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ABSTRACT

This dissertation addresses two kinds of problems. The first kind, Disjunctive Sensing and

Control (DSC), is a particular variant of a hybrid control problem type that arose from

a complication when working on a small satellite attitude control system in which the

magnetic actuators and sensors could not function at the same time as magnetic actuation

would inject unacceptable levels of sensor noise. The second class of problems involves

time-optimal waypoint-following Model Predictive Control (MPC), inspired by missions

such as fast-slewing imaging spacecraft, which must capture as many ground images as

possible before their orbit and the Earth’s rotation move the target out of line of sight. In

this dissertation, novel approaches are developed to address each problem, and simulations

are presented to illustrate their effectiveness. Specific contributions are as follows.

Firstly, the small satellite problem is analyzed in detail. The control goal is defined,

the Equations of Motion (EOMs) are derived, the magnetic actuator/sensor conflict is de-

scribed, and an LQR control scheme is developed that alternates between actuation and

estimation, allowing these conflicting subsystems to still successfully achieve the mission

objective. The spacecraft configuration with the additional passive stabilization mechanism

in the form of panels that induce restorative air drag torques is considered as well as the

design of an MPC controller to handle actuation constraints.

Secondly, inspired by the satellite problem, the DSC problem is treated in detail. The

two subsystems, i.e., the sensing and actuation subsystems, are assumed to be linked by a

binary decision variable that activates either subsystem at the expense of the other. Con-

tractivity sufficient conditions are derived which can facilitate the construction of periodic

xi



switching sequences that guarantee boundness and convergence properties of the closed-

loop system trajectories and of the error covariance as well as the enforcement of chance

constraints in steady-state. Additional methods are proposed to speed up the search for

periodic sequences that satisfy the contractivity conditions. Spacecraft relative motion sim-

ulation case studies are reported to demonstrate the effectiveness of the technique.

Next, time-optimal waypoint-following MPC is considered for which a Mixed-Integer

Linear Program (MILP) approach is proposed. The MILP formulation complements the

ability of MPC-based controllers to explicitly handle state constraints. Several different

scenarios are considered for spacecraft attitude control, including multiple waypoints, ex-

clusion zones, and the addition of flexible mode states to the attitude dynamics. Simulation

results are reported.

Finally, the non-uniqueness of the solution to the time-optimal MPC problem in the

discrete-time setting is addressed and it is shown that it can lead to the loss of closed-

loop Lyapunov stability. As a remedy, a secondary objective function is minimized after

the optimal time horizon has been determined; this lexicographic optimization yields a

unique solution which is shown to restore Lyapunov stability. Spacecraft relative motion

simulation case studies are reported which illustrate closed-loop stability and robustness to

unmeasured disturbances of the minimum-time MPC with the lexicographic optimization.

xii



CHAPTER 1

Introduction

1.1 Disjunctive Sensing and Control (DSC)

DSC is a particular class of control problems for Hybrid Dynamical Systems [2]. Hybrid

dynamical systems combine continuous evolution with discrete switching and jumps. In

a continuous-time (resp., discrete-time) hybrid system, the state evolution is described by

one set of differential (resp., difference) equations until certain conditions, referred to as

the jump conditions, are satisfied, at which time instant the system switches to a new set of

governing equations. The system then remains in this new dynamic mode until such time

as another jump condition is satisfied. These jump conditions can be set by constraints on

the system, by prescribed time intervals, or by the actions of an operator.

Hybrid systems have a long history of study [3], but have seen a significant surge in

interest with the increasing role of computers in control systems. They can be used to model

a wide range of scenarios; some examples of hybrid systems include a simple bouncing

ball [4] (illustrated in Figure 1.1), an electrical circuit with switches or diodes [5], and a

gain-scheduled missile [6].

Hybrid systems require careful treatment; even with a family of systems that share an

equilibrium point and are individually each asymptotically stable, a poorly implemented

switching logic can sometimes destabilize the overall hybrid system. Conversely, a family

of systems that are each unstable can sometimes be stabilized with a carefully-designed
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Figure 1.1: Strobe-photo capture of a bouncing ball. The jump conditions in this hybrid
system are prescribed by physical constraints, i.e., the collisions between the ball and the
ground [1].

switching logic [7].

What distinguishes DSC within the broader class of hybrid control problems is that

in DSC, when the actuator subsystem is active, the measurement subsystem is inactive,

and vice versa. This switching logic is illustrated in Figure 1.2. When the associated

subsystem is inactive, either tracking error or estimation error can grow unbounded. Thus,

the switching logic must be designed with care in order to ensure boundness and closed-

loop stability.

1.2 Time-Optimal Predictive Control

In predictive control, inputs to a closed-loop system are selected based on the the prediction

and optimization of the behavior of that system over a specified time horizon. A popular

technique is Model Predictive Control (MPC) [8], in which the system’s response is pre-

dicted with a dynamic model. System inputs are then selected based on the solution to an

optimization problem formulated over a receding time horizon; however, in MPC, only the
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Figure 1.2: Visualization of disjunctive sensing and control. The system can be set to
actuate or to measure, but both subsystems cannot be active at the same time.

control inputs for the current time instant, the “first move” in the optimal control sequence,

are applied. Future control inputs are determined by new solutions to the optimization

problem at each additional time step in turn. MPC is an attractive option in predictive con-

trol as it allows for the explicit handling of multiple state and input constraints, and, as a

closed-loop approach, can accommodate disturbance effects.

In general, however, if the dynamic model is non-linear, if the optimization problem

is non-convex, or if the prediction horizon is large, then computations to obtain control

inputs at each time-step can be quite involved [9]. These factors are especially critical for

the time-optimal approach considered in this work, as the optimization problems become

non-convex when exclusion zones/obstacles are added and the prediction horizon must be

long enough to encompass the entire trajectory to ensure a time-optimal solution.

One approach to time-optimality as well as the addition of exclusion zones is to treat

the problem by converting it into a Mixed-Interger Linear Program (MILP). A MILP is

a linear program in which some of the variables are constrained to only take integer val-

ues. As mentioned above, the introduction of integer-only variables makes the optimization

problem non-convex; given a problem with multiple solutions, points in between those so-

3



lutions are in general non-integer valued and therefore infeasible [10]. In addition, MILP

problems are known to beNP-complete [11], and thus there is no guarantee that the prob-

lem can be solved in a time bounded by a polynomial function of the number of decision

variables and the constraints.

However, methods exist that are known to efficiently converge to solutions. The most

popular such method, Branch-and-Bound [12], is known to give a globally optimal solu-

tion by solving a sequence of relaxed linear programs in which the integer variables are

allowed to take non-integer values. Due to the NP-completeness property, this approach

cannot be guaranteed to terminate with a globally-optimal solution without searching the

entire space of feasible solutions. However, with good heuristics, in particular a warm-

start approach in which previous known solutions serve as a starting point in searching

for new solutions [13], this method can be practically useful for finding globally-optimal

solutions in reasonable computation times. Other solution methods exist, such as Genetic

Algorithms [14] and Tabu Search [15], that are generally based on a heuristic random-

search approach; the randomness helps to avoid solver iterations terminating in a local, i.e.

non-global, minimum.

Despite the computational challenges, the MILP framework is attractive as it offers

great flexibility in constructing and solving problems, and it integrates well with the MPC

framework in the handling of explicit constraints. In addition to classic optimization prob-

lems such as Time Scheduling [16] and Traveling Salesman [17] problems, in which the

goal is to minimize a target quantity, the MILP framework can also handle problems such

as drift counteraction [18–22], in which the goal is to maximize a target quantity, in par-

ticular the time before the state violates constraints. The MILP methods extend even to

scenarios such as collision avoidance in unmanned formation flight [23].

4



1.3 Contributions and Dissertation Outline

The contributions of this dissertation include advancements in theory, methodology, and

applications and address the two primary topics discussed above, the DSC problem and the

time-optimal predictive control problem. The majority of the content of this dissertation

has been originally published in or submitted to scientific journals [24, 25] and conference

proceedings [26–29]. The specific contributions are listed below.

• Development of a controller for a cubesat which exploits magnetic actuation to main-

tain pointing on a circular orbit at a gravity gradient unstable equilibrium.

• Analysis of closed-loop properties of the cubesat with the additional passive attitude

stabilization mechanism which exploits air drag panels to complement the active

magnetic controller.

• Development of the solution to the general DSC problem in the non-deterministic

setting.

• Development of sufficient conditions that ensure stability in the DSC problem.

• The development of MILP-based solution to the time-optimal waypoint following

problem for a spacecraft, with the capability of dealing with constraints arising from

non-convex obstacles and flexible appendages.

• A methodology and conditions to ensure Lyapunov stability with minimum-time

MPC through lexicographic optimization.

• Development of a method using convex hulls to determine the minimum prediction

horizon needed in discrete-time minimum-time control problems.

The dissertation is organized as follows. In Chapter 2, the QB50 cubesat attitude control

problem is described in detail. Specific control objectives are defined, the models that

5



govern the system are derived, and analysis of controllability properties is presented. The

magnetic actuation system is augmented with a passive drag-based actuation system, and

the stability properties of the closed-loop system are analyzed. Simulations are presented

that demonstrate the controller’s efficacy.

In Chapter 3, motivated by sensing and control considerations for the magnetically

actuated satellite and by other spacecraft control applications, a more general disjunctive

sensing and control problem is studied, and stability/boundness conditions are derived that

can be easily checked. Simulations are presented that illustrate the closed-loop operation

of the system under the DSC switching controller.

In Chapter 4, the time-optimal waypoint following MPC problem is introduced, along

with MILP methods for tracking waypoints and avoiding keep-out zones in the state space.

The results are first applied to the case of the rigid spacecraft attitude control. The dy-

namics are then augmented with a set of flexible appendage modes, and through the use of

simulations it is shown that the controller can keep the flexible modes of the system within

prescribed constraints while the spacecraft performs agile minimum-time maneuvering.

In Chapter 5, the time-optimal MPC framework is revisited in search of ways to ensure

closed-loop Lyapunov stability of the equilibrium as well as quickly determine the time

horizon in MILP. A two-step approach is followed, solving the minimum-time problem

on the first pass and then solving a related lexicographic problem on the second pass. It is

shown that under suitable assumptions, the two-step procedure yields Lyapunov stability

of the target equilibrium. A convex hull method is discussed to obtain functional charac-

terizations of value sets from which the state can be steered to the target in a given number

of steps. Finally, simulations are presented that demonstrate the operation of the system

under the MPC controller.

Concluding remarks and discussion of future avenues of research appear in Chapter 6.
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CHAPTER 2

Magnetic Control

2.1 The QB50 Scenario

This chapter considers the development of an attitude control system, with application to

two of the QB50 satellites designed to conduct a survey of the upper atmosphere at low-

Earth orbit altitudes [30, 31]. See Figure 2.1. The primary enabler for this survey mission

is a constellation of forty 2U cubesats, each equipped with an INMS sensor mounted to

one of the 1U faces. To function correctly, this sensor must be kept pointed to within a 20◦

half-angle cone of the velocity vector. The key challenge in maintaining this attitude is that

it corresponds to the cubesat being near a gravity gradient unstable equilibrium. The goal

of this chapter is to demonstrate controllability of the linearized time-varying dynamic

system and to design a controller for the attitude of a 2U cubesat using first magnetic

torque rod actuators alone and in combination with a hardware modification that involves

an additional set of four air drag panels. The passive air drag panels are introduced to

enhance, in combination with a magnetic rod actuator controller, the satellite’s stability

and disturbance rejection characteristics.

2.2 Problem Formulation

The cubesat kinematics are expressed through an Euler angle parameterization. The dy-

namics are characterized using Euler’s equation, and incorporate the effects of gravity gra-
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Figure 2.1: Front face of one of the 2U cubesats, featuring the INMS sensor array. This
face must be kept pointed within a 20◦ half-angle cone of the satellite’s orbital velocity
vector for the array to function correctly. Two of the air drag panels are visible in their
undeployed configurations.

dient torque. Controlling the satellite’s attitude via magnetic actuators alone is an attrac-

tive option; magnetic rods are compact in size, have no moving parts, and consume only

electricity, which can be supplied by batteries and solar panels. The drawback to purely

magnetic actuation, however, is that the system is instantaneously underactuated due to the

inability to exert a torque parallel to the direction of the magnetic field vector. However,

unlike underactuated systems involving reaction wheel or thruster failures [32–35], in this

system the unactuated axis is not fixed with respect to the body but rotates as the satellite

traverses its orbit. System controllability can be demonstrated by taking into account the

time-varying unactuated axis in tandem with the gravity gradient torque.

Much prior work has been done to investigate the use of magnetic torques in spacecraft

attitude control. However, that work has largely focused on the use of magnetic torque

in spin-stabilized spacecraft [36, 37] or in gravity gradient stabilized spacecraft [38, 39].

The satellite considered in this example is not gravity gradient stabilized; in fact, the de-
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sired attitude corresponds to a gravity gradient unstable equilibrium, so a control law is

needed that establishes pointing despite being hindered, rather than aided, by the gravity

gradient torque. While destablizing in our configuration, it is interesting that the gravity

gradient torque, on the other hand, facilitates the satellite controllability and the overcom-

ing of the effects of underactuation. Previous approaches have been proposed that exploit

the quasi-periodicity of the magnetic field in controller design [40]. These approaches typ-

ically pursue time-averaged solutions of the changing magnetic field to precompute control

gains offline; however, these solutions can grow less accurate over time and may require

that the satellite be sent updated time-averaged parameters. This work uses magnetic field

readings to calculate control gains online. Previous work on passive aerodynamic stabil-

ity treated small-area drag surfaces [41] with a tendency to twist and deform, whereas

our satellite is equipped with larger drag plates that should be less prone to performance-

degrading deformation. In this chapter, the LQR controller design is based on a linearized,

discrete-time model that accounts for the effect of the air drag plates, for which the control-

lability analysis results are also established. As in [26], before applying the LQR controller

and linearizing the model, we use a nonlinear state and control transformation from [42].

Simulation results for the case of an MPC controller that is capable of explicitly enforcing

control constraints are also presented.

2.3 Theoretical Results

Our first step in developing a controller is to derive the EOMs for the system. We define

the body-fixed frame as follows: The ı̂b-axis aligns with the INMS sensor array, seen as

the small red attachments to the front face in Figure 1. The k̂b-axis aligns with the satel-

lite’s radio antenna, seen as the yellow strip on the “top” face in Figure 1, following its

deployment; at that time, the antenna will stand perpendicular to the cubesat body. Finally,

the ̂b-axis completes the frame according to the right-hand rule, with the unit vector given
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by ̂b = k̂b × ı̂b. We also assume this frame to be a principal frame and refer to it as the

Body-Fixed Principal (BFP) frame.

2.3.1 Euler Angle Attitude Parameterization

To stabilize the satellite to the desired attitude, the controller must account for six states:

three independent attitude parameters and three independent angular velocity rates. The

satellite’s inertial measurement unit gives its angular velocity outputs in terms of Euler

angle rates and, in addition, the contributions of the drag panels to the satellite dynamics

are simplified by the use of an Euler angle parameterization. Thus, we choose to work with

Euler angles to describe the EOMs.

The goal of ram pointing is equivalent to aligning the chosen satellite BFP frame with

the non-inertial LVLH frame with ı̂L, ̂L, k̂L being unit vectors, in which ı̂L points along

the orbital track (parallel to the orbital velocity vector), k̂L points toward the focus of the

orbit (opposite to the orbital radius vector), and ̂L completes the frame according to the

right-hand rule, with the unit vector given by ̂L = k̂L× ı̂L (opposite to the orbital angular

momentum vector). See Figure 2.2 for a visual representation. When properly aligned, the

INMS sensor achieves ram pointing while keeping the satellite’s antenna pointed towards

the Earth.

The Direction Cosine Matrix (DCM) of the satellite’s body fixed frame relative to the

LVLH frame is represented using a 3-2-1 Euler angle rotation sequence, such that:

ObL = O1(φ)O2(θ)O3(ψ), (2.1)

where

O1(φ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 =


1 0 0

0 cφ sφ

0 −sφ cφ

 ,
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Figure 2.2: LVLH frame; planet and spacecraft view.

O2(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 =


cθ 0 −sθ

0 1 0

sθ 0 cθ

 ,

O3(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 =


cψ sψ 0

−sψ cψ 0

0 0 1

 ,
where we use the shorthand c and s to designate cosine and sine of the argument given in

the subscript. When all three angles are at zero, which is the target equilibrium, the ı̂b-axis

aligns with the velocity vector and the k̂b-axis points in the nadir direction.

The drawback of 3-2-1 Euler angles is the kinematic singularity at cos θ = 0, i.e.,

θ = ±90◦, which presents known difficulties for the control design [43]; thus, we require

that the pitch angle be within the −90◦ < θ < 90◦ range before beginning actuation. In

the event that the initial attitude violates this constraint, we can sidestep the singularity

by rotating about each axis by ±180◦, thereby recasting the attitude to an equivalent set

of Euler angle parameters. This procedure is equivalent to the methods described in, for

example, Slabaugh [44] or Weiss [45] for finding an equivalent set of Euler angles with
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|θ| < 90◦. While in theory the pitch angle could still possibly violate the constraint window

some time after actuation begins despite initially satisfying it, in simulations this did not

lead to any further actuation problems. We note that the singularity problem could also be

alleviated by the use of a different attitude parameterization such as quaternions or reduced

quaternions, which push the singularity to the furthest point away from the origin, which

serves as the equilibrium point. However, in this application, we choose to pursue the

Euler angle parameters due to the need to interface with the cubesat’s legacy hardware,

in particular the onboard attitude module. In addition, the Euler parameters lead to an

easier representation of the aerodynamic drag moment when the drag panels are included

in the calculations. We leave the treatment of alternative attitude parameterizations to future

work.

2.3.2 Kinematics

The angular velocity, i.e., the axis and rate of rotation, of the body frame relative to an

inertial frame can be decomposed as the sum of the intermediate angular velocity physical

vectors:
⇀
ω
bg

=
⇀
ω
bL

+
⇀
ω
Lg
. (2.2)

We resolve this expression in the BFP frame to produce the following expression:

ωbgb = ωbLb + ωLgb = ωbLb + ObLω
Lg
L . (2.3)

The LVLH frame rotates, relative to an inertial frame, at a rate given by the orbital motion

n. This rate is constant due to the circular orbit assumption. In the chosen coordinate
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system, ωLgL = [0 −n 0]T . Then,


ω1

ω2

ω3

 = Cφθ


φ̇

θ̇

ψ̇

+ ObL


0

−n

0

 , (2.4)

where

Cφθ =


1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ

 ,
and

ObL =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 .
We invert (2.4) to solve for the Euler angle rates:


φ̇

θ̇

ψ̇

 = C−1
φθ



ω1

ω2

ω3

+ n


cθsψ

sφsθsψ + cφcψ

cφsθsψ − sφcψ


 , (2.5)

where

C−1
φθ =

(
1

cθ

)
cθ sφsθ cφsθ

0 cφcθ −sφcθ

0 sφ cφ

 .

2.3.3 Dynamics

Having derived the equations for the kinematics, we turn to the dynamics, which can be

modeled with Euler’s equation,

JBcb ω̇
bg
b + S[ωbgb ]JBcb ω

bg
b = τBcb , (2.6)
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where all quantities have been resolved in BFP frame, τBcb represents the external torque on

body B about its center of mass, and the matrix S[ωbgb ] denotes the skew-symmetric matrix

formed of the components of ωbgb and given by

S[ωbgb ] = S



ω1

ω2

ω3


 =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.7)

Since the BFP frame is a principal frame, JBcb is

JBcb =


J1 0 0

0 J2 0

0 0 J3

 , (2.8)

where J1, J2, and J3 are the principal moments of inertia. The torque acting on the body

can be further decomposed into the magnetic control torque, gravity gradient torque, and

disturbance torque,

τBcb = τBc,mtb + τBc,ggb + τBc,distb . (2.9)

2.3.3.1 Magnetic Torque

The net magnetic dipole generated by the torque rods interacts with the Earth’s magnetic

field to produce a torque according to the following law:

⇀
τ
Bc,mt

=
⇀
m×

⇀

b, (2.10)

where
⇀

b denotes the external magnetic field vector and ⇀
m denotes the magnetic moment.

Resolving the torque in the BFP frame, we obtain

τBc,mtb = −S[bb]mb, (2.11)
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where we have replaced the vector cross-product operation with the equivalent skew-symmetric

matrix representation,

S



b1

b2

b3


 =


0 −b3 b2

b3 0 −b1

−b2 b1 0

 . (2.12)

Note that rank(S[bb]) = 2, which affirms that the system is instantaneously underactuated

with magnetic torque alone.

2.3.3.2 Gravity Gradient Torque

The Earth’s gravitational field exerts a force on the satellite that can be modeled by an

inverse-square distance law. Hence, the force is slightly greater on the portions of the

satellite that are closer to the Earth than on those portions that are further away. This

differential, though small, produces a torque on the satellite’s body approximated by [46]

τBc,ggb = 3n2S[r̂b]J
Bc
b r̂b, (2.13)

where a circular orbit is assumed for the satellite. The radial unit vector r̂b points opposite

to the k̂L vector; hence, r̂b can be expressed as

r̂b = ObL(−k̂L) = ObL


0

0

−1

 .

Thus,

τBc,ggb = 3n2


(J2 − J3) cφsφc

2
θ

(J3 − J1) cφcθsθ

(J1 − J2) sφcθsθ

 . (2.14)
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There exist multiple configurations in which this torque vanishes, two stable (cθ = 0) and

several unstable (sθ = s2φ = 0). As the desired equilibrium attitude for the satellite is

close to one of the unstable configurations, the gravity gradient torque tends to destabilize

the satellite’s attitude, and thus becomes a significant factor in our treatment of the system

dynamics.

2.3.4 Control Analysis and Control Law Design for the Satellite With-

out Drag Panels

The magnetic torque cross-product expression (2.10) indicates that the component of the

dipole parallel to the magnetic field generates zero torque. Thus, to obtain maximum

control torque, we seek a dipole moment that minimizes the magnitude of the projection
⇀
m ·

⇀

b = mT
b bb. Following Lovera and Astolfi [42], we prescribe a dipole moment of the

form:

mb = −
(
S[bb]

bTb bb

)
u, (2.15)

where u ∈ R3 is a control input vector. This dipole law constrains mb to be perpendicular

to bb, thus fixing mT
b bb = 0. The magnetic input torque can then be expressed as

τBc,mtb =

(
S[bb]S[bb]

bTb bb

)
u. (2.16)

Lovera and Astolfi [42] use a Proportional-Derivative (PD) control law to prescribe the new

control input vector u; we choose instead to apply LQR theory to obtain the controller as

it can be applied systematically to different spacecraft configurations.
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2.3.5 Linearized Equations of Motion

We first linearize the EOMs about the desired equilibrium state xeq = [0, 0, 0, 0,−n, 0]T to

get linearized EOMs in the form

ẋ = Acx +Bc(t)u,

with

Ac =



0 0 n 1 0 0

0 0 0 0 1 0

−n 0 0 0 0 1

−3n2J23 0 0 0 0 −nJ23

0 3n2J31 0 0 0 0

0 0 0 −nJ12 0 0


, (2.17)

where J12 := (J1 − J2)/J3, J23 := (J2 − J3)/J1, and J31 := (J3 − J1)/J2, and

Bc(t) =


03×3

(
JBcb
)−1 S[bb(t)]S[bb(t)]

bTb (t)bb(t)

 . (2.18)

The complete derivation of the linearized EOMs is found in Appendix A. Note that bb(t)

in (2.18) is ideally the nominal magnetic field at the linearization point. However, in our

implementation, we use the measured magnetic field values in (2.18), which are determined

by the onboard magnetomer readings. While this makes little difference in terms of model

accuracy near the linearization point, this approach allows us to implement the controller

with gains computed online without strong coupling to the nominal orbital position or the

need to either store nominal values of bb or compute them offline and store them in memory.

This also improves the robustness in case of deployment errors or orbit decaying due to the

influence of the air drag. In either case, bb in (2.18) depends on time t, as does Bc(t). The
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matrices Ac, Bc(t) at any fixed time instant t do not constitute a controllable pair without

the assumption of relative pointing, e.g., they violate the controllability rank condition for

time-invariant systems under inertial pointing, i.e., for n = 0.

2.3.5.1 Controllability of the Time-Varying Linearized System

Having derived the linearized EOMs, we now demonstrate that the linearized system, which

is time-varying, is controllable on any time interval of non-zero length. Yang [47] reduces

the problem of complete controllability by magnetic torque rods to a small number of

sufficient conditions:

• The satellite is not located on the magnetic Equator.

• Assuming the above holds, then

1. J2 6= J3,

2. 6J3 (J3 − J1) 6= J2 (J1 − J2 + J3).

The considered cubesat has an inertia matrix of JBcb = diag(3654338, 9060235, 8813148)

g·mm2. As it is to be ejected from the ISS, it will operate with an initial altitude of 415

km and at an inclination of 51.6◦, with an orbital period of 5570 s. At this inclination, the

satellite is away from the plane of the magnetic Equator, and also satisfies the controlla-

bility constraints on the Ji’s above, confirming that the linearized time-varying system is

controllable. This implies that, in the absence of control constraints, there exists a control

input that drives the state to the origin over any specified time interval.

2.3.6 LTV Controllability

The controller uses magnetic rods, thus the B(t) matrix depends on the Earth’s magnetic

field and the system is time-varying. While for implementation, we rely on measured

magnetic field values, for the controllabilty analysis here, we approximate the magnetic
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field by assuming a tilted dipole model, with periodicity equal to the satellite’s orbital

period T ; following Psiaki [40], the magnetic field approximation takes the following form,


b1(t)

b2(t)

b3(t)

 =
µf
a3


cos(nt) sin(im)

− cos(im)

2 sin(nt) sin(im)

 , (2.19)

where µf is the strength of the dipole field, a is the semimajor axis, n is the mean motion,

im is the inclination of the orbit with respect to the magnetic equator, and t ∈ [0, T ] is

measured from the crossing of the ascending node of the magnetic Equator. We then show

that the LTV system is controllable on the interval [0, T ], under a few conditions.

Theorem 2.1: The linearized system is controllable on the interval [0, T ] if the follow-

ing conditions hold:

1) The satellite’s orbital plane is not aligned with the magnetic Equator,

2) J2 6= J3,

3) J3 (6(J3 − J1) + 2Γ) 6= J2 (J1 − J2 + J3 − 2Γ).

The proof is similar to the method in Yang [47] and is found in Appendix C. The prop-

erties are easily checked, as the principal moments J1, J2, and J3 are determined early in

the satellite design phase and Γ is simple to calculate from properties of the panel angle

and orbital altitude. Note that if Γ → 0, for example, if the panel area or the atmospheric

density had a value of zero, then the last condition specializes to the controllability result

for the spacecraft without panels.

In Figure 2.3, the air drag panels are added to the simulation in Figure 2.4, with drag

coefficient CD = 2 and atmospheric density ρ ≈ 2.81× 10−12 kg/m3. The convergence is

slowed, but the cubesat detumbles properly as the augmented controller does reject the un-

modeled disturbance, demonstrating that the additional restorative torques from the panels
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help to overcome the unmodeled disturbance that destabilized the system previously.

2.4 LQ Control

The control design is based on LQR theory applied to a discrete-time model that is obtained

by converting (2.17)-(2.18) to discrete-time. We apply a Zero-Order Hold method to carry

out the discretization. Let t ∈ R≥0 be the current time instant and Ac, Bc(t) defined in

(2.17), (2.18). For ∆t > 0, the discrete-time model predicts the state xk at time t+k∆t, k ∈

Z≥0, according to the following model with the “frozen-in-time” magnetic field:

xk+1 = Adxk +Bd(t)uk,

Ad = eAc∆t,

Bd(t) = −A−1
c (I6 − Ad)Bc(t),

x0 = x(t).

(2.20)

where “frozen-in-time” means that the slowly-time-varying term B(t) is assumed to re-

main constant over the entire discrete-time step. The pair (Ad, Bd(t)) can be verified to

be controllable for all t for our orbit and choices of ∆t we have used. For the difference

equation (2.20), we define the infinite-horizon cost functional J :

J(t) =
∞∑
k=0

(
xTkQxk + uTkRuk

)
, (2.21)

where R = RT ∈ R3 is a positive definite matrix, and Q = QT ∈ R6 is a positive semi-

definite matrix satisfying the usual detectability assumption. Then, the optimal feedback

control sequence uk = −K(t)xk that minimizes J(t) has the solution:

K(t) =
(
R +Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad, (2.22)
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Figure 2.3: Simulation results using the control design based on the relinearized dynamics,
to include the panels, with the same constant disturbance torque as in Figure 2.4.
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P (t) = ATdP (t)Ad +Q− ATdP (t)Bd(t)K(t). (2.23)

Note that (2.23) can have multiple solutions; the P (t) of interest to us is the unique positive

definite solution. Also note that Bd(t) changes throughout the orbit, thus (2.23) is solved

at different instants t in time and the gain K(t) in (2.22) is time-varying. The control

u(t+σ) = K(t)x(t) is applied for 0 ≤ σ < ∆t and then recomputed. A fast update scheme

for the solution of the Algebraic Riccati Equation in response to changes in the magnetic

field vector can be defined, see Appendix B. An alternative approach to solving the Riccati

Equation can be found in Yang [48]; this method uses the approximate periodicity of the

magnetic field to construct periodic solutions offline to (2.23) at each time step. We choose

to calculate the solutions online, as the time steps in this problem are very small compared

to the period of the orbit and storing that many solutions would consume an excessive

amount of the satellite’s memory.

Though there are no explicit constraints placed on the optimal control solution, in prac-

tice there do exist implicit control constraints in the form of magnetic torque rod satura-

tion. In the LQR control formulation, these constraints are taken into account indirectly;

if at least one component violates the constraint, the control input is rescaled such that its

largest component is equal to the saturation limit while remaining parallel to the calculated

dipole vector. In this way, the dipole vector remains perpendicular to the magnetic field

vector, for maximum torque generation. In Section 2.5, we extend the LQR controller to a

MPC-based controller that has the additional capability of being able to explicitly handle

these control saturation constraints.

2.4.1 Passive Air Drag Control

The magnetic torque rod controller works well in the ideal case, but can struggle to maintain

the pointing constraint in the presence of unmodeled disturbance torques, as seen in Fig-

ure 2.4 when a constant magnitude unmodeled disturbance torque is added to the system.
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As magnetic rods alone do not appear to provide strong disturbance rejection capability, a

solution that takes advantage of hardware and control interplay has been adopted. Specifi-

cally, the cubesat was augmented with a set of four drag panels, to supplement the magnetic

torque with passive aerodynamic stabilizing torque. We note that in a different application

to a flying wind turbine [49], a solution that exploits passive aerodynamic stabilization to

enhance an underactuated system has also been proposed.

The symmetry of the drag panels serves to move the satellite’s Center of Pressure (CP),

which in the original design coincided with the Center of Mass (CM), such that the CP falls

behind the CM in the target configuration represented in Figure 2.5. This effect enhances

the disturbance rejection capability of the system, as the drag force on the panels creates a

net torque along the CP-CM moment arm that acts to return the satellite to the equilibrium

state if perturbed away from it [50].

As the panels add additional torque inputs, they change the satellite’s dynamics. Thus,

in order to apply the LQR controller, the equations of motion must be relinearized to prop-

erly reflect these changes. From the circular orbit assumption, the orbital velocity vector

satisfies v̂L = [1, 0, 0]T , and we can apply the orientation matrix ObL to resolve it in the

BFP frame,

v̂b =


cθcψ ∼ ∼

sφsθcψ − cφsψ ∼ ∼

cφsθcψ + sφsψ ∼ ∼




1

0

0



=


cθcψ

sφsθcψ − cφsψ

cφsθcψ + sφsψ

 ≈


1

φθ − ψ

θ + φψ

 ≈


1

−ψ

θ

 ,
(2.24)

where v̂b is simplified by first a small angle approximation and then the discarding of

higher-order terms.
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Figure 2.4: Simulation of the closed-loop system with the LQR control law for the magnetic
torque rods with an unmodeled disturbance torque of constant 10−8 N·m magnitude.
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Figure 2.5: Drag panel model following deployment. The satellite has four such panels
but, for clarity, only two panels are depicted here.
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Each panel is assumed to contribute a torque of the form

(
τ adb
)
i

= (rb)i ×
(
Fad
b

)
i
, (2.25)

where
(
Fad
b

)
i

is the air drag force on the ith panel, (rb)i is the distance from the satellite’s

center of mass to the center of the ith panel, and

τ adb =
4∑
i=1

(
τ adb
)
i
. (2.26)

The force exerted by the air drag acts opposite to the orbital velocity vector, and is modeled

as

(
Fad
b

)
i

= (0.5ρv2AiCD)(−v̂b)

= (0.5ρn2a2AiCD)(−v̂b),
(2.27)

where ρ represents the atmospheric density at altitude, estimated by use of a table in Gom-

bosi [51], and CD is the drag coefficient. The circular orbit assumption is used to conclude

that v = na, with a being the orbital radius, and the effective panel area Ai = (n̂i · v̂)A is

equal to the actual panel area scaled by the dot product of the outward facing unit normal
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vector and the unit velocity vector. Thus, the torque has the following components,

(rb)1 =


−w

0

−h

 , (Fad
b

)
1

= n2f (sδ + cδθ)



−1

ψ

−θ


 ,

(rb)2 =


−w

0

h

 , (Fad
b

)
2

= n2f (sδ − cδθ)



−1

ψ

−θ


 ,

(rb)3 =


−w

−h

0

 , (Fad
b

)
3

= n2f (sδ − cδψ)



−1

ψ

−θ


 ,

(rb)4 =


−w

h

0

 , (Fad
b

)
4

= n2f (sδ + cδψ)



−1

ψ

−θ


 ,

(2.28)

where f = 0.5ρa2ACD and δ is constrained to be in the interval [90◦, 180◦]. Taking the

cross products and summing to get an approximation of the air drag torque τ adb ,

τ adb = 0.5ρn2a2ACD


0

(2hcδ − 4wsδ)θ

(2hcδ − 4wsδ)ψ

 . (2.29)
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For the 2U cubesat depicted in Figure 2.5, w = r − Lcδ and h = 0.5r + Lsδ, thus,

τ adb = n2f


0

(2hcδ − 4wsδ)θ

(2hcδ − 4wsδ)ψ



= 4n2rf

(
cδ − 4sδ + 3(

L

r
)s2δ

)
0

θ

ψ

 = n2Γ


0

θ

ψ

 ,
(2.30)

where Γ = 4rf
(
cδ − 4sδ + 3(L

r
)s2δ

)
. The linearized dynamic contribution of

(
JBcb
)−1

τ adb

then takes the form

(
JBcb
)−1

dτ adb =


0 0 0 0 0 0

0 n2Γ
J2

0 0 0 0

0 0 n2Γ
J3

0 0 0





dφ

dθ

dψ

dω1

dω2

dω3


, (2.31)

where d(·) denotes the deviation from the nominal values. Incorporating this contribution

into the previously linearized equations of motion ẋ = Ax+Bu, A now takes the form

A =



0 0 n 1 0 0

0 0 0 0 1 0

−n 0 0 0 0 1

3n2J32 0 0 0 0 nJ32

0 3n2J31 + n2Γ
J2

0 0 0 0

0 0 n2Γ
J3

nJ21 0 0


. (2.32)
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Figure 2.6: Eigenvalues of the A matrix as a function of panel area. The crosses denote
the pair of real eigenvalues that correspond to zero panel area. As panel area increases,
this pair of real eigenvalues migrate first to the ω-axis and then outward along the axis,
eliminating the unstable mode.

Notable about this modified A matrix is that, for sufficiently large values of Γ, all eigen-

values of A lie on the ω-axis, whereas for Γ = 0 there exists an unstable positive real

eigenvalue, as seen in Figure 2.6. Further, the panel deployment angle directly influences

the eigenvalues of the system and its “stiffness”, i.e., the ability to resist disturbances. See

Figure 2.7. For proper disturbance rejection, the panels should be designed such that Γ

exceeds the threshold at which there exists an eigenvalue in the open right-half plane.

2.4.2 Simulation Results

After several tuning experiments with the goal of obtaining good performance, the weight-

ing matrices Q and R for the LQR cost functional have been chosen as Q = diag(10−8,

10−8, 10−8, 10−4, 10−4, 10−4) and R = diag(108, 108, 108). The initial attitude of the

satellite is φ(0) = −35◦, θ(0) = −75◦, and ψ(0) = 75◦. It is estimated that the magnitudes

of the post-ejection tumble rates would be approximately 10◦ per second in each axis,

thus the satellite is given an initial angular velocity of ω1(0) = −10◦/s, ω2(0) = 10◦/s,
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Figure 2.7: Square root of the magnitude of the smallest-magnitude eigenvalue of the lin-
earized panel system as a function of the panel angle. As all eigenvalues for this particular
panel size lie on the ω-axis, this can be treated as a measure of the “stiffness” of the
system. For our particular satellite, the panels have their strongest effect at δ = 131◦.

and ω3(0) = −10◦/s. The orbital period of 5570 s yields an orbital angular velocity of

n = 1.13 × 10−3 rad/s. The simulation time steps are of magnitude ∆t = 4 s, and model

the on-board software switches between magnetic torque and magnetic sensing. Note that,

while the switch is modeled as being instantaneous, in reality there are non-zero ramp up

and decay periods between each use of the magnetic torque rods that would introduce an

additional perturbing effect; however, for this application such periods were on the order

of milliseconds, much shorter than the simulation time steps. The Earth’s magnetic field is

modeled using the tilted dipole approximation of Wertz [52], updated with the 2015 Inter-

national Geomagnetic Reference Field IGRF-12 [53] coefficients. The controller saturation

limit is umax = 0.1 A·m2. The control goal is to drive the pointing angle, i.e., the angle

between ı̂b and the satellite’s velocity vector, to within the ±20◦ constraint. The controller

successfully achieves the commanded equilibrium, without unwinding. As shown in Figure

2.8, the cubesat experiences many rotations about its roll and yaw axes while detumbling,
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but does reach and remain within the required pointing angle constraint inside of two or-

bits. The pointing error of the INMS sensor approaches zero, indicating that it is correctly

oriented.

2.5 MPC Control Results

We compare the results of the simulated LQR controller to those of a simulated MPC con-

troller with the same weights as the LQR controller. Unlike the LQR controller, the MPC-

based controller has the additional capability of explicitly handling control constraints, such

as the magnetic torque rod saturation described in Section 2.4.

2.5.1 Discrete Time Conversion

To develop our predictive controller, a discrete-time approximation to the continuous-time

dynamics is implemented. The discretization is performed under the assumption that the

magnetic field is constant during each control actuation step; this assumption is reasonable,

especially over the short prediction horizon, on the order of seconds, that we consider, as

the field, while time-varying, is only slowly-varying, with a period of approximately 24

hours.

A zero-order hold, identical to that used in (2.20), is applied to discretize the continuous-

time dynamics of the satellite with drag panels system and predict the future state xk+1

according to the “frozen-in-time” magnetic field Bd(t).

At each sampling step, the controller then minimizes the now finite-horizon cost func-

tional

J(t) = xTNP (t)xN +
N−1∑
k=0

(
xTkQxk + uTkRuk

)
, (2.33)

with prediction horizon N and subject to the discrete-time dynamics in (2.20), as well as

to the constraint

|uk|∞ ≤ umax, (2.34)
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where P (t) is the unique positive definite solution to the associated Discrete-Time Alge-

braic Riccati Equation,

P (t) = ATdP (t)Ad +Q− ATdP (t)Bd(t)K(t),

K(t) =
(
R +Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad.

(2.35)

The controller implements the first control action and then recomputes a new minimizing

control sequence at the next sampling time instant.

2.5.2 Simulation Results

The MPC controller uses the same weights as in the LQR controller. The discrete-time

steps are of length ∆t = 4 sec, and the prediction horizon is held at N = 5. All other

parameters are identical to those used to generate the simulation results in Figure 2.3. The

predictive controller provides faster convergence than the LQR controller, at the added cost

of additional computation complexity and power consumption that may present challenges

to a resource-limited cubesat platform.

2.6 Summary

This chapter described the design of pointing controllers to enable the QB50 satellites’

scientific mission. The two LQR controllers exploit the magnetic torque rod actuators to

regulate both attitude and angular velocity states, and the second such controller comple-

ments the augmented passive drag panels. Both controllers have been shown to provide

convergence to the desired pointing configuration in nonlinear model simulations; the sec-

ond controller, however, has demonstrated greater robustness to unmodeled disturbance

torques. A finite-horizon predictive controller is shown to provide faster convergence than

the LQR controllers while maintaining the robustness to disturbance torques.
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Figure 2.9: Simulation results using the predictive control design based on the re-linearized
dynamics, to include the panels, with the same constant disturbance torque as in Figure 2.4.
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CHAPTER 3

Disjunctive Sensing and Control

3.1 Motivation

A common assumption in control theory is that sensing and actuation can be performed

simultaneously. In this chapter, we consider the case of disjunctive sensing and actuation,

in which, at any given time step, either a sensor or an actuator can be operated but not

both. Thus, a switching policy between sensing and actuation needs to be determined that

achieves the specified mission objectives.

The motivation for considering this class of problems comes from spacecraft control

applications. Specifically, magnetic fields generated by magnetic actuators may interfere

with the magnetic sensors used for attitude sensing, see e.g., [54]. In larger satellites,

magnetometers may be placed on a boom to reduce the electromagnetic interference from

the magnetic actuators and other equipment onboard the spacecraft. Such a solution is not

feasible for the smaller and cheaper class of cubesats, where the magnetic actuators must

be deactivated and the residual field then allowed to decay before recording an accurate

attitude reading. Other situations in which simultaneous sensing and actuation are not

viable include vision-based rendezvous, docking, and relative motion maneuvering [55], in

which the plume or vibration from spacecraft thrusters may interfere with cameras or other

sensitive navigation equipment. Further, Kalman Filters are frequently deactivated while

thrusters are firing, inducing a natural switching of subsystems.
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For this problem, we consider the eventual enforcement of probabilistic chance state

constraints of the form

∀k ≥ k∗, Prob({xk ∈ X}) ≥ 1− δ, (3.1)

where X is the set prescribed by the constraints of the problem, 0 ≤ δ < 1, and k∗ ∈ Z+ is

sufficiently large. In spacecraft applications, X may represent a region in the state space in

which scientific measurements can be reliably taken by the onboard instrumentation, see,

for instance, the case study in [26] and [24]. In this case study, the state constraints do not

need to be satisfied during initial transients but must be satisfied eventually to enable the

equipment to function.

In this chapter, we treat a disjunctive sensing and actuation problem for systems that

can be represented by discrete-time linear models with stochastic process disturbance and

measurement noise inputs. A procedure to construct a periodic switching sequence be-

tween sensing and actuation is described and closed-loop boundedness and convergence

properties when such a sequence is applied are analyzed.

The given problem falls within the general class of switched system stabilization prob-

lems in which a part of the dynamics represents the propagation of the estimated state and

of the estimation error covariance matrix. Stability of switched systems has been studied

extensively, see e.g., [56] and [57]. We note that if the system is open-loop unstable then,

to guarantee either boundedness of states or boundedness of state estimates based on dwell

time conditions, sufficient dwell time in each mode (sensing or actuation) is necessary. In

addition, sensing and actuation intervals need to be suitably interlaced to achieve both goals

simultaneously.

Techniques developed for stability analysis and control of discrete-time periodic sys-

tems [58–60] are also relevant given our search for a periodic switching sequence. In

event triggered and self-triggered control [61] and in sensor networks, sensor scheduling
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and sensor tasking [62, 63], sensors may be deactivated when confidence in the estimated

states is high; however, the situation in which the sensors and the actuators cannot be used

simultaneously does not appear to be treated.

3.2 Problem Formulation

Consider a system represented by a discrete-time linear model with stochastic state distur-

bance and measurement noise inputs, given by

xk+1 = Axk +Buk + wk,

yk = Cxk + νk,

(3.2)

where xk is a vector state and uk is a vector control. The variables wk and νk are, respec-

tively, the state disturbance and the measurement noise inputs, each assumed to be a se-

quence of zero-mean, independent (and jointly independent) identically distributed (i.i.d.)

random variables with E[wkw
T
k ] = Σw = ΣT

w, E[νkν
T
k ] = Σν = ΣT

ν .

For this scenario, a fixed gain state feedback is considered,

uk = uT +K(x̂k − xT ), (3.3)

where x̂k is the state estimate generated by a fixed gain observer of the form

x̂k+1 = Ax̂k + ηkBuk + (1− ηk)L(yk − Cx̂k). (3.4)

The binary variable ηk ∈ {0, 1} represents the system operating mode. When ηk = 1, the

control is applied to the system. When ηk = 0, the control is deactivated (uk = 0) and the

sensed output, yk, is obtained. The target equilibrium is denoted by xT , and it is assumed

that the feedforward control input, uT , supports it in steady-state in the absence of wk and

with ηk = 1, i.e., xT = AxT +BuT .
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In a typical control design process, due to the Separation Principle, the gains K and

L would be determined without consideration of the interference between actuation and

sensing (possibly by different engineers) and then a coordination mechanism introduced

by specifying ηk, k = 0, 1, . . . . In this setting, offline-generated N -periodic switching

sequences, {ηk}, with ηk = ηk+N for all k ∈ Z≥0, N ∈ Z>0, are of particular interest, so

that their repeated application leads to the attainment of the control objectives, including

eventual satisfaction of state constraints. This approach, based on the application of the

offline generated periodic sequence, has low computational footprint and is appealing in

view of limited computing power and restrictive electrical power consumption budgets

onboard of small spacecraft.

3.3 Admissible Sequences

Suppose that {ηk} is fixed and define Āk = A + ηkBK, Ãk = A + (1 − ηk)LC. The

evolution of the state, xk, and of the state estimation error, ek = xk − x̂k, are driven by

xk+1 = Axk + ηkBKx̂k + wk

= Ākxk − ηkBek + ηkBuT + wk,

(3.5)

and

ek+1 = [A+ (1− ηk)LC] ek + wk + (1− ηk)Lνk

= Ãkek + wk + (1− ηk)Lνk.
(3.6)

In simulations, we assume that xT = 0 (and so uT = 0). Based on (3.6) and assumed

independence and zero mean properties of the stochastic disturbance, wk, and measurement

noise, νk, the error covariance matrix Pk = E[eke
T
k] satisfies

Pk+1 = ÃkPkÃ
T
k +Rk, (3.7)
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Rk =

[
(1− ηk)L I

] Σν 0

0 Σw


 (1− ηk)LT

I

 . (3.8)

Definition 3.1: Let A, B be defined as in (3.2), K, L be defined as in (3.3), (3.4), and

Āk, Ãk be defined as above, with none of Āk, Ãk nilpotent. An N -periodic sequence of

binary integers {η0, η1, · · · , ηN−1}, where, for all k ∈ Z≥0, ηk ∈ {0, 1} and ηk+N = ηk, is

called admissible if the following contractivity conditions hold:

ρ(ĀN−1ĀN−2 · · · Ā0) = q̄A < 1, (3.9)

ρ(ÃN−1ÃN−2 · · · Ã0) = q̃A < 1, (3.10)

where ρ(·) denotes the spectral radius operator. A non-periodic sequence of binary integers

{η0, η1, . . . } is admissible if:

lim
k→∞

ρ(ĀkĀk−1 · · · Ā0) = 0, (3.11)

lim
k→∞

ρ(ÃkÃk−1 · · · Ã0) = 0. (3.12)

The constraint against nilpotent matrices ensures that the limits in (3.11) and (3.12) ap-

proach zero rather than “jump” to zero. These definitions are consistent with the properties

of discrete-time state transition matrices found in, for example, Chen [64].

Lemma 3.1: If an admissible sequence exists, then a periodic admissible sequence

exists.

Proof: Let s = {η0, η1, . . . , ηk, . . . } be an admissible sequence. If s is periodic, then

done. Thus, assume s is non-periodic. By definition, limk→∞ ρ(ĀkĀk−1 · · · Ā0) = 0, thus,

for each ε̄ > 0, there exists N̄ ∈ N such that, for all k > N̄, ρ(ĀkĀk−1 · · · Ā0) < ε̄, and, by

similar argument, for each ε̃ > 0 there exists Ñ such that, for all k > Ñ, ρ(ÃkÃk−1 · · · Ã0) <

ε̃. Choose k such that max{ε̄, ε̃} < 1. Then, ρ(ĀkĀk−1 · · · Ā0) < 1, and ρ(ÃkÃk−1 · · · Ã0) <
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1, therefore sk = {η0, η1, . . . , ηk} is admissible by construction and, when applied repeat-

edly, is periodic with period k + 1. �

3.3.1 Limits of the Mean and Error Covariance Matrix Sequences

Note first that E[νk] = 0, E[wk] = 0 and hence (3.5), (3.6) imply that the state and estima-

tion error mean, µx,k = E[xk] and µe,k = E[ek], respectively, satisfy

µx,k+1 = Ākµx,k − ηkBµe,k + ηkBuT , (3.13)

µe,k+1 = Ãkµe,k, (3.14)

where Āk and Ãk are periodic with the same period, N , as ηk.

Proposition 3.1: Suppose that (3.9) and (3.10) hold. Then, as k → ∞, µe,k → 0 and

µx,k → µs
x,k exponentially, where {µsx,k} is the unique N -periodic solution of (3.13) with

µe,k ≡ 0. Furthermore, if uT = 0 then µsx,k = 0.

Sketch of the proof: The proof follows from Proposition 4.5 in [65] by noting that the

characteristic multipliers (eigenvalues of N -step state transition matrix) of the combined

time-periodic system (3.13)-(3.14), which is upper triangular, are inside the unit disk if

(3.9) and (3.10) hold. �

The next result summarizes the properties of the error covariance matrix sequence.

Proposition 3.2: Suppose that (3.10) holds. Then the error covariance matrix, Pk, is

bounded and, as k →∞, converges to the unique N -periodic solution of (3.7), {P s
k}, with

P s
k+N = P s

k . In addition, for any n ∈ Z≥0,

(
‖PN(n+1)‖ −

γ

1− q̃2
A

)
≤ q̃2

A

(
‖PNn‖ −

γ

1− q̃2
A

)
, (3.15)
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where

γ ≥ ‖ÃN−1 · · · Ã1R0Ã
T
1 · · · ÃT

N−1 + · · ·+ ÃN−1RN−2Ã
T
N−1 +RN−1‖.

Sketch of the proof: The proof of the error covariance matrix convergence follows by

applying similar arguments in discrete-time as the ones on p. 58 of [58] for the continuous-

time case. The bound (3.15) follows by expressing PN in terms of P0 and R0, · · ·RN−1

based on (3.7) and applying the triangular inequality. �

Remark 3.1: The steady-state periodic solution, P s
k , of (3.7) can be computed by solv-

ing the conventional discrete-time Lyapunov equation for the evolution of the lifted system

error covariance matrix, i.e., of P l = diag{P s
0 , · · · , P s

N−1}, which is directly obtained from

(3.7).

Remark 3.2: Note that (3.15) implies that lim supk→∞ ‖PNk‖ ≤ γ/(1− q̃2
A).

Remark 3.3: The results in Propositions 3.1 and 3.2 generalize to non-constant N -

periodic feedback and observer gains, i.e., K and L are replaced by Kk, and Lk, where

Kk+N = Kk, Lk+N = Lk for all k ∈ Z≥0, under the same conditions (3.9) and (3.10).

However, analysis results benefit from both Āk and Ãk having only two possible values

each, which is the case when the gains are constant.

3.4 Dwell Time Conditions

We can take advantage of the dwell time conditions for stability analysis of hybrid systems

to develop simpler sufficient conditions that can inform procedures for faster determination

of admissible switching sequences. The discussion of the dwell time conditions follows

Theorem 4.1 in [66] and its proof.

Let Ω̄0 = A and Ω̄1 = A + BK, and consider the condition (3.9). By Gelfand’s

theorem [67], limk→∞ ‖Ωk‖ 1
k = ρ(Ω), for any matrix Ω and norm ‖ · ‖. This implies that
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there exist constants c0, c1, that do not depend on k, such that for any k ≥ 1,

‖Ω̄k
0‖

1
k ≤ c0ρ(Ω̄0), ‖Ω̄k

1‖
1
k ≤ c1ρ(Ω̄1). (3.16)

As the tail of ‖Ak‖ 1
k is strictly non-increasing for any consistent matrix norm, there exists

a finite k∗ such that ‖Ak∗‖ 1
k∗ ≥ ‖Ak‖ 1

k for all k ≥ 1. Then,

ci =
‖Ω̄k∗

i ‖
1
k∗

ρ(Ω̄i)
.

Note that c0 ≥ 1 and c1 ≥ 1 since ‖A‖ ≥ ρ(A) for any A. Let c = max{c0, c1}, n0 < N

be the total time spent in the mode η = 0, n1 = N − n0 be the total time spent in the mode

η = 1, and ns be the number of mode “blocks” in the sequence, equivalent to the number

of switches plus one. Then, ‖ĀN−1ĀN−2 · · · Ā0‖ ≤ cnsρ(Ω̄0)n0ρ(Ω̄1)n1 , and (3.9) holds if

cnsρ(Ω̄0)n0ρ(Ω̄1)n1 ≤ q̄A < 1. (3.17)

A frequent situation is that Ω̄0 (no actuation) is unstable and ρ(Ω̄0) > 1, while Ω̄1 is stable

and ρ(Ω̄1) < 1. Then (3.17) dictates that there must be sufficient time spent in the actuation

mode and, furthermore, there must be sufficient dwell time (not too many switches) so that

ns and cns are small.

Taking the logarithm of the left hand side of (3.17), it follows that (3.9) holds if

ns log c+ n0 log ρ̄0 + n1 log ρ̄1 < 0, (3.18)

where ρ̄0 = ρ(Ω̄0), ρ̄1 = ρ(Ω̄1). When finding admissible sequences, it is therefore pos-

sible to first restrict the search to sequences for which n0, n1 and ns satisfy the condition

(3.18). Note that q̄A in (3.17) is an estimate of the rate of convergence of the state. Hence,

ensuring that the left hand side of (3.18) is as negative as possible promotes increasing the
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convergence rate to xT ; this may, however, increase the estimation error.

Similar analysis can be applied in the case of (3.10). Let ρ̃0 = ρ(Ω̃0), ρ̃1 = ρ(Ω̃1)

where Ω̃0 = A+ LC and Ω̃1 = A. Then, ‖ÃN−1 · · · Ã0‖ ≤ cnsρ(Ω̃0)n1ρ(Ω̃1)n0 ≤ q̃A < 1.

By taking the logarithm of this expression, we can see that (3.10) holds if

ns log c+ n1 log ρ̃0 + n0 log ρ̃1 < 0. (3.19)

The condition (3.19) complements (3.18) and can facilitate the initial fast search for admis-

sible sequences.

Remark 3.4: Conditions (3.18) and (3.19) together are sufficient, but not necessary, to

also satisfy conditions (3.9) and (3.10).

3.5 Reducible and Irreducible Sequences

The search for admissible sequences can be made faster by discarding sequences that repli-

cate a known inadmissible subsequence.

Definition 3.2: A sequence {sN} of length N ∈ Z>0 is called reducible if there exists

a subsequence {sk} of length k ∈ Z>0 such that k < N , N is a multiple of k, and {sN} =

{sk} ⊕ {sk} ⊕ · · · ⊕ {sk}, N/k times, where ⊕ is used to denote sequence concatenation.

A sequence which is not reducible is called irreducible.

Proposition 3.3: Every (non-empty) sequence {sN} contains a unique irreducible sub-

sequence {sn}.

Proof: If {sN} is irreducible, then we are done. Thus, assume {sN} to be reducible.

There exists then k1 ∈ N such that k1 < N , N is a multiple of k1, and {sN} = {sk1} ⊕

. . . ⊕ {sk1}, concatenated N/k1 times. If {sk1} is irreducible, then done, as no shorter

subsequences exist and no subsequence longer than {sk1} can be irreducible. If {sk1}

is reducible, then there exists k2 ∈ N such that k2 < k1, k1 is a multiple of k2, and

{sk1} = {sk2} ⊕ . . . ⊕ {sk2}, concatenated k1/k2 times. The same argument for {sk1}
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above now repeats for {sk2}. The sequence {k1, k2, ...} eventually terminates in some kn

as each ki is strictly smaller than the previous, and reaches an absolute minimum value

kn ≥ 1 after a finite number of iterations. The process eventually yields an irreducible

subsequence {skn} of {sN} that is of minimum length (no irreducible subsequences of

smaller length exist). As this subsequence consists of the first kn elements of {sN}, it is

also unique, as only one such subsequence is possible for a given n. �

In practice, we need only focus on these irreducible sub-sequences. This is summarized

by the following:

Proposition 3.4: A binary sequence {sN} is admissible if and only if the associated

irreducible subsequence {sn} is admissible.

Proof : Assume that {sN} = {sn} ⊕ {sn} ⊕ · · · ⊕ {sn}, where n | N , and consider

the condition (3.9). Let ρ({sn}) denote the spectral radius of the product of the matri-

ces, Āk = (A + ηkBK), k = 1, ..., n − 1, corresponding to the switching sequence,

{sn} = {η0, ..., ηn−1}. The properties of the spectral radius of a matrix power imply that

ρ({sN}) = ρ({sn})N/n. Hence ρ({sN}) < 1 if and only if ρ({sn}) < 1. This implies the

result. �

Any reducible admissible sequence can be formed by propagating an irreducible ad-

missible sequence forward in time. Thus, when investigating sequences of length N for

admissibility, all sequences for which we have already evaluated the associated irreducible

sub-sequence can be discarded.

To check a sequence {sN} for reducibility, we employ the following algorithm:

1. Let D = {d : d | N and d < N}, i.e., the set of proper divisors of N .

2. If there exists d ∈ D such that, for every 1 ≤ n ≤ N − d, the sequence satisfies

sn = sn+d, where sn ∈ {sN}, then the sequence is reducible.

3. Otherwise, the sequence is irreducible.

Remark 3.5: If N is prime, then D = {1} and the only reducible sequences are the

sequence of zeros and the sequence of ones. Under our initial assumption that both actu-
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ation and sensing actions are required, these two sequences can immediately be discarded

as inadmissible.

3.6 Chance Constraints

Consider now the chance constraint (3.1). Define z =

[
xT eT

]T

and ζ =

[
νT wT

]T

.

Then,

zk+1 = Ăkzk + Γ̆kζk + ĞkuT , (3.20)

where

Ăk =

 Āk −ηkBK

0 Ãk

 , Γ̆k =

 0 I

(1− ηk)L I

 ,
and

Ğk =

 0

ηkB

 .
Under contractivity conditions (3.9) and (3.10), repeat the analysis in Propositions 3.1

and 3.2 for (3.20). Let P̆k = E[(zk − µz,k)(zk − µz,k)T], where µz,k = E[zk]. Then,

P̆k+1 = ĂkP̆kĂ
T
k + Γ̆k

 Σν 0

0 Σw

 Γ̆T
k , (3.21)

and P̆k → P̆ s
k as k → ∞, where P̆ s

k is the unique N -periodic solution to (3.21). Then,

the steady-state covariance matrix satisfies P̆ s
x,k =

[
I 0

]
P̆ s
k

[
I 0

]T

. Thus, xk con-

verges to xs
k, a cyclostationary process with the N -periodic mean, µs

x,k, and N -periodic

covariance matrix, P s
x,k.

As no assumption on the actual probability density functions of wk and νk is made,

we resort to the multivariate Chebyshev’s inequality [68, 69] to treat the chance constraint,
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which states

Prob
(

(xk − µs
x,k)

T(P s
x,k)
−1(xk − µs

x,k) ≤ α2
x

)
≥ 1− nx

α2
x

, (3.22)

where nx is the dimension of x and 0 < αx ≤ 1.

Given δ > 0, choose αx =
√
nx/δ. Suppose that for k = 0, 1, . . . , N−1, the following

condition is verified:

µs
x,k ∈ X ∼ E

(
0,

1

α2
x

(P s
x,k)
−1

)
, (3.23)

where E(0, S) = {x : xTSx ≤ 1} is an ellipsoidal set and ∼ denotes the Pontryagin set

difference. Then, in steady-state, the chance constraint (3.1) holds.

Remark 3.6: The steady-state periodic solution, P̆ s
k , can be computed by solving the

conventional discrete-time Lyapunov equation for the evolution of the lifted system error

covariance matrix, i.e., of P̆ l = diag{P̆ s
0 , · · · , P̆ s

N−1}, which is directly obtained from

(3.21).

3.7 Optimal Control Approach

Since multiple admissible sequences may exist, we can select one by minimizing a cost

functional. Consider the blended cost J that penalizes the estimation, the control objective,

and the control effort:

J =
1

N

N−1∑
k=0

(
Tr (ReP

s
k) + Tr

(
RxP

s
x,k

)
+ rηηk

)
, (3.24)

where Re = RT
e � 0, Rx = RT

x � 0 and rη ≥ 0 are weights. The 1/N factor in the

cost functional normalizes for sequence length, ensuring that a given reducible/irreducible

sequence pair yield the same cost.

Now, search over sequences of a fixed length, check for admissibility, then find the
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admissible sequence that yields the lowest cost. If no admissible sequence exists, we then

extend the sequence length and search again. The process is summarized by the following

algorithm:

Algorithm 3.1 Sequence search up to length N
1: Fix sequence length N ∈ Z>0.
2: Form 2N binary integer sequences.
3: For each sequence, determine the associated irreducible subsequence.
4: Check the conditions of admissibility for the irreducible subsequence using dwell-time

conditions (3.18), (3.19) or directly based on (3.9), (3.10).
5: If subsequence is admissible, evaluate the cost functional (3.24).
6: If no such subsequence satisfies the conditions of admissibility, then increase N and

return to Step 1.
7: If at least one such subsequence is found to be admissible, then select the sequence that

minimizes the objective function J .

The equivalence of admissibility between a sequence and its associated irreducible sub-

sequence is invoked after incrementing N in Step 6; if Step 3 produces an irreducible sub-

sequence that has already been evaluated in a previous iteration, then it can be skipped.

3.8 Numerical Simulations

We consider a case study of spacecraft three dimensional relative motion control. The rel-

ative motion dynamics are modeled with the linearized Clohessy-Wiltshire [70] equations,

ẍ1 = 3ω2x1 + 2ωẋ2 +
1

m
u1,

ẍ2 = −2ωẋ1 +
1

m
u2,

ẍ3 = −ω2x3 +
1

m
u3,

(3.25)

where m is the chaser vehicle’s mass and ω is the mean motion of the target vehicle’s orbit.

We form a system of first-order equations with state vector xk = [x1,k, x2,k, x3,k, ẋ1,k, ẋ2,k, ẋ3,k]
T

and discretize using a Zero-Order Hold [71] with sampling period of 30 sec, chaser vehicle

mass of 140 kg and target vehicle mean motion of ω = 0.0010 rad/sec.
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We choose C = [I3 03×3], which corresponds to relative position measurements. The

goal in this scenario is to rendezvous the chaser vehicle with the target vehicle, i.e., to bring

the chaser’s state to the origin.

For this controller and observer, the feedback gain matrix K is computed using LQR

by solving the Discrete-Time Algebraic Riccati Equation (DARE) and the observer gain

matrix L computed by solving the dual DARE, with Q = I6 and R = I3 in each case.

The distributions of the measurement noise, νk, and of the state disturbance, wk, are

assumed to be Gaussian with covariance matrices Σv = 10−2 · I3 and Σw = 10−4 · I6.

The cost function (3.24) has been defined with rη = 0, Re = I and Rx = 0. These

choices ensure accurate estimates of the relative position states.

We now construct a sequence that satisfies the sufficient conditions, and demonstrate

that it leads to stable behavior.

For this example, ρ(Ω̄0) = 1.0063, ρ(Ω̄1) = 0.2016, ρ(Ω̃0) = 0.0332, and ρ(Ω̃1) =

1.0063.

Working with the Frobenius norm, k∗ = 1 and

c =
‖Ω̄1‖F
ρ(Ω̄1)

=
10.4716

0.2016
= 51.950.

Begin with the (inadmissible) sequence s2 = {0, 1}, with ns = 2, n0 = 1, and n1 = 1.

Then, ns log c+n0 log ρ̄0+n1 log ρ̄1 = 6.3054 and ns log c+n1 log ρ̃0+n0 log ρ̃1 = 4.5016.

To satisfy the sufficient conditions, increase n1 until (3.18) is satisfied, then increase n0

until (3.19) is satisfied, then repeat as necessary until both inequalities are simultaneously

satisfied. This process yields n0 = 3 and n1 = 5, as then, ns log c+n0 log ρ̄0 +n1 log ρ̄1 =

−0.0879 and ns log c + n1 log ρ̃0 + n0 log ρ̃1 = −2.2837. Then, we simulate this new

sequence, s8 = {0, 0, 0, 1, 1, 1, 1, 1}, that we have constructed, using randomized initial

conditions. An example trajectory appears in Figure 3.1.

The shortest admissible solution sequence is of length 4, and the optimum such se-

48



0 50 100 150 200 250 300 350 400 450 500
-50

0

50

P
o
s
it
io

n
 [
k
m

] x
1

x
1
-hat

0 50 100 150 200 250 300 350 400 450 500
-40

-20

0

20

P
o

s
it
io

n
 [

k
m

]

x
2

x
2
-hat

0 50 100 150 200 250 300 350 400 450 500

Time [s]

-20

0

20

40

P
o
s
it
io

n
 [

k
m

]

x
3

x
3
-hat

Figure 3.1: Simulation of the 8-step sequence s8 that was constructed to satisfy the suffi-
cient conditions.

quence is S4 = {0, 0, 1, 1}, with q̄A = 0.5879 in (3.9) and q̃A = 0.0130 in (3.10). When the

algorithm treats sequences of length 7, the optimum sequence is S7 = {0, 0, 1, 1, 1, 0, 0},

with q̄A = 0.07594 and q̃A = 3.796 × 10−5. Figure 3.2 shows the results of propagating

these control sequences forward.

In each case, the expected value of each state is successfully driven to the origin. Of

note, when the algorithm treats sequences of length 8, the optimum sequence is s8 =

{0, 0, 1, 1, 0, 0, 1, 1}, a reducible sequence which has S4 as its corresponding irreducible

subsequence.

The remaining objective is to select an admissible sequence that also satisfies a specified

chance constraint. For the relative motion scenario, suppose that we wish to establish

a constraint on the steady-state of the form X = {x : ‖x‖∞ ≤ b}, so that the chaser

spacecraft remains within a box centered at the origin, of side length 2b, with Prob(X) ≥

0.95. Consider again sequence S4; invoking (3.23), with αx =
√

3/0.05, for each of
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Figure 3.2: State responses when propagating the length 4 and length 7 optimal sense-
control admissible sequences for the relative motion scenario.

P s
x,0, . . . , P

s
x,3 yields spheres with a minimum radius of b = 2.79 and a maximum radius of

b = 9.54. Only the loosest of these constraints is guaranteed by (3.23), but even the tightest

bound remains somewhat conservative. When we set b = 2.5, as demonstrated in Figure

3.3, the chance constraints are violated in no more than 4% of trajectories at any given time

step over the course of two hundred simulation runs.

3.9 Summary

This chapter formulated and treated a problem in which simultaneous sensing and actuation

was not possible. The solution involved the use of offline-constructed periodic switching

sequences between sensing and actuation. When applied online, these sequences had de-

sirable convergence properties. Approaches to simplify the check for admissibility of a

sequence have been described based on the notion of reducible sequences and the use of
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Figure 3.3: Two hundred simulated trajectories of the relative position of the chaser vehicle
under the sequence S4, subject to the box constraint b = 2.5 km and the chance constraint
P(X) = 0.95.

dwell time sufficient conditions. An example of applying the procedure to spacecraft rela-

tive motion control has been given in simulations.
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CHAPTER 4

Waypoint-Following MPC in Minimum-Time

4.1 Motivation

In this chapter, motivated by applications to agile imaging satellites that must capture as

many imaging sites as possible in minimum-time [72], we consider a problem in which a

spacecraft must follow a series of prescribed attitude waypoints and reach each waypoint

in minimum-time. In addition, the spacecraft attitude trajectory must avoid entering the

specified exclusion zones in order to protect sensitive measurement equipment onboard the

spacecraft.

To improve robustness to unmodeled dynamics and disturbances, rather than pursuing

an open-loop solution, we implement a MPC [73, 74] strategy in which the first element of

the solution sequence is applied to the spacecraft and the solution is then recomputed, with

the state resulting after one step used as the initial condition.

Our MPC design is based on linearizing and then converting to discrete-time the continuous-

time nonlinear attitude dynamics model of the spacecraft, and then formulating a MILP

[75]. In this MILP, binary integer variables are used to indicate whether the trajectory has

reached the target set around the destination waypoint at a given time instant, and these

binary integer variables are optimized along with the control inputs over the prediction

horizon. Such an approach can be extended to accommodate exclusion zone avoidance

requirements that can be encoded with the help of additional binary integer variables and

52



constraints in the MILP. As compared to applying the minimum-time optimal control se-

quence open-loop, the use of MPC with the solution recomputed at every time instance

compensates for the mismatch between the linear model and the nonlinear system.

In scenarios where a waypoint sequence is given, the minimum-time MPC solution is

applied to reach the target sets corresponding to each waypoint in turn until the target set

for the final waypoint is reached. The switching from the previous waypoint to the next

waypoint in the sequence is effected upon reaching the target set of the previous waypoint,

and a prediction horizon sufficient to reach the next waypoint is estimated. Our simula-

tion results, based on the nonlinear spacecraft attitude dynamics model with disturbances,

demonstrate that the controller is able to successfully track the sequence of waypoints with-

out violating the exclusion zone constraints.

Since minimum-time MPC results in agile maneuvering of the spacecraft, depending on

the level of spacecraft flexibility, spacecraft flexible modes could be significantly excited.

To address this issue, we also demonstrate that a minimum-time MPC solution for the case

of flexible spacecraft can be developed which accounts for the dynamics and constraints on

spacecraft flexible modes.

A related approach of reducing the problem to an MILP was pursued in [76] where the

objective was to guarantee a desired maneuver completion time rather than a minimum-

time solution. In [77–79], a similar discrete-time MPC framework is developed for a time

maximization problem of staying within a prescribed target set while counteracting drift.

Minimum-time MPC solutions considered in [80–82] are based on continuous-time models

and target state constraints. After a time re-scaling transformation, the resulting dynamic

optimization problem over a fixed time interval is solved with respect to the control input

and final time, where the final time appears as a multiplicative parameter in the re-scaled

differential equations. The discrete-time framework for minimum-time MPC adopted in

this section facilitates the onboard implementation of the resulting controller as a fixed

controller update rate can be maintained. Furthermore, in this setting, the handling of state
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constraints corresponding to the exclusion zone avoidance requirements can be performed

through mixed integer programming techniques [83, 84].

4.2 Problem Formulation

Consider a discrete-time nonlinear system with the model given by

xk+1 = f(xk, uk), (4.1)

where k ∈ Z≥0 denotes the discrete-time instant, xk ∈ Rnx denotes the state and uk ∈ Rnu

denotes the control input.

Suppose the control constraints are given by

uk ∈ U, (4.2)

where U is a compact set. We let {uk} ∈ Useq denote control sequences with elements

uk ∈ U . We also consider control policies which are mappings, π : Rnx → Rnu . A control

policy is admissible if the range of this mapping is the subset of U . The set of admissible

control policies is denoted by Upol.

Let C ⊂ Rnx be a specified target set and let τ be the first time instant at which the

trajectory enters C,

τ(x0, {uk}) = inf{k : φ{uk}(k, x0) ∈ C, k ∈ Z≥0}, (4.3)

where φ{uk}(k, x0) denotes the solution of (4.1) with the initial condition x0 at the time

instance k ∈ Z≥0 and under an admissible sequence {uk}. Note that C is assumed to be

robust control invariant; upon reaching C, we assume that there always exists a control that

will keep the trajectory within C at all future times. In the sequel, when x0 and {uk} are
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clear from the context, we will use xk to denote φ{uk}(k, x0). Similar notations, φ{π}(k, x0),

will be used to designate the closed-loop solution at the time instant k under the policy π

and for the initial condition x0. Note that for a given {uk}, τ(x0, {uk}) may not exist. In

such a case, we set τ(x0, {uk}) = +∞.

The minimum-time problem to reach the target set C is now formulated as

min
{uk}∈Useq

τ(x0, {uk}). (4.4)

The value function of this problem is denoted by τmin(x0).

The following proposition provides sufficient conditions that can be used to determine

the control policy based on dynamic programming.

Proposition 4.1: Suppose there exists a function V : Rnx → Z≥0 and a control policy,

π∗ ∈ Upol, such that

V (f(x, π∗(x)))− V (x) = −1, (4.5)

V (f(x, π(x)))− V (x) ≥ −1 for any π ∈ Upol, (4.6)

V (x) > 0 if x 6∈ C , (4.7)

V (x) = 0 if x ∈ C . (4.8)

Then π∗ is a (possibly non-unique) minimum-time optimal control policy.

Remark 4.1: Note that for V and π∗ from Proposition 4.1, it follows that V (x0) =

τmin(x0) and if V (x0) = k then φπ∗(k, x0) ∈ C.

Remark 4.2: If the function V satisfying Proposition 4.1 is known, control policies can

be defined based on

u∗(x) ∈ min
u∈U
{V (f(x, u))}. (4.9)

As an example, suppose nx = nu = 1, f(xk, uk) = xk + uk, C = U = [−0.5, 0.5]. In
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Figure 4.1: The value function of the minimum-time problem in the scalar example.

this case, an obvious control policy,

u∗(x) =


0.5 if x < 0.5,

0 if −0.5 ≤ x ≤ 0.5,

−0.5 if x > 0.5

and the value function V (x) in Figure 4.1 satisfy the conditions of Proposition 4.1. The

optimal control policy is non-unique. For instance, another optimal control policy is given

in Figure 4.2 which is actually the minimum-norm selection that satisfies (4.9). For x0 =

−1.8, the closed-loop state trajectory with the former policy is a sequence, {−1.8, −1.3, −

0.8, −0.3}, and with the latter control policy is a sequence {−1.8, −1.5, −1.0, −0.5}.

In each case, it takes three steps to reach C.

While it may be possible to solve the dynamic programming problem in the low di-

mensional cases, using, e.g., value iteration, the treatment of higher dimensional problems

requires a different approach, specifically, one based on model predictive control.

Let the control constraint set U and the target set C be polyhedral, and suppose the
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Figure 4.2: An optimal control policy in the scalar example.

model is linear, i.e.,

U = {u ∈ Rnu : Γu ≤ γ, γ ∈ Rnγ}, (4.10)

C = {x ∈ Rnx : Hx ≤ h, h ∈ Rnh}, (4.11)

f(xk, uk) = Axk +Buk + d. (4.12)

In what follows, we make a simplifying assumption that the target setC is control-invariant,

i.e., the trajectory once it enters the set can always remain in the set with the feasible under

constraints control input.
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Consider the following optimization problem,

N∑
k=τlb(x0)

δk → min
{δk},{uk}

(4.13)

subject to

xk+1 = Axk +Buk + d,

Hxk ≤ h+M1nhδk,

δk ∈ {0, 1},

Γuk ≤ γ, k = 0, 1, · · · , N − 1,

δk+1 ≤ δk,

where Hxk and h define the polyhedral target set C, 1nh is a nh × 1 vector of 1’s, δk

is a binary decision variable used to relax the inequality constraint, and τlb(x0) ∈ Z≥0

denotes a known lower bound on the minimum-time; this can be estimated by solving the

completely relaxed linear program or through a heuristic procedure where the dynamics

are approximated by double integrators.

For xk ∈ C, Hxk ≤ h is satisfied and δk = 0; otherwise, δk = 1. The additional

constraint δk+1 ≤ δk ensures that once the target set is reached, then the state remains

inside the target set for all future time steps. We exploit the lower bound τlb(x0) since this

reduces the number of binary integer variables δk that need to be solved for, as for any

k < τlb(x0), δk = 1 in the solution. Note that problem (4.13) is a MILP that can be solved

using standard numerical algorithms. We note also that the assumption of the target set

being control-invariant can be relaxed but the resulting MILP will be more complicated.

We leave the details to future publications.

Proposition 4.2: Suppose the solution to the minimum-time optimal control problem

for (4.11)-(4.12) exists for a given x0. Then for all sufficiently large N > 0 and M > 0,

for the solution sequence to (4.13), {u∗k}, it holds that τ(x0, {u∗k}) = τmin(x0).
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Remark 4.3: When solving (4.13) numerically, the initially chosen horizon N may not

be sufficiently long to reach the target set. This can be detected if δ∗N = 1. In such a case,

the horizon can be increased, e.g., by a fixed value, N ← N + ∆N , and the problem can

be re-solved.

The open loop solution sequence, {u∗k}, of (4.13), determined for the given x0 on the

basis of the linearized model (4.12), if applied to the nonlinear model (4.1), may not lead to

a trajectory that reaches the target set due to the model mismatch. To improve the robust-

ness of the solution, the receding horizon control principle is used as in model predictive

control. Hence we define a feedback law based on the first move of the solution sequence

of (4.13) as

uMPC(x0) = u∗0, (u∗0 = u∗0(x0)). (4.14)

Such a solution is referred to as the minimum-time MPC feedback law.

Remark 4.4: In the MPC setting, various warm start strategies can be devised to sim-

plify the numerical implementation. For instance, if a feasible solution existed for a hori-

zon N at a given time instant, a feasible solution should exist, assuming no disturbances or

model mismatch, for a horizon of length N − 1 at the next time instant. This observation

is exploited in our subsequent numerical computations.

Figure 4.3 illustrates the benefits of an MPC solution for a point mass moving on a

plane, where the mass position dynamics are described by a pair of discrete-time double

integrators for each axis and are subject to the control constraint u ∈ U = [−1, 1]×[−1, 1].

A disturbance sequence that is additive to the control input is introduced for each axis

which is sampled from the uniform distribution in the interval [−0.05, 0.05]. As Figure

4.3 shows, the trajectory that results from applying the initial control input sequence open-

loop fails to reach the target set due to the perturbing effects of the unmeasured/unmodelled

disturbances. However, the closed-loop trajectory with MPC is able to successfully reach

the target set.

Remark 4.5: Extensions of the above MILP to the time-dependent case are straight-
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Figure 4.3: Trajectories when executing the initial control sequence open-loop vs re-
solving for a new control at every step in the presence of unmodeled disturbances.

forward with Ak, Bk, dk, Hk, hk, Γk, γk, replacing A, B, d, H , h, Γ, γ, respectively.

The minimum-time MPC can be applied to waypoint following problems in a straight-

forward manner: Given a sequence of waypoints and associated target sets, one commands

each target set sequentially to the minimum-time MPC controller until it is reached and

then a switch to the next waypoint in the prescribed waypoint sequence is initiated.

4.3 Numerical Simulations

4.3.1 Satellite Attitude Slew with Exclusion Zones

Consider a nonlinear model for the spacecraft attitude dynamics relative to LVLH frame

for a spacecraft on a circular orbit (see e.g. [30] and references therein for details). The
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equations of motion are given by


φ̇

θ̇

ψ̇

 = C−1
φθ



ω1

ω2

ω3

+ n


cθsψ

sφsθsψ + cφcψ

cφsθsψ − sφcψ


 , (4.15)

where

C−1
φθ =

(
1

cθ

)
cθ sφsθ cφsθ

0 cφcθ −sφcθ

0 sφ cφ

 ,
and

ω̇1 = J23(ω2ω3 − 3n2cφsφc
2
θ) +

u1

J1

,

ω̇2 = J31(ω3ω1 + 3n2cφcθsθ) +
u2

J2

,

ω̇3 = J12(ω1ω2 + 3n2sφcθsθ) +
u3

J3

,

(4.16)

where J1 = 20 kg·m2, J2 = 50 kg·m2, J3 = 40 kg·m2 are principal moments of inertia,

J12 := (J1−J2)/J3, J31 := (J3−J1)/J2, J23 := (J2−J3)/J1, and n represents low-Earth

orbital mean motion of 2π/5400 sec−1. The three Euler angles (roll φ, pitch θ and yaw

ψ) represent the orientation of the spacecraft body fixed frame with respect to the LVLH

frame. The control inputs are moments u1, u2, u3 about each body fixed axis.

The linearized model about the LVLH frame-resolved equilibrium xe = [0, 0, 0, 0,−n, 0]T
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takes the form,

A =



0 0 n 1 0 0

0 0 0 0 1 0

−n 0 0 0 0 1

−3n2J23 0 0 0 0 −nJ23

0 3n2J31 0 0 0 0

0 0 0 −nJ12 0 0


, B =



03×3

J−1
1 0 0

0 J−1
2 0

0 0 J−1
3


, d = 0.

(4.17)

We convert the linearized model to discrete-time assuming a zero-order hold [71] and sam-

pling period of ∆T = 0.5 sec.

The closed-loop trajectories generated by the minimum-time MPC when applied to the

continuous-time nonlinear spacecraft attitude dynamics model are shown in Figures 4.4

and 4.5. The spacecraft follows a sequence of two waypoints for which the target sets

are shown in Figures 4.4 and 4.5 by the rectangular boxes and horizontal dashed lines,

respectively. Note that the waypoints and the corresponding target sets are only defined

in the roll-pitch-yaw subspace; the angular velocity components are not restricted. The

saturation constraints on the control moments are given by |ui| ≤ 0.2 Nm, i = 1, 2, 3.

Random unmeasured disturbance torques sampled from the uniform distribution over the

interval [−0.01, 0.01] have been added to the control moments about each axis to repre-

sent actuation errors. As observed from the simulated trajectories in Figures 4.4-4.6, the

minimum-time MPC controller designed on the linearized discrete-time model is able to

track the specified waypoints while respecting control constraints even when applied to

the full non-linear continuous-time model and when disturbance torques are present. The

computations were carried out on a MacBook laptop with a 2.5 GHz processor and 16 GB

of memory using Matlab’s intlinprog command to solve the MILP; the entire trajectory,

including tracking both waypoints, was computed in 3.28 seconds.
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Figure 4.5: Time histories of the roll, pitch and yaw when controlled by the minimum-time
MPC.
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Figure 4.6: Time histories of the torque inputs when controlled by the minimum-time MPC.

4.4 Exclusion Zone Avoidance

The MILP can be augmented by exclusion zone constraints following the approach of [83,

85]. As an example, consider a rectangular exclusion zone avoidance requirement given by

(φ, θ, ψ) 6∈ [−φl, φu]× [−θl, θu]× [−ψl, ψu]. To handle such an exclusion zone we augment

our MILP with extra binary integer variables εi,k ∈ {0, 1} and constraints,

φk ≤ φl +Mε1,k,

−φk ≤ −φu +Mε2,k,

θk ≤ θl +Mε3,k,

−θk ≤ −θu +Mε4,k,

ψk ≤ ψl +Mε5,k,

−ψk ≤ −ψu +Mε6,k,

6∑
i=1

εi,k ≤ 5,

(4.18)
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where M > 0 is sufficiently large. The number of ε binary variables at each time step is

equal to the number of faces of the exclusion zone polytope, with each ε = 1 if the state

lies “inside” the corresponding face and ε = 0 otherwise. The final inequality ensures that

the state remains outside of the exclusion zone, as the constraint is violated if and only if

the state lies “inside” of every face simultaneously.

Figures 4.7-4.8 show the closed-loop simulation results with the nonlinear spacecraft at-

titude dynamics model and the exclusion zone represented by a cube centered at (−5◦,−5◦, 5◦)

with side length 5◦. The initial attitude is (−10◦,−10◦, 10◦) and the initial angular veloc-

ities are zero. The control moments here are limited to 0.1 Nm, and random unmeasured

disturbance torques sampled from the uniform distribution over the interval [−0.01, 0.01]

Nm have been added to the control moments about each axis to represent actuation errors.

The minimum-time MPC controller successfully controls the attitude to the waypoint at the

origin, and then back to the waypoint corresponding to the initial state. The exclusion zone

constraint violation is avoided. We note that when random disturbances are added, some

trajectories generated at random may slightly violate the exclusion zone constraints. By

slightly inflating these exclusion zones the violation of the original exclusion zone bound-

aries can be reduced.

In addition, when the exclusion zone is removed and the simulation re-run using iden-

tical initial conditions, the trajectory is noticeably different, as seen in Figures 4.9-4.10. In

particular, the trajectory intersects the exclusion zone multiple times.

Accommodating additional exclusion zones results in a large increase in the binary

decision variable count. The worst-case computation times increase exponentially as the

number of these binary variables grows, which impedes the ability to compute the solution

online. A mitigating approach used in [83] is to identify exclusion zones that do not lie

between the current state and the target state, and discard those binary variables entirely

until a new target state is assigned. Such a strategy can reduce the computational effort

but requires a priori knowledge of all of the exclusion zones to decide which ones are “far
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Figure 4.7: Closed-loop spacecraft attitude trajectory with a single exclusion zone. The
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Figure 4.10: Time histories of the roll, pitch and yaw for the closed-loop simulations of the
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away” on each leg of the trajectory. Other possibilities include replacing a group of zones

with their convex hull, reducing the prediction horizon by lengthening the time steps, or

adding additional waypoints to allow for a shorter prediction horizon [86].

4.4.1 Satellite Attitude Slew with Flexible Modes

We now consider the application of the minimum-time MPC to a flexible spacecraft. As

minimum-time maneuvers for agile satellites can be fairly aggressive, accounting for space-

craft flexibility effects in terms of deflections and loads can be important.

The orientation of the spacecraft frame relative to the reference LVLH frame is pre-

scribed by the roll-pitch-yaw angles φ, θ and ψ. The angular velocity vector of the space-

craft frame relative to the reference frame expressed in the spacecraft frame is ω = [ω1, ω2, ω3]T.

The equations of motion [87] are given by (4.15) and

Jω̇ + ω×Jω + ∆Tη̈ = τgg + u,

η̈ + Cdη̇ +Kη = −∆ω̇,

(4.19)

where η ∈ Rk is the vector of modal coordinates of flexible modes, k is the number of

flexible modes included in the model, ∆ ∈ Rk×3 is the coupling matrix between the rigid

body modes and flexible modes, Cd ∈ Rk×k is the matrix of damping ratios of the flexible

modes, K ∈ Rk×k is the stiffness matrix of the flexible modes, ω× is the skew-symmetric

matrix of angular velocities,

ω× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,

68



u ∈ R3 is the vector of control moments, and

τgg =


−3n2(J2 − J3)cφsφc

2
θ

3n2(J3 − J1)cφcθsθ

3n2(J1 − J2)sφcθsθ


represents the gravity gradient torque acting on the spacecraft,

From (4.19) it follows that

Jω̇ + ω×Jω −∆T(Cdη̇ +Kη + ∆ω̇) = τgg + u,

η̈ + Cdη̇ +Kη = −∆(J−1(−ω×Jω −∆Tη̈ + τgg + u)),

and

ω̇ = (J −∆T∆)−1(−ω×Jω + ∆T(Cdη̇ +Kη) + τgg + u),

η̈ = (Ik −∆J−1∆T)−1(−Cdη̇ −Kη + ∆J−1(ω×Jω − τgg − u)),

(4.20)

where Ik denotes k × k identity matrix.

To apply minimum-time MPC, we will linearize these equations and then apply a zero-

order hold discretization, following the procedure of Section 4.3.1. Note that our states are

rigid body states, (φ, θ, ψ, ω1, ω2, ω3), as well as the new flexible mode state variables

that we have introduced in this section, (η1, . . . , ηk, η̇1, . . . , η̇k).

In the simulation example, we consider k = 4 flexible modes, and use the following

parameter matrices based on [85, 88]:

∆ =
−1√

10



6.45637 1.27814 2.15620

−1.25619 0.91756 −1.67264

1.11687 2.48901 −0.83674

1.23637 −2.6581 −1.12503


kg1/2 ·m,
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Cd = diag(0.0086, 0.0190, 0.0487, 0.1275), sec−1 andK = diag(0.59, 1.2184, 3.5093, 6.5004)

sec−2.

With four flexible modes, the linearization takes the form


ω̇1

ω̇2

ω̇3

 = (J −∆T∆)−1

([
D ∆TK ∆TCd

]
x+ u

)
,



η̈1

η̈2

η̈3

η̇4


= (I4 −∆J−1∆T)−1

([
∆D −K −Cd

]
x−∆J−1u

)
,

(4.21)

where x = [φ, θ, ψ, ω1, ω2, ω3, η1, . . . , η4, η̇1, . . . , η̇4]T and D is given by,

D =


−3n2(J2 − J3) 0 0 0 0 −n(J2 − J3)

0 3n2(J3 − J1) 0 0 0 0

0 0 0 −n(J1 − J2) 0 0

 .

Here, n = 2π/5400 sec−1 represents the mean orbital motion and J1 = 150 kg · m2, J2 =

50 kg ·m2, J3 = 170 kg ·m2 are the principal moments of inertia.

Note that, particularly in large space vehicles, there may exist many more than four flex-

ible modes to consider; the relatively small number of modes in this example was chosen

to maintain clarity of the presentation.

We simulate a rest-to-rest motion trajectory, with an initial attitude of (φ, θ, ψ) =

(−30◦,−30◦, 30◦) and the angular velocity and flexible mode states taking initial values

of 0. The control input torque has a saturation limit of 0.2 N · m, and the flexible modes

are constrained to a maximum of 1◦ kg1/2 · m. The results of the simulation are found in

Figures 4.11-4.14. The satellite executes the attitude change maneuver in minimum-time
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Figure 4.11: Attitude trajectory of flexible spacecraft under the minimum-time MPC con-
troller.

while respecting the constraints on the flexible mode deflection magnitudes.

4.5 Summary

An MPC framework has been considered for minimum-time spacecraft attitude control in

presence of exclusion zone constraints. The solution is based on a suitably formulated

MILP for the linearized and converted to discrete-time model, and with the additional bi-

nary decision variables introduced to track whether the trajectory has reached the target

set as well as to avoid entering non-convex exclusion zones. Simulation results based on

the nonlinear model of a rigid spacecraft demonstrated that the controller is able to ac-

complish waypoint tracking and avoid the violation of exclusion zone constraints. The

minimum-time MPC framework can be extended to the case of flexible spacecraft where,

as demonstrated by our simulation results, the violation of constraints on elastic deflections
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Figure 4.12: Time histories of roll, pitch, and yaw under the minimum-time MPC con-
troller.

0 20 40 60 80

Time, s

-1.5

-1

-0.5

0

0.5

1

1.5

1
, 
k
g

1
/2

-m
-d

e
g

0 20 40 60 80

Time, s

-1.5

-1

-0.5

0

0.5

1

1.5

2
, 
k
g

1
/2

-m
-d

e
g

0 20 40 60 80

Time, s

-1.5

-1

-0.5

0

0.5

1

1.5

3
, 
k
g

1
/2

-m
-d

e
g

0 20 40 60 80

Time, s

-1.5

-1

-0.5

0

0.5

1

1.5

4
, 
k
g

1
/2

-m
-d

e
g

Figure 4.13: Modal coordinates of the flexible spacecraft under the minimum-time MPC
controller.
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Figure 4.14: Control torque time histories for the flexible spacecraft under the minimum-
time MPC controller.

and loads during the maneuvers can be avoided.
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CHAPTER 5

Closed-loop Lyapunov Stability with

Minimum-time MPC Feedback Laws for

Discrete-time Systems

5.1 Motivation

There has been persistent interest in minimum-time MPC where the optimal control in-

put to reach a target state or a target set in minimum-time is recomputed at discrete sam-

pling instances subject to the current state as an initial condition and applied to the system

for a period of time before the next re-computation takes place. As in the conventional

MPC [73,74], this process defines a feedback law which, as compared to the open-loop so-

lution, is expected to improve robustness to unmodeled uncertainties and disturbances. The

state and control constraints can be handled by including them in the optimization prob-

lem formulation and, under the assumption of no model mismatch, recursive feasibility and

finite-time convergence are easily achieved.

Minimum-time MPC is motivated in part by applications to attitude control of agile

imaging satellites where the time of pointing the spacecraft at a target must be minimized

(see, e.g., [72]). Since minimum-time MPC provides finite-time (rather than asymptotic

convergence), it is a convenient framework for waypoint following applications [28]. Other

potential applications of minimum-time MPC involve systems that must be maneuvered in
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finite time, e.g., helicopter ship landing (see, e.g., [89]) or spacecraft docking (see e.g.,

[90]).

Minimum-time MPC feedback laws can be developed either in continuous time or

in discrete-time. The continuous-time setting is closest to the one of optimal control,

in fact, minimum-time MPC can be viewed as an algorithmically defined [91] approx-

imation of minimum-time optimal control. Consequently, minimum-time MPC inherits

finite-time convergence and certain robustness properties (see, e.g., the discussion in [82])

from minimum-time optimal control. From the computational standpoint, a time re-scaling

transformation can be used (see e.g., [80]) and the resulting dynamic optimization problem

over a [0, 1] time interval is solved with respect to the discretized (or parameterized) con-

trol input and final time, where the final time is a multiplicative parameter in the re-scaled

differential equations.

The alternative setting for minimum-time MPC is discrete-time (see e.g., [92, 93])

which has important advantages from the implementation perspective in being able to main-

tain the fixed update rate for the controller. Computationally, discrete-time minimum-time

MPC can be handled through mixed integer optimization [76, 94] and is straightforward

to set up. An alternative approach in [95] is based on defining an equivalent objective

function penalizing the 1-norm of the state with exponentially increasing weights. This

formulation reduces the optimal control problem to a fixed-horizon problem while main-

taining the time-optimality and without requiring mixed integer optimization. However, in

this formulation, the initial prediction horizon must be chosen to be greater than the a pri-

ori unknown minimum-time horizon; this may result in having to repeatedly solve a larger

optimal control problem than necessary. The computation of minimum-time MPC laws for

piecewise-affine systems using multi-parametric programming is addressed in [96]. In [97],

a discrete-time MPC framework is developed for a related time maximization problem of

staying within a prescribed target set while counteracting drift.

In this chapter, we consider minimum-time MPC in a discrete-time setting with the

75



primary focus on achieving finite-time stabilization of a specified equilibrium point (rather

than a set as in [98] and references therein). We illustrate with examples that while finite-

time attractivity of the equilibrium is easily achievable with minimum-time MPC, Lya-

punov stability of the closed-loop system at the equilibrium may not hold due to non-

uniqueness of the optimal control sequence.

To recover Lyapunov stability, we propose an approach based on the lexicographic

optimization [99–101]. In this approach, a secondary objective function is defined and

minimized over the set of solutions that minimize the primary objective function (time-

to-go). With the lexicographic approach we demonstrate that Lyapunov stability of the

equilibrium is achievable under appropriate and reasonable assumptions.

5.2 Problem Formulation

The setting and properties of minimum-time MPC for a class of nonlinear discrete time

systems are reviewed in this section. For completeness, and considering many of the basic

facts have been shown for linear systems in the prior literature, we include a short, self-

contained treatment along with the associated proofs.

Consider a system with a discrete-time nonlinear model given by

xk+1 = f(xk, uk), (5.1)

where k = 0, 1, 2, · · · designates the time instance, xk is an nx-vector state, and uk is an

nu-vector control.

The control constraints are imposed by specifying

uk ∈ U ⊂ Rnu , (5.2)
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where the set U is assumed to be compact. The state constraints are given as

xk ∈ X ⊆ Rnx . (5.3)

Let D0 ⊂ X be a non-empty and compact target set. Often in applications, the target

is a singleton, i.e., D0 = {0}. This assumption will be made in subsequent sections when

addressing closed-loop Lyapunov stability but not yet here.

Define a one step feasible set of states,

D1 = {x ∈ X : ∃u ∈ U, such that f(x, u) ∈ D0}, (5.4)

and, for k > 1, a k-step feasible set of states recursively as

Dk = {x ∈ X : ∃u ∈ U, such that f(x, u) ∈ Dk−1}. (5.5)

It is straightforward to prove that the set Dk consists of states that can be steered to

the set D0 in k steps without violating constraints; note, however, some of the states in

Dk could also be steered into D0 in a different number of steps. Formally, we have the

following proposition.

Proposition 5.1: There exists a control sequence {u0, u1, · · · , uk−1} ⊂ U , such that

x1 = f(x0, u0) ∈ X, x2 = f(x1, u1) ∈ X, · · · , xk = f(xk−1, uk−1) ∈ D0 if and only if

x0 ∈ Dk.

Proof: Suppose x0 ∈ Dk. By definition of Dk, there exists u0 ∈ U such that x1 =

f(x0, u0) ∈ Dk−1 ⊂ X . By definition of Dk−1, there exists u1 ∈ U such that x2 =

f(x1, u1) ∈ Dk−2 ⊂ X . We can continue this process till uk−1 is found such that xk =

f(xk−1, uk−1) ∈ D0. The required sequence is {u0, u1, · · · , uk−1}. Suppose now that there

exists a control sequence, {u0, u1, · · · , uk−1} ⊂ U , such that x1 = f(x0, u0) ∈ X, x2 =

f(x1, u1) ∈ X, · · · , xk−1 = f(xk−2, uk−2) ∈ X, xk = f(xk−1, uk−1) ∈ D0. Then xk−1 ∈
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D1, xk−2 ∈ D2, and so on, and finally, x0 ∈ Dk. �

Proposition 5.2: Suppose for all x ∈ D0 there exists u0(x) such that f(x, u0(x)) ∈ D0.

Then the sets Dk are nested, i.e., Dk ⊆ Dk+1.

Proof: The proof is by induction. By Proposition 5.1, for x0 ∈ Dk, there exists a

control sequence {u0, u1, · · · , uk−1} ⊂ U , such that xk ∈ D0 and {x0, · · · , xk} ⊂ X . Let

uk = u0(x0), and apply the control sequence, {u0, u1, · · · , uk−1, uk} to the system with the

initial condition x0. Then, xk+1 = f(xk, uk) ∈ D0 and by Proposition 5.1, x0 ∈ Dk+1. �

Proposition 5.3: If the vector function f in (5.1) is continuous in both arguments

(f ∈ C(Rnx × Rnu → Rnx)) and X is closed, then the set Dk is closed for any k.

Proof: The proof is by induction. The set D0 is compact and hence closed. Assume

Dk−1 is closed, k ≥ 1. To show that Dk is closed, suppose there exists a sequence {xj} ⊂

Dk, xj → x∗ as j → ∞ and either (a) x∗ 6∈ X or (b) f(x∗, u) 6∈ Dk−1 for any u ∈ U .

Since X is closed, (a) is not possible, hence we consider the possibility (b). Note that

corresponding to each xj , there exists uj ∈ U such that f(xj, uj) ∈ Dk−1. Since U is

compact, from the sequence {uj}we can extract a convergent subsequence to some u∗ ∈ U .

Without loss of generality, assume that the whole sequence {uj} is convergent to u∗ and the

corresponding {xj} is convergent to x∗. Since f is continuous, f(xj, uj) → f(x∗, u∗) 6∈

Dk−1. However, as f(xj, uj) ∈ Dk−1 and Dk−1 is closed, this is a contradiction. �

Note that the sets Dk may not be bounded (i.e., compact) without additional assump-

tions. For instance, consider the case for D1 when nx = nu = 1, D0 = 0, X = R,

U = [−2, 2] and f(x, u) = (e−x−1)+u. In this case, [0,+∞[⊂ D1 and D1 is unbounded.

To prevent Dk from being unbounded, the function f must grow unbounded as x→∞.

Definition 5.1: A vector function f(x, u) is coercive in x if for any ε > 0 there exists

δ > 0 such that ‖x‖ > δ implies ‖f(x, u)‖ > ε for all u ∈ U .

Proposition 5.4: If the assumptions of Proposition 5.3 hold and f is coercive in x, then

the set Dk is compact.

Proof: The proof is by induction. Closeness has already been proven in Proposition
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5.3, and we need to show boundness. The set D0 is compact and hence bounded. Suppose

Dk−1 is compact (and hence bounded) for some k ≥ 1, and suppose, contrary to what we

need to prove, thatDk is unbounded. This means that there exists a sequence {xj} such that

‖xj‖ → ∞ and the corresponding sequence {uj} such that f(xj, uj) ∈ Dk−1. Since Dk−1

is compact, ‖f(xj, uj)‖ remains bounded as xj → ∞, which contradicts the coercitivity

property ‖f‖ > ε in Definition 5.1. �

Proposition 5.5: Suppose f is affine, of the form, f(x, u) = L+Ax+Bu, U is convex,

X is convex, and D0 is non-empty and convex. Then Dk is either empty or convex.

Proof: The proof is by induction. The set D0 is non-empty and convex by the assump-

tion made. IfDk−1 is empty, thenDk is empty. AssumeDk−1 is non-empty and convex and

let x1, x2 ∈ Dk ⊂ X . Then there exist u1, u2 ∈ U such that f(x1, u1) ∈ Dk−1 ⊂ X and

f(x2, u2) ∈ Dk−1 ⊂ X . Since f is an affine function f(λx1+(1−λ)x2, λu1+(1−λ)u2) =

λf(x1, u1) + (1− λ)f(x2, u2) ∈ Dk−1 by convexity of Dk−1, where 0 ≤ λ ≤ 1. Since X

is convex, λx1 + (1− λ)x2 ∈ X . Thus λx1 + (1− λ)x2 ∈ Dk for 0 ≤ λ ≤ 1. �

We are now ready to define the minimum-time MPC for discrete-time nonlinear sys-

tems.

Definition 5.2: For an initial state x0 and a given control sequence, {uk}, the time-to-go

τ is defined as

τ(x0, {uk}) = min{i ∈ Z≥0| xi ∈ D0}, (5.6)

where {xk} is the corresponding to {uk} state sequence that satisfies (5.1), i.e., xk+1 =

f(xk, uk). In case no integer i satisfying (5.6) exists, τ(x0, {uk}) = +∞.

The minimum-time MPC problem for x0 ∈ X \D0 is posed as follows:

Minimize τ(x0, {uk}) subject to ui ∈ U, xi ∈ X,

xi+1 = f(xi, ui), i = 0, · · · , τ(x0, {uk}). (5.7)
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Let

D̄∞ =
∞⋃
k=0

Dk. (5.8)

Now for x0 ∈ D̄∞ \D0, let k∗ be the smallest integer for which x0 ∈ Dk∗ , define

τ ∗(x0) = k∗, (5.9)

and select any minimum-time control sequence, {u∗0, · · · , u∗k−1}. Define an MPC feedback

law by the first action of this optimal control sequence,

uMPC(x0) = u∗0. (5.10)

Note that as the minimum-time control sequence may not be unique, different selections

of the control sequence could lead to different MPC feedback laws. However, for any

selection, the closed-loop trajectories for x0 ∈ D̄∞ converge to D0 in finite-time.

Theorem 5.1: For any x0 ∈ D̄∞ \D0, there exists an integer k∗ ≥ 1 such that closed-

loop trajectories under the MPC feedback law (5.10) satisfy xk ∈ X , k = 0, · · · , k∗,

uk ∈ U , k = 0, · · · , k∗ − 1, xk ∈ Dk∗−k, k = 0, · · · , k∗ − 1, and xk∗ ∈ D0.

Proof: Since x0 ∈ D̄∞\D0 there exists the smallest integer k∗ ≥ 1 such that x0 ∈ Dk∗ .

By Proposition 5.1, there exists a feasible control sequence steering the state trajectory into

D0 which is of minimum possible length, k∗. Let an optimal control sequence of the same

length which defines the MPC law (5.10) be {u∗0, · · ·u∗k∗−1}. Then for x∗1 = f(x0, u
∗
0), the

sequence {u∗1, · · ·u∗k∗−1} is feasible and steers the state into D0 in k∗ − 1 steps; hence by

Proposition 5.1, x∗1 ∈ Dk∗−1 \ D0. Continuing this argument, with x0 replaced by x∗1 and

so on, it follows that xk ∈ Dk∗−k, k = 0, · · · , k∗ − 1, and xk∗ ∈ D0. �

Thus any MPC feedback law defined according to (5.10) guarantees finite-time conver-

gence into D0 with the basin of attraction given by D̄∞.

Furthermore, if there exists a terminal control law, u0(x), which makes D0 invariant,
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Figure 5.1: Minimum-time state trajectories for (5.12) on the phase plane.

i.e., f(x, u0(x)) ∈ D0 for any x ∈ D0, then the switching dual mode feedback law,

u =

 uMPC(x) if x ∈ D̄∞ \D0,

u0(x) if x ∈ D0,
(5.11)

makes the set D0 a finite-time attractor for the closed-loop trajectories with the basin of

attraction given by D̄∞.

As a simple illustration, consider a discrete-time system representing two scalar inte-

grators with the model,

xk+1 =

 1 0

0 1

xk +

 1 0

0 1

uk, x0 =

 3

1

 , (5.12)

and let D0 = 0, U = [−1, 1] × [−1, 1], and X = R2. Then x0 ∈ D3 and there are

infinitely-many feasible control sequences and corresponding state trajectories which result

in x3 ∈ D0, see examples in Figures 5.1 and 5.2. Note that if x1,0 = x2,0, then the

minimum-time state trajectory and control sequences would be unique, but the set of such
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Figure 5.2: Minimum-time control sequences for (5.12) for the second input channel. The
minimum-time sequence for the first input channel is {−1,−1,−1}.

initial conditions has measure zero. The implications of the non-uniqueness are discussed

next.

5.3 Lexicographic Minimum-Time Control and Lyapunov

Stability

We first construct an example that demonstrates lack of Lyapunov stability for the Minimum-

time MPC. Consider the case D0 = 0, f(0, 0) = 0, and the origin is the target equilibrium

which is made invariant with uo(x) = 0.

Consider (5.1) with f(x, u) = Ax+Bu,

A =


0 0 0

0 1 0

1 0 0

 , B =


1 0

0 1

0 0

 . (5.13)
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Let x0 = [x01, x02, x03]T, u0 = [u01, u02]T, and u1 = [u11, u12]T. Then,

x1 =


u01

x02 + u02

x01

 , x2 =


u11

x02 + u02 + u12

u01

 . (5.14)

Consider x0 = [δ, δ, 0]T (i.e., x01 = x02 = δ, x03 = 0), where δ 6= 0. The minimum-time to

the origin for such x0 is τ ∗(x0) = 2 and minimum-time control sequences are {u0, u1}with

u0 = [0, α − δ]T, u1 = [0,−α]T, where α can be arbitrary as long as control constraints

are satisfied. For instance, if the control constraints are ‖u‖∞ ≤ 1, then |α − δ| ≤ 1 and

| − α| ≤ 1, or, −1 + δ ≤ α ≤ 1 + δ and −1 ≤ α ≤ 1.

The minimum-time control sequence could be non-unique. The minimum-time MPC

feedback law at x0 uses the first move, u0 = [0, α − δ]T, resulting in x1 = [0, α, δ]T.

Now τ ∗(x1) = 1 and u1 = ũ1 = [ũ11, ũ12]T leads to x2 = [ũ11, α + ũ12, 0]T. Hence, the

length 1 sequence that brings x1 to the origin is ũ1 = [0,−α]T and hence [0,−α]T would

be assigned/computed for the MPC feedback law at x1. Clearly, then x2 = [0, 0, 0]T. Note

that ‖x1‖∞ ≥ α no matter how small δ 6= 0 is chosen. We conclude that even though the

origin is finite-time attractive under the MPC feedback law, it is not Lyapunov stable.

Note also that in this case, even for a control set U that is both compact and convex, D1

and D2 are unbounded, as any initial condition of the form [0, 0, δ]T, δ 6= 0 lies in D1 and

any initial condition of the form [δ1, 0, δ2]T, δi 6= 0 lies in D2.

Consider now another example,

A =

1 1

0 1

 , B =

0

1

 , x0 =

x01

x02

 . (5.15)

Then, x1 = [x01 +x02, u0 +x02]T, x2 = [u0 +x01 + 2x02, u0 +u1 +x02]T. Absent control

constraints, τ ∗(x0) = 2 for almost all x0; consider an x0 = [x01, x02]T that is small enough
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in magnitude that control constraints are inactive, and define

u0 = −x01 − 2x02,

u1 = −u0 − x02 = x01 + 2x02 − x02 = x01 + x02.

(5.16)

Note that the sequence that brings the state to the origin in two moves,

{u0, u1} = {−x01 − 2x02, x01 + x02}, (5.17)

is unique. For x0, the MPC feedback law uses−x01−2x02, resulting in x1 = [x01 +x02, −

x01 − x02]T. Now τ ∗(x1) = 1 and we look for a length 1 control sequence {ũ1} that brings

the state to the origin:

x2 =

1 1

0 1


 x01 + x02

−x01 − x02

+

 0

ũ1

 =

 0

−x01 − x02 + ũ1

 . (5.18)

Hence, at time instant k = 1, the MPC feedback law would use ũ1 = x01 + x02, resulting

in x2 = 0. Based on the expression for x1, the origin of the closed loop system under MPC

feedback law is both Lyapunov stable and finite-time attractive.

Based on the above examples, it appears that non-uniqueness of the optimal control

sequence can lead to a discontinuous control action (such as u0 = [0, α − δ]T where α

does not depend on δ in our example) and loss of Lyapunov stability. For such cases, a

lexicographic minimum-time optimal control approach is proposed.

Suppose x0 ∈ Dn, where n = τ ∗(x0) ≥ 1 is the minimum discrete-time to reach

the origin. Suppose the system model is of the form (5.1) with constraints (5.2), (5.3),

where the function f is continuous, 0 ∈ int(U), 0 ∈ int(X) and f(0, 0) = 0. Let Un =
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[uT
0 , · · · , uT

n−1]T ∈ Rnu×n, and consider the optimization problem (where n is fixed),

min
Un
‖Un‖2

2,

subj to.: xn = 0,

xk+1 = f(xk, uk), k = 0, 1, · · · , n− 1,

xk ∈ X, k = 1, 2, · · · , n,

uk ∈ U, k = 0, 1, · · · , n− 1.

(5.19)

The optimization problem picks the minimum-norm control sequence to reduce the cumu-

lative control effort, in the case the minimum-time control sequence is non-unique.

In lexicographic optimization, there are two or more objectives with different priori-

ties. In our case, the primary objective is to minimize n, and the secondary objective is to

minimize the norm of the control sequence.

Define,

uMPC(x0) =

 0, if x0 ∈ D0 = {0}

U∗n,0, if x0 ∈ Dn, τ
∗(x0) = Dn,

(5.20)

where n = 1, 2, · · · , U∗n,0 is the first control input given by the solution, U∗n, to (5.19). Note

that if f is affine and X and U are convex, such a solution is unique.

Before giving a more general result, we consider the application of the lexicographic

optimization to the previous example where, due to non-uniqueness of the optimal control,

a control selection can be made that lacks Lyapunov stability. In revisiting this example,

the assumption that control constraints are satisfied at each step by the optimal control

sequence is carried forward.
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We have that

x0 ∈ D1 \D0 ⇒ x1 =


u01

x02 + u02

0

⇒ u∗0 =

 0

−x02

 . (5.21)

For x0 ∈ D2, τ ∗(x0) = 2, the lexicographic optimization takes the form:

min u2
02 + u2

12,

s.t. x02 + u02 + u12 = 0.

(5.22)

To solve this problem, we use the Karush-Kuhn-Tucker (KKT) conditions [102], which are

both necessary and sufficient since the problem is convex.

Let L = u2
02 + u2

12 + λ(x02 + u02 + u12) be the Lagrangian. Then, the stationarity

conditions lead to:

2u02 + λ = 0,

2u12 + λ = 0,

(5.23)

with solution u02 = u12 = −0.5λ. Then, x02 + u02 + u12 = 0 implies that λ = x02, and the

first move is defined by u∗0 = [u∗01, u
∗
02]T = [0,−0.5x02]T. Now, the lexicographic MPC
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feedback law is defined by:

uMPC(x0) =



0, if x ∈ D0,

 0

−x02

 , if x ∈ D1, τ
∗(x0) = 1,

 0

−0.5x02

 , if x ∈ D2, τ
∗(x0) = 2.

(5.24)

Note that uMPC is not continuous at x0 ∈ D1, i.e., the origin; however, it is continuous at

x0 = 0. Hence for all ε > 0, there exists δ > 0 such that ‖x0‖ ≤ δ implies ‖uMPC(x0)‖ ≤ ε.

Further note that for x0 ∈ D1, τ
∗(x0) = 1 or for x0 ∈ D2, τ

∗(x0) = 2, uMPC is a linear

function of x0.

Consider a closed-loop trajectory emanating from x0 ∈ D2 under the MPC feedback

law:

x0 ∈ D2, x1 =


0

0.5x02

x01

 , x2 =


0

0

0

 , x3 = x4 = · · · =


0

0

0

 . (5.25)

Consider now a closed-loop trajectory emanating from x0 ∈ D1 under the MPC feedback

law:

x0 ∈ D1, x1 =


0

0

0

 , x2 = x3 = · · · =


0

0

0

 . (5.26)

Finally, x0 ∈ D0, x1 = x2 = x3 = · · · = [0, 0, 0]T.

By inspection, it is clear that the closed-loop system under lexicographic minimum-

time MPC feedback law is Lyapunov stable at the origin. Indeed, given ε > 0, for ‖x0‖ ≤
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0.5ε, it follows that ‖xk‖ ≤ ε for all k ≥ 0.

We are now ready to generalize from this example.

Assumption (5.A1): There exists n∗ ∈ Z≥0 such that 0 ∈ int(D̄n∗), D̄n∗ =
⋃n∗

k=0Dk,

and the feedback law, uMPC, defined by (5.20), is continuous at the origin.

Theorem 5.2: Under the above assumptions including (A1), the origin is a Lyapunov

stable equilibrium for the closed-loop system with the MPC feedback law.

Sketch of the Proof: Since 0 ∈ int(D̄n∗), for all x0 in a sufficiently small neighborhood

S ⊂ D̄n∗ of the origin, uMPC is defined. Consider x0 ∈ S, then x0 ∈ Dn for some

n, 0 ≤ n ≤ n∗. The state sequence resulting from x0 under the MPC feedback law is of

the form

x1 = f(x0, uMPC(x0)),

x2 = f(x1, uMPC(x1)),

...

xn−1 = f(xn−2, uMPC(xn−2)),

xn = 0,

xk = 0, k > n.

(5.27)

By (5.A1), continuity of f , and properties of MPC feedback law (Theorem 5.1), we con-

clude that xk ∈ D̄n∗ , k ≥ 0, and can be made arbitrarily small in norm by selecting x0

sufficiently small in norm. �

Consider now the case when f(x, u) = Ax+Bu, 0 ∈ int(U), 0 ∈ int(X). Let x0 ∈ Dn

and n = τ ∗(x0). Note that xn = Anx0 +[B AB · · · An−1B]Un = Lnx0 +GnUn. Consider

optimization problem (5.19) without the state and control constraints:

‖Un‖2
2 → min,

Lnx0 +GnUn = 0.

(5.28)
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Since x0 ∈ Dn, (5.28) has a feasible solution Ūn. As the set {Un| Lnx0 + GnUn = 0} ∩

{Un| ‖Un‖2
2 ≤ ‖Ūn‖2

2} is compact, by a corollary to the Weierstrass theorem a minimizer

exists for this problem. Since the objective function of (5.28) is strictly convex and the

optimization is over a convex set defined by affine constraints, the minimizer in (5.28) is

unique and KKT conditions are both necessary and sufficient.

Let us analyze the KKT conditions: The Lagrangian is given by

L = ‖Un‖2
2 + λT(Lnx0 +GnUn), (5.29)

where λ is the vector of Lagrange multipliers of the same dimension as x. The KKT

conditions (stationarity and equality constraints) are:

2Un +GT
nλ = 0,

Lnx0 +GnUn = 0.

(5.30)

Note that (5.30) is a system of linear algebraic equations. System (5.30) has a unique

solution, and the solution mapping x0 → (U∗n, λ∗) is linear. Indeed, if U1
n, U2

n, λ
1, λ2

are solutions for x1
0 and x2

0 respectively, then q1U1
n + q2U2

n, q1λ
1 + q2λ

2 satisfy (5.30) if

q1x
1
0 + q2x

2
0 replaces x0 in (5.30). Thus,

U∗n = Σnx0, (5.31)

for some matrix Σn.

Note that if x0 is sufficiently close to the origin, then the solution (5.31) of (5.28)

satisfies the state and control constraints as 0 ∈ int(X), 0 ∈ int(U). Hence, (5.31) is also

the solution to (5.19) for x0 sufficiently close to the origin. Considering the first move of

the sequence in (5.31), U∗n,0, it is also a linear function of x0 such that U∗n(x0) → 0 as

x0 → 0.
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If we now assume that the pair (A, B) is controllable, it follows that Assumption A1

is satisfied in the linear system case. Thus, the application of lexicographic minimum-time

MPC to linear controllable systems yields a Lyapunov stable closed loop system at the

origin, the trajectories of which are finite-time convergent with the basin of attraction given

by D̄∞ in (5.8).

We also note that in the above linear system setting, given the uniqueness of the control

sequence, and assuming no model mismatch or disturbances, the principle of optimality

which typically does not hold for the conventional MPC does hold for the minimum time

MPC. In particular, the MPC feedback law will reproduce the elements of the initially

computed optimal open-loop control sequence.

5.4 Numerical Simulations

In this section we consider an application of minimum time MPC to control of spacecraft

relative motion in proximity to a nominal orbital position on a circular orbit. The linearized

Clohessy-Wiltshire equations [70] for relative motion of spacecraft in the orbital plane have

the following form,

ṙx = vx,

v̇x = 3n2rx + 2nvy +
u1

m
,

ṙy = vy,

v̇y = −2nvx +
u2

m
,

(5.32)

where rx and ry are spacecraft coordinates in Hill’s frame, m = 140 kg is the spacecraft

mass, and u1, u2 are thrust force components. A discrete-time model is obtained assuming

a time step of 30 sec. The nominal orbit is circular with a 500 km altitude, corresponding

to low-Earth orbit, and a mean motion of n = 0.0011085 s−1. The objective is to bring

the spacecraft to the origin (D0 = {0}) while satisfying control constraints with U =
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[−0.01, 0.01]× [−0.01, 0.01] kN .

Based on the theoretical results, the origin can be made an asymptotically stable and

finite-time attractive equilibrium of the closed-loop system while the sets Dk are convex

and compact.

The sets Dk are constructed recursively using the following procedure [92]. Assuming

that Dk−1 is polyhedral, Dk is obtained as a convex hull of the set of points which are

generated by backward propagation of vertices of Dk−1 under the control values at the

vertices of U , i.e., Dk = convh{z : z = A−1(x − Bu), x ∈ vert(Dk−1), u ∈ vert(U)}.

The convex hull was computed using Matlab’s convhull command.

Consider an initial state x0 = [−8 km, 0 km, 0.03 km/s, 0.01 km/s]T for which τ ∗(x0) =

15 and x0 ∈ D15. In the simulations, to illustrate the robustness properties of the minimum

time MPC, we consider additive disturbances in the discrete-time update equations for each

state drawn from the uniform distribution over the set [−0.01, 0.01] × [−0.01, 0.01] ×

[−0.001, 0.001]× [−0.001, 0, 001].

Figures 5.3-5.6 compare closed-loop trajectories with and without the additive distur-

bance, projected into the rx − ry, rx − vx, and ry − vy phase planes. The boundaries of the

sets Dk are also shown.

5.5 Summary

This chapter formulated and treated an optimal control problem in which a discrete-time

system is driven to the origin in minimum-time. The solution involves the use of sets

defining the basin of attraction for the origin of the system, with relevant properties of the

basin sets highlighted and demonstrated. A time-optimal MPC controller was formulated

to solve the optimal control problem.

Minimum-time MPC is of interest for a range of applications to agile maneuvering.

Lyapunov stability of the equilibrium may not hold under the minimum-time MPC feed-
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Figure 5.3: Non-perturbed (dashed) and perturbed (dotted) closed-loop trajectories in the
rx-ry phase plane. The ’o’ represents the initial state, and the target state is the origin.
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Figure 5.4: Non-perturbed (dashed) and perturbed (dotted) closed-loop trajectories in the
rx-vx phase plane. The ’o’ represents the initial state, and the target state is the origin.
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Figure 5.5: Non-perturbed (dashed) and perturbed (dotted) closed-loop trajectories in the
ry-vy phase plane. The ’o’ represents the initial state, and the target state is the origin.
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Figure 5.6: The time histories of the control input sequences u1,k, u2,k generated by the lex-
icographic MPC. The dashed lines represent the constraint set U . Non-perturbed trajectory
is solid and perturbed trajectory is dashed.
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back due to the non-uniqueness of the optimal control sequence. Lyapunov stability can be

recovered through a lexicographic MPC approach, which picks a minimum norm control

sequence.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This dissertation focused on two kinds of problems. The first problem, Disjunctive Sens-

ing and Control (DSC), concerned the design of switching sequences between mutually-

exclusive actuation and estimation modes. The second problem, time-optimal control in an

MPC setting, was inspired by requirements for imaging satellites to slew through as many

ground targets as possible in a given time frame. For both classes of problem, theoretical

and methodological results were developed and simulation results that demonstrated the

viability and efficiency of the control techniques used for spacecraft control applications

were reported. In addition, comprehensive control solution was developed for a magneti-

cally actuated cubesat attitude control.

Chapter 2 treated the magnetically actuated satellite control problem in detail, with

proofs of time-varying controllability and an analysis of the effects on the dynamics caused

by the augmentation of the passive atmospheric drag panels. The reliance of the satellite on

magnetic actuators as well as magnetic sensors created an untenable amount of magnetic

noise in the sensors when both subsystems were activated together; a discrete-time LQR

control scheme was developed that switched between the magnetic sensors and magnetic

control rods at regular intervals, to allow the noise to dissipate. The passive actuation pro-

vided by the drag panels allowed for the development of a second, reduced-order discrete-
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time LQR controller that allowed for faster control calculations, vital on a small platform

such as a cubesat with limited computational resources. The discrete-time LQR controller

was expanded into a model predictive controller, and simulation results were presented

that supported the disturbance-rejection properties of the closed-loop predictive controller

despite the switching logic implemented.

In Chapter 3, motivated by the satellite control problem, the more general problem

of Disjunctive Sensing and Control (DSC) was considered. The stability properties of

this more general class of switched systems were analyzed, and conditions for ensuring

convergence to a limit set were derived. The efficacy of these conditions were demonstrated

with simulation results. Further conditions were derived for ensuring that the limit set of the

trajectory satisfied chance constraints, ensuring that desired behavior was maintained to a

high probability despite random disturbance effects. Additional results and algorithms were

also introduced to speed up the search for switching sequences with acceptable properties.

Chapter 4 switched the focus to the time-optimal waypoint following problem which

it approached using a modified MPC scheme. As compared to the open-loop solution, the

use of MPC improved robustness to unmodeled disturbances as well as dynamic model

mismatch that can arise due to the application of a controller based on a linearized ap-

proximation to a non-linear dynamic system. To solve the problem computationally, a

Mixed-Integer Linear Program (MILP) reformulation was defined with the binary integer

state introduced to indicate if the state had entered a pre-defined target set. Simulations

were provided for spacecraft attitude maneuvering with multiple waypoints, demonstrating

the controller’s ability to update to new waypoints in a multi-point trajectory plan. The

problem was further extended by the addition of non-convex exclusion zones (obstacles)

in the state space which the trajectory had to avoid. Additional binary integer optimiza-

tion variables and suitable constraints were introduced to capture the obstacle avoidance

requirements. While the exclusion zone handling has been shown to be possible within

the same framework, it was noted that the growth in the computation time caused by the
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addition of the exclusion zones is exponential. As another extension, the spacecraft atti-

tude dynamics were further amended to include a set of flexible appendages, which were

constrained from bending deflections exceeding particular limits. Simulations were pre-

sented that demonstrated the controller’s ability to constrain the elastic deflections while

still completing the maneuver in the minimum time.

Chapter 5 added a further consideration to the treatment of the minimum-time MPC

of Chapter 4 which is the loss of Lyapunov stability of the target equilibrium if the op-

timal control sequence in the minimum-time MPC problem is non-unique. To recover

Lyapunov stability, a lexicographic optimization approach was proposed. In this approach,

a secondary objective function was minimized once the minimum time-to-go was deter-

mined. By selecting the secondary objective function to be convex, such as the 2-norm

over the entire control sequence, the lexicographic optimizer returned a single, unique con-

trol sequence that restored Lyapunov stability of the equilibrium. A method of efficiently

determining the minimum-time horizon was proposed, in which backward reachable sets

were constructed recursively, starting at the target set and using a backwards-in-time prop-

agation of the dynamics. Numerical simulations were presented that demonstrated the

Lyapunov stability of the origin and robust operation in the presence of disturbances for a

spacecraft relative motion example. From a practicl perspective, a possible alternative ap-

proach to lexicographic optimization is a blended-cost objective function that reflects both

the minimum-time and minimum-effort goals in a single cost function with a much larger

weight on the time-to-go; such a method is implemented in, for example, [103].

6.2 Future Work

Many topics and avenues for future work remain.
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6.2.1 Disjunctive Sensing and Control (DSC)

In the DSC case, it is assumed that, of the two subsystems, one is always active. In addi-

tion, the existence of residual actuation effects was disregarded. In real satellite missions,

there are multiple other subsystems, such as a radio, scientific experiments, and others.

Furthermore, when actuators are activated and deactivated, the switch is not instantaneous;

there is some required ramp up and ramp down time. Mission objectives and power limita-

tion constraints could also force both the sensors and actuators offline while a third system

is active. Expanding the periodic sequences to account for other systems, or to allow for

residual actuation decay, while maintaining the same chance constraint guarantees should

be further examined; in particular, the sequences could be modified by the addition of a

third state (“act-sense-think”). In the current work, it is also assumed that the dynamic

matrices are time-invariant; a further avenue of study is the case when the dynamics are

time-varying, i.e., a formulation, xk+1 = A(tk)xk +B(tk)uk.

6.2.2 Waypoint-Following MPC

In the MILP solver, the addition of exclusion zones causes an exponential increase in the

number of binary optimization variables and a corresponding increase in the total computa-

tion time. Finding ways to mitigate this growth in complexity without violating constraints

and while maintaining close to optimal time-to-go is left as the subject for future work. In

addition, while disturbance effects have been introduced in the simulations, the question of

input-to-state stability with respect to additive disturbance effects is an important consider-

ation that has received some attention in the literature [98] and which should be considered

in depth in future work. Further, under the given problem formulation, it is assumed that

each target set in the waypoint sequence is a robust, forward control-invariant set, that is,

each target set is a “reach-and-remain” type waypoint. Given multiple waypoints, there

may be an improved overall solution in which intermediate waypoints are treated as “pass-

through” waypoints, without the assumption of control invariance. A MILP formulation
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that accounts for “pass-through” waypoints should be considered.
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APPENDIX A

Derivation of Linearized Equations of Motion

We repeat (2.5) and (2.6), which express the full combined kinematics and dynamics in

terms of the state variables:
φ̇

θ̇

ψ̇

 = C−1
φθ



ω1

ω2

ω3

+ n


cθsψ

sφsθsψ + cφcψ

cφsθsψ − sφcψ


 , (A.1)

JBcb ω̇
bg
b + S[ωbgb ]JBcb ω

bg
b = τBcb . (A.2)

where

C−1
φθ =

(
1

cθ

)
cθ sφsθ cφsθ

0 cφcθ −sφcθ

0 sφ cφ

 .

A.0.1 Linearized Kinematics

By design, the desired equilibrium state is such that [φ, θ, ψ] = [0, 0, 0], thus we can use

small angle approximations (cφ ≈ 1, sφ ≈ φ) to simplify (A.1),


φ̇

θ̇

ψ̇

 ≈


1 φθ θ

0 1 −φ

0 φ 1




ω1

ω2

ω3

+ n


ψ

φθψ + 1

θψ − φ


 . (A.3)
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Applying the equilibrium values for the Euler angles and Euler angle rates, we can easily

verify that the equilibrium angular velocity values must satisfy [ω1, ω2, ω3] = [0, −n, 0].

Expanding (A.3):

φ̇ = ω1 + φθω2 + θω3 + nψ(1 + φ2θ2 + θ2),

θ̇ = ω2 − φω3 + n(1 + φ2),

ψ̇ = φω2 + ω3 + n(1 + φ2)θψ.

(A.4)

Then, taking the partial derivative in each state variable, we get the following sets of equa-

tions:

∂φ̇

∂φ
= θω2 + 2nφθ2ψ,

∂φ̇

∂θ
= φω2 + 2n(1 + φ2)θψ + ω3,

∂φ̇

∂ψ
= n(1 + φ2θ2 + θ2),

∂φ̇

∂ω1

= 1,
∂φ̇

∂ω2

= φθ,
∂φ̇

∂ω3

= θ,

(A.5)

∂θ̇

∂φ
= −ω3 + 2nφ,

∂θ̇

∂θ
=
∂θ̇

∂ψ
=

∂θ̇

∂ω1

= 0,

∂θ̇

∂ω2

= 1,
∂θ̇

∂ω3

= −φ,

(A.6)

∂ψ̇

∂φ
= ω2 + 2nφθψ,

∂ψ̇

∂θ
= n(1 + φ2)ψ,

∂ψ̇

∂ψ
= n(1 + φ2)θ,

∂ψ̇

∂ω1

= 0,
∂ψ̇

∂ω2

= φ,
∂ψ̇

∂ω3

= 1.

(A.7)

We complete the linearization of the kinematics by plugging the equilibrium values into
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the partial derivatives of the system:


φ̇

θ̇

ψ̇

 =


0 0 n 1 0 0

0 0 0 0 1 0

−n 0 0 0 0 1





φ

θ

ψ

ω1

ω2 + n

ω3


. (A.8)

A.0.2 Linearized Dynamics

We are treating the case of the ideal, uncontrolled dynamics, so the only external torque

effect to consider is the gravity gradient. Thus, we can replace the τBcb term above with the

equivalent τ ggb . Then, the dynamics can be be expressed as:

Jω̇ + S [ω] Jω = 3n2


−(J2 − J3)cφsφc

2
θ

(J3 − J1)cφcθsθ

(J1 − J2)sφcθsθ

 . (A.9)

This equation simplifies to:

ω̇1 = J23(ω2ω3 − 3n2cφsφc
2
θ),

ω̇2 = J31(ω3ω1 + 3n2cφcθsθ),

ω̇3 = J12(ω1ω2 + 3n2sφcθsθ),

(A.10)

where J12 := (J1 − J2)/J3, J31 := (J3 − J1)/J2, and J23 := (J2 − J3)/J1.

As with the kinematics, we now apply the small-angle approximations for the Euler an-
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gle terms:

ω̇1 = J23(ω2ω3 − 3n2φ),

ω̇2 = J31(ω3ω1 + 3n2θ),

ω̇3 = J12(ω1ω2 + 3n2φθ).

(A.11)

We form the Jacobian of the small-angle system by taking the first-order partial derivatives

in each state variable:

∂ω̇1

∂φ
= −3n2J23,

∂ω̇1

∂θ
=
∂ω̇1

∂ψ
=
∂ω̇1

∂ω1

= 0,

∂ω̇1

∂ω2

= J23ω3,
∂ω̇1

∂ω3

= J23ω2.

(A.12)

∂ω̇2

∂φ
=
∂ω̇2

∂ψ
=
∂ω̇2

∂ω2

= 0,

∂ω̇2

∂θ
= 3n2J31,

∂ω̇2

∂ω1

= J31ω3,
∂ω̇2

∂ω3

= J31ω1,

(A.13)

∂ω̇3

∂φ
= 3n2J12θ,

∂ω̇3

∂θ
= 3n2J12φ,

∂ω̇3

∂ψ
=
∂ω̇3

∂ω3

= 0,

∂ω̇3

∂ω1

= J12ω2,
∂ω̇3

∂ω2

= J12ω1,

(A.14)

103



We complete the linearization by substituting the equilibrium values into the partial deriva-

tives:


ω̇1

ω̇2

ω̇3

 =


−3n2J23 0 0 0 0−nJ23

0 3n2J31 0 0 0 0

0 0 0−nJ12 0 0





φ

θ

ψ

ω1

ω2 + n

ω3


(A.15)

The combined linearized kinematics and dynamics equations can now be expressed by the

Ac matrix that appears in (2.17).
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APPENDIX B

Algebraic Riccati Equation Solution Algorithm

Formulation

For implementation of the LQR controller in the satellite, we chose to follow a zero-order

hold discrete-time formulation identical to (2.20), with equations repeated here for con-

venience. Let t ∈ R≥0 be the current time instant and Ac, Bc(t) be the continuous-time

dynamics defined in (2.17), (2.18). For ∆t > 0, the discrete-time model predicts the state

xk at time t + k∆t, k ∈ Z≥0, according to the following model with the “frozen-in-time”

magnetic field:

xk+1 = Adxk +Bd(t)uk,

Ad = eAc∆t,

Bd(t) = −A−1
c (I6 − Ad)Bc(t),

x0 = x(t).

(B.1)

The pair (Ad, Bd(t)) can be verified to be controllable for all t for our orbit and choices of

∆t. For the difference equation (2.20), we define the infinite-horizon cost functional J :

J =
∞∑
k=0

(
xTkQxk + uTkRuk

)
, (B.2)
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where R = RT ∈ R3 is a positive definite matrix, and Q = QT ∈ R6 is a positive semi-

definite matrix satisfying the usual detectability assumption. Then, the optimal feedback

control sequence uk = −K(t)xk that minimizes J has the solution:

K(t) =
(
R +Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad, (B.3)

P (t) = ATdP (t)Ad +Q− ATdP (t)Bd(t)K(t). (B.4)

Note that (2.23) can have multiple solutions; the P (t) of interest to us is the unique positive

definite solution. Also note that Bd(t) changes throughout the orbit, thus (2.23) is solved

at different instants t in time and the gain K(t) in (2.22) is time-varying. The control

u(t+ σ) = K(t)x(t) is applied for 0 ≤ σ < ∆t and then recomputed.

B.0.1 Gain Computation

Upon generating the discrete-time model in (B.1), we define the following two matrices

[104]:

N :=

Ad 06×6

−Q I6

 ,
L :=

 I6 BdR
−1BT

d

06×6 ATd

 ,
(B.5)

where Ad ∈ R6×6 and Bd = Bd(t) ∈ R6×3. From these, we form the Hamiltonian matrix

H = (N + L)−1 (N − L) . (B.6)

We require the positive square root ofH2, and employ a Newton-Raphson iteration process

to compute it. We begin with an initial guess of S0 = I6, the identity matrix, and then
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iterate according to the following scheme:

Sk+1 = 0.5
(
Sk + S−1

k H2
)
. (B.7)

Upon reaching desired convergence in Sk, we can then extract the unique positive-definite

solution P (t) to (2.23) from the first column of the matrix

X1 ∼

X2 ∼

 = H − S, (B.8)

as

P (t) = X2X
−1
1 . (B.9)

Given P (t), we then compute

K(t) =
(
R +Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad. (B.10)

This solution algorithm is suitable for use even on our resource-limited cubesat platform,

as the necessary matrix inverses can be computed very efficiently through a decomposition

scheme; in our case, we applied an LU-decomposition, as described in Anton & Rorres

[105]. Furthermore, since the solution between time steps does not change significantly in

this slowly-varying system, after the first gains are computed then future solutions can be

“warm started”, i.e., the initialization S0 takes the value of the solution from the previous

time step. This has the benefit of reducing the number of iterations required to obtain

convergence. Once the solution matrix P (t) is found, it is then a simple matter to compute

the LQR gain matrix K(t). Note that Ad, Q, and R−1 are invariant and do not depend on

the magnetic field, hence are precomputed and stored in memory.

We measure the accuracy of the algorithm’s output by taking the 2-norm of the dif-

ference between the approximate solutions, denoted PD(t), with the exact solutions P (t)
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Figure B.1: 2-norm of the difference between the exact solution to the Discrete-Time Al-
gebraic Riccati Equation and the approximate solution returned by the algorithm.

returned by Matlab’s dlqr command over two simulated orbits. See Figure B.1. The norms

are generally close to zero, indicating very strong agreement between the approximate and

exact solutions, validating the use of the described algorithm.
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APPENDIX C

Proof of Theorem 2.1

LTV controllability holds if the controllability matrix analogue K = [K0, K1, K2] has full

row rank for some tc ∈ [0, T ] [47], where Kj = ∂j

∂τ j
[Φ(t, τ)B(τ)]τ=t and Φ(t, τ) is the

state transition matrix for the A matrix. We form this matrix and show that non-singularity

holds for tc = T/4 under the above conditions.

Suppose the satellite’s orbit aligns with the magnetic Equator, so that im = 0. Then, for

all t, b1(t) = b3(t) = 0 and b2(t) is constant. Then, B is constant and takes the form

B =



03×3

bα 0 0

0 0 0

0 0 bγ


. (C.1)

In this case, the lack of controllability can be shown by forming the standard controlla-

bility matrix for LTI systems, C =

[
B AB A2B

]
∈ R6×9, and showing that it does not

have full row rank. Each of B, AB, and A2B has all zero entries in the fifth row, thus C

has all zero entries in the fifth row. Thus, the row rank of C is at most 5 < 6, C does not

have full row rank, and the associated LTI system is not controllable.

Now assume that the satellite’s orbit is inclined relative to the magnetic Equator. B is
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time-varying, thus we must form the time-varying controllability analogue,

K =

[
B(t) Ḃ(t)− AB(t) A2B(t)− 2AḂ(t) + B̈(t)

]
, (C.2)

and show that the matrix K has full row rank for some tc ∈ [0, T ]. For convenience,

select tc = T/4, as then ntc = π/2 and the trigonometric terms in the magnetic field

approximation simplify greatly. Following Yang [47], we express the A and B matrices as

follows,

A =

Σ1 I3

Λ Σ2

 , B =

03×3

B2

 , (C.3)

so that K can then be expressed as

K =

03×3 −B2 (Σ1 + Σ2)B2 − 2Ḃ2

B2 −Σ2B2 + Ḃ2 (Λ + Σ2
2)B2 − 2Σ2Ḃ2 + B̈2

 . (C.4)

We now look for a submatrix ofK in R6×6 that is non-singular. We can simplifyK with

a row reduction by premultiplying the top row by −Σ2 and adding the result to the second

row to get

K2 =

03×3 −B2 (Σ1 + Σ2)B2 − 2Ḃ2

B2 Ḃ2 (Λ− Σ2Σ1)B2 + B̈2


=

03×3 −B2 M1

B2 Ḃ2 M2

 .
(C.5)

K2 having a non-singular submatrix is equivalent to K having one, so we now work
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with the new matrix instead. At the chosen time instant, we have

b1(tc) = 0, ḃ1(tc) = −nµf
a3
sim , b̈1(tc) = −n2µf

a3
sim

b2(tc) = −µf
a3
cim , ḃ2(tc) = 0, b̈2(tc) = 0

b3(tc) = 2
µf
a3
sim , ḃ3(tc) = 0, b̈3(tc) = −n2µf

a3
sim .

(C.6)

Define p1 = (µf/a
3)sim , p2 = (µf/a

3)cim , p3 = 2(µf/a
3)sim = 2p1, and pjk = pj/Jk.

Then, K2 takes the form,

K2 =



0 0 0 0 −p31 p21 m11 0 0

0 0 0 p32 0 0 0 0 m12

0 0 0 −p23 0 0 0 m13 m14

0 p31 −p21 0 0 0 0 m21 m22

−p32 0 0 0 0 np12 m23 0 0

p23 0 0 0 −np13 0 m24 0 0


, (C.7)

and we form a submatrix K3 from columns 1, 2, 4, 5, 7, and 8.

K3 =



0 0 0 −p31 m11 0

0 0 p32 0 0 0

0 0 −p23 0 0 m13

0 p31 0 0 0 m21

−p32 0 0 0 m23 0

p23 0 0 −np13 m24 0


, (C.8)
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which we can row-reduce to,

K4 =



0 0 0 −p31 m11 0

0 0 p32 0 0 0

0 0 0 0 0 m13

0 p31 0 0 0 0

−p32 0 0 0 m23 0

p23 0 0 −np13 m24 0


, (C.9)

which has determinant det(K4) = (−p32)(−m13)(p31)(m24p31p32−m23(−p31)p23+m11p32nb13).

The LTV system is then controllable if this determinant is nonzero. Each p term is already

nonzero, thus we seek m13 6= 0 and det(K5) = m24p31p32 +m23p31p23 −m11p32np13 6= 0.

We have:

m13 =
−2np1

J3

− n(−J3 + J2 − J1)p3

J1J3

=

(
−2np1

J1J3

)
(J1 − J3 + J2 − J1)

=

(
−2np1

J1J3

)
(J2 − J3)

6= 0

(C.10)

which, as n 6= 0 and p1 6= 0, implies that J2 6= J3.
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Next,

m11p32np13 =
−np1

J3

p3

J2

p2

J3

(
nJ1 + n(J3 − J2)

J1

)
=

(
p2p

2
3n

2

J1J2J3

)(
−J1 + J2 − J3

2J3

)
,

m23p31p23 =
p3

J2

p3

J1

p2

J3

(
3n2J3 − J1

J2

+ n2 Γ

J2

− n2

)
=

(
p2p

2
3n

2

J1J2J3

)(
3(J3 − J1) + Γ− J2

J2

)
,

m24p31p32 =
−p2

J3

p3

J1

p3

J2

(
n2 Γ

J3

− n2J2 − J1

J3

)
=

(
p2p

2
3n

2

J1J2J3

)(
J2 − J1 − Γ

J3

)
,

(C.11)

thus, the condition

det(K5) 6= 0 (C.12)

implies, after some regrouping, that

J3 (6(J3 − J1) + 2Γ) 6= J2 (J1 − J2 + J3 − 2Γ) . (C.13)
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