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ABSTRACT

We are currently in an era where our current observational capabilities have allowed

for an unprecedented number of observations of galaxy clusters. These observations,

along with state-of-the art cosmological simulations of galaxy clusters, can be used to

constrain the connection between the central galaxy within a cluster and the cluster’s

dark matter halo. This physically motivated and statistical galaxy-halo connection

greatly improves our understanding of how the growth and evolution of central galax-

ies is intertwined with that of the of underlying and unseen dark matter halos that

these galaxies reside in. In this dissertation, I address the galaxy-halo connection

via the stellar mass - halo mass (SMHM) relation. The major contributions of this

dissertation are to incorporate physically motivated parameters related to the galaxy

cluster’s galactic population and environment that allow us to tighten the observa-

tional constraints on the SMHM as well as characterize how these parameters and

the galaxies and clusters they describe evolve in the last 6 billion years.

The specific contributions of the work presented in this dissertation are as fol-

lows. In Chapter III, I identify a trend between the magnitude gap, the difference

in brightness between the central galaxy and fourth brightest cluster member galaxy,

and stellar mass; at fixed halo mass, stellar mass and magnitude gap are linearly corre-

lated due to the central galaxy’s hierarchical assembly. Using a hierarchical Bayesian

Markov Chain Monte Carlo (MCMC) framework, introduced in Chapter III, which

quantifies the parameters of the SMHM relation as well as the impact of incorporating

the magnitude gap, I find that magnitude gap is indeed a latent third parameter in the

xvi



SMHM relation. Moreover, incorporating the magnitude gap significantly decreases

the intrinsic scatter in the SMHM relation and explains the differences between pre-

viously published results. In Chapter IV, I extend the analysis of Chapter III to

higher redshifts (z < 0.3) by revising the hierarchical Bayesian framework to account

for redshift evolution. Using this approach, I, for the first time, identify statistically

significant redshift evolution in the slope of the observed SMHM relation, which in-

forms us about the late-time growth of the central galaxy. Additionally, I find that

the slope of the SMHM relation depends on the aperture used to define the central

galaxy’s radial extent, which highlights that the outer regions of central galaxies are

more strongly correlated with the host halo than the core. Lastly, in Chapter V, I

extend our study of redshift evolution out to z < 0.6 using Dark Energy Survey data,

which allows us to further constrain central galaxy growth and also characterize how

the magnitude gap-stellar mass stratification evolves over the last 6 billion years.
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CHAPTER I

Introduction

The work presented in this dissertation improves the constraints on the slope,

β, and the intrinsic scatter in stellar mass at fixed halo mass, σint, associated with

the galaxy cluster stellar mass - halo mass (SMHM) relationship using hierarchical

Bayesian statistical methods and the incorporation of a novel, physically motivated,

third parameter in the SMHM relation, the magnitude gap. Additionally, incorporat-

ing the magnitude gap as a latent parameter in the SMHM relation allows us to place

the first strong observational constraints on the late-time evolution of the SMHM

relation. Throughout this dissertation, I treat observations from multiple data sets

in a homogeneous manner. Additionally, I have built a well-tested Bayesian MCMC

infrastructure that measures the parameters associated with the SMHM relation and

can detect any redshift evolution.

To contextualize the questions addressed in this dissertation and the significance

of the results, it is important to understand the theoretical backbone this dissertation

is built on, the galaxy-dark matter halo connection. Therefore, in this introduction,

I explain the galaxy-dark matter halo connection, which links two of the primary

components of galaxy clusters, and introduce how this correlation characterizes the

formation and co-evolution of the brightest central galaxy (BCG) and the dark matter

halo that the BCG forms, evolves, and resides within. Additionally, I explain the
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SMHM relation with respect to the galaxy-dark matter halo connection, present the

current status of the SMHM relation, explain how the SMHM relation is studied using

observations, simulations, and empirical models, and introduce open areas of research

that this dissertation addresses.

1.1 The Galaxy-Dark Matter Halo Connection

Galaxy clusters are the most massive gravitationally bound systems in the uni-

verse. These structures are characterized as having total (halo) masses greater than

1014M� and radial extents on the order of Mpcs. The three primary components

that make up galaxy clusters are dark matter, contained within the underlying dark

matter halo; the stellar mass, contained in galaxies, of which a significant fraction is

found within the BCG (e.g., Jones and Forman, 1984; Lin and Mohr , 2004; Aguerri

et al., 2011; Harrison et al., 2012); and hot X-ray gas. X-ray observations of galaxy

clusters, suggest that the BCG is located near the X-ray center of the cluster, which

serves as a proxy for the center of the dark matter halo’s potential well (e.g., Jones

and Forman, 1984; Rhee and Latour , 1991; Lin and Mohr , 2004; Lauer et al., 2014).

BCGs are dynamically massive (e.g., Bernardi et al., 2007; von der Linden et al.,

2007; Brough et al., 2011; Proctor et al., 2011) and compared to similarly massive

galaxies are observed to be radially extended (e.g., Schneider et al., 1983; Schombert ,

1986; Zhang et al., 2018).

My dissertation focuses on the correlation between the cluster’s dark matter halo

and the BCG. Specifically, how the evolution and growth of the stellar mass of the

BCG and host cluster are correlated and how this correlation evolves over time. As

discussed in depth in Section 1.2, our modern understanding of galaxy formation

posits that all galaxies form at the center of individual dark matter halos (e.g., White

and Rees , 1978; Kaiser , 1984). Inside a cluster halo, these individual halos are re-

ferred to as subhalos. Thus, unlike other cluster members or satellite galaxies, the
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unique location of the BCG, near the center of the galaxy cluster’s dark matter halo,

lead astronomers to identify a correlation between the BCG’s properties and those of

the cluster’s dark matter halo. This correlation is representative of the galaxy cluster

portion of the galaxy-dark matter halo (galaxy-halo) connection, the physical and

statistical link between multiple properties, obtained from observations and/or sim-

ulations, of the central galaxy and the host dark matter halo (Wechsler and Tinker ,

2018).

One fundamental observation, which underscores the galaxy-halo connection, is

that in both the local universe (e.g., Norberg et al., 2002; Zehavi et al., 2005, 2011)

and at higher redshifts (e.g., Coil et al., 2006; Zheng et al., 2007; Wake et al., 2011;

Leauthaud et al., 2012) more luminous central galaxies are found to have a higher

clustering measurement, indicative of residing in a more massive dark matter halo.

The relationship between the mass of the central galaxy and the mass of the cluster’s

dark matter halo is referred to as the stellar mass-halo mass (SMHM) relation, which

is the primary focus of this dissertation. The SMHM relation is a central component

of the galaxy-halo connection, which as discussed in Wechsler and Tinker (2018),

can be used to infer cosmological parameters, probe the distribution of dark matter,

and, as focused on in this dissertation, relate the formation and evolution of central

galaxies to their host dark matter halos (e.g., Tinker et al., 2017; Gu et al., 2016).

Although the galaxy-halo connection is a nouveau concept, the physical origins of

why galaxies and their dark matter halos are intrinsically related is not. Rather, this

connection stems from our current understanding of galaxy formation in a Λ Cold

Dark Matter (ΛCDM) universe.

1.2 Structure Formation in the Λ CMD Universe

The cosmological principle assumes that the spatial distribution of matter in the

universe is homogeneous and isotropic on all scales. However, if this were true on
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the smallest scales, structure would be unable to form because no region would

preferentially gravitationally attract dark matter and baryons away from another

region. Therefore, structure formation requires slight deviations from perfect unifor-

mity. Here, I briefly summarize how dark matter halos and the galaxies inside these

halos form as a result of these initial inhomogeneities, based on the model presented

in White and Rees (1978).

1.2.1 Dark Matter Halo Formation

Our current understanding of dark matter halo formation is that the galaxy clus-

ters observed today form as a result of the primordial density perturbations in the

quantum field (e.g., White and Rees , 1978). Theoretically, these small perturba-

tions rapidly grow over a short time as a result of cosmic inflation. The indirect

observational support for inflation resulted from the Cosmic Background Explorer

(COBE), a satellite that measured the cosmic microwave background (CMB) and

found anisotropies in the CMB that match the theoretical predictions of cosmologi-

cally inflated Gaussian initial density perturbations (Smoot et al., 1992).

These initial pertubations grow over time as a result of gravitational instabilities,

which Jeans (1902) first proposed as a method of astronomical structure formation.

Growth resulting from gravitational instability occurs when the gravitational force

from over-dense regions attracts dark matter from under-dense regions, creating the

initial dark matter halo structure. In contrast, under-dense regions have a weak

gravitational force, which leads to the formation of sparsely populated voids. These

initial overdensities grow linearly until δρ
ρ
∼ 1, when the overdensity collapses (White

and Rees , 1978), where ρ is the mass density. Since these overdensities are composed

of collisionless dark matter particles, no shock occurs when an overdensity collapses.

Eventually these systems reach a quasi-equilibrium, forming a dark matter halo (Gunn

and Gott , 1972).
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1.2.2 Galaxy Formation

Unlike dark matter, baryonic matter is initially coupled to radiation (photons) and

therefore unable to collapse immediately. Once baryons decouple and are no longer

supported by photon pressure, they collapse gravitationally. Since dark matter halos

have already formed, decoupled baryons are gravitational drawn to the dark matter

halos. Thus, dark matter halos serve as the underlying structure within which galaxies

form. However, unlike dark matter, baryons are collisional, and when they collapse

into the dark matter halo, the collision shock heats and energizes the baryonic gas,

which results in baryons having a greater velocity or temperature than the dark

matter halo’s escape velocity. Thus, before collapsing onto the dark matter halo,

the baryons must radiatively cool to a temperature below the virial limit. Over

time, the gas within a dark matter halo/proto-galaxy cools via processes such as

bremsstrahlung, “breaking radiation”, and H2 formation, which radiate away energy,

leaving the baryons with only angular momentum, creating a gaseous disk at the

center of the dark matter halo’s potential well. Once the gas collapses into a disk,

clumps of gas collapse under their own local self-gravity, which is stronger than the

gravity from the dark matter halo, and create the first stars within a proto-galaxy.

The previously described scenario is a “bottom-up” galaxy formation model (Pee-

bles , 1965), where small structures form first. For galaxies, these are small individual

galaxies/proto-galaxies, which are later followed by the formation of clusters of galax-

ies. As described in Section 1.3, both cluster dark matter halos and their BCGs form

and grow hierarchically via merging with the surrounding smaller dark matter halos

or the galaxies housed within them, respectively (De Lucia and Blaizot , 2007).
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1.3 BCG and Halo Hierarchical Growth

1.3.1 Dark Matter Halo Growth

The initial dark matter halos were significantly smaller than the galaxy cluster

dark matter halos observed today because like galaxies, in a ΛCDM universe, dark

matter halos grow “bottom-up;” smaller halos merge together via hierarchical clus-

tering (White and Rees , 1978) mostly at later times to create cluster sized halos (e.g.,

De Lucia and Blaizot , 2007). Galaxy cluster halos grow via mergers of the primary

subhalo, which hosts the BCG, with smaller subhalos, which also host galaxies at

their centers. Simulations suggest that dark matter halos do not merge automati-

cally; instead, cluster sized halos tidally strip subhalos and then merge (e.g., Ghigna

et al., 2000; De Lucia et al., 2004; Gao et al., 2004; Kravtsov et al., 2004). In simula-

tions, the dark matter halo merger is complete once the subhalo dissolves (De Lucia

and Blaizot , 2007).

Dark matter halo structure formation is best visualized using a halo merger tree, as

shown in Figure 1.1, which originally appeared in De Lucia and Blaizot (2007). Fig-

ure 1.1 illustrates that individual subhalos within clusters grow as a result of mergers

with smaller subhalos (in orange) forming a dominant BCG hosting subhalo (shown

in green). The orange subhalos have yet to dissolve into the primary subhalo, which

highlights that at redshift z = 0.0, the cluster dark matter halo still contains smaller

subhalos. The triangles represent halos that haven’t been accreted onto the cluster’s

dark matter halo and become subhalos. Based on Figure 1.1, it is necessary to clarify

that, from the viewpoint of dark-matter only cosmological simulations, the dominant

subhalo, which hosts the BCG, is not identical to the cluster-sized halo (which con-

tains all green and orange subhalos). However, this dominant subhalo accounts for

a significant majority of mass within the cluster-sized halo, and observationally, we

are unable to distinguish between these two dark matter halos. Therefore, for the
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Figure 1.1: Dark Matter Halo Merger Tree. This figure, from De Lucia and Blaizot
(2007), is the merger tree of a cluster-sized dark matter halo. The green
circles represent the primary subhalo of the cluster halo, which hosts the
BCG, while the orange circles represent smaller subhalos that have yet
to merge with the primary subhalo, and the triangles represent subhalos
which have not fallen into the cluster halo.
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purpose of this dissertation, we treat the primary subhalo (hosting the BCG) and the

cluster halo as the same.

1.3.2 BCG Stellar Mass Growth: The Two-Phase Formation Scenario

As noted in Section 1.2, a galaxy/proto-galaxy forms at the center of most dark

matter halos (for halos massive enough to attract baryons and not have stellar feed-

back completely quench star formation and blow out or heat the remaining cold

gas). Dark matter halos grow via mergers, which in turn lead to the hierarchical

mergers of the BCG (White and Rees , 1978; Peebles , 1982; Blumenthal et al., 1984;

White and Frenk , 1991; De Lucia and Blaizot , 2007). Dark matter halo hierarchical

growth is therefore the physical motivation for the link between the central galaxy

and the cluster’s dark matter halo. Although the merger growth is inter-connected,

BCG mergers occur after dark matter halo mergers because the BCG’s (and other

galaxy’s) central location allows these galaxies to be largely unimpacted by the tidal

forces from the accreting dark matter halo until after the subhalo merges with the

primary (BCG hosting) subhalo. After the halo dissolves, BCG mergers occur on a

dynamical friction timescale (De Lucia and Blaizot , 2007). Dynamical friction is a

process that removes energy from the forward motion of galaxies as they pass nearby

to one another, transferring the energy to the random motion of their interior stars.

This process thus slows down the galaxies and increases the internal energy of the

galaxy, which results in the galaxy that is less bound, and thus more susceptible to

tidal stripping. The timescale for dynamical friction is proportional to 1/(Msatellite),

such that mergers take longer for lower mass satellite galaxies. Therefore, it follows

that any observed stellar mass growth in the BCG (from mergers) occurs well after

the growth in the cluster’s dark matter halo.

Although mergers are the dominant cause of BCG stellar mass growth (De Lucia

and Blaizot , 2007; Oser et al., 2010), BCG growth/evolution is more complex than
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just the hierarchical growth scenario described for dark matter halos (Section 1.3.1).

BCGs can increase their total stellar mass via star formation (in-situ growth) as well

as major and minor mergers (ex-situ growth). However, for BCGs, these processes

occur at uniquely different times. Our current theoretical understanding for BCG

formation is a two-phase formation scenario (Oser et al., 2010), where BCGs form

inside-out (van Dokkum et al., 2010). At high redshifts, z>2, the BCG’s dense core

forms via in-situ star formation, after which, the outer envelope assembles via the

accretion of satellite galaxies that also form at z > 2 (this accretion happens in a

similar manner to what is described in Section 1.2.1). Thus, the two-phase formation

scenario is characterized by the early assembly of stars within galaxies, and the late

assembly of the final galaxies themselves (De Lucia and Blaizot , 2007; Oser et al.,

2010).

Currently, a sizeable amount of observational evidence supports the two-phase

formation scenario. Perhaps the most significant evidence comes from van Dokkum

et al. (2010), which measured the stellar mass growth of the core and outer envelope of

massive galaxies over the redshift range 0 < z < 2, as shown in Figure 1.2. Figure 1.2

highlights that the BCG’s core is fully formed by a redshift of z = 2.0 and undergoes

little stellar mass growth since, a trend that is also found observationally by Tiret et al.

(2011). In contrast, all recent BCG stellar mass growth occurs in the outer envelope,

which suggests that the majority of stellar mass growth (particularly during late-

times) for massive galaxies results from minor mergers (Tiret et al., 2011). Moreover,

additional observations of the evolution of the luminosity function of red galaxies find

that over the redshift range 0 < z < 1, the majority of stellar mass growth is built

up as a result of recent mergers, not in-situ star formation (e.g., Brown et al., 2007;

Faber et al., 2007).
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Figure 1.2: The Growth of the Inner and Outer Portions of BCGs. This figure, from
van Dokkum et al. (2010), shows how the stellar mass contained within
the core of the BCG (r < 5kpc) and outer region of the BCG (r > 5kpc)
grow with redshift. The stellar mass contained within core stays relatively
constant over time, while the stellar mass in the outer envelope increases
by a factor of 4.
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1.3.2.1 In-Situ Growth of BCGs

As suggested by Oser et al. (2010) and shown in Figure 1.2 from van Dokkum et al.

(2010), in-situ star formation, which results from the efficient cooling and contraction

of molecular gas clouds, dominates the stellar mass growth of BCGs over the redshift

range z > 2, creating a dense central region (Oser et al., 2010). This model of

high redshift in-situ growth is in good agreement with the monolithic collapse model

(e.g., Eggen et al., 1962; Partridge and Peebles , 1967; Larson, 1969; Searle et al.,

1973; Larson, 1975), in which galaxies form as a result of the gravitational collapse

of massive gas clouds, and the more recent “cool flow” model (Kereš et al., 2005;

Dekel et al., 2009), where large amounts of gas in the intra-cluster medium cool via

bremsstrahlung, to form a burst of stars.

One key aspect of the two-phase formation scenario is that stars form early. Using

semi-analytic models, De Lucia and Blaizot (2007) suggest BCG in-situ growth occurs

at remarkably uniform times, such that 50% (80%) of stars form by z≈5 (z≈3); similar

results are also found observationally for giant red galaxies (Nelan et al., 2005), a

description which can be used to characterize BCGs. Thus, star formation dominates

BCG stellar mass growth at early times. However, the dominance of in-situ star

formation growth does not persist; Oser et al. (2010) find that for massive galaxies,

the fraction of in-situ formed stars is ≈20%, making hierarchical merging far more

significant to the overall stellar mass growth of BCGs.

On the surface, the two-phase formation scenario appears to suggest BCG star

formation efficiency, or alternatively star formation quenching, depends on redshift,

such that star formation efficiency is higher at high redshifts. However, empirical

models of galaxy formation (Behroozi et al., 2013b) suggest star formation efficiency

only weakly depends on redshift and is instead more strongly dependent on halo

mass, with a peak efficiency around Mhalo = 1012M�, which is where two-thirds of all

star formation occurs. In a hierachical universe, halo quenching still results in star
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formation occurring at high redshifts, where the halo mass is lower, in agreement with

the observations supporting the two-phase formation scenario. Despite the results

from Behroozi et al. (2013b), more recently, Tinker (2017) compare the results of

galaxy formation models to observations, which suggest that galaxy quenching (i.e.,

the process where star formation shuts off when a threshold stellar mass is reached) is

the only viable quenching mechanism. In the context of the two-phase BCG formation

model, galaxy quenching is also plausible if star formation is quenched once the

homogeneous (as discussed in the next paragraph) BCG core is formed (z>2).

One significant observational consequence of the two-phase formation scenario is

that BCG cores are remarkably uniform, as shown in Huang et al. (2018), which

compares the surface mass density of massive galaxies with different total stellar

masses (stellar masses integrated out to radii greater than 100kpc) and finds that

within 5kpc, the profiles are indistinguishable. This result agrees with results from

Lauer et al. (2014) that find a small dispersion in BCG luminosity within 14.3kpc.

This homogeneity is significant because early BCG photometry measured only the

light contained within the central aperture (see Chapter II for a discussion of how

BCG magnitudes should be measured and how they are done so in this dissertation).

The homogeneity of the central region of the BCG further led BCGs to be suggested

as cosmological “standard candle” candidates (Sandage, 1972a,b; Gunn and Oke,

1975). However, as shown in van Dokkum et al. (2010), these earlier measurements

do not account for recent stellar mass growth, found in the outer envelope of the BCG,

which when accounted for demonstrate that BCGs are not homogeneous (Huang et al.,

2018).

1.3.2.2 Ex-Situ Growth of BCGs

Following the formation of the BCG’s dense core, the BCG’s stellar mass grows

as a result of hierarchical major and minor mergers, which result from the mergers of

12



the underlying dark matter halos. This hierarchical growth accounts for the majority

of BCG stellar mass growth (De Lucia and Blaizot , 2007; Oser et al., 2010; Tonini

et al., 2012) and simulations (Oser et al., 2010) suggest that the fraction of accreted

mass increases with BCG stellar mass up to ≈ 80% for the most massive galaxies.

Thus, ex-situ growth dominates BCG stellar mass growth. As further validation

that hierarchical merging results in the BCGs observed today, semi-analytic models

of BCG hierarchical growth reproduce the observed redshift evolution in BCG color

(Tonini et al., 2012).

Hierarchical merging also leads to a BCG’s characteristically large radial extent.

Simulations suggest that BCG radial extents increase with the fraction of ex-situ

stars (Oser et al., 2010) because these stars are accreted at radii greater than the

effective radius of the BCG’s core (Naab et al., 2009). Thus, since a BCG’s radial

extent increases with the number of mergers and the BCG’s central location within

the cluster make BCGs more likely to have mergers than non-central galaxies (Solanes

et al., 2016), it follows that compared to similarly massive galaxies, BCGs are more

radially extended (Bernardi et al., 2007; von der Linden et al., 2007; Lauer et al.,

2007). Therefore, hierarchical growth is responsible for increasing both the BCG’s

stellar mass and radial extent.

As noted in Section 1.2.2, hierarchical assembly is driven by the mergers of the

underlying dark matter halos. Like for dark matter halos, BCG hierarchical growth

can also be visualized using a merger tree, as shown in Figure 1.3, which originally

appeared in De Lucia and Blaizot (2007). This merger tree illustrates that in the De

Lucia and Blaizot (2007) semi-analytic model, BCGs grow “bottom up;” the smallest

structures form first. Moreover, based on the B-V color of each galaxy, this model

follows a two-phase formation scenario, since early on, galaxies transition from star

forming (blue/green color) to being “red and dead.” Figure 1.3 also highlights that

BCG stellar masses grow predominately through mergers between the BCG and other
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Figure 1.3: BCG Merger Tree. This figure, from De Lucia and Blaizot (2007), is a
BCG merger tree. At each time step, all circles represent galaxies within
the cluster. The circles on the left represent the progenitor of the BCG.
Each circle is color coded based on the B-V color and the red color is
indicative of a “red and dead” galaxy that is no longer actively forming
stars. The minimum galaxy mass shown here is M∗ = 1010M�. The
triangles represent galaxies that have not been accreted onto the cluster.
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similarly “red and dead” galaxies within their host cluster halo. Based on the final

distribution of galaxies within the cluster shown in Figure 1.3, BCGs account for

a significant fraction of the total stellar mass within the cluster, in agreement with

observations (e.g., Lin and Mohr , 2004; Harrison et al., 2012).

Although the two-phase formation scenario is a rather new concept, aspects of

this formation model, such as major/minor mergers resulting in BCG formation have

been long studied using simulations and observations. Dubinski (1998) used N-body

simulations and found merging naturally led to the formation of a central galaxy

with surface brightness and velocity dispersion profiles matching those of BCGs. Ad-

ditionally, many observations suggest that the stellar mass of the BCG increases

predominately as a result of dry mergers (e.g., van Dokkum, 2005; Bell et al., 2006;

Khochfar and Silk , 2006; Naab et al., 2006; van der Wel et al., 2009; Nipoti et al.,

2009, 2012), which occur when “red and dead” galaxies merge, resulting in little to

no new star formation. These galaxies have no excess gas that can then be condensed

to form stars as a result of the merger. Although not specified, dry mergers are also

apparent in the merger tree shown in Figure 1.3.

While BCGs grow via mergers, not all are major mergers, where the ratio of

the merging galaxies is greater than 1:3. As noted by De Lucia and Blaizot (2007)

and shown in Figure 1.3, most accreted stellar mass comes from galaxies with M∗ ≈

1010M�, much lower than than of the BCG (M∗ ≈ 1011.5M�). Moreover, Moody et al.

(2014) and Oser et al. (2012) find that the mass ratio between the merging galaxy and

the BCG decreases over time (as shown in Figure 1.3), such that late time growth is

driven exclusively through minor mergers. In addition to major and minor mergers,

other dynamical processes such as tidal stripping and galaxy harrassment also increase

the stellar mass of the BCG, particularly in the outermost envelopes. Although these

processes are responsible for BCG growth, not all accreted stars become part of the

BCG. As discussed in depth in Section 2.4.1, a fraction of accreted stars are ejected

15



from the BCG and become part of the intra-cluster light (ICL), the faint diffuse light

that characteristically surrounds the BCG (see Figure 2.2). Therefore, the final mass

of the BCG does not equal the sum of the mass from all progenitor galaxies unless

the ICL is included.

1.3.2.3 Overall Growth of BCGs

While the two-phase formation scenario for BCGs is accepted, no strong consensus

exists for the late time growth (0.0 < z < 0.5) of the BCG’s stellar mass. In simu-

lations and semi-analytic models, this growth is sizeable, with estimates that BCGs

grow by a factor of 1.5-2 (De Lucia and Blaizot , 2007; Guo et al., 2011; Shankar

et al., 2015). In contrast, many observations find little to no detectable growth over

this same redshift range (Lidman et al., 2012; Lin et al., 2013; Oliva-Altamirano

et al., 2014; Burke et al., 2015; Inagaki et al., 2015; Bellstedt et al., 2016; Zhang

et al., 2016; Cooke et al., 2018). This lack of consistency between observations and

simulations/semi-analytic models likely results from differing delineations between

the ICL and BCG outer envelope as well as an incorrect modelling of how and when

the ICL forms. For example, as noted by Zhang et al. (2016), the ICL is fully formed

in the Guo et al. (2011) semi-analytic model of the MILLENNIUM simulation at

z = 1.0; however, observations suggest that most growth in the ICL and outer BCG

envelope occurs at late times (van Dokkum et al., 2010; Burke et al., 2015). As further

evidence that ICL treatment may explain this discrepancy, the semi-analytic model

from Contini et al. (2018), which grows the ICL via tidal stripping between the BCG

and merging satellites find that by z = 0.4, BCG growth stagnates and the more

recent growth occurs in the ICL, in agreement with observational results of BCG and

ICL growth (Burke et al., 2015).
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1.3.3 Observational Consequences of Hierarchical Growth: The Magni-

tude Gap

As shown in Figure 1.3 and noted by De Lucia and Blaizot (2007), BCGs grow pre-

dominately by merging with smaller galaxies. If these mergers are efficient, D’Onghia

et al. (2005), using N-body/hydrodynamical simulations, find that hierarchical merg-

ing naturally creates a large elliptical galaxy surrounded by fainter galaxies, similar

to the end result of the merger tree shown in Figure 1.3. Therefore, it is unsurpris-

ing that accretion of intermediate and low mass galaxies results in the formation of a

bright central galaxy, as well as in a dip in the cluster’s luminosity function (Zarattini

et al., 2015; Solanes et al., 2016). This luminosity dip can be more easily quantified

observationally using the magnitude gap, the difference in brightness in the r-band

between the BCG and 2nd (Jones et al., 2003) or 4th (Dariush et al., 2010) bright-

est cluster member within 0.5 Rvir. Much of the recent published works that study

the magnitude gap focus on its use to define Fossil Group Galaxies, large, isolated,

x-ray bright elliptical galaxies in group sized halos, which are characterized by large

magnitude gaps (e.g., Jones et al., 2003; D’Onghia et al., 2005; von Benda-Beckmann

et al., 2008; Dariush et al., 2010; Harrison et al., 2012). However, for the context of

the analysis presented in this dissertation, the magnitude gap is a tool to characterize

BCG hierarchical growth. Thus, unlike with Fossil systems, we do not make arbitrary

cutoffs in magnitude gap to define our clusters.

The magnitude gap has long been theorized to result from galaxy interactions

(Tremaine and Richstone, 1977) and more recently from the merging of galaxies

within clusters (e.g., Ostriker et al., 2019). Hierarchical growth is responsible for

the magnitude gap and it’s subsequent growth because the BCG’s central location

with respect to the cluster’s gravitational potential well, makes BCGs more likely to

merge with fainter galaxies than the 2nd brightest galaxy. Therefore, BCGs grow

at the expense of the second brightest galaxy (Sandage and Hardy , 1973; Solanes
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et al., 2016). Given the nature of hierarchical growth, it is unsurprising that BCG

stellar mass and magnitude increase with the number of mergers (Hansen et al., 2009;

Solanes et al., 2016). Thus, since the magnitude of the 2nd or 4th brightest galaxy

remains fixed (or decreases if either the 2nd or 4th brightest galaxy merges with the

BCG) while the BCG grows, hierarchical growth of the BCG increases the magnitude

gap (Ostriker and Hausman, 1977; Solanes et al., 2016), yielding a linear correlation

between BCG stellar mass and magnitude gap (Harrison et al., 2012; Golden-Marx

and Miller , 2018).

In a hierarchical growth scenario, BCGs that have the largest magnitude gaps

have undergone the most mergers (Solanes et al., 2016). If we assume the merger

(dynamical friction) timescale is relatively constant (i.e., the merging galaxies have

similar stellar masses), then at a fixed halo mass, BCGs that have undergone the

most mergers should be the BCGs that form earliest. Since dark matter halo mergers

cause BCG merger stellar mass growth (after some dynamical friction timescale), it

follows that in this simplistic picture, the earliest assembling clusters have the most

massive BCGs with the largest magnitude gaps. This idyllic picture is unfortunately

just that, an idealized version of the truth. As noted in Deason et al. (2013) and

Kundert et al. (2017), a fraction of clusters have magnitude gap values that are

impacted by either recent mergers or by the infall of bright galaxies to within 0.5Rvir.

These examples highlight that some scatter is expected in any correlation between

the magnitude gap and formation redshift; however, this can be accounted for when

BCGs and their magnitude gaps are treated in a purely statistical manner and not

as individual systems.

The trend between stellar mass and formation redshift, the redshift when half

of the final halo mass assembles, is shown in Figure 1.4, from Matthee et al. (2017).

While Matthee et al. (2017) use the EAGLE hydrodynamic simulation, this correlation

is also measured within the semi-analytic models of the MILLENNIUM simulation
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Figure 1.4: Stellar Mass - Halo Mass Relation and Formation Redshift. This figure,
from Matthee et al. (2017), is the SMHM relation for the EAGLE hy-
drodynamic simulation color coded by the formation redshift of the halo.
This figure highlights that, particularly at low halo masses, early forming
clusters have higher BCG stellar mass.

(Zehavi et al., 2018) and the Illustris hydrodynamic simulation (Artale et al., 2018), so

the stellar mass-formation redshift correlation is independent of the physical models

used to build the EAGLE simulation. Figure 1.4 highlights, particularly at low halo

masses, that at a fixed halo mass, the more massive BCGs form earlier. Unfortunately,

this trend is not as evident for high halo masses (Mhalo > 1014M�), the mass range

analyzed in this dissertation, due to the small simulation box size, which results in

a small number of clusters, as well as the larger scatter between formation redshift

and stellar mass at higher halo mass (Zehavi et al., 2018). However, the similarities

between this trend and the trends shown in Chapters III, IV, and V between the stellar

mass and the magnitude gap at fixed halo mass, support the idea that magnitude gap

relates to the formation redshift in a hierarchical universe. Zehavi et al. (2018) also

note that earlier forming halos house more massive central galaxies and have fewer

satellite galaxies because an earlier formation time allows for more mergers within a

cluster, which may lead to a larger magnitude gap (D’Onghia et al., 2005; von Benda-
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Beckmann et al., 2008; Solanes et al., 2016). While these trends support a correlation

between formation redshift and magnitude gap due to hierarchical growth, Matthee

et al. (2017) propose that the trend between stellar mass and formation redshift may

instead result from earlier forming halos having a higher concentration and forming

more stars when feedback is less efficient.

The correlation between formation redshift and magnitude gap has been previ-

ously investigated in the context of fossil group galaxy formation. D’Onghia et al.

(2005) and von Benda-Beckmann et al. (2008) used N-body simulations to study fos-

sil group formation and found a weak linear trend between formation redshift and

magnitude gap. However, the strength and statistical significance of this relationship

is unquantified. Although this dissertation does not address the relationship between

magnitude gap and formation redshift beyond hinting at its existence, this is a topic

I plan to investigate over the next few years as a postdoc at Shanghai Jiao Tong

University. As discussed in depth in Chapter VI, currently, I am planning to use use

cosmological simulations, along with machine learning and Bayesian statistical tech-

niques, to measure the strength and scatter of the magnitude gap formation redshift

correlation. If a correlation exists, then the magnitude gap may serve as an observa-

tional proxy for formation redshift, a cluster property which while readily available

in simulations, we are currently unable to measure, even via proxy.

1.4 Quantifying the Galaxy-Halo Connection: The Stellar

Mass - Halo Mass Relation

Sections 1.2 and 1.3 describe how the galaxy-halo connection results from the

hierarchical assembly of the cluster’s dark matter halo, which in turn leads to the

assembly of the BCG. Two different approaches are used to study and characterize

the galaxy-halo connection: observations (e.g., Lin and Mohr , 2004; Kravtsov et al.,
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2018; Zhang et al., 2016; Golden-Marx and Miller , 2018, 2019), which do not rely on

simulated data, and semi-analytic or empirical models, which rely on the abundance

matching technique to obtain the dark matter halo masses (e.g., Behroozi et al., 2010;

Moster et al., 2010; Behroozi et al., 2013a; Moster et al., 2013; Reddick et al., 2013;

Tinker et al., 2017; Behroozi et al., 2018; Moster et al., 2018). The work presented

in this dissertation does not use empirical models or abundance matching. However,

these models and techniques are commonly used when parameterizing the galaxy-halo

connection and SMHM relation, so here I briefly summarize the abundance matching

ansatz.

A fundamental observation of the galaxy-halo connection is that more massive

central galaxies live in more massive dark matter halos (e.g., Norberg et al., 2002;

Zehavi et al., 2005; Coil et al., 2006; Zheng et al., 2007; Wake et al., 2011; Zehavi et al.,

2011; Leauthaud et al., 2012). The abundance matching ansatz is built on this concept

and creates a one-to-one matching that links the most massive galaxies observed in

a statistically complete sample, such as SDSS (Behroozi et al., 2010; Moster et al.,

2010; Behroozi et al., 2013a; Moster et al., 2013), or a sample with a well understood

completeness, to the most massive dark matter halos from a cosmological simulation.

Specifically, semi-analytic models often use sub-halo abundance matching (SHAM),

which take all subhalos from a dark matter only simulation and uses the subhalos to

match to observed galaxies (e.g., Kravtsov et al., 2004; Tasitsiomi et al., 2004; Vale

and Ostriker , 2004; Reddick et al., 2013). Moreover, since observations suggest that

a sizeable scatter between BCG stellar mass and dark matter halo mass exists, recent

SHAM matching models (e.g., Behroozi et al., 2010, 2013a; Tinker et al., 2017) also

incorporate scatter to better recreate realistic data.

From a purely observational standpoint, for the most massive clusters, where a

plethora of observational techniques (discussed in Section 1.4.1) can be used to es-

timate halo mass, the galaxy-halo connection community’s over-reliance on SHAM
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techniques can be viewed as problematic. As discussed in Chapter III, SHAM dis-

tinctly separates the observed BCG from the halo it resides in, which removes any

link between inherent, currently unaccounted for latent parameters, such as the mag-

nitude gap, that can be used to tighten the correlation between BCG stellar mass

and halo mass (Golden-Marx and Miller , 2018). The absence of a correlation with

secondary parameters may be somewhat accounted for using conditional abundance

matching, a technique where following the standard SHAM approach, a secondary

parameter, such as galaxy color, is then one-to-one matched to the stellar mass in

narrow bins of halo mass (Hearin and Watson, 2013), resulting in a more realistic

model of how galaxies populate dark matter halos. Despite this newer technique, it

is my opinion that given the proliferation of observational data of clusters currently

available (SDSS, DES, the Hyper Suprime Subaru Strategic Program, SPT) as well

as upcoming data releases (DESI, LSST), purely observational data should be used

whenever possible. However, I note, for low halo masses (Mhalo < 1013M�), it is far

more difficult to estimate halo masses, and abundance matching is a useful technique

for this lower halo mass range.

1.4.1 The Stellar Mass - Halo Mass relation

The link between the stellar mass of the central galaxy and the halo mass of the

dark matter halo, better known as the stellar mass-halo mass (SMHM) relation, is

a primary aspect of the galaxy-halo connection, and has been measured extensively

using observational data (e.g., Lin and Mohr , 2004; Harrison et al., 2012; Lin et al.,

2013; Zhang et al., 2016; Lin et al., 2017; Kravtsov et al., 2018; Golden-Marx and

Miller , 2018, 2019), empirical models, (e.g., Behroozi et al., 2010; Moster et al., 2010;

Behroozi et al., 2013a; Moster et al., 2013; Tinker et al., 2017; Behroozi et al., 2018;

Moster et al., 2018), and simulations (e.g., Gu et al., 2016; Matthee et al., 2017;

Pillepich et al., 2018). While this dissertation focuses on observationally measuring
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Figure 1.5: Stellar Mass - Halo Mass Relation Across all Halo Masses. This figure,
from Behroozi et al. (2013a), is the SMHM relation determined using
the SDSS luminosity function abundanced matched to halos masses from
the Bolshoi dark matter only simulation. This figure illustrates how the
SMHM relation evolves as both a function of halo mass and redshift.

the SMHM relation for galaxy clusters, it is important to understand that the SMHM

relation extends to low mass halos, where halo mass is predominately estimated using

SHAM.

The shape of the SMHM relationship is shown in Figure 1.5, from Behroozi et al.

(2013a). This SMHM relation is constructed using the SDSS luminosity/stellar mass

function abundance matched (with scatter) to halo masses from the Bolshoi dark

matter only simulation. The SMHM relation’s shape is fit by a double power law, of

the general form:

log10(M∗) = Normalization+β1(log10(Mhalo/Mhalo0))+β2(log10(Mhalo/Mhalo0) (1.1)

where β1 and β2 are the slopes of the high and low halo mass regime, respectively,

and Mhalo0 is the location of the pivot point. The pivot point, where star formation

efficiency peaks (Behroozi et al., 2013b) is measured at Mhalo ≈ 1012M� and as shown
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in Figure 1.5 is independent of redshift (Behroozi et al., 2013a). The slopes of the high

and low halo mass SMHM relations differ because of the different feedback processes

that quench star formation in each regime. At the low halo mass end, stellar feedback,

predominately from supernovae, is the dominant process, while at the high mass end,

supernovae feedback is not energetic enough to quench star formation; instead, AGN

feedback, from supermassive black holes quenches star formation (e.g., McNamara and

Nulsen, 2007; Cattaneo et al., 2009; Fabian, 2012). Thus, star formation efficiency

peaks at the pivot point because many galaxies of this size lack AGN while having

potential wells large enough to render stellar feedback negligible. One additional

feature introduced in Figure 1.5 is that there may be some modest evolution in the

slope of the SMHM relation with redshift, which will be discussed in Section 1.4.4.

While the SMHM relation extends to low halo masses, purely observational studies

focus on the cluster mass regime, which is fit by a single power law, as done in

Chapters III, IV, and V. However, even for the cluster mass regime, stellar mass

and halo mass are difficult to estimate (discussed in Sections 1.4.1.1 and 1.4.1.2)

because neither is directly observable. Therefore, it is unsurprising that the earliest

observational SMHM relations used proxies for these measurements. Edge (1991)

found a linear correlation between the absolute magnitude used as a proxy for stellar

mass, and the X-ray luminosity used a proxy for halo mass. Similarly, Lin and Mohr

(2004) identify a similar scaling relation between the BCG luminosity used as a proxy

for stellar mass, and the halo mass, estimated via a scaling relation between X-ray

luminosity and halo mass. These initial results highlight that the linear trend between

stellar and halo mass is not a property of SHAM and show that a sizeable scatter

exists in stellar mass at fixed halo mass. Despite the difficulty in estimating stellar

and halo masses, recent versions of the SMHM relation no longer use proxies for

these measurements. Therefore, it is important to understand how these masses can

be estimated and what systematic uncertainties are associated with these estimates.
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1.4.1.1 Measuring Stellar Mass

Although the earliest versions of the SMHM relation used absolute magnitude or

luminosity, more recent SMHM relations use estimates for the BCG’s stellar mass,

which may correlate better with halo mass than luminosity (Tinker et al., 2017).

Since a variety of versions of the SMHM relation are published, it is important to

remind the reader that in this dissertation, the stellar mass in the SMHM relation is

just the stellar mass contained within the BCG, not the sum of all stellar mass within

the cluster.

Observational estimates of BCG stellar masses rely on accurate BCG photome-

try measured in multiple wavelength bands (at least two for color measurements).

As discussed further in Chapter II, BCG magnitudes are difficult to determine ob-

servationally because of the inability to disentangle the BCG and ICL (as shown in

Figure 2.1). Additionally, photometric issues relating to the background plague BCG

magnitudes, as is the case for low-redshift SDSS photometry (e.g., Bernardi et al.,

2007; von der Linden et al., 2007; Kravtsov et al., 2018). Once BCG magnitudes

are obtained and the associated uncertainty in their magnitudes is calibrated, BCG

stellar mass can be estimated.

Stellar masses are generally estimated using spectral energy distribution (SED)

fitting (Shankar et al., 2014; Zhang et al., 2016; Tinker et al., 2017; Golden-Marx

and Miller , 2019, e.g.,), done using programs such as EzGal (Mancone and Gonzalez ,

2012). SED fitting relies on the photometric apparent magnitudes and their asso-

ciated uncertainties, as well as the redshift of the cluster/BCG. To estimate stellar

mass, a variety of SEDs are generated using multiple formation redshifts, metallicities,

star formation histories, and normalization parameters for a fixed stellar population

synthesis (sps) model (e.g., Bruzual and Charlot , 2003). For each BCG, the best fit

SED is determined by minimizing the chi-squared statistic between the observed and

modelled BCG magnitudes measured in the same wavelength bands. Using the best fit
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SED, stellar mass is estimated assuming an initial mass function (IMF) (e.g., Salpeter ,

1955; Kron, 1980; Chabrier , 2003). In Golden-Marx and Miller (2019) and Golden-

Marx et al. (in prep.), this approach is used for the Bruzual and Charlot (2003) sps

model and a Salpeter (1955) IMF, with a fixed metallicity, formation redshift, and

star formation history to model a “red and dead” fiducial BCG. To determine BCG

stellar masses, we marginalize over the normalization parameter. A second, similar

approach, used in Golden-Marx and Miller (2018), is to use a color-dependent, stellar

mass-to-light ratio, such as Bell et al. (2003), which uses galaxy evolution models and

a fixed IMF (diet Salpeter (1955) for Bell et al. (2003)) to estimate stellar mass. For

both approaches, the uncertainty associated with the BCG stellar mass estimate is

determined by combining the uncertainty in the observed BCG color with the uncer-

tainty associated with the SED fit, which results from the choice of sps model and

other intrinsic uncertainties (Tonini et al., 2012).

In the past few years, one primary and potentially sizeable discrepancy between

published versions of the SMHM relation is believed to stem from inconsistencies in

how BCG magnitudes are measured, which in turn leads to inconsistencies in stellar

mass measurements. This problem is particularly relevant for low-redshift SDSS data.

As discussed in depth in Chapter II, if the SDSS background is overestimated, this

leads to an underestimation of the BCG’s stellar mass (Bernardi et al., 2007; von der

Linden et al., 2007).

1.4.1.2 Measuring Cluster Halo Mass

Like stellar mass, halo mass is also not directly observable. It is measured us-

ing dynamical approaches, such as the caustic technique (Andreon and Hurn, 2010;

Gifford et al., 2013; Gifford and Miller , 2013; Andreon, 2015; Gifford et al., 2017),

weak gravitational lensing (Leauthaud et al., 2012), or through proxies, such as X-

ray brightness (Lin and Mohr , 2004; Harrison et al., 2012; Kravtsov et al., 2018) or
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Figure 1.6: Mass - Richness and Caustic Halo Mass Comparison. This figure com-
pares the caustic halo mass estimate and the mass-richness halo mass
estimate for the SDSS-C4 (Miller et al., 2005) cluster sample used in the
analysis presented in Golden-Marx and Miller (2018) and Golden-Marx
and Miller (2019). This figure highlights that these two halo mass esti-
mates are within 1-1.5σ of one another.

the mass-richness relation (Rykoff et al., 2012; Rozo et al., 2015; Simet et al., 2017;

McClintock et al., 2019). While these techniques and their associated uncertainties

all differ, for clusters with halo masses measured using multiple techniques, the halo

masses are measured consistently, as illustrated by Figure 1.6, which shows a com-

parison between the caustic halo mass estimates and the mass-richness relation halo

masses for the C4 clusters (Miller et al., 2005) used in Golden-Marx and Miller (2018)

and Golden-Marx and Miller (2019). Figure 1.6 shows that these halo mass estimates

are within 1-1.5σ of one another, with only a small offset and scatter. Similar evidence

for this consistency is shown in Andreon (2015).

In this dissertation, I use the caustic technique (Golden-Marx and Miller , 2018)
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and the mass-richness relation (Golden-Marx and Miller , 2019) to estimate halo

masses. Therefore, here I present a summary of these two techniques in Sections 1.4.1.3

and 1.4.1.4, respectively.

1.4.1.3 Caustic Halo Masses

The caustic technique dynamically measures the cluster’s halo mass using the

escape velocity profile of galaxies along the line of sight of the cluster to trace the

cluster’s gravitational potential. This technique has been used in a variety of works to

infer halo mass (e.g., Diaferio and Geller , 1997; Diaferio, 1999; Andreon and Hurn,

2010; Gifford et al., 2013; Gifford and Miller , 2013; Gifford et al., 2017; Golden-Marx

and Miller , 2018). The caustic technique relies on the principle that in a system where

the cluster’s dynamics are controlled by the halo’s gravitational potential, there exists

a radius-velocity phase space (left side of Figure 1.7) where the edge of the phase space

is defined by Equation 1.2, where vesc is the escape velocity and Φ is the cluster’s

gravitational potential (e.g., Gifford et al., 2013).

v2
esc(r) = −2Φ(r) (1.2)

While Equation 1.2 is simple, accurately measuring the gravitational potential

and integrating it is difficult. Instead, we use a form introduced by Diaferio and

Geller (1997), based on the partial mass differential equation dm = 4πρ(r)r2dr,

which directly leads to estimating the caustic halo mass via Equations 1.3, 1.4, and

1.5,

GM(< R) =

R∫
0

−2Gπv2
esc(r)

ρ(r)r2

Φ(r)
dr (1.3)
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where ρ is the density,

GM(< R) =

R∫
0

Fβ(r) < v2
los,esc(r) > dr (1.4)

vlos,esc is the line-of-sight escape velocity, and Fβ(r) is a caustic calibration term,

which is believed to be constant between radii of 1 - 3R200 (Diaferio, 1999), and is

defined by Equation 1.5.

Fβ(r) = −2Gπ
ρ(r)r2

Φ(r)
dr (1.5)

Gifford et al. (2013) find Fβ(r) = 0.65, which is used in Golden-Marx and Miller

(2018).

Observationally, caustic masses are measured by identifying the radius velocity

phase space of galaxies using spectroscopically measured line-of-sight peculiar veloc-

ities. As shown in Figure 1.7, in the radius-velocity phase space, the extrema values

are used to identify the caustic. One observational difficulty with caustic halo mass

is that unlike in simulations, where we have the 3D information, allowing for a very

clean caustic edge, in observations, we use a single line-of-sight, which adds addi-

tional uncertainty to our velocity measurement as well as our caustic mass estimate.

Thus, projection effects, which result in the inclusion of foreground interlopers in

the caustic phase-space diagram, are responsible for much of the observed scatter in

caustic mass estimates (Gifford et al., 2013). The uncertainty associated with this

mass estimate is reduced by using more galaxies to construct the caustic phase space;

however, based on the work of Gifford et al. (2013), when caustic profiles are not

stacked, this uncertainty plateaus at ≈ 30% when more than 50 galaxies are used.

The caustic uncertainty can be further reduced using only cluster members, identified

via the red sequence, to construct the caustic or by stacking multiple caustic phase

spaces (Gifford et al., 2017).

While the caustic technique is particularly useful at low redshifts (z < 0.1) where
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Figure 1.7: Galaxy Cluster Caustic Phase Space Diagram. This figure was provided
by Vitali Halenka. It shows the peculiar velocities of cluster galaxies
plotted against the distance from the cluster center. Additionally, the
observed caustic profile is shown in blue.

good spectroscopic coverage exists for a large sample of clusters (from SDSS), cur-

rently this method cannot be used for statistically large samples of clusters at higher

redshifts because we lack large high-redshift spectroscopic surveys. However, the im-

pending influx of spectroscopic data from DESI and LSST should allow us to expand

the use of the caustic technique to higher redshifts through stacked radius-velocity

phase spaces. In doing so, we will determine whether the scatter associated with this

measurement remains constant as a function of redshift (as discussed in Chapter VI).

1.4.1.4 Mass - Richness Relation

One of the earliest methods of observationally estimating cluster masses is the

mass-richness relation (e.g., Abell , 1958), which relies on the observed linear rela-

tion between cluster richness and halo mass, as shown in Figure 1.8, which originally

appeared in Andreon and Hurn (2010). Observationally, the mass-richness relation

relies on estimating richness, a measure of the galactic content within a cluster. Addi-
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Figure 1.8: Mass - Richness Relation. This figure, from Andreon and Hurn (2010),
shows the linear, mass-richness relation. This analysis used caustic halo
masses. The solid line is the median mass-richness fit, the dashed lines
show the intrinsic scatter, and the yellow region is the 1σ fit to the mass-
richness relation.
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tionally, unlike the caustic technique, the mass-richness relation relies on a correlation

measured between a cluster’s richness and a previously measured halo mass, done via

weak gravitational lensing (Rozo et al., 2009; Simet et al., 2017; McClintock et al.,

2019), the caustic technique, as shown in Figure 1.8 from Andreon and Hurn (2010),

and X-ray halo masses (Rozo et al., 2009; Rykoff et al., 2012).

Like for caustic measurements, richness based halo masses are highly susceptible

to impure cluster samples. Since richness is a measure of the number of galaxies

contained within a cylinder centered on the cluster (Andreon and Hurn, 2010), this

can easily lead to the inclusion of foreground interloper galaxies (Abell et al., 1989),

which introduce scatter in the mass-richness relation. Like for the caustic technique,

foreground contamination is reduced by identifying cluster members either spectro-

scopically or via the red sequence as done in redMaPPer (Rykoff et al., 2014) and

by applying a magnitude limit (Abell et al., 1989). Additionally, because we measure

the number of cluster members within a cylinder, the mass-richness relation is sen-

sitive to the radius within which the richness is measured. Therefore, the accuracy

of the mass-richness relation depends on both the accuracy of the calibration mass

measurements as well as the richness measurement.

Despite these difficulties, the proliferation of photometric observations of galaxy

clusters out to high redshifts over the past twenty years from SDSS and DES have

made this observationally inexpensive method of estimating halo mass increasingly

more common (Andreon and Hurn, 2010). Moreover, to its benefit, recent estimates

have found that the intrinsic scatter associated with the mass-richness relation is

quite low (Andreon, 2015; Rozo et al., 2015; Golden-Marx and Miller , 2019), making

it an ideal method to measure halo masses in large cluster catalogues across a wide

range in redshift. However, as discussed in Chapter VI, it is unknown whether the

scatter associated with mass at fixed richness remains constant over time.

32



1.4.2 Intrinsic Scatter in the SMHM relation

The SMHM relation is determined by measuring the linear correlation between

the BCG stellar mass and cluster halo mass. However, this is not a perfect one-to-

one relationship; some associated intrinsic scatter, σint, exists in stellar mass at fixed

halo mass. This scatter is referred to as intrinsic because astronomers currently are

unable to explain what causes the spread in stellar mass at fixed halo mass comes

from 1. Currently, σint is measured to be on the order of ≈ 0.15dex in observations

(Zu and Mandelbaum, 2015; Kravtsov et al., 2018; Golden-Marx and Miller , 2018,

2019), empirical models (Reddick et al., 2013; Tinker et al., 2017) and simulations

(Gu et al., 2016; Pillepich et al., 2018). Moreover, simulations suggest that this small

scatter results primarily from the BCG’s hierarchical assembly (Nipoti et al., 2009;

Gu et al., 2016; Solanes et al., 2016).

Although σint is small, it has a large impact on the slope of the SMHM relation. As

discussed in Shankar et al. (2014) and shown in Figure 1.9, from Tinker (2017), the

slope of the SMHM relation is particularly sensitive to σint, such that overapproximat-

ing σint flattens the slope. Figure 1.9 highlights the importance of understanding the

measured value of σint and its impact in characterizing the SMHM relation. However,

it is not easy to accurately measure because, as done in Tinker (2017), the intrinsic

scatter is difficult to deconvolve from the estimate of the total uncertainty on the

stellar mass. These parameters are related such that: σ2
M∗,tot = σ2

int+σ2
M∗,meas . There-

fore, to place strong constraints on σint, we need strong priors on the measurement

uncertainty of the stellar mass (Wechsler and Tinker , 2018).

1σint is not the same as the intrinsic scatter in halo mass at fixed stellar mass (Wechsler and
Tinker , 2018)
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Figure 1.9: Relationship Between the Slope of the SMHM Relation and the Intrinsic
Scatter. This figure, from Tinker (2017), highlights that the measured
slope of the SMHM relation depends on σint. If σint is overapproximated,
then the slope is flattened, and if σint is underapproximated, the slope is
steepened.
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1.4.3 Bayesian vs. Frequentist Approach to studying the SMHM Rela-

tion

To quantify the SMHM relation astronomers rely on statistical techniques. There

are two primary statistical approaches: frequentist statistics and Bayesian statistics.

For a frequentist approach, the probability is associated with with the frequency of

an event/detection. Moreover, the model is treated as fixed and the data as random.

In contrast, for a Bayesian approach, the probability is a statement of the knowl-

edge about a parameter used to describe an event/detection. In this approach, the

probability is associated with the measurement parameters and not the observational

data. These definitions highlight that these two approaches are at odds with one an-

other based on how they view observational data (VanderPlas , 2014). In a Bayesian

approach the data is viewed as the observed truth, while in a frequentist approach

the data is viewed as one random draw with an associated mean and variance. Ad-

ditionally, Bayesian statistics allows for the incorporation of priors, which impose

limitations on the measured parameters based on what we already know about the

model. Therefore, for conclusions drawn from the observed data about the model,

the Bayesian approach is the correct statistical approach (VanderPlas , 2014).

As discussed throughout this chapter, the goal of the galaxy-halo connection and

the SMHM relation is to describe the correlation between properties of the central

galaxy and properties of the host dark matter halo. These goals are associated with

creating a model that best describes our observations. Given that the Bayesian ap-

proach allows for astronomers to determine the probability and uncertainty associated

with each parameter for a given model, it is unsurprising that the majority of statisti-

cal works that study the galaxy-halo connection rely on Bayesian statistics. Moreover,

since the goal of this dissertation is not to constrain the data (whether from the SDSS-

C4, SDSS-redMaPPer, or DES-redMaPPer sample), but to determine whether we can

model the SMHM relation with a third parameter (the magnitude gap), I naturally
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use Bayesian statistics. Additionally, I note that the resultant model from a Bayesian

approach can be used to generate data in cosmological simulations, which rely on

such models to relate the central galaxy and halo characteristics. Given the direct

alignment of the Bayesian principles with the goals of this dissertation, Bayesian

statistical techniques allow me to best address the goals set forth.

1.4.4 Current Status of the SMHM relation

The SMHM relation has been investigated in recent years using observations (e.g.,

Oliva-Altamirano et al., 2014; Gozaliasl et al., 2016; Zhang et al., 2016; Lin et al.,

2017; Kravtsov et al., 2018; Golden-Marx and Miller , 2018, 2019), simulations (e.g.,

Gu et al., 2016; Pillepich et al., 2018), and empirical models (e.g., Tinker et al., 2017;

Behroozi et al., 2018; Moster et al., 2018). As a result of these varied approaches,

a general consensus exists about the nature of the SMHM relation. Here, I briefly

review the current consensus or lack thereof on the values of the scatter, amplitude,

and slope of the SMHM relation.

The best agreed upon measurement associated with the SMHM relation is that

σint ≈ 0.15dex (e.g., Gu et al., 2016; Tinker et al., 2017; Zu and Mandelbaum, 2015;

Kravtsov et al., 2018; Pillepich et al., 2018; Golden-Marx and Miller , 2018). Although

a consensus exists, astronomers are still actively investigating whether all of σint is

truly intrinsic as well as how this scatter evolves with halo mass. Recent observa-

tional (e.g., Zu and Mandelbaum, 2015), semi-analytic (e.g., Somerville et al., 2012;

Henriques et al., 2015), empirical (e.g., He et al., 2013; Behroozi et al., 2018) and

computational studies (e.g., Gu et al., 2016; Matthee et al., 2017; Pillepich et al.,

2018) have measured how σint changes with halo mass and find that σint may de-

crease slightly with increasing halo mass. However, this change may actually just

result from the transition of in-situ to ex-situ dominated stellar mass growth, and not

halo mass alone (Gu et al., 2016). Recent works have also examined whether includ-
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ing additional third parameters in the SMHM relation reduces σint. Zentner et al.

(2014) and Matthee et al. (2017) found that a fraction of σint results from differences

in the cluster’s formation redshift, which suggests that some difference in BCG stel-

lar masses is related to halo assembly, as suggested in Section 1.3.3 and Chapter VI.

Thus, σint may be further reduced, which would allow us to more tightly estimate the

halo mass of a cluster given the BCG stellar mass and posterior distributions of the

associated parameters. The reduction of σint is a primary focus of this dissertation,

particularly Chapter III.

While a consensus value for the scatter exists, there is less agreement for the

slope and amplitude of the SMHM relation. Shankar et al. (2014) note most observa-

tional SMHM relations lie above the Moster et al. (2013) empirical SMHM relation

and Figure 1.10 highlights such amplitude differences for five previously published

SMHM relations from Behroozi et al. (2013a), Moster et al. (2013), Lin and Mohr

(2004), Tinker et al. (2017), and Kravtsov et al. (2018), all scaled to the same IMF.

Of note, the Behroozi et al. (2013a), Moster et al. (2013), and Tinker et al. (2017)

relations are for empirical models, while the Lin and Mohr (2004) and Kravtsov et al.

(2018) relations are measured using observational data. It has been suggested that the

majority of the amplitude difference, particularly between the Behroozi et al. (2013a)

and Kravtsov et al. (2018) SMHM relations, result from how BCG magnitudes are

estimated (Wechsler and Tinker , 2018). The Behroozi et al. (2013a) result uses SDSS

Petrosian magnitudes and the Kravtsov et al. (2018) result integrates the BCG light

profiles out to infinity to measure BCG magnitudes. While the differences in mag-

nitude measurements are indeed important, the work presented in this dissertation

illustrates that at least ≈ 0.5 dex of amplitude difference remains unaccounted for by

BCG magnitude measurements.

Like the amplitude, the slope of the SMHM relation also lacks an agreed upon

value at low redshifts. Of importance, this dissertation does not claim to definitively
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Figure 1.10: Published SMHM Relations with Differing Amplitudes. This figure
shows the SMHM relations from Behroozi et al. (2013a), Moster et al.
(2013), Lin and Mohr (2004), Tinker et al. (2017), and Kravtsov et al.
(2018), all scaled to the same IMF, which highlights the discrepancy
between the amplitudes of published SMHM relations.

determine the correct SMHM relation slope, instead it focuses on characterizing the

slope’s evolution. However, for the purpose of comparing the results presented here

to those from prior works, it is necessary to note prior estimates for the slope’s

value. Recent observational results, such as Zhang et al. (2016) and Lin et al. (2017)

suggest that the slope of the SMHM relation is low (< 0.35). However, results from

simulations De Lucia and Blaizot (2007) and Pillepich et al. (2018) suggest that the

slope is much steeper, 0.45-0.60. As hinted at in Zhang et al. (2016), the Illustris

TNG 300 simulation (Pillepich et al., 2018), and the EMERGE semi-analytic model

(Moster et al., 2018), this discrepancy may result from the choice of radius within

which the BCG’s stellar mass is measured, a topic which is investigated in depth in

Chapter IV of this dissertation.

Another aspect of the SMHM relation this dissertation focuses on is the redshift

evolution of the slope and σint (see Chapter IV and Chapter V). Since both BCGs

and their dark matter halos grow hierarchically, the SMHM relation is expected to

have some evolution over the last 6 billion years. While this has been investigated
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observationally (e.g., Oliva-Altamirano et al., 2014; Gozaliasl et al., 2016), using em-

pirical models (e.g., Behroozi et al., 2013a; Moster et al., 2013), and in simulations

(e.g., Gu et al., 2016; Pillepich et al., 2018), the results of each approach do not agree.

Observations are unable to constrain the redshift evolution of the SMHM relation’s

slope because the slope’s uncertainty is large (> 0.2) (Oliva-Altamirano et al., 2014;

Gozaliasl et al., 2016). Empirical models (Behroozi et al., 2013a; Moster et al., 2013)

suggest that between z = 0.0 and z = 1.0, the slope decreases by ≈ 50%. In contrast

to emipirical models, results from Illustris TNG300 (Pillepich et al., 2018) suggest

little redshift evolution out to z = 1.0. Similarly, the redshift evolution of σint (Gu

et al., 2016; Matthee et al., 2017; Behroozi et al., 2018; Moster et al., 2018; Pillepich

et al., 2018) is inconsistent and may depend on the initial conditions of the simulations

and empirical models. It is important to note that the lack of consistency between

observations, empirical models, and simulations, may result from differences in how

stellar masses and halo masses are measured. Thus, from both an observational and

empirical viewpoint, prior to the work presented in this dissertation, the late-time

redshift evolution of both parameters remains unclear.

Although the expected late time redshift evolution is unclear, using N-body sim-

ulations, Gu et al. (2016) study the hierarchical growth of BCGs with respect to the

long term evolution of the SMHM relation. Figure 1.11, which originally appeared

in Gu et al. (2016), shows that over a significant amount of cosmic time, the slope of

the SMHM relation slightly steepens and σint increases. Moreover, Gu et al. (2016)

claim that both σint and the SMHM relation’s slope increase as a result of hierarchi-

cal merging, which in turn increases the diversity of the BCG’s progenitor history.

Therefore, any detected evolution in the slope of the SMHM relation may result from

recent hierarchical growth. Additionally, an increase in slope over time suggests that

merger growth is more efficient in more massive halos.
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Figure 1.11: Redshift Evolution of the Slope and Intrinsic Scatter in the SMHM Re-
lation. This figure originally from Gu et al. (2016), shows how the slope
and σint evolve between z=2 (in blue) and z=0 (in red). Over this time,
σint increases, resulting in a slightly steeper slope.

1.4.5 What can we learn from the SMHM relation

One of the primary uses of the SMHM relation is to characterize how galaxies pop-

ulate dark matter halos. However, the SMHM relation can also be used to constrain

semi-analytic and empirical models of galaxy formation and evolution (Shankar et al.,

2014; Wechsler and Tinker , 2018) as well as to constrain cosmological parameters.

Here, I summarize a variety of results that highlight uses of the SMHM relation and

associated scatter.

Characterizing AGN feedback is a vital process for understanding the star forma-

tion history of massive galaxies. For clusters, the amplitude of the SMHM relation

can be used to constrain the amount of AGN feedback (Kravtsov et al., 2018). If this

feedback is modeled to be more significant than in the real universe, the amplitude of

the SMHM relation would be lower in semi-analytic models and simulations than in

observations because BCGs would have lower stellar masses. From the standpoint of
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Figure 1.12: Posterior Distibution of Instrinsic Scatter for Different Galaxy Quench-
ing Models. This figure, from Tinker (2017), shows how the posterior
distribution for σint changes for different types of quenching models.
Based on the comparisons to the observed σint, it is clear that only
galaxy quenching is viable.

a two-phase formation scenario, this would likely mean that AGN feedback quenched

the formation of the BCG’s core (the region actively grown via star formation) at

a higher redshift. Additionally, this would decrease the stellar mass of the merging

galaxies, which may also host AGN, so it would also decrease the amount of mass

gained via ex-situ mergers. However, it is important to note, that when comparing

results from observations and semi-analytic/empirical models, attention must be paid

to measure the stellar mass in both models and observations consistently.

While the amplitude informs us about AGN feedback, the scatter of the SMHM

relation informs us about the processes that quench star formation in massive galaxies,

as shown in Figure 1.12, from Tinker (2017). Figure 1.12 compares the posterior

distributions for σint that result from different quenching models, including galaxy

quenching, halo quenching, and redshift quenching (for each of these star formation is

shut off when the central galaxy/cluster reaches a threshold stellar mass, halo mass,
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or redshift). Based purely on the observed σint, Tinker (2017) claim that only galaxy

quenching yields a low enough σint to agree with observational measurements.

Additionally, as shown in Gu et al. (2016), σint also constrains models of halo

assembly due to smooth accretion. In simulations, smooth accretion occurs when the

total halo mass is the sum of all subhalos as well as any free dark matter particles

within the cluster’s radial extent. If smooth accretion does not occur, the total halo

mass is the sum of the subhalos, and σint is lower. Based on the observed σint, halo

assembly models grow via smooth accretion (Gu et al., 2016). Additionally, Gu et al.

(2016) also use σint to characterize BCG formation and find that at the high mass

end, hierarchical growth is responsible for all of the observed scatter, while at the

lower halo mass end, the scatter results from in-situ star formation.

As noted in Section 1.4.1, neither stellar mass or halo mass are directly observable.

However, because stellar mass estimates can come directly from photometry, they

are generally easier to observationally estimate. Therefore, once accounting for the

posterior distributions associated with well-constrained SMHM relation parameters,

the SMHM relation can be used to determine the halo mass distribution for a sample of

clusters. By comparing the inferred halo mass distribution to halo mass distributions

from cosmological dark matter only simulations the estimates obtained via the SMHM

relation can be used to infer and place constraints on cosmological parameters. Of

note, since the halo mass function evolves with redshift, it is important to either use a

homogeneous sample of clusters centered on a single redshift or use a SMHM relation

that accounts for the redshift evolution of the measured parameters.

1.5 Questions Addressed in this Dissertation

In the previous sections, I introduced the galaxy-halo connection and described

how this connection results from the hierarchical assembly of dark matter halos, which

in turn are responsible for BCG hierarchical growth. Moreover, I have explained how
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the galaxy-halo connection naturally leads to the SMHM relation, how this relation

is measured, and how this relation can be used to constrain models of galaxy and

halo formation and evolution. Although this is well studied in observations, simula-

tions, and empirical models, there is still much for us to learn, particularly on the

observational end, where we are just beginning to probe higher redshifts and con-

struct statistically significant samples of higher redshift clusters using surveys and

instruments such as DES and the South Pole Telescope.

As noted in the recent galaxy-halo connection review paper (Wechsler and Tinker ,

2018), placing tighter constraints on the parameters associated with the galaxy-halo

connection over a range in halo mass, redshift, and environment will greatly improve

our understanding of this connection as well as our ability to improve our simulations

and empirical models of galaxy/halo formation. In Chapters III, IV, and V of this dis-

sertation, I focus on the latter two characteristics. First as shown in Golden-Marx and

Miller (2018), I account for environment, by introducing the magnitude gap, which

characterizes the cluster’s galactic population, as a third latent parameter within the

SMHM relation. In doing so, I significantly tighten the constraints on both the slope

and σint. This result illustrates that a large portion of σint results from comparing

clusters hosting BCGs in different stages of their hierarchical growth. Second, in

Golden-Marx and Miller (2019), I study the late-time evolution of the SMHM rela-

tion. Incorporating the magnitude gap allows us to place tighter constraints on the

SMHM relation’s slope, which allows us to, for the first time, observationally detect

statistically significant late-time evolution in the slope of the SMHM relation. Addi-

tionally, in Golden-Marx et al. (in prep.), I confirm the results of Golden-Marx and

Miller (2019) using higher redshift data and confirm that the parameter associated

with the magnitude gap also evolves. Throughout this dissertation, particularly in

Chapters IV and V, I highlight how we create a homogeneous sample of galaxy clus-

ters across multiple observational surveys (DES and SDSS) which use multiple cluster
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finding algorithms (C4 (Miller et al., 2005) and redMaPPer Rykoff et al. (2014)) to

observationally characterize how the SMHM relation and thus the underlying rela-

tionship between BCG formation and halo assembly evolve. Therefore, here, in this

dissertation, using Bayesian statistical methods, we observationally address the im-

pact of both environment and redshift on the galaxy-halo connection via the SMHM

relation, and not only detect, but place statistically significant constraints on how

the observed SMHM relation for a sample of clusters with homogenous measurements

evolves over the redshift range 0.03 < z < 0.60.
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CHAPTER II

How to measure a BCG’s magnitude

2.1 Abstract

BCGs are radially extended compared to similarly massive non-central galaxies,

and are often surrounded by halos of diffuse intra-cluster light (ICL; Zwicky , 1951).

These characteristics make BCG photometry quite complex. Therefore, it is vital

to understand how different BCG magnitude measurements are obtained and the

fraction of the BCG’s light contained within each measurement. Moreover, as out-

lined in this chapter, specific procedures should be taken to accurately measure low-

redshift BCG magnitudes (e.g., Bernardi et al., 2007; von der Linden et al., 2007). In

this section, we describe different computational and modelling techniques SDSS and

DES use to estimate BCG magnitudes and how we measure BCG magnitudes using

SDSS radial light profiles (Golden-Marx and Miller , 2018, 2019) and DES photome-

try (Golden-Marx et al. in prep.). This chapter serves to expand upon the discussion

presented in Section 3.3, Section 4.4, and Section 5.4.

2.2 How is a Galaxy’s Magnitude Measured

Photometry, the measure of an astronomical object’s light or flux, is a fundamental

part of astronomy. The apparent magnitude, given by Equation 2.1, quantifies the
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Figure 2.1: DES BCG Radial Flux Profile. The radial flux profile of a Dark Energy
Survey BCG, plotted in Flux/arcsec2 vs arcseconds.

amount of flux observed in a fixed waveband measured on earth (via CCDs on modern

telescopes).

m = normalization− 2.5× log10(Flux) (2.1)

Today, astronomers accurately measure the brightness of most astronomical objects.

However, for BCGs, the focus of this dissertation, accurate photometric measurements

remain surprisingly difficult.

Unlike similarly massive galaxies, BCGs are radially extended and surrounded by

halos of faint, diffuse ICL, which make it difficult to accurately distinguish the BCG

from the background light. Moreover, BCG light profiles highlight that while BCGs

have bright central cores the outer envelopes gradually decrease in brightness until the

galaxy’s light and background are indistinguishable, as shown in Figure 2.1. There-

fore, the inability to clearly separate the BCG from the ICL and background make it

critical to understand BCG photometry and how different magnitude measurements

truncate BCG light profiles, which impact the BCG’s magnitude and in turn the stel-

lar mass estimate. BCG magnitudes are a fundamental measurement used throughout

this dissertation because accurate photometry is required to measure both the BCG’s
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stellar masses as well as the magnitude gap of the cluster.

The outline for the remainder of this chapter is as follows. In Section 2.3, I

describe different approaches used to measure galactic magnitudes. In Section 2.4, I

discuss the difficulties that exist when measuring BCG photometry. In Section 2.5, I

discuss how SDSS magnitudes are measured in Golden-Marx and Miller (2018) and

Golden-Marx and Miller (2019). In Section 2.6, I discuss how our BCG magnitudes

are measured for our DES data (Golden-Marx et al. in prep.).

2.3 Magnitude Types

The two primary types of galactic magnitudes are aperture and model magnitudes.

Aperture magnitudes measure the total flux within a fixed radial region on the sky,

generally measured in arcseconds(”) or pixels, but which, if the galaxy’s redshift is

known, can be converted to physical units, such as kpc. Model magnitudes fit a

galaxy’s radial light profile to either an exponential or power law function, which

is used to estimate a galaxy’s total magnitude. For both methods, magnitudes are

calculated independently for each wavelength band. Therefore, for both approaches,

the measurement accuracy associated the magnitude depends on the photometric

depth as well as the fraction of the galaxy’s light contained within the selected radial

aperture or the accuracy of the fitting function compared to the observed light profile.

Since my work in Golden-Marx and Miller (2018) and Golden-Marx and Miller

(2019) uses SDSS photometry, and my work in Golden-Marx et al. (in prep.) uses

DES photometry, I briefly summarize the available magnitudes provided by SDSS and

DES. Both SDSS and DES provide model magnitudes fit to either a de Vaucouleurs

(1948) profile, where n=4, (Equation 2.2)

I(r) = I0e
−7.67[r/re]1/n (2.2)
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or to an exponential Sérsic (1963) profile, where n=1, (Equation 2.3).

I(r) = I0e
−1.68[r/re]1/n (2.3)

For both models, re is the scale radius, I(r) is the surface brightness profile, and

I0 is the intensity at r = 0. Model magnitudes are calculated for each SDSS ugriz

band and DES griz band. Additionally, SDSS provides cmodel magnitudes, a linear

combination of the de Vaucouleurs (1948) and Sérsic (1963) profiles.

SDSS also provides Petrosian (1976) magnitudes, used in Golden-Marx and Miller

(2018). In Section 2.5, I describe how we measure Petrosian magnitudes. Since

each galaxy has a unique radial surface brightness profile, aperture magnitudes do

not consistently account for the same fraction of light from a galaxy. The Petrosian

magnitude accounts for this discrepancy by measuring a constant fraction of a galaxy’s

total flux. The Petrosian magnitude is measured at the Petrosian radius (rp), which

is calculated using the Petrosian ratio, given by Equation 2.4, where I(r’) is the

azimuthally averaged radial surface brightness profile.

Rp(r) =

∫ 1.25r
0.8r dr′2πr′I(r′)

π(1.252−0.82)r2∫ r
0 dr

′2πr′I(r′)

πr2

(2.4)

For SDSS, rp is the radius, where Rp(rp) = 0.2, and Petrosian magnitudes are calcu-

lated within 2.0rp. Since Petrosian magnitudes have a designated radial end point,

they do not contain a galaxy’s entire light profile; instead they represent ≈ 90% of

a galaxy’s light, which encloses a similar fraction of light to a de Vaucouleurs (1948)

profile with n=4 and a Sérsic (1963) profile of n=1 (Blanton et al., 2001). Although

SDSS provides Petrosian radii and magnitudes, they can also be calculated using

the azimuthally averaged radial flux profiles provided by SDSS for each wavelength

band, similar to Figure 2.1, as done in Golden-Marx and Miller (2018). As discussed

in Section 2.5, this information can also be used to measure fixed physical aperture
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magnitudes by converting pixels to arcseconds to distance (if a redshift is known).

For the DES data, we also use the Kron (1980) magnitudes, see Section 2.6.

Similar to Petrosian magnitudes, Kron magnitudes rely on the Kron ratio, given by

Equation 2.5, to determine the radius containing a fixed amount of flux.

R1(r) =

∫ r
0
dr′2πr′2I(r′)∫ R

0
dr′2πr′I(r′)

(2.5)

The Kron radius, rk, is where the Kron ratio is equal to 0.1 times the sky flux and

the Kron magnitude is measured at ≈ 2.0rk. The Kron magnitude is a luminosity

weighted magnitude estimated to account for ≈ 90% of the light within a galaxy, like

the Petrosian magnitude.

2.4 Difficulties for BCGs

As introduced in section 2.2, BCG photometry is difficult to measure accurately.

One primary reason is that BCGs are often located in crowded environments, sur-

rounded by satellite galaxies, as a result of the BCG’s unique location near the center

of the dark matter halo’s gravitational potential well, as shown in Figure 2.3. BCG

photometry is further complicated because BCGs are also often surrounded by halos

of diffuse ICL (Zwicky , 1951; Welch and Sastry , 1971; Oemler , 1976; Lin and Mohr ,

2004), see Figure 2.2. Therefore, it is difficult to consistently disentangle a BCG’s

light profile from the background and ICL. While a simplistic solution, suggested

by Kravtsov et al. (2018), is to measure BCG magnitudes by integrating their light

profile to infinity, the dense environment and inability to distinguish the BCG’s outer

envelope from the ICL and then the background (Kravtsov et al., 2018; Zhang et al.,

2018), make this approach problematic because it will likely result in including light

that is part of the cluster, but not associated with the BCG, in the BCG magni-

tude and stellar mass estimate. Since BCG photometry is not straightforward, in
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Figure 2.2: SDSS BCG with ICL. An SDSS-C4 galaxy cluster featuring a BCG sur-
rounded by a large diffuse ICL halo.

Sections 2.4.1 and 2.4.2, I introduce the ICL, explain ICL formation, the impact the

ICL has on BCG magnitude measurements, and explain the difficulties in accurately

measuring BCG light profiles, particularly for SDSS photometry.

2.4.1 ICL

BCGs are surrounded by ICL, which can extend as far out as 1Mpc (Zhang et al.,

2018) from the BCG’s core, and enclose light from multiple bright galaxies (e.g., Lauer

et al., 2014), as shown in Figure 2.2. Despite the fact that new observations have

greatly improved our understanding of the ICL (Zibetti et al., 2005; Zhang et al., 2018),

ICL is not a new concept; it was first theorized by Zwicky (1937) and first observed

in the Coma cluster (Zwicky , 1951, 1952). Moreover, BCG extended envelopes have

long been thought to be associated with the ICL (Uson et al., 1991). Despite being

well studied, a consensus definition of the ICL does not exist. Currently, in both

observations and simulations, astronomers are unable to disentangle the BCG’s light
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profile from the ICL, making it impossible to determine where these regimes overlap

(Lin and Mohr , 2004; Kravtsov et al., 2018; Zhang et al., 2018). Due to this difficulty,

for the analysis in this dissertation, I follow from the ICL definition introduced in

Pillepich et al. (2018), where a fixed radius is used to separate the BCG and ICL

such that the diffuse light outside the fixed radius (in our case 100kpc (Golden-Marx

and Miller , 2019)) centered on the BCG is defined as the ICL and all of the light

located within that same radius is treated as the BCG.

As noted in Section 1.3.2, the ICL’s formation results from BCG hierarchical

growth (Murante et al., 2007). As previously noted, BCGs follow a two-phase (Oser

et al., 2010) formation scenario, where the central region of the BCG forms via in-situ

star formation at z > 2 and remains unchanged (van Dokkum et al., 2010), while the

outer region of the BCG (r > 5kpc) grows hierarchically (De Lucia and Blaizot , 2007)

by accreting satellite galaxies. During hierarchical growth, a fraction, suggested to

be greater than or equal to 50% (Lidman et al., 2012; Groenewald et al., 2017; Burke

et al., 2015), of ex-situ stars are ejected from the BCG/merging galaxy and form the

ICL. Therefore, as the BCG hierarchically assembles, the ICL simultaneously grows

as well.

Recent simulations suggest that the ICL forms from stars dispersed from their host

galaxies via processes including tidal stripping and galaxy-galaxy mergers (Murante

et al., 2007; Contini et al., 2014). Contini et al. (2014) suggest that the majority of

the ICL is built up via tidal stripping of massive satellite galaxies, which can occur

when satellites fall to the inner region of a cluster, allowing tidal forces to strip stars

from the satellite galaxy’s outer regions, while a small fraction of the ICL results

from galaxy-galaxy mergers. In contrast, Murante et al. (2007) find that for high

mass galaxies, the majority of ICL results from galaxy-galaxy mergers, while tidal

stripping dominates for low mass galaxies. Despite this inconsistency, both Murante

et al. (2007) and Contini et al. (2014) find that the ICL assembles relatively recently
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(z < 1.0), compared to the core of the BCG, which assembles at z > 2 (Oser et al.,

2010; van Dokkum et al., 2010). These results agree with observations from Burke

et al. (2015), which use Cluster Lensing and Supernova survey with Hubblesurvey,

covering the redshift range 0.18 < z < 0.90, and find that the stellar mass of the ICL

increases by a factor of 4-5 due to minor mergers, while the stellar mass within the

BCG remains fixed.

Since the ICL and BCG are inherently related, it is important to understand how

the ICL impacts BCG photometry and stellar mass estimates. For example, light

outside 20kpc accounts for a significant fraction of a BCG’s total light (Gonzalez et al.,

2005). Moreover, measuring the BCG’s outer envelope and ICL allow us to constrain

BCG growth (Conroy et al., 2007; van Dokkum et al., 2010; Burke et al., 2015; Huang

et al., 2018). Thus, incorporating ICL and the region surrounding the BCG’s core,

is crucial to accurately measuring the BCG’s total mass as well as the parameters of

the SMHM relation (Moster et al., 2018). The ICL is also an important component

of galaxy clusters. For example, the stellar mass budget of the ICL increases with

halo mass (Lin and Mohr , 2004), such that 10-50% of the cluster’s total light is found

within the ICL (Zibetti et al., 2005; Gonzalez et al., 2007; Burke et al., 2015; Zhang

et al., 2018). Additionally, the ICL luminosity may even trace the underlying parent

dark matter halo mass distribution (Zhang et al., 2018).

2.4.2 BCG light profile difficulties

In addition to BCGs being surrounded by diffuse ICL they are also often located

within dense galactic regions near the core of the galaxy cluster. When galactic mag-

nitudes are measured, they include all flux within a radial region, including scattered

light from diffuse objects that make up the background. To account for this light,

the background flux should be measured by masking galaxies and using the flux from

areas of the sky unoccupied by neighboring galaxies. Therefore, accurately measuring
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BCG magnitudes requires correctly measuring the background and not incorporating

regions dominated by neighboring galaxies or ICL. If the background flux is overesti-

mated, the galaxy’s flux, and stellar mass will be underestimated.

For extended galaxies in crowded regions, common characteristics of BCGs, the

SDSS photometric pipeline overestimates the background (Bernardi et al., 2007; Lauer

et al., 2007; von der Linden et al., 2007), resulting in photometry that may be under-

estimated by as much as 1.0-1.5 magnitudes (Bernardi et al., 2007; Lauer et al., 2007;

Golden-Marx and Miller , 2018). An example of an SDSS BCG in a crowded field is

shown in Figure 2.3. The SDSS background subtraction problem is well documented,

(Bernardi et al., 2007; Lauer et al., 2007; von der Linden et al., 2007; Kravtsov et al.,

2018) and corrections, as discussed in Section 2.5, exist (e.g., von der Linden et al.,

2007); however, to date, this problem has not been fully resolved and still exists for

new SDSS photometry.

The SDSS background subtraction problem results from how the SDSS photomet-

ric pipeline measures the background flux. SDSS provides two background measure-

ments, a local and a global sky background. The global sky background is measured

within a box of 2048 x 1498 pixels (13.5 x 9.8 arcmin2). In contrast, the local sky

background, which is used in the SDSS photometric reduction pipeline, is measured

at every location within a box of 256 x 256 pixels (1.7 x 1.7 arcmin2). Since the

local sky background is small (≈ 2% of the global sky background in area) local sky

backgrounds are inherently susceptible to being biased to higher values by diffuse

light from neighboring galaxies or the ICL. To account for the incorrect background

measurement, the global sky background can be used for more accurate photometry,

as described in depth in Section 2.5 and in von der Linden et al. (2007).
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Figure 2.3: SDSS BCG in a Crowded Environment. An example of an SDSS BCG
that is found in a crowded region.

2.5 Measuring BCG Magnitudes for SDSS

2.5.1 Golden-Marx & Miller 2019 Magnitudes

For our stellar mass and magnitude gap measurements in Golden-Marx and Miller

(2018), we apply the von der Linden et al. (2007) correction to the SDSS photometry

to measure BCG magnitudes. Here, we summarize how we measure Petrosian mag-

nitudes using the SDSS azimuthally averaged radial profiles and how we apply the

von der Linden et al. (2007) correction.

2.5.1.1 Measuring the Petrosian Magnitude

As noted in Section 2.4.2, SDSS magnitudes overapproximate the background,

leading to an underapproximation of the BCG magnitude and stellar mass. However,

the von der Linden et al. (2007) correction is designed to be applied to a radial

light profile measured at the Petrosian radius. Therefore, to use this approach, we
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first must accurately reproduce SDSS Petrosian magnitudes using the azimuthally

averaged radial flux profiles, similar to Figure 2.1. For the analysis in Golden-Marx

and Miller (2018), we used the SDSS g-, r-, and i-band fluxes.

SDSS provides radially binned flux per arcsec2 measurements for radial bins mea-

sured out to the local sky background level. This flux/arcsec2 measurement can be

converted to a flux by multiplying the value measured at each radius by the area of

each annulus in arcsec2. The total flux as a function of radius is then calculated by

coadding the flux in each annulus. This flux is then converted from nanomaggies to

magnitudes using Equation 2.6,

m =
−2.5

ln(10)
[
asinh( f

f0
)

2b
+ ln(b)] (2.6)

where b is a waveband dependent softening parameter, which represents the 1σ noise

of the sky in a PSF aperture in a 1” seeing and f0 is the zero point of the magnitude

scale. To convert the sky aperture (in radians) to a physical aperture (in kpc),

which is needed to compare Petrosian radii measurements, I use the cluster redshift,

estimated either via the C4 (Miller et al., 2005) or redMaPPer (Rykoff et al., 2014)

cluster finder algorithms, to determine the luminosity distance assuming a ΛCDM

cosmology, and simple trigonometry. For each wavelength band I then fit a univariate

spline function, a one dimensional smoothing fit, which uses piece-wise polynomials

to linearly interpolate between the measured data, to the light profile to measure

the magnitude at all radii between the measured values. For this fitting, I set the

degree of smoothing for the spline to 3 and the smoothing factor to 0.0000000001.

An example fit is shown for the i-band magnitude measurement of an SDSS-C4 BCG

in Figure 2.4. To determine how well my interpolated light profiles match the SDSS

profiles, I compared my measurement of the Petrosian magnitude taken at the SDSS

Petrosian radius, to the SDSS value. Figure 2.5 highlights the absolute magnitude
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Figure 2.4: SDSS Light Profile. This is an SDSS-C4 BCG light profile for the i-band.
The light profile shows how the univariate spline interpolation function
works.

difference between my measurement of the Petrosian magnitude (taken at the SDSS

Petrosian Radii) and the SDSS value. Since the majority of data have an absolute

difference on the order of < 10−2 magnitudes, Figure 2.5 highlights that my light

profiles are far more accurate than the associated measurement uncertainty of SDSS

(≈ 0.02 (Lauer et al., 2007)).

To calculate Petrosian magnitudes, I calculate rp, using Equation 2.4, which re-

quires the flux measured as a function of radius. For this flux measurement, I fit a

second univariate spline function (with the same parameters) to interpolate the flux

as a function of radius. I then evaluate Equation 2.4 at each point along my linear

interpolation and identify rp where Rp(rp) = 0.225. This value is slightly larger than

the SDSS value, 0.2, which may be due to small differences between my algorithm

and the SDSS algorithm, such as a different spline fitting. 0.225 was selected because

it minimized the uncertainty between my rp, and thus my Petrosian magnitudes, and

the SDSS values. The results of this choice are shown in Figure 2.6, which compares

my rp for the g- and r-bands to those measured by the SDSS photometric pipeline.
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Figure 2.5: SDSS Petrosian Magnitudes vs. My Petrosian Magnitudes. This is a dis-
tribution comparing the absolute value of the difference between the SDSS
Petrosian magnitude and my measurement of the magnitude, measured
at 2.0rp, where rp is given by SDSS.

The one-to-one nature of Figure 2.6 highlights that following this approach, I accu-

rately remeasure rp and thus, when combined with the results of Figures 2.4 and 2.5

am able to remeasure the Petrosian magnitudes with high precision as well.

2.5.1.2 Measuring Background Corrected Petrosian Magnitudes

Since low-redshift SDSS photometry suffers from a background subtraction error,

I apply the correction described in von der Linden et al. (2007). For this analysis, I

rely upon Equations 2.7, 2.8, and 2.9, from von der Linden et al. (2007),

LRi = −2.5log(Li/Lnb) (2.7)

where LRi is the luminosity ratio between the ith galaxy and its neighbor (nb). Lnb,

the luminosity of the neighbor, is defined by Equation 2.8,

Lnb =

∑
j∈galaxies Ljwj∑
j∈galaxieswj

+ 10(

∑
j∈stars Ljwj∑
j∈starswj

) (2.8)
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Figure 2.6: SDSS Petrosian Radius vs. My Petrosian Radii. This scatter plot com-
pares the SDSS Petrosian radii measured in the g- and r-bands to my
measurement of the Petrosian radii for those same bands. The one-to-one
nature of this figure highlights that I am able to accurately remeasure rp.

where Lj is the luminosity of the jth star or galaxy and wj is the weighting factor

associated with that star or galaxy, given by Equation 2.9,

wj = e
−(

d2i,j
2(2rp,i)

)2

(2.9)

where, di,j is the distance between the galaxy and its neighbor, and rp,i is the SDSS

Petrosian radius of the galaxy.

Using Equations 2.7, 2.8, and 2.9, I calculate the luminosity ratio for each galaxy,

which, along with a comparison between the local and global sky backgrounds deter-

mines the fraction of the background difference added to the SDSS flux profiles. To

determine the fraction of the background difference added to the light profile, I follow

guidelines from von der Linden et al. (2007):

1). If δsky = skylocal - skyglobal < 0.0, no correction is applied; the backgrounds are

equivalent.
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Figure 2.7: Corrected SDSS Light Profile. This is a corrected light profile for an
SDSS-C4 BCG plotted as a funtion of radius in kpc. The light profile
illustrates the impact of incorporating the von der Linden et al. (2007)
background correction to the SDSS light profile. Additionally, compar-
ing the red and yellow points illustrates how the background correction
changes rp as well as the Petrosian magnitude.

2). If LRi ≤ -2.5, then a sky fraction (fsky) of 0.7 is applied.

3). If LRi ≥ -1.0, then fsky = 0.5. This is a different value of fsky than used in

von der Linden et al. (2007). We chose 0.5 for the lower limit based on a comparison

to the photometry from Postman and Lauer (1995). The difference between our

approach and that described in von der Linden et al. (2007) likely exists because von

der Linden et al. (2007) used SDSS data release 4 (Adelman-McCarthy et al., 2006),

while we use data release 12 (Aihara et al., 2011).

4). If -2.5 < LRi < -1, fsky is a continuous linear function of LRi with minimum

and maximum values of 0.5 and 0.7, respectively.

Using these guidelines, I determined the amount of flux required to correct the

SDSS background. fsky × δsky is then added to each radial flux measurement, after

which rp and the Petrosian magnitudes are recalculated using the new flux profiles.

An example of a corrected light profile is shown in Figure 2.7, which highlights that
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the von der Linden et al. (2007) correction can change both the Petrosian magnitude

by up to ≈1.0 magnitudes as well as rp.

To calibrate the maximum and minimum fsky value used in this analysis, we use

the 40 BCGs found in both the SDSS-C4 (Miller et al., 2005) and the Postman and

Lauer (1995) samples. The Postman and Lauer (1995) data has excellent photometry

and does not utilize the SDSS pipeline. Figure 2.8 illustrates that the accuracy of our

magnitudes compared to the Postman and Lauer (1995) magnitudes (in red) is ≈0.1

magnitudes, far less than the average von der Linden et al. (2007) correction, which is

≈ 0.5 magnitudes. The small dispersion between our corrected SDSS magnitudes and

the Postman and Lauer (1995) magnitudes highlights that using the von der Linden

et al. (2007) correction accurately accounts for the SDSS background subtraction

error. Based on the comparison to the Postman and Lauer (1995) sample, for Golden-

Marx and Miller (2018) we use 0.1 magnitudes as our photometric accuracy for our

stellar mass and magnitude gap measurements. Additionally, we only apply the von

der Linden et al. (2007) correction if it is greater than 0.1 magnitudes in each of three

bands used in the analysis.

2.5.1.3 Measuring Magnitudes in Golden-Marx & Miller 2019

In Golden-Marx and Miller (2019), we chose to no longer use the Petrosian magni-

tudes. Instead, we use aperture magnitudes for our stellar mass estimates and model

magnitudes for our magnitude gaps. We no longer use Petrosian magnitudes because

we wanted to remove bias in our measurement of the SMHM relation, particularly

the slope, associated with the magnitude measurements made using rp, which dif-

fers greatly across the SDSS-C4 clusters; the average value of 2.0rp is 56.2+33.9
−19.5 kpc.

Thus, while the Petrosian ratio measures where 90% of a galaxy’s flux is, it leads to a

comparison of different regions of each BCG, such that we compare the inner region

of one BCG to the outer envelope of another, which in the context of the two-phase
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Figure 2.8: Photometric Accuracy vs. von der Linden et al. (2007) Correction. We
compare our background corrected Petrosian BCG magnitudes to the
magnitudes in Postman and Lauer (1995), based on deeper imaging. The
red distribution shows the difference between our BCG Petrosian mag-
nitudes and the Postman and Lauer (1995) magnitudes after this cor-
rection is made. Our algorithm recovers the Postman and Lauer (1995)
magnitudes to within ±0.1 magnitudes, which we define as the statistical
uncertainty of our BCG magnitudes. The blue distribution shows the
von der Linden et al. (2007) correction applied to our SDSS Petrosian
magnitudes in the r-band, which is much greater than the uncertainty in
our magnitude measurement.
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formation scenario (Oser et al., 2010), leads to a comparison of two very different

BCGs. Additionally, as shown in Golden-Marx and Miller (2019), the slope of the

SMHM relation increases with radial aperture, so using the Petrosian magnitudes

may bias our slope measurement and detection of late time evolution in the SMHM

relation.

As explained in depth in Chapter IV, we use fixed 100kpc aperture magnitudes

because the the slope of the SMHM relation becomes consistent, no longer increasing,

at this radius. 100kpc represents a radial extent within which the vast majority of

the stellar mass is contained (Huang et al., 2018) and a possible transition regime

between the BCG and ICL (Zhang et al., 2018). To measure BCG magnitudes and

stellar masses at 100kpc, we followed the same process described in Section 2.5.1.1

except that instead of measuring the magnitude at 2.0rp, we truncate these magnitude

measurements at 100kpc.

Additionally, unlike in Golden-Marx and Miller (2018), we no longer use the von

der Linden et al. (2007) correction in Golden-Marx and Miller (2019). Given that

much emphasis was placed on the necessity of this correction in Golden-Marx and

Miller (2018) and in Section 2.5.1, this choice was not made lightly. One primary

reason we no longer used the von der Linden et al. (2007) correction was that the

data from SDSS-redMaPPer (Rykoff et al., 2014), covers the total redshift range

0.03 < z < 0.30, which includes redshifts where the SDSS background correction is

no longer problematic. The SDSS-redMaPPer sample covers a much higher range

in redshift than Golden-Marx and Miller (2018), where zmed = 0.086. Additionally,

the von der Linden et al. (2007) correction only applies to ≈ 30% of our BCGs and

the distribution of BCGs with a correction is uniform across the range in redshift

space, halo mass, stellar mass, and magnitude gap covered by the SDSS-C4 sample.

Therefore, since the impact of this correction was uniform across the SDSS-C4 data,

we chose to no longer apply this correction, such that all of our data was treated in
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a homogeneous manner.

By no longer using the von der Linden et al. (2007) corrected Petrosian magni-

tudes, we greatly reduce the statistical uncertainty associated with the magnitude

measurements and thus our stellar mass measurements as well. Although the von

der Linden et al. (2007) corrected magnitudes correct the background, their use also

introduces additional statistical uncertainty to our stellar mass measurement because

of both the uncertainty associated with the von der Linden et al. (2007) correction

as well as the difficulty in accurately measuring rp.

Since applying the von der Linden et al. (2007) correction is an important part of

this dissertation, espescially Chapter III, I measured how incorporating the von der

Linden et al. (2007) correction to the 100kpc magnitudes would impact the results

of Golden-Marx and Miller (2019). Incorporating the von der Linden et al. (2007)

correction increases the stellar mass and magnitude gap of a sizeable fraction of our

BCGs. However, the primary results based on the posterior distribution for the

redshift evolution model presented in Golden-Marx and Miller (2019) do not change.

The posterior values measured when the von der Linden et al. (2007) correction is

applied at 100kpc and when it is not are within 1σ of one another as shown in

Chapter IV. Moreover, we find that the strength of the redshift evolution of the slope

is now a > 4σ detection. Additionally, we note that the offset, α, is slightly lower

because the average stellar mass of our sample has increased and that γ is slightly

higher because of the increase in stellar mass (or BCG magnitude), which leads to a

larger magnitude gap measurement. Based on this analysis, we find that the strength

of the redshift evolution parameter associated with the slope is unimpacted by our

choice to not use the von der Linden et al. (2007) correction. Therefore, our results

do not suggest that the evolution we observe results from not incorporating the von

der Linden et al. (2007) correction.
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Figure 2.9: Coadded DES BCG Photometry. This is a coadded image centered on a
DES-redMaPPer BCG.

2.6 Measuring BCG magnitudes for DES

In Golden-Marx et al. (in prep.), we extend our analysis to higher redshifts

(0.2 < z < 0.6) using DES photometry. Unlike SDSS, DES does not provide radial

light profiles for its BCGs; instead, only model magnitudes are provided. Since the

measurements presented in Golden-Marx and Miller (2019) result from our use of fixed

physical aperture magnitudes, we cannot use model magnitudes to measure stellar

mass. Therefore, to measure the magnitude within 100kpc, we must measure the

photometry directly from the fits images, following the procedure described in Zhang

et al. (2018), which was designed to study the ICL of DES clusters over the redshift

range 0.2 < z < 0.3. Here, I summarize the relevant portions of the methodology

from Zhang et al. (2018), expanding on what is described in Section 5.4.

To measure the DES light profiles, we use the RA, Dec, and redshift measurements

of each BCG, identified using the DES redMaPPer catalog for the DES Year 3 data.

First I coadd and stack all DES photometric images within 0.15◦ from the BCG,

as shown in Figure 2.9. The coadding process masks previously detected objects

in DES, as shown in the upper left and lower right corners of Figure 2.9. Using

these coadded images, along with lists of all objects in the DES coadd catalog, which
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Figure 2.10: Masked DES BCG Photometry. This is a coadded image centered on a
DES-redMaPPer BCG that masks the remaining bright galaxies.

reaches a 10σ completeness limit at 22.5 in the i-band (Zhang et al., 2018), we mask all

objects brighter than 30.0 magnitudes in the i-band, excluding the BCG, as shown

in Figure 2.10. As described in Section 5.4.2, the masking limit was selected to

minimize the difference between DES and SDSS photometry using BCGs in both

samples. The masking radius used for this analysis is 2.5 rk, which represents where

≈ 90% of the luminosity is contained. As shown in Figure 2.10, masking removes

the majority of excess light associated with the neighboring galaxies, which allows

for a cleaner measurement of the BCG and ICL radial light profile. Of note, the flux

measurement is the average pixel value excluding the masked region since in some

cases, neighboring galaxies are closer to the BCG than shown in Figure 2.10, and the

edges of the BCG can be masked. Using these measurements, as was the case for the

SDSS photometry, we assume spherical symmetry in the BCG light profiles when we

integrate over circular radial apertures. An example of an i-band light profiles for one

of our DES BCGs is shown in Figure 2.11. These light profiles include a background

subtraction, where the background is determined by taking the median value of the

radial regions beyond 500kpc from the BCG. Using the light profile, I follow the

same procedure described in Section 2.5.1.3, where I integrate the light profile out to

100kpc. This process is repeated for each of the DES griz-band magnitudes; however,
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Figure 2.11: DES Reduced Light Profile. This is a reduced light profile integrated
out to 100 kpc for a DES-redMaPPer BCG. The red dots are the radial
magnitude measurements and the orange line is the linear interpolation
fitting.

to maintain homongeneity with the SDSS data, we calibrate the uncertainty in the

magnitudes and measure the stellar masses using g-, r-, and i-band photometry. Of

note, due to the correlation between SED colors and redshift, we use r-, i- , and

z-band photometry for clusters at z > 0.40 to measure the stellar masses.

Additionally, we note that the SDSS griz and DES griz wave bands are not the

same. To determine if differences in SDSS and DES photometry exist, we use a

sample of 61 BCGs in both DES and SDSS-redMaPPer to compare the estimates for

the stellar mass and BCG magnitude. We find that when the SDSS griz magnitudes

are converted to DES griz magnitudes, the colors and magnitudes are within 1σ of one

another, yielding stellar masses which are also in 1σ agreement with those of SDSS,

such that any offset is within the uncertainty. This agreement highlights that using

the procedures outlined here we have a homogeneous set of stellar mass measurements

over the redshift range 0.03 < z < 0.60. We note that despite the homogeneity of

our measurements, the SDSS and DES stellar masses and magnitude gaps do have

differing uncertainties.
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2.7 Conclusion

Photometry is a fundamental part of astronomy. For large photometric surveys

such as SDSS and DES it is vital to understand the different photometric measure-

ments as well as their systematic uncertainties. Despite the prevalence of photometric

data, measuring BCG magnitudes remains problematic because unlike other galaxies,

BCGs are located in crowded environments and surrounded by ICL. Therefore, it is

important, particularly at low redshifts, as done in Golden-Marx and Miller (2018),

to accurately account for these features in background measurements to ensure that

the BCG magnitudes are uninfluenced by neighboring galaxies and ICL. Addition-

ally, as evidenced in Golden-Marx and Miller (2019) it is also important to measure

light from the outer regions of BCGs (out to 100kpc) because this is the region where

information about a BCG’s recent merger history is found (e.g. Oser et al., 2010;

van Dokkum et al., 2010; Huang et al., 2018). Therefore, only after this careful ap-

proach can BCG magnitudes with estimated magnitude uncertainties be trusted and

used to measure the stellar mass of BCGs and the magnitude gaps, two of the three

fundamental measurements central to this dissertation.
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CHAPTER III

The Impact of Environment on the Stellar

Mass-Halo Mass Relation

Results in this chapter were published in: Golden-Marx, Jesse B., & Miller, Christo-
pher J. 2018. The Impact of Environment on the Stellar Mass-Halo Mass Relation. The
Astrophysical Journal, 860, 2

3.1 Abstract

A large variance exists in the amplitude of the Stellar Mass – Halo Mass (SMHM)

relation for group and cluster-size halos. Using a sample of 254 clusters, we show that

the magnitude gap between the brightest central galaxy (BCG) and its second or fourth

brightest neighbor accounts for a significant portion of this variance. We find that at fixed

halo mass, galaxy clusters with a higher magnitude gap have a higher BCG stellar mass.

This relationship is also observed in semi-analytic representations of low-redshift galaxy

clusters in simulations. This SMHM-magnitude gap stratification likely results from BCG

growth via hierarchical mergers and may link assembly of the halo with the growth of the

BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the

SMHM relation using a multiplicative stretch factor, which we find to be significantly non-

zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction

in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the

ramifications of this result in the context of galaxy formation models of centrals in group
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and cluster-sized halos.

3.2 Introduction

At the heart of galaxy clusters lie brightest central galaxies, or BCGs. These galaxies

are bright, often 10L?, where L? is the characteristic luminosity of the galaxy luminosity

function (e.g., Schombert , 1986), and extremely massive as shown by dynamical mass esti-

mates (e.g., Bernardi et al., 2007; von der Linden et al., 2007; Brough et al., 2011; Proctor

et al., 2011). Studies have also shown that BCGs can account for a substantial fraction of

the total light emitted from a galaxy cluster (e.g., Jones et al., 2000; Lin and Mohr , 2004;

Aguerri et al., 2011; Harrison et al., 2012). Additionally, BCGs are often found near the

X-ray centers of galaxy clusters (e.g., Jones and Forman, 1984; Rhee and Latour , 1991;

Lin and Mohr , 2004; Lauer et al., 2014). These massive central galaxies can also be more

spatially extended than similarly massive elliptical galaxies (Bernardi et al., 2007; Lauer

et al., 2007) and are often surrounded by halos of diffuse intracluster light (e.g., Zwicky ,

1951; Welch and Sastry , 1971; Oemler , 1976; Lin and Mohr , 2004).

We note that not all central galaxies match the standard definition of a BCG. Skibba

et al. (2011) and Lange et al. (2018) suggest that as many as 40% of massive, low redshift

clusters have the equivalent of a satellite galaxy as their central. In contrast, Lauer et al.

(2014) find that only 15% of all BCGs in their low redshift sample have a separation between

the X-ray center and BCG greater than 100 kpc. While these results differ, it is likely that

some fraction of BCGs are not always located at the cluster center-of-mass.

Researchers have been studying BCGs to understand their growth history for over

forty years (e.g., Ostriker and Tremaine, 1975; Ostriker and Hausman, 1977; Hausman

and Ostriker , 1978; Malumuth and Richstone, 1984; Merritt , 1985; Fabian, 1994; Aragon-

Salamanca et al., 1998; Dubinski , 1998; De Lucia and Blaizot , 2007; Ruszkowski and Springel ,

2009; Lidman et al., 2012; Laporte et al., 2013; Lin et al., 2013; Lauer et al., 2014; Nipoti ,

2017). Under the hierarchical structure formation paradigm, we might naturally expect

some trends in the observable properties of BCGs to be caused by growth mechanisms that
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are not characteristic of the wider galaxy population. For instance, Lauer et al. (2014) con-

clude that the extended envelopes present in many BCGs are formed by processes within

the cluster core region. They also suggest that especially bright BCG luminosities stem

from accretion into more massive clusters.

In practice, a property used to differentiate BCGs from non-BCGs is the “magnitude

gap,” a measure of the difference in brightness between the BCG and some lesser galaxy

within the cluster. Early on, it was suggested that BCGs and their magnitude gaps evolve

through a process that differs from normal galaxies (e.g., Tremaine and Richstone, 1977;

Schneider et al., 1983; Bhavsar and Barrow , 1985; Postman and Lauer , 1995; Bernstein and

Bhavsar , 2001; Vale and Ostriker , 2008). However, some recent studies, which use large

cluster samples, argue that BCGs are simply statistical draws from the extreme bright

end of the galaxy luminosity function (e.g., Lin et al., 2010; Paranjape and Sheth, 2012).

While this debate is not entirely settled, there exists a growing consensus that at least some

component of the BCG population is distinct from the nominal distribution of elliptical

galaxies (e.g., Loh and Strauss, 2006; Vale and Ostriker , 2008; Collins et al., 2009; Lin

et al., 2010; Lauer et al., 2014; Shen et al., 2014; Zhang et al., 2016).

From a theoretical perspective, Milosavljević et al. (2006) showed that excursion-set

merger probabilities and the standard theory of dynamical segregation can explain the

distribution of BCG magnitude gaps in low redshift clusters. At the same time, state-

of-the-art cosmological simulations with semi-analytic and semi-empirical prescriptions for

the growth of the stellar properties of galaxies also support the observational consensus of

standard hierarchical mechanisms as the dominant influence on the growth of BCGs (e.g.,

Croton et al., 2006; De Lucia and Blaizot , 2007; Tonini et al., 2012; Shankar et al., 2015).

In other words, both the theory and data are converging onto a scenario that links the

growth of BCGs to the earliest formation environments of their host halos.

Recently, Solanes et al. (2016) used dissipationless simulations of young and pre-virialized

groups to show that the magnitude gap between the BCG and second brightest cluster

galaxy correlates with the initial stellar mass fraction of the parent cluster halo. This corre-

lation suggests that the observed magnitude gap can inform us about the underlying normal
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mass (both stellar and baryonic) of a cluster. For example, by identifying clusters with large

magnitude gaps, we may simultaneously be identifying clusters with high stellar mass frac-

tions during the epoch of BCG formation. Additionally, Solanes et al. (2016) found that

the magnitude gap contains information about the BCG’s merger history. In agreement

with hierarchical growth, they found that a BCG’s stellar mass increases with the number

of progenitor galaxies (i.e., the number of mergers). Moreover, Solanes et al. (2016) found

that BCGs grow at the expense of the second brightest galaxy in the cluster. Thus, as the

BCG brightens, the cluster member identified as the 2nd brightest galaxy becomes fainter,

relative to the BCG, leading to an increase in the magnitude gap. Combining these results

implies that the magnitude gap not only correlates with the stellar mass of the BCG, but

also provides information about the BCG’s merger history.

One way to extend our understanding of how BCG properties relate to the host halo

is to utilize the observed stellar mass – halo mass (SMHM) relation for clusters, which

directly compares the amount of stellar mass within the central galaxy of the halo (i.e., the

BCG) to the overall halo mass, including the baryonic and dark matter within the cluster.

One of the earlier cluster-scale SMHM relations, presented in Figure 3 of Lin and Mohr

(2004), illustrates that the BCG luminosity, which relates to the BCG stellar mass, linearly

correlates with the halo mass. Since the work of Lin and Mohr (2004), there have been

many characterizations of the SMHM relation (e.g., Yang et al., 2009; Moster et al., 2010;

Behroozi et al., 2010, 2013a; Moster et al., 2013; Tinker et al., 2017; Kravtsov et al., 2018)

across a much larger range in halo mass.

When one compares the high-mass end of the SMHM relation from Lin and Mohr

(2004), Hansen et al. (2009), Behroozi et al. (2010), Moster et al. (2010), Behroozi et al.

(2013a) Bernardi et al. (2013), Moster et al. (2013), Tinker et al. (2017), and Kravtsov et al.

(2018) there are differences in the inferred amplitude as large as an order of magnitude in

stellar mass at fixed halo mass (see Figure 3.17). One challenge when comparing published

cluster-scale SMHM relations is that they use different cluster/BCG samples with different

selection criteria. Additionally, there are differences in how BCG stellar masses are inferred

(i.e., different initial mass functions (IMFs), stellar population synthesis (SPS) models, and
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star formation histories), and how cluster (halo) masses are measured. There can even be

differences in how the BCG magnitudes are measured (e.g., Kravtsov et al., 2018). A fair

comparison between the previously published cluster-scale SMHM relations has yet to be

reported.

Harrison et al. (2012) presented a cluster-scale SMHM relation and compared a sample

of high magnitude gap X-ray clusters, fossil galaxies, to a normal-magnitude gap cluster

population. In both cases, clusters were X-ray selected to minimize selection variations,

and the BCG stellar masses were inferred using the same model. Instead of halo masses,

cluster X-ray temperature was used as a halo mass proxy. In other words, Harrison et al.

(2012) compared the SMHM relation for two cluster samples whose only difference was

the magnitude gap. They found that for a given halo mass, galaxy clusters with larger

magnitude gaps have BCGs with higher stellar masses than clusters with smaller magnitude

gaps. This bifurcation between large-gap and small-gap clusters has also been previously

observed for both cluster and group size halos in both simulations (Dı́az-Giménez et al.,

2008; Kundert et al., 2017) and in other observed samples (Zarattini et al., 2014; Trevisan

et al., 2017). In addition, the Harrison et al. (2012) results suggest that perhaps as much

as half of the scatter in BCG stellar mass at fixed halo mass may be accounted for by

the magnitude gap. These previous results and studies lead us to explore the possibility

that the SMHM relation contains the magnitude gap as a latent variable which, if properly

accounted for, could reduce the intrinsic scatter in the stellar mass at fixed halo mass and

simultaneously inform us about the formation history of both the BCG and the parent halo.

The outline for the remainder of the paper is as follows. In Sections 3.3 and 3.4 we

describe the observational and simulated data used to determine the stellar masses, halo

masses, and magnitude gaps that are used in our analysis of the SMHM relation. In Sec-

tion 3.5 we describe the Bayesian MCMC model used to evaluate the SMHM relation. In

Section 3.6 we present the results of our analysis for both the observations and simulations,

which includes a quantitative measure on the impact of incorporating the magnitude gap.

Lastly, we discuss our results in the context of galaxy formation scenarios in Section 3.7.

Except for the case of the simulated data, in which the cosmological parameters are

72



previously defined (Springel et al., 2005), for our analysis, we assume a flat ΛCDM universe,

with ΩM=0.30, ΩΛ=0.70, H=100 h km/s/Mpc with h=0.7.

3.3 The Data

We use data from the Sloan Digital Sky Survey data release 12 (SDSS DR12; Alam et al.,

2015) to identify the clusters, measure the cluster masses, identify the BCGs, characterize

their magnitude gaps, and estimate their stellar masses. We discuss each of these in the

following subsections.

3.3.1 The SDSS-C4 Clusters and Dynamical Masses

We use galaxy clusters identified using the C4 algorithm (Miller et al., 2005) on the SDSS

DR12 data (Alam et al., 2015). The algorithm identifies 970 clusters between 0.03 ≤ z ≤

0.18. As described in detail in Miller et al. (2005), the C4 algorithm uses the four colors

from the SDSS galaxy main sample and applies a non-parametric algorithm to identify

statistical over-densities in color and position space. As stated in Miller et al. (2005), only

galaxies with spectra are used to identify candidate clusters, the larger SDSS photometric

sample is then used to quantify the BCG magnitudes and the magnitude gap.

We then use the spectroscopically confirmed clusters to create radius/velocity phase-

spaces of the galaxies projected along the line-of-sight to the clusters and relative to the

mean velocity of the cluster members. We calculate “caustic” masses according to the

algorithm defined in Gifford et al. (2013) for each cluster. Specifically, we identify the

phase-space edge as a proxy for the projected escape velocity profile of each cluster individ-

ually. To infer masses from the projected escape velocity, the “caustic” technique requires a

calibration term based on the unknown velocity anisotropy β. This term is typically referred

to as Fβ and we choose a value that calibrates “caustic” masses in N-body simulations, Fβ
= 0.65 (Gifford et al., 2013). The uncertainty on Fβ results from the projection of the

three-dimensional velocities along the line-of-sight and is the dominant component of the

error on the caustic cluster masses. Gifford et al. (2013) used simulations to also calculate
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the scatter in the true mass versus the “caustic” mass as a function of the number of galax-

ies used to construct the phase-spaces. This scatter, caused by the line-of-sight projection

is the dominant component of the error in the caustic masses (Gifford and Miller , 2013;

Gifford et al., 2017). The mass error can be large for poorly sampled phase-spaces (e.g., 0.9

dex when Ngal=10) and has a floor of about 0.3 dex for well-sampled phase-spaces (Ngal >

150). Therefore, we use heteroskedastic cluster mass errors based on Table 1 of Gifford

et al. (2013).

3.3.2 Candidate Cluster Sample

To construct the cleanest SMHM relation for our C4 clusters, we applied additional cuts

to the cluster sample. These cuts are summarized in Table 3.1. We require log10(Mcaustic

/(M�/h)) ≥ 14.0 to ensure higher completeness of our sample. This cut reduces the total

number of clusters from 970 to 420. We then further reduced our sample by analyzing

the caustic phase space, velocity histogram, and red sequence within Rvir from the cluster

center for each cluster. We removed 32 clusters which had either a broad and unpeaked

velocity histogram, indistinguishable red sequence within Rvir, or poorly defined caustic

phase space, leaving us with a sample of 388 clusters. The number of galaxies used to

construct the cluster phase-spaces ranged from 31 to 1074 with a median of 122 for the

remaining clusters. Additionally, 6 more clusters were removed due to photometric issues

in the SDSS pipeline, leaving us with 382 clusters.

For the purpose of measuring the magnitude gap between the BCG and 2nd or 4th

brightest galaxies, we also require that each cluster contain 4 members identified using the

red sequence within 0.5 Rvir.
1 Our process of identifying cluster members will be described

in further depth in Section 3.3.4. This cut reduced our final sample by 12 clusters, leaving

us with an initial sample of 370 clusters. Additional cuts were made based solely on BCG

photometry, which we describe below.

1We use 0.5 Rvir to determine these magnitude gaps because it is the standard radius used in
the definitions of fossil galaxies presented in Jones et al. (2003) and Dariush et al. (2010).
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3.3.3 BCG Identification and Characterization

For the majority of clusters the BCG is clearly the brightest galaxy and can be easily

identified algorithmically using the red-sequence; however, not all clusters have a clear and

distinctive BCG (von der Linden et al., 2007; Lauer et al., 2014). Therefore, we visually

inspect images of each cluster in regions out to 0.5 Rvir radial. For approximately 70% of our

galaxy clusters, the visual checks confirm the BCGs through a simple selection algorithm

(e.g., von der Linden et al. (2007)). In the other cases, the BCGs are identified after allowing

for positional offsets from the originally defined cluster centers (still within 0.5 Mpch−1), or

by allowing for BCG colors that are bluer than the red sequence (by up to 0.2 magnitudes

in g − r color). In these cases, we selected elliptical BCGs that had positions, redshifts,

and colors which matched the cluster and red sequence. In a few (<2.5%) cases, it was

not clear which of the two brightest galaxies was the BCG, so we chose at random. Since

the brightness and color of these galaxies are similar, this choice will make no discernible

difference in the measurements of either the stellar mass, magnitude gap, or cluster (halo)

mass.

3.3.3.1 BCG Stellar Mass Measurements

To estimate BCG stellar masses, we require accurate extinction corrected BCG apparent

magnitudes. The SDSS DR12 photometric pipeline overestimates the light contribution

from the local background for large, extended objects, and crowded fields. Therefore, BCGs

are likely to be affected by this background overestimation, which would lead to an under-

approximation of the stellar mass (e.g., Bernardi et al., 2007; von der Linden et al., 2007;

Harrison et al., 2012; Bernardi et al., 2013).

We correct the BCG Petrosian magnitudes using the prescription outlined in the ap-

pendix of von der Linden et al. (2007) applied to the SDSS DR12 apparent g-, r-, and i-band

magnitudes of our BCGs. The von der Linden et al. (2007) correction works by adding a

fraction of the difference between the SDSS local and global sky backgrounds to each in-

dividual galaxy’s light profile. Since the original von der Linden et al. (2007) correction

was calibrated using SDSS DR4 data, we re-calibrate the algorithm to correct SDSS DR12
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data.

Postman and Lauer (1995) utilize deep imaging to create precise light-profiles to measure

BCG total magnitudes for a small subset of our cluster sample. In Figure 3.1, we compare

the results of our corrected BCG magnitudes against the Postman and Lauer (1995) BCG

magnitudes. We find that our background corrected magnitudes recover the more carefully

measured Postman and Lauer (1995) BCG magnitudes to within 0.1 magnitudes, which

we define as the statistical floor for all of our BCG magnitudes. Note that we only apply

the re-calibrated von der Linden et al. (2007) correction to our galaxies when the difference

between the local sky background and the global sky background is positive and when the

correction itself is greater than our baseline precision (0.1 mags) in each of the bands used

in our final analysis (r and i).

Of our 370 BCGs, we find that 28% require a von der Linden et al. (2007) correction

greater than our photometric accuracy, 0.1 magnitudes in both the r- and i-bands. Addi-

tionally, the median r-band von der Linden et al. (2007) correction is 0.51 magnitudes as

shown in Figure 3.2, which underscores the importance of correcting the SDSS photometric

measurements prior to estimating stellar masses. Also, we find that the BCG magnitude

corrections are uncorrelated with their magnitude gaps.

After applying the von der Linden et al. (2007) correction to our SDSS light profiles, we

used the cluster redshifts and apply a k-correction for the r- and i-band magnitudes using

the kcorrect (v 4.1.4) code (Blanton and Roweis, 2007) to obtain our final BCG apparent

magnitudes.

To estimate stellar masses, we used the color-dependent M/L ratio from Bell et al. (2003)

using the r-i color.2 Our choice of a color-dependent M/L ratio (Bell et al., 2003) makes the

stellar mass and associated error measurement used in our model, described in Section 3.5,

dependent on the identification of “red and dead” elliptical galaxies. To verify that this

description matches our selected BCGs, we compare the color of each individual BCG to the

color of a fiducial BCG, which we model using the EzGal SED modeling software (Mancone

2We only use the r-i color to estimate stellar mass, so the requirement that the von der Linden
et al. (2007) corrections be ≥ 0.1 magnitudes is only applied to the r- and i-bands. The g-band was
not used in our final stellar mass estimates.
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Figure 3.1: Photometric Accuracy vs. von der Linden et al. (2007) Correction. We
compare our background corrected Petrosian BCG magnitudes to the to-
tal magnitudes in the Postman and Lauer (1995) sample, which is based
on deeper imaging and has a more accurate background. The red distri-
bution shows the difference between our BCG Petrosian magnitudes and
the Postman and Lauer (1995) magnitudes (within the Petrosian radius)
after this correction is made. We find that our algorithm can recover the
Postman and Lauer (1995) magnitudes to within ±0.1 mags, which we de-
fine as the statistical floor of our BCG magnitudes. The blue distribution
shows the level of the correction to the SDSS Petrosian magnitude r-band
that we apply based on our algorithm. Of note, 81% of the matches to
the Postman and Lauer (1995) sample required a correction.
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Figure 3.2: Average von der Linden et al. (2007) Correction. The distribution of
the von der Linden et al. (2007) r-band corrections ≥ 0.10 magnitudes
for our SDSS-C4 BCGs. The majority of corrections are large, which
highlights the importance of background corrections prior to estimating
stellar masses.

and Gonzalez , 2012), assuming a Bruzual and Charlot (2003) SPS model, a Chabrier (2003)

IMF, a formation redshift of 4.9, and a redshift matching the individual BCG’s. However,

neither the choice of IMF or zform strongly impacts the modeled color. We confirm that

our selected BCGs are “red and dead” if their measured color is within 0.1 magnitudes of

the color of our fiducial BCG at the same redshift.

We apply this criteria based on our fiducial BCG because the Bell et al. (2003) M/L

ratio we use to estimate the stellar mass is color dependent. Therefore, we remove BCGs

whose colors do not match the fiducial BCG model colors because such colors resulted

in non-physical stellar mass determinations based on our nominal SED analysis. If we

naively incorporate this data, we see strong deviations from Gaussianity, in that 30 of the

BCGs that don’t match the fiducial model are outliers in the SMHM versus M14 relation.

Instead of selectively removing just the outliers, we chose to exclude all BCGs that do

not match our fiducial model from the analysis, even though the majority fit the relation.

Another approach would be to fit an additional outlier component in our model and an

even better solution would be to conduct a detailed SED modeling analysis of all of the
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BCGs, investigating which dust models and star formation histories best fit the colors.

Both of these approaches are beyond the scope of this effort. Our sample is large enough

to be selective against the quality of the SED model fits. We note that removing a random

selection of 25% of the BCGs of our final sample does not change our results. Applying this

color restriction removed 90 clusters, reducing our total sample to 280 clusters. Therefore,

roughly three-quarters of the BCGs can be characterized as agreeing with our fiducial “red

and dead” model; of the BCGs that were removed, 44% are > 0.1 magnitudes bluer and

56% are > 0.1 magnitudes redder than that of our fiducial BCG model.

3.3.4 Quantifying the Magnitude Gap

For our analysis, we chose to measure the magnitude gap between the BCG and fourth

brightest cluster member (M14) and the BCG and second brightest cluster member (M12).

To do this, after identifying the BCG in each cluster, we identify red sequence galaxies

within 0.5 Rvir to determine the cluster membership and magnitude gap. We used M14

and M12 as well as the 0.5 Rvir for our membership and magnitude gap measurements

because these were the magnitude gaps and radial extent used in the standard definitions

of fossil group galaxies from Jones et al. (2003) and Dariush et al. (2010). We fit the

individual cluster red sequences in six distinct SDSS colors (u-g , g-r, g-i, i-r, i-z, and r-z)

for all galaxies with an r-band magnitude brighter than mr=19 within the 0.5 Rvir region.

We then characterize the magnitude gap using galaxies within 3σ of the fit to the red

sequence for the u-g, g-r, and g-i colors and 2σ for the i-r, i-z, r-z colors. We note that we

do not require galaxy spectroscopy for cluster membership; however, whenever possible, we

do utilize available SDSS spectroscopic redshifts and remove any potential cluster member

with |zgal − zclus| > 3σ/c. In Figure 3.3, we present an example color magnitude diagram

for one of our clusters to highlight the impact of incorporating the available spectroscopic

redshifts to further remove remaining foreground contaminants (the point with an x through

it in Figure 3.3). Doing so leads to a fainter 4th brightest galaxy and an increase in

the magnitude gap. We note that spectroscopic information is not available for all red

sequence candidates and that the incorporation of available spectroscopic redshifts only
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Figure 3.3: Example SDSS-C4 Color Magnitude Diagram. A sample color-magnitude
diagram from one of our SDSS-C4 clusters. This figure illustrates the
impact of incorporating the spectroscopic redshift information. The black
point is the BCG, the green point is the 2nd brightest galaxy, the blue
point is the 4th brightest galaxy when not using available spectroscopic
information, and the purple point is the 4th brightest galaxy when using
spectroscopic information. This color magnitude diagram highlights that
using the limited spectroscopic information further removes foreground
contaminants, leading to a better identification of the 4th brightest galaxy
in the cluster.
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changes the 4th brightest galaxy for 5% of our clusters. We further address the use of

galaxy redshifts and red-sequence membership in Section 3.4, where we use a simulated

sky survey to constrain systematic uncertainties due to projection effects in the magnitude

gaps. Additionally, we do not require the BCG to have a spectrum to place it within

the spectroscopically confirmed cluster. Since the measurement of the magnitude gap is

dependent upon fitting a red sequence, as previously noted, we remove the 12 clusters from

our sample which either had fewer than 4 members or for which we are unable to fit a red

sequence for the cluster members within 0.5 Rvir.

After identifying the second and fourth brightest cluster members, we apply k-corrections

using the cluster redshifts and kcorrect (v 4.1.4) code (Blanton and Roweis, 2007) to obtain

our final fourth and second brightest member apparent magnitudes. We then measure the

two unique magnitude gaps, M14 and M12, in the r-band. Unlike the BCGs the majority

of second and fourth brightest galaxies are neither extended nor located in dense regions;

therefore, we do not apply a von der Linden et al. (2007) correction.

Using the final sample of 280 clusters, we ran a completeness analysis following a similar

approach to what is described in Colless (1989), Garilli et al. (1999), La Barbera et al.

(2010), and Trevisan et al. (2017). To determine the completeness, we first convert the

apparent magnitudes for our BCGs and 4th (2nd) brightest members to R-band absolute

magnitudes, then bin the absolute magnitudes by apparent magnitude, and calculate the

95% limit in each bin. Using this upper limit, we fit a linear relation between the upper

limit and apparent magnitude of each bin and determine the absolute magnitude that

corresponds to an apparent magnitude of mr = 19, the upper limit we applied to our SDSS

galaxy catalogs. We chose this rather bright upper limit to minimize additional photometric

measurement uncertainties in our analysis. We note that the absolute magnitude limit for

the 2nd brightest galaxies is dimmer than the limit for the 4th brightest because we require

at least 4 members in the red-sequence.

Next, we follow the same procedure, but instead bin the absolute magnitude as a function

of magnitude gap and determine the 95% limit in each bin, which leads to an upper limit on

the M14 (M12) magnitude gap of 3.58 (3.035). After applying these cuts, we remove 44 (26)
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Figure 3.4: M14 Completeness Analysis. R-band absolute magnitude versus M14.
This is used to determine the completeness of our SDSS-C4 sample. The
vertical and horizontal lines represent the limits in M14 and absolute
magnitude, respectively. The BCGs are shown in red and the 4th brightest
cluster members are shown in blue.

additional clusters, as shown in Figures 3.4 and 3.5, leaving us with a total sample of 236

(254) “red and dead” elliptical BCGs with magnitude gap measurements. If we apply more

stringent cutoffs for both the magnitude gap and absolute magnitude, we find no significant

difference in the posterior distributions.

3.3.5 Final Sample Summary

After applying the different criteria, summarized in Table 3.1 we are left with our final

sample which contains either 236 or 254 clusters, depending on the magnitude gap used. Our

sample can be characterized as having log10(Mhalo/(M�/h)) ≥ 14.0, which are measured

using the caustic technique on well sampled radius-velocity phase spaces. The halo mass

uncertainties of the clusters in our final sample range from 0.31 - 0.46 dex with a median

of 0.32 dex. For each cluster the BCG is a “red and dead” elliptical galaxy with a color

that is within 0.1 magnitudes of the color of our fiducial BCG. Moreover, each cluster

has a clearly defined red sequences with greater than four members, including 2nd or 4th

brightest galaxies whose absolute magnitudes and associated magnitude gaps fall within

our completeness criteria.
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Figure 3.5: M12 Completeness Analysis R-band absolute magnitude plotted against
M12. This is used to determine the completeness of our SDSS-C4 sample.
The vertical and horizontal lines represent the upper limits in M12 and
absolute magnitude, respectively. The BCGs are shown in red and the
2nd brightest cluster members are shown in blue.

SDSS-C4 Final Sample: Summary of removed clusters

Section Critera Number Removed Number Remaining
C4 clusters 970

log10(Mcaustic/(M�/h)) ≥ 14.0 450 420
Broad unpeaked velocity histogram,

unidentifiable red sequence,
poorly defined caustic 32 388

Photometric errors 6 382
No red sequence within 0.5Rvir 12 370

BCG color does not match
“red and dead” fiducial BCG 90 280

Completeness analysis 44 (26) 236 (254)
Final sample 236 (254)

Table 3.1: SDSS-C4 Final Sample: Summary of Removed Clusters. This represents
the results of the completeness analysis for the sample done using the M14
(M12) magnitude gaps.
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3.4 Simulated Data

In addition to studying the impact of the magnitude gap on the SMHM relation in the

SDSS-C4 cluster sample, we also analyzed this trend in simulations using the Guo et al.

(2011) and Henriques et al. (2012) prescriptions of the semi-analytic representations of low-

redshift galaxy clusters in the MILLENNIUM simulation. We chose these semi-analytic

models because the galaxies grow hierarchically, which as Solanes et al. (2016) suggest,

may relate to the magnitude gap. We note that the Henriques et al. (2012) prescription

is constructed by taking the semi-analytic redshift snapshots from Guo et al. (2011) and

stitching them together to create a mock light-cone (Henriques et al., 2012). We use both

the 3D information from this light-cone as well as the full projected data in our analyses

that follow.

In our analysis of the simulations, we aim to treat the simulated data in a similar manner

to the SDSS-C4 observational measurements of stellar mass, halo mass, and magnitude gap.

In doing so we generate two catalogs; a sample that uses all of the 3D information provided

for the cluster (i.e., halo masses measured within r200× ρcrit, galaxy positions in x, y, z,

and semi-analytic stellar masses, and magnitudes) and a projected sample, which instead

uses only 2D information (i.e., caustic-inferred cluster masses, RA, Dec, redshift, apparent

magnitudes, and inferred stellar masses).

When using the 3D data, we use the stellar masses for each central halo’s galaxy directly

from Henriques et al. (2012). For both the 3D and 2D data, we identify the BCG as the

brightest red-sequence galaxy within 0.5Rvir. We then use the red-sequence to define the

magnitude gaps. We estimate the BCG stellar masses for the 2D sample using the same

Bell et al. (2003) M/L ratio conversion based on the r-i color. Finally, the projected cluster

masses were determined using the caustic technique (2D) (Gifford et al., 2013). In other

words, the 2D projected data are treated almost identically to the real SDSS data, except

for visual classification and identification of the BCG.

Determining cluster membership and the magnitude gap was done slightly differently for

our simulations because we have different available information. For the 3D sample, we use
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the positional information (x, y, z) to determine if a galaxy is within 0.5 Rsim,vir. For the

galaxies within this sphere, we use the red sequence to determine cluster membership. For

the 2D projected sample, we followed the same steps outlined for our own observations. We

use RA and Dec, to determine if a galaxy is within a circle of 0.5 Rvir centered on the BCG.

Next we check to see if |zgal−zclus| < 3σ/c, where σ is the measured velocity dispersion. For

those remaining cluster members, we use the red sequence to determine membership. We

note that the measurements in our 2D projected catalog introduce error in the halo mass,

from the caustic measurements, stellar mass, and magnitude gap. Understanding how to

incorporate these additional errors was crucial in creating our Bayesian MCMC model for

the SMHM relation, as described in Section 3.5.

Of note, unlike with our observations, the simulated BCGs are treated as being “red

and dead”. Furthermore, because we have access to the complete 3D simulation box, we do

not perform a completeness test to remove some of the clusters with either extremely large

magnitude gaps or fainter second and fourth brightest galaxies. Additionally, we apply

the same mass thresholds on both the 2D and 3D simulations and the SDSS-C4 data such

that the observed mass is log10(Mcaustic/(M�/h)) ≥ 14.0 and the underlying halo mass

distribution for the simulated data is an approximation of the Henriques et al. (2012) mass

function truncated at log10(Mhalo/(M�/h)) ≥ 14.0. We note that if we adjust this halo

mass thresholds by 0.1 dex in either direction the results of the posterior distributions are

within one sigma of those presented in Figures 3.6 and 3.7.

3.5 The Hierarchical Bayesian Model

Unlike other quantitative analyses of the SMHM relation (e.g., Yang et al., 2009; Moster

et al., 2010, 2013), we do not use a two component power law to describe our SMHM relation.

Instead, we use a single component power law, because we are only concerned with the high

mass portion, log10(Mhalo/(M�/h)) ≥ 14.0, of the SMHM relation. Additionally, we do not

allow for redshift evolution in this low-redshift dataset (z ≤ 0.18, zmedian = 0.086) unlike

other published SMHM relations (e.g., Behroozi et al., 2013a; Moster et al., 2013) because
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the results of these prior studies suggest the change of the slope of the SMHM relation

over this redshift range is smaller than the precision of the posteriors for the slope of our

Bayesian MCMC analysis.

We assume a linear model for our data, given by Equation 3.1,

log10(M∗) = α+ β(log10(Mhalo)) + γ(M14) (3.1)

which is parameterized by a slope, β, y-intercept, α, and the “stretch” parameter related

to the magnitude gap, γ. For the remainder of the analysis, we refer to the log (base 10)

BCG stellar masses as y, the log (base 10) cluster (or halo) masses as x, and magnitude

gaps as z.

To determine the appropriate values for α, β, and γ, as well as the intrinsic scatter,

σint, in our relation, we use a Bayesian MCMC analysis to maximize the sum of the log-

likelihoods for each cluster. The Bayesian approach can briefly be described as convolving

the prior information for a given model with the likelihood of the observations given the

model, which yields the posterior distribution, or the probability of observing the data given

the model. We use a Bayesian analysis because it allows us to easily account for all prior

information. It is hierachical in the sense that we model both the errors on our parameters,

as well as the uncertainty on those errors.

Throughout our Bayesian likelihood analysis, the MCMC model generates values for

stellar mass, halo mass, and magnitude gap, which are directly compared to the respective

observed measurements given the errors in the data. The comparison between the model

generated data and our observations allows us to construct posterior distributions for all of

our free parameters, from which we can determine the most likely values for α, β, γ, and

σint as shown in the triangle plots presented in Sections 3.6.1.2 and 3.6.2.2. In the following

subsections and Table 3.2, we provide all of the details regarding our model.
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3.5.1 The Observed Quantities

We use the observed BCG magnitudes and colors to create a stellar mass, y0i, which

we treat as an observable. There is also an error on the observed stellar masses, which we

treat as Gaussian, so the observed stellar mass is:

y0i ∼ N (yi, σ
2
yi). (3.2)

where yi is the underlying (and unknown) true stellar mass and σyi is the modeled uncer-

tainty on the measurement. We model the observed uncertainty on the stellar mass as a

beta distribution centered on a measured value, σy0i . This value can vary depending on

whether we are analyzing the real or the simulated data (more details below). The use of

the beta distribution allows for stochasticity and additional uncertainty (e.g., systematic

bias) in our observed stellar mass errors.

σyi = σy0i ± B(a, b) (3.3)

where a = 0.5 and b = 100 are the shape parameters of the beta distribution. These shape

parameters add up to ±0.06 dex to our BCG stellar mass error estimates.

For the observed cluster masses, we use the observed radius-velocity phase-spaces to

produce observed caustic masses. We apply a lower mass threshold of 1 × 1014M�/h and

thus use a truncated normal defining the cluster caustic masses:

x0i ∼ TN (xi, σ
2
xi , x0min, x0max). (3.4)

where xi is the underlying (and unknown) true halo mass, σxi is the modeled uncertainty

on the mass measurement and x0min and x0max specify the lower and upper limits on the

observed caustic masses in the sample. We note that for the simulations, we apply the same

observational halo mass limit. In practice, for the SDSS-C4 data, we use the “observed”

uncertainty, σx0i , on each cluster mass, which is based on the mapping between the number

of galaxies in the phase-space to the caustic mass uncertainty as quantified in simulations

87



(Gifford et al., 2013). Because there is some uncertainty due to the use of simulations, we

add an additional stochastic component drawn from the beta probability distribution:

σxi = σx0i(Nphasei)± B(a, b) (3.5)

where a = 0.5 and b = 100 are the shape parameters of the beta distribution. As before,

this additional uncertainty ranges up to ±0.06 dex.

We treat the observed magnitude gap similarly to the halo masses. The observed gap

is drawn from a truncated Normal distribution:

z0i ∼ TN (zi, σ
2
zi , z0min, z0max). (3.6)

where zi is the underlying (and unknown) true magnitude gap, σz is the modeled uncertainty

on the magnitude gap, and z0min and z0max represent the lower and upper limits on the

magnitude gap, set by the completeness analysis. We note that for the simulated data, we do

not use a truncated Gaussian because we do not apply the completeness limits, as described

in Section 3.4. For the uncertainties on the magnitude gap, we compared the distribution of

our “observed” gaps to the distribution of true 3D gaps using the simulations. Additionally,

for our SDSS-C4 clusters, we add an uncertainty, σz0i , of 0.1 magnitudes to account for the

photometric measurement uncertainty of our BCG magnitudes. Since this is also calibrated

using simulations, we include an additional stochastic component using the beta probability

distribution.

σzi = σz0i ± B(a, b) (3.7)

where a = 0.5 and b = 100 are the shape parameters of the beta distribution. Like before,

this addition ranges up to ±0.06 to the error in magnitude gap.

Given the above likelihoods for an observed BCG (x0i, y0i, and z0i), we sum the log of

the likelihoods defined by the χ2 distribution since all of our probability distributions are

Gaussian. We will map the posterior using an MCMC approach. However, we still need to

define the unobserved parameters and their prior probability distributions.
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3.5.2 The Unobserved Quantities

For each cluster i, our model returns a true log stellar mass (yi) given the true magnitude

gap (zi), the true log halo mass (xi), and the parameters that relate them (α, β, γ). We

also allow for intrinsic scatter, σint, in our relationship. Thus, we model yi as:

yi = N (α+ βxi + γzi, σ
2
int). (3.8)

We note in Equation 3.8 that the halo masses, the magnitude gaps, and the parameters

α, β, and γ which together yield a BCG stellar mass are the true values. The Bayesian

model regresses against the observed stellar masses, cluster masses, and magnitude gaps self-

consistently. We define the relationship as being causal and relating the true underlying

BCG stellar mass to the halo mass and the magnitude gap. The parameters that we are

interested in are the intercept, slope, stretch, and intrinsic scatter. All other parameters

are treated as nuisance parameters and are marginalized over when we present the posterior

probability distributions.

We do not use uniform priors on the halo masses or the magnitude gaps because there is

no reason to expect it in the real universe. The prior on halo masses xi, is the mass function

of the halos given from the 3D Henriques et al. (2012) data, modeled as a truncated Gaussian

with a mean and width, which are treated as free parameters that are given by a fit to this

mass function. For this analysis, we truncate the halo mass function at xi = 14.0. We find

no significant difference in our posteriors if we lower this threshold to xi = 13.8. In other

words, our results are not sensitive to the exact truncation limit we use on the underlying

mass function. The prior on the magnitude gaps is defined by the observed magnitude gap

distribution modeled as a Gaussian where the mean and width are free parameters given

by this magnitude gap distribution. For the means and widths of both the magnitude gap

and halo mass, the free parameters are modeled as Normal distributions. 3

3For simplicity, in Table 3.2 the value for the mean and width of xi and zi are our initial values
for these modeled parameters. The values given by the Normal distributions at each step, which can
differ from the initial values, are used in our Bayesian MCMC analysis. We note that our results
are not sensitive to details of the initial values for either the halo masses or magnitude gaps.
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In terms of the measurement uncertainties, our priors change depending on whether

we are analyzing the simulations (3D or 2D) or the real data. For the 3D simulations, we

assume there is zero uncertainty in the stellar masses, the halo masses, and the magnitude

gaps. For the 2D simulated data, we use σy = 0.03, which we determine by measuring the

scatter in the difference between true stellar masses and the inferred stellar masses from the

Bell et al. (2003) relation. The 2D phase-spaces are better sampled than the observed data,

and so we use a uniform value close to the lower limit (0.35 dex) of the scatter in the caustic

mass from Gifford et al. (2013). The error in the magnitude gap for the simulated data is

again negligible, since the dominant component (the photometric error) is not present.

We use uninformative uniform priors on the intrinsic scatter, σint, and on the intercept,

α. For the slope, β, and the stretch factor, γ, we use a linear regression prior of the form

−1.5× log(1 + value2).

In Table 3.2, we summarize all of our likelihood forms and priors not previously described

in Section 3.5.1.
We can express the entire posterior probability then as:

p(α, β, γ, σint, xi, zi, σyi , σxi
, σzi |y0i, x0i, z0i, σy0i , σx0i

, σz0i ) ∝

P (y0i|α, β, γ, σyi , σint, xi, zi) P (x0i|xi, σxi
) P (z0i|zi, σzi )︸ ︷︷ ︸

likelihood

×

p(xi) p(zi) p(σxi
) p(σyi ) p(σzi ) p(α) p(β) p(γ) p(σint)︸ ︷︷ ︸

priors

(3.9)

We note that this is actually a hierarchical Bayes model, since the priors on true

halo masses and true magnitude gaps (xi and zi) depend on models themselves (e.g.,

the underlying halo mass function or a distribution of the magnitude gap data). We

do not include those terms in equation 3.9 or in Table 3.2 for compactness, but they

are described in the above text. Additionally, since we allow for errors in all of our

observables, this is an extension of what was originally shown for a simpler Bayesian

line-fitting analysis in Gull (1989).
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Bayesian Analysis Parameters for the SDSS-C4 Nominal Sample using M14

Symbol Description Prior
α The offset of the SMHM relation U(-100,100)
β The high-mass power law slope Linear Regression Prior
γ The stretch factor, which relates to M14 Linear Regression Prior

σint

The uncertainty given by the width
of the intrinsic stellar mass distribution U(0.0, 0.5)

yi

The underlying distribution in stellar mass
given by Equation 3.8 N (α + βxi + γzi,σ

2
int)

xi

The underlying halo mass function
from Henriques et al. (2012), approximated

as a truncated Normal TN (14.0,0.352,14.0,15.1)
zi The underlying magnitude gap distribution N (2.4,0.712)

σy0i

The uncertainty between the observed stellar
mass and intrinsic stellar mass distribution 0.19

σx0i

The uncertainty between the caustic
halo mass and underlying distribution

given by Gifford et al. (2013) σx0i(Nphasei)

σz0i

The uncertainty between the underlying and
observed magnitude gap distribution 0.10

Table 3.2: Bayesian Analysis Parameters for the SDSS-C4 Nominal Sample using
M14. U(a, b) refers to a uniform distribution where a and b are the upper
and lower limits. The linear regression prior is of the form −1.5× log(1 +
value2). N (a, b) refers to a Normal distribution with mean and precision
of a and b. TN (a, b, c, d) is a truncated Normal distribution with mean,
a, precision, b, lower limit, c, and upper limit, d. For σxi , the value is
dependent on the number of galaxies used in the caustic phase space and
is obtained from Gifford et al. (2013). Additionally, we note that for xi
and zi, the means and widths given in this table are the initial values. The
mean and widths are modeled as normal distributions whose values are
used at each step in the Bayesian MCMC analysis. The results are not
sensitive to those initial values.

91



14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4

log Mhalo / M¯/h

11.0

11.2

11.4

11.6

11.8

12.0

12.2

lo
g
 M

∗ 
/M

¯
/h

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

M
1

4

Figure 3.6: Henriques et al. (2012) 3D SMHM Relation Accounting for the Magnitude
Gap. The SMHM relation for the 3D sample of the Henriques et al. (2012)
prescription of the MILLENNIUM simulation. In the simulated universe
we see a smooth magnitude gap – stellar mass stratification.

3.6 Results

In this section, we present the SMHM relation incorporating either M14 or M12

and the results of our Bayesian MCMC model for both the simulated and the SDSS-C4

observed data.

3.6.1 MILLENNIUM Simulation

3.6.1.1 SMHM Relation

Here we present the qualitative results of our analysis of the SMHM relation for

high mass clusters found in the 3D and 2D (projected) versions of the Henriques et al.

(2012) prescription of the MILLENNIUM simulation.

Figure 3.6 shows the stellar masses plotted against the halo masses, which both

come directly from the simulation, for the 3D cluster sample. The BCGs are color-

coded, where red represents small magnitude gap BCGs and purple high-gap BCGs

(for M14). Figure 3.7 presents the SMHM relation for the 2D projected sample, where

the stellar masses are estimated using the Bell et al. (2003) M/L ratio relation, and
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Figure 3.7: Henriques et al. (2012) 2D SMHM Relation Accounting for the Magnitude
Gap. The SMHM relation for the 2D projected sample of the Henriques
et al. (2012) prescription of the MILLENNIUM simulation. The black
bar shows the average error in halo mass, 0.35 dex, and stellar mass, 0.03
dex. Even when using data with measurement errors in stellar mass, halo
mass, and magnitude gap, a similarly smooth magnitude gap – stellar
mass stratification exists in the simulated data, like in Figure 3.6.

the halo masses are determined using the caustic technique on the projected phase-

spaces. Again, the BCGs are color-coded according to their magnitude gap (M14),

which is determined using the projected data.

For Figures 3.6 and 3.7, the magnitude gap color bar does not span the entire

range of observed M14 values (0-4.3). Instead, since the M14 distribution can be

approximated as a Gaussian centered at an M14 value of ∼2.1, we selected a range

which eliminates the Gaussian wings to better highlight the difference in stellar mass

at fixed halo mass for clusters with differing magnitude gaps.

Figures 3.6 and 3.7 show that a relationship clearly exists between the magnitude

gap and stellar mass at a fixed halo mass in the semi-analytic prescription of the

MILLENNIUM simulation. Recall that Harrison et al. (2012) identified a bifurcation

between clusters with high magnitude gaps and low magnitude gaps; high gap clusters

have a larger stellar mass at fixed halo mass than low gap clusters. Our analysis

illustrates that in the MILLENNIUM simulation, there is a continuous stratification
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in the BCG stellar masses at fixed halo mass due to the magnitude gap. These

qualitative results are unchanged when using M12 (not shown) instead of M14.

3.6.1.2 Quantitative Impact

To quantitatively evaluate if the magnitude gap can be treated as a latent param-

eter in the SMHM relation, we use our MCMC model, Bayesian formalism, and linear

SMHM relation (Equation 3.8) described in Section 3.5. To convey these results, we

present triangle plots that show the posterior distributions of α, β, γ, and σint plotted

against one another for both the 3D and 2D Henriques et al. (2012) samples. Each

of these plots is generated after 10 million steps (including an approximate 2 million

step burn in). We marginalize over all other nuisance parameters from Equation 3.9.

We present the results from the Henriques et al. (2012) simulations using M14 for

the magnitude gap. All of the results from the posterior distributions are presented

in Table 3.3.

For our 2D Bayesian analysis, we use strong priors on the error distributions,

stellar masses, and magnitude gaps, because (a) we can measure the uncertainties

and (b) there are no observational uncertainties. In the 3D analysis, we also use

strong priors on the halo masses, since we do not use the inferred caustic masses.

Figures 3.8 and 3.9 show convergence for each of the four variables. In these same

figures, we see that α and β are covariant, which follows since they represent the

intercept and slope, respectively. Of greater importance, neither remaining variable

pair is covariant, which emphasizes that neither γ or σint are inherently tied to our

measurement of the slope.

When we look beyond the distributions and at the values of the posterior distri-

butions shown in Figures 3.8 and 3.9, we see that the best fit estimates for α, β, γ,

and σint are within 1 or 2σ of one another. In other words, for these parameters, the

model which includes uncertainty can correctly recover the 3D truth, where there is
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Figure 3.8: Bayesian MCMC Posterior Distribution for the Henriques et al. (2012) 3D
Sample. The posterior distribution functions for α, β, γ, and σint for the
Henriques et al. (2012) 3D sample. The red lines represent estimates for
α, β, and γ done by binning the stellar mass, halo mass, and magnitude
gap and applying a linear fit. This figure was constructed using M14. In
our analysis of the Henriques et al. (2012) sample, γ is significantly non-
zero. Additionally, our Bayesian analysis results agree with the simple
linear binned estimates for each parameter.
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Figure 3.9: Bayesian MCMC Posterior Distribution for the Henriques et al. (2012) 2D
Sample. The posterior distribution functions for α, β, γ, and σint for the
Henriques et al. (2012) 2D projected sample. This figure was constructed
using M14. The posteriors agree with our results for the 3D sample shown
in Figure 3.8. Again, we find that γ is definitively non-zero.
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no uncertainty. The ability to reproduce the results of the 3D model using the 2D

projected sample is key because these samples represent the same underlying distri-

bution, but with different uncertainties in each measurement. Since the posteriors

of α, β, γ, and σint in the 2D projected sample (Figure 3.9) agree with those from

the 3D sample (Figure 3.8), we conclude that if we can accurately account for the

uncertainty in stellar mass, halo mass, and magnitude gap, then we can measure the

underlying posterior distributions of α, β, γ, and σint for the SDSS-C4 sample even

though we have no 3D dataset.

We also looked at varying the scatter on the magnitude gap by adding a small

uncertainty, 0.05, to the magnitude gaps to account for the fact that a fraction of our

2D light-cone “observed” gaps do not exactly agree with the true magnitude gaps.

However, this made no difference to the posterior distribution shown in Figure 3.9.

The most significant result shown in Figures 3.8 and 3.9 is that γ is significantly

non-zero. To highlight this further, we bin the 3D simulated data according to mag-

nitude gap and halo mass and measure the binned stellar mass directly. From this

we can directly (albeit crudely) estimate α, β, and γ, using linear fits. The results

are shown as the red vertical dashed bars in Figure 3.8. This measurement highlights

that for the Henriques et al. (2012) prescription of the MILLENNIUM simulation,

the magnitude gap is indeed a latent parameter found in the SMHM relation and

should be incorporated into other SMHM relations.

Additionally, we note that the quantitative results for the analysis done using

M12, shown in Table 3.3, and M14 are well within 2σ of one another for both α, β

and σint. However, we find that γ is slightly smaller when M12 is used than when

M14 is used in our analysis. We posit that this difference results from the different

magnitude gap distributions associated with each respective sample.
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3.6.1.3 Model without Magnitude Gap

To determine the impact of the magnitude gap on σint, we ran our Bayesian

MCMC model using a linear relation, similar to the formalism used for the high halo

mass portion of Yang et al. (2009) and Moster et al. (2010, 2013). To do this, we

replace Equation 3.8 with:

yi = N (α + βxi, σ
2
int). (3.10)

where α and β are the intercept and slope and σint is the intrinsic scatter. For these

models, we measured the posterior distributions for α, β, and σint.

Using the same Bayesian formalism and MCMC model described in Section 3.5,

but instead using Equation 3.10, we find that σint = 0.159± 0.002 and σint = 0.160±

0.003 for the 3D and 2D catalogs, respectively. Therefore, comparing this posterior

to those obtained when incorporating the magnitude gap, σint = 0.114 ± 0.002 and

0.117±0.002 (3D and 2D), we find that the intrinsic scatter significantly decreases due

to the inclusion of the magnitude gap as a third parameter because the two values

differ by greater than 3σ. Additionally, incorporating the magnitude gap reduces

σint by by 28.3% in the 3D sample and 26.9% in the 2D projected sample. We also

observe that the inclusion of the magnitude gap does not impact the measurement

of the slope, β, because the posterior values determined when accounting for the

magnitude gap and when not agree.

3.6.2 SDSS-C4 Sample

3.6.2.1 SMHM Relation

In this section, we present the qualitative results from our analysis of the SDSS-C4

samples using both M14 and M12. The SMHM relations shown in Figures 3.10 and

3.11 plot the stellar masses estimated using the Bell et al. (2003) M/L ratio relation

against our caustic halo masses and utilize three non-uniform magnitude gap bins to
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Figure 3.10: The SDSS-C4 SMHM Relation Accounting for M14. The SMHM relation
for the SDSS-C4 sample of clusters binned via M14 measurements. The
black bars represent the median error bars in caustic halo mass, 0.32
dex, and the error in stellar mass, 0.19 dex. Similar to the results of
the Henriques et al. (2012) 2D projected data, shown in Figure 3.7, a
magnitude gap – stellar mass stratification exists in the real universe,
where measurement errors are found on all three parameters shown.

represent the clusters with high (blue), intermediate (green), and low (red) magnitude

gaps.

We use three color bins, unlike in Figures 3.6 and 3.7, because a noisier color

gradient exists in our SDSS-C4 observations. This additional noise is primarily caused

by the photometric measurement error associated with the corrected BCG magnitudes

for our SDSS-C4 observations. Additionally, the relative lack of redshift information,

compared to the Henriques et al. (2012) data, results in our observed M14 and M12

values being more sensitive to our red sequence fit. The lack of clusters, 2700 in

the simulations and 236 (M14) or 254 (M12) in the SDSS-C4 sample, also makes

the gradient more difficult to clearly observe. Thus, binning the data by magnitude

gap allows us to more easily convey the impact of incorporating the magnitude gap

and the observed stratification. We chose non-uniform bin widths to emphasize the

similarity between the M14 and M12 samples. Furthermore, a comparison between

Figures 3.10 and 3.11 suggests that this stratification may be independent of the
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Figure 3.11: The SDSS-C4 SMHM Relation Accounting for M12. The SMHM relation
for the SDSS-C4 sample of clusters binned using the M12 measurements.
The black bars represent the median error bars in halo mass, 0.32 dex,
and stellar mass, 0.19 dex. When compared to Figure 3.10, this figure
highlights that a similar magnitude gap – stellar mass stratification is
observed regardless of the choice of nth brightest cluster member.

choice of nth brightest cluster member used to measure the magnitude gap.

By binning our data, Figures 3.10 and 3.11 illustrate that a magnitude gap strat-

ification with some scatter exists in the real universe. For a fixed halo mass, as the

stellar mass increases, the color of the points transitions from red to green to blue,

with some additional scatter, which represents that stellar mass and magnitude gap

are positively correlated.

Just as for our analysis of the Henriques et al. (2012) prescription of the MIL-

LENNIUM simulation, we clearly observe a trend relating magnitude gap and stellar

mass at fixed halo mass. Furthermore, Figures 3.10 and 3.11 show that, like in the

simulations, a bifurcation between high and low magnitude gap clusters (fossils and

non-fossils) is an oversimplification. Instead, we treat this relationship as a strati-

fication, which is independent of the optical and X-ray definitions of fossil galaxies,

and instead extends to all clusters because at fixed halo mass, as the magnitude gap

between the BCG and any selected nth brightest member increases, on average, the
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Figure 3.12: SDSS-C4 M14 and Henriques et al. (2012) M14 Distributions. The dis-
tribution for the SDSS-C4 M14 values and the distribution for the 2D
projected Henriques et al. (2012) M14 values. The similarity highlights
that our 4th brightest SDSS-C4 cluster members are accurately identi-
fied using the red sequence and available redshift information.

stellar mass of the BCG similarly increases. Thus, allowing the magnitude gap to be

treated as a relative proxy for the stellar mass of a BCG.

Additionally, we highlight the accuracy of our magnitude gap measurements by

looking at how the distributions of the magnitude gap measured in our SDSS-C4 data

compare to those measured in our 2D Henriques et al. (2012) projected data. In

Figures 3.12 and 3.13, we have normalized the distributions for comparison, which

results in a y-axis that represents a relative number. We find that the overall shape of

the distributions for the SDSS-C4 data (in blue) and the Henriques et al. (2012) data

(in red) are quite similar. The primary difference is that the SDSS-C4 magnitude gap

values are slightly larger, which may result from projection effects, due to the lack of

available redshift information or our red sequence fitting.

3.6.2.2 Quantitative Impact

As done in Section 3.6.1.2, we evaluate the impact of incorporating the magnitude

gap into our SMHM relation using the previously described (Section 3.5) MCMC
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Figure 3.13: SDSS-C4 M12 and Henriques et al. (2012) Distributions. The distri-
bution for the SDSS-C4 M12 values and the distribution for the 2D
projected Henriques et al. (2012) M12 values. A comparison illustrates
that our 2nd brightest SDSS-C4 cluster members are accurately identi-
fied using available redshift information and red sequence fitting.

model, Bayesian formalism, and linear SMHM relation (Equation 3.8). The model

used for our SDSS-C4 sample differs slightly from that used for the simulated data

because of minor differences related to our estimation of the uncertainties in the

measurements of stellar mass, halo mass, and magnitude gap. For halo mass, we used

the relation between the number of galaxies used to construct the caustic phase space

and the measurement uncertainty presented in Gifford et al. (2013), while for the

2D simulated light-cone data, we used a fixed error of 0.35 dex, since it has a deep

magnitude limit. For the stellar mass, we increased the measurement uncertainty

from 0.03 dex (sims) to 0.19 dex. We reached 0.19 dex by assuming a 0.1 dex error in

the M/L ratio (Bell et al., 2003) and combining it with the 0.1 magnitude precision

in both the BCG’s r- and i-band magnitudes used to determine the color used in the

Bell et al. (2003) relation. For the magnitude gap, due to the BCG photometry, we

also assumed an uncertainty of 0.1 magnitudes, in contrast to 0.0 magnitudes used

in the simulations. Since we use the SDSS Petrosian magnitudes for our 4th and 2nd

brightest galaxies, we assume that the measurement uncertainties associated with
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Figure 3.14: The Bayesian MCMC Posterior Distributions for the SDSS-C4 Sample
with M14. The posterior distributions for α, β, γ, and σint for the SDSS-
C4 sample measured using M14. Like in the Henriques et al. (2012) 2D
projected sample, shown in Figure 3.9, we see that γ is definitely non-
zero in the real universe. Additionally, we find that σint is below 0.1
dex.

those magnitudes are negligible. Additionally, for each uncertainty, we add a random

β distribution term to our error estimates to encapsulate the uncertainty associated

with each one of our error estimates, given by Equations 3.3, 3.5, and 3.7.

Using this approach, we present triangle plots, shown in Figures 3.14 and 3.15,

which show the distributions of α, β, γ, and σint for both the SDSS-C4 M14 and M12

samples. Each plot was generated after 10 million steps including an approximate 2

million step burn in.

Figures 3.14 and 3.15 show the marginalized 1D or 2D posteriors after convergence.

We see that only α and β are covariant, as was the case for our simulations and is

expected in a linear regression. Additionally, the values based on the posteriors for α,
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Figure 3.15: The Bayesian MCMC Posterior Distributions for the SDSS-C4 Sample
with M12. The posterior distributions for α, β, γ, and σint for the SDSS-
C4 sample measured using M12. The posteriors agree with the results
shown in Figure 3.14. Similarly, γ is significantly non-zero, and σint is
well below 0.1 dex.

104



β, γ, and σint when determined using M14 are within 1σ of their counterparts done

using M12 (see Table 3.3). Thus, the choice of nth brightest galaxy used to measure

the magnitude gap appears to have little impact on the measured parameters, which

strengthens our argument that the magnitude gap-stellar mass stratification is not

dependent on our choice of nth brightest cluster member, based on Figures 3.10 and

3.11. We note that the posterior constructed using M12 leads to a slightly lower value

of γ as observed in the Henriques et al. (2012) simulated data; however, since the

error bars are larger on the posteriors of our SDSS-C4 data than on the posteriors of

the Henriques et al. (2012) data, these γ posteriors are in agreement.

The primary result from Figures 3.14 and 3.15 is that γ is definitively non-zero

in our SDSS-C4 sample, as we observed in the Henriques et al. (2012) simulation.

This observation highlights that we must treat the magnitude gap as a latent third

parameter in the SMHM relation. Additionally, we note that for the first time, the

observational estimate for the intrinsic scatter has moved below a precision of 0.1

dex. We discuss the implications of these results further in Section 3.7.

Recall that for the 2D simulated data, we varied the scatter of the magnitude gap

but found no difference in the results. We investigate this again in the SDSS-C4 data.

In the nominal analysis, we assume that the magnitude gaps have a measurement

error of 0.1 magnitudes. As described earlier, we include an additional stochastic

uncertainty on this error using a beta distribution, which adds as much as ±0.06

magnitudes to the gap error. As we push this up to larger magnitude gap errors we

begin to see the stretch factor γ changing its median in the posterior at σzi(M14) =

0.4. However, given that we have used all available spectroscopic information for our

clusters, have well-determined red-sequence membership, and that we have re-created

the gap measurement distribution in a realistic mock sky, we are confident that our

gap measurements are as accurate as we describe (0.1 magnitudes). Additionally,

we also examine the sensitivity of our results on our measurement uncertainties for
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stellar mass and halo mass. We find that if we vary the uncertainty in halo mass by

25% the results of our posterior are all in agreement with our results presented in

Table 3.3. When we vary the uncertainty in stellar mass by 25%, we see the same

trend between slope and error measurement presented in Figure 10 of Tinker et al.

(2017). Additionally, all of the parameters, except σint are in agreement with their

values in Table 3.3. The discrepancy for σint is expected due to the relationship

between error in stellar mass and intrinsic scatter. We further justify our choice of

0.19 dex for the measurement error in stellar mass in Sections 3.6.2.3 and 3.7.2.

3.6.2.3 Model without incorporating the Magnitude Gap

To determine the impact of incorporating the magnitude gap on σint for the ob-

served SMHM relation, we again use the MCMC model and Bayesian formalism, but

instead use the linear relation, Equation 3.10, presented in Section 3.6.1.3, which does

not incorporate the magnitude gap. The results of this analysis are shown via a trian-

gle plot in Figure 3.16, which compares the posterior distributions of α, β, and σint.

As with our previous MCMC runs, we see a convergence and find that only α and β

are covariant, while σint does not depend on either parameter. When comparing the

results of this analysis to Figures 3.14 and 3.15 we find that the values of the slope,

β, are in agreement with one another.

The primary reason we ran an analysis using the model without the stretch pa-

rameter (Equation 3.10) was to determine the impact of the magnitude gap on σint.

Of note, the σint we measure using our two component linear model, 0.159 ± 0.021, is

in excellent agreement with the best prior estimates of the intrinsic scatter from both

observations and simulations for the high mass portion of the SMHM relation, 0.15

dex (Pillepich et al., 2018), 0.16 dex (Tinker et al., 2017), and 0.17 dex (Kravtsov

et al., 2018), which highlights the consistency of our measurements with other studies.

When we compare the results of our model without the magnitude gap to those pre-
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Figure 3.16: The Bayesian MCMC Posterior Distribution for the SDSS-C4 Data with-
out M14. Distribution The posterior distributions for α, β, and σint
for the SDSS-C4 sample measured without incorporating the magni-
tude gap. A comparison to Figures 3.14 and 3.15 highlights that β is
unchanged when incorporating the magnitude gap; however σint is sig-
nificantly higher when the magnitude gap is unaccounted for.
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sented in Section 3.6.2.2 which incorporate it, we find that including the magnitude

gap significantly reduces the median value of σint by either 0.074 or 0.092 dex. Thus,

incorporating the magnitude gap leads to either a 45% or 58% decrease in the intrinsic

scatter. Additionally, we note that the values of the intrinsic scatter obtained when

incorporating the magnitude gap are not within one sigma of the estimate obtained

when not incorporating it. Thus, the magnitude gap is a latent parameter in the

SMHM relation that significantly reduces the intrinsic scatter in this relation and

allows us to enter the realm of sub 0.1 dex precision.

For comparison, we find that the reduction of σint is far greater for the SDSS-C4

data than what we find in the Henriques et al. (2012) prescription of the MILLEN-

NIUM simulation. This may result from the error bars for our posterior distributions

being larger for our SDSS-C4 observations than for the simulations. Alternatively, un-

like in our SDSS-C4 observations, where we assumed that the uncertainty in the stellar

mass is 0.19 dex, for the 3D Henriques et al. (2012) prescription of the MILLENNIUM

simulation, we assumed that the stellar mass had no measurement uncertainty asso-

ciated with it. However, this is likely an underapproximation, because there is likely

some additional uncertainty associated with those stellar mass estimates.

In addition to the reduction in the inferred intrinsic scatter, we find that the size

of the error bars on the posterior distribution of the slope, β, significantly decreases

when the magnitude gap is incorporated. As shown in Figures 3.14 and 3.15, β has

error bars of approximately 0.15 and 0.11 dex respectively. In contrast, when we

don’t incorporate the magnitude gap, the error bars on β increase to between 0.36

and 0.40 dex, as shown in Figure 3.16. Thus, the uncertainty associated with our

slope decreases by between 0.21 to 0.29 dex, when we include the magnitude gap in

our analysis. This decrease likely occurs because for a fixed magnitude gap we use

fewer points spread over a smaller range in stellar mass to fit the slope, making it

more tightly constrained. Therefore, incorporating the magnitude gap not only allows
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us to significantly reduce the intrinsic scatter in the stellar mass at fixed halo mass,

it also allows us to reduce the uncertainty on our measurement of the slope.

To verify that the three parameter model (given by Equation 3.8) does indeed

reproduce the data better than the two parameter model (given by Equation 3.10),

we use the posterior predictive distribution to compare the values of the stellar mass

and magnitude gap given by each of the models. For comparison, we measure the R

coefficient to be R=0.428 for our observed SDSS-C4 data. When averaged over the

MCMC trace in our Bayesian model, we find that the two parameter model yields an

〈R〉 = 0.169, while the three parameter model yields 〈R〉 = 0.410, which allows us

to conclude that the 2 parameter model does not reproduce the observed correlation

between stellar mass and magnitude gap that is observed in our data.

Additionally, to further verify that the reduction of σint results from incorporating

the magnitude gap, and not just the inclusion of a randomly selected third parameter,

we reran our Bayesian analysis using randomized values of M14 in Equation 3.8.

Doing so removes the correlation between M14 and stellar mass, and results in a

posterior distribution with a γ that is equal to 0.0 ± 0.02. Furthermore, the other

parameters contained in this posterior, including the measurement of σint, agree with

the values presented in Figure 3.16, which further highlights that the reduction in σint

and measurement of non-zero γ result because stellar mass and M14 are correlated

due to the hierarchical growth of the BCG. Therefore, it is the incorporation of this

specific third parameter, the magnitude gap, and not any random third parameter,

that leads to the significant reduction in σint.
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Posterior Distribution Results
Data Magnitude Gap α β γ σint

Henriques et al. (2012)-3D Not Incorporated 4.31 ± 0.20 0.51 ± 0.01 0.159 ± 0.002
Henriques et al. (2012)-2D Not Incorporated 4.04 ± 0.27 0.53 ± 0.02 0.160 ± 0.003
Henriques et al. (2012)-3D M14 3.61 ± 0.14 0.53 ± 0.01 0.187 ± 0.004 0.114 ± 0.002
Henriques et al. (2012)-2D M14 4.19 ± 0.23 0.50 ± 0.02 0.186 ± 0.004 0.117 ± 0.002

SDSS-C4 M14 3.13 ± 2.09 0.56 ± 0.15 0.173 ± 0.022 0.085 ± 0.024
SDSS-C4 Not Incorporated 3.31+5.64

−5.13 0.58+0.36
−0.40 0.159 ± 0.021

Henriques et al. (2012)-3D M12 4.07 ± 0.15 0.51 ± 0.01 0.147 ± 0.004 0.124 ± 0.002
Henriques et al. (2012)-2D M12 3.66 ± 0.24 0.55 ± 0.02 0.158 ± 0.004 0.123 ± 0.003

SDSS-C4 M12 3.62+1.58
−1.74 0.54+0.12

−0.11 0.147 ± 0.019 0.067 ± 0.020
SDSS-C4, Abundance Matching Not Incorporated -0.33 ± 0.15 0.84 ± 0.01

Table 3.3: SDSS-C4 Posterior Distribution Results

3.7 Discussion

3.7.1 Comparisons to the Literature

We have presented results that show that in both a simulated semi-analytic model

of a low-redshift universe and in the observed universe, there is a stratification in

stellar mass with the magnitude gap at fixed halo mass for cluster-sized halos. This

result is found at high confidence, such that the measured stretch factor γ is many

standard deviations away from zero. The inclusion of the magnitude gap as a latent

parameter in the cluster-scale SMHM relation reduces the scatter ∆(logM∗|logMhalo)

by a significant amount. At the same time, it also reduces the error bar on the inferred

slope, β.

The physical importance of the detection of the magnitude gap as a latent variable

(albeit an observational one) directly relates to the BCG growth history. This history

is built into the Henriques et al. (2012) and Guo et al. (2011) prescriptions of the

MILLENNIUM simulation, in which BCGs grow hierarchically via major and minor

mergers (De Lucia and Blaizot , 2007). The more massive BCGs are those that have

undergone more mergers, and in agreement with Solanes et al. (2016), have the largest

magnitude gaps. Therefore, the observation of a magnitude gap stratification in

the SDSS-C4 data acts as observational evidence that in the real universe, BCGs

predominantly grow hierarchically. Additionally, we posit that the magnitude gap
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may be able to trace the assembly history of both the BCG and the cluster.

As we have shown, in agreement with Solanes et al. (2016), that clusters with the

largest magnitude gaps and stellar masses have likely undergone more mergers than

small gap, low stellar mass clusters. If a similar dynamical timescale for the mergers

that occur in each cluster exists, then the clusters with the largest stellar mass and

magnitude gaps would likely be the clusters that formed first. This hypothesis is

supported by Figure 7 of Matthee et al. (2017). Using the hydronamical EAGLE

simulation, Matthee et al. (2017) construct a stellar mass halo mass relation over

the halo mass range of 11.0 < log10(M200,DMO/M�) < 14.5, in which individual

clusters are color coded by the redshift when half of the halo mass was assembled.

This SMHM relation agrees with our previously stated assumption, and shows that

a stratification between the stellar mass and formation time exists in the EAGLE

simulation; at a fixed halo mass, the most massive galaxies are found in the halos

that form at the earliest redshift (Matthee et al., 2017). This stratification appears to

exist, but is difficult to analyze at halo masses close to our range of interest because the

EAGLE simulation does not contain enough high halo mass clusters. Thus, a direct

comparison between our studies would be difficult at this time because we cannot

yet determine how and if the magnitude gap stratification relates to the formation

redshift stratification and if the magnitude gap accurately scales with the formation

redshift to trace the assembly of the cluster.

Although it remains uncertain whether the magnitude gap traces the assembly

history of the halo, the discovery of the stellar mass - magnitude gap stratification

does solve a pragmatic issue that has existed for the observed cluster-scale SMHM

relation. As discussed in Section 3.2, a large discrepancy exists between published

SMHM relations in the high mass regime, highlighted by Figure 10 in Tinker et al.

(2017). This discrepancy includes both purely observational studies (like ours and

Kravtsov et al. (2018)), and those that require a strong theoretical prior from the

111



use of abundance matching models (e.g., Behroozi et al., 2010; Moster et al., 2010;

Behroozi et al., 2013a; Moster et al., 2013; Tinker et al., 2017). For a fixed halo

mass, the estimates for the stellar mass differ by as much as 0.5− 1.0 dex. In Figure

3.17, we show numerous SMHM relations from the literature after normalizing to a

Salpeter IMF. On this figure we also highlight our model SMHM relations (plural), in

gray, given a specific magnitude gap, where the light gray band defines the 1σ error

bar from the posterior. By varying the average magnitude gap (M14) for a sample

from 0.0 to 4.0 (the range covered in Figure 3.4), the stellar masses can vary by as as

much as 0.7 dex at fixed halo mass. Thus the gap as a latent variable can explain the

majority of the offsets in the published SMHM relations, assuming those published

results used samples with different average magnitude gaps.

Based on our model, across the top of our SMHM relation are the largest gap

systems, i.e., those classified as fossil galaxies (Harrison et al., 2012). The Kravtsov

et al. (2018) sample is small and only a half dozen clusters overlap with our data

where we can verify the magnitude gap (using identical data and techniques) to be

〈M14〉 ∼ 2.5, which would classify the sample as representative of fossils. Kravtsov

et al. (2018) also used “total” magnitudes as opposed to our Petrosian magnitudes,

thus further increasing the magnitude gap (Graham et al., 2005). Moving down in

stellar mass in Figure 3.17, consider the cluster sample used in Lin and Mohr (2004),

which like the Kravtsov et al. (2018) sample, is based on X-ray selection. In this case,

14 clusters overlap with our sample and we measure 〈M14〉 ∼ 2, which is indeed lower

than the Kravtsov et al. (2018) average. Across the bottom end of the relation are

the systems with small values of magnitude gaps. The lower two literature relations

in Figure 3.17 are not based on cluster identifications at all, but simply use galaxy

samples. These samples are sorted according to inferred stellar mass and matched to a

simulation. In other words, all intrinsically bright galaxies are included in the cluster-

scale Behroozi et al. (2013a) and Moster et al. (2013) analyses, including those which
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Figure 3.17: Comparison of the SMHM-M14 Relation to Previously Published SMHM
Relations. The dot-dashed lines are 5 different previously published
SMHM relations, from Behroozi et al. (2013a), Moster et al. (2013),
Tinker et al. (2017), Lin and Mohr (2004), and Kravtsov et al. (2018).
The dashed brown line represents our SDSS-C4 relation in which halo
masses were estimated via abundance matching. The solid gray lines
represent the best fit for our SMHM relation done using M14 for five
different values of M14. The shaded region represents the 1σ region
surrounding each of the 5 magnitude gap fits. Each of the stellar masses
for this figure is scaled to a Salpeter IMF. The gray lines highlight that
incorporating the magnitude gap can account for as much as 0.7 dex
in stellar mass and may account for the majority of offsets between
previously reported SMHM relations.
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do not reside in cluster-scale environments. Because of the lack of the use of confirmed

clusters in their samples, it would not be surprising that the average magnitude gaps

of the centrals in halos ≥ 1014M� are small. Our relation does not intersect with

the results from Behroozi et al. (2013a) because Behroozi et al. (2013a) use SDSS

Petrosian magnitudes which have not been corrected for the systematic background

subtraction errors.

It is difficult to make a fair comparison of the literature SMHM relations for nu-

merous reasons noted earlier. However, in the context of our model, the above exercise

provides a reasonable explanation for the large amplitude variations in the SMHM

seen in the literature. Such a variation would be expected if the mean magnitude gap

of the observed samples is not held fixed.

Many other works (e.g., Behroozi et al., 2010; Moster et al., 2010; Behroozi et al.,

2013a; Moster et al., 2013; Tinker et al., 2017) rely upon abundance matching to

measure the SMHM relation. The one-to-one matching of the BCGs with the largest

stellar mass to the largest values of cluster masses from simulations pays no regard

to the magnitude gap and results in the loss of information about the BCG’s growth

history. At the same time, we show that ignoring the magnitude gap results in a

large increase in the inferred intrinsic scatter (see Section 3.6.2.3). In Figure 3.17, we

plot our SMHM relation for the SDSS-C4 BCGs based on abundance matching to the

Henriques et al. (2012) light-cone halo catalog. The fit lies within our expectations

for the full model, but with a steeper slope.

3.7.2 Impact on Galaxy Formation Models

At lower halo masses we expect in-situ star formation, the accretion of gas, as

well as stellar and/or AGN feedback to play some role in the growth of stellar mass

over time since z ∼ 2. While at the highest halo masses, we expect all of these

processes to have finished by z = 2, leaving only hierarchical growth as the dominant
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mechanism to increase a galaxy’s stellar mass since z ∼ 2. However, the reported

observed intrinsic scatter is nearly constant with halo mass at around σ(M∗) < 0.2

dex (Gu et al., 2016).

Gu et al. (2016) used abundance matching and investigated the origin of scatter

at fixed halo mass by following the hierarchical buildup of both dark and stellar mass

in simulations. Gu et al. (2016) concluded from their model and simulations that

there should be a strong mass-dependent scatter in the SMHM relation. Similarly,

this conclusion was also reached using the hydrodynamical EAGLE simulation, where

Matthee et al. (2017) estimate the intrinsic scatter in stellar mass at fixed halo mass

using different parametric fits of the true and predicted stellar masses to the halo mass

and find that the intrinsic scatter decreases, by approximately 0.1 dex, as the halo

increases over the range of 11.0 < log10(Mh/M�) < 13.0. Assuming that the intrinsic

scatter measurements reported in previous SMHM relations are dominated by lower

mass halos (log10(Mh/M�) < 14.0), our work provides the first observational evidence

that the scatter in stellar mass decreases significantly for centrals within group and

cluster sized halos, to levels as small as 0.067 dex at fixed halo mass and at fixed

magnitude gap.

One obvious question is whether the measurement errors on our stellar masses

are over-estimated. Recall that our stellar masses stem from the Bell et al. (2003)

relation, which has a 0.1 dex uncertainty at z=0. Our BCG magnitudes also have a

measurement error, which we estimate from the one-to-one comparison to the Post-

man and Lauer (1995) sample. These both are reasonable choices and incorporate

our entire stellar mass error budget. Just as important, our inferred intrinsic scatter

when we exclude the magnitude gap in our model is ∼ 0.16 dex, nearly identical to

Tinker et al. (2017) and Kravtsov et al. (2018). In other words, our choice of mea-

surement error on our stellar masses allows for a consistent comparison with those

works. When we use those same measurement errors and include the magnitude gap
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in our model, our intrinsic scatter drops to as low as 0.067 dex.

One challenge this presents to models like the one presented in Gu et al. (2016) is

that our observed intrinsic scatter is less than half of the minimum scatter allowed in

their model (0.16 dex) solely from hierarchical growth. One way to reach a smaller

amount of scatter is to have a shallower SMHM relation at z = 2. Another option

is that smooth accretion is actually not in play for BCGs (see Figures 4 and 5 in Gu

et al. (2016)).

In this work, we have focused on the z ∼ 0 universe. It is likely that the stretch

factor evolves through time. This is something that can be tested in simulations

using current semi-analytic models which follow the growth history of the BCG (e.g.,

Guo et al., 2011). The observational challenge of an evolutionary analysis of the

magnitude gap as a latent variable is to acquire good spectroscopic coverage per

cluster or to understand any additional systematics which would increase the error in

the magnitude gap measurement using photometric data.
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CHAPTER IV

The Impact of Environment on Late Time

Evolution of the Stellar Mass - Halo Mass Relation

Results in this chapter were published in: Golden-Marx, Jesse B., & Miller, Christo-
pher J. 2019. The Impact of Environment on the Late Time Evolution of Stellar Mass-Halo
Mass Relation. Accepted for publication in ApJ.

4.1 Abstract

At a fixed halo mass, galaxy clusters with larger differences in brightness between the

brightest central galaxy (BCG) and fourth brightest cluster member (mgap), have larger

BCG stellar masses. Recent studies have shown that by including mgap as a latent param-

eter in the cluster stellar mass - halo mass (SMHM) relation, one can make more precise

measurements of the SMHM relation’s amplitude, slope, and intrinsic scatter. We use

galaxy clusters from the Sloan Digital Sky Survey to measure the SMHM-mgap relation and

its evolution out to z = 0.3. Using a fixed comoving aperture of 100kpc to define the central

galaxy’s stellar mass, we report statistically significant negative evolution in the slope of the

SMHM relation to z = 0.3 (> 3.5σ). The steepening of the slope over the last 3.5 Gyrs can

be explained by late-time merger activity at the cores of galaxy clusters. We also find that

the inferred slope depends on the aperture used to define the radial extent of the central

galaxy. At small radii (20kpc), the slope of the SMHM relation is shallow, indicating that

the core of the central galaxy is less related to the growth of the underlying host halo. By
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including all of the central galaxy’s light within 100 kpc, the slope reaches an asymptote

value.

4.2 Introduction

The stellar mass - halo mass (SMHM) relation is one of the primary mechanisms used

to quantify the galaxy-dark matter halo connection. For clusters (log10(Mhalo/(M�/h)) ≥

14.0), this linear relation relates the stellar mass of the brightest central galaxy (BCG)

to the total cluster halo mass, including the dark matter. The inferred intrinsic scatter

(σint) associated with this relation can be used to constrain the processes that quench star

formation within galaxies (Tinker , 2017) as well as characterize the growth of their massive,

underlying, dark matter halos (Gu et al., 2016).

BCGs, the stellar mass portion of the cluster-scale SMHM relation, are massive, ex-

tended, luminous elliptical galaxies that account for a significant fraction of light emitted

from their host cluster halos (e.g., Schombert , 1986; Jones et al., 2000; Lin and Mohr , 2004;

Bernardi et al., 2007; Lauer et al., 2007; von der Linden et al., 2007; Aguerri et al., 2011;

Brough et al., 2011; Proctor et al., 2011; Harrison et al., 2012). Unlike other cluster mem-

bers, their location near the X-ray center of the cluster leads to their properties correlating

with that of their host cluster halo (Jones and Forman, 1984; Rhee and Latour , 1991; Lin

and Mohr , 2004; Lauer et al., 2014). The current theory of BCG formation is the two-phase

formation scenario, where a dense core forms at high redshifts via in-situ star formation

and the outer portions of the BCG grow due to the hierarchical merging of satellite galaxies

(Oser et al., 2010). This theory is well supported by observations (van Dokkum et al., 2010;

Huang et al., 2018) and dark matter only cosmological simulations which use semi-empirical

or semi-analytic prescriptions for the stellar mass growth of central galaxies (e.g., Croton

et al., 2006; De Lucia and Blaizot , 2007; Guo et al., 2011; Tonini et al., 2012; Shankar et al.,

2015).

One observational measurement intrinsically tied to the stellar mass growth of the BCG

is the magnitude gap (mgap), the difference in the r-band magnitude between the BCG and
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either the 2nd (M12) or 4th (M14) brightest cluster member within half of the radius that

encloses 200× the critical density of the universe (R200) (Jones et al., 2003; Dariush et al.,

2010). For the purpose of this paper, we use the 4th brightest member, since it best identifies

early forming clusters (Dariush et al., 2010). Based on dissipationless simulations of young

and pre-virialized groups, Solanes et al. (2016) find that the stellar mass of the central galaxy

linearly increases with the number of progenitor galaxies, in agreement with hierarchical

growth. Furthermore, BCGs grow at the expense of the 2nd brightest galaxy. Thus, as

the BCG merges with the surrounding fainter galaxies, the stellar mass and magnitude of

the BCG increase, relative to the 2nd or 4th brightest galaxy, increasing mgap. Therefore,

mgap is a latent third parameter in the cluster SMHM relation as shown in Golden-Marx

and Miller (2018), which for the remainder of the paper will be referred to as GM&M18.

GM&M18 incorporate mgap and alter the cluster-scale SMHM relation from

log10(M∗) = α+ βlog10(Mhalo), (4.1)

to

log10(M∗) = α+ βlog10(Mhalo) + γM14, (4.2)

where α is the offset, β is the slope, γ is the mgap stretch parameter, and M14 is the

selected mgap. These parameters are measured for the SDSS-C4 cluster sample (log10(Mhalo

/(M�/h)) ≥ 14.0) (Miller et al., 2005) with caustic halo masses (Gifford et al., 2013) using

a hierarchical Bayesian MCMC analysis. Incorporating γ into the SMHM relation reduces

the inferred intrinsic scatter and uncertainties on the amplitude and slope of the SMHM

relation (GM&M18).

BCGs grow hierarchically; therefore, the slope of the SMHM relation may change over

time because at higher redshifts fewer mergers will have occurred and the stellar mass of the

BCG will be lower (Solanes et al., 2016). Moreover, dark matter halos are thought to grow

hierarchically, as smaller subhalos merge with the cluster halo over time, so the average

halo mass should also decrease (White and Rees, 1978; Springel et al., 2005; De Lucia and

Blaizot , 2007).
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The redshift evolution of the SMHM relation has been investigated using observations,

empirical models, and simulations. Observationally, Oliva-Altamirano et al. (2014) use

BCGs and Brightest Group Galaxies from the Galaxy and Mass Assembly survey and find

no evolution in the SMHM relation’s slope over the redshift range 0.1 < z < 0.3 while

Gozaliasl et al. (2016) use a sample of X-ray selected galaxy groups and find that the

SMHM relation’s slope does not evolve over the redshift range 0.1 < z < 1.3. Using

empirical models and abundance matching techniques to infer halo masses, Behroozi et al.

(2013a) and Moster et al. (2013) find that the slope evolves by 40-50% from z=0.0 to z=1.0.

Moster et al. (2013) also find moderate evolution out to just z=0.5. In contrast, Pillepich

et al. (2018) use the Illustris TNG300 cosmological hydrodynamical simulation and report

little change in the slope between z=0.0 and z=1.0. In addition to the redshift evolution

in the slope of the SMHM relation, the evolution of the intrinsic scatter has also been

investigated using hydrodynamical simulations (Matthee et al., 2017; Pillepich et al., 2018),

N-body simulations (Gu et al., 2016), and empirical models (Behroozi et al., 2018; Moster

et al., 2018). However, the results from these different approaches are inconsistent with one

another, and may depend on the initial conditions of the simulations. The most likely reason

no consensus exists for the redshift evolution of the intrinsic scatter and SMHM relation

slope is due to differences in how the stellar and halo masses as well as the associated

uncertainties are estimated in simulations, empirical models, and observations.

As previously noted, including mgap as a latent parameter in the SMHM relation allows

other parameters, such as the slope, to be measured with higher precision. Thus, Equa-

tion 4.2 plays a critical role in detecting redshift evolution of the SMHM relation. One can

also allow the stretch parameter to evolve, which may provide information about the BCG

merger history and the fraction of stellar matter from major and minor mergers that ends

up as part of the intra-cluster light (ICL) that surrounds the BCG.

The outline for the remainder of this paper is as follows. In Section 4.3, we summarize

the goals, methods, and results of GM&M18. In Section 4.4, we discuss the observations

and simulated data used to measure stellar masses, halo masses, and mgap values for our

SMHM relation. In Section 4.5, we describe the hierarchical Bayesian MCMC model used
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to evaluate the redshift evolution of the SMHM relation. In Section 4.6, we describe how

we use the low-redshift data to calibrate the higher redshift clusters and their observational

errors. In Section 4.7, we present our results. In Section 4.8 we discuss our findings and

conclude.

Except for the case of simulated data, in which the cosmological parameters are pre-

viously defined (Springel et al., 2005), for our analysis, we assume a flat ΛCDM universe,

with ΩM=0.30, ΩΛ=0.70, H=100 h km/s/Mpc with h=0.7.

4.3 Summary of Golden-Marx & Miller 2018

Much of the analyses in this paper build on GM&M18, so we briefly summary those

results. GM&M18 set out to explain the discrepancy between amplitudes of previously

published SMHM relations using the low redshift SDSS-C4 (Miller et al., 2005) sample

of clusters (zmed = 0.086). BCG Petrosian magnitudes were properly corrected for known

SDSS background subtraction issues and stellar masses were determined using the Bell et al.

(2003) M/L ratio conversion. Halo masses were measured individually for each cluster using

the caustic technique (e.g. Gifford et al., 2013). mgap was measured using red sequence

cluster members within 0.5Rvir and introduced as a third parameterized variable into the

linear SMHM relation. GM&M18 termed this third parameter the “stretch” parameter

(γ) and found it to be non-zero with high statistical significance. GM&M18 also showed

that mgap plays an equally important role in the SMHM relation from semi-analytic galaxy

catalogs, suggesting that it stems naturally from hierarchical growth (Guo et al., 2011;

Henriques et al., 2012).

To achieve their results, GM&M18 developed a hierarchical Bayesian model which ac-

counts for errors on all observables, including the intrinsic uncertainty in stellar mass at

fixed halo mass (σint). The model also incorporates a level of uncertainty on the estimated

errors. GM&M18 used simulated lightcone data based on the MILLENNIUM simulation

(Henriques et al., 2012) to test the model and its ability to accurately recover the true

underlying SMHM-mgap parameters using only projected measurements (e.g., projected
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dynamical cluster masses, projected mgap values, and stellar masses inferred from galaxy

magnitudes). In this new work, we use the same model, except that we add parameters to

allow for redshift evolution in the amplitude, slope, stretch, and intrinsic scatter.

GM&M18 showed that the majority of the discrepancies in the reported amplitude of

the cluster-scale SMHM can be explained by simply accounting for mgap in the cluster

sample selection. GM&M18 also noted that the inferred errors on the parameters in the

SMHM relation as well as σint are significantly reduced (by as much as a factor of 2) after

incorporating mgap into the SMHM model.

4.4 Data

The observational data used for this analysis comes from the Sloan Digital Sky Surveys

(SDSS) DR8 (Aihara et al., 2011) and DR12 (Alam et al., 2015). For the full cluster

sample, we combine the SDSS-C4 (Miller et al., 2005) sample used in GM&M18 with v6.3

of the SDSS-redMaPPer catalog (Rykoff et al., 2014). The SDSS-C4 cluster sample used in

GM&M18 is highly complete from 0.03 ≤ z ≤ 0.1, while redMaPPer has high completeness

over the range 0.10 ≤ z ≤ 0.35 (Groenewald et al., 2017). Since we are studying redshift

evolution, we want our final sample of clusters to cover the widest possible redshift range.

Therefore, we need to make measurements of halo masses, mgap values, and BCG stellar

masses for SDSS-C4 and redMaPPer clusters in a homogeneous fashion.

4.4.1 redMaPPer mgap

The redMaPPer algorithm is a red-sequence-based photometric cluster finding algo-

rithm. The redMaPPer red sequence model was constructed using a sample of spectro-

scopically confirmed clusters. Using this calibrated model, clusters are identified using

luminosity and radial filters. redMaPPer also assigns a membership probability for clus-

ter member galaxies, Pmem, which depends on the richness, cluster density profile, and

background density. According to Rykoff et al. (2014), if Pmem > 0.70 a galaxy should be

considered a member. These high-probability members are then used to estimate photo-
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metric redshifts which we use in our Bayesian MCMC analysis (Section 4.5.2). redMaPPer

provides a probability for being the central galaxy for the five most likely candidate centrals

and we identify the BCG as the most likely candidate.

Galaxy membership in the SDSS-C4 sample (GM&M18) differs from the redMaPPer

sample due to color selection and sky apertures. SDSS-C4 cluster members are identified

using individual cluster red sequences in six distinct SDSS colors (u-g, g-r, g-i, r-i, i-z, and

r-z), which are fit using all potential cluster member galaxies with an r-band magnitude

brighter than mr=19 within 0.5 Rvir of the BCG, where Rvir is estimated using the caustic

halo mass. We note that this includes two additional colors compared to the SDSS-C4

cluster-finding algorithm (Miller et al., 2005). Cluster members are those galaxies simulta-

neously within 3σ of the red sequence for the u-g, g-r, and g-i colors and 2σ for the r-i, i-z,

and r-z colors (GM&M18). The SDSS-C4 BCGs are visually confirmed and are identified

as being the brightest in the red-sequence.

We calibrate the redMaPPer mgap values to the SDSS-C4 mgap measurements, where for

both samples the 4th brightest is chosen from within the red-sequence. To calibrate these

samples, we need to homogenize the membership of the clusters in color-magnitude space.

As noted earlier, redMaPPer membership depends on a specified Pmem threshold. We deter-

mine this threshold using 112 clusters found in both catalogs. For these clusters, we match

the density of galaxies within color-magnitude space between SDSS-C4 and redMaPPer by

adjusting the latter’s Pmem threshold. As we adjust Pmem and the sky aperture size, we can

raise or lower the number of galaxies in the color-magnitude diagrams of the redMaPPer

clusters.

We use only galaxies within an estimate of 0.5×Rvirial ∼ 0.5×R200. Although redMaP-

Per does not provide R200, we can approximate R200 using Equation 4.3 from Rykoff et al.

(2014),

R200 ≈ 1.5Rc(λ) (4.3)

where λ is the redMaPPer cluster richness, and Rc is the redMaPPer cutoff radius, given
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Figure 4.1: redMaPPer Membership Probability Compared to SDSS-C4 Red Se-
quence Membership. The distribution of the Pmem values required to
match the number of cluster members brighter than r=18.0 in the SDSS-
C4 and redMaPPer baseline sample. The median value is Pmem = 0.984.

by

Rc(λ) = 1.0h−1Mpc(λ/100)0.2. (4.4)

Figure 4.1 shows that a median value of Pmem = 0.984 matches the two membership

definitions with good precision. Therefore, we apply this Pmem threshold when identifying

cluster members used to determine mgap for the redMaPPer sample. We note that when

we examine how the number of members changes as a function of Pmem, we observe little

change in the range 0.7 < Pmem < 0.9, but large decreases in membership at Pmem > 0.9.

Unlike in GM&M18, we no longer use Petrosian magnitudes. Instead, we measure mgap

as the difference between the k-corrected r-band model magnitudes of the BCG and 4th

brightest cluster member. Applying our restrictive cluster member criterion and using the

model magnitudes we find good agreement in the distribution of mgap values for the overlap-

ping redMaPPer and SDSS-C4 clusters. We discuss the errors on the mgap measurements

in Section 4.6.
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4.4.2 redMaPPer Halo Mass

To determine halo masses for the redMaPPer sample, we use the mass-richness relation

from Simet et al. (2017), given by Equation 4.5:

Mhalo/(h
−1M�) = 1014.344(λ/40)1.33 (4.5)

Here, λ is the standard redMaPPer richness, or galaxy count as given in Rykoff et al.

(2014). The minimum redMaPPer richness we use is > 22, depending on the minimum

mass threshold applied.

In GM&M18, we used individual dynamically inferred cluster masses from the caustic

technique (Gifford et al., 2013). However, to homogenize the analysis between the low-z

SDSS-C4 and redMaPPer clusters, we require a mass-richness relation for the SDSS-C4

sample. For both samples, we need an estimate of the intrinsic scatter in mass at a fixed

richness, which is discussed in Section 4.6.

4.4.3 Final redMaPPer Sample

We analyze the redshift evolution of the SMHM relation in two ways. First, we bin our

data by redshift and determine the posteriors from our Bayesian MCMC model for each bin

with the redshift evolution parameters set to 0.0. Second, we incorporate redshift evolution

using four additional parameters in Equation 4.2 and fit against all of the redMaPPer

clusters. For this analysis, we look at the redshift range 0.08 ≤ z ≤ 0.30, where redMaPPer

is suggested to be most complete (Groenewald et al., 2017) and we have enough clusters for

a statistically significant sample.

The total sample of 1005 redMaPPer clusters with stellar masses measured out to

100kpc, with greater than 4 members with Pmem ≥ 0.984 within 0.5R200, and within

0.08 ≤ z ≤ 0.3 has no mass limit applied. However, we do not expect the redMaPPer

sample to have the same lower mass-limit throughout this redshift range and we must also

check for mgap incompleteness since SDSS is a flux-limited survey.

Therefore, the redMaPPer sample was divided into 4 redshift bins, each initially with
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∼ 251 clusters. For each bin, as done in GM&M18, we use a mgap completeness analysis

where we bin the absolute magnitude of the BCG and 4th brightest member against both

the BCG’s apparent magnitude and mgap to determine the apparent magnitude limit of the

sample (a redshift dependent limit) (Colless, 1989; Garilli et al., 1999; La Barbera et al.,

2010; Trevisan et al., 2017; Golden-Marx and Miller , 2018).

To account for halo mass incompleteness, for each redshift bin, the halo mass distribution

can be approximated as a Gaussian, where the peak indicates the mass at which the sample

starts to become incomplete. Instead of applying a model-dependent correction to the

analysis, we apply a lower halo mass cut where the amplitude of the binned halo mass

distribution decreases to 70% of the peak value to ensure high completeness as a function

of redshift. This is a conservative choice which results in a redMaPPer richness threshold of

∼ 22, well above the detection limit for the redMaPPer algorithm. However, when combined

with the mgap completeness analysis, these cuts shrink our available sample down to 843

clusters, a reduction of ∼16%. A slightly more restrictive (higher) halo mass lower limit

has no effect on our final results.

Since we study clusters out to z = 0.3 where the SDSS-redMaPPer sample is volume-

limited, we do not apply any corrections for volume effects from Malmquist bias.

4.4.4 SDSS-C4 Sample and Richness-based Halo Masses

The SDSS-C4 clusters are nearly identical to those used in GM&M18. The samples

differ because the stellar masses are estimated, as described in Section 4.4.5, within 100kpc,

instead of within the Petrosian radius. Additionally, we use a mass-richness relation to infer

the redMaPPer halo masses. Therefore instead of the individual dynamical cluster masses,

we also use a mass-richness relation for the SDSS-C4 sample. For this analysis, we use

only clusters with clean phase-spaces to ensure our richness measurement is meaningful and

unimpacted by foreground and background contamination. Given these individual masses

and the observed galaxy and background counts, we make a preliminary constraint on the

SDSS-C4 mass-richness relation using techniques similar to Andreon and Hurn (2010). We
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find:

Mhalo/(h
−1M�) = 1014.195(λC4/33.1)1.134. (4.6)

We note that the richnesses (λC4) for the SDSS-C4 sample are not calculated in the manner

as in the redMaPPer richnesses. However, using the sample of clusters found in both

the SDSS-C4 and in SDSS-redMaPPer, we find that the offset between the redMaPPer

and C4 mass estimates is 0.1 dex, with a standard devation of 0.15 dex. As shown in

Table 4.7.1, when this offset is removed, the results of our analysis do not change. A

more detailed analysis of the SDSS-C4 mass-richness relation will be presented elsewhere

(Miller et al. in preparation). Using this mass-richness relation, we apply the mass limits of

14.0 ≤ log10(Mhalo/(M�/h)) ≤ 14.7. The upper limit was selected to eliminate Malmquist

bias in the low redshift (and small volume) sample. Overall, these changes result in a sample

of 142 clusters with clean richnesses used in this analysis.

4.4.5 BCG Stellar Masses

In GM&M18, we emphasized the importance of correcting the BCG magnitudes because

of the SDSS background subtraction error (Bernardi et al., 2007; von der Linden et al.,

2007; Harrison et al., 2012; Bernardi et al., 2013). This correction is a strong function of

the apparent size of the galaxies and is especially problematic at low redshifts. The BCGs in

redMaPPer are smaller in their apparent sizes and suffer much less from the known issues of

the background light subtraction compared to the SDSS-C4 sample (Bernardi et al., 2007;

von der Linden et al., 2007; Harrison et al., 2012; Golden-Marx and Miller , 2018), so we

do not need to re-measure the BCG light profiles to correct for missed light within selected

radii of the BCGs and include additional uncertainties on the BCG stellar mass estimates.

Instead, we use the stellar mass measured within a fixed and precise 100kpc radial extent,

a choice which is justified in Section 4.6.1, which results in a much smaller uncertainty on

the stellar masses. To measure the 100kpc magnitudes, we queried the SDSS DR12 (Alam

et al., 2015) database to obtain the SDSS azimuthally averaged radial light profile for each

BCG and then integrated these profiles to 100kpc.
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To calculate BCG stellar masses, unlike in GM&M18, we do not use the Bell et al. (2003)

M/L ratio to estimate stellar mass because this relation is calibrated for z=0.0. Instead we

use the EzGal SED modeling software (Mancone and Gonzalez , 2012) to estimate stellar

mass. We note that GM&M18 found no differences in their fits to the SMHM relation when

using the EzGal-based stellar masses versus the Bell et al. (2003)-based stellar masses.

When estimating stellar masses using EzGal, we use a Bruzual and Charlot (2003)

stellar population synthesis model, a Salpeter (1955) IMF, a formation redshift of z = 4.9,

and a constant metallicity of 0.4 z�. We apply a Bayesian MCMC approach, done in

emcee (Foreman-Mackey et al., 2013). We treat the absolute magnitude (the normalization

parameter selected for EzGal) as a free parameter, with a uniform prior, to determine the

absolute magnitude that minimizes the chi-squared between the EzGal modelled g-, r-,

and i-band magnitudes measured at the observed redshift and the SDSS g-, r-, and i-band

magnitudes measured at 100 kpc. We note that initially, metallicity was treated as a free

parameter. However, ≈ 99% had a minimum chi squared when the metallicity of 0.4 z� was

chosen, so we removed this free parameter. Using this approach, we estimate the stellar

mass uncertainty to be 0.08 dex, consistent with the suggestion from Bell et al. (2003).

This is about half the uncertainty used in GM&M18, where the precision in determining

the Petrosian radius and the induced error from the background correction dominate the

error budget.

4.4.6 Simulated Data

In addition to studying the evolution of the SMHM - mgap relation in the SDSS-C4 and

redMaPPer data, we also analyze the same trend using the Guo et al. (2011) prescription of

the semi-analytic representations of low-redshift clusters in the MILLENNIUM simulation.

Unlike in GM&M18, we do not use the Henriques et al. (2012) prescription because it is

magnitude limited to Ks ≈ 21.8, which at z=0.3, corresponds to r ≈ 18, far fainter than

that of our observed sample. Also, the periodic replications within Henriques et al. (2012)

may introduce additional, unaccounted for, noise in our MCMC model. For this analysis,

we use the Guo et al. (2011) simulation boxes analyzed at redshifts of 0.089, 0.116, 0.144,
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0.174, and 0.242, the redshifts which best match our binned sample and correspond to

snapshot numbers 59, 58, 57, 56, and 54.

For the simulated data analysis we use the 3D information provided directly from the

Guo et al. (2011) prescription of the MILLENNIUM simulation for each cluster, which

includes halo masses, measured within R200 × ρcrit; the galaxy positions, x, y, z; R200;

the semi-analytic stellar masses; and the magnitudes. To determine cluster membership

we use the positional information (x, y, z) to determine if potential cluster members are

within 0.5 R200. For those galaxies within this sphere, we identify galaxies within 2 standard

deviations from the red sequence as cluster members. M14 is then measured as the difference

between the 4th brightest member and BCG in the r-band. Since the BCG stellar masses

are provided by the Guo et al. (2011) prescription of the MILLENNIUM simulation and

we have access to the entire simulation box, we do not apply a completeness criteria to

our simulated sample for each redshift bin. However, to make our samples comparable,

we apply the halo mass distribution function of the binned SDSS-redMaPPer data to the

simulation snapshot at the corresponding redshift.

4.5 The Hierarchical Bayesian Model

We use a hierarchical Bayesian MCMC analysis to determine the values of α, β, γ, σint,

and the redshift evolution parameters given in Equation 4.7. The Bayesian approach can

be described as convolving prior information for a given model with the likelihood of the

observations given the model to yield the probability of observing the data given the model,

or the posterior distribution up to a normalization constant called the Bayesian evidence.

To generate the posterior distributions for each of the parameters, our MCMC model

generates values for the observed stellar masses, halo masses, and mgap values at each step

in our likelihood analysis, which are then directly compared to the observed measurements.

As described in Section 4.3, we modified our previous MCMC model (GM&M18) to improve

the speed of convergence. Our new model is summarized below.
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4.5.1 Bayesian Model incorporating Redshift evolution

4.5.1.1 The Observed Quantities

For our redshift evolution model, we use similar equations and relations to quantify the

observed or measured values for the halo mass and mgap and the same relation for stellar

mass as described in GM&M18. The log10 BCG stellar masses (y), log10 halo masses (x),

and M14 values (z) are modeled as being drawn from Gaussian distributions with mean

values (locations) taken from the observed data. The standard deviations are the errors on

each measurement and include an estimate of the observational uncertainty (σx0 , σy0 , σz0)

and an additional stochastic component from a beta function β(0.5, 100) (GM&M18), which

allows for realistic uncertainty on the observational errors. These are treated statistically

in the Bayesian model as free nuisance parameters σx, σy, and σz.

One modification we made to the likelihood and prior from GM&M18 is that we no

longer model the underlying halo mass and mgap distributions as truncated Normal distri-

butions; instead, we use a Gaussian distribution and allow the halo mass values for any step

of the trace to be below our lower limit. However, the median halo mass of each cluster

generated in the MCMC chains reflects the halo mass lower limit listed in Table 4.3.

4.5.2 The Unobserved Quantities

The new version of this model incorporates redshift evolution through parameters on

α, β, γ, and σint. As in GM&M18, we are only concerned with the cluster portion of the

SMHM relation, which is modeled linearly. As such, Equation 4.2 becomes:

yi = α(1 + zred)n1 + (β(1 + zred)n2)xi + (γ(1 + zred)n3)zi (4.7)

In Equation 4.7, zred is the photometric redshift determined via red sequence fitting from

redMaPPer (Rykoff et al., 2014) or the spectroscopic redshift for the SDSS-C4 clusters,

not to be confused with z, the short-hand for the mgap, M14. We assume a Gaussian

likelihood form, with an intrinsic scatter that can also evolve with redshift: σint(1 + zred)n4 .

The four parameters, n1, n2, n3, and n4, measure the redshift evolution of α, β, γ, and
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σint respectively. When we use this model for the redshift binned sample described in

Section 4.4.3, these parameters are set to 0.0, which reduces Equation 4.7 to Equation 4.2.

This means that the zero redshift model used in GM&M18 is nested within our new model.

By using nested models, we can interpret how much better a given model is (e.g., with

redshift evolution vs. without) using only the posterior distribution.

Our Bayesian model regresses against the observed stellar mass, halo mass, and mgap

values simultaneously and self-consistently. We treat parameters that model the underlying

distributions and their uncertanties as nuisance parameters and we marginalize over them

when we present the posterior distributions in Section 4.7.1. All parameters in the Bayesian

analysis are presented in Table 4.1 along with their priors. We discuss the strong priors on

the observed uncertainties in Section 4.6.
We can express the entire posterior as:

p(α, β, γ, σint, n1, n2, n3, n4, xi, zi, σyi , σxi
, σzi ) ∝

P (y0i|α, β, γ, σyi , n1, n2, n3, n4, σint, xi, zi) P (x0i|xi, σxi
) P (z0i|zi, σzi )︸ ︷︷ ︸

likelihood

p(xi) p(zi) p(σxi
) p(σyi ) p(σzi ) p(α) p(β) p(γ) p(σint) p(n1, n2, n3, n4)︸ ︷︷ ︸

priors

(4.8)

where each ith cluster is a component in the summed log likelihood.

Like the model presented in GM&M18, we use a hierarchical Bayes model be-

cause the priors on the true halo masses (xi) and M14 values (zi) depend on models

themselves (the observed halo mass and M14 distributions).

4.6 Calibration

For this paper, we study a larger sample out to a higher redshift (z ≤ 0.3) than

in the SDSS-C4 sample (zmed = 0.086). The larger sample allows us to reduce the

statistical noise in the data while the higher redshift allows us to search for late-time

evolution in the SMHM relation (i.e., in the last ∼ 3.5 billion years). Two important

trade-offs when using the bigger and deeper redMaPPer data combined with the lower

redshift SDSS-C4 data is that we need to calibrate the observables (see Section 4.4)
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Bayesian Analysis Parameters for the
Combined SDSS-C4 and SDSS-redMaPPer Sample

Symbol Description Prior
α The offset of the SMHM relation U(-20,20)
β The high-mass power law slope Linear Regression Prior
γ The stretch parameter, which describes the stellar mass - M14 stratification Linear Regression Prior
σint The uncertainty in the intrinsic stellar mass at fixed halo mass U(0.0, 0.5)
yi The underlying distribution in stellar mass Equation 4.7
xi The underlying halo mass distribution N (14.28,0.222)
zi The underlying mgap distribution N (2.13,0.572)
n1 The power law associated with the redshift evolution of α U(−10.0, 10.0)
n2 The power law associated with the redshift evolution of β U(−10.0, 10.0)
n3 The power law associated with the redshift evolution of γ U(−10.0, 10.0)
n4 The power law associated with the redshift evolution of σint U(−20.0, 20.0)
σy0i The uncertainty between the observed stellar mass and intrinsic stellar mass distribution 0.08 dex
σx0i The uncertainty associated with the mass-richness relation 0.087 dex
σz0i The uncertainty between the underlying and observed mgap distribution 0.15

Table 4.1: Bayesian Analysis Prameters for the SDSS-redMaPPer Nominal Sample
using M14 and Incorporating Redshift Evolution. U(a, b) refers to a uni-
form distribution where a and b are the upper and lower limits. The linear
regression prior is of the form −1.5 × log(1 + value2). N (a, b) refers to
a Normal distribution with mean and variance of a and b. Additionally,
we note that for xi and zi, the means and widths given in this table are
example values belonging to the lowest SDSS-redMaPPer redshift bin.

and that we have less secure mean values of the observational uncertainties, such as

the mgap values and the halo masses.

4.6.1 Aperture Radius and the Slope of the SMHM relation

Because we are studying redshift evolution, we need to use a BCG aperture for the

stellar masses that is unbiased due to the decrease in apparent size and signal-to-noise

of the galaxies out to z = 0.3. Since we expect little physical growth in BCGs over

this redshift range, we choose a fixed kiloparsec (kpc) aperture.

Zhang et al. (2016), using DES science verification data, measure the slope of

the SMHM relation using photometry measured within four radial extents ranging

from 15 to 60kpc and stellar masses estimated using EzGal (Mancone and Gonzalez ,

2012) SED fitting. Zhang et al. (2016) detect a weak correlation (although their

measurements are all within 1σ), such that stellar mass and halo mass are more

strongly correlated at larger aperture radii, in agreement with observations of inside-
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out galaxy growth (e.g., van Dokkum et al., 2010). We investigate this trend by

re-integrating the SDSS light profiles at fixed physical radii of 10, 20, 30, 40, 50,

60, 70, 80, 90, and 100kpc for the 189 SDSS-C4 clusters with radial extents greater

than 100kpc from GM&M18 and measure the SMHM-mgap relation at each radial

extent. For each Bayesian MCMC analysis, we use the same mgap, from the Petrosian

magnitudes and the caustic halo masses with reduced uncertainty. This analysis was

performed using the Bayesian formalism described in Section 4.5, with the redshift

parameters set to 0.0. Additionally, we do a second analysis where we set γ to 0.0.

The results are shown in Figure 4.2 for both analyses. Figure 4.2 also shows the slope

measured by Pillepich et al. (2018) for the Illustris TNG300 simulation, where stellar

masses are determined using the SUBFIND algorithm to identify and sum the stellar

particles bound to a galaxy within a fixed 3D physical radii.

The primary takeaway from Figure 4.2 is that the choice of radial extent within

which the BCG’s stellar mass is measured significantly impacts the SMHM relation’s

slope. This result confirms the idea presented by Zhang et al. (2016) and suggests that

the outer halo of the BCG is indeed tied to the underlying parent (cluster) halo. More-

over, our result observationally confirms a trend suggested by the EMERGE empirical

model (Moster et al., 2018). Moster et al. (2018) find that to match observational

baryon conversion efficiencies at low redshifts, empirical models must incorporate a

fraction of the ICL, since the baryon conversion efficiency of central galaxies (a proxy

for stellar mass) in clusters, at fixed halo mass is underapproximated by empirical

models when compared to observational results which generally measure BCG stellar

masses within larger radii than those used in empirical models. Thus, similar to our

results, Moster et al. (2018) find that the conversion efficiency, at fixed halo mass,

which is similar to the slope of the SMHM relation, increases when parts of what

have been previously classified as ICL are included in the stellar mass estimate of the

BCG.
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Figure 4.2: SMHM Relation Slope as a Function of Radius within which the BCG
Stellar Mass is Measured. The slope of the SMHM relation as a function
of the BCG’s radial extent, where mgap is incorporated (green) and when
it is not (purple). The results of Zhang et al. (2016) are shown in red
and yellow. The results from Pillepich et al. (2018) using ILLUSTRIS
TNG300 are shown in blue. For comparison, the slope measurement from
GM&M18 is shown in black with the gray bar. The radial range represents
the median and standard deviations of the Petrosian radii for the SDSS-C4
sample. Measuring the stellar mass within a larger radial extent steepens
the slope of the SMHM relation because the outer regions of BCGs are
tied to the parent clusters. Additionally, incorporating M14 also steepens
the slope, which is expected if M14 is related to BCG growth.
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This trend between slope and radial extent is important because previously pub-

lished SMHM relations often use model magnitudes or state that their stellar masses

are estimated within Kron or Petrosian radii, which, unless the specific radial extents

are provided, can lead to a biased comparison between published results, and an

improper comparison between BCGs in large samples where those radii greatly dif-

fer. Additionally, the slope of the SMHM relation levels off around 80-100kpc, which

shows that beyond this radial extent, we gain no additional information. This result

agrees with the analysis of Huang et al. (2018), who use Hyper Suprime Cam Subaru

Strategic Program (HSC SSP) observations of massive galaxies over the redshift range

0.3 < z < 0.5 and find that the difference between the stellar mass within 100 kpc

and the total stellar mass is on average ∼0.02 dex. Moreover, Zhang et al. (2018),

who use DES Year 1 observations, study the ICL surrounding BCGs in the redshift

range 0.2 < z < 0.3, suggest that 100kpc marks the transition region between the

ICL and BCG. Therefore, our choice of a 100kpc aperture for our BCG magnitudes

accounts for the majority of the stellar mass in the BCG.

The second significant result we find is that the slope is statistically different

depending on whether we use the latent mgap and its stretch parameter in the SMHM

relation. We found no significant difference in GM&M18 and attribute this to the

use of the Petrosian magnitudes to estimate stellar masses. The Petrosian radius is

a measured quantity which causes a blending of the underlying physical apertures

depending on the BCG redshift. Therefore, not only does using a small aperture lead

to a shallower slope, the absence of accounting for the BCG’s assembly history, via

mgap, does as well.

At the largest radii, we find excellent agreement with the results from the IL-

LUSTRIS TNG300 simulation Pillepich et al. (2018). Unlike the Guo et al. (2011)

semi-analytic galaxy treatment, ILLUSTRIS TNG is a full hydrodynamic N-body

simulation that contains the following astrophysical properties: gas cooling and photo-
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ionization, star formation within an interstellar medium, stellar evolution and feed-

back, and black holes with feedback.

4.6.2 Error Calibration

The deeper redMaPPer sample lacks good spectroscopic coverage, so we expect

some issues with projection when measuring mgap. In GM&M18, we used σz0 = 0.1

dex as our uncertainty in mgap, which is consistent with the 3D simulations for the

spectroscopically complete low redshift SDSS-C4 sample and the precision of our Pet-

rosian magnitudes. We expect a slightly larger σz0 for the redMaPPer sample because

the reduction of the photometric error in the BCG magnitudes is offset by issues such

as projection effects and the Pmem criterion when determining mgap. However, we

need to determine a reasonable value to use for σz0 for the redMaPPer sample in our

Bayesian analysis.

In addition to the above issue, by employing a mass-richness relation, the Bayesian

analysis requires the scatter in mass at fixed richness σ(M |λ). To date, this quantity is

not well constrained. Andreon (2015) report this scatter to be as low as σ(lnM200|λ) <

0.05 at 90% confidence. In contrast, Rozo et al. (2015) find a larger scatter of 0.17−

0.21, depending on what they assume for the intrinsic scatter in cluster SZ-based

masses and its co-variance with the observed richness.

We begin the error calibration of the SDSS-C4 mass-richness scatter by con-

ducting a simultaneous analysis of the SDSS-C4 SMHM relation using both the in-

dividual cluster caustic masses as well as the masses determined from the SDSS-

C4 mass-richness relation. Regardless of the cluster mass used, we require the

resultant parameters of the SMHM to agree within 1σ. In this analysis, we al-

low caustic mass errors σ(M)data to be a free parameter. The intrinsic scatter,

σ(M |λ) is then constrained by the observed scatter in the mass-richness relation:

σ(M |λ)2
obs = σ(M)2

data + σ(M |λ)2
intrinsic. Without the additional constraint from the
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SMHM relation, our inferred σ(M |λ) would be fully degenerate with the unknown

true errors on the observational measurements.

To ensure the completeness of the sample, we use only the 128 clusters with

log10(Mhalo/(M�/h)) > 14.0, regardless of whether it is the dynamically-inferred

caustic mass or the richness-inferred mass. We find that σ(lnM200|λC4) = 0.20+0.03
−0.04

(where log10 and ln refer to the log base 10 and natural log, respectively). At the

same time, we find that the simulation calibrated caustic errors provided in Gifford

et al. (2013) are over-estimated by σ(lnM200) = 0.19, on average. We note that we

could have just chosen σ(lnM200|λ) = 0.20 (Rozo et al., 2015). However, the joint

mass-richness and SMHM relation analysis suggests that σ(lnM200|λ) ' 0.20 is well

motivated observationally. The full details of this analysis are beyond the scope of

this work and can be found in C. J. Miller et al. (2019 - in preparation). However,

this analysis gives us a purely data-inferred constraint on the appropriate intrinsic

mass-richness scatter to use for the SDSS-C4 sample.

We still need to estimate the intrinsic scatter in the redMaPPer mass-richness rela-

tion, as well as uncertainties in mgap values and the stellar masses for the redMaPPer

sample. We choose to calibrate the redMaPPer observational uncertainties, σx0 , σy0 ,

and σz0 by defining a redMaPPer sub-sample which matches the SDSS-C4 redshift

distribution function (down to z = 0.081) and apply the richness based mass limit

log10(Mhalo/(M�/h)) ≥ 14.0. With this new redMaPPer calibration sample, we treat

σx0 , σy0 and σz0 as nuisance parameters on a coarse grid in the Bayesian analysis and

solve for their mean best values by requiring that the inferred slope, amplitude, stretch

parameter, and intrinsic scatter of the redMaPPer calibration sample are within 1σ

of the values found for the SDSS-C4 sample.

The posterior distributions for the calibration samples are given in lines 2 and

3 of Table 4.3. We find good agreement between the SDSS-C4 richness sample and

the redMaPPer calibration sample for α, β, and γ, and σint when the stellar mass
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uncertainties are σy0 ' 0.08 dex, the magnitude-gap uncertainties are σz0 ' 0.15

and the inferred intrinsic scatter in the mass-richness relation is σ(lnM200|λ) = 0.20,

which corresponds to σx0 = 0.087 dex. The slope (β) and intrinsic scatter σint for

the redMaPPer and SDSS-C4 low-redshift calibration samples are within 1σ of each

other. The inferred stretch parameter γ and offset α differ between SDSS-C4 and

redMaPPer by 1.5σ and the redMaPPer value for γ is closer to the result presented

for the caustic-based SDSS-C4 sample in GM&M18.

To match the results of the SDSS-C4 richness sample, we adjust some measure-

ment uncertainties from the values used in GM&M18 for the SDSS-C4 sample. σy0 is

the same for the SDSS-C4 and SDSS-redMaPPer samples since have stellar masses es-

timated via EzGal (Mancone and Gonzalez , 2012) using the SDSS 100kpc BCG mag-

nitudes. However, as previously discussed, this is a reduction from what was used in

GM&M18, which is due to the von der Linden et al. (2007) corrected Petrosian mag-

nitudes, which add uncertainty due to the background correction and measurement

of Petrosian radii. σz0 is slightly larger, at 0.15 for the redMaPPer data due to our

concerns about projection effects and our high Pmem criterion. Most importantly, σx0

is the same for the SDSS-C4 richness sample and the redMaPPer calibration sample,

which highlights that despite using different mass-richness relations, the uncertainty

associated with this mass estimate is relatively constant.

The above error calibration provides us with estimates of the uncertainties on the

observables. The values we obtain are reasonable and in agreement with expectations.

We do not have good estimates on the errors on these uncertainties in the observables.

However, it is important to recall that Equation 4.8 does allow for uncertainty in the

observed errors. So while we set an initial mean value using the techniques described

in this subsection (i.e., σx0 , σy0 , σz0), the observational errors applied in the Bayesian

analysis are actually free (nuisance) parameters.

We make a final note that the subset used to calibrate the observable errors in
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the redshift overlap range between the SDSS-C4 and redMaPPer samples is different

from the matched SDSS-C4/redMaPPer sample used to calibrate the redMaPPer

membership probability threshold. These redMaPPer sub-samples each serve their

own purposes and differ to maximize the amount of usable data. However, once

the errors are calibrated between SDSS-C4 and redMaPPer, we can use all available

redMaPPer and C4 data in the final analysis over the redshift range 0.03 ≤ z ≤

0.3. Without this calibration, there could be underlying and unaccounted systematic

uncertainties between the two baseline samples which would cloud the statistical

inference.

4.7 Results

4.7.1 Combined redMaPPer and SDSS-C4 Results

In this section, we present the qualitative and quantitative results from our anal-

ysis of the C4 and redMaPPer data. We highlight the qualitative results of this study

in Figure 4.3, which compares the stellar masses estimated using EzGal (Mancone

and Gonzalez , 2012) to the halo masses, estimated using the Simet et al. (2017)

mass-richness relation. In addition, we include the 142 richness selected SDSS-C4

clusters, bringing our total sample to 985 clusters. The colorbar is based on the

M14 values for each cluster. The data shown in Figure 4.3 encompasses the redshift

range 0.03 ≤ z ≤ 0.30. Therefore, the stratification observed in our low-redshift

SDSS-C4 sample (at fixed halo mass, as stellar mass increases, so does M14) exists

at higher redshifts than observed in GM&M18. Furthermore, although not shown,

when the sample is binned by redshift, the stellar mass - M14 stratification also ex-

ists. Additionally, this stratification is present in the Guo et al. (2011) prescription

of the MILLENNIUM simulation at each of the discrete redshift snapshots discussed

in Section 4.4.6.
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Figure 4.3: SHMH-M14 Relation for SDSS-C4 and SDSS-redMaPPer Samples. The
SMHM relation for the combined redMaPPer and SDSS-C4 clusters col-
ored via M14. As in GM&M18, we see that a stellar mass - mgap strati-
fication exists at higher redshifts. The black cross represents the error in
halo mass, 0.087 dex, and stellar mass, 0.08 dex.

We evaluate the impact of incorporating mgap and redshift into the SMHM relation

using our previously described MCMC model (Section 4.5), Bayesian formalism, and

linear SMHM relation (Equation 4.7). In Figure 4.4, we present a triangle plot which

shows the 1D and 2D posterior distributions for each of the eight parameters, α,

β, γ, n1, n2, n3, n4, and σint. For this analysis, as well as the initial calibration

analysis, we shifted the x and y axis to eliminate the covariance between α and β.

To do this, we subtracted the median values of the halo mass and stellar mass of

the combined SDSS-C4 richness and SDSS-redMaPPer samples: (xmed = 14.41 and

ymed = 11.50). The posterior results, as well as the posterior results when mgap is

not included, are presented in Table 4.7.1. The difference between these results is

discussed in Section 4.8.

In Figure 4.4, excluding the original parameters and their associated redshift evo-

lution parameters, only a few pairs of parameters are strongly covariant: α, and γ, α

and n3, γ and n1, and n1 and n3. α and γ are covariant because of the shifted axis,

which results in the location of α corresponding to where M14=0.0. Figure 4.4 illus-
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Figure 4.4: SMHM-M14 with Redshift Evolution Posterior Distributions. The pos-
terior distribution for α, β, γ, n1, n2, n3, n4, and σint. As in GM&M18,
we see that γ is significantly non-zero and σint is approximately 0.1 dex.
We note that the posteriors measured here are extrapolations out to red-
shift=0.0. To see the values at the redshifts measured in our study, see
Figures 4.5, 4.6, 4.7, and 4.8. The redshift parameter n2 is the only
parameter that is significantly non-zero. Therefore, some, albeit weak,
redshift evolution in the slope of the SMHM relation can be detected over
0.03 ≤ z ≤ 0.3.
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Posterior Distribution Results with Redshift Evolution
Data α(z=0) β(z=0) γ(z=0) σint(z=0) n1 n2 n3 n4

with M14 -0.34 ± 0.05 0.72 +0.14
−0.12 0.16± 0.02 0.107 +0.015

−0.013 -0.39 +0.91
−0.88 -4.75 ± 1.29 -0.59 +0.86

−0.88 -1.26 +0.86
−0.88

without M14 0.14 +0.03
−0.02 0.37 +0.13

−0.10 0.142 +0.016
−0.014 -2.03 +1.27

−1.22 -2.25 +1.86
−1.96 -0.68 +0.67

−0.68

with Mhalo C4 shifted -0.31 +0.05
−0.06 0.72 +0.15

−0.14 0.14± 0.02 0.109 +0.017
−0.015 0.03 +1.08

−1.09 -4.98 +1.41
−1.39 0.41 +0.90

−0.94 -1.49 +1.00
−0.96

without C4 -0.44 +0.07
−0.09 0.60 +0.13

−0.11 0.23± 0.04 0.100 +0.021
−0.017 -1.67 +1.12

−1.16 -2.95 +1.26
−1.35 -2.53 +1.01

−1.07 -1.07 +1.13
−1.15

without M14 and C4 0.18 +0.06
−0.04 0.25 +0.08

−0.06 0.149 +0.019
−0.017 -4.92 +1.90

−1.99 0.84 +1.61
−1.66 -1.09 +0.77

−0.74

without z > 0.25 -0.34 ± 0.06 0.75 +0.16
−0.13 0.17+0.03

−0.02 0.108 +0.018
−0.016 -0.55 +1.17

−1.16 -5.09 +1.43
−1.42 -0.81 +1.02

−1.00 -1.44 +1.10
−1.13

with von der Linden et al. (2007) correction -0.28 ± 0.05 0.85 +0.17
−0.15 0.20 ± 0.02 0.102 +0.025

−0.022 0.97 +1.00
−1.12 -5.59 +1.39

−1.45 -0.20 +0.67
−0.74 -2.08 +1.66

−1.72

Table 4.2: Redshfit Evolution Bayesian MCMC Posterior Distributions

trates that the primary results presented in GM&M18 still hold true; γ is definitively

non-zero, σint is ∼0.1 dex, and incorporating mgap decreases σint by ∼ 0.04 dex, or

≈ 30%. We note that the error bars on the redMaPPer values are similar to those

presented in GM&M18 because of the addition of the redshift evolution parameters.

The most important takeaway from Figure 4.4 is the significance of the redshift

evolution parameter, n2, which is definitively non-zero. n1 and n3 are within 1σ of

0.0, while n4 is slightly greater than 1σ from 0.0. n2 is also the most interesting

parameter because no covariance exists between n2 and any parameter other than

β, which signifies that for the first time, we detect statistically significant (> 3.5σ)

redshift evolution in the slope of the SMHM relation. To improve our understanding

of our measurements of the redshift evolution of α and γ, we need to eliminate the

covariance between these parameters, without re-introducing covariance with β.

To reach these results, we have developed and implemented a detailed and care-

ful analysis to ensure that the lower redshift SDSS-C4 data and the higher redshift

SDSS-redMaPPer data are homogeneous. Specifically, we ensured that both datasets

utilize the same underlying instrumentation (SDSS), the same underlying photomet-

ric detrending pipeline (SDSS), the same underlying spectroscopic pipeline (SDSS),

the same physical fixed-aperture photometry for all BCGs, the same cluster galaxy

membership to define the magnitude gap (as discussed in Section 4.4.1), the same

algorithm and parameters to determine the stellar masses, the same mass-richness

technique to infer cluster masses, the same cluster masses in the overlap sample (to

within errors), and the same algorithm to measure completeness criteria defining the
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underlying cluster samples in both mgap and cluster mass. However, it is possible that

there is still some systematic error that we have missed in the SDSS-C4 sample that

is dominating the evolution in the slope. The best we can do is remove this dataset

from our Bayesian analysis, even though it is the only available data set complete

below z < 0.10, thus limiting our ability to track late time evolution in the SMHM

relation. We list the inferred parameters without the SDSS-C4 data in Table 4.7.1.

The parameters are within 1σ for α, β, σint, n1, n2, and n4, while γ and n3 are within

1.5σ. After dropping the SDSS-C4 data, we still find evolution in the slope, albeit at

a slightly lower (as expected) statistical significance (99% versus 99.9% when includ-

ing SDSS-C4.) Therefore, we conclude that while including the C4 data strengthens

our detection, it is not responsible for it. We conduct a similar analysis by dropping

the highest redshift cluster data (Line 5 of Table 4.7.1). We find the evolution at

a slightly higher significance (99.98%). Thus, we argue that the significance of the

detection in the evolution of the slope is fairly robust to the upper and lower ends of

the redshift distribution of our data.

Additionally, as shown in the last column of Table 4.7.1, we also determine how

are results are impacted by our choice to no longer apply the von der Linden et al.

(2007) correction to our BCG magnitudes used to estimate stellar masses. To do this,

we applied this correction to all data that fit the criteria described in von der Linden

et al. (2007) and GM&M18 and corrected both the BCG stellar mass and magnitude

for those clusters impacted. We find that the inclusion of the von der Linden et al.

(2007) correction to the BCG magnitudes has a minimal impact on the parameters

of the SMHM relation. The posterior distributions for each parameter are within 1σ

for the data with and without the von der Linden et al. (2007) correction. A direct

comparison is shown in Section 4.7.4.
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Posterior Distribution Results
Data zmin zmax zmed log10(Mhalo/(M�/h))min nclusters α(z=zmed) β(z=zmed) γ(z=zmed) σint(z=zmed)

GM&M18 0.030 0.151 0.086 14.0 236 3.13 ± 2.09 0.56 ± 0.15 0.173 ± 0.022 0.085 ± 0.024
SDSS-C4 Richness 0.030 0.146 0.081 14.0 142 −0.23± 0.05 0.52 ± 0.08 0.122 ± 0.019 0.098 ± 0.012

redMaPPer calibration 0.081 0.146 0.098 14.0 70 −0.40± 0.06 0.48± 0.13 0.190 ± 0.024 0.087 ± 0.017
redMaPPer 0.081 0.135 0.113 14.00 222 −0.38± 0.04 0.42± 0.05 0.182± 0.016 0.092± 0.009
redMaPPer 0.135 0.169 0.153 14.06 208 −0.34± 0.03 0.44± 0.05 0.168± 0.014 0.068± 0.009
redMaPPer 0.169 0.208 0.184 14.17 203 −0.29± 0.03 0.30± 0.06 0.131± 0.015 0.087± 0.008
redMaPPer 0.208 0.300 0.247 14.39 210 −0.34± 0.03 0.32± 0.06 0.150± 0.013 0.082± 0.009

Guo et al. (2011) 0.089 0.089 0.089 14.00 815 −0.34± 0.01 0.44± 0.02 0.226± 0.006 0.093± 0.002
Guo et al. (2011) 0.116 0.116 0.116 14.00 458 −0.37± 0.02 0.45± 0.02 0.230± 0.008 0.093± 0.003
Guo et al. (2011) 0.144 0.144 0.144 14.06 212 −0.36± 0.03 0.45± 0.03 0.229± 0.014 0.105± 0.005
Guo et al. (2011) 0.175 0.175 0.175 14.17 199 −0.32± 0.02 0.41± 0.04 0.207± 0.011 0.089± 0.005
Guo et al. (2011) 0.242 0.242 0.242 14.39 42 −0.33± 0.06 0.33± 0.08 0.224± 0.025 0.089± 0.011

Table 4.3: Binned SMHM Relation Posterior Results. The Guo et al. (2011) data
has the same zmin and zmax because these are data analyzed at individual
snapshots, not data from a lightcone.

4.7.2 Comparison to Simulations and Binned Results

Here, we compare the trends shown for the binned SDSS-redMaPPer clusters to

those measured in the Guo et al. (2011) prescription of the MILLENNIUM simula-

tion. The results for each of the measured parameters, α, β, γ, and σint are presented

in Table 4.3. For a more accurate comparison, the Guo et al. (2011) measurements

are taken on data samples described in Section 4.4.6. Due to the limits of the Guo

et al. (2011) prescription, using the halo mass distribution functions from the SDSS-

redMaPPer data significantly decreases the number of clusters, particularly in the

higher redshift simulation boxes, resulting in larger posterior uncertainties. To il-

lustrate the trends we observe in Tables 4.7.1 and 4.3, in Figures 4.5, 4.6, 4.7, and

4.8, we present the redshift evolution of the offset (α), slope (β), stretch factor (γ),

and intrinsic scatter (σint) respectively given by the posterior distributions shown in

Figure 4.4.

Figure 4.6 illustrates that our redshift dependent Bayesian MCMC model finds

that the slope of the SMHM relation decreases with increasing redshift for the com-

bined SDSS-C4 and SDSS-redMaPPer clusters. In contrast, Figures 4.5, 4.7, and 4.8

illustrate that using our Bayesian MCMC model, we observe either no or weak redshift

evolution in the amplitude, in agreement with the results from Zhang et al. (2016),
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Figure 4.5: Redshift Evolution of α. The binned offsets and respective error bars
are plotted as a function of redshift for the SDSS-redMaPPer binned and
calibration samples, SDSS-C4 richness sample, and the Guo et al. (2011)
prescription of the MILLENNIUM simulation. The green line represents
the redshift evolution suggested from the posterior results presented in
Figure 4.4. The green shaded region represents the combined total error
from uncertainty on n1 and α. This comparison highlights that the offset
of the SMHM relation does not evolve over the redshift range 0.03 ≤
zred ≤ 0.3.
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Figure 4.6: Redshift Evolution of β. The binned slopes and respective error bars
are plotted as a function of redshift for SDSS-redMaPPer binned and
calibration samples and the Guo et al. (2011) prescription of the MIL-
LENNIUM simulation. The green line represents the redshift evolution
suggested from the posterior results presented in Figure 4.4. The green
shaded region represents the combined total error from uncertainty on n2

and β. This comparison highlights that the slope of the SMHM relation
evolves over the redshift range 0.03 ≤ zred ≤ 0.3.
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Figure 4.7: Redshift Evolution of γ. The binned stretch factors and respective error
bars are plotted as a function of redshift for the SDSS-redMaPPer binned
and calibration samples, SDSS-C4 richness sample, and Guo et al. (2011)
prescription of the MILLENNIUM simulation. The green line represents
the redshift evolution suggested from the posterior results presented in
Figure 4.4. The green shaded region represents the total error incorpo-
rating both the uncertainty on n3 and γ. This trend highlights that there
is no redshift evolution in γ in this redshift range.
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Figure 4.8: Redshift Evolution of σint. The binned intrinsic scatter and respective
error bars are plotted as a function of redshift for the SDSS-redMaPPer
binned and calibration samples and Guo et al. (2011) prescription of the
MILLENNIUM simulation. The green line represents the redshift evo-
lution suggested from the posterior results presented in Figure 4.4. The
green shaded region represents the total error incorporating both the un-
certainty on n4 and σint. This trend highlights that there is weak redshift
evolution in σint.

mgap stretch parameter, and intrinsic scatter. Interestingly, the SDSS-redMaPPer

data (blue points) for each of the four measured parameters and the Guo et al. (2011)

MILLENNIUM simulation measurements show similar trends in how each parameter

varies with redshift. Since the Guo et al. (2011) prescription of the MILLENNIUM

simulation is modeled to look like the SDSS observational data, this is likely an arti-

fact of the semi-analytic modeling. We discuss the meaning of these redshift evolution

parameters in the context of hierarchical growth in Section 4.8.

4.7.3 Comparison to Golden-Marx & Miller 2018 results

The use of the richness-based masses compared to caustic-based masses reduces

the uncertainties on the SMHM parameters, even for the smaller sample size. The

offset α is different from the value presented in GM&M18 because we use a different

method to estimate stellar mass, as discussed earlier, and have offset the axes by
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subtracting the median values of the stellar mass and halo mass. The slope (β) and

the intrinsic scatter (σint) are statistically the same (within 1σ). The inferred stretch

parameter γ is smaller (by ∼ 1.5σ) in the richness-based SDSS-C4 SMHM relation,

but still significantly non-zero. Therefore, the conclusions from GM&M18 hold when

we switch to using richness-based masses for the SDSS-C4 sample. The measured

posteriors for the entire SDSS-C4 richness sample (containing 142 clusters) can be

found in Table 4.3 and agree with the posteriors for the calibration sample containing

128 clusters.

4.7.4 Impact of the von der Linden et al. (2007) Correction

Here we compare the impact of incorporating the von der Linden et al. (2007)

correction on the BCG magnitudes or stellar masses to the results without such a

correction. As such, Figures 4.9, 4.10, 4.11, and 4.12 compare the posterior distribu-

tions using the data without the von der Linden et al. (2007) correction (in green),

which are the same as the results presented in Section 4.7.2, to the posterior distribu-

tions determined using the von der Linden et al. (2007) correction (shown in black).

For α, β, and γ, as shown in Figures 4.9, 4.10, and 4.12, the posterior distributions

are in excellent agreement with one another. For γ, we see that the median value

is slightly larger when the von der Linden et al. (2007) correction is applied, which

follows since we are increase the stellar mass and magnitude gap for a subset of the

data; however, these posteriors are still within 1σ (see Figure 4.11. Additionally, we

note that the lower-redshift offset for the two posterior distributions for α likely result

because the median stellar mass is higher when we apply the von der Linden et al.

(2007) correction.
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Figure 4.9: Impact of the von der Linden et al. (2007) Correction on the Redshift
Evolution of α. The green line represents the redshift evolution suggested
from the posterior results presented in Figure 4.4. The green shaded re-
gion represents the combined total error from uncertainty on n1 and α.
The black line represents the redshift evolution suggested by the poste-
rior when the von der Linden et al. (2007) correction is applied and the
black shaded region represents the combined total error. This comparison
highlights that at there is no change in the offset as a result of the von
der Linden et al. (2007) correction over this redshift range.
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Figure 4.10: Impact of the von der Linden et al. (2007) Correction on the Redshift
Evolution of β. The green line represents the redshift evolution suggested
from the posterior results presented in Figure 4.4. The green shaded
region represents the combined total error from uncertainty on n2 and
β. The black line represents the redshift evolution suggested by the
posterior measured when the von der Linden et al. (2007) correction
is applied and the black shaded region represents the total combined
uncertainty for this data. This comparison highlights that the von der
Linden et al. (2007) correction has no impact on the measured slope over
this redshift range.
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Figure 4.11: The Impact of the von der Linden et al. (2007) Correction on the Red-
shift Evolution of γ. The green line represents the redshift evolution
suggested from the posterior results presented in Figure 4.4. The green
shaded region represents the total error incorporating both the uncer-
tainty on n3 and γ. The black line represents the redshift evolution
suggested from the posterior results measured when the von der Linden
et al. (2007) correction is used and the black shaded region represents
the combined uncertainty. This figure highlights that using the von der
Linden et al. (2007) correction slightly increases γ, which follows since
stellar mass and mgap increase for a subset of the sample. However,
despite this increases, the values are still within 1σ.
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Figure 4.12: The Impact of the von der Linden et al. (2007) Correction on the Red-
shift Evolution of σint. The green line represents the redshift evolution
suggested from the posterior results presented in Figure 4.4. The green
shaded region represents the total error incorporating both the uncer-
tainty on n4 and σint. The black line reprsents the redshift evolution
suggested by the posterior distribution which accounts for the von der
Linden et al. (2007) correction and the black shaded region represents
the 1σ uncertainty. This figure highlights that the von der Linden et al.
(2007) correction has no impact on σint.
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4.8 Discussion

The change of the SMHM relation’s slope and σint can tell us about central

galaxy hierarchical growth. In semi-analytic models, some researchers find stellar

mass growth in BCGs at late times. Between the redshift range z = 0.5 and z = 0.0,

De Lucia and Blaizot (2007) find that BCG stellar mass increases by a factor of 2,

Shankar et al. (2015) find a growth factor of 1.5, and Guo et al. (2011) measure an

increase in stellar mass by a factor of 1.9. The effect of BCG growth in Guo et al.

(2011) can be seen on the slope of the SMHM in Figure 4.6, which decreases by ∼

30% out to z = 0.3.

In this work, we extended our study of the cluster-scale SMHM relation to zred =

0.3. By incorporating the stretch parameter and mgap we reduce σint and the uncer-

tainty on the slope in the SMHM relation allowing us to observe redshift evolution.

As shown in Table 4.7.1, when mgap information is not incorporated, we measure a

much weaker redshift evolution parameter, n2, for the slope. Instead of a > 3.5σ

detection, we measure a < 1.5σ detection for n2 if the C4 data is included and no

detection when it is not. Therefore, it is only when incorporating mgap, that we see

that the slope of the SMHM relation evolves over the redshift range 0.03 ≤ z ≤ 0.3.

Thus, environment strongly impacts the SMHM relation.

One can interpret the observed redshift evolution in the SMHM relation’s slope

in the context of results from Gu et al. (2016). When BCG’s grow hierarchically,

their stellar mass increases due to major and minor mergers. Gu et al. (2016) suggest

that the steepening of the slope is related to σint, such that an increase in the σint

corresponds to an increase in the slope and that the slope and σint are tied to the

progenitor history of the BCG such that a wider range of progenitor galaxies yield a

steeper slope and a larger σint. Additionally, a steeper SMHM relation results from

a growth history where minor mergers dominate over major mergers. Moreover, the

late time evolution in the slope we observe suggests that the BCGs residing in more
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massive halos undergo a greater growth over this period of time than those in less

massive halos, which may result from differences in the galactic populations of high

and low mass cluster halos.

In Figure 4.6, the Guo et al. (2011) SAMs show a similar decrease in the slope

over the redshift range 0.03 ≤ z ≤ 0.3. The similarity in this trend between the

observations and simulations is interesting because other observational studies do

not find a similar result (Oliva-Altamirano et al., 2014; Gozaliasl et al., 2016). This

discrepancy was previously justified because the continued growth in simulations is

in the stellar mass of BCG cores and not in the outer portion of BCG envelopes, the

ICL (Zhang et al., 2016), as is observed (van Dokkum et al., 2010; Burke et al., 2015).

However, by comparing the stellar masses measured within a radial extent of 100kpc,

we are not analyzing just the inner profile of the BCG, which is relatively constant

over this redshift range (van Dokkum et al., 2010), instead we are incorporating

much of the radial regimes which have been previously treated as ICL. Therefore, the

novelty of our detected evolution over the redshift range 0.03 < z < 0.30 likely results

from our choice to measure the BCG stellar mass within a large radial extent, which

incorporates the radial regions where BCGs actively grow, and the incorporation of

mgap, as previously discussed.

Our results also allow us to comment on the absence of a trend in the evolution

of the mgap stretch parameter over this redshift range, as shown in Figure 4.7. This

can be interpreted as meaning that with respect to stellar mass, mgap is constant.

The lack of redshift evolution of γ in our data is expected because even though mgap

and stellar mass growth are correlated, since our stellar mass measurement accounts

for the outer portion of the BCG, it likely accounts for any recent merger material

which may change either mgap or the stellar mass. If γ were to decrease with redshift,

it means that as we move forward in time, mgap increases with respect to the stellar

mass. This would occur if the BCGs were to have mergers with brighter galaxies in
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the given redshift range and the resulting additional mass were to go predominately

to stellar mass located in the outer envelope of these BCGs (in our case at radii

greater than 100kpc). However, while stellar material from a merger is ejected into

the ICL, major mergers involving the brightest galaxies are not common for BCGs in

this redshift range (Burke et al., 2015).

Since the growth in mgap depends on BCG growth (Solanes et al., 2016), our results

suggest that mgap values for BCGs at z ≈ 1 would be much lower (although γ may

not change). Furthermore, if in fact both stellar mass and mgap continue to decrease

at these higher redshifts, in agreement with hierarchical growth, then we may be able

to enhance this analysis and better constrain the redshift evolution of the parameters

of our SMHM relation if we extend our analysis out to redshifts of z ≥ 0.5. This can

be tested in simulations using current SAMs which follow the growth history of the

BCG (e.g., Guo et al., 2011), where SAMs have better agreement with observations

(e.g., Lidman et al., 2012; Lin et al., 2013).

The observational challenge of extending our analysis of the SMHM-mgap relation

out to higher redshifts is to acquire good spectroscopic coverage for each cluster,

again understand the additional systematic errors which increase the error associated

with the photometric data used in each of the observed measurements in our SMHM

relation, as well as to have deep enough photometry to measure the BCG light profiles

out to large radial extents.
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CHAPTER V

The Impact of Environment on Late Time

Evolution of the Stellar Mass - Halo Mass Relation

in the Dark Energy Survey

The results presented in this chapter are currently in prepartion for: Golden-Marx,
Jesse B., Miller, Christopher J., & Zhang, Yuanyuan 2019. The Impact of Environment
on the Late Time Evolution of the Stellar Mass-Halo Mass Relation in the Dark Energy
Survey. However, I note that this paper is still very much a work in progress and the
discussion and conclusions are currently in preliminary stages.

5.1 Abstract

At fixed halo mass, galaxy clusters hosting galactic populations characterized by larger

differences between the brightest central galaxy (BCG) and fourth brightest cluster member

(mgap), have higher BCG stellar masses. Recent studies show mgap is a latent parameter

in the cluster stellar mass - halo mass (SMHM) relation, and incorporating this parameter

yields more precise measurements of amplitude, slope, and intrinsic scatter of the SMHM

relation, and also allows for detection of late time redshift evolution of the SMHM relation’s

slope. We use galaxy clusters from the Sloan Digital Sky Survey along with those observed

as part of the Dark Energy Survey Year 3 to measure how the SMHM-mgap relation evolves

out to z = 0.6. By defining a central galaxy’s stellar mass using a fixed comoving aperture

of 100kpc, we report statistically significant negative evolution in the slope of the SMHM
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relation to z = 0.6 (> 3.0σ) along with weaker evolution in the other parameters of the

SMHM relation. The steepening of the slope, as well as the increase in both the magnitude

gap stretch parameter, γ, and intrinsic scatter over the last 6 Gyrs likely result from late-

time merger activity at the centers of galaxy clusters.

5.2 Introduction

The stellar mass - halo mass (SMHM) relation is one of the primary mechanisms

that quantifies the galaxy-dark matter halo connection. For galaxy clusters (log10(Mhalo

/(M�/h)) ≥ 14.0), this linear correlation compares the stellar mass of the brightest central

galaxy (BCG) to the total halo cluster mass, which includes the dark matter. The param-

eters measured as part of the SMHM relation are often used to constrain galaxy formation

models; the amplitude, α, constrains AGN feedback in central galaxies (Kravtsov et al.,

2018) and the intrinsic scatter in stellar mass at fixed halo mass (σint) constrains processes

responsible for quenching star formation in BCGs (Tinker , 2017) and characterizing dark

matter halo assembly (Gu et al., 2016). Additionally, the redshift evolution of the slope,

β, and σint provide insight into how BCGs grow/evolve over cosmic time (Gu et al., 2016;

Golden-Marx and Miller , 2019).

BCGs, the stellar mass portion of the cluster-scale SMHM relation, are massive, radially

extended, elliptical galaxies, that emit a significant fraction of the total light within their

host cluster (Schombert , 1986; Jones et al., 2000; Lin and Mohr , 2004; Bernardi et al.,

2007; Lauer et al., 2007; von der Linden et al., 2007; Aguerri et al., 2011; Brough et al.,

2011; Proctor et al., 2011; Harrison et al., 2012). BCG’s are located near the cluster’s X-

ray center, which along with their hierarchical formation lead to correlations between BCG

properties and those of the host cluster (Jones and Forman, 1984; Rhee and Latour , 1991;

Lin and Mohr , 2004; Lauer et al., 2014). BCG’s are also surrounded by diffuse halos of

intra-cluster light (ICL; Zwicky , 1933, 1951), which are observed to extend radially as far

out as ≈1Mpc from the center of the BCG (Zhang et al., 2018), and form as a result of

BCG hierarchical growth (Murante et al., 2007).
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BCG’s grow “inside-out” (van Dokkum et al., 2010), following a two-phase formation

scenario (Oser et al., 2010) where at high redshifts (z > 2) a dense core forms via in-

situ star formation, after which, the outer envelope grows hierarchically via major/minor

mergers, which occur as a result of the dark matter halo’s hierarchical assembly (White

and Rees, 1978; De Lucia and Blaizot , 2007). The two-phase formation model is supported

by both observations (van Dokkum et al., 2010; Huang et al., 2018) and dark matter only

cosmological simulations which use empirical or semi-analytic models to quantify central

galaxy stellar mass growth (e.g., Croton et al., 2006; De Lucia and Blaizot , 2007; Guo et al.,

2011; Tonini et al., 2012; Shankar et al., 2015).

As a result of “inside-out” growth, all information about recent BCG stellar mass growth

is contained in the BCG’s outer envelope/ICL (Oser et al., 2010; van Dokkum et al., 2010).

Moreover, recent observations suggest that the majority of the BCG’s stellar mass is within

100kpc (Huang et al., 2018), and that 100kpc may represent a transitional regime between

the BCG’s outer envelope and the ICL (Zhang et al., 2018). Therefore, when characterizing

BCG evolution associated with the parameters of the SMHM relation, it is vital to mea-

sure BCG photometry within large radial extents, as discussed in Golden-Marx and Miller

(2019), referred to as GM&M19. More specifically, including stellar mass within large radii

strengthens the correlation between BCG stellar mass and halo mass (Moster et al., 2018;

Golden-Marx and Miller , 2019).

One observational measurement inherently tied to BCG hierarchical growth is the mag-

nitude gap (mgap), the difference in r-band magnitude between the BCG and 4th (M14)

brightest cluster member within half the radius enclosing 200x the critical density of the

Universe (R200) (Dariush et al., 2010). We use M14 in this analysis because it correlates best

with early formation (Dariush et al., 2010). Using N-body simulations, Solanes et al. (2016)

find that BCG stellar mass linearly increases with the number of progenitor galaxies. Since

the BCG’s central location leads to faster merger growth than that of non-central galaxies,

as BCG’s grow hierarchically, their stellar mass and magnitude increase, while those of

the 4th brightest remain the same, increasing mgap. Thus, hierarchical growth leads to a

correlation between mgap and BCG stellar mass (Harrison et al., 2012; Golden-Marx and
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Miller , 2018). Therefore, it follows that mgap is a latent parameter in the cluster SMHM

relation, as shown by Golden-Marx and Miller (2018), which from here on is referred to as

GM&M18.

GM&M18 incorporate mgap into the cluster SMHM relation by adjusting Equation 5.1

log10(M∗) = α+ βlog10(Mhalo), (5.1)

to Equation 5.2

log10(M∗) = α+ βlog10(Mhalo) + γM14, (5.2)

where α is the offset, β is the slope, and γ is the mgap stretch parameter. In GM&M18, these

parameters are measured using a hierarchical Bayesian MCMC analysis for the SDSS-C4

cluster sample (Miller et al., 2005) with individually measured caustic halo masses (Gifford

et al., 2013). Using Equation 5.2 for the SMHM relation reduces σint to less than 0.1dex as

well as the uncertainties on measured parameters for the SMHM relation (GM&M18).

The late time evolution of BCG’s is dominated by hierarchical growth. Therefore, β

may change with redshift since at earlier times fewer mergers will have occurred resulting

in a lower BCG stellar mass. However, dark matter halos also assemble hierarchically, so

the average halo mass decreases over time as well (White and Rees, 1978; Springel et al.,

2005; De Lucia and Blaizot , 2007), making the evolution of the SMHM relation unclear. The

redshift evolution of the SMHM relation has been investigated using observations, empirical

models, and simulations. Many prior observations (Oliva-Altamirano et al., 2014; Gozaliasl

et al., 2016) were unable to constrain the SMHM relation’s late time redshift evolution

due to large uncertainties on β. However, GM&M19 place the first statistically significant

observational constraints on the redshift evolution of the SMHM relation (discussed in more

depth in Section 5.3) by incorporating mgap and redshift evolution into the SMHM relation

using Equation 5.3,

log10(M∗) = α(1 + z)n1 + βlog10(Mhalo)(1 + z)n2 + γM14(1 + z)n3 , (5.3)
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where the n parameters are redshift evolution parameters. GM&M19 find that over the

redshift range 0.03 < z < 0.30, using SDSS-C4 (Miller et al., 2005) and SDSS-redMaPPer

(Rykoff et al., 2014) clusters, the slope of the SMHM relation decreases by ≈0.20dex or

40%. Using empirical models with abundance matching techniques to infer halo masses,

Behroozi et al. (2013a) and Moster et al. (2013) find that the slope decreases by 40-50% from

z=0.0 to z=1.0. Moster et al. (2013) also detect moderate evolution out to z=0.5, similar

to GM&M19. In contrast, Pillepich et al. (2018), using the Illustris TNG300 cosmological

hydrodynamical simulation, measure little change in the slope between z=0.0 and z=1.0.

In addition to the slope, the redshift evolution of σint has also been investigated using hy-

drodynamical simulations (Matthee et al., 2017; Pillepich et al., 2018), N-body simulations

(Gu et al., 2016), empirical models (Behroozi et al., 2018; Moster et al., 2018), and obser-

vations (GM&M19). However, these results are inconsistent, likely because of differences

in how stellar masses (i.e., within what aperture) and halo masses as well as the associated

uncertainties are estimated in each approach.

As previously described, including mgap in the SMHM relation improves the precision

of our measured parameters in the SMHM relation. Moreover, redshift evolution in β is

only detected when mgap is incorporated (GM&M19), further highlighting the importance

of using Equation 5.2. Although no significant redshift evolution is detected in GM&M19,

other parameters, such as γ may still evolve, which would inform us about BCG merger

history and the fraction of stellar material ejected into the ICL via major/minor mergers.

Since each parameter measures different characteristics of BCG formation, and may operate

on different time scales, it is important to study how these parameters continue to evolve

as well.

The outline for the remainder of this paper is as follows. In Section 5.3, we summarize

the goals, methods, and results of GM&M18 and GM&M19. In Section 5.4, we discuss

the observational and simulated data used to measure stellar masses, halo masses, and

mgap values for our SMHM relation. In Section 5.5, we describe the hierarchical Bayesian

MCMC model used to evaluate the redshift evolution of the SMHM relation. In Section 5.6,

we describe how we use the overlap between SDSS-redMaPPer and DES-redMaPPer to
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calibrate our higher-redshift measurements and the observational uncertainties associated

with the DES data. In Section 5.7, we present our results. In Section 5.8 we discuss our

findings and conclude.

Except for the case of simulated data, in which the cosmological parameters are pre-

viously defined (Springel et al., 2005), for our analysis, we assume a flat ΛCDM universe,

with ΩM=0.30, ΩΛ=0.70, H=100 h km/s/Mpc with h=0.7.

5.3 Summary of Golden-Marx & Miller 2018 and Golden-

Marx & Miller 2019

The analysis presented in this paper builds on on GM&19, thus, we briefly summarize

those results here. Since GM&M19 also relies on results from GM&M18, we first summarize

those. Using the low redshift SDSS-C4 clusters (Miller et al., 2005) with individual caustic

halo masses (Gifford et al., 2013) and stellar masses estimated using von der Linden et al.

(2007) corrected Petrosian magnitudes, GM&M18 identify a stratification between stellar

mass and mgap such that at fixed halo mass, stellar mass and mgap linearly correlate. Based

on this trend, GM&M18 incorporate mgap into the SMHM relation using Equation 5.2.

GM&M18 also develop a hierarchical Bayesian framework, similar to the one described

in Section 5.5, and find γ is definitively non-zero and σint decreases to less than 0.1dex.

Moreover, incorporating mgap explains the discrepancy between the amplitudes of previously

published SMHM relations.

GM&M19 study the redshift evolution of the SMHM-mgap relation (Equation 5.2) using

the low-redshift SDSS-C4 sample from GM&M18 combined with the SDSS-redMaPPer

sample (Rykoff et al., 2014), which in total cover 0.03 < z < 0.30. Since, the redMaPPer

algorithm provides a membership criterion (Pmem) for each galaxy (Rykoff et al., 2014),

based on a comparison of the galactic populations for clusters identified in both the SDSS-

redMaPPer and SDSS-C4 samples, our final sample of clusters require 4 member galaxies

(including the BCG) with Pmem > 0.984 within 0.5R200. mgap is then the difference in

the r-band model magnitudes of the BCG and 4th brightest cluster member. To estimate
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stellar mass, we use g-, r-, and i-band magnitudes measured within 100kpc and SED fitting

via EzGal (Mancone and Gonzalez , 2012), as done here. Halo masses for both samples are

then estimated using a mass-richness relation. Using this higher redshift data, we find that

the stratification observed in GM&M18 persists out to higher redshifts. This trend is also

found in the Guo et al. (2011) semi-analytic prescription of the MILLENNIUM simulation

at higher redshifts.

To quantitatively measure the redshift evolution of the SMHM relation, we use a hi-

erarchical Bayesian MCMC model, nearly identical to the model presented in Section 5.5,

which relies on Equation 5.7. We remind the reader that our Bayesian MCMC model is

designed to measure the underlying or intrinsic SMHM-M14 relation parameters and their

redshift evolution while accounting for the uncertainty in the stellar mass, halo mass, and

mgap estimates. As shown in GM&M18, using the Henriques et al. (2012) lightcone, our

Bayesian infrastructure recovers the intrinsic SMHM relation parameters using projected

data.

The primary result of GM&M19 is that for the first time using purely observational

data, statistically significant late-time redshift evolution in β is measured. We find that n2,

the redshift evolution parameter associated with β (see Equation 5.3), is 3.5σ < 0.0. This

detection suggests that in the last 3.5 billion years, BCGs, when treated as a statistical

sample, continue to grow hierarchically, likely via minor mergers. The second primary

result of GM&M19 is that β increases as the radius within which the BCG’s stellar mass is

measured increases until asymptoting around 100kpc, signifying that the outer region of the

BCG is more tightly correlated with the underlying dark matter halo than the central region,

which follows from the two-phase formation scenario (Oser et al., 2010). Additionally, we

measure a steeper β when mgap is incorporated.

5.4 Dark Energy Survey Data

The new observational data used in this analysis comes from redMaPPer (Rykoff et al.,

2014, 2016) v6.4.22 run on Year 3 data from the Dark Energy Survey (DES), which covers
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the redshift range 0.20 < z < 0.60. Additionally, we use the same lower-redshift SDSS

DR12 (Alam et al., 2015) data from from the SDSS-redMaPPer v6.3 catalog (Rykoff et al.,

2014) and the SDSS-C4 (Miller et al., 2005) cluster sample, which combine to cover the

redshift range 0.03 < z < 0.30. Since we study the redshift evolution of the SMHM relation,

we include both SDSS and DES data to maximize the total redshift coverage. Therefore, it

is necessary to measure mgap values, BCG stellar masses, and halo masses in both SDSS-

C4/redMaPPer and DES-redMaPPer data in a homogeneous manner. The uncertainties

associated with each measurement are discussed in Section 5.6.

5.4.1 DES-redMaPPer mgap

The redMaPPer algorithm uses galaxy color, spatial overdensity, and galaxy luminosity

distribution to identify galaxy clusters. Simply put, redMaPPer is a red-sequence-based

photometric cluster finding algorithm that is constructed using spectroscopically confirmed

clusters. For each cluster, redMaPPer assigns every galaxy a membership probability, Pmem,

which is dependent on the cluster’s richness, density profile, and the background density

(Rykoff et al., 2014, 2016). The high-probability members are then used to estimate the

cluster’s photometric redshift, which is used in Equation 5.7. redMaPPer also provides a

central galaxy probability for the five most likely BCG candidates and we identify the BCG

as the most probable.

In GM&M19, we found that to match the red sequence membership for SDSS-C4

clusters, which rely on 6 SDSS colors (GM&M18), we require all member galaxies have

Pmem > 0.984. Since we homogeneously measure mgap values across our entire sample, we

use that same criteria here. Additionally, for our final sample, we require all clusters have 4

or more members within 0.5 R200, which we approximate using Equation 5.4 (Rykoff et al.,

2014; McClintock et al., 2019):

R200 ≈ 1.5Rc(λ) (5.4)

where λ is the redMaPPer richness, and Rc is the redMaPPer cutoff radius, given by Equa-
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tion 5.5:

Rc(λ) = 1.0h−1Mpc(λ/100)0.2. (5.5)

Thus, like in GM&M19, M14 is the difference in the r-band model magnitude of the BCG

and 4th brightest cluster member with Pmem >0.984. Using a sample of 61 clusters in both

our SDSS and DES-redMaPPer samples in the redshift range 0.20 < z < 0.30, we get good

agreement in the measured mgap values.

5.4.2 DES BCG photometry

In GM&M19, we found that the slope of the SMHM relation increases as the radius

within which the BCG’s stellar mass and photometry is measured increases, reaching an

asymptote value near a radius of 100kpc. Since SDSS provides radial light profiles for every

galaxy, we can measure 100kpc photometry. To homogeneously measure BCG stellar mass,

we must measure BCG stellar masses within 100kpc for our DES BCGs. However, DES

does not provide radial light profiles. Therefore, we follow the procedure described in Zhang

et al. (2018), originally designed to study the ICL surrounding DES BCGs, to measure the

BCG light profiles within 100kpc. Here, I briefly summarize the relevant methodology from

Zhang et al. (2018).

Using the RA, Dec, and redshift of each BCG, in our subset of DES-redMaPPer clusters,

we coadd and stack all DES photometry within 0.15◦ from the BCG. The coadded images,

along with a list of all objects in the DES coadd catalog, which reaches a 10σ completeness

limit at an i-band magnitude of 22.5 (Zhang et al., 2018), allow us to mask all objects

brighter than 30.0 magnitudes in the i-band, excluding the BCG, using a masking radius

of 2.5Rkron. This masking magnitude limit was selected to minimize the difference between

the photometry of BCGs observed as part of both SDSS and DES as well as the stellar

mass estimate for the BCGs observed in both surveys. The masking procedure removes

the majority of excess light associated with the neighboring galaxies, yielding a cleaner

measurement of the radial light profile centered on the BCG, which includes the ICL as

well. We then measure the BCG’s radial light profile in annuli excluding the masked area.
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Thus, we assume the BCG’s light profile is spherically symmetric when we integrate over the

annuli out to 100kpc. For each profile, the background is determined by taking the median

value of the radial region beyond 500kpc from the BCG. This process is repeated for each

of the DES griz-bands 1. Additionally, we note that the SDSS griz and DES griz wave

bands differ. Using the 61 BCGs in both DES and SDSS-redMaPPer we find that when the

SDSS griz magnitudes are converted to DES griz magnitudes, the colors and magnitudes

are within 1σ of one another, illustrating that we homogeneously measure BCG photometry

across two completely different surveys over the redshift range 0.03 < z < 0.60.

5.4.2.1 DES BCG Stellar Masses

To calculate BCG stellar masses, we follow the same procedure as in GM&M19, sum-

marized here. We use SED fitting done in EzGal (Mancone and Gonzalez , 2012), an SED

modeling software, to estimate stellar mass. For our SED, we assume a Bruzual and Charlot

(2003) stellar population synthesis model, a Salpeter (1955) IMF, a formation redshift of

z = 4.9, and a constant metallicity of 0.4 z�. To determine the best fit SED, we use a

Bayesian MCMC approach, done in emcee (Foreman-Mackey et al., 2013), where we treat

the absolute magnitude (the EzGal normalization parameter) as a free parameter, with a

uniform prior, to determine the value that minimizes the chi-squared statistic between the

EzGal modelled g, r, and i-band magnitudes measured at the observed redshift and the

DES 100kpc g-, r-, and i-band magnitudes. In GM&M19, we found that > 99% of clusters

have a minimized chi squared using a metallicity of 0.4 z�, so here we keep metallicity

fixed. Using this approach, we find excellent agreement between stellar masses estimated

for clusters with both DES and SDSS photometry. Additionally, due to the trends found

between photometric color and redshift, for clusters located at z > 0.4, we use DES r-, i-,

and z-band photometry to estimate stellar mass. We note that this results in a slight change

in the stellar mass measurements, but that the values calculated using gri photometry and

riz photometry are within errors.

1Since GM&M19 only use SDSS gri band photometry to maintain homogeneity in our stellar
mass measurement, for our calibration we use DES gri band photometry

165



5.4.3 DES Halo Masses

To determine halo masses for DES-redMaPPer clusters, we use a mass-richness relation,

like in GM&M19. However, here we use the mass-richness relation from McClintock et al.

(2019), which is calibrated for the DES Year 1 redMaPPer data, given by Equation 5.6,

Mhalo/(h
−1M�) = 1014.334(λ/40)1.356(

1 + zred
1 + 0.35

)−0.30 (5.6)

where zred is the redMaPPer photometric redshift. We note that using the sample of clusters

in both DES and SDSS-redMaPPer catalogs, we find excellent agreement for the richness

measurements as well as the halo masses estimated with either the Simet et al. (2017) (used

in GM&M19) or McClintock et al. (2019) mass-richness relations, which is unsurprising

since these two mass-richness relations are in agreement once scaled to the same units. The

only difference between the two is the small redshift evolution parameter in the McClintock

et al. (2019) mass-richness relation.

5.4.4 DES Final Sample

We analyze how the SMHM relation evolves with redshift using two approaches. We first

divide all of our data, including the SDSS-C4, SDSS-redMaPPer, and DES-redMaPPer data,

into 4 bins and measure our Bayesian MCMC posteriors for each bin with redshift evolution

parameters set to 0.0. Second, we incorporate redshift evolution using four additional pa-

rameters in Equation 5.7 and fit over all SDSS-C4, SDSS-redMaPPer, and DES-redMaPPer

clusters. We note that we include all clusters, considered in GM&M19, not just those in

the final sample (i.e., we include those galaxies that were previously removed as a result of

our completeness analyses, since these analyses are redone here). In total, this multi-survey

data set covers the redshift range 0.03 ≤ z ≤ 0.60.

Following these criteria, there are 154 SDSS-C4 clusters, 984 SDSS-redMaPPer clusters,

and 1577 DES-redMaPPer clusters with halo masses greater than 1014M�, or a total sample

of 2715 clusters. At this point, we have not applied any further halo mass limit; however,

as in GM&M19, we expect this total sample of data to have differing halo mass lower limits
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as we move to higher redshift ranges. We also check for mgap incompleteness since DES is

a flux-limited survey.

Therefore, the DES-redMaPPer sample is divided into 4 redshift bins, each initially with

∼ 679 clusters. For each bin, as in GM&M18 and GM&M19, we apply a mgap completeness

criteria based on the binning of the BCG and 4th brightest galaxy’s absolute magnitudes

against the BCG’s apparent magnitude and mgap to determine the apparent magnitude limit

of the sample (a redshift dependent limit) (Colless, 1989; Garilli et al., 1999; La Barbera

et al., 2010; Trevisan et al., 2017; Golden-Marx and Miller , 2018).

We account for halo mass incompleteness in each redshift bin in the same manner as

in GM&M19. Since the halo mass distribution can be approximated as Gaussian, the peak

indicates the mass that the sample becomes incomplete. However, we apply a lower halo

mass cut located at the halo mass where the amplitude of the binned halo mass distribution

decreases to 70% of the peak value to ensure high completeness out to higher redshifts. This

halo mass criteria is conservative and results in a redMaPPer richness threshold of ≈ 22, well

above the detection limit. However, when combined with the mgap completeness analysis,

these cuts shrink our available sample down to 2319 clusters, a reduction of ∼ 14.5%. A

slightly more restrictive (higher) halo mass lower limit does not impact our final results.

5.4.5 Simulated Data

Just as in GM&M19, we also study the evolution of the SMHM - mgap relation using

the Guo et al. (2011) semi-analytic model for the MILLENNIUM simulation. We use the

Guo et al. (2011) simulation boxes analyzed at redshifts of 0.116, 0.208, 0.320, and 0.508,

the redshifts which best match the median values of our binned sample and are snapshots

number 58, 55, 52, and 48, respectively.

For each simulation box, we use the 3D information provided directly from the Guo

et al. (2011) semi-analytic model for each cluster, including the halo masses, measured

within R200× ρcrit; the galaxy positions, x, y, z; R200; the semi-analytic stellar masses; and

the magnitudes. Cluster membership is determined using positional information (x, y, z)

and a fit to the red sequence, such that cluster member candidates within 0.5 R200, and
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within 2σ from the red sequence are identified as members. Thus, M14 is the difference

between the 4th brightest member and BCG in the r-band. Since Guo et al. (2011) provides

BCG stellar masses and we have access to the entire simulation box, we do not apply a

completeness criteria to our simulated data. However, to make our samples comparable, we

apply the halo mass distribution functions based on our binned SDSS, and DES clusters to

the simulation snapshot at the corresponding redshift.

5.5 Bayesian MCMC model

We use a nearly identical hierarchical Bayesian MCMC model described in GM&M19

to determine the values of α, β, γ, σint, and the redshift evolution parameters given in

Equation 5.7. The Bayesian approach works by convolving prior information for a given

model with the likelihood of the observations given the model, to yield the probability

of observing the data given the model, the posterior distribution up to a normalization

constant called the Bayesian evidence.

To determine the posterior distributions for each parameter in the SMHM relation,

our MCMC model generates values for the observed stellar mass, halo mass, and mgap

values at each step in our likelihood analysis, which are directly compared to our observed

measurements.

5.5.1 Bayesian Model incorporating Redshift evolution

5.5.1.1 The Observed Quantities

As in GM&M19, we model the log10 BCG stellar masses (y), log10 halo masses (x), and

M14 values (z) as being drawn from Gaussian distributions with mean values (locations)

taken from our observed/measured results. The standard deviations are the uncertainties

on each measurement, which are determined using the overlap sample (see Section 5.6) and

include an estimate of the observational uncertainty (σx0 , σy0 , σz0) as well as a stochastic

component from a beta function, β(0.5, 100) (GM&M18), which allows for realistic uncer-

tainty on our observational errors. These error bars are treated statistically in the Bayesian
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model as free nuisance parameters σx, σy, and σz.

5.5.2 The Unobserved Quantities

As in GM&M19, our model incorporates redshift evolution through parameters related

to α, β, γ, and σint. Since we study the cluster portion of the SMHM relation, the SMHM

relation is modeled linearly as (See Equation 5.7):

yi = α(t)n1 + (β(t)n2)xi + (γ(t)n3)zi, (5.7)

where t is the ratio of the lookback time, calculated using the photometetric redshift deter-

mined via red sequence fitting from redMaPPer (Rykoff et al., 2014, 2016), divided by the

age of the universe. We also assume a Gaussian likelihood form, with σint that evolves with

redshift: σint(t)
n4 . n1, n2, n3, and n4 measure the redshift evolution of α, β, γ, and σint

respectively. For the redshift binned samples, these parameters are set to 0.0. Thus, just

as in GM&M19, the zero redshift model from GM&M18 is nested within our new model,

which allows us to interpret how much better a given model is (e.g., with redshift evolution

vs. without) using only the posterior distribution. We note that we chose to model the red-

shift evolution differently than was done in GM&M19 because we cover a significantly wider

range in redshift and we found that using Equation 5.3, instead of Equation 5.7, biased the

results to be less strongly influenced by the late-time low redshift evolution. Additionally,

we note that in Equation 5.7, the values of α, β, γ, and σint, represent the values at z=inf,

unlike in Equation 5.3, where the posterior values represent the values at z=0.0.

This Bayesian model regresses the generated values against the observed stellar mass,

halo mass, and mgap values simultaneously and self-consistently. The parameters that model

the underlying distributions and their uncertainties are nuisance parameters and thus are

marginalized over when we present the posterior distributions. Each parameter in the

Bayesian analysis, along with its prior is presented in Table 5.1. We discuss the strong

priors on the observed uncertainties in Section 5.6.
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Bayesian Analysis Parameters for the
Combined DES, SDSS-C4, and SDSS-redMaPPer Sample

Symbol Description Prior
α The offset of the SMHM relation U(-20,20)
β The high-mass power law slope Linear Regression Prior
γ The stretch parameter, which describes the stellar mass - M14 stratification Linear Regression Prior
σint The uncertainty in the intrinsic stellar mass at fixed halo mass U(0.0, 0.5)
yi The underlying distribution in stellar mass Equation 5.7
xi The underlying halo mass distribution N (14.29,0.202)
zi The underlying mgap distribution N (2.23,0.652)
n1 The power law associated with the evolution of α U(−10.0, 10.0)
n2 The power law associated with the evolution of β U(−10.0, 10.0)
n3 The power law associated with the evolution of γ U(−10.0, 10.0)
n4 The power law associated with the evolution of σint U(−20.0, 20.0)
σy0i The uncertainty between the observed stellar mass and intrinsic stellar mass distribution 0.08 or 0.05 dex
σx0i The uncertainty associated with the mass-richness relation 0.087 dex
σz0i The uncertainty between the underlying and observed mgap distribution 0.15 or 0.48

Table 5.1: Bayesian Analysis Prameters for the Combined SDSS-C4, SDSS-
redMaPPer, and DES-redMaPPer Nominal Sample using M14 and Incor-
porating Redshift Evolution. U(a, b) refers to a uniform distribution where
a and b are the upper and lower limits. The linear regression prior is of
the form −1.5 × log(1 + value2). N (a, b) refers to a Normal distribution
with mean and variance of a and b. Additionally, we note that for xi and
zi, the means and widths given in this table are example values belonging
to the lowest redshift bin.

We express the entire posterior as:

p(α, β, γ, σint, n1, n2, n3, n4, xi, zi, σyi , σxi
, σzi ) ∝

P (y0i|α, β, γ, σyi , n1, n2, n3, n4, σint, xi, zi) P (x0i|xi, σxi
) P (z0i|zi, σzi )︸ ︷︷ ︸

likelihood

p(xi) p(zi) p(σxi
) p(σyi ) p(σzi ) p(α) p(β) p(γ) p(σint) p(n1, n2, n3, n4)︸ ︷︷ ︸

priors

(5.8)

where each ith cluster is a component in the summed log likelihood.

This is a hierarchical Bayes model because the priors on the true halo masses (xi) and

M14 values (zi) depend on models themselves (the observed halo mass and M14 distribu-

tions).

5.6 Calibration

For this paper, we are studying a much larger sample of data out to a significantly higher

redshift (z < 0.6) than in GM&M19. This larger sample further reduces statistical noise in
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our measurements, while also allowing us to study the evolution in the SMHM relation over

the last 6 billion years. This new data is from DES, not SDSS, which was solely used in

GM&M19, and observed and reduced using different telescopes and pipelines. Therefore, to

treat the data as a homogeneous sample that can be used to measure the parameters of the

SMHM relation over this large redshift range, we must calibrate uncertainties associated

with the DES data with respect to the uncertainty associated with the SDSS data. We

do this using the sample of 61 clusters in both our SDSS-redMaPPer and DES-redMaPPer

samples. Additionally to determine whether the uncertainty yielded by the comparison

of clusters in both samples allows us to measure SMHM parameters that agree with one

another, we use the DES clusters covering the redshift range 0.208 < z < 0.30, which

matches the highest redshift bin from GM&M19. Additionally, we apply the halo mass

distribution function of those SDSS-redMaPPer clusters in the highest redshift bin to the

DES data.

To verify that SDSS and DES-redMaPPer clusters are identified and measured homo-

geneously, we compare the redMaPPer richnesses and find excellent agreement between the

two measurements: −0.6 ± 13.5. Using those richnesses, we then compare the halo mass

estimates. In GM&M19, we use the Simet et al. (2017) mass-richness relation, while here we

use the McClintock et al. (2019) mass-richness relation. As previously noted, when scaled

to the same units, the two mass-richness relations are equivalent (except for the small red-

shift parameter in McClintock et al. (2019)) and we find that the difference in halo mass is

0.01± 0.11. Based on this comparison, and similarity of richnesses, we conclude that these

values are equivalent and that the same uncertainty in the mass richness relation used in

GM&M19, σx0 = 0.087 dex, can be used.

Perhaps the most interesting comparison is the stellar mass uncertainty. The deeper

coverage from DES observations results in having more accurate (lower uncertainty) BCG

photometry at higher redshifts (when compared to SDSS). This is particularly important

since we measure stellar mass within 100kpc, a radial region which is strongly impacted by

the ability to detect faint/diffuse light. Based on the comparison between the 61 clusters

in both SDSS and DES, we find that the difference between our stellar mass measurements
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is: 0.02 ± 0.09. After accounting for the SDSS-redMaPPer measurement uncertainty, we

estimate that σy0 = 0.05dex, for DES data, which is a slight reduction of the value used in

GM&M19 for SDSS data (0.08dex). This follows since the DES data is deeper and hence

more accurate than the SDSS data.

The deeper and higher redshift aspect of the DES data also impact our measurement

of mgap. The DES observations lack spectroscopic coverage, so we expect some projection

issues in our mgap measurement. In GM&M19, we used σz0 = 0.15 dex, which was based on

a comparison to the results from GM&M18 that were determined via a comparisons to 3D

simulations. Given that we apply a restrictive Pmem criteria at high redshifts, we expect

a larger σz0 for the DES-redMaPPer sample. The difference in M14 measurements for the

61 clusters in both samples is −0.13 ± 0.46. When this uncertainty is combined with the

SDSS uncertainty (0.15), we estimate that σz0 = 0.48 a large increase from GM&M19.

It is important to highlight that using the 61 clusters in both our SDSS-redMaPPer

and DES-redMaPPer samples, we find excellent agreement between the stellar masses, halo

masses, and M14 values, such that each difference is well within 1σ from 0.0, despite the

fact that the measurements come from different sources. Therefore, we believe that based

on our measurement techniques, we have identified criteria which allow us to identify a

homogeneous sample across this large range in redshift.

To verify that estimates for the uncertainty yield good agreement in the parameters

of the SMHM relation, we calibrate the DES observational uncertainties, σx0 , σy0 , and

σz0 using the previously described DES sub-sample which matches the SDSS-redMaPPer

highest redshift bin. With this DES calibration sample, we treat σx0 , σy0 , and σz0 as

nuisance parameters on a coarse grid centered on the estimates described above in the

Bayesian analysis and solve for the mean values by requiring α, β, γ, and σint be within 1σ

of the values found for the fourth bin of the SDSS-redMaPPer data.

The posterior distributions for the calibration samples are given in lines 1 and 2 of

Table 5.3. We find excellent agreement between the SDSS-redMaPPer highest redshift

bin and the DES calibration sample (within 1σ) for α, β, and γ, and σint when we use

the same offset axes as in GM&M19 and set the stellar mass uncertainty to σy0 ' 0.05
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dex, the magnitude-gap uncertainty to σz0 ' 0.48, and the inferred intrinsic scatter in the

mass-richness relation to σ(lnM200|λ) = 0.20, which corresponds to σx0 = 0.087 dex.

The above error calibration provides us with physically motivated estimates of the un-

certainties on our observables. The values we obtain are reasonable and match our expec-

tations. However, we remind the reader that we do not have good estimates on the errors

associated with these observable measurement uncertainties. However, recall that Equa-

tion 5.8 allows for additional uncertainty in the observed errors. Therefore, although we

set initial values described above (i.e., σx0 , σy0 , σz0), the observational uncertainties used

in our Bayesian analysis are actually nuisance parameters.

5.7 Results

In this section, we present the qualitative and quantitative results from our analysis

of the combined SDSS-C4, SDSS-redMaPPer, and DES-redMaPPer Y3 data. Figure 5.1,

which compares the 100kpc stellar masses for the SDSS and DES data, both estimated using

EzGal (Mancone and Gonzalez , 2012) to the halo masses estimated using mass-richness

relations (Simet et al., 2017; McClintock et al., 2019), color coded by M14, highlights the

qualitative results of the study. In total Figure 2.1 includes 1016 SDSS clusters and 1306

DES clusters, and spans the redshift range 0.03 < z < 0.60. Therefore, the stratification

originally identified in GM&M18 continues to persist out to higher redshifts than explored

in either GM&M18 or GM&M19. Furthermore, although not included, the stellar mass-

M14 stratification can also be clearly seen in the binned data as well as in the Guo et al.

(2011) prescription of the MILLENNIUM simulation as discussed in Section 5.7.1.

We evaluate the strength of the redshift evolution in the SMHM-M14 relation using our

previously described MCMC model (Section 5.5), Bayesian formalism, and linear SMHM

relation (Equation 5.7). The triangle plot, Figure 5.2, presents the 1D and 2D posterior

distributions distributions for the eight SMHM relation parameters, α, β, γ, n1, n2, n3,

n4, and σint. For this analysis, as well as the initial calibration analysis, we shifted the x

and y axis to eliminate the covariance between α and β. For the calibration, we used the
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Figure 5.1: SHMH-M14 Relation for the SDSS-C4, SDSS-redMaPPer, and DES-
redMaPPer Samples. The SMHM relation for the combined DES-
redMaPPer, SDSS-redMaPPer, SDSS-C4 clusters colored via M14. As
in GM&M18, and GM&M19 we see that a stellar mass - mgap stratifica-
tion exists at high redshifts. The black cross represents the error in halo
mass, 0.087 dex, and stellar mass, 0.08 dex for the SDSS data and the
red cross represents the error in halo mass, 0.087 dex, and stellar mass,
0.05 dex for the DES data.

Posterior Distribution Results with Redshift Evolution
Data α(z=inf) β(z=inf) γ(z=inf) σint(z=inf) n1 n2 n3 n4

with M14 -0.195 +0.029
−0.035 0.181 +0.032

−0.027 0.093+0.012
−0.011 0.069 +0.007

−0.006 -0.144 +0.097
−0.092 -0.316 +0.094

−0.091 -0.203 ± 0.072 -0.142 +0.056
−0.055

Table 5.2: Redshfit Evolution Bayesian MCMC Posterior Distributions for DES and
SDSS data

same offsets as in GM&M19. However, here we subtracted the median values of the range

covered by our stellar mass and halo mass distributions: (xmed = 14.65 and ymed = 11.55).

The posterior results of this analysis are also given in Table 5.2 and discussed in the context

of the GM&M19 results in Section 5.8.

In Figure 5.2, excluding the SMHM parameters and their associated evolution parame-

ters, the same pairs of parameters as in GM&M19 are strongly covariant: α, and γ, α and

n3, γ and n1, and n1 and n3. α and γ are covariant because shifting the axis causes the

location of α to correspond where M14=0.0. Figure 5.2 illustrates that the primary results

presented in GM&M18 and GM&M19 still hold true; γ is definitively non-zero, σint is less

than ∼0.1 dex, and we again detect statistically significant redshift evolution in β, such
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Figure 5.2: SMHM-M14 with Lookback Time Evolution Posterior Distributions. The
posterior distribution for α, β, γ, n1, n2, n3, n4, and σint. As in GM&M18,
we see that γ is significantly non-zero and σint is less than 0.1 dex. How-
ever, we note that as a result of the modified redshift evolution form given
by Equation 5.7, the values are not directly comparable to the results from
GM&M19. Instead, the posteriors measured here are extrapolations out
to when the lookback time equals the age of the universe. To see the val-
ues at the redshifts measured in our study, see Figures 5.3, 5.4, 5.5, and
5.6. Additionally, the redshift parameter n2 is no longer the only param-
eter that is significantly non-zero, all four parameters are farther than 1σ
from 0.0 and n3 is 2.5σ from 0.0. Therefore, some, albeit weak, redshift
evolution in the parameters of the SMHM relation can be detected over
0.03 ≤ z ≤ 0.60.
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that n2 is >3σ from 0.0. Additionally, it is important to again emphasize that the posterior

values shown in Figure 5.2 do not represent the same values as those in GM&M19 because

of the change in form of how redshift evolution was modeled. In GM&M19, the posteriors

represented the values at z=0.0. In contrast, here, the posteriors represent the asymptote

values that the distributions reach when the lookback time is the age of the universe.

The key takeaways from Figure 4.4 are the significance of the redshift evolution param-

eters. We note that this significance is impacted by the inclusion of the DES data, which

significantly reduces the error bars associated with each posterior distribution. Thus, unlike

in GM&M19, n1, n2, n3, and n4 are all more than 1σ from 0.0. Like in GM&M19, n2, is

definitively non-zero (>3σ). However, incorporating the DES data, leads to more signifi-

cant detection in each of the remaining parameters. In particular, n3 is slightly less than

3σ from 0.0 and n4 is ≈ 2.5σ from 0.0. Following the discussion in GM&M19, the redshift

evolution of the slope and σint are perhaps the most significant because n2 and n4 are the

only parameters that have no covariance associated with parameters other than the SMHM

parameters they are associated with. Therefore, the results shown here are significant be-

cause we verify that the detection of statistically significant late time evolution in the slope,

introduced in GM&M19, and also detect evolution in each of the additional parameters.

However, we note that to improve our understanding of whether both α and γ are evolving

or whether one parameter’s evolution yields a non-zero n-parameter in the other, we must

eliminate covariance between α and γ, without re-introducing covariance with β.

We obtain these results using a careful analysis to ensure that the lower redshift SDSS-C4

and SDSS-redMaPPer data and the higher redshift DES-redMaPPer data are homogeneous.

We note that the homogeneity between the SDSS-C4 and SDSS-redMaPPer data is discussed

in depth in GM&M19. Specifically, in this analysis, we have ensured that the SDSS and DES

photometry, although observed using different instrumentation and reduced using different

photometric pipelines yield BCG magnitudes and stellar masses that agree with one another

(as discussed in Section 5.6), the SDSS and DES data use the same physical fixed-aperture

photometry for all BCGs, the same cluster galaxy membership to define the magnitude gap

(as set by Pmem from redMaPPer), the same algorithm and parameters to determine stellar
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masses, the same mass-richness technique to infer cluster masses, verified using the clusters

in the SDSS and DES overlap sample, which are within errors, as discussed in Section 5.6,

and the same algorithm to measure the completeness criteria used to define the underlying

cluster samples in both mgap and cluster halo mass. However, it is possible that there are

systematic errors that we have missed in the SDSS sample when compared to the DES

sample. However, because our goal is to extend the analysis of GM&M19 out to higher

redshifts, we cannot remove the lower-redshift SDSS data without removing the ability to

detect any observed late-time evolution. Therefore, it is only by treating the data in a

homogeneous manner as done here, that we are able to determine how the SMHM relation

evolves observationally out to higher redshifts.

5.7.1 Comparison to Binned Results

Here, we present how the SMHM relation parameters evolve by comparing the posterior

results to those from the binned clusters. The results for each of the measured parameters,

α, β, γ, and σint, for the binned data as well as for the Guo et al. (2011) prescription of

the MILLENNIUM simulation are presented in Table 5.3. We note that for simplicity, we

do not include the Guo et al. (2011) data in Figures 5.3, 5.4, 5.5, and 5.6. The Guo et al.

(2011) measurements are taken on data samples described in Section 5.4.5. As a result of

the limits of the Guo et al. (2011) simulation box size, using the halo mass distribution

functions from our final sample of clusters significantly decreases the number of clusters,

particularly in the higher redshift simulation boxes, yielding larger posterior uncertainties.

To illustrate the trends we observe in Tables 5.2 and 5.3, in Figures 5.3, 5.4, 5.5, and 5.6, we

display how the offset (α), slope (β), stretch factor (γ), and intrinsic scatter (σint) evolve

as a function of lookback time divided by the age of the universe, as given by the posterior

distributions shown in Figure 5.2.

Figure 5.4 illustrates that our Bayesian MCMC model which incorporates lookback

time finds that β decreases with increasing lookback time for the combined SDSS and DES

clusters, in agreement with the results from GM&M19. In contrast to the stronger evolution

of β, Figures 5.3, 5.5, and 5.6 illustrate that using our Bayesian MCMC model, we observe
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Posterior Distribution Results
Data zmin zmax zmed log10(Mhalo/(M�/h))min nclusters α(z=zmed) β(z=zmed) γ(z=zmed) σint(z=zmed)

GM&M19 bin4 0.208 0.300 0.247 14.39 210 −0.34± 0.03 0.32± 0.06 0.150± 0.013 0.082± 0.009
DES-Calibration 0.208 0.300 0.259 14.39 118 −0.28± 0.05 0.38 ± 0.07 0.139 ± 0.021 0.065 ± 0.014

All Data 0.030 0.173 0.127 14.03 619 −0.27± 0.02 0.42 ± 0.03 0.153 ± 0.008 0.086 ± 0.005
All Data 0.173 0.266 0.222 14.25 568 −0.27± 0.02 0.35 ± 0.03 0.145 ± 0.009 0.079 ± 0.005
All Data 0.266 0.410 0.336 14.29 589 −0.24± 0.02 0.31 ± 0.03 0.126 ± 0.009 0.085 ± 0.005
All Data 0.410 0.600 0.503 14.33 546 −0.25± 0.03 0.34 ± 0.04 0.127 ± 0.011 0.075 ± 0.006

Guo et al. (2011) 0.116 0.116 0.116 14.03 302 −0.28± 0.02 0.46± 0.03 0.220± 0.009 0.090± 0.004
Guo et al. (2011) 0.208 0.208 0.208 14.25 206 −0.30± 0.02 0.44± 0.04 0.218± 0.011 0.094± 0.005
Guo et al. (2011) 0.320 0.320 0.320 14.29 110 −0.34± 0.03 0.51± 0.04 0.263± 0.014 0.079± 0.005
Guo et al. (2011) 0.509 0.509 0.509 14.33 76 −0.34± 0.03 0.48± 0.08 0.248± 0.018 0.083± 0.007

Table 5.3: SDSS-C4, SDSS-redMaPPer, and DES-redMaPPer Binned SMHM Rela-
tion Posterior Results.
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Figure 5.3: Evolution of α. The offsets and respective error bars are plotted as a
function of lookback time divided by the age of the universe for the binned
data comprised of SDSS and DES clusters. The green line represents how
α evolves as given by the posterior results presented in Figure 5.2. The
green shaded region illustrates the combined total error from uncertainty
on n1 and α. This comparison highlights that the offset of the SMHM
relation weakly evolves over the redshift range 0.03 ≤ zred ≤ 0.6.
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Figure 5.4: Evolution of β. The slopes and respective error bars are plotted as a
function of lookback time divided by age of the universe for the binned
samples of SDSS and DES clusters. The green line represents the evo-
lution given by the posterior results presented in Figure 5.2. The green
shaded region is the total error from the uncertainty on n2 and β. This
comparison highlights that the slope of the SMHM relation evolves over
the redshift range 0.03 ≤ zred ≤ 0.6.
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Figure 5.5: Evolution of γ. The stretch factors and respective error bars are plotted as
a function lookback time divided by age of the universe for the final binned
sample consisting of SDSS and DES clusters. The green line represents
the evolution suggested via the posterior results presented in Figure 5.2.
The green shaded region represents the combined uncertainty from n3

and γ. This trend highlights that there is no weak evolution in γ in this
redshift range.
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Figure 5.6: Evolution of σint. The intrinsic scatters and respective error bars are plot-
ted as a function of lookback time divided by the age of the universe for
the binned SDSS and DES clusters. The green line represents the redshift
evolution suggested by the posterior results presented in Figure 5.2. The
green shaded region represents the combined uncertainty of n4 and σint.
This trend highlights that there is weak redshift evolution in σint.

weaker evolution in the α, which is still largely in agreement with the results from Zhang

et al. (2016), γ, and σint. We discuss the physical meaning of the observed evolution for

these parameters in the context of hierarchical growth in Section 5.8.

5.7.2 Comparison to Golden-Marx & Miller 2019 results

The primary difference between the results presented here and those in GM&M19 stems

from the different forms used to characterize the evolution (Equation 5.3 vs Equation 5.7),

which in turn make a direct comparison between the measured values of α, β, γ, and σint

difficult. However, we can still compare the significance of the evolution parameters as well

as the uncertainties associated with each parameter. We note that including the DES clus-

ters unsurprisingly reduces the uncertainties on each parameter, increasing the significance

of each detection. Additionally, we note that the significance of n2 is consistent between

both works. However, for n1, n3, and n4, we find that including the DES data increases the

significance, partly due to the lowering of the uncertainties. The primary takeaway from

comparing to the results of GM&M19 is that by incorporating many more clusters, we are
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able to detect even weak statistically significant evolution with very small measurement

uncertainty and that the evolution of γ and σint have been detected observationally (> 2σ)

for the first time.

5.8 Discussion

The evolution in the SMHM relation’s slope and σint can provide insight into the hier-

archical growth of BCGs. Using semi-analytic models, researchers have found that at late

times BCG’s grow by a factor of ≈1.5-2.0 (De Lucia and Blaizot , 2007; Guo et al., 2011;

Shankar et al., 2015). In contrast observations have found that over this redshift range,

much of the growth occurs in the BCG’s outer envelope, including regions that have pre-

viously been classified as ICL (van Dokkum et al., 2010; Burke et al., 2015; Huang et al.,

2018), further highlighting the necessity of measuring the stellar mass out to a large radii.

In this work, we have extended the redshift evolution of the cluster scale SMHM pre-

sented in GM&M19 out to zred = 0.6. Incorporating γ reduces σint, which along with the

addition of the DES clusters, significantly reduces the uncertainty on β allowing us to detect

redshift evolution. As in GM&M19, we interpret this result in the context of hierarchical

growth. Gu et al. (2016) suggest that β steepens as a result of an increase in σint, which

results from an increase in the diversity of the BCG’s progenitor history. Moreover, the

late time evolution of β that we observationally confirm suggests BCGs residing in more

massive halos undergo more late time growth than BCGs in less massive halos, which may

result from differences in the galactic populations of high and low mass clusters and the

efficiency of mergers. In contrast to the results presented in GM&M18, here we detect more

significant evolution in σint, such that the trend between σint and β agrees with the results

presented by (Gu et al., 2016), further supporting our claim that the observed late-time

evolution in the SMHM relation results from recent BCG hierarchical growth.

Additionally, as shown in Table 5.3, we do not detect any noticeable redshift evolution

in the Guo et al. (2011) prescription of the MILLENNIUM simulation. This differs slightly

from GM&M19, where we found a slightly lower slope in the highest redshift bin, which we

181



now note is likely due to both small sample size and the halo mass distribution function

applied to that bin. The lack of evolution found in Guo et al. (2011) agrees with the

absence of evolution found between z=0.0 and z=1.0 in the ILLUSTRIS TNG300 simulation

(Pillepich et al., 2018). Moreover, as noted in GM&M19, and confirmed for this higher

redshift sample, redshift evolution is only identified when the 100kpc magnitudes are used.

Since the semi-analytic model from Guo et al. (2011) is designed to reproduce the SDSS

luminosity function which is constructed using Petrosian magnitudes, it is unsurprising

that no redshift evolution is detected. Therefore, in order to determine whether simulations

accurately account for redshift evolution, we must use simulations, such as ILLUSTRIS

TNG300, which allow us to measure magnitudes within fixed physical apertures.

Unlike in GM&M19, our posterior distributions also support the notion that γ evolves

over the redshift range 0.03 < z < 0.60, as shown in Figure 5.5. This result can be

interpreted as, with respct to the stellar mass, over time, mgap increases (at earlier times,

mgap is lower, in agreement with hierarchical growth). This weak redshift evolution is

intriguing because as discussed earlier mgap and stellar mass growth are correlated (Solanes

et al., 2016). Additionally, since our 100kpc stellar mass measurement includes the BCG’s

outer envelope, it likely includes the recent merger material which would be responsible for

any evolution in mgap or stellar mass. The decreasing trend observed between γ and redshift

would likely occur if BCGs had mergers with bright galaxies in the last 6 billion years and

the resulting stellar mass was deposited primarily at radii beyond 100kpc. However, while

major mergers are not expected to be common over this redshift range (Burke et al., 2015),

given that a fraction of the stellar material from a merger is ejected into the ICL, if minor

mergers involving fainter galaxies (likely either the third or fourth brightest cluster member)

were to occur, and deposit most of the stellar material at radii greater than 100kpc, this

would possibly result in a larger increase in mgap than in stellar mass, which matches the

trend shown in Figure 5.6.

In this work, we have focused on the late time evolution of the SMHM relation out to

z ∼ 0.6. As shown here, each of these parameters shows signs of some late-time evolution,

and for the slope predominately over the redshift range 0.0 < z < 0.15. We are left with
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two paths forward. To tighten the constraints on this late-time evolution, we must either

incorporate more large statistically complete samples of low-redshift clusters z < 0.1 (there

are fewer than 200 SDSS-C4 low-z clusters compared to 1500 DES high-z clusters), which

are difficult to obtain. Or, we can forge ahead to higher redshifts to determine whether

these parameters remain consistent out to z = 1.0, an approach which faces much of the

same observational challenges as the data presented here and would require us to be able

to place tight constraints on each of the observed measurements.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

The primary focus of this dissertation is understanding and statistically constraining

the galaxy-dark matter halo connection, the physical and statistical link between central

galaxies and their dark matter halos (Wechsler and Tinker , 2018). As discussed in Chap-

ter I, this connection stems from the hierarchical assembly of the cluster’s dark matter halo,

which in turn leads to the hierarchical assembly of the BCG (e.g., White and Rees, 1978;

Blumenthal et al., 1984; De Lucia and Blaizot , 2007). Over the past decade, this connection

has proven to be particularly useful. Through a combination of observations, semi-analytic

and empirical models, and simulations the galaxy-halo connection has been able to constrain

cosmological parameters as well as parameters of models of galaxy formation and evolution

(Gu et al., 2016; Tinker , 2017; Kravtsov et al., 2018). The galaxy-halo connection is a

broad, wide-ranging subfield, relating many different measurements. One of the primary

relations used to characterize the galaxy-halo connection is the SMHM relation, the main

focus of this dissertation. Through the statistical relationship between BCG stellar mass

and cluster dark matter halo mass, the galaxy-halo connection community continues to im-

prove our understanding of how galaxies populate dark matter halos and as well as how the

central galaxy and dark matter halo co-evolve over cosmic time. However, to improve our

understanding of this correlation by placing tighter constraints on the measured parameters

and uncertainties associated with the SMHM relation, we must identify latent parameters
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which can be incorporated into this relation, and have a statistically significant impact on

the measured results, as done using observational and simulated data in Golden-Marx and

Miller (2018) and Golden-Marx and Miller (2019).

6.1.1 Latent Parameters

From a statistical point of view, latent parameters are additional variables, which have

previously been unaccounted for that correlate with one of the measurements used in a

scaling relation. Latent parameters then improve or reduce the uncertainty associated with

these scaling relations. From the perspective of the SMHM relation, the latent parameter

would be a third parameter that correlates with either stellar mass or halo mass, and would

minimize the uncertainty in the measured parameters as well as reduce σint below the

consensus estimate of 0.15dex (Tinker et al., 2017; Zu and Mandelbaum, 2015; Pillepich

et al., 2018; Kravtsov et al., 2018). Based on how we have defined latent parameters, when

determining whether the inclusion of a third parameter associated with a scaling relation

is indeed a latent variable, it is important, as done in Golden-Marx and Miller (2018),

Golden-Marx and Miller (2019), and Golden-Marx et al. (in prep.), to use nested models

that allow for the variable associated with the latent parameter to equal zero. If this is done,

then the validity of the latent parameter results entirely from the posterior distribution of

the measured parameter associated with the latent variable.

Astronomy has a long and well-studied history with statistical scaling relations. There-

fore, it is unsurprising that latent variables have previously been found to play an important

role in improving those scaling laws. One important astronomical measurement, greatly

impacted by latent variables, is the estimate of the distance to nearby galaxies. A simple

method of estimating galactic distance is to compare the observed apparent magnitude of an

object to its known luminosity. For elliptical galaxies, such as BCGs, the galaxy’s luminosity

can be estimated using the Faber and Jackson (1976) relation, given by Equation 6.1,

Lelliptical ∝ σ4 (6.1)
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where σ is the velocity dispersion of the elliptical galaxy. However, unlike with the Tully

and Fisher (1977) relation, which is used to estimate distances to spiral galaxies, the Faber

and Jackson (1976) relation has a larger uncertainty associated with it, resulting in a larger

scatter associated with these distance estimates. This large uncertainty led astronomers to

determine whether a latent parameter was associated with the luminosity of an elliptical

galaxy. This avenue of inquiry resulted in the identification of the fundamental plane

(Djorgovski and Davis, 1987), given by Equation 6.2,

Re ∝ σ1.2I−0.8
e (6.2)

where Re is the effective radius of the elliptical galaxy, and Ie is the observed surface

brightness at Re. In this example, Re is the latent parameter in measuring distance. Using

the fundamental plane relation along with the angular size measurement of a galaxy yields

a much more tightly constrained distance measurement, which illustrates the impact of

incorporating latent variables.

Based on the example of the fundamental plane, identifying latent parameters can

greatly impact measurements made using scaling relations. However, it is equally as im-

portant to determine the physical motivation for what leads to the appearance of a latent

parameter because understanding whether the selected measured latent variable is a proxy

for another measurement will greatly improve our understanding of the physical processes

that govern that scaling relation, in the case of the SMHM relation, the hierarchical assem-

bly and evolution of the galaxy cluster.

6.1.1.1 The Magnitude Gap

Perhaps the most significant and impactful result of this dissertation is the introduction

of the magnitude gap, the difference in brightness between the BCG and fourth brightest

cluster member, as a latent parameter in the SMHM relation, in Golden-Marx and Miller

(2018). We visually demonstrate that the magnitude gap may be a latent parameter in

Figures 3.6, 3.7, 3.10, 3.11, 4.3, and 5.1, which show that at a fixed halo mass, a linear cor-
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relation between magnitude gap and stellar mass exists; as the BCG’s stellar mass increases,

so does the magnitude gap. As noted in Chapter I, the growth of the magnitude gap is

related to the hierarchical assembly of the BCG, an idea which as discussed in Chapter III

is supported by the identification of the same trend in the semi-analytic models of the MIL-

LENIUM simulation (Guo et al., 2011; Henriques et al., 2012). Although the trend shown

in the stellar mass, halo mass, and magnitude gap phase space suggests magnitude gap is a

latent parameter in the SMHM relation, we relied on the posteriors of our Bayesian MCMC

model to verify that this was the case and that incorporating magnitude gap would reduce

the uncertainty (σint) associated with this relation. As illustrated by the posterior results

shown in Figures 3.8, 3.9, 3.14, 3.15, and 4.4 from our hierarchical Bayesian MCMC model

(see Sections 3.5, 4.5, 5.5), which nests the traditional SMHM relation (Equation 3.10)

within our modified SMHM relation (Equation 3.8, Equation 4.7, or Equation 5.7), we

find that γ the SMHM relation “stretch” parameter, which measures the strength of the

correlation between stellar mass and magnitude gap,is significantly non-zero (> 6σ).

As discussed in Golden-Marx and Miller (2018), Golden-Marx and Miller (2019), and

Golden-Marx et al. (in prep.), the inclusion of the magnitude gap as a third parameter in the

SMHM relation significantly impacts the measured parameters associated with the SMHM

relation. The most significant of these results, in agreement with the primary purpose of

incorporating latent parameters, is that the inclusion of the magnitude gap in the SMHM

relation significantly decreases σint. As discussed in Chapter I, the consensus value of σint is

≈0.15 dex (Gu et al., 2016; Tinker et al., 2017; Zu and Mandelbaum, 2015; Kravtsov et al.,

2018; Pillepich et al., 2018), in agreement with the measurement from Golden-Marx and

Miller (2018) when the magnitude gap is not included. However, incorporating magnitude

gap into the SMHM relation reduces σint to ≈0.08 dex in the SDSS-C4 sample (Golden-

Marx and Miller , 2018). Therefore, the inclusion of this latent parameter reduces σint as

much as ≈50%. Moreover, this result still holds true when redshift evolution of the SMHM

relation is accounted for, as shown in Golden-Marx and Miller (2019). The reduction of

σint via the incorporation of the magnitude gap signifies that a previous portion of the

unexplained σint results from comparing BCGs with differing magnitude gaps, which are at
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different stages within their hierarchical growth.

Additionally, another important result presented within this dissertation, as shown in

Golden-Marx and Miller (2019), is that the measured slope of the SMHM relation is im-

pacted by both by the incorporation of the magnitude gap and by the choice of radius within

which the BCG’s magnitude is measured. Chapter I and Chapter IV discuss how following

the two-phase formation scenario (Oser et al., 2010), the outer envelope of the BCG is more

strongly correlated with the cluster than the core. Although this trend was discussed in

the context of the EMERGE empirical model of galaxy formation (Moster et al., 2018),

this trend is identified for the first time observationally in this dissertation (Chapter IV

Golden-Marx and Miller , 2019), and results in the slope of the SMHM relation increasing

as the aperture radius used to measure stellar mass increases until reaching an asymptote

near ≈100kpc (see Figure 4.2). Thus, the outer portion, which contains all information

about recent merger growth is unsurprisingly more strongly correlated with the cluster’s

halo mass than the inner region, which forms prior to the cluster’s final assembly, as shown

in Figure 1.2. Figure 4.2 also highlights that we measure a significantly steeper increase in

slope (and slope value) when the magnitude gap is incorporated into the SMHM relation,

which is unsurprising given that like the outer regions, the magnitude gap results from the

BCG and cluster’s hierarchical assembly. Thus, accounting for the cluster’s hierarchical

assembly in the SMHM relation strengthens the correlation between the central galaxy and

the cluster’s dark matter halo.

6.1.2 Redshift Evolution

The second primary results from this dissertation, presented in Golden-Marx and Miller

(2019) and Golden-Marx et al. (in prep.) stems from the measurement of the redshift

evolution of the measured parameters associated with the SMHM relation. Given that both

BCGs and their underlying dark matter halos grow hierarchically, prior to the work in this

dissertation, it was unclear how the SMHM relation should evolve over time. Moreover,

prior to this dissertation, observational works had been unable to place any constraints

on the redshift evolution of the slope of the SMHM relation, in large part due to the large
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uncertainty associated with the slope measurement (Oliva-Altamirano et al., 2014; Gozaliasl

et al., 2016). However, this dissertation had two advantages compared to other results and

approaches. The first advantage is our use of a statistically large sample of galaxy clusters

(≈ 1000 and ≈ 2500) covering large ranges in redshift (0.03 < z < 0.3 and 0.03 < z < 0.60).

The second advantage is that incorporating the magnitude gap as a third parameter in the

SMHM relation reduces the uncertainty associated with the slope measurement (Golden-

Marx and Miller , 2018). The combination of these factors greatly reduced the uncertainty

associated with the slope and other parameters of the SMHM relation using our hierarchical

Bayesian MCMC model, and allowed us to measure these parameters at a level of precision

higher than many recent observational studies.

As a result of our unique approach, introduced in Golden-Marx and Miller (2019) and

confirmed in Golden-Marx et al. (in prep.), we for the first time, observationally detect sta-

tistically significant late-time redshift evolution (> 3.5σ) in the slope of the SMHM relation,

when redshift evolution is incorporated into the SMHM relation in the manner described by

Equation 4.7. The most important thing to note about this result is that much of the evo-

lution in the SMHM relation occurs relatively recently (z < 0.15), prior to which the slope

was relatively constant at (β ≈0.35). The detection of the redshift evolution of the slope of

the SMHM relation, which based on comparisons to simulations (Gu et al., 2016), results

from BCG hierarchical growth, highlights that at recent times, BCGs continue to grow hi-

erarchically predominately via minor mergers. Moreover, it is important to note, that this

strong evolution is only detected when the magnitude gap is incorporated (see Table 4.7.1).

Therefore, in order to detect the continued hierarchical growth of BCGs, it is important

to include a parameter that results from that same hierarchical growth. Additionally, in

Golden-Marx et al. (in prep.), we highlight that by including the homogeneously measured

DES data, we are able to detect redshift evolution in γ and σint for the first time as well,

which allows us to speculate about which galaxies are involved in BCG hierarchical growth

over the redshift range 0.03 < z < 0.60 and whether hierarchical growth is responsible for

σint in the SMHM relation.

189



6.1.3 Hierarchical Bayesian Infrastructure

Although not a directly publishable result of this dissertation, one of the most signifi-

cant outputs that resulted from this dissertation is the creation of a hierarchical Bayesian

MCMC infrastructure (Sections 3.5, 4.5, and 5.5), which is used throughout this disserta-

tion to measure the parameters of the SMHM relation. Based on the testing of this model,

described in Golden-Marx and Miller (2018), using the Henriques et al. (2012) prescription

of the MILLENNIUM simulation, this model allows us to accurately measure the underlying

(or intrinsic) parameters of the SMHM relation, while also accounting for the uncertainty

in each measurement, (i.e., the stellar mass, halo mass, and magnitude gap values), which

is significant because we will never have observed measurements without uncertainty. Ad-

ditionally, this model uniquely accounts for the fact that the measurement uncertainties

are themselves uncertain and adds a beta distribution function to the uncertainty of each

parameter to account for this. While this model has been explicitly used to constrain the

SMHM relation, it can be easily generalized to be applied to other astronomical scaling

relations, correlations, or any simple linear relation. Additionally, as shown by compar-

ing the models in Golden-Marx and Miller (2018) and Golden-Marx and Miller (2019), it

can also be easily modified to incorporate additional measurement parameters, with future

inclusions such as the cluster’s formation redshift or halo concentration, into the SMHM

relation. Therefore, the infrastructure designed in this dissertation will continue to serve as

a fundamental part of the statistical portions of my research in the coming years.

6.2 Future Work

The statistical methods and tools that I’ve developed as part of this dissertation, along

with the physical intuition I’ve gained from characterizing the impact of cluster assembly

on the SMHM relation have provided me with an excellent jumping off point as I continue

to strive to improve our understanding of the galaxy-halo connection. Since I will continue

studying the galaxy-halo connection as a postdoctoral researcher at Shanghai Jiao Tong

University, here, I describe a few possible avenues of inquiry related to the SMHM relation
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and the galaxy-halo connection that I plan to explore in the coming years.

6.2.1 Physical Motivation of the Magnitude Gap

Chapter III, introduced the magnitude gap as a latent parameter in the SMHM relation

and via comparisons to semi-analytic models of the MILLENNIUM simulation (Guo et al.,

2011; Henriques et al., 2012) found that the magnitude gap-stellar mass stratification results

entirely from the hierarchical assembly of the cluster and BCG. Moreover, incorporating

the magnitude gap impacts both the measurement of the slope and σint (Golden-Marx and

Miller , 2018, 2019). Therefore, magnitude gap is indeed a latent parameter. Despite this

identification, it is likely that the latent parameter is not exactly the magnitude gap and

that we have instead identified an observational proxy for a more physically motivated latent

parameter. Therefore, one of my primary objectives over the next few years is to determine

exactly what physical parameter the magnitude gap-stellar mass stratification represents.

As discussed in Chapter I, using state-of-the art cosmological simulations Matthee et al.

(2017), Artale et al. (2018), and Zehavi et al. (2018) find that a stellar mass-formation

redshift stratification exists at fixed halo mass for lower mass halos (log10(Mhalo/M�) <

13.0). Given the similarity of the stratification, illustrated in Figure 1.4, I believe that

a correlation likely exists between the magnitude gap and a cluster’s formation redshift,

the redshift when half of the cluster’s halo mass assembles. As further justification of this

theory, Zehavi et al. (2018) note that earlier forming halos, housing more massive centrals,

have fewer satellite galaxies because their earlier formation time allowed for the central

(BCG) to merge with the satellites. In a hierarchical growth scenario, as discussed by

Solanes et al. (2016), these mergers lead to an increase in the magnitude gap and serve as

evidence that the magnitude gap may be an observational proxy for a cluster’s formation

redshift, a measurement which we are currently unable to estimate. As further support

of this idea, D’Onghia et al. (2005) and von Benda-Beckmann et al. (2008) using N-body

simulations identify a weak correlation between the formation redshift and the magnitude

gap between the BCG and 2nd brightest cluster member. However, this earlier simulated

result relied on a small sample of clusters and the identified correlation was never quantified
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and has since remained largely ignored.

To determine if magnitude gap and formation redshift correlate as well as the strength

of such a correlation, I plan to use the Illustris TNG300 simulation (Pillepich et al., 2018)

or a similar state-of-the art cosmological simulation which is large enough to have a statis-

tically significant number of galaxy clusters (100s). This analysis requires data that can be

obtained easily from simulations: formation redshifts of the clusters will be measured via

the halo merger trees; halo masses will be provided both directly from the simulation and

via a richness measurement, allowing for observational comparisons, stellar masses will be

measured by integrating the number of stellar particles within fixed physical radii; cluster

membership will be determined using the red sequence and position within the simulation

box; and BCG and 4th brightest cluster member galaxy magnitudes will be measured in

the same manner as stellar mass, to measure M14, and provide an observational estimate

of stellar mass. Using these measurements, I will first determine whether a simple corre-

lation exists between formation redshift and magnitude gap, using a similar approach to

my hierarchical Bayesian model. However, since, as shown in Figures 3.6, 3.7, 3.10, 3.11,

4.3, and 5.1, the stellar mass-magnitude gap stratification also is related to the slope of

the SMHM relation such that BCGs with a given magnitude gap increase in stellar mass

at higher halo masses, I will also create a multi-dimensional mapping between the stellar

mass, halo mass, magnitude gap parameter space, and formation redshift using hierarchi-

cal Bayesian machine learning techniques (e.g., support vector machines), similar to the

Bayesian MCMC infrastructure that I have built in this dissertation, to identify a likely

complex non-linear relation. A similar analysis will then be done for different magnitude

gaps to verify the result from Dariush et al. (2010) that M14 best correlates with an early

formation time. The mappings strength will determine the level of correlation between

BCG hierarchical growth and the halos hierarchical assembly as well as possibly determine

a method to observationally estimate cluster formation redshifts.

Using this technique to estimate formation redshift would allow me to measure how the

SMHM relation’s slope and σint change with both observed and formation redshift. This

change would only require a minor modification to the model presented in Golden-Marx
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and Miller (2019) and would allow me to verify that my previously described intuition is

correct and that the reduction in scatter caused by incorporating the magnitude gap results

from comparing only those BCGs at similar points in their evolution.

6.2.1.1 Assembly Bias

As just described, I plan to determine whether the magnitude gap can be used to trace

a cluster’s formation redshift. Currently, no observational proxy for formation redshift

exists. One cosmological topic that would be greatly impacted by a formation redshift

measurement is assembly bias, the dependence of halo clustering on a secondary property

that is dependent on the halos formation redshift (Lin et al., 2016), in clusters. Assembly

bias strongly impacts cosmological constraint-reliant cluster statistics, such as the halo

occupation distribution, which provides information about the number of galaxies within a

halo of given mass, or the cluster richness, which is assumed to depend only on halo mass

(Wechsler et al., 2006). If richness depends on a cluster dark matter halos formation redshift,

a bias may exist in richness-selected clusters (Wu et al., 2008), such that early forming

clusters may have a lower richness than late forming clusters because an early formation

time would allow for more mergers to occur. If this bias were to exist, then it would likely

have a significant impact on halo mass estimates done using the mass-richness relation

(described in Section 1.4.1.4) because high-concentration, early-forming, high mass halos

and low-concentration, late forming, low-mass halos will have the same richness (Wechsler

et al., 2006). As such the calibrations of the mass-richness relation may be incorrect.

The impact on the mass-richness relation is key because this relation is commonly used to

estimate cluster masses out to high redshifts, including for SDSS-redMaPPer (Rykoff et al.,

2012; Simet et al., 2017) and DES-redMaPPer (McClintock et al., 2019).

Although some recent studies have detected assembly bias signatures in clusters (Miy-

atake et al., 2016), these detections were later revealed to result from projection effects

(Busch and White, 2017; Zu et al., 2017). Despite the lack of success in observationally de-

tecting assembly bias signatures, assembly bias is found in numerical simulations such that

low mass, high-concentration, early forming halos are more strongly clustered, and high
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mass, low concentration, late forming halos are more clustered; although, the trend is much

weaker for high mass halos (Wechsler et al., 2006). However, even in simulations, detecting

assembly bias in clusters remains uncertain (Mao et al., 2018). Therefore, identifying a new

observational tracer for formation redshift provides an opportunity to measure assembly

bias in both observations and simulations and determine its impact on our cosmological

models.

Here, I outline how I plan to approach identifying assembly bias using the mapping

described in Section 6.2.1 to estimate the formation redshift of clusters. Using SDSS and

DES-redMaPPer catalogs (described in Sections 4.4, 5.4) I will use the mapping between

stellar mass, halo mass, magnitude gap, and formation redshift to estimate the formation

redshift of each cluster and identify a sample of self-similar (same halo mass and formation

redshift clusters) in SDSS (Rykoff et al., 2014) and DES-redMaPPer cluster catalogues

over the redshift range 0.1 < z < 0.6. Using this data, along with a measurement of the

clustering of redMaPPer clusters, I can create a sample of BCGs with the same formation

redshift across a range in observed redshift, which will allow me to study how assembly bias

manifests in the observed universe by comparing the halo clustering measurements for our

low, intermediate, and high magnitude gap samples. Comparing how clustering scales with

the magnitude gap based formation redshift estimate will determine whether the redMaPPer

richness measurements are biased. Additionally, since clustering measurements, formation

redshifts, and magnitude gaps can all be measured in cosmological simulations, I can also

do a similar analysis using simulations. Comparing the results of the simulations and

observations would provide great insight into the impact of assembly bias and identify the

parameters that need to be modified in our simulations and semi-analytic/empirical models

to best match the observed universe.

6.2.2 Mass-Richness Relation Evolution

One key and possibly overlooked result from this dissertation is that Golden-Marx and

Miller (2019) use the SMHM relation to constrain the scatter associated with the mass-

richness relation. As discussed in Section 1.4.1.4, the mass-richness relation is a commonly

194



used technique to measure halo masses for large photometric surveys out to high redshifts.

Despite this common use, prior to the work introduced in Golden-Marx and Miller (2019),

we were unable to place strong physically motivated constraints on the intrinsic scatter in

the mass-richness relation.

Given that we are in an era of precision cosmology, it is unsurprising that the constraints

on the systematic and statistical uncertainties associated with the mass-richness relation are

quite small; Simet et al. (2017) estimate the total of both components is ≈ 7%. However,

the intrinsic uncertainty associated with halo mass at fixed richness, σ(M |λ)int, the width

of the mass-richness relation, is suggested to be larger and not meaningfully constrained.

As noted in Golden-Marx and Miller (2019), Andreon (2015) assume a large uncertainty

in their caustic halo masses and report the scatter in the mass-richness relation to be

as low as σ(M |λ)int < 0.05 at a 90% confidence. In contrast, Rozo et al. (2015) find

a significantly larger value of 0.17-0.21, depending on their assumption for the intrinsic

scatter in cluster SZ masses and the associated co-variance with the observed richness

measurement. Additionally, Simet et al. (2017) measure a value of 0.25 ± 0.03, but note

that they are unable to constrain σ(M |λ)int using a top-hat prior covering the range 0.2 to

0.3 in their Bayesian MCMC model.

σ(M |λ)int is unconstrained because the uncertainty in the observed mass-richness re-

lation, σ(M |λ)obs, depends on the uncertainty in the mass estimate, σ(M)data, as well as

σ(M |λ)int, which are described mathematically by Equation 6.3.

σ(M |λ)2
obs = σ(M)2

data + σ(M |λ)2
int (6.3)

To quantify these parameters, we require direct halo mass measurements independent of

scaling relations, such as weak gravitational lensing mass estimates or dynamical masses

estimated using the caustic technique (see Section 1.4.1.3). However, even with these mea-

surements, additional parameter constraints are required to avoid degeneracies between the

measurements of σ(M)data and σ(M |λ)int.

In Golden-Marx and Miller (2019), we solve the degeneracy problem using the SMHM
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relation to simultaneously constrain both σ(M)data and σ(M |λ)int because Golden-Marx

and Miller (2018) use caustic halo masses for the SDSS-C4 clusters and Golden-Marx and

Miller (2019) use the mass-richness relation to estimate halo masses, including for a subset

of SDSS-C4 clusters. Since these clusters have the same stellar masses and magnitude gaps,

the posterior distributions from the SMHM relation must agree regardless of the technique

used to measure halo mass. Since the slope of the SMHM relation depends on the associated

halo mass uncertainty, and the halo mass uncertainty is correlated with σ(M |λ)int, I can

determine the values for σ(M |λ)int and σ(M)data that yield posteriors which agree with one

another. Therefore, in Golden-Marx and Miller (2019), I introduce a joint mass-richness

SMHM relation analysis, which places strong constraints on the uncertainties in the mass-

richness relation and the caustic halo mass. To simplify the hierarchical Bayesian MCMC

model, I removed σint as a free parameter and keep it fixed at 0.1 dex. Using this analysis,

for the first time we place physically motivated error bars on the intrinsic uncertainty in

the mass-richness relation: σ(M |λ)int = 0.20+0.03
−0.04

Although the result from Golden-Marx and Miller (2019) places a meaningful constraint

on the σ(M |λ)int, it was done only for a low redshift sample (zmed = 0.086), so it remains

unknown how this measurement evolves with redshift. In fact in both Golden-Marx and

Miller (2019) and Golden-Marx et al. (in prep.), we assume that this value does not

evolve. Currently, the spectroscopic data does not exist to determine whether σ(M |λ)int

evolves with redshift. However, in the coming years, I plan to extend this analysis to higher

redshifts, using data from the Dark Energy Spectroscopic Instrument (DESI), which will

provide a sizeable amount of spectroscopic data and yield a large sample of clusters with 10

or more member galaxies allowing for measurements of stacked caustic phase spaces that

can be used to estimate the halo mass out to higher redshifts. In what follows, I outline

how I plan to approach this project.

To determine how σ(M |λ)int evolves with redshift, I will build on my existing hierar-

chical Bayesian MCMC framework (Golden-Marx and Miller , 2019). Using DESI spectro-

scopic information, I will perform a similar analysis to what was previously described for

the SDSS-C4 sample for the data covering the redshift range z < 0.3. To measure the
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required parameters needed for this analysis, I will use existing BCG and member galaxy

photometry (within 0.5 R200), to measure the magnitudes, stellar mass and magnitude gap

(via the red sequence). DESI spectroscopic information will also be used, when available

to reduce the measurement uncertainty on the magnitude gap by removing foreground out-

liers as well as provide precise spectroscopic redshift measurements for each cluster. I plan

to calculate halo masses in two manners. First, using the radius-velocity phase spaces, I

will measure the caustic halo masses in the manner described in Gifford et al. (2013) and

Section 1.4.1.3. Since the number of galaxies used to measure the caustic radius-velocity

phase space in DESI clusters will likely be low (10-15 galaxies) compared to the more heav-

ily sampled low-z SDSS-C4 clusters, I will use the stacked caustics. Halo masses will also

be estimated using a mass-richness relation given by a cluster-finding algorithm, such as

redMaPPer (Rykoff et al., 2014), run on the DESI data. Therefore, using galaxy clusters

found within DESI, I will have stellar mass, magnitude gap, redshift, caustic halo mass,

and mass-richness halo mass measurements for each cluster. Using a modified version of my

hierarchical Bayesian MCMC model, I will incorporate the uncertainty in the caustic halo

masses as a free parameter (with a uniform prior), the mass-richness relation uncertainty,

which it is covariant with, as well as redshift evolution parameters for both halo mass uncer-

tainties, increasing the number of free parameters for the model used in Golden-Marx and

Miller (2019) and Golden-Marx et al. (in prep.) from 8 to 12. This analysis will allow me

to confirm whether the uncertainty on the caustic halo masses or the mass-richness relation

evolves as a function of redshift or correlates with any of the measured parameters in the

SMHM relation associated with the galaxy-halo connection. This analysis would be par-

ticularly useful for our estimates of cosmological parameters, done via halo mass estimates

and also improve our characterization of the SMHM relation’s late-time redshift evolution

presented in Golden-Marx and Miller (2019) and Golden-Marx et al. (in prep.).
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