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ABSTRACT

This dissertation contributes to a few topics in decision theory including non-Bayesian updating,

reference dependent choice, and limited attention. In the first chapter, I propose and axiomatically

characterize a novel belief updating rule, called robust maximum likelihood updating, which can

accommodate most commonly observed biases in probabilistic reasoning. In this updating rule, the

decision maker is endowed with a benchmark prior, which is interpreted as the decision maker’s

“best guess,” and a set of plausible priors. When the decision maker receives new information, she

first revises her benchmark prior and then performs Bayesian updating based on the new bench-

mark prior. The revision of the benchmark prior is done in two stages. First, the decision maker

restricts her attention to the subset of plausible priors which maximize the likelihood of the ob-

served information. Next, the decision maker chooses a new prior within this set that is as “close”

to the original benchmark prior as possible. The first stage reflects the decision maker’s willingness

to learn from the new information, and the second stage reflects her willingness to be as dynam-

ically consistent as possible. I take the decision maker’s preferences over acts (e.g., bets) before

and after the arrival of new information as the primitive of analysis and propose axioms which

characterize this updating rule. I show that the model provides explanations for confirmation bias,

base rate neglect, conservatism bias and overconfidence.

In the second chapter, I investigate choice behavior that differs from the standard rational choice

model in two ways: (i) the decision maker’s choices are reference dependent, and (ii) the decision

maker pays attention to a subset of available alternatives. In this framework, I provide novel ax-

iomatic characterizations of three commonly used random attention models: fixed independent

consideration, logit consideration, fixed correlated consideration. While these models, or their

vi



variations, have been previously examined in the literature, the relationship between these models

was not precisely known. My axiomatic characterization makes this relationship clear. First, I

show that the fixed independent consideration model can be characterized by two key properties:

irrelevance of dominated alternatives and ratio independence of dominant alternatives. Next, I

show that logit consideration relaxes the former property while fixed correlated consideration re-

laxes the latter. Hence, the intersection of logit and fixed correlated consideration models is exactly

fixed independent consideration. Finally, I illustrate how attention parameters can be (partially) re-

covered from observed choice behavior in all these models.

In the third chapter which is coauthored with Yusufcan Masatlioglu, we study a model of

search within a product network. A product network consists of a vast number of goods which are

linked to one another. We investigate decision making in this new environment by using revealed

preference techniques. In our model, the decision maker searches within the product network to

uncover available goods. Due to the constraint imposed by the network structure and the starting

point of search, the decision maker might not discover all available goods. We illustrate how one

can deduce both the decision maker’s preference and her product network from observed behavior.

We also consider an extension of the model where the decision maker terminates the search before

exhausting all the options (limited search).
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CHAPTER 1

Robust Maximum Likelihood Updating

1.1 Introduction

How do decision makers (DMs) update their beliefs when they receive new information? The

answer to this question is critical in economic models and policy analyses where one tries to predict

the consequence of releasing new information to market participants. The standard assumption

in economics is that beliefs are updated using Bayes’ rule. However, there is a large body of

experimental and empirical evidence which shows that decision makers frequently deviate from

Bayesian updating. For example, many decision makers tend to underweight base rates (base rate

neglect), ignore informative signals (conservatism), interpret contrary evidence as supportive of

their original beliefs (confirmation bias).1 This paper introduces a model where deviations from

Bayesian updating are due to ambiguity/multiple priors. The model can accommodate previously

mentioned and other errors in probabilistic reasoning.

To illustrate how deviations from Bayesian updating can be related to multiple priors, consider

the thought experiment due to Ellsberg (1961) where a DM is told that an urn contains 30 red balls

and 60 blue or green balls in an unknown proportion. Let fR, fB, and fG stand for bets which yield

$100 if the ball drawn from the urn is red, blue, and green, respectively, and $0 otherwise. When

no further information is given, many decision makers are indifferent between these bets, which is

consistent with the prior that assigns equal probability to all colors.2

1For a review of these findings, see, for example, Camerer (1995), Rabin (1998), Tversky (2004), and Benjamin
(2019).

2Ellsberg argued that most decision makers would prefer to bet on red rather than blue or green. While Ellsberg
style preferences are common, many experimental findings show that a significant number of decision makers are
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Now suppose the experimenter draws a ball from the urn and conveys to the DM that the ball

is not green. How should the DM update her preferences given this information? In particular,

should she still be indifferent between fR and fB? There are two arguments that can be made.

First, following the principle of dynamic consistency, one can argue that since both fR and fB

agree on the payoff assigned to the unrealized event (green), the information that this event is ruled

out should not affect the original preference. Hence, indifference should be maintained ex post.

On the other hand, the information that the ball is not green may suggest that the number of blue

balls in the urn is greater than the number of green balls. Since there are only 30 red balls in the

urn and 60 blue or green balls, one can also argue that fB should be preferred to fR ex post. This

preference is incompatible with dynamic consistency, which is the key implication of Bayesian

updating.

The intuition that decision makers may not perform Bayesian updating when they face ambi-

guity is confirmed by experiments and observations of practitioners’ behavior. For example, in a

similar dynamic Ellsberg experiment, Dominiak, Duersch, and Lefort (2012) find that a signifi-

cant number of decision makers whose behavior can be characterized as ambiguity neutral are not

Bayesian. In addition, many statistical tools used in practice (e.g., maximum likelihood estima-

tion, hypothesis testing, etc.) are non-Bayesian even though conceivably many statisticians, and

scientists in general, may be ambiguity neutral.

Most existing models tie the DM’s ambiguity attitude (rather than ambiguity) to her response

to new information, which forces an ambiguity neutral DM to update her beliefs using Bayes’

rule. This is not only inconsistent with the intuition and observations described above but also

unnatural as ambiguity attitude and belief updating are distinct concepts. The model proposed in

this paper allows the DM depart from Bayesian updating when she faces ambiguity even if her

attitude towards ambiguity is neutral.

I adopt a dynamic version of the classical Anscombe and Aumann (1963) setup. Let Ω be

a finite set of states, and denote by ∆(Ω) the set of all probability measures on Ω. An event is

ambiguity neutral (see Binmore, Stewart, and Voorhoeve, 2012; Charness, Karni, and Levin, 2013; Stahl, 2014). In
this paper, I consider both ambiguity neutral and ambiguity averse decision makers.
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a member of A, which is the collection of all subsets of Ω. The set of prizes (e.g., monetary

payments) is a convex subset of a metric linear space, and an act is a function that assigns a prize

to each state of the world.

The primitive of the analysis is a collection of preferences {<A}A∈A where <A represents

the DM’s preference over acts when she learns that event A occurs. The preference when the

DM receives no information is <Ω, which, for simplicity, is denoted by <. The main axioms

in this paper characterize a representation where the DM is endowed with a benchmark prior

π ∈ ∆(Ω), revealed from ex ante preferences <, and a set of plausible priors N(π), revealed from

updated preferences <A. For example, in the Ellsberg experiment the benchmark prior may assign

equal probability to all colors, while any prior that assigns 1/3 probability to red is plausible. The

benchmark prior π is interpreted as the DM’s initial best guess where π ∈ N(π).

The axioms yield a novel updating rule, robust maximum likelihood (RML) updating, which

can be described by two stages. In the first stage, the DM performs maximum likelihood updating

within the set of plausible priors. That is, when the DM learns that an event A occurs, she restricts

her attention to the subset of plausible priors which maximize the likelihood of this event. This set

is denoted by

NA(π) = arg max
π′∈N(π)

π′(A).

Next, the DM chooses a new benchmark prior that induces maximally dynamically consistent be-

havior among all priors in NA(π) and updates it using Bayes’ rule. Maximal dynamic consistency

ensures that the DM stays as “close” to her original benchmark prior as possible. A similar idea

is also used in robust control literature where the benchmark prior π is treated as an “approximat-

ing model” that is not fully trusted, and models “further away” from π are seen as less appealing

(see Hansen and Sargent, 2001; Strzalecki, 2011). When there is no ambiguity (i.e., N(π) is a

singleton), RML updating reduces to Bayesian updating.

To illustrate how RML updating can accommodate a strict preference for fB over fR after the

realization that the ball drawn from the Ellsberg urn is not green, let π, π′, π′′ ∈ N(π) where π is

the benchmark prior, and π′ and π′′ represent two plausible priors when there are no green and blue
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balls in the urn, respectively.

Red Blue Green

π 1/3 1/3 1/3

π′ 1/3 2/3 0

π′′ 1/3 0 2/3

When the DM learns that the ball drawn from the urn is not green, maximum likelihood updating

implies NA(π) = {π′}. The DM endowed with π′ as her posterior prefers fB over fR.

RML updating provides explanations for most commonly observed biases in probabilistic rea-

soning. For example, consider confirmation bias, which is the tendency to interpret contrary evi-

dence as supportive of original beliefs (see Rabin and Schrag, 1999, and references therein). Let

S = {s1, s2} be the set of payoff-relevant states, and denote by Σ = {σ1, σ2} the set of signals.

Suppose the DM assesses s1 to be more likely than s2, and σi is considered more likely than σj

when the payoff-relevant state is si. The joint state space Ω and the benchmark prior π are illus-

trated below where µ > 1/2 and α > 1/2. A decision maker who displays confirmation bias might

believe that s1 is at least as likely as before when she observes σ2.

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

State Space Ω

s1

s2

σ1 σ2

µα µ(1− α)

(1− µ)(1− α) (1− µ)α

Benchmark Prior π

Imagine that the decision maker is not fully confident in the link between s1 and the signals

given by her benchmark prior and finds it plausible that the true information structure is given by

π′ (illustrated below) where α′ < α. For example, the DM might find it plausible that there is

a “bias” in the information source that is potentially unfavorable towards the state she originally

finds more likely (i.e., the state s1). Now suppose the DM observes the realization σ2. Notice that

under the benchmark prior the probability of observing σ2 is µ + α − 2µα. On the other hand,

under the alternative plausible prior the probability of observing σ2 is µ + α − µα − µα′. Hence,

after observing σ2 the DM performing maximum likelihood updating may change her benchmark
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prior from π to π′. This will result in a behavior that is consistent with confirmation bias.

s1

s2

σ1 σ2

µα′ µ(1− α′)

(1− µ)(1− α) (1− µ)α

Alternative Plausible Prior π′

An important question is whether one can identify the benchmark prior π and the set of plau-

sible priors N(π) from preferences. The identification of π from ex ante preferences can be done

as in Anscombe and Aumann (1963). To illustrate how N(π) can be identified, I first distinguish

between unambiguous and ambiguous events. An event is unambiguous if there is full agreement

among all plausible priors on its likelihood.3 Otherwise, it is ambiguous. A prior is considered

plausible if and only if it agrees with the benchmark prior on the likelihood of all unambiguous

events.

Since the main axioms in this paper imply subjective expected utility (SEU) preferences, most

existing approaches in the literature do not help us identify unambiguous events from preferences.4

A novelty in this paper is that unambiguous events are identified by comparing ex ante and ex post

preferences. To see how this can be done, notice that the DM may not satisfy dynamic consistency

when an ambiguous event is realized, as illustrated by the Ellsberg example. Dynamic consistency

requires that if two acts f , g agree outside an event E and f is ex ante preferred to g, then f must

still be preferred to g when E is realized. Formally, f(ω) = g(ω) for all ω ∈ Ec and f < g imply

f <E g. Since all plausible priors agree on the likelihood of unambiguous events, preferences are

expected to satisfy dynamic consistency when an unambiguous event occurs. More importantly,

consider an event B ⊇ E where E is unambiguous. Since E is unambiguous and f, g agree on

3Several papers have provided a behavioral definition for unambiguous events. Epstein and Zhang (2001), Zhang
(2002), and Gul and Pesendorfer (2014) define unambiguous events to be the ones which satisfy some versions of
Savage’s Sure Thing Principle. Ghirardato, Maccheroni, and Marinacci (2004) argue for a “relation based” approach
and provide a definition for an act to be unambiguously preferred to another act.

4To be more precise, most existing approaches use only ex ante preferences to reveal ambiguity (see Epstein, 1999;
Ghirardato and Marinacci, 2002). Hence, using the standard terminology, the DM whose ex ante preferences satisfy
SEU axioms can be characterized as ambiguity neutral. The main difference in this paper is that an ambiguity neutral
DM may still have multiple priors which will be reflected in ex post preferences even though it is not reflected in ex
ante preferences.
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B\E, one also expects that the DM’s ex ante preference between f and g should be preserved when

B is realized. According to this observation, E is defined to be perfectly dynamically consistent if

for any two acts f , g that agree on Ec and any event B ⊇ E, f is ex ante preferred to g if and only

if f is preferred to g when B is realized.

To identify N(π) from preferences, I first define an event E to be unambiguous when both E

and Ec are perfectly dynamically consistent. The set N(π) consists of all probability measures on

Ω which agree with the benchmark prior π on the likelihood of all unambiguous events. In the

Ellsberg example, if the DM is indifferent between fR and fB ex ante but strictly prefers fB to

fR when she is told that the ball drawn from the urn is not green, the definition implies that both

{R,B} and {G} are ambiguous events, and hence there are multiple plausible priors which differ

on the likelihood of these events.

The axioms imposed on {<A}A∈A ensure that both π and N(π) can be identified. In addition

to SEU axioms and standard axioms relating ex ante and ex post preferences, two main axioms

weakening dynamic consistency are imposed. Consider a minimal unambiguous event E, i.e., any

nonempty D ( E is ambiguous. The first main axiom, robust inference, requires that the DM’s

ex ante willingness to bet on E is identical to her willingness to bet on E when D ( E is ruled

out. This reflects the DM’s cautious attitude when she updates her prior. Since the DM knows the

likelihood of unambiguous events but can only guess the likelihood of ambiguous events, when the

DM receives new information, she wants her posterior not to differ too much from her benchmark

prior on unambiguous events.

The second main axiom, consistency, states that every D ( E is a perfectly dynamically

consistent event whenever E is a minimal unambiguous event. As stated earlier when E is unam-

biguous both E and Ec must be perfectly dynamically consistent. On the other hand, consistency

requires that an ambiguous event D ( E is perfectly dynamically consistent. (This implies that

the realization of Dc must lead to a violation of perfect dynamic consistency.) The intuition for

this axiom is that when D ( E is realized, the DM does not learn any new information that can

help her make an inference regarding the relative likelihoods of the states within D. To illustrate,
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consider a DM who is told that an urn contains 25 red (R) balls and 75 blue (B), green (G), or

yellow (Y) balls in an unknown proportion. Here, {B,G, Y } is a minimal unambiguous event that

is known to occur with 0.75 probability, and hence the axiom implies that the DM’s preferences

are dynamically consistent when, for example, {B,G} is realized. This is because the information

that {B,G} has occurred does not say anything regarding the relative proportion of blue and green

balls. Therefore, fB < fG if and only if fB <{B,G} fG.

1.1.1 Literature Review

This paper lies in the intersection of the literature on non-Bayesian updating and updating under

ambiguity. Maximum likelihood updating was introduced by Gilboa and Schmeidler (1993) as a

dynamic extension of the maxmin expected utility model. In their model, a DM endowed with

a set of priors evaluates acts according to their minimal expected utility, where the minimum is

taken over all priors in this set, and the DM performs maximum likelihood updating to revise the

set of priors when she receives new information. In Gilboa and Schmeidler (1993), a DM whose

behavior is consistent with the subjective expected utility model must follow Bayes’ rule. On the

other hand, I allow the DM to deviate from Bayesian updating when she faces ambiguity even

if she is ambiguity neutral and also show how violations of dynamic consistency can be used to

identify the set of priors she considers plausible. The second representation in this paper which

has ambiguity averse decision makers is a special case of Gilboa and Schmeidler (1993).

Ortoleva (2012) axiomatizes a novel updating rule, the Hypothesis Testing (HT) model. In his

model, the DM follows Bayes’ rule for “normal” events but deviates from Bayesian updating when

an “unexpected,” small probability event occurs. In addition to allowing deviations from Bayesian

updating, the HT model also imposes a structure on belief updating when a zero probability event

occurs, which is not the case in RML updating. On the other hand, the HT model has two assump-

tions that are more general than RML updating: (i) the HT model imposes no structure on the set

of priors the DM considers, whereas in RML updating every plausible prior must agree with the

benchmark prior on unambiguous events, (ii) in the HT model any subjective second-order prior

7



over the set of priors is allowed, while in RML updating it is uniform. In addition, when every

state is non-null, the HT model imposes almost no restriction on posteriors, and hence it is signif-

icantly more general than RML updating. Due to its generality, the HT model does not have the

uniqueness properties of RML updating. In RML updating, both the benchmark prior and the set

of plausible priors can be uniquely identified from preferences.

Epstein (2006) and Epstein, Noor, and Sandroni (2008) axiomatize a non-Bayesian updating

model where decision makers may be tempted to update their beliefs using a prior different from

their original prior. For example, they might be tempted to overreact to new information. In RML

updating, decision makers also revise their original prior when they receive new information, but

this is not due to temptation but rather due to ambiguity and willingness to make an inference. In

addition, the primitive of the analysis is different in these papers.

Zhao (2017) proposes a model that allows DMs to update their beliefs when they receive new

information of the form “event A is more likely than event B.” In his model, the posterior mini-

mizes Kullback-Leibler (KL) divergence from the prior subject to the constraint that the posterior

assigns a higher probability to A than B. In RML updating, the idea is similar as the DM chooses

her posterior by minimizing KL divergence from the Bayesian posterior of the benchmark prior

subject to the constraint that the new prior must assign the maximal likelihood to the observed event

among all plausible priors. Zhao (2018) axiomatizes a non-Bayesian updating model, similarity-

based updating, that builds on the representativeness heuristic of Kahneman and Tversky (1972).

While both similarity-based updating and RML updating can explain the same phenomena such

as the base rate fallacy, the underlying behavioral motivations for these models are completely

different.

Many behavioral models in the literature explain non-Bayesian updating by assuming some

type of bounded rationality. This includes assuming imperfect memory (Mullainathan, 2002a;

Gennaioli and Shleifer, 2010), coarse thinking (Mullainathan, 2002b; Mullainathan, Schwartzstein,

and Shleifer, 2008), the use of representativeness heuristic (Kahneman and Tversky, 1972), or

incorrect modeling (Barberis, Shleifer, and Vishny, 1998; Rabin and Schrag, 1999) by decision
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makers. All of these models are non-axiomatic and focus on particular applications.

Since in RML updating the DM is endowed with multiple priors, an alternative natural way

to update them is to update each prior according to Bayes’ rule. This method is known as full

Bayesian updating and was axiomatized by Pires (2002) using the maxmin expected utility model.

For ambiguity neutral decision makers, full Bayesian updating rule coincides with Bayesian up-

dating.

While dynamic consistency is usually considered a desirable property, it is frequently violated

in the models of belief updating under ambiguity. Epstein and Schneider (2003) retain dynamic

consistency by restricting the set of events on which the DM can update her beliefs. Hanany and

Klibanoff (2007) characterize dynamically consistent maxmin expected utility preferences without

any restriction on the set of conditioning events and show that updated preferences must depend on

the initial menu the DM is offered. Siniscalchi (2011) allows deviations from dynamic consistency

but assumes that the DM can anticipate her future deviations. Gul and Pesendorfer (2018) impose

a weaker version of dynamic consistency which can be interpreted as “not all news can be bad

news” and show that neither maximum likelihood updating nor full Bayesian updating satisfies

this property. RML updating also treats dynamic consistency as a desirable property by ensuring

that the DM is maximally dynamically consistent. That is, any deviation from dynamic consistency

is due to the DM’s willingness to use new information to make an inference on the set of plausible

priors.

Lastly, a few recent papers use ambiguity to explain deviations from Bayesian updating. Baliga,

Hanany, and Klibanoff (2013) show that belief polarization can arise when decision makers are am-

biguity averse. Fryer, Harms, and Jackson (2018) explain confirmation bias by assuming that when

decision makers receive ambiguous signals they interpret it as favorable to their original beliefs.

In a social learning experiment, Filippis, Guarino, Jehiel, and Kitagawa (2016) find that decision

makers frequently deviate from Bayesian updating when they receive private information that con-

tradicts their original beliefs. Their explanation for this phenomenon assumes multiple priors. All

of these papers are non-axiomatic and address specific deviations from Bayesian updating.
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The paper proceeds as follows. Section 1.2 introduces the updating rule. In Section 1.3, I take

the DM’s ex ante and ex post preferences over acts as the primitive and provide a set of behavioral

postulates that characterize the updating rule. Section 1.4 illustrates how the model can explain

many well-known biases in probabilistic reasoning. In Section 1.5, I extend the model to allow for

ambiguity averse preferences. Section 1.6 concludes. Section 1.7 includes all the proofs omitted

from the main text.

1.2 Updating Rule

Let Ω be a finite set of states, and denote by ∆(Ω) the set of all probability measures on Ω. The

collection of all nonempty subsets of Ω is denoted by A. The decision maker’s probability assess-

ment is characterized by (π,P) where π ∈ ∆(Ω) is her benchmark prior and P is a partitioning of

Ω that represents the collection of minimal unambiguous events. That is, for any P ∈ P , the DM

assesses that its likelihood is given by π(P ), and for any nonemptyD ( P , the likelihood assigned

by π reflects the DM’s best guess. Any arbitrary union of the events in P is unambiguous. A prior

is plausible if it agrees with the benchmark prior on unambiguous events. The set of all plausible

priors NP(π) is

NP(π) = {π′ ∈ ∆(Ω)| π′(P ) = π(P ) for all P ∈ P}.

The set NP(π) is uniquely defined given the benchmark prior and the collection of minimal unam-

biguous events.

Suppose the DM learns that event A ∈ A is realized. In the model, belief updating can be

described by two stages. In the first stage, the DM restricts her attention to the subset of plausible

priors that maximize the likelihood that A occurs. Let NP,A(π) denote this set. Formally,

NP,A(π) = arg max
π′∈NP (π)

π′(A). (1.1)

Next, the DM chooses a new benchmark prior from NP,A(π) and updates it using Bayes’ rule.
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It is required that the new benchmark prior is chosen in a way that its posterior πA satisfies the

following condition:

πA(ω)

πA(ω′)
=
π(ω)

π(ω′)
whenever ω, ω′ ∈ A ∩ P for some P ∈ P . (1.2)

As shown in Proposition 1.2.1, this is equivalent to requiring that the posterior πA is the “closest”

to the Bayesian posterior of π among all Bayesian posteriors of the priors in NP,A(π), where

closeness is defined in terms of Kullback-Leibler divergence.

Given a probability assessment (π,P), the posterior πA is uniquely defined and it is potentially

distinct from the Bayesian posterior, which is denoted by π(·|A). πA is interpreted as the DM’s

benchmark posterior and the new collection of minimal unambiguous events is {A ∩ P | P ∈ P}.

The next lemma illustrates the connection between the posterior πA and the benchmark prior π.

Lemma 1.2.1. Let (π,P) stand for the DM’s probability assessment. For any non-null A ∈ A and

ω ∈ A, the posterior πA obtained via (1.1) and (1.2) satisfies

πA(ω) = π(ω|A ∩ Pω) · π(Pω|
⋃
P∈P:A∩P 6=∅P ) (1.3)

where Pω is the member of P that contains ω.

To understand the formula (1.3), notice that for any π′ ∈ NP,A(π), π′(A ∩ P ) = π(P ) for

all P ∈ P with A ∩ P 6= ∅. Since πA is the Bayesian posterior of some π′ ∈ NP,A(π), for any

P, P ′ ∈ P that have nonempty intersections with A,

πA(P )

πA(P ′)
=
π′(P |A)

π′(P ′|A)
=
π′(A ∩ P )

π′(A ∩ P ′)
=
π(P )

π(P ′)
.

This together with (1.2) show that the posterior πA satisfies (1.3).

Definition 1.2.1. Given a probability assessment (π,P), the robust maximum likelihood (RML)

updating rule assigns every non-null event A ∈ A the posterior πA given by (1.3).
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The RML updating rule reflects the DM’s awareness of potential inaccuracy of her benchmark

prior on ambiguous events, which necessitates a revision of the benchmark prior when new infor-

mation is received, and her willingness to stay as “close” to her benchmark prior as possible. If

all events are unambiguous (i.e., P is the collection of singletons), RML and Bayesian updating

coincide. The next proposition provides an alternative representation for the updating rule.

Proposition 1.2.1. Let (π,P) be a probability assessment, and denote by π(·|A) the Bayesian

posterior of π when an event A ∈ A occurs. Then πA is the RML posterior of π if and only if

πA = arg min
π′A∈B(NP,A(π))

DKL(π(·|A) || π′A)

where

DKL(π(·|A) || π′A) = −
∑
ω∈A

π(ω|A) ln
( π′A(ω)

π(ω|A)

)
and B(NP,A(π)) is the set of Bayesian posteriors of the priors in NP,A(π).

To illustrate the RML updating rule, consider the Ellsberg experiment where the DM is told

that an urn contains 30 red (R) balls and 60 blue (B) or green (G) balls in an unknown proportion.

Let (π,P) stand for the DM’s probability assessment and suppose the benchmark prior π assigns

equal probability to all colors. For consistency with the information given to the DM, the collection

of minimal unambiguous events is P = {{R}, {B,G}}, and the set of plausible priors NP(π) is

NP(π) = {π′ ∈ ∆({R,B,G})| π′(R) = 1/3}.

Suppose the experimenter draws a ball from the urn and tells the DM that the ball is not green.

In this case, the plausible prior that assigns zero probability to green maximizes the likelihood of

the observation. Therefore, the RML posterior π{R,B} is

π{R,B}(R) = 1/3, π{R,B}(B) = 2/3, π{R,B}(G) = 0.
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When the DM is told that the ball is not red, the first stage of RML updating imposes no restriction

on the posterior as all plausible priors agree on the event {B,G}. Hence, in this case the RML

posterior π{B,G} is the same as the Bayesian posterior:

π{B,G}(R) = 0, π{B,G}(B) = 1/2, π{B,G}(G) = 1/2.

1.3 Representation Theorem

Let X stand for the set of prizes which is assumed to be a convex subset of a metric linear space.

For example, X can be the set of monetary outcomes the agent may receive (X ⊆ R) or it can

be the set of all lotteries over a finite set of outcomes Z (the classical Anscombe and Aumann

(1963) setup). An act assigns a prize to each state of the world. The set of all acts is denoted

by F = XΩ. As usual, constant acts are identified with X . A mixture of two acts is defined

statewise: i.e., for any f, g ∈ F and α ∈ [0, 1], the act αf + (1 − α)g ∈ F is defined by

(αf + (1− α)g)(ω) := αf(ω) + (1− α)g(ω) for all ω ∈ Ω. For any event A ∈ A and f, g ∈ F ,

fAg ∈ F is defined by (fAg)(ω) = f(ω) if ω ∈ A and (fAg)(ω) = g(ω) if ω ∈ Ac.

I impose axioms on the collection of preferences {<A}A∈A where <A reflects the DM’s pref-

erence over acts when she learns that A ∈ A is realized. The DM’s preference over acts when

she receives no information is <Ω, which is simply denoted by <. For notational simplicity, it is

assumed that the DM is indifferent between all acts when the impossible event occurs, i.e., f ∼∅ g

for all f, g ∈ F .

The first three axioms are standard Weak Order, Archimedean, and Independence.

Axiom 1.3.1. (Weak Order) For any A ∈ A, <A is complete and transitive.

Axiom 1.3.2. (Archimedean) For any A ∈ A and f, g, h ∈ F such that f �A g �A h, there exist

α, β ∈ (0, 1) such that αf + (1− α)h �A g and g �A βf + (1− β)h.

Axiom 1.3.3. (Independence) For any A ∈ A, if f �A g and α ∈ (0, 1], then αf + (1− α)h �A

αg + (1− α)h for all h ∈ F .
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Axiom 1.3.4 states that there exist best and worst alternatives and the DM is not indifferent

between them. The existence of best and worst alternatives is not necessary for the representation,

but it is assumed for the sake of convenience. The assumption that the DM is not indifferent

between all alternatives is necessary for the benchmark prior to be identified from preferences.

Axiom 1.3.4. (Nontriviality) There exist x∗ and x∗ such that x∗ � x∗ and x∗ < x < x∗ for all

x ∈ X .

The next axiom states that if f assigns a better prize to every state of the world than g does,

then f must be preferred to g.

Axiom 1.3.5. (Monotonicity) For any A ∈ A, if f(ω) <A g(ω) for all ω ∈ Ω, then f <A g. If, in

addition, f is a constant act and f(ω) �A g(ω) for some ω ∈ A, then f �A g.

Axiom 1.3.5 also requires that if the prize associated with a constant act is replaced in some

state with a prize that is strictly worse, the DM considers the new act as strictly inferior. In addition

to guaranteeing that the utility function derived from preferences is state independent, Axiom 1.3.5

also ensures that every state is non-null. Notice that by itself this axiom is weaker than strict

monotonicity, which requires that if f(ω) <A g(ω) for all ω ∈ Ω and f(ω) �A g(ω) for some

ω ∈ A, then f �A g. For example, if the DM evaluates acts according to their worst prize on A,

then Axiom 1.3.5 is still satisfied even though strict monotonicity is violated. In the presence of

previous axioms, Axiom 1.3.5 and strict monotonicity are equivalent.

The next axiom states that the ranking of two constant acts does not change when new infor-

mation is received. This is because the prize associated with a constant act is the same regardless

of the realized state and the utility of a prize is not affected by new information.

Axiom 1.3.6. (Constant Act Preference Invariance) For any A ∈ A \ ∅ and x, y ∈ X , x < y ⇔

x <A y.

Axiom 1.3.7 requires that when A is realized the DM must be indifferent between acts that

agree on A. This axiom is known as consequentialism. In the literature, deviations from conse-

quentialism are usually allowed to accommodate non-expected utility preferences (e.g., Machina,
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1989) or to model a decision maker with an imperfect understanding of the state space (e.g., Mi-

nardi and Savochkin, 2017). However, the main goal of this paper is to explore non-Bayesian

updating when the DM has expected utility preferences and perfect understanding of the state

space.

Axiom 1.3.7. (Consequentialism) For any A ∈ A, if f(ω) = g(ω) for all ω ∈ A, then f ∼A g.

If, in addition to Axioms 1.3.1–1.3.7, one also assumes dynamic consistency, then belief updat-

ing must be Bayesian (e.g., see Ghirardato, 2002).5 Dynamic consistency requires that if two acts

agree outside an event, then the ranking of these acts should not change when this event occurs. In

other words, this says that ex ante optimal plans must be optimal ex post. It can formally be stated

as follows.

Dynamic Consistency: For any non-null A ∈ A and f, g ∈ F , fAg < g ⇔ f <A g.

Axioms 1.3.1–1.3.5 guarantee that the benchmark prior can be uniquely revealed from ex ante

preferences as in Anscombe and Aumann (1963). If the DM considers the benchmark prior as

the only plausible prior (i.e., no ambiguity), then dynamic consistency is natural. In contrast, if

the DM considers multiple priors plausible, it seems natural to revise the benchmark prior when

new information arrives. Since the new prior may be distinct from the original benchmark prior,

preferences may violate dynamic consistency. However, dynamic consistency should still be sat-

isfied when an unambiguous event is realized. This is because the realization of such an event is

not useful in distinguishing between plausible priors as all priors agree on the likelihood of these

events, and hence there is no reason for the DM to deviate from her benchmark prior. Therefore,

every unambiguous event must be dynamically consistent defined as below.

Definition 1.3.1. A ∈ A is dynamically consistent if for any f, g ∈ F , fAg < g ⇔ f <A g.6

5The connection between dynamic consistency and Bayesian updating is very general as shown in Epstein and
Le Breton (1993). They show that if conditional preferences are derived in a way to ensure dynamic consistency and
both ex ante and conditional preferences are “based on beliefs” (i.e., an event A is considered to be more likely than
B if the DM prefers to bet on A rather than B), then standard axioms (Savage axioms except the Sure Thing Principle)
guarantee that there exists a unique prior that represents beliefs and conditional beliefs are obtained using Bayes’ rule.

6Notice that dynamic consistency is a feature of preferences not events. However, I use this terminology for the
sake of brevity.
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Suppose the analyst observes that the DM’s preferences are dynamically consistent upon real-

ization of an event. Can the analyst conclude that the DM considers this event as unambiguous?

I provide an example which shows that this conclusion may not be accurate and then define a

stronger version of dynamic consistency that captures unambiguous events.

Example 1.3.1. Consider a DM who is told that an urn contains 50 red or blue balls and 50 green

or yellow balls in unknown proportions. Let Ω = {R,B,G, Y } where R, B, G, and Y stand for

states when the ball drawn from an urn is red, blue, green, and yellow, respectively. The set of

plausible priors is

{π′ ∈ ∆({R,B,G, Y })| π′(R) + π′(B) = π′(G) + π′(Y ) = 1/2}.

When no further information is given, the DM may choose her benchmark prior as the one

which assigns equal probability to all colors. Now suppose that a ball is drawn from the urn and

the DM is told that the ball is either blue or green. This information does not favor either blue

or green relative to the original information. Hence, it makes sense to assume that the benchmark

posterior also assigns equal probability to blue and green. But then the event {B,G} is dynami-

cally consistent. On the other hand, given the set of plausible priors, it is not possible to tell the

exact probability that {B,G} occurs.

In Example 1.3.1, even though {B,G} is a dynamically consistent event, it is still possible that

{B,G} is ambiguous. Consider two bets fB = (0, 100, 0, 0) and fG = (0, 0, 100, 0). If the DM’s

benchmark prior and posterior are as in the example, it must be that fB ∼ fG and fB ∼{B,G} fG.

Now suppose before learning that the ball drawn from the urn is either blue or green, the DM first

learns that the ball is not yellow. The information that the ball is not yellow may suggest that the

number of green balls in the urn is greater than the number of yellow balls. Since this information

does not say anything regarding the relative proportion of red and blue balls, there is no reason for

the DM to deviate from her original evaluation of the relative likelihood of R and B. But then the

DM strictly prefers fG over fB when she learns that the ball is not yellow. Hence, fG �{R,B,G} fB
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even though fB ∼{B,G} fG and fB and fG agree on {R}. This would not be expected if {B,G}

was unambiguous.

This example motivates a new definition that captures unambiguous events via a stronger ver-

sion of dynamic consistency

Definition 1.3.2. A ∈ A is perfectly dynamically consistent if for any eventB ⊇ A and f, g ∈ F ,

fAg <B g ⇔ f <A g.

For a Bayesian decision maker, every event should be perfectly dynamically consistent. Indeed,

perfect dynamic consistency is implicitly assumed in the previous characterizations of Bayesian

updating as {<A}A∈A satisfies dynamic consistency only if every non-null event is perfectly dy-

namically consistent.7

Example 1.3.1 illustrates that when {<A}A∈A does not satisfy dynamic consistency, there may

be events that are dynamically consistent but not perfectly dynamically consistent. Since unam-

biguous events are expected to be perfectly dynamically consistent and it is possible to find a

violation of perfect dynamic consistency for ambiguous events as in Example 1.3.1, an event is

defined to be unambiguous if the event as well as its complement are perfectly dynamically consis-

tent. The reason for requiring the complement to be perfectly dynamically consistent comes from

the observation that the complement of an unambiguous event must be unambiguous.

Definition 1.3.3. E is an unambiguous event if both E and Ec are perfectly dynamically consis-

tent. The collection of all unambiguous events is denoted by E . An event that does not belong to E

is an ambiguous event.

The next axiom ensures that the collection of unambiguous events form an algebra. A collec-

tion of events E is an algebra over Ω if (i) Ω ∈ E , (ii) E ∈ E implies Ec ∈ E , and (iii) E,E ′ ∈ E

implies E ∩ E ′ ∈ E .
7To see this, suppose {<A}A∈A satisfies dynamic consistency. Let A ∈ A, B ⊇ A and f, g ∈ F be given.

Dynamic consistency implies that fAg < g ⇔ f <A g. On the other hand, since B ⊇ A, fAg = (fAg)Bg.
Hence, dynamic consistency also implies that fAg < g ⇔ (fAg)Bg < g ⇔ fAg <B g. Therefore, A is perfectly
dynamically consistent.
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Axiom 1.3.8. (Algebra of Unambiguous Events) If E,E ′ ∈ E , then E ∩ E ′ ∈ E .

Intuitively, this axiom requires the following. Suppose events E,Ec, E ′, and E ′c are perfectly

dynamically consistent so that both E and E ′ are unambiguous. Let f and g be two acts which

agree outside E∩E ′. By the definition of perfect dynamic consistency, ex ante preference between

f and g must be preserved when the DM learns either B ⊇ E or B′ ⊇ E ′. But then it makes sense

to assume that ex ante preference between f and g must still be preserved when the DM learns

B and B′ simultaneously. Therefore, perfectly dynamically consistent events are expected to be

closed under intersection.

Since E is an algebra, there exists a unique partitioning of the state space that generates E .

A partition P of Ω generates the algebra E if E ∈ E ⇔ there exist P1, . . . , Pk ∈ P such that

P1 ∪ · · · ∪ Pk = E. Let PE denote the partition that generates E . The members of PE are minimal

unambiguous events, i.e., any nonempty D ( P where P ∈ PE is ambiguous. The next two

axioms rely on PE .

The following definitions will be useful for the statement of the next axiom.

Definition 1.3.4. 1. For any event A, a bet on A is an act fA that yields the best prize on A

and the worst prize outside A, i.e., fA = x∗Ax∗.

2. For any f ∈ F andA ∈ A, a certainty equivalent of f givenA is a sure outcome cA(f) ∈ X

such that f ∼A cA(f).8

Since the DM knows the likelihood of unambiguous events but can only guess the likelihood

of ambiguous events, she may want her posterior not to differ too much from her benchmark prior

on unambiguous events. The next axiom, robust inference, reflects this cautious attitude when the

DM updates her benchmark prior. Consider a minimal unambiguous event P ∈ PE and let fP

denote a bet on P . Suppose A is realized, and hence A ∩ P is a new minimal unambiguous event.

Robust inference requires that the DM’s willingness to bet on P is not affected when D ( A ∩ P

is ruled out. That is, cA(fP ) ∼ cA\D(fP ). In other words, since D is a proper subset of a minimal

8The axioms stated so far and the assumption that X is convex guarantee that every act has a certainty equivalent.
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unambiguous event, when it is ruled out, the DM’s considers the plausibility that it was a null event

in the first place.

Axiom 1.3.9. (Robust Inference) For any A ∈ A and D ( A ∩ P where P ∈ PE ,

cA(fP ) ∼ cA\D(fP ).

In general, it is desirable if the DM’s preferences are dynamically consistent unless there is a

justifiable reason for deviation. The next axiom, consistency, requires that every D ( P , where

P is a minimal unambiguous event, is perfectly dynamically consistent. Since an event E is un-

ambiguous when both E and Ec are perfectly dynamically consistent and consistency requires an

ambiguous event D ( P to be perfectly dynamically consistent, the implication of the axiom is

that Dc is not perfectly dynamically consistent.

Axiom 1.3.10. (Consistency) Every D ( P where P ∈ PE is perfectly dynamically consistent.

Intuitively, when D ( P is realized, the DM does not learn any information that can help

her make an inference regarding the relative likelihoods of the states within D, and hence there

is no reason for the DM to deviate from her original evaluation. To illustrate, suppose the DM

is told that an urn contains 25 red (R) balls and 75 blue (B), green (G), or yellow (Y) balls in an

unknown proportion. Since {B,G, Y } is a minimal unambiguous event that is known to occur

with 0.75 probability, consistency requires that the DM’s preferences are dynamically consistent

when, for example, {B,G} is realized. This is because the information that {B,G} is realized

does not say anything regarding the relative proportion of blue and green balls, and hence there is

no justification for deviation from the benchmark prior. Therefore, if the DM is ex ante indifferent

between betting on blue and betting on green, she should remain indifferent when she learns that

the ball drawn from the urn is either blue or green.

The next theorem provides a characterization result for the RML updating model.

Theorem 1.3.1. The collection of preferences {<A}A∈A satisfies Weak Order, Archimedean, Inde-

pendence, Nontriviality, Mononotonicity, Constant Act Preference Invariance, Consequentialism,
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Algebra of Unambiguous Events, Robust Inference, and Consistency if and only if there exist a

non-constant, affine utility function u : X → R with u(X) = [u(x∗), u(x∗)] and a probability

assessment (π,P), where π has full support on Ω, such that for any A ∈ A,

f <A g ⇔
∑
ω∈Ω

πA(ω)u(f(ω)) ≥
∑
ω∈Ω

πA(ω)u(g(ω)) (1.4)

and πA is the RML posterior of π. Moreover, u is unique up to a positive affine transformation, πA

is unique for all A ∈ A \ ∅, and P is uniquely revealed as PE unless P = {Ω, ∅}.

1.3.1 Sketch of the Proof

While showing the necessity of Axioms 1.3.1–1.3.7 is standard, the necessity of Axioms 1.3.8–

1.3.10 is not trivial. The key step in the proof is showing that if {<A}A∈A can be represented by

(1.4), then the collection of minimal unambiguous events PE that is derived from preferences is

exactlyP unlessP = {Ω, ∅}. This is achieved by showing that an event belongs to the algebra gen-

erated by P if and only if both this event and its complement satisfy perfect dynamic consistency.

Once this can be shown, Axioms 1.3.8–1.3.10 directly follow from the representation.

The proof of the claim that when E belongs to the algebra generated by P both E and Ec are

perfectly dynamically consistent can be done using standard arguments. To prove the opposite,

suppose E does not belong to the algebra generated by P . There are two cases to consider. As an

illustration, consider the case when E ( P for some P ∈ P . Since Axiom 1.3.10 is satisfied only

if E is perfectly dynamically consistent, it needs to be shown that Ec is not perfectly dynamically

consistent. Consider bets on P and P \ E, i.e., fP = x∗Px∗ and fP\E = x∗E(x∗Px∗). Using the

representation (1.4), it is possible to find z̄, z ∈ X such that

fP =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼ z̄ and fP\E =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼

x∗ if ω ∈ E

z if ω ∈ P \ E

z if ω ∈ Ω \ P
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where z̄ � z. Now suppose Ec is realized. From the representation, z̄ �Ec z ∼Ec x∗Ez. Since

πEc the RML posterior of π, z̄ ∼Ec fP ∼Ec fP\E . But then, fP\E = x∗E(x∗Px∗) �Ec x∗Ez,

in violation of dynamic consistency. Therefore, Ec is not perfectly dynamically consistent. This

shows that E is an ambiguous event, i.e., E /∈ E . The case when E ∩ P 6= ∅ and E ∩ P ′ 6= ∅ for

at least two distinct P, P ′ ∈ P is similar.

To prove sufficiency, first observe that Axioms 1.3.1–1.3.5 yield an SEU representation for

each A ∈ A as in Anscombe and Aumann (1963). Moreover, Axiom 1.3.6 guarantees that the

same utility function can be used for all <A, and Axioms 1.3.5 and 1.3.7 guarantee that πA has

full support on A and πA(Ac) = 0. Therefore, it only needs to be shown that each πA is the

RML posterior of π. Let E be given by Definition 1.3.3, and PE is the partition that generates

E . The DM’s probability assessment is (π,PE). Since preferences are dynamically consistent on

E ∈ E , standard arguments show that updating is Bayesian when E is realized, consistent with

RML updating.

Consider an event A /∈ E . I construct an unambiguous event B ∈ E such that B ⊇ A and B is

the smallest such event with respect to set inclusion. To construct B, let PE = {P1, . . . , Pn} and

consider J ⊆ {1, . . . , n} such that Pj ∩A 6= ∅ for all j ∈ J . The event B is given by B = ∪j∈JPj .

Since B ∈ E , according to the previous paragraph, the DM performs Bayesian updating when B

is realized. Hence, for any j, j′ ∈ J ,

πB(Pj)

πB(Pj′)
=
π(Pj)

π(Pj′)
.

On the other hand, Axiom 1.3.9 implies that πA(Pj) = πA∪Pj
(Pj) for all j ∈ J . Therefore, iterative

application of Axiom 1.3.9 yields πA(Pj) = πB(Pj) for all j ∈ J , which implies

πA(Pj)

πA(Pj′)
=
π(Pj)

π(Pj′)
.

Consider an event A ∩ Pj where j ∈ J . By Axiom 1.3.10, A ∩ Pj is perfectly dynamically

consistent, and hence standard arguments guarantee that πA∩Pj
is the Bayesian posterior of π.
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Moreover, perfect dynamic consistency also ensures that πA∩Pj
(ω) = πA(ω|Pj) for all ω ∈ A∩Pj .

Therefore, for any ω, ω′ ∈ A ∩ Pj ,

πA(ω)

πA(ω′)
=
πA∩Pj

(ω)

πA∩Pj
(ω′)

=
π(ω)

π(ω′)
.

This together with the conclusion of the previous paragraph and Lemma 1.2.1 show that πA is the

RML posterior of π, concluding the proof of sufficiency.

Lastly, the uniqueness of u up to a positive affine transformation and the uniqueness of πA for

each A ∈ A are standard results. The uniqueness of P is implied by the proof of necessity where

the equivalence of P and PE is shown.

1.4 Applications

In this section, I show how the RML updating rule can help explain commonly observed biases

in probabilistic reasoning. While all the examples in this section only use the first stage of RML

updating, in more realistic examples with a larger state space the first stage of RML updating by

itself will in general not result in a unique posterior, and hence the second stage of RML updating

will be needed to make meaningful predictions.

Let Ω ≡ S × Σ where S = {s1, s2} is the set of payoff-relevant states and Σ = {σ1, σ2} is

the set of possible signals. The DM’s benchmark prior π is represented by two parameters (µ, α)

where µ > 1/2 is the probability that the payoff relevant state is s1 and α > 1/2 denotes the

probability that the DM receives signal σi when the payoff-relevant state is si. µ > 1/2 reflects the

DM’s initial evaluation that s1 is more likely.

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

State Space Ω

s1

s2

σ1 σ2

µα µ(1− α)

(1− µ)(1− α) (1− µ)α

Benchmark Prior π
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1.4.1 Confirmation Bias

I now revisit the confirmation bias phenomenon illustrated in the introduction. The DM who

displays confirmation bias interprets contrary evidence as supportive of her original beliefs (Rabin

and Schrag, 1999). That is, when the DM observes σ2, she finds s1 to be at least as likely as before.

Formally,

πconf. bias(s1|σ2) ≥ µ >
µ− µα

µ+ α− 2µα
= π(s1|σ2).

Confirmation bias is frequently reported in experiments (e.g., see Lord, Ross, and Lepper, 1979;

Darley and Gross, 1983). Here, I provide an explanation for confirmation bias that uses RML

updating (see Minardi and Savochkin, 2017; Fryer, Harms, and Jackson, 2018, for other recent

models that can accommodate confirmation bias).

Suppose the DM finds it plausible that there is a “bias” in the information source that is po-

tentially unfavorable towards the state she originally finds more likely. Even though such a DM

unambiguously knows the probability that the payoff-relevant state is s1, the event that σi occurs

when s1 is the payoff-relevant state is ambiguous. Therefore, when the DM observes σ2, she re-

vises her benchmark prior to account for the plausibility that, due to the bias, σ2 might be more

likely than σ1 when the payoff-relevant state is s1. Notice that the DM might find the existence of

a bias plausible even though it is not her benchmark belief. Once the bias is seen as plausible, the

DM is endowed with multiple priors and uses signal realizations to distinguish between plausible

priors.

To formalize the intuition, let P stand for the set of minimal unambiguous events in this exam-

ple, which is given by

P = {{ω11, ω12}, {ω21}, {ω22}}.

In RML updating, the DM uses the maximum likelihood method to make an inference regarding

the direction of the bias. Given the benchmark prior and the set of minimal unambiguous events,
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the RML posterior πσ2 is

πσ2(s1) =
µ

µ+ α− µα
and πσ2(s2) =

α− µα
µ+ α− µα

Hence, the DM performing RML updating believes that s1 is strictly more likely than before when

she observes σ2, consistent with confirmation bias.

1.4.2 Other Behavioral Biases

I consider three other commonly observed deviations from Bayesian updating: base rate neglect,

conservatism, and overconfidence.

Base Rate Neglect: In a series of experiments, Kahneman and Tversky (1973) and Bar-Hillel

(1980) show that decision makers tend to ignore the base rate µ in their predictions. In the well-

known “cab problem,” DMs are told that there are two cab companies, Blue and Green, one of

which has been involved in a hit-and-run accident. The proportion of Blue cabs in the city is 85%,

and the cab involved in the accident was identified as Green by a witness who is accurate 80% of

the time. When DMs are asked to predict the probability that the car involved in the accident is

Green, the median and modal response is 0.8, much higher than the Bayesian posterior (≈ 0.41).

To see how RML updating can explain this phenomenon, imagine that the DM has full confi-

dence in the likelihood information α but does not have full confidence in the base rate µ. Even

when the DM does not have full confidence in the base rate, the event that consists of states in

which she gets “correct” signals is still unambiguous and known to occur with α = 0.8 probabil-

ity. Similarly, the event that corresponds to states in which she gets “wrong” signals is unambigu-

ously assigned 1 − α = 0.2 probability. Given this set of minimal unambiguous events, the RML

posterior is exactly equal to the median response in the cab problem (see the figure below).

Conservatism: DMs display conservatism bias when they overweight the base rate and un-

derweight the likelihood information (see Edwards, 1968, for the classical experimental findings).

RML updating results in conservatism bias when decision makers have full confidence in the base
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rate information but not in the likelihood information. This is exactly the mirror image of the base

rate neglect phenomenon.

Overconfidence: Decision makers who treat their private information as more precise than

it actually is are described as overconfident (see Odean, 1998, for a review of psychology lit-

erature on overconfidence and its implications for asset markets). Suppose s1 = good market,

s2 = bad market, σ1 = good jobs report, and σ2 = bad jobs report. Overconfident investors tend

to over-invest when they observe good jobs report and under-invest when they observe bad jobs

report. RML updating results in overconfidence when the DM has full confidence in the likelihood

information but is not completely sure whether the “correct” signal is more likely when the state is

s1 or s2.

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Confirmation Bias

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Base Rate Neglect

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Conservatism

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Overconfidence

Figure 1.1: Behavioral biases. This figure illustrates partitions used to explain each behavioral
bias. States connected by a line belong to the same partition element.

1.5 Ambiguity Averse Preferences

In Section 1.3, ambiguity is reflected in the DM’s belief updating even though the DM’s prefer-

ences display neutral attitude towards ambiguity. In this section, I consider an ambiguity averse

DM whose preferences are consistent with the maxmin expected utility model of Gilboa and

Schmeidler (1989).

An ambiguity averse DM is expected to satisfy all the axioms that characterize the subjective

expected utility model in Section 1.3 except independence and consistency. An ambiguity averse

DM may not satisfy independence due to strict preference for randomization, which may arise as

randomization potentially limits the exposure to ambiguity. In the Ellsberg example, the DM may
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be indifferent between betting on blue (fB) and betting on green (fG) but may strictly prefer the

50-50 randomization of these bets, in violation of independence (see below). This is because the

50-50 randomization between fB and fG gives the DM the same monetary outcome regardless of

whether the ball drawn from the urn is blue or green, and hence it can be seen as a perfect hedge

against ambiguity.

fB

$0

$100

$0

∼ fG

$0

$0

$100

≺ 1
2
fB + 1

2
fG

$0

$50

$50

R

B

G

R

B

G

R

B

G

Figure 1.2: Preference for randomization due to ambiguity aversion.

To illustrate why an ambiguity averse DM may not satisfy consistency, recall the example

where the DM is told that an urn contains 25 red (R) balls and 75 blue (B), green (G), or yellow

(Y) balls in an unknown proportion. Here, {B,G, Y } is a minimal unambiguous events, and hence

consistency implies that {B,G} is dynamically consistent. Let f1 be the act that yields $100 if

the ball drawn from the urn is blue, and $0 otherwise. Let f2 be the act that yields $25 if the ball

drawn from the urn is either blue or green, and $0 otherwise. When the DM learns that {B,G} is

realized, she may have a strict preference for f2 over f1 as f2 perfectly hedges against ambiguity

but f1 does not. Should this DM have a strict preference for f2 over f1 ex ante as required by

consistency? This is not clear because ex ante f2 is not a perfect hedge against ambiguity and it

has much lower expected value than f1 for many plausible priors.

In addition to the axioms in Section 1.3 except independence and consistency, I impose two

new axioms on preferences that characterize RML updating for ambiguity averse DMs. Let E stand

for the collection of unambiguous events as in Definition 1.3.3, and PE is the collection of minimal

unambiguous events. Acts that are constant on minimal unambiguous events are unambiguous

acts.

Definition 1.5.1. f ∈ F is an unambiguous act if f(ω) = f(ω′) whenever ω, ω′ ∈ P for some

P ∈ PE . The set of all unambiguous acts is denoted by Fua ⊆ F .
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Axiom 1.5.1 imposes independence on the set of all unambiguous acts. Since unambiguous

acts have no exposure to ambiguity, strict preference for randomization between unambiguous acts

cannot be justified by ambiguity aversion.

Axiom 1.5.1. (Weak Independence) For any A ∈ A, f, g, h ∈ Fua and α ∈ (0, 1], f �A g implies

αf + (1− α)h �A αg + (1− α)h.

Weak independence is consistent with both ambiguity averse and ambiguity loving attitude.

The next axiom imposes that the DM is ambiguity averse.

Axiom 1.5.2. (Ambiguity Aversion) For any A ∈ A, D ( A ∩ P where P ∈ PE , and f ∈ F ,

x∗Df ∼A f .

Consider a minimal unambiguous event P and suppose A is realized. After this realization,

A ∩ P is a minimal unambiguous event, and hence D ( A ∩ P is ambiguous. Axiom 1.5.2

requires that the DM is indifferent between an act f and an act which agrees with f outside D and

yields the best prize on D. This is an extreme attitude that completely disregards that in the second

act the DM receives the best prize whenD occurs. This is due to two assumptions: (i) in the model,

every D ( A∩P is treated as maximally ambiguous, (ii) given the set of plausible priors, the DM

evaluates acts according to their worst case utility as in Gilboa and Schmeidler (1989).

The next theorem provides a characterization for RML updating for ambiguity averse DMs.

Theorem 1.5.1. The collection of preferences {<A}A∈A satisfies Weak Order, Archimedean, Weak

Independence, Nontriviality, Monotonicity, Constant Act Preference Invariance, Consequential-

ism, Algebra of Unambiguous Events, Robust Inference, and Ambiguity Aversion if and only if

there exist a non-constant, affine utility function u : X → R with u(X) = [u(x∗), u(x∗)], and a

probability assessment (π,P), where π has full support on P , such that for any A ∈ A,

f <A g ⇔ min
πA∈B(NP,A(π))

∑
ω∈Ω

πA(ω)u(f(ω)) ≥ min
πA∈B(NP,A(π))

∑
ω∈Ω

πA(ω)u(g(ω)) (1.5)
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whereB(NP,A(π)) is the set of Bayesian posteriors of the priors in NP,A(π). Moreover, u is unique

up to a positive affine transformation, P is uniquely revealed as PE , and the set NP,A(π) is unique

for all A ∈ A \ ∅.

When the DM’s preferences are consistent with the maxmin expected utility model, the bench-

mark prior can no longer be identified from preferences. In fact, the only role of the benchmark

prior in Theorem 1.5.1 is to define the likelihood of unambiguous events. Since the DM uses the

worst case scenario to evaluate acts, even if she has a guess for the likelihood of ambiguous events

this will not be reflected in her preferences. This distinguishes Theorem 1.5.1 from Theorem 1.3.1

where the benchmark prior can be revealed from ex ante preferences. Because of the limited role

the benchmark prior plays in Theorem 1.5.1, with maxmin expected utility preferences RML up-

dating coincides with the maximum likelihood updating rule of Gilboa and Schmeidler (1993).

Recall that an event E is defined to be unambiguous if and only if both E and Ec are per-

fectly dynamically consistent, which holds for both ambiguity neutral and ambiguity averse DMs.

Example 1.3.1 shows that an event may fail to be perfectly dynamically consistent even when

it is dynamically consistent. However, if {<A}A∈A satisfies the axioms in Theorem 1.5.1, then

every dynamically consistent event is perfectly dynamically consistent. Therefore, if the DM is

ambiguity averse, it is possible to identify unambiguous events via dynamic consistency.

Lemma 1.5.1. If the collection of preferences {<A}A∈A can be represented by (1.5), then every

dynamically consistent event is perfectly dynamically consistent, and hence an event E is unam-

biguous if and only if both E and Ec are dynamically consistent.

1.6 Conclusion

Many real life economic problems involve ambiguity. In this paper, it is argued that departing

from Bayesian updating is natural when one faces ambiguity. I axiomatize a non-Bayesian updat-

ing model, robust maximum likelihood (RML) updating, where the DM’s probability assessment

can be represented by a benchmark prior, which reflects the DM’s initial best guess, and a set of
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priors the DM considers plausible. The DM responds to new information by revising the bench-

mark prior via the maximum likelihood principle in a way that ensures maximally dynamically

consistent behavior, and updates the new prior using Bayes’ rule. I show that RML updating can

accommodate many commonly observed deviations from Bayesian updating.

I take the DM’s preferences over acts before and after the arrival of new information as the

primitive of the analysis. In addition to standard axioms, the two main axioms imposed on pref-

erences are robust inference and consistency. Robust inference requires that when a proper subset

of a minimal unambiguous event is ruled out, the DM’s willingness to bet on this minimal un-

ambiguous event is not affected. This reflects the DM’s cautious attitude when she updates her

benchmark prior. Consistency states that every proper subset of a minimal unambiguous event is

perfectly dynamically consistent. This reflects the intuition that when such an event is realized, the

DM does not learn any new information that can help her make an inference regarding the relative

likelihoods of the states within this event. I show that if the DM satisfies these axioms, both the

benchmark prior and the set of plausible priors are uniquely identified from preferences.

1.7 Appendix

Proof of Theorem 1.3.1

Necessity

The necessity of Axioms 1.3.1–1.3.5 is standard. The necessity of constant act preference invari-

ance follows from the observation that the same utility function is used for all <A in the represen-

tation. Consequentialism is necessary as the RML posterior satisfies πA(ω) > 0 only if ω ∈ A.

Let (π,P , u) be a representation of {<A}A∈A given by Theorem 1.3.1. To prove the necessity

of Axioms 1.3.8–1.3.10, I show that the set of unambiguous events, denoted by E , is equal to σ(P),

the algebra generated by the partition P , as long as P is not degenerate (i.e., P 6= {Ω, ∅}). This is

proved in Lemma 1.7.3 after two preliminary observations. The next lemma shows that if A ⊆ B
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and πA and πB are the RML posteriors of π, then πA is the RML posterior of πB where the partition

of B is given by {B ∩ P | P ∈ P}.

Lemma 1.7.1. Let (π,P) represent the probability assessment and suppose for any non-null A ∈

A, πA is the RML posterior of π. Then for any non-null A ⊆ B, πA is the RML posterior of πB

where the partition of B is given by {B ∩ P | P ∈ P}.

Proof. Notice that since for any P ∈ P , A ∩ (B ∩ P ) = A ∩ P , it suffices to show that for any

P, P ′ with A ∩ P 6= ∅ and A ∩ P ′ 6= ∅,

πA(P )

πA(P ′)
=
πB(P )

πB(P ′)

and for any ω, ω′ ∈ A ∩ P where P ∈ P ,

πA(ω)

πA(ω′)
=
πB(ω)

πB(ω′)
.

The second equation follows from the observation that since πA and πB are the RML posteriors

of π and A ⊆ B, the above ratio is equal to π(ω)
π(ω′)

. Similarly, the first equation follows from the

observation that B ∩ P 6= ∅ whenever A ∩ P 6= ∅, and hence the above ratio is equal to π(P )
π(P ′)

.

Lemma 1.7.2. Let E ( P for some P ∈ P and fP\E = x∗E(x∗Px∗). Then for any A ⊇ P , there

exists zA ∈ X such that fP\E ∼A x∗EzA.

Proof. Let zA be defined by

zA =
πA(P \ E)

1− πA(E)
x∗ +

1− πA(P )

1− πA(E)
x∗.

By assumption, A ) E and πA(ω) > 0 for each ω ∈ A. Hence, πA(E) < 1. Since X is convex,

zA ∈ X . Moreover, since u is affine,

u(zA) =
πA(P \ E)

1− πA(E)
u(x∗) +

1− πA(P )

1− πA(E)
u(x∗).
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Let UA be a representation of <A given by Theorem 1.3.1. By the representation,

UA(fP\E) = πA(P \ E)u(x∗) + (1− πA(P \ E))u(x∗)

= πA(P \ E)u(x∗) + (1− πA(P ))u(x∗) + πA(E)u(x∗)

= (1− πA(E))u(zA) + πA(E)u(x∗).

Therefore, fP\E ∼A x∗EzA.

Lemma 1.7.3. Suppose P 6= {Ω, ∅}. Then E ∈ E if and only if E ∈ σ(P).

Proof. Suppose E /∈ σ(P). It needs to be shown that E /∈ E . There are two cases to consider.

Case 1: E ( P for some P ∈ P . Let x∗ � x∗ be given and define fP\E = x∗E(x∗Px∗). Let

z be such that fP\E ∼ x∗Ez as in the previous lemma, and let z̄ be such that fP = x∗Px∗ ∼ z̄.

fP =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼ z̄ and fP\E =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼

x∗ if ω ∈ E

z if ω ∈ P \ E

z if ω ∈ Ω \ P


Since each state in Ω is non-null, π(P ) > π(P \ E)/(1− π(E)). Hence, u(x∗) > u(x∗) implies

u(z̄) = π(P )u(x∗) + (1− π(P ))u(x∗) >
π(P \ E)

1− π(E)
u(x∗) +

1− π(P )

1− π(E)
u(x∗) = u(z).

Therefore, by the representation, z̄ � z and z̄ �Ec z. Moreover, since πEc is the RML posterior of

π, πEc(P ) = π(P ). This implies that fP ∼Ec z̄ as

UEc(fP ) = πEc(P )u(x∗) + (1− πEc(P ))u(x∗) = u(z̄).

In addition, since πEc(E) = 0, fP\E ∼Ec fP ∼Ec z̄ and z ∼Ec x∗Ez. Therefore, z̄ �Ec z implies

fP\E �Ec x∗Ez. On the other hand, fP\E ∼ x∗Ez and fP\E and x∗Ez agree on E, violating

dynamic consistency. Since Ec is not dynamically consistent, neither E nor Ec belongs to E .
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Case 2: There are P, P ′ ∈ P such that P ∩ E 6= ∅, P ′ ∩ E 6= ∅ and either P ∩ Ec 6= ∅ or

P ′ ∩ Ec 6= ∅. Without loss of generality, assume that P ∩ Ec 6= ∅. Let A = E ∪ P . As before

let x∗ � x∗ be given. Consider a bet on P ∩ E given by fP∩E = x∗P \ E(x∗Px∗). Let zA be as

in the previous lemma such that x∗P \ E(x∗Px∗) ∼A x∗P \ EzA, and let z̄A ∈ X be such that

fP = x∗Px∗ ∼A z̄A. Then as in the previous case z̄A �A zA.

fP =


x∗ if ω ∈ P \ E

x∗ if ω ∈ P ∩ E

x∗ if ω ∈ Ω \ P

 ∼A z̄A, fP∩E =


x∗ if ω ∈ P \ E

x∗ if ω ∈ P ∩ E

x∗ if ω ∈ Ω \ P

 ∼A

x∗ if ω ∈ P \ E

zA if ω ∈ P ∩ E

zA if ω ∈ Ω \ P


Since πE is the RML posterior of πA with the partition {A∩P |P ∈ P} and P ′′∩A 6= ∅ implies

P ′′ ∩E 6= ∅, it must be that πE(P ) = πA(P ). Therefore, fP∩E = x∗P \E(x∗Px∗) ∼E z̄A. On the

other hand, x∗P \EzA ∼E zA. Hence, x∗P \E(x∗Px∗) ∼A x∗P \EzA but x∗P \E(x∗Px∗) �E

x∗P \ EzA, violating perfect dynamic consistency. This proves that E /∈ E .

Now suppose E ∈ σ(P). It needs to be shown that E ∈ E . Let A ⊇ E be given. By Lemma

1.7.1, πE is the RML posterior of πA with the partition {A ∩ P | P ∈ P}. To prove that E ∈ E , it

suffices to show that for any ω ∈ E,

πE(ω) =
πA(ω)

πA(E)
.

Since E ∈ σ(P), ∪P∈P: E∩P 6=∅P = E. By Lemma 1.2.1 and Lemma 1.7.1,

πE(ω) = πA(ω|Pω) · πA(Pω| ∪P∈P: E∩P 6=∅ P ) = πA(ω|Pω) · πA(Pω|E) =
πA(ω)

πA(E)

as desired. This concludes the proof of the lemma.

Since E ∈ E if and only if E ∈ σ(P), the necessity of Axiom 1.3.8 is obvious. To see the

necessity of Axiom 1.3.9, let A ∈ A and D ( A ∩ P for some P ∈ P . Since πA\D is the RML

posterior of πA with the partition {A ∩ P |P ∈ P}, we have πA\D(P ) = πA(P ). Hence, Axiom
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1.3.9 follows. Finally, to see the necessity of Axiom 1.3.10, let D ( P for some P ∈ P , A ⊇ D

and ω ∈ D be given. As πD is the RML posterior of πA,

πD(ω) = πA(ω|D) · πA(P |P ) = πA(ω|D).

Hence, D satisfies perfect dynamic consistency.

Sufficiency

The first lemma is a standard result. For a proof, see Fishburn (1970) or Kreps (1988).

Lemma 1.7.4. Suppose Axioms 1.3.1–1.3.5 are satisfied. Then for any A ∈ A, there exist a

subjective probability measure πA ∈ ∆(Ω) and a non-constant, affine utility function uA : X → R

such that for any f, g ∈ F ,

f <A g ⇔
∑
ω∈Ω

πA(ω)uA(f(ω)) ≥
∑
ω∈Ω

πA(ω)uA(g(ω)).

By constant act preference invariance, <A and < agree on all constant acts for all A ∈ A \ ∅.

Using the standard uniqueness result, for anyA ∈ A\∅, uA is a positive affine transformation of uΩ,

which is denoted by u. Hence, it is without loss to let uA = u for all A ∈ A\ ∅. Moreover, Axiom

1.3.4 and Axiom 1.3.6 imply that <A is nontrivial, and hence πA is unique for each A ∈ A \ ∅ as

in Anscombe and Aumann (1963). By consequentialism, for any f ∈ F , fAx∗ ∼A fAx∗. Since

by the representation u(x∗) > u(x∗), we must have πA(Ac) = 0. Moreover, by monotonicity, for

any ω ∈ A, x∗ �A x∗ωx∗. The representation implies that πA(ω) > 0 for all ω ∈ A. Hence, this

establishes the following lemma.

Lemma 1.7.5. Suppose Axioms 1.3.1–1.3.7 are satisfied. Then for any A ∈ A, there exist a

subjective probability measure πA ∈ ∆(Ω) and a non-constant, affine utility function u : X → R
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such that u(X) = [u(x∗), u(x∗)], and for any f, g ∈ F ,

f <A g ⇔
∑
ω∈Ω

πA(ω)u(f(ω)) ≥
∑
ω∈Ω

πA(ω)u(g(ω)).

Moreover, πA has full support onA and is unique for allA ∈ A\∅, and u is unique up to a positive

affine transformation.

Let E be the collection of events which are perfectly dynamically consistent and whose com-

plements are also perfectly dynamically consistent as in Definition 1.3.3. By definition, E is closed

under complements. By Axiom 1.3.8, E is closed under intersections. Moreover, Ω ∈ E . Hence,

E is an algebra over Ω. Let PE be the partitioning of the state space that generates E , and (π,PE)

is the probability assessment. To establish the representation, it needs to be shown that each πA is

the RML posterior of π.

Lemma 1.7.6. For any non-null A ∈ A, πA is the RML posterior of π.

Proof. First, consider A ∈ E . By definition, f <A g ⇔ fAg < g. fAg < g is equivalent to

∑
ω∈A

π(ω)u(f(ω)) ≥
∑
ω∈A

π(ω)u(g(ω)) ⇔
∑
ω∈A

π(ω)

π(A)
u(f(ω)) ≥

∑
ω∈A

π(ω)

π(A)
u(g(ω)).

By the uniqueness of πA in the representation, for all ω ∈ A,

πA(ω) =
π(ω)

π(A)
= π(ω|A).

That is, πA is the Bayesian posterior of π, which corresponds to the RML posterior as A is unam-

biguous.

Now consider A /∈ E . Let PE = {P1, . . . , Pn} and choose an index set J ⊆ {1, . . . , n} such

that Pj ∩ A 6= ∅ ⇔ j ∈ J . Let B = ∪j∈JPj . Since B ∈ E , by the first part of the lemma, πB

is the Bayesian posterior of π. Moreover, by Axiom 1.3.9, for any j ∈ J , cA(fPj
) = cA∪Pj

(fPj
)

where fPj
= x∗Pjx∗. Given the representation by Lemma 1.7.5, this is possible only if πA(Pj) =
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πA∪Pj
(Pj). Hence, iterative application Axiom 1.3.9 implies that πA(Pj) = πB(Pj) for all j ∈ J .

Therefore, for any j, j′ ∈ J ,
πA(Pj)

πA(Pj′)
=
πB(Pj)

πB(Pj′)
=
π(Pj)

π(Pj′)
.

Let A ∩ Pj for some j ∈ J be given. By Axiom 1.3.10, A ∩ Pj is a perfectly dynamically

consistent event. Hence, using the same reasoning as above, we get

π(ω|A ∩ Pj) = πA∩Pj
(ω) = πA(ω|Pj).

But then for any ω, ω′ ∈ A ∩ Pj ,

π(ω)

π(ω′)
=
πA∩Pj

(ω)

πA∩Pj
(ω′)

=
πA(ω)

πA(ω′)
.

This together with the conclusion of the previous paragraph and Lemma 1.2.1 imply that πA is the

RML posterior of π.

Let (π,P , u) represent {<A}A∈A. To show that P is uniquely revealed as PE , assume that P is

not degenerate (P 6= {Ω, ∅}). By Lemma 1.7.3, P and PE are two partitions of the state space that

generate the same algebra E . But then P = PE . �

Proof of Lemma 1.5.1

Let (π,P , u) be a representation of {<A}A∈A given by Theorem 1.5.1. Observe that for any A,

πA ∈ B(NP,A(π))⇔ πA(Ac) = 0 and πA(P ) =
π(P )∑

P ′∈P:P ′∩A 6=∅ π(P ′)
.

That is, all plausible posteriors agree on minimal unambiguous events. Moreover, the utility func-

tion defined by

UA(f) =
∑
P∈P

πA(P ) min
ω∈A∩P

u(f(ω)),

where πA ∈ B(NP,A(π)), represents <A.
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Let E be a dynamically consistent event. Suppose E is not perfectly dynamically consistent so

that there exist A ⊇ E and f, g ∈ F such that fEg <A g and g �E f . Let h and h′ be given as

below.

h =


f(ω) if ω ∈ E

g(ω) if ω ∈ A \ E

x∗ if ω ∈ Ac

 and h′ =


g(ω) if ω ∈ E

g(ω) if ω ∈ A \ E

x∗ if ω ∈ Ac


Then, h <A h′, h(ω) = h′(ω) for all ω ∈ Ec but h′ �E h.

Next, it is shown that h <A h′ implies h < h′. Let P = {P1, . . . , Pn} and J ⊆ {1, . . . , n} be

the index set such that j ∈ J ⇔ Pj ∩ E 6= ∅. Then, by the representation, h <A h′ implies

∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(g(ω)).

Now for any i /∈ J , Pi ∩ E = ∅, and hence minω∈Pi
u(h) = minω∈Pi

u(h′). Moreover, since

h(ω) = h′(ω) = x∗ for all ω ∈ Ac, for any j ∈ J , minω∈A∩Pj
u(h(ω)) = minω∈Pj

u(h(ω))

and minω∈A∩Pj
u(h′(ω)) = minω∈Pj

u(h′(ω)). Finally, for any j ∈ J , π(Pj) = c · πA(Pj) where

c =
∑

P ′∈P:P ′∩A 6=∅ π(P ′). Hence,

∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(g(ω))⇒

∑
j∈J

c · πA(Pj) min
ω∈A∩Pj

u(h(ω)) ≥
∑
j∈J

c · πA(Pj) min
ω∈A∩Pj

u(h′(ω))⇒

∑
j∈J

π(Pj) min
ω∈Pj

u(h(ω)) ≥
∑
j∈J

π(Pj) min
ω∈Pj

u(h′(ω))⇒

∑
Pi∈P

π(Pi) min
ω∈Pi

u(h(ω)) ≥
∑
Pi∈P

π(Pi) min
ω∈Pi

u(h′(ω)),

which implies h < h′. But then since h(ω) = h′(ω) for all ω ∈ Ec and h′ �E h, this contradicts

the original hypothesis that E is dynamically consistent. �
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Proof of Theorem 1.5.1

Necessity

The necessity of Axioms 1.3.1, 1.3.2, 1.3.4, 1.3.5, 1.3.6, and 1.3.7 is obvious. To prove the neces-

sity of Axioms 1.3.8, 1.3.9, 1.5.1, and 1.5.2, it is shown that E = σ(P), where σ(P) is the algebra

generated by P , as in the proof of Theorem 1.3.1.

Lemma 1.7.7. Let (π,P , u) be a representation of {<A}A∈A given by (1.5). Then E ∈ E if and

only if E ∈ σ(P).

Proof. First, I show that if E /∈ σ(P), then E /∈ E . Notice that since E /∈ σ(P), there exists

P ∈ P such that P ∩E 6= ∅ and P \E 6= ∅. Let f = x∗P ∩Ex∗. Then the representation implies

that f ∼ x∗ but f �E x∗ even though f(ω) = g(ω) for ω ∈ Ec. f �E x∗ holds because of the

assumption that π(P ) > 0 which implies πE(P ) > 0 for all πE ∈ B(NP,E(π)).

Now suppose E ∈ σ(P). To show that E ∈ E , let A ⊇ E be given. It needs to be shown

that fEg <A g if and only if f <E g. Let P = {P1, . . . , Pn}. Since E ∈ σ(P), there exists an

index set J ⊆ {1, . . . , n} such that E = ∪j∈JPj . Notice that if i /∈ J , then minω∈Pi
u(fEg(ω)) =

minω∈Pi
u(g(ω)). Hence, fEg <A g if and only if

∑
j∈J

πA(Pj) min
ω∈Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈Pj

u(g(ω))

where πA is an arbitrary member of B(NP,A(π)) as all plausible posteriors agree on minimal

unambiguous events. On the other hand, it is easy to see that for any πE ∈ B(NP,E(π)), πE(Pj) >

0 if and only if j ∈ J , and πE(Pj) = c ·πA(Pj) where c = 1∑
j∈J πA(Pj)

. Hence, the above inequality

holds if and only if

∑
j∈J

πE(Pj) min
ω∈Pj

u(fEg(ω)) ≥
∑
j∈J

πE(Pj) min
ω∈Pj

u(g(ω))

which is true if and only if f <E g.
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Since E = σ(P), necessity of Axiom 1.3.8 is obvious. The necessity of Axiom 1.3.9 is the same

as in Theorem 1.3.1. To see the necessity of Axiom 1.5.1, let S be an alternative state space such

that the mapping Γ : Ω→ S, where Γ satisfies Γ(ω) = Γ(ω′) for all ω, ω′ ∈ P and Γ(ω) 6= Γ(ω′)

whenever ω ∈ P and ω′ ∈ P ′ for distinct P and P ′, is a surjection. Now for each A ∈ A, define a

probability measure on S by πA ◦ Γ−1 where πA ∈ B(NP,A(π)). Let F̂ be the set of all acts XS .

The set F̂ is isomorphic Fua. Since (πA ◦ Γ−1, u) is an SEU representation of <A restricted to

F̂ , Axiom 1.5.1 follows. Finally, Axiom 1.5.2 is necessary as in each partition only the minimal

payoff matters.

Sufficiency

Axiom 1.3.8 implies that E is an algebra and PE is a partitioning of the state space. It is easy to see

that Axioms 1.3.1, 1.3.2, 1.3.4, 1.3.5, 1.3.6, and 1.5.1 imply the following lemma.

Lemma 1.7.8. For any A ∈ A, there exist a subjective probability measure πA on σ(PE) and a

non-constant, affine utility function u : X → R such that for any f, g ∈ Fua,

f <A g ⇔
∑
P∈P

πA(P )u(f(P )) ≥
∑
P∈P

πA(P )u(g(P )).

By consequentialism, πA(P ) = 0 wheneverA∩P = ∅. Extend πA to σ(PE ∪A) — the algebra

generated by sets of the form A \ P , A ∩ P , and P \A, by letting πA(A ∩ P ) = πA(P ) whenever

A ∩ P 6= ∅.

Lemma 1.7.9. For any A ∈ A and f ∈ F , there exists fua ∈ Fua such that f ∼A fua.

Proof. Let P ∈ PE and ω∗ = arg minω∈A∩P u(f(ω)). By Axioms 1.3.7 and 1.5.2, x∗P \{ω∗}f ∼A

f(ω∗)Pf . On the other hand, by monotonicity, x∗P \ {ω∗}f <A f <A f(ω∗)Pf . Hence, f ∼A

f(ω∗)Pf . Now let fua denote an act that assigns the worst prize of f in A∩P to P for all P ∈ PE

with A∩P 6= ∅ and is constant on P ′ with A∩P ′ = ∅. This act belongs to Fua, and f ∼A fua by

iterative application of the previous argument and Axiom 1.3.7.
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Now for any f ∈ F , let

UA(f) =
∑
P∈P

πA(A ∩ P ) min
ω∈A∩P

u(f(ω)).

Notice that for fua defined as in Lemma 1.7.9, UA(f) = UA(fua). We already know that UA

represents<A on Fua. Hence, f <A g if and only if fua <A gua if and only if UA(fua) ≥ UA(gua)

if and only if UA(f) ≥ UA(g).

The only thing left to prove is that πA ∈ B(NP,A(π)). This is implied by Axiom 1.3.9. The

proof is identical to the first part of Lemma 1.7.6. Finally, the uniqueness result for u is standard.

The uniqueness of P is a consequence of Lemma 1.7.7, and NP,A(π) is uniquely defined given π

on P . �

Proof of Proposition 1.2.1

Notice that π′A ∈ B(NP,A(π)) if and only if for all P ∈ P with A ∩ P 6= ∅,

∑
ω∈A∩P

π′A(ω) =
π(P )∑

P ′∈P:A∩P ′ 6=∅ π(P ′)
. (A.1)

The objective is to minimize Kullback-Leibler divergence DKL(π(·|A) || π′A) subject to these con-

straints for each P ∈ P with A ∩ P 6= ∅. The Lagrangian for the minimization problem is

L
(
{π′A(ω)}ω∈A, {λP}P∈P:A∩P 6=∅

)
=−

∑
ω∈A

π(ω|A) ln
( π′A(ω)

π(ω|A)

)
+

∑
P∈P:A∩P 6=∅

λP

( ∑
ω∈A∩P

π′A(ω)− π(P )∑
P ′∈P:A∩P ′ 6=∅ π(P ′)

)
.

The first order conditions imply that for any P ∈ P with A ∩ P 6= ∅ and any ω, ω′ ∈ A ∩ P ,

π(ω|A)

π′A(ω)
= λP =

π(ω′|A)

π′A(ω′)
, and hence

π′A(ω)

π′A(ω′)
=
π(ω|A)

π(ω′|A)
=
π(ω)

π(ω′)
. (A.2)
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Since the objective function is strictly convex, (A.1) and (A.2) characterize the solution to the

minimization problem. �
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CHAPTER 2

Stochastic Attention and Reference Dependent Choice

2.1 Introduction

Starting with the work of Kahneman and Tversky (1979) the idea that choices are reference de-

pendent has played a significant role in the economics literature. Influenced by growing evidence

on reference dependent choice, scholars have developed theories of choice behavior which can ex-

plain a wide variety of empirical findings (for example, see Tversky and Kahneman, 1991; Munro

and Sugden, 2003; Sugden, 2003; Sagi, 2006; Masatlioglu and Ok, 2005, 2014; Apesteguia and

Ballester, 2009). However, most existing models only address deterministic choice behavior. Since

observed choices frequently exhibit randomness (Tversky, 1969; Agranov and Ortoleva, 2017), it

is important to understand the foundations for reference dependent random choice behavior.

In this paper, I study reference dependent random choice. Randomness in choice is modeled

through the attention channel. I assume that the Decision Maker (DM) pays attention to a subset

of available alternatives, which is also called the DM’s consideration set. Moreover, the set of

alternatives the DM pays attention to is directly influenced by her reference point. The idea that

consumers do not pay attention to all available alternatives has a long tradition in the marketing

literature (Wright and Barbour, 1977; Hauser and Wernerfelt, 1990). In the economics literature,

this has also been recognized as a fruitful avenue of research, and scholars have developed models

which allow for revealed preference analysis in the presence of limited attention (e.g., Masatlioglu

et al., 2012; Manzini and Mariotti, 2014; Aguiar, 2015, 2017; Brady and Rehbeck, 2016; Lleras
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et al., 2017; Cattaneo et al., 2019). The goal of this paper is to understand the scope of existing

reference dependent random attention models in explaining observed choice behavior.

The main focus of this paper will be three reference dependent random attention models: fixed

independent consideration (Manzini and Mariotti, 2014), logit consideration (Brady and Rehbeck,

2016), and fixed correlated consideration (Aguiar, 2017). In fixed independent consideration, each

alternative has a fixed reference dependent probability of being considered that does not depend

on the menu. Moreover, the fact that one alternative is considered has no bearing on the consider-

ation probability of other alternatives. In fixed correlated consideration, each alternative still has

a fixed reference dependent probability of being considered, but correlations between alternatives

are allowed. In logit consideration, the consideration probability of each alternative depends on

the choice set and correlations between alternatives are allowed, but it is assumed that the relative

weights of two consideration sets do not depend on choice sets.

To understand the behavioral implications of these three models, I start with a fairly general

reference dependent random attention model (RDRAM) which includes all of these models as

special cases. In the general model, it is assumed that the DM has a fixed reference independent

strict preference over alternatives and reference dependent random attention. The only structure

imposed on the attention rule is that (i) the reference point is always considered, (ii) each subset of

a given menu that includes the reference alternative has a positive probability of being the DM’s

consideration set. While this model is fairly general, it has nontrivial behavioral implications. The

first implication is that the reference alternative always has a positive probability of being chosen.

The second implication is that each menu has a unique dominant alternative — the alternative

that is never abandoned when it is the reference point. The last property requires consistency of

dominant alternatives across different choice sets.

In Section 2.3, I show that the two key properties of fixed independent consideration are irrel-

evance of dominated alternatives (IDA) and ratio independence of dominant alternatives (RIDA).

Irrelevance of dominated alternatives says that if x is chosen with positive probability when y is

the reference point, then given any choice problem (S, r), removing y from S cannot affect the
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probability that x is chosen. In other words, the removal of dominated alternatives from a menu

cannot affect the choice probability of dominant alternatives. Ratio independence of dominant al-

ternatives says that if x is never abandoned for any other alternative in a given menu when it is the

reference point, then removing x from the menu cannot affect the the relative choice probability

of any other two alternatives. Hence, when the dominant alternative in the menu is removed, the

probability that it is chosen is distributed among the remaining alternatives in proportion to their

original choice probabilities.

In Section 2.2, I show that a reference dependent random attention rule has a fixed independent

consideration representation if and only if it has logit and fixed correlated consideration repre-

sentations. This is one of the key results of this paper. Even though the result is stated in terms

of the underlying attention rule, the equivalent result also holds for reference dependent random

choice rules. In particular, the key property of the logit consideration model is ratio independence

of dominant alternatives, whereas the key property of the fixed correlated consideration model is

irrelevance of dominated alternatives. Hence, a suitable relaxation of one of the axioms underlying

fixed independent consideration model results in logit or fixed correlated consideration model.

I also discuss recoverability of attention parameters from observed choices for logit and fixed

correlated consideration models. If the reference alternative is the worst alternative among all

alternatives, then identification of all attention parameters can be achieved in both models (also see

Brady and Rehbeck, 2016; Aguiar, 2017). In the general case, identification of attention parameters

(up to normalization) is still possible in the logit model. However, the degree of freedom is higher

in fixed correlated consideration model when the reference alternative is not the worst alternative.

The intuition for this is as follows. As mentioned earlier, fixed correlated attention model satisfies

irrelevance of dominated alternatives property. Consider a choice problem (S, r) and suppose

new alternatives which are dominated by the reference alternative r are introduced. Irrelevance of

dominated alternatives requires that this will not change the choice probability of any alternative.

Hence, observed choices in the original and new choice problems will be exactly the same and this

additional data cannot be used to recover attention parameters.
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This paper is contributes to the literature on reference dependent preferences and limited (ran-

dom) attention. As discussed earlier, most reference dependent choice models are deterministic.

In contrast, this paper completely focuses on random choice data. The most closely related pa-

pers on reference dependent preferences are Masatlioglu and Ok (2005, 2014). They consider a

model where the decision maker maximizes her reference independent preference within a subset

of all available alternatives. Their model is a limit case fixed correlated consideration where an

alternative is considered either with zero or one probability. Dean, Kıbrıs, and Masatlioglu (2017)

provide an extension of Masatlioglu and Ok (2014) where attention has both reference dependent

and reference independent component. Their model is independent from all the models discussed

in this paper.

The only paper that I am aware of which discusses reference dependent random choice is

Kovach (2016). He provides axiomatic foundations for fixed independent consideration. His ax-

iomatic structure looks quite different from the one in this paper, however the equivalence is not

difficult to establish. He provides an in depth analysis of the fixed independent consideration model

and its relationship with random utility models. In contrast, the focus in this paper is to provide a

framework within which many other models of random attention are studied and to investigate the

relationship between these models.

This paper also contributes to the literature on limited (random) attention. Fixed independent

consideration with standard random choice data was first axiomatized by Manzini and Mariotti

(2014) (see also Horan, 2013). In a similar setup, Brady and Rehbeck (2016) and Aguiar (2017)

provide characterization results for logit and fixed correlated consideration models, respectively.

This paper contributes to this literature by providing a precise relationship between these models

and showing that the intersection of fixed correlated and logit consideration is exactly fixed in-

dependent consideration. Another contribution of this paper is to extend these random attention

models to reference dependent choice framework and to illustrate to what degree these models can

be used to explain empirical findings on reference dependence.
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2.2 General Model

Throughout this paper X denotes the grand finite set of alternatives. X is the set of all nonempty

subsets of X . A choice problem is (S, r) where S ∈ X is a menu of alternatives and r ∈ S is a

reference point. Reference dependent random choice is a collection {pr}r∈X , pr : X ×X → [0, 1]

such that for any (S, r), pr(x, S) ≥ 0 for each x ∈ S and
∑

x∈S pr(x, S) = 1.

For expositional clarity, I will restrict attention to reference dependent random choices which

satisfy the following three properties: Nontrivial Reference Effect, Dominant Alternative, and

Consistency of Dominance. The first property says that the reference alternative is always chosen

with positive probability. The second property states that in any choice set there exists unique

dominant alternative, i.e., an alternative which is never abandoned for other alternatives when it is

the reference point. The last property requires that if x is revealed to be the dominant alternative

in some choice set that contains y, then in any choice set that includes x and y, y must be chosen

with zero probability when x is the reference point. In addition, x must be chosen with positive

probability when y is the reference point. These properties are listed below.

• Nontrivial Reference Effect: For any choice problem (S, r), pr(r, S) > 0.

• Dominant Alternative: For any S ∈ X , there exists unique x∗ ∈ S such that px∗(x∗, S) = 1.

• Consistency of Dominance: If px(x, S) = 1 for some S ∈ X , then for any y ∈ S \ x and

T ⊇ {x, y}, px(y, T ) = 0 and py(x, T ) > 0.

I will now introduce a very general model the behavioral content of which is exactly these

three properties. The aim is to provide a framework that is common to all reference dependent

random attention models considered in this paper so that the distinguishing features of each of

the special cases are clearer. In the general model each reference alternative has an associated

random attention rule µr : X × X → [0, 1] such that µr(D,S) > 0 if and only if r ∈ D ⊆ S and∑
D: r∈D⊆S µr(D,S) = 1. Here, µr(D,S) reflects the probability that the DM has a consideration

set D ⊆ S when the choice problem (S, r). It is assumed that each D ⊆ S containing the
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reference point has a strictly positive probability of being the consideration set. Given a choice

problem (S, r), the decision maker first draws a consideration set from the distribution µr(·|S)

and maximizes her preference, which is a linear order, in the realized consideration set. A binary

relation � on X is a linear order if it is (i) total: for any x 6= y in X , either x � y or y � x, (ii)

asymmetric: for any x 6= y in X , x � y implies y 6� x, and (iii) transitive: for any x, y, z ∈ X ,

x � y � z implies x � z.

Definition 2.2.1. Reference dependent random choice pr has a random attention representation

(alternatively, pr is an RDRAM) if there exist a linear order � on X and a random attention rule

µr such that for any choice problem (S, r) and for any x ∈ S,

pr(x, S) =
∑

D⊆S: x=argmax(�,D)

µr(D,S). (2.1)

The next theorem states that Nontrivial Reference Effect, Dominant Alternative and Consis-

tency of Dominance are necessary and sufficient for any reference dependent stochastic choice pr

to have a random attention representation.

Theorem 2.2.1. Stochastic choice pr is an RDRAM if and only if it satisfies Nontrivial Reference

Effect, Dominant Alternative and Consistency of Dominance.

From now on I will restrict attention to reference dependent random choices which have a

random attention representation. I will consider random attention models which impose more

structure on µr and explore the properties of each of these models.

Suppose pr has a random attention representation. We say that pr has a

1. Fixed Independent Consideration (FIC) representation if there exists γr : X → [0, 1] such

that γr(r) = 1, γr(x) ∈ (0, 1) for each x ∈ X \ r, and

µr(D,S) =
∏
x∈D

γr(x)
∏

y∈S\D

(1− γr(y)), (2.2)
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2. Logit Consideration (LC) representation if there exists πr : X → [0, 1] such that πr(D) > 0

whenever r ∈ D ⊆ X ,
∑

D: r∈D⊆X πr(D) = 1, and

µr(D,S) =
πr(D)∑

D′: r∈D′⊆S πr(D
′)
, (2.3)

3. Fixed Correlated Consideration (FCC) representation if there exists πr : X → [0, 1] such

that πr(D) > 0 whenever r ∈ D ⊆ X ,
∑

D: r∈D⊆X πr(D) = 1, and

µr(D,S) =
∑

D′:D′∩S=D

πr(D
′), (2.4)

2.2.1 Relationship Between Models

In this subsection, I show that the intersection of logit and fixed correlation consideration models

is exactly fixed independent consideration. This is formally stated in the next proposition.

Proposition 2.2.1. A random attention rule µr has a fixed independent consideration representa-

tion if and only if it has logit and fixed correlated consideration representations.

Proof. First, suppose that µr has a FIC representation, i.e., equation (2.2) is satisfied for some γr.

Let πr(D) =
∏

x∈D γr(x)
∏

y∈X\D(1− γr(y)). Then,

πr(D)∑
D′: r∈D′⊆S πr(D

′)
=

∏
x∈D γr(x)

∏
y∈X\D(1− γr(y))∑

D′: r∈D′⊆S
∏

x∈D′ γr(x)
∏

y∈X\D′(1− γr(y))

=

∏
x∈D γr(x)

∏
y∈S\D(1− γr(y))∑

D′: r∈D′⊆S
∏

x∈D′ γr(x)
∏

y∈S\D′(1− γr(y))

=
∏
x∈D

γr(x)
∏

y∈S\D

(1− γr(y))

where the last equality follows from the fact that the denominator is 1. Hence, fixed independent
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consideration is a special case of logit attention. In addition,

∑
D′:D′∩S=D

πr(D
′) =

∑
D′:D′∩S=D

∏
x∈D′

γr(x)
∏

y∈X\D′
(1− γr(y))

=
∏
x∈D

γr(x)
∏

y∈S\D

(1− γr(y))
[ ∑
D′:D′∩S=D

∏
x∈D′\D

γr(x)
∏

y∈(X\S)\D′
(1− γr(y))

]
=
∏
x∈D

γr(x)
∏

y∈S\D

(1− γr(y))

where the last equality follows from the observation that the term inside big parentheses has to be

equal to 1. To see this, multiply this term by γr(r) to get that the term inside the big parentheses is

equal to
∑

r∈D′′⊆(X\S)∪r µr(D
′′, (X \ S) ∪ r) = 1. Hence, fixed independent consideration is also

a special case of fixed correlated consideration.

Now suppose µr has both logit attention and fixed correlated attention representations. That

is there exist πr satisfying equation (2.3) and π′r satisfying equation (2.4). Let γr(x) =

µr({r, x}, {r, x}). It needs to be shown that γr satisfies equation (2.2). This is trivially satis-

fied when S is binary. Suppose the claim holds whenever S has cardinality less than k and let S

with |S| = k be given. First, suppose D ( S and pick x ∈ S \ D. Since µr has a logit attention

representation,

µr(D,S) = µr(D,S \ x)
∑

D′: r∈D′⊆S\x

µr(D
′, S).

By induction hypothesis,

µr(D,S \ x) =
∏
y∈D

γr(y)
∏

z∈S\(D∪x)

(1− γr(z)).

Furthermore, as µr has a fixed correlated representation,

∑
D′: r∈D′⊆S\x

µr(D
′, S) = µr({r}, {r, x}) = (1− γr(x)).
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Hence, it follows that

µr(D,S) =
∏
y∈D

γr(y)
∏

z∈S\D

(1− γr(z))

whenever D ( S. By using the fact that µr(S, S) = 1 −
∑

D: r∈D(S µr(D,S), the claim follows

for all D ⊆ S. This concludes the proof of the proposition.

2.3 Fixed Independent Consideration

In this section, I introduce two axioms which are necessary and sufficient for a fixed independent

consideration representation. The first axiom says that if x dominates y in a binary comparison,

then removing y from any choice set cannot affect the probability that x is chosen. This property

is called Irrelevance of Dominated Alternatives (IDA).

Axiom 2.3.1. (Irrelevance of Dominated Alternatives - IDA) If px(x, {x, y}) = 1, then for any S,

pr(x, S) = pr(x, S \ y).

Since there are fewer alternatives in S \ y compared to S, the property says that when y is

removed from the choice set S the probability that it is chosen in S will be distributed among

alternatives which are dominated by y. One implication of this property is that given a choice set

if we add alternatives which are inferior to the reference alternative, then the probability that the

reference alternative is chosen remains unaffected. In fact, the probability that any alternative is

chosen should remain unaffected. The experimental evidence from Samuelson and Zeckhauser

(1988) clearly violates this property. They compare two choice sets one in which there is only

one alternative apart from the reference alternative and another choice set in which there are four

alternatives two of which are dominated by the reference alternative. They show that in the latter

choice set the reference alternative is more likely to be chosen.
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To see why this axiom holds, notice that fixed independent consideration model implies that

µr(D,S \ y) = µr(D ∪ y, S) + µr(D,S).

That is, the probability that D is the consideration set in the choice set S \ y is equal to probability

that either D or D ∪ y is the consideration set in S. If x dominates y, then x is the best alternative

in D ⊆ S \ y if and only if it is best in D ∪ y. This implies that removing y from the menu cannot

affect the probability that x will be chosen.

The next property relates the relative choice probabilities of two alternatives when the best

alternative in the choice set is removed from it. It says that if x is the dominant alternative in S,

then for any two alternatives y, z ∈ S \ x which are chosen with positive probability, the relative

probability that y is chosen as opposed to z stays the same when x is removed from the menu. This

is a weak version of Luce’s Independence of Irrelevant Alternatives axiom. Recall that Luce’s IIA

states that this ratio stays the same when we compare arbitrary choice sets S and T which include

y and z. In fixed independent consideration model this is no longer true in general. Only dominant

alternatives can be considered irrelevant for relative probabilities.

Axiom 2.3.2. (Ratio Independence of Dominant Alternatives - RIDA). If px(x, S) = 1, then

pr(y, S)

pr(z, S)
=
pr(y, S \ x)

pr(z, S \ x)

for any y, z ∈ S \ x with pr(y, S) > 0 and pr(z, S) > 0.

To understand the property better, notice that RIDA imposes a structure on how the probability

of x being chosen is distributed among other alternatives when it is removed from the menu. In

particular, it states that the distribution must be proportional to the original probability that alterna-

tives were chosen before x was removed from the menu. To illustrate the type of choice behavior

that RIDA rules out, consider a choice problem ({r, x, y, z}, r) where x is an alternative very sim-

ilar to y, which it dominates in terms of preference, and z is very dissimilar to x. The similarity
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effect hypothesis (Tversky, 1972) states that in this type of choice situations y is disproportionately

negatively affected by the addition of x to the menu. Hence, the relative probability that y is cho-

sen as opposed to z is likely to be higher when x is not in the menu. However, fixed independent

consideration rules out this type of effects.

To see why this property holds in fixed independent consideration, first notice that as x is the

dominant alternative in S, removing it from the menu does not alter which consideration sets have

y or z as the best alternative. Moreover, fixed independent consideration implies that the weight

of each consideration set which has y or z as the best alternative is boosted by the same constant

when x is removed from the menu. Thus the relative probability that y is chosen as opposed to z

stays the same.

The next theorem provides a characterization result for fixed independent consideration.

Theorem 2.3.1. Suppose pr is an RDRAM. Then pr has a fixed independent consideration repre-

sentation if and only if it satisfies Irrelevance of Dominated Alternatives and Ratio Independence

of Dominant Alternatives.

The proof of the theorem involves three steps. First, an immediate implication of RIDA is

that for any (S, r), the ratio pr(y, S)/pr(y, S \ x) is constant for all y ∈ S which are chosen with

positive probability given that x is the dominant alternative in S. IDA is used to show that this

constant is exactly equal to pr(r, {x, r}). γr(x) is defined to be the maximum of pr(x, {x, r}) and

px(r, {x, r}). The proof then follows by showing the representation for binary choice sets and

using induction together with the previous conclusion to extend the representation to all choice

sets. Notice that in the proof of the theorem γr(x) is defined to be symmetric in the sense that

γr(x) = γx(r) for all r, x ∈ X . That is because γr(x) is not identifiable from choice data whenever

r � x. Hence, if pr has a fixed independent consideration representation, then it is without loss to

assume that γr is symmetric.
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2.4 Logit Consideration

In this section, I explore the logit consideration model. As discussed in Section 2.2, logit consid-

eration is a generalization of fixed independent consideration. The next two examples illustrate

that (i) Irrelevance of Dominated Alternatives is no longer satisfied in logit consideration, and (ii)

Ratio Independence of Dominant Alternatives by itself is not sufficient for logit consideration rep-

resentation. The intuition for why RIDA holds in the logit model is exactly the same as in the fixed

independent consideration model.

Example 2.4.1 (IDA Violation). Let x � y � z and πy({y}) = πy({x, y}) = πy({x, y, z}) = 0.2,

πy({y, z}) = 0.4. In the logit consideration model the implied choice probabilities when y is the

reference alternative are as below.

py(·, S) S = {x, y, z} {x, y} {y, z}

x 0.4 0.5

y 0.6 0.5 1

z 0 0

IDA is violated as py(y, {x, y, z}) 6= py(y, {x, y}).

Example 2.4.2 (Insufficiency of RIDA). Let {x, y, z} be the grand set of alternatives and assume

that pr is an RDRAM with x as the dominant alternative. When z is the reference alternative the

choice data is as below.

pz(·, S) S = {x, y, z} {x, z} {y, z}

x 0.1 0.5

y 0.45 0.5

z 0.45 0.5 0.5

Since pr is an RDRAM, z must be the worst alternative in {x, y, z}. The data given above

satisfies RIDA as pz(y,{x,y,z})
pz(z,{x,y,z}) = 1 = pz(y,{y,z})

pz(z,{y,z}) . Now suppose that pz has a logit attention represen-
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tation. Then pz(x,{x,z})
pz(z,{x,z}) = 1 = πz({x,z})

πz({z}) and pz(x,{x,y,z})
pz(z,{x,y,z}) = 2

9
= πz({x,z})+πz({x,y,z})

πz({z}) . Obviously, there

cannot exist πz which is a probability and satisfies these two equations.

Example 2.4.2 illustrates why RIDA is not sufficient. Consider the following πz.

D {x, y, z} {x, z} {y, z} {z}

πz(D) −7/9 1 1 1

Assuming that logit consideration holds, this πz is the unique (up to normalization) way to repre-

sent the given choice behavior. However, this πz is not a probability distribution. Hence, an extra

assumption on pr is needed so that πr derived from observed choices is a well defined probability.

2.4.1 Identification of Consideration Probabilities

Before introducing the final axiom I discuss identification of consideration probabilities from

choice data. The following theorem will be useful for this purpose.

Theorem 2.4.1. (Möbius Inversion (Shafer, 1976)) If Θ is a finite set and f and g are functions on

2Θ, then

f(A) =
∑
B⊆A

g(B)

for all A ⊆ Θ if and only if

g(A) =
∑
B⊆A

(−1)|A\B|f(B)

for all A ⊆ Θ.

First, suppose r is the worst alternative in X . Notice that if pr has a logit consideration repre-

sentation, then for any choice set S ⊆ X , it has to be the case that

pr(r,X)

pr(r, S)
=

∑
D: r∈D⊆S

πr(D).
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Then, Möbius Inversion implies

πr(S) =
∑

D: r∈D⊆S

(−1)|S\D|
pr(r,X)

pr(r,D)
.

Hence, unique identification of πr from choice data is possible when r is the worst alternative.

This is not true if r is not the worst alternative. For example, if r is the best alternative, then any

choice of πr works as pr(r, S) = 1 for all S.

The general methodology for constructing πr when r is arbitrary is described in the Appendix.

Here I illustrate the case when r is the second worst alternative in the grand set of alternatives. Let

s denote the alternative worse than r and Dr = {{r}, {r, s}}. Pr represents the set of alternatives

preferred to r, i.e., Pr = X \ {r, s}. Given any πr, we can define two probability distributions

πrr and π{r,s}r derived from πr. πrr assigns positive probability only to subsets of X which do not

include s. For any S such that r ∈ S ⊆ X \ s, define

πrr(S) =
πr(S)∑

D: r∈D⊆X\s πr(D)
.

On the other hand, π{r,s}r assigns positive probability only to subsets of X that include both r and

s. For any S such that {r, s} ⊆ S ⊆ X , let

π{r,s}r (S) = πr(S \ s) + πr(S).

Now consider the setX\s. If pr has a logit attention representation, then the relative probability

that the reference alternative is chosen in X \ s as opposed to any other subset of X \ s is given by

pr(r,X \ s)
pr(r, S)

=

∑
D: r∈D⊆S πr(D)∑

D′:r∈D′⊆X\s πr(D
′)

=
∑

D: r∈D⊆S

πrr(D).

The relative probability that the reference alternative is chosen in X as opposed any other set S
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containing {r, s} is given by

pr(r,X)

pr(r, S)
=

∑
D: {r,s}⊆D⊆S

(πr(D \ s) + πr(D)) =
∑

D: {r,s}⊆D⊆S

π{r,s}r (D).

We can use Möbius Inversion to back out both πrr and π{r,s}r from observed choices. For any S

with r ∈ S ⊆ X \ s,

πrr(S) =
∑

D: r∈D⊆S

(−1)|S\D|
pr(r,X \ s)
pr(r,D)

,

and for any S with {r, s} ⊆ S ⊆ X ,

π{r,s}r (S) =
∑

D: {r,s}⊆D⊆S

(−1)|S\D|
pr(r,X)

pr(r,D)

The first equation helps us identify πr(S)/πr({r}) for each S ⊆ X \ s, while the second

equation helps us identify (πr(S \s)+πr(S))/(πr({r})+πr({r, s})) for each S such that {r, s} ⊆

S. After some normalization we can back out πr(S) for all S. The necessary condition for this

procedure to be well defined are that both πrr(S) > 0 and π{r,s}r (S) > 0. Furthermore, it must be

the case that π{r,s}r (S)− πrr(S) > 0.

The construction works as follows. For each S ⊆ X \ s, let

λrr(S) =
∑

D: r∈D⊆S

(−1)|S\D|
1

pr(r,D)

and for each S such that {r, s} ⊆ S ⊆ X , let

λ{r,s}r (S) = λ{r,s}r ({r, s})
∑

D: {r,s}⊆D⊆S

(−1)|S\D|
1

pr(r,D)
.

where λ{r,s}r ({r, s}) > 1 is a constant to be determined later. The relative weight of each S with

55



respect to r is defined by

λr(S) =


λrr(S) if r ∈ S ⊆ X \ s,

λ
{r,s}
r (S)− λrr(S \ s) if {r, s} ⊆ S ⊆ X.

λ
{r,s}
r ({r, s}) is chosen large enough to make sure that λ{r,s}r (S) − λrr(S \ s) > 0 for all S such

that {r, s} ⊆ S ⊆ X . This is possible as long as the second part of the equation for λ{r,s}r (S) is

positive. Finally, let

πr(S) =
λr(S)∑

D: r∈D⊆X λr(D)
.

Notice that unlike the case when r is the worst alternative, there is a degree of freedom which is

the choice of πr({r, s})/πr({r}).

2.4.2 Representation Theorem

To introduce the axiom, let Dr be the collection of subsets of X in which r is the dominant alter-

native. Also let Pr denote the set of alternatives which dominate r in binary comparison. For

any (S, r), the odds that an alternative other than the reference point is chosen is defined by

OrS = 1−pr(r,S)
pr(r,S)

. For any U 63 r, ∆UOrS = 1−pr(r,S)
pr(r,S)

− 1−pr(r,S\U)
pr(r,S\U)

. This reflects the change in

odds against the reference alternative when the choice set is expanded. The next axiom is related

to Increasing Feasible Odds axiom in Brady and Rehbeck (2016).

Axiom 2.4.1. (Decreasing Odds for the Reference Alternative) For any (S, r) and a collection

U = {U1, · · · , Un} such that for all i ∈ {1, . . . , n}, Ui ⊆ Pr and S ∩ Ui 6= ∅,

∆UOrS = ∆Un · · ·∆U2OrS −∆Un · · ·∆U2OrS\U1
> 0.

This axiom states that when the choice set is expanded by introducing alternatives which dom-

inate the reference alternative the odds that the reference alternative is chosen decreases at an

increasing rate. Notice that Axiom 2.4.1 is silent on the effect of enlarging a menu with alter-
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natives that are dominated by the reference alternative. Hence, logit model relaxes the condition

imposed by IDA which states that the probability that the reference alternative is chosen must be

the same when an alternative dominated by it is added to the menu. While IDA and Axiom 2.4.1

are logically independent, from the representation theorem for the fixed independent consideration

model we know that IDA together with RIDA implies Axiom 2.4.1.

Observe that Example 2.4.2 does not satisfy Axiom 2.4.1. Indeed, if we choose U =

{{x}, {y}}, then

∆UOr{x,y,z} = −7

9
.

Axiom 2.4.1 rules out this example by requiring that the consideration probabilities identified from

choices are positive. Going back to the case when r is the second worst alternative in the set and s is

the worst alternative, Axiom 2.4.1 is equivalent to the following conditions on choice probabilities:

∑
D: r∈D⊆S

(−1)|S\D|
1

pr(r,D)
> 0 whenever S ⊆ X \ s,

∑
D: {r,s}⊆D⊆S

(−1)|S\D|
1

pr(r,D)
> 0 whenever S 6⊆ X \ s.

As noted earlier, these conditions are necessary for the consideration probabilities induced from

choice data to be well defined.

The next theorem provides the representation result for logit consideration.

Theorem 2.4.2. Suppose pr is an RDRAM. Then pr has a logit attention representation if and only

if it satisfies Ratio Independence of Dominant Alternatives and Decreasing Odds for the Reference

Alternative.

Necessity of Axiom 2.4.1 when r is arbitrary is shown in the Appendix. To prove sufficiency,

consideration probabilities are constructed from choices as illustrated in the previous section. Ax-

iom 2.4.1 is used to prove that this is a well defined probability distribution. The construction of

consideration probabilities guarantees that the representation always holds for the reference alter-

native. Hence, this guarantees that the representation holds for both alternatives in binary choice
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sets. By using induction and RIDA, it is shown that the representation holds for all alternatives and

all choice sets.

2.5 Fixed Correlated Consideration

In this section, I study the behavioral implications of the fixed correlated consideration model. In

FCC model, each alternative has a fixed reference dependent probability of being considered that

does not depend on the choice set. This probability is given by
∑

x∈D πr(D). The difference with

fixed independent consideration model is that the consideration of alternatives might be correlated.

Similar to FIC model, FCC satisfies Irrelevance of Dominated Alternatives. The next examples

illustrate that RIDA is not necessarily satisfied in FCC model and IDA by itself is not sufficient for

an FCC representation.

Example 2.5.1 (RIDA Violation). Suppose x � y � z, πz({z}) = πz({x, z}) = πz({y, z}) = 0.2

and πz({x, y, z}) = 0.4. The implied choice probabilities when z is the reference alternative are

as below.

pz(·, S) {x, y, z} {x, z} {y, z}

x 0.6 0.6

y 0.2 0.6

z 0.2 0.4 0.4

RIDA is violated as pz(y,{x,y,z})
pz(z,{x,y,z}) = 1 6= 3

2
= pz(y,{y,z})

pz(z,{y,z}) .

Example 2.5.2 (Insufficiency of IDA). Suppose pr is an RDRAM and when z, the worst alternative

in {x, y, z}, is the reference alternative the choice data is as below.

pz(·, S) {x, y, z} {x, z} {y, z}

x 0.6 0.6

y 0.2 0.9

z 0.2 0.4 0.1
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Notice that IDA is satisfied as pz(x, {x, y, z}) = pz(x, {x, z}). If pz has a fixed correlated attention

representation, then it must be the case that p(z, {x, y, z}) = πz({z}) = 0.2 and pz(z, {y, z}) =

πz({z}) + πz({x, z}) = 0.1 which is not possible as πz is a probability distribution.

In Example 2.5.2, we have that pz(z, {y, z}) < pz(z, {x, y, z}) which is not allowed in fixed

correlated consideration model. Recall that IDA only imposes a condition on observed choices

when dominated alternatives are removed from the choice set. Hence, IDA does not impose

any condition on pz(·, {y, z}). One possible assumption on observed choices is pz(z, {y, z}) >

pz(z, {x, y, z}). This condition is known as regularity (Suppes and Luce, 1965). While this as-

sumption is necessary for FCC representation, it is not sufficient. To see this, modify Example

2.5.2 so that pz(z, {y, z}) = 0.9 and pz(y, {y, z}) = 0.1. Then regularity on the reference alterna-

tive is satisfied. However, if πz is the FCC representation of pz, it must be that

D {x, y, z} {x, z} {y, z} {z}

πz(D) −0.1 0.7 0.2 0.2

Hence, more structure on observed choices is needed for πr derived from pr to be a valid probability

distribution.

2.5.1 Identification of Consideration Probabilities

Here I discuss how πr can be recovered from pr. First, suppose r is the worst alternative in X .

Then if pr has a fixed correlated consideration representation it must be the case that

pr(r, S) =
∑

D: r∈D⊆(X\S)∪r

πr(D).

This can alternatively be written as

pr(r, (X \ S) ∪ r) =
∑

D: r∈D⊆S

πr(D).
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Hence, by Möbius Inversion,

πr(S) =
∑

D: r∈D⊆S

(−1)|S\D|pr(r, (X \D) ∪ r).

Now suppose r is the second worst alternative. Let s be the worst alternative in X . Notice that

Irrelevance of Dominated Alternatives implies

pr(x, S) = pr(x, S \ s)

for all S and x ∈ S\s. Hence, unlike logit consideration model, there is no extra information when

s is added to the choice set. This implies that we can only identify πr(D) + πr(D ∪ s) for each

D ⊆ X \ s and nothing else. Let π{r,s}r be the probability distribution on choice sets S ⊇ {r, s}

defined by

π{r,s}r (S) = πr(S) + πr(S \ s).

Now notice that if S ⊇ {r, s}, then

pr(r, (X \ S) ∪ {r, s}) =
∑

D: {r,s}⊆D⊆S

π{r,s}r (D).

Hence, by Möbius Inversion,

π{r,s}r (S) =
∑

D: {r,s}⊆D⊆S

(−1)|S\D|pr(r, (X \D) ∪ {r, s})

=
∑

D: {r,s}⊆D⊆S

(−1)|S\D|pr(r, (X \D) ∪ r)

where the second equality follows if we assume Irrelevance of Dominated Alternatives. Thus, a

necessary condition for the representation is positivity of π{r,s}r (S) > 0 for all S ⊇ {r, s}.
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2.5.2 Representation Theorem

Recall that Pr is the set of alternatives which dominate the reference alternative in binary compari-

son. Also let Dr = X \Pr, i.e., Dr is the largest set in which the reference alternative is dominant.

For any (S, r) and U 63 r, let ∆Upr(r, S) = pr(r, S \ U) − pr(r, S). This reflects in the change

in the probability that an alternative other than the reference alternative is chosen when the set is

expanded. The next axiom is similar to Aguiar (2017).

Axiom 2.5.1. (Decreasing Propensity of Choice for the Reference Alternative) For any (S, r) and

a collection U = {U1, · · · , Un} such that for all i ∈ {1, . . . , n}, Ui ⊆ Pr and S ∩ Ui 6= ∅,

∆Upr(r, S) = ∆Un · · ·∆U2pr(r, S \ U1)−∆Un · · ·∆U2pr(r, S) > 0.

The axiom states that when the choice set is expanded by introducing alternatives which domi-

nate the reference point the probability that the reference point is chosen decreases at a decreasing

rate. It is illustrative to compare Axiom 2.5.1 with Axiom 2.4.1 assumption in logit model. Recall

that Axiom 2.4.1 requires the odds that the reference alternative is chosen to decrease at an in-

creasing rate. Since fixed independent consideration satisfies both properties, in FIC model while

the odds that the reference alternative is chosen decreases at an increasing rate, the probability

that it is chosen decreases at a decreasing rate. To see this in an example, suppose pr has a FIC

representation with γr. Let S ′ ( S and x /∈ S be given. Then a simple calculation shows that

∆{x}OrS∪x > ∆{x}OrS′∪x and ∆{x}pr(r, S ∪ x) < ∆{x}pr(r, S
′ ∪ x).

Notice that similar to Axiom 2.4.1, Axiom 2.5.1 imposes a structure on observed choices when

the choice set is expanded by adding alternatives which dominate the reference point. On the other

hand, IDA imposes a structure on observed choices when dominated alternatives are added to the

menu. Combining IDA with Axiom 2.5.1 we get a property known as regularity on the reference

point: for any S ⊇ T 3 r, pr(r, T ) ≥ pr(r, S). This property is not shared by the logit model. In

fact, logit consideration imposes no structure on observed choices when an alternative dominated

by the reference point is added to the menu.
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Going back to the example when r is the second worst alternative in the set, Axiom 2.5.1 is

equivalent to the condition that

∑
D: {r,s}⊆D⊆S

(−1)|S\D|pr(r, (X \D) ∪ {r, s}) > 0.

As discussed earlier, this is a necessary condition for consideration probabilities derived from

observed choices to be well defined. The necessity of Axiom 2.5.1 when r is arbitrary is shown in

the Appendix.

The next theorem provides a characterization result for fixed correlated consideration.

Theorem 2.5.1. Suppose pr is an RDRAM. Then pr has a fixed correlated consideration represen-

tation if and only if it satisfies Irrelevance of Dominated Alternatives and Decreasing Propensity

of Choice for the Reference Alternative.

The proof of sufficiency is provided in three steps. First, I construct consideration probabilities

from pr as described in the earlier section. It is shown that Axiom 2.5.1 implies that this is a valid

probability distribution. The next step is to show that the representation holds for the reference

alternative, and hence the representation holds for both alternatives in binary choice sets. Finally,

induction and IDA are used to show that the representation holds for all alternatives and all choice

problems.

2.5.3 Relation to Other Models

An interesting feature of fixed correlated consideration model is that it generalizes Masatlioglu

and Ok (2014) to random choice setup. In their model, the decision maker is endowed with a

psychological constraint function Q : X → X such that given a choice problem (S, r) the DM’s

deterministic choice is

c(S, r) = argmax(�, Q(r) ∩ S).
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This is the limit case of fixed correlated consideration model where πr assigns probability 1 to the

set Q(r).

Another interesting class of models related to fixed correlated consideration is random utility

models. Here I illustrate by construction that fixed correlated consideration is a special case of

reference dependent random utility model (RDRUM). (For an alternative proof of this result, see

Aguiar (2017).) Let R denote the set of all possible strict rankings on X . In RDRUM, for each

reference point, there exists a probability distribution π′r onR such that

pr(x, S) =
∑

�∈R: x=argmax(�,S)

π′r(�).

To see how RDRUM generalizes fixed correlated consideration, suppose pr has an FCC represen-

tation with (�, πr) where πr is a probability on X . We can construct an RDRUM representation of

pr with π′r as follows. First, for any strict preference �′, let �′D be the restriction of �′ on D. Let

m� : X → R be a function defined by

m�(D) =�′ such that �′D=�D, �′X\D=�X\D and x �′ y if x ∈ D, y ∈ X \D.

Now for any �′∈ R, let π′r(�′) =
∑

D:m�(D)=�′ πr(D). Then π′r defined as such is an RDRUM

representation of pr. Since fixed independent consideration is a special case of fixed correlated

consideration, it is also a special case of RDRUM. However, logit consideration model and random

utility models are independent.

2.6 Conclusion

In this paper, I consider reference dependent random choice data. I provide novel characterization

results for three commonly used random attention models. It is shown fixed independent consider-

ation model can be characterized by two key properties: irrelevance of dominated alternatives and

ratio independence of dominant alternatives. Logit consideration relaxes the first property while
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fixed correlated consideration relaxes the second property. Hence, the intersection of logit and

fixed correlated consideration models is exactly fixed independent consideration. I illustrate how

attention parameters can be partially identified in all these models.

2.7 Appendix

Proof of Theorem 2.2.1

For any x 6= y, let x � y if px(x, {x, y}) = 1. Dominant Alternative implies that � is to-

tal and asymmetric. To see that � is transitive, suppose x � y � z. Then px(x, {x, y}) = 1

and py(y, {y, z}) = 1. Consistency of Dominance implies that py(x, {x, y, z}) > 0 and

pz(y, {x, y, z}) > 0. Since {x, y, z} has a dominant alternative, it must be x. Hence,

px(x, {x, y, z}) = 1. But then we cannot have pz(z, {x, z}) = 1 as this would imply

px(z, {x, y, z}) > 0, a contradiction. Hence, px(x, {x, z}) = 1 and x � z follows.

Now for any x, let Dx be the largest set in which x is the dominant alternative. Now given a

choice problem (S, r) and x ∈ S with pr(x, S) > 0, let µr(D,S) > 0 be such that

pr(x, S) =
∑

D: {r,x}⊆D⊆Dx∩S

µr(D,S).

It is easy to see that this results in the desired representation.

Proof of Theorem 2.3.1

Let x � y whenever py(x, {x, y}) > 0. Since pr is an RDRAM, � is a linear order on X . The

next lemma provides a relationship between pr(y, S) and pr(y, S \ x) where x is the dominant

alternative in S.

Lemma 2.7.1. Suppose pr satisfies IDA and RIDA. If x is the dominant alternative in S, then for

any y ∈ S \ x,

pr(y, S) = pr(y, S \ x)pr(r, {x, r}).
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Proof. RIDA implies that there exists a constant κ(S) such that pr(y, S) = κ(S)pr(y, S \ x) for

all y ∈ S \ x. By adding over all y ∈ S \ x, we get that
∑

y∈S\x pr(y, S) = κ(S), or alternatively,

1 − pr(x, S) = κ(S). Now IDA implies that 1 − pr(x, S) = 1 − pr(x, {r, x}) = pr(r, {x, r}).

Hence, pr(y, S) = pr(y, S \ x)pr(r, {x, r}).

The next step is to define γr(x). Let γr(x) = max{pr(x, {r, x}), px(r, {r, x})}. Since pr is

an RDRAM, exactly one of the terms is strictly between zero and one so that γr(x) ∈ (0, 1). The

consideration set probabilities are defined by

µr(D,S) =
∏
x∈D

γr(x)
∏

y∈S\D

(1− γr(y)).

Lemma 2.7.2. For any (S, r) and D ⊆ S \ x,

µr(D,S) = µr(D,S \ x)µr({r}, {r, x}).

Proof. This claim follows from simple algebra and definitions.

µr(D,S) =
∏
y∈D

γr(y)
∏

z∈S\D

(1− γr(z)) =
∏
y∈D

γr(y)
∏

z∈S\(D∪x)

(1− γr(z))(1− γr(x))

= µr(D,S \ x)µr({r}, {r, x})

Lemma 2.7.3. For any (S, r) and x ∈ S,

pr(x, S) =
∑

D: x is � best in D

µr(D,S)

Proof. The proof is by induction. First, suppose S = {x, y}. Without loss of generality, assume

x � y. Then px(x, {x, y}) = 1 = µx({x}, {x, y}) + µx({x, y}, {x, y}). Also, by definition,

py(x, {x, y}) = γy(x) = µy({x, y}, {x, y}) since γy(y) = 1.
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Now suppose the claim holds for all choice sets with cardinality less than k. Let |S| = k and

r ∈ S be given. Suppose y is the dominant alternative in S. If y = r, then the claim is trivial since

this implies pr(r, S) = 1 and pr(x, S) = 0 for all x ∈ S \ r. Hence, suppose y 6= r and let x 6= y

be given. Then,

pr(x, S) = pr(x, S \ y)pr(r, {r, y})

=
( ∑
D: x is � best in D⊆S\y

µr(D,S \ y)
)
µr(r, {r, y})

=
∑

D: x is � best in D⊆S\y

µr(D,S)

=
∑

D: x is � best in D

µr(D,S)

where the first equality follows from the first lemma, the second equality follows from induction,

the third equality follows from the previous lemma, and the last equality follows from the fact that

y � x. Finally, since pr(y, S) = 1−
∑

x∈S\y pr(x, S), the representation holds for all x ∈ S. Since

the reference point was arbitrary, the claim holds for all choice problems (S, r).

Proof of Theorem 2.4.2

Suppose pr has a logit attention representation. The necessity of RIDA is illustrated in the main

text. Here I show the necessity of Axiom 2.4.1.

Lemma 2.7.4. Suppose pr has a logit attention representation (�, πr). Then pr satisfies Axiom

2.4.1.

Proof. Recall that Pr denotes all alternatives which dominate r in binary comparison (i.e., s ∈

Pr ⇔ ps(s, {r, s}) = 1). For any S,

OrS =
1− pr(r, S)

pr(r, S)
=

∑
D: r∈D⊆S πr(D)−

∑
D: r∈D⊆S\Pr

πr(D)∑
D: r∈D⊆S\Pr

πr(D)
=

∑
D: r∈D⊆S πr(D)∑

D: r∈D⊆S\Pr
πr(D)

− 1.
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so that for any U ⊆ Pr,

∆UOrS =
1− pr(r, S)

pr(r, S)
− 1− pr(r, S \ U)

pr(r, S \ U)
=

∑
D: r∈D⊆S πr(D)−

∑
D: r∈D⊆S\U πr(D)∑

D: r∈D⊆S\Pr
πr(D)

=

∑
D: r∈D⊆S and D∩U 6=∅ πr(D)∑

D: r∈D⊆S\Pr
πr(D)

.

Similarly, for U = {U1, . . . , Un} such that for all i ∈ {1, . . . , n}, Ui ⊆ Pr and S ∩ Ui 6= ∅,

∆UOrS = ∆Un · · ·∆U2OrS −∆Un · · ·∆U2OrS\U1
=

∑
D: r∈D⊆S and ∀i, D∩Ui 6=∅ πr(D)∑

D: r∈D⊆S\Pr
πr(D)

≥ πr(S)∑
D: r∈D⊆S\Pr

πr(D)
> 0.

This concludes the proof that Axiom 2.4.1 is necessary for logit attention representation.

The next step is to show that RIDA and Axiom 2.4.1 are sufficient for logit consideration. First,

define x � y if px(x, {x, y}) = 1. As before, � is a linear order on X . To construct πr from pr, let

λr({r}) = 1. Let Dr be the collection of subsets of X which have r as the dominant alternative.

For T ∈ Dr such that T 6= {r}, λr(T ) are positive constants to be determined later. Now for each

T ∈ Dr, let

λTr (T ) =
∑

D: r∈D⊆T

λr(D)

and for each S such that T ⊆ S ⊆ T ∪ Pr

λTr (S) = λTr (T )
∑

D: T⊆D⊆S

(−1)|S\D|
1

pr(r,D)
.

The next lemma shows that if pr satisfies Axiom 2.4.1, then λTr (S) > 0.

Lemma 2.7.5. Suppose pr is an RDRAM and it satisfies Axiom 2.4.1. Then for any T ∈ Dr, and

S such that T ⊆ S ⊆ T ∪ Pr, λTr (S) > 0.
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Proof. Given the definition of λTr (S) and using Möbius Inversion, we get that

pr(r, S) =
λTr (T )∑

D: T⊆D⊆S λ
T
r (S)

.

Now let U = {{xi}| xi ∈ S \ T}. Then a simple calculation shows that

0 < ∆UOrS = ∆Un · · ·∆U2OrS −∆Un · · ·∆U2OrS\U1
=

∑
D: T⊆D⊆S and ∀i, D∩Ui 6=∅ λ

T
r (D)

λTr (T )
=
λTr (S)

λTr (T )
.

Since the denominator is positive by definition, the numerator is also positive.

Now let λr(S) = λrr(S) for S such that S \ Pr = {r}. Suppose λr(S) is defined for all S with

|S \ Pr| < k and let S be such that |S \ Pr| = k. Then λr(S) is given by

λr(S) = λS\Pr
r (S)−

∑
D: r∈D(S\Pr

λr(D ∪ (S ∩ Pr)).

Since by the previous lemma the second part in the equation for λS\Pr
r (S) is positive, by choosing

λr(S \ Pr) large enough we can make sure that λr(S) > 0.

Lemma 2.7.6. For any T ∈ Dr and S such that T ⊆ S ⊆ T ∪ Pr,

λTr (S) =
∑

(S\T )∪r⊆D⊆S

λr(D).

Proof. The claim follows from the definition if S = T . For T ( S, by definition,

λTr (S) = λr(S) +
∑

r∈D(T

λr(D ∪ (S \ T ))

=
∑

D: (S\T )∪r⊆D⊆S

λr(D).

Lemma 2.7.7. Suppose pr is an RDRAM and it satisfies RIDA and Axiom 2.4.1. Then for any
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r ∈ X and x ∈ S,

pr(x, S) =
∑

D: x is � best in D

λr(D)∑
D′: r∈D′⊆S λr(D

′)
.

Proof. The proof is by induction. Let r ∈ X be given. First, I show that the representation holds

for binary choice sets. If pr(x, {r, x}) = 0, then r � x and the representation holds trivially.

Suppose pr(x, {r, x}) > 0. By construction, λr({r}) = 1 and λr({r, x}) = 1
pr(r,{r,x}) − 1. Hence,

λr({r, x})
λr({r}) + λr({r, x})

= 1− pr(r, {r, x}) = pr(x, {r, x}).

The next step is to show that the claim holds for all S whenever x = r. Let T = S \Pr. Notice

that Möbius Inversion implies

λTr (T )

pr(r, S)
=

∑
D: T⊆D⊆S

λTr (D),

and hence

pr(r, S) =
λTr (T )∑

D: T⊆D⊆S λ
T
r (D)

=

∑
D′: r∈D′⊆T λr(D

′)∑
D: T⊆D⊆S

∑
D′′: (D\T )∪r⊆D′′⊆D λr(D

′′)
=

∑
D′:r∈D′⊆T λr(D

′)∑
D′′:r∈D′′⊆S λr(D

′′)

where the second equality follows from the previous lemma. Since r is the � best alternative only

in subsets of T , this proves the lemma whenever x = r.

Now suppose the lemma holds for all S with cardinality less than k and let S with |S| = k

be given. If x is not chosen with positive probability, the representation is trivial. So suppose x

is chosen with positive probability. If x is the only alternative other than r chosen with positive

probability, then the representation is trivial again as pr(x, S) = 1−pr(r, S) and the representation

holds for the reference alternative. So let z 6= x be the dominant alternative in S. RIDA implies

that
pr(x, S)

pr(r, S)
=
pr(x, S \ z)

pr(r, S \ z)
.

Hence, by using induction argument, the fact that z is the dominant alternative in S, and that the
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representation holds whenever x = r, we get

pr(x, S) =
pr(x, S \ z)

pr(r, S \ z)
pr(r, S) =

∑
D: x is� best in D⊆S\z λr(D)∑

r∈D′⊆S\z λr(D′)∑
D: r is� best in D⊆S\z λr(D)∑

r∈D′⊆S\z λr(D′)

∑
D: r is � best in D⊆S λr(D)∑

r∈D′⊆S λr(D
′)

=

∑
D: x is � best in D⊆S λr(D)∑
D: r is � best in D⊆S λr(D)

∑
D: r is � best in D⊆S λr(D)∑

r∈D′⊆S λr(D
′)

=
∑

D: x is � best in D⊆S

λr(D)∑
r∈D′⊆S λr(D

′)

as desired. Finally, the claim holds for z as pr(z, S) = 1−
∑

y∈S\z pr(y, S).

Define a probability distribution πr on sets which contain r by

πr(S) =
λr(S)∑

r∈D⊆X λr(D)
.

The previous lemma shows that (�, πr) represents pr. Since (S, r) was arbitrary, this concludes

the proof of the theorem.

Proof of Theorem 2.5.1

Suppose pr has a fixed correlated consideration. The necessity of IDA is shown in the main text.

Here I prove the necessity of Axiom 2.5.1.

Lemma 2.7.8. Suppose pr has an FCC representation with πr. Then pr satisfies Axiom 2.5.1.

Proof. Let Dr to be the largest set in which r is the dominant alternative, i.e., Dr = X \ Pr. First,

notice that for any (S, r) and any U ⊆ Pr such that S ∩ U 6= ∅,

∆Upr(r, S) = pr(r, S \ U)− pr(r, S) =
∑

D: r∈D⊆[X\(S\U)]∪Dr

πr(D)−
∑

D: r∈D⊆[X\S]∪Dr

πr(D)

=
∑

D: r∈D⊆[X\(S\U)]∪Dr and D∩(S∩U)6=∅

πr(D) ≥ πr((S ∩ U) ∪ r) > 0.
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Similarly, for any collection U = {U1, . . . , Un} such that for all i ∈ {1, . . . , n}, Ui ⊆ Pr and

S ∩ Ui 6= ∅,

∆Upr(r, S) =
∑

D: r∈D⊆[X\(S\(∪Ui∈UUi))]∪Dr and ∀i, D∩(S∩Ui)6=∅

πr(D) ≥ πr((S∩ (∪Ui∈UUi))∪Dr) > 0.

I will now show that if pr is an RDRAM, then IDA and Axiom 2.5.1 are sufficient for an FCC

representation. As before, we let x � y iff px(x, {x, y}) = 1. Let r ∈ X be given. Now for any

S ⊇ Dr, let

λr(S) =
∑

D:Dr⊆D⊆S

(−1)|S\D|pr(r, (X \D) ∪Dr).

The next lemma shows that if pr satisfies Axiom 2.5.1, then λr(S) > 0 for any choice problem

(S, r) such that S ⊇ Dr.

Lemma 2.7.9. Suppose pr is an RDRAM and it satisfies Axiom 2.5.1. Then λr(S) defined as above

is strictly positive for all (S, r) with S ⊇ Dr.

Proof. Given the definition of λr, Möbius Inversion implies that

pr(r, S) =
∑

D:Dr⊆D⊆(X\S)∪Dr

λr(D).

Let U = {{xi}| xi ∈ S ∩ Pr}. By assumption, ∆Upr(r,X) > 0. Now notice that

0 < ∆Upr(r,X) =
∑

D:Dr⊆D⊆[X\(X\(∪Ui∈UUi))]∪Dr and ∀i, D∩(X∩Ui) 6=∅

λr(D) = λr(S)

as desired.

Notice that Möbius inversion implies

pr(r,Dr) =
∑

D:Dr⊆D⊆X

λr(D).
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Since pr(r,Dr) = 1, this together with the previous lemma imply that λr is a probability distri-

bution on sets S ⊇ Dr. Now choose πr over X containing r which satisfies πr(D) > 0 for each

D ∈ X and for any S ⊇ Dr

λr(S) =
∑

D: (S\Dr)∪r⊆D⊆S

πr(D).

Lemma 2.7.10. Suppose pr is an RDRAM and it satisfies IDA and Axiom 2.5.1. Then for any (S, r)

and x ∈ S,

pr(x, S) =
∑

D: x is � best in D∩S

πr(D).

Proof. First, notice that for any S ⊇ Dr,

pr(r, S) =
∑

D:Dr⊆D⊆(X\S)∪Dr

λr(D) =
∑

D: r∈D⊆(X\S)∪Dr

πr(D) =
∑

D: r∈D∩S⊆Dr

πr(D).

On the other hand, if S 6⊇ Dr, then Irrelevance of Dominated Alternatives implies that

pr(r, S) = pr(r, S ∪Dr) =
∑

D: r∈D∩(S∪Dr)⊆Dr

πr(D) =
∑

D: r∈D∩S⊆Dr

πr(D).

Hence, the representation holds for the reference alternative. Now let x � r be given. Since the

representation holds for pr(r, {x, r}) it also holds for pr(x, {x, r}). Suppose the representation

holds for all sets with cardinality less than k. Let S with |S| = k be given. If S contains one

alternative which dominates r, the representation holds by induction and irrelevance of dominated

alternatives. Suppose there are at least two alternatives which dominate r. Let z ∈ S be an

alternative which dominates r but is dominated by all other alternatives for which pr(x, S) > 0.

Let x /∈ {r, z} with pr(x, S) > 0 be given. By Irrelevance of Dominated Alternatives,

pr(x, S) = pr(x, S \ z).
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By induction argument,

pr(x, S \ z) =
∑

D: x is � best in D∩S\z

πr(D).

Finally, since x � z, x is � best in D ∩ S if and only if it is � best in D ∩ S \ z, and hence

pr(x, S) = pr(x, S \ z) =
∑

D: x is � best in D∩S

πr(D).

To conclude the proof, notice that pr(z, S) = 1−
∑

x∈S\z pr(x, S).

73



CHAPTER 3

Decision Making within a Product Network1

3.1 Introduction

Consider a Netflix consumer who is searching for a movie. First, she looks up a particular movie

recommended by a friend. Then, Netflix recommends several other films. These recommendations

help customers who face the overwhelming task of finding the best movie among a huge catalog.

The recommendations form a product network in which a large number of movies are linked to

one another. Each movie is a node in the product network, and a recommendation represents a link

between two movies. While one of the first e-commerce websites to introduce product networks

was Netflix, nowadays almost every e-commerce site offers product networks.2

In marketing, researchers recognize the importance of product networks in decision-making

(Hoffman and Novak, 1996; Mandel and Johnson, 2002; Bucklin and Sismeiro, 2003). Moe (2003)

claims that “[e]normous potential exists in studying an individual’s behavior as they navigate from

page to page.” This navigation is the key difference between the classical decision-making ex-

amined in economics and decision-making within product networks. Shopping within a product

network is analogous to walking down the aisles of a supermarket. As in traditional supermar-

kets, each product has a virtual “shelf position” in the product network, which immensely affects

demand for that product (Johnson et al., 2004; Oestreicher-Singer and Sundararajan, 2012). By im-

proving their knowledge of consumer decision-making, firms can improve their marketing strate-
1This chapter is coauthored with Yusufcan Masatlioglu.
2As of 2016, Netflix is the world’s leading Internet television network with over 93 million members in over 190

countries enjoying over 125 million hours of TV shows and movies per day.
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gies. Hence, understanding how a product network shapes consumers’ search has become crucial

for businesses. Surprisingly, theoretical work on decision-making within a product network is very

limited.

In this paper, we investigate decision-making in this new environment where consumers en-

counter products in a product network. We consider a customer who picks her most preferred

option from the alternatives she can discover (not from the entire feasible set). By studying the

observed choice behavior of consumers, our aim is to infer not only their preferences but also the

product network they face. We propose an identification strategy to find out when and how one can

deduce both consumer’s preferences and the perceived product network she faces from observed

choices.3 Our identification will help the analyst to pinpoint: (i) which products belong to the

same subcategory (i.e., connected components)? (ii) which products are more relevant in linking

popular products to niche products? (iii) which products are more likely to trigger sales of a par-

ticular product? The ability to answer these questions could be of practical importance for firms,

regulators, and policy makers.

Throughout this paper, we assume that the product network of a consumer is not observable, as

well as the preferences of the consumer. There are three important reasons behind this assumption.

First, recommendation systems offer personalized suggestions to match customers with the most

appropriate products. Hence, two Netflix customers might face two different product networks

because of their unobservable characteristics. Second, there is a distinction between perceived

versus exogenous networks. Since the actual search is influenced by different factors such as brand

familiarity (Baker et al., 1986), packaging (Garber, 1995), and color (Aaker, 1997), the perceived

network may be different from the product network exogenously provided as in Netflix. The

third is that the perceived product network could solely be an outcome of the consumer’s memory

and the associations she makes between different alternatives. Indeed, cognitive psychologists

have illustrated that our memory is organized in an associative network where nodes represent

3The variation in the set of available options is the key for our analysis. Such variations are commonly observed in
the real world. For example, Netflix’s website removes “Watch Instantly” titles that are not currently available due to
different factors, such as delayed license renewals, quality issues, and server technical difficulties. Hence, customers
will face different choice sets depending on availability.
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products, and links represent connections between products (Collins and Loftus, 1975; Meyer and

Schvaneveldt, 1976; Anderson, 1983; Hunt and Ellis, 1999; Anderson and Bower, 2014; Gentner

and Stevens, 2014). The fact that the links exist in associative memory does not necessarily mean

that the links are activated in reality. Several factors affect the activation of a link such as shape,

color, and smell (McCracken and Macklin, 1998). Hence, the presence of a particular product

might trigger associated memories and help the consumer recall other associated products.

One of the fundamental assumptions in our model is that the decision maker has well-defined

preferences unaffected by the search she undertakes. This assumption has been used in empir-

ical research in marketing (Kim et al., 2010; Koulayev, 2010; Chen and Yao, 2016; Honka and

Chintagunta, 2016). Bronnenberg et al. (2016) provide supporting evidence for the assumption by

showing that the valuation of an alternative is the same during the search as well as at the time

of purchase. Similarly, Reutskaja et al. (2011) provide experimental evidence for the claim that

subjects are good at optimizing within the set of options they have explored.

Every search in a network starts from one of the available alternatives. We call this alternative

the starting point in the consumer’s search.4 In every stage of the search, the consumer will “click

on” all the recommendations that appear in her perceived network. Hence, in the baseline model,

there are no cognitive limitations other than the one induced by her perceived product network.

Our consumer will consider all the goods that are reachable from the starting point. However,

as opposed to the standard theory, she might not discover all available alternatives if the product

network is sparse.5

Our network model is capable of accommodating two seemingly anomalous types of choice

behavior. First, given a fixed menu, different starting points can result in different choices (starting

point dependence). Moreover, given a fixed starting point, removing irrelevant alternatives from

a menu can affect choices (a violation of the weak axiom of revealed preference). While our

4Different starting points may result in different consideration sets, and hence different choices (Bronnenberg et al.,
2016). Our initial analysis assumes that we, as the analyst, observe both choices and corresponding starting points.
Nevertheless, it is conceivable that starting points will not be observable in some situations. We study the case of
unobserved starting points in the Appendix.

5The standard model is a special case of our baseline model when the product network is complete (i.e., all the
alternatives in the product network are linked).
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model helps explain these types of puzzling choice behavior, it also offers distinctive predictions

so that we can gain new insights. One of the predictions of the model is that the introduction of

a new alternative never diminishes the customer’s welfare. Hence, the model generates falsifiable

predictions even when the product network are not observable.

Section 3.2 illustrates how we can infer the preference and the product network of a customer

only from observed choices. Identifying preferences is particularly important for welfare analy-

sis. As Bernheim and Rangel (2009) point out, it is typically difficult to identify preference from

boundedly rational behavior. Our first result shows that the product network is uniquely identified.

However, identifying preferences is tricky. We first provide a list of choice patterns which reveal

the consumer’s preference. Hence, even with limited data, it is possible to identify the preferences.

This is crucial for empirical studies when the data is limited. We then show that if we have access

to complete choice data, all the patterns that reveal preferences can simply be summarized by the

following condition: x is revealed to be preferred to y if and only if x is chosen when y is the

starting point.

Our identification strategy relies on the underlying choice procedure where the decision maker

maximizes her preference within the alternatives she can reach. It is natural to question the fal-

sifiability of our model. To answer this question, in Section 3.2, we identify the class of choice

behaviors that are consistent with our baseline model. We show that choice data is compatible

with the network model if and only if data satisfies four simple behavioral postulates. The first

one, Starting Point Contraction, says that if the starting point is chosen in a choice set, then it must

be chosen from any subset of it as long as it is still the starting point. The second one, Replace-

ment, states that if an alternative other than the starting point is chosen in a choice set, then the

original starting point and the chosen alternative will induce the same choices in larger sets. To

introduce the next axiom, we call an alternative influential in a choice problem, if the removal of

this alternative causes a choice reversal. The third axiom, Asymmetry of Influence, states that if y

is influential in a choice problem when x is the starting point, then x cannot be influential in the

same choice problem with y as the starting point. Lastly, two alternatives are called distant in a
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choice set if for any proper subset of this choice set replacing one alternative with the other alter-

native as the starting point affects the choice. The last axiom, Irrelevant if Distant, states that if two

alternatives are distant in a choice set, then either of these alternatives cannot be influential in this

choice problem when the other alternative is the starting point. The key feature of our approach is

that our assumptions are stated in terms of choice experiments, and therefore a revealed preference

type analysis can be used to test our model.

In Section 3.3, we introduce bounded rationality in our framework. In our baseline model,

given the perceived network, the consumer explores all available options which are connected to

the starting point. However, many studies show that consumers indeed engage in a very limited

search (Johnson et al., 2004; Keane et al., 2008; Goeree, 2008; Kim et al., 2010). We consider

a model in which the consumer terminates her search after a number of steps due to limitations

such as time pressure or limited cognitive capacity. This model reduces to our baseline model if

the number of steps, denoted by K, is larger than the number of products. In the extreme case

(K = 2), the consumer only considers the starting point and the alternatives which are linked to

the starting point. While this model is behaviorally distinct from our baseline model, it coincides

with the status quo bias model of Masatlioglu and Ok (2014).

To study K-step network choice, we first provide a characterization for any fixed K. Even in

the presence of bounded rationality, three of our original four axioms (Starting Point Contraction,

Asymmetry of Influence, and Irrelevant if Distant) hold in K-step network choice model for ar-

bitrary K. On the other hand, Replacement holds if the choice set does not have more than K

alternatives. In addition, we introduce a new axiom, K-Reduction, which says that if an alternative

is chosen in a choice problem, then there must exist a choice problem with at most K alternatives

such that the same alternative is chosen. This is a necessary condition in this model since the final

choice must be reachable in at most K steps. The baseline model violates this axiom if K is small

enough.

Our limited search model features an interesting relationship between K-Reduction and K-

Replacement. While K-Reduction relates different choice problems with the same starting point,
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K-Replacement connects the same choice problem with different starting points. First, as K de-

creases, the power of K-Reduction is amplified. While the axiom has no bite when K is big

enough, it is very powerful when K = 2: removing irrelevant alternatives can never affect choice

behavior. Hence, if a consumer follows K-step network choice, given a fixed starting point, fewer

violations of “rationality” will be observed as K gets smaller. On the other hand, as K decreases,

the power of K-Replacement diminishes. If K is big enough, then replacing the starting point x

with another alternative y does not affect the choice as long as x is abandoned for y in a binary

comparison. If K = 2, then changing the starting point might affect the final choice drastically.

Hence, a consumer who follows K-step network choice will be more influenced by the starting

point as K gets smaller. To summarize, K-step network choice model relates more search (or a

higher K) with fewer observations of starting point dependence and more violations of the weak

axiom of revealed preference for a fixed starting point.

Theoretical work on decision making within product networks is limited. The closest paper on

the topic that we know of is Masatlioglu and Nakajima (2013). They provide a framework to study

behavioral search by utilizing the idea of consideration sets.6 Their baseline model is quite general

and makes very limited predictions. They also consider a particular case which can be represented

as a network. However, each model follows completely different choice procedures and they are

behaviorally distinct. Their model satisfies irrelevance of inferior alternatives and expansion, both

of which we relax. Irrelevance of inferior alternatives states that adding an alternative that is

inferior to the starting point cannot affect the choice. Expansion states that if a starting point x

dominates both y and z in binary comparisons, then the starting point x will still be chosen when y

and z are presented simultaneously. Hence, on this dimension, their model is more restrictive than

ours. On the other hand, their model violates our Replacement axiom.

This paper also contributes to a few branches of decision theory, such as reference depen-

dent choice, limited attention, and search. The other most closely related papers are Tversky and

6Caplin and Dean (2011) also study search by employing the revealed preference approach. They assume that an
outside observer can view the entire path followed during the search. The main difference is that, in our model, the
path is not an input rather an output.
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Kahneman (1991); Masatlioglu and Ok (2005, 2014), and Dean et al. (2017) (reference depen-

dent choice); Manzini and Mariotti (2007, 2012); Masatlioglu et al. (2012), and Cherepanov et al.

(2013) (limited attention); and Caplin and Dean (2011) (search).

3.2 Model

The marketplace consists of a finite set of alternatives, denoted by X . Our consumer’s choice

problem can be summarized as a pair (S, x) where S is the set of available products at the time

of decision and the consumer starts searching from an alternative x in S. Examples of a starting

point include (i) the last purchase or status quo, (ii) a product advertised to the consumer, or (iii)

a recommendation from someone in the consumer’s social network (Masatlioglu and Nakajima,

2013). With the explosion of data mining technologies, observability of such data is now plausi-

ble.7 The choice behavior of the consumer is summarized by a choice function c which assigns a

single element to each extended choice problem (S, x) where c(S, x) ∈ S.

A product network N is a binary relation on X where (x, y) ∈ N represents a direct link

between x and y. Our interpretation of (x, y) ∈ N is that y belongs to the set of alternatives

recommended to a consumer who considers x. We assume that N is reflexive and symmetric.8

Intuitively, this implies that a consumer must always consider the starting point of search. In

addition, if a consumer with the starting point x considers y, then she must also consider x when

her starting point is y.9

We assume that the analyst has no prior knowledge about the product network and tries to

pin it down from observed choice behavior. There are two reasons for this assumption. First, it

is possible that different consumers face different product networks. This can be due to either

7For the discussion of unobserved starting points, we refer the interested readers to the Appendix.
8A binary relation N is reflexive if (x, x) ∈ N for all x ∈ X . It is symmetric if (y, x) ∈ N whenever (x, y) ∈ N .
9Symmetry does not necessarily imply that the exogenous network is symmetric. In fact, symmetry may be the

result of consumers’ symmetric associative memory. That is, if a consumer is recommended y when she considers x,
she may recall x when she considers y even in the absence of a direct recommendation. As discussed in the introduc-
tion, the availability of y may be necessary for recollection. Recently, Kahana (2002) finds evidence suggesting that
associative memory is indeed symmetric.
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personalized recommendations or the use of different stores. For example, while some consumers

use Netflix, others use Hulu for movies. Second, even if the exogenous network is the same for

everyone (e.g., everyone uses Netflix and gets the same recommendations), it is still possible that

different consumers pay attention to different recommended alternatives.

Suppose the consumer who is faced with the choice problem (S, x) considers all reachable

alternatives from x in S in her perceived network. If the perceived network is the same as the

exogenous network, this will correspond to a consumer who is not internally constrained (i.e.,

no search or attention cost), but externally constrained by the network structure. The external

constraint imposed by the product network implies that no matter how much search the consumer

does, there may be some alternatives she will never discover. The consumer’s consideration set

can be written as

Nx(S) = {y ∈ S| ∃ {x1, ..., xk} ⊆ S s.t. x1 = x, xk = y, and (xi, xi+1) ∈ N for i < k}. (3.1)

The set Nx(S) denotes all the reachable alternatives from x in S. That is, if y ∈ Nx(S), then

there exists a sequence of linked alternatives connecting x to y (i.e., a path from x to y) in S. We

can think of Nx(S) as an endogenously determined consideration set of a consumer who is faced

with the choice problem (S, x). We say that c is a network choice if there is a strict preference

relation � and a product networkN such that for any choice problem (S, x), c(S, x) maximizes �

in Nx(S).

Definition 3.2.1. A choice function c is a network choice if there exist a strict preference � and a

reflexive, symmetric binary relation N on X and such that

c(S, x) = argmax(�, Nx(S))

where Nx(S) is defined as in (3.1).

Notice that if a product network is complete, that is (x, y) ∈ N for all x, y ∈ X , then Nx(S) =
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S for all S, and hence the induced choice behavior is rational. Therefore, the standard model is a

special case of network choice. When the product network is incomplete, seemingly anomalous

choice behaviors could be observed. The following example illustrates network choice and the

type of choice behavior it allows.

Example 3.2.1. Altan, who is a six-year-old boy, faces a linear product network which is described

in Figure 3.1.10

Figure 3.1: Altan’s product network

Altan’s most favorite movie is Inside Out and his second favorite Cars.11 Altan’s starting point

is the last movie his older brother has seen. If all the movies are currently available in Netflix, Altan

will be aware of all the movies through Netflix’s recommendation (because the entire network is

connected). Hence, he chooses his most favorite movie (Inside Out) independent of the starting

point. If Nemo becomes unavailable in Netflix, the implied network is no longer connected, and

hence the starting point matters. In this case, if the last movie his older brother has seen is Lion

King, then Inside Out is still reachable and will be chosen. However, if the starting point is Up or

Cars, Altan ends up watching Cars.

In the above example, Altan exhibits two types of choice patterns. First, changing the starting

point affects his final choice (when the choice set is fixed):

Inside Out = c(S,Lion King) 6= c(S,Up) = Cars.

10We imagine that Netflix recommends at most two available movies in this example. If the movie is one of the
extreme points of the network, Netflix provides only one recommendation.

11His entire preference is Inside Out � Cars � Nemo � Up � Lion King.
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where S = {Cars, Up, Lion King, Inside Out}. Second, including irrelevant alternatives affects

his choice behavior (when the starting point is fixed):

Inside Out = c(S ∪ Nemo,Up) 6= c(S,Up) = Cars

These two choice patterns will play a crucial role in our analysis later on.

3.2.1 Characterization of Search Behavior

Before we provide behavioral postulates to characterize our choice procedure, we would like to

investigate the properties of consideration sets (Nx(S)) in this model. These properties will help

us to identify and motivate behavioral postulates in the next subsection.

We first define the notion of starting-point-dependent consideration sets. Let X (y) be the set

of all subsets of X including y. We say that {Γx}x∈X is a starting-point-dependent consideration

set mapping if for any x ∈ X , the mapping Γx : X (x) → X (x) satisfies Γx(S) ⊆ S for all

S ∈ X (x). Now the question is what type of properties on the consideration sets guarantee that

they are induced by a search over a product network.

To provide an answer for this question, we introduce three properties. The first property says

that the set of all reachable alternatives does not shrink as the choice problem expands. That is,

Γx(T ) ⊆ Γx(S) whenever T ⊆ S for a fixed starting point. The second property says that if

y belongs to Γx(S), the consideration set Γy(S) must be equal to Γx(S). In our model, if y is

reachable from x in S, then any alternative that is reachable from y must also be reachable from x

and vice versa. The last property says that if z belongs to Γx(S) but not to Γx(S \ y), then y must

be considered even in the absence of z, i.e., y ∈ Γx(S \ z). In addition, the property says that z

must be considered in the absence of x when y is the starting point, i.e., z ∈ Γy(S \ x). In our

model, the “if part” of the property implies that y must be on the path from x to z in the product

network. Hence, z must be reachable from y and y must be reachable from x.

We now formally state these properties and provide the result.
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A.1 (Upward Monotonicity) Γx(T ) ⊆ Γx(S) whenever T ⊆ S.

A.2 (Symmetry) If y ∈ Γx(S), then Γy(S) = Γx(S).

A.3 (Path Connectedness) If z ∈ Γx(S) and z 6∈ Γx(S \y), then y ∈ Γx(S \ z) and z ∈ Γy(S \x)

provided that x, y, and z are distinct alternatives.

Lemma 3.2.1. {Γx}x∈X satisfies Upward Monotonicity, Symmetry, and Path Connectedness if and

only if there exists a reflexive, symmetric binary relationN such that Γx(S) = Nx(S) for all S ∈ X

and x ∈ S.12

Notice that these properties are defined on consideration sets which are usually unobservable.

Nevertheless, Lemma 3.2.1 can be used to determine whether a consumer follows network choice

when we have data on the consumer’s consideration sets. For example, Reutskaja et al. (2011)

find that the average number of items seen by the subjects increases with set size. This suggests

an evidence for Upward Monotonicity. In addition, Lemma 3.2.1 also allows us to compare our

model with existing limited consideration models. We discuss the relationship with other models

in Section 3.3.

3.2.2 Characterization of Choice Behavior

As we discussed before, it is unlikely that an outside observer will have much information on

implied consideration sets. We now propose three simple axioms on observed choice behavior. We

then discuss how each axiom is related to three properties on consideration sets discussed above.

The first axiom is similar to standard contraction axiom (also known as α-axiom; Sen, 1971)

for a fixed starting point. It says that if the starting point is chosen in some choice problem, then it

must also be chosen in any subset of it as long as it stays as the starting point.

Axiom 3.2.1. (Starting Point Contraction) If c(S, x) = x and T ⊆ S, then c(T, x) = x.

12All proofs are provided in the Appendix.
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Axiom 3.2.1 is much weaker than the α-axiom. This axiom is silent when an alternative differ-

ent from the starting point is chosen. On the other hand, α-axiom requires that removing irrelevant

alternatives from a menu cannot affect the choice irrespective of which alternative was chosen.

But in our network model, this conclusion is no longer true when the chosen alternative is dif-

ferent from the starting point since an alternative that is considered in a bigger choice set is not

necessarily considered in a smaller choice set.

Axiom 3.2.1 is directly implied by the first property of consideration sets (A.1). To see this,

suppose x is selected when the choice problem is (S, x). This means the starting point is the best

among all reachable alternatives. If some alternatives are removed, the number of possible paths

decreases, and hence the consideration set can only get smaller. Since the starting point is always

available, and it was chosen when the choice set was larger, it must also be chosen when the choice

set is smaller.

The second axiom says that if y is chosen in some choice problem (T, x), then the choices cor-

responding to choice problems (S, x) and (S, y) must be the same for all S containing T . In other

words, once the starting point is abandoned for some alternative, replacing the original starting

point with the chosen alternative should not affect choices in larger choice sets.

Axiom 3.2.2. (Replacement) If c(T, x) = y and T ⊆ S, then c(S, x) = c(S, y).

To see why Axiom 3.2.2 holds in our model, notice that the first and second properties of

consideration sets imply a property which we call strong symmetry: if y ∈ Γx(T ) and T ⊆ S,

then Γx(S) = Γy(S). That is because if y ∈ Γx(T ) and T ⊆ S, then y ∈ Γx(S) by A.1, and

hence Γx(S) = Γy(S) by A.2. Now since y is chosen (and hence considered) when the choice

problem is (T, x), by strong symmetry, for any S ⊇ T , the consideration sets corresponding to

choice problems (S, x) and (S, y) are the same. Therefore, the consumer must choose the same

alternative.

From Example 3.2.1, we can see that the network choice model allows for choice reversal

patterns which are not allowed by the standard model. This also distinguishes our model from

reference-dependent choice models of Tversky and Kahneman (1991) and Masatlioglu and Ok
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(2005, 2014). Both of these models assume that given a reference point the decision maker maxi-

mizes a reference-dependent utility function, and hence choices satisfy the weak axiom of revealed

preference once the reference point is fixed.

Suppose we observe that removing y from choice problem (S, x) leads to a choice reversal,

i.e., y 6= c(S, x) 6= c(S \ y, x). That is, the presence of y changes the choice even though y is

not chosen. In this case, we say that y is influential in the choice problem (S, x). The next axiom

provides a structure on observed choice reversals by stating that if y is influential in (S, x), then x

cannot be influential in (S, y).

Axiom 3.2.3. (Asymmetry of Influence) If y is influential in (S, x), then x is not influential in (S, y).

This axiom, together with other axioms, imply that the alternatives in S can be partially ordered

by their relative influence in choices. If y causes a choice reversal in (S, x), then y is thought to

be more influential than x in S. Hence, the removal of x from (S, y) should not affect the choice.

Notice that the partial order of alternatives may depend on the choice set, i.e., it is possible that

y is more influential than x in S, but x is more influential than y in T . Formally, let y �S x if

y 6= c(S, x) 6= c(S \y, x). Then Axiom 3.2.3 is equivalent to the asymmetry of this binary relation.

We can show that all the axioms together imply that�S is transitive. Hence,�S is a strict partial

order on S.13

Notice that Axiom 3.2.2 disciplines starting point dependence while Axiom 3.2.3 imposes

a structure on the violations of the Weak Axiom of Revealed Preference (WARP) for different

starting points. However, one should expect that these two types of deviations from rationality are

linked to each other. To illustrate why this relation is meaningful in our model, consider a network

in which no two alternatives are linked. The choice behavior induced by such a product network

exhibits extreme starting point dependence, and no alternative can be influential in such a network.

The next axiom provides a formal link between the two types of deviations from rationality. It

states that if y is influential in (S, x), then there must be at least one T ⊂ S such that (T, x) and
13To see why Axiom 3.2.3 holds in our model, notice that if y is influential in (S, x), then it must be the case that

c(S, x) ∈ Γx(S) but c(S, x) /∈ Γx(S \ y). By A.1, A.2, and A.3, Γx(S) = Γy(S), and hence c(S, x) = c(S, y).
Moreover, by A.1 and A.3, c(S, y) ∈ Γy(S \ x) ⊆ Γy(S). Hence, c(S, y) = c(S \ x, y) as desired.
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(T, y) do not exhibit starting point dependence. In other words, a deviation from rationality on one

dimension (a violation of WARP for a fixed starting point) precludes a deviation from rationality on

another dimension (starting point dependence) for some choice problem. To introduce the axiom,

we say that x and y are distant in S if for all proper subsets T of S the choices from (T, x) and

(T, y) are distinct.

Axiom 3.2.4. (Irrelevant if Distant) If x and y are distant in S, then y is not influential in (S, x).

Intuitively, since distant alternatives x and y lead to different choices, they must be “far away”

from each other in the product network. Therefore, either of these alternatives cannot be influential

in this choice problem when the other alternative is the starting point.14

The following theorem provides a foundation for the network choice model.

Theorem 3.2.1. A choice function c satisfies Starting Point Contraction, Replacement, Asymmetry

of Influence, and Irrelevant if Distant if and only if it is a network choice.

Theorem 3.2.1 shows that network choice is captured by four simple behavioral postulates.

This makes it possible to test our model non-parametrically by using the standard revealed pref-

erence technique. Next, we derive the decision maker’s preferences and network from observed

choice data.

3.2.3 Revealed Preference and Network

In this section, we discuss how we can reveal preference and network from choice data given that

the consumer follows the network choice. The standard theory suggests that choices directly reveal

preferences. That is, x is preferred to y when x is chosen in the presence of y. To justify such an

inference, one must implicitly assume that y is considered. In our model, the decision maker

is constrained by the network. As a result, the decision maker might not compare all available

alternatives before making a choice. Therefore, eliciting preference from choices is no longer
14Axiom 3.2.4 is an implication of our model as y is influential in (S, x) if and only if c(S, x) ∈ Γx(S) but

c(S, x) /∈ Γx(S \ y). Hence, by A.2 and A.3, Γx(S \ c(S, x)) = Γy(S \ c(S, x)) which implies that c(T, x) = c(T, y)
for T = S \ c(S, x).
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trivial. The next example illustrates that there may be multiple preferences representing given

choice behavior.

Example 3.2.2. Now consider another decision maker, Mehmet, who is very fond of Lego movies:

Lego Movie, Batman, Ninjago. While we do not have any knowledge about his underlying choice

procedure, we can observe his choice behavior. He always chooses Ninjago independent of the

starting point as long as it is available. However, in the absence of Ninjago, his choice is dictated

by the starting point. That is, he watches what he encounters first.

Since Mehmet’s behavior satisfies Starting Point Contraction, Replacement, Asymmetry of

Influence, and Irrelevant if Distant, Theorem 3.2.1 guarantees that a network choice representation

of his behavior exists. The fact that Mehmet chooses Ninjago from each binary choice problem

implies that Ninjago is directly linked to both movies. On the other hand, since Mehmet chooses

different alternatives from {Lego Movie, Batman} depending on the starting point, there is no link

between Lego Movie and Batman (notice there is a path between them through Ninjago). Hence,

his choices reveal his entire network. This is a general feature of the baseline model. To reveal

the underlying network, it suffices to check binary choice data with different starting points. If the

decision maker’s choices between two options are independent of starting points, then we reveal

that these two options are directly linked. Otherwise, there is no direct link (see Figure 3.2).

Figure 3.2: Mehmet’s product network (Example 3.2.2)

While the entire network is pinned down, revealed preference is not unique in this example.

Indeed, Mehmet’s preference may be either of the following: Ninjago �1 Lego Movie �1 Batman

and Ninjago �2 Batman �2 Lego Movie. Since there can be multiple preferences representing

choice behavior, we need to define what we mean by revealed preference. Following Masatlioglu
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et al. (2012), we say that an option is revealed preferred to another option if the first option is

ranked higher than the second one in all possible representations.

Definition 3.2.2. Suppose c is a network choice and let {(�i,N )| i = 1, . . . , N} be all possible

representations of c. Then, we say that x is revealed to be preferred to y if x �i y for all i =

1, . . . , N .

Once we reveal the network, we can compare two options in terms of preference only if there

is a direct link or a path between them. If there is no link or path between these two options, there

will be no choice problem in which these alternatives are considered at the same time, and hence

we cannot tell which option is more preferred.

One might think that if there is a path between two alternatives, then we can reveal which one

is more preferred. However, Example 3.2.2 illustrates that the existence of a path is not enough

either. In that example, there is a path between Lego Movie and Batman, but we still cannot tell

which alternative is more preferred. We can reveal preference between two alternatives if and only

if there is a choice set in which (i) a direct link or a path between the two alternatives exists, and

(ii) one alternative is chosen over the other.

Consider an observation where the decision maker chooses x when y is the starting point, i.e.,

x = c(S, y). This observation satisfies both conditions: (i) there is a path between x and y in S,

and (ii) x is chosen over y. We can list many other choice patterns that satisfy both (i) and (ii), and

hence reveal preference. Consider the following sets of observations.

1. x = c(S, z) and y = c(T, z) where T ( S,

2. x = c(S, z) and c(T, y) = c(T, z) where T ⊆ S,

3. x = c(S, z) and y 6= c(T, z) 6= c(T \ y, z) where T ⊆ S.

In all the observations above we learn that there is a path between y and z in T . This guarantees

that y must be considered in any choice set containing T when z is the starting point. Hence, the

observation that x is chosen in the choice problem (S, z) implies that x is preferred to y. The list
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above is far from being exhaustive. For example, suppose x = c(S, t), c(T, z) = c(T, y), and

c(T, z) = c(T ′, t) where T, T ′ ⊆ S. These observations tell us that there is a path from both t to z

and z to y in S. Hence, y is considered when x is chosen.

It may appear that revealed preference can be quite complicated in this setup. However, if we

have access to complete choice data and Axioms 3.2.1-3.2.4 are satisfied, then by applying the

axioms we can verify that all the above observations are possible only if there exists a choice set

such that x is chosen when y is the starting point. As an example, Replacement guarantees that

c(S, y) = x in the case of Observation 1. The next proposition states that with complete choice

data, revealed preference can be summarized by one simple observation: x is preferred to y if and

only if x is chosen when y is the starting point.

Proposition 3.2.1. Suppose c is a network choice. Then,

• x is revealed preferred to y if and only if c(S, y) = x for some S,

• x is revealed to be linked to y if and only if c({x, y}, x) = c({x, y}, y).

Proposition 3.2.1 provides a necessary and sufficient condition for revealed preference in our

model. As discussed, the result assumes that the analyst observes entire choice behavior. With a

limited dataset, we can use the observations listed above to reveal consumer preference.

We now revisit Example 3.2.1 to illustrate how to utilize Proposition 3.2.1. We pretend that

we do not know either Altan’s preferences nor his network structure and try to reveal them from

his observed choices. Since Altan chooses Inside out when everything is available and the starting

point is Cars, this implies that Altan prefers Inside Out over Cars. Similarly, since Cars is chosen

when Nemo is the starting point and the menu is {Cars,Nemo,Up}, Cars is better than Nemo.

Choosing Nemo from the choice problem ({Nemo,Up},Up) reveals that Nemo is preferred to

Up. Finally, c({Nemo,Up,Lion King},Lion King) = Up yields that Lion King is the worst one.

Hence, we infer Altan’s entire preferences. It is routine to check that all the binary choice problems

reveal the product network given in Figure 3.1.

90



3.3 Limited Search

Netflix offers thousands of movies which makes it impossible to do an exhaustive search. When

people are confronted with an overwhelming number of options, they must implement a limited

search. In this section, we consider an agent who terminates her search after a certain number of

rounds due to limitations such as time pressure or limited cognitive capacity.

We assume that the consumer starts searching from a certain starting point and considers all

the alternatives that are linked to the starting point. The decision maker stops search after K

steps where K ≥ 2. For example, if K = 2, then the decision maker only considers the starting

point and the alternatives which are directly linked to the starting point. If the number of steps is

larger than the number of alternatives, then this model reduces to our baseline model. We provide

a characterization for K-step network choice where K is fixed and discuss the properties of the

consideration sets induced by K-step search.

Consider a consumer faced with the choice problem (S, x). The K-step consideration set is

given by

NK
x (S) = {y ∈ S|∃ {x1, . . . , xk} ⊆ S such that x1 = x, xk = y, k ≤ K,

and (xi, xi+1) ∈ N for i < k}
(3.2)

We say that a consumer makes a K-step network choice if the consumer picks the best element in

the K-step consideration set.

Definition 3.3.1. A choice function c is a K-step network choice if there exist a strict preference

� and a reflexive, symmetric binary relation N on X such that

c(S, x) = argmax(�, NK
x (S))

where NK
x (S) is as in (3.2).15

15If K = 2, then it is without loss of generality to assume that N is symmetric.
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The following example illustrates the properties of K-step network choice.

Example 3.3.1. Efe is the little brother of Altan from Example 3.2.1. Both brothers share the same

preferences and face the same product network. However, Efe always stops the search after two

steps (K = 2) due to his cognitive limitations. Even though he does a limited search, his choice

behavior satisfies WARP for each starting point. Hence, Efe acts “as if” he is a classical utility

maximizer for a fixed starting point.

This example highlights the power of our choice data. The richness of our data prohibits us

making wrong claims about the revealed preference. For example, assume that we only observe

Efe’s choice data when the starting point is Nemo. In this case, Efe’s behavior satisfies WARP. If

we apply the standard revealed preference, we must conclude that Nemo is strictly preferred to both

Inside Out and Cars, which are the best two options for Efe. In other words, we will mistakenly

reveal that Inside Out is worse than Nemo even though it is the best alternative for Efe. With a

richer dataset that includes observations with multiple starting points, we can observe that Efe’s

choices depend on the starting point in contrast to the standard model.

3.3.1 Characterization of Search Behavior

Before moving on to the characterization of choice behavior, we first show the properties the con-

sideration sets arising from K-step network choice satisfy. First, notice that Upward Monotonicity

(A.1) and Path Connectedness (A.3) must still be satisfied in the modified model. However, the

original Symmetry property (A.2) is no longer satisfied. That is because in K-step search model,

even if y is reachable from x in K steps and z is reachable from y in K steps, this does not neces-

sarily imply that z is reachable from x in K steps. If the choice set has fewer than K alternatives,

then Symmetry follows.

For any set S, we use the notation P≤K(S) to denote all nonempty subsets of S with at most

K elements.

B.2 (K-Symmetry) If y ∈ Γx(S) and S ∈ P≤K(X), then Γy(S) = Γx(S).
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Finally, consideration sets in K-step search model also satisfy K-Reduction which has no

analog in the baseline model. This property says that if y is reachable from x in S, then there exists

T ⊆ S consisting of at most K alternatives such that y is reachable from x in T . To see why this

must be true, consider the set consisting of x, y, and the alternatives connecting x to y. This set

must have at most K alternatives.

B.4 (K-Reduction) If y ∈ Γx(S), then there exists T ∈ P≤K(S) such that y ∈ Γx(T ).

Lemma 3.3.1 shows that if a collection of consideration set mappings {Γx}x∈X satisfies the

four properties described above, then we can treat them as a K-step consideration set on a product

network.

Lemma 3.3.1. {Γx}x∈X satisfies Upward Monotonicity, K-Symmetry, Path Connectedness, and

K-Reduction if and only if there exists a reflexive, symmetric binary relationN such that Γx(S) =

NK
x (S) for all S ∈ X and x ∈ S.

Lemma 3.3.1 is useful in comparing our model with existing models of limited considera-

tion. In the recent literature on limited consideration, a decision maker chooses the best alter-

native from a small subset of available alternatives. Such models include rational shortlisting

(Manzini and Mariotti, 2007), considering alternatives that belong to the best category (Manzini

and Mariotti, 2012), considering alternatives that are optimal according to some rationalizing cri-

teria (Cherepanov et al., 2013), and limited attention (Masatlioglu et al., 2012; Lleras et al., 2017).

While all of these models have an element of limited attention, choices are not affected by a start-

ing point in these models. Even though the domains of these models are different from ours, we

contrast our model with these models by fixing the starting point.

These models satisfy one of the two following properties. The first condition says that the

consideration set is unaffected by the removal of an alternative which does not attract attention.

x /∈ Γ(S) implies Γ(S) = Γ(S \ x).

The second property captures the idea that attention is relatively scarcer in larger choice sets. That
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is, if an alternative attracts attention in a larger set, it also attracts attention in subsets of it in which

it is included.

x ∈ Γ(S) implies x ∈ Γ(T ) if x ∈ T ⊆ S.

It is routine to show that for a fixed starting point, Upward Monotonicity and Path Connected-

ness imply the first condition. On the other hand, our model assumes the opposite of the second

condition.

Tyson (2013) considers a model where each menu has an associated preference relation. The

smaller the choice sets the more fine-grained the preferences are. The intuition is that in more

complex decision problems it is more difficult to compare alternatives. In the first stage, menu-

dependent preferences are used to eliminate some alternatives. In the second stage, ties are broken

by a salience relation. From the four properties that are satisfied by consideration sets in our model,

only Upward Monotonicity holds in his model.

3.3.2 Characterization of Choice Behavior

We now propose axioms on choices characterizing K-step network choice for a fixed K. Even

in the presence of bounded rationality, three of our original four axioms (Starting Point Contrac-

tion, Asymmetry of Influence, and Irrelevant if Distant) hold in K-step network choice model for

arbitrary K. On the other hand, Replacement holds if the choice set does not have more than K

alternatives.

The fact that Starting Point Contraction still holds must be obvious as it is an implication of

Upward Monotonicity, which is still true for K-step consideration sets. To see why Asymmetry

of Influence is still true, suppose y is influential in (S, x) and x is influential in (S, y), i.e., y 6=

c(S, x) 6= c(S\y, x) and x 6= c(S, y) 6= c(S\x, y). This is possible if and only if c(S, x) ∈ Γx(S)\

Γx(S \ y) and c(S, y) ∈ Γy(S) \ Γy(S \ x). By A.3, c(S, x) ∈ Γy(S \ x) and c(S, y) ∈ Γx(S \ y).

Since c(S, x) /∈ Γx(S \ y), c(S, x) 6= c(S, y) follows. Now by A.1, c(S, y) ∈ Γx(S) and c(S, x) ∈

Γy(S). But then the former implies c(S, x) � c(S, y) and the latter implies c(S, y) � c(S, x), a
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contradiction.

Finally, we show that Irrelevant if Distant is still true in the K-step network choice model.

Suppose y is influential in S. As before, this implies that c(S, x) ∈ Γx(S) \ Γx(S \ y). By A.3,

y ∈ Γx(S \ c(S, x)). By B.4, there exists T ⊆ S \ c(S, x) with |T | ≤ K such that y ∈ Γx(T ).

Hence, by B.2, Γx(T ) = Γy(T ) and c(T, x) = c(T, y) follows. We conclude that x and y are not

distant in S, as required by the axiom.

While Starting Point Contraction is still necessary for the model, we need to replace it with a

stronger axiom. This stronger axiom states that every choice set has a dominant alternative: for any

set S, there exists an alternative x∗ that is the best in S. Suppose given a choice problem (T ′, z),

the consumer picks x∗. Then, if we extend the choice set and consider the choice problem (T, z),

the consumer must still consider x∗. Since x∗ is the best element in S, if the consumer picks an

alternative that belongs to S, it must be x∗.

Axiom 3.3.1. (Dominant Alternative) For any S, there exists x∗ ∈ S such that for any z ∈ T ′ ⊆ T ,

if c(T ′, z) = x∗ and c(T, z) ∈ S, then c(T, z) = x∗.

Axiom 3.3.1 is much stronger than Starting Point Contraction. On the other hand, Starting

Point Contraction together with Replacement imply Axiom 3.3.1. Hence this axiom holds in our

baseline model too. Since the original Replacement axiom no longer holds in K-step network

choice model, Axiom 3.3.1 is no longer implied by the other axioms, and hence it must be stated

independently.

The original Replacement axiom might not hold due to bounded rationality. Axiom 3.3.2 is a

modification of Replacement. It says that if the starting point is abandoned for another alternative

in some choice set T , then replacing the original starting point with the chosen alternative does not

alter the choice for any choice set containing T as long as the choice set does not have more than

K alternatives.

Axiom 3.3.2. (K-Replacement) If c(T, x) = y and T ⊆ S ∈ P≤K(X), then c(S, x) = c(S, y).

To see why it holds in our model, suppose the consumer chooses y when the choice problem is
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(T, x). Then, y is reachable from x in T in K steps. By Upward Monotonicity, if S ⊇ T , then y is

considered in the choice problem (S, x). By K-Symmetry, if S has fewer than K alternatives, the

consideration sets corresponding to choice problems (S, x) and (S, y) must be the same. Therefore,

the consumer must make the same choice in both choice problems.

We now introduce a new axiom, K-Reduction, which has no analog in the baseline model.

Hence one can think of this new axiom as a way of capturing bounded rationality in this model. It

states that if y is chosen when the choice problem is (S, x), then there exists T ⊆ S with at mostK

alternatives such that y is chosen when the choice problem is (T, x). This is an easy consequence

of the K-step network model as the chosen alternative must be reachable in at most K steps.

Axiom 3.3.3. (K-Reduction) If c(S, x) = y, then there exists T ∈ P≤K(S) such that c(T, x) = y.

Theorem 3.3.1 provides a foundation for K-step network choice.

Theorem 3.3.1. A choice function c satisfies Dominant Alternative, Asymmetry of Influence, Irrel-

evant if Distant, K-Replacement, and K-Reduction if and only if it is a K-step network choice.

Since the only two axioms which depend on K are K-Replacement and K-Reduction, our

characterization allows us to decompose the effects of an increase in K (or more search) into two

components. Notice that as K increases, K-Replacement becomes stronger while K-Reduction

becomes weaker. Since K-Replacement imposes a structure on choices across different starting

points for a fixed choice set, while K-Reduction connects choices across different choice sets for

a fixed starting point, the choices of the consumer with a higher K will exhibit less starting point

dependence and more violations of WARP for a fixed starting point.

Theorem 3.3.1 covers an important special case (K = 2) which has previously been studied by

Masatlioglu and Ok (2014). However, unlike us they assume observability of choices when there

is no status quo. This assumption seems implausible in our domain as every search has a starting

point. The characterization of their model without this assumption was an open question to which

Theorem 3.3.1 provides an answer. Notice that when K = 2, K-Replacement simply states that

if c({x, y}, x) = y, then c({x, y}, y) = y. This is implied by the Dominant Alternative axiom if
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we set y = z, T ′ = {y}, and T = S = {x, y}. Moreover, 2-step network choice model does not

exhibit choice reversals, and hence Asymmetry of Influence and Irrelevant if Distant are vacuously

true. In addition, 2-Reduction can be written as “c(S, x) = y ⇒ c({x, y}, x) = y.” This leads us

to the following corollary.

Corollary 3.3.1. A choice function c satisfies Dominant Alternative and 2-Reduction if and only if

it is a 2-step network choice.

It is illustrative to compare the characterization in Masatlioglu and Ok (2014) with ours. Since

they assume observability of choices with no starting points, their axiomatic structure looks quite

different. The two axioms in their setup that can be translated to our setting are Weak Axiom of Re-

vealed Preference (WARP) and Weak Status Quo Bias (WSQB). WARP states that if c(S, x) = y

and {x, y} ⊆ T ⊆ S, then c(T, x) = y. Obviously, WARP implies 2-Reduction but not vice versa.

However, WARP and Dominant Alternative are independent axioms. Since WARP relates choices

across different sets for a single starting point and Dominant Alternative relates choices across dif-

ferent sets and different starting points, it is easy to construct choice behavior that satisfies WARP

but not Dominant Alternative. On the other hand, by Theorem 3.3.1, 3-step network choice satis-

fies Dominant Alternative, but it does not necessarily satisfy WARP. By Corollary 3.3.1, Dominant

Alternative combined with 2-Reduction implies WARP.

In our setting, Weak Status Quo Bias states that “c({x, y}, x) = y ⇒ c({x, y}, y) = y.”

This is just 2-Replacement axiom and it is implied by Dominant Alternative as discussed above.

Masatlioglu and Ok (2014) also discuss a stronger axiom which they call Strong Status Quo Bias

(SSQB). Even though their model does not satisfy SSQB, replacing WSQB with SSQB in their

axiomatic structure provides a characterization of Masatlioglu and Ok (2005). In our setting, SSQB

states that if c(S, x) = y, then c(S, y) = y. This is an implication of Replacement which is satisfied

by our baseline model. Recall that unlike Masatlioglu and Ok (2005) our baseline model does not

necessarily satisfy WARP.

K-step model is also related to the work Tversky and Kahneman (1991). They introduce a

reference-dependent choice model in which the reference point affects the utility of an individual
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by overweighting losses relative to the reference point. In contrast, the DM in our model has a fixed

preference and the reference point affects the decision through the attention channel. In terms of

choice behavior, their model allows cycles in choices across reference points, i.e., c({x, y}, x) = y,

c({y, z}, y) = z, and c({x, z}, z) = x. This type of choice behavior is not allowed in our model.

For a fixed starting point, while our model allows choice reversals, their model satisfies WARP.

Dean et al. (2017) propose a reference-dependent model with limited attention. For a choice

problem (S, x), the consideration set is given by Γx(S) = (Γ(S) ∪ x) ∩ Q(x) where x ∈ Γ(S)

implies x ∈ Γ(T ) if x ∈ T ⊆ S. The consideration sets of this model violate all our properties.

Indeed, they assume downward monotonicity which is the exact opposite of upward monotonicity

property in our model. As opposed to our model, they allow the decision maker not to choose the

reference point in a smaller choice set while choosing it in the larger choice set.

3.3.3 Revealed Preference and Network

In this section, we discuss how one can reveal preference and network given that the consumer

follows K-step network choice. First, notice that since K ≥ 2 the revelation of the network is

exactly the same as in the baseline model for all K. In particular, x is revealed to be linked to

y if and only if c({x, y}, x) = c({x, y}, y), and x is revealed not to be linked to y if and only if

c({x, y}, x) 6= c({x, y}, y).

Recall Efe from Example 3.3.1. We again pretend that we only observe Efe’s choices and try

to reveal his preferences from his choices. We illustrate how we can infer his preference. Recall

that
c({Cars,Nemo,Up},Up) = Cars

c({Nemo,Up},Up) = Nemo

These choices immediately reveal that Nemo and Cars are strictly better than Up. Since both

Nemo and Cars are linked to Up, Efe must have considered Nemo when he has chosen Cars in the

first choice observation. Therefore, Cars must be revealed to be preferred to Nemo.

We now generalize this observation. For any starting point, an alternative that is chosen in a
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bigger set must be more preferred. That is an implication of Upward Monotonicity property of

consideration sets. For any x 6= y, we define

xPy if there exists z ∈ X and T ⊂ S ⊆ X such that c(S, z) = x and c(T, z) = y

Let PR denote the transitive closure of P . It is easy to see that if xPRy, then x must be revealed

preferred to y. Proposition 3.3.1 says that if x is revealed to be preferred to y, then we must also

have xPRy. In other words, Proposition 3.3.1 provides a characterization of the revealed preference

in K-step search model.

Proposition 3.3.1. (Revealed Preference) Suppose c is aK-step network choice. Then x is revealed

to be preferred to y if and only if xPRy.16

Proposition 3.3.1 highlights an interesting feature of K-step search model. The revealed pref-

erence of this model is independent of K. Even if we are unsure about the exact value of K for a

decision maker, we can still do revealed preference analysis. This is useful in applications where

we might have limited knowledge about K.

Since the baseline model is a special case of the K-step model where K is big enough, one

might wonder the relationship between Proposition 3.2.1 and 3.3.1. In general, the revealed pref-

erence defined in Proposition 3.3.1 is richer than the one defined in Proposition 3.2.1. However,

they coincide when K is big enough and we have complete choice data.

3.4 Conclusion

Many real life decision-making problems involve a search over a product network. In this paper,

we show how one can reveal preference and network from individual choice data and provide

characterizations of the models of decision making within a product network. We explore the

cases of “perfectly rational” and “boundedly rational” consumers.

16The proof of Proposition 3.3.1 directly follows the proof of Theorem 3.3.1.
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There are several interesting open questions. First, this paper only discusses symmetric links

or undirected product networks. An obvious open question is how the implications of such a

model change when the links are asymmetric. Second, while we treat the number of steps as an

exogenously given, one can endogenize the number of search steps that the decision maker takes.

It is plausible that the number of search steps depends on the complexity of a product network.

Third, one can also think about alternative ways of modeling bounded rationality. For example,

there may be a temptation ranking that determines which advertised products the decision maker

considers.

Another avenue to explore is to study network choice with a random network. The randomness

of a network could arise from two factors: (i) the exogenous product network that we take as given

may be random (for example, Netflix’s recommendation algorithm may produce random links

between alternatives), (ii) the decision maker may pay random attention to presented alternatives.

3.5 Appendix A: Proofs

Proof of Lemma 3.2.1

Proof. (⇐) A.1: Suppose y ∈ Γx(T ). Then, there exists {x1, . . . , xk} ⊆ T ⊆ S such that

x1 = x, xk = y, and (xi, xi+1) ∈ N for i < k. By definition, y ∈ Γx(S).

A.2: Suppose y ∈ Γx(S). This implies that there exists {x1, . . . xj} ⊆ S with x1 = x, xj = y,

and (xi, xi+1) ∈ N for i < j. If z ∈ Γy(S), then there exists {xj, . . . , xk} ⊆ S such that xj = y,

xk = z, and (xi, xi+1) ∈ N for j ≤ i < k. Consider {x1, . . . , xj, . . . , xk} ⊆ S. It satisfies the

conditions that x1 = x, xk = z, (xi, xi+1) ∈ N for i < k. Therefore, z ∈ Γx(S). Now suppose

z ∈ Γx(S). First, let x′i = xj−i+1 for i ≤ j. Then, {x′1, . . . , x′j} ⊆ S satisfies the conditions that

x′1 = y, x′j = x, and (x′i, x
′
i+1) ∈ N for i < j. Since z ∈ Γx(S), there exists {x′j, . . . , x′k} ⊆ S

with x′j = x, x′k = z, and (x′i, x
′
i+1) ∈ N for j ≤ i < k. Consider {x′1, . . . , x′j, . . . , x′k}. It satisfies

the conditions that x′1 = y, x′k = z, (x′i, x
′
i+1) ∈ N for i < k. Therefore, z ∈ Γy(S).

A.3: Suppose z ∈ Γx(S) and z 6∈ Γx(S \ y). Since z ∈ Γx(S), there exists {x1, . . . , xk} ⊆ S
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with x1 = x, xk = z, and (xi, xi+1) ∈ N for i < k. Furthermore, since z 6∈ Γx(S \ y) there exists

j ∈ {2, . . . , k − 1} such that xj = y. Consider {x1, . . . , xj} ⊆ S \ z. It satisfies the conditions

that x1 = x, xj = y, and (xi, xi+1) ∈ N for i < j. Therefore, y ∈ Γx(S \ z). Now consider

{xj, . . . , xk} ⊆ S \ x. It satisfies the conditions that xj = y, xk = z, and (xi, xi+1) ∈ N for

j ≤ i < k. Therefore, z ∈ Γy(S \ x).

(⇒) Suppose {Γx}x∈X satisfies A.1–A.3. Let (x, y) ∈ N iff y ∈ Γx({x, y}). Note that if

y ∈ Γx({x, y}), by A.2, Γy({x, y}) = Γx({x, y}). Therefore, for any x, y ∈ X , (x, y) ∈ N

iff (y, x) ∈ N . Given N , we define Nx(S) as in (3.1). Note that, by the previous part, Nx(S)

defined as such satisfies A.1-A.3. First, we show that Nx(S) ⊆ Γx(S). Suppose y ∈ Nx(S). Then,

there exists {x1, . . . , xk} ⊆ S such that x1 = x, xk = y, and xi+1 ∈ Γxi({xi, xi+1}) for i < k.

Therefore, by A.1, xi+1 ∈ Γxi(S) for i < k. By A.3, Γxk−1
(S) = Γxk−2

(S) = · · · = Γx1(S). Then,

y = xk ∈ Γxk−1
(S) = Γx1(S) = Γx(S).

Now we show that Γx(S) ⊆ Nx(S). The proof is by induction. First, note that if y ∈

Γx({x, y}), then y ∈ Nx({x, y}) by definition. Now suppose for all S with |S| < n we have

that y ∈ Γx(S) ⇒ y ∈ Nx(S). Pick S with |S| = n and suppose y ∈ Γx(S). If there exists

z ∈ S \ {x, y} such that y ∈ Γx(S \ z), then since |S \ z| < n we have that y ∈ Nx(S \ z) and, by

A.1, y ∈ Nx(S). Now suppose for all z ∈ S \ {x, y}, y 6∈ Γx(S \ z). Pick one such z. Then, by

A.3, z ∈ Γx(S \ y) and y ∈ Γz(S \x). By induction hypothesis, z ∈ Nx(S \ y) and y ∈ Nz(S \x).

By A.1, z ∈ Nx(S) and y ∈ Nz(S). By A.2, Nx(S) = Nz(S), and hence y ∈ Nx(S).

Proof of Theorem 3.2.1

Necessity is obvious from the discussion in the main text. We prove sufficiency. For any x 6= y,

define

xPy if and only if ∃ S ⊇ {x, y} such that c(S, z) = x for all z ∈ S

Claim 3.5.1. P is transitive.
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Proof. Suppose xPyPz. Then there exist S ⊇ {x, y} and T ⊇ {y, z} such that c(S, s) = x for all

s ∈ S and c(T, t) = y for all t ∈ T . By Axiom 3.2.2, c(S ∪ T, s) = c(S ∪ T, x) for all s ∈ S and

c(S ∪ T, t) = c(S ∪ T, y) for all t ∈ T . Since y ∈ S, this implies that c(S ∪ T, s) = c(S ∪ T, t)

for all s ∈ S and t ∈ T . Now if c(S ∪ T, t) = t for some t ∈ T \ y, then, by Axiom 3.2.1,

c(T, t) = t which is a contradiction. Similarly, c(S ∪ T, s) = s is not possible for s ∈ S \ x.

Hence, c(S ∪ T, s) = c(S ∪ T, t) = x for all s ∈ S and t ∈ T . By definition, xPz and we are

done.

Now let � be a completion of P . We define N as

(x, y) ∈ N if and only if c({x, y}, x) = c({x, y}, y)

Note that N is reflexive and symmetric. Define Nx(S) as

Nx(S) = {y ∈ S|∃{x1, . . . , xk} ⊆ S such that x1 = x, xk = y,

and (xi, xi+1) ∈ N for i < k}

Claim 3.5.2. c(S, x) ∈ Nx(S).

Proof. First, let S = {x, y}. If c({x, y}, x) = x, then the result is trivial. If c({x, y}, x) = y,

by Axiom 3.2.2, c({x, y}, x) = c({x, y}, y), and hence y ∈ Nx({x, y}). Now suppose the claim

is true for all S with |S| < n. Let S with |S| = n be given. If there exists z ∈ S such that

c(S, x) = c(S \ z, x), then by induction hypothesis, c(S, x) ∈ Nx(S \ z), and by A.1, c(S, x) ∈

Nx(S) so we are done. Now suppose for all z ∈ S \ x, c(S, x) 6= c(S \ z, x). Notice that by

Axiom 3.2.1 we must have x 6= c(S, x). Pick z ∈ S \ x such that z 6= c(S, x). This is possible

since |S| > 2. Hence, z is influential in (S, x). By Axiom 3.2.3, x is not influential in (S, z).

Moreover, by Axiom 3.2.4, there exists T ( S such that c(T, x) = c(T, z). Hence, by Axiom 3.2.2,

c(S, x) = c(S, c(T, x)) = c(S, z). Since x 6= c(S, x) and x is not influential in (S, z), we conclude

that c(S \ x, z) = c(S, z) = c(S, x). Now, by induction hypothesis, c(S, x) ∈ Nz(S \ x), and by
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A.1, c(S, x) ∈ Nz(S). Furthermore, since by Axiom 3.2.4, c(T, x) = c(T, z) for some T ( S, by

induction hypothesis, c(T, x) ∈ Nx(T ) ∩ Nz(T ). Then, by A.2, Nx(T ) = Nc(T,x)(T ) = Nz(T )

which implies z ∈ Nx(T ), and hence by A.1, z ∈ Nx(S). Finally, by A.2, Nx(S) = Nz(S) and

thus c(S, x) ∈ Nx(S).

Claim 3.5.3. If y ∈ Nx(S), then c(Nx(S), y) = c(S, x)

Proof. Suppose y ∈ Nx(S). Then, there exists {x1, . . . , xk} ⊆ Nx(S) ⊆ S with x1 = x, xk = y

such that c({xi, xi+1}, xi) = c({xi, xi+1}, xi+1) for i < k. By Axiom 3.2.2, c(Nx(S), x1) =

c(Nx(S), x2) = · · · = c(Nx(S), xk) which implies c(Nx(S), x) = c(Nx(S), y). By Claim

3.5.2, c(S, x) ∈ Nx(S), and therefore c(Nx(S), c(S, x)) = c(Nx(S), x). Furthermore, by Axiom

3.2.2, c(S, x) = c(S, c(S, x)), and by Axiom 3.2.1, c(S, c(S, x)) = c(Nx(S), c(S, x)). Therefore,

c(Nx(S), y) = c(Nx(S), x) = c(Nx(S), c(S, x)) = c(S, x).

Claim 3.5.4. c(S, x) = argmax(�, Nx(S)).

Proof. By Claim 3.5.2, c(S, x) ∈ Nx(S). By Claim 3.5.3, c(Nx(S), y) = c(S, x) for all y ∈

Nx(S). Therefore, by definition of �, c(S, x) � y for all y ∈ Nx(S) \ c(S, x). This completes the

proof of the theorem.

Proof of Proposition 3.2.1

Proof. Notice that if c is a network choice and c(S, y) = x, then c(Ny(S), z) = x for all z ∈

Ny(S). The rest of the proof directly follows the proof of Theorem 3.2.1.

Proof of Lemma 3.3.1

Proof. Necessity can be easily verified as in the proof of Lemma 3.2.1. We prove sufficiency.

Let (x, y) ∈ N iff y ∈ Γx({x, y}). By B.2, N is symmetric. Given N , define NK
x (S) as in

(3.2). Note that NK
x (S) defined as such must satisfy A.1, A.3, B.2, and B.4. We first show that

NK
x (S) ⊆ Γx(S). Let y ∈ NK

x (S). Then, there exists {x1, . . . , xk} ⊆ S with x1 = x, xk = y,
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k ≤ K such that xi+1 ∈ Γxi({xi, xi+1}) for i < k. Let T = {x1, . . . , xk}. By A.1, xi+1 ∈ Γxi(T )

for i < k. Since |T | ≤ K, by B.2, Γx1(T ) = Γx2(T ) = · · · = Γxk(T ). Therefore, y ∈ Γx(T ).

Finally, T ⊆ S and A.1 imply y ∈ Γx(S).

We now show that Γx(S) ⊆ Nk
x (S). The proof is by induction. First, if S = {x, y}, the claim

is obvious. Suppose the claim is true for all S with |S| < n. Let S with |S| = n be given and

suppose y ∈ Γx(S). By B.4, there exists T ⊆ S with |T | ≤ K such that y ∈ Γx(T ). If T ( S, then

by induction hypothesis, y ∈ NK
x (T ) and by A.1, y ∈ NK

x (S). If T = S, then |S| ≤ K. Since

there exists no proper subset T of S with y ∈ Γx(T ) we have that y 6∈ Γx(S \ z) for all z ∈ S \ x.

Pick z distinct from x and y. Now we have that |S| ≤ K, y ∈ Γx(S), and y 6∈ Γx(S \ z). By A.3,

z ∈ Γx(S\y) and y ∈ Γz(S\x). Then, by induction hypothesis, z ∈ NK
x (S\y) and y ∈ NK

z (S\x).

By A.1, z ∈ NK
x (S) and y ∈ NK

z (S). Since |S| ≤ K, by B.2, NK
x (S) = NK

z (S) = NK
y (S) which

implies y ∈ NK
x (S).

Proof of Theorem 3.3.1

Necessity is obvious from the discussion in the main text. We prove sufficiency. Let xPy if there

exists z ∈ T ( S such that c(S, z) = x and c(T, z) = y.

Claim 3.5.5. P is acyclic.

Proof. Suppose x1Px2P · · ·PxnPx1. Then, there exists {Ti, T ′i , zi}ni=1 with zi ∈ T ′i ( Ti such

that c(Ti, zi) = xi, c(T ′i , zi) = xi+1 for i < n, and c(T ′n, zn) = x1. Consider the set S =

{x1, . . . , xn}. For all x ∈ S, there exists z ∈ T ′ ( T such that c(T ′, z) = x and c(T, z) ∈ S, but

c(T, z) 6= x. This contradicts Axiom 3.3.1.

Let � be a completion of P . Define N as

(x, y) ∈ N if and only if c({x, y}, x) = c({x, y}, y)
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and NK
x (S) as

NK
x (S) = {y ∈ S| ∃{x1, . . . , xk} ⊆ S with x1 = x, xk = y, k ≤ K

and (xi, xi+1) ∈ N for i < k}

Claim 3.5.6. c(S, x) ∈ NK
x (S).

Proof. First, note that if c({x, y}, x) = x, then the claim is trivial. If c({x, y}, x) = y, then by

Axiom 3.3.2, c({x, y}, x) = c({x, y}, y), which implies y ∈ NK
x ({x, y}). Now suppose the claim

is true for all S with |S| < n. Let S with |S| = n be given. By Axiom 3.3.3, there exists T ⊆ S

with |T | ≤ K such that c(T, x) = y. If T ( S, then by induction hypothesis, c(S, x) ∈ NK
x (T ),

and by A.1, c(S, x) ∈ NK
x (S). Suppose T = S so that |S| ≤ K. Since there exists no proper

subset T of S with c(T, x) = y, we must have that for all z ∈ S \x, c(S, x) = y 6= c(S \z, x). Pick

z distinct from x and y. Hence, z is influential in S. By Axiom 3.2.3, x is not influential in (S, z).

Moreover, by Axiom 3.2.4, there exists T ′ ( S such that c(T ′, x) = c(T ′, z). Hence, by Axiom

3.3.2, c(S, x) = c(S, c(T ′, x)) = c(S, z). Since x 6= c(S, x) and x is not influential in (S, z), we

conclude that c(S \x, z) = c(S, z) = c(S, x). Now, by induction hypothesis, c(S, x) ∈ NK
z (S \x),

and by A.1, c(S, x) ∈ NK
z (S). Furthermore, since by Axiom 3.2.4 c(T ′, x) = c(T ′, z) for some

T ′ ( S, by induction hypothesis, c(T ′, x) ∈ NK
x (T ′) ∩ NK

z (T ′). Then, by B.2, NK
x (T ′) =

NK
c(T ′,x)(T

′) = NK
z (T ′) which implies z ∈ NK

x (T ′), and hence by A.1, z ∈ NK
x (S). Finally, by

B.2, NK
x (S) = NK

z (S) and thus c(S, x) ∈ NK
x (S).

Claim 3.5.7. If y ∈ NK
x (S), then there exists T ⊆ S such that c(T, x) = c(T, y).

Proof. Suppose y ∈ NK
x (S). Then, there exists {x1, . . . , xk} ⊆ S with x1 = x, xk = y, k ≤ K,

and (xi, xi+1) ∈ N for i < k. By definition, (xi, xi+1) ∈ N if and only if c({xi, xi+1}, xi) =

c({xi, xi+1}, xi+1). Let T = {x1, . . . , xk}. Since c({xi, xi+1}, xi) = c({xi, xi+1}, xi+1) we have

that either c({xi, xi+1}, xi) = xi+1 or c({xi, xi+1}, xi+1) = xi. Then, since |T | ≤ K, by Axiom

3.3.2, we have c(T, x1) = c(T, x2) = · · · = c(T, xn).

105



Claim 3.5.8. c(S, x) = argmax(�, NK
x (S))

Proof. By Claim 3.5.6, c(S, x) ∈ NK
x (S). Pick y ∈ NK

x (S). By Claim 3.5.7, there exists T ⊆

S such that c(T, x) = c(T, y). By definition of P , we have either c(T, x) = y or c(T, x)Py.

Furthermore, since S ⊇ T , either c(S, x) = c(T, x) or c(S, x)Pc(T, x). Since � includes P , we

have that either c(S, x) = y or c(S, x) � y. This concludes the proof of the theorem.

3.6 Appendix B: Unobserved Starting Points

In the main text, we assume that we can observe the starting point of the consumer. Here, we

investigate network choice with standard choice data. We first show that if we impose no structure

on starting points, then any choice behavior can be justified. Suppose we observe choice function c

where c(S) is the element chosen by the consumer when the choice set is S. If our model is correct,

then we must have c(S) = c(S, x) where x is a starting point in S. If any alternative in S can be

a starting point (i.e., there is no condition on how starting points in different sets are related), then

we can let c(S) = c(S, c(S)) for all S. That is, the consumer always chooses the starting point.

But then any choice behavior is allowed under this model. Hence, the model does not make any

prediction.

In what follows, we impose a structure on starting points that helps us infer preferences

and network with standard choice data. Following Salant and Rubinstein (2008) and Masatli-

oglu and Nakajima (2013), we assume that we observe induced choice correspondence where

each possible choice corresponds to a different starting point. The induced choice correspon-

dence reflects data available to an outside observer who knows that the choices of the decision

maker are affected by the starting point, but lacks information about the actual starting point.

Salant and Rubinstein explore a model in which the decision maker is allowed to make differ-

ent choices under different frames. Given a choice correspondence C, the model is given by

C(S) = {x ∈ S| x = c(S, f) for some f ∈ F} where F is the set of frames and c(S, f) is frame

dependent choice function. Masatlioglu and Nakajima use a similar idea with starting points.
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Suppose the decision maker follows the network choice model denoted by c, but we do not

observe her starting point. Let C stand for an induced choice correspondence where for every

alternative x in C(S), there exists a starting point y such that x = c(S, y). In other words, x

maximizes preference among all reachable alternatives from y in S.

Definition 3.6.1. A choice correspondence C is an induced network choice if there exists a strict

preference � and a reflexive, symmetric binary relation N on X such that

C(S) = {x ∈ S|x = argmax(�, Ny(S)) for some y ∈ S}

where Ny(S) is defined as before.

Suppose we observe that the decision maker chooses different alternatives when faced with the

same choice set. In standard theory, this would happen only if the decision maker is indifferent

between chosen alternatives. However, in our model the decision maker with strict preference over

all alternatives may still choose different alternatives when faced with the same choice set if the

choice set is not connected (there are alternatives in the choice set such that no path between them

exists).

Characterization

Before moving on to characterization, notice that using the symmetry property of consideration

sets we can write the induced network choice as

C(S) = {x ∈ S| x = argmax(�, Nx(S))}

The alternative representation says that given a choice set S, an alternative x is chosen if and only

if it is the best alternative among all the alternatives reachable from x in S. If y is reachable from x

in S or vice versa, then the consideration sets corresponding to choice problems (S, x) and (S, y)

are the same. Therefore, the original and the alternative representations are exactly the same.
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We propose four simple axioms which characterize induced network choice. Axiom 3.6.1 is

the standard contraction axiom. It says that if x is chosen when the choice set S, then x must also

be chosen in any subset of S containing x.

Axiom 3.6.1. (Contraction) If x ∈ C(S), then x ∈ C(T ) for all x ∈ T ⊆ S.

Note that Axiom 3.6.1 is a direct implication of the monotonicity property of consideration

sets. Since consideration sets can only shrink as the choice set gets smaller, an alternative that is

chosen in a bigger choice set must also be chosen in a smaller choice set as long as it is available.

Contraction axiom tells us what we should expect if x is chosen in some choice set S. Axiom

3.6.2 tells us what we should expect if x is not chosen. In particular, it posits the existence of an

alternative y that dominates x. That is, if x is not chosen when the choice set is S, then there must

exist an alternative y and a subset T of S containing x such that y is uniquely chosen.

Axiom 3.6.2. (Dominating Alternative) If x 6∈ C(S), then there exist y ∈ C(S) and T ⊆ S

containing x such that C(T ) = y.

To see why Axiom 3.6.2 holds, suppose x is not chosen when the choice set is S. Then, x is

not the best element in Nx(S). Suppose the best element in Nx(S) is y, and let T = Nx(S) ⊆ S.

Then, since T is a connected set y must be uniquely chosen when the choice set is T .

Axiom 3.6.3 is similar to the standard expansion property. It says that if x is uniquely chosen

when the choice set is T , y is uniquely chosen when the choice set is S, and T and S have a

nonempty intersection, then either x or y must be uniquely chosen when the choice set is T ∪ S.

Axiom 3.6.3. (Expansion) Suppose C(T ) = x and C(S) = y. If T ∩ S 6= ∅, then C(T ∪ S) = x

or y.

To see why it holds, suppose x is chosen when the choice set is T and y is chosen when the

choice set is S. In our model, this can only happen if T and S are connected sets. If T and S have

a nonempty intersection, then T ∪ S must also be a connected set. Therefore, a unique element

must be chosen when the choice set is T ∪ S. Given that x is the best alternative in T , and y is the

best alternative in S, the only possible choices are x and y.
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The last property follows from an observation that given a network we can divide any connected

set into two connected sets with a nonempty intersection.

Axiom 3.6.4. (Separability) Suppose |S| ≥ 3. IfC(S) = x, then there exist non-singleton T1, T2 (

S with T1 ∩ T2 6= ∅ and T1 ∪ T2 = S such that C(T1) = x and C(T2) = y for some y ∈ S.

Suppose x is uniquely chosen when the choice set is S. Then, S must be a connected set. Given

the network structure we can separate S into two connected sets, say T1 and T2, with a nonempty

intersection. If x is in T1, then x must be uniquely chosen when the choice set is T1, and the best

element in T2 must be uniquely chosen when choice set is T2.

Theorem 3.6.1 shows that Axioms 3.6.1-3.6.4 are necessary and sufficient to characterize the

induced network choice.

Theorem 3.6.1. A choice correspondence C satisfies Contraction, Dominating Alternative, Ex-

pansion, and Separability if and only if it is an induced network choice.

Proof of Theorem 3.6.1

Necessity is obvious from the previous discussion. We prove sufficiency. Let xPy if there exists

S ⊇ {x, y} such that C(S) = x

Claim 3.6.1. P is acyclic.

Proof. Suppose x1Px2P · · ·PxnPx1. Then, there exist S1, . . . Sn with Si ⊇ {xi, xi+1} for i < n

and Sn ⊇ {x1, xn} such that C(Si) = xi. Consider the set T = S1 ∪ S2 ∪ · · · ∪ Sn. Note that,

by Axiom 3.6.1, we cannot have xi ∈ C(T ) since xi ∈ Si−1 ⊆ T for i > 1 and x1 ∈ Sn ⊆ T ,

but C(Si) = xi. Furthermore, we cannot have y ∈ C(T ) for any y 6∈ {x1, . . . , xn} since y ∈ Si

for some i, but y 6∈ C(Si). Hence, we cannot assign any alternative to C(T ). Therefore, P is

acyclic.

Let � be a completion of P . Define N as

(x, y) ∈ N if and only if C({x, y}) is a singleton
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and let Nx(S) be given by

Nx(S) = {y ∈ S| ∃{x1, . . . , xk} ⊆ S with x1 = x, xk = y, and (xi, xi+1) ∈ N for i < k}

Claim 3.6.2. Let {x1, . . . , xk} be such that C({xi, xi+1}) is a singleton for i < k. Then,

C({x1, . . . , xk}) is a singleton.

Proof. Suppose C({x1, x2}) and C({x2, x3}) are singletons. Since {x1, x2} ∩ {x2, x3} 6= ∅, by

Axiom 3.6.3, C({x1, x2, x3}) is a singleton. Now suppose C({x1, . . . , xj}) and C({xj, xj+1}) are

singletons. Since {x1, . . . , xj} ∩ {xj, xj+1} 6= ∅, C({x1, . . . , xj, xj+1}) is a singleton. Iterating

this, we get that C({x1, . . . , xk}) is a singleton.

Claim 3.6.3. If C(S) = y, then y ∈ Nx(S) for all x ∈ S.

Proof. Notice that the claim is trivial if S = {x, y}. Suppose the claim is true for S with |S| < n.

Let S with |S| = n be given and suppose C(S) = y. By Axiom 3.6.4, there exist non-singleton

T1, T2 ( S with T1 ∩ T2 6= ∅ and T1 ∪ T2 = S such that C(T1) = y and C(T2) = z. Pick

t ∈ T1 ∩ T2. By induction hypothesis, y ∈ Nt(T1) and z ∈ Nt(T2). Since T1, T2 ( S, by A.1,

y, z ∈ Nt(S). Now pick x ∈ S. Either x ∈ T1 or x ∈ T2. If x ∈ T1, then by induction hypothesis,

y ∈ Nx(T1), and by A.1, y ∈ Nx(S). If x ∈ T2, then by induction hypothesis, z ∈ Nx(T2), and by

A.1, z ∈ Nx(S). But then, z ∈ Nt(S) and z ∈ Nx(S). By A.2, Nx(S) = Nz(S) = Nt(S). Since

y ∈ Nt(S) we should have y ∈ Nx(S).

Claim 3.6.4. C(S) = {x ∈ S|x = argmax(�, Nx(S))}

Proof. Firsty, suppose x ∈ C(S). We show that x = argmax(�, Nx(S)). Pick z ∈ Nx(S).

By definition, there exists {x1, . . . , xk} ⊆ S with x1 = x, xk = z such that C({xi, xi+1}) is

a singleton for i < k. By Claim 3.6.2, C({x1, . . . , xk}) is a singleton. Since x ∈ C(S) and

x ∈ {x1, . . . , xk} ⊆ S, by Axiom 3.6.1, C({x1, . . . , xk}) = x. Therefore, xPz, and hence x � z.

Now suppose x = argmax(�, Nx(S)). We show that x ∈ C(S). Suppose x 6∈ C(S). Then,

by Axiom 3.6.2, there exist y ∈ C(S) and T ⊆ S containing x such that C(T ) = y. By definition
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of P , we have yPx and hence y � x. By Claim 3.6.3, y ∈ Nx(T ), and by A.1, y ∈ Nx(S). This

contradicts x = argmax(�, Nx(S)).
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