute because it overshoots the reference simulation’s enstrophy level in

the p = 2 and p = 3 cases. Regardless of the spatial discretization, the underresolved simulations

in this study tend to overpredict the KEDR in early time and underpredict it in late time. For both

the coarse and fine mesh simulations, the simulation results improve with the polynomial order p.

The p = 3 simulations on the fine mesh exhibit excellent agreement with the reference solution.
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Figure 5.28: Test 4: Mass-averaged enstrophy vs. time with nDOF/eq. = 483.
Key: Reference: — ; conDG: − − − ; RAD1:−. − .− ; RAD2:−. − .− .
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Figure 5.29: Test 4: Kinetic energy dissipation rate vs. time with nDOF/eq. = 963.
Key: Reference: — ; conDG: − − − ; RAD1:−. − .− ; RAD2:−. − .− .

5.6 Chapter Conclusion

The ICB approach for advection and the CGR approach for diffusion were combined to form a

set of Recovery-assisted DG (RAD) schemes for advection-diffusion problems. The ICB approach

uses a biased version of the recovery operator to improve the accuracy of the advective flux terms

while the CGR approach augments the mixed formulation for the diffusive flux terms with the clas-

sical full-order recovery operator. The results were encouraging. Fourier analysis showed that the

new Recovery-assisted advection-diffusion discretizations achieve superior wavenumber resolu-

tion compared to the conventional DG approach over a broad spectrum of element Peclet numbers.
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Figure 5.30: Test 4: Mass-averaged enstrophy vs. time with nDOF/eq. = 963.
Key: Reference: — ; conDG: − − − ; RAD1:−. − .− ; RAD2:−. − .− .

A set of linear and nonlinear test problems demonstrated that the new RAD schemes achieve su-

perior performance compared to the conventional approach, assuming a sufficiently regular mesh.

The superior accuracy of the Recovery-assisted schemes stems from the usage of the biased and

full-order recovery operators to calculate the ambiguous interface terms in Eq. (5.2).

There is room for improvement on unstructured meshes. Both the RAD1 and RAD2 schemes

are less robust than the conventional DG approach on an unstructured quadrilateral mesh, and this

deficiency hampers their applicability on general flow physics problems. Additionally, testing on

simplex elements is noticeably absent from this chapter because we have so far been unable to

formulate a stable and satisfactorily accurate implementation of the biased recovery procedure on

simplex elements. Further analysis could yield a fix for this behavior; extensive study of the primal

form of the spatial discretization could yield an appropriate tuning of the recovery weights in

the derivative-based recovery operators to maximize robustness while maintaining an appreciable

accuracy advantage over the conventional DG approach. The ideal scheme would optimize the

dispersion relation while applying a suitable amount of dissipation to underresolved modes.
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CHAPTER 6

Boundary Procedures for van Leer & Lo’s

Recovery-based DG Method

6.1 Chapter Overview

DG schemes for handling the 1D diffusion equation are usually order 2p accurate; preferably, the

order of accuracy would be at least 2p + 1 so that the accuracy of the DG method was not degraded

when moving from a pure advection problem to an advection-diffusion problem. Additionally,

DG schemes for the diffusion equation tend to exhibit relatively large spectral radii, which be-

comes a liability when explicit time integration is employed. Third, they typically contain tunable

stabilization parameters and novel mathematical constructs (lifting operators) that are difficult to

understand for anyone who is not an expert in the DG method. In response to this list of issues, van

Leer & Nomura [102] proposed the Recovery concept and a Recovery-based DG scheme for the

1D diffusion equation, laying the foundation for Lo [67] to propose a variety of Recovery-based

DG methods. In this chapter, we focus on one of Lo’s methods, namely the RDG-1x++CO version

of Recovery-based DG. Our contribution to the method was to minimize the degradation in conver-

gence rates when solving a shear diffusion equation (θ > 0 in Eq. 2.7) under Dirichlet or Neumann

boundary conditions. In the case of Dirichlet boundary conditions, we constructed a boundary

scheme that can preserve order 3p convergence in the cell-average error; this convergence rate is

unrivaled by other DG schemes for diffusion, making the Recovery-based DG scheme an excellent

choice for the discretization of pure diffusion problems on Cartesian meshes.
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In the pursuit of an appropriate diffusion scheme for a combined advection-diffusion scheme,

we ultimately abandoned the Recovery-based DG family in favor of the Interface Gradient Re-

covery (IGR) family developed in Chapter 3. The main issue of the Recovery-based DG schemes

is that when a shear term is present in the diffusion equation, no compact Recovery-based DG

scheme can maintain stability and consistency for p > 1. This shortcoming inspired the forma-

tion of the Compact Gradient Recovery (CGR) and High-Accuracy-Gradient (HAG) approaches in

Chapter 3, which are built to exploit the accuracy of the recovery operator without the shortcom-

ings of Recovery-based DG.

In this chapter, we review the origins of the Recovery-based DG family of schemes. Then, the

specific RDG-1x++CO discretization is described, and we propose two new approaches for the ac-

commodation of Dirichlet and Neumann boundary conditions; in the interest of keeping this thesis

manageably brief, some details on the RDG-1x++CO approach are omitted; the interested reader

is directed to Lo’s thesis [67] for a more thorough description. Finally, the boundary schemes are

evaluated with a simple test problem.

6.1.1 Novelty and Articles

The novelty of this chapter is a pair of new schemes for handling Dirichlet and Neumann boundary

conditions within the RDG-1x++CO spatial discretization. Previously, Dirichlet and Neumann

boundary conditions in the Recovery-based DG family had only been addressed for the simpler

RDG-1x+ scheme [67].

The material of this chapter appears in one AIAA conference manuscript:

• P. E. Johnson & E. Johnsen, Progress Towards the Application of the Recovery-Based Dis-

continuous Galerkin Method to Practical Flow Physics Problems, AIAA Paper 2016-3331.

6.1.2 Usage of Recovery

The recovery operator is applied in the inner-product based implementation. Only the full-order

recovery type (Section 2.6.2) is employed, and it is implemented exclusively on 2D Cartesian
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elements. The biased recovery operation makes no appearance in this chapter.

6.2 A Brief History of Recovery-based DG

The naive approach for the diffusion equation, detailed in Section 2.3.1, performs poorly for two

reasons. First, the practice of taking the average gradient along each interface does not account

for the jump in the approximation Uh. Large solution jumps at interfaces correspond to large gra-

dients, and the naive scheme does not properly relate the two quantities. Second, since Uh is a

polynomial, information is lost when evaluating the gradient in each element. The first issue is the

more important of the two. The Recovery-based DG schemes of Lo & van Leer [69, 67, 68, 101]

address this shortcoming with the use of the recovered solution (Section 2.6). The recovered so-

lution, in addition to providing a solution approximation at the interface, can be differentiated to

provide an approximation for the solution gradient. When the recovered solution is differentiated,

the information contained in the interface solution jump is accounted for. In the case of the 1D

diffusion equation (Eq. 2.2), this procedure results in stable DG schemes (RDG-2x and RDG-1x+)

without the complications of global lifting operators, local lifting operators, and penalization pa-

rameters [4, 15] that are required for other DG schemes. Additionally, the RDG-1x+ and RDG-2x

schemes proposed by van Leer & Lo achieve order 3p+1 convergence or greater in the cell-average

error, which is frequently used to compare DG methods to finite volume methods; other DG meth-

ods are typically limited to order 2p convergence. These two schemes (RDG-2x and RDG-1x+)

maintain a compact stencil in the 1D case. However, in the 2D case, RDG-2x and RDG-1x+ be-

come unstable and/or inconsistent in the presence of a shear diffusion flux law (θ > 0 in Eq. 2.7),

necessitating the development of non-compact Recovery-based DG schemes instead. While the

loss of compactness is undesirable, the resulting RDG-1x++CO scheme performs exceptionally

well for 2D shear diffusion problems; the orders of accuracy and spectral radii for p ≤ 5 are listed

in Table 3.9 (as part of the IGR Fourier analysis) and compare favorably to other DG schemes for

diffusion. The schemes developed in this chapter minimize performance degradation when moving

from periodic boundary conditions to Dirichlet or Neumann boundary conditions.
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6.3 The Recovery-based DG Method

From now on, the RDG-1x++CO scheme [69] is simply referred to as RDG. This section is ex-

clusively a review of a method. It exists to orient the reader before the boundary procedures are

described in the next section.

A B

C

D

E

-
6 r
s

Figure 6.1: Neighboring elements.

The RDG scheme is for Cartesian elements in 2D. In addition to assuming a Cartesian mesh,

let φe for each Ωe be a modal tensor product basis with K = (p+1)2 members for each element; the

use of a modal basis is important for the solution enhancement step of RDG. Given some diffusive

conservation law with flux G, the DG weak form is:

∫
Ωm

φk
m
∂

∂t
(

K−1∑
n=0

Ûn
mφ

n
m)dx =

∫
∂Ωm

φk−
m (G̃ · n−m)ds −

∫
Ωm

∇φk
m ·Gdx, ∀φk

m ∈ φm, ∀Ωm ∈ Ω. (6.1)

Consider elements A,B,C,D,and E, as shown in Figure 6.1, on the interior of the computational

grid. On each interface, we make use of a set of recovery coordinates, with r running in the face-

normal direction and s in the face-tangential direction. Recall that the recovered solution is built in

a recovery basis, ψ, that contains higher polynomial modes than the DG basis φ. For example, in

the p = 1 case, each element contains 4 degrees of freedom. Thus, the recovered solution contains

8 degrees of freedom. While the DG solution basis φ is bilinear in each element, the recovered

function is built in a tensor product basis that is cubic in the face-normal direction but only linear

in the face-tangential direction.

Given the DOFs Û at time t, the first step in the RDG scheme is to calculate the primary

171



recovered solution f (r, s) along each interface using the discrete recovery operator described in

Section 2.6. It is called the primary recovered solution because in the process of populating the

DG weak form (Eq. 6.1), a secondary recovery step will be necessary.

Next, the primary recovered solution f is used to assist in the process deemed solution en-

hancement by van Leer & Lo [69]. A thorough summary is given in the thesis of Lo [67]. Whereas

Recovery is used to populate a solution approximation along element interfaces, solution enhance-

ment is used to replace the DG approximation Uh
e over each Ωe with an enhanced solution, Uen

e .

Where the DG approximation Uh consists of K DOFs per element, the enhanced solution Uen

makes use of Ken = K + 4(p + 1) coefficients per element. For example, considering again the

p = 1 case, K = 4, and the enhanced solution contains Ken = 12 coefficients. The enhanced

solution is a polynomial expansion, as shown below:

Uen
e (x, y) =

Ken−1∑
n=0

Ûen,m
e φen,m

e (x, y) , Ken = (p + 1)2 + 4(p + 1). (6.2)

The members of the enhanced basis φen
e are formed by starting from the modal tensor product basis

φe of degree p and adding 2(p + 1) extra basis functions in the reference element’s ξ direction and

2(p + 1) extra basis functions in the reference element’s η direction. The result is an incomplete

degree p + 2 tensor product basis; the missing members are the four basis functions corresponding

to degree greater than p in both the ξ and η directions. The enhanced basis, φen
e , inherits all mem-

bers of φe; additionally, it contains extra basis functions that are used to improve the accuracy of

the approximate solution. Regardless of p, the enhanced solution basis contains 2 extra columns

of shape functions in the ξ direction of the reference element and 2 extra rows in the η direction

of the reference element. The monomial example with p = 1 is illustrated in Figure 6.2. The Ken

coefficients in each element’s enhanced solution Uen are constrained as follows. Let {τ0, τ1, τ2, τ3}

be the four edges that border a given element Ωe. Each edge is populated by a primary recovered

solution f . We take Lk(sq) to be the kth Legendre polynomial evaluated at coordinate sq ∈ [−1, 1]

along a given interface τq. The enhanced solution is weakly equivalent to Uh
e over the element inte-

rior and weakly equivalent to the appropriate recovered function f over each of the four bordering
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Figure 6.2: Basis construction for Uh and Uen; the reference element’s basis is shown.

edges:

∫
Ωe

Uen
e φ

k
edx =

∫
Ωe

Uh
eφ

k
edx, ∀φk

e ∈ φe, (6.3a)∫
τq

Uen
e Lk

s(sq)dsq =

∫
τq

fqLk
s(sq)dsq, ∀k ∈ {0, 1, ..., p} ,∀q ∈ {1, 2, 3, 4}. (6.3b)

The system of Eq. (6.3) gives K constraints based on the DG approximation Uh
e of the local el-

ement; additionally, each of the four interfaces contribute p + 1 unique constraints. As with the

recovered solution constraints (Section 2.6), this system can be written as a linear matrix-vector

equation that yields the Ken coefficients Ûen
e given the K DOFs Ûe and the distribution of f along

τ1, τ2, τ3, and τ4. The enhanced solution is then used to populate the viscous flux function over the

interior of the local element: G = G(Uen
e ,∇

hUen
e ) throughout Ωe.

To finish populating the DG weak form (Eq. 6.1), the flux along element-element interfaces

must be populated. Early versions of the Recovery DG family used the gradient of the primary

recovered function to populate the viscous flux along interfaces, but that approach is inconsistent

for p > 1, θ > 0, as discussed by Lo [67]. Instead, the RDG scheme uses a second iteration

of Recovery to build another recovered solution over the interface. After primary recovery and

solution enhancement have been performed, RDG performs recovery on the enhanced solution

Uen in order to produce the secondary recovered function, f en, across each interface. The interface

flux G̃ is then populated as G̃ = G( f en,∇ f en).

There is an important peculiarity to the secondary recovery. The CO in the full scheme name
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Figure 6.3: Basis construction for f and f en in the Cartesian-optimized approach. The face-normal
recovery coordinate is r and the face-tangential recovery coordinate is s.

(RDG-1x++CO) is short for Cartesian Optimization. Without Cartesian Optimization, the sec-

ondary recovery would consist of setting 2Ken degrees of freedom for the solution f en across each

interface, using Ken DOFs from each of elements that share the interface. Instead, each secondary

recovered solution f en contains 2(p + 1)(p + 3) coefficients; the enhanced recovery basis is degree

2p + 1 in the face-normal direction and degree p + 2 in the face-tangential direction. This differ-

ence between the primary recovery basis ψ and the enhanced recovery basis ψen is illustrated in

Figure 6.3 for the p = 2 case. The procedure for setting the coefficients in the enhanced recovered

solution for a given interface depends on the orientation of the interface. Let (xe, ye) be the centroid

of Ωe and ∆xe, ∆ye to be the element widths in the x and y directions, respectively. For this element,

define

Xe(x) =
2

∆xe
(x − xe) , Ye(y) =

2
∆ye

(y − ye) (6.4)

as transformations from the physical coordinates (x, y) to local element coordinates (X,Y) ∈ [−1, 1]2.

Let Lk(ζ) to be the 1D Legendre polynomial of degree k and assume the interface’s normal to be
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in the x direction. The recovery constraints for the enhanced recovered solution are as follows for

a given pair of neighboring elements ΩA and ΩB:

∫
ΩA

Lkx(XA(x)) Lky(YA(y)) (Uen
A − f en

AB) dx = 0, ∀(kx, ky) ∈ {{0, 1, ..., p} × {0, 1, ..., p + 2}}, (6.5a)∫
ΩB

Lkx(XB(x)) Lky(YB(y)) (Uen
B − f en

AB) dx = 0, ∀(kx, ky) ∈ {{0, 1, ..., p} × {0, 1, ..., p + 2}}, (6.5b)

where f en
AB is the secondary recovered solution over ΩA ∪ ΩB. If instead the interface normal is in

the y direction, the constraints for f en take the following form:

∫
ΩA

Lkx(XA(x)) Lky(YA(y)) (Uen
A − f en

AB) dx = 0, ∀(kx, ky) ∈ {{0, 1, ..., p + 2} × {0, 1, ..., p}}, (6.6a)∫
ΩB

Lkx(XB(x)) Lky(YB(y)) (Uen
B − f en

AB) dx = 0, ∀(kx, ky) ∈ {{0, 1, ..., p + 2} × {0, 1, ..., p}}. (6.6b)

Once the secondary recovered solution has been calculated, it is differentiated to populate the

viscous flux on each interface. The RDG scheme maintains greater than 3p order of accuracy (from

Fourier analysis, see Table 3.9) on Cartesian elements. However, due to the secondary (enhanced)

recovery step, the overall update scheme for a single element is non-compact (see Figure 2.5).

6.4 Boundary Procedures

Consider an initial boundary value problem (IBVP) involving either a Dirichlet or Neumann bound-

ary condition along the entirety of ∂Ω with the 2D shear diffusion equation being the governing

equation:

U(x, y, 0) = UIC(x, y) ∀(x, y) ∈ Ω, (6.7a)

∂U
∂t

=
∂

∂x
(µ
∂U
∂x

+ µθ
∂U
∂y

) +
∂

∂y
(µθ

∂U
∂x

+ µ
∂U
∂y

) + S(x, y, t), ∀(x, y, t) ∈ Ω × (0, t f ], (6.7b)
U = CD , for Dirichlet

∇U · n = CN , for Neumann

 , ∀(x, y, t) ∈ ∂Ω × (0, t f ], (6.7c)
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Figure 6.4: The Boundary Environment.

where CD is a space-time dependent Dirichlet condition, CN is a space-time dependent Neumann

condition, and the problem is simulated to time t f . We constructed and tested a set of schemes for

handling either Dirichlet or Neumann boundary conditions.

The set of boundary schemes begins with Lo’s full boundary recovery approach [67]. We label

this approach as the F∅ procedure; the F stands for full boundary recovery, and the ∅ is used to

show that no special treatment is made for tangential derivatives along the boundary. Consider the

situation illustrated in Figure 6.4. The element ΩA, referred to as the boundary element, shares at

least one interface with a Dirichlet or Neumann boundary, ∂Ω. Let τD = ∂ΩA ∩ ∂Ω be known as

the boundary interface. The face-tangential recovery coordinate s spans the domain s ∈ [−1, 1]

over τD. Let ΩB be the element that touches ΩA opposite the boundary interface. For example, if

the physical domain is a square with Dirichlet boundaries and ΩA touches the left-side boundary

of Ω, as shown in Figure 6.4, then ΩB is the element immediately to the right of ΩA. The element

ΩB is known as the interior element.

The boundary interface is associated with a recovered polynomial, denoted fAD. In addition

to weak equivalence relations over ΩA and ΩB, full boundary recovery demands that fAD be in

agreement with the prescribed boundary condition along τD. To preserve accuracy, the recovered

function fAD is a polynomial expansion with 2K coefficients. These coefficients are constrained

by the boundary element, the interior element, and the boundary condition (Either Neumenn or

176



Dirichlet) as follows:

∫
ΩA

fφk
Adx =

∫
ΩA

Uh
Aφ

k
Adx, ∀k ∈ {0, 1, ...,K − 1}, (6.8a)∫

ΩB

f βk
Bdx =

∫
ΩB

Uh
B β

k
Bdx, ∀k ∈ {0, 1, ...,K − 1 − (p + 1)}, (6.8b)

∫
τD

f Lk(s)ds =
∫
τD

CD(s)Lk(s)ds, for Dirichlet∫
τD

(∇ f · n)Lk(s)ds =
∫
τD

CN(s)Lk(s)ds, for Neumann

 , ∀k ∈ {0, 1, ..., p}, (6.8c)

where n is the outward normal along τD and Lk is the 1D Legendre polynomial of degree k. There

is one set of p + 1 constraints that is enforced in the case of a Dirichlet problem and a different set

of p + 1 constraints in the case of a Neumann problem. The functions βk are members of φB. If the

boundary interface is normal to the x direction, then the functions βk should exclude the highest

basis modes of φB in the x direction, and if the boundary interface is normal to the y direction,

then the functions βk exclude the highest basis modes of φB in the y direction. This procedure

performs well if the IBVP does not involve derivatives in the interface-tangential direction. If the

tangential derivative along a boundary is needed, which could be the case for the Navier-Stokes

equations (where a velocity profile may be prescribed along a boundary), then the F∅ method

performs poorly. Our two proposed methods are attempts to remedy this shortcoming.

It is possible to perform secondary recovery along a boundary using a similar approach to that

shown in Equation (6.8), forcing equivalence with the enhanced cell solutions Uen rather than Uh;

this method is abbreviated FF, standing for full primary recovery, then full secondary recovery

along the boundary. It yields an enhanced recovery solution, f en
AD, that is of high polynomial degree

in both the boundary-normal and boundary-tangential directions.

We also propose the FM scheme, for full primary recovery along the boundary, and a mixed

approach for populating the gradient information. It consists of three steps:

1 : Perform full primary boundary recovery procedure to obtain fAD.

2 : Perform cell solution enhancement to obtain Uen
A .
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3 : Along τD, use ∇ fAD for the boundary-normal derivative and ∇Uen
A for the boundary-tangential

derivative. These derivative choices are used to calculate the flux G along τD.

The F∅, FF, and FM schemes are distinguished from eachother by the amount of data pulled in

from neighboring elements. With respect the element addresses in Figure 6.4, the F∅ scheme uses

only the information contained in the boundary condition and the two DOF vectors ÛA and ÛB.

By employing the enhanced solution in ΩA, the FM scheme makes use of ÛA, ÛB, ÛC, ÛE, and

the boundary condition. Finally, by performing recovery over the enhanced solutions in ΩA and

ΩB, the FF scheme makes use of the boundary condition, ÛA, ÛB, ÛC, ÛE, ÛF, and ÛG. We

hypothesized that the accuracy of the boundary scheme would improve as more information was

added to the stencil. Under this hypothesis, the F∅ scheme should be the least accurate and the FF

scheme should be the most accurate.

6.5 Numerical Test: Dirichlet/Neumann Boundary Conditions

The boundary schemes are evaluated with a simple test case. The IBVP (Eq. 6.7) is simulated

with a nonzero source term S implemented to force U(x, y, t) to a manufactured solution. The flux

parameters and the manufactured solution are shown in Eq. (6.9).

µ = 1 +
U2

10
, θ = 0.25 , kw = 2π, (6.9a)

U(x, y, t) = e−kw
2t(sin(kw(x − y)) + sin(kwx)sin(kwy)). (6.9b)

The spatial domain is the unit square, partitioned by uniform square elements. Each simulation

runs from t = 0 to t = 2k−2
w . The problem is simulated under periodic boundary conditions, then

under Dirichlet boundary conditions, then under Neumann boundary conditions; the Dirichlet and

Neumann boundary conditions (CD and CN) are taken from the exact solution for U in Eq (6.9). For

each of the three boundary schemes discussed (F∅, FF, FM), the test problem is solved on a series

of succesively finer meshes, each characterized by the uniform element edge length h = ∆x = ∆y.
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Under periodic boundary conditions, the RDG scheme achieves order 3p + 1 or greater conver-

gence in the cell-average error, ECA:

ECA =

√√
1
M

M∑
m=1

(Uh
m − Um)2, (6.10)

where Uh
m and Um are the averages of the polynomial Uh

m and the exact solution, respectively,

over Ωm. It also achieves the optimal convergence rate in the global L2 error. These behaviors are

demonstrated in Figure 6.5. The goal of each of the boundary schemes presented (F∅, FF, and

FM) is to match the orders of convergence observed in the spatially periodic case. If this goal

is not achieved, the extraordinary accuracy of the RDG scheme over the domain interior (and the

associated computational effort) goes to waste.

Figure 6.6 presents a mesh refinement study of the IBVP under Dirichlet boundary conditions.

For the p = 1 case, all three boundary schemes are effective, achieving 4th order convergence. For

p > 1, only the FM scheme achieves the desired behavior, replicating the orders of convergence

observed in the spatially periodic case. This result disagrees with our initial hypothesis; we ex-

pected the FF scheme to be the most accurate, but ultimately, the extra information employed by

the FF scheme pollutes the estimate of the gradient along the boundary. Figure 6.7 presents a mesh

refinement study of the IBVP under Neumann boundary conditions. For the p = 1 case, the FF

and FM boundary schemes are effective. For p > 1, none of the proposed boundary schemes are

capable of preserving the desired order of convergence, but the FM scheme is the best of the three

and maintains greater than order 2p convergence in the cell-average error. The simple F∅ scheme

shows poor performance for this problem, achieving only order p convergence.

6.6 Chapter Conclusion

We studied three distinct schemes for accommodating Dirichlet and Neumann boundary conditions

in the Recovery-based DG framework. The first scheme (F∅) is the original work of Lo [67] and the

other two schemes (FF, FM) are our own novel inventions. The numerical test demonstrated that to
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Figure 6.5: Convergence study for the intial value problem with periodic boundary conditions.
Dashed gray lines denote approximate convergence rates m.
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Figure 6.6: Convergence study in cell-average error for Dirichlet IBVP. Dashed gray lines denote
approximate convergence rates m. Symbol Key: F∅:◦ ; FF:. ; FM:�.

minimize the degradation in accuracy when moving from spatially periodic boundary conditions to

either Dirichlet or Neumann boundary conditions, our proposed FM scheme is the best option. The

scheme draws in the ideal amount of information from the elements near a given boundary interface

to maximize accuracy. Overall, the Recovery-based DG scheme is an exceptionally accurate tool

for the discretization of purely parabolic PDE problems on a Cartesian mesh.

180



10
-2

10
-1

10
-1 4

10
-1 0

10
-6

10
-2

m = 1

m = 4

(a) p = 1.

10
-2

10
-1

10
-1 4

10
-1 0

10
-6

10
-2

m = 2

m =
5

(b) p = 2.

10
-2

10
-1

10
-1 4

10
-1 0

10
-6

10
-2

m = 3

m
=

8

(c) p = 3.

Figure 6.7: Convergence study in cell-average error for Neumann IBVP. Dashed gray lines denote
approximate convergence rates m. Symbol Key: F∅:◦ ; FF:. ; FM:�.

181



CHAPTER 7

Recovery in the Flux Reconstruction Method

7.1 Chapter Overview

The Flux Reconstruction (FR) method is an alternative to the discontinuous Galerkin (DG) ap-

proach but shares many properties of DG. Similar to the DG method, FR makes use of a set of

piecewise polynomials to approximate the solution, allowing high-order accuracy on nontrivial

mesh geometries. Where the DG approach is based on satisying the governing differential equa-

tion (GDE) in the weak sense, the FR approach is built to satisfy the GDE in differential form at a

discrete set of points, known as solution points, over each element. We had the opportunity to work

with Dr. H.T. Huynh, the creator of the FR method [46, 47], during the summer of 2018 to analyze

various FR approaches for diffusion problems. In this chapter, the FR method is described in the

context of a 2D advection-diffusion problem, but we eventually restrict ourselves to pure diffusion

problems. Then, it will be shown that the familiar Fourier analysis technique, which saturates the

earlier chapters of this work, can be applied to nonuniform mesh geometries. A recovery-assisted

FR approach is described and analyzed. As one would expect, the recovery-assisted approach

provides superior performance on Cartesian meshes; additionally, it remains stable on an irregular

arrangement of simplex elements. The FR method is closely related to the DG method, so many

of the operations detailed in this chapter have DG counterparts in Chapter 3 and Chapter 2.

182



7.1.1 Novelty and Articles

There are three novel components in this chapter. The most significant contribution is the exten-

sion of the Fourier analysis technique to nonuniform 2D meshes, which to our knowledge has

never before been achieved. Second, the extension of the recovery-assisted philosophy to the FR

method yields a new numerical scheme for diffusion problems. Third, this chapter shows how

the I-continuous approach of Huynh [47], known by some as “poor-man’s recovery,” performs on

simplex elements in 2D.

The material of this chapter appears in one AIAA conference manuscript, to be presented at

the 2019 AIAA Aviation conference:

• P. E. Johnson, E. Johnsen, & H. T. Huynh, A Novel Flux Reconstruction Method for Diffusion

Problems, AIAA 2019 Aviation Forum.

7.1.2 Usage of Recovery

The biased recovery approach makes no appearance in this chapter. Instead, the recovery-assisted

FR scheme employs the classical, full-order recovery operator (Section 2.6.2) in the inner-product

implementation. The operation is applied on quads and simplices in 2D as detailed in Section 2.6.5.

7.2 The Flux Reconstruction Method

In this section, we describe the FR method in the context of an arbitrary advection-diffusion system,

∂U
∂t

+ ∇ ·Q = 0 with Q = F −G, (7.1)

where U(x, t) is the space and time dependent state variable,F (U) is the advective flux component,

and G(U,∇U) is the diffusive flux component. The focus is the 2D implementation of FR, so the

notation and methodology in this chapter are particular to the 2D case. A given FR approach is

defined by a variety of parameters, including: the polynomial degree p of the solution in each
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element, the element shape, the choice of correction functions/fields for gradient calculations, and

the strategy for defining ambiguous element-element interface terms. Much of the terminology is

the same as in the DG method because the DG and FR approaches are closely related.

7.2.1 Preliminaries

7.2.1.1 Domain Decomposition

Given some spatial domain Ω on which a solution to Eq. (7.1) is to be calculated, the domain is

split into M non-overlapping elements, each labeled Ωm (with closure Ωm = Ωm∪∂Ωm, where ∂Ωm

is the boundary of Ωm), as with the DG method.

7.2.1.2 Solution Representation

As with the DG method, the approximate numerical solution to Eq. (7.1) is denoted Uh(x, t) and

is a piecewise-continuous polynomial of degree at most p in each element. Over each element, Uh

is a linear combination of K time-dependent degrees of freedom (DOFs), denoted Ûk
m(t), and K

space-dependent basis functions, denoted φk
m(x):

Uh(x ∈ Ωm, t) = Uh
m(x, t) =

K∑
k=1

Ûk
m(t)φk

m(x). (7.2)

The FR method requires a nodal basis. The corresponding basis functions φ are fully explained in

Section 7.2.1.5.

7.2.1.3 The Reference Element

Given the choice of either quadrilateral or triangular elements to partition the spatial domain, each

physical element Ωm is mapped to the single reference element, Ωre f . The reference element for

quadrilaterals is the bi-unit square, and the reference element for triangles is an equilateral triangle

with side length 2; these reference elements are shown in Figure 7.1. The reference elements exist

in the reference domain, which is spanned by orthogonal coordinates ξ and η instead of the physical
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Figure 7.1: Reference elements in the p = 2 case. Solution points are denoted by blue diamonds
(�) and interface flux points by red circles (•). Both elements have centroid (ξ, η) = (0, 0), and
the NV vertices of each element are listed in reference coordinate space. Each basis function `k is
unity at a particular solution point and zero at all other solution points.

coordinates x and y. Each reference element has its centroid at ξ = (0, 0), as shown in Figure 7.1.

The reference element is spanned by a K-dimensional solution basis `; each member of this

basis is a polynomial that is unity at a particular “solution point” on the reference element and zero

at all other solution points. Letting ξk denote the kth solution point on Ωre f , the solution basis is

defined as follows:

`n(ξk) =


1 for k = n

0 for k , n

 , (7.3)

with each `k being a polynomial of at most degree p in each direction on Ωre f . The distribution of

the solution points on the reference element is a matter of user preference; in this work, we use a

tensor product grid of the p + 1 Gauss-Legendre points in each direction for the square reference

element and the strong quadrature points tabulated by Taylor et al. [98] for the reference triangle.

Figure 7.1 shows the distribution of solution points in the p = 2 case. As with the DG method, the

geometrical Jacobian matrix (Section 2.5.1) is employed to obtain gradients of the basis functions

with respect to physical coordinates.
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Figure 7.2: Flux point distribution in the p = 2 case along the perimeter of the reference element;
the flux points are numbered counterclockwise along each face. The face index, f , and the point
index, j, correspond to the definition of the correction field ψ f j.

(a) Cartesian Grid. (b) Perturbed Triangles.

Figure 7.3: The grids used for Fourier analysis. In addition to the element boundaries, we have
plotted the solution point locations in the p = 2 case; note that a p2 triangle has fewer points than
a p2 quadrilateral.

7.2.1.4 Solution Points and Flux Points

Each physical element is inhabited by K solution points. The K solution points on each Ωm are

defined as follows:

xk
m = x(ξk), (7.4)

for k ∈ {1, 2, ...,K}, where ξk is the kth solution point on Ωre f , x(ξ) is the mapping corresponding

to Ωm, and xk
m is the kth solution point on Ωm. The distribution of physical solution points for the

two grids employed for Fourier analysis is illustrated in Figure 7.3.
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In addition to the solution points, each edge of each element is populated by p + 1 flux points.

Thus, each element is associated with NV × (p + 1) flux points. The distribution of flux points is a

matter of user preference; in this work, the flux points are the p+1 Gauss-Legendre points on each

edge, as illustrated in Figure 7.2. These flux points serve a similar role to the interface quadrature

points in the DG method.

7.2.1.5 Solution Basis

The nodal solution basis φm in a given element Ωm is defined as follows:

φk
m(x(ξ)) = `k(ξ) ∀k ∈ {1, 2, ...,K}, (7.5)

where the one-to-one mapping x(ξ) is available directly from the element geometry. Each ele-

ment’s basis inherits the Kronecker delta property from the reference element:

φn
m(xk

m) =


1 for k = n

0 for k , n

 . (7.6)

Additionally, each φk
m is equal to zero outside of Ωm; along ∂Ωm, each φk

m is in general multivalued,

as it has a nonzero limit from inside Ωm and the limit is zero from outside Ωm.

The FR method mandates that the gradient of the solution basis be available as well. At a given

point in space, the gradient is calculated as follows:

φ
k
m,x

φk
m,y

 (x(ξ)) = [J−1
m ]T

`
k
,ξ

`k
,η

 (ξ), (7.7)

where the Jacobian matrix and the right-hand-side gradient w.r.t. the reference coordinates are

evaluated at ξ and the gradient w.r.t. the physical coordinates is given at x(ξ). For cases where the

Jacobian is non-constant over an element, it is crucial that the variation of J be properly accounted

for in Eq. (7.7). The transformation to the physical gradient can also be conveniently written in
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terms of the individual components of the Jacobian:

φ
k
m,x

φk
m,y

 (x(ξ)) =
1
|J|

y,η`k
,ξ − y,ξ`k

,η

x,ξ`k
,η − x,η`k

,ξ

 (ξ), (7.8)

where the determinant of the Jacobian, as well as the metric terms on the right-hand side, should be

evaluated at ξ. This approach can be applied to recast the governing differential equation (Eq. 7.1)

in terms of the “transformed flux” rather than the physical flux; see the work of Castonguay et

al. [20] as an example. In this work, we do not make explicit use of the transformed flux but

instead directly obtain the divergence of the physical flux in the physical frame.

The “broken gradient” and “broken divergence” operators must also be defined. For a given

element Ωm, let V(x) be some scalar quantity built as a linear combination using nodal coefficients

V̂k
m in the FR solution space:

V(x) =

K∑
k=1

V̂k
mφ

k
m(x). (7.9)

The broken gradient of V is defined as follows:

∇hV =


∑K

k=1 V̂k
m
∂
∂xφ

k
m∑K

k=1 V̂k
m
∂
∂yφ

k
m

 ; (7.10)

the x and y derivatives of the FR solution basis are used to form a gradient approximation. This

broken gradient is the same term employed to form the compact members of the IGR family in

Chapter 3.

Suppose instead that V is a vector entity with an x component u and a y component v such that

V(x) =

u(x)

v(x)

 =


∑K

k=1 ûk
mφ

k
m(x)∑K

k=1 v̂k
mφ

k
m(x)

 . (7.11)
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In this case, the broken divergence operator is

∇h · V =

K∑
k=1

ûk
m
∂

∂x
φk

m +

K∑
k=1

v̂k
m
∂

∂y
φk

m. (7.12)

Note that the broken gradient operator maps a scalar function to a vector function and that the

broken divergence operator maps a vector function to a scalar function. Also, these functions are

defined only for polynomial inputs in the FR solution space; the broken gradient/divergence cannot

be applied to an arbitrary function.

7.2.1.6 Correction Polynomials in 1D

The implementation of FR on quadrilateral elements depends on a set of 1D functions known as

“correction polynomials” defined on the bi-unit interval, ζ ∈ [−1, 1]. As described by Huynh [46],

each correction polynomial is unity at the left boundary and approximates zero over the element

interior; with the exception of the Legendre polynomial, each of these correction polynomials is

zero at the right-side edge of the reference element. For an FR scheme of order p, four different 1D

correction polynomials are utilized in this work. The first is the degree p+1 Radau polynomial, ab-

breviated gDG(ζ) because it corresponds to a differential formulation of the DG method. The second

is the Lagrange polynomial that is unity at ζ = −1, zero at ζ = 1, and zero at the p Gauss-Legendre

points over the element interior, abbreviated gS D(ζ) because it facilitates a spectral-difference (SD)

approach. The third is the special function of Huynh [46] that is unity at ζ = −1 and zero at

ζ = 1. Additionally, the first derivative of Huynh’s function is zero at the the set of p + 1 Lobatto

points, excluding the left boundary point. We abbreviate Huynh’s function gHu(ζ). The remaining

correction function, which we refer to as the “zeroth” correction polynomial, is the degree p + 1

Legendre polynomial multiplied by (−1)p+1 so that it is unity at ζ = −1, abbreviated gLe(ζ). All

four correction polynomials are illustrated in Figure 7.4 for p = 1, p = 2, and p = 3.
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Figure 7.4: Correction polynomials on the 1D bi-unit domain. Plotted functions are gLe (red), gDG
(blue), gSD (turquoise), and gHu (magenta).

7.2.2 Spatial Discretization of the Governing Differential Equation

Given the collection of all DOFs in the spatial domain at timestep s, i.e. t = ts, the FR spatial

discretization is used to estimate the flux divergence (∇ ·Q) in Eq. (7.1) at each solution point xk
m.

Then, since ∂U
∂t = −∇ ·Q, each nodal DOF Ûk

m is directly updated as follows:

Ûk
m(ts + ∆t) − Ûk

m(ts)
∆t

= −(∇ ·Q)|xk
m
, (7.13)

where ∆t is the timestep size; the forward Euler method is shown but a more sophisticated tech-

nique (such as high-order Runge-Kutta) is immediately applicable. The fundamental difference

between DG and FR is that while the DG method is built on a set of integral equations, the FR

approach mandates that the differential form of the conservation law be satisfied at a discrete set

of points. A similar split is present between the pseudospectral and classical Galerkin forms of

Fourier/Chebyshev spectral methods. In fact, the seeds of the FR method are present in the spec-

tral multidomain method of Kopriva [62], which seeks to improve the parallel efficiency of the

global pseudospectral method by breaking the global domain Ω into a set of subdomains (one

might say elements), then applying a Chebyshev pseudospectral method over each subdomain.

See De Grazia et al. [29] for a clear explanation of the similarities and differences between the

FR and DG methods, highlighting the split between the Galerkin approach and the differential ap-

proach. See also Yu et al. [115] for detailed discussion on the computational efficiency of the FR

and DG methods. It remains to describe how the flux divergence is approximated.
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In this work, we follow the general energy-stable (ESFR) framework proposed by Castonguay

et al. [20]. The much simpler approach of Huynh [46, 47] can be employed on quadrilateral ele-

ments, but since the objective here is to provide Fourier analysis on both quadrilateral and simplex

elements, we begin with the more general approach of Castonguay et al. [20]. The overall philos-

ophy of flux reconstruction is simple: given the nodal (solution point) values of the flux Q in an

element, a flux polynomial is formed to approximate Q(x) over the element. Then, the flux poly-

nomial is differentiated (as with a finite-difference approach) using the element’s solution basis.

To allow elements to exchange information, special correction terms are added to the calculated

flux divergence at each solution point. Given the corrected flux divergence at each solution point,

the temporal derivative is immediately available, allowing the DOFs to be updated according to

Eq. (7.13).

In the remainder of this section, we first show how to calculate the flux divergence based on

the known distribution of U and ∇U. Then, we show the proper methodology for approximating

∇U.

7.2.2.1 Flux Divergence

For a given element Ωm at a given time t, assume the nodal solution DOFs Ûm to be known, and

assume that a gradient approximation of the following form is known over the element:

∇U(x ∈ Ωm) ≈ σm(x) =

K∑
k=1

σ̂k
mφ

k
m(x), (7.14)

where σ̂k
m is an approximation for ∇U at solution point xk

m. Additionally, suppose that for each flux

point along ∂Ωm, a gradient approximation σ̃ has been calculated; for consistency, both elements

sharing an interface must make use of the same σ̃ value at each flux point, so it is known as

the “common gradient.” As described by Huynh [46] and Castonguay et al. [20], the FR method

consists of five steps to calculate ∂U
∂t at each solution point in Ωm, enumerated in Table 7.1. With

the overall methodology explained, we now make some clarifications regarding the algorithm of

Table 7.1.
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7.2.2.2 Discontinuous Flux Polynomial

Just as the approximate solution Uh exists in the solution space φ, the spatial distribution of the

flux is also defined as a polynomial in φ. Let

F̂
k
m = F (Uh

m(xk
m)) and Ĝ

k
m = G(Uh

m(xk
m),σm(xk

m)) (7.17)

be the advective flux component and diffusive flux component, respectively, calculated at solution

point xk
m from the approximate solution Uh

m and the gradient approximation σm. Now, using the

Table 7.1: FR update scheme for an element Ωm, assuming the gradient approximation σm ≈ ∇Uh

and the common interface gradients σ̃ are known.

Task Details

1: Interface
Limits of Uh.

Using the polynomial expansions Uh
m (Eq. 7.2) and σm (Eq. 7.14), cal-

culate Uh
m and σm at each flux point on the perimeter ∂Ωm.

2: Discontinuous
Flux Calculation.

Based on the distribution of Uh
m and σm, calculate F (Uh

m) and
G(Uh

m, σm) at each solution point xk
m on Ωm and each flux point on ∂Ωm.

3: Common Flux
Calculation.

Each flux point on each interface is shared by two elements. For each of
these shared flux points, calculate a common advective flux component
F̃ and a common diffusive flux component G̃ = G(Ũ, σ̃); set Q̃ = F̃ −

G̃. Each flux point is now associated with two calculated discontinuous
flux values (one from each element) and a single common flux value.

4: Flux
Divergence
Calculation.

For each solution point xk
m, with k ∈ {1, 2, ...,K}, approximate the flux

divergence as follows:

(∇ ·Q)|xk
m

= ∇h ·Q
h
m +

NV∑
f =1

K∑
j=1

(∆Q) f j
1
|J|ξk

ψ f j(ξk), (7.15)

where ∇h · () is the uncorrected divergence operator defined in Sec-
tion 7.2.1.5. The individual components of Eq. (7.15) are further ex-
plained in Section 7.2.2.2, Section 7.2.2.3, and Section 7.2.2.4.

5: Update. The divergence provides the time derivative of Uh at each solution point,
which is used to update the field variables:

d
dt

Ûk
m = −(∇ ·Q)|xk

m
(7.16)
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solution space φm in each element, the flux polynomial,

Q
h(x ∈ Ωm) = Q

h
m(x) =

K∑
k=1

φk
m(x)Q̂k

m where Q̂
k
m = F̂ k

m − Ĝ
k
m ∀k ∈ {1, 2, ...,K}, (7.18)

allows for the calculation of Q at any point in a given element. Due to the lack of continuity

constraints at element-element interfaces, this polynomial is known as the discontinuous flux poly-

nomial of Ωm. Given the nodal DOFs Û at time t, the discontinuous flux polynomial is defined

by calculating the advective and diffusive flux components as shown in Eq. (7.17) at each solution

point in each element. This calculation of nodal flux values is the first half of step 2 in Table 7.1.

Then, the discontinuous flux polynomial is applied to calculate the discontinuous flux of Ωm at

each flux point on ∂Ωm.

7.2.2.3 Flux Difference

Step 4 in the FR update scheme (Table 7.1) contains a flux jump term with notation (∆Q) f j. The

indices correspond to a particular flux point; the f index is the face of the element that the flux

point is on, and the j index is the local index of that flux point on face f . For example, flux point

ξF
13

would be the third flux point on the first face of the element (see Figure 7.2). Consider an

element Ωm; the flux jump at each flux point of Ωm is

(∆Q) f j = (Q̃ −Qh
m)| f j ·

nξy,η − nηy,ξ

nηx,ξ − nξx,η

 | f j. (7.19)

The term Q̃ is the “common interface flux;” it is calculated during Step 3 of Table 7.1. The flux

term Qh
m is evaluated via the discontinuous flux polynomial of Ωm. The terms nξ and nη are the ξ

and η components, respectively, of the outward normal from Ωre f along face f . Recall that the flux

itself, and therefore the difference Q̃ − Qh
m, has two spatial components per field variable, so it is

appropriate to dot it against a two-row column vector. The metric terms must be evaluated at flux

point ξF
f j

on ∂Ωre f .
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7.2.2.4 Correction Field

The function ψ f j(ξ) is the “correction field” associated with flux point ξF
f j

, which is the jth flux

point on face f of the reference element (see Figure 7.2). Note that the usage of ψ has nothing

to do with the recovery basis of Chapter 2. For the case of triangular elements, these fields are

defined according to Equation 5.49 in Castonguay et al. [20]. Their approach is summarized here.

Let L be a basis of K orthogonal polynomials on the reference triangle, such that

∫
Ωre f

Li(ξ, η)L j(ξ, η)dA =


1 if i = j

0 if i , j.
(7.20)

For arbitrary degree p, this set of polynomials is identified using the modified Gram-Schmidt

process of Bassi et al. [7]. Each of the Nv × (p + 1) correction fields are constructed via linear

combination in the orthogonal basis:

ψ f j(ξ) =

K∑
k=1

ψ̂k
f jLk(ξ). (7.21)

The coefficients ψ̂ (there are a total of Nv × (p + 1) × K) are set according to Equation 5.49 in

Castonguay et al. [20]. For a given ψ f j, the set of K coefficients ψ̂ f j is set as follows:

c
K∑

k=1

ψ̂k
f j

p+1∑
m=1

(
p

m − 1

)
(D(m,p)Li)(D(m,p)Lk) = −ψ̂i

f j +

∫
∂Ωre f

(h f j · n̂)Lids ∀i ∈ {1, ...,K}, (7.22)

where the term h f j · n̂ is a scalar-valued degree p polynomial along edge f ; this polynomial is

defined only along the surface of Ωre f and is therefore a 1D polynomial. According to Equation

4.24 of Castonguay et al. [20], the h f j · n̂ polynomial is constrained as follows:

(h f j · n̂)(ξF
mn) =


1 if f = m & j = n

0 otherwise.
(7.23)
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The operator D appearing in Eq. (7.22) is defined by Castonguay et al. [20], Equation 5.1:

D(m,p)Li =
∂pLi

∂r(p−m+1)∂s(m−1) (7.24)

where r is a face-tangential reference coordinate along face f of the reference element and s is

the coordinate orthogonal to r; one may consult Castonguay et al. [20] for additional clarification.

Note the presence of the scalar parameter c in Eq. (7.22); this number should be nonnegative for

numerical stability [20] and can be varied to influence the behavior of the FR method.

In contrast, for the case of quadrilateral elements, each ψ f j is the product of one polynomial in

ξ and another polynomial in η. To imitate the work of Huynh [46, 47], the values of each ψ f j are

determined by the derivatives of the 1D correction polynomials g. Given a choice of 1D correction

polynomial (recall that the choice of g is one of the design options in an FR scheme), the correction

field ψ f j is defined as follows:

ψ f j(ξ, η) =



−
∂g(η)
∂η
× `1D

j (ξ) if f = 1

−
∂g(−ξ)
∂(−ξ) × `

1D
j (η) if f = 2

−
∂g(−η)
∂(−η) × `

1D
j (−ξ) if f = 3

−
∂g(ξ)
∂ξ
× `1D

j (−η) if f = 4,

(7.25)

where `1D
j is the 1D, degree-p Lagrange polynomial that is unity at flux point j on the face and

zero at all other flux points. The effect of `1D
j is that each correction field ψ f j is zero along a set of

p lines that run either vertically or horizontally across the reference element.

7.2.3 Gradient Approximations

In addition to the discontinuous polynomial approximation Uh, we build a set of gradient ap-

proximations inside each element Ωm using the solution basis φm. One of these is the auxiliary

polynomial vector σm, previously described in Eq. (7.14). We also consider the “broken gradient”
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polynomial, denoted vm in each Ωm:

vm(x) =

K∑
k=1

v̂k
mφ

k
m(x) where v̂k

m = ∇hUh
m|x=xk

m
. (7.26)

With the broken gradient polynomial defined, the coefficients σ̂k
m for each solution point xk

m in each

element Ωm in the auxiliary polynomial expansion are defined as:

σ̂k
m = v̂k

m +

NV∑
f =1

K∑
j=1

(∆U) f j
1
|J|ξk

ψ f j(ξk), (7.27)

which is similar to the form (Eq. 7.15) used to approximate the flux divergence from the flux

distribution. The term (∆U)| f j at a point xF
f j

= x(ξF
f j

) on ∂Ωm is a vector quantity defined as

follows:

(∆U) f j =

(Ũ − Uh
m)(nξy,η − nηy,ξ)

(Ũ − Uh
m)(nηx,ξ − nξx,η)

 | f j, (7.28)

where Ũ is the “common interface solution,” defined in Section 7.2.3.1. Through the correction

field and the jumps ∆U along ∂Ωm, the auxiliary polynomial (Eq. 7.14) draws in information from

neighboring elements (via the coefficient definition in Eq. 7.27) and is expected to yield a more

accurate gradient approximation than v.

Similar to the DG method, careless usage of the auxiliary polynomial leads to a non-compact

stencil, which is undesirable. As with DG, we introduce the ”semi-connected” gradient polyno-

mial. Each element posesses NV semi-connected gradient polynomials (SMGP), and each SMGP

is associated with a particular face of a particular element. The SMGP for a given face f of a given

element Ωm, denoted γmf (x), is crafted as follows:

γmf (x) =

K∑
k=1

γ̂k
m fφ

k
m(x) where γ̂k

m f = v̂k
m +

K∑
j=1

(∆U) f j
χ

|J|ξk
ψ f j(ξk). (7.29)

Note that the SMGP for face f uses information only from face f , not any of the other faces of

Ωm. The scalar quantity χ is a stabilization parameter that is frequently set to χ = 1 but can be
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taken as χ = 2 instead to improve scheme stability; it is the same jump parameter that appeared in

Chapter 3 when describing the compact diffusion schemes.

7.2.3.1 Common Interface Solution

Both the auxiliary polynomial and the SMGPs of each element depend on a quantity Ũ, known as

the “common interface solution.” For a given flux point on an interface I = ∂ΩA ∩ ∂ΩB, Ũ is an

estimate for the true solution along the interface; the estimate makes use of Uh
A and Uh

B. In this

work, three different strategies have been applied to calculate the common interface solution.

• The simple option is to take Ũ |xf = 1
2 (Uh

A + Uh
B)|xf , where xf is the location of the flux point.

This strategy was originally referred to by Huynh as the ”I-centered” approach (see Schemes

1 through 10 in his original work [47]), and we maintain that naming convention here.

• The second option is a special approach described by Huynh and referred to as the ”I-

continuous” scheme [47]. In this approach, the common interface solution is set in such

a manner that the SMGPs associated with the face (one for each element) have the same

interface-normal derivative component.

• The third option is to use the recovered solution at the interface, thoroughly described in

Chapter 2. This approach is called the “recovery-assisted” FR method, abbreviated REAFR,

and it is new.

The FR equivalent of the oldest Recovery-based DG approach, referred to as RDG-2x [68], has

previously been studied in the FR framework [47] and is not the same as the REAFR scheme. In

the RDG-2x approach, as with the REAFR scheme, the recovered solution is used to calculate the

interface solution Ũ. The difference between the two schemes is in the calculation of the common

interface gradient, described in Section 7.2.3.2.

Once the common interface solution Ũ has been calculated from available data along all in-

terfaces (using one of the approaches just described), Eq. (7.27) is solved to yield the auxiliary
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polynomial, which allows calculation of the diffusive portion of the discontinuous flux polyno-

mial.

7.2.3.2 Common Interface Gradient

Calculation of the viscous portion of the common flux Q̃ at each interface flux point requires a

common gradient σ̃ to be calculated; once the common gradient is known, it is applied to calculate

the common viscous flux component G̃.

This study includes two approaches available for calculating σ̃. The first option is to take the

average of the two SMGPs associated with the face: σ̃|xf = 1
2 (γA + γB)|xf , where xf is the location

of the flux point and γA and γB are the face-associated SMGPs of ΩA and ΩB, respectively. This

averaged gradient is used for the I-centered scheme, the I-continuous scheme, and the REAFR

scheme. Thus, the REAFR scheme is actually the FR equivalent of the HAG scheme introduced in

Chapter 3. Similary, the I-centered scheme is the FR equivalent of the BR2 scheme. However, to

our knowledge, there is no DG equivalent to Huynh’s I-continuous scheme, and the formation of

such a DG scheme represents an exciting avenue for future research.

A second option for calculating σ̃ is to use the gradient of the interface’s recovered solution, as

described by Lo & van Leer [67, 68] and applied previously by Huynh [47]. This scheme, known

as RDG-2x, provides exceptional performance in the 1D case, but the analysis of Section 7.3 shows

that it becomes unstable for 2D problems. Note that the interface gradient is what separates the

new REAFR scheme and the RDG-2x scheme; where the REAFR scheme takes the average of the

SMGPs as the interface gradient, the RDG-2x scheme differentiates the recovered polynomial.

7.2.3.3 Calculation and Usage of Gradients in Update Scheme

The update procedure given in Table 7.1 assumes the gradient approximations σ̃I and σm for each

interface I and element Ωm to be known. We now fill in some remaining details.

Step 1 in Table 7.1 requires σm to be known for each Ωm. Thus, we perform the following two

substeps before executing Step 1 in the main update scheme (Table 7.1):
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(a): Calculate Ũ for each flux point on each interface.

(b): Use Eq. (7.27) to evaluate auxiliary polynomial coefficients σ̂k
m for all solution points of each

element.

In Table 7.1, Step 3 requires a common gradient at each interface flux point to facilitate calculation

of G̃. To address this need, we perform the following substeps between Step 2 and Step 3:

(a): Calculate γA and γB at each interface flux point, where ΩA and ΩB are the intersecting

elements.

(b): Given γA and γB, calculate the common interface gradient.

Once the common interface gradient is known, one may proceed with Step 3 in Table 7.1.

7.2.4 Implementation Summary

With the calculation and usage of gradient terms now defined, the FR scheme for advection-

diffusion problems on 2D elements (either triangles or quadrilaterals) is nearly complete. To

complete the description, we would also need to discuss the interface advective flux, F̃ . Typi-

cally, this flux is taken as the upwind flux based on the solution states at the interface flux point,

which can become a nontrivial matter depending on the problem setup. However, the focus of this

work is scalar diffusive phenomena, where F = 0, so no more discussion of advective fluxes is

necessary. With the desription of the FR method complete, we move on to Fourier analysis.
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7.3 Fourier Analysis

Fourier analysis was performed on a vast collection of possible FR configurations to determine

accuracy and stability properties. The Fourier analysis technique employed is very similar to the

approach applied on simplex elements in Section 3.8 of Chapter 3. The difference between that

section and this section is that where the analysis of CGR schemes involved two elements per

mesh block, the analysis here employs four elements per mesh block. We begin by describing the

geometry setup. Next, the procedure for performing analysis is summarized. Then, our findings

are reported.

7.3.1 Mesh Setup

This analysis features two mesh setups. The first is a Cartesian mesh and the second is a nonuni-

form mesh of triangular (simplex) elements, obtained by perturbing a uniform simplex mesh. Re-

gardless of the mesh type (Cartesian or simplex), the mesh consists of 20 elements, distributed in 5

blocks with 4 elements in each block. The arrangement of the five blocks (designated BL1, BL2,

etc.) is illustrated in Figure 7.5. The middle block (BL5) of elements has its lower-left corner at

(x, y) = (2, 2), and each of the remaining four blocks (BL1 through BL4) shares a side with the

center block.

For a given mesh configuration, each of the five blocks in the mesh use the same arrangement

of elements. These element arrangements are shown in Figure 7.6 and Figure 7.3. In the Cartesian

case, each element is a square of side length h = ∆x
2 . In the simplex case, the single intersection

point of the four elements sharing the block is perturbed by (δx, δy) = ( h
2 ,−

h
5 ) from the block

centroid, but each of the five blocks remains square.

Each element is assigned a two-digit index. The first digit corresponds to the block (BL1 to

BL5) that the element resides in. The second index corresponds to the element’s designation in the

repeating 4-element pattern. For example, element 23 (denoted Ω23) is the 3rd element in BL2. The

elements are numbered counterclockwise in each block. This element indexing must be accounted
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BL1

BL2

-

6

x

y

BL5

BL4

BL3 ∆y = ∆x = 2

Figure 7.5: The five blocks in the Fourier analysis mesh; each block is a square of side length 2,
and each block is partitioned into four elements as shown in Figure 7.6.
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(a) Cartesian Grid.
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(b) Perturbed Triangles.

Figure 7.6: The grids used for Fourier analysis. The integer inside each element is the element
index; the first digit corresponds to the mesh block and the second digit to the element’s designation
within that block.

for in the formation of the update matrix for Fourier analysis.

7.3.2 Problem Setup

The governing differential equation is taken to be the 2D shear diffusion equation (Eq. 2.7) with

unit diffusivity, where the parameter θ is set to zero for Laplacian diffusion or θ = 1
2 for the shear
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diffusion case. Let the initial condition be

UIC(x, y) = exp[i(ωxx + ωyy)], (7.30)

where ωx and ωy are the solution wavenumbers in the x and y directions, respectively, and i2 = −1.

The corresponding exact solution, assuming spatial periodicity, is

U(x, y, t) = exp[−t(ω2
x + 2θωxωy + ω2

y)]UIC(x, y). (7.31)

For the purpose of analysis, the wavenumber pair is characterized by wavenumber angle α and

magnitude |ω|, where ωx = |ω| cos(α) and ωy = |ω| sin(α).

7.3.3 Parameter Space

Fourier analysis has been performed over a broad set of FR discretizations. There are four interface

quantity (Ũ, σ̃) approaches, each of which can make use of any correction field for the flux diver-

gence and either the same or different correction field for the γ calculation. These schemes are

the I-centered approach, the I-continuous approach, the recovery-assisted approach (abbreviated

REAFR), and the RDG-2x approach, all of which are described in Section 7.2.3. For the first three

approaches, regardless of how Ũ is calculated, the common interface gradient is σ̃ = Avg(γL,γR).

The RDG-2x scheme instead uses the gradient of the recovered solution for σ̃; consequently, the

behavior of the RDG-2x scheme is unaffected by the χ parameter and the choice of correction field

for the γ correction.

In the Cartesian case, for each (Ũ, σ̃) approach, twelve possible correction field combinations

are inspected: three choices for the flux divergence versus four choices for the gradient correction.

The correction field is characterized by the 1D correction polynomial that is differentiated (see

Section 7.2.2.4) to form the correction field. For the flux divergence, the three choices are gDG,

gS D, and gHu. For the γ calculation, the four choices are gLe, gDG, gS D, and gHu.

In the perturbed simplex case, the correction field (for either flux divergence or γ calculation)
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is defined by a scalar parameter c as mentioned in Section 7.2.2.4. In the p = 1 case, the values

are {c1, c2, c3} = {0, 1/3, 4/3}. In the p = 2 case, the values are {c1, c2, c3} = {0, 4/135, 1/15}.

In the p = 3 case, the values are {c1, c2, c3} = {0, 1/1050, 8/4725}. These c values are selected

as extensions of the gDG, gS D, and gHu polynomials to the simplex element and are taken from the

description of the ESFR method in 1D by Vincent et al. [107]. The correction field for the flux

divergence is not required to be the same correction field as that of the γ calculation, so there are

nine possible combinations for the pair of correction fields.

In addition to the interface solution strategy and the choice of correction fields, another param-

eter that affects the FR method is the choice of χ in Eq. (7.29). Analysis has been performed with

both χ = 1 and χ = 2 based on our experience with the DG method.

The solution order p, interface solution strategy, correction field pair, and χ parameter define an

FR discretization; however, a single discretization’s properties can depend on the initial condition

and the form of the governing differential equation. With regard to the governing differential

equation (Eq. 2.7), analysis has been performed for both the θ = 0 and θ = 1
2 cases; the first case is

the scalar Laplacian case and the second is the shear diffusion case. The initial condition (Eq. 7.30)

is characterized by the wavenumber magnitude |ω| and the wavenumber angle α = arctan(ωy/ωx),

with ωx = |ω| cos(α) and ωy = |ω| sin(α). When performing Fourier analysis, the wavenumber

magnitude |ω| is discretized, and a broad range of |ω| values is swept over to examine the scheme’s

properties. Thus, |ω| itself is not considered an element of the parameter space, but the wavenumber

angle is. This analysis is thus far more thorough than the technique presented in Chapter 3.

The seven-dimensional parameter space consists of the solution order p, the interface solution

strategy, the correction field used for the flux divergence, the correction field used for the γ calcula-

tion, the χ parameter, the shear factor θ, and the wavenumber angle α. The resulting update matrix

A (whose construction is described in Section 7.3.4) is a function of |ω| and is set once the listed

parameters have been specified. The complete list of parameter choices explored in the analysis

is given in Table 7.2 and Table 7.3. The set of α values merits explanation: in addition to testing

for stability over an evenly spaced partition of α ∈ [0, π], we extract the order of accuracy for the
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α = π
4 and α = π

7 cases. The sweep over a range of α values is necessary to ensure stability for a

wide range of initial conditions, while the order of accuracy analysis is conducted at two separate

wavenumber angles to explore whether or not a scheme’s order of accuracy can be affected by α.

7.3.4 Analysis Technique

Given a set of scheme and problem parameters for the FR method, the divergence of the flux at

each of the solution points in the four BL5 elements is expressed in terms of all of the DOFs in the

surrounding stencil. For example, the update scheme for element Ω51 in the Cartesian case takes

the form:
d
dt

Û51 =D51
14Û14 +D51

52Û52 +D51
54Û54 +D51

42Û42, (7.32)

Table 7.2: Parameter Space for Fourier Analysis, Cartesian Mesh.

Parameter Tested Values
p: {1, 2, 3}
Interface Solution Strategy {I-centered , I-continuous , REAFR , RDG-2x}
Correction Field: ∇ ·Q {gDG , gS D , gHu }

Correction Field: γ {gLe, gDG , gS D , gHu }

χ {1 , 2}
θ {0 , 1

2 }

α {0, π
10 ,

2π
10 ,

3π
10 , ..., π} ∪ {

π
4 ,

π
7 }

Table 7.3: Parameter Space for Fourier Analysis, Simplex Mesh.

Parameter Tested Values
p: {1, 2, 3}
Interface Solution Strategy {I-centered , I-continuous , REAFR , RDG-2x}
Correction Field: ∇ ·Q {c1 , c2 , c3 }

Correction Field: γ {c1 , c2 , c3 }

χ {1 , 2}
θ {0 , 1

2 }

α {0, π
10 ,

2π
10 ,

3π
10 , ..., π} ∪ {

π
4 ,

π
7 }
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whereDA
B

is the matrix containing the contribution made by the DOFs of ΩB to the flux divergence

calculation of ΩA. This procedure is time-consuming but straightforward; a symbolic math toolbox

is used to form the update matrix for this study, but a typical programming language can also be

used. For a given block of elements, define the “DOF block” as follows:

ˆ̂UBLb =



Ûb1

Ûb2

Ûb3

Ûb4


. (7.33)

Based on the assumed form of the initial condition (Eq. 7.30), each DOF block is rewritten in terms

of the DOF block of BL5:

ˆ̂UBL1 = exp[−iωx∆x] ˆ̂UBL5 , ˆ̂UBL3 = exp[iωx∆x] ˆ̂UBL5 ,

ˆ̂UBL2 = exp[−iωy∆y] ˆ̂UBL5 , ˆ̂UBL4 = exp[iωy∆y] ˆ̂UBL5 .

(7.34)

Let DBLα be the matrix containing the contributions of all DOFs in block BLα to the flux diver-

gence calculations at all solution points in block BL5. For example, in the Cartesian case, since

Ω51 borders Ω14 and Ω52 borders Ω13, the matrix DBL1 is a 4K × 4K block matrix with nonzero

entries copied in fromD51
14

andD52
13

:

Cartesian: DBL1 =



0K×K 0K×K 0K×K D51
14

0K×K 0K×K D52
13

0K×K

0K×K 0K×K 0K×K 0K×K

0K×K 0K×K 0K×K 0K×K


. (7.35)
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In contrast, for the perturbed simplex mesh, the only interface linking blocks BL1 and BL5 is

∂Ω52 ∩ ∂Ω14. The corresponding block update matrix is

Simplex: DBL1 =



0K×K 0K×K 0K×K 0K×K

0K×K 0K×K 0K×K D52
14

0K×K 0K×K 0K×K 0K×K

0K×K 0K×K 0K×K 0K×K


. (7.36)

Making use Eq. (7.34) and the block update matrices, the semi-discrete update scheme is writ-

ten:

d
dt

ˆ̂UBL5 =

(exp[−iωx∆x]DBL1 + exp[−iωy∆y]DBL2 + exp[iωx∆x]DBL3 + exp[iωy∆y]DBL4 +DBL5) ˆ̂UBL5.

(7.37)

The FR update scheme is consequently reduced to a system of 4K ordinary differential equations:

d
dt

ˆ̂UBL5 =A
ˆ̂UBL5, (7.38)

where

A =A(ωx, ωy) =

exp[−iωx∆x]DBL1 + exp[−iωy∆y]DBL2 + exp[iωx∆x]DBL3 + exp[iωy∆y]DBL4 +DBL5.

(7.39)

Similar to our analysis of DG schemes, Huynh’s [47] approach is applied to the update matrixA to

inspect the stability, spectral radius, and order of accuracy of the update scheme for the 4K DOFs

contained in block BL5. In addition to depending on the wavenumber pair (ωx, ωy), the update

matrix depends on the particular configuration of the FR method and the shear parameter θ in the

governing differential equation (Eq. 2.7). Note that the technique of combining simplex elements

for Fourier analysis has previously been applied by Khieu et al. [57] and Castonguay et al. [20];
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however, to our knowledge, this study is the first to use the four-element block pattern to apply

Fourier analysis to a nonuniform mesh.

With regard to implementation, for a specific solution order p, interface solution strategy, χ

value, θ value, and correction field pair, the update matrix is assembled as a symbolic function

of α and |ω|. This assembly has been performed in the Mathematica software for this study, but

could be performed in another symbolic math toolbox if desired. The wavenumber magnitude |ω|

is discretized over the range |ω| ∈ [0, 2π(p + 1)] with 50 evenly spaced points. Then, over each

discrete (α, |ω|) pair, the eigenvalues of A are calculated. The maximum eigenvalue magnitude

encountered for any (α, |ω|) pair is reported as the spectral radius. Additionally, we check for

positivity of the eigenvalues; if the real component of any eigenvalue for any (α, |ω|) is greater than

zero, then the particular FR configuration is designated unstable.

To extract the order of accuracy, we follow the strategy of Huynh [46, 47]; for a particular α

value, the eigenvalues A are calculated at a set of |ω| values. At each |ω|, the scheme error is

calculated as

E(λ) = |Re(λcon) − Re(λex)|, (7.40)

where λex = −(ω2
x + 2θωxωy + ω2

y) corresponds to the exact solution of the governing differential

equation (Eq. 7.31) and λcon is the eigenvalue ofA that is closest to the exact eigenvalue. The rate

at which E(λ) converges to zero as |ω| approaches zero is m + 2 where m is the order of accuracy.

This relationship is used to identify the order of accuracy at a given α.

7.3.5 Findings

For a given FR configuration, the most important properties are the order of accuracy and whether

or not the scheme is stable. The spectral radius (defined here as the maximum eigenvalue magni-

tude in the matrix A over the full sweep of α and |ω|) is inversely proportional to the maximum

allowable timestep size when explicit time integration is applied and is consequently a quantity of

interest, but is less important than stability and order of accuracy. All three properties are reported

in this section. The reporting of results is broken into two segments: one segment for reporting
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and discussion of the Cartesian mesh results, then another for the perturbed simplex mesh.

Analysis has demonstrated that the RDG-2x technique is unstable when θ = 1
2 and p is greater

than 2. Thus, while this method performs very well for scalar Laplacian diffusion, we have elected

not to include it in this section; analysis results on the Cartesian mesh can be found in Appendix G.

Future studies may reveal a way to stabilize this promising scheme in the shear diffusion case.

7.3.5.1 Cartesian Mesh

The spectral radii (over a range of α) and orders of accuracy (for α = π
7 ) of the FR configurations

on the Cartesian mesh are reported in Table 7.4, Table 7.5, and Table 7.6 for p = 1, p = 2, and

p = 3, respectively. The chosen analysis technique required a great deal of compute time on our

workstation, and the compute time grows significantly with p, so analysis was not performed for

p > 3. Unstable schemes are marked with an X. The I-continuous scheme is slightly less robust

than the other two, offering a smaller (but still ample) count of stable sub-configurations. As for

the choice of correction functions, stability is guaranteed when using the gLe polynomial for the γ

correction field. The choice of the correction field for the flux divergence has little influence over

stability, which is unsurprising because for the advection case [46], all of these correction field

choices yield stable discretizations.

The reported spectral radii apply to the case where each element is of unit side length and would

need to be scaled according to ∆x2 to be applied to a mesh of finer or coarser element width. With

regard to spectral radius, the I-centered scheme achieves similar, but sometimes slightly larger,

spectral radii than the I-continuous and REAFR schemes. The correction fields have a substantial

effect on spectral radius; for both the flux divergence and γ corrections, the spectral radius is high-

est when using the gDG or gLe polynomial and smallest when using the gHu polynomial; this trend

is in agreement with previous observations made by Huynh [46, 47]. The spectral radius grows as

both χ and θ are increased; from a scheme configuration perspective, raising χ is usually disad-

vantageous because it raises the spectral radius, but it can have the beneficial effect of stabilizing a

scheme that is unstable when χ = 1 and θ = 1
2 .
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When stable, all schemes are at least order 2p accurate. Some schemes achieve order 2p + 2

accuracy; in particular, the I-continuous and REAFR schemes achieve order 2p + 2 accuracy when

θ = 0, the correction polynomial for the flux is gDG, and the correction polynomial for the γ

calculation is gLe. For θ = 1
2 , the REAFR approach has the most sub-configurations that achieve

order 2p + 2 accuracy. Note the peculiar effect of the I-centered scheme with gDG for the flux

divergence correction and gLe for the γ correction; the scheme is 2nd order accurate when p = 1,

but the order of accuracy jumps to 6 when p = 2. Huynh [47] reports similar behavior when

analyzing this scheme in the 1D diffusion case, where it is labelled “Scheme 1: I-centered-gLe/SP-

gDG.”

The orders of accuracy of the various configurations have also been calculated for the α = π
4

case and are reported in Appendix G. Typically, the order of accuracy observed in the α = π
7 case

is the same order of accuracy observed in the α = π
4 case. A notable exception is the configuration

using the I-centered approach with p = 1, θ = 1
2 , and gS D for the flux divergence correction; this

scheme is 2nd order accurate for the α = π
7 case but 4th order accurate for the α = π

4 case.

7.3.5.2 Simplex Mesh

The spectral radii and orders of accuracy of the FR configurations on the perturbed simplex mesh

are reported in Table 7.7, Table 7.8, and Table 7.9 for p = 1, p = 2, and p = 3, respectively.

The REAFR and I-centered approaches are more robust than the I-continuous approach, showing a

larger quantity of stable sub-configurations. However, even with the I-continuous approach being

the least robust, it offers plenty of stable schemes when using c = 0 for the γ correction. Regardless

of the interface solution strategy, the choice of c = 0 for the interface gradient (γ) correction is

more likely to yield stable schemes than other choices for the correction field. With regard to the

correction for the flux divergence (∇ · Q), the choice of correction field has little influence over

whether or not a scheme is stable. The (θ, χ) pair has an effect on stability; a scheme is less likely

to be stable in the θ = 1
2 case than in the θ = 0 case. In contrast, increasing χ from 1 to 2 improves

the likelihood of a scheme being stable.
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As with the Cartesian analysis, the spectral radius grows with both χ and θ. The choice of

the c parameter in the correction fields has a significant effect on the spectral radius; with all

other scheme parameters being held constant, an increase in the c parameter (for either the flux

divergence correction or the interface gradient correction) tends to decrease the spectral radius.

This occurrence is consistent with previous observations of the FR method [113]. The interface

Table 7.4: Analysis on Cartesian Mesh, p = 1. Each row corresponds to four possible choices
for the γ correction field. Unstable schemes have an X listed for the spectral radius and order or
accuracy.

p Interface Sol.
Strategy

Correction
Field, ∇·Q

Correction Field, γ χ θ Order of Accuracy, α = π
7 Spectral Radius

1 I-centered gDG {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {48, 27, 24, 24}
1 I-centered gDG {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, X, X} {51, 37, X, X}
1 I-centered gDG {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {120, 72, 48, 27}
1 I-centered gDG {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2} {120, 72, 51, 37}
1 I-centered gS D {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {32, 20, 16, 17}
1 I-centered gS D {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X} {36, 26, 23, X}
1 I-centered gS D {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {80, 48, 32, 20}
1 I-centered gS D {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2} {81, 49, 36, 26}
1 I-centered gHu {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {24, 16, 12, 9}
1 I-centered gHu {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X} {25, 18, 15, X}
1 I-centered gHu {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {48, 32, 24, 16}
1 I-centered gHu {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2} {49, 33, 25, 18}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 1 0 {4, 2, 2, 2} {48, 24, 13, 8}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 2, X, X} {49, 28, X, X}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 2 0 {4, 2, 2, 2} {120, 73, 48, 25}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 2, 2, X} {120, 73, 49, X}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {32, 17, 12, 8}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X} {33, 21, 18, X}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {81, 48, 32, 16}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, X} {81, 48, 33, X}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {25, 16, 12, 8}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X} {25, 18, 14, X}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {48, 32, 24, 16}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, X} {49, 33, 25, X}
1 REAFR gDG {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 2} {48, 24, 17, 16}
1 REAFR gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X} {49, 31, X, X}
1 REAFR gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {120, 72, 48, 24}
1 REAFR gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {120, 72, 49, 31}
1 REAFR gS D {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {32, 17, 13, 11}
1 REAFR gS D {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X} {33, 23, 20, X}
1 REAFR gS D {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {80, 48, 32, 17}
1 REAFR gS D {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2} {81, 48, 33, 23}
1 REAFR gHu {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {24, 16, 12, 8}
1 REAFR gHu {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X} {25, 18, 14, X}
1 REAFR gHu {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {48, 32, 25, 16}
1 REAFR gHu {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2} {49, 33, 25, 18}
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solution strategy also has an effect on spectral radius. Overall, the REAFR scheme has the smallest

spectral radii and the I-centered scheme has the largest spectral radii; the spectral radii of the I-

continuous scheme are close to those of the REAFR scheme.

On the perturbed simplex mesh, all stable schemes are order 2p accurate. Overall, the error

readings (E(λ) in Eq. 7.40) from the I-centered scheme are larger than the error readings of the

Table 7.5: Analysis on Cartesian Mesh, p = 2. Each row corresponds to four possible choices for
the γ correction field. Unstable schemes denoted with an X.

p Interface Sol.
Strategy

Correction
Field, ∇·Q

Correction Field, γ χ θ Order of Accuracy, α = π
7 Spectral Radius

2 I-centered gDG {gLe, gDG, gS D, gHu} 1 0 {6, 4, 4, 4} {150, 121, 121, 121}
2 I-centered gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X} {186, 165, X, X}
2 I-centered gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 6} {437, 293, 197, 150}
2 I-centered gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {437, 293, 213, 186}
2 I-centered gS D {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {121, 84, 73, 72}
2 I-centered gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X} {140, 115, X, X}
2 I-centered gS D {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {295, 199, 144, 121}
2 I-centered gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {295, 206, 159, 140}
2 I-centered gHu {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {121, 84, 61, 52}
2 I-centered gHu {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, X} {128, 97, 79, X}
2 I-centered gHu {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {264, 192, 144, 121}
2 I-centered gHu {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {267, 196, 150, 128}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 1 0 {6, 4, 4, 4} {149, 85, 61, 49}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, X, X, X} {160, X, X, X}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {437, 293, 197, 149}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, X, X} {437, 293, X, X}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {120, 85, 61, 49}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X} {134, 101, X, X}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {295, 199, 144, 120}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, X} {295, 200, 154, X}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {121, 84, 61, 49}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X} {126, 92, X, X}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {264, 193, 145, 120}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, X} {267, 196, 149, X}
2 REAFR gDG {gLe, gDG, gS D, gHu} 1 0 {6, 4, 4, 4} {149, 84, 60, 53}
2 REAFR gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X} {157, 131, X, X}
2 REAFR gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 6} {437, 293, 197, 149}
2 REAFR gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {437, 293, 197, 157}
2 REAFR gS D {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {121, 85, 61, 49}
2 REAFR gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X} {133, 103, X, X}
2 REAFR gS D {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {295, 199, 145, 120}
2 REAFR gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {295, 200, 155, 133}
2 REAFR gHu {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {121, 85, 61, 49}
2 REAFR gHu {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, X} {126, 93, 72, X}
2 REAFR gHu {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {264, 192, 145, 120}
2 REAFR gHu {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {267, 196, 149, 126}
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other two schemes, but since the order of accuracy is the same, this difference in the magnitude of

error readings is not significant.

Table 7.6: Analysis on Cartesian Mesh, p = 3. Each row corresponds to four possible choices for
the γ correction field. Unstable schemes denoted with an X.

p Interface Sol.
Strategy

Correction
Field, ∇·Q

Correction Field, γ χ θ Order of Accuracy, α = π
7 Spectral Radius

3 I-centered gDG {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {374, 341, 341, 341}
3 I-centered gDG {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X} {511, 470, X, X}
3 I-centered gDG {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {1159, 841, 602, 523}
3 I-centered gDG {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6} {1160, 841, 627, 575}
3 I-centered gS D {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {341, 245, 197, 197}
3 I-centered gS D {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X} {391, 322, X, X}
3 I-centered gS D {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {841, 629, 485, 437}
3 I-centered gS D {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6} {843, 650, 515, 472}
3 I-centered gHu {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {341, 245, 178, 166}
3 I-centered gHu {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X} {366, 285, X, X}
3 I-centered gHu {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {821, 629, 485, 437}
3 I-centered gHu {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6} {829, 640, 500, 455}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 1 0 {8, 6, 6, 6} {367, 245, 173, 149}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 1 1

2 {8, X, X, X} {440, X, X, X}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 2 0 {8, 6, 6, 6} {1159, 841, 602, 523}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 2 1

2 {8, 6, X, X} {1161, 843, X, X}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {341, 245, 173, 149}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X} {375, 289, X, X}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {841, 629, 485, 437}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, X, X} {843, 646, X, X}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {341, 245, 173, 149}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X} {361, 271, X, X}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {821, 629, 485, 437}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, X, X} {828, 639, X, X}
3 REAFR gDG {gLe, gDG, gS D, gHu} 1 0 {8, 8, 8, 6} {367, 245, 173, 149}
3 REAFR gDG {gLe, gDG, gS D, gHu} 1 1

2 {8, X, X, X} {431, X, X, X}
3 REAFR gDG {gLe, gDG, gS D, gHu} 2 0 {8, 8, 8, 8} {1159, 841, 602, 523}
3 REAFR gDG {gLe, gDG, gS D, gHu} 2 1

2 {8, 8, 8, 8} {1161, 843, 606, 527}
3 REAFR gS D {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {341, 245, 173, 149}
3 REAFR gS D {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X} {374, 290, X, X}
3 REAFR gS D {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {841, 629, 485, 437}
3 REAFR gS D {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6} {843, 646, 508, 462}
3 REAFR gHu {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {341, 245, 173, 149}
3 REAFR gHu {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X} {360, 272, X, X}
3 REAFR gHu {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {821, 629, 485, 437}
3 REAFR gHu {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6} {828, 639, 498, 452}
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7.4 Chapter Conclusion

A new FR scheme for solving diffusion problems, namely the recovery-assisted approach (abbre-

viated REAFR), was presented. This scheme is built within the typical FR approach for diffusion

problems but makes use of the Recovery concept to achieve more accurate estimates of the solu-

Table 7.7: Analysis on Perturbed Simplex Mesh, p = 1. Each row corresponds to three possible
choices for the γ correction field. Unstable schemes have an X listed for the spectral radius and
order or accuracy.

p Interface Sol.
Strategy

Correction
Field, ∇·Q

Correction Field, γ χ θ Order of Accuracy, α = π
7 Spectral Radius

1 I-centered c = 0 {c = 0, c = c2, c = c3} 1 0 {2,X,X} {64,X,X}
1 I-centered c = 0 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {64,X,X}
1 I-centered c = 0 {c = 0, c = c2, c = c3} 2 0 {2, 2, 2} {132, 79, 52}
1 I-centered c = 0 {c = 0, c = c2, c = c3} 2 1

2 {2, 2, 2} {131, 79, 52}
1 I-centered c = c2 {c = 0, c = c2, c = c3} 1 0 {2,X,X} {43,X,X}
1 I-centered c = c2 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {43,X,X}
1 I-centered c = c2 {c = 0, c = c2, c = c3} 2 0 {2, 2, 2} {88, 55, 38}
1 I-centered c = c2 {c = 0, c = c2, c = c3} 2 1

2 {2, 2, 2} {88, 55, 38}
1 I-centered c = c3 {c = 0, c = c2, c = c3} 1 0 {2,X,X} {38,X,X}
1 I-centered c = c3 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {37,X,X}
1 I-centered c = c3 {c = 0, c = c2, c = c3} 2 0 {2, 2, 2} {75, 48, 34}
1 I-centered c = c3 {c = 0, c = c2, c = c3} 2 1

2 {2, 2, 2} {75, 48, 34}
1 I-continuous c = 0 {c = 0, c = c2, c = c3} 1 0 {2,X,X} {45,X,X}
1 I-continuous c = 0 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {49,X,X}
1 I-continuous c = 0 {c = 0, c = c2, c = c3} 2 0 {2,X,X} {111,X,X}
1 I-continuous c = 0 {c = 0, c = c2, c = c3} 2 1

2 {2,X,X} {112,X,X}
1 I-continuous c = c2 {c = 0, c = c2, c = c3} 1 0 {2,X,X} {34,X,X}
1 I-continuous c = c2 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {36,X,X}
1 I-continuous c = c2 {c = 0, c = c2, c = c3} 2 0 {2,X,X} {72,X,X}
1 I-continuous c = c2 {c = 0, c = c2, c = c3} 2 1

2 {2,X,X} {73,X,X}
1 I-continuous c = c3 {c = 0, c = c2, c = c3} 1 0 {2,X,X} {31,X,X}
1 I-continuous c = c3 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {32,X,X}
1 I-continuous c = c3 {c = 0, c = c2, c = c3} 2 0 {2,X,X} {62,X,X}
1 I-continuous c = c3 {c = 0, c = c2, c = c3} 2 1

2 {2,X,X} {62,X,X}
1 REAFR c = 0 {c = 0, c = c2, c = c3} 1 0 {2, 2,X} {55, 35,X}
1 REAFR c = 0 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {55,X,X}
1 REAFR c = 0 {c = 0, c = c2, c = c3} 2 0 {2, 2, 2} {109, 66, 44}
1 REAFR c = 0 {c = 0, c = c2, c = c3} 2 1

2 {2, 2, 2} {110, 66, 44}
1 REAFR c = c2 {c = 0, c = c2, c = c3} 1 0 {2, 2,X} {34, 22,X}
1 REAFR c = c2 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {35,X,X}
1 REAFR c = c2 {c = 0, c = c2, c = c3} 2 0 {2, 2, 2} {67, 42, 29}
1 REAFR c = c2 {c = 0, c = c2, c = c3} 2 1

2 {2, 2, 2} {68, 44, 31}
1 REAFR c = c3 {c = 0, c = c2, c = c3} 1 0 {2, 2,X} {29, 19,X}
1 REAFR c = c3 {c = 0, c = c2, c = c3} 1 1

2 {2,X,X} {30,X,X}
1 REAFR c = c3 {c = 0, c = c2, c = c3} 2 0 {2, 2, 2} {57, 37, 26}
1 REAFR c = c3 {c = 0, c = c2, c = c3} 2 1

2 {2, 2, 2} {58, 38, 27}
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tion U along element-element interfaces. Fourier analysis demonstrated that when paired with the

proper correction field, the new scheme provides superior performance compared to the commonly

applied I-centered scheme. When it is stable, the I-continuous approach of Huynh (Schemes 11,

12, and 13 in [47]) also achieves better performance than the I-centered scheme.

Fourier analysis was performed not only on a Cartesian mesh, but also a perturbed 2D simplex

Table 7.8: Analysis on Perturbed Simplex Mesh, p = 2. Each row corresponds to three possible
choices for the γ correction field. Unstable schemes have an X listed for the spectral radius and
order or accuracy.

p Interface Sol.
Strategy

Correction
Field, ∇·Q

Correction Field, γ χ θ Order of Accuracy, α = π
7 Spectral Radius

2 I-centered c = 0 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {202,X,X}
2 I-centered c = 0 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {201,X,X}
2 I-centered c = 0 {c = 0, c = c2, c = c3} 2 0 {4, 4, 4} {451, 260, 221}
2 I-centered c = 0 {c = 0, c = c2, c = c3} 2 1

2 {4, 4, 4} {449, 259, 221}
2 I-centered c = c2 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {148,X,X}
2 I-centered c = c2 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {147,X,X}
2 I-centered c = c2 {c = 0, c = c2, c = c3} 2 0 {4, 4, 4} {321, 195, 170}
2 I-centered c = c2 {c = 0, c = c2, c = c3} 2 1

2 {4, 4, 4} {320, 195, 170}
2 I-centered c = c3 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {142,X,X}
2 I-centered c = c3 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {141,X,X}
2 I-centered c = c3 {c = 0, c = c2, c = c3} 2 0 {4, 4, 4} {303, 186, 163}
2 I-centered c = c3 {c = 0, c = c2, c = c3} 2 1

2 {4, 4, 4} {301, 186, 162}
2 I-continuous c = 0 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {160,X,X}
2 I-continuous c = 0 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {172,X,X}
2 I-continuous c = 0 {c = 0, c = c2, c = c3} 2 0 {4,X,X} {395,X,X}
2 I-continuous c = 0 {c = 0, c = c2, c = c3} 2 1

2 {4,X,X} {399,X,X}
2 I-continuous c = c2 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {126,X,X}
2 I-continuous c = c2 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {130,X,X}
2 I-continuous c = c2 {c = 0, c = c2, c = c3} 2 0 {4,X,X} {277,X,X}
2 I-continuous c = c2 {c = 0, c = c2, c = c3} 2 1

2 {4,X,X} {280,X,X}
2 I-continuous c = c3 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {121,X,X}
2 I-continuous c = c3 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {124,X,X}
2 I-continuous c = c3 {c = 0, c = c2, c = c3} 2 0 {4,X,X} {261,X,X}
2 I-continuous c = c3 {c = 0, c = c2, c = c3} 2 1

2 {4,X,X} {263,X,X}
2 REAFR c = 0 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {169,X,X}
2 REAFR c = 0 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {178,X,X}
2 REAFR c = 0 {c = 0, c = c2, c = c3} 2 0 {4, 4, 4} {373, 220, 190}
2 REAFR c = 0 {c = 0, c = c2, c = c3} 2 1

2 {4, 4, 4} {375, 223, 192}
2 REAFR c = c2 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {120,X,X}
2 REAFR c = c2 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {123,X,X}
2 REAFR c = c2 {c = 0, c = c2, c = c3} 2 0 {4, 4, 4} {242, 153, 135}
2 REAFR c = c2 {c = 0, c = c2, c = c3} 2 1

2 {4, 4, 4} {246, 156, 137}
2 REAFR c = c3 {c = 0, c = c2, c = c3} 1 0 {4,X,X} {115,X,X}
2 REAFR c = c3 {c = 0, c = c2, c = c3} 1 1

2 {4,X,X} {117,X,X}
2 REAFR c = c3 {c = 0, c = c2, c = c3} 2 0 {4, 4, 4} {227, 144, 128}
2 REAFR c = c3 {c = 0, c = c2, c = c3} 2 1

2 {4, 4, 4} {230, 146, 130}
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mesh. In both mesh setups, the I-continuous and recovery-assisted schemes allow larger timestep

sizes than the I-centered scheme, though the difference is far more pronounced on the perturbed

simplex mesh. On the Cartesian mesh, the I-continuous and recovery-assisted schemes can also

allow greater orders of accuracy when paired with the proper correction fields; the use of gDG is

necessary to achieve order 2p + 2 accuracy in the Cartesian case. The extension of the Fourier

Table 7.9: Analysis on Perturbed Simplex Mesh, p = 3. Each row corresponds to three possible
choices for the γ correction field. Unstable schemes have an X listed for the spectral radius and
order or accuracy.

p Interface Sol.
Strategy

Correction
Field, ∇·Q

Correction Field, γ χ θ Order of Accuracy, α = π
7 Spectral Radius

3 I-centered c = 0 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {524,X,X}
3 I-centered c = 0 {c = 0, c = c2, c = c3} 1 1

2 {6,X,X} {520,X,X}
3 I-centered c = 0 {c = 0, c = c2, c = c3} 2 0 {6, 6, 6} {1167, 709, 658}
3 I-centered c = 0 {c = 0, c = c2, c = c3} 2 1

2 {6, 6, 6} {1156, 704, 654}
3 I-centered c = c2 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {402,X,X}
3 I-centered c = c2 {c = 0, c = c2, c = c3} 1 1

2 {6,X,X} {397,X,X}
3 I-centered c = c2 {c = 0, c = c2, c = c3} 2 0 {6, 6, 6} {890, 567, 531}
3 I-centered c = c2 {c = 0, c = c2, c = c3} 2 1

2 {6, 6, 6} {884, 564, 528}
3 I-centered c = c3 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {394,X,X}
3 I-centered c = c3 {c = 0, c = c2, c = c3} 1 1

2 {6,X,X} {389,X,X}
3 I-centered c = c3 {c = 0, c = c2, c = c3} 2 0 {6, 6, 6} {867, 556, 521}
3 I-centered c = c3 {c = 0, c = c2, c = c3} 2 1

2 {6, 6, 6} {862, 553, 518}
3 I-continuous c = 0 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {408,X,X}
3 I-continuous c = 0 {c = 0, c = c2, c = c3} 1 1

2 {X,X,X} {X,X,X}
3 I-continuous c = 0 {c = 0, c = c2, c = c3} 2 0 {6,X,X} {1036,X,X}
3 I-continuous c = 0 {c = 0, c = c2, c = c3} 2 1

2 {6,X,X} {1046,X,X}
3 I-continuous c = c2 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {337,X,X}
3 I-continuous c = c2 {c = 0, c = c2, c = c3} 1 1

2 {X,X,X} {X,X,X}
3 I-continuous c = c2 {c = 0, c = c2, c = c3} 2 0 {6,X,X} {780,X,X}
3 I-continuous c = c2 {c = 0, c = c2, c = c3} 2 1

2 {6,X,X} {786,X,X}
3 I-continuous c = c3 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {331,X,X}
3 I-continuous c = c3 {c = 0, c = c2, c = c3} 1 1

2 {X,X,X} {X,X,X}
3 I-continuous c = c3 {c = 0, c = c2, c = c3} 2 0 {6,X,X} {759,X,X}
3 I-continuous c = c3 {c = 0, c = c2, c = c3} 2 1

2 {6,X,X} {764,X,X}
3 REAFR c = 0 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {416,X,X}
3 REAFR c = 0 {c = 0, c = c2, c = c3} 1 1

2 {6,X,X} {455,X,X}
3 REAFR c = 0 {c = 0, c = c2, c = c3} 2 0 {6, 6, 6} {953, 595, 556}
3 REAFR c = 0 {c = 0, c = c2, c = c3} 2 1

2 {6, 6, 6} {964, 605, 566}
3 REAFR c = c2 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {320,X,X}
3 REAFR c = c2 {c = 0, c = c2, c = c3} 1 1

2 {6,X,X} {332,X,X}
3 REAFR c = c2 {c = 0, c = c2, c = c3} 2 0 {6, 6, 6} {667, 440, 416}
3 REAFR c = c2 {c = 0, c = c2, c = c3} 2 1

2 {6, 6, 6} {678, 448, 422}
3 REAFR c = c3 {c = 0, c = c2, c = c3} 1 0 {6,X,X} {313,X,X}
3 REAFR c = c3 {c = 0, c = c2, c = c3} 1 1

2 {6,X,X} {323,X,X}
3 REAFR c = c3 {c = 0, c = c2, c = c3} 2 0 {6, 6, 6} {647, 428, 405}
3 REAFR c = c3 {c = 0, c = c2, c = c3} 2 1

2 {6, 6, 6} {656, 435, 410}
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analysis technique to nonuniform meshes is a significant aid to the scheme design process. Not

only can a scheme’s performance be thoroughly explored on a uniform mesh, as with the classical

Fourier analysis approach, but the extension to non-uniform meshes can now be explored without

full-scale implementation.

The excellent performance of the recovery-assisted FR scheme was not a surprise. The DG

method can be interpreted as a special case of the FR method [29], so an approach that works well

for the DG method should also work well in the Flux Reconstruction framework. The REAFR

scheme itself is in fact the FR counterpart to the High-Accuracy-Gradient scheme (from Chapter 3)

in the DG framework, which is able to achieve order 2p + 2 accuracy on Cartesian meshes for odd

p. Keeping the link to DG in mind, it is reasonable to expect that the recovery-assisted advection

schemes of Chapter 4 could yield attractive FR schemes for advection problems, and the analysis

of such an approach offers an exciting path for future research in numerical methods.
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CHAPTER 8

Conclusion

8.1 Summary

The DG method is a popular approach for the discretization of the compressible Navier-Stokes

equations and possesses a handful of properties (specifically, the simple application of upwind-

based dissipation, the block-diagonal global mass matrix, and the capability for arbitrarily high

orders of accuracy on nontrivial geometries) that make it an attractive choice for high-fidelity sim-

ulation of turbulent flows. Additionally, it has the potential to become the future workhorse of

industrial CFD applications if engineers begin to demand high-order accuracy in practical calcu-

lations. For both of these reasons, it is worthwhile to work towards improving the basic spatial

discretization in the sense of accuracy versus cost. In this work, we explored ways to improve

the accuracy of the basic discretization at a fixed solution order p, exploiting the accuracy of

the recovery operator throughout. A collection of DG variants for advection problems, diffusion

problems, and advection-diffusion problems was proposed. Analysis and testing focused on struc-

tured meshes, which are typical for fundamental flow physics research, but the resulting advection-

diffusion schemes of Chapter 5 are applicable on unstructured quadrilateral meshes as well. Our

scheme development process can be summarized by two specific strategies:

• Instead of working with the full compressible Navier-Stokes equations, the schemes were

developed in the context of simple model equations. The linear advection equation was cho-

sen as the simplified model of the Euler equations. The linear advection-diffusion equation
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was chosen to model the compressible Navier-Stokes equations.

• Advection and diffusion processes were handled separately. One family of schemes (namely

the Interface Gradient Recovery schemes of Chapter 3) was built specifically for diffusion

problems; another family of schemes (namely the interface-centered binary reconstruction

schemes of Chapter 4) is specific to advection problems. In Chapter 5, we paired our favorite

compact member of the Interface Gradient Recovery family with the interface-centered bi-

nary reconstruction schemes to form three Recovery-assisted (RAD) schemes for advection-

diffusion problems.

The overall philosophy in the scheme design process was to use the recovery operator in both its

full-order and biased forms to estimate solution quantities along element-element interfaces.

Each proposed scheme, whether it be an advection scheme, a diffusion scheme, or an advection-

diffusion scheme, was subjected to Fourier analysis to examine its worth. In addition to the typical

1D Fourier analysis approach, where only the principal eigenvalue is examined, we employed the

technique of Watkins et al. [112] to examine the resolving efficiencies of advection and advection-

diffusion schemes. In our exploration of diffusion schemes within both the DG framework and the

related Flux Reconstruction (FR) framework, we extended the Fourier analysis technique to 2D

problems on both Cartesian and non-Cartesian mesh geometries. Fourier analysis demonstrated

that the RAD schemes for advection-diffusion provide a substantial accuracy advantage over the

conventional DG method. A suite of test cases involving the linear advection equation, the linear

advection-diffusion equation, and the compressible Navier-Stokes equations demonstrated that this

accuracy advantage carries over to simulation of both linear and nonlinear PDE systems on struc-

tured meshes; limited success was achieved on unstructured meshes. Computational cost analyses

indicated that the Recovery-assisted schemes increase the flop count compared to the conventional

state-of-the-art approach; however, the cost penalty is small compared to the gain in accuracy.
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8.2 Key Findings and Contributions

The key findings and contributions of each chapter are summarized independently.

8.2.1 Chapter 2: Fundamental Topics

The Recovery concept was originally developed with the idea of enforcing weak equivalence be-

tween the discontinuous DG polynomials (Uh) and the smooth recovered solution over a given

two-element union. We discovered that instead of being implemented with an unwieldy matrix-

vector system of inner products, the recovered solution’s value at a given interface could be recast

as a set of derivative-based corrections to a weighted average of the competing limits of Uh. The

resulting derivative-based recovery approach has two advantages over the traditional inner-product

approach. First, it allows a specific Recovery-assisted DG approach to be recast in terms of just

the approximation Uh and its derivatives, which could be advantageous for analysis. Second, the

derivative-based form substantially reduces the complexity of the recovery process. On either

quadrilateral elements in 2D or hexahedral elements in 3D, the recovered solution at an element-

element interface can be implemented as a linear combination of pre-computed recovery weights

and face-normal derivative jumps, where the jumps are simple to calculate thanks to the polynomial

nature of each element’s solution basis.

8.2.2 Chapter 3: The Interface Gradient Recovery Family

An ample supply of stable DG schemes for the diffusion equation were obtained by combining the

Recovery concept with the traditional mixed formulation for handling second-order PDE systems.

In the case of the non-compact schemes of the Interface Gradient Recovery (IGR) family, accuracy

is maximized by using the full-order recovery operator for both the common solution Ũ and the

common gradient σ̃ along each interface. Among the compact members of the family, we discov-

ered that scheme accuracy is primarily affected by the technique used to calculate Ũ along each

interface. The strategy for calculating σ̃, which determines the interface flux G̃, primarily affects
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scheme stability, allowable timestep size, and robustness on non-Cartesian meshes. As we hypoth-

esized (and hoped), the strategy of using the recovery operator to estimate solution quantities along

element-element interfaces produced superior numerical schemes (with regard to accuracy at fixed

p) compared to the state-of-the art.

The relation between the IGR family and the Recovery-based DG schemes of Chapter 6 mer-

its special attention. For the 2D shear diffusion equation on Cartesian elements, both the GR-II

scheme of the IGR family and the RDG-1x++CO scheme of Lo & van Leer [69] achieve order

3p+1 accuracy for odd p and order 3p+2 accuracy for even p. The GR-II scheme is simpler to im-

plement, but the RDG-1x++CO scheme has a smaller stencil; where the GR-II stencil requires two

layers of face-connected neighbor elements, the RDG-1x++CO scheme involves only the vertex-

connected neighbors (see Figure 2.5). The Compact Gradient Recovery (CGR) schemes achieve

stable and consistent discretization of the shear diffusion equation on both Cartesian and simplex

elements in 2D while leveraging the accuracy of the Recovery operator. The Recovery-based DG

family has so far been unable to replicate this feat, and this deficiency in the Recovery-based DG

family was the motivation for the formation of the Compact Gradient Recovery schemes.

8.2.3 Chapter 4: Recovery-assisted Advection Schemes

In the discretization of advection problems, the Modal ICB reconstruction scheme of Khieu &

Johnsen [56] achieves superior resolving efficiency compared to the conventional upwind DG

method via prudent application of a biased recovery operation for calculating the advective in-

terface fluxes. The resolving efficiency and allowable explicit timestep size of the original Modal

ICB advection scheme can be significantly improved by altering the reconstructed solution’s con-

straint in the non-dominant element. In particular, our proposed Lagrange ICB scheme, which

places heavy emphasis on matching the reconstructed solutions to the near-interface behavior of

the discontinuous DG polynomials, achieved superior performance compared to the original ICB

scheme. With regard to the multidimensional case, the reported results (along with the dipole-wall

interaction results in Chapter 5) show that the scheme’s accuracy advantage extends to the 2D case

220



on quadrilateral elements. However, we were unable to design stable ICB schemes for simplex

elements in 2D, and this deficiency needs to be addressed in the future. While it was not reported

in Chapter 4, we also had success in simulating 2D shocked flows by combining the Lagrange ICB

scheme with a generalization of the smooth artificial viscosity approach proposed by Reisner et

al. [89]. In fact, the image decorating the second page of this document is from one of our sub-

mitted simulations for the shock-vortex interaction test case at the Fifth International Workshop on

High-Order CFD Methods. Based on our various results with shocked flows, we conclude that the

use of the biased recovery operation in the DG framework does not prevent stable shock-capturing.

8.2.4 Chapter 5: Recovery-assisted Advection-Diffusion Schemes

The combination of the biased recovery approach for advection (the ICB schemes) and the full-

order recovery operator inside the mixed formulation (the Compact Gradient Recovery method)

produced an exceptional pair of Recovery-assisted DG schemes for advection-diffusion problems.

Fourier analysis showed the Recovery-assisted advection-diffusion schemes to be superior to the

conventional DG approach. The new schemes consistently provided better accuracy than the con-

ventional DG approach at a given p throughout the suite of test problems, both linear and nonlinear.

Our limited experimentation suggests that the extremely low dissipation of the second Recovery-

assisted scheme (RAD2) renders it unfit for unstructured meshes, but this issue should be explored

further before making a definitive judgment on the worth of the RAD2 scheme.

8.2.5 Chapter 6: Boundary Procedures for van Leer & Lo’s Recovery-based

DG Method

The outstanding performance of the Recovery-based DG (RDG) method [67] for diffusion prob-

lems is degraded when Dirichlet or Neumann boundary conditions are applied instead of spatially

periodic boundary conditions. This shortcoming is specific to shear-diffusion problems (not the

scalar Laplacian). In the case of Dirichlet boundary conditions, we retained greater than order 3p

convergence in the cell-average error by pulling in the ideal amount of information from bordering
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elements when calculating the solution gradient along boundary interfaces. The new boundary

scheme was less effective in the case of a Neumann boundary condition but still retained better

than order 2p convergence. The accuracy of the boundary scheme in the RDG method is adversely

affected if the computational stencil for the boundary interface’s gradient calculation becomes too

large. This particular finding was the greatest surprise encountered during our studies, as the gen-

eral trend in spatial discretization schemes is that for smooth solutions, accuracy improves as the

stencil is expanded.

8.2.6 Chapter 7: Recovery in the Flux Reconstruction Method

In the context of discontinuous finite element methods, namely DG and the Flux Reconstruction

(FR) method, the Fourier analysis technique is now applicable on nonuniform mesh geometries.

However, our approach requires a single four-element pattern to repeat across the mesh, so it is

not applicable to completely unstructured mesh geometries. The Recovery-assisted Flux Recon-

struction scheme has the potential to achieve superior orders of accuracy compared to other FR

methods for the diffusion equation. However, the correction polynomials (a unique aspect of the

FR method) must be properly chosen to achieve order of accuracy greater than 2p, regardless of

whether or not the recovery operator is employed to calculate interface quantities.

8.3 Future Work

This work has opened the door to additional research questions. We suggest that the following

topics be addressed in future studies.

8.3.1 Implicit Time Integration

For steady-state problems and prohibitively stiff unsteady problems, it is typical to pair the DG

spatial discretization with an implicit time integration technique, such as the Jacobian-free Newton-

Krylov approach [60]. The results reported in this document involve explicit time integration only,
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and it remains to be seen whether or not the improved accuracy of the Recovery-assisted DG

approach (for either advection, diffusion, or advection-diffusion) extends to simulations involving

implicit time integration.

8.3.2 Flux Reconstruction and Biased Recovery

The interface-centered binary (ICB) reconstruction schemes presented for advection problems in

Chapter 4 can easily be extended to Huynh’s Flux Reconstruction (FR) method, which some see

as a generalization of the DG method. The correction polynomials of the FR method can be

tuned to optimize certain properties of the FR discretization, for example the allowable explicit

timestep size or the dispersion/dissipation relation (see [46, 107] for excellent discussions on this

topic). We expect that combining the biased recovery operation with an appropriate choice of

correction polynomial would yield an exceptional high-order discretization for advection problems

with respect to both resolving efficiency and explicit timestep size.

8.3.3 Dispersion Relation Optimization

Section 2.6.6 showed that the recovery operation can be recast as a weighted average of DG poly-

nomial limits and derivative jumps (multiplied by recovery weights) at element-element interfaces.

In Section 4.2.1 it was demonstrated that the recovery weights are present in the primal form of the

ICB discretization for the linear advection adquation. We suspect that these weights need not cor-

respond to a specific recovery operator; instead, one could tune the weights at a given p to optimize

the dispersion relation. The idea of tuning the discretization to optimize the dispersion relation at a

given stencil size has been explored extensively in the finite difference community [97, 24, 93, 66].

Asthana & Jameson [5] showed how correction polynomials could be tuned to optimize the disper-

sion relation in the FR method, yielding promising results in the simulation of the Taylor-Green

vortex flow [17]. We expect that the recovery weights of the derivative-based recovery operation

could be tuned in a similar manner to minimize wave propagation error in both the FR and DG

frameworks. The need to maintain stability in the spatial discretization could make the optimiza-
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tion strategy challenging, so it seems like an ideal project for an ambitious new graduate student.

8.3.4 Analysis of Primal Form of Diffusion Schemes

As with the ICB scheme for advection, it should be possible to write the Compact Gradient Re-

covery (CGR) scheme of Chapter 3 for diffusion problems in the primal form using the recovery

weights from the derivative-based recovery operator. Then, one could attempt to prove energy

stability using the primal form itself. Such analysis might uncover the reason for the instabil-

ity of certain CGR configurations on non-Cartesian meshes. The non-compact GR-II and GR-VI

schemes of Chapter 3 might also benefit from such analysis, though writing out the primal form

would be considerably more difficult due to the non-compact stencil.

8.3.5 Recovery as a Diagnostic Tool

Throughout this document, the recovery operator was employed as means to obtain highly ac-

curate solution approximations along element-element interfaces while populating the DG weak

form. However, its use can be extended beyond this purpose. Frequently, application of the DG

method requires some form of “resolution detector.” For example, Chapelier & Lodato [22] probe

the decay rate of the Legendre coefficients in each element to determine how much sub-grid dis-

sipation is needed in application of the DG method to large-eddy simulation. Similarly, Persson

& Peraire [84] use the solution coefficient decay rate in modal space to decide where to apply

artificial viscosity in the context of shock-capturing with the DG method. The recovery operator,

in either the biased or full-order form, could be employed in a similar fashion. If the DG polyno-

mials and the recovered solution agreed in a pointwise fashion over a two-element union, it would

be apparent that the numerical approximation is well-resolved. Outside of this ideal scenario, the

disagreement between the DG data and any recovered solution at a given location in the domain

could be used as a gauge for how close the simulation is to properly resolving the flow.
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8.3.6 Recovery DG in the Incompressible Navier-Stokes Equations

Our primary criticism of the older Recovery-based DG schemes for diffusion problems is that as

discussed in Section 6.2, the family requires a non-compact stencil for dealing with shear diffusion

terms, as one encounters in the compressible Navier-Stokes (NS) equations. However, the viscous

stress terms in the incompressible NS equations involve the Laplacian operation on the velocity

components, without any cross-derivative terms ultimately appearing in the divergence of the dif-

fusive flux terms. Thus, the compact RDG-2x scheme, which performs exceptionally well for the

scalar Laplacian but fails for the shear diffusion problem, might work well for the diffusive terms

in the incompressible NS equations. Recently, many authors have explored the application of the

DG method to the incompressible NS equations [34, 53, 12, 116, 59], and the use of the RDG-2x

scheme might provide a superior spatial discretization compared to other DG approaches.
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Appendix A

The Recovery Procedure

For clarity, we describe the recovery procedure from a linear algebra perspective for the classical,

full-order recovery operator. The setup is the same as in Chapter 2: the goal is to form the recovered

polynomial within the dimension-2K basis ψ over the unionU = ΩA ∪ΩB. The basis functions of

ΩA and ΩB are the sets φA and φB, respectively. The goal of the discrete recovery operator, denoted

R, is to populate the values of the recovered solution at a discrete set of QS quadrature points along

I = ∂ΩA ∩ ∂ΩB. To begin, the recovery constraints (2.65) are rewritten by integrating the recovery

basis functions against the DG basis functions,



∫
ΩA
ψcolφ0

Adx∫
ΩA
ψcolφ1

Adx
...∫

ΩA
ψcolφK−1

A dx

− − − − −−∫
ΩB
ψcolφ0

Bdx∫
ΩB
ψcolφ1

Bdx
...∫

ΩB
ψcolφK−1

B dx





f̂ 0
I

f̂ 1
I

...

f̂ 2K−1
I


=


MA 0

− − − − − −

0 MB


ÛA

ÛB

 , (A.1)

where the element mass matrices have been employed to account for the integration of Uh against

φ in the recovery constraints (2.65). The 2K × 2K matrix on the left-hand side of the recovery
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system (2.62) is inverted to yield the recovery coefficients f̂I given the DG DOFs ÛA and ÛB.

Then, a matrix containing the recovery basis functions is employed to populate the distribution of

fI along the interface:



fI(r1)

fI(r2)
...

fI(rGQs)


=



ψcol(r1)

ψcol(r2)
...

ψcol(rGQs)





∫
ΩA
ψcolφ0

Adx∫
ΩA
ψcolφ1

Adx
...∫

ΩA
ψcolφK−1

A dx

− − − − −−∫
ΩB
ψcolφ0

Bdx∫
ΩB
ψcolφ1

Bdx
...∫

ΩB
ψcolφK−1

B dx



−1


MA 0

− − − − − −

0 MB


ÛA

ÛB

 = R

ÛA

ÛB

 . (A.2)

The recovery operator, in discrete form, is the QS × (2K) matrix R, where QS is the number of

quadrature points (where we need the solution) along the interface. It is formed from the product

of the recovery basis matrix, the inverse of the left-hand matrix of the recovery system (A.1), and

the mass matrices of the two elements. The discrete recovery operator yields the distribution of the

recovered solution along the interface given the DOF ÛA and ÛB of the neighboring elements.

In practice, the discrete recovery operator R is computed for every interface in the domain

during the code’s initialization phase. Then, whenever the DG residual calculation requires the

reovered solution to be calculated, the pre-computed discrete recovery operator is combined with

the DOFs of the neighboring elements to populate the recovered solution along the interface. The

strategy of storing the discrete recovery operator has also been applied by Ferrero et al. [35]. We

note that the use of the discrete recovery operator comes at some cost: the pre-computed matrix R

contains QS×(2K) entries. In the general case of an unstructured mesh, a distinct discrete Recovery

matrix must be stored for each element-element interface. We believe this storage requirement to

be acceptable because it scales with the DOF count (as opposed the the square of nDOF or the
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cube of nDOF, etc.).

229



Appendix B

Recovery Weights: Full-Order Recovery

The recovery weights C in the derivative-based implementation of the full-order recovery operator

are given here. We first discuss C0(Q), where Q = hA−hB
hA+hB

is the uniformity index discussed in

Section 2.6.6. C0(Q) is symmetric about Q = 0 and takes the following form:

C0(Q) =


L0(Q) for Q ≥ 0

1 − L0(−Q) for Q < 0,
(B.1)

where L0(Q) depends on p. For j > 0, the weights C j(Q) are symmetric about Q = 0; the symmetry

is even when j is odd, and the symmetry is odd when j is even. Thus, for j > 0, each C j is described

as follows:

C j(Q) =


L j(Q) for Q ≥ 0

L j(−Q) ∗ (−1) j+1 for Q < 0.
(B.2)

For each combination of j and p, the function L j is a degree 5 polynomial:

L j(Q) =

5∑
n=0

QnL̂n
j . (B.3)

The coefficients L̂n
j are given in Table B.1. After using these coefficients to form the derivative-

based recovery operator, an easy check on the implementation is as follows. First, fit the DG data

to the function U(x) = x2p+1 as described in Eq. (5.2c). Then, use the derivative-based recovery

operator to approximate the interface solution; for the initial condition U(x) = x2p+1 or any poly-
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nomial of lower degree, the recovery operator should return the exact solution (within machine

precision) on a 1D grid. If implementing the recovery operator on a uniform grid, only the L̂0
j

coefficients are needed because Q = 0 along all interfaces.

Table B.1: Interpolation coefficients for L j(Q) in the full-order recovery case. For j > p, L j(Q) = 0.

j = 0 : L̂0
0 L̂1

0 L̂2
0 L̂3

0 L̂4
0 L̂5

0

p = 1 5.000e-01 -7.500e-01 -1.007e-04 2.503e-01 -4.197e-04 2.092e-04
p = 2 5.000e-01 -9.375e-01 -1.251e-04 6.254e-01 -5.032e-04 -1.873e-01
p = 3 5.000e-01 -1.092e-00 -2.587e-02 1.258e-00 -4.360e-01 -2.194e-01
p = 4 5.000e-01 -1.226e-00 -8.376e-02 2.181e-00 -1.478e-00 7.554e-02
p = 5 5.000e-01 -1.345e-00 -1.678e-01 3.359e-00 -3.113e-00 7.316e-01

j = 1 : L̂0
1 L̂1

1 L̂2
1 L̂3

1 L̂4
1 L̂5

1

p = 1 -8.333e-02 -8.333e-02 8.332e-02 8.336e-02 -3.147e-05 1.309e-05
p = 2 -4.688e-02 -4.687e-02 9.375e-02 9.376e-02 -4.689e-02 -4.687e-02
p = 3 -3.125e-02 -3.084e-02 8.608e-02 1.433e-01 -2.305e-01 5.900e-02
p = 4 -2.279e-02 -2.216e-02 7.908e-02 1.724e-01 -3.778e-01 1.702e-01
p = 5 -1.758e-02 -1.703e-02 7.669e-02 1.696e-01 -4.496e-01 2.417e-01

j = 2 : L̂0
2 L̂1

2 L̂2
2 L̂3

2 L̂4
2 L̂5

2

p = 2 0 9.375e-03 1.875e-02 -3.895e-06 -1.874e-02 -9.378e-03
p = 3 0 5.298e-03 8.720e-03 5.840e-03 -5.189e-02 3.115e-02
p = 4 0 3.276e-03 6.040e-03 -2.571e-03 -3.513e-02 2.931e-02
p = 5 0 2.137e-03 5.421e-03 -1.187e-02 -1.033e-02 1.588e-02

j = 3 : L̂0
3 L̂1

3 L̂2
3 L̂3

3 L̂4
3 L̂5

3

p = 3 1.488e-04 4.623e-04 -7.489e-04 -5.510e-04 -7.553e-03 8.091e-03
p = 4 5.813e-05 1.611e-04 -1.094e-04 -2.904e-03 2.341e-03 7.744e-04
p = 5 2.713e-05 6.351e-05 8.746e-05 -3.010e-03 5.035e-03 -2.114e-03

j = 4 : L̂0
4 L̂1

4 L̂2
4 L̂3

4 L̂4
4 L̂5

4

p = 4 0 -2.357e-05 7.724e-08 -5.329e-04 1.407e-03 -7.828e-04
p = 5 0 -9.694e-06 -2.339e-06 -2.119e-04 7.276e-04 -5.250e-04

j = 5 : L̂0
5 L̂1

5 L̂2
5 L̂3

5 L̂4
5 L̂5

5

p = 5 -1.057e-07 -4.069e-07 -1.491e-06 1.668e-05 1.267e-07 -2.312e-05
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Appendix C

Recovery Weights: Modal ICB Recovery

The recovery weights C in the derivative-based implementation of the original biased recovery

operator (Modal ICB reconstruction) are approximated by an eight-point interpolant:

C j(Q) =

7∑
n=0

QnĈn
j , (C.1)

with the coefficients Ĉn
j given in Table C.1 and Table C.2 for p ≤ 5. As with the full-order recovery

case, if the mesh is uniform (Q = 0), then only the Ĉ0
j coefficients are needed, and all others can

be discarded.
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Table C.1: Interpolation coefficients, n ∈ {0, 1, 2, 3}, for C j(Q) in the Modal ICB case. For j > p,
C j(Q) = 0.

j = 0 : Ĉ0
0 Ĉ1

0 Ĉ2
0 Ĉ3

0

p = 1 8.333e-01 -3.889e-01 -2.963e-01 -9.870e-02
p = 2 9.546e-01 -1.697e-01 -2.563e-01 -2.129e-01
p = 3 9.889e-01 -5.808e-02 -1.315e-01 -1.579e-01
p = 4 9.975e-01 -1.868e-02 -5.709e-02 -6.549e-02
p = 5 9.995e-01 -7.147e-03 -2.692e-02 -6.716e-03

j = 1 : Ĉ0
1 Ĉ1

1 Ĉ2
1 Ĉ3

1

p = 1 -8.333e-02 -9.415e-02 -3.764e-01 -6.032e-01
p = 2 -2.273e-02 -6.257e-02 -1.699e-01 -2.619e-01
p = 3 -5.556e-03 -2.483e-02 -7.258e-02 -1.120e-01
p = 4 -1.269e-03 -8.624e-03 -2.960e-02 -3.871e-02
p = 5 -2.769e-04 -3.460e-03 -1.362e-02 -4.334e-03

j = 2 : Ĉ0
2 Ĉ1

2 Ĉ2
2 Ĉ3

2

p = 2 -7.576e-03 -1.100e-02 -8.042e-02 -1.368e-01
p = 3 -1.852e-03 -6.288e-03 -2.809e-02 -5.067e-02
p = 4 -4.230e-04 -2.519e-03 -1.046e-02 -1.564e-02
p = 5 -9.229e-05 -1.095e-03 -4.626e-03 -1.925e-03

j = 3 : Ĉ0
3 Ĉ1

3 Ĉ2
3 Ĉ3

3

p = 3 -4.630e-04 -9.253e-04 -8.684e-03 -1.553e-02
p = 4 -1.058e-04 -5.058e-04 -2.869e-03 -4.702e-03
p = 5 -2.307e-05 -2.523e-04 -1.193e-03 -6.429e-04

j = 4 : Ĉ0
4 Ĉ1

4 Ĉ2
4 Ĉ3

4

p = 4 -2.115e-05 -6.964e-05 -6.606e-04 -1.058e-03
p = 5 -4.614e-06 -4.459e-05 -2.514e-04 -1.639e-04

j = 5 : Ĉ0
5 Ĉ1

5 Ĉ2
5 Ĉ3

5

p = 5 -7.690e-07 -6.217e-06 -4.550e-05 -3.087e-05
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Table C.2: Interpolation coefficients, n ∈ {4, 5, 6, 7}, for C j(Q) in the Modal ICB case. For j > p,
C j(Q) = 0.

j = 0 : Ĉ4
0 Ĉ5

0 Ĉ6
0 Ĉ7

0

p = 1 -3.273e-02 -1.114e-02 -4.204e-03 -1.201e-03
p = 2 -1.242e-01 -8.260e-02 -6.881e-02 -3.043e-02
p = 3 -1.190e-01 -1.457e-01 -2.051e-01 -1.083e-01
p = 4 -2.738e-02 -1.416e-01 -3.203e-01 -1.877e-01
p = 5 5.753e-02 -9.647e-02 -3.582e-01 -2.255e-01

j = 1 : Ĉ4
1 Ĉ5

1 Ĉ6
1 Ĉ7

1

p = 1 6.572e-01 1.283e-00 -5.314e-01 -9.836e-01
p = 2 8.049e-02 3.244e-01 -1.555e-01 -2.873e-01
p = 3 -3.464e-02 7.106e-03 -1.245e-01 -1.138e-01
p = 4 -9.736e-03 -5.607e-02 -1.637e-01 -1.049e-01
p = 5 2.937e-02 -4.581e-02 -1.797e-01 -1.146e-01

j = 2 : Ĉ4
2 Ĉ5

2 Ĉ6
2 Ĉ7

2

p = 2 9.401e-02 2.226e-01 -1.032e-01 -1.842e-01
p = 3 1.515e-03 3.341e-02 -5.247e-02 -6.101e-02
p = 4 -1.107e-03 -1.211e-02 -5.645e-02 -3.986e-02
p = 5 1.011e-02 -1.409e-02 -6.017e-02 -3.908e-02

j = 3 : Ĉ4
3 Ĉ5

3 Ĉ6
3 Ĉ7

3

p = 3 4.836e-03 1.498e-02 -1.642e-02 -2.048e-02
p = 4 5.597e-04 -1.207e-03 -1.481e-02 -1.132e-02
p = 5 2.660e-03 -3.137e-03 -1.516e-02 -1.006e-02

j = 4 : Ĉ4
4 Ĉ5

4 Ĉ6
4 Ĉ7

4

p = 4 3.304e-04 3.253e-05 -3.116e-03 -2.487e-03
p = 5 5.730e-04 -5.475e-04 -3.065e-03 -2.071e-03

j = 5 : Ĉ4
5 Ĉ5

5 Ĉ6
5 Ĉ7

5

p = 5 1.039e-04 -8.280e-05 -5.165e-04 -3.524e-04
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Appendix D

Recovery Weights: Lagrange ICB Recovery

The weights in the derivative-based implementation of the Lagrange ICB recovery operator are

given here. Each weight C j(Q) is approximated in piecewise form:

C j(Q) =


L j(Q) for Q < 0

M j(Q) for Q ≥ 0,
(D.1)

with the functions L and M being five-point and two-point interpolations, respectively, such that:

L j(Q) =

4∑
n=0

QnL̂n
j , M j(Q) =

1∑
n=0

QnM̂n
j . (D.2)

The coefficients L̂ are given in Table D.1. The coefficients M̂ are given in Table D.2.
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Table D.1: Interpolation coefficients for L j(Q) in the Lagrange ICB recovery case. For j > p,
L j(Q) = 0.

j = 0 : L̂0
0 L̂1

0 L̂2
0 L̂3

0 L̂4
0

p = 1 0.60566 -0.56161 -0.079943 -0.0022809 -0.083903
p = 2 0.63796 -0.57736 -0.10584 0.017914 -0.093691
p = 3 0.65169 -0.5836 -0.11664 0.031731 -0.093622
p = 4 0.65874 -0.5867 -0.12208 0.040351 -0.092343
p = 5 0.66283 -0.58845 -0.12518 0.045877 -0.091167

j = 1 : L̂0
1 L̂1

1 L̂2
1 L̂3

1 L̂4
1

p = 1 -0.083333 0.048593 0.063078 0.0018463 0.066197
p = 2 -0.040803 0.016413 0.03475 -0.030482 0.00090331
p = 3 -0.024184 0.0076108 0.020982 -0.029446 -0.012233
p = 4 -0.016008 0.0042728 0.013923 -0.023946 -0.013282
p = 5 -0.011385 0.0027125 0.0098938 -0.019002 -0.011782

j = 2 : L̂0
2 L̂1

2 L̂2
2 L̂3

2 L̂4
2

p = 2 -0.0022993 0.0057778 -0.00061717 0.017183 0.020163
p = 3 -0.00083957 0.0020558 0.00023306 0.0069651 0.0093611
p = 4 -0.00037548 0.0009023 0.00015353 0.0030263 0.004374
p = 5 -0.0001922 0.00045598 8.3507e-05 0.0014799 0.0022473

j = 3 : L̂0
3 L̂1

3 L̂2
3 L̂3

3 L̂4
3

p = 3 -1.9431e-05 8.332e-05 -0.00017612 8.3703e-05 -0.00046453
p = 4 -5.8712e-06 2.762e-05 -1.0634e-05 0.00019628 7.2132e-05
p = 5 -2.1632e-06 1.0614e-05 3.9351e-06 0.00010369 6.6487e-05

j = 4 : L̂0
4 L̂1

4 L̂2
4 L̂3

4 L̂4
4

p = 4 -6.8855e-08 -5.3742e-07 -1.6118e-05 -6.0934e-05 -8.0213e-05
p = 5 -1.8261e-08 -7.0658e-08 -3.1778e-06 -1.1634e-05 -1.6193e-05

j = 5 : L̂0
5 L̂1

5 L̂2
5 L̂3

5 L̂4
5

p = 5 -1.233e-10 -2.6501e-08 -4.2066e-07 -1.7265e-06 -1.9778e-06
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Table D.2: Interpolation coefficients for M j(Q) in the Lagrange ICB recovery case. For j > p,
M j(Q) = 0.

j = 0 : M̂0
0 M̂1

0

p = 1 0.60566 -0.60015
p = 2 0.63796 -0.63049
p = 3 0.65169 -0.64336
p = 4 0.65874 -0.64997
p = 5 0.66283 -0.65379

j = 1 : M̂0
1 M̂1

1

p = 1 -0.083333 -0.12683
p = 2 -0.040803 -0.071057
p = 3 -0.024184 -0.04467
p = 4 -0.016008 -0.03049
p = 5 -0.011385 -0.022076

j = 2 : M̂0
2 M̂1

2

p = 2 -0.0022993 -0.0040041
p = 3 -0.00083957 -0.0015508
p = 4 -0.00037548 -0.00071515
p = 5 -0.0001922 -0.00037269

j = 3 : M̂0
3 M̂1

3

p = 3 -1.9431e-05 -3.5891e-05
p = 4 -5.8712e-06 -1.1183e-05
p = 5 -2.1632e-06 -4.1947e-06

j = 4 : M̂0
4 M̂1

4

p = 4 -6.8855e-08 -1.3114e-07
p = 5 -1.8261e-08 -3.5409e-08

j = 5 : M̂0
5 M̂1

5

p = 5 -1.233e-10 -2.3907e-10
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Appendix E

Timestep Size for Advection-Diffusion Problems

This appendix describes how the timestep size is set for the advection-diffusion problems of Chap-

ter 5. For test case 1,

∆t =
S

1/∆tv + 1/∆ta
, with ∆ta =

hmCRK

aρc
s

and ∆tv =
h2

mCRK

µρv
s
, (E.1)

where S is a safety factor, hm is the minimum element width in the domain, CRK = 5 is the multi-

plier associated with the stability region of the RK8 scheme, ρc
s is the spectral radius corresponding

to advection, and ρv
s is the spectral radius corresponding to diffusion; these spectral radii are taken

from Fourier anlaysis. For test cases 2, 3, and 4,

∆t =
S

1/∆tv + 1/∆ta
, with ∆ta =

hmCRK

ρa
s (|V| + a)max

and ∆tv =
h2

mCRK

2ND−1 max[(4/3), (γ/Pr)] ρv
s (µ

ρ
)max

,

(E.2)

where S is a safety factor, hm is the minimum element width in the domain, CRK = 2.8 is the

multiplier associated with the stability region of the RK4 scheme, and (|V| + a)max (with a repre-

senting the speed of sound) is the maximum wavespeed in the domain. The denominator of the ∆tv

equation accounts for viscous and heat transfer effects in addition to accounting for the number of

spatial dimensions.
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Appendix F

Calculation of Interface Gradients

For the CGR method in 2D, an element’s semi-connected gradient coefficient vector corresponding

to an element-element interface has 2K entries: K entries ĝx corresponding to the derivative w.r.t.

x and K entries ĝy for the derivative w.r.t. y. For interface I = ∂ΩA ∩ ∂ΩB, let M1x
A be the matrix

that obtains ĝx
A,s from ÛA and ÛB. Similarly, let M1x

B obtain ĝx
B,s+ from ÛA ∪ ÛB. Let M1y

A and

M1y
B be configured similarly, but for ĝy

A,s and ĝy
B,s+ instead. Given the gradient coefficients, the

recovery operator R obtains the gradient along the interface:

σx
I

=


∂Uh

∂x (r1)
...

∂Uh

∂x (rQS)

 = R

 ĝx
A,s

ĝx
B,s+

 , σy
I

=


∂Uh

∂y (r1)
...

∂Uh

∂y (rQS)

 = R

 ĝy
A,s

ĝy
B,s+

 . (F.1)

To avoid explicit storage of the semi-connected gradient coefficients, the recovery operator is com-

bined with the interface’s four M1 matrices to populate the interface gradient approximation di-
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rectly from ÛA and ÛB:

σ
I

=



∂Uh

∂x (r1)
...

∂Uh

∂x (rQS)

− − −

∂Uh

∂y (r1)
...

∂Uh

∂y (rQS)



=

R 0

0 R





ĝx
A,s

ĝx
B,s+

ĝy
A,s

ĝy
B,s+


=

R 0

0 R





M1x
A

M1x
B

M1y
A

M1y
B



ÛA

ÛB

 . (F.2)

The product of the recovery operator and the M1 matrices on the far right-hand side of the interface

gradient system (Eq. F.2) is precalculated and stored for the duration of the simulation. Then, given

ÛA ∪ ÛB, the gradient σ̃ at all quadrature points along the shared interface is available by a single

matrix-vector multiplication. The BR2 scheme requires that an averaging operator be substituted

for R.
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Appendix G

Additional Fourier Analysis Results, Flux

Reconstruction

This appendix contains two collections of data. The first collection is the report of Fourier analysis

results for the RDG-2x scheme on Cartesian elements. The second collection is the order of ac-

curacy analysis for the I-centered, I-continuous, and REAFR schemes on the Cartesian grid when

α = π
4 .

G.1 RDG-2x Results:

Fourier analysis results of the RDG-2x scheme on the Cartesian mesh is provided in Table G.1.

For this scheme, instead of sweeping over α values, we present only the α = π
4 results. These

results were sufficient to prove the scheme unstable for p > 2 and θ = 1
2 . Note that the scheme

performance is independent of the correction field chosen for the γ calculation and the χ parameter.

This independence is a result of the fact that the RDG-2x scheme uses the gradient of the recovered

solution to calculate the common interface gradient, so the γ calculation is removed from the

discretization.

241



G.2 Cartesian Analysis of I-centered, I-continuous, and REAFR

schemes with α = π
4:

The tables in Section 7.3.5.1 list the calculated orders of accuracy for α = π
7 . In addition, the orders

of accuracy in the α = π
4 case are listed in Table G.2, Table G.3, and Table G.4 for p = 1, p = 2,

and p = 3, respectively.
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Table G.1: RDG-2x Analysis on Cartesian Mesh, p ∈ {1, 2, 3} with α = π
4 (no sweep over α

values). Each row corresponds to four possible choices for the γ correction field, such that each
row represents a particular choice of p, interface solution strategy, χ, θ, and the correction field for
∇ ·Q. Unstable schemes have an X listed for the spectral radius and order or accuracy.

p Interface Sol.
Strategy

Correction
Field, ∇·Q

Correction Field, γ χ θ Order of Accuracy Spectral Radius

1 RDG-2x gDG {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {31, 31, 31, 31}
1 RDG-2x gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, 4} {33, 33, 33, 33}
1 RDG-2x gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {31, 31, 31, 31}
1 RDG-2x gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {33, 33, 33, 33}
1 RDG-2x gS D {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {21, 21, 21, 21}
1 RDG-2x gS D {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, 2} {24, 24, 24, 24}
1 RDG-2x gS D {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {21, 21, 21, 21}
1 RDG-2x gS D {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2} {24, 24, 24, 24}
1 RDG-2x gHu {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2} {19, 19, 19, 19}
1 RDG-2x gHu {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, 2} {19, 19, 19, 19}
1 RDG-2x gHu {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2} {19, 19, 19, 19}
1 RDG-2x gHu {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2} {19, 19, 19, 19}
2 RDG-2x gDG {gLe, gDG, gS D, gHu} 1 0 {8, 8, 8, 8} {66, 66, 66, 66}
2 RDG-2x gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, 4} {100, 100, 100, 100}
2 RDG-2x gDG {gLe, gDG, gS D, gHu} 2 0 {8, 8, 8, 8} {66, 66, 66, 66}
2 RDG-2x gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {100, 100, 100, 100}
2 RDG-2x gS D {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {67, 67, 67, 67}
2 RDG-2x gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, 4} {79, 79, 79, 79}
2 RDG-2x gS D {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {67, 67, 67, 67}
2 RDG-2x gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {79, 79, 79, 79}
2 RDG-2x gHu {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4} {66, 66, 66, 66}
2 RDG-2x gHu {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, 4} {72, 72, 72, 72}
2 RDG-2x gHu {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4} {66, 66, 66, 66}
2 RDG-2x gHu {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4} {72, 72, 72, 72}
3 RDG-2x gDG {gLe, gDG, gS D, gHu} 1 0 {12, 12, 12, 12} {136, 136, 136, 136}
3 RDG-2x gDG {gLe, gDG, gS D, gHu} 1 1

2 {X, X, X, X} {X, X, X, X}
3 RDG-2x gDG {gLe, gDG, gS D, gHu} 2 0 {12, 12, 12, 12} {136, 136, 136, 136}
3 RDG-2x gDG {gLe, gDG, gS D, gHu} 2 1

2 {X, X, X, X} {X, X, X, X}
3 RDG-2x gS D {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {136, 136, 136, 136}
3 RDG-2x gS D {gLe, gDG, gS D, gHu} 1 1

2 {X, X, X, X} {X, X, X, X}
3 RDG-2x gS D {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {136, 136, 136, 136}
3 RDG-2x gS D {gLe, gDG, gS D, gHu} 2 1

2 {X, X, X, X} {X, X, X, X}
3 RDG-2x gHu {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6} {136, 136, 136, 136}
3 RDG-2x gHu {gLe, gDG, gS D, gHu} 1 1

2 {X, X, X, X} {X, X, X, X}
3 RDG-2x gHu {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6} {136, 136, 136, 136}
3 RDG-2x gHu {gLe, gDG, gS D, gHu} 2 1

2 {X, X, X, X} {X, X, X, X}
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Table G.2: Order of accuracy on Cartesian Mesh with α = π
4 and p = 1. Each row corresponds to

four possible choices for the γ correction field. Unstable schemes labelled with an X.

p Interface Sol. Strategy Correction Field, ∇ ·Q Correction Field, γ χ θ Order of Accuracy, α = π
4

1 I-centered gDG {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2}
1 I-centered gDG {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, X, X}
1 I-centered gDG {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2}
1 I-centered gDG {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2}
1 I-centered gS D {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2}
1 I-centered gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, X}
1 I-centered gS D {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2}
1 I-centered gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
1 I-centered gHu {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2}
1 I-centered gHu {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X}
1 I-centered gHu {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2}
1 I-centered gHu {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 1 0 {4, 2, 2, 2}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 2, X, X}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 2 0 {4, 2, 2, 2}
1 I-continuous gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 2, 2, X}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2}
1 I-continuous gS D {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, X}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2}
1 I-continuous gHu {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, X}
1 REAFR gDG {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 2}
1 REAFR gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X}
1 REAFR gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
1 REAFR gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
1 REAFR gS D {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2}
1 REAFR gS D {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X}
1 REAFR gS D {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2}
1 REAFR gS D {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2}
1 REAFR gHu {gLe, gDG, gS D, gHu} 1 0 {2, 2, 2, 2}
1 REAFR gHu {gLe, gDG, gS D, gHu} 1 1

2 {2, 2, 2, X}
1 REAFR gHu {gLe, gDG, gS D, gHu} 2 0 {2, 2, 2, 2}
1 REAFR gHu {gLe, gDG, gS D, gHu} 2 1

2 {2, 2, 2, 2}
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Table G.3: Order of accuracy on Cartesian Mesh with α = π
4 and p = 2. Each row corresponds to

four possible choices for the γ correction field. Unstable schemes labelled with an X.

p Interface Sol. Strategy Correction Field, ∇ ·Q Correction Field, γ χ θ Order of Accuracy, α = π
4

2 I-centered gDG {gLe, gDG, gS D, gHu} 1 0 {6, 4, 4, 4}
2 I-centered gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X}
2 I-centered gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 6}
2 I-centered gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
2 I-centered gS D {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4}
2 I-centered gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X}
2 I-centered gS D {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
2 I-centered gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
2 I-centered gHu {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4}
2 I-centered gHu {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, X}
2 I-centered gHu {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
2 I-centered gHu {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 1 0 {6, 4, 4, 4}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, X, X, X}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
2 I-continuous gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, X, X}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
2 I-continuous gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, X}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
2 I-continuous gHu {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, X}
2 REAFR gDG {gLe, gDG, gS D, gHu} 1 0 {6, 4, 4, 4}
2 REAFR gDG {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X}
2 REAFR gDG {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 6}
2 REAFR gDG {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
2 REAFR gS D {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4}
2 REAFR gS D {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, X, X}
2 REAFR gS D {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
2 REAFR gS D {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
2 REAFR gHu {gLe, gDG, gS D, gHu} 1 0 {4, 4, 4, 4}
2 REAFR gHu {gLe, gDG, gS D, gHu} 1 1

2 {4, 4, 4, X}
2 REAFR gHu {gLe, gDG, gS D, gHu} 2 0 {4, 4, 4, 4}
2 REAFR gHu {gLe, gDG, gS D, gHu} 2 1

2 {4, 4, 4, 4}
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Table G.4: Order of accuracy on Cartesian Mesh with α = π
4 and p = 3. Each row corresponds to

four possible choices for the γ correction field. Unstable schemes labelled with an X.

p Interface Sol. Strategy Correction Field, ∇ ·Q Correction Field, γ χ θ Order of Accuracy, α = π
4

3 I-centered gDG {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6}
3 I-centered gDG {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X}
3 I-centered gDG {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6}
3 I-centered gDG {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6}
3 I-centered gS D {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6}
3 I-centered gS D {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X}
3 I-centered gS D {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6}
3 I-centered gS D {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6}
3 I-centered gHu {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6}
3 I-centered gHu {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X}
3 I-centered gHu {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6}
3 I-centered gHu {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 1 0 {8, 6, 6, 6}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 1 1

2 {8, X, X, X}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 2 0 {8, 6, 6, 6}
3 I-continuous gDG {gLe, gDG, gS D, gHu} 2 1

2 {8, 6, X, X}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6}
3 I-continuous gS D {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, X, X}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6}
3 I-continuous gHu {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, X, X}
3 REAFR gDG {gLe, gDG, gS D, gHu} 1 0 {8, 8, 8, 6}
3 REAFR gDG {gLe, gDG, gS D, gHu} 1 1

2 {8, X, X, X}
3 REAFR gDG {gLe, gDG, gS D, gHu} 2 0 {8, 8, 8, 8}
3 REAFR gDG {gLe, gDG, gS D, gHu} 2 1

2 {8, 8, 8, 8}
3 REAFR gS D {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6}
3 REAFR gS D {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X}
3 REAFR gS D {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6}
3 REAFR gS D {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6}
3 REAFR gHu {gLe, gDG, gS D, gHu} 1 0 {6, 6, 6, 6}
3 REAFR gHu {gLe, gDG, gS D, gHu} 1 1

2 {6, 6, X, X}
3 REAFR gHu {gLe, gDG, gS D, gHu} 2 0 {6, 6, 6, 6}
3 REAFR gHu {gLe, gDG, gS D, gHu} 2 1

2 {6, 6, 6, 6}
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This appendix contains two collections of data. The first collection is the report of Fourier analysis results for the RDG-2x scheme on Cartesian elements. The second collection is the order of accuracy analysis for the I-centered, I-continuous, and REAFR schemes on the Cartesian grid when $\alpha=\frac{\pi}{4}$.

\section{RDG-2x Results:}
Fourier analysis results of the RDG-2x scheme on the Cartesian mesh is provided in Table~\ref{tab:RDG2xAnalysis}. For this scheme, instead of sweeping over $\alpha$ values, we present only the $\alpha=\frac{\pi}{4}$ results. These results were sufficient to prove the scheme unstable for $p>2$ and $\theta=\frac{1}{2}$. Note that the scheme performance is independent of the correction field chosen for the $\boldsymbol{\gamma}$ calculation and the $\chi$ parameter. This independence is a result of the fact that the RDG-2x scheme uses the gradient of the recovered solution to calculate the common interface gradient, so the $\boldsymbol{\gamma}$ calculation is removed from the discretization.

\section{Cartesian Analysis of I-centered, I-continuous, and REAFR schemes with $\alpha=\frac{\pi}{4}$:}
The tables in Section~\ref{sec:FourierCart} list the calculated orders of accuracy for $\alpha=\frac{\pi}{7}$. In addition, the orders of accuracy in the $\alpha=\frac{\pi}{4}$ case are listed in Table~\ref{tab:CartesianAnalysisp1PENDING}, Table~\ref{tab:CartesianAnalysisp2PENDING}, and Table~\ref{tab:CartesianAnalysisp3PENDING} for $p=1$, $p=2$, and $p=3$, respectively. 

\begin{table}[!b]
\footnotesize
\centering
\caption{RDG-2x Analysis on Cartesian Mesh, $p\in\{1,2,3\}$ with $\alpha=\frac{\pi}{4}$ (no sweep over $\alpha$ values). Each row corresponds to four possible choices for the $\boldsymbol{\gamma}$ correction field, such that each row represents a particular choice of $p$, interface solution strategy, $\chi$, $\theta$, and the correction field for $\nabla \cdot \boldsymbol{\mathcal{Q}}$. Unstable schemes have an \textbf{X} listed for the spectral radius and order or accuracy.}
\label{tab:RDG2xAnalysis}
	%\begin{tabular}{L | M | N | P | Q l|cc}
	\begin{tabular}{l | p{2cm} | p{1.5cm} | l | l l|cc}
	\hline
		$p$ & Interface Sol. Strategy & Correction Field, $\nabla \cdot \boldsymbol{\mathcal{Q}}$ & Correction Field, $\boldsymbol{\gamma}$ & $\chi$  & $\theta$ & Order of Accuracy & Spectral Radius   \\
		\hline
$1$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ & $\{31,~31,~31,~31\}$\\
$1$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{33,~33,~33,~33\}$\\
$1$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ & $\{31,~31,~31,~31\}$\\
$1$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{33,~33,~33,~33\}$\\
$1$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ & $\{21,~21,~21,~21\}$\\
$1$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ & $\{24,~24,~24,~24\}$\\
$1$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ & $\{21,~21,~21,~21\}$\\
$1$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ & $\{24,~24,~24,~24\}$\\
$1$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ & $\{19,~19,~19,~19\}$\\
$1$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ & $\{19,~19,~19,~19\}$\\
$1$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ & $\{19,~19,~19,~19\}$\\
$1$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ & $\{19,~19,~19,~19\}$\\
		\hline
$2$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{8,~8,~8,~8\}$ & $\{66,~66,~66,~66\}$\\
$2$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{100,~100,~100,~100\}$\\
$2$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{8,~8,~8,~8\}$ & $\{66,~66,~66,~66\}$\\
$2$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{100,~100,~100,~100\}$\\
$2$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ & $\{67,~67,~67,~67\}$\\
$2$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{79,~79,~79,~79\}$\\
$2$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ & $\{67,~67,~67,~67\}$\\
$2$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{79,~79,~79,~79\}$\\
$2$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ & $\{66,~66,~66,~66\}$\\
$2$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{72,~72,~72,~72\}$\\
$2$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ & $\{66,~66,~66,~66\}$\\
$2$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ & $\{72,~72,~72,~72\}$\\
\hline
$3$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{12,~12,~12,~12\}$ & $\{136,~136,~136,~136\}$\\
$3$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$\\
$3$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{12,~12,~12,~12\}$ & $\{136,~136,~136,~136\}$\\
$3$ & RDG-2x & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$\\
$3$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ & $\{136,~136,~136,~136\}$\\
$3$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$\\
$3$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ & $\{136,~136,~136,~136\}$\\
$3$ & RDG-2x & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$\\
$3$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ & $\{136,~136,~136,~136\}$\\
$3$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$\\
$3$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ & $\{136,~136,~136,~136\}$\\
$3$ & RDG-2x & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ & $\{\mathbf{X},~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$\\
\hline
	\end{tabular}
\end{table}

\begin{table}[!b]
\footnotesize
\centering
\caption{Order of accuracy on Cartesian Mesh with $\alpha=\frac{\pi}{4}$ and $p=1$. Each row corresponds to four possible choices for the $\boldsymbol{\gamma}$ correction field. Unstable schemes labelled with an \textbf{X}. }
\label{tab:CartesianAnalysisp1PENDING}
	%\begin{tabular}{L | M | N | P | Q l|c}
	\begin{tabular}{l | l | l | l | l l|cc}
	\hline
		$p$ & Interface Sol. Strategy & Correction Field, $\nabla \cdot \boldsymbol{\mathcal{Q}}$ & Correction Field, $\boldsymbol{\gamma}$ & $\chi$  & $\theta$ & Order of Accuracy, $\alpha=\frac{\pi}{4}$ \\
		\hline
$1$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~\mathbf{X},~\mathbf{X}\}$ \\
$1$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~4,~\mathbf{X}\}$ \\
$1$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
$1$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~2,~\mathbf{X}\}$ \\
$1$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ \\
\hline
$1$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~2,~2,~2\}$ \\
$1$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~2,~\mathbf{X},~\mathbf{X}\}$ \\
$1$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~2,~2,~2\}$ \\
$1$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~2,~2,~\mathbf{X}\}$ \\
$1$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~2,~\mathbf{X}\}$ \\
$1$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~\mathbf{X}\}$ \\
$1$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~2,~\mathbf{X}\}$ \\
$1$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~\mathbf{X}\}$ \\
\hline
$1$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~2\}$ \\
$1$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$1$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$1$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
$1$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~2,~\mathbf{X}\}$ \\
$1$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ \\
$1$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{2,~2,~2,~\mathbf{X}\}$ \\
$1$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{2,~2,~2,~2\}$ \\
$1$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{2,~2,~2,~2\}$ \\
		\hline
	\end{tabular}
\end{table}

\begin{table}[!b]
\footnotesize
\centering
\caption{Order of accuracy on Cartesian Mesh with $\alpha=\frac{\pi}{4}$ and $p=2$. Each row corresponds to four possible choices for the $\boldsymbol{\gamma}$ correction field. Unstable schemes labelled with an \textbf{X}. }
\label{tab:CartesianAnalysisp2PENDING}
	%\begin{tabular}{L | M | N | P | Q l|c}
	\begin{tabular}{l | l | l | l | l l|cc}
	\hline
		$p$ & Interface Sol. Strategy & Correction Field, $\nabla \cdot \boldsymbol{\mathcal{Q}}$ & Correction Field, $\boldsymbol{\gamma}$ & $\chi$  & $\theta$ & Order of Accuracy, $\alpha=\frac{\pi}{4}$ \\
		\hline
$2$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~4,~4,~4\}$ \\
$2$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~6\}$ \\
$2$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~4,~\mathbf{X}\}$ \\
$2$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
\hline
$2$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~4,~4,~4\}$ \\
$2$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~\mathbf{X}\}$ \\
$2$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~\mathbf{X}\}$ \\
\hline
$2$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~4,~4,~4\}$ \\
$2$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~6\}$ \\
$2$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
$2$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~\mathbf{X},~\mathbf{X}\}$ \\
$2$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
$2$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{4,~4,~4,~\mathbf{X}\}$ \\
$2$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{4,~4,~4,~4\}$ \\
$2$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{4,~4,~4,~4\}$ \\
		\hline
	\end{tabular}
\end{table}

\begin{table}[!b]
\footnotesize
\centering
\caption{Order of accuracy on Cartesian Mesh with $\alpha=\frac{\pi}{4}$ and $p=3$. Each row corresponds to four possible choices for the $\boldsymbol{\gamma}$ correction field. Unstable schemes labelled with an \textbf{X}. }
\label{tab:CartesianAnalysisp3PENDING}
	%\begin{tabular}{L | M | N | P | Q l|c}
	\begin{tabular}{l | l | l | l | l l|cc}
	\hline
		$p$ & Interface Sol. Strategy & Correction Field, $\nabla \cdot \boldsymbol{\mathcal{Q}}$ & Correction Field, $\boldsymbol{\gamma}$ & $\chi$  & $\theta$ & Order of Accuracy, $\alpha=\frac{\pi}{4}$ \\
		\hline
		$3$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-centered & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{6,~6,~6,~6\}$ \\
\hline
$3$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{8,~6,~6,~6\}$ \\
$3$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{8,~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{8,~6,~6,~6\}$ \\
$3$ & I-continuous & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{8,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-continuous & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & I-continuous & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
\hline
$3$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{8,~8,~8,~6\}$ \\ 
$3$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{8,~\mathbf{X},~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{8,~8,~8,~8\}$ \\
$3$ & REAFR & $g_{DG}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{8,~8,~8,~8\}$ \\
$3$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & REAFR & $g_{SD}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{6,~6,~6,~6\}$ \\
$3$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $1$ & $\frac{1}{2}$ & $\{6,~6,~\mathbf{X},~\mathbf{X}\}$ \\
$3$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $0$ & $\{6,~6,~6,~6\}$ \\
$3$ & REAFR & $g_{Hu}$ & $\{g_{Le},g_{DG},g_{SD},g_{Hu}\}$ & $2$ & $\frac{1}{2}$ & $\{6,~6,~6,~6\}$ \\
		\hline
	\end{tabular}
\end{table}
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