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ABSTRACT

The brain consists of complex interacting networks of excitatory and inhibitory

neurons. The spatio-temporal dynamical patterns in these neural networks are be-

lieved to underlie all cognitive functions such as perception, memory formation etc.

Therefore, insights into the mechanisms of the generation of various network level

spatio-temporal dynamics in the context of underlying structural and functional con-

nectivity is essential for understanding how the brain works. These mechanisms

themselves depend on global variables characterizing network state, such as relative

levels of excitation and inhibition. Here, I combine computational modeling and

statistical analysis to investigate changes in neuronal activity patterns and identify

the network and cellular mechanisms responsible for those dynamical patterns as a

function of changing excitatory/inhibitory (E/I) levels. First, I extend a statistical

metric developed in our laboratory, referred to as average minimal distance (AMD),

to rapidly quantify the functional connectivity in the network. The metric is able to

capture both co-occurrence and causality relationships, providing a more significant

correlation value than traditional methods in a much more efficient manner. Com-

bined with a measure of functional network stability (FuNS) which reliably captures

the global stability of the functional patterns, I use this AMD-FuNS framework to

analyze large-scale in vivo datasets during memory consolidation over extended time

periods. Next, I turn to investigate the universal mechanisms underlying emergence

of various functional connectivity patterns as E/I levels are varied in networks com-

xii



posed of excitatory and inhibitory neural populations. I identify multiple E/I balance

regimes where E/I balance is similar but network dynamics are heterogeneous. Each

balance regime is regulated by the competing interactions between population firing

rate and evolving magnitude of postsynaptic potentials at different synaptic cou-

pling levels. I investigate these patterns E/for networks composed of neurons having

different membrane excitability types and find that emerging dynamics and their un-

derlying mechanisms depend critically on neuronal excitability types and network

connectivity regimes. Taken together, the theoretical framework presented here pro-

vides a mechanistic understanding for the emergence of functional dynamical patterns

due to the properties of E/I balance in neural network.
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CHAPTER I

Introduction

The brain controls all of our behaviours and mental processes in daily life, includ-

ing motion, learning, and emotional states. As the most sophisticated organ in our

body, its mechanism of carrying out complicated computations and forming cogni-

tion still remains an open question. Over decades of active studies, brain research

has become more and more interdisciplinary across psychology, physiology, biology,

mathematics, physics, and also computer science. Each field studies the brain from

different perspectives, and different temporal and spatial scales depending on the spe-

cific techniques. On one hand, significant work has given a clear description of the

properties and mechanisms of each individual nerve unit, i.e. neuron. On the other

hand, experiments at a much larger scale involving hundreds of thousands of neurons

shed light on the functions of each brain region. Additionally, some neuronal path-

ways of information flow have been identified with the help of clinical observations

and advances in imaging techniques such as functional Magnetic Resonance Imag-

ing (fMRI). However, despite the abundant knowledge on each unit and large scale

neuronal regions, an important part remains unclear: How does a network of inter-

connected neurons generate consciousness, or intelligence? Given that each neuron

itself is not conscious and works generally in a similar way, this question boils down

to how a neural circuit at the scale of hundreds or thousands of neurons generates
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cognitive functions through the way neurons interact. This work is aimed to give

insights on the mechanism of complex dynamics in neural circuits.

1.1 Neurons - the computing units of the nervous system

Neurons are the signaling units in nervous systems. The human brain is composed

of about a hundred billion neurons, each of which is connected with thousands of other

neurons. The ability of neurons to communicate with each other at a precise time

scale is mainly due to two important features: 1) The asymmetric anatomy of neurons

guarantees the signal propagates in a unidirectional fashion from the dendrites to the

axon; 2) Electrical signals are transmitted via the changes of membrane potentials

when neurons are excited electrically or chemically. More than 100 types of neurons

have been identified containing different types of proteins, membrane constituents,

etc. However, neurons share a lot of common structural features and the mechanism

for producing signals within and between cells.

Although there are many different types of neurons, they typically receive signals

from several short dendrites, which branch out towards other nerve cells, and integrate

the signals in the metabolic center called the soma. The neuron’s output signal is then

transmitted on a single axon with a length ranging from 0.1mm to 2m, and arrives

at the presynaptic terminals, where the signal is sent to the downstream neurons.

1.1.1 Generation of action potentials

Neurons communicate via action potentials. Action potentials are generated by

the intricate electrochemical balance across neuron’s membranes. Namely, neuron

cells maintain the unequal electrical potentials on the two sides of the plasma mem-

brane by regulating the concentration of charged ions, mainly Na+ and K+. When

the cell is at rest, the concentration of Na+ stays low and the concentration of K+

stays high inside the cells by the Na+-K+ pumps. The resting membrane potential is
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kept around -65mV. Membrane potentials are mediated by the ion channels, a class of

proteins in the cell membranes. Ion channels are selective to the type of ions, allowing

only specific ion types to permeate when open. In this way, the signals are able to

be regulated by activating different ion channels. Another important property is that

the opening and closing of ion channels are gated by the membrane potential. A

temporal change in membrane potential causes the sequential opening of different ion

channels, thus introducing the flux of charged ions across the cell membrane which

further changes the voltage across the membrane. Increase and decrease in mem-

brane potential is referred to as depolarization and hyperpolarization, respectively.

In the 1950s, Alan Hodgkin and Andrew Huxley quantified the gating mechanisms

of ion channels during the action potentials using voltage clamp experiments, where

the membrane voltage can be maintained constant. When the membrane potential

increases to a threshold where Na+ channels rapidly activate, a large positive inward

current causes an accelerated depolarization in membrane potential, due to Na+ ions

flowing into the cell, which is called action potential. The depolarization is followed by

the inactivation of Na+ channels and the activation of K+ channels, which repolarize

the membrane potential by inducing an outward current, caused by K+ ions flowing

out of the cell. Once an action potential is generated, it can be conducted without

attenuation along the axon and propagated to other neurons. An action potential is

also called a ”spike”, and when generating an action potential, the neuron is said to

”fire”.

The capacitance and resistance properties of the membrane can be abstracted

to an equivalent electrical circuit Figure 1.2. The opening and closing of the ion

channels are simulated by the change in conductance of the corresponding ion type.

The concentration gradient of each ion type gives rise to a chemical driving force,

represented as a battery in each branch. This equivalent circuit provides an intuitive

interpretation of the computation for each current component separately.
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Figure 1.1: The sequential opening of voltage-gated Na+ and K+ channels generates
the action potential. The shape of the action potential and the underlying
conductance changes can be calculated from the properties of the voltage-
gated Na+ and K+ channels. Figure from (Kandel et al., 2012).

Figure 1.2: The equivalent circuit of the membrane. Figure from (Kandel et al.,
2012).
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1.1.2 Synaptic transmission

Neurons communicate with each other through synapses. When an action poten-

tial arrives at the axon terminals of a presynaptic neuron, chemical substances are

released, or electrical signals are sent in some cases, onto the dendrites of the post-

synaptic neurons. The axon of the presynaptic neuron splits into branches, each of

which forms multiple expansions called synaptic boutons. The chemical substances,

neurotransmitters, are released from synaptic boutons and open up the receptor chan-

nels on the postsynaptic membrane. The postsynaptic membrane gets depolarized

and an excitatory postsynaptic potential (EPSP) is generated. Postsynaptic potential

(PSP) can vary significantly in magnitude. A single PSP generated from a motor neu-

ron to a muscle fiber can reach about 70mV, which is often large enough to trigger an

action potential. However, one single EPSP is only about 1mV in the central nervous

system. Therefore, generating an action potential usually requires the integration of

multiple synaptic stimuli. The EPSP is produced by an inward current when the

receptor channels are open. This postsynaptic current can be calculated as

IEPSP = gEPSP × (Vm − EEPSP ), (1.1)

where EEPSP is the reversal potential which acts as the chemical battery due to the

concentration gradients and drives the ions through the receptor channels, and gEPSP

is the conductance of the receptor channels. With the membrane getting more depo-

larized, the driving force becomes smaller, resulting in a smaller inward postsynaptic

current (PSC). When Vm is equal to the reversal potential, net current flowing through

the membrane is zero. When Vm is more positive than the reversal potential, the di-

rection of the current reverses and an outward current hyperpolarizes the membrane.

This is for excitatory synaptic currents through AMPA and NMDA receptors. Dif-

ferent from the voltage-gated channels, the receptor channels are not selective for ion
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types due to the significantly larger diameter of the pores, and Na+ and K+ share

the common channels. Therefore, the permeability of Na+ and K+ through receptor

channels are roughly equal. At EEPSP , the influx of Na+ cancels out the efflux of K+,

resulting in that EEPSP is around 0mV, as measured in voltage-clamp experiments.

Another important difference between the synapses in the central nervous system

and the synapses between motor neurons and muscle fibers is that the synaptic signals

can be either excitatory or inhibitory. The excitatory synapses are similar for both

cases and depolarize the postsynaptic membrane, while the inhibitory synapses hyper-

polarize the postsynaptic neuron instead, making it harder to fire an action potential.

Also, the neurotransmitters released onto the neurons in central nervous system are

much more diverse, which alter the activities of the target neurons in various ways.

The effect of excitatory or inhibitory PSP depends on the activation of the channels

on postsynaptic membrane by the neurotransmitters, where most neurotransmitters

produce a single type of signal, either excitatory or inhibitory. The major excitatory

neurotransmitter in the brain is the amino acid I-glutamate, and the glutamate-gated

receptor channels permeate Na+ and K+ when open. Some major glutamate recep-

tors include AMPA, kainate, and NMDA. One major type of inhibitory amino acid

neurotransmitter, GABA, functions on either GABAA receptor, which is a channel

for Cl- ions, or GABAB receptor, which opens K+ channels, thus generating an out-

ward hyperpolarizing current. This current can have a shunting or subtractive effect

on depolarizing synaptic current. Inhibitory synapses are critical to avoid excessive

excitation and coordinate the excitatory neural activity. The majority population

of the cerebral cortex is glutamatergic excitatory neurons, which are connected lo-

cally in a reciprocal way as well as to other distant brain areas such as the thalamus

(Somogyi et al., 1998). The recurrent excitatory connections can easily cause an ex-

plosive runaway activity. GABAergic inhibitory neurons, although they only make

up approximately 20% of the population, provide a negative feedback and mediate
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the stability of the network dynamics (Sugino et al., 2005).

In central nervous system, the net effect of the diverse inputs from hundreds or

thousands of presynaptic neurons are coordinated and integrated. The decision on

firing an action potential or not is made at the trigger zone, which is located at the

initial segment of the axon. This process is called neuronal integration. Whether an

action potential will be generated is affected by multiple temporal and spatial factors.

1.2 Neural network and cell assembly

1.2.1 From cellular level to circuit level

The knowledge of the computing mechanisms of individual neurons and synapses

has greatly promoted the understanding of the brain at cellular levels. However, it

is not sufficient to explain how a collection of neurons generates a neural function

together, or how the activities of multiple neuron sets are integrated for complex

cognitive processing, such as a perception that combines visual, auditory, olfactory

systems all together. An influential idea of ”cell assembly”, proposed by Donald Hebb

(Hebb, 1949), argued that the neurons are wired together and act as a functional group

in the nervous system, and that the synaptic connections can be shaped by the neural

activity tailored for a specific cognitive process, which is known as synaptic plasticity.

What are the advantages of network computation in the brain dynamics? An impor-

tant characteristic is its robustness under anatomical damage. For example, an IQ of

160 was registered by a person after the removal of prefrontal lobe (Hebb, 1939). This

may be explained by the assemblies distributing over a wide region over the brain

and allowing the recruitment of new cells, thus maintaining the dynamics without

requiring the exactly the same physical structure. The theory was also confirmed

by other experiments involving the interaction between the environment and brain

activity by manipulating the environmental or sensory stimulation. One experiment
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showed that rats exposed to a rich perceptual environment were more intelligent after

a period of time than those with a plain environment (Milner , 1993; Rabinovitch and

Rosvold , 1951). The same results were obtained on Scottish terriers (Thompson and

Heron, 1954). Additionally, as indicated by another experiment, human subjects had

a harder and harder time solving problems or maintaining coherent thoughts after

experiencing perceptual isolation for a long time (Heron, 1957; Milner , 1993).

By focusing less on the specific cellular properties of neurons, and more on the

emergent properties from the interactions between the units of the network, neural

network researchers apply some simplifications on the complex biological properties

of real neurons and synapses in mathematical models. Dated back in 1943, the sim-

plest neuron model was proposed by Warren McCulloch and Walter Pitts, where each

neuron takes multiple inputs, computes conjunction or disjunction, and has binary

output, with 1 representing ”active” and 0 representing ”inactive” state (McCulloch

and Pitts , 1943). The different values of synaptic strengths are better modeled in

the linear-threshold (LT) neuron proposed later by taking the weighted sum of the

inputs from connected neurons (Scholl , 1956; Hopfield , 1982). An important advance

was made by Frank Rosenblatt in the 1950s to model the visual perception, where

the information flows in one direction, and the weights between each unit, called

”perceptron”, are revised during the learning process (Rosenblatt , 1958), which sim-

ulated synaptic plasticity. This ”feed-forward” model provided basis to understand

the brain through networks that are relatively easier to analyze (Scott , 2002). It also

aroused great interest in the engineering field and is widely applied in artificial intelli-

gence research and applications nowadays such as computer vision, natural language

processing etc., about 60 years after it was first proposed.

However, the power of the feed-forward networks to help with our understanding

of brain dynamics is limited due to its simpler dynamics than the real brain networks,

which do contain a vast number of synaptic loops (Kandel et al., 2012). In 1938, Rafael
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Lorente de No postulated that the synaptic loops are the basic circuits of the nervous

system, and are responsible for generating and maintaining the persistent neural

activity over a long period of time, rather than a ”stimulus-response” relationship

(Lorente De No, 1938), while the feed-forward networks normally display the latter.

Associative memory networks are the major model class that contain loops, composed

of a group of synaptically-connected excitatory and/or inhibitory neurons. Central to

the cell assembly theory, short term or long term memories are formed in the process

of the interactions between neural activity and synaptic strengths, and the networks

are able to maintain persistent activity patterns over an extended time period, even

though the initial stimulation disappears. Instead of layered structure as in the feed

forward networks, brain networks are considered as a large web-like network (Varela

et al., 2001). The network takes form of adjacency matrix composed of synaptic

strengths between each neuron pair, where each neuron is modeled in a non-linear

way (Anderson, 1988). This combination of network theory and non-linear dynamics

is also the method adopted in the work shown in the following chapters.

1.2.2 Structural connectivity in neural networks

How are neurons connected in the brain? As mentioned above, neural networks in

the brain display complicated structures like a web containing many recurrent loops,

rather than a simple layered structure. Over the past decade, researchers have actively

explored the realistic anatomical description of various brain regions as well as the

role of the network topology in the computational abilities of the network (Boccaletti

et al., 2006). The detection of the complete anatomical structure is challenging due

to a couple of reasons. One direct drawback is that synaptic plasticity results in the

structural connectivity changing over time, thus making the notion of ”connectivity”

controversial (Destexhe and Marder , 2004). In addition, it has been found that dif-

ferent tracing techniques to detect anatomical connections in experiments may report
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connectivity densities that differ by two orders of magnitude for the same connection

(Scannell et al., 2000), making it even more complicated. Moreover, research has been

largely constrained by the limited size of the available databases (Boccaletti et al.,

2006). Even if a technique to detect the structural connections reliably is available,

there are about 1015 synapses in the human brain, which would be impossible to fully

identify.

Despite the difficulties, significant progress on determining connectivity at various

spatial scales has been made. A full connectivity map of a much simpler and more

compact neural system in C. elegans was identified, which only comprises a comple-

ment of 302 neurons (White et al., 1986). The connectional organizations at the scale

of large networks in some segregated brain regions of some mammalian species, such as

the hippocampus (Burns and Young , 2000), the cerebral cortex (Stephan et al., 2001),

the cortical-cortical system (Felleman and Essen, 1991) and the cortical-thalamic

system (Scannell , 1999), were analyzed and some corresponding prototype networks

have been provided (Stephan et al., 2001; Bota et al., 2003). At a smaller level, more

detailed anatomical structures were analyzed in cortical areas. The hierarchical struc-

ture analysis in primate visual cortices shed light on the directional patterns of the

connections in the cortical layers, i.e. connections in ascending, descending or lateral

directions (Felleman and Essen, 1991). Furthermore, the correlations or similarities

between the local connectivity patterns of different cortical areas were also computed

(Kötter and Stephan, 2003). However, the exact structure or topology in these regions

still remains unknown.

Taking advantage of network theory, some theoretical work has provided better

knowledge on the quantitative characteristics of brain networks. Some evidence shows

that the brain is composed of some globally-interconnected neural clusters, each of

which forms a dense and recurrent local circuit (Varela et al., 2001). Results from

other experiments identified feed forward loops or bi-parallel patterns in some of the
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local connections (Sporns and Kötter , 2004). The connectivity patterns of neurons

in the same cluster demonstrate higher similarity than those from different clusters

(Shepard , 1980). One plausible mechanism of the inter-area cortical connectivity was

proposed to relate the connection strength between the brain areas with the num-

ber of common neighbors they share (Young , 1992). Furthermore, the connectivity

patterns of various cortical areas were suggested to be unique and referred to as the

”connectional fingerprint” of the area (Passingham et al., 2002). These characteristics

of the brain organization were thought to follow rules that optimize the communica-

tion efficiency as well as minimize the cost of the interconnections (Cherniak et al.,

2004; Chklovskii and Koulakov , 2004).

1.2.3 Computational network models

The random network and the small-world network are two major types of network

topology, which are widely used in computational modeling and capture the charac-

teristics of the structural complexity in actual brain networks. Random networks,

first proposed by Erdös and Rényi, are straightforward and the most well studied

graph model. One of the simplest ways to generate a random network is that the

number of nodes N and the connectivity probability p (or the total number of edges

m) are given, and each possible directional edge between pairs of nodes is added with

probability p. This model is often used to simulate relatively small local circuits,

with the connection density controlled by p. A small-world network is characterized

by a small value of average shortest path length L and a large value of clustering

coefficient C (Watts and Strogatz , 1998). These characteristics contribute to efficient

information communication and have been observed in many biological systems, as

well as social and technological networks (Watts , 2003; Newman, 2001a,b). The aver-

age shortest path length L is calculated as the mean value of the shortest path length

between all the node pairs, thus quantifying the typical separation distance between
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two nodes in the network (Boccaletti et al., 2006). The clustering coefficient C takes a

value between 0 and 1, with 1 indicating that the nodes connecting to a common node

also connect with each other and 0 indicating no closed loops composed of 3 nodes

(Newman, 2010). Small-world networks can be generated by the Watts and Stro-

gatz (WS) algorithm, where nodes are only connected to their nearest neighbors at

first and then each edge is rewired at some probability, called the rewiring parameter

(Watts and Strogatz , 1998).

1.3 Network dynamics and activity patterns

1.3.1 Functional connectivity

Action potential firing of neurons across a neural network generates complex

spatio-temporal activity patterns. We often quantify these patterns in term of func-

tional connectivity. Different from the anatomical connectivity of neural networks,

functional connectivity measures the temporal correlation between neuronal activi-

ties and identifies the functional interactions between neurons or neuronal assemblies

(Aertsen et al., 1989; Friston et al., 1993). At the circuit level, functional connectivity

is traditionally calculated by the statistical correlation or causality relationship be-

tween the activity trains of the neuron pairs. While at the macroscopic level, the func-

tional relationship between different brain regions during some specific cognitive tasks

are analyzed based on electrophysiological recordings from electroencephalographic

(EEG), magnetoencephalographic (MEG) or imaging techniques such as fMRI, which

usually reflect the collective activity of the neuronal populations (Boccaletti et al.,

2006). Functional connectivity was proposed to act as a basic mechanism in the large-

scale integration problem, where distributed neuronal populations are integrated in

a unified functional process at different spatial and temporal scales. (Schnitzler and

Gross , 2005).
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Structural connectivity and functional connectivity are closely related, however,

their exact relationship is still not fully understood.(Petersen and Sporns , 2015).

Some evidence showed that the specific structural organization patterns in vision

reflect a functional role (Jouve, 1998). Also, the hierarchical organization of the

anatomical connectivity supports both the local neuronal functions and the global

integration (Park and Friston, 2013). Functional connectivity has also been widely

used recently to infer underlying anatomical structure (Zaytsev et al., 2015; Cestnik

and Rosenblum, 2017; Poli et al., 2016). On the other hand, analysis on experimental

results from MRI recordings indicated that two brain regions that are clearly linked

by white fiber tracts demonstrate high functional connectivity, but this does not hold

inversely, indicating that the brain regions connected functionally may be mediated

by distant grey matter regions instead of being physically connected with each other

(Koch et al., 2002). Although the accurate relationship between the two types of

connectivity remains unknown, the convergence of studies on the two connectivity

patterns are promising to benefit understanding of the cognitive mechanism (Sporns

et al., 2004; Petersen and Sporns , 2015).

Lots of work using network theory to identify the patterns in functional connec-

tivity has also been done. Some patterns demonstrated small-world characteristics

from MEG recordings on healthy subjects (Stam, 2004), while others report scale-free

properties based on fMRI data (Egúıluz et al., 2005). In addition, a rich-club orga-

nization was discovered in large-scale human brain data (Senden et al., 2014), which

has been proposed to facilitate the long-term memory by allowing for an increas-

ing number of unique activity patterns (Nigam et al., 2016). However, research on

functional connectivity shares some common challenges with anatomical connectivity,

such as the limitation of the few datasets available, the effect from the resolution of

the experimental setup, and the fluctuation of the connections over time (Boccaletti

et al., 2006). The major drawback is that the quantification of functional connectiv-
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ity highly depends on the specific statistical methods used. Over the past decades, a

number of statistical metrics have been discussed and compared extensively (Bastos

and Schoffelen, 2016; De Vico Fallani et al., 2014). Multiple distinct methods were

summarized (Wang et al., 2014). These methods can be first classified into two divi-

sions: non-directed, where only co-occurrence and correlation of the activity events

are measured, and directed, where the causal relationship is estimated based on the

timestamps of the events (Bastos and Schoffelen, 2016). Methods in each division

can be further differentiated depending on whether they are model-based or not.

Moreover, some of the measurements that apply to time domain can also apply to,

or have the corresponding variance for, the frequency domain. Some of these meth-

ods (for example, coherence, Granger causality or Pearson correlation coefficient) are

established on a rigorous statistical theoretical system, while many others are not,

such as Phase Lock Value (PLV). More problems about the interpretation of the

functional connectivity metrics were also discussed (Bastos and Schoffelen, 2016). In

addition, the majority of the methods involve intense computation in terms of time

and computing resources. Due to the intrinsic properties of the statistical metrics,

a careful assumption on the statistical distributions of the data might be necessary

when choosing the optimal method.

Further investigation and development on the appropriate metrics to quantify

functional connectivity is critical. In Chapter II, the work on a novel technique

is introduced, which captures the non-linear relationship of the neuronal activities

in an efficient computational manner, and can be applied in both bidirectional and

unidirectional ways. It is capable of solving the problem of fluctuating connectivity

over time by being designed to apply to datasets on an extended time scale. We

present results of using this new method to in vivo data.
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1.3.2 Neural oscillation and network synchronization

One prevalent characteristic of functional connectivity is the emergence of syn-

chrony. Synchrony refers to behavior where a cell assembly or assembly populations

interact with each other and finally fire together (Fell and Axmacher , 2011). Syn-

chrony can emerge as a single burst of activity or as repeating rhythmic bursts or

coherent oscillations that happen at different spatio-temporal scales. Synchrony is

thought to support the ”binding” problem. The ”binding” problem refers to the

phenomenon that each visual feature of one object is stored and processed in a sep-

arate brain region, but all the features are combined to a unified representation for

the object, avoiding incorrect combinations when more than one object is presented

simultaneously. This combination action is argued to realize via synchronizing the

activities of neurons that are activated by the same object (von der Malsburg , 1999).

A general advantageous function of the oscillatory or synchronous firing is to simulta-

neously recruit neuronal populations both locally and globally in an energy-efficient

way, allowing for large-scale synchronous interaction across distant areas (Buzsáki ,

2004a).

1.3.2.1 Definition and experimental evidence

Neural oscillations have been studied intensively over the last decades, since they

were first discovered in 1929 (Buzsáki , 2006). Rhythmic activities can happen at

multiple temporal and spatial scales. For example, local field potential (LFP) is the

summed activity of hundreds or thousands of locally-connected neurons while EEG

and MEG involve millions of neurons across brain regions at a macroscopic level.

A complete classification of oscillatory brain activity observed in different frequency

bands is displayed in Figure 1.3. In this classification, each band detected in the

same brain region is thought to associate with different functions, giving a linearly-

distributed mean frequency at the natural log scale (Kopell et al., 2000; Buzsáki ,
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Figure 1.3: A system of oscillation bands. Figure from Buzsáki (2004a)

2004a).

Oscillatory and synchronous patterns can emerge at various scales and have been

identified in a number of anatomical locations. The ”local synchrony” at a micro-

scopic level usually means a group of neurons clustered together tend that get in

to the same resonant mode, at a spatial scale less than 2mm (Gray , 1999). At a

macroscopic level, synchrony involves distant locations, for example, locations across

hemispheres that are separated by greater than 1cm in space and about 8-10ms in

transmission time (Girard et al., 2001), or locations connected by cortical-cortical

or thalamocortical fibers in physiology (Llinás et al., 1998). At the intermediate

scale, mesoscale synchronization concerns hundreds or thousands of neurons at the

timescale of milliseconds, which is normally measured by multi-unit spikes or LFPs

(Bressler and Kelso, 2001; Varela et al., 2001).

Therefore, there are different approaches for detecting synchrony: 1) Spike-spike:

temporal coherence between spike trains from a pair of neurons, which can be quan-
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tified in various statistical metrics defined to capture different firing patterns, such

as synchrony index (Golomb and Rinzel , 1994) or mean phase coherence (Mormann

et al., 2000); 2) Spike-field coherence: when the action potentials tend to fire at

the same phase relative to oscillatory activity occurring in the local network; 3)

Field-field: the correlation between oscillatory activity in two brain regions, including

phase-phase coupling or phase-amplitude coupling within the same frequency band

or across different bands (Fell and Axmacher , 2011).

1.3.3 Functional roles of oscillations and synchronization

Both oscillatory activities and synchronous firings have been found to support a

wide variety of functions at the circuit and cognitive level, such as encoding informa-

tion precisely, shaping synaptic plasticity, binding neuron populations for integration,

facilitating short-term and long-term memory as well as memory consolidation, etc.

(Varela et al., 2001; Engel et al., 2001; Buzsáki , 2004a; Kahana, 2006; Buzsáki and

Watson, 2012; Ognjanovski et al., 2017; Durkin et al., 2017; Ognjanovski et al., 2018;

Puentes-Mestril et al., 2019). Synchronization has been proposed to support neural

communication, for example, binding functions to combine distributed features into

the same object, which was hypothesized as a fundamental mechanism of effective

communication between structures refered to as communication-through-coherence

(CTC) (Fries , 2005). Spike-field coherence between lateral geniculate nucleus (LGN)

neurons and primary visual cortex (V1) oscillations are found to be enhanced sig-

nificantly following a novel visual stimulus, and oscillations during non-rapid eye

movement (NREM) have been shown to be essential for information transfer and

synaptic plasticity between two regions in mice (Durkin et al., 2017). In experiments

with contextual fear conditioning (CFC), successful memory consolidation is asso-

ciated with augmented network oscillations at delta, theta, and ripple (150-250Hz)

bands as well as increased network firing coherence in the hippocampus (Ognjanovski
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et al., 2017).

Oscillations and synchronization in the theta band and the gamma band are stud-

ied extensively in particular. For example, in one experiment called ”yellow cab”,

where the subjects gradually learned to find the shortest path between two ran-

dom sites through repeated trials in a virtual town, an increase in the power of the

theta band was detected during locomotion, orienting and conditioning(Caplan et al.,

2003). Oscillatory activities at theta power across a wide range of cortices from in-

vasive recording of epileptic patients increased a lot when the patients were moving

in comparison to when they sitting still (Caplan et al., 2003). Similar results from

intracranial electroencephalographic (iEEG) were observed in both the hippocam-

pus and the neocortex (Ekstrom et al., 2005). Another major function where the

theta band is found to be crucial is memory tasks. Theta power also increases sig-

nificantly in human scalp EEG and MEG recordings during verbal memory tasks

(Raghavachari et al., 2001; Jensen and Tesche, 2002). During both memory encod-

ing and retrieval in a verbal working memory experiment, theta power in cortical and

hippocampal regions is found to reset just after the consonant stimuli, which arrive

at random phases to the ongoing oscillation (Rizzuto et al., 2003), and the coherence

of the theta rhythms has been shown to enhance (Sederberg et al., 2003; Weiss and

Rappelsberger , 2000; Klimesch et al., 2005).

Gamma oscillations are highly associated with attentional processing and object

recognition (Gruber , 2004), as well as the memory capacitance of working memory

tasks (Howard , 2003). In processes requiring precise timing such as efficient com-

munication across brain regions, gamma phase synchronization was demonstrated

to support information propagation in both a top-down and a bottom-up manner

(Engel et al., 2001; Fries et al., 2001; Jacobs et al., 2007; Womelsdorf et al., 2007).

Synaptic integration normally needs to happen at the scale of milliseconds (Daoudal ,

2003), which is around the time period of gamma oscillations. For this reason, phase
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synchronization in the gamma band allows for efficient information communication

between anatomical locations (Fell and Axmacher , 2011). Another mechanism pro-

posed for this function of gamma phase synchronization is that the depolarization part

of each gamma cycle (called up states) increases the probability of neural membrane

potentials passing the threshold and thus firing, resulting in action potentials that

fire at one region during up states most likely arriving at the other region also during

up states, and thus triggering action potentials effectively (Womelsdorf et al., 2007).

Moreover, gamma oscillations are thought to support synaptic plasticity. When post-

synaptic neuron fires persistently later than presynaptic neuron by less than 20ms,

the synapse between them is strengthened (Caporale and Dan, 2008), referred to as

long term potentiation (LTP). Therefore, the time window provided by the most de-

polarizing quarter of gamma oscillations facilitates the phase synchronization between

presynaptic and post synaptic neurons, thus promoting LTP (Axmacher et al., 2006).

Besides the functions of each individual band, cross-frequency coupling between

the synchronized oscillations in different bands is also widely observed and shown to

play significant roles. For example, theta-gamma coupling is thought to facilitate the

interaction between working memory and long-term memory by providing a better

timing precision with the combination of two frequencies compared with just fast

gamma oscillations (Fell and Axmacher , 2011). Another recently proposed framework

states that the phase-locking between gamma oscillations and alpha oscillations serves

to organize spatial distributed information (Jensen et al., 2014). Fast inhibition in the

gamma band segments each neuronal representation and inhibitory alpha oscillation

activate the representations sequentially on a longer time scale, thus prioritizing the

neuronal processing for downstream regions. In cross-modal processing, phase-phase

coupling between the low frequency band in auditory and olfactory cortices, as well as

the coupling between low frequency phase and high frequency amplitude are observed

only when the auditory and olfactory cues are matched successfully, which indicates
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the fundamental role of the cross-frequency synchronization (Zhou et al., 2019).

1.3.3.1 Generation mechanisms

The generation mechanisms of neural oscillatory activity or synchronization, which

are not fully understood yet, can be classified into two categories. One is the resonance-

based mechanism, in which the collective oscillatory activity is driven by the natural

firing frequency of neurons, while the other mechanism is inhibition-based, which is

more driven by recurrent synaptic connections at the network level.

Resonance in neural networks means that the response of the membrane voltage

is maximized when the frequency of the oscillatory input matches the intrinsic or

natural frequency of the neuron or the network. Neurons that display such sensitiv-

ity to external input frequency are ”resonators”. Resonant behaviors in response to

sub-threshold input were observed in various brain regions, including neocortical neu-

rons (Hutcheon et al., 1996), hippocampus CA1 (Leung and Yu, 1998), the olfactory

amygdala (Sanhueza and Bacigalupo, 2005) and thalamic neurons (Puil et al., 1994).

A network composed of neurons with the same intrinsic frequency are easily synchro-

nized under external input. Furthermore, instead of an unchanged value, the natural

frequency of neurons can actually be shifted based on the depolarization level of the

input (Hu et al., 2002; Wang , 2010; Yan et al., 2012), allowing for more flexibility in

the interactions between the network and external driving cross a broader range of

frequencies as well as more complex pattern formations (Lau and Zochowski , 2011)

and functional processes, such as memory retrieval (Roach et al., 2018). For example,

this property provides a mechanism to amplify weak signals between different corti-

cal regions which are weakly-connected, thus contributing to a reliable method for

the propagation of synchronous activities and generating coherent oscillations (Hahn

et al., 2014). Also, a highly synchronous activity, called bursting, is proposed to

serve as a mechanism for selective communication via frequency preference, where a
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bursting activity at a specific frequency is more likely to activate neurons having the

same resonance frequency, compared with other neurons which do not. (Izhikevich

et al., 2003).

In the other category of mechanisms, network oscillations are believed to be gen-

erated from rhythmic inhibitory volleys(Buzsáki and Watson, 2012). The fact that

the neurons receiving IPSPs are more synchronized than those receiving EPSPs (Lyt-

ton and Sejnowski , 1991) leads to the assumption that GABAA receptor–mediated

inhibition plays a central role in the generation of gamma oscillations (Buzsáki and

Wang , 2012). The most well-understood and observed inhibitory neuron type is par-

valbumin positive (PV+) interneurons, of which the roles in gamma generation have

been supported by extensive experimental findings (Buzsáki et al., 1983; Whittington

et al., 1995; Csicsvari et al., 2003; Mann et al., 2005; Hájos and Paulsen, 2009; Hasen-

staub et al., 2005). The roles of other interneurons, such as CCK interneurons, and

hippocampal CA1 bistratified neurons, are understood less and proposed to be re-

sponsible for slower oscillations and to contribute to cross-frequency coupling via the

interaction with PV interneurons (Pike et al., 2000; Gloveli et al., 2004). Two popu-

lar models proposed for gamma oscillation generation are I-I or interneuron gamma

(ING), and E-I or pyramidal-interneuron gamma (PING). I-I model or ING mech-

anism only involves inhibitory neurons (Wang and Rinzel , 1992; Whittington et al.,

1995), and even though the driving to the network is stochastic, inhibitory cells fire

intrinsically and are able to synchronize amongst themselves by gating the timing

of their firing. The synchronous inhibitory signal can then synchronize downstream

populations of neurons. (Brunel , 2000; Ardid et al., 2010).

In the E-I model or PING mechanism, the oscillation is generated from the cyclic

alternation between excitation and the following inhibition by some delay (Wilson

and Cowan, 1972; Brunel and Wang , 2003; Geisler et al., 2005). This time delay

actually reflects the prominent features of the gamma oscillation (Csicsvari et al.,
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2003; Mann et al., 2005; Hájos and Paulsen, 2009). In this model, the oscillation or

synchronous firing is driven by the excitatory (E) to inhibitory (I) connections, which

is supported by the fact that the gamma power decreases when the E-I connections

are weakened (Fuchs et al., 2007). When the E cells get more depolarized and fire at

a higher rate, the firing rate of I cells will also increase due to more excitatory current

received, which will in turn decrease the firing rate of E cells. However, increased

firing rate of I cells will result in the decrease of E cells firing rate, then causing

the firing rate of I cells to decrease. These dynamics contribute to the robustness

of the oscillation against changes in depolarization (Tiesinga and Sejnowski , 2009).

In PING, the relative relationship or the balance of excitation and inhibition may

be important. For example, a specific ratio between excitatory and inhibitory firing

rate needs to be conserved for the emergence of synchronous oscillations (Buia and

Tiesinga, 2006).

Both ING and PING models are supported by experimental findings. The spe-

cific relationship between the two models in reality is still under debate, with some

evidence showing that the two cooperate with each other in the brain (Buzsáki and

Wang , 2012). Recently, rhythmical activation of interneurons via optogenetic tech-

niques has been found to enhance coherent oscillations in hippocampus CA1 and to be

able to rescue memory formation which is impaired by sleep deprivation (Ognjanovski

et al., 2018). Silencing interneurons results in disruption of neuronal oscillations,

which further affects neural plasticity (Durkin et al., 2017) and memory performance

(Ognjanovski et al., 2017). However, in this process of artificial stimulation of in-

hibitory neurons, the relative relationship between excitation and inhibition may also

be altered, of which the effects need to be discussed more carefully.

In the modeling work shown in the following chapters, the two mechanisms for

synchrony, resonance-based and inhibition-based, can coexist in a network, allow-

ing the network to transition between them depending on levels of excitation and
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inhibition in the network.

1.4 Excitatory and Inhibitory Balance

The concept of excitatory/inhibitory balance (E/I balance) in neural networks

was first brought up in 1996 as the approximate equality of excitatory and inhibitory

inputs into neurons connected in a sparse but strong way, in order to explain the

generation of irregular firing patterns and chaotic dynamics (van Vreeswijk and Som-

polinsky , 1996). Soon after, this hypothesis was further supported by computational

work (Troyer and Miller , 1997; van Vreeswijk and Sompolinsky , 1998). Ever since

then, this concept of ’balanced excitation and inhibition’ has aroused extensive in-

terest in both theoretical and experimental research. The original meaning of E/I

balance is referred to as loose balance in later research. Definitions of different types

of balance have been developed, such as tight balance and precise balance, where ex-

citation and inhibition are temporally related. E/I balance has been argued to play

a significant role in many cognitive functions.

1.4.1 Experimental evidence

Excitation and inhibition have been observed to be closely related both at func-

tional and synaptic levels in a wide variety of brain regions during different brain

activities by a large body of experimental work. Measurements of the correlation

between excitation and inhibition in experiments can be classified into two major

categories based on the experimental conditions: the sensory response under external

stimuli and the maintenance of spontaneous neural activity. In the first class, the

response of excitatory conductances and inhibitory conductances are similar when

stimulated, such as responses to frequency or tone stimuli measured in the auditory

cortex (Wehr and Zador , 2003; Zhang et al., 2003; Zhou et al., 2014), to orientation

stimulus and spatial frequency in the visual cortex (Tan et al., 2013; Liu et al., 2009),
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to odor stimulus in the olfactory cortex (Poo and Isaacson, 2009), and to direction

in the barrel cortex (Wilent and Contreras , 2005). Results were collected in differ-

ent layers within each cortical area and in awake/anesthetized states, either in vitro

or in vivo (Wilent and Contreras , 2005; Poo and Isaacson, 2009; Okun and Lampl ,

2008; Murphy and Miller , 2009; Wehr and Zador , 2003), indicating that this co-

tuning relationship between excitation and inhibition exists universally in the brain.

Taking a more detailed look into these results, some of them reported a relatively

loose correlation where only the strengths of excitation and inhibition co-vary and

inhibitory GABAergic synapses have a broader tuning than excitatory ones (Zhou

et al., 2014), while others showed more strict correlation. For example, some results

demonstrate identical or even indistinguishable profiles for excitatory and inhibitory

types of conductances as well as a consistent temporal delay between the onsets,

where the excitation arrives first and gets quenched by the inhibition on a scale of

milliseconds (Wehr and Zador , 2003). Both types of correlation, with or without

the temporal relationship, were observed in all the cortical areas mentioned above.

More interestingly, in the same experiment, the general type of correlation was found

in the tuning for orientation stimulus while the detailed type was found in spatial

frequency stimulus (Cardin et al., 2007). Besides the tuning curve, the postsynaptic

potential traces generated by the excitatory and inhibitory inputs were observed to

correlate closely in timing as well as strength, in both spontaneous activity as well as

under excitatory and inhibitory somatosensory stimulation (Okun and Lampl , 2008).

Furthermore, the excitatory postsynaptic current (EPSC) and inhibitory postsynap-

tic current (IPSC) recorded using voltage clamp exhibit the same amplitudes on a

cycle-by-cycle basis during gamma oscillations (Atallah and Scanziani , 2009).

Conversely, disruption of this balance may cause many neurophysiological patholo-

gies (Tatti et al., 2017). Some possible causes of the imbalance may be impaired

connectivity in circuits by altered plasticity (Patel et al., 2015), changes in homeo-
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static plasticity (Whitt et al., 2014), improper regulation of neurotransmitter release

(Takada et al., 2015) or improper expression of receptors (Catts et al., 2016; Tong

et al., 2015). For example, experimental studies on epilepsy have reported disinhi-

bition that is potentially caused by disregulation of excitatory input to inhibitory

neurons (Zhou et al., 2009). This similar decrease of inhibition caused by the lack of

expression of inhibitory receptors was also observed in schizophrenia (Kehrer , 2008),

and hyperactive cortical circuits were identified due to an increase in excitatory neu-

rons in a disease with autistic cognitive developmental problems (Tervonen et al.,

2009).

1.4.2 Theoretical work and hypotheses

These experiments have strongly supported that correlation and interaction be-

tween excitation and inhibition exists universally in the brain. However, each indi-

vidual experiment actually focused on different variables and had different definitions

in the study of the balance. So what is this ”balance” exactly? And to what ex-

tent are excitation and inhibition actually balanced, given that various correlations

were observed? Moreover, how is the balance even generated and maintained in the

brain? Some hypotheses on different types of E/I balance were proposed based on

these questions, which still remain open.

The first type is global balance or loose balance, which is basically the same as

the original definition, meaning that excitatory and inhibitory signaling in the net-

work approximately cancel each other over a relatively long period of time, leaving

a random walk of the neuronal membrane potential and thus generating irregular

spiking (Denève and Machens , 2016), as in the observations of those tuning curves

generally matching each other but with no close temporal correlation (Kerlin et al.,

2010; Wu et al., 2008). The next type with a relatively closer correlation is called

detailed balance which means excitatory and inhibitory input relevant to a specific
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signaling pathway can cancel each other when multiple signals exist, which actually

leaves the target neurons unresponsive (Vogels and Abbott , 2009). A further strin-

gent category called tight balance was proposed to address the problem of inefficient

coding ofrandom spiking firing and occurs when inhibition tracks excitation closely

with small time delays. The combination of detailed balance and tight balance gives

precise balance, which requires both fine tuning as well as the temporal relationship

(Hennequin et al., 2017).

Mechanistic understanding of the functional roles of E/I balance has also been

actively explored, with multiple hypotheses proposed. One proposal is the gating

mechanism of precise balance, which is thought to improve the timing precision during

information processing where the neuron has a narrow window to fire during the

short delay of inhibition relative to excitation (Hennequin et al., 2017). A recent in

vitro study actually shows an almost identical ratio between excitation and inhibition

displaying precise balance and demonstrating a relationship between the time delay

and the synaptic strength (Bhatia et al., 2019).

Another popular model called Balance Amplification was proposed to explain se-

lective amplification, indicating that the neural circuits selectively amplify some fir-

ing patterns to enhance the signal-to-noise ratio under external stimuli. This model

indicates that when a steady balance pattern is established by a given input, the

imbalance between the firing rate of excitatory and inhibitory populations (referred

to as ”difference patterns”) can drive and amplify the balance pattern (referred to as

”sum patterns”) via strong recurrent connections (Murphy and Miller , 2009). This

amplification process has been demonstrated to address the two major problems of

the traditional model, Hebbian amplification, which are slowness in responses and in-

stability of dynamics caused by small structural perturbations (Murphy and Miller ,

2009; Hennequin et al., 2017). This mechanism has achieved great success in explain-

ing activity in the visual cortex of cats (Murphy and Miller , 2009) and in the macaque
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cortex, where it is found that the signal propagates effectively across cortical areas

via balance amplification (Joglekar et al., 2018).

A third model is the inhibition-stabilized network where strong negative feedback

from inhibition stabilizes activity of an excitatory network, thus constraining the

activity from ”running away” (Kandel et al., 2012). This is supported by evidence in

the zebrafish homolog of the olfactory cortex, where both tight balance and detailed

balance were observed at the same time (Rupprecht and Friedrich, 2018). A novel

mechanism was proposed to model decision making, where two excitatory circuits

representing two choices are mediated by a common inhibitory circuit. When the

biased or unbiased input comes, the system has to fall in one of the bistable states

dependent on the relative interaction of the inhibitory circuit with the two excitatory

ones (Wang , 2008).

1.5 Outline

The work presented in this dissertation aims to provide a theoretical framework

to understand the mechanisms and the functional roles of heterogeneous E/I balance

states using computational modeling and statistical analysis. First, a method to infer

functional connectivity and network stability is extended in Chapter II, together with

the analysis of in vivo datasets using this method. Observed functional dynamics reg-

ulated by the inhibitory neurons, demonstrated in the analysis results, inspired the

modeling work in Chapter III to systematically study the interaction between excita-

tory and inhibitory neural populations. Based on the multiple identified mechanisms

for obtaining E/I balance in those results, Chapter IV focuses on the dynamical ef-

fects on network firing patterns under external oscillations when the system sits at

different E/I balance states.

As mentioned above, a reliable and efficient statistical metric to measure func-

tional connectivity in large scale neurological recordings is essential. In Chapter II, I
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develop an analytical framework which makes use of the Average Minimal Distance

(AMD) between spike trains to quantify the functional connectivity between neu-

ron pairs, and further makes use of Functional Network Stability (FuNS) to measure

whether the functional patterns stay invariant over extended time period. In collabo-

ration with my lab mates and the Aton lab, this method is tested on surrogate data,

computational modeling as well as in vivo recordings from mouse hippocampus and

visual cortex. Compared with traditional techniques such as cross-correlation, AMD

and FuNS display a more robust and significant performance with a computation

time up to 4 fold less, and with fewer hyper-parameters. The analysis data indicates

that oscillatory driving to the inhibitory parvalbumin positive (PV+) interneurons

stabilize the functional patterns, which actually improves memory consolidation.

We subsequently used AMD-FuNS to measure the functional patterns in different

brain regions such as the hippocampus, primary visual cortex and lateral geniculate

nucleus (these results are not part of this dissertation, see Ognjanovski et al. (2017);

Durkin et al. (2017); Roach et al. (2018)). We then set out to explore what mecha-

nisms are underlying the experimentally observed patterning. To probe the detailed

mechanisms of E/I balance in terms of the network and cellular properties, in Chapter

III, I build a computational network composed of excitatory and inhibitory Hodgkin-

Huxley neurons of type 1 excitability and systematically vary the synaptic strength.

Most previous computational work was done with simplified neural models such as

the integrate-and-fire model, which does not capture all the biological realism of the

neurons. Although different types of balance have been observed and classified, as

listed above, the network environment required by each type is unknown. The model

results give a complete characterization of the trajectory of the changes in E/I ratio

with various levels of network coupling strength. This trajectory provides a theoret-

ical basis to understand the transition of the network from a more general balance

to a more precise balance with the increase of synaptic strength. In addition, three
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balance regimes with different mechanisms and firing coherence emerge. The mech-

anisms generating these three balance regimes differ from each other based on the

competitive dynamics between the firing rate and depolarization driving force, where

the former dominates in a relatively loose balance at weak coupling while the latter

contributes to the second regime at medium coupling. Moreover, by manipulating

the network topology, I find that global inhibition has a stronger effect than global

excitation, which is able to keep the system trapped in an inhibition-dominant regime

even at high excitatory synaptic strength.

Continuing this line of work, I study how the network dynamics change at different

E/I balance states when interacting with an external oscillation in Chapter IV. Here I

use a neuron model with type 2 excitability, which displays a stronger resonance prop-

erty in response to rhythmic input and propensity to synchronize. Model results show

two synchronization regimes at different E/I levels. External oscillation at the natural

frequency of the neurons synchronizes the network and stabilizes the inter-bursting

intervals in a first regime when the synaptic strength is weak. At higher synaptic

strengths, the system transits into a second regime when spontaneous oscillations

emerge and the effect of external oscillations disappear. In this regime, the intrinsic

interaction between excitatory and inhibitory currents accounts for synchronization

on a cycle-by-cycle basis. In the first regime, clear ordered spiking patterns appear

in the resonant oscillation, which may lead to the prediction that the oscillation en-

hances the information encoding process only when the system is at the appropriate

balance states.
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CHAPTER II

Functional Network Stability and Average

Minimal Distance – A framework to Rapidly

Assess Dynamics of Functional Network

Representations

This work was done in collaboration with my lab mates and the experimental data

is from Aton Lab. I did the work presented in Results section 2.3.1 and 2.3.3.

2.1 Introduction

New multisite recording techniques have generated a wealth of data on neuronal

activity patterns in various brain modalities (Buzsáki , 2004b; Lichtman et al., 2008;

Luo et al., 2008; Chorev et al., 2009). An unresolved question is how, using such

data sets, one can correctly identify large-scale network dynamics from populations

of neurons which either may, or may not, include neurons involved in a particular

cognitive process of interest. This is due in part to the fact that even high-density

recordings sample only a sparse subset of the neural system responsible for the modal-

ity in question. It is also complicated by the inherent separation of temporal scales

over which neural vs. behavioral measurements occur.

30



In response to this question, multiple linear and non-linear techniques have been

developed over the years to assess functional connectivity between neurons, and to

possibly infer from it structural connectivity (see for example: (Friston et al., 2013;

Bastos and Schoffelen, 2016; Cimenser et al., 2011; Cestnik and Rosenblum, 2017;

Zaytsev et al., 2015; Poli et al., 2016; Shen et al., 2015; Wang et al., 2014)). More re-

cent approaches utilize network theory to establish links between recorded data and

the underlying connectivity (see for example: (Newman, 2004, 2006, 2010; Ponten

et al., 2010; Rubinov and Sporns , 2010; Sporns et al., 2000; De Vico Fallani et al.,

2014; Supekar et al., 2008; Boccaletti et al., 2006; Stafford et al., 2014; Petersen and

Sporns , 2015; Misic and Sporns , 2016; Park and Friston, 2013; Bassett et al., 2010;

Feldt et al., 2009; Gu et al., 2015; Medaglia et al., 2017; Davison et al., 2015; Her-

mundstad et al., 2011; Bassett et al., 2011; Shimono and Beggs , 2015; Nigam et al.,

2016; Nakhnikian et al., 2014; Pajevic and Plenz , 2009)). The idea is that, by es-

timating networks based on functional interactions, one can potentially gain insight

into global dynamics, which reflect the general property of the whole network, instead

of a specific subset of neurons. While all these approaches can provide insightful in-

formation, they share some the same problems. These methods are often limited by

under-sampling (and potentially unrepresentative sampling) of neuronal recordings,

and are not optimized for monitoring changes in network structure across extended

time periods (i.e., those associated with behaviors of interest, such as memory forma-

tion).

Here we propose a novel technique that rapidly estimates functional connectivity

between recorded neurons. Then, rather than characterizing details of the recovered

network, the metric measures changes in the network dynamical stability over time.

The technique is based on an estimation of Average Minimal Distance (AMD) be-

tween spike trains of recorded neurons, a metric which has previously been compared

to other clustering algorithms (Feldt et al., 2009). Here, we expand on this work and
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show that the analytic estimation of AMD for the null case, when the two cells are

independent, allows for rapid estimation of the significance of pairwise connections

between the spike trains, without need for time-expensive bootstrapping. Further,

Functional Network Stability (FuNS) is introduced and is monitored over timescales

relevant for behavior. We show that FuNS measures global change in network dy-

namics in response to localized changes within the network. This, in part, alleviates

the problem of sparse sampling so prevalent in neuroscience.

Below, the statistical underpinnings of AMD and FuNS are detailed. We compare

AMD and cross-correlation (CC) on both surrogate data and model simulation data.

Model results show the applicability of AMD and FuNS on excitatory-only networks,

as well as on mixed networks of excitatory and inhibitory neurons poised near a bal-

ance between excitation and inhibition, a regime thought to be a universal dynamical

state achieved by brain networks, resulting in enhanced information processing prop-

erties (Froemke, 2015; Barral and Reyes , 2016; Poil et al., 2012; Berg et al., 2007;

Rubin et al., 2017). We end by analyzing experimental data recorded from the mouse

hippocampus during contextual fear memory formation. Our results indicate that

AMD yields results comparable to that of the gold-standard CC, but, importantly,

it is orders of magnitude faster and reports statistically significant increases in FuNS

due to behavioral-based network topological changes compared to CC FuNS.

2.2 Methods

2.2.1 Statistical Methods

2.2.1.1 Average minimal distance (AMD) and its significance estimation

Pairwise functional connectivity is estimated using average minimal distance (AMD)

(Feldt et al., 2009) (Figure 2.1) separating the relative spike times between neu-

rons. AMD is calculated as follows: given the full spike trains { S1, S2, . . ., Sn}
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Abbreviation Full Name
AMD Average Minimal Distance
CA1 Cornu Ammonis 1
CC Cross-correlation

CFC Contextual Fear Conditioning
E/I Excitatory/Inhibitory Ratio
FC Functional Connectivity

FCM Functional Connectivity Matrix
FSM Functional Stability Matrix
FuNS Functional Network Stability
IAF Integrate and fire
ISI Interspike interval

Table 2.1: List of Common Abbreviations

for n neurons within a network, the pairwise functional relationship, FCij, of the ith

and jth neurons is evaluated by comparing the average temporal closeness of spike

trains Si and Sj to the expected sampling distance of train Sj (Figure 2.1a). That

is, AMDij = 1
Ni

∑
k ∆tik , where Ni is the number of events in Si and ∆tik is the

temporal distance between an event k in Si to the nearest event in Sj. With AMD

measured, the functional connectivity (FC) is calculated as FCij =
√
Ni ∗ (AMDij−µj)

σj
,

which is expressed in terms of probabilistic significance of connectivity between pair

ij. The mean and standard deviation, µ j and σ j, of the expected sampling distance,

assuming that the spike trains are independent, can be calculated from either: 1)

boot-strapping (i.e. randomizing the spike trains multiple times and reassessing the

AMD for the null hypothesis being statistically independent of the two spike trains),

or 2) numerical estimation of expected values given the distribution of inter-spike

intervals (ISIs) on Sj. Hereafter, the analytical method is referred to as ”fast AMD”

and the bootstrapping method as ”bootstrapped AMD” . For a system with n neu-

rons, the functional connectivity value between each pair of spike trains is calculated,

generating an n-by-n Functional Connectivity Matrix (FCM).

In the fast AMD approach, the maximal distance between an input spike and any

spike in the spike train to be analyzed is ISIi
2

. Then, the expected mean distance
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Figure 2.1: Calculation of AMD and analytical significance. The average minimal dis-
tance algorithm calculates shortest temporal length between spikes emit-
ted by a neuron to the closest spikes in a reference neuron, looking in
either both temporal directions (a), or in a single temporal direction (b),
e.g. forward in time. The maximal possible distance between spikes is ei-
ther half the interspike interval (c) or the full interspike interval (d), when
looking in either both temporal directions or a single temporal direction,
respectively. The measurements require a collective average timing se-
quence to be below one quarter (bidirectional) or one half the interspike
interval (unidirectional) in order to be considered significant.
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between spikes in the independent spike trains is µi = ISIi
4

, where ISIi is the corre-

sponding interspike interval of spike train i (Figure 2.1b). Calculating the first and

second raw moments from the maximal distance then yields µL1 = 1
4
L and µL2 = 1

12
L2

for a specific ISI with length L. Taking into account the probability of observing an ISI

with length L over the recording interval T, p (L) = L
T

, the first and second moment

for sampling the whole spike train randomly are then µ1 =
∑

L
L
T
µL1 = 1

4T

∑
L L

2

and µ2 =
∑

L
L
T
µL2 = 1

12T

∑
L L

3 , respectively. The expected mean and standard

deviation of a random spike train are then calculated as µ = µ1 and σ =
√
µ2 − µ2

1 .

2.2.1.2 Unidirectional AMD for causality detection

The bidirectional AMD described above (i.e. the temporal distance between spikes

of two different neurons, measured in either direction) can be extended to be unidirec-

tional to identify causality between the two spike trains. In this scenario, the temporal

distance is measured only forward in time and the mean delay time expected within

the null hypothesis (i.e. independence of both spike trains) is only set to µi = ISIi
2

, assuming a maximal temporal distance equal to the ISI (Figure 2.1c and 1d). The

calculation of first and second moment change accordingly to µ1 = 1
2T

∑
L L

2 and

µ2 = 1
3T

∑
L L

3 ; the mean and standard are then calculated in the same manner as

above.

2.2.1.3 Functional Stability Matrices (FSMs) and functional network sta-

bility (FuNS)

The fast AMD metric offers critical advantage over the bootstrapped AMD method,

as well as over the standard CC method, for quantifying functional connectivity mea-

sured over behaviorally-relevant timescales (i.e., hours to days). It allows rapid anal-

ysis of functional connectivity that can then be used to link neuronal activity with

behavior. The speed of the fast AMD metric is utilized to introduce Functional net-
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work stability (FuNS) as a way of measuring the dynamics of functional connectivity

over time. Namely, we want to assess the stability of functional connectivity between

the neurons within the network rather than to characterize the detailed network con-

nectivity, which, again, is usually based on extremely sub-sampled systems. The

remainder of this section is focused on characterizing the stability metric. Later, we

show that changes in stability provide information about gross structural changes in

the network.

Calculating the stability of network-wide functional connectivity patterns across

time requires a division of the data sets into at least two time-windows; the remaining

theoretical discussion assumes two time-windows for simplicity. The functional con-

nectivity matrices are denoted as FA and FB where A and B represent the first and

second time windows, respectively. The functional stability between these data sets

is then calculated using cosine similarity, CA,B = cosθAB = <FA,FB>√
<FA,FA>∗<FB ,FB>

, with

an absolute value of 1 denoting no change (maximum similarity) and 0 indicating

great change (no similarity; orthogonality) between the time intervals (Figure 2.2a).

Functional stability can thus be calculated in a pairwise manner across all time bins

for a given recording in order to generate what we call a functional stability matrix

(FSM; Figure 2.2b, see also Figure 2.8), or only on directly-adjacent time windows

(Figure 2.2a), to generate a single measure of stability: FuNS = 1
T

∑T−1
t=0 Ct,t+1 .

FuNS can also be used to determine the effect behavior has on neural network

dynamics. In this scenario, stability is calculated before and after the presence of

a synaptic heterogeneity (see Methods 2.2), FuNSA,B and FuNSC,D , respectively.

The significance of stability increase over many simulations is then given as a Z-

score: Zs = (µC,D − µA,B)
(
σ2
A,B

N
+

σ2
C,D

N

)− 1
2

with values greater than 2 indicating

a significant increase in stability due to behavioral effects and values less than -

2 indicating a significant decrease in stability. Here, µ and σ represent the mean

and standard deviation of functional network stability, respectively, taken over many
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Figure 2.2: Calculation of Functional Network Stability and Construction of Func-
tional Stability Matrices. a) Given the spike time series of neurons (top),
the functional connectivity matrices (FCMs) are calculated over each in-
terval (center), whereupon FuNS is calculated by measuring the mean
cosine similarity between each consecutive time interval (bottom). b) Al-
ternatively, similarity can be calculated in a pairwise manner across all
time intervals to yield the functional stability matrix (FSM).

simulations or recordings.

2.2.2 Computer simulations

2.2.2.1 Simulations of integrate and fire networks

Neural activity is simulated using leaky integrate-and-fire model neurons with dy-

namics given by V = −αV +
∑

j ωijXj+I% . The summation represents the total input

from recently fired (within ∼ 20ms) pre-synaptic neurons with connectivity strength

ωij and input dynamics given by the double exponentialXj = exp
(
−
(
t− tspkj

)
/3.0

)
−

exp
(
−
(
t− tspkj

)
/0.3

)
, where tspkj represents the timing of the last pre-synaptic

spike. In addition to synaptic input, each neuron receives noisy input I% = 0.15 +

10H (%− p) , where H is the Heaviside step function, % = 10−5 , and p ∈ {[0, 1]}

is real-valued, random variable generated at every integration step from a uniform

distribution.

Networks are formed using 1000 excitatory neurons arranged on a ring network.
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Connection densities range from 1.5% to 4.5% of the network population and con-

nection weights range from ω = 0.02 to ω = 0.045 unless stated otherwise. The

networks are initially connected locally and subsequently rewired with probability pr.

This parameter is varied from zero to unity, changing network topology from com-

pletely local connections to completely random. Each simulation is completed using

the Euler integration method.

Additional network are simulated using a mixed population of excitatory/inhibitory

cells. In this scenario, connections are completely local ( pr = 0 ), have a connec-

tion density of 2% , and synaptic weights are pulled from a uniform distribution

ωji ∈ {[0, 0.2]} . These networks follow the same dynamics as the excitatory only

networks, except that 225 inhibitory neurons are added to the existing networks,

evenly spaced among the excitatory cells, with inhibitory output connectivity strength

ω∗ji = −βωji . The variable β is used to investigate network dynamics when excitation

or inhibition dominate. We calculate the ratio of excitation to inhibition, E/I, as the

ratio between total excitatory to inhibitory synaptic input, averaged over all neurons

not in the heterogeneity. Balance between excitation and inhibition (E/I ∼ 1) occurs

at β = 3.0 .

2.2.2.2 Introduction of synaptic heterogeneities and their long-range dy-

namical effects

Sensory input causes topological changes in anatomical network structure through

both the strengthening and weakening of synapses (Feldman, 2012; Song et al., 2000)

as well as through the introduction of new synapses (Ghiani et al., 2007) and deple-

tion of unused synapses (Vanderhaeghen and Cheng , 2010). Here, we focus solely on

the strengthening of synaptic coupling for simplicity. The effect of synaptic strength-

ening is mimicked by introducing a discrete heterogeneity in network connectivity,

i.e. a small, localized region spanning 10% of the network, with increased synaptic
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connectivity between nodes. To simplify comparing networks with and without these

synaptic heterogeneities, the underlying pairwise connectivity and synaptic strengths

are conserved. To analyze the potential long-range effects of such a heterogeneity,

we calculate the mean synaptic distance to the heterogeneity for each neuron not in

the heterogeneity. The mean synaptic distance here is the average number of steps

that need to be taken from neurons in the heterogeneity to any other neuron in the

network, along synaptic connections. The calculation of the distance is adopted from

Newman (2010). In the simplest way, the synaptic distance between every neuron

can be measured by calculating AN, where A is the adjacency matrix and the power

N is the number of synaptic steps necessary to reach every other neuron. With each

successive multiplication of A, new non-zeros entries appear, representing new long-

range (i.e. not directly connected), multi-unit synaptic connections. The synaptic

distance d is the number of multiplications of A with itself, necessary to give rise to

the new long-range connection. With the full synaptic distance matrix populated,

the mean synaptic distance to the heterogeneity is calculated by averaging over all

heterogeneity distances calculated for a given neuron. The mean synaptic distance to

heterogeneity, and indeed between any two neurons, changes based on the size and

connectivity density of the network. We thus normalize the distance to heterogeneity

with a value of 1 representing neurons farthest from the heterogeneity, incorporating

the entire network, and a value of 0 representing the minimum degree of separation

from the heterogeneity (i.e. within the heterogeneity). It should be noted that by

definition of d, the shortest distance to heterogeneity would be for a neuron not in the

heterogeneity but connected to every other neuron within the heterogeneity, attaining

a normalized value of = 1
N

.
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2.2.3 Experimental design

2.2.3.1 Recordings from mouse CA1 before and after contextual fear con-

ditioning (CFC)

To test the effects of memory formation on network dynamics in vivo, C57BL/6J

mice (age 1-4 months) were implanted with custom-built driveable headstages (see

Ognjanovski et al. (2014, 2017) with bundles of stereotrodes targeting hippocampal

area CA1. Following postoperative recovery, mice were handled daily while gradually

lowering stereotrodes into the pyramidal cell layer of CA1 to obtain stable recordings.

A 24-h baseline recording of neuronal and LFP activity was initiated at CT0, after

which mice underwent a single-trial CFC as described previously. Contextual fear

memory was assessed 24 h after CFC, using previously-described methods.

2.3 Results

2.3.1 Comparing AMD and CC in surrogate data

2.3.1.1 Comparison of bootstrapped AMD, fast AMD, and CC for rapid

estimation of functional connectivity.

We first compare the bootstrapped and fast AMD metrics for different distribu-

tions of ISIs (Figure 2.3): Gaussian, Poisson, uniform, and exponential. To measure

the performance of the metrics, a single spike train following any one of these distri-

butions is generated and cloned, with clones receiving a bidirectional jitter of their

spike times equal to the jitter width depicted on the x axis (Figure 2.3). The jit-

ter from every spike is drawn from the same distribution as the original spike train,

of which the standard deviation serves as the jitter width. For all cases, the mean

ISI is arbitrarily chosen to be 33ms (this ISI gives a 30Hz signal, representative of

awake brain oscillations). Figure 2.3 depicts the mean z-score and its standard devi-
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ation, calculated as a function of the jitter width for the two approaches. In all four

instances, the two AMD methods perform nearly identically.

Next, we compare the performance of fast AMD to CC, using the same distribu-

tions as above, i.e. Gaussian, Poisson, etc., with jittering (Figure 2.4). To calculate

CC between two spike trains, the two spike trains are convolved with a Gaussian hav-

ing one of three different widths, σ= 1ms, 5ms, or 33ms. Both metrics are calculated

for 0 temporal shift between the spike trains. Importantly, we note that AMD does

not have any free parameters and, at the same time, better captures finer character-

istics for Poisson spike distributions compared to CC with any Gaussian convolution

width.

Critically, the fast AMD approach provides a rapid estimation of the significance of

pairwise functional connectivity. Figure 2.5 shows the computing times of fast AMD,

bootstrapped AMD, and CC with zero time-shift and bootstrapping for spike trains

having various numbers of spikes and network sizes. The reduction of the computing

time for fast AMD is very significant (up to 10000 times faster) which may be crucial

for multiscale data analysis.

2.3.1.2 Comparison of bidirectional and unidirectional AMD performance

Next, the performance of unidirectional fast AMD and bidirectional fast AMD on

surrogate data sets is compared (Figure 2.6). A set of 5 spike trains are generated

such that they are: 1) coincident (but not causal) with respect to each other, or 2)

are causal, with FCMs calculated in each scenario. First, one spike train is generated

from a Gaussian distribution. In the case of coincidence, the “master” spike train is

copied and each spike is subsequently jittered following the same distribution. This

process is repeated, with subsequent spike trains copying the previously jittered spike

train. In the case of causality, copied spike trains retain the same interspike intervals

as the original master copy, but are delayed slightly in time. Figure 2.6 depicts
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Figure 2.3: Comparison of bootstrapped and fast AMD metrics for rapid estimation
of functional connectivity (FC). Two identical spike trains were artificially
generated using various distributions of inter-spike intervals: a) Gaussian,
b) Poisson, c) uniform, and d) exponential; the second spike train was jit-
tered using the same type of statistical distribution, with various jitter
widths (x-axis) to progressively de-correlate the spike trains. Each set of
spiking data represents a 1s long recording (the time length is arbitrary,
however all values are scaled to length) and contains 30 spikes. The ana-
lytical value of pairwise functional connectivity (FC21) is calculated using
the method described in the text (Methods 1.1). For all the distributions,
AMD detects the significant functional connectivity when jitter width is
small. The average value at which FC loses significance is a quarter of
mean ISI, 8ms. For a Poisson distribution (b), due to the fact that the
mean value and standard deviation are controlled by the same parame-
ter, when the jitter width equals around 17ms, the mean value of jitter
is also around 17ms, and the maximal value of the AMD and therefore
FC has the most negative value. The same reasoning applies when the
jitter width is around 33ms. The significance from bootstrapping was
obtained by shuffling the ISIs of the second train 100 times. As before,
the Z-score of the AMD values represents the FC. The results agree with
the analytical values.
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Figure 2.4: Comparison between fast AMD and CC. We compared the traditional
cross-correlation (CC) method to fast AMD using a) Gaussian, b) Poisson,
c) uniform, and d) exponential distributions, as in Figure 2.3. For the CC
calculation, spike trains are convolved with a Gaussian waveform having
a standard deviation σ as a free parameter. We used sigma σ = 1ms,
5ms and 33ms respectively. As before, the Z-score of CC was based on
bootstrapping. AMD and CC results are equivalent for σ = 1ms. For
larger σ, CC cannot capture the specific features of ISIs distributions,
but behaves generally in a similar manner as AMD for increasing jitter
width.
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Figure 2.5: Comparison of computation speeds obtained for fast AMD, bootstrapped
AMD, and bootstrapped CC. We measured the calculation time (recorded
by CPU time from MATLAB) for three methods: CC, bootstrapped AMD
and fast AMD. a) Calculation time for increasing the number of cells in the
system. B) Calculation time for increasing the number of spikes in a two-
cell system. Fast AMD is more than 20 times faster than bootstrapped
AMD, and 200 times faster than CC calculation. For two-cell systems
with different number of spikes (b), the advantage of fast AMD is more
significant for larger spike trains, up to four orders of magnitude less
than CC when the number of spikes is 10000. The sharp increases in CC
computation time is most likely related to the memory allocation of the
computer. The results for fast and bootstrapped AMD were averaged over
200 realizations, whereas 10 realizations were used for CC. The reported
results are based on shuffling the ISIs 100 times for CC and bootstrapped
AMD calculations.
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the result of bidirectional AMD (Figure 2.6a) and unidirectional AMD (Figure 2.6b)

estimation for coincident spike trains. As expected, bidirectional AMD reports highly

significant temporal relations between the two trains whereas the unidirectional AMD

estimation reports lack of causality (i.e., the significance is lower that one standard

deviation). Figure 2.6c and d depict similar calculations for causally related spike

trains. Here both measures report high temporal coincidence, however unidirectional

AMD provides additional information about causal relationships.

2.3.1.3 Functional stability between functional connectivity matrices (FCMs)

We sought to determine how functional stability between FCMs can capture the

similarity between different functional connectivity patterns in the network. Changing

functional connectivity patterns are constructed by jittering five copies of a master

spike train. For increasing jitter amplitude, all spike trains become increasingly de-

correlated, resulting in different functional connectivity patterns. The FCM is first

calculated using the fast AMD metric for the five spike trains. Then, the stability

between FCMs for different realizations of the spike trains having various jitter width

is determined (Methods 1.3). Figure 2.7 shows the functional stability as a function

of jitter of the compared spike trains. For small jitter, the FCMs yield stability values

close to one, indicating high similarity between the FCMs. On the other hand, when

a small jitter FCM is compared to a high jitter FCM, similarity rapidly declines to

negative values. This is due to switching from a well-defined network structure to

a random one. Finally, when two largely random states are compared (i.e. both

FCMs have high jitter and are de-correlated) the stability value hovers around 0.2.

Taken together, these results indicate that functional stability reasonably quantifies

the similarity between functional connectivity in the network.

45



AMD

1 2 3 4 5

Cell ID

1

2

3

4

5

C
el

l I
D

0

0.5

1

1.5

2

2.5

3

3.5

directional AMD

1 2 3 4 5

Cell ID

1

2

3

4

5

C
el

l I
D

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Cell ID

1

2

3

4

5

C
el

l I
D

-3

-2

-1

0

1

2

3

1 2 3 4 5

Cell ID

1

2

3

4

5

C
el

l I
D

-4

-2

0

2

4

6

b)

c)

a)

d)

Figure 2.6: Bidirectional AMD and unidirectional AMD FCMs. An example of func-
tional connectivity matrices (FCMs) calculated using two AMD methods
for coincidence (a, b; bidirectional time lags taken into account) and
causality (c, d; unidirectional time-lags taken into account) of functional
connectivity (FC) patterns. Color represents the significance of fast AMD.
In the case of coincidence, the FCM calculated by bidirectional AMD is
almost symmetric and captures the functionally connected neurons (a),
but unidirectional AMD does not (b); conversely in the causality case,
the anti-symmetric FC matrix given by unidirectional AMD indicates the
causal relationship (d), while bidirectional AMD does not differentiate
from the coincidence case (c). The results were averaged over 100 real-
izations.
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Figure 2.7: Similarity between FC patterns. A five-cell system is simulated, where
the other four spike trains were jittered from the master train with same
jitter width. Each train contains 30 spikes and time recording is set arbi-
trarily to 1 second. After calculating the functional connectivity matrix
(FCM) for each jitter width, the similarity between each pair of FCMs
is measured. The result is averaged over 100 realizations. Similarity is
high when both jitter widths are small as the AMD values are small for
both cases. There is a transition to negative values as one of the jitter
widths gets significantly larger. For the pair of FCMs, both with high-
valued jitter width, FC patterns are relatively random and similarity is
low ( 0.2).
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2.3.1.4 Functional Stability Matrix (FSM) and FuNS as a monitor of

changes in functional connectivity patterns

Following the data generating procedure used in Figure 2.8, a five cell system is

simulated to demonstrate the applicability of the Functional Stability Matrix (FSM)

(Figure 2.8) in monitoring changes in dynamical network states over time. A bidi-

rectional jitter with a width of 8ms is applied during the first and last 7 seconds

of the spike train, while a bidirectional jitter of width 15ms (Figure 2.8a and c) or

unidirectional jitter of width 8ms (Figure 2.8b and d) is applied during the middle 7

seconds. After segmenting the time series into 21 bins of equal size and calculating

the 5-by-5 FCMs using the fast AMD algorithm, the FSM is obtained by calculating

the functional stability between each pair of FCMs (Figure 2.8a and b). For both

cases, significantly positive stability values in region I and III and low values in re-

gion IV indicate the temporal relationship between different functional connectivity

patterns in the network. Importantly, region V in both cases demonstrates that the

functional connectivity returns to the same pattern observed in the first 7s, subse-

quent to the changes occurring during the 8-14s time window. In the bidirectional

case, the network loses stability during the middle 7s in region II (Figure 2.8a), while

in unidirectional case region II (Figure 2.8b), due to the corresponding unidirectional

shifts, the stability between FCMs attains a high value. Hence, FSM gives effective

information to keep track of the similarity in functional connectivity patterns in the

network at any time point. Figure 2.8c and d illustrate the functional stability trace

over time, with the red line indicating FuNS, i.e. the mean of the stability values

(0.4362 for bidirectional and 0.7720 for unidirectional). As expected, the minimum

similarity in both cases happens at the point when FC changes, at the end of 7s and

14s, respectively. These results thus give a reliable way to track functional network

changes in time, which may be due to cognitive processing, for example.
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Figure 2.8: Functional Similarity Matrix (FSM) and similarity trace over time. Sim-
ulation of temporal changes in spike relationships between five neurons.
The spike trains are jittered bidirectionally with a jitter width of 8ms from
the master train during the first and last 7 seconds of the spike train. Dur-
ing the middle 7 seconds, jitter was bidirectional with width 15ms (a,c)
and unidirectional with width 8ms (b,d), respectively. The spike trains
were binned into 21 time windows and a five by five functional connectiv-
ity matrix (FCM) was calculated by bidirectional AMD for each window.
(a,b) Similarity value between each pair of FCMs. FCMs originating from
spike trains having common properties show high similarity (c,d). Simi-
larity trace over time, within which only FCMs in adjacent time windows
are compared. Red line indicates the functional network stability (FuNS),
the average of the similarity trace values.
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Figure 2.9: Fast AMD can be adjusted to account for time delays. A copy of the
original random spike train having Gaussian ISIs is jittered with a jitter
width of 5ms and then is shifted by variable time-delay. a) The FC
between two trains is estimated by fast AMD (blue trace). Next the
second train is shifted back by the amount of delay that is estimated
by fast AMD algorithm, and FC is re-calculated (red trace). The black
dashed line shows the FC for non-delayed spike times. b) The same
analysis is applied to spike trains with no delay, and the FCs show no
significant differences. The results were averaged over 100 realizations.

2.3.1.5 Estimation of fast AMD for functional connectivity for mutually

delayed spike trains

We tested the performance of fast AMD on spike trains with applied time delay

(Figure 2.9). Two random spike trains with Gaussian ISIs are generated with a jitter

width of 5ms. Time delay is added to the second train by shifting each spike time by

a constant value. In Figure 2.9a, the FC and standard deviation between two trains

are estimated by fast AMD for different time delays. Around a delay of 7.5ms, FC is

around 0 due to the fact that the second train is shifted to one quarter of the average

ISI (33ms). FC values become negative with the increase of the delay time, indicating

an anti-correlation between two trains.

Next, fast AMD is utilized to detect the delay and to recover the original, non-

delayed z-score. The estimated delay time (DT) from Si to Sj, as given by fast AMD,
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is defined as DTij = 1
Nj

∑
k

(
tjk − t′ki

)
, where tjk is the temporal value of the kth spike

in Sj and t′k
i refers to the temporal value of the nearest event to tjk in Si. Then, Sj

is shifted by –DT12 and FC is re-calculated using fast AMD. The red line on Fig

9a depicts the FC values after the shift, and as a function of original delay time.

Fast AMD reliably detects the delay and restores FCs back to the level of no delay

(indicated by the black dash line). As a comparison, we also calculated the FC with

and without subtracting the estimated DT for non-delayed spike trains (Figure 2.9b).

There is no significant difference after subtracting DT, indicating that no spurious

correlations were introduced for non-delayed spike trains.

To further test performance of the tools on the delayed spike trains, we calculated

FuNS for a 5-cell system with jittering and applied variable time-delay (Figure 2.10);

with mean delay time in the system denoted on the y-axis. The total recording time

duration was 10s. FuNS was calculated from 10 equal length time bins. The top row

indicates the system without delay. When the system is strongly connected (i.e., a

small jitter width), FuNS is highly robust to delays, reporting nearly identical values

as the case without delay. For bigger jitter width, as expected, FuNS is low when

the delay time is around one quarter of the average ISI, i.e. when the FC between

spike trains loses significance. Thus, even though FC values can be affected by delays,

FuNS can still quantify the stability level of the system effectively.

2.3.2 Effects of localized network heterogeneity in model networks

2.3.2.1 Characterizing dynamics and connectivity of integrate-and-fire

networks

Using the statistical tools introduced above, we investigate networks of leaky

integrate-and-fire neurons for dynamic stability. The focus here is to establish how

the new metrics help to elucidate network connectivity structure, as well as poten-

tial changes in network dynamics, due to the formation of localized network het-
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Figure 2.10: Functional Network Stability (FuNS) of the delayed dataset. A 5-cell
system is simulated by adding jitter and time delay to spike trains to
randomly generate spike train using Gaussian distribution of ISIs. The
color scale represents FuNS calculated after binning the data into 10 one-
second time windows. A control realization, where no delay is added to
the spike trains, is indicated by the top row. The results were averaged
over 10 simulations. FuNS gives robust results despite the delay.
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erogeneities. As noted previously, these heterogeneities represent the formation of

localized cognitive representations (e.g. memories) within the network.

2.3.2.2 Identification of direct structural connections within the network

We first constructed sparsely connected, excitatory only networks to investigate

whether, and for what ranges of connectivity parameters, is it possible to statistically

separate sets of neurons with direct structural connectivity from those who lack direct

connections. This corresponds to adjacency matrix entries of 1 and 0, respectively.

We use the bidirectional, fast AMD metric to measure the functional connectivity be-

tween pairs of neurons that share direct structural connections and those that do not.

The distribution of FC values are then characterized (i.e. their mean and variance

are calculated) for the two populations and we subsequently calculate the statistical

separation between groups in terms of a Z-score: Zs = (µwc − µnc)
(
σ2
wc

N
+ σ2

nc

N

)− 1
2

,

where wc, wc and nc, nc represent mean and standard deviation of the distributions

of functional connectivity values for directly coupled pairs and non-coupled pairs, re-

spectively. Figure 2.11 shows the Z-Score comparison between these two populations

(Figure 2.11a). Each colored panel represents the statistical separation of the two

populations as a function of network topology for increasing synaptic connectivity.

The obtained results indicate that there is a well-defined parameter region where the

two populations can be separated with a large degree of accuracy. As expected, weak

network connectivity prohibits this separation (Figure 2.11b). Also, the statistical

significance is lower in networks deviating from local to random connectivity (Fig-

ure 2.11b-f). Importantly, significance between the groups is seen even under very

strong connectivity, though eventually the response is saturated and no new network

parameter values result in an increase in significance (Figure 2.11e and f).
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Figure 2.11: Z-Score significance between functional connectivity matrices as a func-
tion of network topology. Functional connectivity matrices (FCMs) were
parsed based on the existence or non-existence of synaptic connections
between neurons and fast AMD results for these two groups were gen-
erated. a) Mean grouped-averaged functional connectivity as a function
of connectivity density for a connection strength of ω = 0.0325 and
rewiring parameter equal to 0 (red traces: directly connected neurons;
black traces: unconnected neurons). Error bars represent standard error
of the mean. Lack of variation in network structure (i.e. there is no
rewiring of local connections) results in uniformly small standard error;
the network for each simulation is exactly the same and so responds to
random input in nearly the same manner. b-f) Color images indicate
the logarithmically scaled significance, with warmer colors indicating
a greater significance, with the white bands indicating the level above
which the Z-score is significant (consistent with two standard deviations
from the mean). As synaptic connectivity strength ω increases from very
low values (b) through moderate values (c) to higher values (d), signif-
icance increases between the parsed groups over an increasingly large
topological parameter region. As ω further increases, more than half of
the parameter region has a significant separation between groups (e) but
saturates, admitting no additional significant parameters (f). The black
box in panel (c) indicates the range of data used to generate panel (a).
All results were averaged over five trials.
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2.3.2.3 Changes in functional connectivity and stability of the network

with introduction of network heterogeneity

It is still not clear how localized changes in network structure (i.e. inclusion of

a network heterogeneity) affect network-wide dynamics. To address this, functional

connectivity and the subsequent stability of these matrices is measured between the

neurons that are not included in the heterogeneity, using the fast AMD method.

Simulations are cut into two parts and we subsequently measure both the change in

FC as well as FuNS, both given as a function of network topology and connectivity

density (Figure 2.12). Figure 2.12a depicts FuNS in the same network before the het-

erogeneity is introduced (black line) and after its introduction (red line) as a function

of the connection rewiring parameter. Significant changes in network stability are

observed for localized network topologies with significance decreasing as the topolo-

gies become more random. Figure 2.12b depicts changes of network stability upon

the introduction of a heterogeneity, as a function of both connectivity density and

network topology, and compares it to changes in mean value of FC, averaged over

all pairwise indices of the corresponding FCM, for the network (Figure 2.12c). We

note that while FuNS changes are quite significant for a wide parameter range (up to

Z-score of 64, noting the logarithmic scale), the changes in mean functional connec-

tivity are quite insignificant and provide a less clear picture of how the FCM itself

changes. This leads us to conclude that measuring the changes of FuNS is a more

tenable indicator of global change in network dynamics in response to introduction

of network heterogeneity compared to FC.

2.3.2.4 FuNS as a global measure of structural network changes

We have shown above that FuNS is sensitive to the introduction of a discrete

network heterogeneity. Thus, it allows the identification of the existence of structural

network changes without the requirement of measuring specific cells that participate
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Figure 2.12: Functional Network Stability detects dynamic changes due to synaptic
heterogeneities over a large topological parameter region. a) FuNS as
a function of connection rewiring parameter for networks before (black
trace) and after (red trace) introduction of a synaptic heterogeneity.
Synaptic heterogeneities are defined as spatial regions within the net-
work, where connections between neurons only in the region were ap-
pointed a greater synaptic connectivity compared to the rest of the net-
work. Error bars indicate the standard error of the mean. b) Z-score
of FuNS as a function of connection density ρ and rewiring parameter,
scaled using a logarithm of base two. Warmer (cooler) colors denote
an increase (loss or no change) in stability due to the introduction of a
synaptic heterogeneity. The black bar on the color scale indicates the
minimum value needed to be considered significant. The black box in the
main panel shows the parameter region used to generate FuNS curves in
the left panel. c) Difference in average FC over the entire FCM as a func-
tion of ρ and rewiring parameter is less robust than analyzing FuNS. All
results shown are for a synaptic coupling strength of A = 0.03, averaged
over five trials.

in that change. This is of paramount importance in the situation when the experi-

mental measurement is critically under-sampled and there is no way to identify either

the specific neurons participating in the structural network reorganization or the

anatomical network structure. To quantify the long-range effects of synaptic hetero-

geneities, we set out to measure the synaptic distances from network heterogeneity

where significant changes in network stability are observed.

Neurons are grouped depending on their mean synaptic distance from hetero-

geneity (Methods 2.2). Functional connectivity matrices for each group of cells is

calculated separately, whereupon we determine the mean change in FuNS within
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Figure 2.13: Local synaptic heterogeneities globally increase Functional Network Sta-
bility (FuNS). a) Example FuNS traces as a function of normalized
synaptic distance from the heterogeneity for networks before (darker col-
ors) and after (lighter colors) introduction of a synaptic heterogeneity.
Some values of the simulation parameters result in a distance dependent
decrease or no change in FuNS Z-scores (blue traces), while others result
in consistent, network-wide significance (red traces). The black, dashed
line indicates the normalized distance where FuNS loses significance in
the example case shown. Error bars indicate standard error of the mean.
b) Normalized distance from the heterogeneity where FuNS significance
is lost. Values of one indicate that the global network observes an in-
crease in FuNS due to a localized synaptic heterogeneity. All results
averaged over five trials.
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each group due to introduction of heterogeneity (Figure 2.13). Figure 2.13a shows

an example of change in FuNS as a function of mean distance from heterogeneity,

normalized by the maximum possible distance to the heterogeneity. Some network

parameters results in a persistently significant separation of FuNS at long distances

from the heterogeneity, while other parameters result in a rapid decline of FuNS away

from the heterogeneity. Thus, the Z-score of FuNS is calculated between networks

with and without synaptic heterogeneity at each synaptic distance in order to de-

termine the normalized distance where significance is lost. Figure 2.13b depicts the

normalized mean distance from the heterogeneity at which the results become in-

significant, as a function of connection density and strength. Here, a value of one

corresponds to the situation where we can detect changes in FuNS throughout entire

network. We observe that localized heterogeneity has global dynamical effects on the

system under a large array of network topologies, giving credence to the notion of

dynamical attractors in neural networks.

2.3.2.5 FuNS sensitivity to structural heterogeneity in mixed excitatory

and inhibitory networks

Finally, we measure changes in FuNS in response to introduction of network het-

erogeneity in mixed inhibitory and excitatory networks. Specifically, FuNS is mea-

sured as a function of the ratio of total excitation and inhibition generated by neurons

in the network (i.e. E/I ratio; Methods 2.1). Generally, we observe that for low values

of E/I ratio the reported FuNS is low regardless of the presence of a heterogeneity

and, at the same time, a high E/I ratio saturates FuNS in both cases (Figure 2.14).

The greatest response of the networks, in terms of stabilizing dynamics in presence of

heterogeneity, is near a balance between excitation and inhibition, i.e. E/I 1 (Figure

2.14b). Thus, only near such an E/I balance can the dynamics of the network respond

in a distributed manner to the introduction of heterogeneity. This provides another
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Figure 2.14: Introduction of synaptic heterogeneities maximize increased Functional
Network Stability near a balance between excitation and inhibition. a)
FuNS as a function of the ratio between excitation and inhibition. Intro-
duction of synaptic heterogeneities (red traces) increases stability over
networks missing a synaptic heterogeneity (black traces). b) Difference
in FuNS between networks containing and not-containing synaptic het-
erogeneities. All error bars indicate the standard deviation of the mean,
taken over five trials.

piece of evidence that mixed networks near E/I balance increase their dynamic range

in response to even localized structural network changes, in agreement with previous

studies (Poil et al., 2012; Gautam et al., 2015).

We further compare FCM and FuNS measurements between the fast AMD ap-

proach and the CC approach (Figure 2.15) at the point where FuNS observes a max-

imum increase in Figure 2.14b, i.e. E/I 1. As expected, the FCM analysis for both

methods is very similar and, indeed, does not show a significant difference between

networks with and without a synaptic heterogeneity (Figures 15a and 15b). However,

we observe a significant increase in FuNS for the fast AMD method (Figure 2.15d) but

not for the CC method (Figure 2.15c), assuming a non-normalized Gaussian distri-

bution for both. Thus, though the resulting FCMs are similar, FuNS more accurately

picks up on discrete changes in functional network topologies generated using AMD

compared to cross-correlation.
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Figure 2.15: Comparing FC and FuNS between AMD and CC near the E/I Balance.
The probability of observing a mean FC value was measured for func-
tional structures from both CC (a) and AMD (b) derived methods, only
over the excitatory neurons in the mixed networks, before (black) and
after (red) adding a network heterogeneity. The distributions were not
significantly different, within a 5% confidence interval (K-S test; CC: p =
0.83, AMD: p=0.54). Similarly, non-normalized Gaussian distributions
of FuNS were constructed for CC (c) and AMD (d) before (black) and
after (red) introduction of a synaptic heterogeneity. Calculating FuNS
for AMD yielded significantly different distributions whereas FuNS for
CC did not, within a 5% confidence interval (K-S test; CC: p = 0.09,
AMD: p = 7×10+−9). Error bars represent standard error of the mean,
whereas Gaussian widths stem from the standard deviation. Averaged
over 5 trials.
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2.3.3 FuNS applied to in vivo data

Finally, we wanted to know whether functional connectivity and stability changes

could be detected following network reorganization in vivo (Figure 2.16). We hypothe-

size that synaptic plasticity in hippocampal area CA1 following single-trial contextual

fear conditioning (CFC) (Tronson et al., 2009) is a plausible biological model to in-

vestigate how rapid structural network changes underlying memory formation affects

network dynamics. CA1 network activity is necessary for fear memory consolidation

in the hours following CFC (Daumas et al., 2005). For this reason, we recorded the

same population of CA1 neurons from C57BL/6J mice over a 24-h baseline and for 24

h following CFC (placement into a novel environmental context, followed 2.5 min later

by a 0.75 mA foot shock) to determine how functional network dynamics are affected

by de novo memory formation. CFC affects many aspects of CA1 network dynamics;

for a detailed description of the obtained results, please refer to Ognjanovski et al.

(2014, 2017).

The results presented here focus on comparing performance of the metrics (fast

AMD and CC, both together with FuNS assessment) for the case when mouse was

subjected to successful memory consolidation (success was determined by observing

behavioral changes 24 hours after training). First, the 6-hour baseline and 6-hour

post stimulation are divided into 1-minute time windows, and FCMs are calculated

in each bin, which are further used to calculate FSM. Figure 2.16 shows comparisons

of the distribution of functional connectivity values (Figures 16a and 16b) and sta-

bility values (Figures 16c and 16d). Comparing with CC, AMD is shown to be more

sensitive to capture the change of functional connectivity and stability in the network

during memory consolidation. Furthermore, the more significant shift of similarity

distribution indicates that stability is a better measurement of the change in global

network properties.
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Figure 2.16: Application of AMD and FSM to in vivo mouse data. We extracted
spike data from intervals of slow wave sleep across 6-hour recordings
for both before (baseline) and after (post stimulation) the contextual
fear conditioning. The spike trains were first divided into multiple one-
minute bins, then the functional connectivity (FC) pattern for each bin is
calculated by bidirectional AMD and CC. We compared the distribution
of both FC values (a,b) and stability values (c,d). For FC values, the
elements are extracted collectively from all the FCMs. The histogram
shows us that AMD is able to capture the functional connectivity changes
from baseline to post contextual fear conditioning more sensitively than
CC. For stability values, the elements were extracted from the FSMs for
baseline and post-stimulation respectively, and calculated as described
in Results 1.4. We observe significant shift in stability for both CC and
AMD calculation, however, AMD gives a more statistically significant
separation between the two distributions.
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2.4 Discussion

The advent of new recording techniques allowing for prolonged recordings from

an increasing number of neurons in the brain drives the necessity to develop new

analysis tools to meaningfully process data. Two underlying issues however need to

be overcome. First, there is a severe under-sampling problem: how is it possible to

identify universal properties of neuronal dynamics during information processing if

the number of recorded cells remain tremendously small in comparison with number

of cells participating in the computation? Second, and related to the first question,

is how to characterize the data so that the (small) recorded population provides a

representative picture of the dynamics of whole modality? Solutions to the latter at-

tempt to bridge the timescales between neuronal activity and behavioral states which

they encode, while prolonged recordings on freely behaving mice are now possible,

they generate enormous data sets which need to be meaningfully processed in a finite

amount of time.

In this paper we have addressed both of these problems - we have introduced a

framework, based on the AMD between spikes in individual neurons’ recorded spike

trains, which allows for rapid assessment of network functional connectivity structure

throughout extended time periods. We showed that we can extend the developed

metrics so that we can rapidly estimate significance of functional connectivity be-

tween neuronal pairs, based on analysis of distribution of ISI intervals of the neurons

in question, not only without loss of resolution, but often with improved sensitivity

as compared to cross-correlation based methods. At the same time, rapid assess-

ment of significance allows us to speed up functional connectivity reconstruction by

a couple of orders of magnitude, primarily due to the fact that we can bypass typical

bootstrapping methods without loss of accuracy (Results 1.1-1.5).

Further, we used this fast, AMD-based method to reconstruct instantaneous func-

tional connectivity within the network and subsequently introduced Functional Net-

63



work Stability (FuNS), a measure that assesses the temporal stability of functional

connectivity networks. We showed that FuNS is especially useful in detecting changes

in network-wide dynamics due to discrete changes in network structural connectiv-

ity, referred to here as synaptic heterogeneities. Namely, we show that localized and

relatively small heterogeneities can induce dynamical changes throughout the entire

network, as is evidenced by high FuNS in neuronal groups distantly connected to

the heterogeneity region (Figure 2.14). This in turn allows for robust detection of

such changes experimentally, even in the conditions of severe under-sampling (Skilling

et al., 2017; Ognjanovski et al., 2017). These results indicate that while reconstruc-

tion of functional connectivity between the recorded neurons may yield ambiguous

results as the functional relation of the recorded cells to the computational task is

unknown, the changes in the global dynamics of the representations is a more ro-

bust measure of local network changes in response to computational tasks. (Results

2.1-2.4) To better exemplify this point, we used both model simulations and in vivo

experimental recordings to show that discrete changes to network structure may yield

ambiguous results in terms of reconstruction of detailed changes in functional network

connectivity, but at the same time show robust stabilization of dynamical network

representations (Results 3.1).

Finally, we investigate whether observed stabilization of dynamical network repre-

sentations can inform us about universal network properties that are underlying the

computation. Here, we show that in mixed excitatory-inhibitory networks, the high-

est sensitivity (in terms of changes in global network representations) to introduction

of localized heterogeneity is achieved near a balance between excitation and inhibi-

tion (E/I balance; Results 2.5). This result is in line with other existing results which

have shown that E/I balance emerges naturally in neural networks (Vreeswijik and

Sompolinsky, 1996) and that neurons operating in networks near E/I balance exhibit

faster linear responses to stimulation, and greater dynamic range (van Vreeswijk and
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Sompolinsky , 1996). Recent findings have also shown that E/I balance is required for

heightened neuronal selectivity (Rubin et al., 2017).

Altogether, we believe that the introduced framework for rapid calculation of

functional network connectivity allows for robust analysis of multiunit recordings.

Numerous linear and nonlinear, methods have been developed over the last decade to

reconstruct and characterize functional network connectivity. We have earlier com-

pared the performance of functional grouping based on AMD assessment to some of

these methods (Feldt et al., 2009). Many of the developed tools require assessment of

functional adjacency matrix. We believe that the algorithm proposed here provides

a robust alternative for the commonly used cross-correlation method. Further we

believe that fast AMD together with evaluation of FuNS helps to overcome two ma-

jor constraints in neuroscience: undersampling and the difficulty of bridging diverse

timescales of neuronal dynamics and cognition. We believe that this framework will

be widely applicable to numerous problems in systems neuroscience.
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CHAPTER III

Network and Cellular Mechanisms Underlying

Heterogeneous Excitatory/Inhibitory Balanced

States

3.1 Introduction

Since the first proposal of the idea that excitatory/inhibitory (E/I) balance emerges

within brain networks (van Vreeswijk and Sompolinsky , 1996), a large body of theo-

retical and experimental work has focused on clarifying its regulation and possible role

in maintaining desired spatio-temporal activity states (Denève and Machens , 2016).

Co-occurring E/I responses have been observed for many modalities, e.g., in auditory

cortex (Wehr and Zador , 2003; D’Amour and RC., 2015), visual cortex (Tan et al.,

2013; Liu et al., 2009), and olfactory cortex (Poo and Isaacson, 2009; Stettler and

Axel , 2009). Besides activity evoked by stimuli, balanced excitation and inhibition

also appears to be present during spontaneous brain activity (Graupner and AD.,

2013; Murphy and Miller , 2009) and may play a critical role in generating certain

brain rhythms (Atallah and Scanziani , 2009).

Despite these experimental findings, two important issues remain unresolved: 1)

how does E/I balance contribute to regulate spatio-temporal patterning of neuronal

microcircuit activity, and 2) what are the underlying mechanisms promoting E/I bal-
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ance across brain networks. E/I input to neurons was initially proposed to balance

only over long timescales, leading to the notion of loose E/I balance with specific

statistics of the firing patterns (Brunel , 2000; van Vreeswijk and Sompolinsky , 1998;

Rudolph et al., 2007; Salinas and P., 2000). This idea was challenged by experimen-

tal phenomena, such as efficient coding of irregular spiking, and the correlation of

membrane potentials between neurons responding to similar stimuli (Cohen and A.,

2011; Yu and Ferster , 2010; Gentet et al., 2010), which cannot be explained by loose

interactions of E/I cells (Denève and Machens , 2016). More recent findings have

demonstrated that inhibition can closely track excitation at a millisecond timescale,

leaving a brief window of disinhibition for neurons to fire. This “tight balance” has

been observed in brain regions such as somatosensory cortex (Okun and Lampl , 2008),

hippocampus and piriform cortex, as well as in vitro (Atallah and Scanziani , 2009)

and in computational simulations (Renart , 2010). Indeed, this disinhibition is now

thought significant in learning and memory (Letzkus et al., 2015). The interaction

of recurrent inhibitory and excitatory circuits also regulates the occurrence of cor-

tical up- and down-states (Shu et al., 2003; Haider et al., 2006), and it was shown

that different levels of correlation between excitation and inhibition can emerge from

the same neuronal circuitry, depending on the specific cortical state - with correla-

tions observed to be lower during anesthesia than during states exhibiting up- and

down-state activity (Tan et al., 2013).

One roadblock to understanding the regulation and function of E/I balance is a

lack of technical ability to experimentally quantify E/I ratios. It is impossible to

simultaneously measure the excitatory and inhibitory post synaptic currents (EPSCs

and IPSCs) at every neuron across a network. Several indirect experimental quan-

tifications have been used (Wehr and Zador , 2003; Monier et al., 2008; Xue et al.,

2014; Tan et al., 2013; Landau et al., 2016) and although each of these captures char-

acteristics of E/I balance in some way, none of them quantifies all of the features
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that simultaneously contribute to E/I balance. Further, such metrics can only infer

E/I ratio from a selected subset of neurons, which may not accurately represent E/I

ratios at the network level.

To investigate E/I balance in a network and its dynamical correlates, we use a

computational model composed of biophysical neurons and quantify E/I ratio as the

ratio between mean levels of total EPSC and IPSC across the network. By system-

atically varying parameters, we show that a network can homeostatically regulate

E/I ratio over a wide range of E/I levels and reach asymptotic balance states after

evolving for a period of time. These balanced states are generated by multiple, het-

erogeneous cellular and network mechanisms. We particularly analyze the multiple

E=I balanced states to show that synaptic conductance levels, average firing rates and

average membrane potential levels contribute to the E/I ratio in a distinct manner,

thus defining different mechanisms governing E/I balance. These results demonstrate

that E/I ratio states are not achieved by varying the excitation (or inhibition) in the

network monotonically, but instead can be achieved by different combinations in a

non-monotonic way, and result in a diverse range of network dynamics.

3.2 Methods

3.2.1 Neuron Model

3.2.1.1 Modified Hodgkin-Huxley Model

The model networks in these studies consist of biophysical Hodgkin-Huxley-type

(Stiefel et al., 2009) single compartment neurons with the following current balance

equation for the i-th neuron:

C
dVi
dt

= −gNam3
∞ (Vi)h (Vi − VNa)− gKdrn4 (Vi − VK)− gL (Vi − VL) + Idrivei − Isyni

(3.1)
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Each neuron receives an external applied current, Idrivei , consisting of both a con-

stant sub-threshold current and external noisy stimuli. To simulate neuronal het-

erogeneity, each cell receives a random subthreshold current chosen from a Gaussian

distribution centered around -0.2 μA/cm2 with a deviation of 0.1 μA/cm2. External

noise is modeled by the delivery of brief (0.05ms), square, 30 μA/cm2 current pulses,

at intervals dictated by a Poisson process (with an average frequency of 40 Hz). The

kinetics of neuronal Na+ conductance are governed by the steady state activation

function

m∞ (V ) =

{
1 + exp

[
−V − 30.0

9.5

]}−1

(3.2)

and the inactivation gating equation

dh

dt
= (h∞ (V )− h) /τh (V ) (3.3a)

h∞ (V ) =

{
1 + exp

[
V + 53.0

7.0

]}−1

(3.3b)

τh (V ) = 0.37 + 2.78

{
1 + exp

[
V + 40.5

6.0

]}−1

(3.3c)

Neuronal K+ conductance is gated by the variable n, which evolves in time ac-

cording to the equation

dn

dt
= (n∞ (V )− n) /τn (V ) (3.4a)

n∞ (V ) =

{
1 + exp

[
−V − 30.0

10.0

]}−1

(3.4b)

τn (V ) = 0.37 + 1.85

{
1 + exp

[
V + 27.0

15.0

]}−1

(3.4c)

In addition, the leak conductance is given by gL=0.02mS/cm2. Other parameters

are set to gNa=24.0 mS/cm2, gKdr=3.0 mS/cm2, VNa=55.0mV, VK=-90.0mV, and
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VL=-60.0mV. This model exhibits Type 1 dynamics in terms of phase response curves

and current-frequency relation (Smeal et al., 2010).

3.2.1.2 Wang-Buzsaki Model

To exclude the possibility that the results are due to the unique properties of the

modified Hodigkin-Huxley model we described above, we performed the same simu-

lations with Wang-Buzaki Model (WBM) (Wang and G., 1996), which also exhibits

Type 1 excitability. Each neuron is described in the same form of three differen-

tial equations as above, with different definitions of some parameters. The master

differential equation is:

C
dVi
dt

= −gNam3
∞ (Vi)h (Vi − VNa)− gKdrn4 (Vi − VK)− gL (Vi − VL) + Idrivei − Isyni

(3.5)

with m∞ = αm(V )
αm(V )+βm(V )

, with αm (V ) = 0.1 V+35

1−exp[−V +35
10 ]

and βm (V ) = 4exp
[
−u+60

18

]
.

The gating equations are:

dh

dt
= (h∞ (V )− h) /τh (V ) (3.6)

with h∞ (V ) = αh(V )
αh(V )+βh(V )

, τh (V ) = 0.2
αh(V )+βh(V )

, where αh (V ) = 0.07exp
[−V−58.0

20

]
, βh (V ) = {1 + exp

[−V−28
10

]
}−1 and

dn

dt
= (n∞ (V )− n) /τn (V ) (3.7)

with n∞ (V ) = αn(V )
αn(V )+βn(V )

, τn (V ) = 0.2
αn(V )+βn(V )

, where αn (V ) = 0.01 V+34

1−exp[−V +34
10 ]

,

βn (V ) = 0.125exp
[
−V+44

80

]
. Other parameters are C = 1µF/cm2, Idrivei = 0.145µA ,

gNa=35.0 mS/cm2, gKdr=9.0 mS/cm2, VNa=55.0mV, VK=-90.0mV, and VL=-65.0mV.

gL=0.1mS/cm2.
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3.2.2 Network simulation

Networks contain 500 neurons, 250 with excitatory (E) synapses and 250 with

inhibitory (I) synapses. While this ratio is not physiological we found that our results

do not depend on it as the ratio of cells is offset by the number of connections

originating from the given cell type. For the main results, neurons were randomly

connected with connectivity probability 3% .

In separate simulations, when investigating the role of network topology on the

evolution of E/I balance, we applied the Watts-Strogatz framework to obtain Small

World network connectivity (Watts & Strogatz, 1998) to a two-layer network com-

posed of interconnected 1-D rings of excitatory (E) neurons and inhibitory (I) neu-

rons. For this network configuration, each neuron is initially connected to its 6 nearest

neighbors in each layer. Connectivity structure is varied by rewiring each E and I

connection to a randomly chosen post-synaptic target neuron with probability given

by the rewiring parameter rpE and rpI, respectively. In this way we can easily control

the network topology with more local excitation or inhibition depending on specific

values of rpE and rpI.

Synaptic current transmitted from neuron j to neuron i at time t is given by

Isynij = wexp

(
−t− tj

τ

)
(Vi − Esyn) (3.8)

where tj is the timing of the presynaptic spike in neuron j. The parameter w refers to

the synaptic weight, where excitatory (wE) and inhibitory (wI) weights are changed

separately. The reversal potential Esyn is 0mV for excitatory synaptic current and -

75mV for inhibitory synaptic current. Synaptic current decay rate τ is set to be 0.5ms

for both synapse types, simulating fast AMPA-like and GABA-A-like synaptic cur-

rents. Therefore, the total synaptic current to neuron i at time t is Isyni =
∑

j∈Γi
Isynij

, where Γi is the set of pre-synaptic neurons to neuron i.
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The dynamics of the network is numerically integrated by a fourth-order Runge-

Kutta method with a time step 0.05ms. Total simulation time is 3 seconds, and the

results shown are averages over 5 simulations.

3.2.3 Mean phase coherence measurement

The firing pattern and synchronization of neuron spike trains generated in the

network are quantified by the Mean Phase Coherence (MPC) (Mormann, 2004). For

the k-th spike in the spike train generated by neuron j denoted as tj,k, its relative

phase to the spike train generated by neuron i is given by θk = 2π
(

tj,k−ti,k
ti,k+1−ti,k

)
, where

ti,k is the timestamp of the nearest spike prior to tj,k in spike train i and ti+1,k is the

nearest spike following tj,k. The phase coherence of spike train j to spike train i is

defined as σj,i = | 1
N

∑N
k=1 e

iθk | , where N is the total number of spikes in train j. This

pairwise mean phase coherence takes on values between 0 and 1, with 0 indicating

completely random firing, and 1 indicating stable phase locking.

3.2.4 Quantification of E/I ratio

At each time step, the total E and I synaptic current in the network is recorded.

The mean E (or I) current is calculated by averaging these values over the whole time

of the recording. We quantify the E/I ratio of the network as the ratio of mean E to

mean I synaptic current, measured during time period T:

E

I
=

∫ T
0

∑
i

∑
j

∑
k wEexp

[
tj,k−t
τ

] (
Vi (t)− EE

syn

)
dt∫ T

0

∑
i

∑
j

∑
k wIexp

[
tj,k−t
τ

] (
Vi (t)− EI

syn

)
dt

(3.9)

where k denotes the spike number occurring in the j-th pre-synaptic cell, j sums over

all E cells in the numerator and over all I cells in the denominator, and i sums over

all cells in the network.

In addition, we quantify the difference of synaptic currents or total current, calcu-
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lated by subtracting the mean inhibitory current from the mean excitatory current,

as this quantity is more directly connected to neuronal activity. The E=I balanced

state is given by E/I ratio equals to 1 and zero total current.

3.2.5 Quantification of tightness of balance

The E/I ratio only quantifies the relative values of the excitatory and inhibitory

synaptic currents averaged across the simulation. To further investigate the temporal

relationship between the two currents and the tightness of balance, we calculated the

cross correlation of the current time traces, computed by

IX (t) =
∑
i

∑
j

∑
k

wXexp

[
tj,k − t
τ

] (
Vi (t)− EX

syn

)
(3.10)

where X=E,I and j sums over pre-synaptic neurons of type X and k sums over pres-

synaptic spikes occurring before time t. By definition, loose balance corresponds

to equal average amounts of excitatory and inhibitory current during a period of

time, but without showing significant correlation between the current traces. Tight

balance, on the other hand, is characterized by significant temporal correlation where

fluctuations in inhibitory current closely follow the fluctuations in excitatory current.

3.3 Results

Here we investigate emergence of global asymptotic balance between excitatory

and inhibitory currents in mixed excitatory-inhibitory neural networks. We vary

the relative level of excitation and inhibition by changing the structural network

parameters (i.e. synaptic weights) or neuronal input levels.

First, we manipulated E/I ratio in a randomly connected network by varying

synaptic weights (Figure 3.1a) - for a fixed inhibitory synaptic weight wI , the excita-

tory synaptic weight wE was increased from 0 mS/cm2 up to about 3 times the value
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of wI . For each value of wE , we allow network dynamics to evolve to an asymptotic

stable state, and then compute E/I ratio and total current (E – I) during a 1.5s time

window. The curves in Figure 3.1b track the relationship between E/I ratio values

and total current values as wE was increased. Each data point on the curve represents

one asymptotic E/I ratio for a specific value of wE . As evident in the figure, the

E/I ratio does not monotonically increase as wE is increased, but can switch between

excitation-dominant (E/I ratio ¿ 1 and positive total current) or inhibition-dominant

(E/I ratio ¡ 1 and negative total current) regimes and cross the E=I balanced state

(E/I ratio = 1 and zero total current) multiple times. Furthermore, the same value

of E/I ratio can correspond to different values of total current with different network

dynamics and firing patterns. The results show that the E/I level of the network

cannot be represented comprehensively by either E/I ratio or total current alone, but

requires both measures in a 2-D phase space. We demonstrate that this behavior is

robust under a broad range of network parameters such as connectivity density (Fig-

ure 3.2a), ratio of excitatory cells (Figure 3.2b), network size (Figure 3.2c), and the

neuron model (Figure 3.2f), indicating that this pattern of E/I regulation is general

and applies to different neural systems. In the following sections, we give detailed

characterizations of how network dynamics are governed by firing rates, synaptic

weights, and neural membrane potentials, and at the E=I balanced state identify the

mechanisms accounting for each balanced state regime by exploring the relationship

between each dynamical characteristic and network E/I level. The turning points on

the E/I trajectory split the balance states into three different regimes with different

governing mechanisms. We study the three regimes by taking the three E=I balance

states as examples. Finally, to test the universality of the results, we investigate how

different network topologies affect the changes in E/I ratio and the occurrence of mul-

tiple balanced states as synaptic weights are varied. The consistency of the results

demonstrates that our framework applies to a wide range of networks in a generic
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way.

3.3.1 Network E/I trajectory crosses the E=I balanced states up to three

times in response to varying synaptic weights

We first investigated how the E/I ratio evolves as a function of excitatory cou-

pling for networks having different levels of overall coupling strength. The trajectory

curves in Figure 3.1b show the relationship between E/I ratio and total current val-

ues in asymptotic balance states as wE was increased for 4 different values of wI ; we

adjusted wE accordingly to obtain the same E/I ratios. For each wI value, initially,

when wE = 0 mS/cm2, the E/I ratio was 0 and the total current fluctuated near zero.

As wE increased, E/I ratios increased but current differences remained small as the

network passed through an E=I asymptotic balanced state. For each value of wI ,

the E=I balanced state was reached for different values of wE. Figure 3.1c shows

how total spike numbers in the network (during the 1.5s simulation in the asymptotic

balance state) varied with E/I ratio as wE was systematically increased. When wE 0

mS/cm2 (and network activity was driven only by noise), network activity remained

low in all networks as they crossed the E=I balanced state for the first time. For

networks with weak inhibitory connectivity (blue and red curves), as wE increased

and E/I ratios increased significantly past the E=I balance point, excitatory synap-

tic current rapidly inundated the networks and increased network firing rates. In

the network with weakest inhibition (blue curve), E/I ratio saturated around 5, and

the network remained in an excitation-dominant regime (positive E/I ratio). With

slightly stronger inhibition (red curve), increasing excitation in the network was able

to drive inhibitory currents, so that the E/I ratio and total current trajectory curve

decreased back near the E=I balanced state, albeit with higher network firing rates.

For networks with stronger inhibitory connectivity (yellow and violet curves), two

loops emerge in the trajectory curves: after crossing the E=I balanced state for the
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Figure 3.1: Figure 3.1. (a) Schematic of network structure illustrating synaptic in-
teractions from inhibitory cells (red) with fixed synaptic weight wI and
from excitatory cells (blue) with varied synaptic weight wE. Lightning
bolts represent the external noisy stimuli with average frequency 40 Hz
applied to each neuron in the network. (b) Relationship between E/I ratio
values and E-I current difference (total current) values in asymptotic bal-
ance states as excitatory synaptic weight wE was monotonically increased
(arrows show direction of relative change with increasing wE). Four tra-
jectory curves correspond to 4 values of inhibitory synaptic weight wI
(given in legend in mS/cm2). Inset in panel b shows a close-up of the
asymptotic E=I balanced state (i.e. when E/I ratio is near 1 and total
current is near 0) with two trajectories (violet and yellow) that crossed
this balanced state 3 times. (c) Trajectory curves of E/I ratio values and
network spiking activity values (in Hz computed during the 1.5s simula-
tion in the asymptotic balance state), as excitatory synaptic weight wE
was systematically increased for the 4 values of wI (arrows show direction
of change with increasing wE). For two trajectories (violet and yellow) al-
though the E/I ratio oscillated above and below 1, spiking rates continued
to increase as wE was increased.
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first time (inset, arrow 1), as wE increased further, the trajectories turned around

(arrow 2) and the networks crossed the E=I balanced state for a second time. As

wE continued to increase, the networks entered an inhibition-dominant regime (E/I

ratio ¡ 1, negative total current). However, upon further increases in wE, E/I ratios

increased, leading to a third crossing of the E=I balanced state. Network firing rates

continued to increase during these subsequent crossings of the E=I balanced state.

As shown in Figure 3.1c, the networks generally showed higher spike rates with higher

wE, while the E/I ratio oscillated around 1. For the highest values of wE, the networks

remained in the excitation dominant regime with increasing total current and network

firing. The surprising finding that E/I ratio repeatedly returns to 1 as excitatory cur-

rent increases suggests, somewhat counterintuitively, that higher excitatory coupling

may actually result in lower E/I ratio and total current in the network - increasing

excitatory current can drive increases in inhibition, leading to non-monotonic changes

in E/I ratio. For networks with strong inhibitory connectivity, we observe the for-

mation of two loops in the trajectory curves, one in the excitation-dominant regime

(i.e., E/I ratio is greater than one) and one in an inhibition-dominant regime (i.e.,

E/I ratio is below one). This shows that states exhibiting a particular E/I balance

are not unique, but correspond to a set of network states with differential dynami-

cal properties. To validate the generality of the non-monotonic E/I trajectories, we

also analyzed networks with different parameters to take into account various possi-

ble biological realisms (Figure 3.2). Compared to the trajectory in Figure 3.1b, the

qualitative pattern stays the same for all the new parameter combinations, includ-

ing network size, connectivity density, the excitatory to inhibitory cell number ratio,

asymmetry in various connection strengths, and finally different neuronal formalisms.

The only additional modification made in these simulations was to adjust the value

of wI accordingly to maintain trajectories in the appropriate range. First, we inves-

tigated whether the effect averages out with increased network size, measuring (E/I)
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ratio for a network consisting of 2000 neurons (Figure 3.2a). Next, as the sparsity of

connectivity of the brain networks can vary from region to region, we simulated the

networks with denser connectivity (Figure 3.2c).

As it has been measured that the percentage of excitatory cells in the mammalian

cortex is around 80% (Braitenberg and Schüz , 1991), we modified the cell ratio ac-

cordingly - this case is shown in Figure 3.2b.

In the original simulations (Figure 3.1), we set wEE = wEI = wE, wI = wIE = wI

. As, there is no evidence demonstrating that the excitatory (or inhibitory) synaptic

weights are the same for synapses targeting excitatory and inhibitory populations,

we applied different values for wEE, wEI, wIE, wII (Figure 3.2d and 2e) and tested

cases where wEI¿wIE and wEI¡wIE. Finally, to validate that results are not due to the

cellular properties of a specific neuron model, we simulated networks of Wang-Buzaki

neurons (Wang and G., 1996) in Figure 3.2f, which also have Type 1 excitability. It is

evident that all the E/I trajectories under different parameter values display the same

qualitative shape, indicating that the dynamic properties and the mechanisms in our

framework are robust and are not constrained by some specific parameters of our

models. Therefore, in the following discussion we consider network/cell parameters

as described in Figure 3.1b to illustrate results and analyze mechanisms.

3.3.2 Network firing patterns are different in the three E/I balance regimes

We next investigated the differences in network dynamics at the E = I balanced

states. As we will show below, the three different balance regimes, separated by the

turning points of the two loops of the trajectory curves, are governed by qualitatively

distinct mechanisms. To better understand the differences in dynamics between E/I

balanced states, we focused on a network with moderate inhibition (wI = 0.7 mS/cm2,

yellow curve in Figure 3.1b, c) that showed three crossings through E/I = 1. We

chose the three values of wE at which the network resides at (or near) the E=I
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Figure 3.2: Trajectories of E/I ratio and total current values for networks with addi-
tional parameter changes addressing aspects of biological realism display
the same qualitative behavior. Comparing with Figure 3.1b, the value
of one parameter is changed in each panel while other parameters stay
the same as original simulation. Inhibitory weight wI is adjusted ac-
cordingly to show the appropriate E/I ratio range. a) random network
with increased connectivity density (20% vs 3%, wI=0.2mS/cm2); b) 80%
excitatory cells and 20% inhibitory cells (wI=2.8mS/cm2); c) random net-
work with increased number of neurons (2000 vs 500, wI=0.2mS/cm2);
d) different values for the four types of synapses, wEE is varied, wEI =
0.35mS/cm2, wIE = 0.5mS/ cm2, wII = 0.7 mS/ cm2; e) same as panel
d) but the values for wEI and wIE are reversed: wEI = 0.5mS/ cm2, wIE
= 0.35mS/ cm2, wII = 0.7 mS/cm2; f) same network parameters as on
Figure 3.1, with Wang-Buzaki neurons.
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balance point (Figure 3.3a-c). Figure 3.3 shows network firing raster plots (second

row), distributions of pairwise mean phase coherences (MPC, third row), and pairwise

relative phases (fourth row) between all synaptically -connected neurons near the

three E=I states.

For the first crossing of the E=I balanced state (left column), the system dis-

played random, sparse firing (Figure 3.3d), driven principally by external noisy stim-

uli. The MPC distributions almost overlapped (Figure 3.3g) for the four types of

synaptically-connected cells (excitatory to excitatory (E-E), excitatory to inhibitory

(E-I), inhibitory to excitatory (I-E), inhibitory to inhibitory (I-I)), and reflect no

significant phase locking between the cell populations. The distribution of relative

phases (Figure 3.3j) for excitatory (E) pre-synaptic cells peaked at low values of phase,

while it was at its minimum for inhibitory pre-synaptic cells at these phases. This is

intuitive in that E neurons tend to promote firing in post-synaptic cells, leading to

small relative phases, while I neurons tend to suppress post-synaptic cell firing, thus

inhibiting post-synaptic firing at small phases. These probabilities, however decay

quickly (exponentially) to base value.

Network firing activity was greater at the second crossing of the E=I balanced

state (Figure 3.3e), but the firing pattern remained largely random. The distribu-

tions of pairwise MPCs (Figure 3.3h) started to separate for the different types of

synaptic connections between cells. Separation of the E-E and E-I pair groups (blue

and red curves) to larger MPC values compared to the I-E and I-I pair groups (yel-

low and violet curves) means that neurons fired somewhat more coherently when

pre-synaptic neurons were excitatory. The differences in the profiles of the pairwise

phase distributions (Figure 3.3k) between pairs with E pre-synaptic neurons (blue

and red curves) and pairs with I pre-synaptic neurons (yellow and violet curves) was

maintained and solidified compared to the first crossing, reflecting the formation of

more regular, causal firing patterns.
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At the third crossing, network firing activity was high and some degree of synchro-

nization started to emerge (Figure 3.3f). The significant separation in MPC distribu-

tions (Figure 3.3i) between pair groups with E pre-synaptic cells (blue and red curves)

compared to I pre-synaptic cells (yellow and violet curves) points to higher coherence

with E pre-synaptic neurons. Relative phases (Figure 3.3l) when pre-synaptic cells

are E shifted towards 0 and 2π, indicating some degree of synchronization in the

network. The larger peak in the distribution at 0 compared to 2π reflects a causal

relationship in firing without synchronization. The phases for I pre-synaptic neurons,

on the other hand, show a similar dip for low phase values as observed near the other

balanced states without any significant change for higher phase values.

In summary, a significant separation in the distributions for both pairwise MPC

and relative phases for E pre-synaptic cells and I pre-synaptic cells appeared gradually

from the first crossing (Figure 3.2g, j) to the third crossing (Figure 3.3i, l), indicating

a transition from a sparse and random firing pattern to a more organized and causal

firing pattern. While the trend appears at the second crossing, it is more distinct

at the third crossing where relative phases are clustered around 0 when pre-synaptic

cells are excitatory, indicating causal initiation of post-synaptic firing. The rightward

shift in MPC values from the first to the third crossing is further evidence for an

increase in the coherence of the firing pattern.

3.3.3 Detailed dynamics at the E=I balanced states: first crossing

Next, to understand the cellular and network mechanisms underlying regulation of

network dynamics at E=I balanced states, we separately considered the factors that

influence the E/I ratio on both the cellular and network level. Here, conceptually,

we can consider total synaptic current as consisting of the product of three factors:

1) the number of synaptic events (which is dictated by the overall firing activity

of E or I cells), 2) the strength of synaptic events (governed by synaptic weight
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Figure 3.3: Firing patterns near three E=I balanced states for a network with wI =
0.7 mS/cm2. WE is chosen near the balanced state as marked on panels
(a-c). (d-f) spike raster plot; (g-i) distribution of pairwise Mean Phase
Coherences (MPCs) and (j-l) distribution of pairwise relative phases of
neuronal firing computed near each balanced state. Mean Phase Coher-
ences (MPC) (g-i) and relative phases (j-l) are computed only for pairs of
synaptically connected neurons. The pairs are separated into four groups
depending on the synaptic connections between them: excitatory to exci-
tatory (E-E), excitatory to inhibitory (E-I), inhibitory to excitatory (I-E),
inhibitory to inhibitory (I-I).

82



parameters), and 3) the driving force of synaptic current (dictated by the difference

between the mean membrane voltage of the post-synaptic cells and the current’s

reversal potential). Thus, we can represent the E/I ratio by the following expression:

E

I
=
total IsynE

total IsynI

∼=
excitatory population firing frequency

inhibitory population firing frequency
× wE
wI
×
∑

i V̄i − E
syn
E∑

i V̄i − E
syn
I

(3.11)

where V̄i is mean membrane potential of the i-th cell and i sums over all cells in the

network. In our results in Figure 3.1 and Figure 3.3, we varied synaptic weights wE

and wI, which induced changes in the other factors, altered the level of firing activity,

and changed membrane potential. In an attempt to disentangle the interactions

among these factors, we implemented a different method to manipulate E/I ratio in

the network. To do this, wE and wI are fixed at specific values near an E=I balanced

state, and E/I ratio is varied by changing the frequency of external stimuli (random,

pulse like events) to E cells in the network. The frequency of these events was varied

between 5 and 75 Hz, while noise event frequency to I cells was maintained at 40Hz

(Figure 3.4a). Since here the synaptic weights are fixed, crossing through the E=I

balanced state is caused by changes in the other two factors (i.e. spike frequency

and mean voltage difference between cell membrane potential and reversal potential

in above equation). Therefore, we monitored mean synaptic currents, firing rates,

and the mean membrane potential of cells in the network to further characterize the

three balanced states displayed in the network with moderate inhibition (wI = 0.7

mS/cm2) from Figure 3.3. We start with a detailed analysis of the first crossing of

the E=I balanced state.

We set wE to a value such that the network sits just below the first E=I balanced

state. Figure 3.4b shows the relationship between the E/I ratio and the mean firing
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rates of the E and I cells as the noise event frequency to the E cells was increased

from 5 to 75 Hz. At the lowest noise frequency, E/I ratio was low ( 0.2) and E cells

(blue curve) fired less than I cells (red curve). As the noise frequency was increased,

E/I ratio increased, with the firing rate of E cells (blue curve) increasing more than

that of I cells (red curve), which were also increased as a result of greater excitatory

synaptic activity in the network. As the E=I balanced state was approached (i.e.

with increasing noise frequency), E cell firing rates surpassed I cell firing rates and

the difference in firing rates (Figure 3.4c) between E and I cells moved from negative

values to positive values.

To track the efficacy of the synaptic currents due to increased firing in the net-

work, we computed the mean membrane potential of E and I cell populations, V̄E

and V̄I , respectively during simulations with increasing noise frequency. Figure 3.4d

shows the difference between mean membrane potentials and the reversal potentials

(i.e. distance to RP) of E (blue curves, left vertical axis) and I (red curves, right

vertical axis) synaptic currents, Esyn
E and Esyn

I , respectively. Due to increasing firing

activity in the network, mean membrane potentials of both E and I cell populations

were depolarized, resulting in their voltage values closer to Esyn
E and farther from

Esyn
I for both populations. The E cell population depolarized at a higher rate (as a

function of increasing noise frequency) than the I cell population with increasing noise

frequency (as shown in Figure 3.4d and e). The difference between mean voltages and

Esyn
E , |V̄E −Esyn

E | − |V̄I −E
syn
E | , transitioned from positive values to negative values

as noise frequency increased (blue curve). The difference between mean voltages and

Esyn
I showed opposite behavior (red curve). Based on these data, we conclude that

the first balanced state is achieved in the network by increased firing rates of the

excitatory cell population relative to the inhibitory cell population. However, this

difference in firing rates is partially compensated by a decrease in the efficacy of exci-

tatory synaptic currents in the network, due to decreased voltage difference between
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Figure 3.4: Analysis of network factors contributing to E/I balance at the first cross-
ing of the E=I balanced state. (a) Schematic of alternate method to
change E/I ratio. Synaptic weights are fixed near the E=I balanced state
and frequency of noisy external stimuli to the excitatory (E) cells is varied
(see text for details). (b) Relationship between E/I ratio values and mean
firing rates of the excitatory (E, blue curve) and inhibitory (I, red curve)
cell populations as noise event frequency to the E cells is increased. (c)
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currents as noisy event frequency to the E cells is increased. Blue (red)
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I ). (e) Difference of distance curves

shown in (d).
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membrane potential and reversal potential. The results shown in Figure 3.4d suggest

that EPSCs and IPSCs are differentially distributed to E and I cell populations. We

next took a closer look at this.

In the E=I balanced state, mean total EPSC and mean total IPSC are equal in

the network. However, excitatory and inhibitory synaptic currents are not necessarily

uniformly distributed among E and I cell populations. Here we analyze the relative

magnitudes of the four types of post-synaptic currents: excitatory current to E cells

(EPSC at E cells), excitatory current to I cells (EPSC at I cells), inhibitory currents

to E cells (IPSC at E cells), inhibitory currents to I cells (IPSC at I cells), where

“EPSC” and “IPSC” refer to mean total synaptic current arriving at the post-synaptic

population (Figure 3.5a). As the noise frequency in E cells was increased and the

E/I ratio passed through the E=I balanced state, all four types of synaptic current

increased. At the E=I balanced state, the difference between total EPSC and total

IPSC (values of blue curves – values of red curves when E/I ratio is 1) is zero.

To identify the relative distribution of synaptic currents in the network, we next

considered what we call the “net current difference” which we defined in two different

ways, as follows.

First, we computed the net synaptic current received by E cells and I cells sepa-

rately (Figure 3.5b, c). To do this we separately calculated the net synaptic current

received by E-cells as (EPSC at E cells) − (IPSC at E cells) (Figure 3.5b), and

the net synaptic current received by I-cells as (EPSC at I cells) − (IPSC at I cells)

(Figure 3.5c). As the noise frequency in excitatory cells increased and E/I ratio

crossed through the E=I balanced state, net synaptic current to both cell popula-

tions increased from negative values to positive values reflecting a greater increase in

the excitatory synaptic current received by both populations compared to inhibitory

synaptic current. We then compute a “net current difference” by subtracting the net

synaptic current curves in Figure 3.5b and 5c (Figure 3.5f). This net current differ-
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Figure 3.5: Distribution of synaptic current in the network at the first crossing of the
balanced state. (a) Trajectories of the four different types of mean total
synaptic currents, Excitatory Post Synaptic Current (EPSC) at excita-
tory cells (blue solid), EPSC at inhibitory cells (blue dash), Inhibitory
Post Synaptic Current (IPSC) at excitatory cells (red solid) and IPSC
at inhibitory cells (red dash) as E/I ratio is varied by increasing the fre-
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inhibitory cell populations is displayed in two different ways (b and c, or d
and e). The color and pattern of the arrows in the diagrams are consistent
with the curves in panel a. (b) Net synaptic current received by E cells,
which is the difference of EPSC and IPSC at E cells (difference between
blue and red solid curves in panel a). (c) Net synaptic current received by
I cells, which is difference between EPSC and IPSC at I cells (difference
between blue and red dashed curves in panel a). (d) Difference of EPSC
received by the E cells and the I cells (difference between blue solid and
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and I cells (difference between red solid and red dashed curves in panel
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ence shows that the synaptic currents to the inhibitory cell population dominate at

this crossing of the E=I balanced state: below the E=I balanced state, IPSC at I

cells is greater than IPSC at E cells. As the E=I balanced state is crossed, EPSC at

I cells is greater than EPSC at E cells.

Second, we compared the relative magnitudes of EPSCs and IPSCs received by

the two cell populations (Figure 3.5d, e). This alternate way takes the point of view

of the synaptic current in the network. We computed the difference between EPSC

received by E cells and I cells: (EPSC at E cells) − (EPSC at I cells) (Figure 3.5d),

and the difference between the amount of inhibitory synaptic current received by E

and I cells (IPSC at E cells) − (IPSC at I cells) (Figure 3.5e). Below the E=I balanced

state, the I cells receive more inhibitory current while the excitatory current is roughly

evenly distributed, but as the noise frequency to E cells increases, EPSC at I cells

exceeds that at E cells. The difference of the curves in these two panels yields the

“net current difference” in Figure 3.5f.

Thus, a characteristic of this E=I balanced state is that increased activity of E cells

drives the network into an excitation-dominant regime, in which E cells increase their

firing rates relative to I cells. While the efficacy of EPSC in the network decreases due

to reductions in driving force (i.e., due to overall depolarized membrane potentials),

as the E=I balanced state is crossed, EPSC dominates over IPSC (Figure 3.5b and c).

At the E=I balanced state, I cells receive more EPSC than E cells (Figure 3.5d) and

beyond the E=I balanced state, in the excitation-dominant regime, E cells receive

more IPSC than I cells (Figure 3.5e).

3.3.4 Detailed dynamics at the E=I balanced states: comparison of dy-

namics at the three balanced states

We next extended this analysis to compare network dynamics at all three crossings

of the E=I balanced states (Figure 3.6). Near each, we chose a value of wE (blue,
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black and yellow data in Figure 3.6) and increased E cells’ noise frequency to vary

the E/I ratio. For each wE value, we examined the trajectory of the E/I ratio and the

difference in firing rates between E and I cells (first column, similar to Figure 3.4c),

and the difference between the absolute value of the mean membrane potentials of

E and I cells (second column). This latter value directly affects the relative voltage

distance of the two cell populations to EPSC and IPSC reversal potentials. We also

assessed the trajectory of the E/I ratio vs. net current difference (as in Figure 3.5f;

third column; arrows indicate the direction of change as noise frequency increases)

and vs. total current (E-I) in the network (as in Figure 3.1a; fourth column). Changes

due to increasing noise frequency follow the same path as those due to increasing wE.

The trajectories shown in Figure 3.6 illustrate the effects on these measures of net-

work activity for three different values of excitatory synaptic weight (yellow, black,

and blue) in response to increasing frequency of external noise events to E cells at

E=I balance crossings (dashed arrows indicate change direction with increasing noise

frequency). At the first crossing (top row), trajectories for different wE values almost

overlap, suggesting that the state of the network is determined by the relative fre-

quency of cell population firing. At the 2nd crossing (middle row), trajectories for

different synaptic weights occupy different intervals of E/I ratio values, but all show

the same trends as noise frequency increases. This suggests that noise and internal

synaptic interactions together control network dynamics. Finally, at the 3rd crossing

(bottom row), synaptic weight has a much greater effect on E/I ratio as trajecto-

ries remain essentially at fixed E/I values as noise frequency increases. In this case,

external drive does not strongly affect network dynamics due to strong synaptic in-

teractions (caused by high wE values) in this regime. At each of the three crossings of

the E=I balanced state, the trajectories for different wE values (blue, black and yel-

low) are similar with increasing noise frequency, indicating a qualitative consistency
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Figure 3.6: Comparison of network dynamics at the first (top row), second (middle
row) and third (bottom row) crossings of the E=I balanced state. Near
each E=I balanced state, three different values of wE are chosen represent-
ing low (blue data points), medium (black data points) and high (yellow
data points) values of wE. For each value of wE, the frequency of noise
events to the E cells is varied between 5 and 75Hz while the noise event
frequency to the I cells is kept at 40Hz (dashed arrows indicate direction
of change with increasing noise frequency). Trajectories of E/I ratio val-
ues and (a, e, i) firing frequency difference between the E and I cells; (b,
f, j) absolute value of mean voltage difference between the E and I cells;
(c, g, k) “net current difference” (see text for description) between the E
and I cells; and (d, h, l) total current (E-I).

90



of effects. Due to this consistency, we focused on properties of one trajectory (black)

for each crossing. The trajectory through the first crossing of the E=I balanced state

(Figure 3.6, top row) replicates the results shown in Figure 3.4c, 4e (blue curve),

and 5f, respectively. Near the second crossing (middle row), initially the frequency

of I cells is higher than that of E cells. As E cells’ noise frequency increases, their

firing frequency increases relative to that of I cells, resulting in smaller firing rate

differences (Figure 3.6e). This results in depolarization of both cell types in the net-

work, evidenced by smaller differences in mean voltage between E and I populations

(Figure 3.6f). Depolarization causes the EPSC driving force to decrease and conse-

quently, the IPSC driving force to increase, overall decreasing EPSCs and increasing

IPSCs. This change is not uniform, however, as E cells depolarize more than I cells

(i.e. |V̄E| − |V̄I | becomes negative). These two effects result in overall decrease of net

current difference (Figure 3.6g), due to a) increased depolarization of E cells vs. I

cells, and b) the non-intuitive increase in inhibitory current in the network resulting

from depolarization of both cell types (Figure 3.6h). These same trends are observed

for all three wE values (blue, black and yellow points). Hence, at the second crossing

of the E=I balanced state, either increased spiking of E cells or increases in excitatory

synaptic weight act to push total network inhibition to be dominant. As we show

below, membrane potential depolarization means that decreased EPSC driving force

and increased IPSC driving force may be responsible for an overall decrease in EPSC

efficacy in the network at the crossing of this balanced state.

At the third crossing of the E=I balanced state (third row), increasing noise

frequency to E cells has smaller effects on E/I ratio than changes in wE (blue to

black to yellow data points). At this balanced state (black points), E cells and I

cells have similar firing rates (Figure 3.6i) with I cells only slightly more depolarized

than E cells (Figure 3.6j). However, the wE/wI ratio skews the current significantly

towards EPSC domination within the network. Moreover, as shown below (Figure
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3.8), greater synchrony of firing patterns emerges in this state, driving the network

toward balanced firing rates. Thus, similar to the first crossing of the E=I balanced

state, increases in excitatory synaptic activity (due to weight increases) act to push

the network from the inhibition dominant regime into the excitation dominant regime.

3.3.5 Detailed dynamics at the E=I balanced states: Competition be-

tween the firing rate ratio and the depolarization ratio

The primary distinction between the first and second crossings of the E=I balanced

state is illustrated by relating the changes in total current (E-I, Figure 3.6, last

column) with changes in firing rate differences (first column) and membrane potential

differences (second column) between E and I populations. At both crossings, increases

in firing rate difference occur with decreases of voltage difference. However, at the

first crossing total current increases mirroring the change in firing rate difference;

in contrast, at the second crossing total current decreases in response to the change

in voltage difference. This suggests that E/I ratio actually depends on competition

between two opposing constraints: the ratio of firing rates of E and I cells (which we

refer to as Nratio), and the ratio of driving forces for EPSCs and IPSCs (which we

refer to as Vratio). Figure 3.7 displays the trajectories of Nratio (x-axis) and Vratio

(y-axis) for the three crossings, with E/I ratio values indicated by color. Here, as in

Figure 3.6, wE is constant and trajectories show changes in response to systematically

increasing the frequency of noise events to E cells.

At the first crossing (Figure 3.7a), E/I ratio increases mirror Nratio increases. At

the same time, Vratio decreases, meaning that the change in E/I ratio is driven by

Nratio in this regime. However, this relationship is reversed at the second crossing

(Figure 3.7b), with increasing E/I ratio mirroring increasing Vratio (while Nratio

decreases). On the other hand, at the third crossing (Figure 3.7c) there is no clear

relationship between E/I ratio and either Nratio or Vratio. In this case E/I ratio is
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Figure 3.7: The contribution of changes in E and I firing rates (Nratio) and excita-
tory and inhibitory synaptic current driving forces (Vratio) to changes
in E/I ratio. Values for wE are fixed near each balanced state (a: first
crossing, b: second crossing, c: third crossing) and frequency of noise
events to E cells is increased to vary E/I ratio (color of curves). Curves
show relationships between values of the ratio of E to I cell average firing
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erage membrane potentials and reversal potentials of the excitatory and
inhibitory synaptic currents (Vratio, y-axis) at each value of E/I ratio.
At the first crossing (a), increasing E/I ratio mirrors increasing Nratio
while at the 2nd crossing it mirrors increasing Vratio.

minimally affected by external noise frequency, and oscillates near 1 (note the change

in color scale). Taken together, these findings show that the change of E/I ratio in

the network can result from different mechanisms, depending on the relative change

of firing rates and depolarization levels of E and I populations.

3.3.6 Detailed dynamics at the E=I balanced states: Quantification of

tightness of E/I balance

The E/I ratio measures the relative amounts of total EPSC and IPSC in the net-

work across a period of time, but it does not indicate the temporal relationship be-

tween variations in these currents. To analyze differences in the temporal occurrence

of EPSC and IPSC at the three balanced states, we calculated the cross-correlation

of the time traces of total EPSC and total IPSC for a range of wE values in a network

with moderate inhibition (wI = 0.7 mS/cm2) (Figure 3.8). As wE increased driving

the network across all three balanced states (Figure 3.8a), stronger correlations and
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Figure 3.8: Temporal relationship of total excitatory and inhibitory synaptic currents.
Cross-correlation (a, color) of the time traces of the total excitatory and
inhibitory synaptic currents as wE is varied (direction of arrow) driving
the network across the three balanced states indicated by w1

E (red curve),
w2
E (green curves) and w3

E (violet curves). b) Cross correlation traces
between the E and I currents at the three crossings of the balanced state.
Negative delay indicates excitation leads inhibition.

multiple peaks emerged, and the temporal delay between EPSC and subsequent IPSC

decreased.

Cross-correlations at the three balanced states are shown in Figure 3.8b. The first

balanced state (red curve) displays a loose temporal relationship (corresponding to

‘loose E/I balance’ ) (Denève and Machens , 2016), with no significant correlations

between the two currents. In contrast, the second balanced state (green curve) shows

“tight E/I balance” with a single peak in the correlation offset at a negative value

indicating EPSC leading IPSC on a millisecond timescale. The third balanced state

(violet curve) shows even tighter correlation, with a shorter delay and stronger cor-

relation between the currents. Additionally, the appearance of multiple peaks in the

correlation indicate that global oscillatory dynamics have emerged in the network.
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3.3.7 Network topology affects the E/I ratio trajectory when changing

synaptic weights

Finally, to test how robust these different E/I balanced states are, we vary the

network connectivity structure (Figure 3.9). We construct a two-layer network, one E

cell layer and one I cell layer, with synaptic connections both between and within lay-

ers. We start with nearest neighbor connections and a 2.5% connectivity density. We

then systematically vary inter-layer and intra-layer connectivity structure by defining

synapse rewiring probabilities (rpE and rpI) which dictate the degree in randomness

in re-wiring of E and I synapses, respectively. In Figure 3.9 we consider nine different

connectivity combinations: local excitation (rpE=0, first column), small-world exci-

tation (rpE=0.2, middle column) and random excitation (rpE=1, last column) with

local inhibition (rpI=0, blue curves), small-world inhibition (rpI=0.2, red curves) and

random inhibition (rpI=1, yellow curves).

As in Figure 3.1, as wE increases (with moderate inhibition wI = 0.7 mS/cm2), the

trajectories of E/I ratio values (x-axis) and total current (E-I) values (top row, y-axis)

cross through the E=I balanced state up to three times as network firing rates (bot-

tom row, y-axis) show non-monotonic changes. When E connections are local (first

column), the connectivity pattern of I synapses can have a large effect. For local or

small-world inhibitory synaptic connectivity (blue and red curves), the E/I ratio tra-

jectories are similar as with completely random connectivity - with three crossings of

the E=I balanced state as wE is increased. However, with random inhibitory synaptic

connectivity (yellow curves), resulting in global inhibition in the network, only two

crossings of the E=I balanced state occurred. Furthermore, the network remained in

the inhibition dominant regime for high wE. This is due to the fact that EPSCs excite

the I cell population only locally, while the global IPSCs can suppress firing effectively,

evidenced by the flat portion of the firing rate trajectory (Figure 3.9d, yellow curve).

When E synapses have small-world (middle column) and random (right column) con-

95



nectivity structure, three crossings of the E=I balanced state occur regardless of the

inhibitory synaptic structure. Here the global component of excitation, generated by

random excitatory connections, offsets the effects of inhibitory synaptic connectivity.

For random excitatory connectivity (c), the trajectory curves almost overlap for all

inhibitory connectivity structures, while with small-world excitatory connectivity (b),

the trajectory curves are modulated by inhibitory connectivity structure.

3.4 Discussion

We have provided a schematic picture of the cellular and network mechanisms that

determine changes of E/I ratio in a biophysical neural network model. Our results

show that neurons and networks have a homeostatic capability to regulate the balance

for excitation and inhibition via the competitive contribution between firing rates and

the voltage difference between membrane potential and the respective reversal poten-

tials across a relatively wide range of network excitation levels. This homeostatic

effect is particularly evident at the second E=I balanced state, where increased ac-

tivity of E cells invokes increased IPSC in the network. On the other hand, we show

that the dynamical mechanisms regulating a network toward balanced excitation and

inhibition can change depending on the relative amount of excitation in the network,

placing the system in diverse dynamical regimes. Specifically, at the first crossing of

the E=I balanced state (when excitation in the network is low), firing rates of E cells

drive changes in the E/I ratio, while at the second crossing (with higher excitation),

E/I ratio is influenced by the efficacy of postsynaptic currents, which is determined

by the voltage difference between membrane potential and the respective reversal

potentials. Thus, our present data suggest that there is no universal E=I balanced

state determined by a single mechanism. Rather, our results show that the dynamics

towards a balanced state is driven by the interaction of both network activity and cel-

lular depolarization levels. Further, our results show that experimental measurement

96



0 0.5 1 1.5 2

EI ratio

0

100

200

300

!
ri

n
g

 r
a

te
 [

H
z]

0 0.5 1 1.5 2

EI ratio

0

200

400

600

!
ri

n
g

 r
a

te
 [

H
z]

0 0.5 1 1.5

EI ratio

0

100

200

300

400

!
ri

n
g

 r
a

te
 [

H
z]

RwP
in

=  0

RwP
in

= 0. 2

RwP
in

=  1

0 0.5 1 1.5

EI ratio

-5000

0

5000

cu
rr

e
n

t 
d

i"
e

re
n

ce
 [

u
A

]

0 0.5 1 1.5 2

EI ratio

-5000

0

5000

10000

15000

20000

cu
rr

e
n

t 
d

i"
e

re
n

ce
 [

u
A

]
0 0.5 1 1.5

EI ratio

-2000

0

2000

4000

6000

cu
rr

e
n

t 
d

i"
e

re
n

ce
 [

u
A

] RwP
in

=  0

RwP
in

= 0. 2

RwP
in

=  1

a b c

d e f

Figure 3.9: Trajectory curves of E/I ratio values and total current (E-I) values (top
row), and network firing rate values (bottom row) as excitatory synap-
tic strength increases for networks with different connectivity structures.
Networks are composed of one layer of excitatory cells and one layer of
inhibitory cells, which are connected within and between layers with 2.5%
connectivity probability. The synapse rewiring parameter for excitatory
(rpE) and inhibitory (rpI) synapses are changed separately, resulting in
different network topologies. Excitatory synaptic strength, wE , increases
from 0 while inhibitory synaptic strength wI =0.7mS/cm2 stays constant.
In all panels, different curves show results for different inhibitory connec-
tivity structures (blue: local inhibition, rpI=0; red: small world inhibi-
tion, rpI=0.2; yellow: global inhibition, rpI=1). Columns show results
for different excitatory connectivity structures: (a, d) local excitation
(rpE=0); (b, e) small world excitation (rpE=0.2); (c, f) global excitation
(rpE=1).
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of single specific cellular or network property, such as ratio of conductances (Monier

et al., 2008) or amplitudes of PSCs (Wehr and Zador , 2003; Xue et al., 2014), may

not provide adequate information about the E/I ratio in the system, as the E/I ratio

is an outcome of the combined effects of firing rates, membrane depolarization and

synaptic weights, which also affect each other recurrently.

Tightness of temporal correlation between excitation and inhibition (Figure 3.8)

is another important and experimentally measurable dynamical property providing

information about the system’s activity regime. In our model, only the first crossing

of E=I balance point has low correlation between excitation and inhibition (i.e. loose

balance) while the other two are tightly correlated (i.e. tight balance). This observa-

tion may provide an explanation for the emergence of the two types of balance. Loose

balance emerges in a relatively low coupling regime and the variation in the relative

strength of excitation and inhibition is driven predominantly by external input. This,

in turn, results in a similar average level of E and I currents but no correlation. On

the other hand, tight balance is due to recurrent interaction between excitatory and

inhibitory synapses, which results in significant temporal correlation between the two

currents. As depicted in Figure 3.8, as excitatory synaptic weight wE increased, the

correlation between the two currents developed and the temporal delay between them

decreased.

Finally, network connection topology additionally may affect the dynamics of E/I

ratio and the pattern of E/I regulation. This is most clearly observed when excitation

is kept local in the network (Figure 3.9a): increasing randomness of inhibitory con-

nections significantly alters how E/I ratio changes with increasing excitatory synaptic

weight, resulting in the network remaining in the inhibition dominant regime when

inhibition is globally distributed in the network. However, the general mechanism of

the regulation stays the same as our framework, i.e. E/I ratio depends on the relative

contribution between firing rates and depolarization level. Our results potentially
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reconcile a number of discrepant experimental observations. For example, one recent

study suggested that E/I ratios are pushed towards an inhibition dominant regime

during wakefulness, when compared with the same brain network under anesthesia

(Haider et al., 2013). However, other experimenters have found that excitation and

inhibition are at similar levels when comparing sleep states and wakefulness (Chel-

lappa et al., 2016; Ly et al., 2016; Niell and MP., 2010). These discrepancies may

have profound implications for how the brain processes information. For example,

the reported features of tuning curves for excitation and inhibition (i.e., in response

to variations in external sensory stimuli) vary across studies. Similar tuning curves

are observed in some experiments (Wehr and Zador , 2003; Zhou et al., 2014; Run-

yan et al., 2010) while others have found either wider tuning (Niell and MP., 2010;

Kerlin et al., 2010) or narrower tuning (Sun et al., 2013) for inhibition, as com-

pared to excitation. We speculate that the discrepancies in experimental findings

may result from differing contributions of firing rate and membrane depolarization

between experiments, which push the networks under study into different balanced

state realizations.

Together, our results point to complex interactions between excitatory and in-

hibitory currents in the balanced network regime. The above characterization of the

repertoire of diverse balanced states provides a theoretical framework for experimen-

tal studies quantifying E/I balance and characterizing network interactions in various

brain states and modalities.
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CHAPTER IV

Heterogeneous Mechanisms for Network

Synchronization Under Different

Excitatory/Inhibitory Balance Regimes

4.1 Introduction

Synchronization has been observed in a wide variety of brain processes within dif-

ferent brain regions (Diesmann et al., 1999; Steriade, 2001; Buzsáki , 2004a; Brovelli

et al., 2004; Lakatos et al., 2005; Buzsáki , 2006; Kumar et al., 2010; Fell and Ax-

macher , 2011; Babapoor-Farrokhran et al., 2017; Zhou et al., 2019). Coherent firing

patterns are thought to be essential in multiple cognitive functions such as multi-

modal information integration, memory consolidation as well as information trans-

fer, and may be a fundamental mechanism for large-scale integration of distributed

neuronal organizations (Varela et al., 2001; Fell and Axmacher , 2011; Buzsáki and

Watson, 2012). On the other hand, abnormal neuronal synchronization is thought to

underlie cognitive dysfunctions, such as epilepsy, schizophrenia etc. (Spencer et al.,

2003; Lewis et al., 2005; Ferrarelli et al., 2010; Uhlhaas and Singer , 2006). Oscilla-

tory network-wide patterning being a direct consequence of synchronization of peri-

odic activation is thought at the same time to mediate information transfer through-

out disparate brain regions (Fell and Axmacher , 2011; Buzsáki and Watson, 2012;
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Hahn et al., 2018). Thus, both synchronization and population level oscillations, are

proposed to provide an efficient mechanism for communication between distributed

“sender” and “receiver” brain regions (Buzsáki and Watson, 2012). While both phe-

nomena are closely related they can be distinct and happening on different time-scales,

mediate binding of different signal features (Hahn et al., 2018). Furthermore, cross

frequency coupling of nested synchronous and oscillatory dynamics at diverse tempo-

ral and spatial scales support the hierarchical organization of the information transfer

in top-down and bottom-up functions (Fell and Axmacher , 2011; Aru et al., 2015;

Axmacher et al., 2010; Naze et al., 2018; Palva and Palva, 2017).

A lot of theoretical studies identified diverse mechanisms of emergence of syn-

chronous and oscillatory dynamics (Ermentrout and Kopell , 1998; Börgers and Kopell ,

2003; Brunel and Wang , 2003; Geisler et al., 2005). For example, in hippocampus

alone, different types of GABAergic interneurons are demonstrated to drive the emer-

gence of synchrony by either excitatory (somatostatin) or inhibitory (Hilscher et al.,

2017) synaptic connections (Wester and McBain, 2016). In general, the mechanisms

generating synchronous oscillations can be divided into two groups: 1) network me-

diated and 2) those driven by properties of neuronal excitability. The prominent

example of the first is so called pyramidal-interneuron gamma (PING) (Traub et al.,

1996) mechanism and its derivatives. Here the oscillation emerges as a close interac-

tion of excitation and inhibition in the network. Strong excitation triggers inhibitory

burst which feeds back onto the excitatory cells effectively shutting them down for a

period of time. Decrease of this inhibition leads to another burst of excitatory activity

repeating the process. In this case the synchronous patterning is based on the recur-

rent interactions of excitatory and inhibitory sub-networks rather than excitability

properties of individual neurons. The second group depends on intrinsic membrane

properties of individual neurons. These properties include subthreshold oscillations

and/or so called type II excitability that promotes synchronization of neuronal spik-
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ing patterns (Ermentrout , 1996; Gutkin and GB., 1998; Prescott et al., 2008). These

resonator-type neurons are able to be recruited effectively by the oscillatory local field

potential (LFP) and fire coherently, which mediates synchronous activities through-

out distant brain regions and generate an interplay between the brain rhythms of

different frequency bands (Varela et al., 2001). Coherent subthreshold membrane po-

tential oscillations are thought to play an important role in functional selection and

grouping (Engel et al., 2001).

However, some questions still remain unresolved. To what degree these two classes

of mechanisms can coexist within the same network? What promotes emergence of

one mechanism over another in context of structural network properties? And how

emergence of these oscillations regulates temporally the excitatory/inhibitory balance

within a network in presence and absence of external oscillatory drive? In addition,

how the interaction between excitation and inhibition contribute to the generation

synchronous activities at different balance states is not fully understood.

Here we provide a framework demonstrating how the external oscillations interact

with the intrinsic network dynamics and generate synchronization in the networks

composed of neurons having type 2 excitability, at different global levels of excita-

tion and inhibition. By systematically varying the synaptic strengths, we demonstrate

multiple regimes displaying the heterogeneous network firing patterns and identify two

distinct synchronization mechanisms emerging as a function of interplay between ex-

citation and inhibition. Our results show that when the excitatory synaptic strength

is relatively low, the resonant oscillations are able to generate the ordered spiking,

increase the synchronization and constrain the E/I ratio to be balanced. On the other

hand, when the network is strongly connected by higher excitatory synaptic strength

values, the global synchronization is generated by the interaction between the inter-

nal excitation and inhibition. In addition, although external oscillations modulate

the network dynamics at the corresponding parameter range, the effects can be vary-
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ing from generating detailed firing pattern within each bursting to modulating the

inter-bursting intervals. Our results show that the two synchronous regime emerge

at different structural network regimes, and counterintuitively, that the synchrony at

low excitatory coupling (wE) range is dominated by excitation while is dominated by

inhibition at high wE range.

4.2 Methods

4.2.1 Neuron model

The neuron is modeled using modified Hodgkin-Huxley Model with a slow, low-

threshold K+ channel. This neuron model displays Type II phase response dynamics,

where neurons show phase delay to the input arriving at a relative early phase during

spike cycle, and show phase advance when the input arrives at a later phase (Stiefel

et al., 2009). The voltage of each neuron changes in the following manner:

C dVi
dt

= −gNam3
∞ (Vi)h (Vi − VNa)− gKdrn4 (Vi − VK)− gL (Vi − VL)− gKsz (Vi − VK) + Idrivei − Isyni (4.1)

Each neurons receives a sub-threshold constant current input, which is sampled from

a uniform distribution from IDC =[-0.8, 0.8] A/cm2. In addition, the whole network

is fed with a global sine wave with amplitude A=0.3A/cm2. Thus, the external drive

is defined as:

Idrivei = IDCi + Asin (ωt) (4.2)

The value is chosen so that all the neurons receive only sub-threshold oscillation even

at the top of each cycle. Then each neuron gets Poisson random noise input. Each
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ion channels are simulated as below. For Na+ channels:

m∞ (V ) =

{
1 + exp

[
−V − 30.0

9.5

]}−1

(4.3)

dh

dt
=
h∞ (V )− h
τh (V )

(4.4)

Where h∞ (V ) =
{

1 + exp
[
V+53.0

7.0

]}−1
, andτh (V ) = 0.37+2.78

{
1 + exp

[
V+40.5

6.0

]}−1
.

The kinetics regular K+ channels are governed by:

dn

dt
=
n∞ (V )− n
τn (V )

(4.5)

with n∞ (V ) =
{

1 + exp
[−V−30.0

10.0

]}−1
, and τn (V ) = 0.37+1.85

{
1 + exp

[
V+27.0

15.0

]}−1

. The slow, low-threshold K+ channels evolve in:

dz

dt
=
z∞ (V )− z

75.0
(4.6)

With z∞ (V ) =
{

1 + exp
[−V−39.0

5.0

]}−1
.

The leak conductance is given by gL=0.02mS/cm2. Other parameters are set

to gNa=24.0 mS/cm2, gKdr=3.0 mS/cm2, VNa=55.0mV, VK=-90.0mV, and VL=-

60.0mV.

4.2.2 Network simulation

The network is composed of 500 cells in a random connectivity, with half neurons

being excitatory and the other half inhibitory. The connectivity density is 3% .

Although the excitatory to inhibitory cell ratio of excitatory neurons may not be

physiological in some brain areas, we have test that this percentage does not affect

our results. Therefore, in order to study the relative relationship and contribution
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of excitation and inhibition, we choose to keep the symmetry between the excitatory

and inhibitory population. The synaptic current transmitted from neuron j to neuron

i is modeled as:

Isynij = w ∗ exp
(
−t− tj

τ

)
(Vi − Esyn) (4.7)

w represents the synaptic strength for either excitatory or inhibitory w I synapses.

The values will be changed systematically. t j refers to the last spiking time of neuron

j, and τ is the synaptic constant time with value of 0.5ms, simulating fast AMPA-

like excitatory synapses or fast GABA-A-like inhibitory synapses. Reversal potential

Esyn is set as 0mV for excitatory presynaptic connections and -75ms postsynaptic

connections. Eventually the total synaptic input into one neuron is the summation

of all the connected presynaptic neurons in Γi , Isyni =
∑

j∈Γi
Isynij .

The dynamics of the network evolved for 3 seconds at the time step of 0.05ms,

integrated by fourth-order Runge-Kutta method. The results shown are averaged

over 3 simulations.

4.2.3 Synchrony measurement

The synchronization of the firing pattern in the network is calculated the averaged

fluctuation over all the neurons normalized by the fluctuations of each neuron (Golomb

and Rinzel , 1994), defined as

SN =

√
σ2
V

1
N

∑N
i=1 σ

2
Vi

(4.8)

Each spike train is convolved with a Gaussian. We chose to use a small width, the

width we chose is about 1/10 of the mean inter-spike interval, intending to capture

single spikes more precisely, but the width does not affect the results. Then σ2
V is

calculated as the variance of the averaged neuronal voltage, while σ2
Vi

indicates the
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variance of the voltage trace for i-th neuron. The values of synchrony lies between 0

and 1, for random firing and perfect synchrony respectively.

4.2.4 Quantification of input dependent spike ordering

When the network displays bursting activity, the timestamps of spikes within each

burst are extracted and are offset by the first spiking time in the burst. Neurons with

higher driving constant current, IDCi , are expected to fire earlier in burst, and the

relationship turns out to be linear . Then a straight line is fitted in least-squares

regression for the relationship between the spike times and the corresponding input

current amplitude. The slope with a negative value represents the general temporal

difference when neurons having various intrinsic firing properties are recruited. Slope

at 0 means that all the neurons are perfectly synchronized with no phase lag. The

coefficient of determination R is calculated as

R2 = 1−
∑

i (yi − y)2∑
i (yi − fi)

2 (4.9)

where yi indicates each spiking time with offset, and fi refers to the corresponding

prediction of the fitted line. y is the mean value of the spike data points. R2 is used

as the index of ‘cleanness’ of the ordered-spiking, with value indicating the perfect

linear relationship. The values of the slopes and R values are averaged over all the

bursts over the whole simulation time period.

4.3 Results

Here we investigate how changes in relative coupling strength between excitatory

and inhibitory sub networks, in presence or absence of external oscillatory drive,

affects mechanisms of formation of synchronous oscillations in the network and how

does these activity states effect dynamic formation of excitatory/inhibitory balance
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in the network.

To study systematically different regimes of connectivity strength, we set the in-

hibitory synaptic weights (wI) constant at 0.3mS/cm2 while keeping increasing exci-

tatory weights (wE) from 0 to about 5 times of wI. We define total excitatory current

as sum of all excitatory postsynaptic potentials (EPSP, as defined by equation 4.7)

arriving at excitatory and inhibitory cells, and conversely total inhibitory current as

sum of inhibitory postsynaptic potentials (IPSP) arriving at both cell populations.

We subsequently calculate ratio and difference of these two values. All cells in the

network.

4.3.1 Input-dependent resonance property of single neurons

First, the activity of a single neuron in response to sub-threshold oscillatory driv-

ing is displayed in Figure 4.1. The response firing rate of the neuron gets much

higher when the input frequency is between 3Hz and 12Hz. In particular, the fir-

ing frequency and input frequency shows a 1:1 linear relationship between 4Hz-8Hz,

indicating that the natural frequency of the neuron shifts depending on the exter-

nal driving frequency. This property provides the cellular basis for the interaction

between the network and the external oscillations.

4.3.2 Total synaptic current and E/I ratio trajectory under different os-

cillatory driving conditions

We universally observed that the ratio of excitation and inhibition plotted against

the difference between the two, as a function of linear increase of wE, forms a non-

monotonic loop (Figure 4.2a). Initially for weak wE the E/I ratio rapidly increases

with the total current difference increasing at a much slower rate. At the interme-

diate values of wE the E/ratio typically decrease while the current difference show

shows significant increase. Finally, for high wE regime the E/I ratio and the current
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Figure 4.1: Input-dependent resonance property of type II neurons. The firing rate
of one single modified Hodgkin-Huxley neuron under sub-threshold os-
cillatory current driving at different frequencies. IDC=0.5µA , driving
amplitude=1µA.

difference rapidly decreases.

Further, the detailed shape of the loop depends on the presence of external os-

cillatory drive and its frequency (Figure 4.2b). If the driving frequency is between

5-10Hz which is the natural frequency of subthreshold membrane oscillations in that

neuronal model be observe a sharp decline in the maximal E/I ratio observed. If

the driving oscillations are out of this frequency range the loop converges in shape

to the one when no driving oscillation is present. In contrast we observed the that

the part of the loop corresponding to high wE values does not change as a function

of frequency of the external oscillatory drive. Thus, in summary, for weak wE, the

emergence of the network oscillatory response is highly dependent on the frequency

of oscillatory drive, as are the properties of these network states. In contrast for
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Figure 4.2: Total synaptic current and E/I ratio trajectory when wE keeps increas-
ing. The inhibitory synaptic strength wI is fixed as 0.3 mS/cm2 while the
excitatory synaptic strength wE is increased from 0 up to 2mS/cm2. (a)
E/I ratio trajectory for no oscillatory stimulation. The arrows represent
the direction of the evolvement of the curve when wE increases, in the
order of the labeled numbers. (b) E/I ratio trajectories when external
oscillations at resonant frequency 5Hz and non-resonant frequency 40Hz
are applied to the network. (Inset) The maximum E/I ratio on each tra-
jectory curve under oscillatory stimulation at different frequencies. The
results are averaged over 3 simulations.

higher wE the emergent synchronous oscillations are independent of the oscillatory

drive. This suggests that cellular resonance with oscillatory drive plays an important

role for week wE coupling while other mechanism synchronizes the network for high

wE. Therefore, we divide the dynamics into two regimes: resonance regime before

the second turning point, and network driven regime after the second turning point.

Next we will show the detailed dynamics and mechanisms for the two regimes.

4.3.3 Cellular resonance in weak excitatory coupling regime

We first investigated the dynamical E/I ratio and spatio-temporal activity patterns

for weak wE, at different external driving frequencies. We measured the level of
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synchrony in the network, and depicted it as a color of the curve. The frequency of

the driving oscillation was varied between 0Hz (no oscillation) and 40Hz. When no

oscillation was present and at 40Hz driving, the horizontal extent of the loop is the

largest (i.e. maximal E/I ratio is achieved) and the synchrony starts appearing on

the return phase of the loop. On the other hand, when the driving signal is a 5Hz

oscillation the network fires at a intermediate synchrony level ( 0.6) and the horizontal

extend (i.e. the maximal E/I ratio, see inset Figure 4.3b) of loop is significantly

reduced. Being highly frequency dependent (see inset Figure 4.2b), we identify this

region as a resonant regime.

We next investigated network-wide pattern formation as a function of the para-

metric position on the loop. To better depict the spatio-temporal patterning within

the network, we display raster plots and calculate the burst triggered averages of

excitatory and inhibitory currents in the network, for two wE values, and for three

oscillation frequencies (0Hz, 5Hz, 40Hz). When the wE is weak, (wE =0.08mS/cm2;

Figure 4.3 panels b, c, d show the raster plots and panels e, f, g show the current

traces, with blue indicating excitatory and red indicating inhibitory cells/traces re-

spectively), the spiking at 0Hz (no oscillatory driving) and 40Hz is sparse and random.

At the same time, 5Hz oscillation has an evident effect on increasing the firing rates

of the neurons and the network synchrony by regulating the phase locking of spikes

to the specific oscillatory phase. Moreover, specifically in this regime, the phase of

the locking systematically varies from cell to cell and depends on the constant cur-

rent, Ii
DC, that is fed to the cell (see methods). We adjust the y-axis of the raster

plots so that the cell order is a monotonic function of the Ii
DC. This potentially pro-

vides additional information about the relative magnitude individual cell input and

may underlie network structural reorganization if spike timing dependent plasticity

is present. The analysis of burst triggered current averages (Figure 4.3d,e,f) reveal

that within this regime the dynamics is driven by resonant activation of excitatory
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cells with inhibitory activation being significantly weaker. As we move along the loop

to region having higher excitatory weight, wE=0.24mS/cm2 (Figure 4.3 panels b-d

raster plots and panels e-g burst trigger current averages), the resonance mechanism

gives way as spontaneous bursting pattern starts to form for no oscillation (panel g)

and 40Hz driving (panel i). In this case however, the wE is still relatively weak, and

the current trace show that the inhibitory current is still relatively weak as compared

to the excitatory one. This indicates that the synchrony emerges via intrinsic cellular

mechanisms rather than PING like effect where it is mediated via inhibition-mediated

brief global shut down of cell activity. Here however still the spiking pattern of in-

dividual cells are phase-locked to the 5Hz oscillatory driving. In this regime, the

network dynamics is still dominated by excitatory activity with the magnitude of the

total excitatory current being significantly higher than the inhibitory one.

4.3.4 Highly synchronized dynamics generated by PING-like mechanism

As we keep increasing wE the network enters second regime: network-driven syn-

chrony mediated via strongly activated inhibition. Here the role of the oscillatory

drive diminishes as the three curves merge around the second turning point, except

for the phase locking of spiking activity to the oscillator drive at 5Hz. This indicates

that at high wE values, resonance effect of individual cells with the oscillatory drive

becomes less important as the network internal interactions dominate the dynamics.

While the degree of synchrony is remains high in this regime, the network-wide firing

pattern is different. The representative raster plots and current traces are demon-

strated on Figure 4.4, panels b-g. When excitatory weight, wE =0.66mS/cm2, the

system is around the second turning point, the magnitude of inhibition start to catch

up with that of the excitation. While it still cannot rapidly shut down the excita-

tion allowing for wide, multi-spike bursts to persist, one can observe that the tight

correlation between inhibitory and excitatory currents emerge.
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Figure 4.3: Network dynamics in resonance regime. (a) E/I ratio trajectories under
no oscillation (plain curve), natural frequency oscillation at 5Hz (with
dot marker), and out of resonance frequency at 40Hz (with cross marker),
with the color indicating the network synchrony. (b-m) Representative
raster plots and averaged current traces over bursts for the representative
data points labeled on the curves in panel (a). Blue represents excitatory
cells or excitatory currents, and red represents the inhibitory ones. Two
representative data points are chosen for each driving condition, with a
weaker wE =0.08mS/cm2 (b-g) and a stronger wE =0.24mS/cm2 (h-m).
(b, e) No oscillation driving with weaker wE (pink star marker); (c, f)
Driving at 5Hz with weaker wE (pink dot marker). The dashed black
vertical line is at the first spiking time of the burst. (d, g) Driving at
40Hz with weaker wE (pink cross marker); (h, k) No oscillation driving
with stronger wE (black star marker); (i, l) Driving at 5Hz with stronger
wE (black dot marker); (j, m) Driving at 40Hz with stronger wE (black
cross marker). Note: (e) and (g) are the excitatory and inhibitory current
traces over the whole simulation period since no bursting activity emerges.
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For higher values of excitatory coupling, wE =0.84mS/cm2, the network goes fur-

thermore towards the inhibition-dominant regime. Here, not only the firing pattern

is highly synchronous, but also each burst is composed of multiple single bursts. The

interaction between excitatory and inhibitory currents is demonstrated on panel k, l,

m explains the mechanism for synchrony. At the beginning of each burst, excitatory

current increases first. This burst of excitation leads to strong burst of inhibition (at

the peaks, the inhibitory current has typically higher magnitude than the excitatory

one) that momentarily hyperpolarizes the excitatory cells, as the excitatory cell re-

cover another excitatory burst is generated which again is followed by the inhibitory

activation. Thus here the synchrony is mediated by inhibition burst rather than by

individual cell resonance. This fits the PING-mechanism.

4.3.5 Patterns of the temporal relationship between excitatory and in-

hibitory currents is modulated by oscillation under different E/I

regime

Next we focus on evolution of the temporal relationship between the excitatory

and inhibitory currents as wE is monotonically increasing (Figure 4.5), in presence

and absence of oscillatory drive. Namely, we calculate cross-correlation between the

two first in 1s window (Figure 4.5a, b and c), then we investigate more closely tight

temporal locking within 60ms window (Figure 4.5d,e,f). From top to bottom of

the correlation maps, wE monotonically increases, resulting in the different E/I ratios

within the network. The horizontal lines on the correlation map mark the correspond-

ing locations on the excitation/inhibition trajectory as marked with star markers on

Figure 4.5g,h,I moving counter-clock wise.

At the weakest wE coupling strength range (i.e. the area above the first separa-

tion line which also corresponds to the initial part of the E/I ratio trajectory), no

correlation patterns are observed when no external oscillation is present (Figure 4.5

113



Figure 4.4: Network dynamics of synchrony regime driven by PING mechanism. Sim-
ilar arrangement of representative raster plots and current trace plots as
in Figure 4.3. (a) E/I ratio trajectories, focusing on the second part
(colored). Similarly, two representative data points are chosen for each
driving condition, with a weaker wE =0.66mS/ cm2 and a stronger wE

=0.84mS/cm2. (b, e) No oscillation driving with weaker wE (yellow star
marker); (c, f) Driving at 5Hz with weaker wE (yellow dot marker); (d,
g) Driving at 40Hz with weaker wE (yellow cross marker); (h, k) No oscil-
lation driving with stronger wE (blue star marker); (i, l) Driving at 5Hz
with stronger wE (blue dot marker); (j, m) Driving at 40Hz with stronger
wE (blue cross marker).
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a,d) nor at 40Hz oscillatory driving (Figure 4.5 c, f) Due to low excitatory input

the network exhibits sparse random spiking. At the same time, under 5Hz driving,

the network activity is locked to the external oscillation and periodic temporal cor-

relations emerge. As before, the current fed into each neuron is controlled to be

subthreshold indicating that, in this regime, the resonant driving effectively recruits

the firing at the during each cycle of the sinusoidal wave. The correlation peak is

broad indicating slow activation without detailed spatio-temporal features.

When wE is increased, the excitation is strong enough to activate the inhibition,

thus bring the E/I ratio to decrease causing the E/I trajectory to pass through the

first turning point (Figure 4.5g). Between the first and second horizontal line, cor-

responding to first and second marker (Figure 4.5g-i), periodic correlation pattern

spontaneously (i.e. without external oscillatory driving) appears (Figure 4.5a-f). In

this regime, we observe dynamic interaction between resonance and spontaneous os-

cillatory bursting mode. When the network is driven by an oscillation at resonant

frequency the inter-burst intervals are stabilized to 200ms corresponding the period

of 5Hz oscillation (Figure 4.5b), while in the non-resonant regime (i.e. no oscillatory

drive or 40Hz drive) the intervals change their length monotonically with the increase

of wE (Figure 4.5a, c). Furthermore, the correlation between two oscillatory cycles

is higher indicating more robust and systematic network activation (Figure 4.5b, a,

c). These two features indicate that the external oscillation at natural neuronal firing

frequency is able to stabilize the firing pattern independently of changes of synaptic

strength.

With further increase of wE to values corresponding to regime around the third

marker, the system enters the network-driven PING regime and the trajectory un-

dergoes the second turning point. Here, while we continue to observe stabilization of

inter-burst frequency during the resonant driving, the detailed temporal intra-burst

pattern emerges with a cross-frequency phase coupling between the theta band (about
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5Hz) and fast gamma band (about 160Hz). This indicates large degree of synchrony

within and between the excitatory and inhibitory populations. Furthermore, this

pattern in now independent of the oscillatory drive.

4.3.6 Resonance effects of oscillatory driving at various balance states

To better identify the E/I mediated interaction between resonant regime and

spontaneous PING-mediated bursting, we quantify dynamic network properties as a

function of forcing frequencies. We choose five representative wE values at which we

quantify the firing patterns (Figure 4.6a). These points correspond to: 1) no exci-

tatory connections (blue), 2) a weak wE when the oscillation has significant impact

on the network firing (red), 3) around the first turning point where inhibition gets

activated (yellow), 4) around the second turning point where the system transitions

from resonant to PING regime (violet), and finally, 5) the network is strongly con-

nected (high wE , green). Figure 4.6b, c, d depict changes in the network firing rate,

the degree of spiking phase ordering within the burst, as a function of constant input

Ii
DC (see Methods) and its average coefficient of determination R2 (see Methods),

respectively. We observe, that for weak coupling regime (i.e. small wE ), when the

network is driven by the oscillations around the natural frequency (3Hz, 5Hz, 10Hz)

it displays not only increased firing (Figure 4.6b) but also highly ordered neuronal

recruitment, based on the intrinsic cell excitability (i.e. Ii
DC magnitude) (Figure 4.6c,

6d). This input dependent recruitment indicates the emergence of temporal code

that carries network-wide information about relative magnitude of cell excitability

and may subsequently drive structural network reorganization if spike timing depen-

dent plasticity (STDP) is present. For non-resonant frequencies (40Hz, 60Hz) this

effect is absent. The oscillation mediated ordered-spiking is particularly prominent

at the weakest wE (blue line), indicating that this effect is gradually weakened by

stronger network excitatory/inhibitory interactions. Around the first turning point

116



no oscillatory driving

-500 -250 0   250 500 

0.01
4.41
7.93
2.69
1.82
1.79
1.76
1.65
1.28
1   

0.89
0.63
0.41

E
/I

 r
a

ti
o

-0.5

0

0.5

-25 0   25  

time delay/ms

0.01
4.41
7.93
2.69
1.82
1.79
1.76
1.65
1.28
1   

0.89
0.63
0.41

E
/I

 r
a

ti
o

-0.5

0

0.5

0 5 10

E/I ratio

-500

0

500

to
ta

l 
c
u

rr
e

n
t 

/
A

driving frequency=5Hz

-500 -250 0   250 500 

0   
3.04
3.65
2.06
1.77
1.74
1.73
1.5 
1.25
1.05
0.88
0.55
0.5 

E
/I

 r
a

ti
o

-0.5

0

0.5

-25 0   25  

time delay/ms

0   
3.04
3.65
2.06
1.77
1.74
1.73
1.5 
1.25
1.05
0.88
0.55
0.5 

E
/I

 r
a

ti
o

-0.5

0

0.5

0 5 10

E/I ratio

-500

0

500

to
ta

l 
c
u

rr
e

n
t 

/
A

driving frequency=40Hz

-500 -250 0   250 500 

0.01
4.31
8.71
2.41
1.84
1.79
1.75
1.63
1.3 
1.03
0.89
0.54
0.47

E
/I

 r
a

ti
o

-0.5

0

0.5

c
ro

s
s
 c

o
rr

e
la

ti
o
n

-25 0   25  

time delay/ms

0.01
4.31
8.71
2.41
1.84
1.79
1.75
1.63
1.3 
1.03
0.89
0.54
0.47

E
/I

 r
a

ti
o

-0.5

0

0.5

0 5 10

E/I ratio

-500

0

500

to
ta

l 
c
u

rr
e

n
t 

/
A

a

d

b

f

c

e

hg
i

14

2

3

4

2

3

4

3

2

1 1

Figure 4.5: Excitatory and inhibitory synaptic currents temporal correlation. Panel
a, b, c display the cross correlation map between network excitatory and
inhibitory currents for no oscillation, 5Hz, 40Hz driving respectively, with
panel d, e, f showing the details in the time delay range of [-30, 30]ms. X-
axis represents the time delay between the two currents, where negative
values represent the excitation leading the inhibition. wE increases in
the direction from top to bottom, with the E/I ratio indicated on Y-
axis. Horizontal lines split the map into 5 parts with different correlation
patterns. The E/I ratio trajectories for the three driving conditions are
shown in panel g, h, i, plotted in the same way as in Figure 4.2. Each
horizontal line corresponds to a star marker with labeled number on the
curve.
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(yellow), firing rate also displays noticeable resonance effect (Figure 4.6b), but the

spike ordering is diminished significantly (Figure 4.6c). At the same time, we observe

that the resonance still mediates tight phase locking to oscillation indicated by the

peak value of R2 (Figure 4.6d). For stronger magnitude of wE, when PING bursting

regime emerges (violet and green), changing frequencies of external oscillatory driving

do not make affect intra-burst spike dynamics (Figure 4.6b, c, d). The much higher

firing rate at wE around the second turning point (Figure 4.6b violet) is resulting

from the wide bursts which contain random firing, in comparison to the lower firing

rate of single spike bursting (Figure 4.6b green).

4.4 Discussion

Here we use a biophysical model with recurrently-connected excitatory and in-

hibitory neurons and investigate the co-existence of synchronization regimes as a

function of changing levels of excitatory/inhibitory balance. By systematically vary-

ing synaptic strength, the network excitation/inhibition level forms a non-monotonic

trajectory in the current-vs-ratio 2D map (Figure 4.2). The obtained results provide

insight on possible network transitions between the dynamic states through neuro-

modulatory regulation, providing a mechanistic understanding for the coexistence of

multiple communication schemes in the hierarchical organization of the brain (Hahn

et al., 2018). Specifically we investigate the effects of oscillatory driving on the recur-

rent connectivity network composed of cells that exhibit subthreshold 5Hz membrane

oscillation. With increasing strength of synaptic coupling, the system gradually tran-

sitions through distinct communication regimes (listed in order of increasing wE):

1) ordered, input dependent spiking resonantly driven by external oscillatory drive,

2) synchronous phase locked network firing modulated via resonant external oscil-

latory drive, 3) PING mediated gamma/theta cross frequency coupling, 4) highly-

synchronous single bursting oscillation. The first two regimes are driven and/or
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Figure 4.6: Resonance effects in network dynamics at various balance states. (a)
E/I ratio trajectory under no oscillatory driving with the locations of 5
representative data points. 5 data points are chosen with wE increases in
the order of blue, red, yellow, violet, green. (b) The firing rates under
different driving frequencies are quantified at each wE value. The index
of ordered spiking is quantified by the slope (panel c) and R2 (panel d) of
the fitted line of bursting spikes described in the Methods section. Black
arrows indicate no data for the slope and R2 when wE =0 (blue) and
0.09mS/cm2 (red) at no oscillation, 40Hz and 60Hz driving due to no
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mediated by oscillatory resonance of the internal cell subthreshold oscillations and

external oscillatory drive and happen for weak wE. Here, even though the excitatory

connectivity is weak, the synchronization is dominated by excitation. The synchrony

in last two regimes (high wE) are mediated by PING mechanism and are dominated

by the periodic shunting effect of inhibition.

These results indicate that the system gradually switches from resonance-regime to

PING-regime when the network coupling gets stronger. The two turning points on the

2D trajectory correspond to the activation of inhibition and the transition between the

two synchronization regimes respectively. In resonance regime the oscillation provides

a global readout mechanism for network states represented by individual cells. The

activity of cells receiving different magnitude of input is mapped onto their relative

spike times. The spontaneous ordered-spiking during sleep or sequential firing of

place cells was found in rats hippocampus after spatial learning (Foster and Wilson,

2006; Wikenheiser and Redish, 2012). Our model predicts that a combination of

weak synaptic coupling and resonant activation is necessary for this firing pattern to

emerge (Figure 4.6c, d).

When wE gets stronger, loose oscillatory firing starts to form spontaneously in

the network. Here, the external oscillation stabilizes the network oscillatory activ-

ity by controlling the inter-bursting interval (Figure 4.5b), which potentially builds

a dependable mechanism of precise temporal coding without being affected by the

fluctuations in synaptic strengths or other mechanisms influencing instantaneous ex-

citatory/inhibitory balance (Figure 4.5a). Generally in this regime, the oscillation

recruits excitation more effectively than inhibition due to the fact that cells are hyper-

polarized, resulting in larger distance between mean membrane voltage and excitatory

reversal potential that in turn promotes stronger EPSP.

In the other regime characterized by high wE values, PING emerges with inhi-

bition fully dominating the network synchronization by periodic of the excitatory
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activity (Figure 4.4). The random firing within bursts turns into synchronous burst-

ing at a much faster time scale, generating a nested, phasic-coupled theta band and

fast gamma band (Figure 4.5d, e). The effect that intrinsically generated gamma

band appears within theta band, is proposed to be essential in precise neuronal com-

munication (Fries , 2015). Gamma oscillation is thought to play the role of discrete

“packets of information” in the inter-regional communication (Buzsáki and Watson,

2012; Akam and Kullmann, 2014; Bastos et al., 2015). This fast gamma band may

be able to carry local information and deliver sequentially via different cycles of the

global theta oscillation. The entrainment and modulation of localized gamma band

in neocortex of the hippocampus theta oscillation has been largely discovered to con-

tribute to the reciprocal information transfer via temporal coordination (Sirota 2008),

item-context associative learning (Tort et al., 2009), or working memory in rat medial

prefrontal cortex (Li et al., 2012). With even stronger excitatory coupling, a highly

seizure-like bursting appears due to the overwhelming inhibition, implying that the

abnormal potentiated excitatory synapses may result in abnormal neural states, which

is demonstrated to result from phase coherent currents in neocortex (Breton et al.,

2019).

Thus, in summary, our model provides an insight on a dynamical mechanism co-

ordinating various communication schemes, which are mediated by changing relative

excitation/inhibition level in the network. We propose that a successful commu-

nication process may happen in the following way. When an resonant oscillatory

signal arrives to a given local network (or brain modality) which is weakly active and

fires randomly, the oscillation provides a readout mechanism of its state by recruit-

ing neurons to fire with stable relative timing. This essentially provides a network

wide temporal code of excitation levels of individual cells. The neurons with intrinsi-

cally higher excitability fire first, and are able to excite those with lower excitability,

strengthening the common synaptic connections via STDP. The increased excitation
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mediated via increased structural connectivity drives the system to pass the first

turning point on our 2dimesional excitation/inhibition map when enough inhibitory

neurons are activated with fast tightly synchronous oscillations starting to emerge -

the system starts to generate coherent fast gamma oscillation as well as slow theta

band stabilized by external oscillatory drive. The specific cell populations activated

by intrinsically emerging gamma oscillation provide detailed informational content

that is being transferred to other brain regions via the cross frequency coupling. Fi-

nally, if the excitatory synaptic coupling gets even stronger, the system might enter

a pathological state with highly synchronized activity.

We thus believe that our results are a good starting point to provide guidance for

experimental studies focused on investigating dynamic transitions in a network as a

function of changes of relative levels of excitation and inhibition that may happen

during memory formation and consolidation.
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CHAPTER V

Conclusion

5.1 Summary

This dissertation has focused on understanding the mechanisms underlying func-

tional activity patterns in the context of network structural connectivity and emerg-

ing excitatory/inhibitory balance. Presented work has taken on two directions: 1) I

participated in the tool development to capture and characterize functional network

connectivity patterns (Chapter II) and, 2) I conducted computational modeling to

identify the network-level mechanisms for multiple dynamical regimes at different E/I

balance states in the context of structural connectivity (Chapter III and IV).

First, in Chapter II the AMD-FuNS framework is extended to quantify the func-

tional connectivity, which outperforms the traditional analysis techniques such as

cross-correlation in multiple ways. The AMD algorithm is able to detect the func-

tional relationship between neuron pairs at a more significant level, which is tested

on surrogate datasets with various distributions of inter-spike intervals, spiking data

generated from network models, as well as in vivo data during memory consolidation.

The computation time can reach up to 4 orders of magnitudes shorter than cross

correlation for large-scale networks with 104 neurons. Bidirectional AMD and uni-

directional AMD provide correlation and causality relationship respectively, whereas

most traditional metrics are either bidirectional or unidirectional. At the same time
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functional network stability (FuNS) reliably assesses the stability of the functional

patterns in the network over extended time periods, which bridges the gap between

the timescales of neuron activity, at the scale of seconds, and the cognitive behaviors,

at the scale of hours. Moreover, FuNS detects the global stability, which is not con-

strained by the activities of a specific set of neurons, and is capable of alleviating the

under-sampling problem in experimental data. This framework provides an efficient

and effective approach to detect functional dynamics in the following work.

In the second part of my thesis I develop computational models to investigate

the detailed mechanisms for the generation of the diverse functional patterns iden-

tified by AMD-FuNS from in vivo data. In Chapter III, the complex interaction

between excitation and inhibition is characterized thoroughly in a biophysical neural

network where the synaptic strength is varied systematically. I develop a compre-

hensive picture of the non-monotonic relationship between the total synaptic current

and E/I ratio, called E/I ratio trajectory and map it on a 2-dimensional phase space.

This relationship shows emergence of three E/I balance regimes that are governed by

different mechanisms and display heterogeneous activity patterns. Two competing

factors, population firing rate and mean magnitude of postsynaptic potentials, are

demonstrated to dominate the network dynamics alternatively in each regime. The

framework turns out to be universal, independent of factors including connectivity

density, network size, noise input frequency etc. This work potentially explains the di-

verse or sometimes contradictory experimental results where various types of balance

states are observed.

Chapter IV extends upon the work in Chapter III, which focused on a locally

connected network composed of neurons having type I membrane excitability, to the

mechanisms of the synchronous pattern formation when the network interacts with

external oscillatory input and consists of neurons having type 2 membrane excitability.

When the synaptic coupling increases, the network gradually shifts from resonance-
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based to PING-based synchronization regime. Here the two turning points on the

E/I ratio trajectory represent the activation of inhibition and the transition between

the two synchronization regimes respectively. Counter-intuitively, the synchronous

dynamics is dominated by excitation when excitatory synaptic strength is low, while

dominated by inhibition at high excitatory synaptic coupling, further revealing the

complex interaction between excitation and inhibition. Thus, the model suggests

a potential scheme for efficient information communication between brain regions,

where one region transitions from passively receiving rhythmic signals at resonance

to actively transferring information with another region when the local coupling is

gradually strengthened.

In summary, the work presented here emphasizes the quantification and the mech-

anisms of the functional dynamics at various E/I states in neural networks. By un-

tangling the complex relationship between the excitation and inhibition, the proposed

frameworks provide guidance for future experimental work to identify heterogeneous

balance states and synchronization regimes during different cognitive states.

5.2 Future directions

In Chapter III and Chapter IV, the synaptic strength was systematically varied

to provide a comprehensive map of the complete relationship. The possible next

step would be to add spike-timing-dependent plasticity (STDP) to have the synaptic

strength in the network evolve depending on the temporal relationships between the

presynaptic and postsynaptic neurons. This would potentially shed light onto modes

of network structural reorganization driven by the identified dynamical regimes of

their function. The answers to these questions are promising to further extend the

insights provided within this work. The question to high importance are: 1) whether

the neural plasticity or neuromodulation associated with different cognitive states are

able to drive the neural system to transition between different regimes indicated by
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the E/I ratio trajectory, specifically, the balance regimes in Type I network (Figure

3.1) and/or the synchronization regimes in Type II network (Figure 4.2)? Whether is

it possible for a system, through homeostatic mechanisms, for example during sleep,

to return back to the same balance state after experiencing the learning via STDP

mechanisms? Previous work has shown that LTP is promoted during wakefulness

while LTD is favored during sleep via different levels of neuromodulators such as

acetylcholine (Seol et al., 2007). Thus, this will potentially shed light on which E/I

balance regime the network sits at during different cognitive states, such as sleep vs

wakefulness, and memory formation vs memory retrieval.

In experiments, the excitability types of excitatory and inhibitory neurons are dif-

ficult to determine (Skinner , 2013). The biological networks are thus likely to contain

both types of neurons. Another direction for the future work is to study how the pro-

file of E/I ratio in the network with neurons having mixed types of excitability. The

dynamical patterns and the profile of the E/I ratio trajectory for networks composed

of excitatory integrators and inhibitory resonators (or excitatory resonators and in-

hibitory integrators) may further the understanding of the generation mechanisms of

cognitively functional network representations.
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Buzsáki, G., and B. O. Watson (2012), Brain rhythms and neural syntax: implications
for efficient coding of cognitive content and neuropsychiatric disease, Dialogues Clin
Neurosci., 14 (4), 345—-367.
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