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ABSTRACT

In this dissertation, we present new methods for Phase I trials and Small n Sequential

Multiple Assignment Randomized Trials (snSMARTs), both in a Bayesian framework.

The Bayesian formulation of the Continual Reassessment Method (CRM) is implemented

with a one-parameter model describing the association of dose with the probability of dose-

limiting toxicity (DLT). Implementation of the CRM requires the user to select two “tuning

parameters”: (1) the “skeleton,” or vector of a priori probabilities of DLT for each dose,

and (2) the prior standard deviation for the model parameter. Existing methods search the

values for each from a range of plausible values through simulation, which is time consuming.

Therefore, in the first project, we propose a systematic way of recommending the skeleton

and prior standard deviation that avoids simulations. We compare the percentage that each

dose level is recommended as the MTD using the proposed approach and existing approaches

as comparators. We demonstrate that our approach is computationally faster and maintains

a good precision of selecting the MTD in various scenarios.

In the second chapter, we continue trial design in small samples, but change gears to the

small-n Sequential Multiple Assignment Randomized Trial (snSMART). In an snSMART,

patients are first randomized to one of multiple treatments (stage 1) and patients who respond

to their initial treatment continue the same treatment for another stage, while those who

fail to respond are re-randomized to one of the remaining treatments (stage 2). The data

from both stages are used to estimate the efficacy of three active treatments in the setting

of rare disease. Analysis approaches for snSMARTs are limited. Therefore, in the second

project, we propose a Bayesian approach that allows for borrowing of information across

both stages. Through simulation, we compare the bias, root mean-square error (rMSE),

x



width and coverage rate of 95% confidence/credible interval (CI) of estimators from of our

approach to estimators produced from (a) standard approaches that only use the data from

stage 1, and (b) a log-Poisson model using data from both stages whose parameters are

estimated via generalized estimating equations. We demonstrate the rMSE and width of

95% CIs of our estimators are smaller than the other approaches in realistic settings, so

that the collection and use of stage 2 data in snSMARTs provide improved inference for

treatments of rare diseases.

In the previous project, a Bayesian method for estimating the response rate of each individual

treatment in a three-arm snSMART demonstrated efficiency gains for a given sample size rel-

ative to other existing frequentist approaches. However, these efficiency gains are dependent

upon knowing the sample size. Because few sample size calculation methods for snSMARTs

exist, in the third project, we propose a Bayesian sample size calculation for an snSMART

designed to distinguish the best treatment from the second-best treatment. Although our

methods are based on asymptotic approximations, we demonstrate via simulations that our

proposed sample size calculation approach produces the desired statistical power, even in

small samples. Moreover, our methods produce sample sizes quickly, thereby saving time

relative to using simulations to determine the appropriate sample size. We compare our

proposed sample size to an existing frequentist method based upon a weighted Z-statistic

and demonstrate that the Bayesian method requires far fewer patients than the frequentist

method for a study with the same design parameters.
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CHAPTER I

Introduction

In the first project, we propose new methods for Phase I trials of a single agent in a Bayesian

framework. Phase I clinical trials are first-in-human studies for a new treatment. In Phase

I oncology trials, investigators are interested in determining a treatment regimen that is not

only safe but also likely to be efficacious in a small group of patients, typically ranging from

20 to 40 patients. A reasonable approach is to specify a target toxicity rate η that should be

sufficiently low to indicate safety and sufficiently high to indicate efficacy, where η usually

falls in the interval [0.2, 0.3]. Toxicity here does not include all types of adverse events but

is a dose-limiting toxicity (DLT), which, even though varying among trials, often includes

Grade 3 or higher toxicity according to the National Cancer Institute. The largest dose

among those examined that leads to DLTs closest to η is usually defined as the maximum

tolerated dose (MTD). One of the main goals of Phase I clinical trials in oncology is to

establish the MTD from a pre-specified set of dose levels that will be examined further in a

Phase II trial for efficacy.

Although numerous approaches for MTD identification in Phase I exist (Braun, 2014), our

work focuses upon the continual reassessment method (CRM) (O’Quigley et al., 1990). The

CRM requires the user to specify a priori probabilities of dose-limiting toxicity (DLT) for

each dose level, known as the skeleton, and the prior standard deviation for the dose-toxicity

model. The skeleton and the prior standard deviation impact the ability of the continual
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reassessment method (CRM) to correctly identify the MTD. Thus, the values assigned to

the skeleton and prior standard deviation need to be carefully considered, and the process

of selecting appropriate skeleton and prior standard deviation ideally occurs with clinical

input. Unfortunately, often there is little existing prior data to provide input for appropriate

values.

To address the sensitivity of the CRM to the skeleton, Yin and Yuan (2009) suggested

using Bayesian model averaging techniques. Lee and Cheung (2009) proposed developing

a single skeleton through prior ideas developed in Shen and O’Quigley (1996) and Cheung

and Chappell (2002) describing consistency properties of the CRM. Lee and Cheung (2011)

generalized the skeleton developing to the skeleton and prior standard deviation jointly.

in Lee and Cheung (2011), to figure out a pair of values of skeleton and prior standard

deviation for any setting of Phase I trial requires thousands of simulated trials, which is time

consuming. Moreover, the work of Shen and O’Quigley (1996) and Cheung and Chappell

(2002) were motivated by one of the scenarios in the simulation study of O’Quigley et al.

(1990) where the CRM did a poor job of correctly identifying the MTD, even in large

samples. Therefore, we propose a systematic approach to determine values of skeleton and

prior standard deviation that will be more time efficient, improve the ability of the CRM to

identify the MTD in this setting, and maintain good MTD identification in other settings.

In the second and third projects, we present a Bayesian analysis of Small n Sequential

Multiple Assignment Randomized Trials (snSMARTs) and provide a sample size calculation.

snSMARTs are motivated by ARAMIS (A RAndomized Multi-center study for Isolated Skin

vasculitis trial), the design of which mimics the SMART design in metastatic renal cancer

Thall et al. (2007); Thall (2016). ARAMIS (NCT02939573) is a multi-national trial to find

the best treatment for patients with skin vasculitis.

We propose methodological improvements for ARAMIS in the setting of small sample sizes

rare diseases. Standard SMARTs have not been previously implemented in rare diseases and

2



estimating or comparison of DTRs with large sample sizes. Due to the small sample size and

treatments considered, a snSMART differs from a standard SMART in terms of the research

questions of interest and analytic methods necessary to address these questions. Thus, our

proposed methods differ from those for standard SMARTs because we propose to use the

multi-stage randomization feature to borrow information across different stages to make

conclusions about individual treatments. The snSMART design may improve recruitment

due to continuing treatment for those who respond and switching treatment for those who

do not, and may be more efficient than current trial designs for rare diseases.

Our overall goal of chapters 2 and 3 is to develop an analytical method that efficiently

estimates the individual treatment efficacies for 3 treatments and calculations for sample

size that compares the best 2 treatments in a snSMART with 3 or more treatment arms

with sufficient statistical power and coverage rate. By using the efficient proposed methods,

smaller clinical trials can provide rigorous evidence of treatment effectiveness to expand the

design options for rare disease comparative effectiveness trials.
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CHAPTER II

A Systematic Approach to Skeleton and Prior Variance

Selection in the Continual Reassessment Method

2.1 Introduction

In Phase I oncology clinical trials, researchers seek to model the association between doses

of a drug and the probability of a dose limiting toxicity (DLT), which is a toxicity that

prevents further administration of the agent at that dose level. The end goal of the trial is

to identify the maximum tolerated dose (MTD), which is defined as the largest dose among

those examined that leads to DLTs in an acceptable proportion of subjects. This acceptable

proportion is referred to as the target DLT rate and is usually in the interval [0.20, 0.30].

Although numerous approaches for Phase I designs exist (Braun, 2014), our work focuses

upon the continual reassessment method (CRM) (O’Quigley et al., 1990). An excellent

tutorial of the CRM was published by Garrett-Mayer (2006).

The CRM design begins by assigning a cohort of subject(s) to a dose and following each

member of the cohort for the occurrence of DLT. Although the original formulation of the

CRM recommended the dose for the first cohort should be the one believed a priori to be the

MTD, later modifications to the CRM suggested for subject safety reasons that the starting

dose should be the lowest dose (Goodman et al., 1995; Faries , 1994; Moller , 1995). This

latter convention has since been adopted in most applications of the CRM.

4



The CRM quantifies the association of dose and DLT rate through a one-parameter model.

A prior distribution is placed on the parameter and the observed proportion of DLTs at each

dose is used to compute the posterior mean of the parameter. The posterior mean is then

inserted in the CRM model to compute the posterior estimate of DLT probability for each

dose. The next cohort of subjects is then assigned to the dose with the posterior probability

of DLT closest to the target DLT rate. The posterior estimates of the DLT probabilities

are continually updated with each successive cohort and enrollment stops once the desired

sample size is reached.

One important aspect for the CRM is determining the magnitude of the prior standard devi-

ation for the model parameter, as this will determine how informative the prior distribution

will be. We cannot use a traditionally non-informative variance because of the small sample

sizes seen in most Phase I trials. Instead, the prior variance must be selected such that

the prior provides direction for the posterior early in the trial when little data has been

collected, yet allows the data to drive decisions later in the trial once sufficient data have

been collected. Zhang et al. (2013) developed approaches for adaptively changing the prior

variance during a Phase I trial that include increasing the prior standard deviation gradually

during the trial, or through formal hypothesis testing. Although Chevret (1993) suggested

that the CRM is robust to the choice of prior as long as the prior is uninformative, Lee and

Cheung (2011) suggests that a larger value of the prior standard deviation is not necessarily

uninformative and an uninformative prior for a given model may not be uninformative for

another model. Thus, Lee and Cheung (2011) proposed methods to jointly select the prior

standard deviation and a set of a priori DLT rates, known as the skeleton, which also plays

a role in the performance of the CRM.

The one-parameter model in the CRM is often some variant of a regression model that

includes a linear combination of the model parameter and a numeric value for each dose.

However, these dose values are typically not the actual clinical values of the doses, which can

often vary by factors of 100. Again, due to the small sample sizes used in Phase I trials, we

5



need to use dose values that are less variable than the clinical values, ones that will improve

the fit of the model. The skeleton allows us to determine the dose values, as the skeleton

contains the a priori estimate of the DLT rate for each dose. Replacing the model parameter

by its prior mean and equating the model to each value in the skeleton allows us to solve

for a dose value that we can use with each dose. The skeleton will have an impact on the

performance of the CRM because the fit of the model will diminish as the true unknown DLT

rates deviate from the skeleton. Thus, the skeleton needs to be carefully selected, and the

process of selecting an appropriate skeleton ideally occurs with clinical input. Unfortunately,

often there is little existing prior data to provide input for an appropriate skeleton.

To address the sensitivity of the CRM to the skeleton, Yin and Yuan (2009) suggested using

Bayesian model averaging techniques. In this approach, several skeletons are proposed at

the beginning of the trial, with equal prior preference (weight) given to each skeleton. As

the clinical trial continually accrues more data, the posterior weights given to each skeleton

change to reflect how they fit the accrued data. These updated weights are then incorporated

into the posterior estimates of DLT for each dose so that the impact of skeletons that deviate

far from the true DLT rates have little influence on estimation of the MTD. However, the

approaches that determine the number of skeletons and the values contained in each skeleton

are currently unknown.

As an alternative to Bayesian model averaging, we could conceive of an approach where

the performance of the CRM is examined via simulation using every possible configuration

of true DLT rates with every possible configuration of skeleton values. However, there is

an uncountable number of such combinations, and even examining an exhaustive finite grid

of combinations would still prove to be computationally time-consuming. To reduce the

dimensionality of this problem, Lee and Cheung (2009) proposed developing a single skele-

ton through prior ideas developed in Shen and O’Quigley (1996) and Cheung and Chappell

(2002), which was then extended in Lee and Cheung (2011) to also incorporate selection of

the prior variance.
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However, the methods of Lee and Cheung (2011) are based on intensive simulations, which

is time-consuming because dose assignments and DLT outcomes are simulated subject-by-

subject due to the adaptive process of the CRM. We propose an alternative approach for

calibrating the skeleton and prior variance. Our methods are motivated by a setting ex-

amined in O’Quigley et al. (1990), where the CRM did a poor job of correctly identifying

the MTD, even in large samples. Using the weighted expected outcome of DLT, our process

of calibration is less time-consuming than the simulation based calibration approaches and

the CRM using our skeleton and prior standard deviation performs as other approaches.

We describe the details of our approach in Section 2.2 and examine the performance of our

methods via simulation in Section 2.3. We close with a discussion in Section 3.4.

2.2 Methods

2.2.1 CRM Background

The design of a Phase I trial has three components: (i) J dose levels of an investigational

treatment, (ii) N , the total number of subjects to enroll, and (iii) η, the target DLT rate.

A one-parameter model, denoted as pj = f(dj; β), is used to associate dose, j = 1, 2, . . . , J ,

with its corresponding DLT rate, pj, in the CRM, in which dj is a numerical value given

to dose j. The two most-commonly used models in the CRM are the power (or empiric)

model, pj = d
exp(β)
j , and the logistic model, log(pj/[1− pj]) = 3 + exp(β)dj, in which β is the

unknown model parameter.

We let πj denote an a priori DLT rate for dose j. Collectively the vector, π = {π1, π2, . . . ,

πJ}, is called the skeleton for the CRM. As suggested earlier, the value of dj is not the actual

clinical dose, but is a value solved using the assumed model, f(dj; β), once π is specified.

Setting β equal to its prior mean, denoted as µ, we use πj and f(dj; β) to solve for dj, i.e.

dj = πj/exp(µ) for the power model and dj = [log(πj/[1 − πj]) − 3]/exp(µ) for the logistic
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model. In the Bayesian formulation of the CRM, a prior distribution, g(β) is assumed for β,

such that β has support on the real line. We emphasize that in our model we exponentiate

the value of β because we assume that the probability of DLT must increase with the dose.

If the support of g(β) is already constrained to the positive line, then β can be used directly

in the model rather than exp(β).

The dose assignment for each cohort is determined adaptively based upon the dose assign-

ments and DLT outcomes observed on previously enrolled subjects. Specifically, if we have

enrolled k subjects, in which subject i = 1, 2, . . . , k has dose assignment d[i], which is one of

the values in {d1, d2, ...dJ}, and a binary indicator of DLT Yi, we can compute the posterior

mean DLT rate for dose j, p̂j, as:

p̂j =

∫ ∞
−∞

f(dj; β)
L(β|Y)g(β)∫∞

−∞ L(β|Y)g(β)dβ
dβ, (2.1)

where

L(β|Y) =
k∏
i=1

f(d[i]; β)Yi [1− f(d[i]; β)]1−Yi (2.2)

is the likelihood for β and Y = {Y1, Y2, ...Yk}.

The dose level, j∗, recommended for the next enrolled cohort is the dose with the estimated

DLT rate closest to η. After observing the DLT outcomes for this most-recently enrolled

cohort, we use Equation 2.1 to update p̂j and update which dose has a DLT rate closest to

the targeted DLT rate. At the end of the study, we determine the MTD as the index j∗

based upon the data from all N subjects.

2.2.2 Existing Methods for Calibrating π and σ

For a given vector of true DLT rates α = {α1, α2, . . . , αK}, in which αk is the true DLT

rate for dose k, the performance of the CRM is usually quantified by how frequently in

repeated simulations that the CRM correctly identifies the MTD at the end of the study.
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This quantity is often referred to as the probability of correct selection (PCS). Of course,

the PCS is also a function of the assumed model, f(dj; β), the skeleton, π, and the prior

standard deviation of the model parameter, σ. Thus, in order to identify a “best” π, one

could envision identifying a candidate set of values for π with a fixed value of σ, repeating

simulations over several values of α, and choosing the π that has the highest average PCS

among all the possible values of α.

Lee and Cheung (2009) provided a systematic process for selecting both the set of skeleton

values, π, and the set of true DLT rates, α. The set of skeletons is selected through the

concept of an indifference interval, which was first proposed by Cheung and Chappell (2002).

For a given target DLT rate η, the indifference interval is an interval of DLT rates such that

any dose with a true DLT rate in that interval could be selected as the MTD at the end

of the study. Cheung and Chappell (2002) showed that there is a simple correspondence

between the values in π, and δ, the half-width of the desired indifference interval. Thus,

Lee and Cheung (2009) proposed defining a sequence of values for δ that start at 0.01 and

increase in increments of 0.01 up to a pre-defined upper bound; each of those values of δ

would produce a candidate value for π to examine.

The set of true DLT rates is based upon what Lee and Cheung (2009) call a “plateau

configuration” consisting of J vectors. Each vector j = 1, 2, . . . J assumes dose j is the MTD

and has a DLT rate equal to the target DLT rate η. All other doses have DLT rates that

vary around dose j through an odds ratio Ψ, such that all doses below the MTD have a

DLT rate equal to η/[Ψ + η(1−Ψ)] and all doses above the MTD have a DLT rate equal to

ηΨ/[1 − η(1 − Ψ)]. Thus, there is a change in the DLT rate directly above and below the

MTD, but then the DLT rates plateau in either direction with the remaining doses.

With σ set equal to
√

1.34, which is a value used in other publications (Lee and Cheung ,

2009; O’Quigley and Shen, 1996), each skeleton is examined with each of the J vectors of

true DLT rates in a large number, i.e. perhaps 1,000, of simulated trials. Each simulation
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is summarized by the resulting PCS, with a final average PCS computed for each skeleton

over the J vectors of true DLT rates. The “best” skeleton is defined as the one with largest

average PCS. Lee and Cheung (2011) then expanded this concept to also consider a set of

potential values for σ, thereby developing a single approach for identifying both π and σ.

Note that the calibration of π and σ depends on the choice of the odds ratio Ψ, which

quantifies the spread of DLT rates near the MTD. Values of Ψ = 2, 3, and 5 were considered

in Lee and Cheung (2009) as values that produced DLT rates most likely to be seen in

practical applications. However, in Lee and Cheung (2011), where both π and σ were

calibrated, only the value of Ψ = 2 was considered due to the amount of computing time

needed for simulations. We propose an alternative approach to jointly calibrate π and σ

that is not based on simulations, and hence more time efficient compared to Lee and Cheung

(2011). Thus, in our proposed methods, we will continue to define our true DLT rates

through the plateau configuration, but expanded to use odds ratios of Ψ = 2, 3, and 5.

2.2.3 Proposed Methods for Calibrating π and σ

To identify the calibration set of π and σ, we consider a class of candidate values for π

that are (i) equally spaced by a positive value denoted as ∆, where ∆ takes values in

{0.01, 0.02, ...}, and (ii) the a priori MTD has a DLT rate equal to η. Naturally, the resulting

skeleton must also contain sensible values of DLT rates; we only consider skeletons in which

the DLT rate of the lowest dose is no more than 0.10 and the DLT rate of the highest

dose is no more than 0.90. The candidate values of σ are a sequence from 1 to 4 with an

increments of 0.20. As stated earlier, Lee and Cheung (2009) and Lee and Cheung (2011)

use simulations to estimate the average PCS value for every combination of π and σ and

select the combination with the largest average PCS. Given that our calibration set of π

and σ is larger than Lee and Cheung (2011), the number of simulations required for every

combination of π and σ is prohibitively time-consuming. Thus, our goal is to develop a
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metric to find the best combination of π and σ without using simulations.

As a first step, we adopt the methods of Cheung and Chappell (2002), who demonstrated

that the support of the model parameter β can be divided into J non-overlapping intervals

H1, H2, . . . HJ . Assuming that β has support on the real line, the interval Hj is equal to

(bj, bj+1), where b1 = −∞, bJ+1 =∞, and bj, j = 2, 3, . . . J solves f(dj−1; bj)+f(dj; bj) = 2η.

Essentially, interval Hj contains the values of β that lead to dose j having a modeled DLT

rate closest to the targeted DLT rate η.

When we have collected data on k subjects, we will have a posterior distribution for β and

we define ωj,k to be the amount of posterior mass in Hj, such that
∑

j ωj,k = 1. Thus, ωj0

is the amount of a priori mass contained in Hj and ωjN is the amount of posterior mass at

the end of the study and we have data for all N subjects.

However, the posterior distribution of β is dependent upon the data collected during the

study, which again, because of the adaptive nature of the CRM, would have to be determined

via simulation. To avoid simulations, we will choose one outcome at every dose for each

subject, similar to the idea of the non-parametric optimal design (NPOD) methodology of

O’Quigley et al. (2002). In the NPOD, each subject is given a binary indicator of DLT at

each dose, so that the data now contain J times more information than an actual trial, and

the NPOD supplies an upper bound for the performance of the CRM.

However, in our methods, each subject does not have a binary indicator of DLT for each

dose. Instead, each subject is given the expected outcome of DLT for each dose, which is

simply the vector of true DLT rates, α. To account for the fact that each subject has J

outcomes rather than one outcome, we incorporate weights into the likelihood used by the

CRM. When the subject k + 1 enters the trial and we have data for k subjects, the weights

for subject k + 1 are ω1,k, ω2,k, . . . ωJ,k, which are the amount of posterior mass of β in Hj
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described earlier. Explicitly, the likelihood in Equation (2.2) changes to

L(β|α) =
k+1∏
i=1

J∏
j=1

f(dj; β)ωj,(i−1)αj [1− f(dj; β)]ωj,(i−1)(1−αj)

=
k+1∏
i=1

J∏
j=1

{
f(dj; β)αj [1− f(dj; β)](1−αj)

}ωj,(i−1)
(2.3)

Thus, in this likelihood, every subject has the same vector of outcomes, quantified by α, but

each subject has a different set of weights.

The posterior distribution of β is recursively updated with each new subject, and after

the data collection of all N subjects, the values ω1N , ω2N , . . . , ωJN quantify the posterior

probability that each dose is the MTD. Better performance of the CRM is indicated by

having large ωjN at the true MTD and smaller values of ωjN at the other doses. Thus, if

we then define qj = 1 if dose j is the true MTD and qj = 0 otherwise, we can compute the

deviance

D =
1

J

J∑
j=1

(ωjN − qj)2. (2.4)

A smaller deviance is associated with a higher precision of correctly identifying the MTD.

Thus, for a given skeleton π and a given prior standard deviation σ, we have a deviance for

every vector of true DLT rates, α. We recommend the pair of π and σ that has the smallest

median deviance over all the possible values of α examined.

Hence, the skeleton and prior standard deviation selection process is as follows:

1. Determine J , the number of doses for investigation, N , the number of subjects to

enroll, and η, the target DLT rate.

2. Generate, α, the set of vectors of true DLT rates, under the plateau configuration with

Ψ = 2, 3, and 5.

3. Generate the candidate values of skeleton, π, and prior standard deviation, σ, using

the criteria defined in the first paragraph of Section 2.2.3.
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4. Over all true DLT rates in α, calculate the median deviance for each pair of candidate

values of π and σ using the likelihood proposed in Equation (2.3) and deviance measure

defined in Equation (2.4).

5. The pair of π and σ associated with the smallest median deviance are the values of π

and σ recommended for use in the actual Phase I trial.

To illustrate this process, we consider a Phase I clinical trial in which six doses are being

studied, 25 subjects will be enrolled and η is equal to 0.20. We use a power model with

parameter, β, which has a prior normal distribution with mean 0 and standard deviation σ.

In this setting, we will have 18 vectors of true DLT rates, 35 skeletons under consideration,

and 20 values of σ ∈ {1.0, 1.2, . . . , 4.0}. Let us now consider one specific combination in

which the true DLT rates α = {0.20, 0.33, 0.33, 0.33, 0.33, and 0.33}, the skeleton π =

{0.20, 0.21, 0.22, 0.23, 0.24, and 0.25}, and, σ = 1.

This information then allows us to divide the support of β into the six intervals H1 =

(−∞, 0.02), H2 = (0.02, 0.05), H3 = (0.05, 0.08), H4 = (0.08, 0.11), H5 = (0.11, 0.13),

and H6 = (0.13,∞), which have respective prior masses of 0.51, 0.01, 0.01, 0.01, 0.01,

and 0.45. These prior masses are then used as weights for the first subject in Equation

(2.3), which is then used to compute the respective posterior mass of each Hj as 0.56,

0.02, 0.02, 0.01, 0.01, and 0.38. The posterior masses are the weights given to the second

subject in Equation (2.3), which is used to compute weights for the third subject. We repeat

this procedure until all 25 subjects are incorporate and produce final posterior probabilities

{ω25,1, . . . , ω25,6} = {0.69, 0.04, 0.04, 0.04, 0.03, 0.16}. Given that the vector of true DLT rates

sets the first dose as the MTD, we have q1 = 1 and q2, . . . , q6 are each equal to 0. According

to Equation 2.4, the deviance is equal to 0.14.

For this given pair of π and σ, we repeat this process for all 18 vectors of true DLT rates and

compute the median deviance. We then recursively compute a median deviance for every

possible pair of π and σ. The smallest median deviance occurs when π = {0.20, 0.33, 0.46,
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0.59, 0.72, 0.85} and σ = 3, which are the values we recommend being used in the actual

Phase I clinical trial.

2.3 Simulations

We compare our proposed skeleton and prior standard deviation calibration, denoted as Wei,

to the method proposed in Lee and Cheung (2011), in settings in which the CRM uses the

power model, there are five scenarios of true DLT rates for J = 6 doses, the target DLT

η = 0.20, and total sample size N = 25. For J = 6, η = 0.20, and N = 25, our approach

suggests the optimal skeleton π being equal to {0.20, 0.33, 0.46, 0.59, 0.72, 0.85} and prior

standard deviation σ being equal to 3.

Lee and Cheung (2011) proposes two algorithms for the skeleton and prior standard deviation

calibration, denoted as LC11A and LC11B respectively. LC11A suggests π being equal to

{0.05, 0.11, 0.20, 0.31, 0.42, 0.53} and σ being equal to 0.69, while LC11B suggests π being

equal to {0.07, 0.13, 0.20, 0.29, 0.38, 0.47} and σ being equal to 0.55. Lee and Cheung (2011)

compares LC11A and LC11B with other two approaches proposed in Lee and Cheung (2009)

and O’Quigley et al. (1990), respectively, denoted as LC09 and OQ90, respectively. LC09

suggests π being equal to {0.01, 0.07, 0.20, 0.38, 0.56, 0.71} and σ being equal to 1.16. OQ90

suggests π being equal to {0.05, 0.10, 0.20, 0.30, 0.50, 0.70} and uses a different prior settings,

where β has an exponential prior with rate 1. Using simulations with 2, 000 realizations, we

compare the percentage with which each dose level is recommended as the MTD (the larger

the better) using our proposed approach, and all other four approaches as comparators. We

also examine our approach without weighting, denoted as Wei2. We change the candidate

values for σ in Wei2 from the original values into σ ∈ {1.0, 1.2, . . . , 10} because the selected

σ is equal to the upper bound, 4, in original settings. In Wei2, the optimal skeleton is

{0.20, 0.26, 0.32, 0.38, 0.44, 0.50} and prior standard deviation σ is 7.5.The results are shown

in Table 2.1.
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Table 2.1: The simulated percentage with which each dose level is recommended as the
MTD, where the number of doses for investigation is J = 6, the target DLT rate is η = 0.20,
and the number of subjects n = 25. The number of simulation is 2, 000. The true MTD in
each scenario is in italic. The percentage that the true MTD is recommended as the MTD is
in bold. OQ90 represents the original setting of the CRM in O’Quigley et al. (1990); LC09
represents the CRM using the calibration of π with σ =

√
1.34 in Lee and Cheung (2009);

LC11A and LC11B represent the CRM using two different algorithms for the calibration of
π and σ proposed in Lee and Cheung (2011), respectively. Wei2 represents the CRM using
proposed algorithm without weighting the expected outcome.

percentage of selection as MTD

Scenario Method 1 2 3 4 5 6

1 DLT rate 0.05 0.10 0.20 0.30 0.50 0.70
OQ90 0.01 0.18 0.50 0.29 0.01 0.00
LC09 0.02 0.21 0.53 0.24 0.01 0.00
LC11A 0.02 0.23 0.52 0.23 0.01 0.00
LC11B 0.02 0.23 0.51 0.23 0.01 0.00
Wei 0.03 0.25 0.47 0.24 0.01 0.00
Wei2 0.06 0.27 0.42 0.21 0.03 0.00

2 DLT rate 0.30 0.40 0.52 0.61 0.76 0.87
OQ90 0.91 0.08 0.01 0.00 0.00 0.00
LC09 0.89 0.11 0.01 0.00 0.00 0.00
LC11A 0.92 0.08 0.00 0.00 0.00 0.00
LC11B 0.92 0.08 0.00 0.00 0.00 0.00
Wei 0.95 0.05 0.00 0.00 0.00 0.00
Wei2 0.97 0.03 0.00 0.00 0.00 0.00

3 DLT rate 0.05 0.06 0.08 0.11 0.19 0.34
OQ90 0.00 0.01 0.05 0.32 0.57 0.06
LC09 0.00 0.01 0.08 0.29 0.49 0.13
LC11A 0.00 0.01 0.08 0.29 0.48 0.14
LC11B 0.00 0.01 0.09 0.32 0.44 0.14
Wei 0.01 0.02 0.07 0.24 0.51 0.16
Wei2 0.00 0.03 0.09 0.25 0.37 0.26

4 DLT rate 0.06 0.08 0.12 0.18 0.40 0.71
OQ90 0.00 0.04 0.22 0.59 0.14 0.00
LC09 0.01 0.06 0.26 0.57 0.11 0.00
LC11A 0.01 0.06 0.27 0.54 0.13 0.00
LC11B 0.01 0.06 0.27 0.55 0.12 0.00
Wei 0.02 0.08 0.24 0.54 0.12 0.00
Wei2 0.03 0.11 0.28 0.42 0.16 0.00

5 DLT rate 0.00 0.00 0.03 0.05 0.11 0.22
OQ90 0.00 0.00 0.00 0.07 0.64 0.29
LC09 0.00 0.00 0.01 0.09 0.42 0.49
LC11A 0.00 0.00 0.00 0.07 0.42 0.52
LC11B 0.00 0.00 0.00 0.08 0.42 0.49
Wei 0.00 0.00 0.00 0.05 0.37 0.57
Wei2 0.00 0.00 0.01 0.06 0.24 0.70
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In the first scenario, where the MTD is the third dose, our proposed π and σ leads to

the proportion for selecting the third dose (the MTD) of 47%, which is close to the MTD

selections from other four approaches. In the second scenario, where the MTD is the first

dose, all approaches provide high chances for selecting the MTD. Our approach shares the

highest proportion for selecting the MTD of 95% with both LC11A and LC11B. In the third

scenario, where the MTD is the fifth dose, our approach yields the second highest proportion

for selecting the MTD of 51%. In the fourth scenario, where the MTD is the fourth dose, our

proposed approach leads to the proportion for selecting the MTD of 54% which is close to the

MTD selections from LC11A and LC11B. The last scenario is originally from O’Quigley et al.

(1990) which is the scenario that motivates our research. The MTD is the last dose. With

the original setting in O’Quigley et al. (1990), the proportion of selecting the sixth dose (the

MTD) was just 29%, while the proportion of selecting one dose lower than the MTD is 53%.

This means the CRM will be more likely to incorrectly identify the MTD if the DLT rates

for the six doses are as those in the last scenario. Our method and the LC11A increase the

proportion of MTD selection to 57% and 52%, respectively. Overall, the averaged proportion

of the MTD selection is 61% of the five scenarios for our proposed approach, which is the

highest compared to all other four comparator approaches. Our approach without weighting

only outperforms other four comparator approaches in Scenarios 2 and 5, where the MTDs

are at the edges. The recommended σ is 7.5, which is a large value for prior standard

deviance, that leads a U-shaped a priori distribution for the model-based MTD (Lee and

Cheung , 2011) and hence the CRM is more likely to select the doses at the edges as the

MTDs.

2.4 Concluding Remarks

Our method is motivated by the last scenario in O’Quigley et al. (1990) where the CRM

as originally proposed does not perform well. We simultaneously consider different scenar-
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ios of true DLT rates and use them as data after properly weighting for the skeleton and

prior standard deviation calibration. The proposed method yields better MTD selection

in this scenario and similarly good MTD selection in other scenarios, but with much less

computation time.

Our idea of recommending an optimal skeleton and prior standard deviation given the clinical

trial design (number of doses involved, sample size, and target DLT rates) is selecting the

skeleton and prior standard deviation that lead to the highest median deviance of MTD

selection on a set of systematically created hypothetical true DLT rates when applied in the

CRM. The simulation results suggests that the proposed recommendation of the skeleton

and prior standard deviation enhance the performance of CRM in handling the motivating

scenario and also maintain a good performance on MTD selection in different scenarios.

In estimating the chance for each dose to be the MTD, we apply a weighted expected

outcome as a Bernoulli outcome to the Bernoulli likelihood, which results Equation 2.3.

Though the expected outcome of having a DLT after weighting is a proportion instead

of a Bernoulli outcome, the rationality of Equation 2.3 is explained via a quasi-Bayesian

likelihood (Chernozhukov , 2007) approach. Weighting the expected outcome of DLT for

investigational doses with adaptive weights is in fact reversely applying a propensity score

(Rosenbaum, 1987) for the adaptive dose-assignment for each subject using the CRM. In

Phase I clinical trials using the CRM, each subject is adaptively assigned to one dose that

is most likely to be the MTD. Our goal is to calibrating the parameters of CRM using

data from this adaptive process. We can not directly apply the population level expected

DLT outcomes for all doses from one subject because this is not consistent with the dose

assignment process and hence leads to potentially less optimal operating characteristics.

Further simulation studies support the expectations that the calibrations are less optimal

without using weights.

Though we have focused our simulations using the power model for the CRM, the proposed
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method for the skeleton and prior standard deviation calibration is general. For the logistic

dose-toxicity model, the settings for the true DLT rates, the construction of the candidate

value of the skeleton and prior standard deviance are the same as the power model. The

only difference is to use the logistic dose-toxicity model, instead of the power model, in

the proposed likelihood derivation for the model parameter and in the computation of the

weights. We also assume that the first subject entering the trial is assigned to the middle

dose for the convenience of the comparison to other methods in our simulations. In real

applications, for safety considerations, a trial may start with the lowest dose. Our approach

applies for any starting dose. An R package to implement the skeleton and standard deviation

recommendations for any user specified design of Phase I clinical trials is under development.
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CHAPTER III

A Bayesian Analysis of Small n Sequential Multiple

Assignment Randomized Trials (snSMARTs)

3.1 Introduction

The Orphan Drug Act defines rare diseases as disorders affecting fewer than 200,000 individ-

uals in the United States 107th Congress (2002). More than 8,000 recognized rare diseases

affect almost 30 million individuals and their families in the United States Griggs et al.

(2009). Identifying optimal treatment options for patients living with rare diseases is chal-

lenging due to the low number of individuals affected. Randomized clinical trials (RCTs)

are generally regarded as providing the strongest scientific evidence for the efficacy of a

treatment. RCTs attempt to minimize bias and balance confounders across treatments by

employing randomization Levin (2007). However, confirmatory RCTs often require a large

number of subjects, which is difficult to attain in rare disease trials. Thus, RCTs studying

treatment for rare diseases commonly have reduced power compared to studies of non-rare

diseases. As a result, rare disease trials are more likely to be single arm (63.0% vs. 29.6%

for non-rare disease trials) and non-randomized (64.5% vs. 36.1% for non-rare disease tri-

als) Bell and Smith (2014). Small sample trials of rare diseases that are randomized and

multi-arm are most likely crossover, n-of-1, or adaptive designs Gupta et al. (2011).

There are disadvantages of the trial designs currently used in the rare disease landscape.
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For example, single arm studies are employed when the objective of the trial is to obtain

preliminary evidence of the treatment efficacy and to collect additional safety data. As a

result, single arm trials are not generally used to confirm efficacy Evans (2010). In a crossover

study, all subjects receive all experimental treatments. By design, each subject is their own

control so that confounding and between-subject variance is reduced, leading to the need of

fewer subjects than a standard RCT. However, a treatment effect may extend beyond the

phase of the study and affect further treatment (i.e., a carryover effect). To ensure carryover

effects are not a problem, a long time period may be needed between treatments, which could

increase the trial duration and patient dropout. Moreover, since all participants receive

a sequence of different treatments, the treatments may expose participants to additional

toxicities than a standard RCT or switch participants from an efficacious treatment to a

non-efficacious treatment. These challenges have inspired the design of alternative crossover

trials so that participants are less likely to drop out of the study Makubate and Senn (2010).

An n-of-1 trial is conducted in a single participant with multiple crossover treatment assign-

ments. In an n-of-1 trial, a participant is their own control so that confounding is reduced

and the data can suggest which treatment is optimal for the participant. However, an n-

of-1 trial usually requires multiple crossover treatment assignments to defend against the

effect of treatment across time, measurement error, and error from the participant’s condi-

tion differing across time. The multiple crossover treatment assignments potentially prolong

the duration of the trial which may be burdensome for the participant and requires a well

developed trial protocol to keep the participant engaged.

Adaptive designs allow for design parameters, such as the sample size, randomization frac-

tion, population recruited, or doses, to be altered during the trial after interim data evalua-

tion Evans (2010). The adaptiveness may reduce the number of subjects recruited to inferior

treatment, increase efficiency, improve recruitment and take advantage of accumulating data

to enable early stopping of the trial. Alternatively, an adaptive trial is often more complex

to design and analyze than other standard clinical trial designs and is susceptible to bias
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due to temporal drift in participant characteristics.

Although the designs described above may be useful to study treatments in rare diseases,

many have called for more innovative trial designs Gupta et al. (2011). Here, we propose

design and methodological improvements for a small n sequential multiple assignment ran-

domized trial, the snSMART Tamura et al. (2016). An snSMART is an application of a

SMART design Lavori and Dawson (2000); Murphy (2005); Dawson and Lavori (2011) in

small samples, particularly for rare disease research. In a two-stage snSMART design, pa-

tients are randomized at baseline between a number of treatments and re-randomized at

some timepoint according to their response to their initial treatment. Compared to a tra-

ditional multi-stage design, such as a crossover design, the snSMART is attractive because

it allows participants who benefit from their treatment to continue to receive that treat-

ment and who do not benefit from the treatment to switch to another treatment. Hence,

an snSMART design may help to improve participant recuitment and retention. However,

analytic methods for an snSMART are not fully established, so that the efficiency gains of

an snSMART design compared to other designs in rare disease research have not yet been

confirmed.

We want to emphasize the similarities and differences between an snSMART and SMART.

In both snSMARTs and SMARTs, patients may be sequentially randomized to treatments

where second-stage treatment may depend on response to first-stage treatment. However,

the primary aim of an snSMART and a SMART differ. The primary aim of an snSMART

is to compare treatments by pooling data from all stages to find one superior treatment. In

contrast, the primary aim of a SMART is to develop effective dynamic treatment regimes

Robins (1986); Murphy (2003) that define the personalized treatment guidelines consisting

of a first stage treatment followed by a second stage treatment for patients.

Our methods are motivated by the ARAMIS (A RAndomized Multi-center study for Isolated

Skin vasculitis trial), the design of which mimics the SMART design in metastatic renal
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cancer Thall et al. (2007); Thall (2016). ARAMIS (NCT02939573) is a multi-national trial

to evaluate different treatment options for patients with skin vasculitis. Vasculitides are

uncommon diseases which can affect almost any organ, although vasculitis frequently involves

the skin as an isolated process or as part of systemic vasculitis. Without high quality studies

to guide the management of skin vasculitis, treatment decisions are made based on anecdotal

experience and expert opinions. This uncertainty is reflected in variation between providers,

leading to patients being treated with agents of uncertain efficacy and unknown relative

merit. ARAMIS compares the efficacy of three of the most commonly used treatments for

the treatment of skin vasculitis: colchicine, dapsone and azathioprine (Figure 3.1). Eligible

patients are randomized with equal chance of receiving one of the three treatments under

investigation for six months. Those who do not respond after the first stage (i.e., six months)

are re-randomized equally between the other two treatments. Responders in stage 1 remain

on their treatment in stage 2. The outcome of interest is response to treatment at six months

as defined by a combination of participant and physician measures.

In Section 4.2, we present a method to analyze data from an snSMART by sharing informa-

tion across stages to evaluate the overall treatment efficacy. The efficacy of a treatment is

defined as the response rate at 6 months after initiating that treatment. In Section 4.3, we

present simulation studies to illustrate our model’s properties under various scenarios. Our

manuscript concludes with a discussion in Section 3.4.

3.2 Method

The outcome of interest after each stage is a binary variable, where 1 denotes response and

0 denotes non-response to the assigned treatment. We propose a Bayesian approach that

borrows information across both stages to estimate the response rate of each treatment.

We model the first stage outcome as the probability of having a response to the first stage

treatment. The second stage outcome is modeled conditionally on the first stage outcome
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Figure 3.1: Study design of snSMART. Patients are randomized (R) to one of the treatment
arms, A, B or C equally and followed up for 6 months. The responders keep the same
treatment for another six months, while the non-responders are re-randomized to one of the
remaining treatments and followed up for another six months
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linking the first and second stage response probabilities through linkage parameters.

We use different linkage parameters for the first stage responders and first stage non-

responders. In this way, a patient’s second stage response rate is: (1) at least as high

as one’s first stage response rate if she/he is a responder and, (2) is at most as high as

one’s first stage response rate if he/she is a non-responder after the first stage treatment.

We compare the estimator of the response rate using the proposed method to estimators

produced from three other methods: (a) a log-Poisson model using data from both stages

whose parameters are estimated via generalized estimating equations (GEE), (b) a Bayesian

method using only the first stage data, and (c) a maximum likelihood method (MLE) using

only the first stage data. The details of our proposed model and the log-Poisson model will

be discussed next and simulation results for the comparison of estimators produced from the

four methods will be shown in the Section 4.3.

3.2.1 Bayesian Joint Stage Modeling

For each subject i = 1, . . . , N , stage j = 1, 2, and treatment k = A,B, . . . K, where N denotes

the total sample size and K denotes the number of arms, let Yijk denote the observed response

outcome. We model the first stage outcome and the second stage outcome given the first

stage outcome each as a Bernoulli random variable. The first stage response rate is denoted

as πk for treatment k. The second stage response rate for first stage responders is equal to

β1πk. For non-responders to treatment k in the first stage who receive treatment k′ in the

second stage, the second stage response rate in the second stage is equal to β0πk′. In practice,

we assume: (i) The linkage parameters (β0, β1) do not depend on the initial treatment k. (ii)

The linkage parameter for non-responders is smaller than 1, i.e., β0 < 1. (iii) The linkage

parameter for responders is greater than 1, i.e, β1 > 1. Via simulation, we examine the

violations of the assumptions in section 4.3.
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Our proposed Bayesian joint stage model (BJSM) is as follows:

Yi1k|πk ∼ Bernoulli(πk)

Y
i2k
′|Yi1k, πk ∼ Bernoulli((β1πk)

Yi1k(β0πk′)
1−Yi1k)

Prior distributions on the first stage response rates and the linkage parameters are used

to incorporate physician beliefs about the treatments. For the ARAMIS trial, we specify

priors for the parameters involved in the model: πk ∼ Beta(ζk, ηk), β0 ∼ Beta(ζ0, η0),

β1 ∼ Pareto(1, φ). For πk, we have chosen to use the hyperparameter values ζk = 0.4 and

ηk = 1.6 for two reasons. First, these parameters lead to a prior mean of ζk/(ζk + ηk) = 0.2

for each of the arms, which was a reasonable a priori setting for the ARAMIS study. Second,

the sum of the two parameters of a Beta distribution can be viewed as a prior sample size

because the prior variance is inversely proportional to that sum. Thus, we assume our prior

information is based upon a sample size of ζk + ηk = 2 patients. For β0, we have chosen

hyperparameter values ζ0 = 1 and η0 = 1, which lead to a uniform distribution over the

interval [0, 1]. For β1, we have assumed a hyperparameter value of φ = 3, so that, on

average, the second stage response rate is φ/(φ − 1) = 1.5 times as large as the first stage

response rate.

3.2.2 Log-Poisson Joint Stage Modeling

The log-Poisson joint stage model, which we refer to LPJSM, is a frequentist way of modeling

data from two stages, where we use a log link to model the mean and the Poisson family to

model the variance of the outcome. We model the the log of each response rate instead of

the logit of each response rate mainly for interpretability. The model is as follows:

log(E(Yi1k)) = log(µi1k) = αA1{k = A}+ αB1{k = B}+ αC1{k = C} (3.1)
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log(E(Y
i2k
′)) = log(µ

i2k
′) = αA1{k′ = A}+αB1{k′ = B}+αC1{k′ = C}+γ1Yi1k+γ0(1−Yi1k)

(3.2)

where 1{·} is an indicator function. The response rates, πk, and the linkage parameters

β1 and β0 from the BJSM are equivalent to the exponentiated values of αk, γ1 and γ0,

respectively.

We estimate the parameters via GEE Zeger and Liang (1986):

N∑
i=1

∂µTi
∂θ

V −1i (Yi − µi) = 0, (3.3)

where Yi = (Yi1k, Yi2k′)
T , µi = (µi1k;µi2k′)

T , θ is the parameter vector with θ = (αA, αB, αC ,

γ1, γ0)
T ; Vi is the working covariance matrix of Yi with Vi = A

1/2
i R(α)A

1/2
i Pan and Connett

(2002), whereA
1/2
i is a diagonal matrix with elements being the square root of V ar(Yijk), the

variance of the outcome of the ith patient at the jth stage under treatment k. The variance

of the outcome of the ith patient at the jth stage is modeled with a Poisson family variance

structure, V ar(Yijk) = µijk. We use the Poisson family variance structure to construct Vi

in equation (3.3) to find the estimator of θ as opposed to the binomial family variance

structure, because others have reported that estimation sometimes fails to converge when

attempting to fit log-binomial models with a small sample size Williamson et al. (2013).

In addition, we use an independence working correlation structure R(α) = I2×2 in the

estimating equation because the independence working correlation structure is recommended

when binary responses have less than binomial variation over clusters Hanley et al. (2000).

In estimating the variance of θ̂, we use the robust ‘sandwich’ covariance estimator, Σ−10 Σ1Σ
−1
0 ,

where Σ0 =
∑N

i=1
∂µT

i

∂θ
V −1i

∂µT
i

∂θ
and Σ1 =

∑N
i=1

∂µT
i

∂θ
V −1i (Yi − µi)(Yi − µi)TV −1i

∂µT
i

∂θ
. We use

the binomial family variance structure, V ar(Yijk) = µijk(1 − µijk), to construct Vi in Σ0

and Σ1 to estimate variance of θ̂, because the ‘sandwich’ estimator is consistent, when Vi is

correctly specified and even if R(α) misspecified Halekoh et al. (2006).
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3.3 Simulations

We set up the scenarios for our simulation studies in two subsections: simulations when

the assumptions for BJSM are satisfied and simulations when our assumptions are violated.

We compare the bias, root mean-square error (rMSE), coverage rate and width of the 95%

credible/confidence interval (CI) of the estimated parameters. When the BJSM assumptions

are true, we compare the estimators from our proposed method the BJSM to estimators

produced from other three methods: the log-Poisson joint stage model (LPJSM), described

in Section 3.2.2, Bayesian first stage model (BFSM), and a first stage maximum likelihood

estimates (FSMLE). For both the BFSM and FSMLE, we only use the first stage data for

estimation and for the BFSM, we assume the same prior distribution for πk as the BJSM.

When assumptions are violated, we compare the BJSM to an extension with multiple linkage

parameters (BJSMM), and the LPJSM. The BJSMM is the same as that of the BJSM except

that we allow the linkage parameters to depend on the initial treatment, i.e., β0 is now

replaced by β0k and β1 is now replaced by β1k. We use exactly the same values for the

hyperparameters as the BJSM for the prior densities of the BJSMM so that we allow for

estimating β0k and β1k values that differ among different treatments k, but we give each the

same prior distribution.

Bias is defined as the average of the differences between the true value of πk and the estimated

πk in all simulations. The rMSE is calculated by taking the square root of the mean-square

error of the estimators in all simulations. The simulated coverage rate is the frequency that

the true value of the response parameter falls in the 95% CI for all simulations. The 95%

CIs for the BJSM, BFSM and BJSMM are the highest posterior density (HPD) credible

intervals, which is the narrowest interval that covers the 95% of the posterior distribution of

πk. The 95% CIs for the LPJSM and FSMLE are derived based on the asymptotic normality

of the estimator of πk in these two methods, and calculated by the estimator plus or minus

1.96 times of the standard error of the estimator. The parameters are estimated via the R
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function jags and gee in the R package rjags and gee respectively. The computer programs

used to derive estimates and CIs are available upon request from the primary author.

3.3.1 Simulation Scenarios

We simulate 2000 realizations per scenario; each scenario is a three-arm snSMART. The true

values of the response rates in each arm and the linkage parameters in each stage vary in

different scenarios; details are presented in Table 3.1. We focus on simulation results where

the total snSMART sample size is 90 (30 patients per treatment), but we provide results for

total sample sizes of 45 and 180 in Section 3.5.

Scenarios 1, 2 and 3 represent three ideal settings. In these scenarios, the linkage parameters

for non-responders and for responders are the same for all three treatments, which means

the model specification is the same as the data generating process. In scenarios 4 to 12 we

vary the values of the linkage parameters to investigate model properties when assumptions

are violated (the assumptions are enumerated in Section 3.2.1). Assumption (i) is violated in

scenarios 4-7 and 10-12. Assumption (ii) is violated in scenarios 8, 10 and 12 and assumption

(iii) is violated in scenarios 9, 11 and 12.

3.3.2 Simulation Results When the BJSM Assumptions are True

For scenarios 1, 2 and 3, the bias and rMSE for estimators of the response rates are shown

in Table 3.2. The response rate estimators of the BJSM have the smallest rMSEs among all

four methods. The rMSEs of the estimators from the BJSM and LPJSM are smaller than

the rMSEs provided by the BFSM and FSMLE, which only use data from the first stage.

In scenario 2, the BJSM provides the estimators with smallest bias compared to other three

methods. In scenarios 1 and 3, the bias of the estimators for the BJSM is still small but

slightly higher than the bias for the other three methods. This may be because the prior

mean for the linkage parameter for non-responders is 0.5 which is closer to 0.6, the setting
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Table 3.1: Simulation scenarios. πk is the response rate at six months for the treatment
k = A,B,C. β0k is the linkage parameter for the first stage non-responders treated with
treatment k. β1k is the linkage parameter for the first stage responders treated with treatment
k. The linkage parameters link the second stage response rates with the first stage response
rate in our proposed model. The three assumptions are: (i) The linkage parameters do not
depend on the initial treatment k, i.e., β1k = β1 and β0k = β0. (ii) The linkage parameter
for non-responders is smaller than 1, i.e., β0 < 1. (iii) The linkage parameter for responders
is greater than 1, i.e, β1 > 1.

Scenarios πA πB πC β0A β0B β0C β1A β1B β1C Assumptions Violated

1 0.3 0.3 0.3 0.8 0.8 0.8 1.5 1.5 1.5 none

2 0.2 0.3 0.4 0.6 0.6 0.6 1.5 1.5 1.5 none

3 0.2 0.3 0.4 0.8 0.8 0.8 1.5 1.5 1.5 none

4 0.2 0.3 0.4 0.3 0.6 0.9 1.5 1.5 1.5 (i)

5 0.2 0.3 0.4 0.6 0.6 0.6 1.2 1.5 1.8 (i)

6 0.2 0.3 0.4 0.3 0.6 0.9 1.2 1.5 1.8 (i)

7 0.2 0.3 0.4 0.9 0.6 0.3 1.2 1.5 1.8 (i)

8 0.2 0.3 0.4 1.2 1.2 1.2 1.5 1.5 1.5 (ii)

9 0.2 0.3 0.4 0.6 0.6 0.6 0.8 0.8 0.8 (iii)

10 0.2 0.3 0.4 0.3 0.6 1.2 1.2 1.5 1.8 (i), (ii)

11 0.2 0.3 0.4 1.2 1.2 1.2 0.8 0.8 0.8 (ii), (iii)

12 0.2 0.3 0.4 0.3 0.6 1.2 0.8 1.5 1.8 (i), (ii), (iii)
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in scenario 2, than 0.8, the setting in scenarios 1 and 3. These observations suggest that, in

settings where the assumptions are satisfied, jointly modeling data from two stages provides

improved estimators for treatment due to smaller rMSEs. In particular, the biggest gain in

rMSE is given by the BJSM which also produces small to negligible bias. Table 3.3 presents

the 95% CI width and coverage rates. Here we see the average width of the 95% CI of the

BJSM is smaller than the other approaches and the coverage rate is around the target 95%.

3.3.3 Simulation Results When the BJSM Assumptions are Violated

Simulation results when the assumptions for the BJSM are violated are shown in Tables 3.4

and 3.5. When only assumption (i) is violated (scenarios 4-7), we see that the bias for the

response rate estimators is small for all three methods. The estimators of the BJSMM has the

smallest bias in scenario 4-6 and BJSM has the smallest bias in scenario 7. The estimators

of the BJSM and BJSMM have smaller rMSEs than the LPJSM approach. When only

assumption (ii) is violated, as in scenario 8, we see that the response rates are overestimated

for all treatment arms by the BJSM and BJSMM. The response rates are overestimated to

balance the effect of the underestimated β0 on the stage 2 response rates of non-responders.

The bias for the estimators is higher for BJSM and BJSMM but still small. The estimators

from the LPJSM have the smallest bias and rMSEs. When only assumption (iii) is violated as

in scenario 9, the response rates are underestimated for all arms by the BJSM and BJSMM.

The response rates are underestimated to balance the effect of the overestimated β1 on the

stage 2 response rates of responders. The estimators from the LPJSM have smallest bias

but the rMSEs are higher compared with those from the BJSM and BJSMM.

When more than one assumption is violated (scenarios 10-12), the bias for the estimators

of the response rates is lower in scenario 11, where assumption (i) holds and assumptions

(ii) and (iii) are violated. This finding occurs because when assumption (ii) is violated, the

BJSM and BJSMM tend to overestimate the response rates, and when assumption (iii) is
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Table 3.2: Simulated bias and root mean-square error (rMSE) for the estimators of πk
where the BJSM assumptions are satisfied. Four modeling approaches: Bayesian joint stage
modeling (BJSM), log-Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM) and first stage maximum likelihood estimation (FSMLE) are compared. The sample
size per treatment arm is 30. πk is the response rate at six months for treatment k, k =
A,B,C.

BJSM LPJSM BFSM FSMLE

Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

1 πA 0.008 0.062 -0.001 0.069 -0.008 0.079 -0.002 0.084
πB 0.008 0.062 0.002 0.069 -0.006 0.078 0.001 0.083
πC 0.008 0.061 -0.002 0.068 -0.008 0.078 -0.001 0.083

2 πA -0.001 0.056 -0.001 0.059 -0.002 0.069 -0.002 0.074
πB 0.001 0.063 0.000 0.070 -0.006 0.078 0.001 0.083
πC 0.000 0.067 0.002 0.077 -0.014 0.085 -0.002 0.089

3 πA 0.005 0.056 -0.001 0.057 -0.002 0.069 -0.002 0.074
πB 0.008 0.062 0.000 0.069 -0.006 0.078 0.001 0.083
πC 0.011 0.064 0.002 0.076 -0.014 0.085 -0.002 0.089

Table 3.3: Simulated width and coverage of 95% CI for the estimators of πk where the
BJSM assumptions are satisfied. Four modeling approaches: Bayesian joint stage modeling
(BJSM), log-Poisson joint stage modeling (LPJSM), Bayesian first stage modeling (BFSM)
and first stage maximum likelihood estimation (FSMLE) are compared. The sample size
per treatment arm is 30. πk is the true response rate at six months for the treatment k,
k = A,B,C. CR=Coverage Rate.

BJSM LPJSM BFSM FSMLE

Scenario Width CR Width CR Width CR Width CR

1 πA 0.240 0.944 0.265 0.931 0.299 0.903 0.321 0.950
πB 0.240 0.948 0.266 0.936 0.300 0.908 0.322 0.949
πC 0.240 0.944 0.265 0.934 0.299 0.908 0.321 0.950

2 πA 0.213 0.929 0.228 0.932 0.256 0.945 0.277 0.945
πB 0.245 0.940 0.269 0.936 0.300 0.908 0.322 0.949
πC 0.265 0.948 0.305 0.937 0.323 0.930 0.344 0.930

3 πA 0.210 0.936 0.222 0.936 0.256 0.945 0.277 0.945
πB 0.240 0.942 0.263 0.936 0.300 0.908 0.322 0.949
πC 0.258 0.956 0.300 0.937 0.323 0.930 0.344 0.930
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violated, the BJSM and BJSMM tend to underestimate the response rates. and when both

assumptions (ii) and (iii) are violated, two errors cancel each other. The BJSM and BJSMM

have smaller rMSEs in all three scenarios.

In general, when the assumptions are violated, the response rate estimators of the BJSM

have smaller bias and rMSEs than the LPJSM in most of the settings, and smaller rMSEs

than the standard approaches that only use the data in stage 1. When multiple linkage

parameters are considered in the BJSMM, we do not see a large reduction of bias or rMSEs.

In Table 3.5, we can see the average width of the 95% CI of the BJSM is smaller than the

other approaches. When only assumption (i) is violated (scenarios 4-7), the coverage rates

of 95% CIs for treatments B and C are around the target 95%. The coverage rate is readily

below the target for all three approaches in scenarios 4 and 6. When only assumption (ii)

(scenario 8) or assumption (iii) is violated (scenario 9), the coverage rate for the treatment C

is below the target. This can be explained by the larger bias in the response rate estimator

for treatment C in scenarios 8 and 9. In scenario 10, (when assumption (i) and (ii) are

violated), and Scenario 12, when all the assumptions are violated, the coverage rates of 95%

CIs are below the target 95% for treatment A and C because the response rate estimators

have higher bias compared to the estimators of the treatment B. When assumptions (ii) and

(iii) are violated at the same time, the coverage rates are greater than the target 95% for the

BJSM and BJSMM and below the target 95% for the LPJSM. Similar trends were observed

for sample sizes of n=45 and 180; details are given in Table 3.6-3.13 in the Section 3.5.

3.4 Concluding Remarks

In this manuscript, we present a Bayesian method (BJSM) to estimate the response rates of

multiple treatments from snSMART with two stages. The BJSM is a novel method that links

the response rates from two stages of one clinical trial via linkage parameters. The BJSM

provides accurate estimators and straight forward clinical interpretations for the parameters.
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Table 3.4: Simulated bias and root mean-square error (rMSE) for the estimators of πk
when assumptions are violated. Three modeling approaches: Bayesian joint stage modeling
(BJSM), Bayesian joint stage modeling with multiple linkage parameters (BJSMM), and
log-Poisson joint stage modeling (LPJSM) are compared. The sample size per treatment
arm is 30. πk is the response rate at six months for treatment k, k = A,B,C.

BJSM BJSMM LPJSM

Scenario Bias rMSE Bias rMSE Bias rMSE

4 πA -0.024 0.060 -0.021 0.059 -0.029 0.064
πB -0.004 0.063 -0.001 0.062 -0.007 0.070
πC 0.027 0.068 0.032 0.071 0.037 0.086

5 πA -0.010 0.054 -0.005 0.055 -0.011 0.056
πB -0.003 0.062 0.003 0.063 -0.005 0.068
πC 0.022 0.072 0.017 0.070 0.017 0.080

6 πA -0.033 0.061 -0.027 0.060 -0.038 0.066
πB -0.008 0.062 0.000 0.062 -0.012 0.069
πC 0.048 0.080 0.048 0.081 0.050 0.093

7 πA 0.014 0.055 0.017 0.058 0.017 0.059
πB 0.001 0.062 0.007 0.063 0.001 0.069
πC -0.004 0.073 -0.013 0.073 -0.018 0.080

8 πA 0.023 0.060 0.029 0.063 -0.001 0.054
πB 0.036 0.069 0.042 0.073 0.000 0.065
πC 0.047 0.076 0.054 0.081 0.001 0.073

9 πA -0.015 0.054 -0.016 0.054 -0.001 0.061
πB -0.029 0.064 -0.030 0.063 0.000 0.073
πC -0.047 0.075 -0.047 0.075 0.002 0.081

10 πA -0.038 0.063 -0.030 0.060 -0.045 0.069
πB -0.015 0.063 -0.005 0.062 -0.024 0.070
πC 0.073 0.095 0.078 0.099 0.071 0.105

11 πA 0.011 0.053 0.014 0.054 0.000 0.056
πB 0.010 0.055 0.013 0.056 0.000 0.067
πC 0.006 0.055 0.010 0.055 0.001 0.076

12 πA -0.047 0.066 -0.039 0.063 -0.053 0.073
πB -0.014 0.063 -0.005 0.062 -0.022 0.070
πC 0.075 0.097 0.078 0.099 0.076 0.109
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Table 3.5: Simulated width and coverage of 95% CI for the estimators of πk when assumptions
are violated. Three modeling approaches: Bayesian joint stage modeling (BJSM), Bayesian
joint stage modeling with multiple linkage parameters (BJSMM), and log-Poisson joint stage
modeling (LPJSM) are compared. The sample size per treatment arm is 30. πk is the true
response rate at six months for the treatment k, k = A,B,C. CR=Coverage Rate.

BJSM BJSMM LPJSM

Scenario Width CR Width CR Width CR

4 πA 0.200 0.868 0.206 0.890 0.220 0.854
πB 0.240 0.933 0.247 0.948 0.266 0.929
πC 0.262 0.950 0.264 0.938 0.303 0.931

5 πA 0.208 0.932 0.213 0.936 0.215 0.915
πB 0.243 0.942 0.250 0.950 0.262 0.930
πC 0.270 0.942 0.278 0.951 0.311 0.942

6 πA 0.194 0.854 0.203 0.880 0.207 0.824
πB 0.238 0.936 0.248 0.946 0.259 0.923
πC 0.266 0.912 0.271 0.912 0.310 0.917

7 πA 0.220 0.957 0.223 0.949 0.222 0.948
πB 0.247 0.948 0.253 0.950 0.264 0.936
πC 0.272 0.928 0.284 0.935 0.313 0.930

8 πA 0.211 0.926 0.219 0.927 0.210 0.930
πB 0.235 0.922 0.245 0.922 0.252 0.938
πC 0.246 0.899 0.255 0.882 0.291 0.944

9 πA 0.206 0.926 0.207 0.933 0.238 0.934
πB 0.235 0.916 0.236 0.918 0.282 0.927
πC 0.250 0.892 0.251 0.900 0.316 0.932

10 πA 0.188 0.834 0.199 0.868 0.202 0.787
πB 0.232 0.922 0.244 0.942 0.255 0.902
πC 0.260 0.825 0.264 0.811 0.308 0.876

11 πA 0.207 0.949 0.212 0.950 0.217 0.928
πB 0.230 0.960 0.235 0.968 0.260 0.932
πC 0.238 0.972 0.243 0.974 0.298 0.944

12 πA 0.183 0.792 0.194 0.838 0.192 0.735
πB 0.232 0.925 0.244 0.942 0.258 0.907
πC 0.259 0.814 0.264 0.810 0.312 0.863
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We compared the proposed method to three other methods via simulation and found that

the BJSM provides the most accurate estimators among all four methods in small samples.

The BJSM relies on three key assumptions. These assumptions simplify our model and make

our model easier to interpret. However, there might be situations where the assumptions

are violated. Simulation results suggest that our method works well even when the linkage

parameters vary among the treatment arm. We can make our model more flexible by includ-

ing different linkage parameters for different treatments (i.e., BJSMM). When we introduce

the additional parameters to analyze data from snSMARTs with total sample sizes of 45,

90, or 180, the gain in bias and efficiency are small to negligible and not uniform across the

different treatment response rates. In further simulations, the BJSMM was uniformly supe-

rior to the BJSM when sample sizes increase above 120 per arm (total sample size of 360).

The model as proposed with homogeneous linkage parameters (i.e., BJSM) has sufficiently

low bias and high efficiency in smaller sample sizes realistic for rare disease research not

warranting estimation of the additional linkage parameters.

Assumptions (ii) and (iii) that constrain the values of the linkage parameters generally hold

when the response rates are similar and low (i.e., less than 50%) for all treatments in the

trial. For many rare diseases, these assumptions are realistic and, thus, violations generally

do not pose problems. If the assumptions are violated, the BJSM provides more biased

estimates than the LPJSM, but is more efficient. Sensitivity analyses using the LPJSM can

always be done to compare results for the two methods.

A limitation that develops from our assumptions and corresponding priors is that the pos-

terior distributions of β1 and πk can have positive probability for β1πk > 1. In reality, we

can not have a response rate greater than 1, but our models allow for this. To circum-

vent this potential problem we considered a power model formulation of the BJSM. In the

power model formulation, the second stage response rates are defined as πβ0
k
′ and πβ1k for

non-responders and responders, respectively. This allows β0 and β1 to vary on the positive
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real line. Ultimately, we decided against the power formulation as the linkage parameters

are not clinically interpretable and our simulations for the proposed version of BJSM did not

draw any samples such that β1πk > 1, making it unlikely for this limitation to be a problem

in practice in similar settings.

Future work includes extending the BJSM to non-binary outcomes (i.e. continuous and

survival outcomes) and establishing sample size calculations based on the analysis of snS-

MARTs using the BJSM. We aim to develop sample size calculations and an easy-to-use

corresponding applet that can target specific differences between treatment arms. The sam-

ple size calculations will lead us to consider alternative designs of snSMARTs where more

than three treatments are involved or there is an imbalance in second-stage randomization.

3.5 Supplementary Materials

Simulation results for sample sizes of 45 and 180 (15 and 60 per arm) are in Table 3.6-3.13.
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Table 3.6: Simulated bias and root mean-square error (rMSE) for the estimators of πk
where the BJSM assumptions are satisfied. Four modeling approaches: Bayesian joint stage
modeling (BJSM), log-Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM) and first stage maximum likelihood estimation (FSMLE) are compared. The sample
size per treatment arm is 15. πk is the response rate at six months for treatment k, k =
A,B,C.

BJSM LPJSM BFSM FSMLE

Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

1 πA 0.004 0.084 0.001 0.099 -0.014 0.106 -0.003 0.119
πB 0.007 0.084 0.002 0.099 -0.011 0.104 0.001 0.118
πC 0.006 0.082 0.001 0.097 -0.013 0.104 -0.002 0.117

2 πA -0.002 0.076 -0.001 0.084 -0.002 0.092 -0.002 0.104
πB -0.003 0.085 0.000 0.101 -0.011 0.104 0.001 0.118
πC -0.007 0.088 0.005 0.111 -0.025 0.113 -0.002 0.125

3 πA 0.005 0.076 -0.002 0.083 -0.002 0.092 -0.002 0.104
πB 0.006 0.084 0.000 0.098 -0.011 0.104 0.001 0.118
πC 0.006 0.085 0.005 0.110 -0.025 0.113 -0.002 0.125

Table 3.7: Simulated width and coverage of 95% CI for the estimators of πk where the
BJSM assumptions are satisfied. Four modeling approaches: Bayesian joint stage modeling
(BJSM), log-Poisson joint stage modeling (LPJSM), Bayesian first stage modeling (BFSM)
and first stage maximum likelihood estimation (FSMLE) are compared. The sample size
per treatment arm is 15. πk is the true response rate at six months for the treatment k,
k = A,B,C. CR=Coverage Rate.

BJSM LPJSM BFSM FSMLE

Scenario Width CR Width CR Width CR Width CR

1 πA 0.319 0.936 0.372 0.913 0.386 0.930 0.441 0.947
πB 0.320 0.928 0.374 0.917 0.389 0.934 0.444 0.947
πC 0.320 0.937 0.373 0.920 0.388 0.934 0.443 0.948

2 πA 0.278 0.920 0.317 0.898 0.327 0.943 0.376 0.801
πB 0.323 0.922 0.376 0.912 0.389 0.934 0.444 0.947
πC 0.346 0.938 0.428 0.928 0.423 0.899 0.478 0.943

3 πA 0.279 0.926 0.308 0.892 0.327 0.943 0.376 0.801
πB 0.320 0.926 0.368 0.918 0.389 0.934 0.444 0.947
πC 0.341 0.947 0.422 0.926 0.423 0.899 0.478 0.943
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Table 3.8: Simulated bias and root mean-square error (rMSE) for the estimators of πk
where the BJSM assumptions are satisfied. Four modeling approaches: Bayesian joint stage
modeling (BJSM), log-Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM) and first stage maximum likelihood estimation (FSMLE) are compared. The sample
size per treatment arm is 60. πk is the response rate at six months for treatment k, k =
A,B,C.

BJSM LPJSM BFSM FSMLE

Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

1 πA 0.006 0.046 0.000 0.048 -0.004 0.058 -0.001 0.060
πB 0.007 0.045 -0.001 0.048 -0.003 0.057 0.000 0.059
πC 0.007 0.044 -0.002 0.048 -0.004 0.057 -0.001 0.059

2 πA 0.000 0.041 -0.003 0.043 -0.001 0.050 -0.001 0.052
πB 0.002 0.047 0.000 0.050 -0.003 0.057 0.000 0.059
πC 0.002 0.050 -0.001 0.055 -0.008 0.061 -0.001 0.063

3 πA 0.004 0.040 -0.002 0.042 -0.001 0.050 -0.001 0.052
πB 0.007 0.045 0.000 0.048 -0.003 0.057 0.000 0.059
πC 0.010 0.048 -0.002 0.055 -0.008 0.061 -0.001 0.063

Table 3.9: Simulated width and coverage of 95% CI for the estimators of πk where the
BJSM assumptions are satisfied. Four modeling approaches: Bayesian joint stage modeling
(BJSM), log-Poisson joint stage modeling (LPJSM), Bayesian first stage modeling (BFSM)
and first stage maximum likelihood estimation (FSMLE) are compared. The sample size
per treatment arm is 60. πk is the true response rate at six months for the treatment k,
k = A,B,C. CR=Coverage Rate.

BJSM LPJSM BFSM FSMLE

Scenario Width CR Width CR Width CR Width CR

1 πA 0.176 0.942 0.188 0.946 0.221 0.931 0.229 0.947
πB 0.176 0.951 0.188 0.942 0.222 0.933 0.230 0.948
πC 0.176 0.952 0.187 0.938 0.221 0.935 0.229 0.948

2 πA 0.157 0.932 0.162 0.931 0.191 0.935 0.199 0.922
πB 0.181 0.947 0.190 0.945 0.222 0.932 0.230 0.948
πC 0.200 0.955 0.215 0.936 0.238 0.938 0.246 0.931

3 πA 0.154 0.940 0.158 0.935 0.191 0.935 0.199 0.922
πB 0.176 0.949 0.186 0.940 0.222 0.932 0.230 0.948
πC 0.192 0.960 0.212 0.938 0.238 0.938 0.246 0.931
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Table 3.10: Simulated bias and root mean-square error (rMSE) for the estimators of πk
when assumptions are violated. Three modeling approaches: Bayesian joint stage modeling
(BJSM), Bayesian joint stage modeling with multiple linkage parameters (BJSMM), and
log-Poisson joint stage modeling (LPJSM) are compared. The sample size per treatment
arm is 15. πk is the response rate at six months for treatment k, k = A,B,C.

BJSM BJSMM LPJSM

Scenario Bias rMSE Bias rMSE Bias rMSE

4 πA -0.023 0.078 -0.020 0.077 -0.027 0.085
πB -0.006 0.085 -0.004 0.084 -0.007 0.099
πC 0.020 0.086 0.024 0.087 0.038 0.116

5 πA -0.010 0.073 -0.006 0.074 -0.010 0.080
πB -0.005 0.085 -0.001 0.085 -0.006 0.099
πC 0.016 0.093 0.015 0.091 0.020 0.115

6 πA -0.031 0.077 -0.026 0.076 -0.036 0.084
πB -0.009 0.085 -0.003 0.084 -0.012 0.097
πC 0.043 0.096 0.044 0.097 0.052 0.123

7 πA 0.012 0.073 0.014 0.075 0.016 0.085
πB -0.002 0.084 0.002 0.085 0.001 0.099
πC -0.011 0.098 -0.015 0.094 -0.015 0.114

8 πA 0.024 0.079 0.030 0.081 -0.003 0.079
πB 0.034 0.088 0.040 0.091 0.001 0.093
πC 0.041 0.091 0.047 0.094 0.004 0.106

9 πA -0.016 0.071 -0.016 0.070 0.001 0.088
πB -0.034 0.083 -0.034 0.082 0.002 0.105
πC -0.056 0.095 -0.055 0.094 0.005 0.114

10 πA -0.034 0.077 -0.028 0.076 -0.043 0.086
πB -0.013 0.085 -0.007 0.084 -0.025 0.098
πC 0.069 0.107 0.072 0.110 0.072 0.132

11 πA 0.012 0.071 0.015 0.071 -0.001 0.082
πB 0.007 0.075 0.010 0.074 0.002 0.096
πC -0.001 0.073 0.002 0.072 0.005 0.106

12 πA -0.043 0.077 -0.037 0.075 -0.051 0.086
πB -0.013 0.085 -0.007 0.084 -0.022 0.098
πC 0.070 0.108 0.072 0.110 0.078 0.137

39



Table 3.11: Simulated width and coverage of 95% CI for the estimators of πk when assump-
tions are violated. Three modeling approaches: Bayesian joint stage modeling (BJSM),
Bayesian joint stage modeling with multiple linkage parameters (BJSMM), and log-Poisson
joint stage modeling (LPJSM) are compared. The sample size per treatment arm is 15. πk is
the true response rate at six months for the treatment k, k = A,B,C. CR=Coverage Rate.

BJSM BJSMM LPJSM

Scenario Width CR Width CR Width CR

4 πA 0.262 0.876 0.268 0.898 0.306 0.844
πB 0.319 0.919 0.325 0.926 0.372 0.909
πC 0.345 0.952 0.348 0.950 0.426 0.924

5 πA 0.272 0.921 0.278 0.926 0.300 0.889
πB 0.321 0.924 0.327 0.929 0.366 0.908
πC 0.352 0.941 0.358 0.947 0.438 0.929

6 πA 0.256 0.872 0.264 0.894 0.289 0.822
πB 0.317 0.920 0.325 0.928 0.363 0.903
πC 0.349 0.933 0.354 0.932 0.435 0.921

7 πA 0.288 0.945 0.291 0.942 0.311 0.926
πB 0.325 0.932 0.329 0.930 0.371 0.913
πC 0.353 0.912 0.361 0.926 0.439 0.922

8 πA 0.283 0.928 0.293 0.937 0.292 0.884
πB 0.319 0.930 0.329 0.932 0.353 0.912
πC 0.332 0.936 0.341 0.928 0.409 0.926

9 πA 0.270 0.920 0.271 0.925 0.332 0.902
πB 0.310 0.912 0.311 0.918 0.394 0.914
πC 0.331 0.914 0.332 0.918 0.443 0.928

10 πA 0.250 0.856 0.261 0.890 0.282 0.794
πB 0.311 0.912 0.322 0.927 0.356 0.890
πC 0.343 0.892 0.348 0.883 0.433 0.908

11 πA 0.278 0.938 0.284 0.948 0.303 0.889
πB 0.311 0.954 0.318 0.962 0.366 0.913
πC 0.324 0.966 0.330 0.970 0.419 0.927

12 πA 0.244 0.845 0.254 0.879 0.268 0.767
πB 0.312 0.912 0.322 0.924 0.360 0.891
πC 0.344 0.888 0.348 0.887 0.439 0.903
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Table 3.12: Simulated bias and root mean-square error (rMSE) for the estimators of πk
when assumptions are violated. Three modeling approaches: Bayesian joint stage modeling
(BJSM), Bayesian joint stage modeling with multiple linkage parameters (BJSMM), and
log-Poisson joint stage modeling (LPJSM) are compared. The sample size per treatment
arm is 60. πk is the response rate at six months for treatment k, k = A,B,C.

BJSM BJSMM LPJSM

Scenario Bias rMSE Bias rMSE Bias rMSE

4 πA -0.025 0.048 -0.022 0.046 -0.030 0.051
πB -0.005 0.046 -0.001 0.046 -0.007 0.049
πC 0.029 0.055 0.034 0.057 0.033 0.064

5 πA -0.011 0.040 -0.005 0.041 -0.012 0.042
πB -0.005 0.046 0.003 0.046 -0.005 0.049
πC 0.022 0.055 0.012 0.053 0.014 0.058

6 πA -0.035 0.051 -0.028 0.048 -0.039 0.055
πB -0.011 0.046 -0.001 0.046 -0.012 0.049
πC 0.046 0.066 0.044 0.065 0.046 0.073

7 πA 0.014 0.041 0.018 0.044 0.016 0.044
πB 0.001 0.046 0.009 0.047 0.002 0.049
πC -0.002 0.054 -0.018 0.058 -0.021 0.061

8 πA 0.022 0.045 0.027 0.049 -0.003 0.039
πB 0.035 0.055 0.041 0.060 0.000 0.046
πC 0.047 0.063 0.054 0.070 -0.001 0.053

9 πA -0.014 0.041 -0.016 0.041 -0.002 0.044
πB -0.025 0.049 -0.028 0.050 0.001 0.052
πC -0.040 0.059 -0.042 0.060 -0.002 0.058

10 πA -0.041 0.055 -0.032 0.050 -0.046 0.060
πB -0.019 0.047 -0.007 0.045 -0.025 0.053
πC 0.070 0.083 0.075 0.087 0.067 0.087

11 πA 0.011 0.039 0.013 0.040 -0.002 0.041
πB 0.011 0.041 0.014 0.042 0.001 0.048
πC 0.010 0.040 0.013 0.041 -0.002 0.055

12 πA -0.050 0.060 -0.040 0.054 -0.054 0.065
πB -0.018 0.047 -0.007 0.045 -0.022 0.052
πC 0.073 0.085 0.074 0.087 0.072 0.092
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Table 3.13: Simulated width and coverage of 95% CI for the estimators of πk when assump-
tions are violated. Three modeling approaches: Bayesian joint stage modeling (BJSM),
Bayesian joint stage modeling with multiple linkage parameters (BJSMM), and log-Poisson
joint stage modeling (LPJSM) are compared. The sample size per treatment arm is 60. πk
is the response rate at six months for the treatment k, k = A,B,C. CR=Coverage Rate.

BJSM BJSMM LPJSM

Scenario Width CR Width CR Width CR

4 πA 0.147 0.857 0.153 0.884 0.157 0.838
πB 0.177 0.938 0.185 0.950 0.188 0.938
πC 0.197 0.938 0.198 0.920 0.214 0.918

5 πA 0.152 0.928 0.158 0.935 0.153 0.907
πB 0.178 0.944 0.187 0.951 0.186 0.937
πC 0.202 0.939 0.212 0.955 0.220 0.94

6 πA 0.142 0.800 0.150 0.858 0.148 0.780
πB 0.174 0.934 0.185 0.950 0.184 0.928
πC 0.200 0.878 0.205 0.894 0.219 0.884

7 πA 0.161 0.958 0.165 0.944 0.158 0.934
πB 0.182 0.952 0.189 0.952 0.187 0.940
πC 0.203 0.932 0.218 0.924 0.221 0.919

8 πA 0.152 0.917 0.159 0.911 0.149 0.934
πB 0.169 0.895 0.178 0.882 0.178 0.938
πC 0.179 0.835 0.187 0.810 0.206 0.938

9 πA 0.153 0.924 0.153 0.923 0.170 0.930
πB 0.173 0.903 0.174 0.906 0.200 0.943
πC 0.186 0.882 0.186 0.877 0.223 0.938

10 πA 0.136 0.757 0.147 0.836 0.144 0.713
πB 0.168 0.909 0.181 0.943 0.180 0.894
πC 0.193 0.723 0.197 0.703 0.218 0.789

11 πA 0.149 0.948 0.153 0.950 0.154 0.933
πB 0.165 0.957 0.170 0.964 0.185 0.940
πC 0.171 0.970 0.175 0.968 0.211 0.941

12 πA 0.133 0.679 0.143 0.786 0.137 0.621
πB 0.168 0.912 0.181 0.944 0.183 0.900
πC 0.193 0.699 0.197 0.705 0.220 0.766

42



CHAPTER IV

Sample Size Determination for Bayesian Analysis of

small n Sequential, Multiple Assignment, Randomized

Trials (snSMARTs) with Three Agents

4.1 Introduction

A rare disease is defined as any disorder that affects fewer than 200,000 individuals in the

United States (107th Congress , 2002); collectively almost 30 million individuals and their

families in the United States are impacted by rare diseases (Griggs et al., 2009). With low

numbers of individuals affected for any single rare disease, identifying optimal treatments

for a rare disease via clinical trials is challenging because of limited allocation of individuals,

insufficient funding, and challenges with individual recruitment. To meet the challenges

posed by traditional study designs, a suggested clinical trial design for rare diseases is known

as the small n, Sequential, Multiple Assignment, Randomized Trial, snSMART (Tamura

et al., 2016). In a two-stage snSMART (Figure 4.1), individuals are randomized in the first

stage to one of three treatments. In the second stage, individuals who respond to their initial

treatment continue the same treatment, while those who fail to respond are re-randomized

to one of the two remaining treatments. The snSMART design is attractive because it allows

participants who benefit from their treatment to continue to receive that treatment and those
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who do not benefit from the treatment to switch to another treatment. Hence, an snSMART

design may be more attractive to potential participants than a crossover design.

Tamura et al. (2016) proposed a weighted Z-statistic to identify the best treatment via

hypothesis testing and provided a way to calculate the sample size for an snSMART based

on this weighted Z-statistic. Specifically, the statistic is a weighted average of: (1) the

observed difference in the response rates of the two best treatments in the first stage, and

(2) the observed difference in the response rates of the same two treatments in the second

stage, restricted to non-responders of the treatment with the lowest response rate in stage

1. Via simulation, one can calculate the sample size that achieves a desired statistical

power with a pre-specified type I error rate, weights for the weighted Z-statistic and the

hypothesized response rates. Although the weighted Z-statistic identifies the best treatment

using information from both stages, much of the data from the second stage are ignored.

Wei et al. (2018) presented a more efficient Bayesian joint stage model (BJSM) that uses all

of the data collected from an snSMART. Because of the efficiency of the BJSM relative to

the weighted Z-statistic approach of Tamura et al. (2016), we would expect that the sample

size calculation corresponding to Tamura et al. (2016) would be larger than necessary for

a given power when using the BJSM. As a result, our goal was to develop a sample size

calculation specific to the BJSM.

There are several methods for calculating sample sizes using Bayesian methods (Adcock ,

1988; Pham-Gia and Turkkan, 1992; Joseph and Bélisle, 1997; Cao et al., 2009).

These methods use a variety of metrics for determining sample size, including the variance of

the posterior distribution, Bayes risk, length of the posterior credible interval, and coverage

rate of the posterior credible interval.

Sample size calculations based upon the length and coverage rate of posterior intervals fur-

ther vary depending on the use of the average coverage criterion (ACC), the average length

criterion (ALC), or the worst outcome criterion (WOC). For a fixed length of the posterior
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Figure 4.1: The study design of an snSMART. Patients are randomized (R) to one of the
treatment arms, A, B or C equally (1:1:1) and followed for time t. The responders continue
the same treatment for another time t, while the non-responders are re-randomized to one
of the remaining treatments for an additional time t.
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credible interval of the test statistic, the ACC (Adcock , 1988) provides an estimated sam-

ple size so that the average posterior coverage rate over the statistic’s predictive distribution

achieves a desired coverage rate. In contrast, the ALC (Joseph and Bélisle, 1997) determines

an estimated sample size so that the average length of the posterior credible interval over

the test statistic’s predictive distribution achieves a desired length for a fixed coverage rate.

For a fixed length of the posterior credible interval of the test statistic, the WOC provides

an estimated sample size so that the minimum coverage rate over the statistic’s predictive

distribution achieves the desired coverage rate. Cao et al. (2009) provides a detailed com-

parison of results using these three criteria and found that the WOC (Joseph and Bélisle,

1997) produces the largest sample size among the three criteria in most settings. The size

using ACC or ALC depends on the desired coverage rate rather than the desired length of

the posterior credible interval.

Our work proposes to use the ACC as a way of determining a sample size for an snSMART

analyzed with the BJSM. In Section 4.2 of this manuscript, we describe a sample size calcula-

tion for the snSMART that analyzes data using the BJSM. In Section 4.3, we present results

from simulations to illustrate the properties of our calculated sample size under various sce-

narios and compare the proposed sample size to that given by the weighted Z-statistic. We

conclude with a discussion in Section 4.4.

4.2 Methods

4.2.1 Review of the BJSM

We assume the same setting as in Wei et al. (2018). We have an snSMART that randomizes

N subjects over two stages in order to compare the response rates of three treatments. We

assume N subjects are equally allocated to three treatments in the first stage, and denote

the number of subjects in each arm as n = N/3. For subject i = 1, . . . , N , stage j = 1, 2,
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and treatment k = A,B,C, let Yijk equal 1 for response and 0 for non-response. In the

first stage, let the response rate for treatment k be πk = Pr(Yi1k = 1). In the second stage,

we assume the response rate for first stage responders who receive treatment k again in the

second stage is equal to β1πk, while non-responders to treatments k′ (k′ 6= k) in the first

stage who receive treatment k in the second stage have a response rate equal to β0πk. Our

primary goal is to estimate the first stage response rates πk, k = A,B,C, using data from

both stages.

We refer to β1 and β0 as linkage parameters since they link the first stage response to the

second stage response. The BJSM has three assumptions for the linkage parameters: (i)

they do not depend on the initial treatment k; (ii) non-responders are less likely to respond

to other treatments in Stage 2 (β0 < 1); (iii) responders are more likely to respond in stage

2 when given the same treatment again (β1 > 1).

In order to estimate the parameters of the BJSM, we specify the following priors for each

parameter:

πk ∼ Beta(ak, bk),

β0 ∼ Beta(γ, κ),

β1 ∼ Pareto(1, ψ),

and use the posterior means of each parameter to estimate the response rate of each treat-

ment. The suggested values for hyperparameters ak, bk, γ, κ, and ψ are discussed in Wei

et al. (2018).

4.2.2 Approximate Prior Distribution

Our goal is to determine the minimum number of individuals to enroll in an snSMART so

that the BJSM can be used to distinguish between the best treatment and the second best
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treatment with sufficient confidence using posterior credible intervals. Unfortunately, the

BJSM does not lead to closed-form expressions for the posterior distributions of the param-

eters, making direct calculation of the sample size intractable. To facilitate the calculation,

we require several approximations for the posterior distribution of the best and second best

treatments.

The BJSM states that πk has a prior Beta(ak, bk) distribution. Thus, πk has a prior mean

response rate of ak/(ak+bk) and a prior sample size of mk = ak+bk. For the second stage, we

let θk = β1πk for subjects who receive treatment k in Stage 2 after responding to treatment

k in Stage 1, and we let φk = β0πk for subjects who receive treatment k in Stage 2 after not

responding to treatments k′ in Stage 1. We can see that neither θk nor φk will have Beta

distributions, regardless of whether β1 and β0 are fixed or random.

In a sample size computation for Bayesian adaptive Phase I trials, Braun (2018) used a Beta

distribution to approximate the prior distribution of a proportion that lacked a closed-form

expression. We adopt the same idea for our methods to simplify calculating the posterior

distribution of the proportions. For given values of β1 and β0, we can use the method-of-

moments to approximate the prior distributions of θk and φk with respective Beta distribu-

tions, Beta(ck, dk) and Beta(ek, fk), where

ck
ck + dk

= β1
ak

ak + bk
, (4.1)

ek
ek + fk

= β0
ak

ak + bk
. (4.2)

We also assume that the prior sample size for θk, conditional on β1, is equal to the expected

prior number of responders to treatment k in the first stage. Similarly, the prior sample

size for φk, conditional on β0, is equal to the prior expected number of non-responders to all

treatments k′ 6= k in the first stage who then receive treatment k in the second stage. These

assumptions lead to a second pair of equations for the denominators in Equations (4.1) and

48



(4.2):

ck + dk = ak, (4.3)

ek + fk =
1

2

∑
k′ 6=k

bk′ . (4.4)

Through Equations (4.1) and (4.3), we have

ck =
β1a

2
k

ak + bk
,

dk =
a2k + akbk − β1a2k

ak + bk
, (4.5)

and through Equations (4.2) and (4.4), we have

ek =
β0ak
ak + bk

∑
k′ 6=k

bk′

2
,

fk =

(
1− β0ak

ak + bk

)∑
k′ 6=k

bk′

2
. (4.6)

As a result, the prior distribution of πk, given β1 and β0, is proportional to the product of

three Beta distributions, i.e. f(πk|β1, β0) ∝ Beta(ak, bk)×Beta(ck, dk)×Beta(ek, fk), where

all parameters are functions of ak, bk, β0, and β1, which are fixed.

4.2.3 Approximate Likelihood and Posterior Distribution of Response Rates

To develop a likelihood for the response rates, we first define summary statistics based upon

the numbers of responders for each arm in each stage. We let Rk denote the number of

individuals who responded to treatment k in the first stage, R̃k′k denote the total number

of individuals who failed to respond to treatments k′ 6= k in stage 1 and then switched to

treatment k in stage 2, Skk denote the number of individuals who responded to treatment

k in both stages, and Tk′k denote the total number of individuals who failed to respond to
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treatments k′ 6= k in stage 1 and then responded to treatment k in stage 2.

Each of these statistics has a conditional Binomial distribution written explicitly as:

Rk|n, πk ∼ Binomial(πk, n) (4.7)

Skk|Rk, πk, β1 ∼ Binomial(β1πk, Rk) (4.8)

Tk′k|R̃k′k, πk, β0 ∼ Binomial(β0πk, R̃k′k). (4.9)

Hence, for each arm k, the joint distribution of the numbers of responders and non-responders

across both stages is

f(Rk, R̃k′k, Skk, Tk′k|πk, β1, β0) = f(Rk, R̃k′k|πk, β1, β0)× f(Skk, Tk′k|πk, β1, β0, Rk, R̃k′k)

∝ f(Rk|πk)× f(Skk|Rk, πk, β1)× f(Tk′k|R̃k′k, πk, β0),(4.10)

which is a product of the three conditional Binomial distributions given in Equations (4.7)

- (4.9).

We now have a prior distribution for the response rates expressed as a product of three Beta

distributions and a likelihood that is proportional to a product of three Binomial distribu-

tions. The conjugacy of Beta and Binomial distributions leads to a posterior distribution of

πk given β1, β0, and the data that is proportional to the product of three Beta distributions

f(πk|Rk, R̃k′k, Skk, Tk′k, β1, β0) ∝ f(Rk, R̃k′k, Skk, Tk′k|πk, β1, β0)× f(πk|β1, β0)

∝ Binomial(πk, n)×Beta(ak, bk)

×Binomial(β1πk, Rk)×Beta(ck, dk)

×Binomial(β0πk, R̃k′k)×Beta(ek, fk)

∝ Beta(ak +Rk, n−Rk + bk)×Beta(Skk + ck, Rk − Skk + dk)

×Beta(Tk′k + ek, R̃k′k − Tk′k + fk). (4.11)
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However, due to the mathematical intractability of using a product of three Beta distri-

butions, we further propose a normal approximation for each of the Beta distributions in

Equation (4.11). Using the method-of-moments again, Beta(ak +Rk, n−Rk + bk) is approx-

imated by a normal distribution with mean ιk and variance ω2
k, denoted as N(ιk, ω

2
k), with

its parameters found via

ιk =
ak +Rk

ak + bk + n
,

ω2
k =

(ak +Rk)(bk + n−Rk)

(ak + bk + n)2(ak + bk + n+ 1)
. (4.12)

Similarly, Beta(Skk+ck, Rk−Skk+dk) is approximated by N(νk, τ
2
k ) and Beta(Tk′k+ek, R̃k′k−

Tk′k + fk) by N(ζk, λ
2
k), where the parameters of N(νk, τ

2
k ) and N(ζk, λ

2
k) are determined by

equating moments in the same way, i.e.,

νk =
Skk + ck

ck +Rk + dk
,

τ 2k =
(Skk + ck)(Rk − Skk + dk)

(ck +Rk + dk)2(ck +Rk + dk + 1)
,

ζk =
Tk′k + ek

ek + R̃k′k + fk
,

λ2k =
(Tk′k + ek)(R̃k′k − Tk′k + fk)

(ek + R̃k′k + fk)2(ek + R̃k′k + fk + 1)
. (4.13)

From the above derivations, we can approximate the posterior distribution of πk as pro-

portional to the product of N(ιk, ω
2
k), N(νk, τ

2
k ), and N(ζk, λ

2
k). Our final approximation is

based on the work of Bromiley (2003) who found that the product of three normal densities

can be written as a single normal kernel. Although Bromiley’s work focused on multiple

normal kernels with the same argument, the concepts apply in our situation because θk and

φk are scalar multiples of πk. Thus, we write Equation (4.11) as proportional to a normal

kernel equal to exp(−(πk − µk)2/(2σ2
k)), where
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µk =
ιk/ω

2
k + β0ζk/λ

2
k + β1νk/τ

2
k

1/ω2
k + β2

0/λ
2
k + β2

1/τ
2
k

,

σ2
k =

1

1/ω2
k + β2

0/λ
2
k + β2

1/τ
2
k

. (4.14)

Hence, we approximate the posterior distribution of πk by N(µk, σ
2
k).

One remaining challenge for all Bayesian sample size calculations is that the posterior distri-

bution is a function of yet to be collected data. To remedy this problem, we use Equations

(4.7) - (4.9) to generate each of Rk, Skk, and Tk′k that are equal to their respective expected

values. This approach is similar to the idea of an exemplary dataset proposed by O’Brien

and Shieh (1998). The exemplary dataset is a function of both the sample size and the

values of β0 and β1; we set β0 and β1 equal to their prior means, with β1 truncated so that

the response rate of the second stage responders is never greater than one.

4.2.4 Approximating the Posterior Mean of Difference of Two Best Arms

Unlike many trial designs in which there is a control arm or a treatment arm to which all

other arms are compared, there is no such reference arm in the proposed snSMART design.

Instead, once the posterior response rate of each arm is determined, inference is based upon

the difference of the two largest posterior response rates. Thus, our sample size calculation

must reflect the ordering that is implicit in inference (Kim, 1988). If we suppose the ordering

of πA, πB, and πC such that π(3) < π(2) < π(1), our goal is to determine the posterior mean

and variance of D = π(1) − π(2), although we do not know the true ordering of πA, πB, and

πC .

We let f(1)(x) and f(2)(x) denote the posterior probability density functions (pdfs) of π(1)

and π(2), respectively. Because our approximations for the posterior distributions of πA, πB,

and πC are conditionally independent, we have F(1)(x) = Pr(π(1) ≤ x) = Pr(πA ≤ x, πB ≤
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x, πC ≤ x) = FA(x)FB(x)FC(x), where Fk(x) is the cumulative distribution function (cdf)

for πk. This leads to the pdf

f(1)(x) = fA(x)FB(x)FC(x) + fB(x)FA(x)FC(x) + fC(x)FA(x)FB(x), (4.15)

in which fk(x) is the pdf for πk. The cdf and pdf of πk are derived based on the posterior

distribution for πk in Equation 4.14. Similarly, f(2)(x) is a summation of all combinations

for the probability that one of πA, πB, and πC is greater than x, one is smaller than x, and

one is from [x, x+ ε), where ε goes to 0. The explicit expression of f(2)(x) is as follows:

f(2)(x) = [fA(x)FB(x) + fB(x)FA(x)][1− FC(x)] +

[fA(x)FC(x) + fC(x)FA(x)][1− FB(x)] +

[fC(x)FB(x) + fB(x)FC(x)][1− FA(x)]. (4.16)

Thus, the pdf of D = π(1) − π(2), denoted as fD(D), is a simple convolution

fD(D) =

∫ ∞
−∞

f(1)(D + x)f(2)(D)dx (4.17)

and we can compute the mean of D as

E(D) =

∫ ∞
0

DfD(D)dD

=

∫ ∞
0

D

∫ ∞
−∞

f(1)(D + x)f(2)(x)dxdD

=

∫ ∞
−∞

f(2)(x)

∫ ∞
0

Df(1)(D + x)dDdx. (4.18)

with an analogous computation for the expected value of D2, from which we can derive

the variance of D, denoted as var(D). Bayarri and Berger (2004) have advocated using

the posterior distribution as an approximation to the sampling distribution when the prior

information is reasonably objective. Hence, we approximate the posterior distribution of D
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as a normal distribution with mean being equal to E(D) and variance being equal to var(D),

and from which we can simplify the sample size calculation.

4.2.5 ACC Sample Size Calculation

In order to compute a sample size based on the ACC, we need a fixed length, `, for the

posterior credible interval for D = π(1) − π(2) that achieves a desired average coverage rate,

1−α over the posterior distribution. However, because the value of ` is often hard to specify,

we instead focus on statistical power which has a better clinical interpretation and has a one-

to-one relationship with the value of `. We define the statistical power of an snSMART as the

probability that we claim the best treatment and the second best treatment are significantly

different when π(1) > π(2). (i.e. when the credible interval for D excludes zero). The desired

level of power is denoted as 1 − ξ. From the statistical power and coverage rate, ` can be

determined via a grid search.

Hence, under the ACC, the sample size in each arm, n, is the solution to the following

equation,

1− 2Φ(− `

2
√
V ar(D)

) = 1− α, (4.19)

where Φ(·) is the pdf of a standard normal distribution.

4.2.6 Synopsis of Sample Size Algorithm

The results of Sections 4.2.1-4.2.5 can be summarized to the following algorithm to implement

the sample size calculation for a three arm snSMART:

1. Specify the value for πA, πB and πC and the hyper-parameters, ak and bk, k =

A,B,C, for the priors of πA, πB and πC .

2. Specify the expected coverage rate, 1− α, and desired power 1− ξ.
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3. Specify the hyper parameters, γ, κ, and ψ, for the priors of the linkage parameters,

β1 and β0.

4. Let the value of β1 be equal to the prior mean of Pareto(1, ψ) right-truncated at

1/πC and the value of β0 be equal to the prior mean of Beta(γ, κ).

5. For each value of ` ∈ {2 × (π(1) − π(2)), . . . , 0.02, 0.01}, calculate the sample size

using Equation (4.19) and the resulting power, until the power is at least 1− ξ.

6. The last calculated sample size in step (5) is the final recommended sample size.

4.2.7 An Example of Sample Size Calculation

To illustrate, consider an snSMART in which πA = 0.25, πB = 0.25, and πC = 0.5. For

prior distributions, we use πA ∼ Beta(0.5, 1.5), πB ∼ Beta(0.5, 1.5), πC ∼ Beta(1, 1), β0 ∼

Beta(1, 1), and β1 ∼ Pareto(1, 3). We have a desired power of 1 − ξ = 0.8 and coverage

rate of 1−α = 0.9. In this example, the prior mean of Pareto(1, 3) with a truncation of the

upper tail at 1/πC is equal to 1.29 and the prior mean of Beta(1, 1) is equal to 0.5. Hence,

we let β1 and β0 be equal to 1.29 and 0.5 respectively. Following the algorithm in Section

4.2.6, we require 27 subjects per arm to compare the best and second best treatment.

4.3 Simulations

We present results from eight scenarios in which one treatment is superior to the others. The

response rates can be found in Table 4.1. In scenarios 1-6, the response rate of the second

best treatment is not unique and in scenarios 7-8 all three response rates differ. The goal

of simulations is to compare the simulated power to the desired statistical power given the

coverage rate (i.e., type I error rate). We set the desired statistical power at 80% and the

coverage rate at 90% (i.e., a 5% one-sided type I error rate). We ran 2000 simulations for

every scenario.
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Table 4.1 presents results from ideal settings in which the prior means for each πk are equal

to the true response rates. In each scenario, we calculated the sample size and simulated

power using both the proposed BJSM, and the weighted Z-statistic approach from Tamura

et al. (2016). The weighted Z-statistic approach is based on simulations over a grid search

of potential sample sizes until the sample size that provides a simulated power closest to the

desired power is identified.

The BJSM approach suggests a lower required sample size than the weighted Z-statistic

approach in all of the scenarios. Even with lower suggested sample sizes, the BJSM approach

is often slightly conservative, since in scenarios 2-8, the simulated power is slightly higher

than the desired power. In scenarios 1 and 2, the BJSM approach suggests 27 and 26

subjects per arm (for total sample sizes of 81 and 78), respectively. In these scenarios, the

BJSM approach requires 46% and 37% less subjects per arm than the weighted Z-statistic

approach, respectively.

Compared to scenarios 1 and 2, the difference in response rates between the best and second

best treatments in scenarios 3 and 4 decreases from 0.25 to 0.20, therefore requiring 20 more

subjects per arm to achieve the same desired power. The BJSM approach suggests 43% and

33% less subjects per arm, respectively, than the weighted Z-statistic approach.

Compared to scenarios 1 and 2, the difference in response rates between the best and second

best treatments decreases from 0.25 to 0.15 in scenarios 5 and 6, therefore requiring around

70 more subjects per arm to achieve the same desired power. In scenarios 5 and 6, the BJSM

approach saves 39% and 28% of subjects per arm, respectively, than the weighted Z-statistic

approach. Results are similar for scenarios 7 and 8.

The power of significantly recognizing the best and second best treatments using the BJSM

varies depending upon the prior distribution that we use for each πk. In Table 4.2, we

calculated the sample size and simulated power under less ideal settings than the settings

in Table 4.1, when the prior means for each πk were set to either the highest response rate
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or the lowest response rate. Comparing Table 4.2 to Table 4.1, our sample size calculation

suggests slightly larger sample sizes in scenarios 1, 3 and 4.

In scenarios 1 and 2, the BJSM yields 0.023 and 0.038 lower power comparing Table 4.2

to Table 4.1. The slightly lower power in Table 4.2 for these scenarios is due to the prior

specification leads to closer treatment estimates compared to the truth. The specification

of priors is influential when the calculated sample size is small. In scenarios 3-8, the BJSM

yields similar power comparing Table 4.2 to Table 4.1, in these scenarios, the sample size is

larger and thus the specification of priors is less influential on the statistical power.

Table 4.1: The estimated sample size and simulated power to identify the best from the
second best treatment, when the prior mean of each π is equal to the true response rate.
BJSM denotes the Bayesian joint stage model. We assume β1 and β0 are fixed at prior means
of Pareto(1, 3) with a truncation of the upper tail at 1/max(πA, πB, πC) and Beta(1, 1),
respectively. The sample size per treatment arm is denoted as n. The power is the proportion
of simulations that the difference between the best and second best treatments is significantly
recognized. We set desired power to be 0.80 and coverage rate to be 0.90.

Response rates BJSM Weighted Z-statistic

scenario πA πB πC n power n

1 0.25 0.25 0.50 27 0.796 50

2 0.15 0.15 0.40 26 0.815 41

3 0.30 0.30 0.50 47 0.820 82

4 0.20 0.20 0.40 46 0.817 69

5 0.35 0.35 0.50 94 0.859 153

6 0.25 0.25 0.40 94 0.849 131

7 0.30 0.40 0.50 171 0.843 284

8 0.20 0.30 0.40 174 0.860 248
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Table 4.2: The estimated sample size and simulated power to identify the best from the
second best treatment, when the prior mean of each π is equal to the highest response
rate or lowest response rate. The sample size calculation approach is the Bayesian joint
stage model (BJSM). We assume β1 and β0 are fixed at prior means of Pareto(1, 3) with a
truncation of the upper tail at 1/max(πA, πB, πC) and Beta(1, 1), respectively. The sample
size per treatment arm is denoted as n. The power is the proportion of simulations that the
difference between the best and second best treatments is significantly recognized. We set
desired power to be 0.80 and coverage rate to be 0.90.

Response rates Prior set at highest Prior set at lowest

scenario πA πB πC n power n power

1 0.25 0.25 0.50 28 0.773 28 0.778

2 0.15 0.15 0.40 26 0.777 26 0.786

3 0.30 0.30 0.50 48 0.818 48 0.817

4 0.20 0.20 0.40 47 0.822 46 0.807

5 0.35 0.35 0.50 94 0.852 94 0.848

6 0.25 0.25 0.40 94 0.843 94 0.837

7 0.30 0.40 0.50 171 0.842 171 0.845

8 0.20 0.30 0.40 174 0.854 174 0.855
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4.4 Concluding Remarks

In this manuscript, we present a Bayesian method to calculate the sample size required for

a two-stage snSMART with three active treatments. We compared the BJSM approach to a

simulation-based weighted Z-statistic approach and found that the BJSM approach requires

fewer subjects to achieve the same level of power.

We made two key assumptions to simplify our calculations: (i) the response rates of the

three active treatments, given β1 and β0, are independent; and (ii) the response rate of the

best treatment is unique. Although we assume independence of the response rates of the

three treatments, simulation results show that the correlation between the best and second

best treatment (π(1) and π(2)) is positive, but weak. Thus, this violation leads to a mildly

conservative sample size calculation.

For assumption (ii), it is possible to have settings where the best treatment response rate is

not unique. For example, investigators may be interested in comparing two novel treatments

to a standard of care. We can generalize the proposed sample size calculations to this

objective by directly applying the same sample size calculation procedure to the largest and

the smallest posterior response rates. The total sample size for an snSMART to compare

two novel treatments to the standard treatment will thus be the calculated sample size times

three.

The proposed sample size calculation uses method-of-moments to approximate Beta dis-

tributions with normal distributions. Simulations and Q-Q plots show the approximation

works well when the sample size is at least 10 per arm, which is valid in realistic settings

for the snSMART. Finally, the proposed sample size calculation approximates the posterior

distribution of the difference between the best and second best treatment from the BJSM

with a normal distribution. Simulation results suggest that the approximation is appropriate

even in small sample settings.

The proposed sample size calculation is based upon a three-arm snSMART, but the ap-
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proach can be generalized to snSMARTs with more than three arms. The generalization is

a natural extension such that the prior distributions, likelihood, and posterior distributions

for all added arms are first approximated. The sample size is then calculated based on the

comparison of the best and second best treatments with the same procedure as described in

Section 4.2. Software to implement the sample size calculations for a three arm snSMART

is available from the authors.
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CHAPTER V

Summary and Future Work

In this dissertation, we explored Bayesian methods for Phase I Trials and small n Sequential

Multiple Assignment Randomized Trials (snSMARTs). We proposed a systematic approach

in selecting the skeleton and prior standard deviation that saves computation time and

provides good precision of the MTD selection. We also proposed a data analysis method and

sample size calculation for snSMART designs. The proposed joint stage model is efficient in

estimating the response rates from three active treatments.

In the first project, the proposed method of selecting the skeleton and prior standard de-

viation for the CRM in Phase I trials of a single agent provides a simulation free way that

is more time efficient and maintains good MTD identification. Specifically, the proposed

method indicates that using weights and the expected outcome of DLT accommodates the

information of DLT rates for all doses and the adaptive treatment assignments towards the

end of study. The weights and expected outcome of DLT are determined when the design

parameters of a trial, the true DLT rates and the values of skeleton and prior standard devi-

ation are given, which allows us to extend our research in studying the typical characteristics

of skeleton and prior standard deviation that leads to high precision in MTD identification.

Lee and Cheung (2011) have already shown that a smaller value of prior standard deviation

will lead to a better selection when the MTD is in the middle. In a future study, we will

investigate how the space of skeleton and the a priori MTD in the skeleton, jointly with
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prior standard deviation, are associated with the MTD identification.

In the second project, the Bayesian joint stage model (BJSM) jointly analyzes the data

from the first and second stages of an snSMART design. Via modeling the correlation

between response rates at the first and second stages using the linkage parameter between

the data from two stages due to the multiple treatment assignment, the BJSM accommodates

information from two stages and is more efficient than one stage estimators. The method

in the second project could be expanded to include covariates. By including values that

may be associated with outcome of response, we could potentially improve the estimation

efficiency. Additionally, other snSMART designs that consider not only binary outcome of

response but also continuous or time to event outcomes can be analyzed by modifying the

BJSM, which provides extra flexibility in the design and analysis of snSMARTs. We did not

equip the BJSM to handle carry-over effects because the carry-over effects for three specific

treatments for investigations in our application of ARAMIS were negligible. The BJSM can

be improved to capture the carry-over effect by calibrating the assumptions on the linkage

parameters.

In the third project, we propose an explicit sample size calculation equation that provides

reasonable and fast sample size estimations for a desired statistical power and coverage

rate based on the BJSM. We have developed a corresponding R shiny applet that enable

the researchers to calculate the sample size required for an snSMART. In the sample size

estimations, we propose a Normal approximation method for the posterior difference of the

response rates between the top two efficacious treatments that lack an explicit distribution

and found our approximation works well in realistic settings for rare disease. The sample size

calculations in project three could be expanded to calculate the sample size for snSMARTs

with more than three arms or non-binary outcomes. Though the sample size calculation

is developed to identify the most efficacious treatment from three active treatments in an

snSMART, we can also expand our method to calculate sample size for snSMARTs when the

goal is instead comparing treatments for investigations with placebo or reference treatment
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by taking contrasts of the most and least efficacious treatments instead of the top two

efficacious treatments.
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