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Abstract  
 

Tens of millions of people experience age-related declines in sensorimotor functioning, but the 

neurobiological mechanisms underlying this decline are not well understood. Previous studies 

have linked age-related behavioral declines to decreases in neural differentiation (i.e., 

dedifferentiation), including decreases in the distinctiveness of neural activation patterns and in 

the segregation among large-scale neural networks. However, no studies to date have explored 

the relationship between these two neural measures and whether they explain the same aspects of 

sensorimotor behavior. Furthermore, no studies have explored the potential neurochemical 

substrates of age-related neural dedifferentiation. The present research sought to explore the 

neural and behavioral mechanisms of age-related neural dedifferentiation in the sensorimotor 

system using multi-voxel pattern analysis to examine the distinctiveness of sensorimotor neural 

representations, and graph theoretical analysis to examine the segregation of resting state 

sensorimotor networks in young and older adults. Study 1 demonstrated that these two measures 

of neural dedifferentiation are related. Segregation also predicted individual differences in 

sensorimotor performance, particularly in older adults, whereas distinctiveness did not, 

suggesting that segregation may be a more sensitive predictor of age-related declines in 

sensorimotor behavior. Study 2 extended this investigation by exploring potential neurochemical 

causes of age-related dedifferentiation in the sensorimotor system. Using MR spectroscopy to 

measure the inhibitory neurotransmitter, gamma aminobutyric acid (GABA), the results revealed 

that sensorimotor network segregation is linked to sensorimotor GABA levels and that these 

levels decline with age. Furthermore, individual differences in GABA predicted sensorimotor 

performance and this relationship was mediated by network segregation. These findings link age-

related differences in network segregation to age-related differences in GABA levels and 

sensorimotor performance. In general, they suggest a neurochemical substrate of age-related 

dedifferentiation at the level of large-scale brain networks. Taken together, the findings from this 

dissertation advance our understanding of the neural and neurochemical mechanisms that 

underlie age-related declines in sensorimotor functioning. These findings may help lead to the 
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development of targeted interventions and treatments to combat age-related sensorimotor 

behavioral decline.



	1	

Chapter I: Introduction 

	
Normal aging is associated with declines in cognitive and sensorimotor performance, even in the 

absence of significant disease. For instance, measures of fluid processing abilities, such as speed 

of processing and executive function, tend to decline with age compared with measures of 

crystallized knowledge (Salthouse, 1996; Park et al., 2002). Aging is also linked to declines in 

sensorimotor function, such as fine motor dexterity, gait and tactile sensitivity (Seidler et al., 

2010; Zhang et al., 2011). However, while older adults demonstrate poorer performance than 

young adults on average, some older adults continue to perform relatively well while others 

exhibit more significant impairments (Cabeza et al., 2002; Reuter-Lorenz, 2002). Understanding 

the causes of such individual differences is a central challenge in the field. Developing such an 

understanding will allow researchers to design targeted interventions to help extend work 

productivity and facilitate activities of daily living for older adults. One possibility is that age-

related behavioral deficits are at least partially attributable to age declines in the specificity of 

neural representations. Li et al. (Li and Lindenberger, 1999; Li et al., 2000, 2001; Li and 

Sikstrom, 2002; Li and Rieckmann, 2014) proposed that age-related impairments in 

neurotransmission lead to decreases in the signal to noise ratio of neural signals. As a result, 

neural activation patterns in response to different mental states become less distinctive with 

increasing age. Using a computational model, Li et al. (2000) simulated this hypothesis and 
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demonstrated that such age-related neural dedifferentiation could account for many aspects of 

age-related declines in behavior.  

 

Subsequent work in non-human primates provided direct evidence for neural dedifferentiation in 

the aging brain. Schmolesky and colleagues recorded neural activity from cells in primary visual 

cortex of young and old macaque monkeys. They found that neural receptive fields were more 

selective in young monkeys than in old monkeys (Schmolesky et al., 2000). This group has 

reported comparable findings across visual modalities (Liang et al., 2010), and in cats (Hua et al., 

2006) and rats (Wang et al., 2006). 

 

Extending this line of work to humans, several studies have demonstrated age-related neural 

dedifferentiation of perceptual (Park et al., 2004, 2010), motor (Carp et al., 2011), and cognitive 

representations (Carp et al., 2010). In one of the first studies, Park et al. (2004) used functional 

magnetic resonance imaging (fMRI) to demonstrate that neural activation patterns evoked by 

faces, places, and words were significantly more distinctive in young adults compared to older 

adults. In particular, activity in the fusiform face area (FFA) was more selective to faces, activity 

in the parahippocampal place area (PPA) was more selective to places, and activity in the visual 

word form area (VWFA) was more selective to words.  

 

More recently, Seidler and colleagues provided evidence for motor cortex dedifferentiation in 

older adults (Seidler et al., 2010). Specifically, they used transcranial magnetic stimulation 

(TMS) to demonstrate that contralateral motor cortical representations for the dorsal interosseous 

(FDI) muscle are more spatially extensive in older than younger adults, suggesting reduced 
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intrahemispheric distinctiveness (Bernard and Seidler, 2012). In another study, they 

demonstrated that older adults exhibited greater recruitment of ipsilateral motor cortex than 

young adults during a unimanual motor task, suggesting reduced interhemispheric 

distinctiveness (Langan et al., 2010). 

 

These previous neuroimaging studies focused on age differences in mean localized activation. 

However, such measures may not capture information encoded across multi-voxel activation 

patterns (Haynes and Rees, 2006; Norman et al., 2006). Differences in activation patterns that 

cannot be detected by univariate analyses may, however, be discriminable by multivariate 

techniques. Utilizing multi-voxel pattern analysis (MVPA), Carp et al. (2011) measured age 

differences in the distinctiveness of neural activation patterns induced by left vs. right hand 

finger tapping in young and older adults. They found that neural distinctiveness was reduced 

among older adults compared to younger adults throughout the motor control network, including 

primary motor cortex (M1), supplemental motor area (SMA), insula, and cerebellum. Another 

study investigated age differences in neural representations in the context of verbal and spatial 

working memory tasks, and found reduced distinctiveness in the activation patterns associated 

with verbal encoding and retrieval vs. spatial information in older adults (Carp et al., 2010).  

 

Age-related reductions in neural distinctiveness are typically reported in localized brain areas, 

but most cognitive and sensorimotor functions require the interaction of multiple large-scale 

brain networks. It is therefore logical to ask whether age-related neural dedifferentiation also 

occurs at the network level. And the answer appears to be yes. 
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It is well established that brain activity at rest is organized into mainly segregated functional 

networks in young adults (Buckner et al., 2013). Areas within these different networks reveal 

spontaneous yet correlated activity; these correlations are highly spatially structured, following 

known anatomical networks, and thus are hypothesized to reflect functional connectivity of the 

human brain (Biswal et al., 1995; Fox et al., 2005; Damoiseaux et al., 2006; Fox and Raichle, 

2007). Furthermore, functional connectivity strength has been correlated with behavior in a 

network-specific manner (Greicius et al., 2004; Raichle and Mintun, 2006; Wang et al., 2007; 

Smith et al., 2009; Kwak et al., 2010; Langan et al., 2010).  

 

And accumulating evidence points to age differences in the organization of these functional brain 

networks (Damoiseaux, 2017). This organization is typically investigated using graph theoretical 

analysis of resting state functional connectivity data. In graph theory, a network is a set of nodes 

(i.e., regions of interest; ROIs) with edges (i.e., correlations) between them (Bullmore and 

Sporns, 2009). These ROIs can be defined previously or using data-driven techniques. Using this 

framework, multiple measures of brain networks can be calculated. One common measure used 

in graph theory is network segregation, defined as the scaled difference between within-network 

and between-network connectivity. Numerous studies have demonstrated that older age is 

associated with less segregated (i.e., dedifferentiated) networks (Betzel et al., 2014; Cao et al., 

2014, 2014; Chan et al., 2014; Geerligs et al., 2015; Song et al., 2014., Iordan et al., 2018).  

 

Several of these studies also observed associations between segregation and cognitive function, 

such that participants with less segregated networks demonstrated worse cognitive performance 

(Damoiseaux et al., 2008; Wang et al., 2010; Chan et al., 2014; Geerligs et al., 2015). For 
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instance, Chan and colleagues found that the magnitude of network segregation is predictive of 

long-term memory function, independent of an individual’s age (Chan et al., 2014). Fewer 

studies have investigated the relationship between age-related differences in network segregation 

and sensorimotor behavior. One such study conducted by King and colleagues found that age-

related declines in bimanual motor performance are associated with decreased segregation of 

several large-scale resting state brain networks (King et al., 2017). Overall, these findings 

suggest that such age-related decreases in network segregation may contribute to age-related 

declines in cognitive and sensorimotor performance.  

 

The studies reviewed so far focused on dedifferentiation of neural activation patterns or 

dedifferentiation of resting state brain networks. An important open question is whether these 

different measures are actually measuring the same underlying construct and whether they 

predict the same aspects of age-related declines in performance.  Previous work has found a 

relationship between the brain’s large-scale functional organization at rest and its functional 

recruitment during task performance. For instance, Langan and colleagues found that reduced 

interhemispheric resting state connectivity in older adults was associated with a decreased ability 

to inhibit activity in the non-dominant hemisphere during unimanual motor performance (Langan 

et al., 2010). Another study conducted by Chan and colleagues found that individual differences 

in functional connectivity were related to differences in brain activity during two independent 

tasks (Chan et al., 2017). These findings suggest that age-related neural dedifferentiation of 

resting state networks may be linked to dedifferentiation of task-based activation patterns.  
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Another important open question is what causes age-related neural dedifferentiation. Previous 

animal studies have linked neural dedifferentiation to changes at the neurotransmitter level. In 

particular, a series of animal studies conducted by Leventhal and colleagues suggest that age 

differences in the brain’s major inhibitory neurotransmitter, gamma aminobutyric acid (GABA), 

may play an important and potentially causal role in age-related neural dedifferentiation (Wang 

et al., 2006; Schmolesky et al., 2000; Leventhal et al., 2003; Hua et al., 2006). In one seminal 

study, Leventhal and colleagues measured the receptive fields of single cells in the visual cortex 

of young and old macaque monkeys (Leventhal et al., 2003). The receptive fields of neurons in 

the young monkeys were more selective to specific orientations and directions than were the 

receptive fields of neurons in the old monkeys, consistent with age-related neural 

dedifferentiation. However, the application of GABA, or a GABA agonist, made the neurons in 

the old monkeys much more selective, similar to neurons in the young monkeys. Conversely, the 

application of a GABA antagonist to the visual neurons of young macaques disrupted the 

selectivity of neurons, making their response similar to that of neurons in the old monkeys. 

These results demonstrate that manipulations of GABA cause changes in neural selectivity, so it 

is at least possible that age-related declines in GABA contribute to age-related neural 

dedifferentiation and associated behavioral declines in humans.  

 

Consistent with this hypothesis, more recent studies in humans have linked individual 

differences in GABA levels to differences in perceptual and motor performance across healthy 

young adults. For instance, Edden and colleagues observed that better orientation discrimination 

performance is predicted by higher GABA levels in primary visual cortex (Edden et al., 2009). In 

addition, Boy and colleagues found that GABA levels in SMA are associated with individual 
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differences in subconscious motor performance (Boy et al., 2010). Finally, Puts et al. (2011) 

reported that higher GABA levels in sensorimotor cortex correlate with better performance 

during a vibrotactile discrimination task (Puts et al., 2011).  

 

Prior work has also found a relationship between GABA levels and functional connectivity 

within specific resting state networks. For instance, Stagg and colleagues demonstrated that 

resting state functional connectivity strength within the motor network was associated with 

GABA levels in primary motor cortex (Stagg et al., 2014). Similarly, Kapogiannis and 

colleagues observed a relationship between GABA levels in posteromedial cortex and the 

strength of default mode network functional connectivity (Kapogiannis et al., 2013). While these 

studies have linked individual differences in functional connectivity to differences in GABA 

levels, no studies to date have explored whether this relationship varies with age. Furthermore, 

no studies have examined GABA levels, network segregation and/or neural distinctiveness, and 

sensorimotor behavior within the same individuals in order to explore the potential links between 

all three.  

 

The present research sought to address these limitations and gaps in understanding. In this 

dissertation, I conducted two studies to investigate age-related neural dedifferentiation in the 

sensorimotor system. In study one, I investigated the relationship between age-related neural 

dedifferentiation of large-scale resting state brain networks and dedifferentiation of neural 

activation patterns during (sensorimotor) task performance. I also collected a battery of 

sensorimotor behavioral measures in older and younger adults to determine whether these two 

measures of neural dedifferentiation explain the same aspects of sensorimotor behavior. This 
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study was recently submitted for publication and the chapter describing it corresponds to the 

submitted manuscript. 

 

In study two, I explored the relationship between sensorimotor cortex GABA levels and 

sensorimotor network segregation in a subset of the same participants. I also applied a mediation 

analysis to investigate whether individual differences in GABA levels predict differences in 

sensorimotor behavior, and whether segregation mediates this relationship. This study was 

recently published in Neuroimage and the chapter describing it corresponds to the published 

article. 

 

The findings from these studies advance our understanding of the neural and neurochemical 

mechanisms underlying age-related declines in sensorimotor functioning, which could ultimately 

lead to the development of targeted interventions to prolong functional independence for older 

adults.  

 

Neuroimaging Methods  

 

Multi-voxel pattern analysis 

 

A central challenge in cognitive neuroscience is determining how mental representations map 

onto patterns of neural activity. Functional MRI is a powerful method to address this question. 

While a participant performs a task, researchers can acquire estimates of local blood flow from 

tens of thousands of specific neuroanatomical locations within a matter of seconds. However, 
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more recent studies argue that traditional univariate analyses that focus on mean regional 

activation often fail to detect information encoded in multi-voxel activation patterns (Haxby et 

al., 2001; Kamitani and Tong, 2005). Multi-voxel pattern analysis (MVPA) methods have been 

shown to provide higher sensitivity then traditional univariate measures for two main reasons 

(Norman et al., 2006). First, univariate analyses threshold the significance of each brain voxel 

individually, such that information from subthreshold voxels is lost. On the other hand, MVPA 

can incorporate information from voxels that do not show significant responses based on single-

voxel significance testing. Second, conventional univariate methods typically use spatial 

averaging that likely blurs out fine-grained spatial patterns that may discriminate between 

experimental conditions (Kriegeskorte et al., 2006). In contrast, MVPA typically does not 

involve spatial averaging of voxel responses. Rather, it uses pattern-classification methods to 

extract the signal that is present in the pattern of response across multiple voxels, even if the 

voxels considered individually may not be significantly responsive to any of the experimental 

conditions.  

  

The studies included in this dissertation illustrate how MVPA can be used to distinguish between 

cognitive states. Specifically, we performed MVPA to measure the distinctiveness of 

sensorimotor (i.e., right hand vs. left hand movement) representations. Based on the work of 

Haxby and colleagues, neural distinctiveness was defined as the difference between the average 

within-condition Pearson correlation (i.e., the average of the correlations between left hand 

patterns and correlation between right hand patterns) and the average between-condition 

correlation (i.e., the average of the correlations between left-hand and right-hand patterns) 



10	
	

(Haxby et al., 2001). This approach was used instead of alternative classification methods (e.g., 

support vector machines) to avoid ceiling effects in classifier accuracy (Carp et al., 2011b).  

 

Graph theoretical analysis 

 

Brain functional connectivity refers to the coherence between temporal fluctuations in the blood 

oxygen level dependent (BOLD) signal across brain regions (Damoiseaux, 2017). Functional 

connectivity measures are frequently obtained from resting state fMRI data, in which participants 

are not presented with a task but are instructed to relax and let their mind wander. Whole-brain 

approaches such as graph theoretical analyses have been used with resting state data to examine 

the large-scale organization of functional brain networks. Some of these networks include default 

mode, executive control, attention, salience, sensorimotor, and visual networks (Damoiseaux et 

al., 2006; Heuvel et al., 2008; Zuo et al., 2010). In graph theory, a network is a set of nodes with 

edges between them (Bullmore and Sporns, 2009). Using this model, multiple measures of brain 

networks can be calculated. One common measure used in graph theory (and in this dissertation) 

is network segregation. This is defined as the difference between mean within-network 

connectivity and mean between-network connectivity, as a proportion of mean within-network 

connectivity (Chan et al., 2014). In this dissertation, we performed graph theoretical analysis to 

measure sensorimotor segregation and its relationship with sensorimotor GABA levels and 

sensorimotor performance.  

 

Magnetic resonance spectroscopy 
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Magnetic resonance spectroscopy (MRS) is a method that enables the measurement of 

neurotransmitters in the human brain non-invasively. MRS was traditionally applied within 

clinical contexts. However, in recent years there has been increasing interest in using MRS to 

study the healthy human brain. Although the majority of cortical neurons are glutamatergic, 

about one sixth of cortical neurons are GABAergic inhibitory interneurons (Buzsáki et al., 2007). 

Several research groups have used MRS to study the role of inhibitory processes in normal brain 

function and in the pathophysiology of disease. Among a diverse set of methods for studying 

GABA and GABAergic mechanisms, MRS is the only technique that allows direct, non-invasive 

detection of endogenous GABA in the human brain in vivo.  

 

MRS is the in vivo application of nuclear magnetic resonance (NMR) spectroscopy, and it is 

applied with magnetic resonance imaging (MRI) scanners. MRS identifies radiofrequency 

signals that are emitted from hydrogen nuclear spins in tissue metabolites. These nuclear spins 

have chemically specific frequencies that are determined by the chemical environment of the 

hydrogen spins. MRS signals are thus separated in the MR spectrum along chemical lines, 

referred to as the chemical shift dimension (Puts and Edden, 2012). Chemical shift is reported in 

field-independent units, ppm (or parts per million of the proton frequency). GABA is present in 

the human brain at a concentration of about 1mM, which is extremely low compared to some of 

the more concentrated metabolites. Because of the limited dispersion of signals along the 

chemical shift axis, researchers use different approaches to reduce signal overlap in order to 

extract GABA signals. One common approach is to use spectral editing methods, which make it 

possible to separate GABA signals from the rest of the spectrum. The GABA signal at 3.0 ppm is 

coupled to the signal at 1.9ppm. In contrast, most signals at 3.0ppm are not coupled to 1.9 ppm, 
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which makes is possible to separate the signals on this basis. This editing scheme, called J-

difference editing, is used with the method most commonly applied in MRS research, the 

MEGA-PRESS method (Mescher et al., 1998). In recent years, investigators have used MRS to 

study individual differences in GABA concentration and its relationship to inhibition-dependent 

cognitive processes. For instance, in this dissertation, we examined age differences in 

sensorimotor cortex GABA levels, and its relationship with neural dedifferentiation and 

sensorimotor behavior.     
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Chapter II: Network segregation varies with neural distinctiveness in 
sensorimotor cortex and predicts sensorimotor performance 

 
Abstract 
 
 
Normal aging is associated with declines in sensorimotor function. Previous studies have linked 

age-related behavioral declines to decreases in neural differentiation (i.e., dedifferentiation), 

including decreases in the distinctiveness of neural activation patterns and in the segregation 

among large-scale neural networks at rest. However, no studies to date have explored the 

relationship between these two neural measures and whether they explain the same aspects of 

behavior. To investigate these issues, we collected a battery of sensorimotor behavioral measures 

in older and younger adults and estimated (a) the distinctiveness of neural representations in 

sensorimotor cortex and (b) sensorimotor network segregation in the same participants. 

Consistent with prior findings, sensorimotor representations were less distinct and sensorimotor 

resting state networks were less segregated in older compared to younger adults. We also found 

that participants with the most distinct sensorimotor representations exhibited the most 

segregated sensorimotor networks. However, only sensorimotor network segregation was 

associated with individual differences in sensorimotor performance, particularly in older adults. 

These novel findings link network segregation to neural distinctiveness, but also suggest that 

network segregation may play a larger role in maintaining sensorimotor performance with age. 
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Introduction  

 

Aging is associated with extensive declines in sensorimotor function including fine motor 

control, gait, and balance (Seidler et al., 2010). Although these declines can reflect changes in 

the peripheral sensorimotor system (Cole et al., 1999), they also likely reflect changes in the 

central nervous system, such as alterations in brain structure and function (Seidler et al., 2010). 

A central challenge, then, is to advance our understanding of the neural mechanisms that underlie 

age-related declines in sensorimotor function. Doing so could lead to new interventions to extend 

work productivity and facilitate a variety of daily life activities in older adults. 

 

Previous research has found that neural representations are less selective, or distinctive, in older 

compared with younger adults. This phenomenon is often referred to as age-related neural 

dedifferentiation (Li and Lindenberger, 1999), reflecting the fact that neural activity in response 

to different stimulus categories is less differentiated in older adults. For example, in young 

adults, the neural activation patterns evoked by looking at pictures of faces are quite different 

from those evoked by looking at pictures of houses. However, these activation patterns are more 

similar (i.e., less distinct or less differentiated) in older adults (Park et al., 2004). Furthermore, 

older adults who exhibit less distinct neural representations often perform significantly worse on 

a range of cognitive (Park et al., 2010) and motor tasks (Bernard and Seidler, 2012) than older 

adults whose neural representations are more distinct. 

 

Accumulating evidence also points to age differences in the organization of functional brain 

networks (Damoiseaux, 2017). This type of organization is most frequently investigated using 
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resting-state functional connectivity (Biswal et al., 1995) and more recently, using graph 

theoretical analyses (Bullmore and Sporns, 2009). In graph theory, a network is a set of nodes 

with edges between them. Using this framework, one can calculate multiple measures of brain 

networks. One common measure is network segregation, defined as the scaled difference 

between within-network connectivity and between-network connectivity. A number of studies 

have demonstrated that older age is associated with less segregated (i.e., dedifferentiated) 

networks (Damoiseaux, 2017). Further, less segregated networks predict poorer cognitive (Chan 

et al., 2014) and sensorimotor (King et al., 2018) performance. 

 

Given that both neural distinctiveness and network segregation decline with age and that both are 

associated with behavior, a natural question is whether these two measures of neural 

dedifferentiation are actually measuring the same underlying construct and whether they predict 

similar aspects of behavior. One reason to suspect that they do is that previous work has found a 

relationship between the brain’s functional connectivity at rest and its functional recruitment 

during task performance. For instance, Langan and colleagues found that reduced resting state 

connectivity between motor cortices in older adults was associated with greater activity in the 

non-dominant motor cortex during unimanual motor performance (Langan et al., 2010). Chan et 

al. recruited participants across the adult life span (from ages 20-89 years), and demonstrated that 

reduced differentiation between network-specific connector and non-connector nodes measured 

at rest correlated with reduced differentiation of connector vs. non-connector nodes during visual 

and semantic task performance (Chan et al., 2017). These findings suggest that network topology 

observed at rest may constrain functional activity of brain areas during motor, visual and 
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semantic task performance, and that network segregation might be closely related to neural 

distinctiveness. 

 

To address the relationship between neural distinctiveness and network segregation in the 

sensorimotor domain, we measured both in the same participants. We also collected a battery of 

sensorimotor behavioral measures to examine the relationship between the neural measures and 

performance.  

 

We explored three questions. First, do older adults exhibit reduced sensorimotor distinctiveness 

and sensorimotor network segregation relative to young adults? Second, are less distinct 

sensorimotor representations associated with less segregated sensorimotor networks? Third, are 

both neural distinctiveness and network segregation associated with sensorimotor performance 

and does either explain significant behavioral variance over and above the other? 

 
Methods and materials 
	
	
Participants 

 

We collected data from 25 younger adults (age range 19 to 29 years; 16 females) and 46 older 

adults (age range 65 to 81 years; 28 females), some of whom overlap with our previous study 

(Cassady et al., 2019). All participants were right-handed, native English speakers. They were 

screened to ensure they were not taking any medications with psychotropic effects, and were free 

of any MRI safety contraindications. Participants were also screened for cognitive impairments 

using the Montreal Cognitive Assessment (Brenkel et al., 2017), and only those with scores ≥23 
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were included in this study. Two younger adult participants were excluded from further analyses 

because of excessive head motion in the MRI scanner (more than 2 mm or 2 degrees in any axis). 

A detailed explanation of the study was provided, and written informed consent was obtained 

from all participants. The study was approved by the Institutional Review Board of the 

University of Michigan.  

 

Experimental Design and Statistical Analysis 

 

All participants completed two separate test sessions: an imaging session during which we 

collected task-based and resting-state fMRI data and a behavior session during which we 

collected sensorimotor behavioral data. The order of the fMRI and behavioral sessions was 

counterbalanced across participants. All data was obtained within an average period of 24 days.  

 

To examine age differences in neural distinctiveness, network segregation and behavior between 

young and older adults, we performed independent sample t-tests. To assess the relationship 

between distinctiveness, segregation, and behavior, we performed partial correlations analyses 

across all participants (controlling for age and gray matter (GM) volume differences). We further 

explored these relationships within each age group separately using bivariate correlation 

analyses. For all statistical analyses, data points greater than three standard deviations above or 

below the group mean were excluded. SPSS software was used for all statistical analyses (SPSS 

Inc., Chicago IL). 

 

Sensorimotor assessments 
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We used a National Institute of Health sensorimotor test battery that includes tests of fine motor 

dexterity (tested with the 9-hole pegboard dexterity test), grip strength, and endurance (measured 

with a 2-minute walk endurance test). Please refer to Cassady et al., 2019 for details of the 

sensorimotor assessments. A summary of age-group means (and standard errors) for each 

behavioral measure is included in Table 1. Participants’ scores for all tests were submitted to an 

exploratory factor analysis in order reduce the dimensionality of the data. Please refer to the 

supplemental material for factor analysis model coefficients across all participants (Table 2). 

 

Table 1. Mean and standard error of demographics and behavioral measures across all 
participants, and separately in the older and younger adult groups. GS = Grip strength. 

        
  All participants Old adults Young adults 
Age 53.4 ± 2.8 70.4 ± 0.6 22.9 ± 0.6 
MoCA 27.6 ± 0.2 27.3 ± 0.3 28.2 ± 0.3 
Dexterity 102.1 ± 1.1 98.4 ± 1.2 109 ± 1.1 
GS 99 ± 1.4 97.2 ± 1.7 102.4 ± 2.5 
Endurance 90.6 ± 1.5 86 ± 1.7 99.3 ± 2 

    
 

Table 2. Model coefficients from factor analysis across all participants. GS = Grip strength. 

      
Behavioral measure Factor 1 Factor 2 
Dexterity dominant -0.04 0.63 
Dexterity non-dominant -0.11 1.03 
GS dominant 1.03 -0.1 
GS non-dominant 0.96 -0.08 
Endurance 0.52 0.35 

   
MRI data acquisition 
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Structural and functional brain images were obtained using a GE Signa 3-Tesla MRI scanner, 

located at the University of Michigan Functional Magnetic Resonance Imaging Laboratory. A 

16-rod bird cage head coil was used for all participants, and movement was minimized by using 

head cushions and Velcro straps. During each participant’s scanning session, we acquired T1-

weighted structural images, high-resolution structural images using spoiled 3D gradient-echo 

acquisition (SPGR), and T2*-weighted functional images. Functional images were obtained 

using a single-shot gradient-echo (GRE) reverse spiral pulse sequence. The field of view was 

220 x 200 mm, the voxel size was 3 x 3 x 4 mm (40 axial slices), the TR (repetition time) was 2 

seconds, and the TE (echo time) was 30 ms.  

 

Resting state fMRI preprocessing and analysis 

 

Preprocessing of the resting state fMRI data was performed with the Statistical Parametric 

Mapping 8 software (SPM8; www.fil.ion.ucl.ac.uk/spm). Preprocessing steps included slice-time 

correction, realignment, segmentation of structural images, normalization into standard Montreal 

Neurological Institute (MNI) space, and spatial smoothing using a Gaussian kernel of 8mm full 

width at half-maximum. To detect and reject head motion artifacts in the scanner, we used the 

Artifact Detection Toolbox (ART; https://www.nitrc.org/projects/artifact_detect).  

 

We performed additional denoising on the resting state data with the CONN toolbox. The data 

were first filtered using a temporal band-pass filter of 0.008 to 0.09 Hz to examine the frequency 

band of interest and to exclude higher frequency sources of noise. For additional noise reduction, 
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the anatomical component-based noise correction method, aCompCor (Behzadi et al., 2007), was 

used. 

 

The signals from all ROIs (see below for ROI definitions) were extracted from the unsmoothed 

functional images to avoid potential “spillage” of the BOLD signal from nearby regions. 

Residual head motion parameters (three rotations, three translations, and six parameters 

representing their first-order temporal derivatives) and signals from white matter (WM) and 

cerebrospinal fluid (CSF) were regressed out during the calculation of functional connectivity 

maps.  

 

We performed an ROI-to-ROI first-level functional connectivity analysis using the CONN 

toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). To do so, we first created (5mm 

diameter sphere) ROIs using MNI coordinates published in Power et al. (Power et al., 2011). We 

used all coordinates from this previous study except for those that belonged to “subcortical” and 

“undefined” networks, leaving us with 214 ROIs. Each ROI was labeled according to this 

published functional network map, which included ten networks (including Hand sensorimotor, 

Visual, Mouth sensorimotor, Auditory, Default, Frontal-parietal control, Ventral attention, 

Cingulo-opercular control, Dorsal attention, and Salience networks). For each participant, the 

resting state time series within each ROI was then extracted from the unsmoothed functional 

images and the mean time series was computed. Next, the cross-correlation between each ROI’s 

time course with every other ROI’s time course was calculated, producing a 214 x 214 

correlation matrix for each participant. Fisher’s r-to-z transformation was then used to convert 

correlation coefficients (i.e., graph edges) into z-values. Last, negatively-weighted edges were 
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set to zero in each participant’s correlation matrix to avoid potential misinterpretation of negative 

edge weights (Chan et al., 2014, 2017).  

 

Network segregation was calculated to examine within-network correlations in relation to 

between-network correlations. As introduced in Chan et al. (2014), network segregation was 

defined as the difference in mean within-network connectivity and mean between-network 

connectivity as a proportion of mean within-network connectivity: 

 

Network segregation = !"#	!%
!"

					 

 

where 𝑍' is the mean Fisher z-transformed correlation between ROIs within the same network 

and 𝑍( is the mean Fisher z-transformed correlation between ROIs of one network with all ROIs 

in other networks (Chan et al., 2014).  

 

Task-based fMRI design, preprocessing and analysis 

 

During the task-based fMRI session, participants performed one (6-minute) run of a 

sensorimotor task while blood oxygenation-level dependent (BOLD) data were collected. For 

this task, participants were instructed to tap their left thumb (six blocks per run), right thumb (six 

blocks per run), or to fixate at a crosshair stimulus in the center of the visual display (rest blocks; 

twelve blocks per run). The left/right tapping conditions were cued by flashing arrows that 

pointed to the left and to the right of the visual display. Each block consisted of the stimulus 

presented for 500ms with a 500ms inter-stimulus interval. The order of the experimental blocks 
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was randomized and interleaved with rest blocks. Each experimental block lasted 20 seconds; 

each rest block lasted 10 seconds. Stimuli were presented using E-Prime (Psychology Software 

Tools, Pittsburgh, PA) and displayed using a back-projection system. Participant responses were 

collected via a Celeritas 5-button fiber optic response unit so that we could ensure that 

participants were following the instructions of the task.  

 

FreeSurfer and FSFAST were used to perform the preprocessing and first-level analyses of the 

task-based fMRI data (http://surfer.nmr.mgh.harvard.edu/). Surface-based methods as 

implemented in the FreeSurfer environment were used to reconstruct the cortical surface from 

the T1-weighted anatomical image. Preprocessing procedures included slice-timing correction, 

motion correction, and spatial smoothing using a Gaussian kernel with full width at half 

maximum of 5 mm. Given that the resting state data were preprocessed in MNI space (see 

above), we also analyzed the task-based data in MNI space to allow direct comparison with the 

volume-based resting state data. For this procedure, we performed the same preprocessing steps 

(except for the denoising steps) for the task-based data as for the resting state data.  

 

Neural distinctiveness was measured using multi-voxel pattern analysis (MVPA) in functionally-

defined regions of interest (ROIs). Neural responses were first estimated by fitting a General 

Linear Model, implemented in FSFAST. Responses in the left- and right-hand blocks were 

modeled using a block design. The model included separate regressors for each of the 

experimental blocks convolved with a canonical hemodynamic response function.  
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Using FreeSurfer’s Cortical Parcellation technique (Dale et al., 1999; Fischl and Dale, 2000; 

Fischl et al., 2004), we created bilateral anatomical masks in each participant that included 

precentral gyrus, postcentral gyrus, and supramarginal gyrus. Estimates of gray matter volume 

were also computed in each of these anatomical regions to account for age differences in brain 

structure. Next, we used custom MATLAB code to define each participant’s functional ROI. To 

do so, we first sorted the vertices within each participant’s anatomical mask based on activation 

level for left hand tapping (experimental condition 1) vs. rest. We then sorted the vertices within 

the anatomical ROI for right hand tapping (experimental condition 2) vs. rest. Finally, the 

functional ROI was defined by alternating between the two sorted lists, adding the most active 

voxel for condition 1 that had not already been included to the functional ROI, then adding the 

most active voxel for condition 2 that had not already been included, then the next most active 

voxel for condition 1, and so on. This procedure was continued until we reached our target 

functional ROI size of 2000 vertices (see Figure 1). This approach has the advantage of including 

voxels that are activated by both condition 1 and condition 2 without biasing the ROI to have 

more voxels associated with one condition vs. the other. 
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Figure 1. Functional mask (size = 1000 vertices in each hemisphere) from a representative older 
adult participant used for calculating neural distinctiveness of sensorimotor representations 
evoked from right vs. left hand finger tapping. 

 
We then used the activation estimates within each participant’s functional ROI to measure the 

distinctiveness of multi-voxel representations for the two experimental tasks (i.e., left vs. right 

hand tapping). Inspired by Haxby and colleagues (Haxby et al., 2001), neural distinctiveness was 

defined as the difference between the average within-condition Pearson correlation (i.e., the 

average of the correlations between left hand patterns and the correlations between right hand 

patterns) and between-conditions (i.e., the average of the correlations between left-hand and 

right-hand patterns). Higher scores indicate greater distinctiveness whereas lower scores indicate 

less distinctiveness. This approach was used rather than alternative classification methods (i.e., 

support vector machines) to avoid ceiling effects in classifier accuracy (Carp et al., 2011a). 

 

To allow direct comparison with the volume-based resting state data, we also analyzed the task-

based data in MNI space using the Power et al. (2011) sensorimotor hand ROIs as an anatomical 

mask for each subject. We used each participant’s activation estimates within this mask to 

measure the distinctiveness of multi-voxel representations for the experimental task (i.e., left vs. 

right hand tapping). 

 

Results 

 

Age differences in sensorimotor performance 
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The factor analysis of all sensorimotor behavioral measures identified two factors: (1) grip 

strength and endurance and (2) fine motor dexterity. These two sensorimotor factors were used 

in all further statistical analyses. Given that grip strength and endurance reflect gross motor 

performance whereas dexterity reflects fine motor performance, we refer to the grip 

strength/endurance factor as “gross motor performance” and to the dexterity factor as “fine 

motor performance”.  

 

Significant age differences were observed in both gross (t(68)=2.69, p=.009; Figure 2A) and fine 

(t(68)=5.01, p<.001; Figure 2B) motor performance, with older adults exhibiting worse 

performance than younger adults. To test whether there were sex differences in these results, we 

performed follow-up ANCOVAs using age group as the independent variable, behavior as the 

dependent variable, and sex as a covariate. After controlling for sex, we still observed significant 

age differences in both gross (F(1, 67)=14, p<.001) and fine (F(1, 67)=24.74, p<.001) motor 

performance. 

 

Age differences in network segregation 

 

We found that sensorimotor network segregation was significantly reduced in older compared to 

younger adults, t(69)=2.55, p=.013 (See Figure 2C).  To test whether sex influenced these 

results, we performed a follow-up ANCOVA using sex as a covariate in the model. After 

controlling for sex, we still found that sensorimotor segregation was significantly reduced in 

older compared to younger adults, (F(1, 67)=6.7, p=.012). 
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Age differences in neural distinctiveness 

 

The distinctiveness of activation patterns evoked by left vs. right hand movement was 

significantly lower in older compared to younger adults, t(62)=2.29, p=.025 (See Figure 2D). 

Further, this effect was still observed after controlling for sex, (F(1, 61)=5.11, p=.027).  

 

 

Figure 2. Significant age differences were observed in A) a summary measure of gross motor 
performance (t=2.69, p=.009); B) fine motor performance (t=5.01, p<.001); C) sensorimotor 
network segregation (t=2.55, p=.013); and D) neural distinctiveness of sensorimotor 
representations (t=2.29, p=.027) between young (blue) and older (red) adults. 

	
To test whether the (surface-based) functional ROI size influenced these results, we performed a 

repeated measures ANOVA with a Greenhouse-Geisser correction using ROI size as the within-
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subjects factor (using ten functional ROI sizes of 50, 100, 200, 300, 400, 600, 1000, 2000, 5000, 

and 10,000 vertices) and age group as the between-subjects factor. The results revealed a 

significant within-subject effect of ROI size on neural distinctiveness, F(1.68, 107.71)=47.41, 

p<.001. Specifically, activation patterns for left vs. right hand movement were more distinctive 

at smaller ROI sizes and less distinctive at larger ROI sizes, F(1, 64) = 54.97, p<.001 (See Figure 

3). More importantly, the age differences in neural distinctiveness that we observed did not vary 

with ROI size (i.e., there was not a significant ROI size x age group interaction (F(1.68, 

107.71)=.70, p=.48). Neural distinctiveness was also significantly reduced in older compared to 

younger adults using the Power sensorimotor anatomical mask after processing the task-based 

data in MNI space, t(66)=2.1, p=.041. 

 

 

Figure 3. Neural distinctiveness as a function of ROI size in young (blue) and older (red) adults. 
Sensorimotor cortical activation patterns for right vs. left hand movement were more distinctive 
at smaller ROI sizes and less distinctiveness at larger ROI sizes 
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Relationship between network segregation and neural distinctiveness 

 

Controlling for age and gray matter (GM) volume, we observed a positive relationship between 

sensorimotor network segregation and neural distinctiveness across all participants, r(59)=.36, 

p=.004 (See Figure 4A). This finding was also observed when examining the older adult group 

alone (r(42)=.36, p=.02; Figure 4B), and there was a trend toward a positive relationship in the 

younger adult group (r(22)=.40, p=.064). Controlling for age and GM volume within each age 

group separately did not change the results (Old: r(38)=.37, p=.02; Young: r(18)=.39, p=.086). 

We transformed the correlations to z-scores to compare between the groups, but found no 

significant differences between the age groups in the relationship between sensorimotor network 

segregation and neural distinctiveness, p=.87.  

 

 

Figure 4. A) Relationship between sensorimotor network segregation and neural distinctiveness 
of sensorimotor representations across all participants (accounting for age and GM volume 
differences; r=.36, p=.004) and B) within each age group separately (Old: r=.36, p=.02; Young: 
r=.40, p=.064). 
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We also observed a positive relationship between sensorimotor network segregation and neural 

distinctiveness across all participants using the volume-based (rather than surface-based) 

distinctiveness measure, r(60)=.42, p=.001. This finding was also observed when examining the 

older adult group alone (r(45)=.47, p=.001), and there was a trend toward a positive relationship 

in the younger adult group (r(23)=.37, p=.086). Once again, there were no significant differences 

between the age groups in the relationship between sensorimotor network segregation and this 

measure of neural distinctiveness, p=.65. 

   

Relationship between network segregation and behavior 

 

Controlling for age and GM volume, we observed a positive relationship between sensorimotor 

network segregation and gross motor performance across all participants, r(61)=.26, p=.037 (See 

Figure 5A). This finding was also observed in the older adult group alone (r(45)=.36, p=.014; 

Figure 5B), but not in the younger adult group (r(25)=.09, p=.67). Controlling for age and GM 

volume within each age group separately did not change the results (Old: r(40)=.37, p=.02; 

Young: r(20)=.065, p=.77) 

 

We also observed a significant relationship between sensorimotor network segregation and fine 

motor performance across all participants after controlling for age and GM volume, r(61)=.31, 

p=.014 (See Figure 5C). Examining this relationship with the two age groups separately, we 

found a significant association within the older adult group (r(45)=.36, p=.015; Figure 5D), but 

not within the younger adult group (r(25)=.07, p=.75). Controlling for age and GM volume 
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within each age group separately did not change the results (Old: r(40)=.39, p=.01; Young: 

r(20)=.1, p=68) 

 

 

Figure 5. A) Relationship between sensorimotor network segregation and gross motor 
performance across all participants (accounting for age and GM volume differences; r=.26, 
p=.037) and B) within each age group separately (Old: r=.36, p=.014; Young: r=.09, p=.67). C) 
Relationship between sensorimotor network segregation and fine motor performance across all 
participants (accounting for age and GM volume differences; r=.31, p=.014) and D) within each 
age group separately (Old: r=.36, p=.015; Young: r=.07, p=.75). 

 

To examine whether either or both of the two relationships above were significantly different 

between the age groups, we transformed the correlations to z-scores to compare between the 
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groups. We observed no significant differences between the age groups in either the relationship 

between gross (p=.28) or fine (p=.24) motor performance and network segregation. 

 

In order to test whether network segregation explains behavioral variance over and above the 

variance explained by neural distinctiveness, we performed partial correlation analyses between 

segregation and both gross and fine motor performance while controlling for neural 

distinctiveness. We observed a significant positive relationship between segregation and gross 

motor performance across all participants (also controlling for age and GM volume differences; 

r(59)=.30, p=.021), and within the older adult group alone (r(39)=.32, p=.04), but not the young 

adult group alone (r(19)=.26, p=.25). Similarly, we observed a significant positive relationship 

between segregation and fine motor performance across all participants after controlling for age 

and GM volume (r(59)=.32, p=.012) and observed a similar relationship within the older adult 

group (r(39)=.33, p=.036), but not within the young adult group (r(19)=.27, p=.24).   

 

Relationship between neural distinctiveness and behavior 

 

Controlling for age and GM volume differences, we did not observe an association between 

neural distinctiveness and gross motor performance within the whole group (r(59)=-.037, p=.78; 

Figure 6A) or within either age group separately (Old: r(42)=.23, p=.15; Young: r(22)=-.24, 

p=.28; Figure 6B). Controlling for age and GM volume within each age group separately did not 

change the results (Old: r(38)=.1, p=.55; Young: r(18)=-.42, p=.07). Note that these correlations 

in the young group were negative. Follow-up analyses revealed a trend toward an age group 

difference in this relationship, p=.087. We did observe a trend toward a positive relationship 
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between neural distinctiveness and fine motor performance across all participants, r(59)=.21, 

p=.098 (See Figure 6C). However, this relationship was not significant within either age group 

separately (Old: r(42)=.24, p=.12; Young: r(22)=.044, p=.85; Figure 6D). Controlling for age 

and GM volume within each age group separately did not change the results (Old: r(38)=.25, 

p=.12; Young: r(18)=.03, p=.91). Follow-up analyses revealed no significant group differences 

in this relationship, p=.47. 

 

 

Figure 6. A) Relationship between neural distinctiveness of sensorimotor representations and 
gross motor performance across all participants (accounting for age and GM volume differences; 
r=-.037, p=.78) and B) within each age group separately (Old: r=.23, p=.15; Young: r=-.24, 
p=.28). C) Relationship between neural distinctiveness and fine motor performance across all 
participants (accounting for age and GM volume differences; r=.21, p=.098) and D) within each 
age group separately (Old: r=.24, p=.12; Young: r=.044, p=.85). 
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To allow direct comparison with the volume-based resting state data, we repeated the analyses 

above using a volume-based (rather than surface-based) measure of neural distinctiveness within 

the same ROI used for the segregation analyses. Once again, we did not observe an association 

between neural distinctiveness and gross motor performance either within the whole group 

(r(60)=.033, p=.80) or within either age group separately (Old: r(44)=.24, p=.12; Young: r(23)=-

.17, p=.45). Follow-up analyses showed no significant group differences in this relationship, 

p=.13. We also did not observe an association between this volume-based measure of neural 

distinctiveness and fine motor performance either within the whole group (r(60)=.083, p=.52) or 

within either age group separately (Old: r(44)=.048, p=.76; Young: r(23)=.045, p=.84). Follow-

up analyses showed no significant group differences in this relationship either, p=.99. 

 

In order to test whether neural distinctiveness explains behavioral variance over and above the 

variance explained by sensorimotor segregation, we performed partial correlation analyses 

between distinctiveness and both gross and fine motor performance while controlling for 

segregation. We did not observe an association between distinctiveness and gross motor 

performance, either across all participants (also controlling for age and GM volume differences; 

r(59)=-.14, p=.29), or within either age group separately (old: r(39)=.11, p=.51; young: r(19)=-

.33, p=.15). Similarly, we did not observe an association between distinctiveness and fine motor 

performance, either across all participants (r(59)=.076, p=.56), or within either age group 

separately (old: r(39)=.12, p=.45; young: r(19)=-.071, p=.76). 
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Predicting behavior from models that include both network segregation and neural 

distinctiveness 

 

We also performed multiple regression analyses to predict sensorimotor performance from both 

segregation and distinctiveness. When analyzing gross sensorimotor performance across all 

participants (including age and GM volume as nuisance covariates), the overall model was 

significant (F(4,59)=6.74, p<.001), and segregation was a significant predictor (t(59) = 2.38, 

p<0.05) but distinctiveness was not (t(59)=-1.06, p=.29). Performing this analysis within the old 

group alone produced similar results: the overall model was significant (F(2,39)=3.24, p=.05), 

segregation was a significant predictor (t(39)=2.03, p<0.05) but distinctiveness was not 

(t(39)=0.70, p=0.48). The overall regression model was not significant in the younger group 

alone.  

 

When analyzing fine sensorimotor performance across all participants (again including age and 

GM volume as nuisance covariates), the overall multiple regression model was significant 

(F(4,59)=9, p<.001), and segregation was a significant predictor (t(59) = 2.59, p<0.05) but 

distinctiveness was not (t(59)=.59, p=0.56). When performing this analysis within the old group 

alone, the overall model was significant (F(2,39)=3.29, p<.05), segregation was a marginally 

significant predictor (t(39)=1.98, p=0.055) and distinctiveness was not (t(39)=0.82, p=0.42). The 

overall regression model was again not significant in the younger group alone. 

 

Discussion 
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The present study examined potential links between sensorimotor neural distinctiveness, 

sensorimotor network segregation, and sensorimotor behavior. Consistent with previous findings, 

older adults exhibited reduced sensorimotor neural distinctiveness and reduced sensorimotor 

(resting state) network segregation relative to younger adults. New to the present study, 

participants with the most distinct sensorimotor representations exhibited the most segregated 

sensorimotor networks. Further, sensorimotor network segregation was associated with 

individual differences in sensorimotor performance, particularly in older adults, whereas 

sensorimotor neural distinctiveness was not. These findings link, for the first time, sensorimotor 

network segregation to sensorimotor neural distinctiveness. They also suggest that sensorimotor 

network segregation may be a more sensitive predictor of age-related declines in sensorimotor 

behavior.  

 

Age differences in network segregation and neural distinctiveness 

 

We found that sensorimotor network segregation is significantly lower in older adults than in 

younger adults.  Although we focused exclusively on the sensorimotor network in this study, 

previous studies have reported significant age differences in several sensorimotor and association 

networks, suggesting that age-related reductions in network segregation occur at the whole-brain 

(i.e., multiple network) level.  

 

We also demonstrated that older adults have significantly less distinctive neural representations 

in sensorimotor cortex than younger adults. This finding is consistent with previous studies that 

reported age differences in neural distinctiveness involving motor (Carp et al., 2011a), visual 
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(Park et al., 2004, 2010; Carp et al., 2011b), auditory (Lalwani et al., 2018), and memory 

representations (Carp et al., 2010; Koen et al., 2018). Together, these findings suggest that age 

differences in neural distinctiveness are not limited to sensorimotor cortex, but rather are a 

general feature of the aging brain.  

 

Network segregation is related to neural distinctiveness 

 

Our study is the first to show that resting state sensorimotor network segregation varies with the 

distinctiveness of task-based activation patterns in sensorimotor cortex. This finding is consistent 

with previous data suggesting a relationship between the brain’s large-scale functional 

organization at rest and its functional recruitment during task performance (Langan et al., 2010; 

Chan et al., 2017).  

 

In the context of aging, age differences in resting state organization may provide a network-

based explanation for the commonly observed finding of age-related neural dedifferentiation of 

task-evoked activity. Or perhaps other neural factors influence the differentiation of both resting 

state networks and task-evoked activity. For instance, previous work by our group indicates that 

lower levels of the inhibitory neurotransmitter, gamma aminobutyric acid (GABA), are 

associated with reduced network segregation (Cassady et al., 2019) and reduced neural 

distinctiveness (Lalwani et al., 2018). Reduced white matter integrity (Burzynska et al., 2010) 

and amyloid deposition (Buckner et al., 2009; Mormino et al., 2011) also disrupt the organization 

of functional networks and brain activity. Future work could employ multimodal imaging to 

investigate potential interactions between brain structure, function, and chemistry.  
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Network segregation (but not neural distinctiveness) is associated with sensorimotor 

performance 

 

The present results demonstrate that sensorimotor network segregation (but not sensorimotor 

neural distinctiveness) is associated with sensorimotor performance, and that this relationship is 

particularly strong in older adults. Specifically, older individuals with less segregated networks 

exhibit worse sensorimotor performance (both gross and fine) than older adults with more 

segregated networks. Importantly, this relationship remained significant even after controlling 

for neural distinctiveness, both in partial correlation and multiple regression analyses. In 

contrast, although there was a trend toward a positive relationship between neural distinctiveness 

and fine motor performance across all participants, this relationship was not observed within 

either age group separately. These findings suggest that network segregation may be a more 

sensitive predictor of age-related declines in sensorimotor performance than neural 

distinctiveness.  

 

One potential explanation concerns the regions of interest studied. Many investigations of neural 

dedifferentiation of task-based activation patterns (including this one) are restricted to localized 

regions of interest. Given that most sensorimotor functions require the interaction of multiple 

large-scale distributed brain networks, it is likely that regions outside of these localized ROIs are 

contributing to the associated declines in behavior. Because network segregation inherently 

examines dedifferentiation at a multiple network level, this may be one reason why segregation 

is a better predictor of sensorimotor performance compared to neural distinctiveness.   
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Another possibility is that resting state measures of fMRI provide a more stable, “trait-like” 

measure of brain function compared to task-based measures, which are less stable and more 

“state-like”. Because of the relative stability of resting state functional connectivity (e.g., Iordan 

et al., 2018), many studies use it as a trait measure. In contrast, functional activity inherently 

provides a transient, state-dependent measure of brain characteristics. For instance, Cole and 

colleagues demonstrated that functional connectivity between brain regions at rest is more 

informative for predicting individual differences in fluid intelligence compared to task-evoked 

activity of functional regions in isolation (Cole et al., 2012). These findings, in addition to those 

from the present study, suggest that trait-based measures such as resting state functional 

connectivity may be more sensitive in predicting individual differences in behavior compared to 

task-based state measures such as neural distinctiveness.  

 

Limitations 

 

Interpretation of the present results is restricted by several limitations that could be addressed in 

future studies. For one thing, our sample was cross sectional and therefore we can only make 

inferences about age differences rather than longitudinal changes that occur with age. Future 

longitudinal designs could examine age-related changes in neural and behavioral measures as 

well as the relationship between them over time.  

 

Furthermore, the present study employed a simple unimanual thumb tapping task. We were 

therefore unable to examine the effects of aging on the neural representations of more realistic, 
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complex movements or of different individual movements. Future studies that use more complex 

sensorimotor tasks could add additional insight into age-related neural dedifferentiation of 

sensorimotor representations.   

   

Conclusions 

 

The present study examined the relationship between sensorimotor network segregation, neural 

distinctiveness of sensorimotor representations, and sensorimotor behavior in young and older 

adults. Consistent with previous studies, we found that sensorimotor networks are less segregated 

and sensorimotor representations are less distinct in older relative to young adults. We also 

discovered that less segregated networks are associated with less distinct representations. Finally, 

we found that less segregated networks predict worse sensorimotor performance, particularly 

within older adults, whereas neural distinctiveness is not associated with performance. These 

findings link network segregation to neural distinctiveness and suggest that segregation is a more 

sensitive predictor of age-related declines in sensorimotor behavior. 
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Chapter III: Sensorimotor network segregation declines with age and is 
linked to GABA and to sensorimotor performance 

 
Abstract 
	
 
Aging is typically associated with declines in sensorimotor performance. Previous studies have 

linked some age-related behavioral declines to reductions in network segregation. For example, 

compared to young adults, older adults typically exhibit weaker functional connectivity within 

the same functional network but stronger functional connectivity between different networks. 

Based on previous animal studies, we hypothesized that such reductions of network segregation 

are linked to age-related reductions in the brain’s major inhibitory transmitter, gamma 

aminobutyric acid (GABA). To investigate this hypothesis, we conducted graph theoretical 

analyses of resting state functional MRI data to measure sensorimotor network segregation in 

both young and old adults. We also used magnetic resonance spectroscopy to measure GABA 

levels in the sensorimotor cortex and collected a battery of sensorimotor behavioral measures. 

We report four main findings. First, relative to young adults, old adults exhibit both less 

segregated sensorimotor brain networks and reduced sensorimotor GABA levels. Second, less 

segregated networks are associated with lower GABA levels. Third, less segregated networks 

and lower GABA levels are associated with worse sensorimotor performance. Fourth, network 

segregation mediates the relationship between GABA and performance. These findings link age-

related differences in network segregation to age-related differences in GABA levels and 

sensorimotor performance. More broadly, they suggest a neurochemical substrate of age-related 

dedifferentiation at the level of large-scale brain networks. 
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Introduction 

 

Advanced age is typically associated with declines in sensorimotor functioning. Such declines 

affect the ability of older adults to perform activities of daily living and maintain their functional 

independence (R. D. Seidler et al., 2010). Part of this decline is associated with impairments in 

the peripheral sensorimotor system, including motor unit reorganization (Galganski, Fuglevand, 

& Enoka, 1993) or reduced functioning of cutaneous afferents. But evidence also suggests that 

some of these age-related declines in behavior are related to changes in the brain, including 

alterations in neurochemistry, gray matter atrophy, and changes in the functional organization of 

large-scale brain networks (Ferreira & Busatto, 2013; Goh, 2011; Langan et al., 2010; Raz & 

Rodrigue, 2006; R. D. Seidler et al., 2010; R. Seidler et al., 2015). Understanding these brain-

behavior relationships is important for our efforts to prolong the functional independence of 

older adults as our society continues to age.  

 

Studies in young adults have demonstrated the existence of multiple segregated functional brain 

networks. Regions within these networks exhibit spontaneous yet correlated activity, and thus are 

thought to be functionally connected (Biswal, Yetkin, Haughton, & Hyde, 1995; Buckner, 

Krienen, & Yeo, 2013). Studies have found that connections within these functional networks are 

quite dense, whereas connections between different networks are more sparse. This organization
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is considered to benefit specialized or segregated information processing in different brain 

systems (Bullmore & Sporns, 2012). Several studies have investigated the effect of age on 

functional connectivity by measuring differences in correlated brain activity within and between 

brain networks at rest. Many of these studies have found that older adults exhibit weaker 

functional connectivity between brain regions within the same functional network but stronger 

functional connectivity between regions belonging to different networks. In other words, their 

functional networks are less segregated (i.e., a type of age-related dedifferentiation) (M. Y. 

Chan, Park, Savalia, Petersen, & Wig, 2014; Damoiseaux, 2017; Geerligs, Renken, Saliasi, 

Maurits, & Lorist, 2015).  

 

Many studies have also found that less segregated brain networks are associated with worse 

cognitive performance, independent of age (M. Y. Chan et al., 2014; Damoiseaux et al., 2008; 

Geerligs et al., 2015; Wang et al., 2010). Only a few studies have investigated the relationship 

between network segregation and sensorimotor behavior, but one such study found that reduced 

segregation of several large-scale resting state brain networks was associated with poorer 

bimanual motor performance (King et al., 2018). In sum, the evidence to date suggests that age-

related changes in functional connectivity may contribute to age-related declines in cognitive and 

sensorimotor performance. 

 

An important open question is what causes age-related reductions in network segregation, or 

neural dedifferentiation. Previous animal studies have linked neural dedifferentiation to changes 

at the neurotransmitter level. In particular, studies by Leventhal and colleagues suggested that 

age differences in the brain’s major inhibitory neurotransmitter, gamma-aminobutyric acid 
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(GABA), may play an important and potentially causal role in age-related dedifferentiation (i.e., 

reductions in the specificity of neural activity). More specifically, they demonstrated that 

manipulations of GABA levels led to changes in the orientation-selectivity of neurons in the 

visual cortex (Leventhal, Wang, Pu, Zhou, & Ma, 2003). The application of GABA or a GABA 

agonist made visual cortex neurons in old monkeys more orientation-selective, thereby making 

them similar to neurons in young monkeys. In contrast, the application of a GABA antagonist 

reduced the orientation-selectivity of visual cortex neurons in young monkeys, thereby making 

them similar to neurons in old monkeys. These results demonstrate that manipulations of GABA 

cause changes in neural selectivity in animals, raising the possibility that age declines in GABA 

might contribute to age-related neural dedifferentiation and associated behavioral declines in 

humans. 

 

Consistent with this hypothesis, more recent studies in humans have linked individual 

differences in GABA levels to performance variations across healthy young adults (Boy et al., 

2010; Edden, Muthukumaraswamy, Freeman, & Singh, 2009; Puts, Edden, Evans, McGlone, & 

McGonigle, 2011). For example, Edden et al. found that orientation discrimination performance 

is predicted by GABA levels in primary visual cortex (Edden et al., 2009). In addition, Puts et al. 

demonstrated that GABA levels in sensorimotor cortex correlate with tactile discrimination 

thresholds (Puts et al., 2011). Previous work has also found that reactivity in the GABA system 

plays an important role in motor learning and learning-related brain activity. For instance, Stagg 

et al. (2011) demonstrated that participants in whom motor cortex (M1) GABA levels decreased 

the most following transcranial direct current stimulation (i.e., greatest GABA reactivity), also 

exhibited the most learning in a motor task (Stagg, Bachtiar, & Johansen-Berg, 2011).  
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Studies have also observed a relationship between functional connectivity within specific resting 

state networks and GABA levels in young adults. For example, Stagg and colleagues 

demonstrated that functional connectivity strength within the motor resting state network is 

related to GABA levels in primary motor cortex (Stagg et al., 2014). A similar relationship was 

also reported between GABA levels in the posteromedial cortex and the strength of default mode 

network connectivity (Kapogiannis, Reiter, Willette, & Mattson, 2013). While these studies 

linked individual differences in functional connectivity to differences in GABA levels, no studies 

have investigated whether this relationship varies with age. Moreover, no studies have examined 

GABA levels, network segregation, and sensorimotor behavior within the same participants in 

order to explore the potential links between all three levels. 

 

In the present study, we specifically addressed these gaps. We performed graph theoretical 

analysis of resting state functional MRI data to measure sensorimotor network segregation and 

used magnetic resonance spectroscopy (MRS) to measure GABA levels in the sensorimotor 

cortex. We also collected a battery of sensorimotor behavioral measures to determine whether 

network segregation and/or GABA levels are associated with individual differences in 

performance. All three datasets were collected within the same participants, making it possible to 

examine associations between all the measures. 

 

We tested three hypotheses: 1) The sensorimotor resting state brain network would be less 

segregated and sensorimotor cortex GABA levels would be reduced in older compared to young 

adults; 2) lower levels of GABA would be associated with less segregated networks, independent 
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of age; and 3) lower levels of GABA and less segregated networks would be associated with 

worse sensorimotor performance, independent of age.  

 

Materials and methods 
 

Participants 

 

Twenty-two young adults (age range 19 to 29 years; 13 females) and 23 older adults (age range 

65 to 81; 12 females) were recruited for this study. All participants were right-handed, native 

English speakers. We screened participants to ensure they were not taking any medications with 

psychotropic effects, and free from any other MRI safety contraindications. Participants were 

also assessed for cognitive impairment using the Montreal Cognitive Assessment (MoCA) and 

only those with scores ≥23 were included in the study (Brenkel, Shulman, Hazan, Herrmann, & 

Owen, 2017). Data from one younger and one older adult were excluded due to voluntary 

withdrawal from the study before completion of the protocol. Behavioral data from one 

additional older adult participant was excluded due to technical issues related to behavioral task 

assessments. All study procedures were reviewed and approved by the University of Michigan 

Institutional Review Board. All participants provided detailed written consent for their 

involvement in this study.  

 

Study design 

 

Participants completed three separate testing sessions: one resting state fMRI session, one MRS 

session, and one behavioral session. The order of the fMRI and behavioral sessions was 
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counterbalanced across participants, but the fMRI session always occurred prior to the MRS 

session so that we could use the fMRI activation to guide the placement of the MRS voxels. All 

measurements were acquired from participants within an average period of 25 days. 

 

Sensorimotor assessments 

 

We used a sensorimotor test battery that included both motor and somatosensory components. 

The motor measures included a 9-hole pegboard dexterity test, grip strength, and a 2-minute 

walk endurance test. The somatosensory (tactile) measures included vibrotactile simple and 

choice reaction time (RT), static and dynamic vibrotactile detection thresholds, and a functional 

tactile object recognition test (fTORT). Detailed descriptions of each task are provided in the 

supplemental materials, as are the age-group means (and standard errors) for each behavioral 

measure (Table S1). In addition, covariance matrices across all behavioral measures are included 

in the supplemental materials for all participants (Table S2), for the older adult group alone 

(Table S3), and for the younger adult group alone (Table S4). Given the wide range of 

sensorimotor measurements, participant scores for all tests were submitted to a factor analysis to 

identify behavioral factors that reflect general sensorimotor functioning. Please refer to 

supplemental material for factor analysis model coefficients across all participants (Table S5), 

within the older adult group (Table S6), and within the younger adult group (Table S7).  

 

MRI data acquisition 
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Anatomical and functional brain images were acquired using a GE Discovery MR750 3-Tesla 

MRI scanner located at the University of Michigan Functional Magnetic Resonance Imaging 

Laboratory. A GE 8-channel head coil was used, and participant movement was minimized by 

stabilizing the head with cushions and Velcro straps. Imaging sessions included the acquisition 

of T1-weighted anatomical images, high-resolution anatomical images using spoiled 3D 

gradient-echo acquisition (SPGR), and T2*-weighted functional images. Functional images were 

acquired using a single-shot gradient-echo (GRE) reverse spiral pulse sequence. The field of 

view was 220 x 220 mm, with a voxel size of 3 x 3 x 4 mm (40 axial slices), a TR (repetition 

time) of 2 seconds, and a TE (echo time) of 30 ms. The duration of the resting state scan was 

eight minutes.  

 

MRS data acquisition 

 

MRS data were acquired on the same scanner on a different day. Data were collected from 30 

mm x 30 mm x 30 mm voxels placed in the left and right sensorimotor cortex (See Figure 7A). 

The placement of voxels in each participant corresponded to the region of maximal sensorimotor 

activity in that same individual from their previous task-based fMRI session (not included in the 

present study). Briefly, participants performed motor (finger tapping on right vs. left hands) and 

somatosensory (vibrotactile stimulation to right vs. left hands) tasks in the MRI scanner. The 

MRS voxel was subsequently placed in each participant to maximize overlap with fMRI 

activation from both of these tasks. Participants were not instructed to do any task during MRS 

data acquisition. 
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Figure 7. A) Sensorimotor cortex MRS voxel overlap across all participants, with brighter (red) 
colors representing more participant overlap and darker (blue) colors representing less overlap. 
B) Edited MR spectra from a representative younger adult participant (black) demonstrating a 
clearly resolved peak for GABA+ at 3ppm, with the fitted GABA+ model in red. 

 

GABA-edited MR spectra were acquired using a MEGA-PRESS sequence(Edden & Barker, 

2007; Mescher, Merkle, Kirsch, Garwood, & Gruetter, 1998) with the following acquisition 

parameters: TE = 68 ms (TE1 = 15ms, TE2 = 53 ms); TR = 1.8s; 256 transients (128 ON 

interleaved with 128 OFF) of 4.096 data points; spectral width = 5 kHz; frequency selective 

editing pulses (14 ms) applied at 1.9 ppm (ON) and 7.46 ppm (OFF); total scan time, 

approximately 8.5 min per voxel. The MRS voxels were acquired serially. 

 

Resting state fMRI data preprocessing 

 

Resting state data preprocessing was performed with the Statistical Parametric Mapping 8 

software (SPM8; www.fil.ion.ucl.ac.uk/spm). Preprocessing steps included slice-time correction, 

realignment, segmentation of structural images, normalization into standard Montreal 

Neurological Institute (MNI) space and spatial smoothing using a Gaussian kernel of 8mm full 

width at half-maximum (FWHM). Because functional connectivity measurements are influenced 
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by head motion in the scanner (Van Dijk, Sabuncu, & Buckner, 2012), we detected and rejected 

motion artifacts using the artifact detection toolbox (ART; 

http://www.nitrc.org/projects/artifact_detect). Specifically, an image was defined as an outlier if 

the head displacement in the x, y, or z direction was greater than 0.5 mm from the previous 

frame, if the rotational displacement was greater than 0.02 radians from the previous frame, or if 

the global mean intensity of an image was greater than 3 standard deviations from the mean 

image intensity for the entire resting scan. Outliers in the global mean signal intensity and 

motion were subsequently included as nuisance covariates in the first level general linear model 

(GLM). A total of 36 volumes were removed from four participants during preprocessing (8 

volumes in one older adult, 2 volumes in another older adult, 20 volumes in one young adult, and 

6 volumes in a second young adult). The difference between the age groups was not statistically 

significant, t(41)=.76, p=.45). 

 

Additional denoising on the resting state data was performed with the CONN toolbox (Whitfield-

Gabrieli & Nieto-Castanon, 2012). The resting state data were filtered using a temporal band-

pass filter of 0.008 to 0.09 Hz in order to examine the frequency band of interest and to exclude 

higher frequency sources of noise such as heart rate and respiration. For noise reduction, we used 

the anatomical component-based noise correction method aCompCor, which models the 

influence of noise as a voxel-specific linear combination of multiple empirically estimated noise 

sources by deriving principal components from noise regions of interest (ROIs) and including 

them as nuisance parameters in the first level GLM (Behzadi, Restom, Liau, & Liu, 2007).  

Specifically, the anatomical image for each participant was segmented into white matter (WM), 

gray matter (GM), and cerebrospinal fluid (CSF) masks. To minimize partial voluming effects 
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with GM, the WM and CSF masks were eroded by one voxel. The eroded WM and CSF masks 

were then used as noise ROIs. Residual head movement parameters (three rotations, three 

translations, and six parameters that represent their first-order temporal derivatives) and signals 

from WM and CSF were regressed out during the computation of functional connectivity maps.   

 

First-level functional connectivity analysis 

 

First-level ROI-to-ROI functional connectivity MRI (fcMRI) analysis was performed with the 

CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). For this analysis, we created ROIs 

(using 5mm diameter spheres) using coordinates published in Power et al. (See MNI coordinates 

in Table S8) (Power et al., 2011). We used all coordinates from this previous study except for 

those belonging to “subcortical” and “undefined” networks, which left us with 214 ROIs. Each 

ROI was labeled according to this published functional network map, which was defined by 

consensus of network assignments using community detection of resting state functional 

connectivity across multiple thresholds. The final network labels of each ROI are depicted in 

Figure 8. For each participant, the resting state fMRI time series within each of the 214 ROIs 

was extracted from the unsmoothed functional images (to avoid potential “spillage” of the 

BOLD signal from nearby regions/ROIs), and the mean time course was computed. The cross-

correlation of each ROI’s time course with every other ROI’s time course was computed, 

creating a 214 x 214 ROI-to-ROI correlation matrix. Correlation coefficients (i.e., graph edges) 

were converted into z-values using Fisher’s r-to-z transformation (Zar, 1996). The resulting 

Fisher z-transformed correlation matrix is a fully connected, relatedness graph. Negatively 

weighted edges were set to zero in each correlation matrix to avoid potential misinterpretation of 
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negative edge weights (M. Y. Chan et al., 2014; Micaela Y. Chan, Alhazmi, Park, Savalia, & 

Wig, 2017) (we also performed the same analyses with inclusion of both positively and 

negatively weighted edges, and observed similar findings (See Table S9)). Thus, the final 

connectivity matrix for each participant was a 214 x 214 z-matrix with the diagonal removed and 

the negative values set to zero.  

 

 

Figure 8. 214 regions of interest were created using coordinates defined by Power et al. (2011) 
to produce ten resting state networks of interest.   

 

Graph theoretical analysis 

 

Following Chan et al. (2014), network segregation was defined as the difference of mean within-

network connectivity and mean between-network connectivity divided by the mean within-

network connectivity: 

Network segregation = !"#	!%
!"
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where 𝑍' is the mean Fisher z-transformed correlation between ROIs within each network and 

𝑍( is the mean Fisher z-transformed correlation between ROIs of one network to all ROIs in 

other networks (M. Y. Chan et al., 2014).  

  

MRS analysis 

 

GABA levels from both right and left sensorimotor cortices were measured using the GABA 

analysis toolbox, Gannet (Edden, Puts, Harris, Barker, & Evans, 2014). All time domain data 

were frequency- and phase-corrected using spectral registration and filtered with a 3-Hz 

exponential line broadening and zero-filled by a factor of 16 (Near et al., 2015). The 3-ppm 

GABA peak in the difference spectrum was fit using a Gaussian model and quantified relative to 

water (fit with a Gaussian-Lorentzian model) in institutional units (See Figure 7B). This editing 

scheme results in significant excitation of coedited macromolecule (MM) signal, which has been 

reported to contribute approximately 45% to the edited signal at 3-ppm (Mullins et al., 2014). 

Thus, all GABA values are reported as GABA+ (i.e., GABA + MM) in the present study. To 

control for the differential relaxation constants and water visibility between WM, GM and CSF, 

a binary mask of the MRS voxel was created using Gannet’s integrated voxel-to-image 

coregistration. Next, segmentation of the anatomical image was performed using the Segment 

function in SPM and the voxel fractions containing CSF, GM and WM were computed (Harris, 

Puts, Barker, & Edden, 2015). From this procedure, a tissue-corrected GABA+ value was 

calculated for each participant. GABA+ levels from right and left sensorimotor cortices were 

averaged together before any statistical analyses. Thus, all reported GABA+ measures are 

reported as the mean value across both right and left sensorimotor cortices. We also collected 
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measures of signal-to-noise (SNR) and fit error values for both voxels and for all participants to 

examine any age differences in these measures.   

 

To control for age differences in brain structure, we measured the GM volume of bilateral 

precentral, postcentral, and supramarginal gyri in each participant. FreeSurfer was used to 

acquire these GM measurements, with each gyrus defined by an automated cortical parcellation 

technique (Dale, Fischl, & Sereno, 1999; B. Fischl et al., 2004; Bruce Fischl & Dale, 2000).  

 

Statistical analysis 

 

To test for group differences in network segregation, GABA+ levels, and behavior between 

young and older adults, we performed independent sample t-tests on these data. To explore the 

relationship between network segregation, GABA+ levels and behavior, we performed partial 

correlation analyses with bootstrapping (using 1000 samples, 95% confidence intervals) across 

all participants (controlling for age and GM volume differences). We also investigated this 

relationship specifically within each age group using bivariate correlation analyses. For all 

analyses, outliers greater than three standard deviations above or below the mean were excluded. 

SPSS software was used for all statistical analyses (SPSS Inc., Chicago IL). 

 

Results 
 

Age differences in sensorimotor performance 
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An exploratory factor analysis of the sensorimotor behavioral measures identified two factors, 

one corresponding to grip strength and one corresponding to all of the other sensorimotor 

measures (Table S5).  These two sensorimotor factors were used in all further statistical analyses. 

Significant age differences were observed in the general sensorimotor factor (t(39)=7.24, p<.001; 

Figure 9A), whereas there was no significant effect of age on the grip strength factor (t(39)=1.24, 

p=.22; Figure 9B). To test whether gender influenced these results, we performed follow-up 

ANCOVAs using age group as the independent variable, behavior as the dependent variable, and 

gender as a covariate. We still observed a significant effect of age on both the sensorimotor 

performance factor (F(1, 37)=49.89, p<.001) and the grip strength factor F(1, 37)=4.44, p=.042 

after controlling for gender. Because we observed significant age differences in years of 

education (t(40)=2.51, p=.017) between the two groups, we tested whether education influenced 

the observed age effects on behavior. Controlling for education in follow-up ANCOVAs, we still 

observed a significant effect of age on the sensorimotor performance factor (F(1, 38)=41.97, 

p<.001, but not on the grip strength factor, (F(1, 38)= 1.66, p=.21).  

 

We also performed a factor analysis on each age group separately (see supplementary tables S6 

and S7). Although the factor structures were somewhat different between the two age groups, the 

sample sizes in each group were relatively small and we therefore decided to use the factors from 

the entire sample for most of the subsequent analyses. We also examined the relationship 

between our neural measures with each individual behavioral measure to ensure that the results 

were not an artifact of differences in factor structure (see tables S10 & S11). 

 

Age differences in network segregation 
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We found that sensorimotor network segregation was significantly reduced in older compared to 

younger adults, t(41)=2.23, p=.031 (See Figure 9C). As a follow-up analysis, we investigated age 

differences in mean network segregation (averaged across all 10 networks) and found that this 

was also significantly reduced in older relative to younger adults, t(40)=4.84, p<.001. We also 

examined the effect of age in each network individually and found significant age differences in 

five out of the ten networks examined. These included the Sensorimotor hand (t(41)=2.23, 

p=.031), Auditory (t(41)=2.23, p=.031), Sensorimotor mouth (t(39)=4.35, p<.001), Cingulo-

opercular control (t(41)=3.7, p=.001) and Dorsal attention (t(41)=2.28, p=.028) networks. 

Furthermore, the p-value for three additional networks was between 0.05 and 0.10 (Visual: 

p=.099, Ventral attention: p=0.059, Salience: p=.057). It is important to note that these post-hoc 

analyses were not corrected for multiple comparisons, and therefore these findings should be 

interpreted with caution.  

 

To test whether gender influenced these results, we performed a follow-up ANCOVA using 

gender as a covariate in the model. We still observed significant age differences in sensorimotor 

network segregation, even after controlling for gender, F(2, 39)=4.55, p=.039. We also tested 

whether level of education influenced the observed age effect on network segregation. 

Controlling for education in a follow-up ANCOVA, the effect of age on sensorimotor network 

segregation was not quite significant, F(1, 38)=3.99, p=.053.  

 

Age differences in GABA levels 
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Tissue-corrected GABA+ levels (controlling for the differential relaxation constants and water 

visibility between WM, GM and CSF in the MRS voxels) in sensorimotor cortex were 

significantly reduced in older compared to younger adults, t(40)=4.97, p<.001 (See Figure 9D). 

Sensorimotor GABA+ levels were still significantly reduced in older relative to younger adults 

after controlling for gender (F(1, 38)=24.80, p<.001) and education (F(1, 39)=18.64, p<.001). 

We did not observe any significant age differences in SNR or fit error, either when examining 

left (SNR: t(40)=1.43, p=.16; fit error: t(40)=1.11, p=.28) or right (SNR: t(39)=1.74, p=.09; fit 

error: t(39)=-.21, p=.84) voxels separately, or averaged together (SNR: t(41)=1.72, p=.093; fit 

error: t(41)=.83, p=.41). 
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Figure 9. Age differences in A) a summary measure of general sensorimotor performance 
(t=7.24, p<.001); B) grip strength (t=1.24, p=.22); C) sensorimotor network segregation (t=2.23, 
p=.031); and D) sensorimotor GABA+ levels (t=4.97, p<.001) between young (blue) and older 
(red) adults.  On each box, the central line indicates the median, and the bottom and top edges of 
the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most 
extreme data points not considered outliers. 

 

Relationship between network segregation and GABA levels 

 

Controlling for age and gray matter (GM) volume differences, we observed a positive 

relationship between sensorimotor network segregation and GABA+ levels across all subjects, 

r(38)=.41, p=.008, bootstrap confidence interval [.078, .65] (See Figure 10A). This finding was 

also observed when examining the older adult group alone (r(21)=.45, p=.042; Figure 10B), but 

did not reach significance in the younger adult group (r(21)=.37, p=.10). To explore whether 

these correlations were significantly different between the two age groups, we transformed the 

correlations to z-scores to compare between groups. Results revealed no significant differences 

between the two groups in the relationship between sensorimotor network segregation and 

GABA+ levels, p=.77.   

 

To examine whether education level influenced these results, we performed a follow-up partial 

correlation analysis that included age (years), GM volume, and education level as covariates. 

Controlling for these variables, we still observed a significant positive relationship between 

sensorimotor network segregation and GABA+ levels, r(37)=.42, p=.008, confidence interval 

[.095, .65]. We also tested whether the association between sensorimotor network segregation 

and GABA+ levels was significant when analyzed using a non-parametric permutation test that 

makes no assumptions about the statistical distribution. To do this, we randomly shuffled the 
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within- and between-network connection labels 10,000 times. We then computed the association 

between GABA and sensorimotor network segregation based on that random shuffling. We 

found that the association with the true segregation value (r=.496) was within the top 1% 

(actually in the top 0.15%) of all segregation values. 

  

In order to assess the specificity of the relationship between segregation and GABA+ levels in 

the sensorimotor system across the whole group, we examined the relationship between mean 

network segregation (averaged across all 10 networks) and GABA+ levels. Controlling for age 

and GM volume differences, we observed a significant positive relationship between these 

measures, r(37)=.43, p=.007, confidence interval [.059, .69]. This finding was also observed 

when examining the older adult group alone (r(22)=.54, p=.011), but did not reach significance 

in the younger adult group (r(21)=.15, p=.53) (but the strength of this relationship was not 

significantly different in the two groups, p=.17). We also examined the relationship between 

sensorimotor segregation and GABA+ levels measured in ventral visual cortex (VVC) and 

auditory cortex (controlling for age and GM volume differences). We observed no significant 

relationships, either between sensorimotor segregation and GABA+ levels in VVC (r(38)=.03, 

p=.86, confidence interval [-.36, .38]), or sensorimotor segregation and GABA+ levels in 

auditory cortex (r(38)=.12, p=.46, confidence interval [-.30, .47]).   
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Figure 10. A) Relationship between sensorimotor GABA+ levels and sensorimotor network 
segregation across all participants (accounting for age and GM volume differences; r=.41, 
p=.008) and B) within each age group separately (Old: r=.45, p=.042; Young: r=.37, p=.10).   

 

Relationship between network segregation and behavior 

 

Controlling for age and GM volume differences, we observed a positive relationship between 

sensorimotor network segregation and sensorimotor performance across all subjects, r(37)=.38, 

p=.016, confidence interval [.011, .67] (See Figure 11A). These findings were also observed 

when examining the older adult group alone (r(20)=.50, p=.026; See Figure 11B), but did not 

reach significance in the younger adult group (r(21)=.18, p=.44). There was also a trend toward a 

positive relationship between sensorimotor network segregation and grip strength across all 

participants (r(37)=.27, p=.093, confidence interval [-.028, .51]; See Figure 11C). Examining 

this grip strength relationship within the two age groups separately, we observed a significant 

relationship within the older adult group (r(20)=.51, p=.021; See Figure 11D), but not within the 

younger adult group (r(21)=.13, p=.59). To explore whether there were significant age 

differences in these relationships, we again transformed the correlations to z-scores to compare 
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between groups. We found no significant group differences, either on the sensorimotor 

performance measure (p=.28) or on the grip strength measure (p=.20). Please refer to 

supplemental materials for (uncorrected) associations between sensorimotor network segregation 

and individual behavioral measures (Table S10).  

 

To examine whether education level influenced these results, we performed follow-up partial 

correlation analyses that included age (years), GM volume, and education level as covariates. 

Controlling for these variables, we still observed a significant positive relationship between 

sensorimotor network segregation and the sensorimotor performance factor (r(36)=.39, p=.017, 

confidence interval [-.012, .67]) but only a trend toward a positive relationship between 

sensorimotor network segregation and the grip strength factor (r(36)=.27, p=.097, confidence 

interval [-.028, .55]) 
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Figure 11. A) Relationship between sensorimotor network segregation and sensorimotor 
performance across all participants (accounting for age and GM volume differences; r=.38, 
p=.016) and B) within each age group separately (Old: r=.50, p=.026; Young: r=.18, p=.44). C) 
Relationship between sensorimotor network segregation and grip strength across all participants 
(accounting for age and GM volume differences; r=.27, p=.093) and D) within each age group 
separately (Old: r=.51, p=.021; Young: r=.13, p=.59). 

 

Relationship between GABA levels and behavior 

 

Controlling for age and GM volume differences, we observed a positive relationship between 

GABA+ levels and sensorimotor performance across all participants (r(37)=.32, p=.046, 

confidence interval [.013, .56]; Figure 12A). This finding was also observed when examining the 
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older adult group alone (r(20)=.48, p=.031; Figure 12B), but was not significant in the younger 

adult group (r(21)=-.14, p=.55). Follow-up analyses revealed a trend toward an age group 

difference in this relationship, p=.05. We did not observe an association between GABA+ levels 

and grip strength within the whole group (r(37)=.21, p=.19, confidence interval [-.12, .49]; 

Figure 12C) or within either age group separately (Old: r(20)=.23, p=.33; Young: r(21)=.20, 

p=.38; Figure 12D). Not surprisingly, follow-up analyses revealed no significant group 

differences in this relationship, p=.93. Please refer to supplemental materials for (uncorrected) 

associations between sensorimotor GABA+ levels and individual behavioral measures (Table 

S11). 

 

To test whether education level influenced these results, we performed follow-up partial 

correlation analyses that included age (years), GM volume, and education level as covariates. 

Controlling for these variables, we still observed a trend toward a positive relationship between 

sensorimotor GABA+ levels and the sensorimotor performance factor (r(36)=.32, p=.05, 

confidence interval [-.022, .55]) but no significant relationship between sensorimotor GABA+ 

levels and the grip strength factor (r(36)=.21, p=.20, confidence interval [-.11, .46]). 
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Figure 12. A) Relationship between sensorimotor GABA+ levels and sensorimotor performance 
across all participants (accounting for age and GM volume differences; r=.32, p=.046) and B) 
within each age group separately (Old: r=.48, p=.03; Young: r=-.14, p=.55). C) Relationship 
between sensorimotor GABA+ levels and grip strength across all participants (accounting for age 
and GM volume differences; r=.21, p=.19) and D) within each age group separately (Old: r=.23, 
p=.33; Young: r=.20, p=.38). 

 

Mediation analysis 

 

In order to further explore the potential role of network segregation as a mechanistic link 

between GABA levels and the sensorimotor performance factor, we performed a mediation 

analysis on the MR and behavioral data (we did not perform this analysis for the grip strength 
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factor because GABA+ was not significantly associated with grip strength). In this analysis, 

GABA+ level was the independent variable (X), with sensorimotor network segregation as the 

mediator (M) and sensorimotor performance as the dependent variable (Y). Mediation was 

performed using regression with bootstrapping (Hayes & Scharkow, 2013; Hesterberg et al., 

2005) to determine whether network segregation accounted for significant variance in the 

GABA-performance association.  

 

Controlling for age and GM volume differences, we found that network segregation mediates the 

link between GABA+ and sensorimotor performance, with a percentage mediation (PM) of 70%. 

This resulted from a significant indirect effect (c) of greater magnitude than the direct effect (c’), 

which itself was not significant (ab=.13, confidence interval [.0037, .41]; See Figure 13). 

Performing this analysis within each age group separately, we found no evidence for a mediation 

effect within either group alone. We also performed another mediation analysis using mean 

network segregation as the mediator variable, rather than sensorimotor network segregation. 

Controlling for age and GM volume differences, we found no significant mediation effect 

(ab=.07, confidence interval [-.026, .29]). 
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Figure 13. Sensorimotor network segregation mediates the link between sensorimotor GABA+ 
levels and sensorimotor performance across all participants (accounting for age and GM volume 
differences). The mediator accounted for 70% of the total effect (PM=.70). 

 

Discussion 
 

Previous studies have investigated the relationship between network segregation and behavior 

(M. Y. Chan et al., 2014; King et al., n.d.), GABA+ levels and behavior (Edden et al., 2009; Puts 

et al., 2011; Stagg et al., 2011), and within-network functional connectivity and GABA+ levels 

(Kapogiannis et al., 2013; Stagg et al., 2014). In the present study, we investigated whether older 

and younger adults differ with regard to sensorimotor network segregation, GABA+ levels, and 

sensorimotor performance, and for the first time we examined the association between all of 

these variables within the same participants. There were four main findings. First, relative to 

young adults, old adults exhibited less segregated sensorimotor brain networks and reduced 

sensorimotor GABA+ levels. Second, less segregated networks were associated with lower 

GABA+ levels. Third, less segregated networks and lower GABA levels were associated with 

worse sensorimotor performance. Fourth, network segregation mediated the relationship between 
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GABA+ and performance. These findings suggest that age-related reductions of GABA+ are a 

neurochemical substrate of age-related dedifferentiation at the level of large-scale brain 

networks. We now discuss each of these findings in turn. 

 

Resting state networks are less segregated in older adults 

 

Our results revealed significant age differences in the organization of large-scale resting state 

brain networks, such that the networks of older adults were less segregated than those of their 

younger counterparts. This finding was observed both in the sensorimotor network specifically, 

when segregation was averaged across all ten networks, and in five of the ten networks 

individually (uncorrected). Overall, these findings are consistent with several previous studies 

that also observed less segregated functional networks in older adults (Betzel et al., 2014; Cao et 

al., 2014; M. Y. Chan et al., 2014; Damoiseaux, 2017; Geerligs et al., 2015; Song et al., 2014).  

 

The age differences in network segregation observed in this study are consistent with the neural 

dedifferentiation hypothesis of aging, which posits that aging results in reduced functional 

specificity of localized brain regions during task performance (J. Carp, Gmeindl, & Reuter-

Lorenz, 2010; J. Carp, Park, Hebrank, Park, & Polk, 2011; Joshua Carp, Park, Polk, & Park, 

2011; Li & Lindenberger, 1999; D. C. Park et al., 2004; J. Park, Carp, Hebrank, Park, & Polk, 

2010). The present results are consistent with the hypothesis that neural dedifferentiation also 

occurs on the level of large-scale resting state functional networks. Such age-related 

dedifferentiation of resting state functional networks could potentially be linked to 

dedifferentiation of task-based activation patterns; future studies could address this question.  
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Sensorimotor GABA levels are reduced in older adults 

  

We also found that GABA+ levels in sensorimotor cortex were reduced in older relative to 

younger adults. These age differences in GABA+ levels were evident even after accounting for 

tissue differences in gray matter, white matter, and cerebrospinal fluid, suggesting that the effects 

were not due simply to cortical atrophy (Hermans et al., 2018; Maes et al., n.d.). This finding is 

consistent with previous work that has reported age-related reductions in GABA+ levels in 

frontal and parietal cortices (Gao et al., 2013; Porges et al., 2017). However, this finding is 

inconsistent with recent studies that have found no significant age differences in sensorimotor 

GABA levels (Hermans et al., 2018; Maes et al., 2017).  For instance, Hermans and colleagues 

found that M1 GABA levels did not significantly differ between young and older adults. In 

addition, Maes et al. reported that age-related differences in sensorimotor and occipital GABA 

levels are driven by bulk tissue changes. However, after correcting for voxel composition, they 

observed a trend toward an age-related difference in sensorimotor but not occipital GABA levels, 

suggesting some degree of disproportionality in GABA levels within tissue fractions as a 

function of age in sensorimotor cortex only (Maes et al., 2017). The discrepancy between these 

findings may be due to differences in the specific cortical region studied, MRS voxel placement, 

or preprocessing procedures. Future studies should aim to disentangle these inconsistent findings 

by examining a variety of cortical regions and MRS placement and preprocessing methods in a 

larger sample size.  

The reported decline in GABA+ levels in older adults may reflect the loss of GABAergic 

interneurons during normal aging. This is consistent with several animal studies that have shown 
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a reduction in GABAergic neurons with old age (Hua, Kao, Sun, Li, & Zhou, 2008; Stanley, 

Fadel, & Mott, 2012). Previous work has also provided evidence for a relationship between 

GABA levels and genes encoding for glutamic acid decarboxylase (GAD), a transaminase 

involved in the production of GABA (Marenco et al., 2010). Thus, the current findings may also 

be indicative of reduced GABA production with aging.  

 

Network segregation is related to GABA  

 

Our findings revealed a positive relationship between GABA+ levels and sensorimotor network 

segregation, such that participants with lower GABA+ levels showed less segregated networks. 

This observation is contrary to some previous reports that have found a negative relationship 

between GABA+ levels and functional connectivity (Bachtiar, Near, Johansen-Berg, & Stagg, 

2015; Kapogiannis et al., 2013; Stagg et al., 2014). However, these previous studies only 

examined within-network functional connectivity in young adult participants. In contrast, our 

findings demonstrated a positive relationship between GABA+ levels and network segregation 

that was stronger in the older adult group.  

 

Consistent with our finding, Antonenko et al. found a negative relationship between motor 

network connectivity and sensorimotor GABA+ levels, but only in young-older adults (i.e., 50-

63 years old). In fact, when looking solely within an old-older adult group (i.e., >63 years old), 

there was a trend toward a positive relationship (Antonenko et al., 2017). Such an age-related 

dissociation may reflect disrupted neuronal functioning in older adults.  
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In addition to the relationship between sensorimotor GABA+ and sensorimotor segregation, 

there was also a significant relationship between sensorimotor GABA+ and mean network 

segregation (averaged across all 10 networks). It is therefore reasonable to ask whether the 

connection between GABA+ and network segregation is regionally specific or not. We believe 

that the data suggest that it is. For example, sensorimotor segregation was not correlated with 

GABA+ levels outside of sensorimotor cortex (i.e.., VVC and auditory cortex). Furthermore, 

although sensorimotor segregation significantly mediated the association between sensorimotor 

GABA and sensorimotor behavior, mean network segregation did not (and sensorimotor 

GABA+ levels were related to sensorimotor performance whereas GABA+ levels outside of 

sensorimotor cortex were not (ps>.25)).  

 

But if the GABA-segregation relationship is regionally specific, then why would sensorimotor 

GABA+ levels be associated with mean network segregation? We believe the answer is simple 

and relatively uninteresting: It turns out that sensorimotor network segregation is highly 

correlated with mean network segregation in both age groups (Old: r=.63, p=.002; Young: r=.67, 

p=.001). It is therefore not surprising that a variable like sensorimotor GABA+ that is associated 

with sensorimotor segregation would also be associated with mean segregation. Nevertheless, 

future studies should aim to test the regional specificity of the relationship between segregation 

and GABA in larger sample sizes.  

Taken together, our results link, for the first time, network segregation to GABA+ levels, and 

thereby suggest a neurochemical substrate for age-related dedifferentiation at the level of large-

scale resting state brain networks. 
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Age differences in segregation & GABA are associated with sensorimotor performance 

  

We also found that less segregated sensorimotor networks were associated with worse 

sensorimotor performance. This finding is in line with previous investigations that have observed 

a relationship between segregation and cognitive (M. Y. Chan et al., 2014) and motor (King et 

al., n.d.) performance. Our study extends these findings by revealing a relationship between 

sensorimotor performance and segregation within the sensorimotor network. Specifically, 

sensorimotor network segregation was correlated with a summary measure of somatosensory and 

motor abilities in addition to grip strength. 

 

Our data also revealed a positive correlation between sensorimotor GABA+ levels and 

sensorimotor performance. This finding is consistent with previous studies linking local GABA+ 

levels in motor cortex to motor performance (Boy et al., 2010), GABA+ levels in visual cortex to 

orientation discrimination performance (Edden et al., 2009), and GABA+ levels in sensorimotor 

cortex to tactile discrimination thresholds (Puts et al., 2011). Overall, these findings confirm a 

principal role of sensorimotor GABAergic inhibition in sensorimotor function.  

 

It is also worth noting that nearly all the neural and neural-behavioral associations observed in 

this study appeared to be stronger within the older compared to the younger adult group, 

although these effects were not statistically significant. Future research with larger sample sizes 

will be necessary to determine whether these relationships are indeed driven by the older adult 

population. Nonetheless, these findings provide preliminary evidence for age-related 

dissociations in the link between GABA+, network segregation and sensorimotor performance. 
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They also point to the GABA-segregation relationship as a potential factor in explaining why 

some older adults age gracefully while others do not. 

 

Segregation mediates the link between GABA and sensorimotor performance 

 

Our findings also demonstrate for the first time that sensorimotor network segregation mediates 

the relationship between GABA+ levels and sensorimotor performance. One possible 

explanation for this finding is that age-related reductions in sensorimotor GABA levels lead to 

less segregated neural networks, which in turn lead to declines in sensorimotor behavior. Such a 

causal relationship between age declines in GABA and age-related reductions in neural 

specificity in visual cortex has been reported in previous animal studies (Leventhal et al., 2003). 

Furthermore, one recent human study reported that GABA+ levels in somatosensory cortex 

correlate with perceptual acuity, and that this relationship is mediated by the tuning of activity in 

somatosensory cortex (Kolasinski et al., 2017). Although we cannot make causal inferences from 

the data in the present study, our findings from the mediation analysis do provide preliminary 

evidence for directionality in the relationship between GABA, network segregation and 

behavior.   

 

Given the relationship that we found between GABA+, network segregation and behavior, it is 

plausible that neuronal inhibition (mediated by GABAergic interneurons) may influence 

sensorimotor behavior at the network level. For instance, studies have proposed a role for beta 

and gamma oscillations in facilitating the synchrony of neural firing for somatosensory (Bessaih, 

Higley, & Contreras, 2018) and motor (van Wijk, Beek, & Daffertshofer, 2012) behavior. 



83	
	

Moreover, functional connectivity of the motor resting state network is linked to fluctuations in 

the power of beta oscillations (Brookes et al., 2011), which in turn have been linked to GABA 

activity (Hall et al., 2011). Thus, GABA may influence sensorimotor performance via 

modulation in the power of sensorimotor oscillations.    

 

Limitations 

 

A central challenge in network analyses concerns the different parcellation and/or clustering 

approaches that are used to obtain different network measures. Although some studies have 

reported consistent results between parcellation/clustering techniques (Cao et al., 2014; M. Y. 

Chan et al., 2014), these comparisons are not comprehensive. Thus, there is currently no 

consensus regarding what the canonical network organization approach should be. However, 

using an independent dataset to define ROIs and assign network labels to these ROIs (as 

performed in the present study) allows an examination of network segregation in a relatively 

unbiased manner. One problem with this approach is that the Power et al. (2011) parcellation 

scheme used here was based on a sample of young adults, which could potentially influence the 

results. Chan et al. compared the results across three different parcellation schemes (i.e., using 

Power (2011)-defined, age cohort-defined, and subject-defined communities) and found no 

significant differences across system label definitions and edge densities (M. Y. Chan et al., 

2014), but this is still an important issue to consider in future studies.  

 

The MRS technique used to measure GABA+ levels also has some limitations. The voxels used 

for MRS data acquisition, although fairly standard in the MRS literature (Mullins et al., 2014), 
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are quite large (30 x 30 x 30 mm), and were most likely not limited to sensorimotor cortex. In 

addition, at 3T, the MEGA-PRESS sequence results in significant excitation of coedited 

macromolecule (MM) signal, which has been shown to contribute ~45% to the edited signal at 3-

ppm (Mullins et al., 2014; Puts et al., 2011). Accounting for MM contamination is an area of 

considerable on-going efforts and therefore will likely be addressed in future work.  

 

Another limitation of the present study is that our findings were derived from cross-sectional 

comparisons. Therefore, we can only draw inferences about age-related differences, not age-

related change (only longitudinal studies can measure change) (Maxwell & Cole, 2007). In 

addition, cohort and period effects hamper the interpretation of differences in neural and 

behavioral measures between groups (Damoiseaux, 2017) and the associations between neural 

and behavioral measures may suffer from the issue of cross-sectional mediation (Cole & 

Maxwell, 2003; Lindenberger, von Oertzen, Ghisletta, & Hertzog, 2011; Shrout, 2011). 

Longitudinal study designs mitigate these concerns and allow the evaluation of age-related 

changes in addition to the relationship between neural and behavioral measures, independent of 

age. Importantly, longitudinal studies also make it possible to identify the order of certain age-

related changes, which may help to illuminate causal relationships. Determining directionality is 

critical for the early detection of age-related neural and behavioral changes and the design of 

potential targeted interventions.  

 

Finally, we used behavioral factors derived from the entire sample, because the sample size in 

the two groups was relatively small. Nevertheless, it is worth noting that the covariance matrices 

were somewhat different in the two groups (See Tables S3 and S4), so it is possible that the 
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factors derived from the whole group were biased toward variance in one group more than the 

other.  

 

Conclusions 

 

Our findings provide evidence that 1) resting state networks are less segregated and sensorimotor 

GABA+ levels are reduced in older relative to younger adults; 2) less segregated sensorimotor 

networks are linked to lower GABA+ levels, 3) lower GABA+ levels and less segregated 

networks are associated with worse sensorimotor performance, and 4) the GABA-performance 

relationship is mediated by network segregation. Although these relationships were observed 

across all ages (controlling for age and GM volume difference), these associations appeared to be 

stronger in the older adult group specifically. These results suggest that resting state network 

segregation may be an important factor in distinguishing older adults who maintain their 

sensorimotor abilities from those who do not, and that age-related reductions in GABA may play 

a critical role.  

 

 

 

 

 

 

 

 



86	
	

References 

	
Antonenko, D., Schubert, F., Bohm, F., Ittermann, B., Aydin, S., Hayek, D., … Flöel, A. (2017). 

tDCS-Induced Modulation of GABA Levels and Resting-State Functional Connectivity 

in Older Adults. Journal of Neuroscience, 37(15), 4065–4073. 

https://doi.org/10.1523/JNEUROSCI.0079-17.2017 

Bachtiar, V., Near, J., Johansen-Berg, H., & Stagg, C. J. (2015). Modulation of GABA and 

resting state functional connectivity by transcranial direct current stimulation. ELife, 4, 

e08789. https://doi.org/10.7554/eLife.08789 

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction 

method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. 

https://doi.org/10.1016/j.neuroimage.2007.04.042 

Bessaih, T., Higley, M. J., & Contreras, D. (2018). Millisecond precision temporal encoding of 

stimulus features during cortically generated gamma oscillations in the rat somatosensory 

cortex. The Journal of Physiology, 596(3), 515–534. https://doi.org/10.1113/JP275245 

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in structural 

and functional connectivity among resting-state networks across the human lifespan. 

NeuroImage, 102, 345–357. https://doi.org/10.1016/j.neuroimage.2014.07.067 

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional Connectivity in the 

Motor Cortex of Resting Human Brain Using Echo-Planar Mri. Magnetic Resonance in 

Medicine, 34(4), 537–541. https://doi.org/10.1002/Mrm.1910340409 

Boy, F., Evans, C. J., Edden, R. A. E., Singh, K. D., Husain, M., & Sumner, P. (2010). Individual 

Differences in Subconscious Motor Control Predicted by GABA Concentration in SMA. 

Current Biology, 20(19), 1779–1785. https://doi.org/10.1016/j.cub.2010.09.003 



87	
	

Brenkel, M., Shulman, K., Hazan, E., Herrmann, N., & Owen, A. M. (2017). Assessing Capacity 

in the Elderly: Comparing the MoCA with a Novel Computerized Battery of Executive 

Function. Dementia and Geriatric Cognitive Disorders Extra, 7(2), 249–256. 

https://doi.org/10.1159/000478008 

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C., … Morris, 

P. G. (2011). Investigating the electrophysiological basis of resting state networks using 

magnetoencephalography. Proceedings of the National Academy of Sciences of the 

United States of America, 108(40), 16783–16788. 

Buckner, R. L., Krienen, F. M., & Yeo, B. T. T. (2013). Opportunities and limitations of intrinsic 

functional connectivity MRI. Nature Neuroscience, 16(7), nn.3423. 

https://doi.org/10.1038/nn.3423 

Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature 

Reviews. Neuroscience, 13(5), 336–349. https://doi.org/10.1038/nrn3214 

Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M., … He, Y. (2014). 

Topological organization of the human brain functional connectome across the lifespan. 

Developmental Cognitive Neuroscience, 7, 76–93. 

https://doi.org/10.1016/j.dcn.2013.11.004 

Carp, J., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in the neural 

representation of working memory revealed by multi-voxel pattern analysis. Front Hum 

Neurosci, 4, 217. https://doi.org/10.3389/fnhum.2010.00217 

Carp, J., Park, J., Hebrank, A., Park, D. C., & Polk, T. A. (2011). Age-Related Neural 

Dedifferentiation in the Motor System. Plos One, 6(12). 

https://doi.org/10.1371/journal.pone.0029411 



88	
	

Carp, Joshua, Park, J., Polk, T. A., & Park, D. C. (2011). Age differences in neural 

distinctiveness revealed by multi-voxel pattern analysis. NeuroImage, 56(2), 736–743. 

https://doi.org/10.1016/j.neuroimage.2010.04.267 

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased 

segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci U S A, 

111(46), E4997-5006. https://doi.org/10.1073/pnas.1415122111 

Chan, Micaela Y., Alhazmi, F. H., Park, D. C., Savalia, N. K., & Wig, G. S. (2017). Resting-

State Network Topology Differentiates Task Signals across the Adult Life Span. Journal 

of Neuroscience, 37(10), 2734–2745. https://doi.org/10.1523/JNEUROSCI.2406-16.2017 

Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: 

questions and tips in the use of structural equation modeling. Journal of Abnormal 

Psychology, 112(4), 558–577. https://doi.org/10.1037/0021-843X.112.4.558 

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical Surface-Based Analysis: I. 

Segmentation and Surface Reconstruction. NeuroImage, 9(2), 179–194. 

https://doi.org/10.1006/nimg.1998.0395 

Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. 

Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.01.077 

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J., Barkhof, F., Scheltens, P., Stam, C. J., … 

Rombouts, S. A. (2008). Reduced resting-state brain activity in the “default network” in 

normal aging. Cereb Cortex, 18(8), 1856–1864. https://doi.org/10.1093/cercor/bhm207 

Edden, R. A. E., & Barker, P. B. (2007). Spatial effects in the detection of gamma-aminobutyric 

acid: Improved sensitivity at high fields using inner volume saturation. Magnetic 

Resonance in Medicine, 58(6), 1276–1282. https://doi.org/10.1002/mrm.21383 



89	
	

Edden, R. A. E., Muthukumaraswamy, S. D., Freeman, T. C. A., & Singh, K. D. (2009). 

Orientation Discrimination Performance Is Predicted by GABA Concentration and 

Gamma Oscillation Frequency in Human Primary Visual Cortex. Journal of 

Neuroscience, 29(50), 15721–15726. https://doi.org/10.1523/JNEUROSCI.4426-09.2009 

Edden, R. A. E., Puts, N. A. J., Harris, A. D., Barker, P. B., & Evans, C. J. (2014). Gannet: A 

Batch-Processing Tool for the Quantitative Analysis of Gamma-Aminobutyric Acid-

Edited MR Spectroscopy Spectra. Journal of Magnetic Resonance Imaging, 40(6), 1445–

1452. https://doi.org/10.1002/jmri.24478 

Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain 

aging. Neuroscience & Biobehavioral Reviews, 37(3), 384–400. 

https://doi.org/10.1016/j.neubiorev.2013.01.017 

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. 

M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 

11–22. https://doi.org/10.1093/cercor/bhg087 

Fischl, Bruce, & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from 

magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 

11050–11055. https://doi.org/10.1073/pnas.200033797 

Galganski, M. E., Fuglevand, A. J., & Enoka, R. M. (1993). Reduced Control of Motor Output in 

a Human Hand Muscle of Elderly Subjects during Submaximal Contractions. Journal of 

Neurophysiology, 69(6), 2108–2115. 

Gao, F., Edden, R. A. E., Li, M., Puts, N. A. J., Wang, G., Liu, C., … Barker, P. B. (2013). 

Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA 

levels. NeuroImage, 78, 75–82. https://doi.org/10.1016/j.neuroimage.2013.04.012 



90	
	

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A Brain-Wide 

Study of Age-Related Changes in Functional Connectivity. Cereb Cortex, 25(7), 1987–

1999. https://doi.org/10.1093/cercor/bhu012 

Goh, J. O. S. (2011). Functional Dedifferentiation and Altered Connectivity in Older Adults: 

Neural Accounts of Cognitive Aging. Aging and Disease, 2(1), 30–48. 

Hall, S. D., Stanford, I. M., Yamawaki, N., McAllister, C. J., Rönnqvist, K. C., Woodhall, G. L., 

& Furlong, P. L. (2011). The role of GABAergic modulation in motor function related 

neuronal network activity. NeuroImage, 56(3), 1506–1510. 

https://doi.org/10.1016/j.neuroimage.2011.02.025 

Harris, A. D., Puts, N. A. J., Barker, P. B., & Edden, R. A. E. (2015). Spectral-editing 

measurements of GABA in the human brain with and without macromolecule 

suppression. Magnetic Resonance in Medicine, 74(6), 1523–1529. 

https://doi.org/10.1002/mrm.25549 

Hayes, A. F., & Scharkow, M. (2013). The Relative Trustworthiness of Inferential Tests of the 

Indirect Effect in Statistical Mediation Analysis: Does Method Really Matter? 

Psychological Science, 24(10), 1918–1927. https://doi.org/10.1177/0956797613480187 

Hermans, L., Levin, O., Maes, C., van Ruitenbeek, P., Heise, K.-F., Edden, R. A. E., … Cuypers, 

K. (2018). GABA levels and measures of intracortical and interhemispheric excitability 

in healthy young and older adults: an MRS-TMS study. Neurobiology of Aging, 65, 168–

177. https://doi.org/10.1016/j.neurobiolaging.2018.01.023 

Hesterberg, T., Monaghan, S., S Moore, D., Clipson, A., Epstein, R., H Freeman, W., & New 

York, C. (2005). Bootstrap Methods and Permutation Tests (Vol. 14). 



91	
	

Hua, T., Kao, C., Sun, Q., Li, X., & Zhou, Y. (2008). Decreased proportion of GABA neurons 

accompanies age-related degradation of neuronal function in cat striate cortex. Brain 

Research Bulletin, 75(1), 119–125. https://doi.org/10.1016/j.brainresbull.2007.08.001 

Kapogiannis, D., Reiter, D. A., Willette, A. A., & Mattson, M. P. (2013). Posteromedial cortex 

glutamate and GABA predict intrinsic functional connectivity of the default mode 

network. NeuroImage, 64(Supplement C), 112–119. 

https://doi.org/10.1016/j.neuroimage.2012.09.029 

King, B. R., van Ruitenbeek, P., Leunissen, I., Cuypers, K., Heise, K.-F., Santos Monteiro, T., … 

Swinnen, S. P. (n.d.). Age-Related Declines in Motor Performance are Associated With 

Decreased Segregation of Large-Scale Resting State Brain Networks. Cerebral Cortex, 

1–13. https://doi.org/10.1093/cercor/bhx297 

Kolasinski, J., Logan, J. P., Hinson, E. L., Manners, D., Zand, A. P. D., Makin, T. R., … Stagg, 

C. J. (2017). A Mechanistic Link from GABA to Cortical Architecture and Perception. 

Current Biology, 27(11), 1685-1691.e3. https://doi.org/10.1016/j.cub.2017.04.055 

Langan, J., Peltier, S. J., Bo, J., Fling, B. W., Welsh, R. C., & Seidler, R. D. (2010). Functional 

implications of age differences in motor system connectivity. Front Syst Neurosci, 4, 17. 

https://doi.org/10.3389/fnsys.2010.00017 

Leventhal, A. G., Wang, Y. C., Pu, M. L., Zhou, Y. F., & Ma, Y. Y. (2003). GABA and its 

agonists improved visual cortical function in senescent monkeys. Science, 300(5620), 

812–815. https://doi.org/10.1126/Science.1082874 

Li, S. C., & Lindenberger, U. (1999). Cross-level unification: A computational exploration of the 

link between deterioration of neurotransmitter systems and dedifferentiation of cognitive 

abilities in old age. Cognitive Neuroscience of Memory, 103–146. 



92	
	

Lindenberger, U., von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age 

variance extraction: What’s change got to do with it? Psychology and Aging, 26(1), 34–

47. https://doi.org/10.1037/a0020525 

Maes, C., Hermans, L., Pauwels, L., Chalavi, S., Leunissen, I., Levin, O., … Swinnen, S. P. 

(n.d.). Age-related differences in GABA levels are driven by bulk tissue changes. Human 

Brain Mapping, 0(0). https://doi.org/10.1002/hbm.24201 

Marenco, S., Savostyanova, A. A., van der Veen, J. W., Geramita, M., Stern, A., Barnett, A. S., 

… Weinberger, D. R. (2010). Genetic modulation of GABA levels in the anterior 

cingulate cortex by GAD1 and COMT. Neuropsychopharmacology: Official Publication 

of the American College of Neuropsychopharmacology, 35(8), 1708–1717. 

https://doi.org/10.1038/npp.2010.35 

Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. 

Psychological Methods, 12(1), 23–44. https://doi.org/10.1037/1082-989X.12.1.23 

Mescher, M., Merkle, H., Kirsch, J., Garwood, M., & Gruetter, R. (1998). Simultaneous in vivo 

spectral editing and water suppression. Nmr in Biomedicine, 11(6), 266–272. 

https://doi.org/10.1002/(Sici)1099-1492(199810)11:6<266::Aid-Nbm530>3.0.Co;2-J 

Mullins, P. G., McGonigle, D. J., O’Gorman, R. L., Puts, N. A. J., Vidyasagar, R., Evans, C. J., 

& Edden, R. A. E. (2014). Current practice in the use of MEGA-PRESS spectroscopy for 

the detection of GABA. NeuroImage, 86, 43–52. 

https://doi.org/10.1016/j.neuroimage.2012.12.004 

Near, J., Edden, R., Evans, C. J., Paquin, R., Harris, A., & Jezzard, P. (2015). Frequency and 

Phase Drift Correction of Magnetic Resonance Spectroscopy Data by Spectral 



93	
	

Registration in the Time Domain. Magnetic Resonance in Medicine, 73(1), 44–50. 

https://doi.org/10.1002/mrm.25094 

Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces 

neural specialization in ventral visual cortex. Proceedings of the National Academy of 

Sciences of the United States of America, 101(35), 13091–13095. 

https://doi.org/10.1073/pnas.0405148101 

Park, J., Carp, J., Hebrank, A., Park, D. C., & Polk, T. A. (2010). Neural Specificity Predicts 

Fluid Processing Ability in Older Adults. Journal of Neuroscience, 30(27), 9253–9259. 

https://doi.org/10.1523/JNEUROSCI.0853-10.2010 

Porges, E. C., Woods, A. J., Edden, R. A. E., Puts, N. A. J., Harris, A. D., Chen, H., … Cohen, 

R. A. (2017). Frontal Gamma-Aminobutyric Acid Concentrations Are Associated With 

Cognitive Performance in Older Adults. Biological Psychiatry: Cognitive Neuroscience 

and Neuroimaging, 2(1), 38–44. https://doi.org/10.1016/j.bpsc.2016.06.004 

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, 

S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–

678. https://doi.org/10.1016/j.neuron.2011.09.006 

Puts, N. A. J., Edden, R. A. E., Evans, C. J., McGlone, F., & McGonigle, D. J. (2011). 

Regionally Specific Human GABA Concentration Correlates with Tactile Discrimination 

Thresholds. Journal of Neuroscience, 31(46), 16556–16560. 

https://doi.org/10.1523/JNEUROSCI.4489-11.2011 

Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates 

and modifiers. Neuroscience & Biobehavioral Reviews, 30(6), 730–748. 

https://doi.org/10.1016/j.neubiorev.2006.07.001 



94	
	

Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., … 

Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, 

functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721–

733. https://doi.org/10.1016/j.neubiorev.2009.10.005 

Seidler, R., Erdeniz, B., Koppelmans, V., Hirsiger, S., Mérillat, S., & Jäncke, L. (2015). 

Associations between age, motor function, and resting state sensorimotor network 

connectivity in healthy older adults. NeuroImage, 108, 47–59. 

https://doi.org/10.1016/j.neuroimage.2014.12.023 

Shrout, P. E. (2011). Commentary: Mediation Analysis, Causal Process, and Cross-Sectional 

Data. Multivariate Behavioral Research, 46(5), 852–860. 

https://doi.org/10.1080/00273171.2011.606718 

Song, J., Birn, R. M., Boly, M., Meier, T. B., Nair, V. A., Meyerand, M. E., & Prabhakaran, V. 

(2014). Age-Related Reorganizational Changes in Modularity and Functional 

Connectivity of Human Brain Networks. Brain Connectivity, 4(9), 662–676. 

https://doi.org/10.1089/brain.2014.0286 

Stagg, C. J., Bachtiar, V., Amadi, U., Gudberg, C. A., Ilie, A. S., Sampaio-Baptista, C., … 

Johansen-Berg, H. (2014). Local GABA concentration is related to network-level resting 

functional connectivity. ELife, 3, e01465. https://doi.org/10.7554/eLife.01465 

Stagg, C. J., Bachtiar, V., & Johansen-Berg, H. (2011). The Role of GABA in Human Motor 

Learning. Current Biology, 21(6), 480–484. https://doi.org/10.1016/j.cub.2011.01.069 

Stanley, E. M., Fadel, J. R., & Mott, D. D. (2012). Interneuron loss reduces dendritic inhibition 

and GABA release in hippocampus of aged rats. Neurobiology of Aging, 33(2), 431.e1-

13. https://doi.org/10.1016/j.neurobiolaging.2010.12.014 



95	
	

Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on 

intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438. 

https://doi.org/10.1016/j.neuroimage.2011.07.044 

van Wijk, B. C. M., Beek, P. J., & Daffertshofer, A. (2012). Neural synchrony within the motor 

system: what have we learned so far? Frontiers in Human Neuroscience, 6. 

https://doi.org/10.3389/fnhum.2012.00252 

Wang, L., LaViolette, P., O’Keefe, K., Putcha, D., Bakkour, A., Van Dijk, K. R. A., … Sperling, 

R. A. (2010). Intrinsic connectivity between the hippocampus and posteromedial cortex 

predicts memory performance in cognitively intact older individuals. Neuroimage, 51(2), 

910–917. https://doi.org/10.1016/j.neuroimage.2010.02.046 

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A Functional Connectivity Toolbox 

for Correlated and Anticorrelated Brain Networks. Brain Connectivity, 2(3), 125–141. 

https://doi.org/10.1089/brain.2012.0073 

Zar, J. H. (1996). Biostatistical Analysis. Prentice Hall. 

 

 

 

 

 

 

 

 

 



	96	

Chapter IV: Summary and Discussion 
 

In this dissertation, I investigated age-related neural dedifferentiation in the sensorimotor system 

and its behavioral consequences. In the first chapter, I provided a general background on age-

related neural dedifferentiation, including a review of previous studies that have investigated 

either dedifferentiation of task-based activation patterns or of large-scale resting state functional 

connectivity networks. I also provided the motivation for studying the relationship between these 

two measures of neural dedifferentiation as well as potential neurochemical causes of age-related 

neural dedifferentiation.  

 

In the second chapter, I investigated the relationship between age-related neural dedifferentiation 

of large-scale resting state networks and dedifferentiation of neural activation patterns during 

(sensorimotor) task performance. Using multi-voxel pattern analysis to examine the 

distinctiveness of sensorimotor neural representations, and graph theoretical analysis to examine 

the segregation of resting state sensorimotor networks, I found that these two measures of neural 

dedifferentiation are significantly correlated. I also found that segregation predicts individual 

differences in sensorimotor performance, particularly in older adults, whereas distinctiveness 

does not, suggesting that segregation may be a more sensitive predictor of age-related declines in 

sensorimotor behavior.  
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In the third chapter, I further investigated age differences in resting state network segregation 

and specifically studied its relationship with sensorimotor performance and with levels of the 

inhibitory neurotransmitter, gamma aminobutyric acid (GABA) and to. I found that older adults 

have less segregated networks than young adults and that individuals with less segregated 

sensorimotor networks exhibit worse sensorimotor performance. Using MR spectroscopy to 

measure the inhibitory neurotransmitter GABA, I also found that network segregation is linked 

to sensorimotor GABA levels and that these levels decline with age. Furthermore, individual 

differences in GABA predict sensorimotor performance and this relationship is mediated by 

network segregation. These findings link age-related differences in network segregation to age-

related differences in GABA levels and sensorimotor performance. In general, they suggest a 

neurochemical substrate of age-related dedifferentiation at the level of large-scale brain 

networks. 

 

In sum, I have provided novel evidence 1) for a relationship between age-related neural 

dedifferentiation of task-based activation patterns and that of large-scale neural networks in the 

sensorimotor system, 2) that segregation predicts individual differences in sensorimotor 

performance in older adults whereas distinctiveness does not, and 3) that individual differences 

in sensorimotor cortex GABA levels predict individual differences in sensorimotor performance 

and that sensorimotor segregation mediates this relationship. Overall, these findings suggest that 

sensorimotor network segregation and neural distinctiveness in the sensorimotor system are 

related, but that segregation may be a more sensitive predictor of age-related declines in 

sensorimotor behavior. They also suggest that age declines in GABA may be an underlying 

cause of age-related neural dedifferentiation in the sensorimotor system. More broadly, the 
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findings from this dissertation advance our understanding of the neural and neurochemical 

mechanisms that underlie age-related declines in sensorimotor functioning. 

 

Limitations 
 

One main limitation of the studies presented in this dissertation is the relatively small sample 

size. Meta-analytic research demonstrates that neuroimaging studies are often underpowered 

(Yarkoni, 2009), which can lead to increased rates of false positive and inflated effects 

(Ioannidis, 2005, 2008). Although the present studies were better powered than most previous 

studies in the area, future studies should aim to recruit larger sample sizes of both young and 

older adult populations in order to verify these effects.  

 

The studies in this dissertation were also conducted using atypical samples of both young and 

older adult participants (Henrich, Heine, & Norenzayan, 2010). For instance, young adult 

participants were mainly recruited from the University of Michigan and thus most likely enjoyed 

relatively high socioeconomic status and cognitive ability. Similarly, the older adults were 

mainly recruited from the University town of Ann Arbor, with higher average family incomes 

and cognitive abilities relative to the general public. Therefore, caution should be taken in 

generalizing the findings to a broader population. 

 

Another limitation of the present studies is that our findings were produced from cross-sectional 

comparisons between young and older adults. Thus, we can only draw conclusions about age-

related differences rather than age-related changes (Maxwell & Cole, 2007). Cohort and period 

effects also constrain the interpretation of differences in neural and behavioral measures between 



99	
	

the two age groups (Damoiseaux, 2017). In addition, the associations between neural and 

behavioral measures may be affected by cross-sectional mediation (Cole & Maxwell, 2003; 

Lindenberger, von Oertzen, Ghisletta, & Hertzog, 2011; Shrout, 2011). Longitudinal designs are 

a clear solution to this problem as they allow investigators to determine the order of certain age-

related changes, which may help to elucidate causal relationships.  

 

The present studies also utilized an a priori parcellation scheme (i.e., Power, 2011) to examine 

measures of network segregation. Although some studies have reported consistent findings with 

different parcellation techniques, these comparisons are not comprehensive and there is currently 

no gold standard for what the best network parcellation approach should be. One particular 

problem with the Power (2011) atlas is that it was based on a sample of young adults, which 

could potentially influence the findings from the present studies. However, previous work has 

found no significant age differences on network segregation using three different parcellation 

schemes (i.e., Power 2011-defined, age cohort-defined, and subject-defined parcellations). 

Nonetheless, this is still an important issue for future studies to explore.  

 

To address these limitations, future studies should replicate the experiments documented here 

using 1) larger sample sizes, 2) representative samples, 3) longitudinal designs, and 4) a diverse 

set of brain network parcellation techniques.   

 

Future directions 
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The present studies focused on the neural and behavioral mechanisms of age-related neural 

dedifferentiation in the sensorimotor system. However, it remains unclear whether the findings 

from these studies apply to different domains such as dedifferentiation in the visual or auditory 

system or in higher order cognitive (e.g.., episodic, working memory) domains. One recent study 

conducted by Koen and colleagues demonstrated that older adults have less distinct episodic 

memory representations compared to young adults, and that such dedifferentiation was 

associated with worse memory performance (Koen, Hauck, & Rugg, 2019). Similarly, Chan and 

colleagues found that the segregation of association networks was predictive of episodic memory 

performance (Chan, Alhazmi, Park, Savalia, & Wig, 2017). Future studies could investigate 

whether these two measures of dedifferentiation (i.e., distinctiveness and segregation) in the 

episodic memory system are related and whether they explain the same age-related declines in 

episodic memory. 

 

Future research could also investigate the effect of beta-amyloid and neurofibrillary tau tangle 

pathology on age-related neural dedifferentiation and episodic memory in healthy older adults 

and older adults along the Alzheimer’s disease (AD) spectrum. A loss of episodic memory is one 

of the hallmarks of age-related cognitive decline and is a major risk factor for dementia (Hedden 

& Gabrieli, 2004). Before the symptoms of dementia occur in typical-onset sporadic AD, 

amyloid and tau tangles appear throughout the brain, developing in the episodic memory system 

and tracking closely with age-related cognitive declines (Nelson et al., 2012). No studies to date 

have investigated whether age-related neural dedifferentiation in the episodic memory system is 

related to the development and spread of amyloid and tau pathology. By studying this question in 

healthy and pathological older adults, researchers can advance our understanding of the 
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pathogenesis of AD and its similarities to and differences from normal aging. Developing such 

an understanding could lead to the identification of those who could benefit from treatment in the 

earliest pre-symptomatic stages of AD. 

 

Although we cannot make causal inferences from the results in the present studies, our findings 

from the mediation analysis (in chapter three) do provide preliminary evidence for directionality 

in the relationship between GABA, network segregation and behavior. In order to test whether 

GABA is indeed a neurochemical substrate of age-related neural dedifferentiation from a causal 

standpoint, future studies could manipulate GABA either pharmacologically or through the use 

of transcranial brain stimulation (TMS). By demonstrating that the manipulation of GABA levels 

affects (or does not affect) neural dedifferentiation and behavior, one could provide evidence to 

either support or refute the hypotheses from the present studies. However, recent studies have 

found no clear relationship between MRS-assessed measures of GABA levels and TMS 

measures of synaptic GABA-A and GABA-B activity (C. J. Stagg et al., 2011). In fact, it is 

likely that MRS-assessed GABA, which is sensitive to the total amount of GABA within a voxel, 

more closely reflects extra-synaptic rather than synaptic GABA activity (Stagg et al., 2014). To 

test the GABA-dedifferentiation-behavior link more directly and precisely, future studies could 

combine optogenetics with large-scale extracelluar recordings in animals to activate and silence 

GABAergic interneurons and then quantify some measure or neural dedifferentiation and 

behavior.  
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