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ABSTRACT

The dynamical relationship between chromatin structure, gene transcription, and

cellular phenotype is referred to as the 4D Nucleome (4DN) [141]. 4DN data analysis

has gained significant research attention in recent years for its ability to illuminate

cell regulation principles [47]. Despite its benefits, 4DN analysis can be difficult:

data sets are large, analysis methods are underdeveloped, and data analysis requires

a high-level understanding of biology, computer science, and mathematics. In this

dissertation, I present novel analysis methods that address these issues. Using these

methods, I help uncover 4DN relationships in the cell cycle, the circadian rhythm

cycle, and cellular reprogramming.

First, I investigate methods for analyzing time series cellular images. In this work,

I demonstrate how the detection of a “canonical framework,” or a consistent genomic

coordinate system both within and between time points, can help researchers elucidate

latent patterns within cellular imaging data. Next, I examine 4DN data collected on

proliferating human fibroblasts. Dynamical structure-function relationships between

genes are uncovered in known gene modules, including cell cycle, circadian rhythm,

and wound healing gene networks. Building upon this data set, I helped develop an

algorithm for cellular reprogramming. This algorithm models the dynamics of hu-

man fibroblast proliferation and determines where and when to input control using

transcription factors (TFs) to achieve optimal reprogramming efficiency. TFs known

to successfully reprogram between cell types are recovered using this algorithm, thus

validating the predictions. This includes the prediction of MYOD1 for fibroblast to

x



muscle cell reprogramming. Next, I analyze 4DN data collected on fibroblasts under-

going MYOD1-mediated reprogramming to muscle cells to reveal previously unknown

relationships between structure, function, and biological processes. A connection be-

tween MYOD1 and the core circadian clock gene network is also uncovered in this

work. I continue with a 4DN analysis of cancer cells, including colorectal and breast

cancer cells, where changes in structure and function show a clear relationship with

their disease state. I conclude with the description of a software toolbox contain-

ing novel methods for the analysis of 4DN data. Collectively, this work provides a

comprehensive guide for the analysis of 4DN data, spanning a range of experimental

methods and applications.
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CHAPTER I

Introduction

1.1 Research overview

This chapter is an overview of the content covered within this dissertation, and a

review of background information pertinent to this work.

The 4D Nucleome (4DN) refers to the relationship between genome structure,

genome function, and cellular phenotype over time [141]. 4DN data analysis has

gained significant research attention in recent years for its ability to illuminate cell

regulation principles [47]. Despite its benefits, 4DN analysis can be difficult: data

sets are often large, analysis methods are underdeveloped, and data analysis requires

a high-level understanding of biology, computer science, and mathematics.

There are many techniques currently available now to observe genome structure

and function. One of the first methods developed to observe nuclear structures was

cell imaging. Fluorescent in situ Hybridization (FISH) imaging is a nucleus imaging

technique used to determine the location of genomic loci in the nucleus [148]. Ad-

vances in the field of microscopy and improvements in cell imaging protocols allow

for the detection of multiple genomic regions in the same nucleus at high resolution.

Additionally, whole chromosomes can be “painted” to determine chromosome shape

and position within the nucleus [142]. A biochemical technique, genome-wide chro-

mosome conformation capture (Hi-C) allows researchers to determine how often any
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two genomic loci contact each other in three-dimensional (3D) space [102]. Hi-C data

analysis can uncover structural phenomena on many scales: from promoter-enhancer

loops to chromatin compartments and translocations [94, 154]. Pairing this analysis

with cell imaging can validate these findings. Furthermore, combining these struc-

tural measurements with functional measures helps in understanding cell phenotype.

Popular methods used to analyze genome function include RNA sequencing (RNA-

seq) and proteomics, which quantify the abundance of RNA and protein, respectfully

[118]. Finally, since cells are a dynamical system, a time course of study must be

employed to perform 4DN analysis and fully understand how a cell operates.

In this dissertation, I present my work towards advancing the field of 4DN research.

This includes the analysis of novel 4DN data sets, and the description of novel methods

to perform this analysis. The remainder of this research overview will summarize the

concepts and methods to be discussed in subsequent chapters.

Chapter II, “Insight into Dynamic Genome Imaging,” focuses on time series FISH

imaging data and methods to determine a consistent genomic coordinate system for all

cells in all time points [146]. This consistent coordinate system is known as a “canon-

ical framework.” When cells are imaged by a microscope, their orientation relative to

the microscope lens is random. This makes it difficult to determine how genes move

relative to other genes, and relative to the nucleus edge, over time. The movement of

genes within the nucleus has been found to affect cell phenotype, thus characterizing

this movement is important for understanding how a cell functions [31, 134, 180].

By fitting an ellipsoid to the nucleus shape and determining the position of genes

relative to the ellipsoid, a modified Procrustes analysis can be used to determine the

optimal translation, rotation, and reflection of the nucleus to minimize the distance

between genes in each nucleus. These changes in nucleus orientation (e.g. transla-

tion, rotation, and reflection) place the nuclei in the most likely canonical framework,

making time series image analysis much easier to interpret. To demonstrate this,

2



data is analyzed from two separate experiments: proliferating human fibroblasts and

human fibroblasts undergoing MYOD1-mediated reprogramming. This analysis un-

covers previously unknown movements in gene positioning over time. Computer code

is provided to perform this analysis, and extensions to 3D image analysis are discussed

within this chapter.

Chapter III, “Functional Organization of the Human 4D Nucleome,” examines

time series Hi-C, FISH, and RNA-seq data collected on proliferating human fibrob-

lasts [31]. Prior to data collection, cells are synchronized in their circadian rhythm

and cell cycle phase. The circadian rhythm cycle is a major orchestrator of cell

function, affecting up 70% of genes in some cell types [190]. Analysis of circadian

gene expression and gene positioning over time reveals a pattern between the genes

PER2 and CLOCK, where expression of each correlates with their relative distance

between each other. Furthermore, examination of transcription factor binding sites

(TFBS) near genes with correlated structure and function over time reveals novel

gene networks. These networks help us understand how genes communicate within

the genome, and can assist in determining the downstream consequences of targeting

certain transcription factors (TF) by drugs. This work demonstrates the power of

4DN analysis methods for uncovering latent genome regulation principles.

Chapter IV, “Algorithm for Cellular Reprogramming,” describes an algorithm

for determining TFs that can be used for cellular reprogramming [147]. This work

has broad ranging applications in medicine, such as autologous transplantation and

personalized medicine drug screening. First, the natural dynamics of a cell type

is modelled using 4DN data (Hi-C and RNA-seq). Here we use the same data set

collected and analyzed in Chapter III. Then, TFBS information and chromatin ac-

cessibility data is used to determine where a TF can influence the initial cell type’s

function. Using control theory equations, we determine the optimal timing, combi-

nation, and relative amount of TFs that can catalyze reprogramming from the initial

3



cell type towards a target cell type. This algorithm correctly predicts known repro-

gramming TFs, thus bypassing expensive and time-consuming experimental methods

for discovery.

Chapter V, “MYOD1-mediated Fibroblast to Muscle Reprogramming,” revis-

its Dr. Harold Weintraub’s original cellular reprogramming experiment, MYOD1-

mediated human fibroblast to muscle cell reprogramming [184]. Hi-C and RNA-seq

data is collected every 8 hours post-MYOD1 introduction into the nucleus. From

these data, substantial changes in genome structure are seen prior to changes in

function [103]. Whether genome structure or function changes first has been specu-

lated upon, but was previously unknown. Analysis of muscle specific super-enhancer

regions reveals a significant increase in Hi-C contacts prior to an increase in prox-

imal muscle specific gene expression. Additionally, robust synchronization of core

circadian rhythm genes is found post-MYOD1 introduction, revealing a novel rela-

tionship between MYOD1 and circadian rhythms. This is the most comprehensive

high-resolution data set available for understanding cellular reprogramming princi-

ples, and the analysis of this data set demonstrates the power of this experimental

approach.

Chapter VI, “The 4DN of Cancer,” covers methods for analyzing 4DN data col-

lected from cancer cells. Two distinct cancer cell lines are analyzed here: colorectal

cancer cells and breast cancer cells. In the colorectal cancer cell analysis, healthy and

pre-cancerous colorectal cells (carrying an extra copy of chromosome 7) are compared

using Hi-C, RNA-seq, and cell imaging. Striking structural and functional differences

can be observed genome-wide between the two samples, specifically in regions that

contain genes related to cancer. From this analysis, we theorize that specific changes

in the HGF/MET signaling pathway are affected early on in the progression of col-

orectal cancer. In the breast cancer cell analysis, cells are sorted into Cancer Stem

Cell (CSC) and non-CSC subpopulations based on the expression of ALDH1A1. Hi-C

4



and RNA-seq data is extracted and analyzed from these samples revealing genome-

wide differences between them. The characterization of these subpopulations has

implications for cancer treatment strategies.

Chapter VII, “4DNvestigator,” describes the 4DNvestigator, an user-friendly tool-

box for the analysis of 4DN data. With the increase in 4DN data sets, the development

of methods to properly analyze these data is imperative. Given time series Hi-C and

RNA-seq data, the 4DNvestigator can determine genomic regions that change signif-

icantly over time, using both established and novel methods. The toolbox introduces

new methods for comparing Hi-C matrices, providing statistical measures to deter-

mine the significance of the Hi-C matrix differences. This work allows both novice

and experienced researchers to analyze 4DN data in a principled manner.

Together, the experiments and methods discussed within this dissertation pro-

vide a framework for comprehensively analyzing 4DN data, with applications for

controlling cell function. This work has implications in cell and tissue regeneration,

personalized medicine drug screening, and cancer treatment strategies.

1.2 Hi-C and RNA-seq

Chromatin folding and orientation, or “genome structure,” can affect genome func-

tion [47]. The relationship between genome structure and function can be observed

on many scales. Enhancer and promoter regions, ranging from a few kilobases (kb)

to over 1 megabase (Mb) in distance, contact each other in 3D space to control gene

expression [117]. Chromosomes occupy distinct regions within the nucleus, referred to

as chromosome territories (CT), and have a preferences for how close they are to the

nucleus periphery [40]. A gene’s distance to the nuclear periphery is correlated with

expression changes; often, genes close to the nuclear periphery are transcriptionally

silenced [176]. Considering the size (> 3 billion bp) of the human genome, observing

structure genome-wide is a difficult task. Only in the past decade have researchers
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been able to explore genome structure extensively through genome-wide chromosome

conformation capture, or Hi-C.

Hi-C measures whether two genomic loci come close together in 3D space [102].

This technique gets its name based on its predecessor methods: chromosome con-

formation capture (3C), chromosome conformation capture-on-chip (4C), and chro-

mosome conformation capture carbon copy (5C). The original method developed in

2002, 3C, was able to determine chromosome contacts between two pre-specified re-

gions [46]. Each subsequent advancement added more range to the number of regions

observable within an experiment, culminating in Hi-C which could capture and quan-

tify nearly all genomic contacts within a cell. Hi-C, first developed in 2009 on a

population of cells, is obtained via the following steps: cross-link regions of proximal

chromatin using formaldehyde fixation, fragment the genome using restriction enzyme

(RE) digestion, re-ligate cross-linked loci, then sequence each end of the re-ligated

DNA via high-throughput sequencing. The sequenced reads can then be mapped back

to a reference genome to determine their genomic origin. Since its original conception,

several methodological improvements have been made to reduce the number of input

cells, increase the number of genomic contact incidences, and improve the spatial

genomic resolution [139]. Recent advances also allow for single cell Hi-C matrices to

be obtained [138]. A typical population-level Hi-C experiment will result in over 100

million paired-end sequence reads, where the majority of identified “contacts” come

from loci that are close together in the 1D genome, but many significant long-distance

contacts can be observed. These data can be constructed into a contact matrix, A,

where the number of contacts between locus i and locus j resides in element aij. This

contact matrix can be constructed at many resolutions (typically 5 kb-1 Mb).

Analysis of Hi-C contact matrices has revealed principles of higher-order genome

structure. The first principal component of the intra-chromosomal correlation matrix

of the contact matrix was shown to segregate the genome into two distinct compart-
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ments: compartments A (generally active, euchromatin) and B (generally inactive,

heterochromatin) [102]. Loci within a compartment are in contact more with each

other than with loci in the alternate compartment. Further analysis revealed re-

gions in the genome that have a high number of contacts and tend to have similar

expression, called “topologically associating domains” (TADs), for which boundaries

are relatively cell-type invariant [31, 53]. Breakdown of TAD boundaries has been

linked to phenotypic defects in gene function, and chromosomal aberrations can be

determined with high precision through Hi-C [26, 108].

RNA-seq measures the RNA abundance within a sample. This technique was first

discovered in 2008, following the advancement of next generation sequencing (NGS)

machines [118]. NGS refers to technology that can sequence millions of DNA frag-

ments in parallel. A typical RNA-seq experiment will isolate and collect RNA from a

population of cells, reverse transcribe the RNA to DNA (cDNA), sequence the cDNA,

then map the sequenced reads to a reference genome. RNA isolation is achieved via

DNase digestion, which degrades DNA, but leaves RNA sequences intact. Reverse

transcription is used to convert the remaining RNA to its DNA counterpart, which is

a generally more stable molecule. These cDNA sequences are fragmented so that they

can be passed to a high-thoughput sequencer. RNA-seq can be performed using 50

bp single-end sequencing, which contain enough information to map unique genomic

regions, such as gene coding sequences. Paired-end sequencing can be employed to

more easily distinguish gene splice variants, which can perform distinctly different

functions within the cells [173]. RNA-seq has also recently been developed for single

cell resolution. Quantifying the number of RNA fragments derived from each gene

creates a functional signature for the cell, and cell type specific genes can be used to

identify the cell type.
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1.3 The 4D Nucleome

The field of 4DN research was formalized in 2013 to bring together experts from

a wide range of backgrounds, including: biology, computer science, and mathematics

[141]. Before the conception of the 4DN, few concerted efforts had been made to

combine the analysis of genome structure, function, and phenotype over time. This

was understandable, as many researchers devote their entire career to comprehending

just one subsection of this field. A genuine challenge in 4DN analysis is familiarizing

researchers to the ideology and terminology of alternate fields. To support this goal

and advance 4DN research, the NIH created the “4D Nucleome” as a Common Fund

initiative [47].

Since the 4DN’s conception, many cell regulation principles have been discov-

ered. A general framework for the analysis of genome structure and function over

time was laid out in Chen et al. [31]. The use of phase planes is a natural mathe-

matical way to visualize structure and function changes over time. Pioneering work

by Lupiáñez et al. [108] discovered a link between gene sequence, TAD boundaries,

nearby gene expression, and disease. In this work, a genetic mutation in a TAD

boundary on chromosome 2 caused misregulation of nearby gene expression, leading

to limb malformations such as F-syndrome, polydactyly, and brachydactyly. Dixon

et al. advanced our understanding of early stage stem cell differentiation in a 2015

paper [52]. The analysis of Hi-C and RNA-seq for six distinct cell states, embryonic

stem cells (ESC) and five lineage specific stem cells and progenitors, revealed that

significant structural and functional changes can be observed in genomic regions that

define the cell lineage. Cancer research has also benefited from 4DN analysis. Work

by Seaman et al. revealed that the correlation between chromatin structure and

function increases at the site of translocation in colorectal cancer cells. Without the

combined analysis of both structure and function over time, these discoveries would

not be possible.
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1.4 Cell imaging

Cell imaging is a relatively inexpensive way to observe aspects of cell structure on

a single cell level. This field can be broadly divided into two subcategories: light mi-

croscopy and fluorescence microscopy. Light microscopy uses visible light and lenses

to enlarge images. This technique is straightforward to perform and can characterize

cell morphology and count healthy cells in a culture to determine if cells are surviv-

ing culture conditions. Fluorescence microscopy uses high intensity light to excite

fluorescent material within the object you are studying. For instance, immunofluo-

rescent (IF) imaging determines the location of specific biomolecules within the cell,

after fluorescent antibodies have bound to an antigen [150]. Distinct from IF, more

general “fluorescent stains” bind to non-protein cellular molecules. The popular flu-

orescent stain DAPI binds to AT-rich regions of DNA, and is used to illuminate the

cell nucleus. AT-rich regions of DNA are often gene-poor heterochromatin regions,

so the fluorescent intensity of DAPI signal in a region can be used to infer chromatin

accessibility.

The Fluorescent in situ Hybridization (FISH) imaging technique targets specific

nucleic acid sequences (e.g. genomic loci or RNA) within the cell, and was first de-

scribed in 1977 [148]. To target these sequences, short fluorescent DNA fragments,

which have complementary sequences to the targeted region, are introduced into the

cell. The cell is then subjected to high temperature conditions which causes DNA

denaturing, allowing the probes to bind to the target regions within the genome.

Excess probes are washed away before imaging, leaving only probes that have suc-

cessfully bound to their targets. Probes are designed to target sequences of DNA

which are unique within the genome to ensure specificity of binding. The targeted

region must have a high concentration of unique DNA sequences to allow multiple

probes to bind within the regions, resulting in a strong fluorescent signal. There is a

trade-off between the percentage of unique DNA within the target region and the tar-
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get region length; if the intended target region has a low percentage of unique DNA,

the region is often extended to allow for more probes to bind nearby. 3D images can

be constructed by taking “z-stack images,” where multiple images are taken while

incrementally moving the microscope lens in the vertical axis.

FISH analysis has its advantages and disadvantages. One advantage is that FISH

is inherently single cell resolution, which can provide insight into determining gene

position variability. However, a large number of FISH images may need to be collected

to see real trends in the data. Analyzing this imaging data brings its own set of

difficulties: large data sets, experimental noise, and variable fluorescent signal are

common issues for researchers [153]. Automated analysis programs are necessary to

explore a large number of cells and metrics (such as distance between genomic regions)

in a reasonable amount of time. It is often difficult to tune parameters correctly to

extract the right features from inherently noisy microscopy data. Extending this

analysis to 3D images increases the time needed for collection and the potential for

experimental noise.

1.5 Cellular reprogramming

Cellular reprogramming is the ability to convert an initial cell type into an al-

ternate target cell type. The first official demonstration of cellular reprogramming

was performed by Dr. John Gurdon in 1962, when Dr. Gurdon demonstrated that

differentiated cells (cells that are in their final cell type) could be reprogrammed to a

pluripotent state (a cell type with the ability to differentiate into alternate cell types)

by transferring the nucleus of a differentiated cell type into an enucleated egg (an

egg with the nucleus removed) [70]. This process produced only a few reprogrammed

cells, since each cell needed to be handled individually, and the process was marred

by reprogramming inefficiencies.

This idea was expanded upon in 1989 by Dr. Harold Weintraub, who used TFs to
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mediate cell reprogramming. In this experiment, Dr. Weintraub converted a human

fibroblast into a muscle cell via addition of the TF MYOD1 [184]. MYOD1 was

a well-known regulator of the myogenic lineage, only active in muscle cells, but its

ability to completely take over the function of an unrelated cell type was surprising.

MYOD1 was able to reprogram several alternate cell types into muscle cells and

became one of the first known “master regulators” of cell fate. Since Dr. Weintraub’s

discovery, a number of alternate cell reprogramming experiments were discovered,

but the integrity of reprogramming, and whether the reprogrammed cells could really

function like their natural counterpart, was unknown.

Cellular reprogramming encountered a paradigm shift in 2007, when Dr. Shinya

Yamanaka converted a human fibroblast into an ESC-like state [166]. This cell type,

named an induced pluripotent stem cell (iPSC), is nearly indistinguishable from an

ESC. Additionally, iPSCs have the ability to differentiate into alternate cell types,

much like ESCs. To achieve this conversion, Dr. Yamanaka transduced fibroblasts

with a combination of four TFs: OCT4, SOX2, KLF4, and MYC. These factors

have collectively come to be known as the “Yamanaka factors.” This discovery was

especially timely, since the use of natural ESCs for therapeutic research was banned by

many countries, and this discovery circumvented these restrictions. Dr. Yamanaka,

as well as the cellular reprogramming pioneer Dr. Gurdon, received a Nobel Prize for

this work in 2012.

Since these discoveries, the field of cellular reprogramming has expanded rapidly.

Cellular reprogramming experiments have been discovered for many target cell types

such as neuron, hepatocyte, and cardiac progenitor [81]. Cellular reprogramming has

been performed in vivo, by reprogramming cardiac fibroblasts into cardiac myocytes in

mice [132]. The first human clinical trial using iPSCs was approved in 2012 for use in

macular degeneration treatment [111]. Though results from this trial showed limited

improvement to condition, no conditions were worsened because of this treatment.
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While recent progress within the field has been substantial, predicting which TFs

will be successful for reprogramming is a limiting factor. Many papers within this

field are the result of years of “guess-and-check” experimentation, where researchers

try multiple different TFs on cell populations and report on which methods work.

Researchers can make educated guesses for which TFs will work based on cell type

specific TF activity in the target cell type, but this does not always result in a success-

ful reprogramming experiment. For example in Dr. Yamanaka’s original experiment,

he started with 24 genes that are highly over-expressed in ESCs, transduced combina-

tions of the 24 genes into a population of cells, then began removing unnecessary genes

in subsequent experiments until arriving at the minimum necessary gene set [165].

Considering that iPSC generation takes ∼3 months to create in each experiment, this

is painstaking work that drains valuable time and resources [164].

To circumvent these problems, researchers have begun to create algorithms that

can predict successful reprogramming TFs from data. Many of these algorithms rely

on methods for quantifying RNA-seq differential expression between cell types, such

as mutual information and Jensen-Shannon divergence [24, 44]. More recent algo-

rithms explore TF binding networks and CAGE-seq data to refine their predictions

[133]. These algorithms greatly reduce the cost of discovering TFs for reprogramming,

but no algorithm is 100% accurate. Additional genomic features, such as structure,

epigenetics, and dynamics should be considered to achieve higher prediction accuracy.

1.6 Mathematics of 4DN

4DN analysis is challenging due to the large amount of data that is generated for

each experiment. Hi-C samples often contain over 100 million contacts that define

the interactions between 3 billion bps (in human samples). These data sets are

often >2 Gb in size once processed. RNA-seq data is one-dimensional and usually

smaller than Hi-C data, but still typically requires >20 million sequenced reads.
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Imaging data sets are notoriously bulky, and many z-stack microscope images must

be collected to achieve a good sample size. Additionally, all these metrics scale

linearly with additional time points, replicates, and samples. To make sense of these

high-dimensional data sets, rigorous mathematical techniques must be developed to

quantify our findings.

A mathematical operator useful for the analysis of Hi-C data is the graph Lapla-

cian. The Laplacian quantifies the diffusion between interacting entities. As noted in

Section 1.2, Hi-C data can be viewed as an adjacency matrix, A ∈ Rn×n. Similarly,

Hi-C can be viewed as a graph, G(V,E), where the nodes, V , refer to the n genomic

bins in the adjacency matrix and the edges, E, are given by the number contacts,

ai,j. Given A, the unnormalized Laplacian matrix is defined as

L = D−A,

where D is the degree matrix, D = diag(d1, . . . , dn) and di =
∑n

i=1 ai,j. The

normalized Laplacian matrix is defined as

L = D− 1
2 LD− 1

2 ,

where the eigenvalues λ of L are bounded by 0 = λ1 ≤ · · · ≤ λn ≤ 2. Both

the normalized Laplacian and unnormalized Laplacian have properties that are use-

ful for spectral clustering and graph partitioning [179]. Specifically, the normalized

Laplacian of the Hi-C adjacency matrix has been used to partition the genome into

biologically relevant clusters. The second smallest eigenvalue of L is called the Fiedler

number. The eigenvector associated with the Fiedler number is called the Fielder vec-

tor. The Fielder vector can be used to partition the graph based on the sign (+/−)

of its elements [161]. This partitioning method finds a balance between minimizing

the weights of the edges that are “cut” to create the partitioning, and maximizing
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the weights of the edges within each cluster [179]. From a biological perspective, this

partitioning correlates strongly with heterochromatin and euchromatin regions [31].

Analysis of how the Fielder vector changes over time identifies regions that change

from heterochromatin to euchromatin, or vice versa. Additional partitioning of sub-

regions that have a large Fielder number can be used to detect TAD boundaries

[32].

A graph perspective for Hi-C data analysis is also useful for the extraction of cen-

trality measures. Centrality measures quantify node importance in a graph. Several

centrality measures exist, each of which quantifies a different type of nodal influence.

For example, the degree centrality of a node is measured by summing the edge weights

of all edges connected to a node; recall the degree matrix D, where di =
∑n

i=1 ai,j.

This measure summarizes the local connectedness of a node. Alternative centrality

measures focus on global network properties, such as how often a node is present

along the shortest path between any two other nodes (betweenness centrality). These

measurements, when applied to Hi-C matrices, have been linked with biological phe-

nomena [103].

With an understanding of how the genome changes in structure and function over

time, we can develop methods to control the genome [137]. From a control theory

perspective, we can formalize the problem as such: the system to be controlled is the

cell, the sensors are experimental data such as Hi-C and RNA-seq, and the controllers

are chemicals that affect genome structure or function in predictable ways. A natural

controller of the genome is a TF, since TFs bind to specific genomic regions and

change nearby structure and function. Given information on where TFs bind and

how they affect local genomic regions, TFs can be used to control the genome and

steer the cell state towards a desired target phenotype.

Another useful measurement for Hi-C and RNA-seq data analysis is entropy. En-

tropy can be thought of as measuring “uncertainty” in a system by quantifying the
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number of possible states a system (cell) can be in, and determining the probability

that the system is in any given state. Several fields have found this measurement use-

ful, from thermodynamics to information theory [38]. In the context of cell biology,

the cell state (e.g. cell type, cell cycle phase, etc.) can be defined using RNA-seq, and

entropy measures our uncertainty in knowing which genes will be expressed. Since

ESCs have highly variable gene expression, we are more uncertain in its expression

signature. One specific measure of entropy, Shannon entropy S, is defined as

S = −
∑
i

pilog(pi)

where pi represents the probability that the system (cell or group of cells) is in

state i. Recently, RNA-seq and modified entropy equations were used to quantify

stemness [69, 171].

Related to gene expression variability, another hallmark of stem cells is their rel-

atively high percentage of euchromatin compared to differentiated cells [22]. Euchro-

matin is less compact and therefore has more freedom to move within the nucleus.

Freedom of chromatin movement allows for more choices in chromatin contacts in Hi-

C, and therefore more “uncertainty” in cell state, which can be quantified by entropy.

Since Hi-C is a multivariate analysis measurement (each contact coincidence involves

two variables, the two loci), we use Von Neumann entropy (VNE) as follows:

VNE = −
∑
i

λilog(λi)

In this application, the eigenvalues are derived from either the correlation ma-

trix or the Laplacian matrix so that all eigenvalues are positive. Furthermore, the

eigenvalues are normalized to sum to 1. VNE summarizes the eigenspectrum of the

Hi-C matrix, which tells us the matrix complexity; for matrices with a single large

eigenvalue, we are more “certain” in its conformation.
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In the context of clinical applications, there is an important connection to made

between entropy and controllability. In control theory, systems that have high entropy

are generally thought to be more controllable [137]. Worded a different way, systems

that are more uncertain in their structure are more easily influenced by external forces.

This means that given the right inputs that can affect the cell state, such as small

molecules or TFs, cells with high entropy/stemness could be influenced while affecting

differentiated cells to a lesser degree. Since at its core cancer is a disease of aberrant

reprogramming, targeted re-reprogramming of cancer cells, specifically CSCs, may be

key for treatment. Considering the significant mutations and abnormal karyotype of

nearly all cancer cells, a reasonable target state for reprogramming would be toward

apoptosis. The issue now becomes determining appropriate inputs for a given cell

population. Prediction of inputs that can control cell fate is an active research field,

and this work may find significant application for reprogramming cancer stem cells

to a vulnerable state [133, 147].
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CHAPTER II

Insight into Dynamic Genome Imaging

This chapter is based on a paper by Scott Ronquist, Walter Meixner, Indika

Rajapakse, and John Snyder [146]. I have summarized my contributions to this

paper here.

2.1 Abstract

The dynamic nature of the human genome complicates FISH imaging analysis.

Time series FISH imaging has enhanced our understanding of genome structure, but

due to cell state and experimental variability, this data is often noisy and difficult

to analyze. Furthermore, computational analysis techniques are needed for homolog

discrimination and canonical framework detection, in the case of time-series images.

In this paper, we introduce novel ideas for nucleus imaging analysis, present findings

extracted using dynamic genome imaging, and propose an objective algorithm for

high-throughput time-series FISH imaging. While a canonical framework could not

be detected beyond statistical significance in the analyzed data set, a mathematical

framework for detection has been outlined with extension to 3D image analysis.
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2.2 Introduction

The human genome can be seen as the blueprint for cellular activity, encoding

nearly all the genes that human cells use to function. While researchers have de-

veloped tools to decode the genome’s linear sequence, there are aspects that remain

incompletely understood, such as location, organization and dynamic behavior. The

genome is packed into a nucleus averaging 374µm3 in volume, though this measure-

ment is highly variable depending on cell-type and cell cycle stage. Within this

nucleus, the genome contains 3.2 billion base pairs of DNA totaling 2m in end-to-end

length in G0 and G1 and (6.4 billion bps with 4m in late S-phase through G2) [182].

This packing exhibits organized spatial structure. Chromosomes are confined to CTs

which occupy particular locations in relation to the nucleus edge and to each other

[39, 136]. At a smaller scale, genes within each chromosome also inhabit preferred

locations. Gene locations vary as a function of cell type; forced relocation leads to

misregulation of gene expression [115, 134, 156]. The system is also dynamic; changes

in gene position over time correlate with gene expression [31].

Microscopy techniques have been developed to image the genome and interro-

gate its structure. Specifically, fluorescent in situ hybridization, or “FISH”, is used

to locate specific genetic material within the nucleus. FISH works by introducing

fluorescent nucleotide sequences to the cell (a “probe”), allowing these probes to

bind to the cell chromatin through hybridization, and imaging the probe’s binding

location through laser excitation. If the probe nucleotide sequence has a unique com-

plementary sequence within the genome, binding specificity can be assured. Since its

invention in 1980, FISH has become a standard method for researchers and clinicians

alike [7, 99, 130]. Recently, FISH has been enhanced to visualize multiple DNA and

RNA locations simultaneously, improve loci imaging specificity, and increase image

resolution [120].

For probe design, the main techniques are bacterial artificial chromosomes (BACs)
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and oligoprobes [9, 159]. To construct a BAC probe, the desired loci is extracted from

a species-specific cell, integrated and exponentially duplicated within a bacterial cul-

ture, and eventually extracted and nick-translated with a fluorescent molecule [72].

These probes are often relatively large (150 kb), but thereby have high binding speci-

ficity. Oligoprobes are designed based on the species reference genome, synthetically

created, and then PCR amplified [9]. The clear advantage of this technique is that

shorter fragments can be imaged, as long as the sequences are still unique. Often mul-

tiple ∼40 bp probes will be designed to cover the full length of a loci of interest. For

both BACs and oligoprobes, the number of different fluorescent molecules available

and microscope laser lines has continued to increase allowing for visualization of up to

5 distinct loci per image in standard FISH, with more points distinguishable through

more advanced techniques such as spectral barcoding [98]. The image resolution is

inherently diffraction limited (typically ∼0.2−0.25µm x-y, ∼0.4µm z), without the

help of emerging super-resolution image restoration technology [63].

While recent experimental advances such as super-resolution and RNA-FISH have

increased the power of FISH assays, extracting relevant information is complicated

and computational analysis is needed to make sense of the large amount of data. FISH

imaging is often performed on a population of cells to mitigate the effects of unde-

sired variables, e.g. in cell orientation, cell cycle state, and growth conditions, as well

as from imaging noise. Manual analysis compounds errors and is prohibitively slow

when hundreds of cells are needed to achieve statistical significance. As an attempt

to solve these problems, researchers have employed computer programs to automati-

cally analyze FISH images and obtain fast, unbiased results. Fortunately, many image

processing techniques have been developed in the field of computer science to aid in

the examination of this noisy data, but for best results these programs must have

knowledge of cell biology and image collection methods [144]. Unfortunately, no one

program has emerged as robust enough to handle any given nucleus imaging experi-
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ment, while also being high-throughput in the number of cells detected. This is partly

a product of the large number of different FISH assays available, exploring different

genomic areas of different cell types. For each specific FISH assay image, additional

biological information such as gene copy number in each cell-cycle state (to know

how many points to look for), nucleus and probe size (to determine the size of objects

to recognize), and wavelength spectrum of fluorescent probes (to help discriminate

between overlapping fluorescent spectra) can greatly enhance FISH analysis. These

programs can then be used to extract useful information on gene location, number of

genes detected per nuclei, gene-gene distances, and nucleus shape fitting.

Automatic nucleus image analysis was first attempted in 1996, by counting the

number of dots per cell nucleus on acquired images [124]. This algorithm was broken

down into 4 main processes: extract nucleus-containing regions, determine nucleus

size and shape, find dots within the image, and count the number of dots. Statistics

on nucleus shape distance between points, and number of points compared favorably

with manual analysis. The objective image processing techniques used, such as top-

hat transforms and Laplacian filters, set the framework for high-throughput image

analysis programs. Successive algorithms included distance transforms with water-

shed segmentation [45], 3D images [92], and neural network learning algorithms [97].

As some algorithms consistently matched expert manual analysis, they have been

used for automated disease diagnosis based on the number of spots detected [135].

Today a large number of high-throughput image analysis programs have be-

come available. Smart 3D FISH and its subsequent graphical user interface pack-

age, NEMO, uses a top-hat transform, and local maxima for spot determination to

determine Euclidean distances between points and distance from nucleus center [68,

78]. FISH Finder was developed in 2011, using a similar general algorithm with an

available user interface, though FISH Finder uses a Bayesian classifier segmentation

method [158]. TANGO was developed for more intense analysis of individual nucleus
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features [126]. Users can define over 30 different segmentation algorithms for ob-

ject recognition and an included 3D graphical interface display’s identified features.

FISH-quant is designed specifically for mRNA-FISH and counting dense signal images

through gaussian mixture model point detection [119]. HIP-Map was developed as a

full start to finish experimental protocol with an automated image analysis algorithm

[156]. By defining the experimental conditions for hybridization, HIP-map is best set

up to analyze the output images. While all programs are well-suited for specific types

of analysis, no single program has emerged as the gold standard for FISH analysis.

Here we discuss possible solutions to lingering issues in nucleus image analysis,

propose ideas for further investigation, and present novel findings related to genome

structure along with our developed algorithm for time series FISH image analysis.

These discussions revolve around largely overlooked aspects in nucleus image analysis

such as 3D to 2D projection, canonical framework detection, and time series analysis.

Novel findings are based on 2 distinct time series FISH experiments that analyze di-

rect reprogramming and circadian rhythm cycles. The algorithm presented here was

developed specifically to investigate these data sets and ideas, with emphasis on time-

series images and the discovery of a consistent canonical framework. This algorithm

allows for analysis of any channel separated image, of any size and number of nuclei.

It is robust in its selection of probe locations within normal diploid nuclei, automat-

ically selecting 2-4 points based on fluorescent intensity in accordance with natural

gene copy numbers, though this parameter can be manually adjusted to fit the scope

of a given project. We constructed our algorithm for analysis of nuclei with multiple

fluorescent probes, as it can calculate spectral overlap between fluorescent channels

and use this information to extract true signals within a channel. An algorithm for

geometric transformation optimization analysis is used to plot nuclei in a canonical

framework allowing all nuclei to be compared easily from a consistent viewing angle

orientation, both within and between time points. Although a consistent canonical
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framework could not be detected beyond statistical significance in the data sets ex-

plored here, we discuss reasons why this may be obscured in the analyzed data and

extend this outline to 3D. This algorithm has been packaged as a MATLAB program

available for download.

2.3 Re-thinking nucleus image analysis

Nucleus imaging has been instrumental in uncovering significant biological find-

ings, but the full potential of this technique is yet unrealized and subtle aspects of

nucleus image analysis have been overlooked. Here we highlight some potential issues

with current methods of analysis and provide suggestions for improvement.

2.3.1 Cell to cell alignment: canonical framework

There is mounting evidence in the field of cellular biology that certain aspects of a

cell genome are fixed in relation to the nucleus, and in relation to other chromatin [12,

136]. While it has long been known that DNA is separated into distinct chromosomes,

FISH analysis has shown that the relative location of these chromosomes in relation

to the nuclear edge can be non-random for a given cell type, termed chromosome

territories [13, 15], and the location of certain genes can be predicted similarly [156].

This gives credence to the idea that there may exist a consistent canonical framework

for genome structure in all cells with the same state. A canonical framework here

refers to the idea that at a given cell state (cell-type, cell cycle stage, circadian

time, etc.) a cell may have a preferred 3D organization of its genetic material. This

potential canonical framework may be obscured in current methods of analysis for

a variety of reasons: FISH nuclei images have a preset viewing angle determined by

the microscope lens, nuclei are subjected to unnatural monolayer growth conditions

that distort nuclear shape, analysis is largely performed on maximum projection 2D

images, and system noise may cause some positional variability.

22



Figure 2.1: 3D to 2D image projection. Example on how viewing angle projection of
a 3D object to a 2D image can distort probe location analysis. This figure was taken
from Ronquist et al. [147].

To accurately analyze nuclei in FISH images, ideally nuclei should be viewed from

the same viewing angle relative to this potential canonical framework. This infor-

mation could come from 3D z-stack images and with cells that are grown in culture

suspension to best preserve nucleus structure and reflect in vivo growth conditions

(unless monolayer culture better mimics in vivo for a certain cell type) [30]. Figure

2.1 depicts the observation distortion issue that can arise when analyzing a nucleus

from a set viewing angle. Transformation optimization analysis can be used to ac-

count for part of this issue, where the image can be translated, rotated, scaled and

reflected to best match a global reference shape, in an attempt to set a consistent

viewing angle (See Section Canonical framework detection - 2D).

2.3.2 Distance to nuclear edge: 3D imaging and ratio

A consistently used metric in analyzing gene positions is distance to nuclear edge.

This is measured as the shortest distance of a FISH probe to the edge of a DAPI

stained nucleus, from a maximum projection image. This measure of a gene or chro-
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Figure 2.2: Spheroid vs monolayer growth conditions for human fibroblast cells. z
dimension is defined as parallel to microscope viewing angle. Top Left: x-y monolayer.
Top Right: x-z monolayer. Bottom Left: x-y spheroid. Bottom Right: x-z spheroid.
This figure was taken from Ronquist et al. [147].

mosome location can be used to predict whether the DNA is activated or repressed,

as genes closer to the nuclear edge have been shown to be less transcriptionally active

on average [136].

There are two potential issues with this measurement as commonly performed: the

measurement often ignores the z-dimension and it ignores the nucleus size and shape.

The neglect of the z-dimension is often rationalized by comparing the measurements

from maximum projection 2D images to z-stack 3D images on the same nucleus, then

showing that the difference in measurement is negligible for certain cell types. What

this analysis fails to take into account is that cells are often unnaturally flattened when

grown in a monolayer culture flask, then subjected to coverslip fixation, potentially

“squishing” the z-dimension. This idea is supported by recent studies showing the

plasticity of the cell nuclei [23], and comparing cells grown in monolayer cultures
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to the same cells grown in “spheroids,” where cells have more freedom to grow in

all directions [30]. The minimal change in distance between 2D and 3D may be an

artifact of the environment in which it is grown. This can be seen in Figure 2.2

where nucleus shape for the same cell line varies dramatically depending on growth

conditions. While measures of distance to nucleus edge can be informing even on 2D

images, researchers should be aware of possible misinterpretation. Additionally, the

cell shape and size can vary as a product of both its growth environment and of its

cell cycle stage. This can lead to the distance to nuclear edge changing if a cell is

in G1 vs G2 [87]. To account for this size discrepancy, a potentially more significant

measurement is the relative distance to nuclear edge. This can be calculated as the

ratio of the distance from the nucleus center to the FISH signal, over the distance

from the nucleus center to the nucleus edge along the same trajectory.

2.3.3 Discrimination of chromosome copies

The human genome, and nearly all eukaryote genomes, are composed of diploid

chromosomes, meaning each chromosome has a highly similar copy, corresponding

to one chromosome from a father and one chromosome from a mother. While the

sequence of each chromosome is largely preserved, the function and relative location

of each chromosome in relation to the nucleus can be highly variable. An acute

example of this difference in chromosomal function and position is highlighted in X

chromosome inactivation. In this process, one X chromosome homolog is inactivated

leading to highly reduced transcription, a shrinkage in chromosome territory size, and

a change in chromosome territory position towards the nucleus edge [33, 160, 170].

Though this is a special case, the idea that different chromosome copies play different

roles in both transcription and position is of importance and should be highlighted

when exploring chromosome and gene positioning, especially when analyzing genes

that are monoallelic in gene expression. Only recently have advanced FISH techniques
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allowed for direct homolog discrimination through SNP differences, and this technique

is limited in that the target genome SNPs must be known prior to analysis [8]. Often,

the two different copies are lumped together when exploring “distance to nucleus

edge,” blurring the true nature of the information.

2.4 Time series data analysis - 2D images

Another important aspect of nucleus imaging to consider is the dynamics of the

genome. Many chemical interactions happen simultaneously within a cell nucleus ev-

ery second, resulting in cellular processes such as gene transcription, protein binding,

and nucleotide replication and repair. As a consequence of these processes, the DNA

within the cell is in constant motion. Large scale changes in chromatin positioning

can be observed as the cell progresses through the cell cycle, most notably during

mitosis as chromatin condenses, aligns, and the cell divides. Subtler changes in gene

positioning exist as well, such as circadian genes moving in slight oscillations with 24

hour periodicity, and genes involved in differentiation moving towards or away from

the nucleus edge in parallel with their expression [31, 134]. These changes can only be

observed through time series FISH images taken on a population-level of synchronized

cells, or through live cell imaging.

With time series data we can attempt to identify probe location changes over

time. Since time-series images fix the cell, thus ceasing all cellular processes, each

time point must be collected on a new population of cells that may have slight sys-

tem variation, and different distinct viewing angles in relation to a potential canonical

framework. Time series imaging is specifically important when making observations

on genomic structure for cells that are proliferating of differentiating. Both conditions

imply changing the cell state, either permanently during differentiation or cyclically

during proliferation. To demonstrate this importance, we have analyzed the gene

position changes over time for 2 conditions; cell-cycle and circadian rhythm synchro-
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nized proliferating fibroblast cells, and fibroblasts being directly reprogrammed into

myotubes [31]. Similar analysis was performed on both populations of collected cell

images.

We note here that analysis was performed on the FISH location of 2 points within

each nucleus, in accordance with the normal diploid human fibroblast cell line used.

While some cells are expected to be in cell cycle phase G2 and therefore have 4 gene

locations (as seen in imaging), the sister chromatids are often found to be close enough

together to consider the location as a single point, or the brightest 2 fluorescent points

are chosen in cases of ambiguity.

2.4.1 Circadian rhythm analysis

A circadian rhythm refers to any biological process that oscillates in a 24 hr period.

Many of these circadian processes have been related back to a core set of genes that

control this rhythm, and oscillate in gene transcription in a 24 hr period. As many

as 43% of all protein coding genes have been shown to be within, or regulated by, a

network of circadian genes [190].

For this experiment, well-known circadian genes PER2, CRY1, ARNTL, and

CLOCK were FISH imaged in a cell culture population of fibroblasts over time (Fig-

ure 2.3a). Images were collected 8 hours apart, over 16 time points, encompassing

3 circadian rhythm cycles. The distance between all genes in each nucleus and the

ratio distance to the nucleus edge was calculated for all nuclei over all time points.

We note here that these measurements do not depend on homolog assignment, and

that image analysis was performed using 2D images. Genes have a preferred location

in relation to the nucleus edge as PER2 is found to be closer to the nucleus edge

then CLOCK in all time points. Interestingly, some genes show a sinusoidal period

in their distance between homologs, most noticeable in PER2 and ARNTL (Figure

2.3a), in line with their circadian gene expression.
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2.4.2 Direct reprogramming

While fully differentiated cells have a static phenotype in vivo, all cells within an

organism have the same genetic information and therefore may have the capacity to

become any other cell type, given the right control inputs. The first example of this

was shown in 1989, when researchers reprogrammed fibroblast cells into myotubes by

transfecting the fibroblasts with the master regulator protein MYOD1 [169]. Since

then, a number of additional reprogramming factors have been discovered to convert

between cell types. Though cell reprogramming is often marred by inefficiency, fi-

broblast to myotube conversion has been performed at greater than 90% efficiency

[96].

For this experiment, the myogenesis related genes MYOD1 and MYOG were FISH

imaged in a cell culture population of fibroblasts over time, along with the circadian

genes PER2 and CLOCK (Figure 2.3b). Images were collected once per day over

7 days, along with a control (day -1) and a day 10 sample, encompassing the entire

reprogramming process. The distance between all genes in each nucleus and the ratio

distance to the nucleus edge was calculated for all nuclei over all time points. Our

measurements did not attempt to distinguish between homologs for this analysis. All

imaged genes tended towards the center of the nucleus over time, which has been

shown to be correlated with increased transcriptional activity (Figure 2.3b) [136].

2.4.3 Canonical framework detection - 2D

To search for a canonical framework it is best to view all cells in the same ori-

entation, both within and between time points. This framework is not obvious as

cells may have variability in shape, size, and loci positioning. To try and reconstruct

this framework, we can first set a coordinate system based on the nucleus shape. For

analysis of 2D nuclei, an ellipse can be fit as a reasonable mask for most cell-types,

with the major and minor axes acting as a coordinate system for each nucleus. All
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Figure 2.3: Analysis of gene position changes over time. A) Circadian genes in
synchronized fibroblasts, time units in hours after start of synchronization. Left:
Ratio to nucleus edge over time. Right: Mean distance (µm) between homologs over
time. Time units are in hours after synchronization. B) Ratio to nucleus edge over
time for genes in fibroblasts being directly reprogrammed. Ratios are computed as
distance to nucleus center divided by distance from nucleus center to nucleus edge
along the same trajectory. Dashed black line shows ratio to nucleus edge over time for
random point locations over the same nucleus shapes, used as a control. Time units
are in days after exogenous MYOD1 addition. This figure was taken from Ronquist
et al. [147].

nuclei can then be rescaled to the average ellipse mask size at a given time point by

calculating the average major and minor axis and scaling each nucleus accordingly,

with labeled points scaled as well. These nuclei can then be reflected along the x axis,

reflected along the y axis, or reflected along both the x and y axis (rotated 180◦), to

minimize the distance between points within each nucleus (See Figure 2.4).

For example, first consider the problem where all nuclei are collected from a single

time point, with the same assumed state (cell-type, cell cycle phase, etc.). Let’s

assume we have some template for the homolog locations. For a nucleus target we’re

analyzing, we can try all transformations (we have a set of 4; no transformation, reflect

x, reflect y, reflect x and y) and all possible homolog assignments for each gene (2

assignments for each diploid gene) in order to minimize the sum of distances from

target to template. We can perform these operations for all imaged nuclei, and get

optimal transformation and homolog assignment for each. We can then try each of the

imaged nuclei as the template for all the other nuclei, calculate distances of errors over

all nuclei, and pick the one yielding the lowest sum of distances. This concept could
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also be applied without nucleus size scaling and without the constraint of nucleus

ellipse alignment, at which point this becomes a classic Procrustes analysis problem

based strictly on gene locations relative to themselves. We include the constraint

of nucleus ellipse alignment based on previously referenced evidence that gene and

chromosome locations have been shown to have a preferred nuclear location [13, 15,

136, 156]. This analysis attempts to determine if this preferred location is a result of

a consistent canonical framework.

With this framework set, we can use the same idea for the computation of a

template between time points. For each time point, we determine the average position

of each homolog in reference to the average nucleus shape and input these positions

into the same algorithm. This calculation will provide our best guess for homolog

assignment both within and between time points. We term this collective algorithm

“2D Transformation Optimization.”

Analysis of MYOD1 and MYOG loci location over time during fibroblast to my-

otube reprogramming shows dynamic loci movement within the nucleus. The 2D

transformation optimization algorithm explained above is used for this analysis. The

last time point (day 10) is used as our template between time points because it is

collected on fully transformed myotubes, therefore these nuclei may exert the low-

est amount of structure variability. MYOD1 and MYOG positions have been shown

above in Figure 2.3 to move towards the nucleus center, and upon further analysis

their preferred location appears to be more constrained as well. Point clouds corre-

sponding to loci location for 100 nucleus samples become more condensed over time,

with the average distance to the gene position centroids decreasing as the cell becomes

more differentiated (Figure 2.5).

This analysis was performed on MYOG, MYOD1, MYOG and MYOD1 together,

and randomly distributed points (1 gene case). We note that when analyzing mul-

tiple genes as in Figure 2.5c, there is a distinct possibility that different clustering
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Figure 2.4: 2D Transformation Optimization Analysis. Example depicting 2D Trans-
formation Optimization Analysis permutations and transformations. Left: Example
of the homolog assignments allowed. Right: Example of the transformations allowed
with correct selection. This figure was taken from Ronquist et al. [147].
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results will be found compared to single gene analysis as there are more operational

constraints (i.e. transformation must minimize sum of more distances). Results

here suggest that gene positioning relative to nucleus may be highly variable since

random gene location permutations leads to similar mean distances to computed cen-

troids at each time point, a measure used to determine gene positional variability

post-Transformation Optimization. An alternative possible conclusion is that the

canonical framework is obscured by the confounding effects of 2D imaging and/or

desynchronization between nuclei in each time point. As an initial attempt at canon-

ical framework detect we believe this method is biologically and computationally

reasonable and can be applied to any time series FISH imaging experiment for future

investigation.

2.4.4 Canonical framework detection - 3D

High-throughput nucleus image analysis often relies on 2D maximum intensity

projection images. There are many reasons for this: 3D image stacks are much

larger and harder to analyze, the z dimension has limited resolution compared to x

and y, and cells grown in monoculture are often flattened in that dimension. These

issues can be overcome through super-resolution measurement or spheroid growth

conditions, but these procedures increase the experimental difficulty and cost.

Assuming a consistent configuration of gene positions between cells in the same

state and a sufficient number of measured cells, it is possible to recover 3D infor-

mation from 2D images. For this recovery, Procrustes-like analysis can be used to

extract z coordinates of gene positions. Procrustes analysis optimally aligns sets of

points to minimize error between corresponding points in each set through global

transformations. These transformations include rotation, translation, scaling, and

reflection.

For example, given a set of four uniquely labeled genes within two similar nuclei
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Figure 2.5: 2D Transformation Optimization Analysis - Overview, synchronized fi-
broblasts and MYOD1-mediated reprogramming. A-D) Gene position over time dur-
ing fibroblast to myotube reprogramming, in relation to the average nucleus shape,
after 2D Transformation Optimization analysis. Days are labeled relative to the addi-
tion of TF MYOD1. 100 nuclei are taken per time point, with 10 distinct time points
sampled. Plot shows the mean of distances from all points to their cluster centroid
over time, and ratio to nucleus edge of average homolog position. Within each nu-
cleus, ‘x’ shows real gene locations, ‘o’ shows computed centroid or average position
of a given homolog. A) MYOG (green and black). B) MYOD1 (red and blue). C)
MYOD1 and MYOG. D) Random gene positions for 1 gene (cyan and magenta). E)
X and Y positions of gene centroids normalized by maximum axis length. This figure
was taken from Ronquist et al. [147].
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with xy locations given, we can perform a search (e.g. Nelder-Mead optimization) to

determine which z values minimize error. Since there are more constraints [8x + 8y =

16], than degrees of freedom (DOFs) [8z + 3 rotational DOFs + 3 translational DOFs

= 14], a unique solution is expected to minimize error between corresponding points.

Adding more points and more nuclei can give higher confidence in the results, if the

error remains small. As with our 2D analysis, homolog uncertainty complicates the

problem: we can’t unambiguously determine which FISH point corresponds to each

homolog between sets. Homolog assignment information can be reasonably predicted

by trying all possible homolog assignments and selecting the assignment that achieves

lowest error.

Demonstrating the hypothesis that genes have a consistent, if time-dependent,

3D location is theoretically possible with 4 distinct FISH points (as analyzed in this

experiment) if the observed locations are known precisely; clearly the reconstruction

degrades as the number of gene points decreases or their positional measurement

error increases. In future study, better supporting our hypothesis may require better

synchronization of the cell population and true 3D rather than 2D analysis, as well

as more gene points with lower positional error.

2.5 FISH image analysis algorithm

The general process workflow for our automated, high throughput program is

depicted in Figure 2.6 and is detailed below for 2D nucleus image analysis.

Pre-Process: 2D maximum projection images are input, with the nucleus image

channel and the number of channels corresponding to fluorescent probes specified. 2D

images can be any dimension (length, width, and channel number), with any number

of non-overlapping nuclei per image. Multiple images can be input and analyzed in

the same run and images corresponding to different time points can be specified for
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time series analysis for subsequent Transformation Optimization.

Nuclei Extraction: The first step in the image processing algorithm is to de-

termine the number and location of nuclei within the image. This information is

extracted through a series of image processing techniques. The nucleus image chan-

nel is first converted to grayscale with nuclei assigned higher pixel values. In order

to segment nuclei from background, the gradient magnitude is calculated in both the

x and y direction. This is used to determine nuclei borders. Foreground objects are

determined through “opening-by-reconstruction” to eliminate noise within the image.

A mild Gaussian filter is used to ensure any remaining noise within each nucleus is

removed before determining a pixel value threshold for separation of foreground and

background objects. This threshold is computed through Otsu’s method to binarize

the image. The gradient segmentation is superimposed on the binarized image to

only allow local maxima within defined regions. Finally, a distance transform fol-

lowed by watershed segmentation is then applied on the binary image to distinguish

between slightly overlapping nuclei, and to determine nucleus centers. Nucleus area is

computed, and outliers are discarded to prevent M-phase nuclei and non-segmented

overlapping nuclei from further analysis.

Individual Nucleus Analysis: Each nucleus is fitted with an ellipse mask, and

major and minor axes are determined. The validity of an ellipse fit for nuclear shape

is reasonable for many cell types, but should be determine by the user on a cell-type

specific case-by-case basis. This fitting in necessary for downstream Transformation

Optimization, but is inconsequential for computed distance between points and dis-

tance to nucleus edge. The major and minor axes can set the Cartesian coordinate

system for the nucleus to allow for comparison to other nuclei in later analysis. The

fluorescent channels are then linear unmixed to elicit true signal from overlapping

fluorescent signals. Local maxima within each nucleus are found for each channel to
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determine the probe locations, which are then projected onto the Cartesian coordi-

nate system. This program has been optimized to analyze normal karyotyped diploid

cell gene positions, and as a result the number of points detected typically varies from

2 to 4 based on fluorescent intensity of signals. For Diploid cells, nuclei in cell cycle

phase G0/1 should have 2 copies, in S they should have 2-4, and G2-M should have

4. To detect gene copy numbers, our program extracts the top 2 FISH points within

each nucleus mask based on fluorescent intensity within a square pixel window, and

then determines subsequent points based on comparative fluorescence. Points selected

beyond the first 2 are included in further analysis if their fluorescence is within some

optimize percentage of the brightest point in the channel image, though this parame-

ter can be altered by the user to extract more/less points for a given experiment. This

eliminates the need for the cell stage to be known a priori and allows our program to

best select true probe signal in potentially noisy channel images. Distance between all

probes within each nucleus are computed along with nucleus size and shape, distance

from probe to nucleus edge, and the ratio from nucleus edge to nucleus center.

Plane Orientation: Once the nucleus has been ellipse fitted, mapped to a Carte-

sian coordinate plane, and probe points are selected, the collective coordinate planes

are oriented using 2D Transformation Optimization analysis to align the axis origin in

a best fit manner. This reflects and scales the coordinate plane set by the major/minor

axes of the ellipse to minimize the distance between points for all channels and all

nuclei at a given time point. This creates a best-fit orientation for easy comparison

of all nuclei within the same time point. This analysis is also applied between time

points in time-series FISH images, thus constructing a consistent canonical framework

showing how a loci moves within the nucleus over time.
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Figure 2.6: Automated time series FISH image analysis. Top row: General algorithm
workflow. Example images from different points along algorithm workflow. Middle
row: DAPI channel image of nuclei and nuclei segmentation results. Bottom row:
Individual nucleus analysis, distance matrix between probe locations for individual
nuclei (letters correspond to fluorescent color), ratio to nucleus edge of points within
individual nuclei. This figure was taken from Ronquist et al. [147].
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2.6 Discussion

Before beginning any nucleus imaging project, a balance must be determined be-

tween FISH labeling technique specificity and resources invested. While it would

be convenient for analysis if all experiments used cells grown in in vivo-like condi-

tions, with direct FISH homolog distinction and super resolution microscopy, few

labs have the funding, personnel, equipment, and time to perform these techniques,

and furthermore they may not be necessary to test a given hypothesis. Researchers

should be aware of the pitfalls from any given FISH imaging technique. As discussed,

2D culture-grown cell images can be misleading in analysis and homolog distinction

should be noted, especially when analyzing monoallelic expressed genes.

For the experiments conducted and analyzed in the present study, a number of

image resolution limitations should be noted. Cell images in the present study were

analyzed on a confocal microscope, allowing image resolution up to 200nm in x-

y plane and 400nm in the z plane. This resolution is sufficient for precise gene

location determination in relation to the general nuclear shape, but overlooks some

of the intricacies of nucleus architecture that have been shown to play a role in gene

regulation, such as distance to nucleolus and nuclear pores [131]. Integration of this

information with gene function is considered a promising area of future work.

For studying genes that are known to be dynamic in either transcription or loca-

tion over time, it is necessary to utilize time-series imaging to determine if the dy-

namic transcription is correlated with positioning. Examples of gene position changes

related to circadian rhythms and cell reprogramming have been shown using time-

series imaging, where genes with circadian expression have corresponding circadian

gene movement, and fibroblast to myotube reprogramming indicates movement of

expressed genes towards the nucleus center over time. For this analysis we have pro-

posed using 2D Transformation Optimization to extract information on how labeled

genes may move in relation to other genes, and in relation to the nucleus shape over
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time. This algorithm is designed with canonical framework detection considered, and

thus can be used to provide a reasonable best guess at homolog identification. Though

results using this technique on fibroblasts being reprogrammed were shown to be in-

conclusive when compared to random point locations, it is unknown if this reflects

true positional genome randomness, poor synchronization within imaged cells, or con-

founding 2D imaging artifacts coupled with high positional variability. Nonetheless,

this technique can be applied to alternate data sets to test for canonical frameworks

in future experiments. Additionally, an extension to 3D image analysis for determi-

nation of a consistent canonical framework has been elucidated.

All analysis performed can be found in our available MATLAB scripts

(http://bionetworks.ccmb.med.umich.edu/). This algorithm can be used for any

given FISH image experiment and is best suited for time series images, with the

extension for Transformation Optimization following analysis.

39



CHAPTER III

Functional Organization of the Human 4D

Nucleome

This chapter is based on a paper by Haiming Chen, Jie Chen, Lindsey A. Muir,

Scott Ronquist, Walter Meixner, Mats Ljungman, Thomas Ried, Stephen Smale, and

Indika Rajapakse [31]. I have summarized my contributions to this paper here.

3.1 Abstract

Cells alter their genome structure and function to mediate proliferation. For

example, cyclin gene expression fluctuates to control cell cycle progression and chro-

mosomes condense, align, and divide during mitosis. However, the interplay between

genome structure and function during cell proliferation is not well understood. Here,

we analyze time series Hi-C, RNA-seq, and FISH imaging data to characterize the

4DN of proliferating human fibroblasts. In this chapter, we present a framework

for the identification of potentially co-regulated genes. Furthermore, our analysis re-

veals a correlation between circadian gene positioning and expression over time. The

analysis of this comprehensive data set highlights the benefits of a 4DN approach.
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3.2 Introduction

A comprehensive understanding of the dynamical genome structure-function (S-

F) relationships is necessary to fully understand how a cell operates. Clear examples

where changes in genome topology (structure) can affect gene expression (function)

have been found at many scales [28, 136]. One such example is in cancer, where

chromosomal alterations have a profound effect on gene expression and cell regulation,

driving the cell towards an uncontrolled proliferative state. Additionally, distinct S-F

relationships have been observed through the cell cycle [121] and in different cell types

[52]. However, most experiments either focus on specific genomic regions or do not

explore all 4DN modalities, thus a comprehensive picture of the 4DN is still lacking.

Here, we present the analysis of a complete 4DN data set, collected on proliferating

human fibroblasts. Cells are cell cycle- and circadian rhythm-synchronized to capture

dynamics from a population of cells [6, 134]. Time series Hi-C and RNA-seq samples

are collected to observe genome structure and function, respectively. Given this data,

along with information on TF binding, we present methods for the extraction of po-

tentially co-regulated genomic regions. Specific biological modules are analyzed using

this method to extract larger potentially co-regulated gene networks. Furthermore, a

S-F relationship between the core circadian genes PER2 and CLOCK is uncovered,

where gene position correlates with gene expression. The analysis presented within

this chapter furthers our understanding of the 4DN, and the methods are applicable

to any 4DN data set.

3.3 Results

3.3.1 Dynamical S-F correlations

We have used concepts from the theory of networks to evaluate genome-wide S-F

dynamical correlations. For structure, gene boundaries were defined by the tran-
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scribed region plus 2 kb upstream of the transcription start site and 2 kb downstream

of the polyadenylation site [27]. In method A, we used gene dynamics: the time-

dependent variation in structure and function within each gene. In method B, we

used gene network dynamics. Network analyses were performed using two methods.

In method A, we inferred networks from gene dynamics, that is, by constructing

the interaction or the edge based on the correlation between gene expression and

the correlation between the structures of each gene. In method B, we constructed

edges based on the correlation between gene expression and Hi-C contacts (Figure

3.1). In both methods, we surveyed regulatory regions of the identified correlated

gene pairs for common TF binding sites and determined whether these common TFs

were expressed in our RNA-seq dataset. Gene network dynamics therefore facilitate

identification of gene pairs or clusters with high potential for coregulated expression

that is consistent with the transcription factory model.
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Figure 3.1: Algorithm for extraction of Dynamic Form Function correlated gene pairs.
This figure was taken from Chen et al. [31].

3.3.2 Gene dynamics

To identify the genes with S-F correlations, we studied the 7,786 genes that sig-

nificantly varied in expression and then four biological modules: wound healing, cell

cycle, 24-h circadian clock, and dex response. We defined gene dynamics using the

dynamical correlation between gene expression and gene structure (Appendix A.1).

We identified a set of 2,574 genes from the 7,786 significant genes, using the following

43



criteria: (i) a gene’s Hi-C Fiedler number >0 for at least four time points (a value

of 0 was considered artifactual), (ii) the absolute value of the correlation between

RNA-seq and a Fiedler number >0.3, and (iii) genes were along a unique length of

DNA.

3.3.3 Gene network dynamics

We first constructed networks by considering the correlation between gene struc-

tures represented by Fiedler number. We performed the analysis (method A above,

Figure 3.1) on the above-mentioned 2,574 genes, chromosome by chromosome. A to-

tal of 986 gene pairs were identified (Dataset S10 in Chen et al. [31]). We report the

identified gene pairs and the constructed networks for chromosome 14 in Figure 3.2.

We then identified common binding sites of expressed TFs for these gene pairs. We

found that gene pairs shared more binding sites than randomly expected in 16 of 22

chromosomes, suggesting that transcription may be coordinated in these structure-

and function-correlated gene pairs. We also examined the mean contact over time

between all gene pairs of the extracted 2,574 genes. We found that if two genes have a

high Fiedler number correlation, they are more likely to have contacts between them.
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Figure 3.2: Networks of dynamic intracorrelated and intercorrelated S-F gene pairs
on Chr 14. Green nodes represent genes, and thick edges between pairs of genes
represent a correlation. (Inset) Colors of edges show how the two genes are correlated
(color key). Genes with TFs in common with all other genes that share edges are
denoted by shaded blue squares. TFs associated with gene pairs are given in Dataset
S10 in Chen et al. [31]. This figure was taken from Chen et al. [31].

We applied the above analysis to the four biological modules and found 35 wound

healing, 49 cell cycle, 52 circadian clock, and 49 dex response gene pairs that were

highly correlated between structure and function (Dataset S10 in Chen et al. [31]).

We also mapped common binding sites for all these gene pairs (Dataset S10 in Chen

et al. [31]).

3.3.4 Periodicity in spatial movement in core circadian genes

We used multicolor 3D-FISH to examine spatial dynamics of the core circadian

genes CLOCK, aryl hydrocarbon receptor nuclear translocator-like (ARNTL), cryp-

tochrome 1 (CRY1 ), and period 2 (PER2 ) [21], which have well-studied transcrip-

tional periodicity. Notably, although we found no Hi-C contacts between CLOCK

and PER2, we found that CLOCK S-F dynamics are negatively correlated, whereas

they are positively correlated for PER2. Because transcriptional activity that is con-
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current with movement in the nucleus has been reported [134, 136], we hypothesized

that CLOCK and PER2, which have antiphase transcriptional periodicity [21], would

show distinct spatial dynamics. We therefore used multicolor 3D-FISH to obtain the

allele locations of the genes for each of 16 time points simultaneously (Figure 3.3A).

Figure 3.3: Processing of 3D-FISH raw data maximum projection images (MPIs). A)
Cartesian coordinate system is superimposed after fitting nuclei to an ellipse. Red,
cyan, white, and magenta points represent probe signals for PER2, CRY1, ARNTL,
and CLOCK, respectively. B) RNA-seq data over time are plotted on the left y
axis for CLOCK [solid blue line (L)] and PER2 (solid green L) in RPKM. MCD in
micrometers (dashed black L) and Fiedler number (dashed red L) between CLOCK
and PER2 over time are plotted on the right y axis. This figure was taken from Chen
et al. [31].

We used two measures to quantify the dynamics of the relative distances between

gene pairs for all four circadian genes. The first measure was the mean closest distance

(MCD; Appendix A.1) between each gene pair (relative distance curve), and the

second measure was the Fiedler number of the Euclidean distance matrix among the

four genes (stability curve). We then correlated these measures with transcription

data. We found that the relative distance and stability curves for CLOCK and PER2

showed periodicity, and followed a 24-h circadian rhythm (Figure 3.3B). When the

MCD between PER2 and CLOCK was at its minimum, PER2 transcription was

minimal and CLOCK transcription was maximal, and vice versa. Collectively, we

observed that the MCD, the Fiedler number, and expression levels over time between

46



PER2 and CLOCK were all within approximately 6-h phase shifts of one another.

This CLOCK /PER2 system had the highest Fiedler numbers when CLOCK and

PER2 had the largest relative distance between them, which may hint at a particular

state or time for which genome topology has particular significance in circadian gene

dynamics. A schematic of this process is outlined in Figure 3.4. These observations

provide insight into circadian gene modules, although the mechanisms driving these

S-F dynamics require further investigation.

Figure 3.4: CLOCK /PER2 circuit. A) Proposed feedback circuit for CLOCK
and PER2 expression, where CLOCK may self-activate. B) Relative expression of
CLOCK and PER2 (green arrows) at given relative Euclidean distances (purple ar-
rows). This figure was taken from Chen et al. [31].

3.4 Discussion

In proliferating human fibroblasts, the 7,786 genes with highly dynamic expression

may be considered a wound healing module that responds to proliferation cues, such

as serum stimulation [82]; indeed, we found that 76% of known wound healing genes

were within this highly dynamic set (Appendix A.1, Dataset S3 in Chen et al. [31]). A

large number of genes in this highly dynamic set have highly correlated S-F dynamics,
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but the significance of this property and whether it is found in other cell types are not

yet known. Interestingly, the wound healing response overlaps with cancer metastasis

[29, 82]. Thus, a better understanding of the wound healing module may provide

insight into cellular functions that are active in metastatic cancer cells.

For S-F data collected over time, we have developed an algorithm for genome-wide

identification of gene pairs or networks and candidate TFs that may be involved in

coordinated gene expression. Criteria used in this identification are consistent with

expression via transcription factories, although it is unknown whether genes would

be actively recruited into or spontaneously self-organize in shared transcriptional

space. Our algorithm could be used in any system to identify novel or key interacting

genes, and varying correlation thresholds provides additional flexibility in restricting

analyses to gene pairs with particular S-F properties (Appendix A.1, Figure 3.1 and

Datasets S10 and S11 in Chen et al. [31]). The observations of CLOCK and PER2

transcription and genomic movements in 3D space provide a geometric picture of

gene regulation in the context of circadian clocks, one that may give insight into the

mechanisms regulating biological time. These studies also suggest that important

spatial relationships may be too distant in Euclidean space for capture by Hi-C.
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CHAPTER IV

Algorithm for Cellular Reprogramming

This chapter is based on a paper by Scott Ronquist, Geoff Patterson, Lindsey

A. Muir, Stephen Lindsly, Haiming Chen, Markus Brown, Max S. Wicha, Anthony

Bloch, Roger Brockett, and Indika Rajapakse [147]. I have summarized my contribu-

tions to this paper here.

4.1 Abstract

Cellular reprogramming is the process of converting one cell type into an alternate

cell type. To determine methods for reprogramming, researchers often select TFs that

are overexpressed in the target cell type, input the selected TFs to the initial cell type,

then check whether the experiment was successful. This “guess-and-check” method

is time-consuming, inefficient, and ignores the dynamic nature of the cell. Using the

comprehensive 4DN data set presented in the previous chapter, I helped model the

dynamics of the cell cycle to create an algorithm for cellular reprogramming predic-

tions. By modelling the natural dynamics of the initial cell type and determining

where TFs can bind within the genome, we determine the optimal timing, combina-

tion and relative amount of TFs that can catalyze reprogramming from the initial

cell type towards a target cell type. This algorithm correctly predicts known repro-

gramming TFs, thus bypassing expensive and time-consuming experimental methods
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for discovery.

4.2 Introduction

All cells in a human body are derived from a single zygote, a totipotent cell that

can proliferate and differentiate into all possible cell types. This means that all the dif-

ferent cell types in a human body contain (roughly) the same genetic information, and

therefore have the potential to operate as any possible cell type. However, for many

years researchers believed that cell types could only develop through unidirectional

cellular differentiation, and that these differentiation decisions were largely controlled

by lineage-specific TFs. This belief was challenged in 1989, when Dr. Harold Wein-

traub reprogrammed human fibroblasts into muscle cells via over-expression of the

TF MYOD1 [184]. The limits to cellular reprogramming were pushed further in 2007,

when Dr. Shinya Yamanaka reprogrammed human fibroblasts into embryonic-stem-

cell-like cells using a combination of TFs [166]. Since these pioneering discoveries,

many additional cellular reprogramming experiments have been demonstrated and

researchers are beginning to test how reprogrammed cells could be used in a clinical

setting.

Though cellular reprogramming has immense therapeutic potential, the methods

used for the discovery of reprogramming TFs are time-consuming and inefficient.

Often, researchers try multiple combinations of TFs that are overexpressed in the

target cell type before finding the right solution. Recently, researchers have developed

methods to predict TFs for reprogramming the cell state using NGS data [24, 44, 114,

133]. For example, Rackham et al. devised a predictive method based on differential

expression, as well as gene and protein network data [133]. These methods, while

useful, mainly rely on differential expression and largely ignore genome structure and

dynamics.

Here, we take a 4DN approach for predicting TFs that can be used for cellular
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reprogramming. By integrating time series Hi-C and RNA-seq data collected on a

population of synchronized human fibroblasts, we model the dynamics of the genome

to determine where and when to input control. Our model is based on control theory

equations, where Hi-C and RNA-seq define the cell state and TF binding sites de-

termine where TFs can influence the cell state [20]. Furthermore, to decrease model

complexity, we use TADs to reduce the dimension of the cell state. With this model,

we can investigate the efficiency, timing, and optimality (minimizing the number and

concentration of TFs) for all possible TF-mediated cell type conversions. Our method

identifies TFs previously found to reprogram human fibroblasts into embryonic stem

cell-like cells, muscle cells and many additional target cell types.

The true dynamics within a cell are undoubtedly non-linear, but given the con-

straints of the available data, we use a linear control equation [5],

xk+1 = Akxk +Buk. (4.1)

In this case, the three items listed above correspond respectively to the value of the

state xk at time k, the time dependent state transition matrix Ak, and the input

matrix B (along with the input function uk).

4.3 Methods

4.3.1 Genome state representation and dimension reduction: xk

In order to use the linear control equation given in Eq. 4.1, we must decide which

measurements define the cell state, x. To fully represent the state of a cell, a high

number of measurements would need to be taken, including gene expression, protein

level, chromatin conformation, and epigenetic measurements. As a simplification, we

assume that the gene expression profile is a sufficient representation of the cell state.

Gene expression for a given cell is dependent on a number of factors, including (but
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not limited to): cell type, cell cycle stage, circadian rhythm stage, and growth condi-

tions. In order to best capture the natural fibroblast dynamics from population-level

data, time series RNA-seq was performed on cells that were cell cycle and circadian

rhythm synchronized in normal growth medium conditions (See Appendix A.2). Prior

to data collection, all cells were temporarily held in the first stage of the cell cycle,

G0/G1, via serum starvation. Upon release into the cell cycle, the population was

observed every ∆t = 8 hours (h) for 56 h, yielding 8 time points (at 0, 8, 16, . . . ,

56 h). Let gi,k be the measured activity of gene i = 1, . . . , N at measurement time

k = 1, . . . , 8, where N is the total number of human genes observed (22,083). Analysis

of cell-cycle marker genes indicated that the synchronized fibroblasts took between

32-40 h to complete one cell cycle post growth medium introduction. Because of this,

we define K = 5 to be the total number of time points used for this model.

Using g to represent x would result in model with over 20,000 variables. To reduce

model complexity, we looked for methods to reduce the dimension of x. Conveniently,

the genome offers a natural dimension reduction based on TADs. TADs are inherent

structural units of chromosomes: contiguous segments of the 1-D genome for which

empirical physical interactions can be observed [31]. Moreover, genes within a TAD

tend to exhibit similar activity, and TAD boundaries have been found to be largely

cell-type invariant [31, 51]. TADs group structurally and functionally similar genes,

serving as a natural dimension reduction that preserves important genomic properties.

Figure 4.1 depicts an overview of this concept. We computed TAD boundaries from

Hi-C data via an algorithm that uses Fielder vector partitioning, described in Chen

et al. (See Appendix A.2) [32].

Let tad(i) := j if gene i is contained within TAD j. We define each state variable

xj,k to be the expression level of TAD j = 1, . . . , Ñ at time k, where Ñ = 2, 245 is

the total number of TADs that contain genes. Specifically, xj,k is defined as the sum

of the expression levels of all genes within the TAD, measured in reads per kilobase
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Figure 4.1: Overview of TAD dimension reduction. A) Partitioning the Hi-C matrix
based on the Fiedler vector. B) Cartoon depiction of TAD genomic structure. C)
TAD dimension reduction summary. This figure was created by Geoff Patterson and
Scott Ronquist, and was taken from Ronquist et al. [147].

of transcript per million (RPKM), i.e.

xj,k :=
∑
i s.t.

tad(i)=j

gi,k. (4.2)

The vector of all TAD activities at measurement k is denoted with a single subscript

xk ∈ RÑ×1, k = 1, . . . , K.

4.3.2 State transition matrix: Ak

To capture the system dynamics, we define a time dependent state transition

matrix Ak as follows:

Ak := IÑ +
(xk+1 − xk)xTk

xTk xk
∈ RÑ×Ñ , k = 1, 2, 3, 4, 5 (4.3)

where IÑ is the Ñ × Ñ identity matrix. Let the measured values of the state of the

unforced evolution be x1, x2, · · · , x5; let the controls be labeled u1, u2, · · · , u5; let the
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values of the state with the controls acting be z2, z3, · · · , z6. Letting z denote the

deviation from the cell cycle average, we have

zk+1 =

(
I +

(xk+1 − xk)xTk
xTk xk

)
zk +Buk

where Ak is as above. Solving this difference equation, we have

zk =
k−1∏
i=1

Aix1 +
k−1∑
i=1

k−1∏
j=i

Aj−1Bui

with the understanding that A0 = I.

4.3.3 Input matrix and input signal: B,uk

With the natural TAD-level dynamics established in the context of our control

Eq. 4.1, we turn our attention to quantifying methods for control.

A TF can regulate a gene positively or negatively by binding to a specific DNA

sequence near a gene and encouraging or discouraging transcription. The degree to

which a TF activates or represses gene expression depends on the specific TF-gene

interaction, which is influenced by a variety of factors that are difficult to quantify.

Let wi,m be the theoretical regulation weight of TF m on gene i, where wi,m > 0

(wi,m < 0) if TF m activates (represses) gene i, and m = 1, . . . ,M , where M is the

total number of well-characterized TFs. Weights that are bigger in absolute value,

|wi,m| � 0, indicate stronger transcriptional influence, and weights equal to zero,

wi,m = 0, indicate no influence.

Extensive TF perturbation experiments would be needed to determine wi,m for

each TF m on each gene i. Instead, we propose a simplified method to approximate

wi,m from existing, publicly available data for TFBSs, gene accessibility, and average

activator/repressor activity. To determine the number of possible binding sites a

TF m recognizes near gene i, the reference genome was scanned for the locations of
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potential TFBSs following methods outlined by Neph et al. (See Appendix A.2) [123].

Position frequency matrices (PFMs), which give information on TF-DNA binding

probability, were obtained for 547 TFs from publicly available sources (∴M = 547).

Let ci,m be the number of TF m TFBSs found within ±5kb of the transcriptional

start site (TSS) of gene i.

Although many TFs can do both in the right circumstances, most TFs have ten-

dency toward either activator or repressor activity [57]. That is, if TF m is known

to activate (repress) most genes, we can say with some confidence that TF m is an

activator (repressor), so wi,m ≥ 0 (wi,m ≤ 0) for all i. To determine a TF’s function,

we performed a literature search for all 547 TFs and labeled 299 as activators and

124 as repressors (See Appendix A.2). The remaining TFs were labeled unknown for

lack of conclusive evidence and were evaluated as both an activator and a repressor

in separate calculations. Here, we define am as the activity of TF m, with 1 and -1

denoting activator and repressor, respectively.

TFBSs are cell-type invariant since they are based strictly on the linear genome.

However, it is known that for a given cell type, certain areas of the genome may be

opened or closed depending on epigenetic aspects. To capture cell type specific regu-

latory information, we obtained publicly available gene accessibility data (DNase-seq)

on human fibroblasts (GSM1014531). DNase-seq extracts cell type specific chromatin

accessibility information genome-wide by testing the genome’s sensitivity to the en-

donuclease DNase I, and sequencing the non-digested genome fragments. These data

are used for our initial cell type to determine which genes are available to be controlled

by TFs [172]. Here, we define si to be the DNase I sensitivity information (accessi-

bility; open/close) of gene i in the initial state, with 1 and 0 denoting accessible and

inaccessible, respectively (See Appendix A.2).

We approximate wi,m as

wi,m := amsici,m, (4.4)
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so that the magnitude of influence is equal to the number of observed consensus motifs

ci,m, except when the gene is inaccessible (si = 0) in which case wi,m = 0.

Since we are working off a TAD-dimensional model, our input matrix B must

match this dimension. Let bm be a 2,245-dimensional vector, where the jth component

is

bj,m :=
∑
i s.t.

tad(i)=j

wi,m (4.5)

and define a matrix B =

[
b1 b2 · · · bM

]
.

The amount of control input is captured in uk, which is a RM×1 vector representing

the quantity of the external TFs we are inputting to the system (cell) at time k. This

can be controlled by the researcher experimentally through manipulation of the TF

concentration [19]. In this light, we restrict our analysis to uk ≥ 0 for all k, as TFs

cannot be subtracted from the cell. um,k is defined as the amount of TF m to be

added at time point k.

With all variables of our control Eq. 4.1 defined, we can now attempt to predict

which TFs will most efficiently achieve cellular reprogramming from some xI (initial

state; fibroblast in our setting) to xT (target state; any human cell type for which

compatible RNA-seq data is available) through manipulation of uk. An overview of

our DGC framework is given in Figure 4.2.
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Figure 4.2: Data-guided control overview. A) Summary of control equation variables.
B) Each TAD is a node in a dynamic network. The blue connections represent the
edges of the network and are determined from time series fibroblast RNA-seq data.
The green plots represent the expression of each TAD changing over time. The red
arrows indicate additional regulation imposed by exogenous TFs. C) A conceptual
illustration of the problem: can we determine TFs to push the cell state from one
basin to another? This figure was created by Geoff Patterson and Scott Ronquist,
and was taken from Ronquist et al. [147].

4.3.4 Selection of TFs

Our general procedure for scoring TFs is explained as follows. Eq. 4.1 has an

explicit solution that is given below. The first few terms are

z2 = A1x1 +Bu1

z3 = A2A1x1 + A2Bu1 +Bu2

z4 = A3A2A1x1 + A3A2Bu1 + A3Bu2 +Bu3

...

This shows how z4 depends on u1, u2, and u3.

If xT is a target condition, then the Euclidean distance ‖·‖ can be used to measure

how close a state is to the target state. We define

d = ‖xT − z6(u)‖, (4.6)

where the notation z6(u) is used to emphasize the dependence of z6 on u. Considering

all possible input signals, one can compute the optimal control that finds the minimum
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distance for a given initial and target cell type. Let u∗ denote the optimal u used to

minimize d, and d∗ denotes this minimum distance value.

When appropriate, we write z6(u) to emphasize the fact that the final state de-

pends on the input. The Euclidean distance ‖ · ‖ can be used to measure how close a

given state is to the target. If there were no restrictions on the u terms, the control

that minimizes the distance between z6 and the target could be computed without

difficulty. However, there are reasons for restricting the number of different TFs used

in any one trial. Transfection of cells with too many TFs can lower the efficiency

of transfection and even lead to cell death. Moreover, many confirmed direct repro-

gramming experiments use ≤4 TFs to achieve reprogramming. For these reasons, we

modify the optimization problem by adding the constraint that there are no more

than a fixed number TFs (components of u) used in a given trial.

Let p̂ be a set of integers that identifies the subset of the components of u (read:

TFs) that are allowed to be non-zero. For example, p̂ = {1, 4, 7} refers to TFs 1, 4,

and 7. Let p be the number of elements in p̂. Given a set of TFs, p̂, we determine

the quantity and timing of TF input, u∗k, that minimizes the difference between x6

and the target cell state, xT . Mathematically, this can be written as

minimize
u

‖xT − z6(u)‖

subject to


um,k ≥ 0, k = 1, ..., 5

um,k = 0, if m 6∈ p̂

um,k+1 ≥ um,k

(4.7)

We use MATLAB’s lsqnonneg function to solve Eq. 4.7, which gives u∗k and d∗.

Let d0 := ‖xT − x0‖, be the distance between the final state and target state

with no control input. Define a score µ := d0 − d∗, which can be interpreted as the
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improvement provided by a particular choice of u. This can be calculated for each

p̂ and sorted (high to low) to determine which TF or TF combination is the best

candidate for direct reprogramming between x0 and xT .

We consider different scenarios for the type of input regime in the results. The

first assumes the input signal is constant u1 = uk = ū, intended to mimic empirical

regimes where TFs are given at a single time point. Later, we also consider inputting

TFs at different times k̂, which can be viewed mathematically as requiring um,k = 0

for all k < k̂, and um,k is a constant value for all k ≥ k̂. This is intended to mimic

inputting a TF at time k̂, which will continue to express at a constant level until time

point k = 6.

Remark: Subsets of TFs were chosen for each calculation based on the following

criteria: ≥10-fold expression increase in target state compared to initial state, and

≥10 RPKM in target state. These criteria are used to select differentially expressed

TFs and TFs that are sufficiently active in the target state.

4.4 Results

4.4.1 Quantitative measure between cell types

To predict TFs for reprogramming, compatible data on target cell types must be

collected. For this, we explore a number of publicly available databases where RNA-

seq has been collected, along with RNA-seq data collected in our lab. The ENCODE

Consortium has provided data on myotubes and ESCs (See Appendix A.2) [36]. The

GTEx portal provides RNA-seq data on a large variety of different human tissue

types [106]. Although each GTEx experiment is performed on tissue samples, thus

containing multiple different cell types, we use these data as more general cell state

targets.

To give a numerical structure to cell type differences, conceptually similar to
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Waddington’s epigenetic landscape, we calculate d0 between all cell types collected.

Figure 4.3A shows d0 values for 32 tissue samples collected from the GTEx portal,

along with ESC, myotube, and our fibroblast data (additional cell type d0 values

shown in Appendix A.2). GTEx RNA-seq data is scaled to keep total RPKM dif-

ference between time series fibroblast and GTEx fibroblast RNA-seq minimal (See

Appendix A.2).

4.4.2 TF scores

To assess our method’s predictive power, a subset of target cell types are presented

here that have either validated TF reprogramming methods or TFs highly associated

with the target cell type. Additional predicted TFs for reprogramming are included

in Appendix A.2. We note that though experimentally validated TFs provide the

best current standard for comparison, we believe experimental validation with our

predicted TFs may provide more efficient and comprehensive reprogramming results.

For all reprogramming regimes presented in this section, fibroblast is used as the

initial cell type due to the availability of synchronized time series data, and all TFs

are introduced at k = 1 [31].

For conversion of fibroblast to myotubes, the top predicted single input TFs are

MYOG and MYOD1, both of which are known to be crucial for myogenesis. While

MYOD1 is the classic master regulator reprogramming TF for myotube conversion,

activation of downstream factor MYOG is necessary for full conversion [183]. For

fibroblast to ESC conversion, a number of TFs known to be necessary for pluripo-

tency are predicted, including MYCN, ZFP42, NANOG, and SOX2 [166]. With the

knowledge that no single TF has been shown to fully reprogram a fibroblast to an

embryonic state, combinations of TFs are more informative for this analysis. The top

scoring combination of 3 TFs is MYCN, NANOG, and POU5F1 - three well-known

markers for pluripotency [166]. Interestingly, POU5F1 scores poorly when input in-
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Figure 4.3: Quantitative measure between cell types and TF scores. A) d0 values
between GTEx tissue types and ESC, myotube, and fibroblast. Tissue types and
cell types with black arrows have predicted TFs for reprogramming from fibroblasts
shown in Figure 4.3B. B) Table of predicted TFs for a subset of cell and tissue
types. Top 5 TFs for combinations of 1-3 shown. Green labeled TFs are either highly
associated with the differentiation process of the target cell type and/or validated for
reprogramming. These TFs are discussed in the main text. C) Time-dependent scores
for selected combinations of 3 TFs for fibroblast to ESC and fibroblast to “Heart -
Left ventricle.” x-axis refers to time of TF addition, y-axis refers to µ. This figure
was taken from Ronquist et al. [147].
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dividually, but is within the top set of 3 TFs when used in combination with MYCN

and NANOG. Left ventricle reprogramming includes TFs that are known to be nec-

essary for natural differentiation in the top score for all 1-3 combinations. These

include GATA4 (a known TF in fibroblast to cardiomyocyte reprogramming), HEY2,

and IRX4 [59, 79, 122].

4.4.3 Time-dependent TF addition

Fibroblast to ESC conversion was of particular interest in our analysis as this

is a well-studied regime with a number of validated TFs (with a variety of reported

efficiencies), and this conversion is promising for its regenerative medicine application.

High scoring TFs yield many that are known markers for pluripotency, but the top

combination of 3, MYCN, NANOG, and POU5F1, has not been used specifically

together, to our knowledge. Here, we analyzed how the TF combination would score

if input at different points throughout the cell cycle.

Time-dependent analysis of the top scoring ESC TFs reveals that scores vary

widely depending on the time of input. MYCN and NANOG show a strong preference

for input at the beginning of the cell cycle, while POU5F1 shows a slight preference

for input towards the end of the cell cycle, with the highest score achieved when

MYCN and NANOG are input at 0 h and POU5F1 is input at 32 h. Analysis on how

the time of input control affects µ is shown in Figure 4.3C. Time-dependent analysis

was also conducted for the top combination of 3 TFs for fibroblast to left ventricle.

This analysis predicted that the best reprogramming results would occur if GATA4 is

given immediately (0 h), with IRX4 and HEY2 given later (24 and 32 h, respectively).

4.5 Discussion

The results from this algorithm show promise in their prediction of known repro-

gramming TFs, and demonstrate the importance of including time series data for
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gene network dynamics. Time of input control has shown to have an impact on the

end cell state, in line with what has been shown in natural differentiation [104].

While we believe that this is the best model currently available for predicting

TFs for reprogramming, we are aware of its limitations and assumptions. TAD-based

dimension reduction is based on the observation that genes within them correlate in

expression over time, though we lack definitive proof of regulation by shared tran-

scriptional machinery [31]. This assumption was deemed necessary for dimension

reduction in the context of deriving transition matrix Ak. With finer time steps in

RNA-seq data, the assumption may not be necessary for TF prediction, at the cost

of increased computation time. Additionally, a 5kb window flanking the TSS of each

gene was used to ensure that all potential regulators are found, at the cost of potential

inclusion of false positive motifs.

Although this program can score TFs relative to other TFs in a given reprogram-

ming regime, it is difficult to predict a µ threshold that would guarantee conversion.

Additionally, rigorous experimental testing will be required to validate these findings

and determine how our u vector translates to TF concentration. This is a product

of the large number of assumptions that we have made to develop the initial frame-

work for a reprogramming algorithm. With finer resolution in the time series gene

expression, more subtle aspects of the genomic network may be observed, allowing

for better prediction.

Our proposed data-guided control framework successfully identified known TFs

for fibroblast to ESC and fibroblast to muscle cell reprogramming regimes. We em-

ploy a biologically-inspired dimension reduction via TADs, a natural partitioning

of the genome. This comprehensive state representation was the foundation of our

framework, and the success of our methods motivates further investigation of the

importance of TADs as functional units to control the genome.

A dynamical systems view of the genome allows for analysis of timing, efficiency,
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and optimality in the context of reprogramming. Our framework is the first step

toward this view. The successful implementation of time-varying reprogramming

regimes would open new avenues for direct reprogramming. Experimental verifica-

tion of predicted regimes and development of methods to identify optimal sets of TFs

are planned for the near future. This template can be used to develop regimes for

changing any cell into any other cell, for applications that include reprogramming can-

cer cells and controlling the immune system. Our DGC framework is well equipped for

designing personalized cellular reprogramming regimes. Finally, this framework can

serve as a general technique for investigating the controllability of networks strictly

from data.
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CHAPTER V

MYOD1-mediated Fibroblast to Muscle

Reprogramming

This chapter is based on a paper by Sijia Liu, Haiming Chen, Scott Ronquist,

Laura Seaman, Nicholas Ceglia, Walter Meixner, Pin-Yu Chen, Gerald Higgins, Pierre

Baldi, Steve Smale, Alfred Hero, Lindsey A. Muir, and Indika Rajapakse [103]. I have

summarized my contributions to this paper here.

5.1 Abstract

In the first cellular reprogramming experiment, Dr. Harold Weintraub repro-

grammed fibroblast cells to the muscle lineage using the master TF MYOD1. Though

many cellular reprogramming transitions have been discovered since this revelation,

the genomic changes that facilitate these conversions are not well understood. Here

we collect and analyze 4DN data derived from a population of human fibroblasts that

are undergoing MYOD1-mediated cellular reprogramming to the muscle cell lineage.

Time series Hi-C and RNA-seq samples are collected to analyze genome structure

and function, respectively. From these data, we find that structural changes pre-

cede functional changes during this course of reprogramming. Additionally, we find

that the transduction of MYOD1 robustly synchronizes the circadian rhythm cycle
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of these cells. This work helps explain how cells can transition between cell lineages

and uncovers a role for MYOD1 in the core circadian gene network.

5.2 Introduction

During cellular reprogramming, TFs that are introduced into the initial cell type

bind to the genome, change nearby genome structure and expression, and steer the

cell state towards a desired cell type. While the start and end states of cellular re-

programming have been characterized in some experiments, the process by which the

TFs bring about this change is not well understood [65, 166, 183]. To observe these

changes, high resolution data sets which measure genome structure and function must

be created from cells undergoing reprogramming. Furthermore, since cellular repro-

gramming is a dynamic process, these data set must have a high temporal resolution

as well. Fortunately, recent experimental techniques for probing genome structure and

function have been discovered. Hi-C can detect over 100 million genomic interactions

in a population of cells, allowing researchers to observe genome architecture genome-

wide. To observe genome function, RNA-seq can be used to accurately quantify the

transcript abundance of a cell population. Yet, few efforts have been made to charac-

terize the relationship between genome structure, function, and time during cellular

reprogramming. Furthermore, the affect that cellular reprogramming has on cell type

invariant biological rhythms has not been characterized as well. Thus, a concerted

effort to study all the modalities that comprise the 4DN movement (i.e. structure,

function, phenotype, and time) during cellular reprogramming will be invaluable to

research community [31, 52, 60, 93].

In this work we examined the dynamical interactions between genome structural

features and transcription in human fibroblasts undergoing MYOD1-mediated repro-

gramming into the myogenic lineage. Sampling across a time course during repro-

gramming, we captured structure by Hi-C, and transcription by RNA-seq. To better
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understand the features of genome structure and expression in a dynamical setting,

we adopt a network point of view. Nodes of the network correspond to genomic

loci that can be partitioned at different scales, for example into larger scale 1 Mb

regions or smaller scale gene level regions. The edges of the network indicate contact

between two genomic loci, with edge weights given by Hi-C entries. From the net-

work perspective, A/B compartments are identified as distinct connected nodes of a

network.

To further reveal chromatin spatial organization, we use network centrality mea-

sures. Using network centrality enables identification of nodes that play influen-

tial topological roles in the network [125]. Several centrality measures exist, each

specialized to a particular type of nodal influence. For example, degree centrality

characterizes the local connectedness of a node as measured by the number of edges

connecting to this node, while betweenness centrality is a global connectedness mea-

sure that quantifies the number of times a node acts as a bridge along the shortest

path between two other nodes. Eigenvector centrality is a neighborhood connected-

ness property in which a node has high centrality if many of its neighbors also have

high centrality. In other words, a node is important if it is connected to other impor-

tant nodes. For reference, Google’s PageRank algorithm uses a variant of eigenvector

centrality [105].

By examining different centrality measures we have discovered important features

in Hi-C data largely overlooked in previous studies. We also found that cells under-

going reprogramming have significant architectural reorganization prior to changes in

transcription and subsequently show potent activation of the myogenic program that

ties into regulation of biological rhythms.
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5.3 Results

5.3.1 Myogenic reprogramming of human fibroblasts

We converted primary human fibroblasts into the myogenic lineage using the TF

and master regulator MYOD1, following Weintraub’s method for myogenic repro-

gramming [183]. Fibroblasts were transduced with a lentiviral construct that ex-

pressed human MYOD1 fused with a tamoxifen-inducible ER(T) domain (L-MYOD1)

[89]. With 4-hydroxytamoxifen (4-OHT) treatment, transduced cells showed nuclear

translocation of L-MYOD1, morphological changes consistent with expression of key

myogenic genes downstream of MYOD1 (MYOG and MYH1 ), and myogenic differ-

entiation. These data demonstrate conversion of fibroblasts into the myogenic lineage

by L-MYOD1.

We used this system to delineate the dynamics of genome structure and transcrip-

tion underlying direct cellular reprogramming. Analyses were carried out on trans-

duced, 4-OHT treated cells, sampling at 8-hour (hr) intervals for RNA-seq (three

replicates per time point, small RNA-seq, and Hi-C (single replicates per time point),

and at 24-hr intervals for proteomics (Figure 5.1A).

We evaluated up to 16 time points (-48, 0, . . ., 112 hrs) for genome structure

(form) through Hi-C and transcription (function) through RNA-seq. The resulting

time series data were studied at different scales (Figure 5.1B). Scale was based on

units of length along the linear genome (1 Mb, 100 kb) or by structurally/functionally

defined units of the genome, such as TADs or individual genes.

5.3.2 Architectural changes precede activation of the myogenic program

Given the cell state trajectory, it was unclear whether MYOD1-mediated repro-

gramming induced rewiring of genome architecture prior to the role of MYOD1 in me-

diating muscle gene transcription, or vice versa [91, 136]. To answer this question, we
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Figure 5.1: Myogenic reprogramming of human fibroblasts. A) Time course of
MYOD1-mediated reprogramming. The time window outlined in green corresponds
to time points at which both genome structure and transcription were captured by
Hi-C (single replicates) and RNA-seq (in triplicate). B) Scale-adaptive Hi-C matrices
and gene expression. The considered scales include 1 Mb, 100 kb, TAD and gene-
level. This figure was created by Sijia Liu and Scott Ronquist, and was taken from
Liu et al. [103].
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focused on form and function dynamics of 22083 genes genome-wide, where the form

is depicted by inter-gene Hi-C contact maps (See Appendix A.3), and the function

corresponds to RNA-seq FPKM values (Figure 5.2A). The form-function evolution is

then evaluated by determining the difference in network centrality features (extracted

from inter-gene contact maps) and gene expression between successive time points.

We refer to this measure as temporal difference score (TDS; See Appendix A.3).

Based on TDS at successive time points (Figure 5.2B), we found that a significant

form change at 8 hrs preceded a significant function change at 16 hrs.
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Figure 5.2: Changes in genome architecture precede activation of the myogenic pro-
gram. A) Genomic structure (form) and gene expression (function) given by a Hi-C
contact map and RNA-seq. Hi-C and RNA-seq are constructed at gene-level resolu-
tion. B) Function and form change at successive time points evaluated by temporal
difference score (TDS; See Appendix A.3) of RNA-seq and network centrality features
of Hi-C data, respectively. The significant form change (at 8 hrs) occurs prior to the
function change (at 16 hrs). C) Form-function change indicators for gene modules
of interest during cellular reprogramming (left) and fibroblast proliferation (right),
respectively. Here each row represents one gene module of interest, each column rep-
resents a time step, and the amount of change, as a percentage of total change over
time for each module, is depicted by color. Percentage is determined by finding the
number of genes with significant form-function change for each module and time step,
and dividing this number by the total number of significant gene changes for each
module over time (row). This figure was created by Sijia Liu and Scott Ronquist,
and was taken from Liu et al. [103].

We then contrasted our reprogramming data with data on human fibroblast pro-

liferation. Data on proliferating human fibroblasts were previously obtained using

similar methods over a time course [31] after cell cycle and circadian rhythm syn-

chronization, with collection of RNA-seq and Hi-C every 8 hours. We found that
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the pattern of form-function evolution during reprogramming is quite different from

fibroblast proliferation (Figure 5.2C). Consistent with findings represented in Fig-

ure 5.2B, the effects of nuclear reorganization were detectable prior to transcription

changes, that is, form preceded function. Given these results, we propose that chro-

matin architectural changes facilitate the orchestrated activation of transcriptional

networks associated with adoption of a new cell identity.

5.3.3 Early stage chromatin remodeling

We additionally sought to understand regulatory dynamics during reprogram-

ming, including early-stage gene expression dynamics related to chromatin remodel-

ing, super enhancer dynamics, and microRNA expression. Examination of early stage

RNA-seq data [-48, 16] (hrs) revealed endogenous mechanisms relevant to MYOD1

transcriptional activation including muscle stage-specific markers and chromatin re-

modeling factors (See Figure 5.3A). At 16 hrs, the combined upregulation of DES,

MYL4, TNNT1 and TNNT2 suggests myogenic differentiation [62, 152]. EZH2 has

been associated with both “safe-guarding” the transcriptional identity of skeletal

muscle stem cells and with terminal differentiation of myoblasts into mature muscle

[88]. ARID5A, a regulator of the myotube BAF47 chromatin remodeling complex,

is significantly upregulated at 8 hours (P = 7.2 × 10−5) and may act to enhance

MYOD1 binding to target promoters [86]. NR4A3, MEF2D, SIX4, SIX1, and SOX4

expression are also increased at 8 hr, all of which have important regulatory functions

during differentiation in the myogenic lineage (See Figure 5.3B) [11, 58, 84].
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Figure 5.3: Increased genomic contacts among myogenic regulatory elements set the
stage for reprogramming. A) Early-phase expression dynamics of genes related to
muscle cell terminal differentiation and chromatin remodeling, including components
of the contractile apparatus (DES, MYL4, TNNT1, TNN2), and EZH2, a repressor
that is involved in myogenesis. B) Expression of chromatin remodeling factors and
master TFs in the early phases of cellular reprogramming. These factors include
ARID5A, part of the BAF47 muscle remodeling complex which acts in cooperation
with MYOD1, MEF2D, which drives differentiation of myotubes to skeletal and car-
diac muscle, NR4A3 (aka NOR1) involved in differentiation of myotubes into smooth
muscle, and SIX1, SIX4 and SOX4, which control the differentiation of myotubes
into muscle cells. C) structure and function of super enhancers and associated genes
over time. Average Hi-C RPM contact between potential super enhancer and associ-
ated gene TSS regions over time, as defined by [75]. D) Top upregulated SE-P genes,
log2(FPKM) (Blue) and SE-P Hi-C normalized contact (Red; see Appendix A.3) over
time. This figure was taken from Liu et al. [103].
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We also investigated how muscle-related super enhancer-promoter (SE-P) inter-

actions change over time throughout MYOD1-mediated reprogramming. To capture

these dynamics, we extracted the Hi-C contact between skeletal muscle super enhancer

regions and associated genes transcription start site (TSS) (±1kb), as determined by

[75] (618 SE-P regions; See Appendix A.3). We observed that for these skeletal muscle

SE-P Hi-C regions, the strongest amount of contact occurred relatively early in the

reprogramming process, peaking 16-24 hrs post-L-MYOD1 addition to the nucleus

(P = 4.17× 10−9, Figure 5.3C; See Appendix A.3). Exact SE-P contact vs function

trends were variable, but a number of important myogenesis genes, such as TNNI1,

MYLPF, ACTN2, and TNNT3 show strong upregulation in function over time, with

an increase in SE-P contact post-MYOD1 activation. Contact vs. function trends for

the top 36 upregulated genes are shown in Figure 5.3D (See Appendix A.3).

5.3.4 Linking myogenic genes with entrainment of biological rhythms

Several studies have explored the link between MYOD1 and circadian genes

ARNTL and CLOCK, revealing that ARNTL and CLOCK bind to the core enhancer

of the MYOD1 promoter and subsequently induce rhythmic expression of MYOD1

[3, 191]. Here we discovered that upon MYOD1 activation, circadian genes exhibited

robust synchronization in gene expression, suggesting MYOD1 feedback onto the cir-

cadian gene network. Further inspection showed that core circadian genes (Table S3

in Liu et al. [103]) that contain E-boxes displayed the most profound synchronization

initially, starting with an uptick in gene expression just after MYOD1 activation (Fig-

ure 5.4A-D). Analysis using JTK CYCLE [77] confirmed our observation; all E-box

circadian genes were found to have a synchronized period of 24 hrs, with a maximum

lag of 4 hrs between genes, with the exception of CRY1 (Table S6 in Liu et al. [103]).
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Figure 5.4: Myogenic genes participate in entrainment of biological rhythms. A)
Gene network interactions between circadian E-box genes, derived from Ingenuity
Pathway Analysis. B) Core circadian gene expression over time. B1) Dexamethasone
synchronization. B2) L-MYOD1 synchronization. Target and factor correspond to
genes with E-box targets and TFs that bind to E-box genes, respectively. C) Hi-C
contacts between 26 core circadian genes over time (See Table S3 in Liu et al. [103]).
Rows and columns correspond to core circadian genes, contacts are binary. D) Net-
work connectivity of the largest connected component of the studied Hi-C contact
maps at different time points. E) Normalized gene expression (FPKM, cubic spline)
highlighting oscillation dampening after 32 hrs (red line) and the switch to differen-
tiation medium for select core circadian genes; MYOD1 and MYOG also shown. F)
Normalized TPM of TFs that are targeted by MYOG or MYOD1 (ELF3 ) and that
only showed oscillation after 32 hrs (red line). G) Conceptual diagram of biological
rhythm entrainment during MYOD1-mediated reprogramming, where the red line
signifies the bifurcation event. This figure was taken from Liu et al. [103].
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The subset of transcripts with oscillatory behavior was different before and after

the 32 hr time point. Endogenous MYOD1 and MYOG expression began close to

32 hrs and both transcripts displayed oscillatory expression. Additionally, circadian

transcript oscillations dampened at 40 hrs, coinciding with the switch to low-serum

differentiation medium (Figure 5.4E). To determine which newly oscillating tran-

scripts were potential targets of MYOD1 and MYOG, we further investigated which

transcripts have MYOD1 or MYOG binding motifs in their promoters using MotifMap

[43], and which were synchronized in expression with MYOD1 and MYOG. Among

the oscillating transcripts that fit these criteria, we found six TFs that were oscil-

latory only after the 32 hr critical transition point, have upstream MYOG binding

sites, and were synchronized in expression with MYOG. Of these six TFs, only ELF3

was found to have binding motifs for MYOD1, as well as synchronized expression

with MYOD1 (Figure 5.4F). Several of the six oscillatory TFs targeted by MYOG

or MYOD1 are associated with muscle developmental and differentiation processes,

including SOX15 [112], GATA6 [186], ISL1 [128], and ELF3 [14].

Robust synchronization in expression of circadian genes that are downstream tar-

gets of MYOD1 suggests MYOD1 feedback onto circadian gene circuits. After the

32 hr critical transition point, MYOG was associated with synchronized expression

of a subset of important myogenic TFs. These findings support regulatory roles for

MYOD1 and MYOG in entraining circadian and cell type-specific biological rhythms.

5.4 Discussion

In this study, we analyzed MYOD1-mediated reprogramming of human fibroblasts

into the myogenic lineage from a dynamical network perspective. Distinct from previ-

ous studies, we generated an enriched time-series data set including Hi-C, RNA-seq,

miRNA, and proteomics data. This provides a comprehensive genome-wide form-

function description over time, and allows us to detect early stage cell-fate commit-
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ment changes during cellular reprogramming. Capturing these dynamics may help

us identify genes that are key players in other reprogramming settings, and develop

a more universal understanding of the process and requirements for reprogramming

between any two cell types.

A number of studies have explored the link between MYOD1 and circadian genes

ARNTL and CLOCK, revealing that ARNTL and CLOCK bind to the core enhancer

of the MYOD1 promoter and subsequently induce rhythmic expression of MYOD1

[3, 191]. We found that upon activation of L-MYOD1, the population of cells exhibits

robust synchronization in circadian E-box gene expression. Among these E-box tar-

gets are the PER and CRY gene family, whose protein products are known to repress

CLOCK-ARNTL function, thus repressing their own transcription. Additionally, E-

box target NR1D1, which is synchronized upon addition of L-MYOD1, competes

with ROR proteins to repress ARNTL transcription directly. This adds another gene

network connection under MYOD1 influence, indirectly acting to repress ARNTL,

leading us to posit that MYOD1 can affect CLOCK-ARNTL function through E-Box

elements, in addition to CLOCK-ARNTL’s established activation effect on MYOD1.

Furthermore, these oscillations dampen just after the 32 hr point, after which MYOG

entrains the oscillations of a distinct subset of myogenic TFs. Therefore, MYOD1-

mediated reprogramming and circadian synchronization are mutually coupled, con-

sistent with other systems that modulate cell fate [49, 174].

Our proposed bio- and computational technologies shed light on the hypothesis

that nuclear reorganization occurs at the time of cell specification and both precedes

and facilitates activation of the transcriptional program associated with differentiation

(or reprogramming), i.e. form precedes function [136]. The alternative hypothesis is

that function precedes form, that is nuclear reorganization occurs because of differen-

tial transcription and is a consequence of, rather than a regulator of, differentiation

programs [91]. Our findings support that nuclear reorganization occurs prior to gene
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transcription during cellular reprogramming, i.e., form precedes function, and that

dynamical nuclear reorganization plays a key role in defining cell identity. Our data

do not establish a causal relationship, and for this, additional experiments will be

necessary. For example, Hi-C and RNA-seq can be supplemented using MYOD1

ChIP-seq to identify the regions of greatest adjacency differences between cell types

that correlate with transcription and/or MYOD1 binding.

Understanding the dynamical process of cellular reprogramming is critical in re-

generative medicine. Comprehensive 4DN studies can improve our ability to guide

cells toward repair and regeneration of tissue in injury and disease. Furthermore,

identifying a structural function for TFs that is distinct from transcription would

define a new molecular function with as yet an unknown role in development and

disease.
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CHAPTER VI

The 4DN of Cancer

This chapter combines the analysis of two 4DN data sets derived from cancer cell

lines. Additionally, Section 6.2, “The 4DN of single chromosome aneuploidy,” is based

on a paper by Rüdiger Braun, Scott Ronquist, Darawalee Wangsa, Haiming Chen,

Lena Anthuber, Timo Gemoll, Danny Wangsa, Vishal Koparde, Cynthia Hunn, Jens

K. Habermann, Kerstin Heselmeyer-Haddad, Indika Rajapakse, and Thomas Ried

[18]. I have summarized my contributions to this paper here.

6.1 Abstract

Chromosomal aneuploidy and genetic mutations have a direct effect on the 4DN

of cells. For example, gene copy number variations can cause an increase in the gene’s

RNA abundance and this misregulation can propagate through the gene’s regulatory

network, steering the system towards an uncontrolled proliferative state. A real a

example of this is observed in colorectal cancer. Most sporadic colorectal carcino-

mas carry extra copies of chromosome 7, an aneuploidy that emerges in premalignant

adenomas, and is maintained throughout tumor progression and in derived cell lines.

A comprehensive understanding on how chromosomal aneuploidy affects nuclear or-

ganization and gene expression, i.e., the nucleome, remains elusive. Additionally,

chromosome aberrations can steer the system to a more pluripotent state. CSCs are
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a subpopulation of cancer cells that exhibit “stem–like” properties. These cells have

upregulated expression of pluripotency genes and have the ability to recapitulate the

entire tumor microenvironment. This stemness property is believed to make the cells

more resistant to treatment, as CSCs are much more plastic in their cell state. Fur-

thermore, CSCs are believed to be more quiescent, and thus traditional therapeutic

strategies that target proliferating cells may be ineffective for this population. In this

chapter, we explore the 4DN of two distinct cancer data sets. One data set is collected

on colorectal cells, pre- and post- addition of an extra copy of chromosome 7. The

other data set is collected on breast cancer cells that have been sorted to isolate the

CSC subpopulation.

In the first study, we analyzed a cell line established from healthy colon mu-

cosa with a normal karyotype (46,XY) and its isogenic derived cell line that ac-

quired an extra copy of chromosome 7 as its sole anomaly (47,XY,+7). We studied

structure/function relationships consequent to aneuploidization using Hi-C, RNA se-

quencing and protein profiling. The gain of chromosome 7 resulted in an increase of

transcript levels of resident genes as well as genome-wide gene and protein expression

changes. The Hi-C analysis showed that the extra copy of chromosome 7 is reflected

in more interchromosomal contacts between the triploid chromosomes. Chromatin

organization changes are observed genome-wide, as determined by changes in A/B

compartmentalization and TAD boundaries. Most notably, chromosome 4 shows a

profound loss of chromatin organization, and chromosome 14 contains a large A/B

compartment switch region, concurrent with resident gene expression changes. No

changes to the nuclear position of the additional chromosome 7 territory were ob-

served when measuring distances of chromosome painting probes by interphase FISH.

Genome and protein data showed enrichment in signaling pathways crucial for ma-

lignant transformation, such as the HGF/MET-axis. We conclude that a specific

chromosomal aneuploidy has profound impact on nuclear structure and function,
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both locally and genome-wide. Our study provides a benchmark for the analysis of

cancer nucleomes with complex karyotypes.

In the second study, we present preliminary results characterizing the differences

between CSCs and non-CSCs. The cells analyzed here are derived from a breast cancer

cell line, SUM-159. These preliminary results show that the CSC population has a

different chromatin architecture in specific genomic regions. Additionally, targeting

CSCs via up-regulation of the stem cell marker ALDH1A1 may enrich for a CSC

subpopulation with a distinct karyotype.

6.2 The 4DN of single chromosome aneuploidy

Chromosomal aneuploidy is a hallmark of many cancers [140, 181]. Specifically,

colorectal cancers often show a gain in chromosome 7 (trisomy 7) early in cancer

development [16, 64, 71, 143]. This genomic imbalance undoubtedly affects the 4DN

of these cells, but it is difficult to characterize how this specific early-stage event leads

to an aggressive cancer phenotype at later time points. Recently, methods to create

a cell population with trisomy 7 as the only detectable abnormality were developed

for the human colonic epithelial cell line (HCEC) [109, 145]. Long term propagation

(∼ 40 population doublings) of HCEC cells under serum-free culture conditions gave

rise to cells with trisomy 7 as the only detectable genetic abnormality (referred to

here as HCEC+7).

A comprehensive understanding of complex biological systems depends on rec-

ognizing its structure-function relationships from molecules to the entire system.

Such efforts form the basis for the NIH Common Fund Initiative, the 4D Nucleome

(https://commonfund.nih.gov/4Dnucleome), which is aimed to elucidate how nuclear

organization affects the cellular transcriptome and the phenotype of cells [141]. We

have previously used Hi-C and RNA-seq to study structure/function relationships in

the Colorectal carcinomas (CRC) cell line HT-29, a cell line that harbors multiple

81



structural and numerical chromosomal aberrations which led to profound changes in

genome structure and function. We could show that chromosome conformation cap-

ture identifies chromosomal aberrations at high resolution, and that these aberrations

alter the relationship between structure and function [154]. We now use a model sys-

tem that consists of a matched pair of isogenic HCEC and HCEC+7 cells to dissect

the consequences of a single chromosomal aneuploidy on genome architecture and

function. We analyzed the genome using Hi-C, RNA-seq and imaging. We chose

trisomy of chromosome 7 as a model, because it occurs with high frequency in col-

orectal adenomas and must be considered as a “point of no return” in the progression

towards malignancy.

6.2.1 Trisomy 7 results in specific alterations to nuclear organization as

measured by Hi-C

Changes to nuclear organization as a consequence of aneuploidy were determined

by Hi-C. We show that three copies of chromosome 7 resulted in increased inter- and

intrachromosomal contacts of the aneuploid chromosomes which is shown genome-

wide in Figure 6.1A. Figure 6.1B displays chromosome 7 specific Hi-C maps, and

confirms that extra copies of chromosome indeed results in increased intrachromoso-

mal contacts. This is consistent with previous results from our group analyzing the

colorectal cancer cell line HT-29, where we demonstrated that copy number changes

resulted in increased contacts [154].

The global Hi-C maps revealed additional, aneuploidy specific alterations to nu-

clear organization. Chromatin is organized as active and inactive domains, also re-

ferred to as A and B compartments. We observed a clear change in this compartmen-

talization on chromosome 14. Here, we determined a clear switch in compartmental-

ization from A in HCEC to B in HCEC+7 in a region spanning chr14:62.4Mb-63.8Mb

(Figure 6.2A). This region contains few proteins coding genes, many of which change
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Figure 6.1: Hi-C maps show an increase in chromosome 7 contacts genome-wide.
A) Genome-wide Hi-C contact maps for HCEC (left), HCEC+7 (right), and the
difference between the two samples (center). Matrices are shown at 1Mb resolution
and log-scale. Red regions in the middle matrix are enriched in HCEC+7, blue regions
in the middle matrix are enriched in HCEC. A clear increase in HCEC+7 contacts is
observed in regions involving chromosome 7 (green arrow). B) Chromosome 7 Hi-C
contact maps for HCEC (left), HCEC+7 (right), and the difference between the 2
samples (center). Matrices are shown at 1Mb resolution and log-scale. Red regions
in the middle matrix are enriched in HCEC+7, blue regions in the middle matrix are
enriched in HCEC. A clear increase in HCEC+7 contacts is observed in chromosome
7. This figure was taken from Braun et al. [18].
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significantly in expression. The most significant change in expression is observed

in KCNH5 and RHOJ, both of which are down regulated and completely repressed

in HCEC+7 (adjusted p-value 1.7824e-17 and 2.9776e-06, respectively), in line with

their change from compartment A to B. KCNH5 hypermethylation has been observed

in a number of cancers, which may explain the compartment switch from A to B [73].
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Figure 6.2: HCEC+7 results in genome-wide structural changes...

continues on next page
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Figure 6.2: continued from previous page

....A) A change in chromatin partitioning is observed in chromosome 14. The left
and right side show HCEC and HCEC+7, respectively. The top row shows the
average gene expression for each 100kb bin. The middle row shows the Fiedler vector
partitioning. A clear change is observed between 425 and 450 (blue square). The
bottom row is the Hi-C contact map for chromosome 14, shown at 100kb resolution,
log-scale. B) HCEC+7 shows a clear change in chromosome 4 patterning. The left
and right side show HCEC and HCEC+7, respectively. The top row shows the Fiedler
vector partitioning. The middle row is the Hi-C contact map for chromosome 4, shown
at 100kb resolution, log-scale. Squares (green and blue) along the diagonal of the Hi-C
matrix depict the TAD structure. A direct comparison of the TAD structure between
samples is shown below. This figure was taken from Braun et al. [18].

Next, we observed a visible loss of chromosome 4 patterning, with clear changes in

A/B compartmentalization as well as TAD structure chromosome-wide (Figure 6.2B).

Genes within regions that change from A in HCEC to B in HCEC+7 are generally

down-regulated, as expected. 8.8% of genes within these regions are significantly

down-regulated, with 4.4% of genes significantly up-regulated (adjusted p-value <

0.05). Genes within regions that change from B in HCEC to A in HCEC+7 are

up-regulated to a larger extent. 22.3% of genes within these regions are significantly

up-regulated, with 1% of genes significantly down-regulated (adjusted p-value< 0.05).

HCEC revealed 133 TADs on chromosome 4, which were reduced to 109 TADs as a

consequence of chromosome 7 aneuploidy. Change was also observed in TAD struc-

ture: the segregation of the domains was less pronounced in the HCEC+7 cells. This

effect was not observed on other chromosomes.

6.2.2 Trisomy 7 affects chromosomal organization in the interphase nu-

cleus as measured by 3D-FISH

We next determined whether an extra copy of chromosome 7 affects the posi-

tioning of that chromosome in the interphase nucleus using an independent method.

Therefore, we performed dual-color 3D-FISH on morphologically preserved HCEC
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and HCEC+7 nuclei. In addition to chromosome 7, we also determined the position-

ing of chromosome 19 as a control. Chromosome 19 has the highest gene density of

all human chromosomes and is positioned closer towards the center of the interphase

nucleus [42]. To objectively evaluate CT positioning and to enable statistical compar-

ison between HCEC and HCEC+7 cells, 3D images were processed via a MATLAB

script (See Appendix A.4). The shape of the nuclei was detected and analyzed indi-

vidually, the number of CTs was counted, and the size and distance between CTs and

the nuclear periphery was calculated. An example of the image reconstruction and

the position measurements is shown in Figure 6.3. The size of the CTs of chromosome

7 were slightly smaller in the HCEC+7 cells (HCEC: 5.96 ± 1.62 µm3; HCEC+7: 4.92

± 1.54 µm3) although this trend did not reach statistical significance. In turn, the

size of the chromosome territories of chromosome 19 tended to be slightly bigger in

the HCEC+7 cells compared to the diploid cells (HCEC: 6.26 ± 1.70 µm3; HCEC+7:

7.54 ± 2.56 µm3) without any statistical significance. As expected the nuclear posi-

tion of chromosome 19 was more internal than chromosome 7, which is gene poorer,

regardless of an extra copy of chromosome 7. However, the positioning of the CTs of

chromosome 7 was more variable in the HCEC+7 cells as measured by the distance to

the edge of the nucleus to the centroid of the CT (HCEC: 2.10 ± 0.96 µm; HCEC+7:

2.37 ± 1.34 µm). The nuclei of the HCEC+7 cells were significantly bigger compared

to the nuclei of the diploid cells (1CT: 139.06 ± 35.24 µm3; 1CT+7: 173.23 ± 48.82

µm3, p<0.00085).

6.2.3 Trisomy 7 results in global gene expression changes

To determine the consequences of nuclear structural changes as a result of trisomy

7, we performed transcriptome profiling by RNA sequencing. The acquisition of an

extra copy of chromosome 7 resulted in global gene expression changes. Chromosome

7 had the highest proportion of genes differentially expressed, as would be expected
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Figure 6.3: 3D-FISH image analysis of CTs. A) Cell nuclei were automatically se-
lected from DAPI images. B) Fluorescent channels corresponding to chromosome 7
and 19 were analyzed, and CTs were automatically selected. C) CT size, distance
from CT to nucleus edge (d 1), and distance between CTs (d 2) was extracted. This
figure was taken from Braun et al. [18].
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with additional gene copies, though not all genes were upregulated.

Next, we wanted to interrogate the functional space of gene expression changes.

This was performed using gene set association analysis of RNA-seq data (GSAASe-

qSP) (Figure 6.4A). From this analysis, we identified 2 signaling networks that were

significantly enriched in the HCEC+7 cells with an FDR q-value < 0.005, and others

that are strongly associated with the phenotype. The top 4 gene sets are crucial

networks in colorectal carcinogenesis, namely, P53-pathway (0.003), MYC-targets

(0.003), TNF-α via NF-κB (0.126), and KRAS signaling up (0.160).

Figure 6.4: Identification of differentially regulated pathways. GSAA analysis. The
top four signaling networks that were enriched in the HCEC+7 cells are shown; P53-
pathway (0.003), MYC-targets (0.003), TNF-α via NF-κB (0.126), KRAS signaling
up (0.160). This figure was taken from Braun et al. [18].

More detailed analysis of genes coded on chromosome 7, which are linked to
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colorectal carcinogenesis, revealed that HGF was significantly down-regulated in

HCEC+7 cells, whereas MET was significantly up-regulated. In line, GSAA analysis

showed an up-regulation of KRAS signaling, which is downstream of the HGF/MET

axis. Though neither HGF nor MET showed a change in A/B compartment, MET is

located within the region that shows a clear loss of chromatin patterning.

6.2.4 Discussion

Tissue-specific chromosomal aneuploidies emerge at early stages of tumorigenesis

[16, 74, 143]. During the transformation of normal colon to polyps and eventually in-

vasive carcinoma, cells frequently acquire extra copies of chromosome 7 at early stages

of malignant transformation [16, 64, 71, 143]. We therefore attempted to understand

the global consequences of trisomy 7 in colon cells on both nuclear organization and

function.

Hi-C identified changes specific to chromosome 7, however, additional chromo-

somes were affected by distinct chromatin organization modifications. The increase

in direct contacts are a result of an additional copy of chromosome 7. An increase

in chromosome 7 Hi-C counts was observed genome-wide, inferring that the extra

copy of chromosome 7 had no detectable preference in its position relative to other

chromosomes. This is in line with our CT reconstruction analysis using 3D-FISH

which did not show changes in chromosomal positioning. These results are consistent

with previous results from our laboratories reporting comprehensive Hi-C maps of the

colorectal cancer cell line HT-29 [154]. In addition, we showed that the Hi-C maps

faithfully recapitulate 2D changes determined by high resolution molecular cytoge-

netic analyses, i.e., SKY, aCGH and FISH to chromosome number and structure.

Changes of the nucleome of the HCEC+7 cells were not restricted to chromosome

7. Genome-wide analysis revealed many regions with differences in structure and

function, with the strongest changes observed on chromosome 4 and 14. On both
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of these chromosomes, A/B compartment changes were observed. On chromosome 4

we not only observed switches in the A/B compartments, but also changes in TAD

boundaries. The number of TADs decreased from 133 in the diploid cells to 109 in

the HCEC+7 cells. In addition, we observed structural changes. The mechanisms for

these changes are presently not known. However, from our results it appears obvious

that understanding the consequences of chromosomal trisomies requires genome wide

analyses.

Changes in the nuclear structure resulted in a change in function defined by gene

expression levels. Genes that switched from A to B regions were generally down-

regulated, whereas genes that switch from B to A regions were generally upregulated.

One example is the switch of a region on chromosome 14 (chr14:62.4Mb-63.8Mb) that

changed from the A to B which is possibly reflective of hypermethylation. Hyperme-

thylation is associated with heterochromatin and B compartmentalization. Further-

more, KCNH5 has been shown to hypermethylated previously in cancers [73, 127].

How this region is targeted after the trisomy 7 event is unknown. The loss of com-

partment structure observed on chromosome 4 extended from 91 Mb to 158.9 Mb

and was generally associated with A to B transition. Again, the compartment switch

resulted in a change in gene expression in a directionality that would be intuitive.

The mechanism for this targeted loss of chromatin structure is unknown, however, we

surmise that global gene expression changes have a structural correlate.

We found a significant down-regulation of HGF-mRNA expression in HCEC+7

cells, while MET was significantly up-regulated. HGF and MET are both located

in a region on chromosome 7 that showed a loss of chromatin patterning, however,

we did not observe a switch in A/B compartment. The hepatocyte growth factor

(HGF) specifically binds to the receptor tyrosine kinase “mesenchymal to epithelial

transition” (MET), which is a proto-oncogene [17, 129]. MET-mRNA quantification

in primary CRC suggested that MET overexpression plays an important role in the
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development of loco-regional invasiveness in early stage of CRC development [167].

Consistent to changes in HGF and MET expression, we found an up-regulation of

KRAS signaling by GSAA gene enrichment analysis, although it did not reach sta-

tistical significance. Besides KRAS signaling, trisomy 7 in normal colon cells results

in dysregulation of further signaling pathways crucial for CRC genesis such as the

P53-pathway and TNF-α via NF-κB.

Our data demonstrate that structural nuclear changes caused by an extra chro-

mosome 7 entails the dysregulation of several pathways associated with colorectal

carcinogenesis. Interestingly, trisomy 7 by itself is not carcinogenic as demonstrated

here by us using murine xenograft models in nu/nu mice and others [109]. As trisomy

7 is commonly found in early stages of carcinogenesis in the colon such as adenomas,

we conclude from our results that this chromosomal aberration is a perquisite facili-

tating subsequent malignant transformation. We show that this specific chromosomal

aneuploidy has a profound impact on nuclear structure and function, both, locally

and genome wide.

6.3 The 4DN of cancer stem cells

The cancer stem cell hypothesis has garnered significant research attention in

recent years. This hypothesis states that there exists a population of CSCs in many

tumors that have been reprogrammed to a pluripotent state, and that these cells have

the ability to recapitulate the tumor microenvironment and drive metastasis [185].

These cells can be identified by their upregulation of pluripotency genes. Specifically,

ALDH1A1 is a marker of CSCs in many cancer cell types, and flow sorting on this

marker can isolate the CSC population [76]. Furthermore, knock-down of SPEN

significantly decreases the expression of ALDH1A1 in breast cancer cells [192]. These

findings have advanced our understanding of how CSCs may operate, but a complete

characterization of genome structure and function in these cell populations has not
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been performed.

In this work, we characterize the structural and function differences between four

distinct cell populations. These populations represent varying levels of potential cell

stemness: SUM-159 cells (SUM-159), ALDH1A1 positive SUM-159 cells (ALDH+),

ALDH1A1 negative SUM-159 cells (ALDH-), and SUM-159 cells with SPEN knock-

down (SPEN-KD). For all cell populations, Hi-C and RNA-seq data is collected and

analyzed. Differences in each of these measures are detected and described in the

following sections.

6.3.1 ALDH1A1 dependent chromosome translocations

Visual inspection of the ALDH+ and ALDH- Hi-C matrices led us to believe there

may be differences in the karyotype between these populations. To identify transloca-

tions in a principled manner, we developed a method for the detection of translocation

differences between samples (See Section A.4). Briefly, our method detects large ge-

nomic regions in the inter-chromosomal Hi-C matrices where the number of contacts

in the region far exceeds the expectation.

Our analysis detected multiple translocation differences between the two popula-

tions. Overall, there were more translocations in the ALDH+ population than the

ALDH- population (Figure 6.5A). An unbalanced translocation between the q arm

of chromosome 3 and the q arm of chromosome 7 is clearly detected in the ALDH+

sample, but not the ALDH- sample (Figure 6.5B). Another unbalanced translocation

is detectable between the q arm of chromosome 10 and the q arm of chromosome 13

in the ALDH+ sample, but not the ALDH- sample (Figure 6.5C). Additionally, a

translocation between the chromosome 2 and chromosome 11 is detectable in both

populations, but appears to be much stronger in the ALDH- samples. Since Hi-C

data is derived from a population of cells, this may indicate that a higher percentage

of cells in the ALDH- population have the translocation between chromosome 2 and
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chromosome 11.

Figure 6.5: CSC vs non-CSC translocation differences. A) Genome-wide Hi-C for
ALDH- (left), the difference between ALDH+ and ALDH- matrices (middle), and
ALDH+ (right). The green and brown boxes denote regions where translocation
differences were detected. B) Inter-chromosome 3 and 7 Hi-C for ALDH- (left), the
difference between ALDH+ and ALDH- matrices (middle), and ALDH+ (right). The
black arrow denotes where the translocation difference can be observed. C) Inter-
chromosome 10 and 13 Hi-C for ALDH- (left), the difference between ALDH+ and
ALDH- matrices (middle), and ALDH+ (right). The black arrow denotes where the
translocation difference can be observed.

To validate these findings, we performed spectral karyotyping (SKY) on the

ALDH+ and ALDH- populations. In total, 15 cells from the ALDH- population

and 19 cells from the ALDH+ population were karyotyped via SKY (Figure 6.6).

Surprisingly, SKY revealed extreme heterogeneity in each population, with nearly
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every cell in each population carrying a distinct karyotype. This finding leads us to

believe that the translocations detected via Hi-C exist in a small population of cells,

and a larger number of cells will need to be karyotyped to see these differences.

Figure 6.6: Spectral karyotyping of CSC and non-CSC populations. The top image
is SKY derived from the ALDH- population. The bottom image is SKY derived from
the ALDH+ population. Clear translocation differences can be observed between the
two samples. Images obtained from Darawalee Wangsa, NIH.
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6.3.2 ALDH1A1 chromatin accessibility

In order to determine the chromatin accessibility of the ALDH1A1 locus, the

Fiedler vector was calculated for a region surrounding this locus (See Section A.4).

From this analysis we can clearly see that the locus is in the A compartment in the

ALDH+ sample, and at least partially in the B compartment for all other samples

(Figure 6.7).

Figure 6.7: ALDH1A1 chromatin accessibility. The Fielder vector of a sub-regions
surrounding the ALDH1A1 locus is plotted for each sample. Green bars denoted pos-
itive Fiedler vector elements (A compartment) and red bars denoted negative Fiedler
vector elements (B compartment). Blue background denotes genomic regions that
contain the ALDH1A1 locus. The ALDH1A1 locus is clearly in the A compartment
in the ALDH+ sample, and at least partially in the B compartment for all other
samples. Details described in Section A.4.

6.3.3 Low dimensional projection of chromatin structure and function

To determine genome-wide differences in structure and function, we projected

measurements of each to a low dimensional space (See Section A.4). Briefly, PCA was

applied to normalized RNA-seq and chromatin accessibility, via the Fiedler vector.
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From this analysis, we observe that PC1 clearly separates the ALDH1A1 sorted sam-

ples (ALDH+ and ALDH-) from the non-sorted samples (SUM-159 and SPEN-KD)

in both the structural and function PCA plots (See Figure 6.8). Interestingly, while

the ALDH1A1 sorted samples appear to be very similar in function genome-wide,

they are clearly separated in the structural PCA plot. This suggests that identifica-

tion of CSCs via structural measurements may be more effective than identification

via functional measurements.

Figure 6.8: Low dimensional projection of chromatin structure and function. Func-
tional (Top) and structural (Bottom) genome-wide measurements derived from RNA-
seq and Hi-C, respectively, are projected to a low dimensional space via PCA. Details
described in Section A.4.
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CHAPTER VII

4DNvestigator

This chapter is based on a paper by Scott Ronquist, Sijia Liu, Michael Perlman,

and Indika Rajapakse (under review). I have summarized my contributions to this

paper here.

7.1 Abstract

The combined analysis of genome structure and function over time, and how

these changes affect cellular phenotype, is referred to as the 4DN. 4DN analysis is

necessary to fully understand how a cell operates, but 4DN analysis tools are currently

underdeveloped. We present the “4DNvestigator,” a user-friendly toolbox for the

analysis of time-series genome structure, measured by Hi-C, and genome function,

measured by RNA-seq.

Availability: https://github.com/scotronq/4DNvestigator

7.2 Introduction

The genome is a dynamical system where changes in genome structure and func-

tion over time affect the cell’s phenotype. This dynamical relationship between

genome structure, transcriptional landscapes, and cellular phenotypes is referred to
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as the 4DN [141]. The 4DN is an emerging field of study, wherein a significant in-

vestment is being made by research institutes to enhance our understanding of how

changes in nuclear organization affects normal development and disease states [47].

To analyze the 4DN, Hi-C and RNA-seq are often used to observe genome struc-

ture and function, respectively. As high throughput sequencing costs decline, the

availability and volume of Hi-C and RNA-seq data sets is expected to increase. With

this increase in data, the development of methods to properly analyze these data

sets is imperative. Furthermore, analyzing these high-dimensional data sets is non-

trivial and requires a high-level understanding of biology, mathematics, and computer

science.

To aid researchers in the analysis of 4DN data, we present the 4DNvestigator.

The 4DNvestigator is a MATLAB toolbox that loads time series Hi-C and RNA-seq

data, extracts important structural and functional features, and is compatible with

established Hi-C and RNA-seq processing programs and formats. This toolbox in-

cludes both established and novel 4DN data analysis methods, and displays important

findings in simple visualizations. The 4DNvestigator takes a network-based approach

to this analysis. This approach allows for the computation of network centrality and

network entropy, both of which have been shown to reflect biological phenomena [103,

110]. Additionally, we present a novel statistical method for comparing two or more

Hi-C matrices. We compare this method against established Hi-C comparison meth-

ods within this text. We believe adoption by the community at large of analytical

tools such as the one described in our paper is critical to advance the field of 4DN

research.

7.3 Materials and methods

An overview of the 4DNvestigator workflow is depicted in Figure 7.1A. The

4DNvestigator takes processed Hi-C and RNA-seq data as input, along with a meta-
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data file which describes the sample and time point for each input Hi-C/RNA-seq file

(See A.5). A graphical user interface (GUI) is provided for ease of use (Figure 7.1B).

A number of novel methods for analyzing 4DN data are included within the 4DNves-

tigator and are described below. A list of accepted input file formats is provided at

https://github.com/scotronq/4DNvestigator.

7.3.1 4DN feature analyzer

The “4DN feature analyzer” quantifies and visualizes how much a genomic region

changes in structure and function over time. To achieve this, we adopt a network point

of view, where genomic regions are nodes and interactions between regions are edges.

Edge weights are set relative to the number of contacts between regions in Hi-C. With

this network point of view, we can quantify the importance of each node using network

centrality. Network centrality identifies nodes that play an influential topological role

in the network [125]. There are several different centrality measures, each of which

identifies a particular type of nodal influence. For example, degree centrality measures

the connectedness of a node locally, calculated by the summation of edge weights for

all edges connected to the node. In contrast, betweenness centrality is a more global

connectedness measure, which counts the number of times a given node is on the

shortest path between all other pairs of nodes. Centrality measures derived from Hi-

C have been shown to have biological meaning, reflecting the chromatin accessibility

of each region and predicting A/B compartment switch locations [103]. In the 4DN

feature analyzer, centrality measures and RNA-seq define the state of each genomic

region at each time point. The 4DN feature analyzer quantifies and visualizes how

each genomic region changes in this state over time. Genomic regions can be defined

at many scales, such as gene-level, 100 kb-level, or TAD-level.

Hi-C matrices are balanced using the Knight-Ruiz (KR) algorithm and are ob-

served over expected (O/E) normalized using Juicer Tools [56]. We define Hi-C ma-
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Figure 7.1: Overview of the 4DNvestigator. A) Data processing pipeline for the
4DNvestigator. Within this diagram, 4DN refers to the 4DNvestigator. B) Overview
of the 4DNvestigator GUI, with a comparison between time series Hi-C samples at
a 4Mb region surrounding the gene locus MYH1. Data is obtained from Liu et al.,
time points -48, 8, 80h [103]. The procedure described by Larntz and Perlman (See
section “Hi-C matrix comparison”) detects regions that are most significantly different
between samples, and rejects the null hypothesis that these matrices are equal. Green
circles highlight regions with the largest difference between samples. Example codes
to recalculate these results are included within the 4DNvestigator.

trices of this form as A(m), where m denotes the time point (or sample). The following

network centrality measures are extracted from A(m): degree, eigenvector, between-

ness, and closeness [103]. The centrality measures are combined with the RNA-seq

expression for the corresponding genomic regions to form a “feature” matrix that de-

fines the state of each genomic region at each time point. RNA-seq data is measured

by the log2 transformation of Transcripts Per Million (TPM). For regions containing

more than one gene, the mean log2(TPM) is computed. We define RNA-seq data of

this form as r(m). The z-score for each feature is computed to normalize the data and

to put features on the same relative scale. Feature matrices for each time point are

then projected to a common low dimensional space (2D or 3D) via PCA, Laplacian

Eigenmaps, or t-SNE [10, 175]. This allows the genomic regions to be visualized in

2D. Genomic regions that move significantly within this low dimensional space also

change the most in structure and function over time. Points that correspond to the
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same genomic region at different time points are fit with a Minimum Volume Ellipsoid

(MVE). The MVE volume quantifies the “4DN variance” of each genomic region. A

Minimum Area Ellipse (MAE) is calculated if the points lie on a plane. Methods to

perform this analysis are described in Algorithm 1, following methods outlined in Liu

et al. [103].

Algorithm 1: 4DN feature analyzer

Input: Hi-C matrices A(m) ∈ Rn×n, and RNA-seq vectors r(m) ∈ Rn×1,
m = 1, . . . , k

Output: low dimensional space Y(m), and 4DN variance v
1 Compute degree, eigenvector, betweenness, and closeness centrality of A(m),

and define as b
(m)
deg , b

(m)
eig , b

(m)
bet , b

(m)
close, respectively, where each b(m) ∈ Rn×1

2 Form the feature matrices X(m) = [b
(m)
deg ,b

(m)
eig ,b

(m)
bet ,b

(m)
close, r

(m)], where

X(m) ∈ Rn×5

3 Normalize the columns of X(m)

4 Compute the common low dimensional space Y(m) using PCA, Laplacian
Eigenmaps, or t-SNE

5 Compute the 4DN variance for each genomic region v, where v ∈ Rn×1

Return: Y(m) and v

7.3.2 Network entropy

Entropy measures the order within a system, where higher entropy corresponds to

more disorder [38]. Here, we apply this measure to Hi-C data to quantify the order in

chromatin structure. Biologically, genomic regions with high entropy likely correlate

with high proportions of euchromatin, as euchromatin is more structurally permissive

than heterochromatin [110]. Furthermore, entropy can be used to quantify stemness,

since cells with high pluripotency are less defined in their chromatin structure [113].

Since Hi-C is a multivariate analysis measurement (each contact coincidence involves

two variables, the two loci), we use multivariate entropy, VNE. The algorithm to

compute VNE is given in Algorithm 2.
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Algorithm 2: VNE Computation

Input: Hi-C matrix A ∈ Rn×n

Output: VNE
1 Compute the correlation matrix C = corr(log2(A))
2 Compute the eigendecomposition of C, where λ1 ≤ λi ≤ λn are the eigenvalues

of C

3 Normalize the eigenvalues: λ̄i = λi∑n
j=1 λj

4 Compute VNE: VNE = −
∑n

i=1 λ̄iln(λ̄i)

Return: VNE

7.3.3 Hi-C matrix comparison

A number of methods have been developed in the Hi-C research community to

compare Hi-C matrices. These methods can be broadly grouped into 2 categories: Hi-

C reproducibility methods (e.g. HiCRep, HiC-spector), and Differential Chromatin

Interactions (DCI) methods (e.g. SELFISH, HiCCompare, FIND, diffHic) [4, 54, 107,

162, 188, 189]. Hi-C reproducibility methods are useful for assessing the equality of Hi-

C matrices genome-wide, and detecting technical bias between samples. DCI methods

determine which loci have a significantly different number of Hi-C contacts between

samples. All methods listed above are comparisons between only two matrices.

Here we pose a different, but related, question: Is the chromatin structure, within

a genomic region, equivalent between samples? To answer this question, we take a

multivariate statistical approach. Elements within Hi-C matrices have been shown to

be normally distributed when the log2 transformation is applied to A(m) (See Figure

7.2B) [25]. For data of this form, a method for testing the equality of correlation

matrices was proposed by Larntz and Perlman in 1988 [95]. Here, we apply this

technique to Hi-C correlation matrices to determine the statistical difference between

multiple Hi-C samples at genomic regions of interest. Furthermore, we extend this

method to determine where the matrices are most significantly different between

samples. We refer to this method herein as the “LP” method. We recommend
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Figure 7.2: Hi-C normalization for the LP method. A) Percentage of total Hi-C
contacts by genomic distance. Inset figure shows a typical Hi-C intra-chromosome
adjacency matrix at 1 Mb resolution. The blue line denotes where the genomic dis-
tance exceeds 5 Mb. B) A 5Mb Hi-C matrix (100 kb resolution, top left) and a
histogram of the counts within the matrix (top right). When the log2(O/E) trans-
formation is computed on the Hi-C matrix (bottom left), elements within the matrix
are normally distributed (bottom right).

that the LP method is performed at Hi-C resolutions ≤ 100 kb and that regions do

not extend >5 Mb, as signal (counts) often become sparse as the genomic distance

between loci increases (See Figure 7.2A). The full algorithm is given in Algorithm 3.

Algorithm 3 outputs a P -value for the equality of the Hi-C matrices and a matrix S

where the largest values in S correspond to the genomic regions that are most different

between samples. An example of this analysis is shown in Figure 7.1B, which can be

recreated using codes given at https://github.com/scotronq/4DNvestigator.

7.3.4 Chromatin partitioning and differential expression

The 4DNvestigator includes a suite of previously developed Hi-C and RNA-seq

analysis methods. Hi-C A/B compartments can be extracted using previously defined

methods [31, 102]. Regions that change compartments between samples are auto-

matically identified. The 4DNvestigator also utilizes developed MATLAB scripts for
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Algorithm 3: LP method

Input: Hi-C matrices A(m) ∈ Rn×n, m = 1, . . . , k
Output: P -value p, and test statistic S

1 Compute the correlation matrix C(m) = corr(log2(A
(m))). Define the

corresponding population correlation matrices as P(m)

2 Define the null hypothesis

H0 : P(1) = · · · = P(k)

3 Compute the Fisher z-transformation Z(m). Elements in Z(m) and C(m) are

denoted as z
(m)
ij and c

(m)
ij , respectively, and

z
(m)
ij =

1

2
ln

[
1 + c

(m)
ij

1− c(m)
ij

]

4 Form S, where elements in S are denoted as sij and

sij = (n− 3)
k∑

m=1

(z
(m)
ij − z̄ij)2, z̄ij = k−1

k∑
m=1

z
(m)
ij

5 Calculate the test statistic T = max
1≤i<j≤n

sij

6 Reject H0 at level α if T > χ2
k−1,ε(α), where χ2

k−1,ε(α) is the chi-squared

distribution with k − 1 degrees of freedom and ε(α) = (1− α)2/n(n−1) is the
Šidák correction

7 Calculate p, the level α at which T > χ2
k−1,ε(α)

Return: p and S
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differential gene expression that follow methods outlined in Anders et al. [2]. The

4DNvestigator takes results obtained from the methods described above and identifies

regions that change in both Hi-C and RNA-seq.

The first method for determining A/B compartments is based on the Fielder vector

of the Hi-C matrix, following methods outlined in Chen et al. [32]. The second method

for determining A/B compartments is based on the first principal component of the

Hi-C matrix, following methods outlined in Lieberman-Aiden et al. [102]. The A/B

compartment partitioning for every chromosome and sample is plotted in a figure,

where regions that have a large change in sign and magnitude are highlighted.

7.3.5 Simulated Hi-C data

Simulated Hi-C data was created to compare the LP method against alternative

Hi-C comparison methods. Two distinct simulated data sets were created to have:

(1) changes in chromatin loop structure and (2) changes in chromatin compartment

structure. Chromatin loops and chromatin compartments are two features that have

been used to characterize Hi-C structure [102, 139]. Both simulated data sets are

created by perturbing data from real Hi-C matrices: a 400 kb region (10 kb resolution)

is used for the chromatin loop data set and a 2Mb region (50 kb resolution) is used

for the chromatin compartment data set.

One additional simulated matrix was also created by adding a small amount of

random noise to the 400 kb region (10 kb resolution) Hi-C matrix. A random number

sampled from a normal distribution, N (0, 0.05), is added to each element in log2(A).

This matrix is used to determine how robust Hi-C matrix comparison methods are

to small amounts of noise.

For each simulated data set, 10 matrices were created that are incrementally more

divergent from the original Hi-C matrix. For changes in loop structure, counts were

added to a specific off-diagonal region, following a 2D gaussian distribution (σ = 1),
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to model a chromatin loop structure. For changes in compartment structure, counts

aligned to a specific genomic region (bin) were changed to decrease the correlation

coefficient between the specified bin in the simulated Hi-C log2(A) matrix and the

specified bin in the original Hi-C log2(A) matrix. These changes reflect what would

be observed if the specified bin was changing its compartment structure. Methods to

recreate the simulated Hi-C matrices are provided within the 4DNvestigator.

7.4 Results

7.4.1 4DN feature analyzer

We demonstrate how the 4DN feature analyzer makes use of time series infor-

mation by analyzing time series Hi-C and RNA-seq data collected on human der-

mal fibroblasts that are being reprogrammed to the muscle lineage, mediated by the

addition of master TF MYOD1 [103]. Three time points are analyzed here, corre-

sponding to 100 kb resolution Hi-C and RNA-seq data on samples collected: 48 h

prior to MYOD1 addition (“-48 h”; control), 8 h post-MYOD1 addition, and 80 h

post-MYOD1 addition. Figure 7.3 shows the results from the 4DN feature analyzer

for chromosome 11. Each time point is labeled with a unique color to show how the

regions change in 4DN over time. Regions that move the most in this low dimensional

space are highlighted with red ellipses, and the genes within these regions are shown

within the figure. Data and code to perform this analysis are provided within the

toolbox “examples4DNvestigator.m”.

7.4.2 Network entropy

To demonstrate how VNE can be used to quantify disorder in chromatin structure,

we have calculated the VNE of two distinct cell types: a differentiated cell type,

HFFc6, and an undifferentiated cell type, H1-hESC. It is clear from the Hi-C matrices
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Figure 7.3: 4DN feature analyzer. (A) Time series Hi-C and RNA-seq data. (B) 4DN
feature analyzer example. Points correspond to genomic loci (100 kb). Loci that
change the most in structure and function are highlighted with red minimum volume
ellipses, and genes within these regions are listed within the figure.

Figure 7.4: VNE difference between cell types. The VNE for an undifferentiated cell
type (embryonic stem cell, H1-hESC) is much higher than the more differentiated cell
type (fibroblast, HFFc6). Intra-chromosome log2(A) Hi-C matrices are shown at 100
kb resolution for chromosome 14.
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that the differentiated cell type is more ordered in its chromatin structure (See Figure

7.4). VNE reflects this observation, as the VNE for the differentiated cell type HFFc6

is much lower (2.87) than the undifferentiated cell type H1-hESC (5.74).

7.4.3 Hi-C matrix comparison

Within the 4DNvestigator we present a novel statistical method for detecting dif-

ferences in Hi-C matrices, the LP method. Specifically, we test the null hypothesis

that the Hi-C correlation matrices, derived from different samples, are equivalent

(See Section Hi-C matrix comparison). To assess the LP method’s ability to detect

differences in Hi-C matrices between samples, we have compared the LP method

against alternate Hi-C comparison methods: HiCRep, HiC-spector, and SELFISH [4,

188, 189]. HiCRep, HiC-spector are Hi-C reproducibility metrics, while SELFISH

is a DCI method that was recently shown to outperform all prior methods for DCI

detection. We note that there are no methods, that we are aware of, that are a di-

rect comparison with our method. All of the alternate methods we are comparing

here were designed to address related, but fundamentally different, questions: Hi-C

reproducibility metrics for genome-wide comparisons, and DCI for loci interaction dif-

ferences (not overall structural differences within a region). Nevertheless, we compare

them here to highlight where our method is advantageous.

There are many ways in which Hi-C matrices can be different between samples.

Two well established Hi-C features are loops and compartments [102, 139]. To assess

how the LP method performs when these features are different between samples, we

have created simulated Hi-C data sets with incremental changes in these features. We

then determined the point at which the LP method, as well as alternate methods,

detect differences between the matrices (See Section Simulated Hi-C data).

For Hi-C matrices with changes in loop structure as the only differences between

samples, the LP method does not detect that the matrices are different until the loop
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interaction contained four times the mean number of contacts for loci at the given

genomic distance (See Figure 7.5A). In this situation, SELFISH does the best job

of detecting differences between samples. HiC-spector shows a consistent decrease in

its reproducibility score, while HiCRep performs similar to the LP method. We note

that the LP method, as well as HiCRep, relies on changes in the correlation between

samples, and thus changes to a small number of elements within the Hi-C matrices

do not affect the measurement significantly.

For Hi-C matrices with changes in the compartment structure of a single bin

(genomic region) as the only differences between samples, the LP method performs

very well (See Figure 7.5B). SELFISH detects differences between all samples, but also

detects differences when only a small amount of noise is added to the original matrix.

The LP method is robust to noise and shows a trend consistent with the amount

of change created. The HiC-spector reproducibility measurement shows no clear

trend as the matrices diverge, while HiCRep begins to detect differences between the

matrices much later than the LP method. Compartment changes are often observed

in time series Hi-C matrices as cells transition between cell states, either through

reprogramming or differentiation [52].

7.5 Discussion

We believe the 4DN research community will find the 4DNvestigator suite of tools

useful for the analysis time series Hi-C and RNA-seq data. The 4DN feature analyzer

methods have already been used to detect important 4DN changes in times series

Hi-C and RNA-seq data sets [103]. Providing the standardized code here within the

4DNvestigator will allow a wider audience of researchers to apply this technique to

their own work. Methods to systematically quantify stemness and plasticity via VNE

will help identify cells in specific states. Such methods may be especially useful in the

context of cancer, as identifying and targeting cells with high stemness is an attractive
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Figure 7.5: Simulated Hi-C data. A) Simulated Hi-C matrices for loop changes
(See Table 7.1). The original Hi-C matrix is shown on the left, with matrices that
are increasingly more divergent from left to right. Green circles indicate where the
matrix has been perturbed to change the chromatin loop structure. B) Simulated
Hi-C matrices for compartment changes (See Table 7.1). The original Hi-C matrix
is shown on the left, with matrices that are increasingly more divergent from left
to right. Green arrows indicate where the matrix has been perturbed to change the
chromatin compartment structure.

Counts added Correlation

Method 35 106 177 248 319 1
(noise)

0.87 0.57 0.2 -0.26 -0.65

LP (P-value) 1.0 1.0 1.0 1.0 0.86 1.0 1.0 2.1E-
03

2.5E-
07

1.7E-
13

0.0

SELFISH (P-value) 0.0 0.0 0.0 0.0 0.0 0.02 2.9E-
05

1.4E-
08

1.3E-
10

3.5E-
13

2.1E-
07

HiCRep (SCC) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.98 0.97 0.96
HiC-spector (Q) 1.0 0.99 0.97 0.96 0.95 0.39 0.43 0.33 0.48 0.44 0.50

Table 7.1: Hi-C matrix comparison methods. “Counts added” refers to the number
of counts added to the simulated Hi-C matrix, at the specified location (See Section
“Simulated Hi-C data”). “Correlation” refers to the correlation between the selected
column in the original Hi-C matrix, and the same column in the simulated Hi-C matrix
(See Section “Simulated Hi-C data”). We note here that each method outputs a
different unit, as specified within the table. The lowest P -value output from SELFISH
is given here. This table is related to Figure 7.5.
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clinical strategy [168].

The LP method for comparing Hi-C matrices will be extremely valuable to the

Hi-C research community as it fulfills a number of unmet needs. The LP method

can be used to analyze a range of Hi-C resolutions, from 5 kb resolution to 100

kb chromatin compartment changes, and all resolutions in between. Many Hi-C

analysis techniques were developed to detect specific biological phenomena within Hi-

C matrices, such as loops or compartments, and are therefore less robust for detecting

overall changes in chromatin structure. Also, the LP method outputs a p-value for the

simple statistical test that entire chromatin structure is different between the samples

being compared, not just specific chromatin interactions, making the LP technique

more robust. Additionally, the LP method is built for the analysis of multiple Hi-C

samples, accommodating time series data which often include more than two time

points.

7.6 Conclusion

The 4DNvestigator provides methods to analyze time series Hi-C and RNA-seq

data in a rigorous yet automated manner. The combined analysis of network centrality

and RNA-seq over time can be easily performed using the 4DN feature analyzer. This

analysis outputs a simple 2D plot representing how the genome changes in 4DN, with

large changes highlighted. Network entropy is a simple metric which can be used to

characterize the structural disorder in a region. Finally, the 4DNvestigator introduces

a novel statistical method for comparing Hi-C matrices, the LP method. The LP

method is distinct from established Hi-C matrix comparison methods, as it takes a

statistical approach to test for matrix equality, and allows for the comparison of ≥ 2

matrices simultaneously. The 4DNvestigator can be applied to any time series Hi-C

and RNA-seq data set, and many methods are applicable to non-time series data

samples as well.
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CHAPTER VIII

Concluding Remarks

The field of genomics has advanced rapidly in the 21st century, and shows no

sign of slowing down in the coming years. The completion of the human reference

genome, less than 20 years ago, substantially advanced our understanding of the rules

of life [80]. With this information, we have learned how mutations can lead to disease

states, how preventative medications will react in individuals with specific mutations,

how the human species evolved, and much more. The creation of the human reference

genome catalyzed the invention of next generation sequencing technologies, which can

read millions of DNA sequences in parallel. The combination of these advancements

has led to experimental techniques that can measure many aspects of genome struc-

ture and function, including RNA-seq, Hi-C, ChIP-seq, and ATAC-seq. Furthermore,

with the recent discovery of CRISPR-Cas9 gene editing, we not only have the genome

mapped, we have the tools to manipulate it as well [35].

With this information as a foundation, the next frontier in genomic research is

the 4D Nucleome. While genome function receives plenty of attention in the research

community, genome structure and dynamics, and how these aspects affect genome

function and cell phenotype, are underappreciated. Fortunately, this type of research

has gained momentum in recent years from the founding of the 4D Nucleome project,

where researchers within the field can contribute to a public database of 4DN data
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[47].

This disparity in research attention is understandable; examining structure and

dynamics is often difficult, both in terms of data collection and analysis. Each addi-

tional time point in an experiment adds a proportional amount of time and resources

to the project. Genome structure data collection can be burdensome, often requiring

an order of magnitude increase in both the budget and data storage capacity. Cell

images, while inexpensive, are often stored in bulky data files. Additionally, Hi-C

data sets are larger, more expensive, and more difficult to collect than RNA-seq data

sets. Furthermore, analysis tools are underdeveloped for 4DN data sets, discouraging

many researchers from collecting these data.

However, the benefits that a 4DN approach provides are undeniable. 4DN anal-

ysis explains the mechanisms for how cells operate. For example, a mutation in a

TAD boundary region that affects nearby gene function would be difficult to explain

prior to Hi-C. With Hi-C, we can see that this region may act as a conformational

insulator between the affected gene and an enhancer element. This scenario is not

just speculative; this situation has been observed in real data [108]. Furthermore,

the genome is not a static object. Analysis of structure and function data obtained

from a population of proliferating cells is muddled by cell cycle dependent changes;

G1 phase cells display drastically different structure and function than M phase cells,

as would be expected. Even in cell cycle synchronized populations, chromatin has

been shown to move up to 0.5µm in less than 10 seconds [50]. This means that Hi-C

samples collected seconds apart from each other could contain distinctly different in-

formation. While data collection on this time resolution scale is not yet possible for

Hi-C, larger scale changes can be clearly observed using time series Hi-C.

To improve cellular reprogramming, we need 4DN analysis. Cellular reprogram-

ming is not a magical one-step process where cells instantly transform into the target

cell type after introduction of TFs; there exists a continuum of change up to the point
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where a reprogrammed cell finally functions as the target cell type. 4DN analysis helps

us understand the roadblocks along the way to reprogramming. For example, 4DN

data analysis has revealed that chromatin changes occur prior to functional changes in

many experiments, which is why the addition of chromatin remodeling proteins often

increases reprogramming efficiency [90, 103, 149]. With this enhanced understanding

of the reprogramming process, we can design better experimental strategies.

I hope that the work presented within this dissertation will advance 4DN and cellu-

lar reprogramming research and motivate others to continue this work. 4DN analysis

and cellular reprogramming have the potential revolutionize medicine in many ways,

and we have just begun to scratch the surface of their potential.

Chapter II, which outlines methods for analyzing time series FISH images, could

be used as a clinical diagnostic tool. Compared to high-throughput genomics, cellular

imaging is an easy, fast, and inexpensive tool for analyzing genome structure. This

makes it an appealing measure for diagnostics where time is of the essence. Cellular

imaging has been used to diagnose diseases for many years, but often images are taken

as single snapshots. With the methods outlined within this chapter, clinicians could

use time series images taken from the patient throughout treatment to determine if

cells are responding as intended.

The methods outlined in Chapter III provide a framework for 4DN analysis. This

was the first paper to collect and analyze time series RNA-seq, Hi-C, and FISH data

all derived from the same synchronized cell population. The methods for extracting

gene regulatory networks from Hi-C and RNA-seq over time are novel, and can be

used to determine network stability over time. Unstable networks are often more

susceptible to outside influence, making this timing crucial for controlling cell fate.

This analysis could be applied to a diseased population of cells, and the time point of

lowest stability would be the best time to administer treatment. This work also high-

lights the importance of knowing a gene’s location in the nucleus for understanding its
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function. The circadian rhythm cycle, one of the most dominant biological pathways,

displays a clear correlation of gene positioning and function. This could potentially

explain sleep pattern disorders if this interplay between structure and function breaks

down.

The work discussed in Chapter IV builds upon the 4DN framework given in Chap-

ter III to create an algorithm for cellular reprogramming. Within Chapter III, TADs

are identified as an inherent functional unit within the genome, where expression of

genes within TADs display correlated expression over time. This idea is consistent

with the concept of transcription factories, where nearby segments of chromatin are

found to be transcribed at the same time, by the same transcriptional machinery [37].

This work demonstrates the tangible benefits of 4DN analysis by predicting TFs that

are known to achieve reprogramming strictly from data. With this power, cellular

reprogramming experiments can be performed more efficiently and cost effectively,

bringing us one step closer to the day where these techniques can be translated to

clinical therapies. People suffering from organ failure may be able to replace the

dysfunctioning organ with cells derived from their own body.

Following from the successful reprogramming predictions made in Chapter IV,

Chapter V takes an in-depth look at one of the simplest known reprogramming

experiments, MYOD1-mediated cellular reprogramming. Through analysis of time

series Hi-C, RNA-seq, and FISH imaging data, we uncovered principles of cellular

reprogramming that inform our algorithm predictions. The discovery that genome

structure changes significantly before function motivates the use of chromatin re-

modeling proteins in reprogramming predictions. DNA and histone demethylating

proteins could open up heterochromatin regions, making these regions susceptible to

control. The mutual feedback discovered between MYOD1 and the circadian gene

network highlights the unpredictability of gene networks. The idea that MYOD1, a

regulator of the muscle lineage, would have such a profound influence on circadian
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rhythms was unexpected. All of these findings supplement our goal of creating an

algorithm for predicting reprogramming factors, which could have a wide range of

clinical applications.

A natural application area for 4DN analysis is in cancer research. Since a hall-

mark of cancer progression is the development of aneuploidy and genetic mutations,

the cell’s 4DN will clearly be affected. In Chapter VI, the 4DN of two distinct cancer

cell types are explored, colorectal cancer cells and breast cancer cells. In the colorec-

tal cancer analysis, cells with a premalignant karyotype (trisomy 7) are compared

to their health counterpart. Changes in the cell’s 4DN are observable genome-wide

and specific genomic pathways that are linked to cell proliferation are already signifi-

cantly affected in the premalignant sample. In the breast cancer analysis, we focus on

characterizing the 4DN of CSCs, which play and important role in mediating tumor

metastasis and treatment resistance. Surprisingly, we observed high heterogeneity in

both CSC and non-CSC subpopulations, and a clear preference for specific transloca-

tions between the populations. To effectively treat cancer, a complete understanding

of where and when to administer treatment is necessary. Together, these findings

further our understanding of the 4DN of cancer, which we hope will lead to more

effective treatment strategies.

Finally, we package the tools we have developed through our years of 4DN re-

search into the 4DNvestigator, as discussed in Chapter VII, alleviating the current

barrier to entry in this field that requires a high level understanding of biology, com-

puter science, and mathematics to make sense of the large complex data sets. By

providing researchers with user-friendly codes that automatically perform complex

analysis methods, anyone with computer and internet connection can analyze 4DN

data. With standardized tools for 4DN analysis, 4DN research will be much more

accessible to researchers in the future.
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APPENDIX A

Supplemental Materials

A.1 Functional organization of the human 4D Nucleome sup-

plement

For a complete description of methods, please refer to Chen et al. SI Appendix

[31].

Criteria for extracting dynamic genes

We establish several criteria to extract genes that have significant dynamics of

transcription over time. These genes can be considered as genes that are highly

expressed in Fibroblast cells and have response to serum stimulation. The criteria

are listed here below:

• At least 1.5 fold difference in expression between any two time points (q value

< 0.01).

• Mean expression over time RPKM value larger than 1.

• Variance over time larger than 0.5.
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• Ratio between variance over time and variance within each time point replicate

larger than 1.5.

Measures used for characterizing gene locations in FISH data

• Mean closest distance (MCD) between two genes: MCD is defined as the

shortest distance between two different gene locations (given that there are two

homologous genes per target, there are 4 different “distances” between two gene

locations; take the shortest distance). MCD is meant to be used as a measure

of relative spatial interaction between two genes at a given time point, with a

lower distance correlating to a higher likelihood of genomic contact.

• Distance Matrix: The matrix with entries denoting the distance in Euclidean

space between two genes.

• Index of Stability: Derived from the Fiedler number of normalized Laplacian

of the distance matrix. This can be computed for any size distance matrix

(i.e. number of genes) to characterize relative structure. Our analysis used the

normalized Laplacian to create a scale invariant measure of stability.

Rationale for MCD

MCD was developed as a simple measurement of inter-gene distance. Genes mea-

sured with MCD in our analysis are biallelic, meaning each gene has a copy that

also is transcriptionally active. As a result of these gene copies, when measuring the

distances between two genes there are 4 possible combinations. The shortest distance

derived from the 4 possible combinations, MCD, does not take into account the gene

copies, but was chosen to give a general picture of how close two genes may be at

certain time point.
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A.2 Algorithm for cellular reprogramming supplement

For a complete description of methods, please refer to Ronquist et al. SI Appendix

[147].

Data

The fibroblast (FIB) data (Hi-C and RNA-seq) used for this application was orig-

inally collected and published in a paper by Chen et al. [31]. We refer the reader

to this paper for a full description of technical protocols. ESC and myotube (MT)

data was downloaded from NCBI-GEO (GSE23316 ENCODE Caltech RNA-seq and

GSE52529) [36]. 53 different tissue RNA-seq samples were downloaded from GTEx

portal [106]. 51 different immune cell type RNA-seq samples were obtained from the

BLUEPRINT Epigenome project [1].

Hi-C and construction of TADs

We computed TAD boundaries from genome-wide chromosome conformation cap-

ture (Hi-C) data using an algorithm described in Chen et al. [32]. The algorithm

was applied to averaged time series Hi-C data from proliferating human fibroblast

(FIB) at 100 kilo-base pair (kb) resolution, which identified 2,562 TADs across all

autosomal chromosomes (i.e. excluding Chromosomes X and Y). Of the 2,562 TADs,

317 contained no genes and were excluded from our analysis, leaving 2,245 TADs.

These TADs ranged in size from a few hundred kb to several Mb, and contained on

average 9-10 genes (standard deviation of 18 genes); one gene at minimum, and 249

genes maximum.

Construction of B matrix

TF binding site position frequency matrix (PFM) information was obtained from

Neph et al. and MotifDB, which is a collection of publicly available PFM databases
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such as, JASPAR, Jolma et al. cispb 1.02, stamlab, hPDI, UniPROBE [123, 157].

TRANSFAC PFM information was included as well. Motif scanning of the human

reference genome (hg19) was performed using FIMO of the MEME suite, in line

with methods established by Neph et al. [123]. DNase-seq information for human

fibroblasts was derived from ENCODE for fibroblast (GSM1014531). If a narrow

peak is found within the ±5kb of a gene TSS, the region is classified as open. TF

function information was determined through an extensive literature search.

Scaling of RNA-seq

Due to differences in data collection procedures, the RNA-seq RPKM values ob-

tained from the GTEx portal were of lower value, on average, compared to our fibrob-

last data set, thus favoring repressor TFs for µ scoring. In order to account for this

in our model, we scaled all GTEx RNA-seq data by a factor that solves the equation

minimize
α

‖gFIB,UM − αgFIB,GTEX‖ (A.1)

where gFIB,UM is the gene-level RNA-seq vector average of our fibroblast data,

gFIB,GTEX is the gene-level RNA-seq vector of “Cells - Transformed fibroblasts” from

the GTEx portal, and α is a scalar that solves this equation. For this data, α = 2.6113

and all GTEx data used as a target state was scaled by this factor.

Removal of microRNA

MicroRNA were removed from this analysis due to their high variance in RPKM

values and unpredictable function.
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TF scores - additional GTEx data

For fibroblast to Adipose-Subcutaneous, the highest scoring factor is EBF1, a

known maintainer of brown adipocyte identity, and a known promoter of adipogene-

sis in fibroblasts [85]. The 2nd highest scoring marker, PPARG, has been shown to

be involved in adipose differentiation, and can be used individually to achieve repro-

gramming from fibroblasts [67]. Curiously, ATF3 is implicated here as being useful

for adipocyte differentiation although its function has been shown to repress PPARG

and stymie cell proliferation [83]. Upon further research using time dependent ad-

dition, ATF3 addition scores best when added towards the end of reprogramming

process.

Two Brain tissue samples, Cerebellum and Hippocampus, both predict TFs nec-

essary for natural differentiation. Interestingly, our algorithm selects different TFs

for each conversion, with factors linked specifically to each tissue. For Cerebellum,

NEUROD1, has been shown to be required for granule cell differentiation, while ZIC1

and ZIC4 are both known to promote cellebular-specific neuronal function [61, 116].

The top scoring combination of 3 TFs are all similarly known to be important in

neurogenesis (NEUROD1, ZBTB18, UNCX) [34, 151]. Hippocampus TF scoring in-

cludes FOXG1 as the top predicted factor, a factor specifically needed in hippocampus

development. OLIG2, FOXG1, and GPD1 are the top scoring set for hippocampus

reprogramming, all of which have been shown to been necessary for hippocampus

function.

Colon TF scoring finds known differentiation factor in natural colon secretory

linage development, ATOH1, as the highest scoring individual factor [178]. The top

scoring combination of 2 TFs includes ATOH1 along with CDX2, another known

factor necessary for full differentiation of colon cells, specifically small intestine mat-

uration [41]. Liver cell reprogramming similarly finds known factors for differentiation

in the top score of all 3 combinations: HNF4A, CUX2, PROX1 [48, 155, 177]. All
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TFs play a role in correct development of hepatic progenitor cell-types and hepatic

stem cells, the cell types just above in lineage differentiation.

Algorithm for cellular reprogramming data sources

A summary of the data used for this algorithm is shown below, with citations and

accession numbers or website link, where applicable.

• Gene Expression

– Fibroblast: Chen et al. [31]

– GTEx: https://www.gtexportal.org/home/ [106]

– ESC: GSE23316 [36]

– Myotube: GSE52529 [36]

– BluePrint Epigenome: http://www.blueprint-epigenome.eu/ [1]

• DNase-seq

– Fibroblast: GSM1014531 [172]

• Hi-C TAD boundaries

– Fibroblast: Chen et al. [31]

• TF PWM

– Neph et al. [123]

– MotifDB + FIMO [66, 157]
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A.3 MYOD1-mediated fibroblast to muscle reprogramming

supplement

For a complete description of methods, please refer to Liu et al. SUPPLEMEN-

TAL INFORMATION [103].

Identification of genes of interest

Genes of interest (GOIs) are mainly extracted through Gene Ontology (GO),

with a few GOI subsets curated through other means. GO-extracted lists include

myotube, myoblast, skeletal muscle, fibroblast, and circadian. “Muscle” genes are the

union of myoblast, myotube, and skeletal muscle genes. Additional circadian related

subsets were extracted from JTK analysis and literature reviews (core circadian), and

additional cell cycle subsets were extracted from literature reviews (Table S3 in Liu

et al. [103]).

Super enhancer-promoter region dynamics

SE-P regions for skeletal muscles were downloaded from [75] (BI Skeletal Muscle).

The Hi-C contacts between the SE and the associated gene TSS (±1kb) were extracted

over time. SE-P contacts were normalized by dividing by the total number of contacts

per sample, then multiplying by 100,000,000 (arbitrary scalar to best show trends). To

determine the top upregulated genes, the linear regression slope of log2(FPKM) over

time was calculated and sorted for each gene, high to low. To determine significance,

we first normalized the contacts by dividing by the total number of contacts for each

SE-P region over time (so that all SE-P regions are on the same relative scale). We

then performed a t-test between 16-24 hr and -48,0-8 hr normalized contacts.
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A.4 The 4DN of cancer supplement

Trisomy 7 data generation and methods

For a complete description of methods, please refer to Braun et al. [18].

FISH image analysis

Nuclei were extracted and analyzed semi-automatically through our MATLAB im-

age processing pipeline. Nuclei boundaries were detected via Marker-Controlled Wa-

tershed Segmentation, following methods modified from (https://www.mathworks.

com/help/images/marker-controlled-watershed-segmentation.html). The z-

dimension provided little additional spatial resolution, so maximum projection of

the images was analyzed. DAPI channel images were converted to grayscale and the

image gradient magnitude was computed to determine nuclei borders. The original

grayscale images were eroded then dilated to remove noise and create a flat regional

maximum within nuclei. Gradient boundaries enclosing regional maxima determined

where nuclei were found. The convex hull of the gradient boundaries defined the

nuclei shape.

Each nucleus was analyzed individually, and chromosome territories (CTs) were

automatically extracted using a method similar to that of nuclei extraction, but within

each defined nucleus region. For each fluorescent channel (containing CT 19 and 7),

the image was passed through a Gaussian filter and binarized. Images were then

dilated and eroded to reduce noise. Connected components reflecting CTs were man-

ually selected. The CT area, CT centroid distance to nuclear periphery and the

CT centroid distance to other centroids were then calculated automatically. For

HCEC+7, only nuclei that had 3 copies of chromosome 7 were kept. 42 cells were

used for HCEC, 41 cells were used for HCEC+7.
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RNA-seq data analysis

Reads were aligned to reference genome hg19 using STAR [55]. Gene expression

was quantified using RSEM [100]. Alignment parameters were set based on RSEM de-

fault parameters, “rsem-calculate-expression” “–star”. Transcripts per million (TPM)

was used to quantify gene expression. TPM expression was binned into 100kb regions

for comparison with Hi-C matrix dimensions. To achieve this, the sum of all gene-

level TPMs was calculated for all genes within each 100kb region. 100kb regions

that contain only a proportion of a gene (i.e. the gene spans multiple 100kb regions)

received a TPM value proportional to how much the gene overlaps that region.

Differential expression was determined following methods described in [2]. p-

values for differential expression were adjusted for false discovery following methods

outlined in [163]. GSAASeqSP was used for Gene Set Analysis of RNA-seq data [187].

Raw counts were input to GSAASeqSP in the form of a .gct file, and the MSigDB hall-

mark gene sets were analyzed [101]. The following GSAASeqSP parameters were used:

“Permutation type: gene set”, “Metric for gene set analysis: Weighted KS”, “Metric

for differential expression analysis: Signal2Noise”, “Association statistic: weighted”,

and “P value threshold: 0.05”.

Generation and analysis of Hi-C matrices

Paired end reads were processed using the juicer pipeline with default parameters

[56]. Reads were mapped to reference genome hg19, with “-s” (site parameter) MboI.

Reads with MAPQ > 30 were kept for further analysis. Data was extracted and input

to MATLAB using Juicebox tools command “dump”. Knight-Ruiz (KR) normaliza-

tion was applied to all matrices, observed over expected (O/E) matrices were used

for A/B compartmentalization and identification of topologically associating domains

(TADs). Rows and columns for which more than 10% of entries had zeros were re-

moved from the matrix. A/B compartmentalization was determined using the Fiedler
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vector, as previously described [31]. TAD structure was determined using previously

described methods [32], with λthr = 0.8, and minimum TAD size defined as 300 kb.

This technique is derived from spectral graph theory, and is used for graph segmenta-

tion. Here, the parameters are set so that 300kb is the minimum domain size and 0.8

is the minimum Fiedler number of each domain. The Fiedler number is a measure of

graph connectivity, with higher values implying stronger connectivity.

CSC data generation and methods

Sample preparation

The breast cancer cell line SUM-159 was cultured in 2D cell culture, then flow

cytometry was used to sort cells with the top 10% and bottom 10% expression of

ALDH1A1, a previously established method for distinguishing CSC-like and nonCSC-

like cellular populations. Hi-C and RNA-seq samples were collected and processed as

described in Seaman et al. [154].

Hi-C and RNA-seq processing

Hi-C and RNA-seq data generation were performed as described in [18]. Paired

end reads were processed using the juicer pipeline with default parameters [56]. Reads

were mapped to reference genome hg19, with “-s” (site parameter) MboI. Reads

with MAPQ > 30 were kept for further analysis. Data was extracted and input to

MATLAB using Juicebox tools command “dump”. Knight-Ruiz (KR) normalization

was applied to all matrices, observed over expected (O/E) matrices were used for

A/B compartmentalization. Rows and columns for which more than 10% of entries

had zeros were removed from the matrix. A/B compartmentalization was determined

using the Fiedler vector, as previously described [31].

Reads were aligned to reference genome hg19 using STAR [55]. Gene expression

was quantified using RSEM [100]. Alignment parameters were set based on RSEM de-
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fault parameters, “rsem-calculate-expression” “–star”. Transcripts per million (TPM)

was used to quantify gene expression. TPM expression was binned into 100kb regions

for comparison with Hi-C matrix dimensions. To achieve this, the sum of all gene-

level TPMs was calculated for all genes within each 100kb region. 100kb regions

that contain only a proportion of a gene (i.e. the gene spans multiple 100kb regions)

received a TPM value proportional to how much the gene overlaps that region.

Identification of chromosome tranlocations

Differences in genomic translocations were detected via the following method.

Genome-wide Hi-C contact maps were generated at 1 Mb resolution for the ALDH+

and ALDH- samples. Matrices were KR balanced and O/E normalized. Each ma-

trix was median filtered to smooth the signal and reduce experimental noise. The

“difference matrix” was determined by calculating the absolute value of the difference

between the matrices. A threshold was set equal to five times the mean of all elements

in the difference matrix. This threshold was used to binarized the difference matrix

(i.e. all elements above the threshold are set to 1, all elements below the threshold

are set to 0). Large regions in this binarized matrix are determined to be regions

were tranlocation differences exist between the two matrices.

Determination of ALDH1A1 chromatin accessibility

Chromatin accessibility is often determined via the Fielder vector, derived from

100 kb resolution intr-chromosome Hi-C. This analysis can be compromised on chro-

mosomes with translocations and large copy number variations. Chromosome 9 in

SUM-159 cells contains a regions on the p-arm that obfuscates Fiedler vector parti-

tioning. To determine the chromatin accessibility of the ALDH1A1 locus (located on

chromosome 9), we performed Fiedler vector partitioning on a sub-region surrounding

the locus (±3 Mb).
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Low dimensional projection of chromatin structure and function

To identify differences between samples in structure and function we projected

measurements of each to a low dimensional space using principal component analy-

sis (PCA). For function, we applied PCA to the log2(TPM) vector for all samples.

This outputs the location of four points in a 2 dimensional space, where each points

represents a sample and the distance between samples approximates how different

the samples are in function genome-wide. For structure, we first concatenated the

Fiedler vectors derived from each chromosome at 100 kb resolution for each sample.

We then applied PCA to this vector for all samples. This outputs the location of

four points in a 2 dimensional space, where each points represents a sample and the

distance between samples approximates how different the samples are in structure

genome-wide.
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A.5 4DNvestigator supplement

Data pre-processing

The 4DNvestigator requires a metadata table, referred to as an “Index File,” to

describe the data. Rows correspond to sequencing data samples (RNA-seq or Hi-C),

and the columns correspond to data descriptors. The Index File must have 4 columns

with the following headers:

• “path” defines the computer path to the sequencing data

• “dataType” defines the type of sequencing data, either “hic” or “rnaseq”

• “sample” defines the sample, (e.g. “treatment” or “control”)

• “timePoint” defines the time point of sample, (e.g. 0 or 24)

Index Files can be .csv, .tsv, or .xls. An example of an Index File is available here.
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