
Integrating Risk Science and Urban Planning:
Mitigating Hazards and Protecting Our Communities

by

Thomas McLeod Logan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2019

Doctoral Committee:
Professor Seth Guikema, Chair
Associate Professor Roger Flage, University of Stavanger
Assistant Professor Robert Goodspeed
Assistant Professor Joi Mondisa



Tom McLeod Logan
tomlogan@umich.edu

ORCID iD: 0000-0002-9209-3018

© Tom Logan 2019

https://tomlogan.co.nz
mailto:tomlogan@umich.edu
https://orcid.org/0000-0002-9209-3018


Dedication
My family and friends

You give me a life full of exploration and nature. You make me care about our world

ii



Kia Kaha, Aotearoa

iii



Acknowledgments

I will start by acknowledging my closest friends: Andrew Nisbet and Tim Williams. Inciden-
tally, who are also both contributors to various chapters within this dissertation. Working with
you is always a great pleasure; You are both exceptional scientists and I look forward to our
next projects and adventures together.

Also thank you to my other close friends and housemates, who have made my time in Ann
Arbor an absolute pleasure: Jeremiah, Tessa, Matti, Alex, Lauren, Adam, Matt, Emily, and oth-
ers. A special thank you to Jer, Tessa, and Matti for your enthusiasm for adventures and general
support over the past 12 months. On this note, I also want to thank the Southern Michigan Ori-
enteering Club (SMOC), especially Barbara and Jens. Spending the weekends orienteering and
adventuring racing in the Michigan outdoors makes me love life.

Thank you to my collaborators on the various projects that I have worked on. I thoroughly
enjoy collaborating on projects and you provide joy, motivation and encouragement. Thank
you all for your enthusiasm and guidance. I’m honored to have tackled these projects with
you. A special thanks to Jeremy Bricker. Thanks for hosting me at Tohoku University and for
your help with the tsunami modelling: that paper and the tour through the tsunami damaged
area further opened my eyes to the challenges for hazard mitigation and adaptation. Thank
you to Roger, Rob, and Joi for accepting the task of reviewing this dissertation; it would have
been easier if I’d stuck to a single discipline - your insights and advice have been stellar. Also,
I want to acknowledge the Michigan University-wide Sustainability and Environment (MUSE)
initiative and the key people that have breathed life into it. I’ve learned a great deal about
interdisciplinary collaboration and you’ve enhanced my research and perspective more than I
can articulate.

Thank you to a range of staff at the University of Michigan. Notably Nicole Scholtz of the

iv



Clark GIS library for the spatial data help; Andria Rose and Mariah Fiumara in the College of
Engineering for helping improve graduate life; and Chris, Rod, Mint, and Rebekah in IOE for
the vast array of things you’ve helped me with.

This work was funded by Fulbright New Zealand, the John R Templin Trust, the Johns Hop-
kins University’s Dean Robert H. Roy Fellowship and Gordon Croft Fellowship, the University
of Michigan’s Rackham PreDoctoral Fellowship, and the US National Science Foundation (grant
numbers CRISP-1638197 and SEES-1631409). This funding is gratefully acknowledged.

I also must acknowledge and thank the University of Canterbury, my alma mater. The edu-
cation I received there was outstanding and I was completely prepared for taking on the world.
Thank you to the faculty I interacted with there, I cannot wait to work with you all again in the
near future.

Another huge thank you to my “senior” academic siblings: Andrea, Roshi, Allison, Gina, and
Julie. I couldn’t have asked for more incredible role models and although we weren’t in the
same place for long, your continued guidance and advice throughout was so helpful and so
appreciated.

Finally, and certainly not least, I want to thank my advisor: the newly minted Professor
Seth Guikema. It has been a thoroughly interesting and fun five years. We first met quite
spontaneously while I was on holiday in Japan. This spontaneity is something we share and
it has been fun to jump into various projects together. I recall replying to his invite to move
university after a year with “sure, as long as you’re not moving to the middle of [State redacted
for political correctness - don’t worry, it wasn’t Michigan].” Thank you Seth for providing me
the freedom inmy research direction. I realize that this is a privilege and I am truly appreciative.
This academic freedom has fed my curiosity about and passion for the world. Your mentorship
has prepared me very well for my next adventure.

v



Table of Contents
Dedication ii

Acknowledgments iv

List of Figures ix

List of Tables xii

List of Appendices xiii

Abstract xv

Chapter 1. Introduction: Opportunities for risk science in urban planning 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The concept versus measure of risk . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Communication and perception . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Understanding Complex Systems . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Societal decision making and co-production . . . . . . . . . . . . . . . 12
1.2.6 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2. Hard-adaptive measures and maladaptation 18
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Coupling hazard and land-use change models . . . . . . . . . . . . . . . . . . 20
2.3 Expected events: Hard-adaptive measures reduce vulnerability . . . . . . . . . 21
2.4 Unexpected events: Need for capturing the feed backs . . . . . . . . . . . . . . 21
2.5 Community awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3. Data mining and urban land surface temperature 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



3.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Cities studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Land surface temperature . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Independent variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Data preparation and robustness . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 4. Evaluating urban accessibility 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Review of measuring proximity . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Procedure for measuring proximity . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Step 1: Data inputs and processing . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Step 2: Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4 Step 3: Demographic apportioning . . . . . . . . . . . . . . . . . . . . 56
4.3.5 Step 4: Quantification and visualisation . . . . . . . . . . . . . . . . . 56

4.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Multi-city comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.3 Removing the thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.4 Benefits of fine resolution . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.5 Network distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Limitations and further opportunities . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.1 Further opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Summary for policy makers and practitioners . . . . . . . . . . . . . . . . . . 66

Chapter 5. Building community resilience through equitable access to essen-
tial services 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Equitable access to essentials (EAE) resilience framework . . . . . . . . . . . . 71

5.2.1 Acceptable access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Equality and equity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Promoting transformation . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.4 Spatially explicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Overview and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii



5.4 Application throughout the hazard cycle . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Mitigation and preparedness . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.2 Emergency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.3 Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.4 Opportunity development . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 6. Risk: Revising the concept and description to include time 84
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 The risk definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Alternative conceptual definitions of risk . . . . . . . . . . . . . . . . . 88
6.3 The risk description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.1 John’s illness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.2 A community threatened by hazards . . . . . . . . . . . . . . . . . . . 90
6.4.3 Exposure/dose-response . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.4 Nuclear waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 7. Risk: A holistic framework for the analysis and management of
resilience 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Misconceptions of risk and its description . . . . . . . . . . . . . . . . 98
7.3 Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 Risk as a holistic framework for resilience . . . . . . . . . . . . . . . . . . . . 103
7.5 Conceptual example of an opportunity . . . . . . . . . . . . . . . . . . . . . . 106
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 8. Conclusion 110
8.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2 Final remarks and future research . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2.1 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2.2 Social justice and “bouncing forward” . . . . . . . . . . . . . . . . . . 114
8.2.3 Urban form and hazards . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2.4 Aotearoa New Zealand . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendices 116

Bibliography 178

viii



List of Figures
Figure 2.1 How seawalls affect development patterns and mean damage . . . . . . 22
Figure 2.2 How the levee and adaptation effect is caused by seawalls . . . . . . . . 24
Figure 2.3 Awareness of a hazard can reduce damage from tsunami . . . . . . . . 25

Figure 3.1 The nighttime land surface temperature in 𝑜C, gridded into 500-meter
cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.2 The distribution of nocturnal and diurnal land surface temperature of
the cities studied. 100m resolution. . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.3 The land surface temperature in 𝑜Cof the cities studied at a 100m square
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.4 Holdout cross-validation results at 100-meter resolution . . . . . . . . . 39
Figure 3.5 Variable influence on LST at 100-meter resolution . . . . . . . . . . . . 41
Figure 3.6 Partial dependence plots for LST at 100-meter resolution . . . . . . . . 42
Figure 3.7 Nighttime, mean: A two-dimension partial dependence plot showing

how the land surface temperature (𝑜𝐶 , contours) changes the variables on the
𝑥 and 𝑦 axes, while the remaining variables are unchanged. . . . . . . . . . . 45

Figure 3.8 Daytime, mean: A two-dimension partial dependence plot showing
how the land surface temperature (𝑜𝐶 , contours) changes the variables on the
𝑥 and 𝑦 axes, while the remaining variables are unchanged. . . . . . . . . . . 46

Figure 4.1 Distribution of distance to nearest park . . . . . . . . . . . . . . . . . . 57
Figure 4.2 The distance to parks at different spatial scales . . . . . . . . . . . . . . 58
Figure 4.3 Histogram of proximity to nearest park . . . . . . . . . . . . . . . . . . 61

Figure 5.1 Equitable and acceptable access to services is essential for a communi-
ties viability and cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.2 Access resilience in Wilmington, NC on the 18th of September, 2018 . . 71
Figure 5.3 The recovery curves, for Panama City following Michael andWilming-

ton following Florence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 5.4 How the distribution of access maps onto the resilience function (aka

recovery curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 5.5 Comparing how access to essentials varies between demographic groups

and initially access-rich/poor residents . . . . . . . . . . . . . . . . . . . . . . 76
Figure 5.6 Resilience of access in Panama City, FL on the 14th of October, 2018 . . 78

ix



Figure 5.7 The map of distance to nearest operational service . . . . . . . . . . . . 79
Figure 5.8 This resilience function (aka recovery curve) shows how the access,

and its distribution, may change before, during, and after a hazard. The hazard
cycle shows how the EAE resilience framework can be utilized by decision-
makers from mitigation to recovery. . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 7.1 The risk-picture for a community. . . . . . . . . . . . . . . . . . . . . . 104
Figure 7.2 Community properties that characterize resilience can bemanaged and

balanced within the concept of risk. . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 7.3 Creating a frequency-number curve for representing risk and visualiz-

ing interdependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure A.1 The case study location . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure A.2 The distribution of tsunami height probabilities . . . . . . . . . . . . . 121
Figure A.3 The population growth for the simulations . . . . . . . . . . . . . . . . 123
Figure A.4 The population growth for the simulations . . . . . . . . . . . . . . . . 125
Figure A.5 The effect of developed cells on surrounding development . . . . . . . . 126
Figure A.6 Awareness of tsunami hazard decreases with time . . . . . . . . . . . . 127
Figure A.7 The desirability of a cell and its distance from land . . . . . . . . . . . . 129
Figure A.8 An example of the model and the different land-use . . . . . . . . . . . 129
Figure A.9 Development appeal based on distance from the road . . . . . . . . . . 130
Figure A.10 Development appeal based on distance from the ocean . . . . . . . . . 130
Figure A.11 Validation of the land-use model . . . . . . . . . . . . . . . . . . . . . . 132
Figure A.12 Validation of the land-use model . . . . . . . . . . . . . . . . . . . . . . 133
Figure A.13 Comparing the simulated vs observed water inundation due to the 2011

tsunami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure A.14 Comparing the simulated vs observed water inundation due to the 1933

tsunami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure A.15 Comparing the simulated vs observed water inundation due to the 1896

tsunami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure A.16 Validating the tsunami simulation model . . . . . . . . . . . . . . . . . 137
Figure A.17 Sensitivity analysis to tsunami intensity . . . . . . . . . . . . . . . . . . 139
Figure A.18 Sensitivity analysis to ocean proximity . . . . . . . . . . . . . . . . . . 140
Figure A.19 Sensitivity analysis to the land-use stochastic parameter . . . . . . . . 142
Figure A.20 Sensitivity analysis to the land-use stochastic parameter . . . . . . . . 143

Figure B.1 Handling of missing data for the CNN . . . . . . . . . . . . . . . . . . . 148
Figure B.2 CNN model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure B.3 City specific partial dependence plots at the 500-meter resolution . . . 150
Figure B.4 City specific partial dependence plots at the 100-meter resolution . . . 151
Figure B.5 Holdout cross-validation results at 500-meter resolution . . . . . . . . . 152
Figure B.6 Variable influence on LST at 500-meter resolution . . . . . . . . . . . . 153

x



Figure B.7 Partial dependence plots for LST at 500-meter resolution . . . . . . . . 154
Figure B.8 Partial dependence contour plots for LST at 500-meter resolution dur-

ing the night . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure B.9 Partial dependence contour plots for LST at 500-meter resolution dur-

ing the day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure B.10 Percentage tree canopy cover and impervious surface are 100% corre-

lated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure C.1 Snapping in Google Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure C.2 Snapping in Open Street Maps . . . . . . . . . . . . . . . . . . . . . . . 162
Figure C.3 Comparing routing between Google and Open Source Routing Machine 164
Figure C.4 Routing differences due to walking time . . . . . . . . . . . . . . . . . . 166
Figure C.5 Difference between Google Maps and Open Source Routing Machine

proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure C.6 Error when using Euclidean distance instead of network distance . . . 170
Figure C.7 Distribution of distances to hospital and schools . . . . . . . . . . . . . 170
Figure C.8 Distribution of distance to nearest services . . . . . . . . . . . . . . . . 171
Figure C.9 Distribution of time to nearest supermarket . . . . . . . . . . . . . . . . 172
Figure C.10 Map showing potential food deserts in Baltimore . . . . . . . . . . . . . 173

xi



List of Tables
Table 1.1 Definitions of risk from the urban planning and risk literature . . . . . . 5
Table 1.2 Cox’s taxonomy of uncertainties . . . . . . . . . . . . . . . . . . . . . . 8

Table 4.1 Review of approaches for evaluating proximity . . . . . . . . . . . . . . 54
Table 4.2 Percentage of the population with access to services . . . . . . . . . . . 60

Table 7.1 Definitions of risk from the planning, hazards, and climate change lit-
erature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 7.2 Identifying aspects of resilience from the definitions . . . . . . . . . . . 101
Table 7.3 The terminology we adopt in this paper. . . . . . . . . . . . . . . . . . . 102

Table A.1 Recent tsunamis in Taro . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table A.2 Inundation levels for the simulated tsunami . . . . . . . . . . . . . . . . 118
Table A.3 Source parameters for tsunami causing earthquakes . . . . . . . . . . . 119
Table A.4 The computational parameters for the Delft simulation model . . . . . . 119

Table B.1 The data sources for the LST analysis. . . . . . . . . . . . . . . . . . . . 145
Table B.2 Covariates included after accounting for multicollinearity. . . . . . . . . 146

Table C.1 Differences between Google and Open Source Routing Machine . . . . . 165
Table C.2 Open Street Map query keys . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table C.3 Data sources for city services . . . . . . . . . . . . . . . . . . . . . . . . 167
Table C.4 Percentage of population living within different time thresholds to near-

est supermarkets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Table E.1 Definitions of resilience from across the literature. These definitions are
classified in Table 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xii



List of Appendices
Appendix A. Supplements to Hard-adaptive measures and maladaptation 116

A.1 Model framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2 Case study location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3 Tsunami model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3.1 Synthetic tsunami library . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.3.2 Tsunami occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.3.3 Tsunami magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.3.4 Effect of Seawalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.4 Land Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.5 Land Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.5.1 Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.5.2 Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.6 Transition potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.6.1 Neighborhood effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.6.2 Tsunami awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.6.3 Cell accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.6.4 Cell suitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.7 Validation of the urban development model . . . . . . . . . . . . . . . . . . . 128
A.7.1 1901-1949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.7.2 1949-1969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.7.3 River and marshland effect . . . . . . . . . . . . . . . . . . . . . . . . 134

A.8 Validation of Inundation Model Against Historical Tsunamis . . . . . . . . . . 134
A.9 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.9.1 Tsunami Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.9.2 Proximity to the ocean . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.9.3 Stochastic perturbation of land-use change . . . . . . . . . . . . . . . 141

A.10 Awareness and the large seawall height . . . . . . . . . . . . . . . . . . . . . 141
A.11 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.11.1 Hard-adaptive measures . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.11.2 Soft-adaptive measures . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix B. Supplements to Data mining and urban land surface temperature 144
B.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiii



B.2 Covariates included in models . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.3 Technical appendix: convolutional neural network . . . . . . . . . . . . . . . 147

B.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.3.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.4 City specific results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.5 500-meter resolution results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.6 Additional figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Appendix C. Supplements to Evaluating Urban Accessibility 158
C.1 Using the Open-Source Routing Machine . . . . . . . . . . . . . . . . . . . . . 158

C.1.1 Mac and Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.1.2 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.2 Consideration of data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.2.1 Volunteered Geographical Information (VGI) . . . . . . . . . . . . . . 160
C.2.2 Coordinate snapping and incomplete network . . . . . . . . . . . . . 160
C.2.3 Unconnected ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.3 Considerations for choice of routing algorithm . . . . . . . . . . . . . . . . . 161
C.3.1 Motivating issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.3.2 Comparing OSRM and Google Maps . . . . . . . . . . . . . . . . . . . 162
C.3.3 Travel profiles and congestion . . . . . . . . . . . . . . . . . . . . . . 164

C.4 Spatial distribution of differences between OSRM and Google . . . . . . . . . 165
C.5 Differences between OSRM (Network distance) and Euclidean distance . . . . 166
C.6 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
C.7 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
C.8 Supplemental figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

AppendixD. Supplements to Building community resilience through equitable
access to essential services 174
D.1 Technical guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Appendix E. Supplements to Risk: A holistic framework for resilience 176

xiv



Abstract

The climate crisis is an unprecedented threat. We urgently need to design our infrastructure,
economic, and agricultural systems and our communities to withstand hazards and reduce risk
to address this threat. This dissertation contributes by exploring the potential of data-driven
urban planning and through increasing our understanding of how risk and data science can be
used to build the resilience of our communities.

Central to this thesis is the understanding that risk analysis (the assessment, characteriza-
tion, communication, and management of risk, along with related policy) can enhance urban
planning to better mitigate hazards and protect our communities. To improve risk analysis’s
efficacy for use in urban planning, there are a series of necessary advances to the science of
risk (i.e., the knowledge, frameworks, and principles that underlie risk analysis). Each chapter
of this dissertation contributes to these advances, including how we focus risk analysis for the
betterment of people, howwe leverage data science to understand the role of urban form in haz-
ard mitigation, how we incorporate spatiotemporal and behavioral feedbacks into risk analysis,
and how we capture resilience within the risk concept. The primary aims of the dissertation
were to:

1. Explore the potential for risk science to be used to support urban planning

2. Advance methods and understanding of spatiotemporal risk analysis

3. Propose an operational approach to building the resilience of communities to hazards

The first chapter identifies how urban planning challenges can develop and motivate devel-
opments in risk science. I then advance approaches for conducting risk analysis that captures
spatiotemporal and behavioral feedbacks using a coupled complex system model in the second
chapter. The third chapter uses machine learning and spatial data to explore how urban charac-
teristics are associated with high temperature, that could lead to higher risk. The next section,
chapters four and five, focuses risk analysis on people. I propose that the focus of resilience

xv



efforts be on the equitable provision of essential services, such as health care, food, and edu-
cation. Specifically, we can measure how people’s access to essential services changes due to
a hazard and across demographic groups. The framework I propose can be used by decision
makers before, during, and after a hazard to improve the social sustainability and reduce the
long-term risk of a community. In the final two chapters I argue that wemust explicitly consider
the dimension of time in risk analysis and that this means that the pillars of resilience can be
addressed within the concept of risk. This understanding, coupled with the other work within
this dissertation, means that resilience, and resilience analysis, is well within the purview of
modern risk analysis.
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Chapter 1

Introduction: Opportunities for risk
science in urban planning 1

1.1 Introduction

Air pollution, chronic disease, natural disasters, urban sprawl, and climate change; these are
examples of failures at the intersection of urban planning and risk science. Consider the hor-
rific damage Hurricane Harvey wrought on Houston, Texas in 2017. This damage was severely
exacerbated by inadequate integration of risk analysis and urban planning. This natural event
was turned into a man-made disaster in part by the lack of zoning laws that, among other
effects, lead to the concreting of the water catchment basins that previously acted as natural
flood defenses [136]. This situation is clearly pertinent to risk analysis: the assessment, char-
acterization, communication, and management of risk, along with related policy. Adequate
integration of risk analysis into urban planning would mean that our cities and communities
can be designed to reduce the consequences from such an event. While natural events may
not be predictable, they can be anticipated, and the design of our cities and the capacity of our
people and governments to respond significantly impacts whether a natural event becomes a
disaster [217, 255]. Yet, astonishingly, “natural” disasters are considered a fact of life in today’s
cities. With climate change, population rise, and environmental degradation exacerbating the
consequences of poor planning, we urgently need to improve how risk is incorporated into

1I intend to submit a modified version of this chapter as a perspective paper to the Journal of Risk Analysis.
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urban planning practice.
Urban planning and risk analysis face related challenges. One challenge is that urban plan-

ning involves managing irreducible uncertainty as the effects of decisions span decades, if not
centuries. For example, cities like Houston must decide if and how to prepare for hurricanes.
The intensity and frequency of those hurricanes increasingly depends on climate change, which,
in turn, depends on complex atmospheric reactions and human (in)action. Urban planning also
requires managing interdependent, complex adaptive systems. These systems have spatiotem-
poral and nonlinear feedbacks that are often counter intuitive [119]. For example, seawalls not
only damage neighboring coastline [28], but can also increase the long-term vulnerability of the
towns they are intended to protect [56, 200]. Urban planning also requires communication of
risk that is plausible to potentially partisan decision makers and justifiable to the public. These
challenges are not limited to managing hazards. For instance, urban planning involves de-
signing healthy cities to reduce people’s incidence of chronic disease. Furthermore, increasing
road capacity does not relieve traffic congestion, but rather induces more vehicle miles traveled
[103]. Intuition-based decision making can therefore be either ineffectual or detrimental [119].
Clearly, we need to understand these complex causative pathways and evaluate the trade-offs
between options. However, we often have little data and are unable to conduct controlled ex-
periments. These challenges are pertinent to risk science, that is, these challenges force risk
analysts to devise frameworks and advance the knowledge of the field in a way that supports
risk analysts tackling a broad array of problems.

Risk science has foundational questions, questions common to a range of applications [24],
that are also relevant to planning, for example [349]:

• Has the full spectrum of potential risks and benefits been identified and weighed?

• What are the risk tradeoffs or countervailing risks?

• How are potential risks and benefits distributed in the population?

• What broader social, economic, legal, and public policy issues should be considered?

• What are perceived risks and benefits and how do these compare to actual?

• What is the best way to communicate risk/benefit information?

Underlying all of these is uncertainty in both the occurrence of an event and its consequences.
Collaborations to tackle these shared challenges would find promising synergies.
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The time to integrate risk science with urban planning is overdue. Governments are increas-
ingly realizing there is a climate emergency [38, 216, 228] that will require significant systemic
changes to how society operates [168, 348]. The urban system must also undergo changes and
there are calls for new urban design principles that are grounded in risk [96, 341]. However,
these calls lack specifics on what risk is or how it can be leveraged. Additionally, relevant
research calls are advocating further investigation into risk-related questions [105, 265, 271].
Examples we have identified where urban planning challenges that fall into foundational risk
science issues include:

• Uncertainty
– Exposure to natural events and increases in severity or frequency
– Black swans2 or unknown threats
– Lack of or poor information related to systems studied such as the land-use or the

fragility of structures
• Communication and perception

– Scarcity of risk expertise in the relevant authorities
– Limited trust, understanding, and confidence in risk analysis by elected officials and

stakeholders
– Psychological difficulties in how the people perceive hazards, which lead them to

simply ignore or discount the potential for disaster [57], including:
∗ Themisconception that defensive structures have eliminated exposure [57, 108,
200]

∗ The inability to perceive probabilities or the potential to become fatalistic.
• Systems and causality

– Understanding how urban form affects residents’ risk of disease or poor mental or
physical health

– Predicting the consequences of an event on a city
– Extrapolating models to predict consequences from events exacerbated by climate

change
• Societal risk and decision making

– The externalization of costs because financial burden is often assumed through pub-
lic investment in defensive measures or insurance programs [57, 272, 301].

– Deciding when and how to respond to threats such as sea level rise
• Ethics

2a surprising extreme event relative to the present knowledge [13]

3



– Ensuring hazard protection is equitably distributed
– Insuring properties vulnerable to hazards

I argue that urban planning challenges, such as these, can motivate advances in founda-
tional risk science. The challenges open numerous collaboration opportunities, data sets, focus
groups, and case studies. Risk analysts can leverage these to advance risk analysis practices
and research that is relevant to a variety of applications, thus furthering how we understand,
assess, communicate, and manage risk [21].

This dissertation demonstrates some of these synergies and contributes to our understanding
of risk and resilience, spatial and temporal risk, incorporating feed backs, and hazard mitiga-
tion. In this introduction I identify challenges in urban planning that provide impetus and
opportunity for foundational advances in risk science. My primary goal is to motivate research
at this interface that is both interdisciplinary and impactful.

The aims of the dissertation were to:

1. Explore the potential for risk science to be used to support urban planning

2. Advance methods and understanding of spatiotemporal risk analysis

3. Propose an operational approach to building the resilience of communities to hazards

In the remainder of this introductory chapter, I identify and elaborate on the opportunities of
professionals in risk science to involve themselves in urban planning for the benefit of both
fields. In doing so I discuss the contribution of the subsequent chapters. I conclude with an
outline of the work included in this dissertation.

1.2 Opportunities

In this section, I present issues of foundational importance to risk science and describe how
urban planning challenges motivate their receiving attention. These foundational risk issues
were identified and described by risk scholars previously [15, 24]. My contribution is to discuss
how each is relevant to urban planning. The knowledge gained from addressing these urban
planning challenges would be relevant and influential for a range of other risk assessment and
risk management applications. The urgency of preparing for global and societal change should
motivate our dedication to these issues.
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1.2.1 The concept versus measure of risk

Table 1.1: Definitions of risk from the urban planning and risk literature
Authors Definition

Knight (1921), [181] Risk is measurable uncertainty (therefore not uncertainty)
Mack (1971), [206] Risk: two or more states of the world are possible and the

assignment of the probability of each can be made with con-
fidence. Uncertainty: cases where information is inadequate
and observation disorderly.

Kasperson et al. (1985) [174] threats to human beings and what they value
Cutter et al. (1996), [85] Risk is the likelihood of occurrence (or probability) of a haz-

ard.
Risk has two domains: 1) potential sources of risk (industrial,
flooding) and contextual nature of the risk (high consequence,
low consequence) 2) simple probabilistic estimate based on
frequency of occurrence

Deyle et al. (1998), [96] Risk = magnitude x probability
Intergovernmental Panel on
Climate Change Fifth As-
sessment (2014), [115]

The potential for consequences where something of value is
at stake and where the outcome is uncertain, recognizing the
diversity of values. Risk is often represented as probability
of occurrence of hazardous events or trends multiplied by the
impacts if these events or trends occur. Risk results from the
interaction of vulnerability, exposure and hazard.

Aven (2013), [13]; Aven and
Renn (2009), [23]

Risk is uncertainty about the occurrence and severity of an
event and its consequences

(𝐶, 𝑈)

There is major confusion about the concept of risk [15]. These misconceptions exist within
the professional risk analysis bodies and have propagated into misunderstandings of risk by
other disciplines. This hinders the awareness of risk science knowledge and techniques by
other disciplines (Chapter 7) and fosters the ill-advised divergence of fields such as “resilience
analysis” that, in many cases, means the existing risk literature is ignored [20].

5



The conceptual definition of risk we recommend is [23]:

Risk is uncertainty about and severity of the consequences (or outcomes) of an
activity with respect to something that humans value.

This is expressed as (𝐶, 𝑈), where 𝐶 is the consequence of the activity, and 𝑈 indicates that
there is uncertainty. The risk can be described using (𝐴′, 𝐶′, 𝑄, 𝐾) where 𝐴′ is the event
identified, 𝐶′ are the consequences, 𝑄 is the measure of uncertainty, and K is the background
knowledge that informed 𝐶′ and 𝑄.

However, this definition is not widely adopted and table 1.1 presents selected definitions
of risk, the first six being common in the urban planning literature. A source of confusion
about risk is a failure to distinguish between the concept of risk and its measure. This is an
essential distinction. This distinction is similar for the case of distance; while there are multiple
measures for distance (e.g. Euclidean, Manhattan, Network etc.) the concept of distance is
without controversy [15].

The confusion between the concept and its measure partially explains these definitions. The
problem arises when a simple measure is used and then incorrectly described as the definition.
For example, [85] defines risk as the probability of a hazard occurring. Another definition is
that risk is the threat [174]. A third example is the definition that risk is expected consequence:
“Risk = magnitude x probability” [96]. These contrasting definitions are in fact simple measures
of risk. The problem with treating measures like these as definitions, as this literature does, is
that it limits how and when risk and therefore risk science can be used.

Another major misconception of risk is based on Knight’s [181] idea that risk is only relevant
in situations with ‘measurable’ uncertainty [181, 206]. This has led to probability-based defini-
tions of risk, such as those used by the IPCC [115]. Using a single probability or distribution to
describe uncertainty can mask information about the portion of underlying knowledge that is
epistemic (arising from a lack of knowledge) versus aleatory (arising from natural variations)
[102, 253, 296] as well as the strength of the knowledge which supports the assigning of those
probabilities [296].

It is therefore unsurprising that urban planners are experiencing challenges when they limit
the concept of risk to these definitions. These definitions are clearly unsuitable for situations
with uncertainty or complexity [19] and urban planners are working in situations with both.

Instead, the recommended definition, (𝐶, 𝑈), incorporates a broader understanding of uncer-
tainty into the concept of risk. It enables measures of risk to be include a qualitative description
of uncertainty and the strength of knowledge upon which the uncertainty and consequence are
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based. Quantitatively or qualitatively capturing the uncertainty and strength of the knowledge
supporting estimates of consequences and likelihoods of events is essential in the era of climate
change given that baseline conditions are shifting and historical data is decreasingly reliable
[296].

Ultimately, the recommended definition provides a general risk concept which captures both
consequence and uncertainty within risk. This makes risk relevant for planners. Addressing
misconceptions of risk is remains a major discussion. For example, we argue that comprehen-
sive risk analysis captures the entire consequences, from event to post-recovery, of a hazard.
This perspective means that resilience analysis [197] is included within risk analysis [20]. Ur-
ban planning should be part of the discussion as we continue to discuss and research how we
measure, represent, and communicate risk.

1.2.2 Uncertainty

Uncertainty occurs when there is incomplete knowledge [253]. As we have discussed, uncer-
tainty is an inherent part of the risk concept. If risk was only suitable for situations when an
‘objective’ probability distribution could be assigned, it would be useless for most situations of
interest [15], including urban planning [1]. In fact, the goal of risk is to support management
in situations when phenomena are not fully understood [253], that is, cases of uncertainty. The
task now is to explore how to measure, represent, and communicate the uncertainty.

Uncertainty is commonly expressed using three dimensions: 1) the magnitude of uncertainty,
2) the nature of the uncertainty, and 3) the source of the uncertainty. The magnitude of un-
certainty describes the severity of uncertainty from complete knowledge through to complete
ignorance [1, 80, 117, 337]. The magnitude of uncertainty has been represented as a spectrum
[337] and as more discrete levels [80](see Table 1.2). The nature of the uncertainty describes
whether the uncertainty is epistemic or aleatory (caused by lack of knowledge or inherent
variability, respectively). The source of the uncertainty refers to which aspect or quality of the
system that is uncertain.

Every aspect of a system has some magnitude of uncertainty [1, 337]. Identifying the source
as a dimension of uncertainty formalizes thorough consideration of each of the system’s com-
ponents. For example, in a model, the sources (or locations) of potential uncertainty include
the input data and parameters, the structure of the model, the system’s representation, and the
model’s output [337]. These sources and the potential magnitude of uncertainty is described in
Table 1.2, which explicitly outlines levels in the uncertainty spectrum.
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Table 1.2: Cox’s taxonomy of uncertainties [80]

In urban planning, uncertainty includes environmental and planning process uncertainty [1].
Environmental uncertainty includes politics and natural events, while planning process uncer-
tainty includes the uncertainty in decision-maker values, priorities on objectives, and levels of
risk. The planner must address uncertainties at the intersection of these sources, such as re-
sulting uncertainty on climate impacts to which a community is exposed [1, 219, 255]. This un-
certainty includes both aleatory and epistemic uncertainty. However, to further complicate the
uncertainty in urban planning, there are factors, such as climate change, in which the relevance
of past data is questionable, and experts disagree so there is no way to establish probabilistic
representations of the uncertainty that are both informative and that we can be confident in
[24]. This is known as deep uncertainty [44, 80, 192].

Accounting for uncertainty, and deep uncertainty in particular, requires a change to tradi-
tional approaches to decision making. Traditionally, decisions are made based on probabilistic
predictions of the future and the subsequently deduced ‘optimal’ course of action. In these
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cases, probability distributions are the most common way to represent uncertainty. Proba-
bilistic methods offer the advantages of a strong theoretical background and long history of
development of practical methods. However, in cases of deep uncertainty or when the infor-
mation on which the probabilities are defined is lacking, these probabilistic methods cannot be
used because the probabilistic representations either do not exist or are not credible. Instead
there are two approaches from risk literature that are emerging to address the problem of prob-
ability assessment under uncertainty. The first approach is by changing the assessment from
one of precise probabilities and probability distributions to either probability bounds or non-
probabilistic representations of uncertainty such as fuzzy sets [117]. The second is to change the
focus of the decision support framework to finding robust or adaptive [80], rather than optimal,
solutions. That is, rather than conducting an uncertainty assessment followed by optimization,
which can fail due to sensitivity in parameter variations [44], the aim is to find alternatives
that perform well over a wide range of the possible outcome scenarios. The main examples of
this approach are Robust Optimization [44, 91], Robust Decision Making (RDM) [146, 192, 295]
and Info-Gap [41]. A further example of this second approach exists within the urban planning
literature: scenario planning. Scenario planning is a consultative process that consists of con-
ceiving, crafting, and evaluating possible futures [35]. Thinking about these alternative futures
enables decisions to be explored [67] and so it can be used as an exploratory tool to analyze
options and explore robustness [64].

Advances still need to be made. Questions remain about the appropriate use and theory
of each approach in terms of search for robust or adaptive solutions for situations of deep
uncertainty [146, 276, 296]. Each approach has different limitations in how risk is considered,
how uncertainty is captured, how results are presented, and how stakeholders are engaged in
the process. How society deals with sea level rise is but one example where adaptive or robust
solutions will be useful. More generally, reflecting uncertainty in risk analysis requires thinking
beyond probabilities, [117] and advances in foundational risk issueswill assist planners. Further
questions include how to apply the precautionary principle3 and how to plan for unforeseen
events and black swans [15] as well as how to communicate geographic uncertainty [120].

3The precautionary principle states that where there are threats of serious or irreversible damage, lack of full sci-
entific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental
degradation [280]
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1.2.3 Communication and perception

Communication and perception of risk is vital to urban planning. Risk communication has
undergone significant development and there are lessons to be learned so we can avoid pre-
vious mistakes [116]. However, communicating uncertainty remains an active challenge, and
geographical risk (let alone uncertainty) is substantially understudied [120]. Major research
questions include how to represent uncertainty and interpret probabilities. These questions are
complicated by the addition of both spatial and temporal dimensions. Who risk is communi-
cated to is equally an important factor. Many studies provide guidance on communicating with
the public, but few provide guidance for working with decision makers [120]. This is important
in urban planning because local authorities and elected officials do not always have expertise
in risk [96]. Another instance where uncertainty communication is not only important, but
time-pressured, is crisis management. For example, action needs to be taken immediately fol-
lowing any hazardous event, but information is usually limited. Where supplies or response
teams are to be sent (for example as described in Chapter 5) is dependent on damage extent as
well as the number of people who sheltered in-place. Similarly, evacuation decisions and their
timing can directly put people at risk if decisions are based on poorly suited models or without
understanding the uncertainty in the assessment. Again, the compounding uncertainty needs
to be presented to decision makers with varying levels of experience, training, and knowledge
[96, 120].

One promising approach to improving how spatiotemporal uncertainty is communicated is
using multiple scenarios [120]. By engaging a range of stakeholders to explore scenarios in a
scenario-planningmanner, we can communicate the spatiotemporal uncertainty. This is a viable
option also for improving how deep uncertainty is both addressed and communicated. Scenario
planning is already an approach common to urban planners. Thus, using it as an exercise for
other stakeholders is an example of the two-way knowledge sharing possible between these
disciplines.

Risk perception is also a significant factor as building the trust of the public is critical. The
community needs help to understand risks due to the psychological difficulties people have
in perceiving hazards. Perception has been categorized into two types of thinking: intuitive
(gut) reaction and informed evaluation [223]. Ad hoc risk communication could lead to mis-
perception of the risk faced due to how the information is framed or interpreted. The result
is that people may ignore or discount the potential for disaster by assuming that defensive
structures have eliminated exposure or become fatalistic [56]. Another challenge is if people
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inaccurately believe action is improving a situation. Disaster-driven decision making, due to
high salience, can motivate action that not only does not help, but diverts attention from truly
adaptive actions [9]. Such thinking is pertinent to risk perception studies and understanding
what factors motivate people to judge risk as acceptable [300]. Given major decisions about
avoiding future threats through adaptation, mitigation, or retreat are necessary, the study of
risk communication and perception will assist urban planners.

Salience driven decision making can be maladaptive [9] and this emphasizes the need to
help local authorities and elected officials, most of whom will have not expertise in risk [96] or
understand the risks and uncertainties facing their communities.

1.2.4 Understanding Complex Systems

Most current risk applications involve systems or complex systems of systems [144]. Character-
istic of these systems is often multiple interacting components, dynamic feedbacks, competing
objectives, and varying levels of uncertainty. The interdependent systems also have the poten-
tial for cascading failures whereby a failure in one causes failures in others. An analogy for
this would be a failure in the electricity network causing a failure in the transportation net-
work. To manage and understand the risks of such systems we need advances in risk analysis
[24]. We need the ability to assess a range of threats and approximate their consequences [24].
Quantifying potential consequences and their likelihoods in complex systems requires inferen-
tial, predictive, and causal models. Constructing and validating these models is complicated by
limited data and so will require treatment of uncertainty and the ability to extrapolate beyond
observed conditions [296]. This need for extrapolation means that we need to advance regres-
sion tools. Existing tree-based regression models have proven highly useful for predictive and
inferential situations, but they have limited power to extrapolate because they can only predict
values within the range of the observed values. In addition to existing regression tools, we need
advances in how the models interact. Potentially, we will require interacting models such as
coupled or multi-scale, so we can capture the interdependencies. These advances will need to
further address the spatial and temporal aspect, establish suitable ways for validating spatially
dependent models (see Chapter 3 for an example), and adequately treat uncertainty.

Naturally, urban planning is about managing complex systems [119]. These systems include
cyber-physical infrastructure, natural systems, social systems, land-use systems, and the in-
terdependencies between them all. In managing these systems, we likely will need to address
multiple objectives [62, 295] and the various synergies and trade-offs that arise. Examples of
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questions critical to planners also include what the effects of an incoming hurricane will be,
what urban characteristics exacerbate heat waves, and how urban form influences public health
outcomes. Modeling of systems is not new to planners; Models have been used since the 1960s
[202]. Models can provide the ability to further understand a system, perform what-if style
analysis, achieve greater efficiencies, and guide smart urban development [37, 66, 148]. The
types of models in use include system dynamic models, statistical models, cellular models, and
agent-based models. Advances to risk science can both utilize and develop the models used in
planning. Such models can further risk science advances in how we capture human behavior
and how behavior acts as an adaptive response to interventions that may produce unintended
consequences (e.g. [200]). Similar to terrorism risk analysis, risk treatment must account for
the adaptive actions by agents [22]. In turn, risk science can contribute to improving how the
complex systems models are validated and how uncertainty is treated. A fundamental chal-
lenge of modelling urban development is that the underlying processes are unobservable [106]
and the uncertainties in the subprocesses can compound [90].

Issues for complex systems models include both equi- and multifinality, which means that
models can fit data equally well but for the wrong reasons [232, 351]. Similar challenges arise
for statistical models. Climate change is changing the baseline conditions and forcing us to
extrapolate beyond observed data. How can we be confident that inferences and predictions
stand when the baseline conditions have shifted? How can we extrapolate consequences be-
yond what has been previously observed in a reasonable way? These questions are well within
the purview of risk science and motivate the engagement of risk professionals in addressing
them.

1.2.5 Societal decision making and co-production

The essence of the interface between urban planning and risk science is in providing support
for risk-informed decision making. Risk assessment itself is intended to support management
and policy decisions without necessarily having a comprehensive understanding of the system
and phenomena [253]. Understanding societal risk decision making is a foundation of risk
science [24]. It requires integrating considerations of science, economics, society, and value
judgements [24]. Societal decision making dictates that people are affected by decisions, and
therefore people should be put at the center of risk considerations (e.g. [100, 213, 227], Chapter
5).

When planning our cities we need to move beyond predict and plan models and embrace
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adaptive or robust management approaches [147, 267, 310]. Ranking risk reduction alternatives
will require assessing the risk of maladaptation, making ethical judgements, and evaluating
multiple criteria. Advances in using modeling for policy currently underway include improve-
ments to participatory decision making [329]. Furthermore, issues regarding model credibility
are being addressed [192]. Ultimately, due to environmental, population, and demographic
shifts, designing our cities to adapt to and mitigate climate change and hazards is underlined
by a growing sense of urgency. To further support potential action, research priority must shift
from “what are the relationships” to “what can we do, given the current information.”

This urgency also motivates the undertaking of these challenges in a manner that is inclu-
sive and collaborative. Collaboration provides opportunities for risk professionals to test and
improve methods for communicating risk, understanding perceptions, and identifying threats.
Working in interdisciplinary teams, in addition to enabling high impact problems to be ad-
dressed, forces us as risk scientists to sharpen our language and understanding of the terminol-
ogy. Challenges for such collaboration include the lack of a shared knowledge base, different
success measures or objectives, and unfamiliar or conflicting terminology. Tools that assist
with interdisciplinary research are being proposed such as agent-based models [273]. But ed-
ucation and training should be the first step. Whether within courses, degree structure, or
through ongoing professional development, risk professionals need to learn how to collabo-
rate beyond their familiar discipline. Additionally, we can work with urban planners to engage
stakeholders and foster co-production of knowledge within communities. Co-production of
knowledge occurs when research questions are jointly identified and then addressed with end-
users [265]. These initiatives provide opportunities for foundational risk advances by providing
case studies, data, and focus groups which allow us to build approaches that are relevant for
a range of hazards from natural to behavioral and how we treat uncertainty and communicate
risk can be iterated upon. These cases will also offer situations of varying limitations in which
levels of uncertainty treatment, risk measures, or communication techniques are appropriate.
Co-production is also highly beneficial for improving our understanding of the system as we
integrate perspectives and insights from people with knowledge of the systems we seek to as-
sess and these insights can strengthen threat and uncertainty evaluation. However, while there
is the potential to use these cases to test and evaluate techniques, we must be highly aware of
potential ethical challenges.
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1.2.6 Ethics

In the context of urban planning, where people’s quality of life, livelihoods, and lives are im-
pacted by the decisions made the handling of risk issues carries substantial ethical weight.
However, it is surprising that ethical consideration has not been identified as a foundation of
risk science to date given that risk science is comprised of both theory and practice [21]. It is
also surprising that ‘ethical aspects’ is only briefly mentioned as a sub-sub-topic in the Soci-
ety of Risk Analysis’ “Core Subjects of Risk Analysis” guidelines [305]. In today’s atmosphere
of mistrust in science and the quandary of environmental degradation and growing societal
inequality, ethical aspects should be a pillar of risk science.

Key dimensions needing ethical consideration at the interface of urban planning and risk sci-
ence include howwe advocate new technology, howwe address the potential of maladaptation,
what we choose to measure, and how we reduce (or at least do not exacerbate) inequity.

Integrating risk and resilience analysis into urban planning practices will involve working
with practitioners of varying levels of training in statistics and these sciences. Therefore, how
the accuracy of models and the situations for appropriate use need to be communicated clearly.
This cannot be a case of “what the customer thinks they have and what the product actually
is.” Communicating the uncertainty and the limitations of the technologies is important, as
practitioners need to know when to rely rely on existing practice rather than the models. The
onus is on us to demonstrate that our models improve decision making compared to existing
practice. For example, misrepresented claims of accuracy could lead emergency responders
to take different actions and result in worse outcomes. Consider a manager responding to a
flood model that erroneously declares or delays a declaration to evacuate. The evacuation of
Hurricane Rita, for example, killed 107 people as they evacuated the Houston area, only for
the hurricane to veer far east of the city [159]. Misrepresenting accuracy is not necessarily
intentional. It could result from the model being used beyond what it was designed for, such
as under different environmental conditions, in different locations, or for different events. The
range of potential consequences from new methods cannot easily be predicted in this case as it
is an example of the Collingridge Dilemma, which states that impacts cannot be easily assessed
until a technology is widely used, but by that point the technology is not easily regulated [75].
However, it is the responsibility of the risk professional to determine the potential pitfalls of
methods they advocate.

Maladaptation is another risk that we must be aware of when working in the planning space.
Maladaptation results when an intervention intended to reduce vulnerability actually increased
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it [32, 208]. For example, a seawall intended to protect one community may cause major issues
to neighboring communities [28]. Additionally, that seawall may have raise the exposure of the
future residents of the very community it was built to protect (Chapter 2, [56, 200]) and divert
attention from measures that would be more effective [9]. This could be the result of missing
factors in the model that, given the characteristics of complex adaptive systems, could reverse
the effect of an intervention. It stresses the importance of collaboration with professional in
other disciplines who may be aware of such potential.

There is also the potential for approaches to exacerbate social injustices. The risks relate
to both how we measure and model phenomena and how we communicate and act on the
results. What we choose to measure and how we choose to measure it matters [193]. For
example, consider recent resilience indicators such as the disaster resilience of place (DROP)
model [87]; if a firm were to select a location based on the perceived resilience of a town and
the indicator used included a negative attribution for low-income people or people of color,
that would divert that firm’s investment away from this town that could benefit from such
an investment. Similarly, if an important dimension is not included, positive investment and
attention may be diverted away from people in need [193].

How we use and communicate understanding of risk to land can also have a major effect on
social justice. Informing residents of the risks could lead to house prices in at-risk areas decreas-
ing so that low-income and vulnerable people move in. Another example is in New Zealand
where insurance companies recently adopted spatially heterogeneous risk-based pricing [68].
This suddenly changed the amount customers had to pay while the insurance companies saw
little-to-no loss. As before, the result could be that low-income families move into these areas
for the cheaper capital cost but cannot afford insurance, further exacerbating their vulnerabil-
ity. Risk professionals need to be aware of and actively look for the potential pathways that
exacerbate social injustice. Their awareness means that they can work with city officials to
adopt standards and initiatives that increase equity and support vulnerable people [133].

To ensure we do not fail the communities we are trying to assist, risk professionals need
to be educated in ethics. Education must be more than existing training that often simply re-
peats tenants such as ‘do not cheat.’ Instead, ethics education must involve complex discussion
and explore how ethical decisions are influenced by perspectives and values. Risk profession-
als must be trained to identify ethical challenges in complex situations, empowered to raise
the issues they identify in their research or with communities or companies they work with,
and guided in how to engage in the resulting discussions. I urge that ethics be considered a
foundation of risk science and a core component of a risk professional’s education.
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1.3 Dissertation outline

This dissertation is structured as follows. Chapters 1-5 are structured as independent academic
papers. This first chapter intends to introduce the opportunities to advancing foundational risk
science through collaboration with urban planning.

Chapter 2 [200] explores risk analysis over time and with feed backs from human behavior.
The chapter was motivated by the Japanese tsunami in 2011 and the subsequent questions as to
whether sea walls, a type of hard-adaptive measure, increased or reduced the community’s vul-
nerability. Addressing this question required building a complex systems model that incorpo-
rated the growth of a town, the repeatable hazard, and the community’s response to alternative
sea walls. This links the community’s risk perception with the spatiotemporal changes in the
community due to a repeatable hazard. By demonstrating that the community’s vulnerability
to unexpected hazards in fact increases with large seawalls, this study provides quantitative
evidence of the safe development paradox, [56], as well as emphasizes the importance of con-
sidering dynamic feed backs in risk analysis.

Chapter 3 demonstrates the potential of machine learning in understanding how urban form
affects risk. In this case, I explore how land surface temperature is associated with different
urban characteristics. In doing so, I present how cross-validation should be undertaken in a
spatial setting, then, represent both the data and model uncertainty present in the diagrams
representing the urban characteristics’ influences.

I then present two closely related paper on community resilience: Chapters 4 and 5. The
objective here is to propose an operational approach to building community resilience. In our
framework, we consider people’s access to essential services as opposed to existing approaches,
which focus on indicators of community capicity or infrastructure network measurements to
measure robustness and vulnerability. For a community to function, people need access to ser-
vices such as food, health care, education, and culture. For a community to build cohesion and
social sustainability, this access needs to be equitable. Chapter 4 therefore proposes a modern
approach to measuring access to services that leverages open data and computational power.
The benefits of this approach are that it is fine resolution and therefore can identify vulnerable
populations that existing measurement approaches may overlook. This measurement approach
is then used in Chapter 5. Here we show how the access to different services changes over the
duration of a hazard. In this chapter, we use real data from Hurricanes Florence and Michael.
The output of this approach is a map to assist with identifying residents without access to each
of the services and statistical representations showing the percentage of the population with
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inadequate access. Outputs such as these could be used by emergency responders or resilience
planners before, during, and after hazards to prepare, respond, and transform communities.

I end with a proposed framework of how to resilience can be managed within using a risk
framework 7. The many definitions of resilience have complicated management to reduce the
consequences from a hazard, so I demonstrate how these aspects fit within the risk concept.
In this chapter, I also expand on how the confusion surrounding the terminology of risk has
infiltrated other disciplines, resulting in the unfortunate divergence of resilience analysis.

1.4 Conclusion

Risk science offers significant promise for tackling societal challenges, including those related
to urban planning and climate adaptation. To realize these opportunities, we require a funda-
mental shift in thinking about risk and how we, as risk professionals, communicate it. Putting
the concept of risk into practice to address these challenges motivates foundational advances in
nearly every sub-discipline of risk science and calls for increased collaboration between these
sub-disciplines as well as with fields beyond our own.

I hope that my thesis further steps towards that shift in thinking and will inspire further
theoretical and practical advances. The challenges at the intersection of risk and urban planning
require your urgent attention.
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Chapter 2

Hard-Adaptive Measures and
Maladaptation 4

Whether hard-adaptive measures (e.g. seawalls) actually reduce vulnerability to natural haz-
ards is the subject of considerable debate. Existing quantitative risk assessments often ignore
behavioral feed backs that some claim lead to increased development in hazardous zones. Here,
we couple a tsunami model with a land-use change model and find that hard-adaptive measures
can induce a false sense of security and inadvertently lead to increased vulnerability (i.e. are
maladaptive). We also observe that heightened hazard awareness (a type of soft-adaptation)
can reduce vulnerability. Our results have two major implications:

1. they challenge existing hazard adaptation practice by quantitatively demonstrating the
potential for hard-adaptive measures to be maladaptive; and

2. they highlight that ignoring the behavioral feed backs in hazard assessment can alter the
conclusions to the extent that they fail to identify maladaptive actions.

In addition to the demonstrated case of tsunamis, the result may be relevant to other, repeat-
able natural hazards where urban growth influences exposure (e.g. storm surge). Ultimately,
neglecting future urban development and the temporal evolution of risk can result in incorrect
conclusions regarding adaptation strategies; including these processes is therefore an essential
consideration for the natural hazard and climate change impact communities.

4Logan, T. M., Guikema, S. D., & Bricker, J. D. (2018). Hard-adaptive measures can increase vulnerability to storm
surge and tsunami hazards over time. Nature Sustainability, 1(9), 526–530.
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2.1 Background

There remains considerable debate about the efficacy of hard-adaptive measures, such as sea-
walls, at reducing the vulnerability of coastal communities to natural events [114, 225, 245, 319].
A limitation of existing analyses [4, 225, 230, 353] is the omission of the interdependent evolu-
tion of urban growth in response to hazards and the adaptive measures implemented [3, 250,
353]. Adaptive measures influence behavior by changing risk perception, which can affect how
land-use changes over time [235]. Adaptive measures are classed as either hard infrastructure,
such as seawalls, and soft* measures, such as community education [308]. While some claim
that hard-adaptive measures are effective [225], others argue that they provide a false sense
of security and encourage vulnerable development [56, 77, 97, 208, 245]. This phenomenon
can lead to maladaptation [32, 208], whereby protective structures prevent small events and so
encourage development that is then exposed to large events [222] (e.g. simply rebuilding the
levees in New Orleans [77]). This is known as the safe development paradox [56], or the levee
effect [97, 344]. Maladaptation occurs when actions unintentionally increase the vulnerabil-
ity of a community. Adaptive measures may mitigate low impact hazards that are relatively
frequent, causing hazardous areas to be perceived safe. This can result in development that is
vulnerable to larger events in future [56, 97]. Nevertheless, hard-defensive structures are being
built and re-built (e.g. following the 2011 Japan tsunami [319] and Hurricane Katrina [77]).
We combine the physical effects of adaptive measures with consequent community behavior to
quantitatively explore how, over time, the vulnerability of a simulated community is affected
by hard vs soft adaptive measures. Because hazards are inherently location-specific we analyze
simulated tsunami impacts in Taro, Japan, which has experienced four tsunamis in the past 120
years.

While quantitative studies exist, many avoid the question of interaction among hazards, be-
havior, and learning over time [225, 334]. When the interaction between adaptive measures
and community behavior is excluded, co-evolution is ignored [250, 299], making projections
of risk potentially unrealistic [97]. For example, the behavior of the community may change
with the installation of a protective measure because of their altered perception of the risk.
Other previous studies have also excluded spatial heterogeneity in development over time (that
changes may occur unevenly across a space [97]), and so overlook potentially significant differ-
ences within communities due to the topography. Existing statistical studies have conflicting
conclusions, demonstrating their sensitivity to data from previous events [6, 230]. Continued
planning based on historical events, without understanding of the processes, may lead to ad
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hoc adaptation, like the repeated levee upgrades which have occurred in New Orleans, USA
and Palmerston North, New Zealand [235].

2.2 Coupling hazard and land-use change models

To better understand maladaptation from adaptive measures, we ask:

1. How do hard-adaptive measures affect the vulnerability of a community over time when
subject to repeated hazards?

2. Do hard-adaptive measures increase vulnerability to future events (e.g. the levee effect)?

3. What is the effect of information-based soft-adaptive measures on vulnerability and do
we observe community adaptation that decreases vulnerability?

To address these questions, we develop a cellular automaton (CA) simulation to model land-
use change and couple this with a hydrodynamic model for tsunamis. CAs are frequently used
to model land-use change [36, 334, 346]. The CA represents the region as a grid of cells and the
state of each cell changes with time based on transition rules or destruction by a tsunami.

We quantify vulnerability using a measure from the Society of Risk Analysis [306]: A prob-
ability distribution for the loss given the occurrence of a specific event. This measure captures
two of the key dimensions of vulnerability [48, 323], exposure and hazard, although does not in-
clude the socio-economic dimension such as the resident’s age, income, or other characteristics.
The hazard in this study is a tsunami. Over the course of the simulations, different tsunamis
with varying magnitudes may impact the community. Exposure is a measure of assets that are
within a hazard’s geographic extent [48]. In this case, we approximate vulnerability as the sum
of the likelihood of development multiplied by the probability of damage for each cell. The
damage probability is computed from a fragility curve [312] based on the inundation depth at
the land cell for a given tsunami (Section §4). Therefore, we are representing vulnerability as
the number, or percentage, of damaged land cells.

Our model is developed for Taro, Japan. Taro has been impacted by four tsunamis since
1896 [224]. We simulate 300 years of urban growth, initialized with the 1900 land-use map
[316]. Development is influenced by regional population change and the transition potential
of a cell [346]. Among other factors, a cell’s transition potential is influenced by hazard aware-
ness, dependent on the time since the last tsunami inundation. This awareness decays with
time [110]. Tsunami occurrence and intensity are drawn from independent distributions. The
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damage caused by a tsunami is approximated using a fragility curve for wooden buildings devel-
oped for this region following the 2011 tsunami [312]. Model and parameter details, sensitivity
analysis results, and model validation results are included in the supplemental material.

2.3 Expected events: Hard-adaptive measures reduce
vulnerability

To address our first question (how hard-adaptive measures affect vulnerability over time given
repeated hazards), we simulate the community with a range of seawall heights that are fixed for
each simulation’s duration. For each time step (year) across the simulations the mean damage
from tsunami is calculated to represent vulnerability. Damage in each time step is normalized
by the total number of developed cells, to allow for comparison over time. A 25-year moving-
average of the mean damage is calculated due to the infrequency of damaging events. Previous
statistical analysis found that larger seawalls reduced damage in northeast Japan [230]. This is
supported by the simulation model (Figure 2.1A), provided the tsunami height does not exceed
the seawall height. Damage is initially high and decreases as the community adapts. While
there is little difference in vulnerability with no seawall, a 4m, and an 8m seawall, the 12m
seawall reduces vulnerability.

This result indicates that large hard-adaptive measures reduce damage, and reinforce sim-
ilar conclusions, provided the tsunami height does not exceed the capacity of the protective
measure. However, the development trends resulting from the high seawall indicate dense de-
velopment behind the seawall, an area historically within tsunami inundation zones (Figure
2.1B). This potentially increases the vulnerability to larger events in future (i.e. the levee ef-
fect). The primary difference between the 12 m seawall and the smaller heights simulated is
that none of the tsunami scenarios substantially over top the 12 m seawall. Any claim that the
12 m seawall (or any hard-adaptive measure) protects the community is therefore sensitive to
the hazard magnitudes experienced.

2.4 Unexpected events: Need for capturing the feed backs

The levee effect is caused by hard-adaptive measures mitigating the impact of frequent events,
thus encouraging development potentially vulnerable to future events [97]. Understanding
vulnerability to unanticipated, extreme events [56, 97, 114], aka “black swans” [13], is essential
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Figure 2.1: The result of seawalls on mean (average) damage and development patterns. Dam-
age approximates vulnerability. It is calculated as the sum of the likelihood of devel-
opment multiplied by the probability of damage for each cell. The damage probabil-
ity is computed from a fragility curve based on the inundation depth at the land cell
for a given tsunami. In (A) the 25-year moving average of damage is reduced when
a 12 m seawall is present. Here, damage is the number of developed cells destroyed
by a tsunami, normalized by the number of developed cells. The lines, with 5th and
90th percentiles, represent the four different fixed seawall heights. The 0 m seawall
line, shown in black, is almost indistinguishable from the 4 m line. (B) shows the
likelihood of a cell being developed and demonstrates how development patterns
are influenced by seawalls.
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due to the incomplete historical record of natural events, and given how global environmen-
tal change, such as sea level rise, may change the severity of these events. Tsunamis, while
not climate-induced [149], may have their impact exacerbated by sea level rise. To investigate
vulnerability to unanticipated extreme events, we examine the effect on the community if it
experienced a tsunami larger than any in the historical record; such an event is considered a
type III black swan [16] given it is known to be possible but judged to be extremely unlikely
to occur. Vulnerability, as described, is measured as the sum of the likelihood of development
multiplied by the damage probability for each cell. Figure 2.2A shows the future vulnerability
of the community with different size seawalls to tsunamis of different heights. The 13.2 m and
15.0 m tsunamis exceed those in the simulated “historical” record experienced by the commu-
nities. This allows us to assess the vulnerability to potential unanticipated events. Figure 2.2A
demonstrates that maladaptation is occurring; while the 12 m seawall protected the commu-
nity initially, it increased vulnerability to larger events. The distributions for expected losses
in Figure 2.2A are substantially higher for the 12 m seawall than for the other seawall heights
for the larger tsunamis. The communities with lower, or no, seawalls adapted their develop-
ment pattern over time to avoid areas subsequently inundated by the larger events. This shows
hard-adaptive structures preventing the community from learning from tsunami experience,
reducing their ability to adapt. This is a quantitative demonstration of the levee effect.

2.5 Community awareness

In contrast to the levee effect, the adaptation effect is the theory that vulnerability decreases
when the frequency of natural hazards increases [97]. We evaluate this theory by varying the
frequency of tsunamis for a community with no seawall (Figure 2.2B). The frequency is varied
between an average of zero to six tsunamis during a 100-year period. Our results indicate the
adaptation effect is occurring, suggesting that the frequent events provide more opportunities
for the community to learn and adapt.

We explore using heightened hazard awareness (a soft-adaptive measure such as community
education or signs showing previous inundation levels) to leverage the adaptation effect to
reduce vulnerability. The adaptation effect is a result of risk perception, and this awareness can
cause aversion to hazard-prone development [235]. However, awareness of a hazard fades over
time as the generation with direct experience age or move away, followed by the subsequent
generationwith secondhand experience [110]. Investment in education and evacuation training
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Figure 2.2: The density functions (distributions) for number of damaged land cells given a
tsunami to during the final 100 years of the simulation. In contrast to Figure 2.1A,
where 10.66 m was the largest possible tsunami, here two larger tsunamis are tested.
(A) demonstrates the levee effect: high seawalls result in greater damage to events
which the community has no experience of. (B) demonstrates the adaptation effect:
more frequent hazards reduce the vulnerability of the community (note this is when
no seawall is present).
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Figure 2.3: Increasing the time that the community remains aware of the hazard (A) reduces the
damage comparable to a 12 m seawall and (B) does not result in increased vulnera-
bility to large events. Note the seawall height is 0m in these simulations. See section
S11 for the results with a 12 m seawall, where the larger tsunami does significantly
more damage.

is oneway tomaintain awareness [110]. We simulate howvulnerability changes over timewhen
the awareness decay rate, given by the generation length, is varied (Figure 3). The results show
that long-term awareness of the hazard can achieve vulnerability reductions comparable to the
largest hard-adaptive measure. Note, however, that the effect of hazard events on awareness is
complex and can be site and hazard specific [122]. Furthermore, experience alone may not be
sufficient to elicit adaptive responses [122], so further analysis is required.

The levee and adaptation effects are both the result of hazard awareness. The levee effect oc-
curs where hard-adaptive measures confuse perceptions of risk. The adaptation effect is where
risk perception is heightened due to frequent exposure. This means that hard and soft adaptive
measures may not be synergistic. Although coupling heightened hazard awareness with large
hard-adaptive measures results in reduced vulnerability over time, hard-adaptive measures still
increase vulnerability to previously unexperienced events (supplemental section §10). This is
because the seawall prevents smaller events, meaning that awareness and aversion to the haz-
ard zone does not occur.

2.6 Conclusions

Bymodeling the dynamics between urban growth, repeated hazards, and adaptivemeasures, we
have shown that hard-adaptive measures may inadvertently increase vulnerability to extreme
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coastal events. While short-term vulnerability to hazards, such as tsunamis, can be reduced
using hard-adaptive measures, these hard-measures can cause a false sense of security (known
as the levee effect) and encourage development that is vulnerable in the long-term. We also
find that raising community awareness can reduce vulnerability without risk of maladapta-
tion. This study limits its assessment to efficacy of adaptation measures and does not consider
benefit-cost efficiency, which are often used to justify protective schemes [255, 301]. Through
simulation, our results show the need for capturing the behavioral and spatiotemporal dynam-
ics when assessing natural hazard and climate adaptation strategies. Furthermore, these results
demonstrate, in the case of tsunamis, that not doing so can be maladaptive.
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Chapter 3

Data mining and urban land surface
temperature 5

Abstract

Heat waves are among the deadliest natural hazards and are expected to increase in frequency
and severity under climate change. Their impacts in cities can be exacerbated by the urban heat
island (UHI), but the mechanisms that underlie severity and timing of the UHI and its interac-
tions with heat waves are poorly understood. Understanding these mechanisms is necessary
to design strategies that reduce land surface temperature and mitigate the effect of heat waves.
Making use of recently available high-resolution day and night thermal satellite imagery and
employing advanced nonlinear statistical models, we seek to answer the question “What is the
influence and relative importance of urban characteristics on land surface temperature, during both
the day and night?” To answer this question, we analyze urban land surface temperature in four
cities across the United States. In our analysis, we include variables related to vegetation, water,
the built-environment, and topography. Wemodel the effects of these variables using nonlinear
statistical methods which allow for their independent effects to be assessed. The effects from
the daytime and nighttime analysis are compared to determine if previously reported relation-
ships hold between cities and during both the day and night. Our results suggest that vegetation
and impervious surfaces are the most important urban characteristics associated with land sur-
face temperature. Increasing and decreasing these, respectively, is necessary for reducing high
urban temperatures during both night and day. Our results also demonstrate the potential for

5Submitted to Remote Sensing of Environment as Logan, T, Zaitchik, B, Guikema, S, & Nisbet, A. Night and day:
What is the influence and relative importance of urban characteristics on land surface temperature?
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using nonlinear statistical analysis to investigate land surface temperature and its relationships
with urban characteristics. For example, we can evaluate the compounding influence of two
urban characteristics on the temperature. Improved understanding of these relationships influ-
encing both night and day land surface temperature will assist planners undertaking climate
change adaptation and heat wave mitigation.

3.1 Introduction

In a warming world, understanding the factors contributing to high land surface temperature
(LST) and the urban heat island (UHI) will aid in adapting cities in mitigating urban heat for
the health and wellbeing of their communities. And mitigate they must; the 1995 Chicago heat
wave, which killed more than 700 people,6 is expected to become an annual occurrence by 2080
[180]. Heat waves’ effect on people is exacerbated by the urban heat island (UHI) [104, 347]. The
UHI is understood to be a product of multiple factors including: enhanced absorption of solar
radiation, geometric effects that limit radiative cooling and ventilation, anthropogenic heat
from vehicles and buildings, air pollution that traps outgoing radiation, high ratios between
sensible and latent heat flux due to low vegetation cover and high impervious land cover, and
the radiative characteristics of building materials. The result is increased diurnal and nocturnal
temperatures that reduce people’s ability to cool off, especially during the night, which drives
an increase in mortality [104, 226].

Studies of urban heat include analyses of air temperature, which is a conventional meteoro-
logical variable that is often associated with health outcomes(e.g. [288]), and studies that use
satellite-derived land surface temperature (LST) [167, 260, 261, 333, 363]. LST correlates with
air temperature at large scales, but there are differences at intra-urban scales [134]. While LST
is not a conventional meteorological variable, it is directly related to the urban heat budget
and has the advantage of being available with extensive spatial coverage in gridded satellite
products [164]. We analyze LST in this study.

Most existing LST studies focus on the daytime [70, 260, 339, 362]. However, the mechanisms
and urban characteristics driving LST allegedly differ between night and day [69, 104, 164, 236,
261, 304, 347, 361, 363]. Given that UHI is primarily a nocturnal phenomena, the lack of study
on nighttime LST leaves a critical gap in our understanding. This can now be addressed as high
resolution nighttime satellite images have become available.

6The 2003 European heatwave killed 70,000 [277] and the 2015 European heat wave increased mortality up to
30% [331]
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Most existing studies that have analyzed LST, particularly nighttime LST, have used low-
resolution imagery, making it challenging to deduce a clear understanding of the influence and
relative importance of the associated urban characteristics [69, 104, 347, 363]. Additionally,
these studies can be enhanced by: 1) studying multiple regions, 2) considering 2D and 3D ur-
ban characteristics, 3) diversifying their statistical models and relaxing their linear assumption,
4) rigorously testing and validating their models. The data availability has limited previous noc-
turnal studies, meaning that many rely on MODIS images with a 1km resolution [104, 261, 338,
363]. 1km resolution makes it difficult to attribute LST to urban characteristics. However, 100m
resolution LandSat8 (L8) night scenes have recently become available. Due to the wide spatial
availability of L8 imagery, comparative studies between cities that are necessary to understand
the generalizability of findings [164, 261], can now be conducted for day and night.

Existing studies have also been criticized for the explanatory variables they’ve used [69, 260].
There is ongoing disagreement regarding the importance of 3D (e.g. building height) vs 2D
(such as albedo) variables. Competing studies suggest that 3D factors are not important [42],
while others find that ignoring 3D incorrectly conflates the effect of different 2D variables [69].
Beyond the 2D or 3D debate, important variables include green space, water bodies, albedo,
and socio-economic factors [260]. However, many studies do not capture these categories and
many analyze only the single effect of each variable [220, 325, 361] (see [69, 260] for further
discussion). Considering a variable in isolation, without accounting for potential conflating by
other variables, limits the understanding of the interdependent effects that exist.

The third potential enhancement is in the statistical models. Almost all studies use linear
techniques (e.g. [69, 70, 104, 195, 260, 261, 338, 339, 347, 363]. Using linear models incurs a
number of major challenges that limit these studies’ ability to explain the interdependencies be-
tween variables. The first is that many of the urban characteristics exhibit highmulticollinearity
[363]. The second is that linear models are limited in their ability to quantify the independent
effects of characteristics and their relative influence on LST [260, 363].

Finally, most existing studies do not rigorously validate their models. The approach they
use to assess their accuracy is in-sample validation. In-sample validation means that model
accuracy is assessed with the same data used in the training, rather than unseen data. This
risks overestimating the accuracy of their models.

The question we address is: “What is the influence and relative importance of urban character-
istics on land surface temperature, during both the day and night?” To achieve this we conduct
a comparative study of four cities in the United States using nonlinear statistical techniques
which capture the interdependencies and relative importance between the urban characteris-
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tics. In addressing our question, we will address the, at times fundamental, limitations of ex-
isting studies. We look at nighttime temperature as well as daytime, we appropriately validate
our statistical models, and we use tools that allow us to explore the interdependent, nonlinear,
effects of urban characteristics on urban heat. While we do not claim causality, understanding
the associations between urban characteristics on temperatures can complement and further
inform our understanding of the processes that lead to high urban land surface temperature.
The results therefore have implications for mitigating the severity of future heat waves.

3.2 Data and Methods

3.2.1 Cities studied

We study four cities in the contiguous United States (Figure 3.1): Baltimore, MD; Detroit, MI;
Phoenix, AZ; and Portland, OR. These four cities were selected as they include East and West
coast cities, a mid-western city, and an arid central city. Phoenix, additionally, has been the
subject of numerous other studies on land surface temperature. The cities were also selected
due to lidar availability which is required for calculating the 3D variables. The constraint on
selecting more cities was the time and computational requirements primarily for the LST and
sky view factor calculations.

Figure 3.1 shows the 500m gridded nighttime LST data for each of the cities and Figure 3.2
shows the distribution of each city’s 100m resolution day and night land surface temperature.

3.2.2 Land surface temperature

We calculate land surface temperature using Landsat 8 (Land Processes Distributed Active
Archive Center product) imagery, land cover data, and an air temperature observation (data
sources provided in B.1). Our code is available on our Github7 repository, and is as follows:
We convert Band-10 digital-number data to top-of-atmosphere radiance [171]. We correct for
emissivity using land cover data [8], and then calculate the at-satellite brightness temperature
[171]. Finally, an atmospheric correction is made as per the mono-window algorithm [266] us-
ing the maximum observed temperature of the day from a nearby weather station. This follows
the process is described in [288].

7URL redacted for review
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Figure 3.1: The nighttime land surface temperature in 𝑜C, gridded into 500-meter cells, for the
cities studied. This is change from the mean (average) for each city.
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Figure 3.2: The distribution of nocturnal and diurnal land surface temperature of the cities stud-
ied. 100m resolution.
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To ameliorate the effect of ephemeral changes [362] we use at least three minimal-cloud
images for each city and night/day period and calculate the mean of LST.

So we can conduct the comparative study between the cities, the land surface temperature
for each city is calculated as the difference from the city’s mean.

3.2.3 Independent variables

Albedo. Albedo is a measure of the reflectivity or brightness of a surface. It is normalized be-
tween 0-100where the darker surfaces are lower values. Albedo is calculated using the LandSat8
images using the algorithm described in [196, 303].

Building floor area. The building floor area within the cell. This uses data released in 2018 by
Microsoft where building footprints are estimated using areal images.

Elevation. 1/3 arc-second ( 10m) bare-earth elevation (topography) data is available courtesy
the U.S. Geological Survey.

Surface elevation. The surface elevation is determined from the lidar data. Surface elevation
captures the natural and built features.

Impervious surface percentage. This is provided in the National Land Cover Database from
theMulti-Resolution LandCharasteristic Consortium [357]. To generate the impervious surface
area (ISA), the consortium uses LandSat data, NLCD land cover, and nighttime light imagery.
The stable nighttime light intensity is only used to estimate the boundary of urban areas. The
Landsat images were converted to top-of-atmosphere reflectance. The data is provided at a 30m
resolution.

Land cover. Classification of land cover is described in [158]. However, as it is used in the
calculation of emissivity when calculating the LST it cannot be used as an independent variable.
The only landcover that we use is category 11, water.

NDBI. Normalized difference built-up index indicates the intensity of imperviousness [45]. It
is calculated from satellite images as

𝑁𝐷𝐵𝐼 = 𝐵𝑆𝑊𝐼𝑅 − 𝐵𝑁𝐼𝑅
𝐵𝑆𝑊𝐼𝑅 + 𝐵𝑁𝐼𝑅

where 𝐵𝑁𝐼𝑅 and 𝐵𝑆𝑊𝐼𝑅 are the reflectances in the near-infrared and short-wave infrared
bands respectively [7]. Using LandSat8 imagery, this is

𝑁𝐷𝐵𝐼 = 𝐵6 − 𝐵5
𝐵6 + 𝐵5
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Figure 3.3: The land surface temperature in 𝑜C of the cities studied at a 100m square resolution.
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[34].
NDVI. The normalized difference vegetation index (NDVI) measures green vegetation. It is

calculated from satellite images as

𝑁𝐷𝑉 𝐼 = 𝐵𝑁𝐼𝑅 − 𝐵𝑟𝑒𝑑
𝐵𝑁𝐼𝑅 + 𝐵𝑟𝑒𝑑

where 𝐵𝑁𝐼𝑅 and 𝐵𝑟𝑒𝑑 are the reflectances in the near-infrared and red bands respectively [7].
Using LandSat8 imagery, this is

𝑁𝐷𝑉 𝐼 = 𝐵5 − 𝐵4
𝐵5 + 𝐵4

[34].
Population density. Some studies have found that population density has a positive influence

on LST [195, 260], although this may be the result of confounding with other factors. We
calculate population density using the U.S. census at the block level. The most recent census
was 2010, so we use that data as an estimator of where people reside in the evening. This data
is also at a lower resolution that the grid cells used, so the grid cell assumes the density of the
block that its centroid is contained within.

Sky view factor. Urban canyons have been found to have an effect on UHI because they
prevent air circulation and hinder nighttime radiative cooling [69, 186] and are used to indicate
radiation flux within complex environments [214]. We calculate SVF using the R packages
horizon [330] that is based off the algorithm presented in [101]. We use the same parameters
used by [69]: the number of search directions, 𝜙 = 10𝑜; and the radius of the reference circle,
𝑅 = 300𝑚. We use a spatial resolution of 6 meters.

Tree canopy cover. The 2011 edition of percent tree canopy cover is calculated using National
Agriculture Imagery Program (NAIP) aerial imagery, Landsat 5 imagery, elevation, and existing
NLCD data [78, 158]. The data provided is at a 30m resolution. The six reflective bands from
Landsat 5 are used to calculate top-of-atmosphere reflectance [78] so the data does not contain
information used in the LST calculation (which requires radiance).

3.2.4 Data preparation and robustness

The objective of our study is to determine the most influential urban characteristics and under-
stand how they relate to land surface temperature. To do this, we use partial dependence plots
to understand how the urban characteristics are associated with land surface temperature. For a
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selected characteristic, partial dependence is calculated by fixing the value of that characteristic
in all observations in the dataset and predicting the land surface temperature. This is repeated
over a range for the feature of interest. To evaluate howmultiple urban characteristics interact,
partial dependence can also be conducted in multiple dimensions. The swing [294] measures
the relative importance of variables by calculating the magnitude of change in temperature as-
sociated with each variable. To calculate partial dependence, we need a data set and a statistical
model.

To analyze the data, it needs to be transformed into a suitable format that is consistent be-
tween the variables. The raw data is a variety of spatial data types from “area level” (the pop-
ulation density data), to “geostatistical raster” (e.g. the land surface temperature). We choose
to resample the data into a grid of square cells. We conduct the resampling twice to produce a
grid of 100 and 500-meter square cells.

Having two resolutions allowed us to evaluate whether our conclusions are robust. For each
of the cells the mean, maximum, and minimum of all variables were calculated. To further ac-
count for spatial effects of each variable, the mean of the surrounding cells (including diagonal)
was calculated and the resulting spatial lag variable was included as an additional independent
variable. To address multicollinearity between the variables that would confound our analysis
of influence, we remove variables iteratively that have a Variance Inflation Factor greater than
5. The result is a data set with which we can train statistical models.

Various statistical models (§3.2.5) were trained and then validated on unseen data using a
technique known as holdout cross-validation. This approach partitions 80% of the data into a
training set and the remaining 20% into the testing set. The model resulting from the training
is then tested on this unseen test set (known as out-of-bag) to get an estimate of the model
accuracy. This is repeated 100 times and the distribution of the accuracy metric (here we use
the mean absolute error (MAE) and variance explained (R2)). Holdout cross-validation of this
type is crucial for statistical analysis to ensure that models are not overfit to data [128]. Over
fitting occurs when a model fits to the randomness in a dataset, causing it to be unsuitable
for generalizations. When models’ accuracy metrics are reported based on in-sample data (the
same data it was trained on), the accuracy metrics are high. Avoiding overfitting is therefore
essential when working with statistical models and is overlooked by the majority of existing
studies. Cross-validation helps to avoid this by evaluating the model on unseen data.

A further way to avoid overfitting is to carefully consider how the test data is selected. This is
especially important with spatial data. Therefore, when selecting the test and training data the
grid cells were grouped into a larger 8x8 grid. This avoids overfitting of the model by training
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the model on a cell adjacent to a cell that is included in the test set.
Finally, we attempt to capture uncertainty in the data and the models. To represent the data

uncertainty, we draw a random sample from our data, with replacement, to simulate a new
dataset. The models are trained on this new dataset and this is repeated. This approach, known
as bootstrapping, means that the conclusions’ sensitivity to the data can be assessed. If the
results are vastly different for each bootstrap sample, we assume that the result is dependent
on the data and is unlikely to be generalizable to other cities. Additionally, we capture model
uncertainty by using different models and assessing how each model shows the urban charac-
teristics influencing the land surface temperature. If all bootstrapped models are generally in
agreement, it suggests that the conclusions are robust.

3.2.5 Statistical models

The relationship between urban characteristics and land surface temperature is complex. This
complexity may not be captured by a linear regression model. We fit a series of regression
and data-mining models to the data and their predictive accuracy and variable association are
compared.

It is important to note that we are assessing the association between the urban character-
istics and the land surface temperature. These models are not explicitly evaluating causality.
Instead, we use these models to control for urban characteristics and evaluate how land surface
temperature changes with changes in each of the other urban characteristic in turn.

Null model: average. The first model, to compare other models against, is the null model.
This is a benchmark model to ensure the models we fit are not doing worse than no model. The
mean of the observations in the training set is calculated and is used as the prediction for the
test observations.

Linear model. Linear models are suitable when the relationship between the explanatory
variables (urban characteristics) and the response variable (LST) is linear. That is, linear models
take the form

𝑦 = 𝛽0 + ∑
𝑖

𝛽𝑖𝑥𝑖 + 𝜀

where 𝑦 is the response (LST), 𝑥𝑖 is each for the variables (urban characteristics), 𝛽0 is the
intersection, 𝛽𝑖 is how the LST changes linearly with each urban characteristic, and 𝜀 is the
normally distributed error.

Multivariate Adaptive Regression Spline (MARS). MARS models are a type of non-parametric
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regression approach that are useful for high dimensional problems [152]. They extend the linear
model by using piecewise functions to fit the data [121]:

𝑦 = ∑
𝑖

𝑐𝑖𝐵𝑖(𝑥)

𝐵𝑖(𝑥) is the basis function that includes multiple linear functions and indicator variables that
set these functions to zero for certain ranges of 𝑥. That is, multiple linear approximations are
summed across the variable range and provide a nonlinear estimate of the LST [121].

Generalized Additive Model (GAM). The GAM is also an extension of the linear model but
relaxes the assumption that the relationship is linear [151]. Instead, the response variable is
estimated as the sum of smoothing functions, splines, that are applied to each covariate or set
of covariates:

𝑦 = ∑
𝑖

𝑠𝑖(𝑥𝑖)

where 𝑠𝑖(𝑥𝑖) is the smoothing function applied to each covariate [294].
Random Forest. A random forest is an ensemble model of Regression Trees. A regression tree

partitions the data based on thresholds for the covariates [52]. The tree continues to ‘grow’ by
recursively partitioning the data with the objective of maximizing the node impurity, so that
the partitions are as similar as possible. The result is a tree-like structure that uses thresholds
on the covariates to estimate the response.

We use a total of 500 regression trees. Each regression tree is trained on a randomly se-
lected subset of 1/3 of the covariates. The resulting prediction from the random forest is the
unweighted mean of the prediction from all of the trees [51]. A subset of the covariates is
used to reduce the correlation between the predictions of each tree. Tree-based models do not
assume linearity and so are generally very flexible and powerful models [51, 128].

Gradient Boosted Regression Trees. GBRT’s are also a collective of regression trees. In contrast
to random forest models, each tree is trained sequentially on the residuals of the previous tree.
That is, each regression tree has the objective of reducing the error of the previous tree. The
prediction from the GBRT is the unweighted mean of all of the regression trees [128]. In this
case, we again use 500 trees.

Convolutional Neural Network. CNN’s are a new technique in deep learning and have most
commonly been used to analyze visual images. Their use in image processing makes them
potentially suitable for geographic studies. As with other forms of neural networks, CNN’s
contain layers of mathematical functions (neurons) that operate on the independent variables
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Figure 3.4: Holdout cross-validation results at 100-meter resolution. The out-of-bag (OOB)
R2 and mean absolute error (MAE) of the models from a 100-fold holdout cross-
validation. The models were trained on 80% of the data and tested on the unseen
20%. When selecting data for the training and testing sets, spatial subsets were used
to account for spatial similarities. OOB R2 can vary between (−∞, 1), where better
models have a value near 1. Good models have MAE near 0.

[128]. There can be multiple layers of these neurons that pass the results as an input to sub-
sequent layers. In this manner, neural networks can capture nonlinearities. The advantage of
convolutional neural networks above other types of neural networks is their ability to capture
the spatial dependencies. Because CNN’s have seldom been used for geospatial data, we provide
a more detailed explanation in (B.3).

3.3 Results and Discussion

In this studywe seek to determine the influence and relative importance of urban characteristics
on land surface temperature during both the day and night. To achieve this, we first select
variables to remove based on collinearity. The remaining variables for both 100 and 500-meter
resolution analysis are shown in B.2. The next phase is to assess the accuracy of the statistical
models. The results in Figure 3.4 show that the best models can predict both day and night land
surface temperature to within 1𝑜C using urban characteristics. The R2 results, also based on
unseen data, suggest that more than 90% of the data variance is captured by the best models. We
find that the most accurate model is the random forest, closely followed by the gradient boosted
regression trees and convolutional neural network. The weakest model, consistently with R2

less than 80%, is the linear regression - incidentally the model that is used in the majority of
existing studies into land surface temperature. These results allow us to assess the influence
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and relative importance that these characteristics.
Relative variable importance for all the urban characteristics, calculated with swing, is shown

in Figure 3.5. The characteristics, shown on the 𝑦 axis, are ordered by the mean swing across all
of the models, and the models are ordered left-to-right by their cross-validated accuracy. The
most important characteristics during the night are tree canopy cover, greenness (NDVI), the
sky view factor, and the elevation (digital surface model). The albedo is found to be important
when assessing the 100-meter data, while the % area covered in water is important with the
500-meter data. This is likely due to 98% of the cells at 100m resolution having 0% water, so the
effect on the dataset is negligible. The important urban characteristics are consistent for both
the mean and maximum temperature during the night. The characteristics are also relatively
consistent between night and day and between the models. Although albedo is among the
top factors, its relative importance is low compared to tree canopy and greenness, especially
during the night. This low association with nighttime temperatures is surprising given that
darker surfaces store heat during the day that is released during the night [333, 363]. This, and
the other influences can be examined using partial dependence.

Vegetation and impervious surfaces. During the day, increasing impervious surfaces and de-
creasing vegetation causes increased sensible heat flux and lowered latent heat flux [261, 333,
363]. This is thought to be less important during the night because latent and sensible heat are
dominant during the day, but ground heat flux dominates at night [333, 363]. Indeed, because
transpiration does not occur at night, vegetation’s effect on night temperatures is debated. In
our study, percentage tree canopy and impervious surface cover must be discussed together
because they are 100% correlated in the data (Figure B.10). To distinguish between vegetated
surfaces and other pervious surfaces, we include NDVI, a measure of a surface’s greenness. At
night, we find that % tree canopy (and % impervious surface) is the most influential charac-
teristic on land surface temperature, followed by NDVI (Figure 3.5). The partial dependence
results (Figure 3.6) indicate a decrease in up to 10𝑜𝐶 as the percentage area of trees or other
pervious surface increases. This reduction in temperature could be due to a reduction in the im-
pervious surfaces that store heat. We also observe that as the NDVI increases, the land surface
temperature decreases.

To further evaluate whether the influence with temperature is due to vegetation or pervious
surfaces, consider the the two-dimension partial dependence (Figure 3.7d) that evaluates how
LST varies with % tree canopy/impervious surface and the NDVI. The greener (higher NDVI)
and more pervious (higher % tree canopy cover) a surface is, the cooler it is during the night.
The total change here is also approximately 7.5𝑜𝐶 , which is a considerable amount given these
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Figure 3.5: Variable influence on LST at 100-meter resolution. The variable influence, measured
by swing, shows the relative importance of each urban characteristic on land surface
temperature.
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Figure 3.6: Partial dependence plots for LST at 100-meter resolution. Partial dependence plots
show how the land surface temperature (𝑜𝐶 , y axis) changes with each urban char-
acteristic as the other variables are held at their average (mean) value. The left hand
side shows the effect each variable has on the (a) mean land surface temperature
(LST) during the night, (b) maximum LST during the night, (c) mean LST during the
day, (d) maximum LST during the day. Each of the models are shown and this in-
dicates the model uncertainty in the relationships. There are multiple lines for each
model based on bootstrap samples of the data, which indicates the data uncertainty.
The histograms on the 𝑥-axis shown the distribution of the observed data. This is
for the 500-meter resolution.
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two-dimensional partial dependence are calculated using the random forest model, which is
the less sensitive of the five models (as seen in Figure 3.6). These results contradict standing
conclusions that vegetation has no effect on nighttime LST [261, 363]; although much of the
reduction in temperature could be due to the perviousness of the surface, lowered temperatures
appear to be associated with the greenness (NDVI) of a surface during the night.

During the day, we again see that vegetation and impervious surfaces are associated with
the greatest reduction in land surface temperature, with approximately 15𝑜𝐶 change (Figure
3.8: ndvi vs. % tree canopy). This daytime result is consistent with expectation [69, 70, 260, 338,
363]. Because not all pervious surface types have the same cooling potential, and because of
trade-offs with irrigation of vegetated surfaces [130], understanding the ideal vegetated surface
type for day and night temperatures is a future step.

Water. Water is widely expected to decrease the LST during the day [339, 347, 362], but some
claim it increases LST during the night [69]. The rationale is that water releases heat during
the night, resulting in elevated nighttime temperature [69]. Our findings, however, show that
water reduces the LST during both the day and night (Figure B.7). Although these results are
not supported at the 100-meter resolution because 98% of the data at the 100-meter level has
zero percentage water. At the 500-meter resolution, we see that the presence of water can
decrease LST between 1.5 and 8𝑜𝐶 during the night and by substantially more during the day
(Figure B.7).

Urbanization. Urbanization can lead to heat storage in roads and buildings [333, 363]. We
discussed the role of impervious surfaces, alongside the effect of vegetation, but we also con-
sidered the influence of albedo (the whiteness of a surface), the percentage area of building,
the NDBI (built-up index), and the sky view factor (a measure of the urban canyon effect). The
results for albedo are surprisingly low. During both the night and day, albedo has a negative ef-
fect on temperature. During the day, this is most pronounced, and whiter surfaces appear to be
more than 5𝑜C cooler than darker ones (Figure 3.6). The partial dependence plot (Figure 3.6) also
indicates that albedo’s influence on temperature is potentially confounded as both vegetation
and impervious surfaces can be dark surfaces (with low albedo). This stresses the importance
of statistical techniques for evaluating the effect of multiple variables. We can investigate this
further using the 2D partial dependence; the highest temperature occurs when there are dark
impervious surfaces, but dark vegetated surfaces are cool (Figure 3.7). Additionally, we see
that albedo has little affect at night, although the highest temperature does occur when there is
high acreage of building footprint with low albedo (Figure 3.7a). During the day, albedo has a
greater influence: increasing the whiteness decreases the temperature (Figure 3.6). The highest
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temperatures are observed when there is significant building area and low albedo (Figure 3.8a),
as well as high impervious area and low albedo (Figure 3.8b). This supports existing findings
that albedo decreases LST during the day, however, that we find no strong effect during the
night contrasts existing reports [261, 363].

The built-up index (NDBI), % building area, and digital surface elevation model also had rela-
tively minor associations with LST.The elevation (non-built-up) variable was excluded because
it was found to be collinear with other variables; the digital surface elevation model was in-
cluded and represents the elevation including buildings and vegetation. However, this eleva-
tion only appears to have minor associations with land surface temperature (Figure 3.6 & B.7).
The building area had no effect during the night and minorly increased temperature during the
day (Figure 3.5). Maximum NDBI appears to have a slight positive associated with maximum
daytime LST (Figure B.7), but this effect is not observed at the 100m resolution. This minor-
to-negligible relationship is surprising given that NDBI has been reported as among the most
important urban characteristics during the day [260]. However, the discrepancy may be due to
% impervious surface area being incorporated already with the % tree canopy data.

The canyon effect is also often attributed with causing warmer temperatures [69, 242]. While
there was high uncertainty in the models, it appears that during the night, the temperatures
decrease as the sky view factor increased (Figure 3.6a,b). This is potentially due to heat being
stored within the canyons (areas with low sky view factors). This is supported in the two-
dimensional partial dependence plot (Figure 3.7) where the higher temperatures are observed
when there is high % building area and low sky view factor. It follows that heat is being captured
in the canyons. However, compared to the other urban characteristics this has a lesser affect,
changing the temperature by approximately 1.5𝑜C. The effect of the sky view factor during the
day is low-to-indiscernible (Figures 3.5 and 3.8), but suggests that there are higher temperatures
when the sky view factor is high.

Population density. We found that population density had no discernible effect during night
or day (Figure 3.5).

Result sensitivity. To assess the robustness of the results, we conduct the analysis again at the
500-meter resolution (B.5). The results are consistent. Additionally, to ensure that the effects
are consistent between cities, we construct the partial dependence plots for each city (B.4).
The partial dependence is similar to Figure 3.6. Therefore, the consistency between 100 and
500-meter lends confidence to these conclusions.

Urban strategies.
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Figure 3.7: Nighttime, mean: A two-dimension partial dependence plot showing how the land
surface temperature (𝑜𝐶 , contours) changes the variables on the 𝑥 and 𝑦 axes, while
the remaining variables are unchanged.
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Figure 3.8: Daytime, mean: A two-dimension partial dependence plot showing how the land
surface temperature (𝑜𝐶 , contours) changes the variables on the 𝑥 and 𝑦 axes, while
the remaining variables are unchanged.
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3.4 Conclusion

To assist planners tackling climate change, heat waves, and general high urban temperatures,
we seek to determine how different urban characteristics are associated with land surface tem-
peratures. The results strongly support initiatives for increasing green infrastructure in cities
[189, 217]. We found that increasing vegetation and reducing impervious surface area had the
greatest effect on temperature during both night and day, with the potential to reduce the tem-
perature up to 10𝑜C.We also see strong evidence for blue space and increasing the area of water,
although there are various limitations with doing so in cities such as Phoenix. We do note that
this analysis is for land surface temperature, and not air temperature. The correlation between
LST and air temperature is not perfect at intra-urban scales, and the magnitude of LST vari-
ability tends to be larger than that of air temperature. Nevertheless, LST is a highly relevant
variable for analyses of the urban energy balance, and thus for studies of the UHI process.

Our findings demonstrate that accurate prediction of land surface temperature using urban
characteristics is possible. This result opens opportunities for further detailed analysis into po-
tential interventions. Such interventions for mitigating high temperatures are naturally place-
specific, and while these results have proven general to four different US cities, work is needed
to understand questions such as which types of greenery are better than others [130]. This
study also demonstrates the opportunities of modern statistical techniques and the ability to
assess potentially nonlinear interactions and the interactions between multiple variables.

Rigorous statistical analysis can continue to answer on-going questions central to land sur-
face temperature. For example, our results support the suggestion that 3D variables (e.g. sky
view factor) do not outperform 2D ones (e.g. % tree canopy cover) [42]. However, iteratively
removing these variables from the analysis can ameliorate the potential for conflating the im-
portance of different characteristics [69]. Our analysis is not causal inference; such an analysis
would require controlled variables and urban spaces. We instead aim to complement and inform
existing understanding of the relationships by demonstrating how land surface temperature and
the urban characteristics are associated. This can be used to inform potential strategies for ur-
ban heat reduction, that is, if an association exists between two variables then we can evaluate
the potential for causality based on understanding the physical mechanisms.

However, if no association exists or is in the opposite direction of proposed strategies for heat
reduction, then such strategies need to be re-evaluated. For example, our results assessing the
relative effect of sky view factor (a measure of building density), population, built-up index, and
% building area do not support claims advocating to constrain floor area ratios [69]. Such policy
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could lead to increased urban sprawl (low-density or single-use urban development character-
ized by poor accessibility and a lack of functional open-space [111]). Instead, our results show
that reducing impervious area and increasing vegetation and greenness have a stronger associa-
tion with lowered temperatures. Such action could be achieved without constraining floor area
ratios. If a constraint is explored, an additional necessary study is to compare sprawling and
dense cities, prior to taking steps to dissuade density. Now that 100-meter resolution nighttime
data is available, as well as the increasing availability of lidar data, studies advocating creative
interventions such as increasing the vertical and horizontal randomness of buildings, increasing
the prevalence of green roofs [123, 175], or other urban planning strategies can quantitatively
be explored.

This study into daytime and nighttime land surface temperature in four US cities has high-
lighted the importance of vegetation in our cities’ mitigation options. It has also demonstrated
the utility of leveraging advanced statistical analysis to study land surface temperature. The
results are robust to both data and model uncertainty and are general across the cities studied.
They suggest that vegetation and impervious surfaces are the most important urban character-
istics associated with land surface temperature. Increasing and decreasing these, respectively,
is necessary for reducing high urban temperatures during both night and day.
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Chapter 4

Evaluating Urban Accessibility 8

We revisit the standard methodology for evaluating proximity to urban services and recom-
mend enhancements to address existing limitations. Existing approaches often simplify their
measure of proximity by using large areal units and by imposing arbitrary distance thresh-
olds. By doing so, these approaches risk overlooking vulnerable, access-poor populations – the
very populations that such studies are often trying to identify. These limitations are primarily
motivated by computational constraints. However, recent advances in computational power,
open data, and open-source analytics permit high-resolution proximity analyses on large scales.
Given the impetus for equitable accessibility in our communities, this is of fundamental impor-
tance for researchers and practitioners. In this paper, we present an approach that leverages
these open source advances to a) measure proximity using network distance at the building
level, b) estimate population at that level, and c) present the resulting distributions so vulner-
able populations can be identified. Using three cities and modes of transport, we demonstrate
how the approach enhances existing measures and identifies service-poor populations where
the previous methods fall short. The proximity results could be used alone, or as inputs to
access metrics in other studies. Our collating of these components into an open source code
provides opportunities for researchers and practitioners to explore fine-resolution, city-wide
accessibility across multiple cities and the host of questions that follow.

8Published as Logan, T, Williams, T, Nisbet, A, Liberman, K, Zuo, C, & Guikema, S (2017). Evaluating urban
accessibility: Leveraging open-source data and analytics to overcome existing limitations. Environment and
Planning B: Urban Analytics and City Science. https://doi.org/10.1177/2399808317736528

49



4.1 Introduction

Accessibility is important for the sustainability and resilience of cities [50] and can lead to
significant reductions in greenhouse emissions [95]. Access to destinations such as schools,
parks, health care, and supermarkets is important as these services generally satisfy the daily
needs of urban residents [314]. Geographic access, or proximity, is a key component of access
and is the focus of this study.

Existing studies have often used simplified measures of proximity as part of their evalua-
tion of accessibility. These simplifications risk ignoring the access-poor residents within a city,
conflicting with the very aims of these studies. Such simplifications include:

• Large areal units. By using large, aggregated areal units (e.g. census blocks), the results
are highly sensitive to the location of the units’ centroids. Results also ignore the distri-
bution of access within the area and, hence, do not identify the locations of amenity-poor
residents.

• Distance thresholds. By using a subjectively-defined distance threshold (e.g. 400 m) to
determine whether a resident has access or not, the results become sensitive to these sub-
jective thresholds. This undermines the robustness of any conclusions. Thresholds also
ignore the distribution of accessibility. For instance, although 50% of residents may have
“access”, the state of the remaining residents is unreported. It is possible that previous
studies employing single thresholds have drawn conclusions that are unrepresentative of
the entire city’s distribution.

• Simplified distance measures. Reporting the Euclidean distance rather than the network
distance strictly underestimates distance. The greatest discrepancies will exist in the es-
timates of distance for communities segregated by geographical obstacles (e.g. motor-
ways).

Prohibitive computational requirements have previously forced studies to make these sim-
plifications. However, the increase in computational capacity, open data sharing, and open
source tool availability alleviate the need for these simplifications. Future studies that evaluate
proximity now have the opportunity to:

1. Leverage open-source platforms. The growth of the open-source community has pro-
vided valuable resources, including data, network routing algorithms, and programming
languages that enable analysis and display of spatial data. These free resources continue
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to improve with time, and researchers and practitioners should position themselves to
utilise these opportunities.

2. Measure from the finest scale possible. It is now computationally feasible to measure
the network distance and time from every parcel or building to the nearest destina-
tion point. Doing so captures the true distribution of proximity, includes impediments
from geographic barriers, and does not simplify the transportation network. Parcel-
based assessment avoids ignoring proximity-poor residents who may otherwise be over-
looked. Where necessary, parcel-based results can be aggregated up to larger areal units,
weighted by population. This method still captures the underlying distribution and is less
sensitive to the location or boundaries of the areal unit.

3. Represent the entire distribution of results. Using empirical cumulative distribution func-
tions and city-wide maps of proximity make the results and analysis robust and indepen-
dent of arbitrary thresholds. Binary “access-or-not”, or other subjective measures that
have previously been used, lend themselves to statistical biases and false interpretation
of the data.

The overall aims of this paper are to a) briefly review past approaches to measuring prox-
imity, b) recommend enhancements that build on this work, and c) demonstrate the benefits
and opportunities presented by this approach. Our recommendations address the above limita-
tions and improve our ability to identify previously overlooked, access-poor communities. We
demonstrate our approach by evaluating the proximity of supermarkets, health care providers,
green space, and high schools by walking, cycling, and driving for the residents of three US
cities: Baltimore, Chicago, and Detroit. We provide code9 so others can conduct this analysis.

Simply put, we want our cities and communities to be accessible. Therefore, planners need to
promote accessible urban forms [314]. To help them do that, we need the ability to accurately
measure proximity. Our study discusses and demonstrates how recently available tools have
lowered the barriers to achieving this.

4.2 Review of measuring proximity

The notion of the accessible city is almost synonymous with that of the sustainable and socially
cohesive city. For example, urban green spaces provide multiple benefits to urban residents;

9Github repository located at https://github.com/tommlogan/city_access
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they present opportunities for physical activity, foster community networks and social capital,
and improve the mental and physical health of communities [11, 49, 74, 205, 274, 315, 355].
Health care facilities, schools, and grocery stores are other examples of core urban amenities.
Accessibility and urban form primarily affect vulnerable populations without access to vehicles
[212, 314]. Especially in the case of health care, these people are often those who need it most.
It is therefore critical that we have the ability to measure accessibility and provide decision
support to those promoting accessible urban form.

Accessibility is multi-dimensional and its measure is dependent on the service or amenity
of interest. The traditional dimensions of accessibility are proximity, availability, acceptability,
affordability, adequacy, and awareness [259, 283]. When evaluating access in a city, all of these
components need to be considered. Nevertheless, we contend that proximity is a necessary,
even if it is not a sufficient, condition to having accessibility. It is also the component of urban
access that urban planning and amenity location can influence [328] and is almost always in-
cluded in the evaluation of accessibility. Hence, the measurement of proximity is the focus of
this paper.

Table 4.1 summarises how previous studies evaluating accessibility havemeasured proximity.
The summary shows that the question of proximity has challenged researchers and practitioners
for a long time. Over this time, the tools available have increased. In 1989, Pacione was ruling
a line along the “crow’s-flight” path on his maps. Scholars in the 1990s were touting the new
capabilities of the Euclidean buffer tool [26], and, by the early 2000s the network analyst tool
was being utilised [270].

Once measured, there are countless ways in which proximity has been integrated into so-
phisticated evaluations of accessibility. For a recent review of access evaluations, including
proximity, gravity, topology, and index-based, we refer the reader to Vale, Saraiva, and Pereira
[328]. However, in some cases, the sophistication is somewhat lessened due to simplifications
applied to the proximity measurement. Table 4.1 identifies some of these limitations, where
the shaded columns indicate best practice. The existing approaches in the literature could be
enhanced by addressing these limitations:

• Simplified distance measures;

• Arbitrary thresholds;

• Low spatial resolution; and

• Single region of application.
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Distance between points has been measured in a variety of ways: Euclidean distance, Man-
hattan distance, network distance, and network time [328]. The Euclidean and Manhattan dis-
tance, or buffer approaches, are the simplest tools. They were common in the literature in the
1990s [26, 161], and their use continues to persist (see Table 4.1). The network distance is often
calculated using Dijkstra’s algorithm (1959) and became common in the early 2000s. The net-
work approach is the more accurate measure of proximity, as it captures the spatial structure
of the transportation infrastructure, which Euclidean or Manhattan measures ignore.

Many studies discretise proximity by specifying a distance threshold or extent and use the
resulting, blunter “accessibility metric” [49, 188, 244, 328]. Their conclusions are therefore de-
pendent on the predetermined threshold, which is often the planners’ “rule of thumb” of 400 m
or 800 m as a walking distance limit [215]. However, people are prepared to travel further [59]
and other thresholds have been used [11, 291]. Seldom are these thresholds subject to a sen-
sitivity analysis [328] and they are too blunt to capture the nuances of city-wide accessibility.
Another substitute for calculating the proximity is the Walk Score tool (www.walkscore.com).
Walk Score considers the proximity and a host of other factors to provide a subjective measure
of the walkability of a neighbourhood. However, their assessment has been subject to criticism
as the metric does not capture the quality of the walking environment [183, 257]. Our proposed
approach is advantageous because it is open source and the raw proximity values could be used
to provide deeper insight than aggregated indices.

Spatial scale significantly influences indicators of accessibility and can lead to amenity-poor
residents being overlooked. For example, consider a census tract where some residents are ge-
ographically isolated from an amenity; measuring the distance to the amenity from the census
tract’s centroid, the segregated residents are unnoticed. This issue has already been identified
and discussed [81, 187, 315], yet later studies fail to address the limitation (Table 4.1). A way
to address this is to measure accessibility from individual building units, which can be coupled
with methods to assign population to the buildings [46, 176, 360]. An often cited reason for
not conducting measurement at this resolution is that demographic data is provided at a poorer
resolution, and therefore errors arise when down-scaling the data [314]. There are two impor-
tant fallacies that need to be considered with aggregated data: the ecological inference problem
[177] and the modifiable areal unit problem (MAUP) [246]. The ecological fallacy implies that
attributing regional characteristics to an individual is not always valid. MAUP addresses how
conclusions are not robust to the areal units’ sizes and shapes. Regardless of the issues with
these two fallacies, proximity at parcel level can be aggregated up if necessary, improving the
measure even when represented at the poorer resolution [154].
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Until recently the aforementioned simplifications were essential due to computational and
data constraints [205, 314]. Other studies acknowledge that they have adopted simplistic ap-
proaches due to “considerable and cumbersome” analytical requirements [49, 81]. These com-
putational limitations are now only self-imposed, and future studies, when the data is available,
can be utilising the options available to them.

The literature shows great diversity in application area for this type of research. It also shows
how the research has evolved over the past 30 years following the advent of computational
geographic information systems (GIS). Now, as we demonstrate, the open-source community
has provided the next advance in tools and data available to scholars and practitioners. In the
remainder of this article, we demonstrate a procedure for leveraging these recent advances and
discuss opportunities that are now available to researchers, policy makers, and practitioners.

Table 4.1: A variety of different methods for evaluating proximity have been employed in pre-
vious studies. Some key characteristics of these methods are summarised here. A
shaded column indicates best practice.

Distance measure Threshold Spatial unit Scale

Keywords Euclidean Network Single Multiple Continuous > Parcel Parcel Single city/region Multiple cities

Pacione [249] Schools * * * *
Azar, Ferreira, and Wiggins [26] Transit * * * *

Hsiao et al. [161] Transit * * * *
O’Sullivan, Morrison, and Shearer [248] Transit * * *† *

Randall and Baetz [270] School, GIS * * * *
Wolch, Wilson, and Fehrenbach [356] Green space * * * *

Austin et al. [12] Food, Schools * * *
Schuurman et al. [287] Health care * * * *

Langford and Higgs [187] Health care * * * *
Hillsdon et al. [155] Green space * * * *

Kipke et al. [178] Food, Schools * * *
Apparicio, Cloutier, and Shearmur [10] Food outlets * * * *

Oliver, Schuurman, and Hall [244] Land-use * * * * *
Kimpel, Dueker, and El-Geneidy [176] Transit * * * *

Barbosa et al. [29] Green space * * * *
Cohen et al. [74] Green space * * * *

Larsen and Gilliland [188] Food * * * *
Boone et al. [49] Green space * * * *

Biba, Curtin, and Manca [46] Transit * * * *
Lei and Church [191] Transit * * * *

Currie [81] Transit * * * *
Mavoa et al. [215] Transit * * * *

Hawthorne and Kwan [153] Health care * * * *
Mao and Nekorchuk [212] Health care * * * *

Sang Lijie, Zhu, and Su [281] Green space * * * * *
Williams and Wang [350] Schools * * * *

Astell-Burt et al. [11] Green space * * * *
Reklaitiene et al. [274] Green space * * * *

Nobles, Serban, and Swann [237] Health care * * * *
Koschinsky et al. [183] Various amenities * * * *

SEMCOG [289] Core services * * * *
Lee and Lubienski [190] Schools * * * *

Macedo and Haddad [205] Green spaces * * * *
† used a single parcel location and measured access to various points in the city.

54



4.3 Procedure for measuring proximity

4.3.1 Overview

In this section we outline our approach for evaluating proximity that overcomes the afore-
mentioned limitations. The approach measures network distance and time from every single
building to the nearest destination point (Figure SMC.9). This fine resolution analysis is now
tractable at large scales and over multiple cities or regions. Our code is available online9.

4.3.2 Step 1: Data inputs and processing

To calculate proximity, coordinate points for the origins and destinations are required. The
extent of pre-processing to generate these points depends on the type of analysis. For exam-
ple, when analysing the access to supermarkets the destination can be converted to a point.
Similarly, points can be used for parcel or building data. However, it is not always appropri-
ate to represent a destination as a point. For example, when analysing access to green space,
representing a park as a single point is inappropriate for two main reasons:

• There may be multiple entry points or open borders; and

• The park may be very large, causing the centroid point to be unreasonably far away from
any actual access points.

To address these issues, every park is converted to a series of equally-spaced points around
its perimeter (refer to Figure SMC.9). Then, because routing algorithms snap points to the travel
network (see Figures SMC.1 and SMC.2), the points are moved 5 m inwards. This encourages
snapping to an interior pathway, which results in the route passing through the park’s entrance.
This is important in the case where physical barriers (e.g. fences) prevent access from every
side.

In our analysis, the origins were building shapefiles downloaded from city open data portals,
and the destinations were primarily downloaded from OpenStreetMap (OSM). A discussion
of important data challenges (e.g. an incomplete or unconnected network) and opportunities
(volunteered geographic information) is included in the Supplemental Material (page 160), as
are further details of our data sources (page 167).

Once both the origins and destinations are points, the input to the routing algorithm is cre-
ated.
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4.3.3 Step 2: Routing

The routing consists of two main stages. Firstly, the 𝑘 nearest (by Euclidean) destination points
to each origin are found, resulting in 𝑘 candidate destination points for every origin.

Network distances and times between these origin-destination pairs are then calculated by
the chosen routing system. The closest destination (by distance or duration) is then assigned
to each origin.

There are multiple different routing algorithms that could be used for this analysis. We used
Open-Source Routing Machine [204] (http://project-osrm.org/) running via Docker [221]
on a local server. The advantage of this is that it allows for an unlimited number of free origin-
destination route calculations (see supplemental information and Github for instructions and
code). However, if factors such as congestion are important it may be more beneficial to use
a routing algorithm with this ability (e.g. Google Maps). Refer to the Supplemental Material
(page 161) for a more complete discussion on the choice of routing algorithm.

4.3.4 Step 3: Demographic apportioning

Demographic apportioning (also known as dasymetric mapping) is the process of assigning
demographic information to finer resolution units (in our case, buildings) [187, 286]. In our
approach, the land-use (where available) is used to exclude buildings that are not zoned as
residential. The population of the census block (or areal unit where population data is available)
is then evenly divided among the remaining buildings. This provides a population estimate for
each building, and, by extension, an approximation of the distance to the nearest service for
that fraction of the population. Note that a census block is the smallest geographic unit used in
the US census survey and generally corresponds to a city block. While uniformly distributing
the residents to the buildings introduces some errors, the small size of the unit limits these, and,
to our knowledge, validating a method for finer distribution would be extremely challenging
and require potentially sensitive data.

4.3.5 Step 4: Quantification and visualisation

The final step is to present the results of the analysis. Almost all previous work has presented
results in the form of tables. The advantage of a table is that it is easily interpretable. However,
to use tables the results must be discretised, often via an arbitrary threshold (discussed earlier).
An empirical cumulative distribution function (ECDF) is an alternative to the traditional table
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representation, and gives a complete representation of city-wide accessibility that is indepen-
dent of any subjective thresholds. The ECDF is a line graph that represents the percentage of
residents who have a travel distance or duration less than any value, 𝑥. For example, Figure 4.1
shows the walking distance to green space; Detroit has a value of 60% at 1050 m, indicating that
60% of residents in Detroit live within 1.05 km of green space. The ability to overlay multiple
ECDFs means that presenting comparisons between cities and/or demographics is simple.

A third option for representing accessibility is a map-based representation (Figures 4.2 and
SMC.10). This representation has a different objective to the table and ECDF options and is
complementary to both. By graphically representing access, we can quickly identify regions
within the city that have poor access to the given service type.

Figure 4.1: ECDF showing distance via walking to the nearest park. Note that had a distance
threshold of 400 m been chosen, Chicago and Baltimore would be found to have
similar park proximity. However, this figure shows that this would be an incomplete
comparison between Baltimore and Chicago.

4.4 Case studies

4.4.1 Overview

We now provide examples to demonstrate the wide applicability of this approach. The method-
ology described above was applied in three US cities (Chicago, Baltimore, and Detroit) to mea-
sure proximity for:

• Walking to green spaces;

• Cycling to public high schools;
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(a) Distances are calculated from the centroid
of each census tract.

(b) Distances are calculated from every build-
ing and then aggregated up to the census
tract, which display the mean of all con-
tained buildings.

(c) Distances are calculated from every building, and the point re-
sults converted to a raster. See https://reckoningrisk.com/
research/2017/urban-access/ for an interactive map.

Figure 4.2: The distribution of park access in Baltimore whenmeasured at various spatial scales.
When census tract centroids are used (in (a)), the results are highly sensitive to cen-
troid locations, and the overall accessibility distribution is erratic. Using building-
based estimates (as in (b) and (c)) gives a more accurate representation of accessibil-
ity. 58
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• Driving to health care; and

• Walking, cycling, and driving to supermarkets.

These destinations were selected to demonstrate the variety of application domains for our
tool and represent amenities that are of vital importance in people’s daily life [289, 314]. The
corresponding travel modes were deemed suitable for each destination. However, it would be
easy to include different modes or different destination types.

The following results demonstrate the enhanced insights that are now possible.

4.4.2 Multi-city comparisons

The results for each application can be represented in three ways: ECDFs, tables, and spatial
maps. Walking distance to parks is shown using these alternatives in Figure 4.1, Table 4.2, and
Figure 4.2c. Selected results can be interactively explored at http://adaptingcities.org/
city_access.html. The corresponding results for cycling to high schools, driving to hospitals,
and access to supermarkets via all modes are presented in the supplementary material (page
168).

The ECDFs enable simple qualitative and quantitative comparison between cities. For ex-
ample, we can see that Chicago has the highest access to all destinations via all travel modes,
whereas Detroit consistently has the poorest access.

Comparisons between cities can be used to identify exemplar cities and best practices. They
can also benchmark a city’s accessibility against that of another, add statistical rigour to hy-
potheses by testing across cities, and enhance conclusions made in existing studies. Due to
data and computational limitations, very little previous work has made comparisons between
different cities or regions like this (refer to Table 4.1).

4.4.3 Removing the thresholds

An additional benefit of using ECDFs is that they represent the entire distribution of a city’s
access, unlike the conventional tabular display. Consequently, we can draw conclusions inde-
pendently of any subjective distance or time thresholds.

Closer inspection of Figure 4.1 and Table 4.2 highlights the insight that can be gained through
an ECDF; if a distance of 400 m is chosen as the threshold for walking access to green space
(a common value in the literature), we conclude that 50% of Chicago’s, 46% of Baltimore’s,

59

http://adaptingcities.org/city_access.html
http://adaptingcities.org/city_access.html


Table 4.2: Percentage of population with access to green spaces, high schools and health care
at selected distances (rounded to the closest percentage point).

Distance (km)
Walk to parks Cycle to schools Drive to health care
0.4 0.5 1 0.5 1 2 2 4 6

Chicago 50% 63% 95% 11% 41% 87% 39% 83% 97%
Baltimore 46% 56% 84% 6% 24% 70% 35% 83% 99%
Detroit 20% 27% 56% 5% 20% 59% 12% 47% 77%

and 20% of Detroit’s residents live within 400 m walk of a park. In other words, Chicago and
Baltimore have similar access, while Detroit is considerably lower. While this is indeed true,
it is incomplete. If we instead choose a threshold distance of 1 km, we conclude that 96% of
Chicago’s residents have access to green space, in comparison to Baltimore’s 84%. That is, there
are more than three times as many people in Baltimore than Chicago without park access (as
a fraction of total city population). These considerably different conclusions demonstrate the
sensitivity to the thresholds. The difference is immediately observable in the ECDF shown in
Figure 4.1, but may have gone unnoticed had tables been used for the analysis.

It is possible that previous studies employing single thresholds have drawn conclusions that
are unrepresentative of the entire city’s distribution. Such conclusions ignore the tail of the
distribution, where the access poor residents lie. It is these very groups that the majority of
similar studies are trying to address, and we argue that considering only a single threshold
distance conflicts with these very goals.

4.4.4 Benefits of fine resolution

Poor resolution can lead to errors that should no longer be acceptable given the tools available
to us. Imposing a discrete spatial structure over a continuous population surface results in the
modifiable areal unit problem (MAUP) [246]. An areal unit’s size and location is arbitrary, and
the results are sensitive to these parameters. The problem, therefore, is that the results are not
robust.

Figure 4.2 shows the spatial distribution of proximity to parks in Baltimore based on anal-
ysis at different spatial resolutions. In Figure 4.2a, the distance to nearest park is calculated
from the centroid of each census tract. We observe erratic heterogeneity in the results, which
demonstrates the sensitivity of the results to the centroid locations. Figure 4.2b displays the
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Figure 4.3: The distribution of proximity to nearest park within a census tract in Baltimore. The
distance of the tract’s centroid to nearest park, a commonly used approach, is not
representative of the proximity distribution of residents calculated at the building-
level.

building-level results from our analysis aggregated up to the census tract. As each census tract’s
assigned value is calculated from a large number of results, we see a smoother pattern than in
Figure 4.2b because the entire distribution within each tract is acknowledged, removing this
sensitivity to arbitrary centroid location.

As well as being sensitive to centroid location, the traditional tract-level approach assumes
that the distance from the centroid is representative of the actual distribution of building-level
access. Figure 4.3 illustrates how this can be a poor assumption, by showing that the value
calculated using the tract centroid (vertical solid line) does not reflect the actual distribution
of proximity within the tract. Moreover, collapsing this entire distribution to a single number
(whether the centroid value or weighted mean) does not differentiate the access-poor residents
from those with better access.

Figure 4.3 also shows that there is a bimodal distribution within the given census tract. This is
because there is a railway running through the census tract, which impedes access for a portion
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of the population. The needs of these segregated residents would be overlooked if only the tract
centroid was used to represent proximity.

The availability of fine resolution data and advances inmodern computing allow for building-
level assessment. This easily identifies access-poor areas, for example the park-poor residents
in Figure 4.2c, or food deserts in Figure SMC.10. The bias that is introduced by areal units,
regardless of the size, should no longer be acceptable, especially when identifying vulnerable
residents is the goal. If areal units are necessary, integrating up from a finer resolution as in
Figure 4.2 is the most robust approach.

4.4.5 Network distance

The use of Euclidean distance as a proximity measure appears to be declining, but for a few
cases. The supplemental material (page 166) provides discussion and evidence (Figure SMC.6)
showing how Euclidean distance underestimates the distance to services.

4.5 Limitations and further opportunities

4.5.1 Further opportunities

Leveraging the data as we suggest opens the field of research to enumerable lines of querying.
For example, our approach could be extended to:

• Compare access between different subgroups within a city (e.g. low-income, race, age,
etc.). There has been a substantial amount of previous research that has investigated
these relationships, and the results generated via this method may help researchers to
draw further insights into issues of inequity of access (Chapter 5 demonstrates this in
terms of access to supermarkets and gas stations over the course of a natural hazard).

• Quantify the effects of adding or removing a destination (e.g. opening or closing a school)
on the overall city-wide access. This could also be combined with the previous example
to determine marginal effects on different demographics.

• Assess the validity of previous thresholds. As has been shown above, it is possible that
previous studies with predetermined distance (or time) thresholds have misrepresented
both regional and local accessibility. For example, consider a city that has excellent access
for 50% of its residents and terrible access for the other 50%. If a threshold distance of
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400 m finds that 50% of residents have access, this city will be considered to have high
accessibility. Thismeans that access can be over-rated, and the needs of those access-poor
residents are ignored.

• Combine results of access to various core services to create an all-encompassing acces-
sibility measure. This would require (subjectively) weighting different services based
on their perceived importance but would allow the definition of a single distribution to
characterise an entire city. This could then be used to either compare between cities or
between demographics.

• Analyse the accessibility of proposed residential developments.

4.5.2 Limitations

Open source data and analytics have a number of benefits, but there are limitations. Users
should be aware of these and of some approaches for working with them. Addressing these
limitations are important future challenges for the research, philanthropic, and governmental
communities. Some limitations include:

• Volunteered geographical information (VGI) is not always complete and thorough checks
are necessary if it is going to be used. Inmany cases, ESRI and Google maps have accurate
data available. Data from any source available to the user can be input into the code we
provide.

• OSM can lag in updating infrastructure such as street networks. Some cities, for example,
provide up-to-date street networks to ESRI, but to our knowledge such agreements do not
exist with OSM. However, as shown in Figures SMC.1 and SMC.2, both OSM and Google
Maps can have incomplete walking trail networks.

• There are many routing algorithms available to use, and the choice should depend on
the application. OSRM, for example, is free to use, but currently does not incorporate
traffic congestion or public transit. OpenTripPlanner and Google also are alternatives
for examining transit travel. However, in the case of OpenTripPlanner, data on transit
schedules (usually sourced from the cities) is required. A comparison between OSRM and
Google Maps is provided in the supplemental material (page 161).
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• The routing algorithms make different assumptions in their calculations, for example
the travel speed on certain road surfaces or penalties for turns. In OSRM these can be
modified (see supplemental material, page 158).

• This approach measures the proximity to the nearest service. It does not incorporate the
amenity or safety of the walking environment.

• Evenly dividing the population of a census block between buildings introduces some
error. This error is relatively minor given a US census block generally corresponds to
a city block. Approaches to improve dasymetric mapping would be a valuable future
contribution.

4.6 Conclusion

The aims of this study were to a) propose a methodology for measuring proximity that builds
on previous work, and b) demonstrate the benefits and opportunities associated with using this
approach.

There are several limiting simplifications inherent in existing methods for measuring prox-
imity. With reference to Table 4.1, these limitations are:

• Single region of application. Focussing on single cities prevents hypotheses from being
rigorously tested and comparisons between cities being made.

• Large areal units. This ignores the distribution of access within the areal units, andmeans
that results are sensitive to the unit centroid locations.

• Arbitrary thresholds. The majority of studies rely on subjectively-defined thresholds,
which vary considerably between applications and can misrepresent a city’s access.

• Simplified proximity measures. Despite network measures being the most accurate, Eu-
clidean measures continue to be used.

These were once reasonable simplifications based on restrictions to computation and data avail-
ability. This is no longer the case. In our approach, network distance and time are measured
from every single building to the nearest destination point. From this, figures can be plot-
ted that display the city-wide proximity to a given destination that are independent of any
subjectively-defined distance or time thresholds. By leveraging open-source data and analytics,
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this fine resolution analysis is now tractable at large scales and over multiple cities or regions.
Additionally, it no longer overlooks the amenity-poor residents whom many of the existing
proximity studies aim to identify.

Comparisons between cities can be used to identify exemplar cities and best practices. They
can also benchmark a city’s accessibility against that of another, add statistical rigour to hy-
potheses by testing across cities, and enhance conclusions made in existing studies. We analyse
the proximity of supermarkets, health care providers, green space, and high schools by walking,
cycling, and driving for the residents of US cities Baltimore, Chicago, and Detroit. We show
that Detroit has the poorest access to amenities of the three cities and that Chicago generally
has the best. Due to data and computational limitations, very little previous work has made
comparisons between different cities or regions like this (refer to Table 4.1).

Results generated using large areal units are sensitive to the units’ centroid locations. Also, by
using only a single point estimate to represent the entire unit, the distribution of the residents’
access is ignored. This means that access-poor communities can be ignored. Using Baltimore
as a case study, we demonstrate the discrepancies between analyses at different spatial scales.
We present maps showing that park-poor residents can be quickly and easily identified using
fine resolution analysis. Where areal units are necessary, integrating building level data up is
the best approach. We provide an example of a census tract with poor access that would be
considered exemplary under many of the previous approaches, thus highlighting the need for
using the method we outline.

The majority of studies rely on subjectively-defined thresholds, which vary considerably be-
tween applications. This means that distributions of access are simplified to a single value.
When the distribution of proximity, is ignored amenity-poor residents can be overlooked. For
example, although 𝑥% of residents may have “access”, the state of the remaining residents is
unreported. Reducing proximity to a binary variable (access or not) also means conclusions
are sensitive to the chosen parameters and therefore are not robust. We provide an example
where the use of two different thresholds yields strikingly different conclusions. These thresh-
olds provide incomplete information regarding access to amenities and can be avoided by using
empirical cumulative distribution functions (ECDFs), which display the entire distribution of
access throughout a city. We therefore recommend them as useful tools to include in future
proximity analyses.

Accessibility is a key factor for the resilience and sustainability of a city. In 1994, Azar, Fer-
reira, and Wiggins discussed how the advance of computer and GIS technologies would trans-
form city planning and accessibility analysis. Since then, computer speeds have significantly
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increased. Going forward, we must leverage this increase as well as the open-source data and
tools now available to us. Simplifications in existing approaches risk overlooking amenity-poor
communities, which in fact contradicts the goals of many of the studies. These simplifications
are no longer necessary and are addressed using the methodology we propose. Leveraging the
tools now available to us, evaluating accessibility within cities is possible at scales previously
considered intractable. The opportunities that this presents us as researchers, policy makers,
and practitioners are vast.

4.7 Summary for policy makers and practitioners

There appears to be a growing interest from policy makers in evaluating access in our cities
[289, 314]. With the availability of open-source (and hence free) tools and the reliability of data
increasing daily, our cities, policy makers, practitioners, and NGOs should position themselves
to leverage this. Increasingly, city planning can be informed by data. For example, evaluating
proposals for new facility location or residential development could include analysis of prox-
imity and, by extension, accessibility. Additionally, we encourage cities to make their own data
available open source. Our paper identifies the limitations of existing approaches and provides
evidence for why these can and should be overcome. But, most essentially for policy makers
and practitioners, we provide instruction, code, and examples of how to conduct the approach
we recommend.

66



Chapter 5

Building community resilience through
equitable access to essential services 10

We urgently need to understand how to put concepts of resilience into practice if we are to
prepare our communities for climate change and exacerbated natural hazards. Yet, despite the
extensive discussion surrounding resilience, operationalizing the concept remains challenging.
The dominant approaches for assessing resilience focus on either evaluating community charac-
teristics or infrastructure functionality. While both remain useful, they have several limitations
to their ability to provide actionable insight. More importantly, the current conceptualizations
do not consider essential services or how access is impaired by hazards. We argue that people
need access to services such as food, education, healthcare, and cultural amenities to get back
some semblance of normal life. Providing equitable access to these types of services and quickly
restoring that access following a disruption is the heart of community resilience. We propose a
new conceptualization of resilience that is based on access to essential services, together with
a way of measuring the resilience of a community based on this conceptualization. Using two
illustrative examples from the impacts of Hurricanes Florence and Michael, we demonstrate
how decision makers and planners can use this framework to visualize the effect of a hazard
and quantify resilience-enhancing interventions. This equitable access to essentials approach is
a resilience framework that integrates with spatial planning, and will enable communities not
only to ”bounce back” from a disruption, but to “bound forward” and improve the resilience
and quality of life for all residents.

10Submitted to Journal of Risk Analysis as Logan, T & Guikema, S. The Heart of Community Resilience: A Frame-
work and Approach to Ensure People Have Equitable Access to Essential Services.
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5.1 Introduction

Access to services is not something we should take for granted, not before nor after a disaster.
Following Hurricane Katrina, residents of New Orleans’ Lower 9th Ward were forced to take
three buses to reach their nearest grocer [234]. The 2017 South Asian floods raised fears that
thousands of children permanently dropped out of school [342]. Even without these disasters,
many people worldwide live within food deserts, health care deserts, and without access to
other essential services. Access to services, such as food, education, healthcare, and culture, is
integral for communities to function well [94, 201, 326, 354]. This means that equitable access
to essential services is fundamental to community resilience.

How to operationalize resilience is among today’s most impactful research questions [60].
This is perhaps because resilience is conceptually malleable and multidimensional [60, 218]. To
capture this complexity, it is widely accepted that no single metric will be sufficient [54, 84, 86,
143, 193, 290]. We, as a research community, need to develop approaches that complement one
another.

One existing approach for operationalizing resilience focuses on community capacity. Mo-
tivating this approach is an understanding that resilience relies on qualities that enable a com-
munity to prepare for, respond to, recover from, and improve after hazards [86, 359]. Indicators
are used to quantify these qualities. These indicators capture aspects including the social, eco-
nomic, institutional, and infrastructure characteristics [84, 86, 89, 292], and the vulnerability
and adaptability of communities [184]. This approach is not event-specific [182]. Rather, the
objective is to determine qualities of a community that can be strengthened to enhance the
community’s ability to respond and recover [86, 89, 292].

Infrastructure functionality is the other approach. It focuses on critical infrastructure net-
works, such as electricity, transportation, communications, potable water, and sewers, with the
goal of limiting damage, mitigating the consequences, and hastening the recovery [30, 54, 82,
139, 143, 160]. Central to this approach is the resilience function or recovery curve, where the
network’s state (e.g., percent operational) is the focus. Much of the research in this area has
improved how that recovery function is quantified [25, 54, 65, 71, 290, 335]. Other work has
advanced how infrastructure networks can be optimized to reduce their vulnerability or speed
their recovery [160, 358]. Ongoing advances address the interdependence of the infrastructure
to understand how failures may cascade through a system [124, 139]. More recent extensions
[72, 124, 140] have begun applying the capabilities-approach, which focuses on understanding
how hazards affect the opportunities of individuals including being educated and being healthy
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[227]. This existing work, however, remains focused on the effects from damage to centralized
infrastructure.

Although these traditional approaches are invaluable for understanding resilience, both have
limitations in their ability to provide actionable insight for building resilience. The indicators of
community characteristics remain heavily focused on socio-economic aspects of communities
[182] and approaches for improvement, such as increasing the community’s education, operate
on decadal time-scales. They are not spatially explicit and some lack validation [27]. Primar-
ily, they are not intended to provide information regarding how a community responds to a
specific hazard or instruction for decision-makers in those cases. On the other hand, the infras-
tructure functionality approach is useful for hazard response. However, it assumes the services
are provided by centralized infrastructure and often lack spatial specificity. Additionally, the
approach has ignored, until very recently, the actual people it aims to serve and has remained
independent of their needs and vulnerabilities [87, 89, 100].

Most importantly, neither approach captures how a community can ensure people have ac-
cess to essential services. The accessibility of services such as education, healthcare, food, and
cultural amenities (that critical infrastructure exists to support) is crucial for a community’s
vitality, livability, and cohesion [94, 314, 326, 354] (Figure 5.1). These are what people need so
they may recover and return to some semblance of normal life. Without such services, peo-
ple will leave a community. Currently the approaches to resilience cannot address questions
specific to vital community function: Following a disaster how long must people go without
acceptable access to food?

We need to rethink our approach to community resilience to address this unsolved challenge.
This will require integrating our understanding of the social system and the physical infrastruc-
ture and truly focusing on the needs of and opportunities for the residents [84, 182]. Although
infrastructure is necessary for many opportunities, it is not sufficient on its own [100]. Equally,
possessing the characteristics of a strong and healthy community is vital, but alone is insuffi-
cient.

We offer a fresh perspective on community resilience. We propose the equitable access to
essentials (EAE) resilience framework that integrates and complements the existing approaches
to provide actionable insight for communities trying to build their resilience.
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Figure 5.1: Equitable and acceptable access to services is essential for a communities viability
and cohesion. These maps of Baltimore, MD, show the distance to the nearest (a)
hospital, (b) supermarket, (c) public primary school, (d) library (an example of a
cultural amenity). Figure (e) shows the percentage of residents who live within 𝑥
kilometers of their nearest service.
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Figure 5.2: Wilmington, NC on the 18th of September, 2018. (a) The map of distance to nearest
operational supermarket for census blocks with non-zero populations, (b) the cu-
mulative distribution function showing the percentage of residents who are closer
than 𝑥 to their nearest operational supermarket and service station, and (c, d) the
resilience curves showing how the distribution in access changes over time.

5.2 Equitable access to essentials (EAE) resilience
framework

EAE measures the distance of residents within a community to their nearest operational essen-
tial services. As facilities shutter and reopen due to a hazard, we can evaluate what percentage
of people are affected, how long it takes to recover, and how the experiences differ across differ-
ent groups of the population. This spatially and temporally explicit approach both 1) identifies
where and who requires attention from emergency responders, and 2) encourages interven-
tions to reduce service deserts (e.g., food), both before and after a hazard, to reduce inequity
and strengthen the community.

We intentionally do not specify which services are essential to a community. This is com-
munity and culture specific and requires community engagement. While, we focus on services
requiring people to go to a centralized location, the technique could be also used to locate ser-
vices such as “Meals on Wheels” that send people out from a central location, if proximity is
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important. The approach’s flexibility means that (re)construction focuses on places and services
of significance to people [326].

We also intend EAE to be applicable for a wide range of hazards. For example, before any
hazardous event, EAE can be used to address inequality and to identify critical service loca-
tions. Following a hazard that damages services or their supporting infrastructure, such as an
earthquake or weather induced event (hurricane, flooding, heat wave), EAE can guide deci-
sion making on restoration. Following any hazard, regardless of the scale of destruction, EAE
provides support to decision makers on where supplies need to be provided. In the event of a
complete destruction, such as the result of a major wildfire or even sea level rise, EAE can guide
new development to ensure it meets the needs of people.

For a specified region, the equitable access to essentials resilience framework involves:
1. Engaging the community

a) Work with a range of community partners to establish which services are essential
and how access needs differ throughout the community

2. Measuring accessibility

a) For each of the essential services, identify the locations of service provision facilities
within the region

b) From each block within the region, determine the network distance to all facilities

c) For each block, determine the distance to the nearest operational facility

d) Map the distances to nearest service (Figure 5.2a)

e) Plot the distribution of nearest distances (Figure 5.2b)

3. Monitoring the impacts from a hazard

a) Update the distance to nearest operational services as facilities open and close

b) Construct the resilience curve showing how residents’ access changes over time
(Figures 5.2c, 5.4)

4. Evaluating equality and equity (Figure 5.5)

a) Differentiate residents based on demographics or vulnerability scores

b) Compare how the access for these various groups changes over time

c) Identify vulnerable areas to which to provide additional services and improve eq-
uity.
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5. Intervening to build resilience (Figure 5.8)
This is a new way of conceptualizing and quantifying community resilience that can support

building resilience, independent of the hazard. EAE can be simulated using both the critical in-
frastructure and community capacity information. Critical infrastructure simulation provides
ways of estimating which services will not be operational following a hazard. The community
characteristics can be used to evaluate need and assess equity following these simulated disrup-
tions. In turn, community indicators can be assessed and updated based on these simulations.
Thus, EAE is a resilience framework that integrates the existing approaches with a clear focus
on the well-being of the community’s residents.

5.2.1 Acceptable access

It is possible to specify a minimum acceptable standard for accessibility for each of the services
and determine the portion of the communitywith acceptable access (Figure 5.3). The percentage
of the residents with that acceptable access is determined from the cumulative distribution
functions (the process is shown in Figure 5.4). The threshold must be place-based and service-
specific and determined through community engagement [251, 326].

We recognize that while we argue for considering access to essential services as a measure of
resilience, we currently present proximity to services. Access, in fact, is comprised of proximity,
availability, acceptability, affordability, adequacy, and awareness [258, 284]. Drawing on, and
advancing, the relevant literature will lead to the additional dimensions being included for each
service. These additional dimensions can be included through the use of a metric that defines
acceptable access. This would specify a minimum level suitable for human well-being [100].
It may even require that proximity, cost, capacity, and other dimensions of accessibility vary
based on the characteristics and vulnerabilities of the community to consider social justice (for
example, proximity may vary based on car-ownership). This standard would be normatively
indexed, i.e., the standard of acceptability is arbitrary and evolving (analogous to the poverty
line, which is geographically specific) [76].

Nevertheless, proximity is a necessary component for access to services and provides insight
into the resilience of a community. A major benefit derived from using proximity, or any conti-
nuous measure of access, is the ability to assess the distribution of access across the population.
There is a very real risk when using thresholds that the residents with extremely poor access,
who are often among the most vulnerable, are overlooked because they are aggregated by a
binary metric [201]. This is especially important given that poverty lies at the root of disaster
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Figure 5.3: The recovery curves, for Panama City following Michael and Wilmington following
Florence, showing the percentage of residents in each city with acceptable access to
both (a) supermarkets and (b) service stations. Acceptable access is defined by two
distance thresholds.
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Figure 5.4: How the distribution of access maps onto the resilience function (aka recovery
curve). (a) these are the density functions (idealized histograms) of the distance
of residents to their nearest service. Each distribution curve represents a different
phase of the hazard cycle. (b) these cumulative distribution functions are variants of
(a) and show the percentage of the population that live less than the distance on the
𝑥 axis. The threshold of acceptable access is shown here. Where this line intersects
with the CDFs we can identify what percentage of the population has acceptable
access. (c) mapping these values onto their associated time results in this figure that
shows acceptable access changing with time, and is a recovery curve.

vulnerability so true resilience approaches must help correct this [251].

5.2.2 Equality and equity

Inequalities may be present before the occurrence of a hazard and are often exacerbated after
an event [124]. EAE can parse different socio-economic characteristics and evaluate the acces-
sibility of services across demographic groups (Figure 5.5) [352]. This allows for needs-based
assessments and the integration with indicators of social vulnerability and community capac-
ity. Potential interventions can be assessed based on how they affect these different groups
within the community.

5.2.3 Promoting transformation

The many resilience approaches that prioritize “bouncing back”, and quantify resilience using
a “change-in functionality”, risk further institutionalizing inequity [166, 207, 239]. Claims such
as “residents have grown used to” these abysmal conditions, fail to value the importance of
equity and community sustainability for resilience to future events [94, 251]. They fail because
they do not promote transformation and mitigation that encourages communities to “bound
forward.”

EAE is deliberately constructed to promote transformation of communities to enhance eq-
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Figure 5.5: Comparing how access to essentials varies between demographic groups and ini-
tially access-rich/poor residents (the top and bottom 20% of residents). This could
also be done based on indicators of social vulnerability or community capacity.
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uity, both before and after a disruption. This is achieved primarily in two ways. First, unlike
the critical infrastructure approach, which predominately focuses on the state of infrastructure
damage [89], EAE assesses the value residents derive from the system. This distinction is im-
portant because restoring functionality is not analogous to returning to the previous state e.g.,
the services can be rebuilt in more desirable spatial configurations. Second, by assessing actual
distance, rather than the difference at any point in time with the initial state (“change-in”), EAE
identifies the service-poor residents. For example, in Figure 5.5, the largest change in access
is experienced by the service-rich residents. If decisions were made on the basis of this differ-
ential, then interventions would be targeted to improve the resilience of service-rich residents,
and further exacerbate inequalities. Instead, decision makers should be aware of pre- and post-
hazard service deserts. This should mean that both mitigation and reconstruction target and
improve the standard of living for all residents [251]. This is essential for building sustainable
communities, that are enabled to enhance their adaptive capacity and future resilience [282].

5.2.4 Spatially explicit

The access map is one of the most important decision support tools from EAE.This spatial focus
contrasts with the existing approaches to resilience that are primarily spatially independent.
Existing approaches do not explicitly require information about a community’s layout nor do
they support urban planners. Examining the EAE maps allow decision makers to understand
the distribution of damage, vulnerable people, and services and act accordingly.

More generally, integrating land-use planning with resilience quantification is essential be-
cause spatial planning is among the most effective tools for reducing exposure and sensitivity to
extreme events [55, 61, 165] (see [9] for climate related examples). Surprisingly, there has been
little attempt to integrate climate protection and spatial planning in practice [31]. EAE brings
spatial planning to the forefront of resilience quantification by clearly linking it with urban
changes and social sustainability. Incorporating EAE into planning can identify service-deserts
and key facilities that many people depend on. This can guide urban planners to strengthen
existing facilities or incentive the development of additional ones. Additionally it can be used
to guide both green and brown field development to ensure that people’s access to essential
services is provided equitably. In this way, EAE links policy discussion regarding accessibility
and equity with resilience and hazard planning. This supports rethinking how our cities are
designed, planned, managed, and lived in, in the pursuit of community and urban resilience
[60].
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Figure 5.6: Access in Panama City, FL on the 14th of October, 2018. (a) The map of distance to
nearest operational service station, (b) the cumulative distribution function showing
howmany residents are closer than 𝑥 to their nearest operational service station and
supermarket, and (c, d) the resilience curves showing how the distribution in access
changes over time.

5.3 Illustrative examples

5.3.1 Overview and scope

We now present two illustrative examples focused onWilmington, North Carolina, and Panama
City, Florida. In late 2018 they were struck by Hurricanes Florence and Michael respectively.
The examples demonstrate how the access to two services (grocery stores and service stations)
change due to the hurricanes. Specifically, we seek to 1) understand the spatial extent of service
disruption so service-poor residents can be identified, 2) assess the resilience of the community
to these hazards. Note that our use of grocery stores and service stations is for demonstration
purposes; in practice, determining which services are essential and what distance is acceptable
requires community engagement.

Wilmington, NC is located on the southeastern North Carolina coast. It has a population of
approximately 120,000 people. Hurricane Florence made landfall slightly east of Wilmington
in the early hours of September 14, 2018, as a Category 1 hurricane. Due to the hurricane’s
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Figure 5.7: The map of distance to nearest operational service: (a) Access to service stations
in Wilmington, NC on the 18th of September, 2018. (b) Access to supermarkets in
Panama City, FL on the 14th of October, 2018.

slow movement, it resulted in heavy rainfall beginning September 13, and coupled with strong
storm surge, this resulted in heavy flooding.

By contrast, Panama City, FL, has approximately 37,000 residents and is located along the
Emerald Coast of the Florida Panhandle. Hurricane Michael made landfall 40km Southeast of
Panama City as a Category 4 hurricane on October 10. While Florence was notable for its
rainfall, Michael caused catastrophic damage due to extreme winds (the strongest in the USA
since 1992 with 208 km/h winds) and storm surge.

5.3.2 Inputs

For this illustrative example we present the access to grocery stores and service stations be-
fore and following the hurricanes. Service locations were determined using GasBuddy11 and
supermarkets were identified manually using Google Maps. Access to these services was cal-
culated at the US census block (neighborhood block) level and shapefiles and demographic
data was sourced from IPUMS [209]. The Open Street Map street network was downloaded

11https://tracker.gasbuddy.com
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from Geofabrik12. The distance from each block to all services was calculated using the Open
Source Routing Machine using the approach described in [201] (Chapter 4). Facility closure
was recorded from GasBuddy, Twitter, and the supermarket websites.

5.3.3 Results

Figures 5.2, 5.6, S2 & S3 show access in Wilmington and Panama City following the hurricanes.
The maps can be used to identify service-deserts and the recovery functions show how quickly
the cities restore access and how acceptable that access is.

As an example, there appears to be a food-desert in western Wilmington 5.2a, so these resi-
dents may require emergency food supplies even after the other stores reopen. Note that due
to data availability, the supermarket results do not include all food outlets as we only obtained
information for stores that were reporting their opening times. Although these results do not
comprehensively present food-deserts, they provide a demonstration of using this approach.
These maps could be varied to highlight sectors of the community with high social vulnera-
bility, or, for example, a higher proportion of aged residents, so that emergency response can
target need.

Recovery times and access quality are shown in Figures 5.2c,d, 5.6c,d, and 5.3. Supermarkets
appear to reopen faster than service stations, likely due to resources provided by their parent
companies. In Wilmington, this was a matter of days. Access to service stations in Wilming-
ton was still deteriorating by the time supermarket access was almost restored (Figures 5.2 &
5.3). This is likely due to failures in the supply chains. However, inventory information was
unavailable to us for supermarkets.

In Panama City, the recovery took significantly longer for both supermarkets and service
stations (Figure 5.3). However, this comparison does not reflect differences between the cities’
resilience, because the hurricanes were different. Nevertheless, it is clear that Panama City
suffered more and for longer.

In both cities, the access to supermarkets is less than desirable (Figure 5.3). Even before
the hurricanes, only 30% of residents in Wilmington live within 1 mile (1600 meters), which
is further than the majority of distance thresholds considered acceptable (e.g., [314]). This is
worse in Panama City, but the results are skewed due to our omission of some food stores
that would be included in practice. Regardless, this shows that there are likely service-deserts
existing within the cities that could be mitigated prior to a hazard.

12http://download.geofabrik.de/
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Figure 5.8: This resilience function (aka recovery curve) shows how the access, and its distri-
bution, may change before, during, and after a hazard. The hazard cycle shows how
the EAE resilience framework can be utilized by decision-makers frommitigation to
recovery.

5.4 Application throughout the hazard cycle

EAE can enhance decision making throughout the hazard management cycle. The cycle (Figure
5.8) involves preparing for andmitigating potential hazards; emergency response; and recovery,
including the immediate rehabilitation and longer term (re)construction: opportunity develop-
ment [275].

Implementing this framework in the field will require real-time information about the func-
tioning of services. For example, local networks or reporting systems could be implemented.
This, coupled with improvements in proximity analysis [201, 238], mean that essential service
access can be evaluated before, during, and after a hazard strikes. This can be used to guide
emergency response as well as short-term and long-term recovery and development.
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5.4.1 Mitigation and preparedness

Before any hazard occurs, existing inequities to service-deserts should be addressed. This will
enhance community cohesion and social capital [94] and enable residents to utilize all oppor-
tunities [89]. Additionally, ”what-if” simulation can determine which facilities are critical in
servicing the community. This type of analysis can be used to build redundancy or robustness
into the system [340].

5.4.2 Emergency response

During and immediately following a disruption, EAE enables responders to identify impacted
areas and allocate resources appropriately. To leverage this tool, appropriate data collection
systems are needed. This could be simply scraping websites such as Twitter or GasBuddy, or,
ideally, could be a crowdsourced setup where facilities or the public report damage or closures,
similar to the “call 311” system used by a number of USA cities to report non-emergency prob-
lems. Such data would allow the service accessibility map to be updated in real-time and would
support targeting supplies like food and health care to places in need. Based on population
characteristics, vulnerabilities and needs could be considered so that situations such as the ig-
noring of vulnerable residents in the Rockaways, NY, following Hurricane Sandy [311], do not
reoccur.

5.4.3 Rehabilitation

During this phase, short term and basic essential services are restored [275]. Facility reopening
can be coordinated and optimized to maximize accessibility.

5.4.4 Opportunity development

This latter phase of recovery is referred to as “opportunity development” rather than recon-
struction (returning to the previous state) [251, 275]. We should build back better [275] by not
only enhancing protection against future hazards [263], but by improving equity and residents’
quality of life [251]. In this phase, urban planning must be leveraged to encourage desired
amenities such as grocery stores to establish in certain locations. For example, comprehensive
plans can be used to set minimum numbers for food retailers, zoning mechanisms can simplify
the regulatory process, and subsidies or other incentives can recruit retailers to in-need areas
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[268, 269].

5.5 Summary

The urgent need for communities to build their resilience means that understanding how is
among today’s most impactful research questions and practical challenges [60]. While there has
been significant work on resilience, the existing approaches are limited in the actionable insight
they provide. The existing thinking on resilience does not focus on the provision of everyday
amenities such as food, health care, and education, which are vital for residents to participate in
life. The equitable access to essentials (EAE) resilience framework that we propose integrates
key aspects of the traditional approaches to resilience and complements their use with the goal
of maintaining, restoring, and improving equitable access to essential services.

EAE provides a spatially explicit and hazard-general approach to quantifying resilience of
access to services with a direct focus on people’s well-being. It involves measuring the access
of residents to the services and monitoring how that access changes before, during, and after a
hazard event. Critical to our framework is the ability to discern how access changes between
different demographics and vulnerable groups within a community. Equally important is that
we have devised the framework in a way that promotes continuous improvement of access to
all residents and transforming the system, rather than bouncing back to pre-event conditions.
EAE has utility during all phases of the hazard cycle by providing actionable information to
decision makers from preparation to post-event improvement. By being spatially explicit, EAE
integrates resilience quantification with urban planning, which is crucial for our society’s re-
sponse to evolving threats exacerbated by climate change.

To end-users, we reiterate that while this approach is adaptable and scalable, resilience is
place-based and therefore community specific, so the application of this framework must suc-
ceed community engagement and understanding.

Rethinking resilience as access to essential services promotes bounding forward, rather than
bouncing back. It complements and integrates aspects of both dominant existing approaches
to community resilience. We encourage transformation by shifting the focus from the state of
infrastructure to the value it provides to people. This naturally enhances adaptive capacity of
the community and existing capacity indicators can be used to prioritize vulnerable residents.
The equitable access to essentials framework formalizes resilience in a way that enables and
encourages communities to build their resilience equitably.
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Chapter 6

Risk: Revising the concept and
description to include time 13

Abstract

“Over what time frame?” is an essential consideration for risk assessment. However, currently
dimensions of time are typically not explicitly included in the conceptual definition and de-
scription of risk and the associated notation. We suggest updating the notation of risk such
that time is included: for some 𝑆, 𝛼𝜏 we define risk𝑇 = (𝐶𝑇 , 𝑈). Where 𝐶𝑇 are the conse-
quences evaluated over time 𝑇 and 𝑈 represents that those consequences are uncertain. This
expression requires the pertinent system 𝑆, activity 𝛼, and period of time 𝜏 for which the risk
is considered be specified. Additionally, we suggest that the notation of the risk description
also reflects these changes and we present changes to achieve this. Making time explicit in
how we express risk carries implications such as intergenerational equity and raises challenges
of interest to many risk analysis applications. Ultimately, including the temporal dimensions
improves the suitability of risk analysis for tackling the major challenges of our time.

6.1 Introduction

We all know that fundamental to, albeit implicit in most conceptual definitions of, risk is time.
Consider the example from Aven [18] (page 14): we are concerned about the health risk for a

13I intend to submit a modified version of this chapter as a perspective paper to the Journal of Risk Analysis as
Logan, T, Flage, R, Guikema, S & Aven, T. Revising the expressions of the concept and description of risk to
include time
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person for a specific period of time or the rest of their life. If we choose to consider the health
risk for the rest of (e.g.) John’s life, the risk is clear and well defined. The time over which we
consider events and consequences is bounded. However, what if we consider John’s health risk
over a ten year period; what happens if he contracts a disease that has consequences beyond
that ten year period? In situations such as these, common throughout problems tackled by risk
analysts, we must be explicit in how we address time.

The risk assessment process, outlined in Kaplan and Garrick [173] proposed the following
questions: “What can go wrong”, “what is the likelihood”, and “what are the consequences?” A
fourth considerationwas proposed: “over what time frame?” [142]. This is absolutely necessary.
However Haimes [142] is only referring to one of two necessary temporal considerations:

1. the time frame over which the activity occurs.

The second consideration is:

2. the time over which the consequences are assessed.

Both time dimensions remain omitted in how the risk concept and description is notationally
defined.

This does not mean that risk analysts are ignoring time. Some are not. Consider the Yucca
Mountain Nuclear Waste Site risk-assessment [156]. In this situation the time horizon used for
evaluating the consequence (the occurrence of a volcanic eruption) was 10,000 years. Clearly,
time was an important factor for the risk analysis. In fact, risk analysts tackling these applica-
tions are making decisions about how they address the temporal dimensions, but formalizing
our notation of the conceptual definition and description of risk to include time ensures that
those decisions are made explicit. This formalization also can help to avoid confusion regarding
the applicability of risk analysis.

One such potential confusion has arisen in calls for diverging resilience analysis from risk
analysis. This is divergence is sometimesmotivated by the argument that risk is simply referring
to the “total reduction in critical functionality” [197, 198]. By arguing that risk is not related to
the ongoing consequences or influenced by the recovery, the time dimension of risk is implicitly
omitted.

A goal of risk analysis is to support decision-making. However, if that analysis ignores how
the consequences of actions or decisions evolve over time, it becomes a short-sighted decision-
making tool. Challenges like resource depletion, urban planning, nuclear waste management,
and climate change all have deeply inherent temporal considerations [5]. If risk analysis is to
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address these challenges, it must be explicit howwe address time. In this paper, we propose that
the formal definition of the concept and description of risk be revised to make the consideration
of time explicit. In doing so, we also recommend minor changes that seek to clarify the concept
and description of risk.

6.2 The risk definition

The Society of Risk Analysis’ (SRA’s) glossary [306] introduces risk in the context of a future
activity, for example the operation of a system or the existence of an ecosystem. Risk is then
defined in relation to the consequences of this activity with respect to something that humans
value. A general conceptual definition of risk, listed in the SRA glossary, is

Risk is uncertainty about and severity of the consequences of an activity with respect
to something that humans value

[23]. This has been schematically written as risk = (𝐶, 𝑈). This notation indicates that risk
is a two-dimensional combination that includes (i) that the activity considered leads to conse-
quences, 𝐶 , and (ii) that these consequences are not known, 𝑈 [18] (page 13). The consequences
arise from the occurrence of events𝐴, but the schematic expression of risk is deemed equivalent
(𝐶, 𝑈) ≡ (𝐴,𝐶, 𝑈), without loss of generality.

As an example, consider a community’s risk. The consequences (𝐶) relate to the occurrence
or not of specific hazards (known or unknown types), their time of occurrence, and their effect
on the community (e.g., no negative effects, complete collapse, etc.). The uncertainty (𝑈 ) says
that today we do not know if or when the community will experience a hazard, nor do we know
what the consequences will be.

In this example, we are concerned about the risk to the community “for a specific period of
time” [18] (page 14). However, there are two temporal dimensions we need to consider and it
would be useful if both were expressed in the notation. For instance, does this “specific period
of time” refer to the occurrence of events or the time over which consequences are evaluated, or
both? That is, if a community is struck by a hurricane at the end of the specified time period, do
we ignore the consequences to the economy, environment, and people’s well-being that may
last for years if not decades into the future? It is critical that our approach to and decisions
relating to this consideration of time be clarified.

Therefore, we propose that the conceptual definition of risk include the temporal dimension
explicitly. In the risk concept there are two aspects pertaining to time:
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1. the period over which the activity and associated events occurs (𝜏 )

2. the time for which we consider the consequences (𝑇 )

Schematically, we propose that risk be written as

risk𝑇 = (𝐶𝑇 , 𝑈)

where the subscript 𝑇 expresses that the consequences include everything that occurs up until
time 𝑇 . For clarity, 𝐶𝑇 simply represents that we estimate consequences of an event over the
time frame 𝑇 . This is no different to how 𝐶 is defined in (e.g.,) Aven [18], except that the
time over which consequences are assessed is stated. Therefore, if we were to be representign
the Yucca Mountain consequences, we would write 𝐶10, 000 because they were assessed over
a 10,000 year period. In a risk analysis into hurrican risk, if we only evaluated losses up to
one year following an event, we would write 𝐶1. Where the consequence is binary, the time
dimensionmay be set to zero, as it would be in Huang and van Gelder’s [163]’s study of whether
or not a collision occurs. These decisions are frequently made by risk analysts during their risk
assessments.

In addition to this schematic representation, we also need to be explicit in the time frame
over which the activity is considered, 𝜏 . This is important for identifying potential events. To
provide the most clarity (and still without loss of generality), the concept of risk should include
the specification of the system 𝑆 over which it operates and 𝛼𝜏 ,the activity occurring over the
time frame. To limit confusion with ”A” for activity, we define ℰ as the event or events that
occur. That is, we express risk as: for some 𝑆 and 𝛼𝜏

risk𝑇 = (ℰ, 𝐶𝑇 , 𝑈)

This is consistent with Haimes [142] that identified risk as a function of the initiating event, the
system/environment, and the time frame. As is tradition, without loss of generality the events
can be omitted, this can be written as: for some 𝑆 and 𝛼𝜏

risk𝑇 = (𝐶𝑇 , 𝑈)
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6.2.1 Alternative conceptual definitions of risk

Given our argument is framed for themost general risk concept, it holds for the other conceptual
definitions of risk [306]. The definitions enumerated in the Society of Risk Analysis’ glossary
[306] are as follows:

1. Risk is the possibility of an unfortunate occurrence

2. Risk is the potential for realization of unwanted, negative consequences of an event

3. Risk is exposure to a proposition (e.g., the occurrence of a loss) of which one is uncertain

4. Risk is the consequences of the activity and associated uncertainties

5. Risk is uncertainty about and severity of the consequences of an activity with respect to
something that humans value

6. Risk is the occurrences of some specified consequences of the activity and associated
uncertainties

7. Risk is the deviation from a reference value and associated uncertainties.

In all of these definitions, one must specify the time frame 𝜏 over which the risk is being ex-
pressed. For example, if risk is the possibility of an unfortunate occurrence, it is essential to
state over what time this in reference to. In any definition referring to the consequence of an
event (positive or negative), the time 𝑇 over which the consequences are considered also needs
to be explicit. To provide additional clarity, we recommend that the system 𝑆 and activity 𝛼𝜏
are specified.

6.3 The risk description

To assess and manage risk, we need a way of describing it. Aven [18] describes risk using
(𝐶′, 𝑄, 𝐾). This expresses that risk is described by the set of specified consequences 𝐶′, the
measure of uncertainty 𝑄, and the background knowledge on which the assessments of 𝐶′, 𝑄
are based. To illustrate, we continue with the example of a community at risk from hazards. For
simplicity in this example, we consider only the economic consequences. In the risk assessment,
𝑁 possible event-consequence pairs are identified. One of these consequences could be, for
example, a hurricane that results in $1 million in damages (𝑐′

𝑖 , where 𝑐′
𝑖 is one of the potential
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consequences (𝐶′) and 𝑖 indicates the index which is in 1, 2.., 𝑁 ). 𝑞𝑖 is the probability these
consequences occurring (although there are alternative measures of uncertainty e.g., [117]). 𝑘𝑖
is the knowledge on which we base the assessments for 𝑐′

𝑖 and 𝑞𝑖 (data, information, justified
beliefs, assumptions). Using the set notation fromKaplan and Garrick [173], the risk description
can be represented as {< 𝑐′, 𝑞, 𝑘 >𝑖} for 𝑖 ∈ 1..𝑁 . That is, risk is described using a set of triplets
that describes each consequence, its uncertainty, and the knowledge behind the assessment.

However, this description is implicit in its inclusion of time. In our example we stated that
𝑐′ was $1 million in damages. This can and should be specified in terms of time, for example
we estimate that there may be $1 million in damages over the first five years; that is, 𝑐′

5,𝑖 = 1
where 𝑇 is expressed in years and consequence is expressed inmillions of dollars. Therefore, we
propose that risk be explicitly describedwith reference to the time over which consequences are
considered: risk description𝑇 = {< 𝑐′

𝑇 , 𝑞, 𝑘 >𝑖, ...}, 𝑖 = 1, 2, ..., 𝑁 where 𝑐′
𝑇 represents the

specific consequences until a specified time 𝑇 and 𝑁 is the number of consequences included
in the risk description. For example, 𝑐′

1year,𝑖 represents that the potential consequences are
evaluated over one year following the considered event. Finally, as the concept of risk pertains
to a specific activity over a period of time 𝛼𝜏 and a system 𝑆 we recommend that these be
explicitly stated. ℰ′ represents the set of events identified that will be included in the risk
description, and 𝜖′

𝑖 is one such event. Therefore: for some 𝑆, 𝛼𝜏

risk description𝑇 = {< 𝜖′, 𝑐′
𝑇 , 𝑞, 𝑘 >𝑖}, 𝑖 ∈ 𝑁

As before, this can be represented without loss of generality as

risk description𝑇 = {< 𝑐′
𝑇 , 𝑞, 𝑘 >𝑖}, 𝑖 ∈ 𝑁

Our proposed update to the representation of the risk description makes explicit the system,
the activity, and the dimension of time.

6.4 Examples

6.4.1 John’s illness

A reoccurring example in Aven [18] is our concernwith John’s health condition. While the level
of detail seems belaboured in this example, it avoids potential confusion and is more helpful in
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the latter examples. We define the following:
Risk
𝑆: John
𝛼𝜏 : The act of John living over a specific period which we evaluate John and the occurrence or
not of specific diseases
ℰ: John contracts a specific disease
𝐶𝑇 : The consequences for John from the event’s occurrence assessed until time 𝑇 (he may die,
suffer etc.).
𝑈 : Today we do not know if John will contract one or more of these illness, and we do not
know what their consequences will be.

Risk description
𝑆, 𝛼𝜏 are as above.
ℰ′: The set of diseases considered
A complete risk description is a set of the following that include different consequences (for
example, John recovers during the course of 1 month, 1 month - 1 year, John doesn’t recover
by time 𝑡, John dies within time 𝑡 as a result of his illness etc.). The following is for one such
description in the set:
𝜖′
𝑖: John contracts a certain illness next year

𝑇 : Five years
𝑐′
𝑇 ,𝑖: John dies within time 𝑇 as a result of his illness

𝑞𝑖: We choose to express the uncertainty using a probability. We express the probability that
John contracts the illness (10%) and the probability that he experiences the specific conse-
quence 𝑐′

𝑇 ,𝑖 given he has the illness (5%). Therefore 𝑞𝑖 = 𝑃(𝑐′
𝑇 |𝑘)𝑖 = 0.005

𝑘𝑖: The knowledge on which the assessment of < 𝑐′
𝑇 , 𝑞 >𝑖 are based. 𝑘𝑖 does not have to be

unique.

6.4.2 A community threatened by hazards

The level of specificity is more useful in a complex example, such as when considering a com-
munity at risk from hazards.
Risk
𝑆: The boundary of the community considered and what components are being included: e.g.,
an urban system, access to healthcare, demographic of customers and their electrical infrastruc-
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ture, etc.. In this case, consider the economic productivity within the city limits of a specific
coastal community
𝛼𝜏 : The operation of the community over a period of time (e.g., 10 years, the typical length of
a municipal plan)
ℰ: Specific natural hazards
𝐶𝑇 : The occurrence or not of specific natural hazards, their time of occurrence, and their con-
sequences for the community’s economy (e.g., dollars lost).
𝑈 : Today we do not know if a hazard will strike the community, nor do we know what the
consequences will be.

Risk description
𝑆, 𝛼𝜏 are as above.
ℰ′: The set of hazards considered: hurricane, flooding, tsunami
The following is one element in the risk description set:
𝜖′
𝑖: A 1/100 year flooding event occurs in the 2nd year

𝑇 : Twenty years (*the implications of this choice are section 6.5)
𝑐′
𝑇 ,𝑖: $1 billion in lost economic output

𝑞𝑖: We could express the uncertainty using a probability. The flooding event allegedly occurs
with a probability of 1%, and based on our knowledge of the systemwe estimate the conditional
probability, given the event, of 𝑐′

𝑇 ,𝑖 as 20%. Therefore 𝑞𝑖 = 𝑃(𝑐′
𝑇 |𝑘)𝑖 = 0.002

𝑘𝑖: The knowledge on which the assessment of < 𝑐′
𝑇 , 𝑞 >𝑖 are based.

6.4.3 Exposure/dose-response

Consider the example in [79]. We are interested in how exposure to crystalline silica (CS)
increases the risk of lung cancer in humans. Including time into the measure of risk provides
clarity. The system 𝑆 is the person and the activity 𝛼𝜏 is exposure to the carcinogen over
time 𝜏 , The consequence 𝐶𝑇 is the binary outcome of whether lung cancer develops within 𝑇
years. 𝑈 is the uncertainty regarding the exposure pathway and patient response. The risk
description then follows from this specification. Because 𝐶𝑇 is binary, risk is measured using
the probability of cancer developing within 𝑇 years of 𝜏 years exposed. This can be represented
on the exposure/dose-response figures (e.g., Figure 2 in [79]) such that 𝜏 is on the existing x-axis
(cumulative exposure time), and 𝑇 is an additional dimension that results in the curve becoming
a response surface: P(cancer)𝑇 = 𝑓(exposure(𝜏), 𝑇 ).
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6.4.4 Nuclear waste

As one last example of defining both 𝜏 and 𝑇 , consider the risk assessment into the Yucca
Mountain nuclear waste site [156].

In this case, they define the system 𝑆 as the waste site and a volcano within a bounded region
(Figure 3 in [156]), and the activity 𝛼𝜏 as the burying of nuclear waste at Yucca Mountain. In
this case, 𝜏 is the period of time for the burying. It is the time 𝑇 that is the focus of this particular
risk assessment, as the recommended isolation period for radioactive waste decay is defined as
10,000 years [156]. They consider the consequence as the occurrence or not of a volcanic hazard
within that time period: 𝐶10, 000.

6.5 Discussion

There are major implications invoked by making time explicit in the conceptual definition and
description of risk, specifically regarding the choice of 𝑇 in some circumstances. Explicitly
framing time in the concept and measure of risk means that issues regarding inter-generational
justice must be considered for long-term issues such as nuclear waste management and cli-
mate change. Inter-generational equity is a major factor in the discussions around climate
change, other environmental crises, resource use, nuclear waste, nuclear weapons, and popula-
tion growth [5]. Decisions in this realm have far-reaching consequences and for every situation
there are different appropriate planning-horizon lengths [309, 313]. One ethically controversial
discussion surrounding long-term decision making is the discounting of consequences [39, 243,
285, 297, 313]. Some [39] argue that discounting is an unavoidable, while others [297] point
out that discounting consequence can result in policy choices that simply transfer risk rather
than address it. Is discounting simply a way by which people avoid the “as low as reasonably
practical” (ALARP) principle for risk management?

The time dimension therefore raises foundational questions for risk science. How dowe com-
municate uncertainty and small probabilities in a long-term risk context [313]? What frame-
works exist for intergenerational decision-making situations [24]? What guidance is available
for determining whether, how, and under what circumstances, discounting should be used?
Should, and if so how should, the time horizon be chosen over which to estimate consequences?
Thompson et al. [320] addressed the question of discounting in a way that avoids an arbitrary
time horizon in the case of species extinctions. Additionally, acknowledging the temporal di-
mension also raises the question: Should disaster-response assistance be focused on those who
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have been directly affected by the event, or should the emphasis be on reducing the risk for fu-
ture generations? [129]. Explicitly including time in the notation of the concept and description
of risk encourages such discussion and consideration in future risk analysis work.

This paper is about how to include time in our concept and description of risk. Doing so
allows our field to be more definitive in our research and practice. This may help to prevent
the confusion that may be associated with sub-fields suggesting they diverge from ours (e.g.
“resilience analysis”). However, the common failure to distinguish between the definition and
measure is another factor contributing to the confusion and is one we now briefly address. It
would be highly beneficial to limit this confusion if risk researchers distinguish between their
adopted concept and a measure of risk [14]. For example, and with great deference to the
authors, a recent publication in this journal [163] defined risk as “risk is the probability of an
unwanted event.” What they have done is specify the measure of risk that they use, rather than
a definition. Additionally, this measure fits within the conceptual definitions provided in the
SRA glossary (e.g., numbers 1, 2, 3, and 5). This type of confusion can lead people to think that
risk analysis is unsuitable for some types of analysis. To prevent this, we encourage authors
to clearly distinguish between their measure and definition of risk. Perhaps guiding authors to
clearly make this distinction (between the measure they use and a conceptual definition) in the
journal’s “instruction to authors” would be a simple intervention to the Society’s and science’s
benefit.

6.6 Conclusion

We have presented an update to the risk concept and description, and their expressions which
allows for the explicit representation of the temporal dimension of risk. In doing so, andwithout
loss of generality, we argue that risk analysts should specifically define the system and activity
over which the risk is considered. The result is that risk can be expressed as: for some system
𝑆 and activity over time 𝛼𝜏

risk𝑇 = (𝐶𝑇 , 𝑈)

This is consistent with the general definition in Aven [14, 18, 23] and, as such, incorporates
uncertainty in its broadest sense into the risk concept. Additionally, we suggest that the sys-
tem 𝑆 and activity over a time frame 𝛼𝜏 be specified, as per the recommendation of Haimes
[142]. Importantly, we are explicit when referring to the time over which consequences are
considered and express consequences as 𝐶𝑇 . This means that the decisions, already been made
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when estimating consequences for a risk assessment, are now clear in the risk notation. It also
confirms that time is an essential consideration and encourages discussions regarding the po-
tential trade-offs and ethical decisions between the present and future generations affected by
our risk analysis [129]. This is especially necessary so that risk can be used to address complex
questions with intergenerational implications, including resilience analysis.
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Chapter 7

Risk: A holistic framework for the
analysis and management of resilience

14

Abstract

We argue that the concept of risk can provide an integrated framework for resilience anal-
ysis and management. The persistent confusion surrounding the management of resilience,
even including calls to independently manage inherently related aspects, are detrimental to
our communities. Siloing the thinking and management will jeopardize communities threat-
ened by hazards and lead to inefficient resource use. In this paper, we present a review of
resilience definitions with the objective of identifying key components of resilience. We then
demonstrate how these components fit within a risk framework to enable their integrated man-
agement. Grounding resilience analysis in the existing risk analysis literature enables existing
techniques and approaches, that may otherwise be overlooked, to be used. It also enables us to
analyze and manage various hazards and surprises in a holistic and collaborative manner; this
is essential if we are to tackle the challenges on the horizon.

14We intend to submit a modified version of this chapter as a perspective paper.
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7.1 Introduction

In this paper, we argue that risk analysis (the assessment, characterization, communication,
and management of risk, along with related policy [306]) can be used for the analysis and,
therefore, management of resilience. Our communities face unprecedented threats from the
climate crisis and understanding how to put the concept of resilience into practice is essential
for guiding how we manage these hazards. While there has been rapid and extensive growth
of the resilience literature, including proposed definitions and approaches for conceptualizing
resilience, resilience analysis and management remain in its infancy [60, 179].

Tomove from discussion to action, we need the ability to analyze and then enhance resilience.
At times, however, dimensions of resilience can conflict, for example, creating a system that
is both resistant and flexible to change [203]. Due to these trade-offs, there have been calls
to manage dimensions of resilience independently (e.g., independently managing the ability
to withstand a shock and the capacity to quickly recover [197, 198]). However, independent
management means that rather than avoiding trade-offs we institutionalize them and sacrifice
opportunities for synergies [40]. Independent management is potentially short-sighted and
may jeopardize our communities. Additionally, the independent perspective contrasts with the
discussion that tackling climate change requires holistic thinking (e.g., [265]). Consider a hy-
pothetical seaside community. This community is “resilient” under the definition that it can
quickly return to its existing state when impacted by a hazard [71, 157, 197, 323]. However, it
is simple to see a perpetual cycle of damage and rebuilding as the hazard repeats that wastes
resources and threatens lives. This is not a long-term solution [282]. Similarly, investing solely
in the robustness, understood as the ability to absorb or withstand impacts, for example by
building a seawall, may be devastating if the community is unable to recover in the event of a
failure. However, even balancing robustness and recovery is insufficient, given shifting envi-
ronmental conditions. Instead, the seaside community needs the capacity to persist, adapt and,
transform so it can maintain stability when appropriate and change when necessary [40].

Another issue with the definitions of “resilience” is in the variety of uses of terms. That is,
different terms are often used to describe similar aspects, or the same terms to describe different
aspects. For example, the initial consequence of a disruption has been referred to as both risk
and robustness, while the process of recovering has been referred to as recovery, resilience,
and rapidity [54, 197, 264]. The detriment is when established concepts, such as risk, that have
expansive literature including tools and techniques, are ignored because erroneous use (such
as in [197]) leads to misconceptions. The confusion can also lead to reinventing the wheel that
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impedes scientific progress and delays action.
Potentially the cause of the emergence of the “resilience” field is due to a misunderstanding

of the concept of risk. “Resilience analysis”, additionally, appears to have arisen due to limi-
tations with traditional risk analysis approaches; however, advances in risk science mean that
resilience analysis is well within the purview of risk analysis [20]. This is not purely semantics
- it is detrimental to both science and the long-term sustainability of our communities. Rather
than the continued divergence between the fields of risk and resilience, we need to maintain
their integration for the benefit of management, policy development, balancing concerns, and
optimizing resource use [20]. To do this, we require a framework that enables integrated man-
agement of the dimensions of resilience. In this paper, we propose such a framework. This
framework offers an approach for conceptualizing and managing what has commonly been
referred to as “resilience” grounded within the existing literature and practice of risk analysis.

7.2 Risk

A general conceptual definition of risk, listed in the Society of Risk Analysis’ glossary, is

Risk is uncertainty about and severity of the consequences

[23, 306]. When considering risk, we consider a system 𝑆 and an activity 𝛼𝜏 taking place
within that system over a specified period of time 𝜏 . This activity can result in events ℰ that
have consequences 𝐶𝑇 . Note that when consequences are assessed, there is a practical limit to
the length of time they are evaluated until; we represent that time horizon with 𝑇 , so that 𝐶𝑇
represents the consequences up until time 𝑇 6. These consequences are not known - there is
uncertainty 𝑈 [18]. This is schematically written as: for some 𝑆 and 𝛼𝜏

risk𝑇 = (𝐶𝑇 , 𝑈)

To illustrate the risk concept, consider a community as our system 𝑆. The act of operating
exposes the community to consequences (𝐶𝑇 ) arising from the occurrence or not of specific
hazards (known or unknown types), their time of occurrence, and their effect on the community
(e.g., no negative effects, complete collapse, etc.). The subscript 𝑇 represents that 𝐶𝑇 include
all consequences up until time 𝑇 following the occurrence of the event. The uncertainty (𝑈 )
says that today we do not know if or when the community will experience a hazard, nor do we
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know what the consequences will be. Additional examples of the risk concept are provided in
6.

We describe risk using the set of triplets {< 𝑐′
𝑇 , 𝑞, 𝑘 >𝑖} 6. Each triplet includes a potential

consequence (𝑐′
𝑇 ), the measure of uncertainty associated (𝑞), and the knowledge (𝑘) on which

the assessment of < 𝑐′
𝑇 , 𝑞 > is based. If there are 𝑁 triplets identified during the risk assess-

ment, 𝑖 is the integer representing the index and can be 1, 2, .., 𝑁 . Additionally, we specify
the system 𝑆 and an activity that occurs over some time frame 𝛼𝜏 . To illustrate, we continue
with the example from before. For the sake of the argument, we consider only the economic
consequences. We limit our assessment of the consequence to a five year period (i.e., 𝑇 = 5)
and one possible event-consequence combination is a hurricane that results in $1 million in
damages. This is just one of the event-consequence combinations we estimate, and we write
𝑐′
5year,𝑖 = 1million. 𝑞𝑖 is the probability of the such an event occurring with those consequence
(although there are alternative measures of uncertainty). 𝑘𝑖 is the knowledge on which we base
the assessments of 𝑐′

5,𝑖 and 𝑞𝑖 (i.e., a list of the data, information, justified beliefs, assumptions)
[18].

7.2.1 Misconceptions of risk and its description

A critical issue with misconceptions of the risk concept arises when people inaccurately believe
the risk literature and tools are not applicable. That is, they self-impose limitations on their
analysis or they remain unaware of tools that would be useful for tackling their problems, and
instead try to reinvent the wheel.

Uncertainty

One instance arises where out-dated definitions of risk contrast risk with uncertainty and claim
that the risk concept is only suitable for situations where probabilities can be reasonably es-
timated [181, 206]. While this may have been the case in the 1920s, risk science has since
evolved.

In fact, the purpose of risk analysis is to inform decision-making in situations of incomplete
knowledge [253]. Incomplete knowledge is uncertainty [253]. This uncertainty can exist in both
the occurrence and severity of the consequences. Addressing uncertainty is a major subject
of ongoing risk advances [24]. This includes how to deal with surprising events (e.g., black
swans [13, 252]) and deep uncertainty or ambiguity (where reasonable probability estimates
are unavailable or the relevance of past data is in doubt [80, 296]). These development in risk
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science are ongoing and will continue to provide insight for addressing uncertainty in complex
problems, such as climate change.

Consequence

Recent publications have contended that risk is only concerned with the initial consequences
from an event (i.e., 𝑐′

0) e.g., [197]. Consider an event such as Hurricane Maria which devas-
tated Puerto Rico in 2017; the consequences of the hurricane continue to this day. Therefore,
restricting the consideration of the consequences to the immediate aftermath of an event vastly
underestimates an event’s consequence. Done properly, risk analysis includes an evaluation of
consequences over time 6. Therefore, the post-event recovery is a necessary consideration for
risk analysis.

The risk concept

Additionally, there are major confusions regarding the conceptual definition of risk [17]. These
limitations have developed into limitations on how risk is being used. Table 7.1 presents defini-
tions of risk from papers relevant to planning and hazard management. The categories of risk
definitions used in Table 7.1, paraphrased from [17], are as follows:

(1) Risk is an event or consequence:
If we use this definition, how can risk be compared or be described as being ‘high’ or ‘low’?
[19]

(2) Risk is the probability of an event:
The concept of risk should not be restricted to using probability to represent uncertainty [17].
This definition becomes problematic for risk analysis when unique or poorly understood phe-
nomena such as climate change are the subject of interest.

(3) Risk is the expected loss:
In this definition, risk = probability x consequence. However, an additional issue is that ex-
pected value can be similar for two very different probability distributions. These scenarios
should be managed differently, but this would not be reflected when using this definition [17].

(4) Risk is the pair of probability and consequence:
This definition is beginning to convergewith the recommended definition. The difference is that
uncertainty, in this definition, is described strictly as the probability. As we have discussed, we
require a broader description of uncertainty for the concept of risk [19].

These definitions have since been replaced by more general conceptual definitions of risk as
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the field has evolved to tackle more complex problems. An explanation of why these definitions
are unsuitable for the conceptual definition of risk is provided in Aven [17, 19].

Table 7.1: Definitions of risk from the planning, hazards, and climate change literature
Author (year) Definition Category

Kasperson et al. (1985) [174] Threats to human beings and what they value 1
Cutter et al. (1996), [85] Risk is the likelihood of occurrence (or probability) of a hazard.

Risk has two domains: 1) potential sources of risk (industrial, flooding) and contex-
tual nature of the risk (high consequence, low consequence) 2) simple probabilistic
estimate based on frequency of occurrence

2

Deyle et al. (1998), [96] Risk = magnitude x probability 3
Intergovernmental Panel
on Climate Change (2014),
[115]

The potential for consequences where something of value is at stake and where the
outcome is uncertain, recognizing the diversity of values. Risk is often represented as
probability of occurrence of hazardous events or trends multiplied by the impacts if
these events or trends occur. Risk results from the interaction of vulnerability, expo-
sure and hazard.

3

Burby et al. (2000), [58] Magnitude or possible losses and the probabilities of losses across the full spectrum
of possible natural hazard events

4

UN International Strategy
for Disaster Reduction
(2004), [169]

Probability of harmful consequences or expected losses 1, 3

Paton et al. (2000), [254] Risk describes the assessment of the frequency of occurrence and magnitude of con-
sequences associated with hazard (stressor) activity

4

Jones (2001), [172] Risk is the probability that a substance or situation will produce harm under specified
conditions.
Risk is a combination of two factors: 1) the probability that an adverse event will occur
2) the consequence of the adverse event

4

Turner (2003), [323] Risk is the probability and magnitude of consequences after a hazard 4
Rose (2007), [279] Risk=𝑓(threat, vulnerability, consequence) 4
Birkmann (2013), [48] Risk is defined as the probability of harmful consequences or losses resulting from

interactions between hazard and vulnerable conditions
1, 3

Linkov et al. (2018), [198] Risk is the capacity to withstand and respond N/A

7.3 Resilience

To analyze resilience we need to understand its fundamental components. To identify these
components, we review a number of resilience definitions (Appendix Table E.1). Common to
these definitions is that resilience is the ability to deal with impacts of adverse changes and
shocks [40], that is resilience is about reducing the consequences from a shock. Resilience ap-
pears to be comprised of three main components [40]: i) persistence, continuing in the current
state by buffering and absorbing impacts, ii) adaptation, adjustments, in response to actual or
expected hazards, to moderate consequences without qualitatively changing the system’s state;
and iii) transformation, adjustments, in response to actual or expected hazards, to moderate
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Table 7.2: Identifying aspects of resilience from the definitions
Author (year) Journal Capacity to

prepare
Capacity to
absorb

Capacity to
adapt

Capacity to
transform

Capacity to
anticipate

Holling (1973),
[157]

A. R. Ecological
Systems

*

Pimm (1984),
[262]

Nature *

Mileti (1999),
[222]

Disasters by De-
sign

* *

Adger (2000), [2] P. Human Geog-
raphy

*

Bruneau et al.
(2003), [54]

Earthquake
Spectra

* * *

Turner et al.
(2003), [323]

PNAS *

Walker et al.
(2004), [336]

Ecology & Soci-
ety

* *

Manyena (2006),
[211]

Disasters * *

Berkes (2007),
[43]

Natural Hazards *

Cutter et al.
(2008), [87]

Global Environ-
mental Change

* *

Lamond &
Proverbs (2009),
[185]

Proc. Inst. Civil
Engineers

*

Cimellaro et al.
(2010), [71]

Engineering
Structures

*

Turner et al.
(2010), [322]

Global Environ-
mental Change

*

Béné et al.
(2012), [40]

I. Development
Studies

* * *

National Re-
search Council
(2012), [231]

Disaster Re-
silience

* * * *

Barrett & Con-
stas (2014), [33]

PNAS *

Saunders &
Becker (2015),
[282]

I. J. Disaster Risk
Reduction

*

Tendall et al.
(2015), [318]

Global Food Se-
curity

*

Meerow et al.
(2016), [218]

Landscape &Ur-
ban Planning

* * *

Platt et al.
(2016), [264]

I. J. Disaster Risk
Reduction

* * *

Nan & Sansavini
(2017), [229]

Reliability Engi-
neering & Sys-
tem Safety

*

Linkov et al.
(2018), [198]

Nature * *

101



consequences that do qualitatively change the system’s state (see Table 7.3 for definitions). By
this framework, resilience emerges as a result of the combination of these components. Note
that, in contrast to some other definitions that mischaracterize robustness and recovery as in-
compatible (e.g. [197, 198]), both are part of persistence. This is motivated by the understanding
that a system that can prevent a disaster by resisting a stressor is critical to resilience [240].

Persistence, adaptation, and transformation in a system are enabled and supported by prop-
erties of the system. Béné et al. [40] identifies the capacities to absorb, adapt, and transform as
being the primary components. Following our review of the definitions (Table 7.2) we include
the capacities to prepare and anticipate. These five capacities collectively capture all of the im-
portant dimensions identified in the definitions we review. These capacities are often measured
by indicators such as those presented in the following papers: [87, 88, 89, 118, 199, 256].

Table 7.3: The terminology we adopt in this paper.
Term Definition

Adaptation
Adjustments, in response to actual or expected hazards,
to moderate consequences without qualitatively chang-
ing the system’s state (modified from [168])

Persistence Continuing in the current state by buffering and absorb-
ing impacts (modified from [40, 87])

Recovery The return to an acceptable level of functionality
Reliability The ability to maintain an acceptable functionality
Risk Uncertainty about and severity of the consequences [23]
Robustness The ability to absorb or withstand impacts

Transformation
Adjustments, in response to actual or expected hazards,
to moderate consequences that qualitatively change the
system’s state (modified from [168]).

To illustrate the three dimensions of resilience, consider the coastal community. The commu-
nity persists if it rebuilds, as-was, following a coastal flood; a community adapts if it rebuilds
and increases the robustness of its structures, provides sandbags to residents, and educates
them on flood hazards; and a community transforms if it retreats from the threatened zone and
rebuilds in a safer area. To truly build resilience, the community must strengthen each compo-
nent and recognize the inter-dependencies between them. We need a framework for resilience
analysis that embraces this inter-dependence and, with which we can both address trade-offs
and leverage synergies.
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7.4 Risk as a holistic framework for resilience

If the consequences from any event are fundamental to a system’s resilience, risk analysis can
be used to analyze andmanage resilience. Consider a community that is threatened by a hazard.
We represent the risk picture, using a bowtie diagram, in Figure 7.1. The system (𝑆) is a com-
munity, the activity is it’s existence over a specified time frame (𝛼𝜏 ), and the event (ℰ) is that
the community experiences a specific hazard. The bowtie diagram shows the causal picture that
leads, over time, to the consequences (shown on the right) of the event. The barriers (center-
left) are the actions and measures that the community has taken that increase the community’s
robustness or preparedness. These actions may prevent the hazard from causing damage (for
example, a sea wall in a flooding situation) or mitigate the amount of damage (e.g., building
strengthening in a hurricane event) as well as evacuation measures. The barriers to the right
of the event are consequence reducing actions and measures that occur post-event. In terms of
the hazard cycle, these occur during the immediate response, the rehabilitation, and the post-
event development. These measures include those that support the recovery as well as those
that enable adaptation and transformation. The performance of all of the actions and measures
are influenced by the risk-influencing factors (features of the system) which are shown on the
far-left of the bowtie. Given the reoccurring nature of hazards in communities, the post-event
actions, measures, and consequences will influence the system’s features and preparedness for
future events.

Clearly this risk-picture describes the resilience of a system. Both the pre-event and post-
event actions effect the consequences from an event, and so should bemanaged inter-dependently.
This relationship can be formalized using the risk concept:

risk𝑇 = (𝐶𝑇 , 𝑈)

This states that the risk is a combination of the consequences (𝐶𝑇 ) and that these consequences
are unknown (𝑈 ) [18]. The subscript 𝑇 indicates for how far into the future the consequences
have been evaluated 6. Recall, that risk is pertinent to a system (𝑆) undergoing an activity for
a specified period of time (𝛼𝜏 ).

Using the bowtie diagram, we can identify what factors contribute to the consequences. The
consequences depends on the pre- and post-event actions and measures and, using Béné et al.’s
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Figure 7.1: The risk-picture for a community. This bowtie diagram shows the system’s fea-
tures (left), pre- and post-event barriers that reduce the consequences (shown on
the right).

[40] framework, is a function of persistence, adaptation, and transformation:

Consequences = 𝑓(persistence, adaptation, transformation)

These components are aided by various abilities and aspects of the system (i.e., system features:
𝐹1, 𝐹2, ..., for example the capacity to adapt) that can help to reduce the consequences from
some event. For example, the persistence (which includes robustness) is improved by enhancing
the system’s capacity to prepare for a hazard and the capacity to absorb the impacts of a hazard:

Robustness = 𝑓(preparatory capacity, absorptive capacity)

Similarly, adaptation and transformation each depend on their associated capacities. Support-
ing all three components is the system’s capacity to anticipate. We formalize these dependen-
cies as a schematic in Figure 7.2. Figure 7.2 shows how these system properties manifest to
reduce consequences.

Risk analysis provides a way of identifying risk-reducing measures, these measures could be
either probability reducing or consequence reducing [18]. The schematic (Figure 7.2) demon-
strates how properties associated with resilience can be targeted to reduce the risk faced by our
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systems and communities. That is, we can reduce the consequence, address the uncertainty,
and strengthen our knowledge. We can reduce the consequence of an event by increasing the
system’s ability to resist and recover, whether through system hardening, or by investing in the
capacities of the system. Additionally, as the consequences are due to events, we can prevent
events or reduce their likelihood of occurring. For example, we may be able to prevent events
or reduce their likelihood of occurring by mitigating climate change. Alternatively, we could
move the system away from the threatened area. Finally, reducing the uncertainty and increas-
ing the strength of knowledge (the anticipatory capacity) could improve risk-informed decision
making, inform adaptation or transformation initiatives, and enhance the other capacities of the
system.

Figure 7.2: Community properties that characterize resilience can be managed and balanced
within the concept of risk. This shows how the intrinsic properties of communities
and systems influence the the consequence of an event.

Therefore, with this thinking we can interdependently or jointly manage all aspects of re-
silience within a risk framework. This integrated management can promote efficient use of
resources and holistic decision-making, whereas divergence may hamper efforts to enhance
resilience [40]. This framework allows for the consideration of tradeoffs, contradictions, and
synergies. Again, consider the seaside community. Under this framework, the community can
reduce its risk by reducing the consequences. One option is that they build a seawall, but they
may also choose to invest in insurance or strategies that build community cohesion to enhance
the recovery. Additionally, they may use hazard zoning and take a more transformative ap-
proach that moves residential areas away from threatened areas. Or they may do both. This
type of thinking fits within a risk management approach.
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Management under a risk framework also enables the various practices referred to under the
umbrella of resilience to be implemented by improving existing risk strategies. Risk manage-
ment plans are common in local authorities. For example, in the USA, hazard mitigation plans
are required by the Federal Emergency Management Agency (FEMA) [310]. With the recent in-
creasing emphasis on “resilience”, organizations may be tempted to create separate “resilience
plans” or employ separate “resilience officers”. Instead, we argue that resilience can be built by
broadening and strengthening the purview of existing riskmanagement. Thismeans that rather
than creating ‘resilience’ plans, bureaucracy can be avoided. This holistic way of thinking also
prevents siloing research and encourages progress towards “resilient communities.” Holism and
interdisciplinary cooperation is the way forward and this comprehensive framework provides
exactly that.

7.5 Conceptual example of an opportunity

Interventions that reduce the risk from one hazard can increase the risk from others [62]. For
example, consider the burying of overhead electricity wires. This reduces the threat from high
wind events, but may increase the consequence and recovery time from an earthquake if it
damages subterranean lines. The existing resilience field has to-date managed this quandary by
defining ‘specific’ and ‘general’ resilience. Specific resilience refers to an identified hazard [83],
while general resilience refers to the intrinsic properties of the system. The risk framework,
and techniques from the literature may provide a promising alternative.

Frequency-number (F-N) diagrams, a risk analysis technique, offer a potential solution for
integrated management and decision informing for comparing alternative interventions that
have tradeoffs for different hazards. F-N diagrams are a common tool in risk analysis for pre-
senting frequency-consequence data [63]. Events are assessed for their occurrence probability
and their consequence. The consequence may be number of lives lost or the economic loss, for
example. The frequency of experiencing a consequence of x or worse is plotted on the y-axis.
That is, we can use this to say that the probability of a community having more than (e.g.) 𝑐1
dollars of loss within a given year is 𝑝1.

Figure 7.3 provides a conceptual example for a community that we shall step through. We
consider a community that is at risk from floods, wildfires, and hurricanes. 1)The first step is to
estimate the consequences (e.g., the economic damage over ten years) of one of these hazards
with a particular return time (e.g., a 1/100 year flood) (see [54] for an earthquake example).
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This can be repeated for each hazard for a series of occurrence probabilities. Figure 7.3a shows
the consequences (shaded for event 1) as the area in the resilience curve for the three types of
flooding shown.

2) We then can aggregate the consequence-probability pairs and plot them as an F-N curve
(Figure 7.3b). The curve shows the probability (on the 𝑦-axis) that (e.g.) a flood will cause
more than 𝑥 consequences. In Figure 7.3b, each type of hazard considered in the example
is plotted so there are three lines shown. Now consider an intervention such as prohibiting
development near a river. This would potentially shift the flooding curve to the right (there is a
lower probability of damage) but may increase the risk from wildfires, thus shifting the wildfire
curve to the right.

3) Finally, the hazard specific curves can be aggregated into a single F-N curve (Figure 7.3c).
We can also present uncertainty in both the frequency and consequence estimates, which adds
uncertainty bounds to the curve, as shown. When considering an intervention, the change to
this one curve will indicate how an intervention changes the risk (with respect to the selected
consequence) to the community from all considered hazards. This thinking can draw attention
to the tradeoffs and synergies for integrated hazard management and forms a basis for trying
to operationalize these considerations.

Risk, or F-N, curves relate to resilience as defined by Bruneau et al. [54]. They describe re-
silience as the annual probability that the system maintains an acceptable level of functionality,
when faced by earthquake risk. Although this is more accurately referred to as the reliability
of a system, this is a way of capturing what researchers refer to as ‘general resilience:’ es-
sentially, hazard-independent specific resilience. In terms of the risk, all-hazard risk-curves
provide a graphical way of visualizing describing the risk, {< 𝑐′

𝑇 , 𝑞 >𝑖}. If we were to specify
an acceptable consequence, the likelihood of not meeting that acceptable level in a given year
can represent the reliability of a system or community. By including multiple hazards, this
technique provides a means of evaluating alternative interventions and their tradeoffs. Such a
technique is highly valuable for integrated risk management.

7.6 Conclusion

In this article, we argue that the analysis and management of resilience can be achieved using
risk analysis. This is not to say that the concept of resilience should be abandoned, but rather
than its analysis should leverage and enhance an existing body of literature and the techniques.
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Figure 7.3: Creating a frequency-number curve for representing risk and visualizing interde-
pendencies. (a) shows the resilience curve for different severities of a type of haz-
ard. (b and c) show the F-N curve for each type of event (b) and the aggregate of
events (c). Figures such as (b) and (c) can help when alternative interventions may
reduce the risk to some hazards, but increase it for others. Incorporating the full
consequences from a risk source means that a risk curve can be used to assess a
community’s risk from different hazards and focus efforts that build resilience. Ad-
ditionally, it can provide a quantification of a system’s or community’s general (not
hazard specific) risk reduction.

This can help to operationalize resilience, an increasingly urgent matter for our communities
threatened by hazards.

We demonstrate how the components of resilience fitwithin the concept of risk (𝐶𝑇 , 𝑈). Risk
analysis can provide a way of identifying risk-reducing measures, therefore, a risk-framework
can be used to identify approaches that build resilience. For example, the consequences threat-
ening a system or community can be reduced by improving the system’s robustness or speed
of recovery. Contributing to reducing the consequences are the system’s properties that in-
clude the capacity to anticipate, prepare, persist, adapt, and transform. This risk framework
can guide action, evaluate tradeoffs and synergies, and promote transformative change in a
holistic manner.

Situating the resilience paradigm within a risk framework presents a series of opportunities
for our communities and the interested research disciplines. The framework we present enables
managing the components of resilience in a inter-dependent and holistic manner. This means
that tradeoffs and synergies between adaptive interventions can be evaluated and leveraged. It
means that we enable communities to avoid the trap of the continual hazard-recover cycle. It
clarifies the terminology and provides opportunities for leveraging approaches and techniques
in the existing risk and reliability literature. These techniques and further advances may oth-
erwise have been ignored by continuing to operate in silos. Finally, by using a risk framework,
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we can conduct the necessary changes within existing political planning frameworks that have
required risk management for decades. This framework considers all of the components of re-
silience, it ensures that decisions are made holistically, that tradeoffs are for the best, and that
communities are well-informed to prepare for future threats, all within an established field:
risk.
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Chapter 8

Conclusion

8.1 Summary and Contributions

Over the five years that I have been studying towards my PhD, climate change has gone from
a known, but not particularly concerning (to the average person), issue to an outright global
emergency [38, 68, 228] that needs to be addressed within 10 years [168]. This has been the
backdrop while constructing this thesis. My dissertation is fundamentally motivated by the
question of how we can improve our approaches to protecting communities in the face of haz-
ards. Over time, I narrowed the scope into exploring the potential of data-driven urban plan-
ning and understanding how we can leverage risk and data science to build the resilience of
our communities.

In Chapter 1, I argued that urban planning challenges can motivate advances in founda-
tional risk science. The challenges, includingmanaging natural hazards, chronic diseases, urban
sprawl, and air pollution, open numerous collaboration opportunities, data sets, focus groups,
and case studies. Risk analysts can use these to advance generic risk analysis practices and re-
search, furthering howwe understand, assess, communicate, andmanage risk [21]. In the paper
I stepped through foundational issues of risk science and identify the synergies that would arise
if risk analysts collaborated with urban planners.

I explored how risk analysis and complex system simulation can be used to identify potential
maladaptive behavior in Chapter 2. The initial motivation for the chapter was to understand
whether seawalls protected communities from tsunami, following the disaster in Japan in 2011.
To answer the question we had to capture the temporal evolution of risk and the actions of
humans in response to the seawall. I constructed a cellular automaton model for land-use
change that was coupled with the hazard model and the dynamic behavioral feedbacks from
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human’s awareness of the hazard. By constructing this model, we unintentionally quantita-
tively demonstrated the safe development paradox, also known as the levee effect, whereby
structural interventions can increase vulnerability by inducing development in areas threat-
ened by hazards. The effect arose from interactions between the community’s risk perception,
the spatiotemporal changes, and the repeating hazard. This chapter demonstrates the impor-
tance of understanding how interventions may affect communities and why interdisciplinary
collaboration is important for addressing natural hazards and avoiding maladaptive actions.

In Chapter 3, I used machine learning techniques to explore spatial factors that contribute to
the threat from a natural hazard to a community. The objective of this chapter is to understand
how different urban characteristics are associated with land surface temperatures and identify
their relative importance. To achieve this I processed the spatial data at different scales and per-
formed a rigorous cross-validation to ensure the spatial aspect was not causing the model to
be overfit. I present the results, showing both data and model uncertainty in the figures show-
ing the association between urban characteristics and land surface temperature. Our findings
demonstrate that accurate prediction of land surface temperature using urban characteristics
is possible. The machine learning models were accurate within 1𝑜C of the observed land sur-
face temperature. Our results strongly support initiatives for increasing green infrastructure
in cities and open opportunities for further detailed analysis into potential interventions. Rig-
orous statistical analysis can continue to answer on-going questions central to land surface
temperature.

I then presented a pair of chapters that center around people’s access to essential services:
Chapters 4 and 5. In Chapter 4, we presented an approach for measuring people’s proximity to
any urban service. This approach utilizes open-data and leverages the increasing computational
capacity available to researchers and practitioners. We calculate at the parcel level the distance
from each person’s home to their nearest services. The service can be selected by the analyst,
but we demonstrated the approach using schools, green space, hospitals, and grocery stores. We
then explore ways of presenting the overall proximity of the community and compare it with
other communities. We also explored how sensitive the results were to the spatial resolution of
the data to be sure we avoided the modifiable unit areal problem (MAUP) that can arise when
spatial phenomena are aggregated. Improving the ability to measure proximity to services
enables access and access equity to be evaluated in a rigorous manner.

In Chapter 5, I utilize the approach to measuring proximity to services and assess how peo-
ple’s access to services changes over the course of a natural hazard. Services such as health
care, food, and education are essential for a community’s vitality and viability. Without them
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the residents will be destitute or will migrate. Also important for a community’s social sus-
tainability and cohesion is that this access is equitable. In recognizing the importance of access
to services to a community, we proposed that this be a measure of resilience. That is, does a
community maintain or quickly restore access to essential services following a disruption, and
does it mitigate, adapt, or transform its provision of services both before and after a disrup-
tion to ensure equal access? We measure this by assessing how the proximity of residents’ to
their nearest service changes over time. Additionally, by including demographic factors, we
can assess how equitable the provision, maintenance, and recovery of these services is. Unlike
other schools of thought on resilience, this specifically describes resilience in terms of both a
hazard and the community’s need. Ultimately, this framework and approach can be put into
practice to reduce the risk of communities losing their access to essential services in the event
of a hazard. The approach is spatially explicit, so can be used by decision makers to identify
areas within the community needing attention, both before, during, and after a disruption. This
is a promising tool for transforming communities to be sustainable, equitable, and livable.

I concluded the dissertation by presenting a framework that both integrates the dimensions
of resilience into the concept of risk and enables holistic management of these concepts (Chap-
ter 7). The literature remains unclear about how to define ‘resilience,’ much less achieve it in our
communities. This lack of understanding may put communities in jeopardy by not providing
them adequate tools and management practices to prepare for disasters, or by inefficiently us-
ing resources by managing connected aspects independently. We require a framework that can
guide action, evaluate tradeoffs and synergies, and promote transformative change in a holistic
manner. Fundamental to the definitions of resilience is the notion that we need to reduce the
consequences that a hazard inflicts on a system or community. This suggests that the risk con-
cept, a function of the uncertainty about and severity of the consequences of a hazard, (𝐶, 𝑈),
could provide a suitable framework for holistically thinking about and managing communities
and the hazards they face. We showed that the risk concept is a logical way of thinking about
the dimensions of resilience. In short, the aspects that constitute the definitions of resilience
can be addressed within the concept of risk. This understanding means that resilience, and
resilience analysis, is well within the purview of modern risk analysis.
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8.2 Final remarks and future research

My ongoing research will be guided by the same underlying motivation of understanding and
improving our approaches to protect communities in the face of hazards. Throughout my grad-
uate studies and during my internship at a startup working in this space, I have come to under-
stand that adapting to climate change and mitigating natural hazards must be 1) conducted in
an interdisciplinary and collaborative manner and, where possible, conducted alongside com-
munity partners; 2) actively cognizant of potential pitfalls that could result in maladaptation
or increased inequity. I intend to build my expertise in these aspects further to then integrate
them into my future work.

8.2.1 Ethics

The emergence of tools and data, alongwith increased computational ability provides the power
of insight to an array of people. The potential downside is that as we use this technology to un-
derstand counter-intuitive systems. It is increasingly difficult to assess the plausibility of our
results against our own intuition or understanding. As these models become more complex,
they become more difficult for the practitioner, decision maker, or other end-user to critically
evaluate the resulting recommendations. This results in a series of ethical challenges that we
need to be actively aware of. As I progress through with my research I am constantly intro-
duced to additional ways that we could inadvertently exacerbate issues for communities and
people. For example, if community managers rely exclusively on black-box models without
complementing the results with local knowledge and experience, suffering may increase. This
is especially true for conditions beyond what the model was trained. Climate, technological,
and societal change is shifting the conditions under which we operate, and this poses a chal-
lenge to modellers relying on historic data to train and validate their models. It is essential that
we communicate the limitations and uncertainties to community partners so they can augment
data science with their knowledge of the community. Although guidelines and literature on
ethics exist, they are often specific to risk [99], hazard planning (e.g., [132]), and big data [364].
I believe that there are unique challenges at the intersection of these and other fields related to
urban planning, climate adaptation, and hazard mitigation. Additionally, the speed of growth
in technology means that our ethical guidelines need to be constantly reviewed to ensure they
have the capacity to provide support when new and unforeseen challenges arise. To explore
this space, I have begun a collaboration with a group of researchers across the academic spec-
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trum (from engineering, public health, behavioral science, policy, etc.) and professionals in the
hazard field. The aim of this collaboration is to develop guidelines that can advise academics
and practitioners on how to identify, discuss, and avoid potential pitfalls that may arise. These
guidelines will, at the very least, guide my future research agenda.

8.2.2 Social justice and “bouncing forward”

Ongoing risk analysis needs to ensure that inequities are not further exacerbated. I intend
to build on the work in Chapters 4 & 5, as well as the work of [124, 227, 352] and others in
evaluating the effects of risk mitigation and interventions on people and equity.

I also intend to further explore the notion that while ‘disasters don’t discriminate, resilience
and recovery efforts often do’ [107]. The concept of resilience has been criticized for perpetuat-
ing and further institutionalizing inequity [141, 166, 207, 218, 239]. Potentially this “bouncing
back” is due to how the concept has been measured. That is, resilience measurement often is
calculated as the decrease from the pre-existing or ‘baseline’ function. I plan to explore how
the choice and construction of the resilience metric can impact post-disaster recovery efforts
and priorities.

8.2.3 Urban form and hazards

Urban form, the way that our cities are designed, affects how people live in them, how vulner-
able they are to hazards, and how susceptible they are to chronic disease. The design of cities
is also pertinent to sustainability, and climate adaptation and mitigation. I intend to further
explore how urban form and urban characteristics can be used to improve our cities. Building
on techniques in Chapter 3, I want to identify and evaluate potential interventions. This will
require using spatial statistics, methods of capturing geographic uncertainties [120], and com-
parative studies, in which mixed-effects modeling will likely arise. More specifically, I plan to
explore how urban density affects public health in cities and whether consistent trends emerge.

8.2.4 Aotearoa New Zealand

Above all, I intend to pivot my research focus towards New Zealand, my home country. New
Zealand is an island nation that is threatened by an array of natural hazards and is highly vul-
nerable to sea level rise. It is an ideal case study for assessing potential strategies for natural
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hazard mitigation and climate adaptation because of the natural system boundaries. Addition-
ally, there is relatively well recorded spatial data about the infrastructure and property that can
be used in the models. The results of findings in a New Zealand context would be well suited
for generalizing to other industrialized regions.

Among the first projects I intend to work on is a comparative evaluation of New Zealand
climate adaptation planning. My assessment to date suggests that most regions in New Zealand
are well behind the proactive states and communities in the US. However, this may be changing
with the current government which has made climate change a priority.

A further benefit to working in New Zealand is the potential for co-production of knowledge.
Communities in New Zealand are willing to engage with academics and the local governments
often are open to science-informed decision making. In my new role as faculty at the University
of Canterbury in Christchurch, NewZealand I plan to build expertise in community-engaged re-
search and partner with faculty who are already succeeding to do so. I want my future research
to challenge the borders of traditional disciplinary research which is essential for tackling the
global challenges we face. To tackle these challenges I will seek the opportunity to partner
with interdisciplinary academics and the wider community to ensure that research can be both
foundational and useful.

I have grave concerns for our society based on the emerging threats that are unlike those our
society has faced [175]. However, I am cautiously optimistic that we can leverage science to
guide our response and actions so that we can manage the unavoidable and avoid the unman-
ageable [47]. To do so, we urgently need to mobilize research to support decision-making. My
future research will continue to focus will be on integrating risk science and urban planning so
that we can do our best to mitigate hazards and protect our communities.
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Appendix A

Supplements to Hard-adaptive measures
and maladaptation

A.1 Model framework

We model land-use change of a small-town subject to repeated tsunamis using a cellular au-
tomaton (CA) model. CA models have extensively been used for land-use change modeling
[36, 73, 194, 307, 334, 345, 346]. Their ease of integration with geographic information and
simple grid structure makes CA a natural candidate for simulating change and dynamics of an
urban form. Based on transition rules dependent on the environment and interactions with
neighbors, the CA can model spatiotemporal changes of a heterogeneous population of cells
[148, 162, 302, 307, 334, 346]. We use these models to examine how the general behavior of the
land-use trajectory changes under different scenarios.

The initial development pattern of the town is based on the 1901 land-use map [316]. Ele-
vation data at a five-meter resolution is used [127]. The simulation area is a (2.4 km)2 square
around the city of Taro, divided into a (10 m)2 grid. A single replication of the model occurs
over 300 time steps, where a time step is a year.

For each time step of a model replication

1. A tsunami may strike the region (Section S3.2)

2. The town will grow or shrink depending on growth rate (Section S5) and transition po-
tential (Section S6).
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A.2 Case study location

Taro, Japan (Figure A.1), is used as a case study site to provide data and a validation option. It
has experienced multiple tsunamis over the past century (Table A.1) [224, 298]. The 1896 Meiji
Sanriku Earthquake and the 1933 Showa Sanriku Earthquake caused tsunamis that resulted in
severe damage and casualties. In 1960, Taro’s newly completed seawall prevented damage from
the tsunami generated by the Great Chilean Earthquake. Most recently, in 2011, the Great East
Japan Earthquake caused a tsunami which over topped the seawall and once again devastated
the community.

Figure A.1: The case study location: Taro, Japan.

Table A.1: Details of the four most recent tsunamis which have occurred in Taro, Japan [230]
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A.3 Tsunami model

A.3.1 Synthetic tsunami library

To approximate the effect of a tsunami on the town’s developed land using depth-damage rela-
tions formulated for this region [312], we need themaximumwater depth at every point. Rather
than simulating the tsunamis real-time within the model, we reduce computational demand by
generating a synthetic library of maximum inundation depths for a range of tsunamis (Table
A.2). Delft3D Flow is the 3D hydrodynamic modeling tool used to determine the maximum
inundation height for each cell of the land-use model for each tsunami scenario [92]. The ini-
tial wave height, produced by Delft Dashboard [93] implementation of the Okada model [241]
from the fault line parameters, is the model input. To minimize computational time, inunda-
tion heights for tsunamis were run prior to the land-use model. This approach assumes that
land-use changes and roughness are unchanged.

The inundation model and input parameters were validated by comparing against three his-
torical tsunamis (1896, 1933, 2011) and their observed inundation depths (Section A.7).

Table A.2: Water inundation relative to TP (Tokyo Peil, the Japanese vertical datum) of different
tsunamis with no seawall along coastline. For each historical rupture location, three
magnitudes are generated. The first is the historically observed, the latter two are a
magnitude smaller and greater.

For each fault event and magnitude, the initial wave height is required for the inundation
model. We use Delft Dashboard to approximate the initial wave height [93]. This requires the
fault location and magnitude of rupture. The three historical rupture locations were used and
assumed to be straight lines. However, modeling complex fault ruptures as straight lines is
an insufficient simplification. The result is an initial wave height that does not cause tsunami
inundations comparable to those observed. To allow for the fault simplification, the slip param-
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eter is modified by a multiplicative factor so that the inundation in Taro is similar to observed
levels and provides a range of inundation heights along the coast (Table A.3). This is justified in
Ulutas [324]. Once the fault and magnitude are input, Dashboard uses the Hanks and Kanamori
formulas [343] to calculate the relationships between parameters. Table A.3 lists the parameters
used to generate the initial wave heights in Delft Dashboard.

Table A.3: Tsunami earthquake source parameters. For each historical rupture location, three
magnitudes are generated. The first is the historically observed, the latter two are a
magnitude smaller and greater.

The Delft 3D model was simulated for each of these fault parameter sets. The model was
decomposed into smaller domains for computational stability. The parameters for each decom-
position are show in Table A.4.

Table A.4: The computational parameters of the simulation used in the nested Delft model, be-
ginning with the largest domain. The spatial extent and number of grid points define
the resolution. The NE and SW coordinates define the boundaries of the bounding
box. The Manning roughness is defined in both horizontal directions.
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A.3.2 Tsunami occurrence

We assume that tsunami inter-event arrival times are independent and draw them from a Pois-
son process. Poisson processes have traditionally been used to model tsunami arrival times
[126] and while there is recent debate as to their suitability [125], the Poisson process provides
an approximate and generalizable distribution for many natural hazards. The critique of the
Poisson model for tsunamis is due to large earthquake events resulting in aftershocks within
the 7-10 year period following [125]. However, the model is simplified to ignore these short-
term subsequent events. Also, due to the large geographical region where tsunamis which
have previously struck Japan have originated from (e.g. Chile), we assume the events are in-
dependent. Given four tsunamis struck Taro, Japan between 1896 and 2011, we use a Poisson
distribution with a mean number of occurrences of three events per hundred years. The mean
frequency is varied to see the result of frequency on vulnerability (Figure 2.2).

A.3.3 Tsunami magnitude

We assume that inter-event magnitudes are independent [126]. Our intention is to generate
pseudo-realistic tsunamis, with which to threaten the town. Therefore, we need tsunamis with
a range of heights and associated probabilities. With each of our validated historic tsunamis
(1869, 1933, 2011) we model them again with a magnitude change of ±0.2. This gives us a
range of wave heights. The height of simulated tsunamis is randomly chosen using a triangular
distribution (Equation A.1). The likelihood of each tsunami height is shown in Figure A.2.
The distribution is selected so that smaller waves are more likely to occur. By keeping the
distribution of tsunamis simple, we can gain insights into Taro, as well as generalize them to
other communities. The slope of the triangular distribution is subject to sensitivity analysis (see
Section A.9.1).

𝐹(𝑥) = 1 − (𝑏 − 𝑥)2

𝑏2 (A.1)

where:

𝐹(𝑥) = cumulative probability of tsunami height given a tsunami occurs
𝑥 = wave height (m)
𝑏 = earthquake intensity parameter, which dictates the slope

We acknowledge the limitations and simplifications in generating initial wave height and
determining occurrence probabilities. However, we stress that the intention is to generate re-
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Figure A.2: The probability of a tsunami height given that a tsunami is occurring. The height is
drawn from a triangular distribution (Equation A.1).

alistic tsunamis to observe their impact on the urbanization of the affected town and not to
exactly match the past or predict the future tsunami environment.

A.3.4 Effect of Seawalls

Seawalls reduce the area inundated and inundation height resulting from a tsunami. A seawall
is included in the hydraulic inundation model by raising the land elevation in the model. The
seawall implemented in each simulation uses the footprint of the seawall in Taro before the
2011 tsunami, but the height is variable. In the land change model, the seawall height is fixed
from the beginning, and throughout the duration, of the simulation. When different heights
are being compared, the height is changed. For the adaptation effect assessment, the seawall
height is 0m. For the sensitivity analysis, the parameters are tested with a seawall of 0m and
12m.

A.4 Land Damage

A survey of the region following the 2011 tsunami developed fragility curves for the buildings
[312]. Most of the structures are wooden, so the depth-damage curve for wooden structures
has been used in this model as a generalization (Equation A.2). We consider major damage
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or worse to result in a destroyed cell. For each land cell, the probability of major damage is
calculated and a random value from a standard uniform distribution drawn. If this value is less
than the probability of major damage, the land-use is reverted to undeveloped. This occurs
stochastically, but in many simulations will occur at a frequency equivalent to the probability
of major damage (i.e. if the probability of major damage is 80%, then 80% of uniform random
numbers will be less than 0.8).

𝑃(𝑥) = 𝜙[𝑥 − 𝜇
𝜎 ] (A.2)

where:

𝑃(𝑥) = Probability of damage to structure when inundated by 𝑥 water
𝜙 = standardized normal distribution function
𝜇 = 3.8458
𝜎 = 0.8516
𝑥 = inundation depth (m)

(see [312] for wooden house, major damage).

A.5 Land Demand

A.5.1 Demand

We assume that land demand is driven by the town’s population growth rate (Section A.5.2).
Each year, cells are developed or undeveloped based on the direction of the growth rate and
the transition potential of the cell (Section A.6). In the event of a tsunami, the development on
some of the land is destroyed (Section A.4). The occupants of the land (proxying one per cell)
may choose to stay or leave. Those that leave, exit the model. Those that stay add to the land
demand over the course of several years until they have been distributed. We model only two
types of non-fixed land-use: developed or undeveloped (section A.6). Developed land is urban
land where improvements have been made.

A.5.2 Growth Rate

The growth rate changes with each time step of the model. In lieu of an exogenous forcing
model for the growth rate, a random walk is used. A normal distribution is fit to the change in
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percentage growth rate for Iwate prefecture, Japan between 1950 and 2000 [170]. That is, the
growth rate is determined for each year, and the difference between each years’ growth rate is
calculated. Data between 1950 and 2000 are used due to the variation in the growth rate before
1950 due to wars and the 1933 tsunami. The random walk is seeded with a growth rate of 1%.
Each year, a change in growth rate is drawn from the fitted distribution and added. Figure A.3
shows a realization of growth rate for the duration of a simulation and compares it with the
historic growth rate in the region. It shows that the fluctuations are similar to the post-1950
historic growth rate.

Figure A.3: The population growth rate for the simulation. (A) shows the histogram of popu-
lation grow in Iwate prefecture, Japan, between 1950 and 2000, as well as the fitted
normal probability distribution. (B) shows the historic population and one realiza-
tion of the randomly simulated population change. .

A.6 Transition potential

The transition potential dictateswhich cells change fromundeveloped to developed land. Figure
A.4 shows the transition potential changing over time following a tsunami. All land-use types
are classified into one of three categories: fixed, passive, or active [346]. Road, sea, and seawall
are all fixed. This means that once a cell has this land-use it does not change. A passive cell, e.g.
developed cells, change onlywhen there is an external intervention (such as tsunami inundation
resulting in damage). Active cells have associated transition potentials. Undeveloped cells
are active cells. The “undeveloped” cells with the highest transition potential are changed to
“developed” cells at each time step. The transition potential (modified for a single land-use
type from White et al. [346]) for each cell is a function of the neighborhood effect, suitability,
accessibility, and a stochastic perturbation (Equation A.3):
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𝑉𝑖 = 𝑟𝑖𝑁𝑖𝐴𝑖𝑅𝑖𝑆𝑖 (A.3)

where:

𝑉𝑖 = transition potential for cell i
𝑟𝑖 = stochastic perturbation for cell i
𝑁𝑖 = neighborhood effect for cell i
𝐴𝑖 = awareness of the tsunami risk for cell i
𝑅𝑖 = accessibility for cell i
𝑆𝑖 = suitability for cell i.

Without a stochastic perturbation term, the model is deterministic. The perturbation cap-
tures some of the inherent variability in human-environmental systems. For each land cell, the
stochastic perturbation 𝑟𝑖, is calculated by Equation A.4:

𝑟𝑖 = 1 + [ − 𝑙𝑛 (𝑈)]𝛼 (A.4)

where:

𝑈 = standard uniform random variable
𝛼 = parameter controlling the size of the skewed distribution [346].

The stochastic perturbation parameter was subjected to a sensitivity analysis (Section A.9.3).
Once the transition potential for each active cell is calculated, the cells are ranked in decreasing
order. The number of cells required to meet the growth rate (Section A.5) are selected from the
undeveloped cells in order of transition potential and developed. If there are no cells developed
(and therefore 0%) and there is a positive percentage growth rate, 20 cells are developed as a
seed community.

A.6.1 Neighborhood effect

The neighborhood effect of a cell is determined by the number of developed cells in the vicinity.
For computational efficiency, the neighborhood is divided into two rings. The first ring is the
cells within a 200 m radius of the subject cell, a distance generally assumed to the approximate
size of a local neighborhood [346]. The second ring has an outer radius of 400 m. 400 m was
selected as it is a standard walking distance threshold. The number of neighboring developed
cells is assumed to have a positive, but nonlinear effect on the desirability of a location such the
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Figure A.4: Transition potential following a tsunami, indicating the likelihood of a cell being
developed. The area inundated by the tsunami initially has very low potential for
development – note the shadow in the map where the tsunami inundated. The
memory of the danger fades with time and the potential development increases
back to normal. This is depicted above as the inundation ‘shadow’ fades with time.
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effect of additional neighbors decreases [346]. We approximate this neighborhood effect from
the development within each band using Equation A.5, shown in Figure A.5.

𝑁𝑏𝑗
= 1 − 1

1 +
𝑛𝑏𝑗

√𝑂2
𝑏𝑗

− 𝑜2
𝑏𝑗

(A.5)

where:

𝑁𝑏𝑗
= neighborhood effect of band j

𝑛𝑏𝑗
= number of developed cells within band j

𝑂2
𝑏𝑗

− 𝑜2
𝑏𝑗

= the outer radius squared minus the inner radius squared of band j. This normalizes the value with a function of the area of the annulus, an indication of total number of neighbors possible.

The neighborhood effect is calculated with a loss function based on the contribution from
each band (Equation A.6):

𝑁𝑖 = 1 + ∑
𝑗

𝑤𝑗𝑁𝑏𝑗
(A.6)

where:

𝑤𝑗 = 2 and 1 for inner and outer band respectively

1 is added so the function’s minimum is 1.

Figure A.5: The effect of developed cells nearby is initially significant, but reduces with more
development.

A.6.2 Tsunami awareness

Tsunami awareness decreases following an event, and is considered negligible after three [hu-
man] generations [109]. Therefore, following a tsunami, the inundated cells are highly aware of
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the tsunami risk and that awareness gradually dissipates. We approximate these reports with
a curve that approximates the empirical behavior (Equation A.7; Figure A.6). The generation
length in similar regions was approximated by measurement at 30 years [109], and we explore
the effect of changing this generational memory length in the paper (Figure 2.3).

𝐴𝑖 = 1 − 1
𝑒𝑥𝑝(𝑡𝑖𝑔 )

(A.7)

where:

𝑡𝑖 = the time elapsed since cell i was last inundated by a tsunami
𝑔 = generation length.

Figure A.6: Awareness of tsunami hazard decreases with time.

A.6.3 Cell accessibility

The accessibility of a cell is determined by its proximity to the ocean and the road. This is
important for a fishing town such as those on the Pacific coast of Japan. We approximate the
accessibility factor of a cell using an exponential decay function, normalized so that the furthest
points from the road or sea have no improvement value due to their proximity (Equation A.8;
Figure A.7). The factors normalize the decay curve between [0,1]. The weighting parameter for
distance to the ocean is subject to sensitivity analysis (see Section A.9.2).

𝑅𝑂𝑖
= 2𝑤𝑠

𝑒𝑥𝑝(10𝑑𝑖) + 1 (A.8)

where:
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𝑤𝑠 = the weighting parameter = 1
𝑑𝑖 = the normalized distance from the ocean ∈(0,1]
𝑅𝑂𝑖

= the accessibility value for distance from the ocean ∈(0,1].

The function for accessibility of road is identical, expect 𝑑𝑖 is the normalized distance from
the road. The accessibility is then determined by adding 1 to each value and multiplying them
together (Equation A.9):

𝑅𝑖 = (1 + 𝑅𝑂𝑖
)(1 + 𝑅𝑅𝑖

) (A.9)

where:

𝑅𝑂𝑖
= the accessibility value for distance from the ocean ∈(0,1]

𝑅𝑅𝑖
= the accessibility value for distance from the ocean ∈(0,1].

An example screen shot of the model is shown in Figure A.8. Figures A.9 and A.10 show the
influence the road and ocean have on the transition potential of the cells.

A.6.4 Cell suitability

The land slope of a cell affects its suitability [346]. Some land is too steep to build on without
significant cost. To simplify the complexities in utility and land steepness, land that has a gra-
dient exceeding 0.5 (1:2) is assumed unsuitable for develop. In practice this value is dependent
on soil properties and building code among other factors.

A.7 Validation of the urban development model

Assessing the validity of land-use models involves confronting the tension between predictive
and process accuracy [53]. Predictive accuracy is where the model correctly simulates land de-
veloped historically. However this historical map is only one realization of a complex process
[53, 346]. Because land-use models can be path dependent, they can bemulti-final and therefore
result in different outputs from an accurate model. Process accuracy is based on how well the
model captures these driving forces. Approaches to validation include location accuracy, pat-
tern accuracy, uncertainty analysis, and sensitivity analysis [332]. Here we present the results
of location and pattern accuracy determined from the invariant-variant method [332] and ad-
ditional statistics commonly used for evaluating classification algorithms. Section A.9 presents
a sensitivity analysis.
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Figure A.7: The desirability of a cell decreases with its distance from the relevant land type.

Figure A.8: An example of the model and the land-use.
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Figure A.9: Distance from the road

Figure A.10: Distance from the ocean
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We conduct the validation using two historical periods. The first was between the years 1901
and 1949. The second was between 1949 and 1969. These two periods were selected due to the
availability of the historic land-use maps. Additionally, they provide one validation case that
includes, and one that excludes, a destructive tsunami event.

Themaps (Figure A.11) present the historic land-use maps overlaid with the likelihood of that
land cell being developed in 500 simulations. Due to multi-finality, the likelihood maps should
not exactly match the actual occurrence. However, if the model is capturing the underlying
process correctly, then the historical development should have a nonzero likelihood. In the
figures, the color indicates the likelihood that a certain cell will be developed in the final year of
the simulation. In this case, green indicates high likelihood and purple is low. In this qualitative
validation, a good result is one where actual development (the black buildings) is included
within the colored region. This shows that the development that occurred is likely within the
model. A poor result is where actual development is not colored, indicating zero likelihood of
development, or where the actual development is the only thing colored and colored with high
likelihood of development, indicating the model is over fit [346].

Statistical validation results are presented in Table A.12. The first presented is the AUC,
balanced accuracy, and mean percentage developed correctly. These are metrics commonly
used to assess the accuracy of classification algorithms [113] and have been used to measure
the accuracy of probabilistic classifications compared to observed land-use patterns [112]. The
AUC (area under the receiver operating characteristic curve) indicates the probability that a
classifier will “rank a randomly chosen positive instance higher than a randomly chosen nega-
tive instance” [113]. The closer the AUC is to one, the better the algorithm is classifying. The
balanced accuracy is the accuracy of a classifier to predict classes, weighted by the number of in-
stances in each class. A value of 100% would indicate perfect predictive accuracy. In the results
shown, the balanced accuracy is computed at the 0.5 probability threshold to define developed
or not. The percentage developed correctly is calculated for each realization from the model by
comparing it with the historical. The mean is calculated from the 500 model replications.

The variant-invariant method [53] is used to compute the remaining metrics. This approach
divides the region into the invariant (path independent) and variant (path dependent) regions.
The invariant region is where the simulation predicts the same class more than 𝜃% of the time.
This region should therefore be constant between all realizations including the historically ob-
served. The accuracy of the invariant developed (ID) and invariant undeveloped (IU) regions is
therefore calculated as the percentage agreement with the historical map. That is, ID accuracy
is the number of cells developed in the historical map that are within the model’s invariant
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developed region, divided by the number of invariant developed cells. This captures the accu-
racy of the path independent component of the model in predicting the historical. The variant
region remains and can be used to assess the effect of path dependence and, therefore, the pro-
cess. The statistic VC/VRD (variant correct divided by variant randomly developed) represents
the ratio of correctly predicted developed cells against a process which simply develops cells
at random. Due to the path dependence, however, the interpretation of this statistic is open.
A VC/VRD above 1 indicates that the process is representing the observed development better
than random, but a value below 1 could still be the result of a correct process model and suggest
the observed development is unlikely [53]. A more complete discussion is presented in Brown
et al. [53].

Figure A.11: Likelihood of development averaged over 500 model replications and overlaying
the historical development maps. (A) is the 1949 development. (B) is the 1969
development.

A.7.1 1901-1949

During this period a tsunami occurred, the seawall built, and the road rerouted. The construc-
tion of the 10 m high seawall was actually completed in 1958, however in this model it is added
immediately following the 1933 tsunami (i.e. timestep 34).

The model is initialized with the development map from 1901 and predicts the 1949 devel-
opment patterns (Figure A.11A), which can be compared to the actual 1949 development map,
under laid.
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Figure A.12: Validation results for the land-use models indicate the models are suitable.

Qualitative: The simulation accurately maintains development around the core downtown
and begins to extend north and south along the road, as well as east before reaching the hills.
It suggests that regions to the south which appear boggy in the historic map are likely to de-
velop, however, the marshland and rivers are unknown to the model. The simulation accurately
captures development to the south-west.

Quantitative classification: The validation statistics (Table A.12) indicate successful perfor-
mance in classifying between developed and undeveloped land. The AUC, indicating probabil-
ity of ranking a randomly chosen positive instance higher than a negative instance, is 0.91 (out
of 1). The balanced accuracy, which weights the accuracy by the number in each class, is 71%.
Finally, the mean of percentage of cells developed as historical is 50%. This result indicates the
model is not over fitting, which may be the case if it developed the same historic region every
simulation.

Quantitative variant-invariant: The model performs accurately in the invariant (path inde-
pendent) region. We use 𝜃=1. This is where the simulated model should be the same as the
historic model. The accuracy for the invariant developed and undeveloped regions is 86 and
99.6% respectively. The invariant (path dependent) region is assessed using the ratio VC/VRD,
which is the ratio of historically accurate cells against a process of random selection). The re-
sult, 1.2, is greater than 1, suggesting this model captures the underlying process better than
random [53].

A.7.2 1949-1969

Between 1949 and 1969 Taro experienced a tsunami that was prevented by its newly built sea-
wall. This is not modeled, so this second validation period includes no exogenous events. It
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is simply the evolution of the land-use based on the development preferences of being near
neighbors, the ocean, and the main road. The model is initialized with the 1949 development
map.

The simulation (Fig A.11B) shows the likely development extent includes most of the de-
veloped regions. It models development near the coast more than has been observed, but, as
before, the river andmarshland are unknown to the simulation. However, because it is unaware
of the 1933 and 1960 tsunami there is no aversion to living near the ocean. Also, the disruption
caused by the seawall construction (which was complete in 1958) is omitted.

Therefore, although the classification and invariant accuracy metrics are similar if not better
than the 1901-1949 period, the VC/VRD ratio is less than 1 (Table A.12), indicating a random
process better captures the development process in the variant region. This is likely due to the
tsunami construction, the 1933 hazard awareness not persisting into this simulation, and the
1960 tsunami being ignored. Because of these factors, the actual development may in fact not
represent the usual processes and therefore a value of 0.8 is still a reasonable result.

A.7.3 River and marshland effect

The river and marsh areas were excluded in the primary simulations to both simplify the model
and maintain generality with other regions. When validation was conducted with the river and
marshland masked as open water the accuracies drop for all metrics (Table A.12). This may be
due to the land-use change rule stating a preference for developing near open water, which is
how the marsh and river were defined. However, with the river and marshland excluded the
validation metrics suggest strong accuracy in representing historic development patterns and
capturing development processes.

A.8 Validation of Inundation Model Against Historical
Tsunamis

Herewe provide a validation of the tsunami inundationmodel against the three historic tsunamis.
The parameters for the simulated tsunamis, as described in Section A.3.1, were selected from
the literature to approximate the initial offshore wave height [93, 324]. The Delft3D hydraulic
model accepts as inputs a fault line and set of fault parameters, which produce an initial offshore
wave height [92] (Section A.3.1). The fault parameters for the historic tsunamis are shown in
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Table A.3. The result of this model is then compared with on-shore water inundation heights.
Water inundation heights for the tsunamis which struck Taro, Japan in 1896, 1933, and 2011
are available from Tohoku University [321]. We used observations with moderate and high
confidence from the database to compare with the simulated heights from the Delft3D model.

Validation results are shown in Figures A.13-A.16. As shown in Figure A.16, the mean abso-
lute error is approximately 2 m. Compared with other results of tsunami inundation models in
the literature, a 2 m error is relatively minor. For example, Grilli et al. [138] find that two source
models under predict inundation along the Sanriku/Ria coast, due to its complex bathymetry.
Their findings for the region slightly south had under prediction on the order of a factor of 2.
(Note Taro is at latitude 39.7𝑜 on Fig. A.18 and Fig. A.19 of Grilli et al, 2013. [138]) Goto et al.
[137] also presents results with errors exceeding 2 m between observed and modeled inunda-
tions. Similar differences are reported in Shimozono et al. [293], Tappin et al. [317], and Goda
et al. [131]. Goto et al. [137], describe the reason for these disparities, stating:

“numericalmodelingmight not reproduceminor inundation…without sufficiently high-resolution
topographic data because data for the modeling are usually rough, and the highway, small chan-
nels, and street gutters, which played an important role in local inundation, are too small a reso-
lution to be recognized in the model. (p1247)”

Furthermore, the inundation model we used is based on a simplified line source, as opposed
to a detailed tsunami source based on inverse solutions of tide and seismic data (e.g. Tappin
et al. [317]). This simplified line source is used because it allows computationally efficient
evaluation of many hypothetical tsunamis with sources of various magnitudes and epicenter
locations. This strategy is necessary for the stochastic evaluation of development behavior with
the cellular automaton model. It is distinct from the analyses of Grilli et al. [138], Shimozono
et al. [293], Tappin et al. [317], Goda et al. [131], and Goto et al. [137], all of whom aimed
to hindcast one particular event as accurately as possible, thereby requiring resolution of a
detailed and accurate tsunami source. Nonetheless, the simplified line source model performs
similarly to these more sophisticated tsunami source models in this case, in terms of mean error
in inundation heights.
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Figure A.13: Comparison of simulated vs observed water inundation as validation for the 2011
tsunami. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO,
USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri
Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMap contributors,
and the GIS User Community

Figure A.14: Comparison of simulated vs observed water inundation as validation for the 1933
tsunami.
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Figure A.15: Comparison of simulated vs observed water inundation as validation for the 1896
tsunami.

Figure A.16: Scatter plot of the tsunami heights historic vs simulated for the three tsunamis.
The mean absolute error (MAE) is the mean difference between the heights.
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A.9 Sensitivity Analysis

A.9.1 Tsunami Intensity

The severity of a tsunami is drawn from a triangular distribution (§A.3.3). We vary the slope
(the tsunami intensity parameter) of the distribution to determine whether our conclusions are
robust to varying the average severity of the tsunami. Note that the tsunami heights remain
the same, just the relative frequency between them changes (Figure A.17). A higher modifier
results in more major tsunamis.

The results indicate the same trends regarding the levee effect. Reducing the severity of
tsunamis significantly reduces the damage over time, while the other modifiers result in minor
differences between damage in the different simulations scenarios. The levee effect continues to
be observed. In the no-seawall case, the damage from different tsunamis (for the samemodifier)
is similar. However, when a seawall is present the larger events result in more damage given
the seawall has resulted in development within the inundation-hazard zone. This is apparent
for the range of tsunami severity.

Note that when the distribution is modified by a factor of 0.5 the result is that the large events
may not occur. Thismeans that those large events are unanticipated, extreme events themselves
and the levee effect is observed in the figures with these tsunamis as well as the major tsunamis.

A.9.2 Proximity to the ocean

Often, we build our communities near the ocean and one of the factors influencing the transition
potential of a cell is its proximity to the ocean. We subject the weighting factor of that distance
to a sensitivity analysis to determine whether these results change based on the community’s
relative desire to develop land near the ocean (Figure A.18).

We observe the levee effect for a range of weighting parameters for desire to live near the
ocean (Equation A.8). Although the results appear to suggest that reducing the appeal of seaside
living increases the damage from tsunamis, this is because of the topography in Taro, Japan
which has land with close ‘Euclidean’ (straight line) proximity to the sea atop cliffs and hills.
When there is no desire to live near the sea, the community clusters near the road and existing
community which is primarily in a valley, prone to inundation.

These results (Figure A.18) show that the levee effect is still observed for a range of sea appeal
factors and is therefore not sensitive to this factor.
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Figure A.17: The damage over time and damage from unexpected events when the tsunami
intensity is varied. The conclusions are not sensitive to this parameter.
E & F present the results of B and D respectively, with all of the simulated tsunami
events. The boxplot represents the median and 25th and 75th percentiles. The
outliers are points outside of the 1.5IQR.The shaded blue indicates tsunami heights
exceeding what was possible in the 300 years simulated, that is, it exceeds what
the community evolved to expect.
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Figure A.18: The damage over time and damage from unexpected events when the importance
of “proximity to ocean” on the transition potential is varied (𝑤𝑠 in §A.6.3). The
conclusions are not sensitive to this parameter.
E & F present the results of B and D respectively, with all of the simulated tsunami
events. The boxplot represents the median and 25th and 75th percentiles. The
outliers are points outside of the 1.5IQR.The shaded blue indicates tsunami heights
exceeding what was possible in the 300 years simulated, that is, it exceeds what
the community evolved to expect.
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A.9.3 Stochastic perturbation of land-use change

When modeling the evolution of the land-use over time, there is a random effect as well as the
deterministic transition potential (described in §A.6). This stochastic perturbation is intended to
capture the heterogeneity due to the human element of city growth. We subject the magnitude
of this random effect to a sensitivity analysis to see how cities with different growth patterns
behave. That is, we repeat the simulations for a range of magnitudes for this value.

The results, Figure A.19, are unchanged with the stochastic parameter indicating that the
conclusions generalize for towns with different growth styles.

A.10 Awareness and the large seawall height

The results shown in the main text regarding awareness (Figure 2.3) were for the 0 m seawall.
Although the coupling of maintained risk awareness with large hard-adaptive measures re-
sults in reducing damage over time, the large seawall still increases vulnerability to previously
unexperienced events. Both cases are shown for comparison in Figure S19.

A.11 Definitions

A.11.1 Hard-adaptive measures

Hard-adaptive measures include seawalls, break waters, levees, and surge barriers.
Note that levees are also known as embankments, stop banks etc.

A.11.2 Soft-adaptive measures

Soft adaptive measures include, but are not limited to, education and awareness focused mea-
sures, as well as zoning restrictions, financial incentives, ecological infrastructure etc. Note
however, that we do not explore these in this analysis, but we acknowledge that addressing hu-
man behavior is more complex than providing the community information regarding the flood
risks.
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Figure A.19: The damage over time and damage from unexpected events when the land-use
stochastic parameter is varied. The conclusions are not sensitive to this parameter.
E & F present the results of B and D respectively, with all of the simulated tsunami
events. The boxplot represents the median and 25th and 75th percentiles. The
outliers are points outside of the 1.5IQR.The shaded blue indicates tsunami heights
exceeding what was possible in the 300 years simulated, that is, it exceeds what
the community evolved to expect.
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Figure A.20: The effect on damage of increasing the time that the community remains aware of
the hazard. (A) and (B) are presented in Fig2.3 and have no seawall. (C) and (D)
have a 12m seawall. Comparing distributions (B) and (D) shows that maintaining
awareness in the presence of a seawall does not avoid the levee effect because the
community believes that it is protected and is unaware of their vulnerability.
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Appendix B

Supplements to Data mining and urban
land surface temperature

B.1 Data sources
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Table B.1: The data sources for the LST analysis.
Data Provider Data Type Data Date Description Source
U.S. Geological Survey Raster 2013-2017 Landsat 8 day and night

satellite imagery
https:
//earthexplorer.
usgs.gov/

Microsoft Polygon 2018 Building footprint
polygons for the US

https://github.
com/Microsoft/
USBuildingFootprints

Defense Meteorological
Satellite Program

Raster 2013 Stable nighttime light
intensity

https://www.ngdc.
noaa.gov/eog/dmsp/
downloadV4composites.
html

Multi-Resolution Land
Characteristics
Consortium

Raster 2011 Land cover https:
//www.mrlc.gov

Multi-Resolution Land
Characteristics
Consortium

Raster 2011 Percent developed
imperviousness

https://viewer.
nationalmap.gov

Multi-Resolution Land
Characteristics
Consortium

Raster 2011 Percent tree canopy
cover

https://viewer.
nationalmap.gov

U.S. Geological Survey Raster 2015 1/3 arc-second elevation https:
//nationalmap.gov/
3DEP/3dep_
prodserv.html

U.S. National Oceanic
and Atmospheric
Administration

Lidar 2014 Point cloud of surface
elevation

https://coast.
noaa.gov/htdata/
lidar2_z/geoid12b/
data/6377/

IPUMS NHGIS Area Level 2010 Block-level population
from the US census

[210]
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B.2 Covariates included in models

We select variables to include in the model based on the variance inflation factor (VIF). This
approach removes variables that exhibit high multicollinearity, that is the variable can be pre-
dicted from a combination of other variables. It is important to remove variables with high
multicollinearity in inferential studies because otherwise the variables may confound the ef-
fect of one another on the variables of interest.

Table B.2: Covariates included after accounting for multicollinearity.
Resolution Included variable

100-meter Albedo mean
NDVI mean
Sky view factor mean
% tree canopy stand. dev. spatial lag
% tree canopy stand. dev.
NDBI stand. dev. spatial lag
% building area
Sky view factor max
% tree canopy mean
NDVI stand. dev.
% water area
Digital surface model mean
Population density mean

500-meter NDVI mean
Albedo mean
Sky view factor mean
Digital surface model stand. dev.
% building area
% tree canopy mean
% water area
Sky view factor max
NDBI max
% tree canopy max
Population density mean
Digital surface model mean
% tree canopy min
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B.3 Technical appendix: convolutional neural network

B.3.1 Overview

Our CNN model was adapted from a U-Net architecture [278]. This architecture is commonly
used for image segmentation: the input to a U-Net model is a 2D greyscale image, and the
output is another 2D image with values representing the classification of each pixel. The novel
property of a U-Net CNN is that the internal layers learn at various resampled resolutions of
the input data, which makes the model good at learning phenomena that are driven at multiple
scales.

Several modifications were made to adapt U-Net to a geospatial use-case, and are outlined
below.

B.3.2 Data preparation

The gridded data for each city was treated as an image, with each pixel representing a 100m
or 500m cell. Instead of having three channels (red, green, and blue) like a colour image, these
images had one channel for each of the independent variables in the dataset. The target was a
2D single channel image of the same shape.

CNNs require all inputs to be the same shape, which isn’t the case for our city domains. Each
city image was therefore split into images of 32 × 32 pixels (24 × 24 for the 500m resolution).
Splitting the images up also gives more training samples to work with: each of the small square
images is a training sample.

Because the city boundaries aren’t square and contain holes, missing data is introduced when
placing the data into square images. Themissing data needs to be filled because neural networks
have no built-in way to handle non-real numbers. A simple approach like replacing with the
median for each variable would result in unrealistic abrupt spatial jumps near the city bound-
aries: these discontinuities would affect the convolution operations in the CNN which can rely
on features such as edges and spatial variance. Instead, holes and concave boundaries were
filled using linear interpolation, then edges were extended by setting missing-data corner pix-
els to the median value of each variable and performing linear interpolation. The progression
of the missing data filling algorithm is shown in Figure B.1. The result is all-real images with
smooth changes at the missing data boundaries.
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Original data After interpolation After extraploation

Figure B.1: Handling of missing data for the CNN.The image shown is for a 32×32 cell section
of mean day temperature for Portland at the 100m resolution.

B.3.3 Model

The model architecture is shown in Figure B.2. It consists of multiple convolutional layers at
both the input resolution and a 50% downsampled resolution. Additionally, a skip connection
concatenates the raw input data with one of final layers to reduce the depth between the input
and output.

The size of the network is much smaller compared to the original U-Net in order to reduce
overfitting due to our small dataset.

The final layer uses a linear activation function to enable regression. All other layers use
ReLU activation, and dropout is applied after the contraction.

To prevent the CNN overfitting to the naively-imputed missing data, a masked loss function
was used. The mean square error was greatly reduced for cells 𝑖 with missing data according
to a mask 𝑀

loss𝑖 = 𝑀𝑖(𝑦𝑖 − ̂𝑦𝑖)2

𝑀𝑖 =
⎧{
⎨{⎩

0.01, if 𝑦𝑖undefined
1, otherwise

This reduces the impact missing data has on the model weights, while leaving a small amount
of gradient to avoid numerical issues with lack of convergence. The cells withmissing data were
excluded from any results presented.

The mask was also added to the input data as an additional channel.
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Figure B.2: CNNmodel architecture. Each layer shows the spatial dimensions (e.g., 322) and the
number of channels (e.g., 12). In the final 322 × 1 layer, the ReLU layer is omitted.
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B.4 City specific results

Figure B.3: City specific partial dependence plots at the 500-meter resolution. The partial de-
pendence plots for a random forest model trained on each city. This is to evaluate
whether the influence of urban characteristics on LST is consistent between the
cities.
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Figure B.4: City specific partial dependence plots at the 100-meter resolution. These are partial
dependence plots for a random forest model trained on each city. This is to evaluate
whether the influence of urban characteristics on LST is consistent between the
cities.
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B.5 500-meter resolution results

The figures presented in the main text, are replicated here based on data at a 500-meter resolu-
tion.

Figure B.5: Holdout cross-validation results at 500-meter resolution. The out-of-bag (OOB)
R2 and mean absolute error (MAE) of the models from a 500-fold holdout cross-
validation. The models were trained on 80% of the data and tested on the unseen
20%. When selecting data for the training and testing sets, spatial subsets were used
to account for spatial similarities. OOB R2 can vary between (−∞, 1), where better
models have a value near 1. Good models have MAE near 0.

152



Figure B.6: Variable influence on LST at 500-meter resolution. The variable influence, measured
by swing, shows the relative importance of each urban characteristic on land surface
temperature.
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Figure B.7: Partial dependence plots for LST at 500-meter resolution. Partial dependence plots
show how the land surface temperature (𝑜𝐶 , y axis) changes with each urban char-
acteristic as the other variables are held at their average (mean) value. The left hand
side shows the effect each variable has on the (a) mean land surface temperature
(LST) during the night, (b) maximum LST during the night, (c) mean LST during the
day, (d) maximum LST during the day. Each of the models are shown and this in-
dicates the model uncertainty in the relationships. There are multiple lines for each
model based on bootstrap samples of the data, which indicates the data uncertainty.
The histograms on the 𝑥-axis shown the distribution of the observed data.
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Figure B.8: Partial dependence contour plots for LST at 500-meter resolution during the night.
These partial dependence contours show how the land surface temperature (𝑜𝐶 , y
axis) changes with each variable as the other variables are held at their average
value. The left hand side shows the effect each variable has on LST during the night,
while the right hand side shows the effect during the day. This shows that trees
coverage in the cell has the greatest influence on the temperature, and the greenness
(NDVI) of that coverage matters during the day.
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Figure B.9: Partial dependence contour plots for LST at 500-meter resolution during the day.
These partial dependence contours show how the land surface temperature (𝑜𝐶 , y
axis) changes with each variable as the other variables are held at their average
value. The left hand side shows the effect each variable has on LST during the night,
while the right hand side shows the effect during the day. This shows that trees
coverage in the cell has the greatest influence on the temperature, and the greenness
(NDVI) of that coverage matters during the day.
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B.6 Additional figures

Figure B.10: Percentage tree canopy cover and impervious surface are 100% correlated.
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Appendix C

Supplements to Evaluating Urban
Accessibility

C.1 Using the Open-Source Routing Machine

The open-source Routing Machine (OSRM) [204] is a tool that calculates optimal routes for a
given geographical area and a given transport profile (car, bicycle, pedestrian, etc). The use of
OSRM depends on the operating system you are using: Mac and Linux are supported by the
OSRM team, while we have provided code for setting up OSRM on Windows. A brief summary
is also provided at https://reckoningrisk.com/coding/2017/OSRM-server/.

C.1.1 Mac and Linux

Up-to-date instructions for installing OSRM on Mac and Linux are given on the OSRM project
page: https://github.com/Project-OSRM/osrm-backend#quick-start. Once running,
the url of the OSRM server can be passed to the provided R code using the ‘osrm.url’ variable.

C.1.2 Windows

1. Download an OpenStreetMap ‘.osm.pbf’ file for the region you are interested in. You can
get these from sources such as http://download.geofabrik.de/. The location of this
file should be the ‘osm.pbf.path’ variable in the R code.

2. Set up a transport ‘.lua’ profile. It’s best to start with one of the profiles included in
the ‘lib/osrm/profiles’, and modify it to your needs. You can change things like speeds
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for different road surfaces, penalties for turns, and which road classes are allowed to be
taken. The location of this file should be the ‘osrm.profile.path’ variable.

3. Modify the other parameters of the code as required/desired and run. The function ‘Star-
tOSRMServer’ will set up an OSRM server that is used by the rest of the code, or could
be accessed for your own calculations.
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C.2 Consideration of data quality

C.2.1 Volunteered Geographical Information (VGI)

Data availability and quality continues to be a challenge for researchers and practitioners. Vol-
unteered geographical information (VGI) is a promising solution [135, 145, 233]. One platform
for VGI is OpenStreetMap (OSM). OSM is an online, user-contributed, open-source database
containing a wide variety of land-use and coverage information. While the accuracy is not uni-
form, the OSM database covers large portions of the developed and developing world, offering
great potential to extend this analysis to other cities and regions [233]. In developing countries,
lack of data is a primary limitation for urban analysis [205]. However, in some cases, VGI is the
only source of geographic information [135]. The online suite of open access data has vastly
simplified data collection. In our analysis, we used OSM as the source of our transportation
network and destination data (parks, supermarkets, and hospitals). In any case, when the goal
is to make conclusions about the proximity within a city, destination data should be checked
thoroughly.

C.2.2 Coordinate snapping and incomplete network

Network-based distance algorithms rely on snapping coordinate points (both origins and desti-
nations) onto the nearest point (by Euclidean) on the transport grid. When their path network
is incomplete, this snapping can result in errors. For example, when the nearest road is on the
other side of a physical barrier, such as the railway in Figure C.1, the routing algorithm grossly
underestimates the distance. Another example is when the park has an entrance that is ignored,
due to the routing snapping to an object outside of the park (Figure C.2). In both cases, the cor-
rect distance is calculated when the destination snaps to a pathway inside the park. However,
these pathways do not always exist in either Google maps or OSM.When the paths do exist, we
encourage the algorithm to snap to them, by using the -5m buffer to bring the park destination
points further inside the park.

Both Google and open-source mapping data have incomplete networks. For example, it has
been found that in low-income areas, especially rural, the accuracy of OSM data decreases [145].
However, this was almost 10 years ago, and much work has been invested into OSM since then.
Also, much of the proximity analysis is in metropolitan areas, which do not exhibit the same
degree of sparsity. OSM data is also a focus of improvement in developing countries. Govern-
mental agencies are beginning to recognise the value of the tool and are investing heavily in
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improving the data quality (e.g. MapGive). While Google’s network data is arguably better, the
advantage of using open map data is that we, as researchers and practitioners, can correct and
update the maps online or as a downloaded copy.

(a) In this case, Google snaps the destination to the
road on the other side of the railway

(b) OSRM snaps to a trail within the park and then
calculates the longer, more accurate distance

Figure C.1: An example where OSM has more complete data compared to Google, resulting in
a Google snapping error.

C.2.3 Unconnected ways

Unconnected ways are another issue with map completeness that is present in the open-source
mapping data. An unconnected way occurs when paths are not connected as they should be.
The result is that the routing algorithm is unable to use the link. This is awell-known issue in the
open-source mapping community and one that developers are addressing [247]. There are tools
available to identify and correct unconnected ways, so researchers and practitioners can correct
the errors present in the mapping data. The open-source mapping data is constantly improving
and is kept up-to-date. Many of these issues, especially in major cities, will be addressed in
time.

C.3 Considerations for choice of routing algorithm

C.3.1 Motivating issues

Measuring the ”shortest path” through a network has an element of subjectivity, and different
algorithms are founded upon different assumptions. For example, some algorithms may prefer
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(a) In this case, Google snaps to the path inside the
park and would identify the shortest distance as
being the entry to the park. Our approach cap-
tures the entrance as it queries multiple points in
the park, so the one closest to the entrance will
be selected.

(b) OSRM snaps to the road near the park and then
calculates the distance assuming porous bound-
aries.

Figure C.2: An example where Google has more complete data compared to OSRM, resulting in
OSRM snapping.

routes for cyclists with minimal gradient change, while others may place a high value on routes
that utilise bike lanes [328]. As a result, different algorithms may generate different paths and
hence different distance and time estimates for a given origin-destination pair.

Network time is often preferred by decision-makers as it is more understandable by the public
than distance [289]. However, estimating network time adds an additional layer of subjectivity
over the network distance, as determining the network time must assume speeds on different
road types and surface materials.

Ultimately, a researcher or practitioner can use any routing algorithm they wish to carry out
the analysis we propose. OSRM, Google, Graph Hopper, TravelTime, and OpenTripPlanner are
just a few examples. Tomake that selection, they need to be aware of the trade-offs between op-
tions. In the remainder of this section we compare and contrast two routing algorithm options
and discuss other trade-offs in routing algorithm selection and specification.

C.3.2 Comparing OSRM and Google Maps

Google Maps is considered a reliable routing algorithm that many people use daily. However,
Google currently charges 50 USD per 100,000 queries, with a daily cap of 100,000 queries. The
approach we present in this paper can require millions of queries. For example, the Baltimore
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building shapefile has approximately 200,000 buildings. Querying the distance to the closest
50 park boundary points results in 10 million queries, which is both slow and costly through
Google. Conversely, the open-source nature of OSRM gives the capability to run the queries on
a local computer or server, allowing for an unlimited number of free queries. We find that the
results calculated by OSRM are comparable with Google and, in this section, present the results
of the comparison in Baltimore.

For the comparison, we needed directly comparable route queries. To avoid the computa-
tional time and expense of querying Google for every household, we clustered the buildings
into origin points and used these as the basis for our comparison. The Baltimore origin (build-
ing) file contained 214,000 points, so we sampled the data set using Hartigan’s leader clustering
algorithm [150], specifying the approximate cluster radius of 20 m. This clustering resulted in a
data set of approximately 56,000 origin points (the cluster centroids) where the mean distance
from a building point to its clustroid was 14 m. We then queried Google’s Distance Matrix API
for each origin and the closest Euclidean ten park points and closest five hospitals and high
schools. We queried the same origin-destination pairs on OSRM.

Figure C.3, Table C.1, and the supplemental material display the comparative ECDFs, point
difference percentiles, and the point difference spatial distributions. OSRM and Google pro-
duced very similar results for walking to parks, while cycling and driving exhibit some differ-
ences.

Obstructions between the origin and destination and query limit are one cause of error. Oc-
casionally, the closest park by Euclidean distance is on the other side of an obstruction (e.g.
Figure C.1). If the number of queries is small enough that all queries are on points within this
park rather than a park that is actually closer by network distance, the routing algorithm fails.
Open-source routing algorithms do not have this issue as, unlike Google, they are not limited
by the number of queries. Other disparities between the OSRM and Google results may be due
to the algorithms’ different preferences in their route choices. As previously noted, these can
be especially significant for cycling. Similarly, different driving algorithms will have different
preferences for shortest distance versus shortest time routes, leading to different results.

It should be noted that the majority of previous studies focussing on network distance mea-
sures have used the Network Analyst tool in ESRI (Environmental Systems Research Institute)
ArcMap. This is a valid routing algorithm and uses data provided to ESRI from government
agencies. However, it is not available to many groups as it is a paid extension to ArcMap.
Hence, we have not included a comparison to the Network Analyst tool in this section.
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Figure C.3: Comparing Google and OSRM routing algorithms in terms of overall city-wide ac-
cessibility.

C.3.3 Travel profiles and congestion

When comparing travel times, one limitation with current open-source routing approaches is
the lack of data regarding congestion. This is a complex factor to incorporate into a routing
algorithm. OSRM uses a driving profile, which assumes various speeds depending on the road
hierarchy and the road material. In our analysis, we have used OSRM’s default profiles for
walking, cycling, and driving which assume a walking speed of 5 km/h, a cycling speed of
15 km/h, and a driving speed on residential roads of 25 km/h. The assumptions behind these
travel profiles are accessible and modifiable. However, regardless of which settings are chosen,
the closest destination (by duration) in free-flow conditions may not be the closest destination
during rush hour, and OSRM has no in-built ability to account for this.

Leveraging Google is recommended for studies where congestion is important. In our com-
parison, we queried Google’s Distance Matrix API specifying a future departure time of 10am
on a Tuesday. Figure C.4 shows this comparison of driving times between OSRM and Google.
The effect of congestion is clear.
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Table C.1: Percentiles of the difference between OSRM’s and Google’s calculated distances (in
m) to closest amenity. Distances are to green spaces (walking), high schools (cycling),
and hospitals (driving).

10% 25% 50% 75% 90%
Walk -36 -5 1 19 55
Cycle -473 -235 -65 15 138
Drive -631 -163 -15 43 197

The OSRM travel profile can also lead to other differences when compared to Google Maps.
The profile assigns some road classes that are not usable for each mode (e.g. you should not
walk on a highway). A community separated from its core service via a significant highway
may therefore be routed differently between algorithms (e.g. the southern end of Baltimore
city, see supplemental material, page 165). As previously stated, the profile can also apply
different travel times to gradients and pavements, or define preferences for cycleways. This
will all contribute to differences in results from different routing algorithms.

C.4 Spatial distribution of differences between OSRM and
Google

Figure C.5 shows the differences between the OSRM and Google routing algorithms. Differ-
ences occur due to the aforementioned differences between Google and OSRM. They appear
to increase with the distance to services and increase as the number of services decreases. For
example, if OSRM and Google select different ‘closest’ facilities, there can be a significant differ-
ence. This may occur from assumptions about speed of travel along roads, road travel permis-
sions (e.g. cycle on highways or one-way streets), or congestion. Google also selects the fastest
route, based on estimated travel time due to traffic and travel speed. This can result in differ-
ences in distance travelled in the OSRM and Google route. Being aware of these differences
and the assumptions when selecting routing algorithms is important.
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Figure C.4: A comparison of driving times between OSRM and Google at 10am on Tuesday 6
December 2016. OSRM does not capture congestion, so underestimates the travel
time.

C.5 Differences between OSRM (Network distance) and
Euclidean distance

By definition the Euclidean distance is strictly less than or equal the network distance. That is,
the straight line path is always shorter (except in the case of coordinate snapping, discussed
previously). Some papers (e.g. Boone et al. [49]) argue that this difference is negligible. Other
studies use Euclidean distance due to limited data (e.g. Macedo and Haddad [205]). In some
cases use of the Euclidean would introduce only minor error. However, when geographical
obstacles are present, this error grows and can constantly overlook service-poor communities.
It also over estimates the quality of city-wide access as shown in Figure C.6, which shows the
differences between the OSRM network routing algorithm and the Euclidean. The error grows
as the distance to the service grows, indicating that the use of the Euclidean as an approximation
should be limited to short distances where possible.
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C.6 Data sources

Parks, supermarkets, and hospitals were downloaded from http://overpass-turbo.eu/.
The query keys that were used are shown in Table C.2. The other data sources are presented in
Table C.3.

Table C.2: Overview of the overpass-turbo.eu query keys used to extract location data from
OSM for the case study

Service Overpass-turbo query
Parks leisure=park
Hospitals amenity=hospital
Grocery Stores shop=supermarket

Table C.3: Data sources
City Buildings High schools Land-use

Baltimore (Maryland Dept.
of Planning, 2013)

https://data.
baltimorecity.
gov/
Neighborhoods/

http://www.
baltimorecity.
gov/
OfficeoftheMayor

Chicago https://data.
cityofchicago.
org/Buildings/

https://data.
cityofchicago.
org/Education

None

Detroit http:
//maps.semcog.
opendata.
arcgis.com/

https:
//geo.btaa.
org/catalog

http://portal.
datadrivendetroit.
org
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Table C.4: Percentage of population with access to supermarkets via walking, cycling, and driv-
ing (rounded to the closest percentage point).

Time to supermarket (min)
Walk Cycle Drive

5 10 20 5 10 15 3 5 10
Chicago 12% 39% 78% 56% 90% 99% 68% 96% 100%
Baltimore 6% 21% 54% 30% 72% 90% 47% 83% 100%
Detroit 2% 8% 23% 12% 37% 66% 29% 67% 100%

C.7 Additional results

Figure C.7 presents the ECDFs by distance for cycling to high schools and driving to hospitals.
Table 4.2 includes the corresponding discretised results. Similarly, Figure C.8 and Table C.4
show the walking, cycling, and driving times to the nearest supermarket.
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(a) Driving distance to hospitals. Inset shows
Google’s alternative routes, which prioritizes
shortest travel time, which can result in a longer
travel distance compared to OSRM.

(b) Cycling distance to high schools. Inset shows the
Google route, as it avoids travel against the one-
way street.

(c) Walking distance to green space

Figure C.5: The spatial distribution of differences in the network distance when calculated using
Google Distance Matrix API and OSRM. Maps show the OSRM distance minus the
Google Distance.
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Figure C.6: These ECDFs demonstrate the error resulting from using the Euclidean distance
to approximate proximity. They show distance via walking, driving, and cycling
to the nearest park, hospital, and high school respectively. The dotted line shows
the distribution when the distance is estimated using the Euclidean distance and the
solid line is the network distance using the OSRM routing algorithm. The histogram
shows the difference between Euclidean and OSRM for all cities in each of the travel
modes. The Euclidean distance consistently overestimates the quality of access to
services.

Figure C.7: ECDFs showing distance via driving and cycling to the nearest hospital and high
school respectively.
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Figure C.8: ECDFs showing time to nearest supermarket via walking, cycling, and driving.
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C.8 Supplemental figures

Figure C.9: Procedure for approximating the proximity of a service type for a city’s residents.
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Figure C.10: Walking distance from building to nearest supermarket in Baltimore, MD.The dark
areas of this map are food deserts because of their low proximity to supermarkets.
See https://reckoningrisk.com/research/2017/urban-access/ for inter-
active map.
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Appendix D

Supplements to Building community
resilience through equitable access to

essential services

D.1 Technical guide

Tools to conduct this analysis are becoming increasingly user-friendly (e.g. [238]), but currently
coding ability is required. This technical appendix outlines the approach, tools, and steps:

1. Regional data

One of the first steps is to acquire the geographic data for the region of interest. You
need to decide the spatial resolution at which to conduct the analysis. Here, we use the
census block level (generally equivalent in size to a city block) however this could also be
conducted at the parcel or block group level. The tradeoff is the computational burden and
the accuracy. Also, using larger spatial areas risks overlooking vulnerable populations
[201]. Shapefiles for the USA can be downloaded from [209]. Demographic data that can
be joined to the shapefiles is available from [209] or [327].

2. Service/facility/amenity locations

The geo-location of all facilities is needed for the analysis. These are often available from
open-data portals hosted by the city or OpenStreetMap (OSM). For example, the services
used in Figure 5.1 were retrieved from the following locations:

• Schools, libraries, and hospitals: https://data.baltimorecity.gov/dataset
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• Supermarkets: https://overpass-turbo.eu/ using the “shop=supermarket” key.
This data can be downloaded as a .kml file.

3. Routing/Network distance

We now require the network distance from all origins to destinations. The approach we
use is described in [201]. We use OpenStreetMap (OSM) data and the Open Source Rout-
ing Machine (OSRM) [204] (http://project-osrm.org/) running via Docker [221] on
a local server. However, there are other routing algorithm options that are improving the
computational speed, such as [238]. Instructions to set-up an OSRM server are available
online, for example: https://reckoningrisk.com/coding/2017/OSRM-server/. A
more user-friendly approach is to install ‘Docker’ (essentially a virtual environment)
on your computer and pull (download) an OSRM server that has already been setup:
https://hub.docker.com/r/osrm/osrm-backend/.

4. Nearest service through time

Access is currently specified as being the distance to the nearest service (although this can
and should be enhanced). Therefore, each city block is assigned the distance to each of the
nearest types of service. To understand how access changes through time, the facilities
need to be assigned an indicator for whether it is operating. For any point in time then,
the distance from each block to the service is the distance to the nearest operating service.

5. Graphical and statistical output

The paper uses Python and ArcGIS Pro to construct the figures and maps. The code for
the plotting in Python is provided in the Github repository. The ECDF’s are explained in
[201].
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Appendix E

Supplements to Risk: A holistic
framework for resilience
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Table E.1: Definitions of resilience from across the literature. These definitions are classified in
Table 7.2

Author (year) Definition

Holling (1973), [157] A measure of the persistence of systems and of their ability to absorb change and disturbance
and still maintain the same relationships between populations or state variables

Pimm (1984), [262] How fast a variable that has been displaced from equilibrium returns to it. Population re-
silience is the rate at which populations recover their former densities

Mileti (1999), [222] Disaster resilient community can “withstand an extreme natural event with a tolerable level
of losses” and “take mitigation actions consistent with achieving that level of protection”

Adger (2000), [2] Social resilience is the ability of groups or communities to cope with external stresses and
disturbances as a result of social, political, and environmental change

Bruneau et al. (2003), [54] The ability of social units to mitigate hazards, contain the effects of disasters when they
occur, and carry out recovery activities in ways that minimize social disruption and mitigate
the effects of future earthquakes. Specifically, a resilient system should demonstrate three
characteristics: reduced failure probabilities, reduced consequences from failure, and reduced
time to recovery

Turner et al. (2003), [323] The system’s capacities to cope or respond
Walker et al. (2004), [336] The capacity of a system to absorb disturbance and reorganize while undergoing change so

as to still retain essentially the same function, structure, identity, and feedbacks
Manyena (2006), [211] Intrinsic capacity of a system, community, or society predisposed to a shock or stress to adapt

and survive by changing its non-essential attributes and rebuilding itself
Berkes (2007), [43] Capacity of a system to absorb recurrent disturbances, such as natural disasters, so as to

retain essential structures, processes and feedbacks
Cutter et al. (2008), [87] Resilience is the ability of a social system to respond and recover from disasters and includes

the conditions that allow the system to absorb impacts, cope, and adapt
Lamond & Proverbs (2009), [185] Urban resilience encompasses the idea that towns and cities should be able to recover quickly

from major and minor disasters
Cimellaro et al. (2010), [71] Resilience is defined as a function indicating the capability to sustain a level of functionality

or performance for a given building, bridge, lifeline networks, or community, over a period
defined as the control time that is usually decided by owners, or society

Turner et al. (2010), [322] Resilience is the amount of disturbance a system can absorb and still remain within the same
stateor domain of attraction

Béné et al. (2012), [40] Resilience emerges as the result not of one but all of these three capacities: absorptive, adap-
tive and transformative capacities, each of them leading to different outcomes: persistence,
incremental adjustment, or transformational responses.

National Research Council (2012), [231] The ability to anticipate, prepare for, and adapt to changing conditions and withstand, re-
spond to, and recover rapidly from disruptions

Barrett & Constas (2014), [33] Development resilience is the capacity over time of a person, house- hold or other aggregate
unit to avoid poverty in the face of various stressors and in the wake of myriad shocks. If
and only if that capacity is and remains high over time, then the unit is resilient.

Saunders & Becker (2015), [282] Resilience is the ability to adapt to the demands, challenges, and changes encountered during
and after a disaster

Tendall et al. (2015), [318] Capacity over time of a food system and its units at multiple levels, to provide sufficient,
appropriate and accessible food to all, in the face of various and even unforeseen disturbances.

Meerow et al. (2016), [218] Urban resilience refers to the ability of an urban system - ... - to maintain or rapidly return
to desired functions in the face of a disturbance, to adapt to change, and to quickly transform
systems that limit current or future adaptive capacity

Platt et al. (2016), [264] Resilience is the speed of recovery
Nan & Sansavini (2017), [229] The ability of a system to resist the effects of a disruptive force and to reduce performance

deviation
Linkov et al. (2018), [198] The ability to adapt and recover
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