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Abstract 

Behavior, attitudes, and infection can transmit across networks of contacts via social mixing, 

making network analysis methods a key tool in social and infectious disease epidemiology. 

Through analysis of the simultaneous processes that influence and shape individuals and 

networks, we can better understand how to collect social network data, incorporate human 

behavior and its collective idiosyncrasies into models and statistics as uncertainty, and thus 

improve the veracity of our conclusions. Using data from a longitudinal social network study of 

undergraduate students, this dissertation aims to: 1) examine how social structures and contact 

patterns shape alcohol consumption and use in undergraduate students; 2) evaluate the strengths 

and limitations of different methods of measuring social contact networks; and 3) develop 

methods to quantify network uncertainty and hypothesis testing for trait assortativity.   

 

First, we applied social network analysis methods to two undergraduate student social networks, 

investigating network correlates of alcohol consumption, identifying numerous, consistent 

associations between alcohol use and social position in this population. Specifically, network 

position, alcohol exposures, and relationship strength were associated with individual alcohol 

use, suggesting complex relationships between drinking and network topology, as well as 

proximity to alcohol use. Overall, this chapter adds to the body of evidence of significant 

relationships between network structure, social position, and alcohol consumption. 

 

Next, we systematically compared two social network measurement methods with varying levels 

of granularity in order understand the unique utility of self-report vs. sensor contact data, as well 

as trends in data quality and quantity over time. Networks were compared across and within each 

measurement method, using overall network structure, dyad, and node characteristics. We found 

few network similarities between measurement methods, suggesting that neither empirical 

network measurement method are complete representations of the underlying “true” social 
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network. These analyses highlight the impact that network measurement can have on empirical 

network findings and suggest that researchers should carefully consider which collection method, 

or combination of methods, could provide them with the highest quality data needed to answer 

their research questions.  

 

Finally, we outlined and defined multiple assortativity sensitivity analyses, uncertainty 

quantification approaches, and null model-hypothesis testing procedures and applied these 

methods to a measured social network of undergraduate students. These investigations showed 

that uncertainty and biases of attribute assortativity may be predictable, given a defined amount 

and type of data error.  Generally, results of these analyses show the potential impacts that data 

quality, measurement error, and the measured network can have on observed assortativity. We 

suggest that it be standard practice to conduct and present assortativity sensitivity analyses, and 

to hypothesize possible confounding or bias related to network data quality and completeness.  

 

In toto, this dissertation describes and extensively explores social networks of undergraduate 

students. We investigated relationships between a risky health behavior of public health 

importance and network features, as well as how network analysis results using observed 

networks are reliant on the network measurement method and the types and amounts of data 

uncertainty and error present. These projects have generated new results and insights into alcohol 

use and social networks in a college setting, compared empirical social network observations 

between a traditional and novel instrument, and developed a suite of analytical social network 

tools. Importantly, the novel methods we defined and implemented in this dissertation provide a 

framework with which to evaluate network uncertainty, robustness, and hypotheses. 
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Chapter 1! 
Introduction 

1.1 Social Network Analysis 
As the world becomes more interconnected and less compartmentalized, there are growing 

dependencies between political, social, and ecological factors, creating a complex environment 

that significantly and materially impacts individual behavior and health. Network science (the 

study of how connections and feedbacks between objects or individuals shape actions and vice 

versa) has been used across disciplines but is particularly important in public health. Methods for 

analyzing social, or contact, networks are increasingly important tools in social and infectious 

disease epidemiology (1). Behavior, attitudes, and infection can transmit across networks of 

contacts via social mixing, making network analysis methods a key tool in social and infectious 

disease epidemiology. Through analysis of the simultaneous processes that influence and shape 

individuals and networks, we can better understand how and why behaviors are adopted by 

individuals and populations. Similarly, elucidation of social networks can clarify infection 

transmission patterns and inform mathematical models and disease spread predictions. 

Collectively, social network analysis in public health aims to describe the processes of selection 

and influence (i.e., transmission). Network influence is the systematic spread of information, 

ideas, and/or pathogens across the network topology. Research under this umbrella identifies 

how network structure and properties may facilitate or impede different types of transmission 

across the network. Network selection is the reverse process, where individual identities and 

traits are associated with network connectivity and structure. In all likelihood, these are dynamic, 

bidirectional processes (2–9).  

1.2 Applications of Social Network Analysis in Public Health 
Social network analysis also provides a framework in which to investigate interdependent and 

circular mechanisms that drive both communicable and non-communicable disease patterns 
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within and across communities. Network analysis is unique in its ability to integrate traditionally 

defined determinants of health with social, behavioral, and structural factors in order to 

holistically model health and wellbeing. Granovetter, a sociologist, was one of the first 

researchers to posit how structures and patterns in realistic social network models, which include 

both strong and weak connections, could impact human behavior (10), and in the subsequent 

years, network methods have increasingly been adopted by the fields of infectious and social 

epidemiology to investigate network associations with a multitude of health behaviors (and their 

outcomes).   

 

A challenge in infectious disease transmission research is identifying and quantifying how 

pathogen traits (e.g., mode of transmission, virulence) interact with behavioral, social, and 

environmental factors that facilitate or restrict transmission between individuals and across 

populations (11). Most infectious disease modeling and transmission studies rely on 

homogeneous mixing assumptions (and those that do incorporate heterogeneous contact patterns 

typically do so with theoretical networks) (12), but it is unclear how closely these resemble real-

world contact patterns and thus their results may not accurately describe real-world transmission. 

Given the importance of predictive transmission modeling for infectious disease prevention and 

epidemic preparedness, developing more realistic models and parameterizations are crucial areas 

of public health research (13).  Infectious disease dynamics are dependent on a number of 

factors, including a population’s social network structure (1). Indeed, the feedback loops 

between disease dynamics, individual illness, and behaviors (e.g., isolation, intervention uptake) 

are likely key components of population disease dynamics and should not be overlooked (14). 

Social mixing, in particular, can modify and/or mediate the impact of individual factors on 

population dynamics, particularly for close-contact transmissions (e.g., droplet, direct 

transmission, and even some forms of indirect transmission) (13). Research has continued to 

show the relevance of contact patterns and network structure in transmission dynamics and 

epidemic growth. For instance, the shape of a network’s degree distribution can influence an 

outbreak’s basic reproduction number (R0); fat-tailed distributions, wherein a large number of 

people have a high degree, has been shown to result in a higher than expected R0 (15–17). 

Clustering and sub-groups in networks, such as communities, small-world degree distributions, 

node groupings, and modularity, may also contribute to an outbreak’s trajectory and persistence 
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(18,19). Additionally, network structure, social support, and sociability may impact individual 

susceptibility to infection (20,21).  

 

Importantly, individual and community traits can interact with network structure, affecting 

infectious disease dynamics. Recent measles outbreaks (2013, 2019) in Orthodox Jewish 

communities in Brooklyn, for example, show how insular and close-knit communities can 

reinforce community vaccination norms, creating environments conducive to rapid and extensive 

transmission (22,23). Conversely, increasing HPV vaccination rates in Scotland were recently 

linked to a “considerable and sustained” decrease in cervical disease (24); in effect reducing 

potentially infectious sexual contact networks by altering individual risk. Additionally, 

reactionary behavior change may alter an outbreak’s trajectory by changing network structure; 

systematically encouraging and exploiting these behaviors as non-pharmaceutical interventions 

may be a practical and key strategy in mitigating outbreaks. For example, reduced movement or 

travel and isolation after the start of an influenza outbreak have been shown to limit transmission 

opportunities by reducing network connections (25–28). These results suggest that both network 

structure and individual behavior may be important targets for intervention. However, human 

factors that can affect transmission patterns remain underexplored (14). There is thus a pressing 

need for further investigation into the intersections of infectious disease dynamics and social, 

cultural, and behavioral factors (14).  Material gaps persist in attribute and behavioral social 

network analyses as well as social network data collection and analysis methods—these issues 

limit the accuracy of current infectious disease predictions and public health’s ability to control 

epidemics. Additional research in these areas will be a crucial step towards developing 

comprehensive real-world predictions of transmission dynamics.  

 

In addition to affecting transmission dynamics, social networks can impact individual health 

behaviors that are associated with chronic disease risks. Researchers have explored complex 

patterns of social network influence and selection on individual alcohol use (29–38), smoking 

(39–42), drug use (43–45), exercise (46–48), diet and obesity (49–51), among others. 

Combinations of larger social structures, close relationships, and individual psychosocial and 

genetic factors may make some individuals more or less susceptible to peer influence (52–55). 

Conversely, networks may form around shared traits and behaviors, creating an environment that 
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may reinforce behaviors and facilitate their adoption across a contact network.  Previous research 

has identified homophily, which may indicate selection, in many empirical networks, including 

sexual partnerships (56,57), and adolescent networks (58). Indeed, preferential mixing may be 

the result of complex interactions along multiple lines of similarity. Block and Grund found that 

friendships among school-age children patterned according to gender, ethnicity, socioeconomic 

status, and “pocket money” but that gender and ethnicity exhibited negative additive interaction 

(59). A deeper understanding of the selection and influence processes involved in social 

networks will be critical in further disease prevention. 

1.3 Social Networks and College Alcohol Use  
As noted, health behaviors have been extensively addressed in the social network literature. In 

particular, the associations between peers, contact networks, and risky health behaviors including 

drug and alcohol use have been investigated, primarily in adult and adolescent populations. 

Adolescent behavior and network research has identified consistent, positive associations 

between individual drinking and peer drinking behavior (29,30,32,60,61). However, despite the 

significant issues with alcohol use and binge drinking on college campuses, social network 

alcohol studies in this population remain limited.  

1.3.1 Alcohol use and its consequences 

Alcohol use in college students is a major public health issue in the US, as excessive 

consumption has contributed significantly to morbidity and mortality in young adults (35,62–68), 

and negative health effects of college drinking can extend well into adulthood (69). College 

students tend to drink higher quantities and more often than non-college students in the same age 

group (70–73); approximately 80% of full-time college students report drinking at least once and 

40% reporting regular drinking  (63,74). Of those who do drink, approximately 25% drink at 

least ten times per month, 50% drink in order to “get drunk,” and a third meet the DSM-IV 

criteria for alcohol abuse (75–78). Moreover, half of all college drinkers are under the legal 

drinking age of 21 (79). In 2015, 32% of college students reported binge drinking (72) (generally 

defined as ≥ 5 (men) or ≥ 4 (women) drinks on a single occasion (74) and binge drinkers account 

for between 48 (79) and 91% (80) of all alcohol consumed by college students. Even more 

alarming, studies have found that over half of binge drinkers are “heavy binge drinkers” (≥ 7/≥ 6 

drinks (men/women)) (81,82). 
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The negative consequences of college drinking are extensive and range in severity (77). Students 

who drink often experience academic consequences, such as missing classes and lower grades 

(83,84), and short-term health effects (i.e., hangovers, memory loss) (77). Risky behaviors, such 

as increased numbers of sexual partners, unprotected sex, prescription drug use/abuse, and 

driving under the influence often accompany drinking (77,85,86) and alcohol has been associated 

with increased risk of injury and/or being the victim of an assault. Researchers estimate that over 

close to 600,000 students are injured, 100,000 students are sexually assaulted (with another 

100,000 reported being too drunk to know if they consented to sex), and 2.7% of drinkers 

considered suicide each year (62,70,84,85).  Additionally, over three million college students 

drive under the influence, 1,800 students die in alcohol-related accidents, 700,000 are assaulted 

by a student who has been drinking, and 5% of college students are involved with police or 

campus security as a result of drinking each year (77,85). Despite administrative efforts to reduce 

drinking levels, students tend not to be motivated to curb drinking by past negative consequences 

or the potential for future consequences, in fact, some “negative consequences” can actually be 

seen as desirable in this population and may motivate increased alcohol use (87–90).  

1.3.2 The social context of alcohol use in college 

Alcohol use in college students differs from alcohol use in other populations in the US. The 

changes in living environment, level of independence, and social support systems between high 

school and college make college students highly susceptible to social influences as they navigate 

this transition (78,91). Many students begin drinking in their first year of college (45,92–99), 

when students may be particularly vulnerable to peer influence in order to form social 

connections quickly (100). Indeed, peer influences have been found to be the strongest predictor 

of behavior, particularly alcohol and other substance use, in young adults (29,47,91,100–114). 

The majority of young adults report a social motivation for drinking, including facilitating 

friendships and social connections, and high peer approval has been associated with heavy 

drinking (36,112,115–117). As such, heavy drinkers in college tend to do so in groups as 

opposed to drinking alone to cope with stress (36,118). In the university setting, non-drinkers 

tend to be viewed negatively (e.g., aloof, antisocial) by other college students (119), providing 

additional motivation for students to drink in order to be accepted by their peers. The visibility of 
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drinking on campus may also facilitate new friendships according to alcohol use, as students 

easy identify and form connections with students whose drinking behaviors align with their own 

(5). As such, membership in organized groups, including fraternities and sororities and athletic 

teams tend to be associated with higher levels of drinking (94,120–124). 

1.3.3 Social network studies of alcohol use 

For the most part, analyses of peer effects on college student drinking has previously been 

limited to individual-level predictors (e.g., perceived social support), which use measures of peer 

behaviors and connections (i.e., “egocentric” network analysis), or context-level predictors, such 

as residence or fraternity membership.  These variables can provide information from the 

perspective of individuals, but they do not allow identification of network structures that 

“transcend” individual-level determinants of alcohol use (125). Network data allow for detection 

of the structural characteristics of individuals and social networks in relation to behavior (126). 

An individual’s type, strength, and number of friendships and their larger social environment 

may individually and collectively play a role in predicting alcohol use, and conversely, alcohol 

use may play a role in friends selection (29,100,127). Group-dependent variables cannot be 

measured without more complete social network data that maps individuals onto a larger 

network structure.  

 

Social network analyses of alcohol use in non-college populations strongly suggest that social 

networks structures and relationships are key for understanding alcohol use and changes in 

drinking behaviors. Specifically, studies in adolescents and adults support a social influence on 

alcohol use, alcohol’s impact on social network formation, as well as the co-evolution of alcohol 

use and changing social networks. There is a growing body of research on adolescent alcohol use 

and social networks, mainly utilizing data from the National Longitudinal Study of Adolescent 

Health (Add Health), a longitudinal, four-wave study of nationally representative adolescents 

(128). Findings from these studies have repeatedly shown reciprocal effects between network 

structures (e.g., friendship formation), individual network position (e.g., closeness centrality, 

degree), and alcohol use (31,38,114,129–134). The consistency of the results across various 

definitions of friendship, peer group, and friendship strength strengthens the evidence for social 

influence on alcohol use in adolescents. Interestingly, there seems a measurable influence not 
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only from close friendships but also unreciprocated network links, suggesting that adolescents 

may drink as a way to strengthen a friendship or gain favor with more “popular” individuals. 

Indeed, these results suggest that highly connected individuals in a social network may have 

disproportionate influence on their peers that leads to higher levels of drinking over time (10). 

While these social network studies provide clear evidence of the bidirectional relationship 

between social networks and drinking in middle and high school age children, college’s unique 

combination of a highly social environment and ready access to alcohol make it difficult to 

generalize these findings to college students. In particular, the transition to independent living (or 

cohabitation in a dormitory), a new educational and social environment, mixing of students 

below and above legal drinking age, and the ubiquity and availability of alcohol on campus 

likely to result in different social network patterns of drinking behaviors. For these reason, social 

network studies within college age populations are strongly needed. 

 

A handful of social network analyses of alcohol use in college students exist, although these 

networks have been small and the majority were cross-sectional networks, and therefore were 

unable to distinguish between peer selection and influence. In 2011, Phua’s analysis of a 

dynamic, 3-year network of 34 fraternity members found evidence that alcohol consumption 

diffused through the network over time and that popularity (indegree) was positively associated 

with higher daily alcohol consumption (135). In another study, Dumas et al. recruited small 

“natural drinking groups” of 3-5 same-sex individuals who were leaving bars and surveyed 

group members individually about within-group relationships and statuses (e.g., ranking group 

members by likability) and drinking behavior, as well as administered Breathalyzer tests (136–

138). Across three publications, they identified a number of positive associations between higher 

within-group status (e.g., most well-liked by others) and alcohol consumption, as well as higher 

status and encouraging other group members to drink. Although these analyses utilized a 

relatively small sample and self-selected groups of drinkers, it highlights the utility of collecting 

network information from multiple group members in conjunction with individual level data, as 

well as the significant relationship between social status, peer pressure, and alcohol use. In a 

study of randomly assigned roommates (dyads, i.e., two individuals per network), Duncan et al. 

observed that when two male roommates who had been drinkers in high school were assigned to 

live together, they increased their drinking over the course of the school year (43). Similarly, 
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Eisenberg, Golberstein, and Witlocks’ analysis within randomly assigned on-campus roommates 

found alcohol-peer associations in both men and women, as well as a positive association 

between pre-existing risky behaviors and the closeness of friendships between roommates (139). 

In a study of a larger student network (N=125) living in a single college dormitory, associations 

between number of days of heavy drinking and increased outdegree and betweenness (i.e., the 

degree to which an individual is a bridge between groups within a social network) were 

identified and the results suggested peer drinking had a larger influence on behavior than 

individual-level risk factors (140,141). The use of only residents from a single dormitory limits 

representativeness of these findings and requires replication in larger study samples. Indeed, 

research has shown that there are differences in drinking behaviors across various residence 

types, even within on-campus residence halls. One larger social network study of college 

students has been conducted. In Belgium, Lorant and Nicaise measured two distinct networks 

comprised of students in two large classes (psychology and engineering lectures) (142). The 

found several social network features (in-degree, social capital, network density) were 

significantly associated with drinking habits and binge drinking—illustrating that network-level 

features, in addition to individual characteristics, can affect drinking behavior. Unfortunately, 

reported connections between classmates within large lecture classes may not accurately 

represent social networks outside of class. Additionally, due to the differences in legal drinking 

age and habits between Europe and the US, this study’s generalizability to US college students is 

limited.  

 

Overall, there remain major gaps in the current body of research addressing social network 

effects on alcohol use within college student populations in the US. Despite significant evidence 

of the major role social context and influences have on alcohol consumption in this population, 

the majority of studies have examined social influences from the perspectives of individuals and 

their perceptions of others’ behavior. As such, these studies fail to address the larger social 

context of college student drinking. Similarly, small-scale network studies, such as roommates, 

single dormitory, or small friend groups, lack the power to examine relationships between 

individual alcohol use and larger scale network structures, such as density, full network behavior, 

such as total network alcohol consumption, or individual position within the larger social 

network structure.  
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1.4 Social Network Structures and Characteristics 
Generally, social networks are comprised of edges and nodes, and in combination, they form a 

‘network’ of individual units and connections between them. In order to describe and analyze 

these networks, we must define a number of structures and characteristics generally, and in terms 

of their use in this dissertation.  

1.4.1 Network structures and objects 

Node: an individual or unique vertex in the network; could represent e.g., a study participant, an 

organization, a geographic location. 

 

Edge: a connection between two nodes in a network; could represent e.g., face-to-face contact, 

sexual contact, electronic contact (e.g., an email or tweet), a familial connection, a type of 

relationship (e.g., friend), and so forth.  

 

Network (sociocentric): a set of nodes and edges that define a set of relationships or lack-thereof 

between the set of nodes. A network can also be referred to, especially in the mathematical 

literature and in reference to network visualizations and characteristics as a “graph.” Given the 

circular dependence within the network (i.e., the network structure relies on observations from 

multiple (or all) nodes), parametric statistical methods are often invalidated by the non-

independence of observations (143). 

 

Egocentric network: a “network” with no interconnections between star-shaped clusters of nodes 

(often referred to as “egos” in this type of network); each individual ego-network consists of a 

single node and a set of contacts or related individuals (“alters”) directed linked to them and only 

them (i.e., the egos contacts are not surveyed). This type of network assesses “personal” 

networks as individual units; data is not collected on any edges or connections that would 

connect egos to each other. As such, this type of network does not necessarily violate the 

independence assumption of most parametric statistical approaches but cannot be used to assess 

larger network structures or contact patterns (144).  

 

Network boundary: the set of observed nodes in a given measured network. 
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Dyad: a pair of nodes in the network connected by one or more edges.  

 

Neighbor: a node directly connected to a given node by one or more edges. 

 

Simple graph: a network with a maximum of one edge (or one edge in each direction) per dyad.  

 

Multigraph: a network with possible multiple edges per dyad (e.g., collected at different time 

points, different types of interpersonal relationships).  

 

Directed network (or digraph): a network where edges have directionality, in that they have a 

node of origin and a destination node. I.e., contacts emanate from a node and are pointed, or 

directed, at another.  Some network analyses also allow single edges to be bidirectional. 

1.4.2 Node characteristics  

Centrality: a general term for describing the level of connectedness or importance of a node; a 

number of specific centrality measures (described below) can be used to describe or identify 

nodes that are important to the network’s structure and topology and/or potentially influential in 

terms of transmission patterns across the network (145,146). 

 

Degree: the number of edges connected to a given node (can be defined to include directional 

edges or only be a count of neighbors); a centrality measure. 

 

Indegree: in a directed network, the number of directed edges that are “pointed” at a given node; 

a centrality measure that is often used as a proxy for “popularity” in a network (135).  

 

Outdegree: in a directed network, the number of directed edges that emanate from a given node 

to that node’s neighbors; a centrality measure often interpreted as a measure of extroversion or 

gregariousness (147). 

 

Isolate: An isolate in a network is a node without any ties or edges to other nodes (i.e., a node 
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without any neighbors). 

 

Dyad reciprocity (node level): in a directed network, the proportion of a given node’s neighbors 

with whom they have reciprocal edges.  

 

Clustering coefficient (local): A measure of how many of a given node’s neighbors are 

connected to each other, or the proportion of edges that exist out of the possible edges between 

all of a node’s neighbors; an individual measure of local density and transitivity (148). 

 

Closeness centrality: A node’s closeness refers to the average shortest distance to all other nodes 

in the network (i.e., the average number of edges between a node and all other nodes); nodes 

with high closeness have short distances to all other nodes in the network and thus can efficiently 

transmit information or infections to other nodes (149,150).  

1.4.3 Edge characteristics 

Reciprocal: In a directed network, either a single edge that is directed at both members of a dyad 

or a pair of oppositely directed edges in a dyad; reciprocal edges are often considered stronger or 

more resilient to disruption than unreciprocal edges.  

 

Unreciprocal: In a directed network, an edge that is only directed at one member of a dyad.  

 

Weight: A weighted edge indicates the “strength” of an edge according to a defined property, 

e.g., contact duration, number of different relationships shared by a dyad.  

1.4.4 Network characteristics 

Density: Density is a measure of network connectedness, quantified as the ratio of the number of 

edges in the network to the total possible number of edges in the network (i.e., if every node in 

the network was directly linked with an edge to every other node in the network). 

 

Transitivity: A network’s transitivity is a measure of network clustering. It is quantified as the 

proportion of triangles in a network (i.e., three nodes all connected to each other by edges) out of 

the number of possible triangles in the network (151).  
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Dyad reciprocity (global): the proportion of all dyads in the network that contain reciprocal 

edges.  

 

Clustering coefficient (average): the mean of the network’s nodes’ individual clustering 

coefficients; a measure of how tightly clustered the network is (148).  

 

Homophily: a general term to describe the extent to which a network exhibits selection, or 

preferential contact between similar nodes. 

 

Assortativity: The assortativity of a network is a homophily statistic that describes the extent to 

which a network’s edges are preferentially attached according to node traits. The assortativity 

coefficient (r) for degree assortativity is the Pearson correlation coefficient between pairs of 

connected nodes, averaged over the network (17).  For attribute assortativity, r can be interpreted 

as similar to an intraclass correlation coefficient (57). Assortativity by a given attribute is 

calculated based on a matrix of mixing probabilities for the attribute of interest (i.e., the 

probabilities of all combinations of an attribute for two directly linked individuals). Assortativity 

values between 0 and 1 indicate preferential attachment of similar individuals and values 

between -1 and 0 indicate preferential attachment of dissimilar individuals (disassortativity). The 

assortativity coefficient (r) for a given attribute can then be calculated according to: ! =
∑ #$$%∑ &$'$$$
(%∑ &$'$$

, where i represents the categories of an attribute, eii , the diagonal elements of a matrix 

of mixing probabilities for an attribute, ai, the row sums of the probability matrix, and bi is the 

column sums of the probability matrix (57). Assortativity is described in greater detail in 1.4.5.  

1.4.5 Social network assortativity 

Assortativity, or assortative mixing, describes a network’s homophily, or the observed propensity 

for a network to be more densely connected among similar individuals. Assortativity has been 

deemed a key property of social networks in particular (as opposed to other types of networks, 

e.g., animal, neural) (152,153), as it can impact a network’s systemic behavior and resilience 

(17). In many social network analyses, assortativity is used as a generic term to mean “degree 

assortativity,” or the average level of correlation between a node’s degree (i.e., connections) and 



 

 

 

13 

that of their neighbors; skewed degree distributions which are often observed in real-word 

networks are thought to be a result of (degree) assortative mixing (17). If a network has values of 

assortativity greater than 0 (bounded by 1), this indicates that nodes with high degree will 

preferentially attach to other nodes with similarly high degree and less socially connected nodes 

will be more likely to be attached to other nodes with few connections. Intuitively, we can see 

that networks assortatively mixed by degree will have core clusters of highly connected 

individuals which are connected to satellites of less well-connected clusters of individuals. These 

central cores are particularly relevant in terms of transmission and social influence as they will 

be resilient to change and disruption (e.g., removing a single node will not disrupt the cluster as a 

whole). In terms of transmission, these dense clusters may sustain transmission in ways the 

complete network cannot, presenting significant barriers to eradication (17,56,154). Socially, 

these clusters may have disproportionate influence over network behavior and the spread of 

behaviors; alternatively disassortative degree mixing has been suggested to increase how quickly 

an idea or behavior is spread across the network as a whole (152). Research has found that 

empirical social networks tend to exhibit assortativity (153) and that random networks can 

exhibit degree assortativity (155). This fact makes further investigations of assortative mixing in 

real-world networks and the degree to which assortativity above that which could occur by 

chance particularly important.   

 

Assortativity, while often used to describe the overall degree correlation between dyads, can also 

describe preferential attachment by scalar (e.g., age), enumerative (e.g., race), and/or behavioral 

(e.g., vaccine acceptance) attributes. Attribute-based assortativity describes both homophily (the 

general term for networks clustered according to similar traits) and selection (the deliberate 

formation of edges according to individual traits). Logically, human interactions pattern along 

individual characteristics and real-world networks can exhibit assortative and disassortative 

mixing depending on the network, its measurement, and the attribute in question (57). These 

patterns may occur by default; for instance, a racially homogenous community’s contacts will 

necessarily fall within these racial constraints. However, even in a racially heterogeneous 

community, social contacts may exhibit racial segregation if on the whole individuals 

preferentially connect according to race. Indeed, human interaction tends to pattern along 

multiple traits and their interactions (59) and preference patterns may differ temporally, as well 
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as according to relationship or interaction type, location or environment, necessity, and/or 

situation. For example, individuals may prefer one gender for their sexual relationships and 

another for friendships and these preferences may shift over time and depending on the 

individual’s age, marital status, and so forth. Generally, network-wide patterns of preferential 

segregation can lead to social stratifications and clustering (57); the sum of individual social 

preferences can impact holistic network behavior and topology.  

1.5 Social Network Measurement  
In this dissertation, we are concerned primarily with in-person contact networks where nodes 

represent individual study participants and edges correspond to in-person contacts of some kind 

(e.g., close proximity, face-to-face communication). Historically, this type of in-person contact 

data has been collected for use in infection disease epidemiology (9); the use of “contact tracing” 

is widely known for its use in tracing the transmission of sexually transmitted infections, such as 

HIV. Increasingly, social contact data is being used in public health to describe how behaviors 

and ideas can be transmitted across networks of individuals and communities; researchers are 

adopting traditional infectious disease methods for use in social epidemiology. Here we outline 

the typical procedures researchers may use to identify and enroll network members in 

sociocentric studies and the methods by which social contact networks can be measured and 

observed. Note that these procedures may vary from those used in egocentric network studies.  

 

An a priori identified potential network boundary consists of the set of identified individuals that 

could be included in the network. These boundary specification and identification strategies, 

each with their own strengths and drawbacks, can be defined according to: 1) formally defined 

positions or membership, i.e., “positional boundary specification” (e.g., students in a middle 

school, CEOs); 2) subjective and often self-determined inclusion in a group, i.e., “realist and 

nominalist boundary specification” (e.g., Democrats, feminists); 3) shared participation in an 

event or activity (“event-based strategies”), which identifies individuals who were present at an 

activity occurring at specific time(s) and place(s) (e.g., people who went to a given concert; in 

some ways this is similar to how public health officials identify exposed individuals during an 

outbreak investigation); and 4) “relational boundary specification” where a group of initially 

identified individuals select their contacts and the next “wave” of individuals to include in the 
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boundary, e.g., respondent-drive, chain-referral, or snowball sampling (156). The first three 

methods may be limited depending on the numbers of identifiable connections between 

individuals and may have small overall sample sizes, depending on the boundary definition. This 

final, respondent-driven method is most applicable to this dissertation and is common in public 

health network research as it tends to produce tightly connected networks (156,157). This 

sampling method is particularly useful for infectious disease transmission and social influence 

research as it can identify typically hard-to-identify individuals or groups that may not be 

sampled or approachable by traditional means (e.g., sexual partners, members of insular 

communities, homeless individuals) (158,159). However, there are drawbacks in terms of 

privacy and ethical issues (e.g., identifying sexual partners) as it may provide researchers with 

information about individuals without their prior consent. Additionally, it can bias the sample 

away from the underlying “true” contact network of a population, as this type of sampling is by 

definition a nonrandom process (160), although new approached are in development to address 

this issue statistically in analyses (161,162). As with all public health research, researchers 

should clearly articulate their enrollment process and inclusion criteria when communicating 

results and methods to allow for critical review of underlying assumptions, inferences, and 

generalizability.  

 

Once the a posteriori network boundaries are defined (i.e., participants are enrolled), contacts 

between network members (within the boundary) can be measured in a number of ways, 

depending on the research aim. The selection of a network measurement method is quite 

important, as the measurement tool is intrinsically linked to the measured network’s structure, 

relationship to the underlying “true” network, and therefore the inferences drawn from it (163–

172). Here we focus on the collection of in-person contacts between network members (as 

opposed to other types of direct contacts such as electronic contacts or co-authorships). Few 

studies rely on direct observation (or watching a recording) of in-person contacts (13); generally, 

this type of social contact data and networks have been measured with surveys or diaries in 

which individuals report their in-person contacts and/or relationships with other network 

members. Broadly, contact diaries or surveys involve asking participants to report contacts that 

occurred during a certain time-frame and fit a given definition of “contact.” These contact 

definitions vary according to research aims and could restrict reports by location, type of contact, 
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contact duration, and/or relationship. For instance, study participants could be asked to report 

face-to-face contacts of a certain duration, contacts that involved physical contact, or in-person 

contacts with family members. In infectious disease transmission network studies, researchers 

may ask specifically about contacts relevant to a given pathogen and transmission mode, e.g., 

sexual contact for sexually transmitted infections or close-contact for droplet transmission (13). 

Social and behavioral studies may instead request information about influential or important 

contacts.  

 

A number of simple and complex contact survey or diary types are typically used in contact 

measurement. These diaries or surveys can be administered on paper or electronically, both 

retrospectively and prospectively (or in “real-time”), and query contacts, as well as any 

additional details about the contact that may be used in network construction and edge weighting 

(e.g., contact duration). Contact reports are elicited in a number of systematic ways, each with its 

own strengths and limitations that effect the quantity and quality of contact data (see Van Hoang 

et al. for an in-depth review of contact survey designs (171)). Paper diaries versus electronic 

reporting may also impact the reporting, depending on participant’s comfort level with the 

specific technology (e.g., mobile phone apps, web-based surveys, paper diaries). Previous studies 

have found that paper dairies had higher reporting than hand-held devices (169,173); increasing 

intrusion of technology in daily life may alter this result. Retrospective reporting requests 

participants recall their contacts across a defined timeframe whereas prospective measurement 

requests “real-time” reporting of contacts (i.e., participants record a contact when or soon after it 

occurs in a paper or electronic diary). Retrospective and prospective designs are both common 

among contact surveys (171), and some longitudinal network studies involve pseudo-

combinations of the two wherein participants are asked to recall contacts at multiple time-points 

(e.g., Aiello et al. (174)). Retrospective designs may suffer from recall issues, particularly in 

terms of detailed information like duration, and may be more mentally taxing for participants 

(171) whereas prospective designs require higher commitment and engagement, possibly 

limiting active participation among individuals who find reporting burdensome. However, 

prospective designs may result in higher numbers of reported contacts (171). The referent time 

frame for recall as well as the length of the prospective study may also improve or diminish data 

quality and quantity. Additionally, if participants are aware that they will be asked about their 
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contacts, they may take proactive and deliberate steps to improve their recall or make behavioral 

adjustments to accommodate real-time reporting.   

 

The simplest type of retrospective contact surveys ask participants to list their contacts that fit 

the outlined definition (e.g., Barabasi and Albert (175)). Other surveys ask for contact reports but 

limit the number of contacts an individual can report (“fixed response”) and others provide 

participants with a list of possible contacts from which to choose (surveys can also be 

combinations of these methods). We note that each of these methods may bias responses in some 

way. Fixed response surveys limit reporting, and therefore may have lower network 

completeness (170) or may lead to extraneous reports of invalid contacts in order to “complete” 

the survey. Name generator-based surveys may bias reports to those listed by the generator and 

free reporting may result in under- or over-reporting, depending on the individual. Some studies 

incentivize complete data collection by suggesting to participants that their contacts (and in some 

cases, both the participant and contact) will receive a reward when they too provide their contact 

information (e.g., Branas-Garza et al. (176)). These studies tend to be used for social and 

behavioral studies, as they maximize reporting of “important” contacts to those participants care 

about providing a reward (163). However, this may limit reports to contacts that participants 

believe will also complete the survey. Similarly, if the reward is limited in number, this may also 

limit the number of reported contacts. Regardless of the survey design, there is evidence that 

participant and contact attributes can affect the likelihood of reporting a given contact in either 

direction, depending on the combination of attributes and the characteristics of the contact event 

(13,163,171,177,178). Importantly, we also note that reporting and naming contacts (i.e., not 

anonymous reporting) requires knowledge of the contact (particularly names) on the part of the 

respondent, and in the case of sociocentric studies, may require participants to be aware of who 

else is participating in the study and data collection. As expected, the most common form of 

missing network data is missing edges or reported contacts between participants (179,180). 

However, the possibility of reciprocal reports, i.e., duplicated reports from both individuals 

involved in a contact event, can provide some data validation and can somewhat balance contact 

underreporting or nonresponse by some network members (181). Overall, while valuable, 

participant-reported contacts are prone to observation/measurement error, impractical for large 

networks (182), underestimate the true connectivity of the networks in almost all cases, and 
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therefore do not provide a complete picture of real-world contact networks (172,181,183).  

 

As researchers have accepted that empirical contact networks measured via contact reporting are 

most likely incomplete, methods for objectively collecting contact data have been developed. In 

order to capture more contact data (in terms of volume and detail) and therefore observe a greater 

portion of the “true” network, researchers are increasingly using wearable sensors (e.g., “motes,” 

“tags,” mobile device apps) to capture people’s dynamic social networks using radio, Bluetooth, 

or cellular communication, across a variety of settings (174,184–190). Sensors capture proximity 

contacts between individuals by recognizing and recording nearby sensors of the same type at 

defined intervals, thus allowing researchers to collect fine-grained contact data on contacts 

between individuals wearing or carrying the sensors were in close proximity to each other. 

Depending on their specific technologies, sensors may be able to collect data with temporal and 

spatial resolutions from as fine as 20 seconds and as close-range as 1-1.5 meters (186). Thus, 

sensor data provides an objective measure of human interactions within a specified network 

boundary (those carrying the sensor) that does not rely on recall or reporting. Additionally, 

sensors may also incorporate technology to record detailed biometric and/or environmental data 

(e.g., pedometers, temperature and humidity), and hypothetically may be placed on objects or in 

geographic locations to record proximity-based interactions with inanimate objects of interest 

(e.g., utilization of hand soap dispensers) and/or movement patterns within defined areas. 

However, sensor contact-detection methods have a number of practical challenges 

(182,191,192), including: 1) capturing large amounts of data that can be difficult to organize and 

analyze (192); 2) participant privacy concerns (193); and 3) the probability of capturing spurious 

(e.g., across a wall) contacts (13). Additionally, sensors may capture too much data, making it 

difficult to parse and identify the contacts relevant to transmission. Sensor studies are also 

practically and financially limited to smaller networks, thus only capturing contacts between a 

relatively small number of participants wearing active sensors (13).  While survey methods 

capture fewer contacts, they have the advantage of being comparatively easier studies to run, can 

be run pro- or retrospectively, and can collect egocentric contact data as well as hypothetically 

complete, within study network data (13). Despite the promise of sensor-based network 

measurement as a more accurate epidemiological tool than surveys, little is actually known about 

how sensor data compares to surveys in terms of completeness, validity, and practical relevance 
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to transmission modeling.   As such, comparing networks collected via contact surveys and 

sensors is a key step in determining if there is an identifiable relationship between contact diary 

and sensor-data. By investigating the characteristics of, and agreement between, differently 

observed networks we can speculate as to the practical and intrinsic strengths and weakness of 

each approach, as well as their comparability.  

 

Before widely adopting the technology, researchers must compare sensor networks and data to 

the current (flawed but practical) survey methods. Given the early stages of sensor technology 

utilization in network measurement, it is understandable that little is known about the 

characteristics of sensor-captured networks, their relationship to underlying “true” networks, and 

their long-term utility in epidemiological research. As far as we are aware, only a handful of 

studies have been published that directly compare diary and sensor contact data: Smieszek et al. 

(2014) directly compared web-based survey and sensor contact data (including contact and 

duration) collected over the course of three consecutive days in a US high school (187); 

Leecaster et al. compared diary and sensor networks collected on a single day in a US middle 

school (185); Mastrandrea, Fournet, and Barrat compared networks collected via survey and 

sensor on a single day in a French high school (184); and Smieszek et al. (2016) investigated 

differences between contact diary and wearable sensor data collected during one day of a public 

health conference (194). Each of these studies was short-term and had a limited network 

boundary (e.g., participants at the conference).  

 

In all four comparison studies, a number of network metrics were compared between data 

collection methods, including participant degrees, network density, and the degree distribution. 

Generally, these studies found that surveys tended to collect fewer contacts, and therefore less 

dense networks, than sensors. Smieszek et al. (2014) found that contact underreporting 

accounted for 30 and 50% of the discrepancies between the two networks. However, these 

discrepancies were reduced when the shortest sensor-contacts were omitted from the network, 

i.e., reporting accuracy increased with contact duration. Additionally, female participants 

reported more “true” contacts than male, and higher degree (sensor) individuals’ reports more 

closely matched sensor data than lower degree participants. However, they did not find a 

correlation between individual degrees measured by sensor and self-report. Their results suggest 
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that the two measurement methods cannot be used interchangeably, but restricting the contact 

definition to longer durations and removing lower-degree individuals from the network can limit 

differences between networks. Leecaster et al.’s study in a US middle school (185) also found 

large discrepancies between the two. Specifically, they found that the sensor network degrees 

were approximately three times higher than reported network degrees. Mastrandrea, Fournet, and 

Barrat’s comparison of a single day’s collection of sensors and reported contacts in a French 

high school (184) determined that their observed sensor network was approximately twice as 

dense than the diary, although the two networks had similarly shaped degree distributions. 

Smieszek et al.’s conference-based comparison also highlighted that neither data collection 

method resulted in “complete” networks; while there was overlap between reported and sensed 

contacts, neither was a complete subset of the other. Unlike Smieszek et al. (2014, 2016) and 

Leecaster et al.’s studies, Mastrandrea et al. concluded that despite differences, the underlying 

network structure was similar between the two methods. Additionally, Mastrandrea et al. noted 

that an individual’s indegree (contact reported by other participants) more closely resembled 

their sensor degree than their outdegree, reinforcing importance of collecting sociocentric 

network data and not just individual (i.e., egocentric) data. They additionally asserted that 

missing data in diary networks could be imputed using the relationship between the diary and 

sensor-measurements and the resultant network should approximate true contact networks, which 

would reduce the need for complicated sensor studies; a recent follow-up paper (195) outlines 

these methods and Fournet and Barrat used the same data to assess how differences between the 

two networks impacted the results of transmission models run on the networks (196).       

 

Generally, although these limited studies were consistent in their finding that sensors and 

diaries/surveys result in topologically different networks, they showed a lack of consistent 

specific results in terms of overall agreement levels and whether there was an identifiable 

relationship between differently-captured networks. Additionally, it is difficult to generalize their 

results to the general population, as primary and secondary schools constitute a “closed” 

population that is relatively stable across time (within a given year), participants retrospectively 

reporting contacts may have been able to better remember these contacts, given their stability 

over time, than those outside of a school setting. Wang et al. found that the vast majority of 

school-transmission of H1N1 in 2009 occurred within-grade (197) and all three school 
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comparison studies in children noted high assortativity within classes and grades, as well as 

patterns associated with lunch breaks and between-class breaks, suggesting stable within-school 

networks. Indeed, this highlights the strong need for a comparison of network data collection 

methods for post-secondary school networks, as the secondary school networks examined thus 

far were all highly assortative by school schedule and grade. This makes it possible to construct 

fairly realistic networks using only school schedules and rosters, which is unlikely to be possible 

for college or adult populations, where social interactions happen in more varied and non-closed 

populations. Additionally, it is unlikely that within school contact patterns mirror those after 

school, for both children and adults. School days are highly structured and tend to be comprised 

of blocks of time spent in close proximity (i.e., classrooms, hallways) to a fixed set of similar 

individuals, a pattern that is not typical of other environments. Even barring the context-

difference considerations, research has repeatedly found distinct age-related contact patterns 

(56,198,199). Therefore, associations between the two network types in these studies in 

adolescents may not hold in other populations and settings. However, these previous sensor/diary 

comparisons provide a framework on which to base additional research.  

 

Thus, additional research focused on understanding concordance and relationships between 

networks using contact diaries and sensors in other populations—particularly longitudinally—is 

warranted. For instance, there are no published investigations comparing long term patterns in 

empirical network data collection between sensor and diaries; there is a substantial gap in the 

dynamic networks literature on the benefits and drawbacks of these different instruments. Given 

the importance of social network analyses in infectious disease and behavioral health research, 

there is a clear, continuing need for comparison studies in order to further clarify the strengths 

and weaknesses of each individual data collection method, and relationships between their data.  

1.6 Uncertainty and Hypothesis Testing in Social Network Analysis 
As a general concept, uncertainty describes inadequate information related to a lack of 

knowledge or inherent variability (or both) (200). Given that we cannot compare theoretical or 

empirical networks to a “true” network, the validity of any network data is intrinsically 

questionable (172). Thus, we must delve into the potential sources and amount of any and all 

unintentional or intentional data errors (201,202), conservatively assume that error is a non-
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trivial issue in network data (201,202), and explore how data errors may cascade or propagate 

throughout network analyses (203,204). Explorations of network data accuracy and its effects on 

network statistics (e.g., centrality), have begun but are still underdeveloped overall (205).  

 

Social network data error(s) can come from a number of sources and real world network datasets 

likely contain a mix of errors (172). Network sampling and observation may result in edge or 

node addition or deletion errors (160,206), in addition more nuanced errors in detailed social 

contact data (e.g., incorrectly recorded/reported contact duration or relationship type). As with all 

data collection, these errors may be intentionally or unintentionally incorporated into network 

measurements, but in either case they are likely systematic as well as sporadic. Indeed it may be  

impossible to identify either systemic or sporadic errors as well as any underlying mechanisms 

for systemic error (206). A growing, but underdeveloped (205) area of network research 

investigates the robustness of network statistics by modeling the effects of defined types and 

amounts of measurement error on theoretical “true” network structure, properties, and behavior. 

In these studies, researchers have hypothesized probable sources of network data errors and 

mainly used direct comparisons of different theoretical networks (typically generated with 

permutation and resampling methods) to estimate of how robust and reliable network structure 

and inferences may be (179–181,202,206–209). This research has shown that different types of 

network data error appear to have differing impacts on network statistics and characteristics, 

depending on the error type (206), the statistic or characteristic of interest (206), and the “true” 

network topology (172). It has also been noted that it may be impossible to separate error’s 

sources and define its effects in empirical as opposed to theoretical networks (209).  

Additionally, Franz et al. (2009) noted that generally, social network analysis is currently limited 

by an inability to determine valid confidence limits for network statistics (172). Thus, 

quantifying the reliability of attribute assortativity will be an important extension of these 

previous robustness studies.  

 

Social network data generally consists of attribute data and relational data. Attribute data 

describes node network characteristics (e.g., degree) and is intrinsically linked to the network 

structure as a whole, and individual demographic, trait, and behavioral data (e.g., age, gender, 

alcohol consumption). Relational data describes the network structure and topology overall, as 
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well as within dyads and subgroups within the network (e.g., density, edge weights). The 

combination of these two types of data into a network produces interdependence between 

individuals, their traits, and the network. Parametric statistical methods, including many 

procedures for estimating uncertainty and hypothesis testing, are invalid for network data (for the 

most part), as they violate these method’s underlying assumption of independence observations  

(210). Therefore, development of nonparametric methods is a key ongoing area of research in 

analyzing social network data.  

1.7 Dissertation  
This dissertation applies and develops social network data collection and analysis methodology. 

The overall aims of this dissertation were to improve our understanding of: 1) how social 

structures and contact patterns shape alcohol consumption and use in undergraduate students; 2) 

drawbacks and data quality issues related to different methods of measuring social contact 

networks; and 3) how to articulate and quantify network uncertainty and hypothesis testing for 

trait assortativity.   

 

We examined a number of social network analysis methods and approaches using the social 

networks captured by the eX-FLU study—a large, two-year social network study of university 

students. In so doing, we defined and developed a number of novel methods for social network 

analysis in public health research including a direct network comparison statistic (adapted Kappa 

coefficient), multiple sensitivity analyses and uncertainty quantification methods, and null 

models for hypothesis testing of trait assortativity.  

 

1.7.1 Aim 1–Social network and alcohol consumption: structural and individual 
associations 

Project goal: To identify college student contact patterns and structures associated with alcohol 

use, particularly those that could 1) encourage initiation and continuation of alcohol 

consumption and, 2) act as barriers to intervention and behavior change.  

 

Excessive alcohol consumption significantly contributes to morbidity and mortality in US 

college students. Peer relationships and influence have been repeatedly associated with alcohol 
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use in this population; social network analysis can further our understanding of these 

relationships in order to design more effective interventions. Using health behavior and weekly 

reported contact data collected from approximately 800 eX-FLU participants (2 years), we 

identified numerous consistent relationships between social network characteristics and 

structures and alcohol use. These results, including the first explorations of the association of 

longitudinal tie strength and drinking, indicate that alcohol use and social position are 

significantly associated among college students. Notably, we identified that network position, 

network alcohol exposures, and relationship strength were associated not only with individual 

alcohol use but with consumption volume. This suggests a complex relationship between 

drinking, larger social structures, and proximity to others who drink. Across multiple social 

connectivity measurements, drinkers were consistently more social and more popular than non-

drinkers. While there were consistent results comparing drinkers and abstainers, there were also 

interesting differences in network position and contact patterns between moderate and binge 

drinkers, with binge drinkers being less popular and having fewer connections than moderate 

drinkers. We also examined how students’ face-to-face interactions differ according to their 

contacts’ alcohol use, and found that drinkers had more contact with other drinkers than non-

drinkers and that these contacts with other drinkers were stronger and more resilient over time 

than their non-drinker contacts. These results extend and build upon previous social network 

analyses of substance use in college students by uncovering significant differences in network 

properties of moderate versus binge drinkers.  

 

Overall, our results build on a growing body of evidence of significant relationships between 

network structure, social position, and alcohol consumption. There appear to be complex 

interactions between social standing, demographics, individual motivations, and alcohol use; 

these associations, as well as their directionality, warrant further study. Our results show the 

potential impacts that social position can have on individual behavior and vice versa. Notably, 

we identified numerous network structures and properties that present potentially significant 

barriers to on-campus alcohol-abstinence interventions. Consumption-related clustering and 

popularity likely create social environments that encourage drinking initiation and continuation. 

Hypothetically, interventions directed towards heavy drinking could exploit social embeddedness 

and popularity differences between moderate and binge drinkers.  
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1.7.2 Aim 2–Social network measurement methods: comparing sensor and self-reported 
contact data 

Project goal: To analytically compare two social network measurement methods with varying 

levels of granularity in order understand the unique utility of self-report vs. sensor contact data, 

using the eX-FLU Study and its sensor sub-study, iEpi, as a case study. 

 

Little is currently known about the reliability of self-reported contact data and the stability of an 

individual’s contact network longitudinally. The high potential for under- and mis-reported 

contacts in social network data may have significant impacts on the efficacy of network-based 

interventions and may bias disease transmission models. As such, comparing static networks 

collected via contact surveys and sensors is a key step in determining if there is an identifiable 

relationship between contact diary and sensor-data. Additional comparisons of contact patterns 

and network structures across longitudinal (dynamic) social networks will also provide 

information on contact-pattern stability over time and how frequently contact data should be 

collected. The long-term goal of this line of research is to identify appropriate methods for 

contact data collection and possible data transformation for behavioral and infectious disease 

social network studies.  

 

In this project, we compared eight weeks of contact data and their resultant social networks from 

two eX-FLU sources: weekly self-report and records of Bluetooth proximity captured by the 

novel sensor app, iEpi. Networks were compared between and within the two collection 

methods, using overall network structure, dyad, and node characteristics. As no consensus exists 

as to how to calculate the agreement between networks drawn from the same underlying “true” 

network of individuals, we developed an adapted Cohen’s Kappa statistic for this project. 

Comparisons between the two collection methods showed that although the iEpi sensor collected 

a denser network with higher numbers of contacts between study participants, the percentage of 

reported contacts that iEpi failed to capture increased over the study period. However, despite 

this result, the overall network agreement increased over the course of the study, although the 

highest agreement level, occurring in final study week, would still be considered “slight” (as 

defined by Cohen). When the iEpi network was restricted to contacts with durations greater than 

an hour, agreement increased into the “fair” range. Importantly, the size and densities of the iEpi 

networks dropped off rapidly over the study period, suggesting decreasing participant 
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engagement and tolerance of the device over time, whereas the reported network maintained its 

size and density throughout the study period. In aggregate, these results point to neither network 

collection method as a “gold standard.” The increased agreement when looking only at longer 

contacts shows that the two methods may operate under different definitions of contact. 

Recalling prior contacts appears to depend on duration and an unknown, subjective level of 

individual significance, whereas iEpi’s program defined contacts strictly on proximity.  

 

Generally, these results suggest 1) a clear and relevant a priori “contact” definition should be 

driven by the research question and project, 2) researchers should not assume that either sensor 

or self-reported social network data collection methods will generate a complete social network 

on which to base simulations or interventions, especially given that 3) sensor-based data’s 

completeness may decrease over time. In light of these findings, researchers should carefully 

consider which collection method, or combination of methods, could provide them with the 

highest quality data needed to answer their research questions.   

1.7.3 Aim 3–Social network assortativity: sensitivity analyses, uncertainty quantification, 
and hypothesis testing 

Project goal 1: To develop sensitivity analysis methods to understand assortativity bias due to 

potential measurement error in participant reported characteristics, specifically nonresponse 

and misclassification.  

 

Project goal 2: To define and investigate methods for assortativity uncertainty quantification, 

i.e., to establish reasonable confidence limits for attribute-based assortative mixing.   

 

Project goal 3: To articulate, define, and implement appropriate null models for hypothesis 

testing in social network analysis, specifically for attribute-based assortativity.   

 

As the inherent dependence of social network data violates independence assumptions required 

by parametric statistical tests, statistical uncertainty and hypothesis testing is often overlooked or 

unreported in health and behavioral social network literature. We investigated methods to 

address uncertainty in assortativity, a social network measure of clustering, resulting from self-

reported social network data, using a variety of randomization methods based on the most 
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appropriate null model for our research questions. We: 1) identified potential sources of 

assortativity uncertainty, particularly missing or inaccurate reported contact data and 

implemented resampling methods to incorporate these potential measurement errors into 

quantifications of assortativity confidence limits; 2) clearly defined two types of null models to 

control for hypothesized attribute-based assortative mixing and implemented randomization 

procedures testing the component effects of selection on mixing patterns, determining the 

statistical significance of multiple attribute assortativities.  

 

We assessed three attribute assortativities of the measured eX-FLU baseline social network 

(alcohol use, ethnicity, and gender), and developed and implemented multiple approaches for 

hypothesis testing and analyzing the potential impacts of imperfect individual and network data. 

Specifically, the sensitivity analyses and uncertainty quantification systematically explored the 

robustness of attribute assortativity in the face of multiple types of measurement error. For the 

first time (that we are aware of), we addressed how measurement error and nonresponse of self-

reported covariates may bias attribute assortativity. We then used similar approaches to quantify 

the range of values in which the network’s “true” attribute assortativity likely lies, given a range 

of levels of random network node and edge data error. Overall, we found that attribute 

assortativity biases and uncertainty may be predictable, given an a priori defined amount and 

type of data error. These methods provide a framework for attribute assortativity uncertainty 

analyses, as well as hypothesis testing, on sociocentric networks, particularly in contact network 

studies.  

1.8 The eX-FLU Study  
Data for this dissertation were collected as a part of the eX-FLU study, a social network study 

conducted at the University of Michigan in 2012-2013. The purpose of the study was to examine 

transmission of influenza in social networks of students living on-campus, but a large amount of 

data on other health behaviors, including baseline alcohol use, were also collected. A detailed 

description of the eX-FLU methods can be found in Aiello et al. 2016 (174) and portions of the 

surveys relevant to this dissertation can be found in the Appendix. In short, eligible students (>18 

years old) from six coed residence halls at a large, public university were enrolled via 

respondent-driven sampling, i.e., chain-referral, in the fall and followed for eight (“Pilot” or 
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“Year 1” study) and ten (“Main” or “Year 2” study), weeks in the following winter semesters 

(2012, 2013). Study enrollment was done via snowball sampling; initially, students were 

recruited to join eX-FLU by study staff, and upon enrollment were given the opportunity to 

invite their friends and social contacts to join the study as well. This process continued for 

subsequent waves of enrollment, resulting in a large social network of nominated students and 

enrolled participants. In addition, during the second year of the study, a sample of participants 

was recruited to also participate in a network-sensor sub-study known as iEpi. These participants 

agreed to carry an android smartphone loaded with the iEpi app, which acted as a social contact 

sensor and recorded proximity-based contacts between iEpi participants over the study period. 

This dissertation will take advantage of some of this study’s unique data, in particular the 

longitudinal (Pilot: 8 weeks, Main: 10 weeks) self-reported social network data and, for iEpi 

participants, a dynamic set of objectively collected contacts, captured via Bluetooth-sensor. A 

detailed description of the iEpi contact-data collection methods can be found in Chapter 3.2.2. 

 

Over the course of the enrollment and study periods, participants responded to multiple surveys. 

During enrollment and prior to (Year 2) or at the start of (Year 1) the study period participants 

reported baseline demographics, health status, and health behaviors. During the study periods, 

participants were emailed weekly surveys on which they were asked to report other study 

participants with whom they had face-to-face contact with over the previous seven days, which 

was used to create multiple social contact networks. On these surveys, participants could select 

social contacts from a list of likely contacts pre-populated with names of previously reported 

contacts and/or participants could search for other participant-contacts by name or email. No 

limit was placed on the number of contacts participants could report on each survey.  
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Chapter 2! 
Social networks and alcohol consumption in college students 

2.1 Introduction 
College alcohol use is a major public health issue, as excessive consumption significantly 

contributes to young adults’ morbidity and mortality (67,68,70,85), the effects of which can 

extend into adulthood (69,211). Drinking is entrenched in the typical college experience (212); in 

2015, 79% of college students had consumed alcohol in the past year and 2-week prevalence of 

binge drinking was 32% (213). Despite university interventions,  overall levels of alcohol use in 

this population has not declined over the past 30 years (63), suggesting a critical gap in our 

understanding of the individual, social, and environmental factors that influence alcohol 

consumption among college students.  

 

Many college students begin drinking freshman year (45,92–99), when their inexperience with 

alcohol increases the risk of heavy drinking and its consequences, including academic issues and 

negative health effects (77,211,214). During this key transition period defined by newfound 

independence, students are particularly vulnerable to peer influences as they navigate new 

academic and social environments (100). Accordingly, research consistently shows that college 

drinking is usually socially motivated (91,112,215). In fact, peer influences appear to be the 

strongest predictor of behavior, particularly substance use, in young adults 

(84,91,97,101,102,105,107,114,116,121). Alcohol’s ubiquity and availability on-campus, in 

combination with high peer pressure susceptibility, encourages students to develop risky 

drinking patterns (45,79,99,100,216). Students use alcohol to facilitate or strengthen friendships, 

initiate sexual relationships, and to overcome social anxiety and low social capital (36,112,115–

117,217). There are likely dynamic, bidirectional relationships between social factors and 

alcohol, as social networks form around similar alcohol use and in turn, students’ consumption is 

influenced by their social network.  
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Despite established relationships between peer influence, social motivations, and individual 

drinking in college, social network structures and characteristics associated with drinking in 

many college settings have not been well characterized. The majority of previous network 

studies of college alcohol consumption have relied on egocentric network analyses, where 

analyses utilize individuals’ immediate contacts and perceptions of others’ behavior without 

incorporating reciprocally identified relationships or larger social structures. The advantage of 

sociocentric network studies (i.e., where individual and connection data is collected from all 

network members within a specified boundary) is the ability to analyze individual, group, and 

network-level behavior associations. Although there is a growing body of sociocentric college 

network-alcohol research, previous college studies have been limited by cross-sectional design, 

small network size, and/or narrowly defined settings and contact-pools (e.g., roommates, a single 

course/dorm, fraternities or sororities only). There are still major gaps in our understanding of 

how network position, relationship strength and reciprocity, and alcohol exposure within relate to 

alcohol use and consumption volume in college populations.  

 

This study adds to the existing body of literature by examining the face-to-face social network 

characteristics of baseline moderate, binge, and non-drinkers’ within two large, weighted college 

social networks. Within this secondary data analysis, we sought to uncover the most salient 

contact network characteristics as potential points of future intervention by analyzing 

associations between baseline alcohol use and extensive social network structures and 

characteristics, including network density, transitivity, numbers of contacts, popularity, 

longitudinal relationship strength, reciprocity, and network alcohol exposures.  

 

2.2 Methods 

2.2.1 Data source 

Data for these secondary analyses were collected as a part of the eX-FLU study, which was 

conducted at a large, public Midwestern university during the 2011-2012 (Year 1) and 2012-

2013 (Year 2) academic years. In addition to investigating infectious disease transmission in 

longitudinal student social networks, the study also collected alcohol consumption data to assess 
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whether drinking influenced infection susceptibility. A detailed description of eX-FLU chain-

referral enrollment and study methods can be found in Aiello et al. 2016 (174). Briefly, 2 student 

cohorts (≥18 years), living on-campus in 6 representative residence halls were enrolled via chain-

referral in the fall and followed for 8 weeks in Year 1 (N=584) and 10 weeks in Year 2 (N=590) 

in the winter semester. While distinct study populations were enrolled each year, re-enrollment 

for Year 1 participants who were still eligible in Year 2 was allowed and 79 students participated 

both years. We used self-reported enrollment demographics, baseline health behavior (reported 

at the start of the study periods), and weekly within-study contact reports to conduct a secondary 

data analysis.  

 

2.2.2 Measures 

Demographics and alcohol use  

At enrollment, participants reported gender (male/female), academic year 

(freshman/sophomore/junior/senior/senior+), race, and date of birth. Date of birth was used to 

calculate age, which was used continuously and categorically (<21, 21+ years). At the study 

period’s start, baseline drinking was assessed. Current alcohol consumption was measured with a 

modified version of the Daily Drinking Questionnaire (51). Participants reported if they currently 

drank alcohol at least once a week and were dichotomized as baseline drinkers or non-drinkers. 

Drinkers additionally reported how many drinks they “usually consume on each day of an 

average week (0, 1, 2, 3, 4, 5, 6+; 1 drink equal to a glass of wine, 12 oz. beer, or shot of hard 

liquor)”. Drinkers who reported consuming 5+ (men) or 4+ (women) drinks on at least 1 day 

were categorized as baseline binge drinkers (74). In Year 1, 16.6% of participants and in Year 2, 

29.3% of participants did not provide alcohol use data and were excluded from demographic and 

nodal analyses. Due to 79 participants’ repeat enrollment and different study period lengths, 

Years 1 and 2 were analyzed separately. Survey excerpts containing the alcohol consumption 

instrument can be found in Appendix A.3.   

 

Sociocentric network construction 

Weekly contacts reported during the 8 (Year 1) and 10 (Year 2) week study periods were used to 

generate social networks containing all contacts within the study population boundary.  
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Participants were sent weekly contact surveys on which they reported all other participants with 

whom they had face-to-face contact during the previous week (see contact survey in Appendix 

A.1). Participants selected an unlimited number of contacts from a list of likely contacts (pre-

populated with previously reported contacts) and/or by searching for study participants by 

name/email (data was de-identified prior to analysis). In order to assess associations between 

baseline alcohol use and aggregate contact patterns across the study periods, social networks 

containing all contacts across the study period was created and these networks were analyzed 

cross-sectionally.  Reported contacts were translated into directed edges, emanating from the 

reporting participant (“node”), directed at their reported contact (“neighbor”); a maximum of 8 

(Year 1) and 10 (Year 2) edges could tie each “dyad,” or pair or participants. Edges were 

considered reciprocal if they were reported by both participants in a dyad on a given week’s 

survey. Dyad contact strength analyses utilized weighted, undirected versions of the networks, 

where all contacts within dyad were collapsed into single edges, weighted by the number of 

weeks on which they were reported (by either dyad member); this measure represents the 

frequency of reported contact over the study period.  Social networks were constructed using all 

available data, including contacts with participants without alcohol data. Networks were 

constructed and analyzed with Python’s (2.7) NetworkX package (218) and visualized in Visone 

2.17 (Konstanz, Germany). 

 

Multiple social network properties and nodal characteristics with hypothesized alcohol 

associations were calculated (see Table 2.1 for definitions). For participants, degree and 

centrality measures were assessed: numbers of neighbors, outdegree, indegree (“popularity”), 

dyad reciprocity (node), closeness centrality, and clustering coefficient. We also calculated two 

measures of social exposure to alcohol use: “network exposure to drinking/binge drinking,” 

defined as the proportions of an individual’s neighbors that were drinkers/binge drinkers. In 

order to investigate if network topology varied by consumption level, the full networks were 

divided into 4 sub-networks containing only participants within each drinking category (all, 

moderate, binge, non-drinker). Transitivity and density were calculated for sub-networks.   

  

2.2.3 Analysis 
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Individual characteristics 

Distributions of demographic and nodal characteristics were calculated for participants who 

provided alcohol use data. Differences in demographic distributions were assessed with 

Pearson’s Chi-squared or Fisher’s exact test. In order to account for social network data’s 

inherent interdependence, hypothesis testing for differences in means of social network 

characteristic (e.g., mean neighbors between drinkers and non-drinkers) were tested using 

bootstrapped resampling with replacement (219–221). Under the null hypothesis of no difference 

in group means, the pooled distribution of a given characteristic was shuffled and observations 

were resampled across groups. For each of the 10,000 resamples performed, the difference in 

group means was assessed; P-values represent the proportion of resampled differences in means 

that were as or more extreme than the data’s observed difference in means. Distributions were 

compared between drinkers and non-drinkers, and moderate and binge drinkers. 

 

Social networks 

In order to investigate if contact strength, as measured by edge frequency and dyad reciprocity, 

varied across dyads with different drinking behavior combinations, we assessed the mean multi-

edges (i.e., “edge weight,” or frequency, the number of weeks contact was reported by one or 

both participants) and mean dyad reciprocity for dyads containing combinations of non-, all, 

moderate, and binge drinkers. Means were compared across dyad drinking combinations using 

the bootstrapping method described above.  

 

2.3 Results 

2.3.1 Demographics and alcohol use 

In Year 1, 481 participants (82.4% enrollment) and in Year 2, 423 participants (71.7% 

enrollment) provided alcohol use information. There were no significant demographic 

differences between participants with and without alcohol data in Year 1, but in Year 2, 

participants without alcohol data were slightly younger and more likely to be male than those 

with alcohol data (results not shown). Baseline demographics and alcohol use distributions were 

similar across study years (Tables 2.2-2.3). The majority of participants in the sample were 

underage, female, freshman, and White. Each year, approximately 35% of participants were 
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baseline drinkers. Drinkers were significantly more likely to be White and of legal drinking age 

than non-drinkers. Approximately half of drinkers were binge drinkers (Year 1: 56.3%; Year 2: 

50.3%; Tables 2.4-2.5). Significantly higher proportions of binge drinkers were underage and 

freshman than moderate drinkers. Drinkers reported heaviest consumption on Friday and 

Saturday, when approximately 50% reported having 4+ drinks (Figure 2.1).  

 

2.3.2 Social networks 
Network visualizations highlighting drinkers are shown in Figure 2.2. Drinkers were more 

central than non-drinkers; drinkers had higher mean neighbors, indegree, outdegree, and 

clustering coefficient than non-drinkers (indegree significant in Year 1; all significant in Year 2). 

Drinkers also had significantly different alcohol exposures than non-drinkers, indicating 

clustering by baseline alcohol use. In Year 1, 40% of drinkers’ neighbors were also drinkers and 

27% were binge drinkers, compared to 31% and 16% in non-drinkers, respectively. In Year 2, 

44% of drinkers’ contacts were drinkers, and 20% were binge drinkers, compared to 26% and 

11% in non-drinkers. Contact patterns also varied by consumption volume. Moderate drinkers 

had higher neighbors and in- and out-degree than binge drinkers, although clustering 

coefficients, dyad reciprocity (node), closeness, and alcohol exposures were similar.  

 

Social network structure and properties for the full networks are shown in Table 2.6. Overall 

network structure, including dyad reciprocity (global), density, and transitivity was consistent 

across years. Both networks had low density and high transitivity, which together indicate a 

highly clustered network. Differences in transitivity and density across the alcohol consumption 

sub-networks are shown in Table 2.7. Drinker networks had higher densities and transitivities 

than non-drinker networks. Additionally, there were higher transitivities and densities within the 

sub-networks of moderate drinkers than binge drinkers, indicating higher interconnectedness 

between moderate drinkers than binge drinkers. In Year 1, the global dyad reciprocity was 0.31 

(i.e., 31% of all edges were reciprocal and therefore reported by both parties in dyad on a given 

week) and in Year 2, the global dyad reciprocity was 0.28. The mean dyad reciprocity for nodes 

in Year 1 was 0.22 (SD: 0.32) and in Year 2, it was 0.19 (SD: 0.29). Mean multi-edges (i.e., edge 

weight) for all dyads, regardless of alcohol use, was 4.27 (SD: 2.74; Year 1) and 5.34 (SD: 3.36; 
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Year 2). In other words, across all pairs of participants who had contact during each year’s study 

period, contacts (i.e., dyads) were reported by at least one member of the dyad on approximately 

50% of each year’s weekly surveys. In both years, average edge weight and reciprocity were 

higher within dyads of drinkers than dyads containing at least one non-drinker (significant in 

Year 2; Figure 2.3). These results suggest that drinkers were slightly more likely to report 

contact with each other than contact with non-drinkers. When comparing edge weights across 

possible consumption level-dyads, moderately drinking dyads had the highest contact weight and 

reciprocity (Figure 2.4). Contacts between binge drinkers and non-drinkers were had lower 

weights than contacts between moderate and non-drinkers, but had higher mean weights than 

contacts between non-drinkers in both years.  

 

2.4 Discussion 
Across 2 large college student social networks, we identified numerous, consistent relationships 

between social network characteristics and structures and alcohol use. These results, including 

the first sociocentric network explorations of the association of longitudinal tie strength and 

drinking, indicate that alcohol use and social position are significantly associated among college 

students. Notably, we identified that network position, network alcohol exposures, and 

relationship strength were associated not only with individual alcohol use but with consumption 

volume. This suggests a complex relationship between drinking, larger social structures, and 

proximity to others who drink. Across multiple social connectivity measurements, drinkers were 

consistently more social and more popular than non-drinkers. While there were consistent results 

comparing drinkers and abstainers, there were interesting differences in network position and 

contact patterns between moderate and binge drinkers, with binge drinkers being less popular 

and having fewer connections than moderate drinkers. We also examined how students’ face-to-

face interactions differ according to their contacts’ alcohol use, and found that drinkers had more 

contact with other drinkers than non-drinkers and that these contacts with other drinkers were 

stronger and more resilient over time than their non-drinker contacts. These results extend and 

build upon previous social network analyses of substance use in college students by uncovering 

significant differences in network properties of casual versus binge drinkers. 
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Despite being a minority in the study populations, drinkers were significantly more socially 

connected, central, and popular than non-drinkers. Given that peer effects consistently appear to 

be most important predictor of college alcohol use, these results are not highly surprising. 

However, as our alcohol data was collected at baseline, we cannot identify causal directionality 

between drinking and network centrality. There may be a self-reinforcing relationship between 

social factors and drinking, wherein drinkers socialize and drink together, simultaneously 

perpetuating behaviors and providing opportunities to make new relationships and strengthen 

existing friendships.  Importantly, drinkers’ higher indegrees, relative to non-drinkers, indicate 

that they were not just more social, but more “popular” (i.e., named by more people on the 

surveys) than non-drinkers. These differences are particularly striking in Year 2, where non-

drinkers had approximately 40% fewer contacts over the study period and approximately 25% 

fewer neighbors than drinkers. Previous research has found that central network members tend to 

be influential (222), both by directly pressuring others into conformity or by modeling behavior 

(91); our results show that drinkers were these influential network members. These effects could 

be present regardless of personal ties to central drinkers, as a network’s highly visible, “key 

individuals” can be as or more influential on individual alcohol use than the network as a whole 

(223). We would expect that these central, popular drinkers would act as role models in the 

college community, which may have led to baseline non-drinkers emulating their behavior over 

the study period, potentially raising overall levels of alcohol use over the semester.  

 

In addition to being popular, drinkers’ contact patterns also appear to have been central in 

structures of the social networks, as we observed connections that were potentially highly 

conducive to spreading alcohol use to baseline non-drinkers as well as potentially reinforcing 

continued drinking in baseline drinkers. In both years, the full social networks had low densities 

and high transitivities, indicating high clustering and cohesion. Contacts also had high mean 

frequencies and ~30% reciprocity, indicating that contacts were generally strong and stable 

across the study periods. Generally, these characteristics make the network highly conducive to 

behavior propagation (46). Importantly, clustering patterned along baseline alcohol use; drinkers 

tended to aggregate in central, tightly-knit groups, resulting in strong network cores of drinkers. 

Drinker sub-networks had higher density and transitivity than non-drinker sub-networks, and 

drinker dyads had higher frequencies and reciprocity than non-drinker dyads. These dense local 
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clusters could be an important part of behavioral maintenance, as cohesive groups strongly 

enforce group norms and behavior over time; similarity in drinking may help maintain existing 

friendships (224). These cores of drinkers could also diffuse their behavior to non-drinkers. 

While non-drinkers had lower direct exposure to drinking, they were not isolated from drinkers. 

Approximately 30% of non-drinkers’ neighbors were drinkers, and these contacts were stronger 

than their contacts with other non-drinkers. These multiple, repeated contacts with drinkers may 

have provided an avenue for direct influence on non-drinkers, as individuals tend to be more 

susceptible to influence when it comes from multiple immediate contacts (225). This influence 

may have been particularly strong when coming from central, popular contacts. Despite high 

exposure to other non-drinkers, relationships with drinkers may have primed non-drinkers for 

drinking initiation over the study period. Therefore, there was likely some conversion to drinking 

over the study period, particularly among non-drinkers with higher exposure to drinkers.  While 

we were unable to test this, prior research has suggested that non-drinkers often succumb to 

social pressure and initiate drinking college and that many students increase drinking towards the 

end of the academic year (226).  

 

In addition to contact pattern differences between drinkers and non-drinkers, centrality varied 

across alcohol consumption levels. We found that binge drinkers were less connected and central 

than moderate drinkers. This could reflect that heavy drinking is less socially acceptable than 

moderate drinking; research in college and adolescent populations has found that heavier 

drinkers were less appealing and popular than moderate drinkers (222,227,228) and that lower 

social capital combined with high centrality is associated with higher consumption (142). This 

could be reflected in the relative differences between in- and out-degree between moderate and 

binge drinkers. Whereas moderate drinkers’ outdegree was 34% (Year 1) and 50% (Year 2) 

higher than binge drinkers, their difference in indegree, or popularity, was higher, as moderate 

drinkers had 44% (Year 1) and 71% (Year 2) higher indegrees. In other words, the difference in 

connectedness between binge and moderate drinkers was heavily influenced by differences in 

popularity. Despite centrality differences, binge and moderate drinkers had very similar network 

alcohol exposures. This suggests that there may be individual factors that impact both contact 

patterns and alcohol consumption volume. These may be related to individual psychosocial and 

social capital factors, such as impulsivity, anxiety, and/or low self-esteem, which could enhance 
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vulnerability to peer influence and social norms (49,52,53,58). In particular, multiple studies 

have found that social anxiety and shyness are associated with heavier drinking (229–233). It 

may be that our networks’ heaviest drinkers were using alcohol to overcome a lower ability to 

socialize naturally but were unable to achieve the levels of popularity held by naturally 

gregarious students, possibly due to socially detrimental behavior whilst binge drinking. 

 

The results of our research identify important targets and barriers to alcohol interventions for 

college students. The highly central, visible nature of drinkers’ contacts, as well as the popularity 

of drinkers will likely be a significant barrier to abstinence interventions. Not only are drinkers 

popular, and therefore presumably aspirational, which influences close and extended contacts, 

but they might fear losing social standing if they abstained from drinking. In addition, the long-

term behavioral reinforcement from their contacts would be difficult to combat. However, 

interventions focused on reducing binge and heavy drinking might be more effective. Programs 

highlighting heavy drinking’s negative social consequences, including lower popularity, could 

reduce consumption volume. Additionally, social skills training for socially anxious students 

could reduce their need to use alcohol to make and maintain friendships.  

 

This study has several limitations and strengths. Generally, our population had fewer drinkers 

and binge drinkers than previous studies, which have found that between 60%-80% of college 

students drink at some point during the year (213), and of those, approximately 66% binge drink 

(68,234). However, our data was consistent across study years and previous research has 

established the validity of self-reported drinking in this population (63,235). We suspect that the 

January baseline survey administration may have resulted in our population’s low alcohol use 

(226,236–239). Low binge drinking may have been a product of participants’ consumption 

volume underestimation (240,241). Drinkers underestimating their typical number of drinks 

could have resulted in binge drinker misclassification and underestimated levels of binge 

drinking. However, any resultant biases’ magnitude and direction would depend on the 

distribution of network characteristics and any differential underestimation within moderate 

drinkers.  

 

Adolescent studies have shown that influence and selection shape substance use and social 
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networks (242,243). However, with only baseline alcohol use, we cannot say whether our results 

are due to influence and/or selection. Although we could not examine potential co-evolution and 

feedback between alcohol use and networks, we did find consistent associations between 

baseline alcohol use and contact patterns in the collapsed longitudinal networks. Future studies 

that collect concurrent, longitudinal drinking and contact data will be important in identifying 

directionality and feedbacks between drinking, individual contacts, and social networks. This is a 

crucial area for future research as it has been rare for studies to collect both large, dynamic 

network data and variation in alcohol use over the study period. 

 

Previous research has noted the importance of sociocentric social network studies in 

understanding the social factors involved in substance use in adolescents and young adults (244). 

Mapping full network structure allows for identification of how network position and larger 

structures, in addition to close contacts, impact behavior, particularly in large networks, which 

can provide more structurally meaningful information than smaller networks (245). While there 

was undoubtedly underreporting of within-study contacts by participants (185,187), given that 

self-reported contacts tend be longer and more frequent than those unreported (184), our network 

of reported contacts likely represent participants’ more important and influential relationships 

within the study population. And although the study’s network boundaries did not include the 

full campus population, network structure was similar across study years, suggesting that college 

networks of influential/important relationships may be structurally consistent across different 

cohorts of on-campus students with similar age and school year distributions. These networks, 

and their longitudinal collection methods, could then be used for future network models and as a 

template for network measurement.  

 

Overall, our results’ build on a growing body of evidence of significant relationships between 

network structure, social position, and alcohol consumption. There appear to be complex 

interactions between social standing, demographics, individual motivations, and alcohol use; 

these associations, as well as their directionality, warrant further study. Our results show the 

potential impacts that social position can have on individual behavior and vice versa. Notably, 

we identified numerous network structures and properties that present potentially significant 

barriers to on-campus alcohol-abstinence interventions. Consumption-related clustering and 
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popularity likely create social environments that encourage drinking initiation and continuation. 

However, interventions directed towards heavy drinking could exploit social embeddedness and 

popularity differences between moderate and binge drinkers.   
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2.5 Tables 
Table 2.1 Definitions and Illustrations of Network Components, Structures, and Characteristics Used in 
Alcohol Analyses. 
 Definition 
Network structures  
 Node Study participant, represented by a dot or circle in figures. 
 Edge A contact between a pair of study participants, reported by 1 or both participants on a 

weekly survey. If contact was reported on multiple weeks, these edges are 
collectively known as “multi-edges.” A maximum of 8 (Pilot) or 10 (Main) multi-
edges were drawn between participant-pairs, corresponding to the number of weekly 
contact surveys. Edges are represented by lines in network figures, with an arrow 
directed from the participant who reported the contact to the participant with whom 
they reported contact. 

 Reciprocal edge An edge that was reported by both members of a contact-pair on a given weekly 
survey. Reciprocal edges are identified by arrows pointing at both participants. 

 Isolate A node (who did not have any reported contact with other study participants during 
the study period. 

 Dyad Two nodes connected by at least 1 edge, i.e., a contact-pair. 
Network properties  
 Density The proportion of possible edges within the network that were reported by study 

participants. The number of possible edges was calculated by multiplying the 
maximum number of edges in a given week by the length of each year’s study period.  

 Transitivity A measure of how many of a node’s neighbors are connected to each other, 
calculated as the proportion of possible triangles within the network that exist.  

 Dyad reciprocity (global) The proportion of all edges in the network that were reciprocal.  
Node characteristics  
 Neighbors The total number of unique participants an individual was linked to within the full 

network. 
 Indegree The total number of contacts with a given individual reported by other study 

participants on the weekly surveys. 
 Outdegree The number of contacts with other participants an individual reported across the 

study period. 
 Dyad reciprocity (node) The proportion of an individual’s reported contacts that were also reported by their 

neighbors.   
 Closeness A measure of the average distance (i.e., number of edges) between a node and all 

other nodes in the network. 
 Clustering coefficient A measure of how many of a node’s neighbors are connected to each other; an 

individual measure of transitivity. 
 Network exposure - 

drinking 
The proportion of a participant’s neighbors that were categorized as drinkers 
(including binge drinkers). 

 Network exposure – 
binge drinking 

The proportion of a participant’s neighbors that were categorized as binge drinkers. 

Dyad characteristics  
 Dyad reciprocity (dyad) The proportion of multi-edges that were reciprocal, within a given dyad (pair of 

connected nodes), 
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Table 2.2 Demographic and Social Network Characteristics of Year 1 (2012) Participants by Reported 
Baseline Alcohol Use (N=481). 

Variable 
N (%) or Mean (SD)a  

Drinker Non-drinker P valueb 
N 163 (33.89) 318 (66.11)   
Age     
 <21 139 (85.28) 296 (93.08) <0.01* 
 21+ 24 (14.72) 22 (6.92)   

Gender     
 Female 94 (57.67) 182 (57.23) 0.93 
 Male 69 (42.33) 136 (42.77)   

Academic year     
 Freshman 106 (65.03) 190 (59.75) 0.07 
 Sophomore 26 (15.95) 79 (24.84)   
 Junior or higher 31 (19.02) 49 (15.41)   

Race     
 White 135 (82.82) 209 (66.99) <0.01* 
 Asian 17 (10.43) 55 (17.63)   
 Black or African American 6 (3.68) 29 (9.29)   
 Multi-racial or other racec 5 (3.07) 19 (6.09)   

Network characteristics    
 Neighbors 6.45 (6.80) 5.34 (5.86) 0.06 
 Indegree 18.34 (22.37) 14.57 (18.17)  0.05* 
 Outdegree 19.10 (28.14) 15.69 (24.34) 0.17 
 Dyad reciprocity (node) 0.27 (0.23) 0.29 (0.25) 0.36 
 Clustering coefficient 0.46 (0.36) 0.40 (0.35) 0.09 
 Network exposure–drinkingd,e 0.42 (0.29)  0.31 (0.28) <0.0001* 
 Network exposure–binge drinkinge,f 0.27 (0.27) 0.16 (0.23) <0.0001* 

Abbreviation: SD, standard deviation. 
*P<0.05 
a Numbers may not sum to totals due to missing data. 
b P-values calculated by Chi-squared or Fisher’s Exact test for categorical variables or resampling tests for network 
variables. 
c Native Hawaiian or other Pacific Islander, American Indian, Alaskan Native, or Multi-racial. 
d The proportion of neighbors that were drinkers. 
e Not calculated for individuals without any neighbors (i.e., in- and out-degree of 0). 
f Proportion of neighbors that were binge drinkers. 
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Table 2.3 Demographic and Social Network Characteristics of Year 2 (2013) Participants by Reported 
Baseline Alcohol Use (N=423). 

Variable 
N (%) or Mean (SD)a  

Drinker Non-drinker P valueb,c 
N 155 (36.64) 268 (63.36)  

Age    
 <21 121 (78.06) 245 (91.42) <0.001* 
 21+ 34 (21.94) 23 (8.58)   
Gender    
 Female 90 (59.21) 168 (63.40) 0.40 
 Male 62 (40.79) 97 (36.60)  

Academic year    
 Freshman 85 (55.92) 147 (55.26) 0.02* 
 Sophomore 29 (19.08) 77 (29.95)  
 Junior or higher 38 (25.00) 42 (15.79)  

Race    
 White 111 (74.50) 162 (62.55) 0.02* 
 Asian 22 (14.77) 51 (19.69)   
 Black or African American 7 (4.70) 33 (12.74)   
 Multi-racial or other racec 9 (6.04) 13 (5.02)   
Network characteristics    
 Neighbors 9.34 (8.64) 6.87 (6.60) <0.01* 
 Indegree 33.34 (34.73) 21.87 (23.30) <0.0001* 
 Outdegree 37.44 (52.09) 24.32 (35.58) <0.01* 
 Dyad reciprocity (node) 0.26 (0.20) 0.28 (0.24) 0.45 
 Clustering coefficient 0.47 (0.32) 0.40 (0.32) 0.03* 
 Network exposure–drinkingd,e 0.44 (0.28) 0.26 (0.26) <0.0001* 
 Network exposure–binge drinkinge,f 0.20 (0.21) 0.11 (0.16) <0.0001* 

Abbreviation: SD, standard deviation. 
*P<0.05 
a Numbers may not sum to totals due to missing data. 
b P-values calculated by Chi-squared or Fisher’s Exact test for categorical variables or resampling tests for network 
variables. 
c Native Hawaiian or other Pacific Islander, American Indian, Alaskan Native, or Multi-racial. 
d The proportion of neighbors that were drinkers. 
e Not calculated for individuals without any neighbors (i.e., in- and out-degree of 0). 
f Proportion of neighbors that were binge drinkers. 
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Table 2.4 Demographic and Social Network Characteristics of Year 1 (2012) Participants by Reported 
Alcohol Consumption Volume, Among Baseline Drinkers (N=163). 

Variable 
N (%) or Mean (SD)a  

Binge Drinkers Moderate 
Drinkers P valueb 

N 90 (56.25) 70 (43.75)   
Age     

 <21 82 (91.11) 54 (77.14) 0.01* 
 21+ 8 (8.89) 16 (22.86)  
Gender    
 Female 49 (54.44) 42 (60.00) 0.48 
 Male 41 (45.56) 28 (40.00)  
Academic year    
 Freshman 72 (80.00) 32 (45.71) <0.001* 
 Sophomore 8 (8.89) 17 (24.29)  
 Junior or higher 10 (11.11) 21 (30.00)  
Race    
 White 77 (85.56) 55 (78.57) 0.59 
 Asian 7 (7.78) 10 (14.29)   
 Black or African American 3 (3.33) 3 (4.29)   
 Multi-racial or other racec 3 (3.33) 2 (2.86)   
Network characteristics    
 Neighbors 6.04 (5.73) 7.20 (7.98) 0.29 
 Indegree 15.60 (17.16) 22.44 (27.42) 0.05* 
 Outdegree 16.96 (17.98) 22.69 (37.33) 0.21 
 Dyad reciprocity (node) 0.25 (0.21) 0.30 (0.25) 0.19 
 Clustering coefficient 0.44 (0.29) 0.49 (0.36) 0.37 
 Network exposure – drinkingd,e 0.44 (0.29) 0.39 (0.28) 0.27 
 Network exposure – binge drinkinge,f 0.28 (0.27) 0.26 (0.27) 0.75 

Abbreviation: SD, standard deviation. 
*P<0.05 
a Numbers may not sum to totals due to missing data. Baseline drinkers without detailed drinking data could not be 
categorized into consumption categories (N=3). 
b P-values calculated by Chi-squared or Fisher’s Exact test for categorical variables or bootstrapping for network 
variables.  
c Native Hawaiian or other Pacific Islander, American Indian, Alaskan Native, or Multi-racial. 
d The proportion of neighbors that were drinkers. 
e Not calculated for individuals without any neighbors (i.e., in- and out-degree of 0). 
f Proportion of neighbors that were binge drinkers. 
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Table 2.5 Demographic and Social Network Characteristics of Year 2 (2013) Participants by Reported 
Alcohol Consumption Volume, Among Baseline Drinkers (N=155). 

Variable 
No. (%) or Mean (SD)a  

Binge Drinkers Moderate 
Drinkers P valueb 

No. 75 (50.34) 74 (49.66)   
Age     
 <21 66 (88.00) 49 (66.22) <0.01* 
 21+ 9 (12.00) 25 (33.78)  
Gender    
 Female 42 (56.00) 47 (64.38) 0.30 
 Male 33 (44.00) 26 (35.62)  
Academic year    
 Freshman 48 (64.00) 34 (46.58) <0.01* 
 Sophomore 17 (22.67) 11 (15.07)  
 Junior or higher 10 (13.33) 28 (38.36)  
Race    
 White 55 (73.33) 54 (77.11) 0.76 
 Asian 13 (17.33) 8 (11.43)  
 Black or African American 3 (4.00) 4 (5.71)  

 Multi-racial or other racec 4 (5.33) 4 (5.71)  

Network characteristics    
 Neighbors 7.68 (7.57) 11.53 (9.33) <0.01* 
 Indegree 25.39 (27.09) 43.43 (39.53) <0.01* 
 Outdegree 31.07 (46.26) 46.46 (57.44) 0.31 
 Dyad reciprocity (node) 0.26 (0.18) 0.29 (0.22) 0.53 
 Clustering coefficient 0.44 (0.33) 0.51 (0.30) 0.22 
 Network exposure–drinkingd,e 0.43 (0.31) 0.45 (0.24)  0.67 
 Network exposure–binge drinkinge,f 0.23 (0.26) 0.18 (0.14) 0.20 

Abbreviation: SD, standard deviation. 
*P<0.05 
a Numbers may not sum to totals due to missing data. Baseline drinkers without detailed drinking data could not be 
categorized into consumption categories (N=3). 
b P-values calculated by Chi-squared or Fisher’s Exact test for categorical variables or bootstrapping for network 
variables.  
c Native Hawaiian or other Pacific Islander, American Indian, Alaskan Native, or Multi-racial. 
d The proportion of neighbors that were drinkers. 
e Not calculated for individuals without any neighbors (i.e., in- and out-degree of 0). 
f Proportion of neighbors that were binge drinkers. 
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Table 2.6 Social Network Properties and Structure of the Year 1 (2012) and Year 2 (2013) Social 
Networks, Containing All Enrolled Undergraduate Participants. 

Characteristic Year 1 Year 2 
Nodes 584 590 
Multi-edges 6306 9957 
Multi-edges per dyad (edge 
weight)a 

4.27 (2.74) 5.34 (3.36) 

Dyad reciprocity (global) 1923 (30.49) 2832 (28.44) 
Density 0.003 0.004 
Transitivityb 0.54 0.58 
Isolatesc 94 (16.09) 86 (14.57) 

a Mean (Standard deviation) 
b Not defined for multigraphs; computed by flattening multi-edges into single edges. 
c N (%) 
 
 
 
Table 2.7 Social Network Density and Transitivity of Year 1 (2012) and Year 2 (2013) Alcohol Use Sub-
Networks. Each sub-network contains only participants in a given baseline alcohol consumption category. 

Sub-Network Density Transitivity 

Year 1   

 Drinker  0.0010 0.67 

 Non-drinker  0.0006 0.48 

 Moderate drinker  0.0011 0.76 

 Binge drinker  0.0011 0.72 

Year 2   

 Drinker  0.0018 0.77 

 Non-drinker  0.0009 0.47 

 Moderate drinker  0.0031 0.83 

 Binge drinker  0.0012 0.54 
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2.7 Figures 
Figure 2.1 Number of reported drinks consumed in by undergraduate students in Year 1 (2012) and Year 
2 (2013) by day of the week, among participants who reported alcohol use at baseline. (Year 1: N=163; 
Year 2: N=155). Less than 10% of drinkers reported any alcohol consumption on Sunday, Monday, 
Tuesday, and Wednesday. 
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Figure 2.2 Year 1 (A; 2012) and Year 2 (B; 2013) social networks of undergraduate students. Nodes (i.e., 
participants) are represented as circles, colored according to alcohol use; participants who declined to 
report their alcohol use are represented by the smaller gray circles. Each directed edge (i.e., line) 
represents a reported contact between 2 participants on a weekly survey, with an arrow pointed towards 
the reported contact. Reciprocal contacts reported by both participants are represented by double arrows. 
Edges are colored according to the alcohol use of the 2 connected nodes.  
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Figure 2.3 Mean multi-edges and dyad reciprocity (mean (standard deviation)) between dyads of drinkers 
and non-drinkers in the Year 1 (A; 2012) and Year 2 (B; 2013) social networks of undergraduate students. 
Undirected multi-edges between pairs of nodes represent the edge’s weight, or the frequency of contacts, 
i.e., the mean number of weeks a contact was reported (reciprocal and/or un-reciprocal) across the study 
periods (Year 1: 8 weeks; Year 2: 10 weeks). The mean proportion of reciprocal edges within dyads is 
also listed. Mean multi-edge weight and reciprocity between pairs of non-drinkers and between drinkers 
and non-drinkers were compared to the mean between drinkers by bootstrapping.  

  

Drinker Non-drinker Multi-edge 
*Significantly different from mean number of drinker-to-drinker multi-edges (P<0.05) 

A) 

B) 

Mean multi-edges:  
4.59 (2.62) 
Reciprocity: 
0.27 (0.33) 

Mean multi-edges:  
4.36 (2.79) 
Reciprocity:  
0.25 (0.34) 

Mean multi-edges: 4.40 (2.79) 
Reciprocity: 0.24 (0.32) 
 

Mean multi-edges: 
6.15 (3.17) 
Reciprocity:  
0.27 (0.31) 

Mean multi-edges: 
5.15 (3.36)* 
Reciprocity:  
0.22 (0.31)* 

Mean multi-edges: 5.55 (3.23)* 
Reciprocity: 0.21 (0.30)* 
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Figure 2.4 Mean multi-edges and dyad reciprocity (mean (standard deviation)) between dyads of binge, 
moderate, and non-drinkers in the Year 1 (A; 2012) and Year 2 (B; 2013) social networks of 
undergraduate students. Undirected multi-edges between pairs of nodes represent the edge’s weight, or 
the frequency of contacts, i.e., the mean number of weeks a contact was reported (reciprocal and/or un-
reciprocal) across the study periods (Year 1: 8 weeks; Year 2: 10 weeks). The mean proportion of 
reciprocal edges within dyads is also listed. Bootstrapped resample was used to compare mean multi-edge 
weight and reciprocity between dyads of moderate drinkers and other dyad types.  

Binge drinker Non-drinker Multi-edge 

*Significantly different from mean number of moderate drinker-to-moderate drinker multi-edges (P<0.05) 

Mean multi-edges: 
5.75 (2.42) 
Reciprocity: 
0.33 (0.34) 
 

Mean multi-edges: 4.18 (2.65)* 
Reciprocity: 0.24 (0.32) 
 

Mean multi-edges: 4.61 (2.79)* 
Reciprocity: 0.23 (0.33) 

Mean multi-edges: 
3.93 (2.42)* 
Reciprocity:  
0.23 (0.31) 

Mean multi-edges: 4.57 (2.67)* 
Reciprocity: 0.28 (0.34) 

Mean multi-edges: 
6.30 (3.16) 
Reciprocity: 
0.28 (0.34) 

Mean multi-edges: 5.48 (3.18)* 
Reciprocity: 0.20 (0.26)* 

Mean multi-edges: 5.58 (3.41)* 
Reciprocity: 0.22 (0.32) 

Mean multi-edges: 
6.25 (2.92) 
Reciprocity: 
0.25 (0.24) 

Mean multi-edges: 6.25 (3.16) 
Reciprocity: 0.27 (0.31) 

Moderate drinker 

A) 

B) 
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Chapter 3! 
Comparing Sensor and Reported Empirical Networks of College 

Students 

3.1 Introduction 
Social mixing and contact patterns have become increasingly important in infectious disease, 

social contagion, and health behavior transmission research (1,8,199,246) and the ability to 

accurately measure and quantify contact patterns is essential to building realistic transmission 

models and targeting interventions (13). However, contact patterns relevant to respiratory disease 

transmission are particularly challenging to quantify and measure (13,247), as transmission-

relevant contacts may potentially be of short duration and may not always occur between close 

social ties that would be captured in self-reported survey data. Currently, real-world (as opposed 

to theoretical or homogenous mixing assumptions) social network data collection methods 

include self-report/diaries, contact sensors or “motes,” and direct observation, each with their 

own advantages and drawbacks, and each resulting in different observed networks with unknown 

validity. Individual contact patterns are influenced by a number of factors, including age, socio-

economic status, and psychosocial factors, in addition to environment and temporality (e.g., 

urban versus rural, summer versus winter) (154,197,199,248–253). Additionally, unlike many 

static or single-time-point network measurement approaches, real-world networks are dynamic, 

with wide day-to-day and hypothetically, longer term, variations in interaction duration and 

distance that can indicate distinct types of social ties and yield different health outcomes 

(184,251,253–257). Thus, not only is it important to accurately measure individual contact 

patterns but also patterns and stability in dynamic, longitudinal networks.  

 

There is a growing body of literature on theoretical social network data measurement error and 

its potential impacts on network characteristic estimates (164,209,258) and transmission models 

(182,195,259). Indeed, many inferences made about social and transmission dynamics rely on 
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observed social networks and characteristics for which “we cannot estimate robustness or 

uncertainty” (205). However, contact surveys or diaries are currently the commonly used method 

for collecting empirical social contact data (171). Although self-reported contact data may more 

closely capture real-world social mixing patterns than homogenous mixing and theoretical 

networks, the extent to which these methods capture the underlying “true” social network and in 

particular, contacts most relevant to airborne (or other modes of) disease transmission is unclear 

(172). A number of social network studies have found that longer duration, higher frequency, 

and/or close relationship-contacts represent the majority of self-reported contacts 

(177,184,187,198,260,261). These self-reported contacts may capture a sense of the contact’s 

social importance to the participant (which can also have important health implications, e.g., 

behavior propagation and social influence), but may not give a useful representation of the set of 

contacts that facilitate transmission. For example, proximity and duration of contacts can be 

more important in direct and/or airborne transmission than other variables, such as the strength 

or type (e.g., good friend versus coworker) of the relationship (13,56). Individuals may have 

regular, transmission-relevant contacts that they do not personally know who would not be 

captured in survey, and individual’s recalled interaction durations are often incorrect or missed 

completely (184,195,262), with difficult to measure biases (11,161,260). Generally, self-reported 

contacts may be more appropriate for analyzing network selection and influence related to ideas 

and behaviors than for examining disease transmission, as self-reported contacts may have biases 

that could impact estimates of critical disease parameters (184).  

 

Researchers are thus increasingly using wearable sensors to objectively capture dynamic social 

networks across a variety of settings (184–190,263). However, sensor contact-detection methods 

have a number of practical challenges (182,191,192), including generating large amounts of data 

that can be difficult to organize, parse, store, and analyze (174), as well as participant privacy 

concerns (193). Additionally, sensors only capture contacts between participants wearing active 

sensors, and many sensor types (e.g. Bluetooth) may record un-meaningful contacts, such as 

between participants separated by a wall (13). While survey methods capture fewer contacts, 

they have the advantage of being comparatively easier studies to run, can be run pro- or 

retrospectively, and can collect egocentric contact data as well as complete, within-study 

network data (13). However, there are known drawbacks to contact diaries including 
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measurement error and recall issues, especially in longitudinal studies, where contact under-

reporting may occur in order to avoid additional questions (“panel conditioning”) (264,265).  

Additionally, contact diary or survey format (e.g., phone survey, web or paper-based diary) can 

impact the number of contacts participants report (171,264,265). As such, comparing networks 

collected via contact surveys and sensors is a key step in determining the veracity of and stability 

of empirical networks observed via different data collection methods. A handful of previous 

short-term sensor and diary-based network comparisons have been conducted in middle and high 

schools (185,187), as well as at an academic conference (194), with little consistency in the 

observed agreement between measurement methods. To our knowledge, there have not been any 

comparison studies of “real-world” networks, i.e., those that occur outside of a closed 

environment, like a school or conference, nor have there been any studies examining longer-term 

trends in comparability between methods. Given the significant temporal, contextual, and 

population variability in contact patterns (154,197,199,248–253), we note there continues to be a 

significant gap in our understanding of the comparability of observed sensor and survey-based 

social networks, especially those across different populations and over time.    

 

In this study we have attempted to address this gap by comparing longitudinal social networks of 

undergraduate students using web-based contact surveys and high resolution sensor-based 

contact data. Indeed, college student social networks present a unique opportunity for network 

measurement and comparison. Not only a somewhat captive, and therefore unlikely to be lost to 

follow-up, population (during the school year), we posit that college students’ lives can be seen 

as microcosms of multiple types of real-world networks; classrooms with a fairly constant set of 

contacts, close-proximity housing and living quarters, and travel on and off-campus may 

approximate schools, households, communities and workplaces, respectively. We directly 

compared and contrasted 8 weeks of self-reported weekly contact data with contact data recorded 

by a Bluetooth-based proximity contact collection app, “iEpi” (266). Data for this study came 

from the eX-FLU social network study, a social network study examining a randomized 

intervention for isolating respiratory infection cases in a university setting (174), and from the 

iEpi eX-FLU sub-study. In this analysis, we characterize differences and similarities in the 

networks collected via these two data collection methods, as well as specific features of 

objectively recorded contacts, i.e., recorded by iEpi, that make these contacts more likely to also 
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be captured via self-report (e.g., duration).  The overall aims of this study of college student 

social networks were to: 1) compare social network measurement methods with varying levels of 

granularity in order to determine the comparability of data collected with two social network 

measurement tools; 2) identify the strengths and limitations of each approach in terms of the 

characteristics of captured contacts and the completeness of the measured networks; and 3) 

characterize observed changes in longitudinal contact patterns in order to estimate the extent and 

impact of declining data quality and participant engagement for sensor and survey-based network 

measurement. 

3.2 Methods  

3.2.1 iEpi recruitment 

Data for these analyses come from the iEpi sub-study of the eX-FLU study, a social network 

study conducted in a large public university in the Midwestern United States during the winter 

2013 semester (January 18-May 4, 2013). Detailed methods and protocols for the main eX-FLU 

and iEpi sub-study can be found in Aiello et al. 2016 (174). At the beginning of the winter 

semester, a sub-set of eX-FLU participants were invited to join the iEpi sub-study. Potential iEpi 

participants were identified and enrolled with the following protocol: first, the network was 

divided into modularity-based communities, using Girvan and Newman’s recursive edge-

deletion algorithm (267). Participants were then randomly selected from the largest community 

to receive an iEpi invitation. Waves of invitations were sent to random participants in 

successively smaller communities until the pre-determined population size was reached (N=103). 

Study staff passed out smartphones pre-loaded with the iEpi social network program at 

information sessions on January 28 and February 4 (the second and third weeks of parent study 

period), with an additional ‘last chance’ session on February 12th (parent study week 4); the 

majority of phones were deployed and recording data before the fourth week of the parent study 

(82.52%), and all phones were deployed and activated by week 6 (see Table 3.1 for iEpi 

activation numbers and dates). Participants were asked to carry the smartphones loaded with iEpi 

whenever on campus, from the time they received the phones from study staff through the end of 

the 10-week study period, excluding spring break (March 1-7). Participants could use the 

provided smartphone as their personal phone or as an additional device depending on personal 

preference, and were able to keep the provided smartphones at the study’s conclusion, as a 



 

 

 

55 

participation incentive. 

3.2.2 Data collection  

iEpi data collection 

The iEpi app’s specifications have been previously described in detail (266). Briefly, the app 

uses Bluetooth detection to identify proximity contacts (up to 5-10 meters) at 5-minute intervals 

beginning when the phone was powered on and the app activated. The app records the contact’s 

unique identifier, and the contact date and time. Proximity contacts could be recorded by one or 

both iEpi apps. Notably, Bluetooth signals can transmit through walls and other physical barriers, 

so an iEpi recorded proximity contact did not necessarily indicate a true ‘face-to-face’ contact 

event. Conversely, iEpi does not record data when the phone is powered off, so the absence of a 

recorded proximity contact does not necessarily indicate a lack of face-to-face contact between 

two iEpi participants. Additionally, participants could “snooze” iEpi at any time for up to 12 

hours, in 30-minute increments, during which iEpi did not record contact data and could not be 

‘seen’ by other iEpi devices.  

 

Reported contact data collection 

Weekly web-based contact surveys were sent to all study participants during the 10 week study 

period, on which they were asked to report all other (parent study) participants with whom they 

had face-to-face contact during the previous week. Links to each weekly survey were sent on 

Fridays and responses were locked on the following Mondays (see Appendix A.1 for the weekly 

contact survey). Each participant selected an unlimited number of contacts, from a list of likely 

contacts (pre-populated with previously reported contacts) and/or by searching for study 

participant contacts by name/email. Data was de-identified using randomly assigned study IDs 

prior to analysis. 

3.2.3 Data processing, matching, and network construction 

In order to compare the weekly survey and iEpi sensor data collection methods, the time frames 

and sub-populations of the surveys and iEpi were matched in order to create networks for each 

study week. In other words, a network was constructed for each week of the study that contained 

identical nodes and all edges between them that were either captured by iEpi or reported on a 

given week’s contact survey. Aggregated networks for each collection method, containing edges 
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from all weekly networks were also constructed. A flowchart of the data processing, contact 

matching, and network construction process can be found in Figure 3.1. Raw iEpi contact data 

was aggregated and processed using the following set of steps/rules: First, contacts recorded by 

either member of a dyad were ordered according to date and time, with the first recorded contact 

on a given date considered the contact event’s ‘start time.’ Although the app’s recording 

frequency was 5 minutes, we considered subsequent contacts recorded by either participant’s app 

within 10 minutes of the previous recorded contact to be a continuation of contact. This 

allowance was made to account for missed contacts by the Bluetooth sensor and/or brief 

separations within dyads that occurred at iEpi recording times but did not functionally end the 

contact, e.g., an individual going to a restroom and returning. When a gap between recorded 

contacts was greater than 10 minutes, the contact was considered to have ended 2.5 minutes after 

the last recorded time before the gap, and a new contact started at the first recorded event after 

the gap. Individual contact duration was then calculated using each contact event’s start and end 

times. Contact events without a subsequent recorded contact within 10 minutes were assigned a 

duration of 2.5 minutes. Next, as the reported contact data granularity was at the week level, iEpi 

contacts within each study week were aggregated to match this time scale.  Total proximity 

contact duration, or edge weight, between two participants, or dyads, was calculated as the sum 

of all of their unique contact durations within the study week, in hours.  

 

To maintain congruence between nodes in each week’s Reported (RN3-RN10) and iEpi (iEN3-

iEN10) Network, nodes and their reported or iEpi recorded contacts were included in the weekly 

networks beginning with the first full study week after their iEpi app was activated, defined as a 

device’s first recorded contact event. Note that weekly reported contacts were directed, whereas 

weekly iEpi contacts were undirected and weighted by the week’s proximity contact duration 

(i.e., the sum of all individual recorded proximity contact durations in a given study week). 

However, within the weekly reported contacts, there was the possibility that a contact could have 

been reported by both members of a dyad in a given week. In this case, a single, reciprocal edge 

was drawn between the pair. Contacts that were reported by only one member of a dyad were 

identified as unreciprocal edges.  

 

Aggregate networks (RNa, iENa) for each measurement method were also constructed by 
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combining all 8 weekly networks within each method. Edges in these networks are undirected 

and weighted by the number of weekly networks within each method that an edge was present. 

The directionality of weekly edges was not considered when calculating edge weights for the 

aggregated RNa.  

 

Network construction, as well as network data processing and matching, was done using the 

Python (2.7) NetworkX package (218).   

3.2.4 Analysis 

In order to compare reported versus iEpi/sensor contacts overall, as well as by study week, 

individual networks for each (parent) study week that contained at least one iEpi contact (weeks 

3-10) were constructed. The resulting networks generated by each measurement method were 

compared pairwise by week across measurement methods. We hypothesized that iEpi proximity 

contacts with longer cumulative weekly duration would be reported more frequently on weekly 

surveys than shorter cumulative weekly duration contacts, so we constructed additional iEpi 

networks by restricting iEN3-iEN10 to edges with weekly durations (d) greater than 2.5 minutes, 

0.25, 0.50, or 1 cumulative hours of recorded contact per week. Aside from 2.5 minutes of 

proximity contact per week, which was the minimum possible recorded contact duration that we 

set for iEpi contacts (corresponding a single recorded proximity contact between two 

participants), these thresholds were selected by pooling all weekly contact durations and dividing 

them into relatively equal groups with logical end points (see Figure 3.2).  Networks were 

analyzed in Python (2.7) with the NetworkX package (218) and visualized in Visone 2.17 

(Konstanz, Germany). 

 

Network descriptions and characteristics 

Each weekly and aggregate network was visualized with nodes at identical locations. Summaries 

of each network’s construction and assessed network statistics and characteristics are shown in 

Table 3.2. For weekly and aggregate networks by measurement method, a number of network 

and node characteristics were assessed. Network density, transitivity, mean edge weight (i.e., 

total week contact duration; iEN3-iEN10 only), and dyad reciprocity (i.e., the proportion of all 

network dyads with reciprocal edges; RN3-RN10 only) were calculated and the numbers of nodes, 
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edges, and isolates were counted. For aggregate networks (RNa, iENa), mean edge weight, or 

number of weekly networks an edge appeared in, was also calculated. For nodes within a given 

network, degree was defined as a node’s number of neighbors, or the number of other nodes 

connected to a particular node by an edge. In RN3-RN10, in- and out-degree represent the number 

of contacts a participant reported and the number of other participants who reported a given 

participant as a contact on a given weekly survey, respectively. For each network, mean degree, 

indegree (RN3-RN10 only), outdegree (RN3-RN10 only) were assessed.  

 

Degree Distributions and Sequences 

We plotted comparisons of iENa and RNa degrees using a network status layout (in rows 

corresponding to RNa degree) to show potential individual differences in centrality between the 

two collection methods for the entire analyzed study period. Additionally, degree distributions 

were assessed for all networks and compared between data collection methods across study 

weeks 3-10 with bar and whisker plots, comparing each week’s RN and iEN (all edges and all 

duration restricted networks; cumulative weekly duration ()) edge restrictions: ) >
2.5./012345; ) ≥ 0.25.ℎ92:5; ) ≥ 0.50.ℎ92:5; ) ≥ 1.ℎ92:). For each of the four duration 

restricted networks, a node’s iEN degree was re-calculated and was defined as the number of 

neighboring nodes an individual was connected to with an iEpi edge with cumulative duration 

above the noted cutoff.  

 

A summary of pairwise degree sequence dependence analyses across measurement methods is 

shown in Table 3.3. For each analyzed study week, we assessed the ordinal association between 

the iEN3-EN10 (for the full network and four duration restricted networks) and RN3-RN10 degree 

sequences (i.e., numbers of neighbors for each participant) with Kendall rank correlation 

coefficients (tau, !; calculated using the stats package in the SciPy library (268)) and tested the 

hypothesis of statistical dependence via resampling. Kendall’s tau coefficient assesses the degree 

of monotonic correlation, or degree of similarity, between observed, nonparametric sequences on 

the same set of individuals (269).  We also assessed the association between indegree and 

outdegree sequences in RN3-RN10 and iEN3-EN10 sequences (all edges and four duration 

restricted networks), in order to determine if either indegree or outdegree distribution, or both, 

had higher levels of dependence with a given week’s iEN degree sequence than the RN degree 
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distribution. Hypothesis testing for Kendall’s tau rank coefficients was run under the null 

hypothesis of independent distributions via resampling, using ! as the test statistic. Resampling 

was conducted by shuffling the set of RN3-RN10 degree values for all nodes to create new rank 

orders, or paired values of iEN3-iEN10 and RN3-RN10 degrees for each node. Upon resampling, 

the test statistic,!, was recalculated. Resamples were performed 10,000 times for each 

comparison, and the P-value represents the proportion of resampled coefficients as or more 

extreme than the original observed value.  

 

Network overlap and agreement 

Edges were matched between iEN3-iEN10 and RN3-RN10 by week, to crudely assess the amount 

of network overlap or congruence, i.e., the extent to which proximity contacts recorded by iEpi 

coincided with reported face-to-face contacts. Edges were matched overall by identifying dyads 

(i.e., pairs of participants connected by a reciprocal, unreciprocal, or undirected edge) that were 

present in both RN and iEN in any given study week. We then assessed the recorded cumulative 

weekly contact duration, or edge weight, of iEpi edges that did and did not have corresponding 

present edges in the same week’s RN and determined the distribution and mean edge weight of 

iEN edges with and without corresponding RN edges. These edge weight distributions were 

visualized bar and whisker plots in order to characterize differences in cumulative weekly 

duration between iEpi recorded edges that were and were not reported by participants across the 

study period. 

 

As there is not a standard method for comparing and quantifying agreement of two or more 

networks with identical or overlapping boundaries, (potentially) different sets of edges, different 

reporting/sensing methods, and no assumptions about any network’s alignment with a ‘true’ 

network, we adapted the traditional Cohen’s Kappa (") test of inter-rater agreement to assess 

global agreement between pairs or groups of networks. While we used undirected versions of the 

networks in these analyses, the method could be used for directed networks with a directed list of 

possible dyads as the comparison items; the caveat being that the networks being compared must 

both be treated as directed or undirected.  

 

The basic framework for our formulation of a network " for two networks, A and B, is as 
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follows. We generated a list of nodes as the union of the nodes in Network A and Network B. 

Using the potential dyads from this list as the agreement items, the methods were said to agree 

on a given item if a potential dyad was either present or absent in both the iEpi and Reported 

networks. If a dyad was present in one but not the other, this was considered disagreement on an 

item. The standard formula for Kappa is (270): 

=. = .>? −.>#1 − >#  

where we adapt the standard = as follows: >? is the observed agreement between the two (or 

more) networks and ># is the expected agreement that would occur by chance, based on the 

number of edges in each network. Agreement is defined as the fraction of possible edges upon 

which both networks agree (i.e., both networks include a given edge/dyad or both networks do 

not include a given edge/dyad).  

 

More formally, let A(, … ,AD be a collection of networks (e.g., resulting from different 

measurement methods, or measured at different times, or simply distinct networks of interest). In 

this analysis we consider > = 2, where we examine networks constructed from data collected 

with two distinct measurement methods (iEpi and Reported). For each network AE, let AE =
(GE, HE), where GE  is a set of vertices and HE  is a set of edges, defined as vertex pairs, i.e., for 

4JK ∈ HE , we define 4JK = MNJ, NKO, where NJ, NK ∈ GE . We indicate potential edges or dyads which 

do not appear in HE  with a bar, i.e., taking HPE: = R4JKS4JK ∉ HEU. If all networks are undirected, 

we treat 4JK = 4KJ, i.e., we treat each edge as a set rather than an (ordered) tuple; otherwise, we 

treat directed networks as including both 4JK and 4KJ separately. For convenience, and to ensure = 

is well defined, we take the vertex set for all networks to be the union of all possible vertices, 

G ≔ ⋃ GED
EX( , and redefine our networks as AE = (G, HE). With this notation established, >? is 

given by: 

>? = ..
⋂ HED
EX( +.⋂ HPED

EX(
H∗  

. 

Where H∗ is the total possible edges, given by (|G| ⋅ |G − 1|)/2 for a collection of undirected 

networks and |G| ⋅ |G − 1| for a collection including directed networks. Next, we note that the 

probabilities of a given edge appearing or nor appearing in a given network AE are given by 
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|HE|./.H∗ and |HPE|./.H∗ respectively (noting that the edge probability is also commonly called the 

network density). Then the overall agreement by chance is: 

># = .._
|HE|
H∗

D

EX(
+._|HPE|

H∗
D

EX(
 

.............=_|HE|
H∗

D

EX(
+._`1− |HE|H∗ a .

D

EX(
 

 

A table summarizing all pairwise Kappa-based network agreement analyses is shown in Table 

3.4. We assessed agreement between weekly network pairs and between the two aggregate 

networks. We also compared the RN3 - RN10 to its corresponding iEN3, d<[cutoff] - iEN10, d<[cutoff] 

(weekly duration restricted iEN), to determine if overall agreement between reported contacts 

and proximity contacts increased as we raised the included recorded cumulative weekly duration 

by the iEpi app. 

3.3 Results 

3.3.1 Study population 

Study population demographics and distributions were previously assessed in Aiello et al. 2016 

(174). The majority of the 103 iEpi participants were White (61.4%), female (66%), and 

freshman (56.3%); the mean age of iEpi participants was 18.9 (SD: 1.1) years (see Table 3.5).  

3.3.2 Network data, descriptions, and characteristics  

Network visualizations of the weekly and aggregated networks are shown in Figure 3.3. 

Descriptive data and characteristics of iEN3-iEN10 and RN3-RN10 are shown in Tables 3.6 and 

3.7, and for the Aggregate networks (iENa and RNa), Table 3.8. iEpi sub-study participants 

reported 1076 face-to-face contacts with each other across the full parent study period, 

representing a total of 614 dyads. Of these dyads, 545 occurred were included in these analyses 

(contact events sensed prior to the first full study week after iEpi deployment for a given 

participant were excluded), with an overall dyad reciprocity of 0.43 across study weeks 3 

through 10. When aggregated, the Reported network contained 121 dyads; each dyad was 

reported by one or both participants on an average of 4.50 (SD: 2.46) weekly surveys. The iEpi 

app recorded 453,281 proximity contact events between participants across the full deployment 
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period, which corresponded to 358,369 contacts and 6,671 weekly proximity contacts. Of these, 

3,565 weekly, duration-weighted iEpi contacts were analyzed across parent study weeks 3 

through 10. In aggregate, the iEpi app recorded 1,977 dyads across the analyzed deployment 

period, with a mean weight of 1.80 (SD: 1.35).  

 

The number of nodes in each network corresponds to the number of participants who had 

received and activated their iEpi device in a previous study week, e.g., 59 participants activated 

received and activated their iEpi device before study week 3, and were therefore included in the 

week 3 networks. Although the RNa had 24 isolates (23.3%), individual networks had higher 

numbers of isolates, or participants who did not have any reported contact in a given study week; 

approximately 35% of nodes in any given week were isolates in RN3-RN10 (range: 31.31-

42.37%; see Table 3.6). The iENa did not have any isolated nodes, as by definition all 103 nodes 

had at least 1 contact event recorded across the analyzed study period (as the first contact event 

is how we determined activation week). However, iEN3-iEN10 had increasing numbers of isolates 

over time, rising from 0 in week 3 to a high of 39 (37.86%) in week 10 (see Table 3.7).  

 

Figures highlighting trends in global network and average node characteristics across the study 

period, and in aggregate, by data collection method are shown in Figure 3.4. For the most part, 

the week 3 networks were anomalous (particularly the iEN3 network) to the rest of the study 

period in terms of density, transitivity, and mean degree. After week 3, density and transitivity 

remained fairly steady within iEN4-iEN10 and RN4-RN10. While the iEN3 had higher values of 

density and transitivity than the analogous RN3, iEN4-iEN10 transitivity dropped precipitously 

below those observed in RN4-RN10, and remained approximately 50% lower than the RN4-RN10 

transitivities for the remainder of the study period. iEN3-iEN10 densities also dropped rapidly 

between weeks 3 and 4 and continued to decline, albeit at a lower rate, for the rest of the study 

period, and the density of iEN10 was slightly twice that of the density of RN10. Based on the mean 

edge weights observed in the aggregated networks (RNa, iENa; see Table 3.8), we can also 

conclude that reported contact patterns were more consistent or stable across the analyzed study 

period than iEpi captured contacts. Each edge in the RNa was reported by one or both dyad 

members on an average of 4.50 (SD: 2.46) weekly surveys, whereas unique proximity contacts 

were only captured by iEpi in an average of 1.80 (SD: 1.35) weeks. 
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The two aggregated networks had very different global and average node characteristics (see 

Table 3.8).  The iENa had a higher density, due to many more edges (1,977 edges) than the RNa 

(121 edges), as well as a higher mean degree than the RNa. However, the RNa was slightly more 

clustered than the iENa, with a higher observed transitivity.  

3.3.3 Degree Distributions and Sequences  

Figure 3.5 shows the correlation, or lack thereof between nodes’ aggregate iEpi and Reported 

degrees. Although it appears that some nodes had similar aggregate iEpi and Reported degrees, 

based on visual inspection there does not appear to be a consistent or identifiable relationship 

between a node’s degree in one network versus the other in the aggregated networks. 

 

We also looked at degree distributions for both measurement methods for the eight weeks in the 

analyzed study period.  Box and whisker plots showing iEpi degree distributions compared to 

Reported Network degree, indegree, and outdegree distributions by study week are shown in 

Figure 3.6. Across all considered study weeks, the distributions of iEpi degree had higher means 

and medians, as well as wider interquartile ranges, although the difference between iEpi and 

Reported distributions lessened over the analyzed weeks. Visually, it does not appear that there is 

greater concordance between iEpi degree distributions and the Reported outdegrees and 

indegrees than Reported overall degrees. This is further confirmed by the sequence dependence 

analyses results, which are shown in Figure 3.7. Overall, values of Kendall’s rank correlation 

coefficient (!), or level of monotonic association, across different network measurement 

methods, ranges from approximately 0.04 to 0.20, with dependence levels across the three 

Reported Network degree types increasing slightly between weeks 3 and 10. Although a handful 

of values are statistically significant, indicating a level of dependence significantly different from 

0, or complete independence, the values of ! for all 24 comparisons are too low to point to a 

meaningful relationship between degree (number of contacts) captured by the iEpi app and those 

reported by participants on weekly surveys. 

 

However, concordance between the Reported degree distributions and those of the four 

cumulative weekly duration restricted iEpi networks (see Figure 3.8) was higher than the degree 

distributions from the full iEpi weekly networks, as the full iEpi weekly networks contain more 
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edges than the reported networks. For each successive duration restriction, the iEpi degree 

distribution more closely resembles that of the Reported network in a given week, up to a point. 

For most weeks, it appears that restricted iEpi network edges to those that had cumulative 

proximity contact durations of at least one hour per week most closely resembled those of the 

Reported Networks. In other words, among the iEpi edge durations tested, participants’ numbers 

of reported contacts (overall and for directional reporting) most closely resembled the numbers 

of people with whom participants’ iEpi devices recorded at least one hour of proximity contact in 

a given week. Towards the end of the study period (weeks 9 and 10), there is a slight anomaly in 

the relationships, as the most restrictive iEpi network degrees were slightly below the Reported 

degrees, although this difference does not look meaningful.  

 

Similarly, the level of dependence of the degree sequences, as measured by !, shows increasing 

concordance, or dependence, with each increasingly restrictive edge duration definition (see 

Figure 3.9).  As expected based on the bar and whisker plots shown in Figure 3.8, there is 

increasing and significant agreement with increasingly higher duration proximity contact 

networks, with slight variation over time. The highest level of significant dependence between 

the Reported Network degree sequences and iEpi duration restricted Networks degree sequences 

was in week 6, with iEpi edges restricted to a cumulative weekly proximity contact duration of at 

least one hour. However, the even when restricted the proximity contacts to those with longer 

durations, the maximum value of ! we calculated was 0.35, which corresponds to “weak” 

agreement according to the generally accepted ! interpretation (thresholds) (269) and therefore 

this maximum calculated value many not represent a practically meaningful relationship between 

degree sequences across contact measurement methods. However, given the relative novelty of 

applying this statistic to degree sequences, the expected and threshold values of ! for an 

acceptable or high level of agreement is unknown. It should be noted that generally, regardless of 

contact duration, as measured by iEpi, there was a slight increase in dependence level across the 

study weeks, with week 10 having a Reported degree sequence that more closely resembled that 

of the week 10 iEpi Network with all edges.  

3.3.4 Network overlap and agreement 

Overall network overlap, or the numbers of edges or dyads that were present in both weekly iEpi 
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and Reported Networks, overall and according to iEpi edge weight, i.e., cumulative weekly 

proximity contact duration, are shown in Table 3.9. Overall levels of overlap, or edge matching, 

by study week is shown in Figure 3.10. Generally, low percentages of proximity contacts 

captured by iEpi were also reported on weekly surveys. There were also noticeable numbers of 

contacts that participants reported on surveys that were not captured by iEpi. Importantly, the 

iEpi Networks increased the percentage of total network edges that were also present in a given 

week’s Reported Network over the analyzed study weeks, rising from matching approximately 

4% of network edges with corresponding reported edges in week 3 to approximately 12% in 

week 10. The opposite trend was seen in the Reported Networks; over the study period, the 

percentage of reported edges that were also captured by the iEpi app decreased from a high of 

92% in week 3 to (although only 24 edges were present in this network) 39% by week 10. In 

other words, fewer reported contacts were captured by iEpi over the study period, but the amount 

of iEpi captured contacts that were also reported increased over the study period. This may be 

due in part to the decreasing numbers of edges in the iEpi networks as the study progressed. 

 

There appears to be a relationship between cumulative weekly contact duration, as measured by 

iEpi, and the probability of that contact also being reported on a weekly survey. A pooled 

distribution of all iEpi edges’ durations, as well as distributions by study week, were categorized 

by whether or not there was a corresponding edge in a given Reported Network shows the higher 

mean, median, and distribution of cumulative weekly contact duration between edges with and 

without matches in Reported Networks (see Figure 3.11).  The mean cumulative weekly duration 

of all iEpi edges without corresponding reported edges was 3.80 hours/week (SD: 4.40) whereas 

the mean duration for edges that were also reported on a weekly survey was 0.62 hours/week 

(SD: 1.91). Across the study period, the distribution of cumulative weekly contact duration of 

iEpi edges without corresponding Reported edges were fairly normal (see Figures 3.11-3.12) 

whereas those with corresponding edges in a given week’s Reported network had a the duration 

distribution for edge with corresponding reports on a weekly survey were skewed towards longer 

cumulative weekly durations. In other words, longer cumulative weekly duration contacts were 

more likely to be reported on a weekly survey than shorter cumulative weekly duration contacts. 

This appears to be especially true of iEpi contacts with a duration of 2.5 minutes, corresponding 

to a single recorded contact event; these contacts comprise very low percentages of iEpi contacts 
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that were also reported, as shown in Figure 3.12.   

 

These results are reinforced by our agreement analyses with the adapted Kappa statistic, as 

shown in Figure 3.13. When considering all edges in the weekly iEpi and Reported Networks, 

there is an upward trend in agreement over the study period, with week 10 reaching a kappa of 

approximately 0.20. Interestingly, the aggregate networks had much higher levels of agreement 

than all individual weeks, with a kappa value of 0.46, suggesting that over the course of the 

study, iEpi and Reported contacts that did not match in the opposite network in an early week 

were somewhat likely to be captured by the opposite data collection method in a subsequent 

week. However, even with the higher aggregate agreement, all network pairwise comparisons 

had a ‘weak’ level of agreement (270).  Restricting the weekly iEpi Networks by cumulative 

weekly duration increases the overall level of network agreement across all weeks, with the 

largest difference found in week 3, where the complete iEpi Network had an agreement level 

with the Reported Network of less than 0.05 and the iEpi Network containing only edges with 

weights greater than or equal to 1 hour per week had an agreement level of 0.33, or 

approximately 10 times that of the unrestricted iEpi Network. Generally, each successive edge 

restriction increased the agreement slightly, with a small improvement after dropping edges that 

represented a single proximity contact event between two participants in a single week, and a 

larger increase in agreement when edges were restricted to 0.25 hours per week or more. These 

results mirror the cruder matching results described above, whereby restricting the iEpi 

Networks by cumulative weekly duration is, in practice, increasing the percentage of iEpi edges 

with a corresponding reported contact in a given week.  

3.4 Discussion 
The method of social network data collection affects the resulting measured network and the 

resulting conclusions or inferences. We described and compared two longitudinal series of social 

contact networks within a group of 103 undergraduate students with varied definitions of 

contacts and levels of granularity. We analyzed objectively collected proximity contact data 

recorded by a Bluetooth based app, iEpi, and subjective survey-based reported face-to-face 

contacts. Our analyses directly compared multiple facets of the resultant network data, including 

network structure, node centralities, degree distributions/sequences, and global network 
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agreement. To this end, we developed a modified version of Cohen’s Kappa coefficient to 

directly compare 2 or more networks containing overlapping sets of nodes.  We investigated 

network similarities between sensor-recorded networks and participant-reported networks overall 

(i.e., across the full analyzed study period), as well as longitudinal trends in agreement, and the 

role of contact duration in network similarity using a mix of social network analyses and 

traditional epidemiological and statistical methods.  

 

Comparisons between the network properties, degree distributions/sequences, and assessments of 

edge agreement and global network agreement between the Reported and iEpi networks all point 

to generally low overlap and agreement between the iEpi captured proximity contacts and 

participant reported face-to-face contacts. However, we observed that when iEpi networks were 

restrict to higher cumulative duration proximity contacts, overlap and agreement increased. 

Overall, even after aggregating contact event data into weekly contacts, the iEpi app recorded 

more contacts than the weekly contact surveys; the contacts recorded by iEpi but missed by the 

contact surveys were comprised mainly of shorter cumulative duration contacts. Surprisingly, in 

addition to this expected result, we also found that a large proportion of the weekly participant 

reported face-to-face contacts were not captured by the iEpi app. The degree 

distribution/sequences comparisons between collection methods and the Kappa results highlight 

the differences and lack of discernable relationship between iEpi and reported networks. 

Collectively, the results of these comparisons suggest that: 1) longer duration proximity contacts 

tend to have a higher likelihood of also being reported on a survey; 2) survey and sensor 

compliance and participation levels may decrease over time, calling into question the veracity 

and completeness of longitudinal social network data collected at later time points, and 3) neither 

sociocentric data collection method (web-based surveys and cellphone-based apps) yields 

complete contact data. 

 

All contacts between the 103 study participants during the analyzed study period fall in one of 

four categories: 1) contacts captured by both methods (i.e., agreement); 2) contacts captured by 

iEpi but not reported on a weekly contact survey; 3) contacts reported on a weekly contact 

survey but not captured by iEpi; and 4) contacts occurred but were neither captured by iEpi or 

weekly contact surveys. The goal of these analyses was to describe and compare the data and 
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networks in order to describe the characteristics of contacts that end up in each of the first three 

categories; the fourth category is inherently unmeasurable, although we would hope it represents 

as little of the “true” network as possible. As noted by Smieszek et al. (194), differences between 

survey and sensor contact data can be attributed to “true” differences in each method’s definition 

of “contact,” or measurement error by either method. In other words, we can attribute 

disagreement between compared networks to either differences in the definitions of contact 

employed by the two data collection methods, missing iEpi contact records corresponding to 

participant-initiated pausing of data collection or loss of cellphone battery power, and/or survey 

measurement error.   

 

We can describe each method’s contact definition in terms of type of contact and the duration 

granularity of the method’s contact definition. The iEpi app’s contact definition is proximity-

based, i.e., Bluetooth detection of another iEpi device within approximately 3 meters. This 

proximity-based detection does not necessarily indicate that two participants (or devices) had to 

be in the same room or on the same floor of a building, however, as Bluetooth detection is 

possible across walls and through floors and ceilings. Additionally, the app attempts to detect 

other iEpi devices at 5-minute intervals. Therefore, if 2 iEpi participants were within 3 meters of 

each other for 5 minutes or more, it was likely that one or both of the devices would record the 

contact. However, if their close proximity to each other lasted less than 5 minutes, an iEpi record 

of the contact was dependent on the timing of both devices’ recording schedule (i.e., the 

sampling frequency). Participants could also have neglected to bring their iEpi device with them 

on-campus, intentionally stop their iEpi app’s data collection by “snoozing” the app, turning off 

the device’s Bluetooth detection, or powering down the device; unintentional halting of data 

collection could also occur if the device ran out of power. In this case, any proximity contacts 

between an individual and other iEpi participants would not be recorded by the individual’s app 

or any of their proximity contacts. We note then that iEpi data quality or completeness and the 

resulting measured network depended on all participants who may have come within 3 meters of 

each other having their devices on their person, turned on, and iEpi apps active at all times. In 

other words, while only one device needed to record a proximity contact for it to be represented 

in the measured network, both devices present needed to be on and active for the contact to be 

recorded.  
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The weekly contact surveys defined contact as “face-to-face contact” occurring during the 

previous week. In effect, the contact survey reports relied on participants’ recognition of any and 

all other study participants by name, and their ability to recall of the previous week’s interactions 

with this set of individuals. However, participants could report contacts on weekly contact 

surveys by searching for contacts by name and/or email, thereby providing a “check” to see if 

contacts were study participants and facilitating reporting regardless of previous awareness of the 

study’s enrollment. Weekly surveys also presented participants with two auto-populated lists of 

possible contacts from which they could select their previous week’s contacts: one of “past social 

contacts” and the other, “potential social contacts.” This may have biased reports towards these 

generated lists (possibly introducing “false” contacts), reduced reports of other contacts (that 

were not suggested), or possibly increased contact reporting by jogging participants’ memories. 

Notably, the impact of nonresponse or low participation/contact reporting by some participants 

on the measured network could be mitigated if other network members reported contacts with 

these participants (i.e., reciprocal reporting). 

 

Based on the unique characteristics of the two data collection methods, we can identify scenarios 

where agreement or disagreement between the networks could occur. First, it is likely that any 

face-to-face contacts occur in proximity of significantly less than 3 meters. We could then expect 

that any weekly face-to-face contacts in the final RN dataset but not in final iEN dataset were not 

captured by sensors for one of four reasons: 1) contact definition differences due to iEpi 

sampling frequency, in that any and all face-to-face contacts between a pair of participants in a 

given week were too short to be captured by either participant’s iEpi device (i.e., the iEpi contact 

definition’s granularity was not fine enough to detect the contact); 2) unintentional deactivation 

of the iEpi app due to the device losing power; or 3) intentional deactivation or “snoozing” of the 

iEpi app by one or both of the participants;  4) one or both participants not carrying the device 

with the iEpi app on their person; or 5) inaccurate reporting of a face-to-face contact (i.e., a 

participant reported a contact that did not actually happen). Although we can speculate that the 

surveys’ pre-populated lists of possible contacts may have introduced false reports, it is 

impossible to definitively identify which, if any, reported edges did not actually occur, and must 

continue on the assumption that false reports were minimal. We also cannot differentiate 



 

 

 

70 

scenarios 2, 3, or 4 in the data and treat them collectively as participant acceptance or 

engagement with the iEpi app.  Thus, theoretically, we expect that edges present in a Reported 

Network but not in that week’s iEpi network were either very short or not recorded due to at least 

one participant’s lack of acceptance and/or engagement with the sensor portion of the study.  We 

also note that given the 5 minute sampling frequency of iEpi and the weekly survey reports, all 

unique weekly iEpi edges and participant reports could represent any number of individual face-

to-face interactions with unknown duration across a given week. Therefore, for an edge to be 

present in the reported datasets but not iEpi, any and all face-to-face contacts between two 

participants in a given week must have occurred outside the sampling frequency of the iEpi 

devices or when one or both participants did not have an active iEpi app on their person. 

 

In practice, we found that the percentage of edges in RN3-RN10 that were captured in iEN3-iEN10 

decreased over the course of the analyzed study period. In week 3, 91.67% of the reported dyads 

were also captured by iEpi, but this fell to 70.49% in week 4, and by the final study week, only 

39.24% of all reported dyads were also captured by iEpi. Previous studies have found duplication 

of reported contacts by sensors occurred at rates of 50% (185), 70% (184), and 85% (187), which 

is similar to our results, particularly early in the study period. While we do not have duration 

data for reported contacts, we can extrapolate from the edge agreement by iEpi recorded 

duration. We thus conclude that because longer cumulative duration iEpi edges were more likely 

to also be reported than shorter cumulative duration iEpi edges, it is likely that face-to-face 

contacts that were reported on weekly surveys but not captured by iEpi were more than likely 

missed by the app due to reduced iEpi compliance, which appears to have decreased 

substantially over the study period. This conclusion is also supported by the significant decrease 

in network size and increasing number of isolates in the iEpi networks across weeks 3-10. In 

week 3, iEpi recorded 819 cumulative proximity contacts compared to only 201 in week 10. 

Similarly, while increases in isolation were not consistent across the study period, 28% of week 

9’s iEpi nodes were isolates in week 9 and 38% in week 10. These levels of recorded contact and 

isolation could represent a true reduction in contact between iEpi participants towards the end of 

the winter semester, but the stability in the network size and isolates in RN3-RN10 suggests that 

this may not be the case. It instead likely reflects, at least in part, fatigue and lowered compliance 

or acceptance of iEpi. We do however note that because an iEpi record of a contact event 
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required two active apps, we cannot examine whether this reduced iEpi participation occurred 

differentially across participants. Although we were unable to estimate the contributions of each 

reason for mis-match between report and sensor edges due to small sample sizes, we suspect that 

differing contact definitions did not play a larger part than iEpi compliance, unlike previous 

short-term comparison studies that hypothesized that different contact definitions explained up to 

86% of reported but not sensed contacts (185). 

 

Conversely, there are a number of scenarios in which a proximity contact might be recorded by 

iEpi but not reported on a weekly contact survey. In order for an edge to be present in an iEN but 

not the corresponding week’s RN, the proximity contact must have either: 1) not have fit the 

definition of face-to-face contact; or 2) fit the definition of face-to-face contact and both 

participants did not report the contact on a weekly survey. In the case of different contact 

definitions, we can imagine proximity contacts that were not “face-to-face;” these iEpi recorded 

contacts could have occurred across walls or between floors, or been recorded when two 

participants were in the same room or area of campus. Previous studies have yield a wide range 

of percentages of sensor contacts that were also reported (4% (187); 15% (185); 41% (184)). We 

found that the percentage of iEpi edges that were also reported on a given weekly survey was 

fairly low but it did increase over the study period: 2.69% in week 3; 15.42% in week 10. 

However, we should again note that overall sensor-captured contacts precipitously dropped over 

the study period, and the absolute number of iEpi contacts that were also reported remained at 51 

or less across the study period.  

 

It is difficult to discern the contributions of contact definition differences, recall issues, and 

nonresponse that resulted in iEpi to Reported disagreement. Previous studies estimate that 

approximately 60% of non-report of sensor contacts were due to contact definition differences 

and not under-reporting, or that underreporting accounted for 30-50% of discrepancies between 

sensor and reported networks (185,187). However, our data did not allow for direct calculation 

of this percentage. Importantly, we can clearly see that iEpi contacts that were also reported on 

weekly surveys by at least one participant had longer cumulative weekly durations than iEpi 

contacts that did not have corresponding reports. This result suggests that recall played a 

substantial role in reporting accuracy, with more time in close proximity together over the course 
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of a given week increasing the likelihood of survey report(s). If this is the case, we can imagine 

that shorter iEpi contacts that were also reported on a survey might represent “important” 

contacts in a given participant’s personal network, as they remained memorable despite their 

short duration. Alternatively, the iEpi recorded cumulative duration may not be an accurate 

reflection of the true cumulative duration of contact between two individuals, if one or both 

individuals did not have the app active during portion(s) of their time together. Recall could also 

be dependent on when the contact took place relative to when a participant completed the weekly 

survey; “distance” between reporting and contact may modify the effect of duration on reporting 

probability. For example, while longer duration contacts may have a high probability of report 

regardless of the number of days between contact and survey completion, the probability of a 

report of shorter contacts may increase as the number of days between contact and survey 

completion decreases (e.g., a participant who completes the contact survey on Saturday might be 

more likely to report a 5 minute face-to-face contact that occurred on the previous day (Friday) 

than a 5 minute face-to-face contact that occurred on the previous Monday.  

 

Notably, the Reported networks were fairly consistent across the analyzed study period in terms 

of node centrality and network structure, suggesting consistent participation and engagement in 

the weekly surveys over time. Taken in addition to the relatively high percentages of isolates, it 

appears that survey fatigue was minimal but that there was a segment of the study population that 

did not actively participate in any weekly surveys. This group however, does not appear to have 

had similarly low engagement with iEpi, as shown in the aggregate degree comparisons (Figure 

3.4), as participants who were isolates in the all eight weekly Reported Networks had a wide 

range of iEpi aggregate degree.  

 

Previous sensor measurement studies found high acceptance of wearable sensors in the short 

term (187,195); however, these results do not reveal the acceptability of sensors over a longer 

period. Given the little we know about network stability, investigating how to best measure not 

only static networks, but longitudinal networks, is an important avenue of research. iEpi is the 

first multi-week, continuously recording social network sensor study of which we are aware. 

Given research on longitudinal participation and contact reporting, we expected survey fatigue or 

panel conditioning to reduce the numbers of reported contacts over time (169,264,265), which 
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we did not observe, but we did not have an a priori hypothesis regarding long-term sensor 

acceptability.  Although iEpi participants exhibited high engagement and acceptance in the early 

weeks of the study (based on the high numbers of contacts and mean degree), compliance and 

engagement dropped significantly over time. Given the length of the iEpi study period (up to 9 

weeks for participants who picked up their device at the first deployment meeting), it is 

reasonable to assume that the undergraduate participants began to lose interest in the study or 

became forgetful about keeping the device’s battery charged and the app active over the lengthy 

study period. However, we expect that acceptance and ease of app-based data collection may be 

higher now than in 2013, and will likely continue to improve given ever-improving mobile 

battery life, increasing use of individual wearable sensors (e.g., Fitbit#, Apple watch#) 

(271,272), and the overall ubiquity of in mobile devices in daily life.   

 

This study was limited in several ways. First, the two different data collection methods’ differing 

granularities and sampling frequency required us to aggregate the iEpi data, thus resulting in the 

loss of detailed contact data. We additionally reduced our datasets by restricting networks 

according to iEpi activation dates. However, both the aggregation and matching were necessary 

to maximize congruence in terms of time scale and participant data. In these analyses, we 

characterized iEpi edges according to cumulative weekly contact duration, but there are a wealth 

of other possible collapsed measures by which to weight iEpi that could provide additional 

insights, such as number of contacts per week, longest individual contact duration per week, or 

number of days of contact per week.  The iEpi data was also limited by allowing participants to 

“snooze” their data collection, which also then impacted the contacts captured by any other iEpi 

participants with whom they had contact while on “snooze.” “Snoozing” while important for 

participant privacy, likely impacted the amount of contact data iEpi collected over the study 

period (as did the app’s battery usage). Unfortunately, the iEpi dataset did not contain 

information about when the app was active or “snoozed,” or when the device was powered off. 

We also acknowledge the limitations inherent in self-reported contacts, particularly panel 

conditioning and recall issues, which likely impacted the density and node characteristics of the 

observed Reported Networks, in addition to agreement with the iEpi Networks. However, 

reciprocal reporting does reduce the impact of nonresponse and recall on the measured network 

(181). Additionally, combining contact searches with suggested possible contact lists on the 
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weekly surveys may have improved recall and/or facilitated higher reporting of repeated contacts 

(although it may have also added spurious contacts to the networks). The issue of recall is 

especially relevant given this study’s survey frequency; we suspect that the accuracy of reported 

contacts could be improved in future studies with more frequent surveys or real-time reporting, 

possibly in paper or mobile device-based diaries, although these might prove burdensome in long 

term studies. Also, as noted, measurement error (missing contacts) could have occurred if 

participants did not know each other by name. One potential solution could be to incorporate a 

photograph roster of participants into web-based contact surveys (while acknowledging that this 

might raise privacy issues). Indeed, a photo-based contact diary or survey could also serve to 

“jog” participants’ memories and reduce recall bias in contact reports, much like the pre-

populated lists of possible contacts, especially for surveys spanning longer time periods. 

 

In the future, we plan to compare the results of infectious disease transmission simulations run 

on the iEpi and Reported networks (as well as a combination of the two) in order to assess the 

impacts that the two network measurement methods have on predicted transmission patterns. 

Mastrandrea and Barrat investigated this topic and found that if structural similarities were 

identified in direct comparisons of networks observed using different data collection methods, 

self-reported contact data could be systematically modified and used as a proxy for more detailed 

sensor data in transmission modeling (195). Although we did not identify any structural 

similarities found across the iEpi and Reported networks, Mastrandrea and Barrat’s methods, as 

well as network data error studies (see examples in 17,18), provide a starting point for our 

investigations into network transformation and edge imputation in order to more accurately 

estimate transmission.  

 

Contact diaries have long been known to under-estimate contact patterns (161,170,177) and the 

promise of sensor-based network measurement is alluring. However, it may be that the 

practicalities of each method mean that neither data collection method provides a true reflection 

of real-world contact patterns. Given the impossibility of externally validate either dataset (172), 

we must rely on comparisons and conjecture in order to distill structurally and functionally 

meaningful contacts from high-resolution sensor data and to impute or estimate missing contacts 

in sensor and survey data. However, as shown in this study, network comparisons may not result 
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in a clear preference for one method, but do give researchers the opportunity to better understand 

how to improve the quality of self-reported contact data, which may be a more universally 

feasible data collection method. Overall, quantifying agreement between measured networks can 

shed light on the mechanisms that produce these differences, which can then inform future study 

design. For instance, given that recall may have played a part in underreporting of short contacts, 

researchers could prompt participants to think about their brief contacts. Similarly, if sensors 

appear intrusive or are less engaging over time, researchers could switch to data collection 

methods partway through a longitudinal network study. Generally, our results suggest that while 

there was some overlap and duplication of contacts across sensor and reported network 

measurements, the most complete network would be achieved by combining the iEpi and 

reported data.  
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3.5 Tables 
Table 3.1 Activation dates (2013) for devices pre-loaded with the iEpi software app to iEpi study 
participants (N=103). Participants were included in social networks starting with the first full study week 
that they carried an active iEpi device (i.e., the first week after receiving and activating their iEpi device).  
Devices were considered activated on the date that the device first recorded an iEpi contact event. 

iEpi device 
activation date N (%)a 

Included in 
networks 

beginning with 
week: 

January 28 59 (57.28) 3 
February 4 20 (19.42) 4 
February 7 1 (0.97) 4 
February 8 5 (4.85) 4 
February 12 14 (13.59) 5 
February 20 1 (0.97) 6 
February 21 1 (0.97) 6 
February 22 1 (0.97) 7 
February 27 1 (0.97) 7 

a Number (Percent of all 103 consented iEpi participants) 
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Table 3.2 Summary of network construction and network statistics and characteristics evaluated in the 
iEpi and Reported Network comparisons (2013). 
 

Weekly Networks (Weeks 3-10) Aggregate Networks 
 

Reported iEpi Reported iEpi 

Nodes Participants of iEpi 
sub-study; included 
in networks 
beginning with first 
full study week after 
individual iEpi 
device activation 

Participants of iEpi 
sub-study; included 
in networks 
beginning with first 
full study week after 
individual iEpi 
device activation 

Participants of 
iEpi sub-study 

Participants of 
iEpi sub-study 

Edge data 
source 

Weekly surveys iEpi-app recorded 
contact events, 
aggregated by week 

Weekly 
surveys, 
aggregated 
over study 
weeks 3-10 

iEpi weekly 
contacts, 
aggregated 
over study 
weeks 3-10 

Weight None Summed, total 
contact duration for a 
given week 

Number of 
weeks of 
contact 

Number of 
weeks of 
contact 

Reciprocity Contacts reported by 
both dyad members: 
edge is identified as 
“reciprocal”; contacts 
reported by one dyad 
member only: edge is 
“unreciprocal.” 

None None None 

Network 
counts 

Nodes, edges, 
isolates 

Nodes, edges, 
isolates 

Nodes, edges, 
isolates 

Nodes, edges, 
isolates 

Global 
network 
characteristics 

Density, transitivity, 
clustering, degree 
assortativity, 
reciprocity 

Density, transitivity, 
clustering, degree 
assortativity, mean 
edge weight 

Density, 
transitivity, 
clustering, 
degree 
assortativity, 
mean edge 
weight 

Density, 
transitivity, 
clustering, 
degree 
assortativity, 
mean edge 
weight 

Node 
assessments 

Degree, indegree, 
outdegree 

Degree Degree Degree 
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Table 3.3 Pairwise distribution dependence analyses between corresponding iEpi and Reported Network 
distributions assessed via Kendall’s tau (τ) coefficient. 

Reported Network Degree Distribution iEpi Network Degree Distribution 

Weekly network (3-10)  Weekly network (3-10) 
Weekly network (3-10) Weekly durationa restricted networks (3-10)b 
Weekly network indegree (3-10) Weekly network (3-10) 
Weekly network indegree (3-10) Weekly durationa restricted network (3-10)b 
Weekly network outdegree (3-10) Weekly network (3-10) 
Weekly network outdegree (3-10) Weekly durationa restricted network (3-10)b 
Aggregate network  Aggregate network 

a ) = 0H>0.4)b4.c40bℎ3.9:.d2/2ef30N4.c44geh.d913fd3.)2:f3091, 01.ℎ92:5. 
b Edges restricted to: ) > 2.5./012345; ) ≥ 0.25.ℎ92:5; ) ≥ 0.50.ℎ92:5; ) ≥ 1.ℎ92: 

 
 
 
Table 3.4 Pairwise distribution dependence analyses between corresponding iEpi and Reported Network 
distributions assessed via adapted Cohen’s Kappa (κ). 

Network A Network B 

Weekly Reported Networks (3-10)  Weekly iEpi Networks (3-10) 
Weekly Reported Network (3-10) Weekly iEpi durationa restricted networks (3-10)b 
Reported Aggregate network iEpi Aggregate network 

a ) = 0H>0.4)b4.c40bℎ3.9:.d2/2ef30N4.c44geh.d913fd3.)2:f3091, 01.ℎ92:5 

b Edges restricted to: ) > 2.5./012345; ) ≥ 0.25.ℎ92:5; ) ≥ 0.50.ℎ92:5; ) ≥ 1.ℎ92: 
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Table 3.5 Self-reported demographic characteristics of iEpi study participants (2013).a 

Characteristic  iEpi participants 
No. of participants  103 (17.5) 
Age  18.7 (0.1)d 
Gender Female 68 (66.0) 
 Male 35 (34.0) 
Race White 62 (61.4) 
 Non-Whiteb 39 (38.6) 
U.S. citizen Yes 99 (96.1) 
 No 4 (3.9) 
Employed during Winter 2013 semester Yes 59 (62.8) 
 No 35 (37.2) 
Parental education < College graduate (49.0) 
 > College graduate 51 (51.0) 
Religion Christian 50 (53.8) 
 Non-Christian 15 (16.1) 
 Non-religious 28 (30.1) 
a Data are N (%) or mean (SE). 
b Black, Asian, Native Hawaiian or other Pacific Islander, American Indian, Alaskan Native, Multi-racial, or other 
race. 
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Table 3.6 Network characteristics and mean node characteristics for the Reported social networks by study week (2013). 

 Study week 
Characteristic 3 4 5 6 7 8 9 10 
Nodesa 59 85 99 102 103 103 103 103 
Edgesa 24 61 76 72 75 76 82 79 
Dyad reciprocityb,c  0.46 0.46  0.41 0.46 0.37 0.43 0.45 0.39 
Density 0.014 0.017 0.016 0.014 0.014 0.015 0.016 0.015 
Transitivity 0.47 0.65 0.60 0.63 0.68 0.64 0.61 0.65 
Degreeb,d 0.81 (0.89) 1.44 (1.44) 1.54 (1.46) 1.41 (1.46) 1.46 (1.56) 1.48 (1.59) 1.59 (1.54) 1.53 (1.61) 
Indegreeb,e 0.59 (0.72) 1.05 (1.16) 1.08 (1.13) 1.03 (1.18) 1.00 (1.20) 1.06 (1.34) 1.16 (1.22) 1.07 (1.21) 
Outdegreeb,f 0.59 (0.78) 1.05 (1.28) 1.08 (1.32) 1.03 (1.28) 1.00 (1.31) 1.06 (1.34) 1.16 (1.36) 1.07 (1.32) 
Isolatesa 25 (42.37) 29 (34.11) 31 (31.31) 36 (35.29) 38 (36.89) 37 (35.92) 33 (32.04) 34 (33.01) 
a N or N (%) 
b Mean (standard deviation (SD)) 
c Proportion of dyads where both members (participants) reported their face-to-face contact on a given weekly survey. 
d Unique neighbors connected to a participant. 
e Unique neighbors who named a participant as a contact on a given weekly survey. 
f Unique neighbors a participant named as a contact on a given weekly survey. 
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Table 3.7 Network characteristics and mean node characteristics for the iEpi sensor social networks by study week (2013). 

 Study week 

 3 4 5 6 7 8 9 10 
Nodesa 59 85 99 102 103 103 103 103 
Edgesa 819 504 517 550 344 356 274 201 
Edge weightb,c 0.64 (1.44) 0.98 (2.71) 1.02 (2.76) 1.04 (2.71) 0.80 (1.80) 1.08 (2.76) 1.14 (2.82) 1.05 (2.41) 
Density 0.479 0.141 0.107 0.107 0.066 0.068 0.052 0.038 
Transitivity 0.86 0.27 0.28 0.26 0.23 0.24 0.24 0.25 
Degreec,d  27.76 (15.10) 11.86 (6.28) 10.44 (6.94) 10.78 (6.45) 6.68 (5.42)  6.91 (5.38)  5.32 (4.98) 3.90 (4.17) 
Isolatesa 0 3 (3.53) 11 (11.11) 7 (6.86) 19 (18.45) 13 (12.62) 29 (28.16) 39 (37.86) 

a N or N (%) 
b Cumulative contact duration (hours per week) 
c Mean (SD) 
d Unique neighbors connected to a participant.  
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Table 3.8 Characteristics of the aggregated iEpi and Reported social networks (2013). Each aggregate 
network contains all dyads present in at least one of the individual weekly networks (within each network 
measurement method) for study weeks 3-10. Edges in each aggregated network were weighted by the 
number of iEpi or Reported weekly networks a given dyad was present.  

 Aggregated network 

 Reported iEpi 

Nodesa 103 103 
Edgesa 121 1977 
Edge weightb,c 4.50 (2.46) 1.80 (1.35)  
Density 0.023 0.376 
Transitivity 0.68 0.59 
Degreeb,d 2.35 (2.00) 38.39 (18.22) 
Isolatesa 24 (23.30)  0 

a N or N (%) 
b Mean (standard deviation (SD)) 
c Number of weekly networks of a given network collection method containing a given edge (dyad).   
d Unique neighbors connected to a participant across the aggregated study weeks. 
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Table 3.9 Numbers of edges (or dyads) in each of the weekly iEpi and Reported Networks (2013), 
according to their cumulative weekly contact duration (in hours). Reported network edges that were not 
also captured by iEpi are seen in the “Not detected” column.  Matched edges and edges not detected by 
iEpi or not reported on weekly surveys.   
  

iEpi Weekly Network 
 

  
Cumulative weekly proximity contact duration 

recorded by iEpi appa 

 

Study 
week 

Weekly Reported 
Network 

Not 
detected 

2.5 
min.  

2.5 
min.-

0.25 hr.  

0.25-
0.50  

0.50-1   > 1 Total 

3 Not reported NA 32 102 284 341 38 797 
 
Reported contacts (dyads) 2 0 1 2 6 13 24 

4 Not reported NA 107 183 59 62 50 461 
 
Reported contacts (dyads) 18 1 1 3 7 31 61 

5 Not reported NA 110 186 65 50 58 469 
 
Reported contacts (dyads) 28 2 5 2 7 32 76 

6 Not reported NA 118 199 52 71 59 499 
 
Reported contacts (dyads) 21 4 6 3 7 31 72 

7 Not reported NA 76 119 46 31 35 307 
 
Reported contacts (dyads) 38 1 3 4 8 21 75 

8 Not reported NA 100 102 41 38 35 316 
 
Reported contacts (dyads) 36 2 4 4 4 26 76 

9 Not reported NA 52 93 36 27 30 238 
 
Reported contacts (dyads) 46 0 7 3 7 19 82 

10 Not reported NA 41 63 22 19 25 170 
 
Reported contacts (dyads) 48 1 4 1 7 18 79 

a Unless otherwise noted, duration is in hours per week.  
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3.6 Figures 

Figure 3.1 Flowchart of data processing, data matching, and network construction for comparisons 
between the iEpi Network(s) and Reported Network(s) (2013). Note that many participants attended one 
of two iEpi information session during the second study week, at which time they received their iEpi 
activated device and were given instructions on how to use the app. These large-scale meetings 
contributed the majority of the contacts removed in the ‘Data Matching’ step, as only contacts from the 
first full study week after iEpi activation were included in networks. 
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Figure 3.2 Cumulative weekly duration for all edges in iEpi weekly networks, and overall (2013). This 
distribution was used when determining threshold durations for network and degree comparisons by 
cumulative weekly contact duration (i.e., iEpi edge weight). 
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Figure 3.3 Visualizations of the weekly (A) and aggregated (B) networks constructed from the iEpi 
recorded sensor data and reported weekly survey data (2013). Nodes are in identical locations in each 
visualization, starting with the first weekly network after individual iEpi device activation.  
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Figure 3.4 Reported and iEpi Network characteristics across the study period and in aggregate (2013). 
The blue dashed line and diamonds show iEpi Network characteristics across the analyzed study period 
and the red line and circles show the same characteristics and time period for the Reported Networks. 
Panel A reflects network density over time, Panel B: transitivity, and Panel C shows the mean node 
degree (and standard deviation (SD)).  
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Figure 3.5 Individual node’s aggregate iEpi and aggregate Reported Network degree comparisons, with node color and size indicating the degree 
in the Aggregate iEpi Network (for ease of node visualization, the edges are greyed out).  
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Figure 3.6 iEpi degree distributions and Reported degree, indegree, and outdegree distributions across the study period (2013). Note that there are 
differing numbers of nodes in networks by week.  
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Figure 3.7 Level of dependence or monotonic association (using Kendall’s tau) between iEpi Networks degree and Reported Networks degree, 
indegree, and outdegree across the study period (2013). Bolded markers indicate p<0.05, representing a level of dependence significantly different 
from 0.  
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Figure 3.8 Degree distributions for the full iEpi network and iEpi networks with edges restricted to those above the weekly cumulative duration 
thresholds compared to the Reported degree, indegree, and outdegree distributions across the study period (2013).  
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Figure 3.9 Level of dependence or monotonic association between the degree distributions for the full iEpi network and iEpi networks with edges 
restricted to those above the weekly cumulative duration thresholds compared to the Reported degree, indegree, and outdegree distributions across 
the study period (2013). Bolded markers indicate p<0.05, representing a level of dependence significantly different from 0. 
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Figure 3.10 Edges in the iEpi and Reported Networks according to whether they were captured by one or both network measurement methods 
(2013). The percentage of matched edges increases in the iEpi Network (left) and decreases in the Reported Network (right). 
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Figure 3.11 iEpi edges’ weekly cumulative contact duration by edge matched status for all edges across 
all study weeks (A) and broken down by study week (B) (2013). The mean cumulative weekly duration of 
all iEpi edges without corresponding Reported edges was 3.80 hours/week (SD: 4.40) whereas the mean 
duration for edges that were also reported on a weekly survey was 0.62 hours/week (SD: 1.91).  
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Figure 3.12 Distributions of iEpi edges’ weekly cumulative contact duration according to edge matching status across the study period (2013). iEpi edges without 
matching reports on a weekly survey had fairly normal duration distributions whereas the duration distribution for edge with corresponding reports on a weekly 
survey were skewed towards longer cumulative weekly durations.   
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Figure 3.13 Global network agreement between weekly and aggregate iEpi and Reported Networks over the analyzed study period (2013), as measured with the 
adapted Cohen’s Kappa test of inter-rater agreement. 
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Chapter 4! 
Attribute Assortativity Sensitivity, Uncertainty, and Hypothesis 

Testing 

4.1 Introduction 
Social network data, sociocentric network data in particular, is by definition a set of dependent 

observations, with each individual in the network’s presence and location enmeshed in the other 

network member’s data; the simultaneous influence and selection processes that govern social 

networks invalidate traditional statistical methods (143). As a result, uncertainty, hypothesis 

testing, and data measurement error issues have not been fully addressed in public health social 

network literature, particularly for person-to-person contact networks (203). Researchers have 

begun to address the need for these methods by investigating the robustness (i.e., sensitivity) of 

network properties in the presence of measurement errors (206,209,273–276). However, few 

have extended these methods into uncertainty quantification and confidence interval 

construction, (276) and thus the reliability (i.e., the coverage of the confidence interval) of 

observed network characteristics is typically left un-estimated. Similarly, we have not seen any 

sensitivity analysis methods detailed in the literature that identify potential biases in network 

statistics due to participant covariate measurement error rather than measurement error in the 

sampled network structure. And finally, there are limited means of hypothesis testing in social 

network analysis (172).  

 

Social network data consists of nodes, or individuals, interconnected by edges, or interactions or 

relationships. In empirical real-world networks, the network boundary, or the set of individuals 

in an observed social network, is defined by the enrollment approach, and the set of connections, 

or edges, within the defined boundary is measured with contact diaries, surveys, and/or 

electronic monitoring of some kind (277). The inherent dependencies within network data, in 

addition to the non-representative sampling (e.g., snowball sampling) typically used when 
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measuring empirical person-to-person contact networks, impact the validity of parametric 

statistical methods and hypothesis testing in social network analysis (210). As such, 

nonparametric methods should be used in social network analysis. In particular, resampling or 

permutation methods are well-suited to account for non-independent data and biased group 

compositions (278,279). Generally, if a dataset violates the independence assumption required by 

traditional parametric statistical methods, resampling methods are used to systematically  

permutate an aspect of the observed data resulting in a “random” pattern (280) that can be 

compared to the observed results (281).    

 

Measurement error in social network studies can be categorized as “traditional” survey 

measurement errors, including nonresponse, misclassification, and so forth, or network data 

measurement errors, i.e., errors in the data that describes the connections between nodes 

(participants). “Traditional” error and bias in observational studies has oft been addressed with 

sensitivity analyses that test a model’s underlying assumptions to determine what impact a given 

variable (and its uncertainty) has on the outcome of interest (282). Thus, sensitivity analyses can 

estimate the robustness (or extent of bias) of a statistic in the presence of any hypothesized 

unmeasured confounding or effect by comparing results from the original analysis to results in 

which deliberate violations of the original assumptions were introduced. For example, one can in 

principle test the robustness of the results under the assumption of measurement accuracy by 

introducing known amounts of measurement error into the analyses. However, without validation 

data (e.g., previous studies or duplicate measurements), it is difficult to hypothesize the types and 

extent of errors and confounding in the data. This is especially true of social network data, where 

the underlying “true” network is generally unknown and may be impossible to estimate (172).  

  

Given the likelihood that the real world network data is incomplete (202,208,209) and 

underestimates the “true” network’s connectivity (179,180), we can assume that generally, 

individual degree assessments are also underestimated (179,180,206). In fact, network 

measurement error, while often ignored in social network analyses, is a non-trivial issue 

(203,205,206,276,283,284). Explorations of network data accuracy and its effects on a few 

network statistics (e.g., centrality) have begun but are still underdeveloped overall (205). 

Different types of network data error appear to have differing impacts on network statistics and 



 99 

characteristics, depending on the error type (206), the statistic or characteristic of interest (206), 

and the “true” network topology (172); it also may be impossible to separate error’s sources and 

define its effects (209). In fact, as the “ground truth” network often cannot be known, we have no 

way of verifying or testing the veracity of the observed network (172) and therefore should take 

measures to account for possible multiple missing data effects. As such, quantifying uncertainty 

across a variety of data accuracy scenarios (e.g., type and prevalence of different errors) is an 

important step in determining how to calculate reliable estimates, as well as how much faith we 

should entrust in reported social network results. In turn, these determinations, in combination 

with a priori hypotheses regarding the “true” network, can (and should) inform network 

sampling and data collection methods (172).  

 

Assortativity is an important social network characteristic that describes a network’s homophily, 

or clustering according to a particular trait. Positive assortativity, or values between zero and 

one, indicates that contacts (edges) between individuals with similar trait(s) are more common in 

the network than contacts between dissimilar individuals, and disassortativity (negative 

assortativity) indicates preferential contact patterning between dissimilar individuals. 

Assortativity is particularly common to social networks (as opposed to other types of networks, 

e.g., animal, neural) (152,153), and describes an interaction between individual-level 

demographic or behavioral attributes and network topology and therefore is a particularly 

relevant network statistic for public health research. Importantly, Newman notes that assortative 

mixing can have a material effect on the robustness and behavior of networks and that models 

and analyses that do not account for assortative mixing can substantially misrepresent systemic 

effects (17).  However, much like other aspects of network analysis, observed assortativity in 

empirical networks may be prone to bias. While observed assortativities can overestimate true 

assortativity due to sampling and data collection methods (152), it is unknown how other sources 

of measurement error can impact perceived assortativity. Given that a range of assortativities 

from any given sample are possible due to the variation exhibited by random networks 

(153,155),  nonparametric randomization approaches seem a promising direction for examining 

error and uncertainty. However, we are unaware of studies that have applied nonparametric 

permutation methods to assortativity hypothesis testing to address the component causes of 

assortative mixing.  
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In order to fill these literature gaps, we have systematically investigated the observed 

assortativity of a large social network of undergraduate students in a secondary social network 

analysis of contact data collected as part of the eX-FLU study (174). The goal of this work was 

to: 1) develop sensitivity analysis methods to address the effects of potential measurement error 

in individual demographic and behavior data due to nonresponse and misclassification on 

observed assortativity; 2) to detail multiple resampling methods appropriate for quantifying 

uncertainty in observed assortativity; and 3) to quantify the probability that the observed 

assortativity is due to nonrandom associations (i.e., hypothesis testing), by clearly defining and 

implementing appropriate null models.   

4.2 Methods 

4.2.1 Participant self-reported covariates 
We investigated network assortativity for three self-reported binary characteristics (referred to as 

“covariates” throughout this paper in order to distinguish them from network and node 

characteristics, such as degree), in the eX-FLU Year 2 study population: alcohol use, ethnicity, 

and gender. Baseline alcohol was reported on the first weekly survey of the study period. 

Participants reported their gender and ethnicity during enrollment, which was ongoing from the 

previous fall semester (2012) and through the start of the study period in the winter 2013 

semester. The survey questions from which this data was abstracted can be found in Appendix 

A.2. Participants’ alcohol use was dichotomized into baseline drinkers and non-drinkers based on 

their self-reported current alcohol use (see Chapter  2.2 for details), male or female, as reported 

on the enrollment survey, and as self-identifying their ethnicity as either Hispanic or Latino or 

non-Hispanic or Latino. These three variables were selected in order to capture: 1) a range of 

nonresponse levels in the dataset (alcohol use: 28%, ethnicity: 10%, and gender: 5%) and 2) both 

expected differential and non-differential misclassification, with respect to these covariates 

(differential: alcohol use, non-differential: gender and ethnicity). 

4.2.2 Network construction 
To avoid complicating our assortativity analyses with multi-edges, we constructed a simple 

digraph (directed) graph using data from the first weekly contact survey of eX-FLU Year 2’s 
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study period only. All Year 2 enrolled participants were included in the network as nodes and 

edges were drawn between participants who reported face-to-face contact with each other on this 

first weekly contact survey. Edges were directional, emanating from the participant who reported 

the contact and directed towards the participant with whom the contact was reported. This 

allowed for a maximum of 2 edges between a pair of participants (i.e., a dyad), given that both 

participants reported the contact (i.e., reciprocal edges). If the contact was only reported by one 

dyad member, the single edge within the dyad was unreciprocal.  

4.2.3 Network and node characteristic analyses  
We counted the numbers of nodes, edges, and isolates (i.e., nodes without any contacts) in the 

social network and measured the network’s density, transitivity, and global dyad reciprocity. We 

also assessed individual node-level centrality measures and calculated their network means, 

including: degree, indegree, outdegree, and node-level dyad reciprocity (see Chapter 1.2.2 for 

definitions of these measures). The network was visualized using Visone 2.17 (Konstanz, 

Germany).  

 

For each of the three identified participant self-reported binary covariates (alcohol use, ethnicity, 

and gender), we assessed the distributions of the node characteristics (degree, indegree, 

outdegree, and node-level dyad reciprocity across both binary choices; i.e., drinker/non-drinker, 

male/female, and Hispanic/non-Hispanic), as well as for participants missing data for each 

covariate. Statistical differences in the distributions between the two groups with data (e.g., male 

and female), as well as differences between participants with and without data for each covariate 

were tested using bootstrapped resampled differences in means. In each resample, the 

distribution of each network characteristic was sampled with replacement, using the original 

sample sizes, and a new difference in means was calculated. The P-value represents the 

proportion of resampled differences in means that were as or more extreme than the difference in 

means assessed from the original study population without resampling.  

4.2.4 Observed attribute assortativity 
Alcohol use, ethnicity, and gender assortativities for were assessed for the measured social 

network (see Chapter 1.2.5 for detailed information on assortativity), and for each attribute 

assortativity, sensitivity analyses, uncertainty quantifications, and hypothesis testing were 
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conducted. Note that we refer to assortativity as “attribute assortativity” throughout this paper in 

order to distinguish it from degree assortativity, a commonly calculated network statistic 

describing preferential attachment according to degree (57). Network visualizations highlighting 

attribute assortativities for each covariate were created using Visone 2.17 (Konstanz, Germany). 

4.2.5 Attribute Assortativity sensitivity analyses 
 In order to assess the potential impacts that nonresponse or differential and non-differential 

misclassification of individual-level self-reported demographic or behavioral data could have on 

network attribute-based assortativity, we developed and conducted two types of sensitivity 

analyses using randomization methods.  

 

Nonresponse sensitivity analysis 

Given that attribute assortativity does not account for missingness in node data, it is highly likely 

that nonresponse levels will measurably impact a network’s observed attribute assortativity. To 

assess the impact of participant non-response, or missing data, on observed assortativities in the 

social network, we designed and conducted sensitivity analyses for alcohol use, ethnicity, and 

gender assortativity. Generally, the goal of these analyses was to compare the observed attribute 

assortativity to the mean attribute assortativity that would have occurred in a network without 

any missing data for a given covariate, across the range of potential distributions of said 

covariate. For each covariate, we identified participants with and without missing data. First, all 

participants with missing data were assigned a single value for the given covariate, maintaining 

the proportion of a given covariate for the total study population, and a new observed attribute 

assortativity was calculated and recorded for this network with complete covariate data. Next, we 

systematically randomized possible distributions of the covariate across the population segment 

with missing data, and each distribution was randomly assigned 10,000 times. For each 

randomization, a new attribute assortativity for the network without any missing data was 

calculated and recorded.  The mean and standard deviation of generated attribute assortativities 

for each distribution of the covariate was plotted.  

 

For example, 58 participants, or 9.83% of the population, was missing ethnicity data, 27 (4.58%) 

identified as Hispanic or Latino, and 505 (85.59%) self-identified as neither Hispanic nor Latino. 
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We first assigned all 9.83% of participants without ethnicity data as being of Hispanic origin, 

thus maintaining the segment of the non-Hispanic population at 86% and raising the Hispanic 

percentage to 14.41%. Attribute assortativity for this new non-missing data network was 

recorded and plotted. Next, we increased the overall percentage of non-Hispanic participants by 

small increments by randomly selecting nodes with missing data to identify as Hispanic 

(assigning the remaining missing data nodes a non-Hispanic ethnicity). The attribute assortativity 

was assessed and recorded for each increment. The procedure was repeated for each increment 

10,000 times, and the mean and standard deviation of those randomizations was plotted. 

 

Misclassification sensitivity analysis 

We investigated the potential impacts of differential and non-differential misclassification due to 

under- or mis-identified alcohol use, ethnicity, and/or gender on the network’s observed 

assortativities using randomization-based sensitivity analyses similar to those described above 

for potential nonresponse bias. We first hypothesized whether we expected misclassification of 

our binary variables would likely be differential or not. For ethnicity and gender, we 

hypothesized that levels of mis-reporting gender and ethnicity would be non-differential, e.g., 

men and women would have similar levels of misclassification. For alcohol use, we 

hypothesized that drinking under-reporting would most likely be confined to non-drinkers, or 

differential with regards to alcohol use. We additionally hypothesized that participants under the 

legal drinking age of 21 might be more likely to underreport their alcohol use than self-identified 

non-drinkers ages 21 and over, so we conducted two analyses for alcohol use: in the first, we 

assessed the potential effects of misclassification within all non-drinkers, and in the second, the 

potential effects of misclassification within underage non-drinkers.  

 

Non-differential misclassification sensitivity analysis 

For variables with hypothesized non-differential misclassification, we performed the following 

randomization procedures for the sensitivity analysis:  

1.! While keeping the list of nodes with missing data constant, we randomly changed or 

reversed responses (classifications), across a specified percentage of nodes in each of the 

two groups (e.g., randomly changing the gender of 5% of self-reported male participants 

to female and 5% of self-reported female participants to male) and reassessed the 
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attribute assortativity after each of the 10,000 randomizations.  

2.! For each randomization, we recorded the new attribute assortativity and plotted the mean 

and standard deviation of observed assortativities for each new, randomly generated 

distribution of the variable of interest. We repeated each of the 10,000 randomizations for 

a range of misclassification percentages, i.e., we reassigned gender to a random sample of 

5% of male and 5% of female participants, then 10%, 15%, and so forth, recording the 

mean attribute assortativity of 10,000 randomizations for each potential level of 

misclassification.  

 

Differential misclassification sensitivity analysis 

For variables with hypothesized differential misclassification (alcohol use), we performed the 

following randomization procedures for the sensitivity analysis:  

While keeping the list of nodes with missing data constant, we randomly changed or reversed 

responses (classifications), across a specified percentage of nodes in the group with hypothesized 

misclassification (e.g., randomly changing 5% of self-reported non-drinkers to drinkers) and 

reassessed the attribute assortativity after each of the 10,000 randomizations.  

For each randomization, we recorded the new attribute assortativity and plotted the mean and 

standard deviation of observed assortativities for each new, randomly generated distribution of 

the variable of interest. We repeated each analysis for a range of non-differential 

misclassification percentages. 

4.2.6 Attribute assortativity uncertainty 
In addition to assessing the direction and magnitude of potential bias in attribute assortativity 

calculations resulting from individual data measurement error, we also investigated and 

quantified the effect of network data sampling on attribute assortativity. We calculated estimated 

endpoints of 95% confidence limits of the assortativities using bootstrapping and jackknifing 

(285,286). These methods sample or delete random nodes and/or edges, modeling the sampling 

process by resampling the original network to generate a new ‘sampled’ subnetwork. We tested 

these methods across a range of levels of random node and edge deletions.  The goal of these 

network permutations was to determine the range of likely values of attribute assortativity for the 

covariate of interest in the sampled social network, as well as the range of confidence intervals 
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that result from different resampling procedures. In so doing, we addressed the robustness of 

attribute assortativity given two types of potential network measurement errors, specifically node 

or edge deletion (206). We analyzed these two types of error separately and under the 

assumption that errors occurred randomly on the network, acknowledging that in practice: 1) 

there are likely a number of interacting influences that effect network measurement error, and 2) 

real world network data likely contains mix of multiple error types (172). 

 

Jackknifed models 

The jackknife (or deletion) models evaluate the uncertainty in the network data under the 

assumption that a specified proportion of the “true network’s” edges or nodes (selected at 

random) were not observed, and were therefore missing from the dataset.  To quantify the 

uncertainty in observed attribute assortativity, we conducted jackknifed random removal of 

edges and nodes across a range of removal amounts (a single edge/node, 1%, and the range of 5-

100% at 5% intervals), on the eX-FLU week 1 simple digraph. We included the jackknife 

removal of a single edge or node based on the Newman’s recommendation for uncertainty 

calculation using this approach (57). However, given that for medium to large networks (e.g., 

such as the 590-node network considered here), systematic, jackknifed removal of any single 

node or edge would likely produce a negligible 95% confidence interval, we included the range 

of percentage-based jackknife in our analyses. We calculated two sets of 95% confidence 

intervals for alcohol use, ethnicity, and gender assortativities (one set using edges as the removed 

structure and one set using nodes) using following process, repeated 10,000 times:  

1.! Randomly remove X amount of edges or nodes from the observed social network 

(1 edge/node, 1%, and the range of 5-100% at 5% intervals).  

2.! Calculate and record this reduced network’s attribute assortativities for all 

covariates of interest. 

This process yielded empirical distributions of 10,000 assortativities by each of the given 

covariates. The endpoints of the 95% confidence interval (CI) for a given attribute assortativity 

was then defined as the two 2.5% tails of the empirical distribution. 

 

Bootstrapped models 

In theory, bootstrapped models model the original network sampling by resampling the observed 
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data in order to assess the level of error, or uncertainty, in the dataset. We calculated attribute 

assortativity 95% confidence intervals for the three selected covariates using bootstrapped edge 

resampling on the network 10,000 times. For each resampling, a new list of directed edges with 

size equal to the original number of edges, was randomly sampled with replacement from the 

network’s list of edge and added to an empty network containing all nodes in the observed 

network. However, it is important to note that given a simple digraph with a maximum of two 

edges (one in each direction) per dyad, as is the case here, or a simple undirected graph, this 

process results in a in the resampled graph with fewer edges than observed in the original graph, 

as any sampled edge will only be added to the new network once, regardless of how many times 

it was sampled. This therefore means that this bootstrapped edge resampling process is in effect 

the same as the jackknife edge removal process described above, but with a random edge 

removal amount.  

4.2.6 Attribute assortativity hypothesis testing 
In addition to quantifying attribute assortativity uncertainty and robustness given probable 

individual and network measurement error(s), we conducted hypothesis testing for attribute 

assortativity using null models. We hypothesized that the observed assortativities for alcohol use, 

ethnicity, and gender in the observed social network had not arisen by chance and were a result 

of preferential face-to-face contact between similar individuals. In order to test these hypotheses, 

we isolated and quantified the effects of node covariates on network structure above random 

chance using null models. We defined two distinct null models and performed randomization or 

permutation tests using on our observed network and these null models, with the goal of 

quantifying the range of attribute assortativity values (for each covariate) that could have arisen 

by chance.  We implemented each of the two null models by generating “random” networks 

based on the models, in an attempt to isolate the hypothetical effects of the covariate(s) on edge 

formation. In other words, we simulated a range of networks that could have occurred “by 

chance,” given the characteristics of the observed network’s set of nodes or edges. We defined 

our null models to control for either: 1) observed distributions of participant covariates or, 2) 

observed network edges.   

 

Node null models 
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Given the hypothesis that a single node covariate was not associated with edge formation in the 

observed network, we implemented a null model isolating the effects of a single node covariate, 

e.g., gender, on edge formation. This null model was defined as a network with randomly 

allocated values of node covariate of interest (maintaining the overall distribution of the variable, 

including missingness), but identical to the observed network in all other aspects, including 

dyads, and directed edges, and all other node covariates other than the variable of interest.  

 

We conducted the following process 10,000 times for each covariate of interest in order to draw 

distributions of assortativities that could occur by chance, i.e., from the null model, and calculate 

statistical significance levels of our observed attribute assortativities:  

1.! Randomly distribute the observed distribution of the specified covariate (e.g., 

gender) across the nodes in the observed network, maintaining the overall 

distribution of values (e.g., randomly allocate a gender to each node, keeping the 

total number of male and female participants constant across iterations. As nodes 

with missing data for a given covariate are not included in attribute assortativity 

calculations by definition, we incorporated covariate nonresponse levels into our 

randomization scheme in an attempt to account for any confounding by 

nonresponse. We treated missingness as a unique value of the covariate, and 

randomly allocated the covariate’s distribution, including missing values, across 

all nodes.  

2.! Calculate and record the randomly generated network’s attribute assortativity.  

We then plotted the histogram of attribute assortativity frequencies from the randomized 

networks, and calculated the attribute assortativity P-value as the proportion of the distribution of 

randomly generated network assortativities that were as or more extreme than the observed 

network’s attribute assortativity. Using a statistical significance level of 0.05, we rejected the 

null model if more than 5% of the randomized networks exhibited attribute assortativities as or 

more extreme than the observed network, we would then reject the null hypothesis of non-

preferential attachment with respect to the covariate of interest, i.e., an attribute assortativity of 

0.  

 

Edge null models   
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Given the same hypothesis as described above in the node null model hypothesis test, that 

covariates were not associated with edge formation in the observed network, we implemented an 

edge-based null model to isolate the effects of covariates, e.g., a node’s gender, on edge 

formation. This null model was defined as a network containing the observed network’s nodes 

and same density as the observed network, but a randomly generated set of edges drawn from the 

list of possible edges for the observed network, i.e., the complete list of combinations of network 

nodes. In other words, these randomly generated networks had identical nodes (keeping observed 

covariates constant) and density to the observed network, but randomly, not preferentially, drawn 

edges.  

 

We conducted the following process 10,000 times in order to draw distributions of attribute 

assortativities that could occur by chance, i.e., from the null model, and calculate statistical 

significance levels of our observed assortativities:  

1.! Generate a network containing the observed network nodes and no edges. Next, 

randomly select the same number of edges as the observed network from a list of 

possible network edges, or dyads, equivalent to all possible combinations or 

permutations of network nodes. For a directed network, as ours was, this list 

contains a total of |"| ⋅ |" − 1| possible edges from which to draw, where " is the 

number of nodes in the network. For undirected networks, this list would be 

equivalent to all possible permutations of the network’s nodes, of size (|'|⋅|'()|)+ .  
Note that given that the edge-based null model construction maintains the 

observed set of nodes, this null model and hypothesis, in effect, controls for the 

combination of node attributes on edge formation, as opposed to individual 

attributes. Therefore, we can calculate and record all assortativities of interest for 

each generated edge-based null model-network.   

2.! Calculate and record the randomly generated network’s assortativities.  

For each covariate, we plotted the histogram of attribute assortativity frequencies from the 

randomized networks, and calculated the attribute assortativity P-value as the proportion of the 

distribution of randomly generated network assortativities that were as or more extreme than the 

observed network’s attribute assortativity. Using a statistical significance level of 0.05, we 

rejected the null model if more than 5% of the randomized networks exhibited assortativities as 
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or more extreme than the observed network, we would then reject the null hypothesis of non-

preferential attachment with respect to the covariate of interest, i.e., an assortativity of 0.  

4.3 Results 

4.3.1 Network and node characteristics 
Network structure and characteristics of the Year 2 Week 1 simple digraph are shown in Table 

4.1 and the network is shown in Figure 4.1. The network contained all 590 consented participants 

in the eX-FLU study (Year 2). There were a total of 1275 directed edges between them, with a 

global dyad reciprocity of 0.29, i.e., 29% of the contacts in the network were reported by both 

members of a given dyad (as opposed to just one dyad member). The network density was low, 

at 0.023, in part due to the 122 (21% of nodes) isolated, but the network exhibited high 

clustering, with a transitivity equal to 0.68. The mean degree (i.e., number of unique neighbors 

or contacts) was 3.50 (SD: 3.97), and the mean in- and out-degrees were both 2.16 (SD: 2.57 

(indegree); 3.38 (outdegree)).  

 

Table 4.2 shows the distribution of network characteristics by alcohol use. The distributions of 

all node centrality measures were significantly different across these three baseline alcohol use 

responses (drinker, non-drinker, nonresponse). Drinkers, comprising 26% of the study population 

(45% non-drinkers, 28% missing data) were the most central network members, on average, with 

significantly higher degree, indegree, and outdegree than non-drinkers and missing data 

participants. Missing alcohol data participants had the lowest mean centralities for all seven 

characteristics. 

  

Participants who self-identified as Hispanic (5%) were similarly central in the network across all 

analyzed network characteristics (see Table 4.3). Participants without ethnicity data were less 

central than those with ethnicity data, with lower mean degree, indegree, outdegree, and dyad 

reciprocity (P<0.05 for degree, outdegree, and dyad reciprocity).  

 

The only significant gender differences in centrality were found between those with and without 

gender data, with those missing gender data having lower centralities all analyzed measures (see 

Table 4.4; P<0.05 for degree, indegree, outdegree, and dyad reciprocity).  
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4.3.2 Observed attribute assortativity 
The social network was fairly assortative across all three analyzed covariates (attributes). 

Generally, assortativity absolute values greater than approximately 0.10 are accepted as “high” 

or relevant to network structure (17,173) and the observed attribute assortativities in the eX-FLU 

social network were 0.19 (alcohol use), 0.18 (ethnicity), and 0.17 (gender). Network 

visualizations illustrating attribute assortativity within nodes with data and nodes with missing 

data for each of the three analyzed covariates are shown in Figures 4.2–4.4.  

4.3.3 Attribute assortativity sensitivity analyses 
Nonresponse sensitivity analysis 

The sensitivity analysis assessing the potential impacts of the 28% alcohol use nonresponse on 

the observed alcohol use shows that the impact of missing data on the observed attribute 

assortativity was minimal (Figure 4.5). When various levels of alcohol use were repeatedly 

randomized to the missing data segment of the study population, the generated network 

assortativities are lower than the observed value, but remain high, dropping from the observed 

value of 0.19 to a range of mean values of approximately 0.17 to 0.15, with narrow variation 

ranges across the generated resampled proportion of drinkers. The largest change in attribute 

assortativity was observed when the generated network with no missing data had approximately 

53% drinkers; in this case, the attribute assortativity was 23% lower than the observed value.  

 

Observed ethnicity assortativity, which had approximately 10% nonresponse, or missing data, 

appears to have been somewhat impacted by this missing data (Figure 4.6). When all nodes with 

missing ethnicity data were assigned as “Hispanic,” the ethnicity assortativity dropped from the 

observed value by approximately 38%, from 0.18 to 0.11. As we incrementally decreased the 

proportion of missing data nodes randomly identified as Hispanic, the ethnicity assortativity 

increased linearly to a maximum of 0.15, or approximately 87% of the observed ethnicity 

assortativity.  Across the range of assigned ethnicities tested, the network without missing node 

ethnicity data exhibited positive, measurable assortativity by ethnicity, suggesting that although 

the observed ethnicity assortativity on the measured network was likely an overestimation of 

preferential clustering by ethnicity, the underlying ethnicity assortativity was still positive and 

relevant to the network structure. 
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For gender, which had a very low nonresponse rate (5%), the sensitivity analysis shows a 

negligible impact of missing data on the observed gender assortativity (Figure 4.7). In these 

results we see a very narrow range of gender assortativities within and across the generated 

networks with increasing female proportions.  

  

Misclassification sensitivity analysis 

Our non-differential misclassification sensitivity analysis results are shown in Figure 4.8 (A: 

ethnicity, B: gender). Across the range of non-differential misclassification levels, both ethnicity 

and gender assortativities exhibit parabolic trends, with minimum mean assortativities of 

approximately 0 (i.e., no attribute assortativity) at approximately 50% non-differential 

misclassification. For example, in practice the analysis of 50% gender non-differential 

misclassification changed random samples of 50% of male participants (N=117) to female and 

50% of female participants to male (N=161), resulting in a new gender population distribution 

(50% male, 50% female). The observed mean gender assortativity of 10,000 resamples with this 

distribution was approximately 0 (SD: 0.03). At a low rate (5%) of hypothesized non-differential 

misclassification, the observed mean resampled gender assortativity was 0.14 (SD: 0.02), or 

19.5% lower than the measured gender assortativity. For ethnicity, there was an even larger 

decrease (50.4%) in attribute assortativity with 5% non-differential misclassification of Hispanic 

identity. This resulted from the highly disproportionate number of self-identified non-Hispanic 

participants (95% of participants with non-missing ethnicity data); resampling and reclassifying 

5% of both groups, in effect, doubled the network’s Hispanic population, therefore having a 

larger impact on the measured ethnicity assortativities.  

 

We also assessed the impact of potential, hypothesized differential misclassification by alcohol 

use, or underreporting of alcohol use on the baseline survey by non-drinkers, among the 423 

(72%) participants who responded to the alcohol use item on the baseline survey. As shown in 

Figure 4.9, it appears that the observed alcohol assortativity may overestimate the effects of 

alcohol use on network clustering given a range of differential misclassification.  Assuming that 

misclassification, or underreporting, was randomly distributed through the underage non-

drinking population and incrementally increasing differential misclassification levels results in a 

parabolic trend in observed alcohol assortativities, centered at approximately 65% 
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misclassification by non-drinkers (under 21 years), which corresponds to 70% alcohol use in the 

population, with a minimum mean alcohol assortativity of 0.05 (SD: 0.03), or approximately 

75% below the observed alcohol assortativity given the original distribution of alcohol use. In in 

the range of expected drinking levels in the population (approximately 60-70% (213), 

corresponding to approximately 55-65% misclassification by non-drinkers (under 21)), the 

generated alcohol assortativity values ranged from 0.07 (SD: 0.04) to 0.05 (SD: 0.03). When no 

assumptions about associations between age and misclassification were made, i.e., all non-

drinkers were equally likely to under-report their alcohol use, the generated alcohol 

assortativities in this randomization scheme steadily decreased with increasing proportions of 

drinkers in the population, with a minimum mean value of 0 (SD: 0.04). In the range of expected 

drinking levels in the population (approximately 60-70% (213)), the generated alcohol 

assortativity values ranged from 0.08 (SD: 0.04) to 0.06 (SD: 0.04). In combination, these results 

suggest that the inclusion of the 23 non-drinkers who were over 21 years of age in the 

randomization scheme had a measurable impact on alcohol assortativity. In other words, this 

small segment of the non-drinking population may somehow drive the overall network alcohol 

use assortativity.  

4.3.4 Attribute assortativity uncertainty  
Jackknife models 

Figures 4.10-4.12 show the calculated 95% confidence intervals (CI) for each of the three 

observed attribute assortativities for the range of tested randomly removed (jackknifed) edges or 

nodes (1 individual node or edge, 5-95% at 5% intervals). As expected, for all three covariates, 

both the jackknife removal of single nodes or edges resulted in negligible 95% confidence 

intervals. Note that for each variable, there appears to be a threshold for the percentage of 

jackknifed nodes after which no confidence intervals were assessed; this occurred when the 

random removal of nodes resulted in a network with an undefined attribute assortativity for the 

variable of interest. This result occurred at lower percentages for variables where one group was 

significantly smaller than the other (e.g., ethnicity, with 5% Hispanic and 85% non-Hispanic 

nodes), as removing a large percentage of nodes tends to remove all or most of the smaller 

group.  
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Generally, the jackknifed node removal procedures produced wider confidence intervals than 

jackknifed edge removals. This outcome is a logical result, given topological effects of node 

versus edge deletion in graphs. The width of alcohol use, ethnicity, and gender assortativity 

confidence intervals increased with increasing removal percentages, with the exception of 70% 

edge or node removal, which had slightly narrower confidence intervals than those seen with 

65% removal. However, the subsequent 75% removal resulted in confidence intervals that were 

larger than all tested lower removal percentages.  

 

Bootstrapped models 

The bootstrapped edge removal scheme resulted in confidence intervals roughly equivalent to 

those with the 50% jackknifed edge removal. This suggests that random edge resampling with 

replacement on the digraph was in effect removing approximately 50% of the network edges 

during each resampling.  

4.3.5 Attribute assortativity hypothesis testing 
Node null models 

As shown in Figure 4.13, the distributions of attribute assortativities across the node null models 

for each covariate (alcohol use, ethnicity, and gender), resulted in the rejection of the null model 

or hypothesis, as less than 5% of the distributions were as or more extreme than the observed 

assortativities. Therefore, we concluded the alcohol use, ethnicity, and gender assortativities 

were not generated by random chance, and represent significant preferential attachment based on 

each of the three individual covariates. In terms of the generated distribution of attribute 

assortativities for each covariate, the alcohol use and gender assortativities were fairly symmetric 

around 0 (no assortativity) and the ethnicity assortativity was slightly skewed towards positive 

assortivities. Overall, the modeled values spanned a range of values approximately twice the size 

of the originally observed attribute assortativities. This means that the model produced 

meaningful positive and negative values in non-negligible frequencies. Although 95% of the 

analyzed null model attribute assortativities were at or below the observed attribute assortativity, 

these results highlight the fact that it is indeed possible for networks to exhibit attribute 

assortativity by mere chance. 
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Edge null models 

Similarly, as shown in Figure 4.14, the distributions of attribute assortativities across the edge 

null models resulted in the rejection of the null model or hypothesis, as less than 5% of the 

attribute assortativity distributions were as or more extreme than the observed attribute 

assortativities. Therefore, we concluded nodes were preferentially connected based on the 

wholistic combination of individual participant covariates (both measured and unmeasured). In 

other words, the alcohol use, ethnicity, and gender assortativities were not generated by random 

chance, and represent significant preferential contact based on similarity across multiple 

individual characteristics. In terms of the generated distribution of attribute assortativities, the 

alcohol use and gender assortativities were centered and symmetric around 0 (no assortativity), 

whereas the ethnicity assortativity distribution was slightly skewed towards positive values. 

Overall, the modeled attribute assortativity distributions spanned ranges approximately twice the 

size of the originally observed attribute assortativities. 

4.4 Discussion 
We assessed three attribute assortativities of the measured eX-FLU baseline social network 

(alcohol use, ethnicity, and gender), and developed and implemented multiple approaches for 

hypothesis testing and analyzing the potential impacts of imperfect individual and network data. 

Specifically, the sensitivity analyses and uncertainty quantification systematically explored the 

robustness of attribute assortativity in the face of multiple types of measurement error. For the 

first time (that we are aware of), we addressed how measurement error and nonresponse of self-

reported covariates may bias attribute assortativity. We then used similar approaches to quantify 

the range of values in which the network’s “true” attribute assortativity likely lies, given a range 

of levels of random network node and edge data error. Overall, we found that attribute 

assortativity biases and uncertainty may be predictable, given an a priori defined amount and 

type of data error, although how these errors would be effectively quantified requires further 

investigation. Nonetheless, these methods provide a framework for attribute assortativity 

uncertainty analyses, as well as hypothesis testing, on sociocentric networks, particularly in 

contact network studies.  

 

We outlined and implemented sensitivity analyses to better understand the potential impacts that 
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missing or inaccurate measurements of participant covariates could have on the observed 

network properties, specifically the network’s attribute assortativity, or preferential attachment 

between similar nodes. We found that generally, nonresponse did not seem to have a notable 

effect on the observed attribute assortativity whereas both differential and non-differential 

misclassification of the covariate of interest appears to bias attribute assortativity results away 

from the null (i.e., an attribute assortativity of 0) in smooth and predictable ways. Additionally, 

we found that interactions between centrality and individual-level data quality may impact 

assortativity results in meaningful ways.  

 

In terms of nonresponse effects, we found that if nodes with missing data are randomly assigned 

a characteristic, we did not see meaningful change in assortativities. However, we note that in 

our network, missingness did not occur randomly across nodes; there were clear associations 

between nonresponse and centrality measures, especially outdegree. This suggests that using a  

multiple imputation approach (based on individual covariate and/or centrality (i.e., one or 

multiple centrality metrics) instead of random assignment may be appropriate for networks with 

differential nonresponse in covariate and relational data. Given that outdegree is a unique 

centrality measure in that it is self-reported, as opposed to indegree, for example, which is 

dependent on other participants’ reporting, outdegree can be seen as a proxy for participation or 

survey engagement. In this case, nodes with missing personal data were also likely to have 

reported fewer, if any, contacts on the contact survey. Therefore, nodes with incomplete or 

missing personal data also tended to contribute less to network structure than nodes who 

responded to both the contact and baseline surveys. Therefore, their inclusion or exclusion in 

assortativity calculations would appear to have less of an effect on the network assortativity than 

people with complete data (who typically have higher outdegree). This is particularly true of 

isolated nodes, who had no connections to other participants, as isolates are not included in 

assortativity calculations. Therefore, even with imputed characteristics, these participants will 

not factor into any assortativity calculations in this particular sensitivity analysis procedure. 

Therefore, analyzing and acknowledging any differential centrality by nonresponse status is 

important when conveying these types of results. 

 

In addition to nonresponse effects, we developed sensitivity analysis procedures to understand 
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how participant covariate measurement error might affect inference. We first assessed the 

observed positive assortativities’ robustness in light of potential non-differential 

misclassification by ethnicity or gender.  We analyzed these possible non-differential 

misclassification scenarios not due to any hypothesized actual measurement error, but merely as 

an illustration of the outlined methods. We then analyzed potential differential mis-classification 

of non-drinkers, which could explain this study population’s low levels of reported alcohol use. 

In the case of any misclassification, regardless of type, the sensitivity analyses showed that the 

observed assortativities may have been biased away from the null and may have overestimated 

the true assortativity. It appears that the amount of bias is a result of hypothesized type and level 

of misclassification, in addition to the measured distribution of a given characteristic and any 

centrality differences between groups.  

 

The results of the non-differential misclassification sensitivity analyses highlight the effect of 

observed distributions on the potential impacts of misclassification. The network was similarly 

assortative by ethnicity and gender, but given just 5% non-differential misclassification, ethnicity 

assortativity was reduced by half whereas gender was reduced by only 20%. Similarly, when 

non-differential misclassification was in the range of 5-20%, ethnicity assortativity was reduced 

by between 50-90%, whereas gender was only reduced by 20-63%.  The different amounts of 

bias appear to be due to differing measured characteristic distributions; gender was somewhat 

evenly split between men and women whereas participants overwhelmingly self-identified as 

non-Hispanic. Therefore, the relative impact of low levels of non-differential misclassification 

on the distributions substantially impacted the bias. In effect, dramatically changing the 

characteristic make-up of the network, as was the case in the ethnicity analyses, changes the 

crude probability that dissimilar individuals will be connected by an edge. In the real world, we 

could say that changing the ethnic make-up of the network by increasing Hispanic participation 

generally gave non-Hispanic participants more opportunities to connect with Hispanic 

participants.  

 

In the case of possible differential misclassification by self-reported alcohol consumption, we 

assessed how different levels of alcohol use underreporting may have impacted the observed 

assortativity. Although we believe that baseline alcohol use underreporting was minimal in this 
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study population, given the consistent results across both study years (see Tables 2.2 and 2.3 in 

Chapter 2), social desirability of alcohol use in college, and accepted validity of self-reported 

drinking in this population (63,235), we still note that the proportion of the study population who 

reported being current drinkers at baseline was well below that seen in other research (213). 

However, we acknowledge that measurement error, i.e., misclassification, in the baseline alcohol 

use measurement could have arisen due to unfounded concerns about data privacy or negative 

consequences of reporting alcohol use.  Therefore, while the results of the sensitivity analysis 

suggest that the observed alcohol assortativity in the social network may be biased or inflated, 

we do not see a compelling reason to reject the observed result in favor of a more conservative 

estimate. However, studies with a priori hypotheses regarding differential misclassification 

and/or measurement error should consider if the methods we’ve outlined here would bolster the 

strength and veracity of their analyses. 

 

Much like the effect of associated centrality and non-response, centrality differences between 

different groups in the network will impact how much misclassification biases the observed 

assortativity.  Logically, nodes with higher centralities, particularly degree, will have a have a 

larger contribution in any assortativity calculation, as their connections comprise larger 

percentages of the network’s total edge count. Therefore, in a measured network with positive 

assortativity and differences in centrality by the characteristic of interest (as was the case with 

alcohol use in this study), random reclassification of nodes in a single direction should: 1) reduce 

the centrality differences across groups, and 2) reduce the impact that a given characteristic has 

on the observed assortativity. In other words, we found that differential misclassification of a 

characteristic with significant centrality associations appears to be an important moderating 

factor in how the misclassification biases the observed assortativity. We also hypothesize that if 

differential misclassification is itself associated with centrality in addition to a given 

characteristic, this could further complicate or confound the effect that the misclassification has 

on observed assortativity. This may explain the observed differences in the results of the 

sensitivity analyses including non-drinkers over 21 years and those excluding this small segment 

of the population (approximately 8.5% of non-drinkers). If self-reported non-drinkers over 21 

years did not mis-report their alcohol use and were more central than underage non-drinkers, 

excluding this group from randomization and resampling would maintain a “core” of central 
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non-drinkers. Assuming they were highly clustered among themselves, which is possible given 

the high observed assortativity by alcohol use, this cluster of inter-connected non-drinkers would 

influence assortativity regardless of misclassification among other non-drinkers. We note that 

given the lack of observed centrality differences by ethnicity or gender, we could not investigate 

how differential centrality and non-differential misclassification might interact and bias 

assortativity. Additionally, we acknowledge that the observed results and our conclusions may be 

unique to assortative networks and that misclassification may bias disassortativity in different 

ways, making investigation of disassortative networks a useful next step in future work. 

Collectively, the sensitivity analyses results suggest that not only does individual data quality 

impact the observed assortativity, but that the accuracy of degree measurements, is paramount to 

assortativity calculations. If nonresponse and misclassification were associated with outdegree 

(or more generally, degree), the error could be propagated throughout assortativity analyses.  

 

In addition to investigating covariate measurement error and its effects on observed attribute 

assortativity, we explored methods to quantify attribute assortativity uncertainty resulting from 

underlying network data uncertainty.  We repeated uncertainty calculations across a range of 

resampling proportions as well as by the resampled network structure (nodes or edges). Although 

resampling proportions above 50-60% are unusual, at least at the size of the analyzed network, 

we performed the analyses across the range of 0-95% for illustrative purposes. Much like the 

sensitivity analyses, the uncertainty calculations are based on the measured network and thus rely 

on covariate and network data completeness and accuracy. As jackknife resampling samples the 

measured network in an attempt to mirror the original measurement’s sampling of the “true” 

underlying network, its results are based in the assumption that the measured network was itself 

randomly sampled. However, no study is truly the result of random population sampling, and 

network studies, including the eX-FLU study, often use snowball sampling for enrollment. 

Therefore, future developments and refinements of the uncertainty analysis procedure could 

incorporate this fact. Indeed, one could resample the network by sampling nodes in an iterative 

process, whereby the first sampled node is random and subsequent sampled nodes are directly 

connected to the previously sampled node. This would then simulate the snowball process and 

account for the original sampling procedure. 
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Overall, we found that node removal or jackknifing provided more conservative confidence 

interval estimates than edge removal or jackknifing. This is a logical result, as node removal also 

removes edges from the network, so it in effect combines the two error mechanisms. In contrast, 

edge removal serves to reduce random nodes’ degrees and connectivity in the network, but not 

the overall network size (number of nodes). We can speculate then that in a sparse (low density) 

network, low levels of edge or node removal would have a more marked effect on assortativity 

than in a dense network. In fact, the width of the confidence interval of node and edge jackknifed 

resampling depends on resampling proportions, network size, density, as well as degree 

distribution. As size and density increase, the impact of a given amount of node or edge removal 

on uncertainty would lessen. Similarly, as previously noted by Cohen et al. (287), scale-free 

(e.g., right skewed degree distribution) networks are resilient to node removal, up to the point 

where the probability of removing a highly connected node becomes high enough, therefore 

disrupting the global network structure.  However, if most nodes have a degree similar to the 

network’s mean degree (e.g., a random network), node removal at lower levels would result in 

wider confidence intervals.  

 

We also examined bootstrapped edge resampling, or resampling with replacement from the 

observed distribution of edges; however, on simple graphs resampling edges with replacement 

will typically result in a multigraph, which is not comparable to the simple graph, especially with 

regards to assortativity. In this case, any dyad could contain any number of edges (up to the 

number in the original network). Thus in each resampled network, there exists the possibility that 

a small sample of connected nodes could disproportionately affect the assortativity, as they 

would hold a disproportionate proportion of the network’s edges. In multigraphs with 

unconstrained maximum edges per dyad, the bootstrapping procedure is distinct from jackknifing 

and may be the most reasonable method for calculating uncertainty. In fact, generally, if one 

cannot make an a priori hypothesis about level of accuracy in an observed network (which we, 

as others have, note that this is usually impossible (172)), the “bootstrapped” (i.e., random 

percentage edge removal) resampling method may be most appropriate because it does not use 

pre-defined error levels.  

 

We identified a number of studies that examined the robustness of a variety of network 
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characteristics (e.g., degree distribution), given hypothetical network measurement and sampling 

error (57,181,205,206,209,273–275,286,288,289). We are, however, aware of only one previous 

study that systematically looked at the sensitivity of assortativity given potential network 

measurement error. Kossinets investigated the impact of missing data on a number of 

characteristics, including degree assortativity, or the tendency of a node’s degree to be similar to 

that of their neighbors (209). This study found two different network data error types (isolated 

nodes due to non-response and underreported numbers of contacts) bias degree assortativity 

towards the null, but that overall, different types of network data error can bias degree 

assortativity in opposite directions. Similarly, Newman has suggested that degree assortative 

networks are generally robust to node removal (57). However, it may be that attribute 

assortativity, as opposed to degree assortativity, has different reactions to measurement error, 

given the aforementioned complicated relationships between degree and isolation, individual 

attributes, and individual attribute data accuracy. Despite this body of literature on the robustness 

of network statistics, we are unaware of any studies that quantify uncertainty and confidence 

limits using resampling methods. Indeed, Franz et al. (2009) noted that generally, social network 

analysis is currently limited by an inability to determine valid confidence limits for network 

statistics (172). Our exploration into quantifying the reliability of attribute assortativity is a 

useful extension of these previous robustness studies that provides a framework for addressing 

this limitation.   

 

We also described and implemented two null models to test the significance of assortativity, or 

the probability that the measured network’s observed assortativity was not the result of chance 

connections between similar individuals, but instead a result of selection, whereby edges were 

preferential by a given characteristic. In doing so, we highlight the need to clearly define and 

articulate the null model and its implementation in order to draw appropriate conclusions from 

results. Indeed, as noted by Dormann, communicating the null model’s structure and 

implementation is crucial for critical reviews of the model’s assumptions and results, as well as 

reproducibility (280). Appropriate null models can account for any biases in the observed data 

(179,180), but incorrectly defined or implemented models may lead to biased and spurious 

conclusions (286). Surprisingly, while the field of ecology has generally adopted using null 

models in animal network analyses, it has not been widely embraced in other fields of social 
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network research (152). This may be due to disinterest in generalizable results, as some social 

network analysis frameworks lean towards describing individual networks in isolation, as 

opposed to making inferences about populations of networks or the underlying “true network” 

(277). Thus, if a study’s aim to merely describe the observed network, as opposed to attempting 

to infer larger and generalizable patterns from the sampled network, comparisons to null models 

(as well as sensitivity and uncertainty analyses), are moot. If greater understanding of the 

underlying social structures and mechanisms that gave rise to the sampled network are the 

research goal, then incorporating null models into analytic plans is imperative. Indeed, we must 

question all conclusions drawn using poorly defined models, especially those without detailed 

descriptions of the model aim and implementation.  

 

Given that random networks can exhibit assortative mixing (155) and sampling and data 

collection methods can lead to overestimated assortativities (152), it is important to attempt to 

isolate the hypothesized selection effects from random effects. Based on the definition and 

implementation of our null models, we assert that if the goal of an attribute assortativity 

hypothesis test is to isolate the effects of a single characteristic on network edge formation, the 

node null model is the more appropriate model. As much as possible given the observed data, 

this model reflects the sole effect of this characteristic on network connections. In contrast, the 

edge null model tests the hypothesis that the combination of all node characteristics, both known 

and unknown, are responsible for an observed attribute assortativities.  

 

The node model randomizes a given characteristic across nodes while maintaining network 

topology. In doing so, the model inherently assumes that the network structure may be dependent 

on all other node characteristics and thereby isolates the effect of a single trait on selection (by 

only randomizing that variable). Indeed, as edges and nodes remain constant across resamples, 

network homophily by other covariates (i.e., other than the randomized variable) is controlled for 

in this null model. Although this null model appears to be the most effective way to isolate the 

effects of a single variable on selection, the node null model is not without considerations. 

Selection likely occurs across multiple traits and their interactions (59); the node null model 

breaks the association between a covariate of interest and any and all associated traits (e.g., an 

association between age and alcohol use). Therefore, this null model should control for 
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confounding by latent homophily, but the results and their interpretation exclude any possible 

covariate interactions that drive selection. Notably, this null model and inferences rely on 

covariate data quality and reliability. As shown in the sensitivity analyses, attribute assortativity 

can be quite sensitive to individual covariate measurement error. Therefore, when resampling 

maintains a covariate’s observed distribution overall, any covariate measurement error will 

propagate throughout the null models and could bias the conclusions. By including nodes with 

missing data for a given covariate in resampling, we believe that the node null model controls for 

nonresponse and limits this particular potential effect. However, the results of the covariate 

attribute assortativity sensitivity analyses show that misclassification can materially bias attribute 

assortativity and thus we suggest further investigations into how to incorporate covariate data 

uncertainty in null models.  

 

Unlike the node null model, the edge null model is not based on the observed or measured 

network edges (although it does rely on the sampled, or observed, nodes, i.e., network 

boundary). Instead, the edge null model randomly samples edges from a set of all potential 

edges. In practice, this isolates some but not all other network properties. While the density of 

the network will remain constant across all resamples, the degree distribution will change and 

therefore and any associations between individual characteristics and degree will be broken (as 

will a number of other network properties). We can then conclude that this type of edge model 

might be used for hypothesis testing on networks with known associations between multiple 

node characteristics, or if there is an hypothesized interaction relevant to selection. However, we 

acknowledge that, as with the node null model, covariate measurement inaccuracy may bias 

observed attribute assortativities on the null models, and therefore any conclusions.  

 

Much like propagated biases from covariate measurement error, these hypothesis tests can also 

be affected by systematic issues in network data quality, reliability, and sampling. In particular, 

inferences are intrinsically linked to the network’s sampling and measurement. In particular, 

network boundaries drawn (e.g., a set of participants enrolled in a study) with heavily skewed 

covariate distribution(s) (that differ from the underlying population distribution(s)) may result in 

biased resampled null models for attribute assortativity (akin to selection bias in epidemiological 

studies). In terms of sampled, or measured, network edges, we can imagine scenarios in which 
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reported contacts might be prone to reporting and/or recall bias, if individual traits influence the 

propensity to remember or report certain relationships or contacts. For example, elderly 

individuals may have more difficulty with recalling contacts than younger participants. 

Similarly, shared (or perhaps disparate) traits with other network members may effect 

individuals’ contact reporting behavior. For instance, younger participants may more accurately 

recall their contacts with other young participants than elderly network members, or individuals 

may be less likely to report sensitive relationships (e.g., a sexual relationship with a co-worker). 

Any one, or a combination of, these biases present in the data collection will result in null 

models that are biased away from a truly random network. Generally, these potential biases, as 

well as any caveats and assumptions related to data collection and sampling, should be noted 

when defining and making any inferences based on these (or any) attribute assortativity null 

models (as they should be in all studies).  

 

Given that the implemented analyses and results are presented here as illustrations of the outlined 

approaches, we will for the most part restrict our noted limitations to the approaches and not 

delve into the limitations of the dataset, measured network, and the observed attribute 

assortativity results. However, a clear limitation of the analyzed dataset and the selected 

covariates is that we were unable to investigate how observed disassortativity might be impacted 

by data quality and completeness. It is quite possible that disassortative networks have different 

properties that would change the conclusions we have drawn.  Additionally, while we have 

addressed possible errors individually, we must note that the observed network and covariates (as 

with all observed data) likely contains a mix of unknown covariate and network measurement 

errors (172), including systematic sampling errors (206). As discussed, any biased data or 

sampling will propagate throughout analyses and affect inference and generalizability, and we 

suggest that future work could delve into how to appropriately combine the outlined approaches 

to account for multiple error sources.  

 

For the first time that we are aware of, we have outlined and defined multiple attribute 

assortativity sensitivity analyses, uncertainty quantifications, and null model-hypothesis testing 

approaches and applied these methods to a measured social network of undergraduate students. 

In toto, the results of these analyses show the potential impacts that data quality, measurement 
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error, and the measured network can have on observed assortativity. We suggest that it should be 

standard practice to present sensitivity analysis for assortativity (and other network properties), 

and to hypothesize possible confounding or bias related to data quality and completeness. We 

also strongly suggest that researchers make a point of clearly defining and describing the 

methods they have employed in their social network analyses. Unclear or undefined resampling 

methods and inappropriately defined or implemented null models can lead to incorrect 

conclusions and inferences, ultimately making generalizability and duplication difficult or 

impossible.  
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4.5 Tables 
Table 4.1 Observed properties of the eX-FLU baseline simple digraph social network measured via 
contact survey (2013).  

Structure or property  

Nodesa 590 

Directed edgesa 1275 

Dyadsa 988 

Dyad reciprocity (global)b 0.29 

Density 0.023 

Transitivityc 0.68 

Isolatesa 122 (0.21)  

Degreed,e 3.35 (3.97) 

Indegreed,f 2.16 (2.57) 

Outdegreed,g 2.16 (3.38) 

Dyad reciprocity (node)d,h 0.27 (0.32) 
a N or N (%) 
b Proportion of all network dyads containing reciprocal edges. 
c Not defined for digraphs, computed using simple (dyad) graph. 
d Mean (standard deviation (SD)). 
e Unique neighbors connected to a participant by at least one edge. 
f Unique neighbors who named a participant as a contact. 
g Unique neighbors a participant named as a contact. 
h Proportion of neighbors connected to a node by reciprocal edges. 
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Table 4.2 Social network characteristics of self-reported drinkers, non-drinkers, and those with missing 
alcohol use data in the eX-FLU study (2013), as observed in the baseline social network.  

 
Drinker Non-drinker P valueb 

Missing 

alcohol use 

data P valuec 

N 155 (0.26) 268 (0.45) 
 

167 (0.28) 
 

Isolates 37 (0.14) 18 ( 0.12 )  67 (0.40)  

Degreed 5.18 (5.14) 3.5 (3.56) <0.001* 1.40 (1.98) <0.0001* 

Indegreee 3.34 (3.49) 2.08 (2.13) <0.0001* 1.19 (1.59) <0.0001* 

Outdegreef 3.61 (4.44) 2.43 (3.01) <0.01* 0.38 (1.50) <0.0001* 

Dyad reciprocity (node)g 0.32 (0.31) 0.29 (0.34) 0.81 0.06 (0.19) <0.0001* 

*P<0.05 
aData are N (%) or Mean (Standard deviation (SD)). 
bDifference between drinker and non-drinker distributions; P-values calculated by resampled difference in means 
tests.  
cDifference between distributions for participants with and without alcohol use data; P-values calculated by 
resampled difference in means tests.  
dUnique neighbors connected to a participant by at least one edge. 
eUnique neighbors who named a participant as a contact. 
fUnique neighbors a participant named as a contact. 
gProportion of neighbors connected to a node by reciprocal edges. 
  



 127 

Table 4.3 Social network characteristics participants who self-identified as Hispanic, non-Hispanic, and 
those without ethnicity data in the eX-FLU study (2013), as observed in the baseline social network.  

 
Hispanic 

Non-

Hispanic P valueb 

Missing 

ethnicity data P valuec 

N 27 (0.05) 505 (0.86) 
 

58 (0.10) 
 

Isolates 3 (0.11) 100 (0.20)  19 (0.33)  

Degreed 4.30 (3.68) 3.44 (4.06) 0.30 2.09 (2.87) 0.01* 

Indegreee 2.67 (2.78) 2.20 (2.60) 0.38 1.55 (2.04) 0.06 

Outdegreef 2.74 (3.31) 2.28 (3.44) 0.51 0.90 (2.48) <0.01* 

Dyad reciprocity (node)g 0.28 (0.32) 0.28 (0.33) 0.97 0.10 (0.21) <0.001* 

*P<0.05 
aData are N (%) or Mean (SD). 
bDifference between Hispanic and non-Hispanic distributions; P-values calculated by resampled difference in means 
tests.  
cDifference between distributions for participants with and without ethnicity data; P-values calculated by resampled 
difference in means tests.  
dUnique neighbors connected to a participant by at least one edge. 
eUnique neighbors who named a participant as a contact. 
fUnique neighbors a participant named as a contact. 
gProportion of neighbors connected to a node by reciprocal edges. 
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Table 4.4 Social network characteristics participants who self-identified as male, female, and those 
without self-reported gender data in the eX-FLU study (2013), as observed in the baseline social network. 

 
Male Female P valueb 

Missing 

gender data P valuec 

N 235 (0.40) 323 (0.55) 
 

32 (0.05) 
 

Isolates 47 (0.20) 61 (0.19)  14 (0.44)  

Degreed 3.41 (3.97) 3.5 (4.07) 0.79 1.31 (1.98) <0.001* 

Indegreee 2.15 (2.52) 2.26 (2.64) 0.64 1.28 (1.97) 0.03* 

Outdegreef 2.14 (3.42) 2.38 (3.44) 0.42 0.03 (0.17) <0.0001* 

Dyad reciprocity (node)g 0.21 (0.27) 0.33 (0.35) <0.0001* 0 (0) <0.0001* 

*P<0.05 
aData are N (%) or Mean (SD). 
bDifference between male and female distributions; P-values calculated by resampled difference in means tests.  
cDifference between distributions for participants with and without gender data; P-values calculated by resampled 
difference in means tests.  
dUnique neighbors connected to a participant by at least one edge. 
eUnique neighbors who named a participant as a contact. 
fUnique neighbors a participant named as a contact. 
gProportion of neighbors connected to a node by reciprocal edges. 
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4.6 Figures 
Figure 4.1 Simple digraph visualization of the baseline (week 1) social network of reported face-to-face 
contacts of undergraduate students in the eX-FLU study (N=590; 2013). Nodes (i.e., participants) are 
represented as circles and each directed edge (i.e., line) represents a reported contact between participants 
on the contact survey, with an arrow pointed towards the reported contact. Reciprocal contacts reported 
by both participants are represented by double arrows.  
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Figure 4.2 Alcohol assortativity in the simple digraph visualization of the baseline (week 1) social network of reported face-to-face contacts of 
undergraduate students (2013). Panel A shows all enrolled participants colored by alcohol use and nonresponse status. Panel B contains only the 
423 (72%) participants with alcohol use data. Nodes (i.e., participants) are represented as circles, colored according to alcohol use; participants 
who declined to report their alcohol use are represented by the smaller gray circles. Each directed edge (i.e., line) represents a reported contact 
between two participants on the contact survey, with an arrow pointed towards the reported contact. Reciprocal contacts reported by both 
participants are represented by double arrows. 

 
  

B)A)

Drinker'(N=155) Non/drinker'(N=268) No'data'(N=167) Drinker'(N=155) Non/drinker'(N=268)



 131 

Figure 4.3 Ethnicity assortativity in the simple digraph visualization of the baseline (week 1) social network of reported face-to-face contacts of 
undergraduate students (2013). Panel A shows all enrolled participants colored by ethnicity and nonresponse status. Panel B contains only the 532 
(90%) participants with ethnicity data. Nodes (i.e., participants) are represented as circles, colored according to ethnicity; participants who 
declined to report their ethnicity are represented by the smaller gray circles. Each directed edge (i.e., line) represents a reported contact between 
two participants on the contact survey, with an arrow pointed towards the reported contact. Reciprocal contacts reported by both participants are 
represented by double arrows. 

  Non$Hispanic+(N=505) Hispanic+(N=27) No+data+(N=58) Non$Hispanic+(N=505) Hispanic+(N=27)

A) B)
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Figure 4.4 Gender assortativity in the simple digraph visualization of the baseline (week 1) social network of reported face-to-face contacts of 
undergraduate students (2013). Panel A shows all enrolled participants colored by gender and nonresponse status. Panel B contains only the 558 
(95%) participants with ethnicity data. Nodes (i.e., participants) are represented as circles, colored according to gender; participants who declined 
to report their gender are represented by the smaller gray circles. Each directed edge (i.e., line) represents a reported contact between two 
participants on the contact survey, with an arrow pointed towards the reported contact. Reciprocal contacts reported by both participants are 
represented by double arrows. 
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Figure 4.5 Results of the alcohol use assortativity nonresponse sensitivity analysis (2013). The blue diamond corresponds to the observed attribute 
assortativity with 28% nonresponse and the observed proportion of drinkers in the study (26%; non-drinkers: 45%). Each red point and whiskers 
corresponds to the mean (SD) alcohol assortativity on the network after randomizing alcohol use data onto nodes with missing data on the baseline 
survey (10,000 randomizations). The thin blue dotted line at approximately 35% drinkers in the study population corresponds to the observed 
prevalence of drinking among participants with alcohol use data. The thick dotted line on the right side of the figure represents the expected 
prevalence of alcohol use based on previous undergraduate alcohol use research (or as close to the prevalence as possible given the observed data 
and nonresponse level). 
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Figure 4.6 Results of the ethnicity assortativity nonresponse sensitivity analysis (2013). The blue diamond corresponds to the observed attribute 
assortativity with 9.8% nonresponse and the observed proportion of Non-Hispanic participants in the study (86%; Hispanic: 5%). Each red point 
and whiskers corresponds to the mean (SD) ethnicity assortativity on the network after randomizing ethnicity data onto nodes with missing data on 
the baseline survey (10,000 randomizations). 
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Figure 4.7 Results of the gender assortativity nonresponse sensitivity analysis (2013). The blue diamond corresponds to the observed attribute 
assortativity with 5% nonresponse and the observed proportion of female participants in the study (55%; male: 40%). Each red point and whiskers 
corresponds to the mean (SD) gender assortativity on the network after randomizing gender data onto nodes with missing data on the baseline 
survey (10,000 randomizations). 
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Figure 4.8 Sensitivity analysis to assess impacts of non-differential misclassification of ethnicity (Panel 
A) and gender (Panel B) in the social network (2013). Each red dot and whiskers represent the mean (SD) 
attribute assortativity for 10,000 random samples of a given percent of non-differential misclassification. 
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Figure 4.9 Sensitivity analysis to assess impact of differential misclassification of alcohol use in the social network (2013), i.e., potential 
underreporting of alcohol use by all study participants who reported being nondrinkers at baseline (N=268 (64% of those with alcohol use data) 
and study participants under the legal drinking age (21 years; N=245 (91% of non-drinkers)). Each red dot or orange triangle and whiskers 
represent the mean (SD) attribute assortativity for 10,000 random samples of a given percent of differential misclassification. The blue dotted line 
represents the approximate expected prevalence of alcohol use in the study’s undergraduate population, given previous research. 

 

!0.05

0.00

0.05

0.10

0.15

0.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

A
lc
oh
ol
&U
se
&A
ss
or
ta
tiv
ity

%&Misclassification&of&non4drinkers

All/Non!drinkers
Non!drinkers/<21/yrs

~60% drinkers 
(expected %)



 138 

  



 139 

Figure 4.10 Uncertainty quantification for alcohol use assortativity on the social network (2013). Each line segment represents the 95% 
confidence interval (CI) calculated from 10,000 resamples. Values without Cis resulted from undefined assortivities at a given level of jackknifing. 
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Figure 4.11 Uncertainty quantification for ethnicity assortativity on the social network (2013). Each line segment represents the 95% confidence 
interval (CI) calculated from 10,000 resamples. Values without Cis resulted from undefined assortivities at a given level of jackknifing. 
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Figure 4.12 Uncertainty quantification for gender assortativity on the social network (2013). Each line segment represents the 95% confidence 
interval (CI) calculated from 10,000 resamples. Values without Cis resulted from undefined assortivities at a given level of jackknifing. 
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Figure 4.13 Hypothesis testing results of node null model randomizations compared to the observed 
attribute assortativity on the social network (2013). Each panel shows the distribution of a given 
attribute’s assortativities (A: alcohol use; B: ethnicity; C: gender) observed on the 10,000 resamples of the 
alcohol use node null model compared to the observed attribute assortativity on the measured network 
(red dotted line). 
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Figure 4.14 Hypothesis testing results of edge null model randomizations compared to the observed 
attribute assortativity on the social network (2013). Each panel shows the distribution of a given 
attribute’s assortativities (A: alcohol use; B: ethnicity; C: gender) observed on the 10,000 resamples of the 
alcohol use node null model compared to the observed attribute assortativity on the measured network 
(red dotted line). 
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Chapter 5! 
Conclusion 

In the words of A.R.G. Owen, mathematician, geneticist, and parapsychology researcher, “[we] 

do not pretend to have answered [all] of these questions finally or even adequately in the present 

study. However, [we] feel that [we] have done something serviceable merely in assembling and 

discussing them…” (290) 

 

A fundamental question that all social network research should address is: how well does this 

data and model capture the human behavior of interest? The overall aims of this dissertation 

were to increase understanding of: 1) how social structures and contact patterns shape alcohol 

consumption and use in undergraduate students; 2) drawbacks and data quality issues related to 

different methods of measuring social contact networks; and 3) how to articulate and quantify 

network uncertainty and hypothesis testing for trait assortativity.   

 

Using data and social networks from eX-FLU study—a large, two-year social network study of 

university students, this dissertation applied existing social network analyses to college drinking 

and then defined and developed a number of novel methods for social network analysis in public 

health research including a direct network comparison statistic (specifically, an adapted Kappa 

coefficient), multiple sensitivity analyses and uncertainty quantification methods, and null 

models for hypothesis testing of trait assortativity.  

 

In Chapter 2, we applied social network analysis methods to two networks of undergraduate 

students, investigating social network correlates of alcohol use and consumption volume. We 

identified numerous consistent associations between alcohol use and social position in this 

population. Specifically, network position, network alcohol exposures, and relationship strength 

were associated with individual alcohol use, suggesting complex relationships between drinking 
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and network topology, as well as proximity to alcohol use. Overall, this chapter adds to the body 

of evidence of significant relationships between network structure, social position, and alcohol 

consumption. There appear to be complex interactions between social standing, demographics, 

individual motivations, and alcohol use; these associations, as well as their directionality, 

warrant further study. Notably, we identified numerous network structures and properties that 

present potential barriers to on-campus alcohol-abstinence interventions. However, additional 

studies are warranted to disentangle the complex network-alcohol associations we identified. In 

particular, we would like to investigate possible confounding of these relationships by age and/or 

Resident Advisorship by adapting and applying methods used by Block and Grund (59) to 

address multi-dimensional homophily. 

 

Chapter 3 characterized and compared two set of longitudinal social networks, one collected with 

a Bluetooth-based app, iEpi, and the other using self-reported contacts. Networks were compared 

across and within each measurement method, using overall network structure, dyad, and node 

characteristics. Generally, we found few similarities between networks observed with iEpi and 

reported contacts, suggesting that neither empirical network measurement method are complete  

representations of the underlying “true” social network. In light of these findings, researchers 

should carefully consider how to best measure networks in terms of their research questions. We 

plan on extending this project in a number of ways, including: 1) a thorough investigation of 

longitudinal stability in the eX-FLU networks, in both the reported networks (2 years) and iEpi 

networks (1 year, and 2) comparisons of the infectious disease transmission patterns modeled on 

reported versus iEpi networks.     

 

Given that current methods and instruments for measuring social networks may not capture their 

“true” underlying structure, in Chapter 4 we outlined methods to describe potential bias in 

observed attribute assortativity related to measurement error and nonresponse, as well as to 

quantify uncertainty and incorporate null model-based hypothesis testing into assortativity 

analyses. In so doing, we found that attribute assortativity biases and uncertainty may be 

predictable, given an a priori defined amount and type of data error. Overall, these methods 

provide a framework for attribute assortativity uncertainty analyses, as well as hypothesis testing, 

on sociocentric networks, particularly in contact network studies. We plan on extending these 
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uncertainty methods to account for respondent-driven sampling, as well as to incorporate 

multiple types of data uncertainty and error in a one integrated method for uncertainty 

quantification. Additionally, applying the methods we developed to other empirical and 

theoretical networks (e.g., Add Health (128), small-world networks) may further clarify the 

nature of social network uncertainty.     

 

Overall, this dissertation described and extensively explored social networks of undergraduate 

students. We investigated the relationships between a risky health behavior of public health 

importance and network features, as well as how network analysis results using observed 

networks are reliant on the network measurement method and the types and amounts of data 

uncertainty and error present. These projects generated new results and insights into alcohol use 

and social networks in a college setting, compared empirical social network observations 

between a traditional and novel instrument, and developed a suite of analytical social network 

tools. Importantly, the novel methods we have defined and implemented provide a framework 

with which to evaluate network uncertainty, robustness, and hypotheses.  
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Appendix 

A.1 eX-FLU Study weekly social contact survey 

 
The dynamics of social contacts and networks of individuals varies over time due to changes in 
activities, classes, and relationships. We would like to have the most current information about 
the people enrolled in the study that you have had face-to-face contact with in the past week. 
 
Below is a list of enrolled individuals you reported being in contact with in the past, as well as 
others who are enrolled in the study that you may or may not have had face-to-face contact with 
recently. Please look over this list and click the “add” button next to every person that you have 
had face-to-face contact from [Date] to [Date].  
 

Past Social Contacts Potential Social Contacts 

[first name] [last name] (email address) 
[add] 

[first name] [last name] (email address) 
[add] 

[first name] [last name] (email address) 
[add] 

[first name] [last name] (email address) 
[add] 

[If list is empty] 
No enrolled individuals meet these criteria 

[If list is empty] 
No enrolled individuals meet these criteria 

 
If there is someone that you have had face-to-face contact with from [Date] to [Date] who was 
not listed above, please search for them by their email or full name below and then click the add 
button next to their name in the search results. Please note, only students who are enrolled in the 
study will show up in the search results. 
_______________[search] 
 
[If person not found] 
The person you searched for was not found. You either misspelled their name or email or they 
are not enrolled in the study. You may try your search again or search for additional people you 
had face-to-face contact from [Date] to [Date] by returning to the search field above. 
 
Below is a list of all the people you reported you’ve had contact with from [Date] to [Date]. If 
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you wish to select additional individuals that you have had contact with, you may still do so by 
clicking the "add" button next to their name in the ‘Search Results’ table above or by returning to 
the search tool above.  

People you have reported contact 
From [Date] to [Date] 

[first name] [last name] (email address) [remove] 

[first name] [last name] (email address) [remove] 
 
If you accidentally added someone you did not have face-to-face contact with and you wish to 
remove them from the list, please click on the “remove” button next to their name below. Your 
responses are confidential and will not be shared with any other individuals in the study. When 
you have finished selecting all the individuals you've had contact with from [Date] to [Date], 
please click the "next" button to continue the survey. 

Next >> 

 
[if less than three contacts selected] 
Would you like to select more social contacts? 
You have selected [0-2] contacts. Ideally we would like to collect information about your face-
to-face interactions with at least three of your social contacts. If you are having trouble using the 
interface please e-mail [study staff email]. Otherwise, please select an option to continue: 
 
I would like to select more contacts: [select more contacts] 
 
I would like to continue the survey with [x] social contacts reported. 
  



 169 

A.2 eX-FLU Study Enrollment Survey (excerpt) 

 
In order to complete the enrollment process, you must complete the following enrollment 
survey. 
Your responses are confidential. Please respond as accurately as possible. Thank you! 
The next section focuses on your demographic information.  
What is your gender?  
 Male 
 Female 

 Don’t 
know 

 decline to 
answer 

 
The following questions ask about your ethnicity and race. All government funded projects are 
required to report according to these breakdown categories. We appreciate your willingness to 
work within these guidelines. 
Which ethnicity best describes you?  
 Hispanic or Latino 
 Not Hispanic or not 

Latino 

 Don’t know 

 Decline to answer 
 
Which race best describes you? 
 White - a person having origins in any of the original peoples of Europe, North 

America, or the Middle East. 
 Black or African American 
 Asian - a person of the Far East, Southeast Asia, or the Indian subcontinent. 
 Native Hawaiian or Other Pacific Islander 
 American Indian or Alaskan Native - a person having origins in any of the original 

peoples of North America, and who maintains cultural identification through tribal 
affiliation or community recognition. 

 Multi-Ethnic - a person having origins in more than one of the groups listed above. 

 Don’t know 

 Decline to answer 
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[If Multi-Ethnic] Please select the races to which you belong. 
 White 
 Black or African American 
 Asian 
 Native Hawaiian or Other Pacific 

Islander 
 American Indian or Alaskan 

Native 

 Don’t know 

 Decline to answer 
  
What is your year of study, by number of years at the university? 
 Freshman 
 Sophomore 
 Junior 
 Senior 
 Senior + 
 Decline to 

answer 
 
Are you a US citizen? 
 Yes 
 No 
 Decline to 

answer 
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A.3 eX-FLU Study Baseline (Week 1) Survey (excerpt) 

 
The following questions pertain to your alcohol consumption.  

Do you currently drink alcohol at least once a week?  

 Yes 

 No 

 Don’t know 

 Decline to answer 

  

[If yes] During an average week, how much do you usually drink each day? (One drink is 

equal to a glass of wine, 12 ounce beer, or shot of hard liquor.) 

   Nothing 1 

drink 

2 

drinks 

3 

drinks 

4 

drinks 

5 

drinks 

6 or more 

drinks 

Don’t 

know 

Decline to 

answer 

Monday          

Tuesday          

Wednesday          

Thursday          

Friday          

Saturday          

Sunday          

 

 


