
Answering Complex Questions Using Curated and
Extracted Knowledge Bases

by

Nikita Bhutani

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2019

Doctoral Committee:

Professor Hosagrahar V. Jagadish, Chair
Associate Professor Michael J. Cafarella
Assistant Professor Walter S. Lasecki
Dr. Yunyao Li, IBM Research
Associate Professor Qiaozhu Mei
Professor Rada Mihalcea

Nikita Bhutani

nbhutani@umich.edu

ORCID iD: 0000-0002-6687-2579

c© Nikita Bhutani 2019

To my family and partner

ii

ACKNOWLEDGEMENTS

To achieve something great, one must dare to fail greatly too. If I have come

this far, it is because of those who believed in me when I did not and those who lent

support when I needed the most:

H V Jagadish, my Ph.D. advisor and mentor, for giving me an opportunity I

thought was far bigger than my talents and skills as an undergrad with no prior

research experience. He provided an intellectually stimulating environment, boundless

enthusiasm and guidance, which shaped my journey in graduate school. He always

encouraged me to chart unfamiliar territories and seek ambitious and adventurous

projects. His research philosophy and ethics have had a profound impact on how I

think about and conduct research today. One of the most important lessons I learned

was that defining problems and articulating why they matter are just as vital as

technical innovations. He is my first-ever research mentor, and I’ll always hold him

in high regard.

My parents, Promila and Prem, for their moral encouragement, insistent optimism

and unwavering support in every path I took. I still remember how scared I was

when I made the career leap to study computer science. But they believed in me

and motivated me to embrace the road less taken. I am also incredibly grateful to

have two wonderful sisters, Neha and Bhavika, who taught me not to take my failures

personally and to always look at the bright side of things.

Yunyao Li, my two-times research mentor at IBM and also my thesis committee

member, for providing a great environment to work on very cool research. A brilliant

iii

research manager and friend, she taught me how to find impactful research problems

and think about the usability of the solutions we build.

Wang-Chiew Tan and Yoshihiko Suhara, my mentors at Megagon Labs, for intro-

ducing me to deep learning in natural language processing. I’ve learned from them

how to ask hard-hitting questions and be more systematic in my research practices.

My thesis committee members Rada Michalcea, Michael Cafarella, Walter Lasecki,

and Qiaozhu Mei, for spending their valuable time to provide insightful comments and

feedback which helped improve this dissertation.

My research collaborators and reviewers at various points: Alon Halevy, Dragomir

Radev, Xinyi Zheng, Qian Kun, Fei Li, Mauricio Hernandez, IBM’s Scalable Knowl-

edge Intelligence Group, and Megagon Labs family.

All my hilarious friends and fellow occupants of BBB4945: Pallavi Moghe, Ankita

Chaudhari, Niket Prakash, Helen Hagos, Shweta Khushu, Aniket Deshmukh, Abra-

ham Addisie, Ameer Rahmati, Earlence Fernandes, Jie Song, Zhongjun Jin, Abolfazl

Asudeh, Kevin Eykholt, Chris Baik. A big shout out to all the members of the DB

group for incessantly coming to all my practice talks and providing valuable feedback.

My Group-X instructors, especially Tatiana and Caymen, who made sure the

day-to-day grind and work deadlines didn’t hijack my much-needed gym time.

Finally, Jayadevan, for being my work-mentor and now closest friend and ally. I

probably would never have chosen to pursue a Ph.D. if it wasn’t for him. He walked

me to the door and stood by me through the ups and downs as I walked through it.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Challenges and Strategies . 5
1.1.1 Lossy Open Information Extraction 5
1.1.2 Heterogeneity in Extracted Knowledge Bases 7
1.1.3 Noisy and Non-Canonicalized Facts in Extracted Knowl-

edge Bases . 8
1.2 Summary of Contributions 9
1.3 Outline of the Dissertation 10

II. Related Work . 11

2.1 Question-Answering . 11
2.2 Querying Text . 11
2.3 Knowledge Acquisition . 13
2.4 Querying Knowledge Bases 16

2.4.1 Querying Curated Knowledge Bases 16
2.4.2 Querying Extracted Knowledge Bases 18
2.4.3 Querying Multiple Knowledge Sources 19

III. Identifying Facts in Text with Open Information Extraction 21

v

3.1 NestIE . 24
3.1.1 Constructing Seed Set 25
3.1.2 Extraction Pattern Learning 26
3.1.3 Tuple Extraction 28
3.1.4 Tuple Linking . 28
3.1.5 Comparison with Ollie 30

3.2 Experiments . 30
3.2.1 Experimental Setup 30
3.2.2 Experimental Results 32
3.2.3 Error Analysis . 33

3.3 Conclusions . 34
3.4 Facts from Conversational Question-Answer Data 35

IV. Online Schemaless Querying of Extracted Knowledge Bases 37

4.1 Introduction . 37
4.2 Preliminaries and Overview 41

4.2.1 Online Schemaless Querying 44
4.3 Evidence Gathering . 46

4.3.1 Query Graph Representation 46
4.3.2 Sub-Component Evaluation 47

4.4 Evidence Aggregation . 48
4.4.1 Answer Extraction 49
4.4.2 Consolidation and Ranking 51

4.5 System Front-End . 51
4.5.1 Natural Language Parsing 51
4.5.2 Paraphrasing . 53

4.6 Experimentals . 54
4.6.1 System Settings . 54
4.6.2 Effectiveness Evaluation: extracted KBs 58
4.6.3 Effectiveness Evaluation: curated KBs 59
4.6.4 Ablation Study . 60

4.7 Case Study . 62
4.8 Conclusion . 63

V. Querying Curated Knowledge Bases with Query Composition 65

5.1 Introduction . 65
5.2 Background . 69
5.3 Solution Overview . 70
5.4 Query Composition . 72

5.4.1 Partial Query Candidate Generation 74
5.4.2 Query Composition and Execution 76

5.5 Semantic Matching Model . 78
5.5.1 Model Architecture 78

vi

5.5.2 Implicit Supervision 80
5.6 Experiments . 83

5.6.1 Datasets and Baseline Systems 83
5.6.2 Experimental Setup 85
5.6.3 Results and Discussion 86
5.6.4 Ablation Study . 89
5.6.5 Qualitative Analysis 91
5.6.6 Error Analysis . 92

5.7 Conclusion . 93

VI. Querying Curated and Extracted Knowledge Bases 94

6.1 Introduction . 94
6.2 Task and Overview . 98
6.3 Partial Query Candidate Generation 99
6.4 Semantic Matching . 101

6.4.1 Model Architecture 102
6.4.2 Relation Alignment 104
6.4.3 Implicit Supervision 104

6.5 Query Composition . 105
6.6 Experiments . 106

6.6.1 Experimental Setup 106
6.6.2 Results and Discussion 108

6.7 Conclusion . 112

VII. Concluding Remarks and Future Work 113

BIBLIOGRAPHY . 116

vii

LIST OF FIGURES

Figure

1.1 Snippet from a curated KB and an example query 3

3.1 Pattern learning and tuple extraction for nest-tuples in NestIE. . . 24

3.2 Seed templates and corresponding representation in NestIE. 25

3.3 Example syntactic Patterns learned using bootstrapping. 27

4.1 Facts in extracted KBs are heterogeneous 37

4.2 Heterogeneity in extracted KBs makes it difficult to access them via
pattern matching . 39

4.3 Pattern matching vs. our proposed method 40

4.4 Example query graph and its sub-components 44

4.5 Overview of Nestique schemaless querying. 45

4.6 Alignment-based approach to extract answers from heterogeneous tu-
ple representations . 48

4.7 Example natural language queries, their dependency parse trees and
query graphs . 52

5.1 Example queries with constrained main relation (1) and multiple
main relations (2 and 3). A main relation connects a topic T to
an intermediate answer I or query answer A. The relation could be
a n-ary relation, indicated in grey. 66

5.2 Example computation plan indicating how to construct the complex
query given the partial queries . 70

viii

5.3 System Architecture of TextRay 71

5.4 Action space showing how to generate candidates for partial query. . 74

5.5 Staged candidate generation for a partial query in TextRay. . . . 75

5.6 Staged generation for a subsequent partial query in TextRay . . . 76

5.7 Semantic Matching Model for comparing question representation to
partial query representation. 77

6.1 Simple vs Complex questions. 95

6.2 Partial queries and derivations. 97

6.3 System Architecture of Multique 99

6.4 Example Candidate Generation for the running example 1. 100

6.5 Semantic Matching Model for collective reasoning over diverse rela-
tion forms. 101

ix

LIST OF TABLES

Table

3.1 Extracted tuples from Open-IE systems: ReVerb, Ollie and NestIE. 22

3.2 Informativeness and number of correct and minimal tuples as fraction
of total number of tuples. 31

4.1 Example queries and evidence tuples in KBs. 43

4.2 Extracted KBs used in our experiments 55

4.3 CompQ-T and CompQ-M have complex queries, WebQ has simple
queries. 56

4.4 Performance of Nestique and other systems on complex questions. 58

4.5 Performance of Nestique and other systems on simple questions. . 59

4.6 Contributions of various components of Nestique : F1 score 60

4.7 Correct answers in top-k predictions. Numbers in parentheses are
normalized to last row. 61

4.8 Contributions of extracted KBs: F1 score 62

4.9 Examples of successful and failed cases in Nestique 63

5.1 Average F1 scores and Precision@1 on CompQWeb. 87

5.2 Average F1 scores and Precision@1 on WebQSP dataset. * are results
on the WebQ dataset. 88

5.3 Upper bound F1 scores for candidate generation. 88

x

5.4 Percentage of questions with the highest F1 score in the top-k candi-
date derivations, and the average best F1. 89

5.5 Component-wise ablation results (Average F1) of TextRay. 89

5.6 Average F1 for different ranking variants in TextRay. 90

5.7 Example failed queries from CompQWeb 93

6.1 Average F1 / precision@1 of baseline systems and Multique in dif-
ferent configurations. 109

6.2 Ablation results, average F1 / precision@1, of Multique (cKB+oKB).111

6.3 Percentage of questions with the highest F1 score in the top-k deriva-
tions, and the average best F1. 111

xi

ABSTRACT

The web is awash in textual data. As users struggle to navigate this textual data, the

art and science of search engines have changed dramatically in recent years. Search

engines like Google are now focusing on providing concise answers in response to

user questions asked in natural language, instead of delivering an assortment of links

to other websites. This has been made possible with the renaissance of large-scale

knowledge bases (KBs), which contain facts about real-world entities and relations

between them. Curated manually or extracted automatically from textual data, KBs

have helped unlock the value in abundant unstructured textual sources. Despite the

tremendous progress in question-answering over a knowledge base (KB-QA), exist-

ing systems still struggle to answer a wide variety of questions, especially complex

questions where multiple pieces of information have to be combined to conclude the

answer. This dissertation studies the design of KB-QA systems that can answer

complex questions by reasoning over knowledge bases, curated manually or extracted

automatically.

KB-QA systems face two challenges. The first challenge is the loss of informa-

tion at knowledge acquisition: how do we prevent extraction systems from losing

contextual information critical to answering complex questions. We describe open

information techniques that are robust to complex textual data and can encode a

complex fact as a set of linked simple facts. The extracted facts can be used to pop-

ulate a KB automatically. The second challenge is querying: how do we translate

complex questions to queries to access the information in the KB. The difficulty of

this task and the coverage of the KB-QA system depend on the target KB. Auto-

xii

matically extracted KBs offer a high coverage of information but use many different

patterns to express the information, making them hard to query. Manually curated

KBs, on the other hand, suffer from low coverage due to their restricted schema, but

can support compositional reasoning since they are constructed precisely for querying.

We describe querying techniques for complex question-answering over each type of

KB. We also describe a KB-QA system that can benefit from combining high-quality

curated knowledge with broad-coverage automatically extracted facts for answering

complex questions.

xiii

CHAPTER I

Introduction

With more information accessible today than ever, there is a shift in how people

find information. Traditionally, web search engines presented a ranked list of relevant

documents or short texts in response to users’ information needs. They relied heavily

on the user to spend a couple of minutes reading each document to get the desired

information. Ranked links or snippets have become less effective with the increasing

richness of information on the Web and growing complexity of information needs.

Consider the following question,

Q1: What is the capital city of Brazil?

Users now prefer to get direct answers (Brasilia) to their questions instead of sift-

ing through documents. This has drawn tremendous interest in question-answering

(KB-QA) systems that can reason over real-world conceptual knowledge to give out

concise results to user questions. To help spur development of commercial QA systems

and products such as the Google Assistant, Amazon Alexa, and Apple Siri, several

large-scale structured knowledge bases (KBs) have been created recently, including

Google’s Knowledge Graph, Freebase [20], YAGO2 [48]. Curated from publicly avail-

able information such as Wikipedia, these KBs contain factual information about

popular real-world entities (e.g. Brazil, Brasilia) and the relations between them (e.g.,

1

capital) in well-structured schemas. A KB-QA system interacts with the KB to re-

trieve answers by first translating the input question to a structured query and then

performing a subgraph match over the structured information in the KB. For Q1, this

is depicted with the following query formulation and execution:

〈Brazil,capital ,?x〉 query−−−→ 〈Brazil,capital , Brasilia〉 answer−−−→Brasilia

Despite the tremendous progress in knowledge-based question answering (KB-

QA), existing systems still struggle to answer complex questions about any topic:

Q2: Which countries import fish from Brazil?

The difficulty in building a QA system that can answer complex questions about

a variety of topics can be traced to two problems: knowledge acquisition and query

formulation. KB-QA systems rely predominantly on knowledge bases built using

manually-defined ontologies. The ontology determines how the knowledge in the text

could be encoded as concepts and relations between the concepts. Consequently,

information extraction (IE) systems only learn to populate the KB with relations

that are already defined in the ontology. The sparsity in terms of the number of facts

becomes even more acute as questions become informal and complex. For Q2, the

KB might model popular concepts (e.g. president, capital) but miss out the long-tail

concepts (e.g. import) critical to answering the question.

Even when the knowledge base might contain the information to support a com-

plex question, it often requires a complex query to retrieve it:

Q3: What college did the author of The Hobbit attend?

As shown in Figure 1.1, a KB-QA system has to infer several schema elements from

the phrases in the question (e.g. ‘author of’−→books.written) to construct the complex

query. Learning these mappings from natural language phrases to the vocabulary of

KB is a non-trivial task.

2

University of Oxford

books.written

v

The Hobbitcollege
is-a

person.education

a) b)

select ?x where {
?v books.written The_Hobbit
?v person.education ?c .
?c education.institution ?x .
?x is-a College .

}

c
education.institution

Figure 1.1: Snippet from a curated KB and an example query

As curating and querying KBs are beginning to hit scalability limits, another

approach to gain insights into the textual data is to infer answers to the questions

directly from the raw text. Recent advances in neural network-based machine com-

prehension models have stirred interest in this direction. However, these systems

require a lot of training data and often target domain-specific questions. Further-

more, structured KBs are more appropriate for compositional reasoning since they

are constructed precisely to be queried. Learning to seek and combine evidence for

answering complex questions is much harder over raw text.

The two types of data offer competing benefits for designing a broad-coverage QA

system. Curated KBs are expensive to build and often sparse but provide declarative

access to information for answering complex questions. On the other hand, the raw

text has the highest coverage of information, but the different textual patterns are

hard to query. These limitations have led to a new wave in IE research: open infor-

mation extraction. Open-IE methods aim to model all possible relations in the raw

text without requiring any manually-defined ontologies or relation-specific training

data. They model facts in an input sentence as tuples of the form t = 〈ei, ri,j, ej〉

where ri,j is a textual relation between entity phrases ei and ej.

Sentence: Brazil was officially discovered in 1500.

Open-IE tuple: 〈Brazil; be discovered in; 1500〉

The facts from a text corpus are then compiled into a structured KB, referred to

3

as extracted knowledge base. In contrast to manual curation, building an extracted

KB is inexpensive. Also, the extracted tuples offer broad coverage of information in

the raw text. While an extracted KB is an attractive choice for KB-QA, existing

systems primarily focus on curated information and very simple questions. Usually,

a single fact is sought, with a few (typically one or two) constraints.

To enable KB-QA systems to answer complex questions, we study various as-

pects of knowledge representation in curated and extracted KB. One major issue in

knowledge base construction is the loss of information at extraction. What is lost

at extraction cannot be queried. We investigate two potential contributing factors:

inexpressive output tuple representation and complex input text format. How the

KB is constructed also impacts how it is queried. A curated KB uses a fixed schema

and thus can be accessed with pattern-matching or retrieval based methods. On the

other hand, an extracted KB uses heterogeneous representations of facts or in other

words, a flexible schema. We, therefore, have to reassess how we access this type of

KB to support complex questions. Lastly, where a curated knowledge base contains

information on some topic, we should generally prefer it to “best effort” information

automatically extracted from the text. If we could design a querying method that can

leverage both a curated KB and an extracted KB, we will be able to answer complex

questions more reliably.

We seek answers to the following three questions:

• How can we minimize loss of information by retaining contextual information

in extracted facts and handling complex input formats?

• Given several extracted KBs with massive, heterogeneous schema, what kind of

query mechanisms are needed to find answers to complex questions in natural

language?

• Can we design a KB-QA system that can additionally leverage the available

4

high-quality, curated information?

We next discuss some of the observations we made from existing Open-IE tech-

niques and KB-QA systems. We present key technical challenges and general strate-

gies to address the questions above. We then conclude with the key contributions

and provide an outline of the work presented in this dissertation.

1.1 Challenges and Strategies

1.1.1 Lossy Open Information Extraction

Data curation processes have to resolve competing demands of affordable curation,

and breadth and complexity of schema. A vast, complex schema helps serve complex

queries involving several selection predicates and joins. However, extracting infor-

mation from text that conforms to a pre-defined schema is difficult and expensive,

requiring extensive human involvement in the form of hand-crafted extraction rules or

hand-tagged training examples. For instance, a curated KB could have information

about several relations (e.g., language, currency) of an entity (e.g, Brazil):

Brazil: capital(Brasilia), currency(Brazilian Real), language(Portuguese)

These facts can be queried simultaneously for answering complex questions like:

‘Which Portuguese-speaking country uses Real as their currency?’. Constructing such

a KB, however, is expensive. Alternatively, Open-IE systems extract information

at scale with significantly lower effort. They offer light-weight structuring of text,

which is easier to derive than schema elements in a curated KB and is easier to query

compared to the raw text. Inspired by these potential benefits, the first Open-IE

systems were designed towards emitting triple facts, such as:

Sentence: Brazil was officially discovered in 1500.

Open-IE tuple: 〈Brazil; be discovered in; 1500〉

5

However, as facts become complex, triple representation begins to lose contextual

information (e.g., arguments of an n-ary relation, links between nested relations) or

fuse it in lengthy arguments. Neither of these is suitable for downstream tasks.

Sentence: Portuguese colonized Brazil under the direction of Pedro Alvares Cabral.

Open-IE tuple: 〈Portuguese; colonized; Brazil〉

Such a tuple can provide a precise answer to a question ‘Who colonized Brazil?’,

but not ‘Who commanded the colonization of Brazil?’. To preserve granularity of

information captured and minimize the loss of information, we propose to factor

complex facts into simple facts and to store them as interconnected triples, which

we call nest-tuples. In nest-tuples, arguments can optionally be references to other

triples. This makes the representation more expressive for complex facts. We designed

an Open-IE system, NestIE, that can extract nest-tuples facts from the text.

The vast majority of previous work on Open-IE extracts structured information

from individual sentences. However, there are alternative sources of textual data that

provide rich information to build knowledge bases. One such source is conversational

question-answer (cQA) data. Often, cQA data contains precisely the knowledge that

users care about and can provide a goal-directed method for constructing knowledge

bases. For example, many community question answering websites answer questions

which may require local knowledge or particular expertise. The information required

to answer these questions may not be present elsewhere in web documents. Following

examples illustrate the kind of data we aim to extract:

Question: What does Brazil export?

Answer: Major export is seafood.

As can be seen from the example, harvesting facts from cQA data presents signif-

icant challenges because now the information is scattered across multiple sentences.

6

An extractor must interpret information collectively between the questions and an-

swers to find useful tuple facts. Without knowing the question, an extractor can often

either fail to or incorrectly interpret the answer. We designed an end-to-end Open-IE

system, NeurON that can extract fact triples from utterances in cQA data.

1.1.2 Heterogeneity in Extracted Knowledge Bases

Knowledge bases, curated or extracted, use large schemas and terminologies to

describe the information they contain. Consequently, it is tedious for a user, who

lacks detailed knowledge about the structure of the data, to access the data in the

KBs. On the other hand, users are more comfortable expressing their information

needs in natural language. A controlled natural language query interface can hide

the complexity from the user while maintaining expressivity. The idea of querying

structured databases with meaning representation languages that rely on natural

language is not new. However, it is still an active area of research owing to the

challenges imposed by ambiguity and variability in natural language.

Such a natural language query interface is both a requirement and a viable solution

to access an extracted KBs. Assertions expressing the same real-world fact can have

different representations, with differences in the use of vocabulary and schema. These

differences arise from variations in input textual data and in knowledge representation

of Open-IE extractors (e.g., tuple, nary-tuple, nest-tuple). Formulating a query or

expanding an input query to match all possible representations is non-trivial and

challenging. The complexity of this task grows as queries become complex. Consider

the following question, its query and relevant facts from an extracted KB:

Question: Which countries import fish from Brazil?

Query: 〈?x; import fish from; Brazil〉 〈?x; is-a; country〉

Relevant Facts: t1〈Brazilian fish; is imported by; USA〉,

t2〈USA; imports; fish; Brazil〉,

7

t3〈:Brazil; supplies; fish〉, t4〈:t3; to; United States〉,

t5〈USA; is a; country〉

Exactly matching the query specification in this case will yield no results because the

tuple facts differ in textual relations (e.g., supplies vs imports), implicit constraints

(e.g. Brazilian fish) and structured representations (e.g., Brazil is an arg in the query

but a subj in tuple t3). Even though it is possible to learn query transformations

offline, such an approach is not suited for complex questions where the queries can

have several possible transformations.

A major impediment in harnessing the broad coverage of an extracted KB to

answer complex natural language questions is its massive, heterogeneous schema.

However, since the arguments and relations in an extracted KB are strings in natural

language, they can naturally be queried by string matchings (e.g., relation phrase

import fish from and textual relation is imported by have several tokens in common).

We designed a schemaless querying framework, Nestique, which does not require a

precise query to match the heterogeneous fact representations. Instead of matching

a query as a whole, it matches sub-components of the query and collects evidence

which could be different representation than the query specification. It then finds

answers by reasoning over the collective evidence. Such an approach is flexible to

representation model of the extracted KB.

1.1.3 Noisy and Non-Canonicalized Facts in Extracted Knowledge Bases

While a KB-QA system can benefit from the broad coverage of information in

an extracted KB, the information is not as accurate and precise as the information

curated manually. This is because a lot of effort has been put at curation to make sure

the information is accurate and also pliable for compositional reasoning. Intuitively,

curated information when available should be preferred over extracted information for

answering complex, compositional questions. As such, a superior strategy to design

8

a KB-QA system is to combine high-quality curated knowledge with broad-coverage

extracted facts.

Combining information from multiple sources offers two benefits: evidence scat-

tered across a curated and extracted KB can be aggregated, and evidence from dif-

ferent KBs can be used to complement each other. Consider the example complex

question Q3:‘What college did the author of The Hobbit go to?’. Inference over onto-

logical relation books.written from a curated KB can benefit from textual relation is

written by from an extracted KB. On the other hand, evidence matching for college

attended may exclusively be in the curated KB.

One possible solution to answer complex questions over multiple knowledge bases

is to break down inference into multiple simple queries, each targeting a specific KB.

The complex query can then be constructed by joining the simple queries. This frame-

work is flexible to target a specific KB exclusively or different types of KB. We study

this decompose-execute-join querying formalism in two scenarios: background knowl-

edge source is a curated KB (with our system TextRay), and background knowledge

source includes a curated and an extracted KB (with our system Multique). Both

our systems use a neural-network based model that can learn to find simple queries

using implicit supervision available in the form of answers to complex questions.

1.2 Summary of Contributions

This dissertation studies the challenges in enabling KB-QA systems to answer

complex questions in natural language. To answer complex questions, such a sys-

tem first needs to acquire and represent knowledge from the raw text in a structured

format that supports faster querying and inference. To minimize the loss of informa-

tion at extraction and maintain the granularity of knowledge, we present a scalable,

open-domain information technique that encodes the knowledge in a nested format.

Additionally, we briefly describe techniques to extract information when it could be

9

scattered across multiple sentences.

To access the knowledge stored in several such automatically extracted KBs, we

propose a schemaless querying mechanism that given one structural query for a nat-

ural language question can derive answers from relevant assertions with different

knowledge representations.

Lastly, we propose a query mechanism for a KB-QA system that benefits from

high-quality knowledge of curated KBs and broad-coverage of extracted KBs. To

leverage information from multiple KBs, we construct query patterns for complex

questions using simple queries, each targeting a specific KB. We propose a neural-

network based model that finds simple queries using implicit supervision from answers

to complex questions. We describe techniques to further equip the model for perform-

ing collective inference over diverse relation forms from multiple KBs.

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows. In chapter II, we survey related

information extraction and question answering research concerning the automatic ac-

quisition and querying of knowledge from textual data. In chapter III, we describe our

open information extractor, NestIE, for extracting nest-tuples from natural language

text. We additionally describe our open information extractor, NeurON, for extract-

ing tuples from conversational utterances. In chapter IV, we describe a schemaless

querying technique, Nestique, for answering complex questions over an extracted

KB. In chapter V, we describe a KB-QA system, TextRay, for answering complex

questions over a curated KB. In chapter VI, we describe a KB-QA system, Multi-

que, for answering complex questions over a curated and extracted KB. Finally, we

outline the future work directions and conclude the dissertation in chapter VII.

10

CHAPTER II

Related Work

While our proposed solution techniques are new, and based on novel inter-subdisciplinary

approaches, the problems we seek to address have a long history of excellent work,

which we briefly survey below.

2.1 Question-Answering

There are two major paradigms of question answering: information-retrieval-based

methods and knowledge-based methods. IR-based question answering systems rely

on the textual information on the web. Given a question in natural language, they use

information retrieval techniques to find relevant documents and passages and then

use reading-comprehension algorithms to read the retrieved passages and identify an

answer directly from the text. In knowledge-based question answering, a system maps

a question to a logical representation which is then used to query structured databases

of facts. We describe IR-based approaches in the next section, followed by sections

of knowledge acquisition and knowledge-based question answering approaches.

2.2 Querying Text

The goal of IR-based question answering is to answer a users question by finding

fragments of text in a collection of documents. Traditionally, corpus search approaches

11

[29, 19] were used to query the syntactic parse trees from the text using tree-pattern

queries. Alternatively, other semantic abstractions over the text such as abstract

meaning representations [5] and semantic views [52] have also been used.

The most popular formulation of IR-based question answering is reading com-

prehension. There has been considerable progress in reading comprehension models,

owing to the success of new learning architectures like attention-based and memory-

augmented neural networks [7, 94]). Several new large-scale training datasets like

SQuAD [72] and WikiReading [47] based on Wikipedia have been released. Many

successful reading comprehension systems [27, 76, 37] have been developed. These

systems compute an embedding for the question and an embedding for each token in

the text, and then select spans whose embeddings are close to the question embed-

ding. The systems are trained end-to-end. Obtaining such training data, however,

can be expensive. As a result, often the models do not generalize beyond their training

domains [95, 38]. Furthermore, the questions that appear in reading comprehension

tend to focus more on deep understanding of the retrieved passage, including corefer-

ence resolution and textual entailment. The techniques proposed in this dissertation

are not designed to handle this level of text understanding.

There are a number of other QA approaches that use either the Web or Wikipedia

as the background knowledge. This includes systems such as AskMSR [23], QuASE [83],

DeepQA [45] and YodaQA [14]. Most of these systems are very sophisticated, rely-

ing on carefully curated ontologies and linguistic analyses of questions and candidate

answers. Instead, our focus is on providing an easy-to-use natural language query

end-point to textual data, which with little training can support complex informa-

tion needs. Satisfying these information needs can often require the ability to do rea-

soning across multiple documents/passages, which is challenging over unstructured

data [86]. We, therefore, adopt a knowledge-based question answering approach in

this dissertation to answer complex questions.

12

2.3 Knowledge Acquisition

Information available as natural language text in open-domain corpora such as

from the Web and Wikipedia becomes much easier to query and analyze if it is stored

in a structured database. Therefore, many have studied how to build large-scale

knowledge bases (KBs) of facts about real-world entities, and relations between them,

from natural language text. There are two main approaches to construct knowledge

bases, namely curation and extraction. Curated KBs are typically constructed col-

laboratively using manually-defined rules. A curated KB has a fixed schema, defined

by its ontology. Extracted KBs are constructed using information extraction systems

that transform the text into structured facts. The two KBs differ in comprehensive-

ness and accuracy. Curated KBs have precise information about certain domains,

but lack information about others. Extracted KBs can have broad coverage about a

variety of domains, but are prone to errors from extraction.

Several initiatives have been taken over the years to leverage the online commu-

nity for curating high-quality knowledge bases. Cyc [57] is one of the first efforts

to assemble open-domain, commonsense knowledge using a formal ontology. DB-

Pedia [6] is constructed with information from Wikipedia infoboxes. YAGO [82] is

constructed using Wikipedia infoboxes and WordNet. Freebase [20] is constructed

using an interactive tool for editing the ontology and writing new facts into the KB.

Wikidata [89] is yet another collaboratively edited knowledge base that can be read

and edited by both humans and machines. Other prominent endeavors include NELL

[26], KnowItAll [39], DeepDive [67]), and Google Knowledge Graph [78].

The fixed schema and inherent incompleteness of curated knowledge bases led re-

searchers to consider completing the knowledge base with little human effort. One

approach is to predict the missing relations in the KB, also known as knowledge base

completion. Several techniques [93, 92, 62] have been proposed recently to learn em-

beddings for entities and relations in the KB to identify the missing relations/facts.

13

However, these are limited by the relations described in the ontology of the KB. The

most promising approach to identify open-domain relations and facts is to extract

them from the text. Traditionally, information extraction systems learned an extrac-

tor for each target relation from labeled training examples [79, 73]. Such an approach

does not scale when the number of target relations is large, or where the set of target

relations cannot be specified in advance. Several efforts have been made to reduce

the manual labor such as by requiring only a small set of labeled instances per re-

lation [24, 2]. However, substantial expertise is required in obtaining training data,

making them unsuitable for large-scale extraction.

Relaxing the limitations of the pre-specified ontology of relations and labeled

corpora has received considerable attention in the last few years. The extraction

systems can be broadly classified into Preemptive IE [77], weak supervision for IE [65,

49] and Open-domain IE [8, 96]. Preemptive IE eliminates the need for relation-

specific extractors but relies on clustering entities and documents which is expensive to

do at a web-scale. Distant supervision methods incorporate supervision from curated

KBs, such as Freebase [20], to generate training data for learning relation-specific

extractors. Even though these approaches drastically reduce the manual effort, the

extracted information is limited to use the relations from the curated KB.

Open-IE systems require no relation-specific training data or pre-specified ontol-

ogy of relations. These systems make a single extraction pass over the corpus and au-

tomatically discover relations of interest using shallow syntactic features and extract

tuples from sentences, each comprising a relation phrase and arguments related by

that relation. Pioneered by Textrunner [105] that used hand-written rules to extract

binary relations mediated by verbs, subsequent works [96, 41, 28, 40, 36, 101, 4, 12]

extended the scope of relations to a wider range of syntactic entities. However, the

first-generation Open-IE systems [105, 41, 36] suffer from two key major drawbacks:

a) they miss out additional attributes such as reification, conditionals, and multiple

14

arguments a relation may have, b) they determine argument and relation boundaries

heuristically which often results in loss of granularity in information captured. Neither

of these is suitable for downstream tasks such as answering complex questions.

Instead of triples, n-ary tuple representation has been used [3, 28], but this rep-

resentation still cannot capture contextual information such as attributions, condi-

tionals, and beliefs. Ollie [75] made the first attempt by additionally extracting an

attribution contextual information with a tuple, when available. Semantic role la-

beling (SRL) has also been used to discover multi-verb relation phrases in semantic

frames, and construct binary, n-ary, and nest-tuples [28]. However, SRL relations do

not always correspond to Open-IE relations (e.g., SRL identifies ‘took’ as a relation

from a sentence ‘The event took place in the Levis stadium.’ whereas an Open-IE

system would identify ‘took place in’ as the relation phrase). Recently, short entail-

ment and clusters of semantically related constituents from longer utterances have

been used to address the problem of long and uninformative argument and relation

phrases [11, 4]. These methods reduce the clusters to triples by mapping them to

known relation types or by using a set of hand-crafted rules.

Since we target answering complex questions, we need an extraction system to

minimize loss of information because of inexpressive representation without sacrificing

granularity in extracted information. Our techniques described in chapter III are

inspired by the use of expressive representations in closed-domain extraction [66,

11, 82] to capture temporal, geospatial and prepositional context information. Our

bootstrapping and pattern learning approaches is motivated from a large body of

work - Dipre [24], Snowball [2], NELL [26], and Ollie [75] - that bootstrap training

data based on seed instances of a relation and then learn patterns for extraction.

The vast majority of the previous work on Open-IE extracts structured infor-

mation (e.g., triples) from individual sentences. However, they struggle to extract

useful information from more complex input formats, such as conversational question-

15

answer data. Motivated by the recent success in Open-IE systems based on end-to-end

frameworks, such as sequence tagging [81] or sequence-to-sequence generation [30], we

briefly describe an end-to-end framework to extract information from question-answer

pairs in chapter III.

2.4 Querying Knowledge Bases

Given a knowledge source, a knowledge-based question answering (KB-QA) sys-

tem has to learn how to map natural language questions to queries that can be exe-

cuted over the knowledge source. How a system performs this task depends largely

on the type of the knowledge source, i.e. curated or extracted. We summarize the

two types of KB-QA systems in the next sections.

2.4.1 Querying Curated Knowledge Bases

The goal of a KB-QA system that uses a curated KB as the background knowledge

source is to formulate queries that align with the fixed schema of the KB [87, 59, 100,

25, 16, 55, 9, 113, 69, 21, 74]. The main challenge in answering questions in this

paradigm is learning how to map textual phrases from the question to ontological

relations in the KB. Typically, systems would learn these mappings from a training

set of question-answer pairs.

KB-QA systems using a curated KBs can be broadly classified into three cate-

gories: retrieval-based methods, template-based methods, and semantic parsing-based

methods. Most of these approaches target simple questions involving a single relation

in the KB. The retrieval-based methods rely on information extraction techniques

to answer natural language questions. Typically, a set of candidate answer entities

from the KB are retrieved using relation extraction [104, 44] or distributed represen-

tations [22, 99], based on which the final answer entity is identified. These methods

cannot handle compositional questions that require identifying multiple entities and

16

relations.

Template-based methods [58, 87, 1, 31] map the input question into a query using

templates. Traditionally, templates were defined manually to handle complex query

logic [87, 113], but these suffered from limited coverage. More recently, templates

can be learned automatically from question-answer pairs [1]. Complex questions

are answered using a series of binary factoid questions answerable using the learned

templates.

Semantic parsing-based methods aim to learn semantic parse trees or equivalent

query graphs representing the semantic structures of the questions. Conventional

approaches [61, 16, 15, 91] relied on domain-independent semantic structures to gen-

erate logical forms that could be transformed into queries over the KB. While the

semantic structures could be complex, these methods struggle to correctly map them

to relations in the KB to construct complex queries. Recent advancements in neural-

network models have revived the interest in semantic-parsing methods. These meth-

ods [63, 106, 109] first collect candidate queries using bottom-up parsing or staged

query generation, and then rank them based on their semantic similarity to the ques-

tion. The semantic similarity function relies on continuous representations of question

and query candidates and is learned using question-answer pairs. These methods have

shown great promise in answering simple questions that target one main relation in

the KB.

Obtaining fully annotated queries for complex questions is expensive. Complex

questions can, however, be answered by decomposing complex intents into multiple

related simpler questions [51, 85]. Learning a semantic parser to answer the simple

questions will require supervision in the form of answers to the simple questions.

Obtaining answers for each simple question related to a complex question can be

cumbersome. In chapter V, we describe techniques that can learn a semantic parser

using only answers to the complex question. Motivated by the previous works, we

17

focus on answering a complex question using a series of simple queries, each matching

one main relation at a time. This approach is broadly related to structured output

prediction [70] and path finding [98, 34] methods that learn to navigate the search

space of queries using question-answer pairs as the evidence. These work well on

simple questions where the search space is small, and the search quality can be reliably

approximated. However, when the queries become complex, the search space for

finding correct paths grows, and the supervision signals become sparse [60].

2.4.2 Querying Extracted Knowledge Bases

KBs constructed with open information extraction tend to have information about

a broad set of topics, but tend to use textual relations that are unnormalized nat-

ural language, in contrast to ontological relations in a curated KB. As a result, an

extracted KB tends to contain more redundant, noisy facts than a curated KB. This

can be understood as a trade-off between generality and power of knowledge repre-

sentation. Ontological relation representation in a curated KB naturally supports

compositional queries, but incomplete knowledge limits its generality. Textual rela-

tion representation in an open KB is harder to query but can support open-domain

questions.

Owing to the unnormalized, heterogeneous knowledge representation, querying

an extracted KB is fundamentally different from querying a curated KB. Paralex

system [42] was the first KB-QA system to operate over an extracted KB containing

only triple facts. It is based on lexicons, learned from a question paraphrase corpus,

that directly maps questions to triple queries against the extracted KB. A KB-QA

system, however, can achieve higher robustness to variability in natural language

questions and heterogeneity in the extracted KB by using a pipeline of operations

for question paraphrasing, parsing, query rewriting, and execution [43]. Powered by

triple facts and simple query language, early KB-QA systems struggle to answer a

18

question with complex semantic constraints.

The complexity of questions that can be supported over an extracted KB requires

a) a more expressive knowledge representation in the KB, and b) a querying mecha-

nism that can aggregate evidence across multiple facts in the KB [53, 108]. However,

most existing KB-QA systems assume a fixed representation of the facts in the KB

(triple or n-ary) and use a query language tailored for that representation. As a re-

sult, they can only find answers from facts that match the query specification. Since

this can result in a low recall, these systems rewrite or relax the query to match

the facts. While this works for simple questions, learning query transformations for

complex questions can quickly lead to combinatorial explosion. In chapter IV, we

describe schemaless querying techniques that do not assume a fixed knowledge rep-

resentation model and can find answers even when facts do not exactly match the

query specification.

2.4.3 Querying Multiple Knowledge Sources

Over time, the two streams of knowledge base question answering - KB-QA on

extracted KBs derived from unstructured data and KB-QA on curated KBs - have

evolved rather independently. An important but under-explored KB-QA paradigm

is where multiple knowledge sources are exploited together [100, 43, 110, 33]. Such

combination is attractive because curated KBs have precise, compositional facts and

the extracted KBs contain millions of facts not present in the curated KBs. A lot

of KB-QA systems rely on the raw text itself instead of the extracted information.

[32] uses memory networks and universal schema to support inference on the union

of KB and text. [84] enriches KB subgraphs with entity links from text documents

and formulates KB-QA as a node classification task. The key limitations of these

methods are that a) they cannot handle highly compositional questions and b) they

ignore the relational structure between the entities in the text.

19

Most of the existing state-of-the-art systems [83, 99] use one primary knowledge

source, typically a curated KB. They use the secondary KB to improve the quality of

answers derived from the primary KB. This is effective when the primary KB contains

sufficient information to answer the question. Generalizing to questions which can not

be answered using a single knowledge source alone requires a uniform query model [43]

or a uniform structured representation [33] over the two types of KBs. The techniques

described in chapter VI build upon these ideas of collective reasoning over different

relation forms. However, we not only exploit any complementary evidence across the

KBs but also combine evidence scattered across multiple KBs.

20

CHAPTER III

Identifying Facts in Text with Open Information

Extraction

Conventional Open-IE systems [105, 41] were designed towards emitting binary

tuples from individual sentences. Such binary representation isn’t always sufficient

for expressing factual information, especially for higher-order relations and nested

facts. Often only a part of the information is captured, resulting in tuples that are

incomplete, uninformative or incoherent. Consider Example 1 in Table 3.1, where

contextual information is either ignored or is subsumed in over-specific argument

and/or relation phrases. Such errors are difficult to repair in a post-processing step

and affect downstream applications like knowledge-based question answering that rely

on correctness and completeness of the tuples.

Furthermore, the extraction patterns used by existing Open-IE systems to gener-

ate the tuples only identify relations mediated by verbs or a subset of verbal patterns.

However, relations in the text can be mediated by nouns and have long-range depen-

dencies that cannot be captured using a small set of patterns [75, 68]. For instance,

consider Example 2 in Table 3.1 that asserts facts, ‘Rozsa Hill is the third hill near the

river’, ‘Rozsa Hill is Rose Hill’ and ‘Rozsa Hill lies north of Castle Hill’, which are not

mediated by verbs. A verb-mediated extraction pattern, such as in ReVerb, would

extract tuple A1, which is not useful for answering questions about the location of

21

1. After giving 5,000 people a second chance at life, doctors are celebrating the
25th anniversary of Britain’s first heart transplant.

ReVerb A1: 〈doctors; are celebrating the 25th anniversary of; Britain ’s first heart transplant〉
Ollie A1: 〈doctors; are celebrating; the 25th anniversary of Britain’s first heart transplant〉

NestIE

A1: 〈doctors; are celebrating; the 25th anniversary of Britain’s first heart transplant〉
A2: 〈doctors; giving; second chance at life〉
A3: 〈A1; after; A2〉

2. Rozsa (Rose) Hill, the third hill near the river, lies north of Castle Hill.

ReVerb A1: 〈the third hill; lies north of; Castle Hill〉
Ollie A1: 〈the third hill; lies north of; Castle Hill〉

NestIE

A1: 〈Rozsa; lies; north of Castle Hill〉
A2: 〈Rozsa Hill; is; third hill near the river〉
A3: 〈Rozsa Hill; is; Rose〉

3. A senior official in Iraq said the body, which was found by U.S. military police,
appeared to have been thrown from a vehicle.

ReVerb
A1: 〈Iraq; said; the body〉
A2: 〈the body; was found by; U.S. military police〉

Ollie A1: 〈A senior official in Iraq; said; the body which was found by U.S. military police〉

NestIE

A1: 〈body; appeared to have been thrown; ∅〉
A2: 〈A1; from; vehicle〉
A3: 〈A senior official in Iraq; said; A2〉
A4: 〈U.S. military police; found; body〉

Table 3.1: Extracted tuples from Open-IE systems: ReVerb, Ollie and NestIE.

‘Rozsa Hill’. In contrast, tuple 〈Rozsa; lies; north of Castle Hill〉, is more informa-

tive but is not mediated by a verb in the original sentence. Focused on extracting

verb-mediated facts, much factual information from the sentence is often lost. For

instance, A1 from ReVerb cannot answer questions of the form ‘What is the other

name of Rozsa Hill?’, ‘Where is Rozsa Hill located?’ and ‘Which is the third hill near the

river?’. On the other hand, these questions can be answered from a more complete

set of tuple facts {A1, A2, A3} from NestIE.

Another problem faced by Open-IE systems is that they tend to extract tuples

with too large argument or relation phrases, in an attempt to encode information as

binary tuples and to achieve high recall. Such tuples are difficult to fuse, link and

22

aggregate for downstream applications. For instance, the argument phrase, ‘body

which was found by U.S. military police’, is less likely to be useful than the argument

phrase, ‘body’ in Example 3 in Table 3.1.

Intuitively, complex facts can be factored into a set of interconnected tuples.

Definition 1 (Nest-Tuple). A nest-tuple representation is of the format ti,j = 〈ei, ri,j, ej〉

where ei and ej are strings representing entities or tuple references and ri,j is the re-

lation connecting ei and ej.

This representation can potentially solve the problem of loss of information. To

identify nest-tuple facts from the text, we need to learn extraction patterns that can

map the many ways of expressing complex relations in the text to corresponding nest-

tuple representations. In practice, it is infeasible to simply enumerate all different

extraction patterns as relations, especially complex, n-ary and multi-verb relations,

could be expressed in several different ways in the text. Also, the complexity of the

templates cannot be increased indefinitely as the instances in the training data that

could support such templates would become sparser.

We propose an Open-IE system, NestIE, which uses a bootstrapping algorithm

that can learn broad-coverage relation-independent patterns for complex sentence

constructions given a seed set of extraction patterns. We demonstrate that these

patterns can be learned from a limited amount of data containing sentence equivalence

pairs. To tackle the problem, NestIE uses a multi-stage solution:

a) construct a seed set of tuples with little or no nesting,

b) bootstrap sentences that mention the seed facts and learn extraction patterns,

c) extract tuples from unseen sentences using learned patterns,

d) link extracted tuples to capture any missing information not captured previously

using the learned patterns.

23

Dataset

Seed Templates
Pattern Representation

Tuple Extraction

Bootstrapping

Syntactic paraphrases

Syntactic Patterns Assertions

Pattern Learning

Fact Extraction

Seed Extraction

Statement Tuple Extraction Tuple Linking

Pattern Learning
Pattern Representation

Figure 3.1: Pattern learning and tuple extraction for nest-tuples in NestIE.

3.1 NestIE

Figure 3.1 illustrates the system architecture of NestIE. Training includes creation

of seed facts, bootstrapping and pattern learning over dependency parse-trees. First,

a set of high-precision seed templates is used to extract tuples.

Definition 2 (Template). A template maps a dependency parse-tree pattern to a tuple

representation: a triple such as 〈arg1; rel; arg2〉 for capturing binary relations, a nest-

tuple such as 〈〈arg1; rel; arg2 〉; rel2; arg3〉 for capturing n-ary relations. Arguments in

the templates are treated as a sequence of words, such as [arg2 rel2 arg3], to capture

nominal modifiers.

NestIE bootstraps over a textual entailment dataset to learn equivalent parse-tree

patterns for the templates in the seed set. In the extraction phrase, NestIE performs

pattern matching using learned templates and parse-based expansion to construct

tuples. These extracted tuples are then linked to generate more complete tuple facts.

24

Template Example

Pattern: A body has been found by police.

Representation: T:	<arg1;	rel	by;	arg2> <body; found by; police>

Pattern: Fallujah is an Iraqi city.

Representation: T:	<arg1;	be;	arg2> <Fallujah; is; city>

Pattern: Ghazi al-Yawar is president of Iraq.

Representation: T:	<arg1;	be;	(arg2,	rel2,	arg3)> <Yawar; is; president of Iraq>

Pattern: 10,000 people in Africa died of Ebola.

Representation: T1:	<(arg1,	rel2,	arg3);	rel;	arg2>	
T2:	<T1;	rel3;	arg4>

A1: <people in Africa; died; ∅>
A2: <A1; of; Ebola>

arg1 arg2 relnsubj cop

arg1 arg2 rel
nsubj cop

arg3

rel2=nmod(?!:agent).*

arg1 rel arg2nmod:agent

arg1 rel | VB* arg2nsubj arg4

rel3=nmod(?!:agent).*

arg3
rel2=nmod.* dobj

nsubjpass

Figure 3.2: Seed templates and corresponding representation in NestIE.

3.1.1 Constructing Seed Set

Since nest-tuples are not readily available, we first write a set of 13 templates, each

encoding a sub-tree of the dependency parse connecting relation phrases and argument

phrases of a sentence. A subset of these templates is shown in Figure 3.2. Intuitively,

we want these templates to capture the simple, common sentence constructions. Since

the tuples extracted using these templates would form the basis of training, these

templates and tuples must be clean and precise.

The set of hypotheses in a textual entailment dataset typically exhibit these desir-

able properties for constructing seed set of facts for bootstrapping. The hypotheses

are simple sentence constructions; their dependency parses having similar structures.

We, therefore, iteratively create templates until at least one tuples could be extracted

from each hypothesis. We then generate a seed set of tuple-facts by matching these

templates against the set of hypotheses.

Using the seed set of tuples from the hypotheses, we can learn the different ways

of expressing them in complex sentence constructions by referring to the statements

25

entailing the hypotheses. While a statement entailing a hypothesis share many words,

there is a closed class of words (e.g., prepositions, a subset of adverbs, determiners,

verbs etc.) that do not modify the meaning of the hypothesis or the statement and

can considered auxiliary. We ignore such words while constructing the seed set.

Example 1. Consider a statement-hypothesis pair,

Statement: Paul Bremer, the top U.S. civilian administrator in Iraq, and Iraq’s new

president, Ghazi al-Yawar, visited the northern Iraqi city of Kirkuk.

Hypothesis: Ghazi al-Yawar is the president of Iraq.

The hypothesis is entailed in the statement. The seed templates extract the following

tuples from the hypothesis: 〈al-Yawar; is; president〉, 〈al-Yawar; is; president of Iraq〉,

and 〈al-Yawar; is president of; Iraq〉.

3.1.2 Extraction Pattern Learning

The biggest challenge in information extraction is the multitude of ways in which

information can be expressed in unstructured text. When facts are complex, it is not

possible to enumerate all the different syntactic variations of the fact. We, therefore,

need to learn the the various syntactic patterns that can encode the same information

as the seed patterns and hence can be mapped to same representation.

We extend the bootstrapping techniques designed for binary-relations [75] to han-

dle n-ary and complex relations. Our seed templates include patterns and corre-

sponding representations for n-ary, complex relations (see 3.2). This allows us to

learn dependency parse-tree patterns connecting the heads of all the argument and

relation phrases in a seed template. Instead of learning different ways of encoding

two arguments and a relation for a triple representation, we learn how all different

arguments and relations in a template might be expressed. This allows us to achieve

higher coverage of context for the facts and prevents the arguments/relations from

26

Template Learned Patterns

Pattern:

Representation: T:	<arg1;	rel	by;	arg2>

Pattern:

Representation: T:	<arg1;	be;	arg2>

Pattern:

Representation: T:	<arg1;	be;	(arg2,	rel2,	arg3)>

Pattern:

Representation: T1:<(arg1,	rel2,	arg3);	rel;	arg2>,		
T2:	<T1;	rel3;	arg4>

arg2 rel | VB* arg1
nsubj dobj

arg2 | NN* arg1 | NN*appos

arg1 slot1 arg2
nsubj dobj

rel | VB*
xcomp

arg1slot1 arg2 | JJ

ccomp

arg3
nsubj nsubj

Figure 3.3: Example syntactic Patterns learned using bootstrapping.

being over-specified and/or uninformative. To mitigate sparsity while bootstrapping,

we ignore the relations that are implicit (e.g., nominal modifier) and can be deduced

from the type of dependency. This allows to learn templates that map paraphrases

such as ‘Mary gave John a car’ and ‘Mary gave a car to John’ to the same representation.

Specifically, NestIE learns relation-independent, dependency-parse tree patterns

for the nest-tuple representations using the set of (statement-tuples) pairs as training

data. We use the Stanford dependency parser [35] to parse a statement and identify

the path connecting the words of the corresponding tuples. If such a path exists, we

retain the syntactic constraints on the nodes and edges in the path and ignore the

surface forms of the nodes in the path. This helps generalize the learned patterns to

unseen relations and arguments.

Example 2. Consider dependency parse-subtree of the statement and hypothesis

from Example 1,

27

Statement: Iraq
poss−→ president

appos−→ al-Yawar

Hypothesis: al-Yawar
nsubj←− president

of−→ Iraq

A seed extraction pattern maps the parse-tree of the hypothesis to the representation,

〈arg1; be; arg2〉, returning tuple, 〈al-Yawar; is; president of Iraq〉. With bootstrapping,

the syntactic pattern from the statement is mapped to the same representation.

In this manner, NestIE could learn 183 templates from the 13 seed templates.

Figure 3.3 shows a subset of these patterns.

3.1.3 Tuple Extraction

Once the extraction patterns are learned, we use these patterns to extract nest-

tuples from unseen sentences. We first parse a new sentence and match the patterns

against the parse tree of the sentence. As the patterns only capture the heads of the

arguments and relations, we expand the extracted argument and relation phrases to

increase the coverage of context as in the original sentence.

Example 3. In the statement from Example 1, the extraction patterns capture the

dependency path connecting the head words: Iraq, administrator and Paul Bremer.

However, to capture the contextual information, we need to further qualify the argu-

ment node, administrator.

Following this observation, we refer to the parse-tree and expand the arguments

on nmod, amod, compound, nummod, det, neg edges. We expand the relations on

advmod, neg, aux, auxpass, cop, nmod edges. Only the dependency edges not

captured in the pattern are considered for expansion. Also, the order of words from

the original sentence is retained in the argument phrases.

3.1.4 Tuple Linking

The context of extracted tuples could include condition, attribution, belief, order,

reason and more. Since it is not possible to generate or learn patterns that can express

28

a complex fact as a whole, NestIE links the various tuples from the previous step to

generate nest-tuples that are complete and closer in meaning to the original sentence.

We assume that the information to link the various extracted tuples can be inferred

from the dependency parse-tree of the sentence from which the tuples were extracted.

We use the following rules to link the tuples:

• The relation of tuple T1 has a relationship to the relation of tuple T2.

Consider the statement, ‘The accident happened after the chief guest had left the event.’

and tuples, T1: 〈accident; happen; φ〉 and T2: 〈chief guest; had left, event〉. Using

dependency edge nmod:after, we construct a nest-tuple 〈T1; after; T2〉.

• Tuple T1 is argument in tuple T2.

Consider the statement, ‘A senior official said the body appeared to have been thrown

from a vehicle.’ and tuples, T1: 〈body; appeared to have been thrown from; vehicle〉 and

T2: 〈senior official; said; φ〉). We update T2 to 〈senior official; said; T1〉.

• In a nested representation with multiple nest-tuples, a nest-tuple is replaced

with a more descriptive alternative tuple.

We use dependency parse patterns to link tuples. We find correspondences be-

tween: a ccomp edge and a clausal complement, an advcl edge and a conditional, a

nmod edge and a relation modifier. For clausal complements, a null argument in the

source tuple is updated with the target tuple. For conditionals and nominal modi-

fiers, a new tuple is constructed with the source and target tuples as arguments. The

relation of the new tuple is derived from the target of the mark edge from the relation

head of target tuple.

29

3.1.5 Comparison with Ollie

Our approach to learn dependency-parse tree based syntactic patterns is similar

to that of Ollie and WOE. However, there are significant differences. First, Ollie

and WOE rely on tuples from ReVerb and Wikipedia info-boxes respectively for

bootstrapping. Most of these relations are binary. On the contrary, we rely on high-

confidence seed templates to construct seed set of tuples. These templates are more

complex and expressive, allowing us to learn different ways in which a complex fact

as a whole could be expressed. Though the arguments in Ollie can be expanded to

include the n-ary arguments, NestIE encodes them in the seed templates and learns

different extraction patterns for these arguments. Also, similar to Ollie, NestIE can

extract tuples that are not just mediated by verbs.

3.2 Experiments

We conducted an experimental study to compare NestIE to other state-of-the-

art extractors. We found that it achieves higher informativeness and produces more

correct and minimal tuples than other extractors.

3.2.1 Experimental Setup

We used two datasets released by [36] in our experiments: 200 random sentences

from Wikipedia, and 200 random sentences from New York Times (NYT). We com-

pared NestIE against three OIE systems: ReVerb, Ollie and ClausIE. Since the

source code for each of the extractors was available, we independently ran the extrac-

tors on the two datasets.

Next, to make the tuples comparable, we configured the extractors to generate

triple tuples. ReVerb and ClausIE tuples were available as triples by default. Ollie

extends its triple representation. So, we generated an additional tuple for each of the

30

Dataset ReVerb Ollie ClausIE NestIE

NYT

Informativeness 1.437/5 2.09/5 2.32/5 2.762/5

Correct 187/275 (0.680) 359/529 (0.678) 527/882 (0.597) 469/914 (0.513)

Minimal 161/187 (0.861) 238/359 (0.663) 199/527 (0.377) 355/469 (0.757)

Wikipedia

Informativeness 1.63/5 2.267/5 2.432/5 2.602/5

Correct 194/258 (0.752) 336/582 (0.577) 453/769 (0.589) 415/827 (0.501)

Minimal 171/194 (0.881) 256/336 (0.761) 214/453 (0.472) 362/415 (0.872)

Table 3.2: Informativeness and number of correct and minimal tuples as fraction of
total number of tuples.

possible extensions of a tuple. NestIE uses a nested representation. So, we simply

extracted the innermost tuple in a nested representation as a triple and allowed the

subject and the object in the outer tuple to contain a reference to the inner triple.

By preserving references the context of a tuple is retained while allowing for queries

at various granularity levels.

We manually labeled the tuples obtained from all extractors to 1) maintain consis-

tency, 2) additionally, assess if they were informative and minimal. Some extractors

use heuristics to identify arguments and/or relation phrase boundaries, which leads

to over-specific arguments that render the tuples unusable for other downstream ap-

plications. To assess the usability of tuples, we evaluated them for minimality [11].

Furthermore, the goal of our system is to extract as many tuples as possible and lose

as little information as possible. We measure this as informativeness of the set of

the tuples for a sentence. Since computing informativeness as a percentage of text

contained in at least one extraction could be biased towards long tuples, we used an

explicit rating scale to measure informativeness.

Two CS graduate student labeled each tuple for correctness (0 or 1) and minimality

(0 or 1). For each sentence, they label the set of tuples for informativeness (0-5).

A tuple is marked correct if it is supported in the text and correctly captures the

contextual information. A tuple is considered minimal if the arguments are not over-

31

specified i.e. they don’t subsume another tuple or have conjunctions or are excessively

long. Lastly, they rank the set of tuples on a scale of 0-5 (0 for bad, 5 for good) based

on the coverage of information in the original sentence. We measured the agreement

between labelers as Cohens Kappa.

3.2.2 Experimental Results

The results of our experimental study are summarized in Table 3.2 which shows the

number of correct and minimal tuples, as well as the total number of tuples for each

extractor and dataset. For each dataset, we also report the macro-average of infor-

mativeness reported by the labelers. We found moderate inter-annotator agreement:

0.59 on correctness and 0.53 on minimality for both the datasets. Each extractor also

includes a confidence score for the tuples. But since each extractor has its unique

method to find confidence, we compare the precision over all the tuples instead of a

subset of high-confidence tuples.

NestIE produced many more tuples, and more informative tuples than other

systems. There appears to be a trade-off between informativeness and correctness

(which are akin to recall and precision, respectively). ClausIE is the system with

results closer to NestIE than other systems. However, the nested representation

and tuple-linking used by NestIE produce substantially more (1.7-1.8 times more)

minimal tuples than ClausIE, which generates tuples from the constituents of the

clause. Learning non-verb mediated extraction patterns and tuple-linking also in-

crease the syntactic scope of relation expressions and context. This is also reflected

in the average informativeness score of the tuples. NestIE achieves 1.1-1.9 times

higher informativeness score than the other systems.

We believe that nested representation directly improves minimality, independent

of other aspects of extractor design. To explore this idea, we conducted experiments

on Ollie, which does not expand the context of the arguments heuristically unlike

32

other extractors. Of the tuples labeled correct but not minimal by the annotators on

the Wikipedia dataset, we identified tuples that satisfy one of: 1) has an argument

for which there is an equivalent tuple, 2) shares the same subject with another tuple

whose relation phrase contains the relation and object of this tuple, 3) has an object

with conjunction. Any such tuples can be made minimal and informative with a

nested representation. 73.75% of the non-minimal correct tuples met at least one of

these conditions, so by a post-processing step, we could raise the minimality score of

Ollie by 17.65%, from 76.1% to 93.75%.

3.2.3 Error Analysis

We did an analysis of the errors made by NestIE. We found that in most of the

cases (about 33%-35%), extraction errors were due to incorrect dependency parsing.

This is not surprising as NestIE relies heavily on the parser for learning extraction

patterns and linking tuples. An incorrect parse affects NestIE more than other sys-

tems which are not focused on extracting finer grained information and can trade-off

minimality for correctness. An incorrect parse not only affects the pattern matching

but also tuple-linking which either fails to link two tuples or produces an incorrect

tuple.

Example 4. Consider the statement, ‘A day after strong winds stirred up the Hauraki

Gulf and broke the mast of Team New Zealand, a lack of wind caused Race 5 of the

America’s Cup to be abandoned today.’. The statement entails following facts:

A1: strong winds stirred up the Hauraki Gulf

A2: strong winds broke the mast of Team New Zealand

A3: a lack of wind caused Race 5 of the America’s Cup to be abandoned

A1 and A2 are parsed correctly. A3 is parsed incorrectly with Race 5 as object of

the verb caused. Some extractors either don’t capture A3 or return an over-specified

tuple, 〈a lack of wind; caused; Race 5 of the America ’s Cup to be abandoned today〉.

33

Such a tuple is correct but not minimal.

To maintain minimality, NestIE aims to extract tuples, A1: 〈Race 5 of the Amer-

ica’s Cup; be abandoned; φ〉 and A2: 〈a lack of wind; caused; A1〉. However, it fails

because of parser errors. It extracts incorrect tuple, A3: 〈a lack of wind; caused; Race

5〉 corresponding to A3 and links it to tuples for A1 and A2. Linking an incorrect

tuple generates more incorrect tuples which hurt the system performance.

However, we hope this problem can be alleviated to some extent as the parsers

become more robust. Another approach could be to use clause segmentation to first

identify clause boundaries and then use NestIE on reduced clauses. As the problem

becomes more severe for longer sentences, we wish to explore clause processing for

complex sentences in future.

Another source of errors was under-specified tuples. Since our nested representa-

tion allows null arguments for intransitive verb phrases and for linking tuples, failure

to find an argument/tuple results in an under-specified tuple. We found that 27%

of the errors were because of null arguments. However, by ignoring tuples with null

arguments we found that precision increases by only 4%-6% (on Wikipedia). This

explains that many of the tuples with empty arguments were indeed correct, and need

special handling. Other sources of errors were: aggressive generalization of an extrac-

tion pattern to unseen relations (24%), unidentified dependency types while parsing

long, complex sentences (21%), and errors in expanding the scope of arguments and

linking tuples (20%).

3.3 Conclusions

We presented NestIE, a novel open information extractor that uses nested rep-

resentation for expressing complex relations and inter-tuple relationships. It can be

seen as a step towards a system that has a greater awareness of the context of tuples

34

and provides informative, complete tuples for KB-QA systems.

3.4 Facts from Conversational Question-Answer Data

Most existing Open-IE systems focus on identifying facts from individual sen-

tences, and ignore richer forms of textual data such as conversational question-answer

(cQA). Following examples illustrate the kind of data:

Example 5. Q: Does the hotel have a gym?

A: It is located on the third floor and is 24/7.

Tuple: 〈gym, is located on, third floor〉

Example 6. Q: What time does the pool open?

A: 6:00am daily.

Tuple: 〈pool, open, 6:00am daily〉

As can be seen from these examples, harvesting facts from cQA data presents sig-

nificant challenges. In particular, the system must interpret information collectively

between the questions and answers. In this case, it must realize that ‘third floor’ refers

to the location of the ‘gym’ and that 6:00am refers to the opening time of the pool.

Open-IE systems that operate over individual sentences ignore the discourse and con-

text in a QA pair. Without knowing the question, they either fail to or incorrectly

interpret the answer.

We develop NeurON, an end-to-end system for extracting information from cQA

data. We cast Open-IE from cQA as a multi-source sequence-to-sequence generation

problem to explicitly model both the question and answer in a QA pair. We propose a

multi-encoder, constrained-decoder framework that uses two encoders to encode each

of the question and answer to an internal representation. The two representations are

then used by a decoder to generate an output sequence corresponding to an extracted

tuple. For example, the output sequence of Example 6 is:

35

〈arg1〉 pool 〈/arg1〉〈rel〉 open 〈/rel〉〈arg2〉 6:00am daily 〈/arg2〉

While encoder-decoder frameworks have been used extensively for machine trans-

lation and summarization, there are two key technical challenges in extending them

for information extraction from cQA data. First, it is vital for the translation model

to learn constraints such as, arguments and relations are sub-spans from the input

sequence, output sequence must have a valid syntax (e.g., 〈arg1〉 must precede 〈rel〉).

These and other constraints can be integrated as hard constraints in the decoder.

Second, the model must recognize auxiliary information that is irrelevant to the KB.

Since existing facts in the KB are representative of the domain of the KB, this prior

knowledge can be incorporated as soft constraints in the decoder to rank various

output sequences based on their relevance. NeurON uses a novel multi-encoder

constrained-decoder method that explicitly models both the question and the an-

swer of a QA pair. It incorporates vocabulary and syntax as hard constraints and

prior knowledge as soft constraints in the decoder. A more detailed description of our

system and experimental results can be found in [18]. NeurON can be seen as a com-

plementary extraction system to NestIE which can gather facts from conversational

question-answer data on the web.

36

CHAPTER IV

Online Schemaless Querying of Extracted

Knowledge Bases

In this chapter, we focus on the problem of massive, loosely-defined, heterogeneous

schemas of extracted knowledge bases (KBs) that impose significant limitations on

querying the ‘broad-coverage’ information they contain. In the context of complex

queries, we study challenges in and provide techniques to answer multi-constraint

questions in a natural language using an array of extracted KBs having different

representations and expressiveness.

4.1 Introduction

While a real-world fact has a unique representation in a curated KB, it can have

diverse representations in an extracted KB. In example a) in Figure 4.1, it is not

evident if the two triples refer to the same entities or even have the same relationship.

“Tesla”

“is	known	for”

“inven1on	of	induc1on	motor” “Nikola	Tesla”

“invented”

“Tesla	Coil”

“Incandescent	light	bulb”

“was	invented	by”

“Thomas	Edison”

a)

b)

Figure 4.1: Facts in extracted KBs are heterogeneous

37

Facts in extracted KBs also exhibit variation in structure (such as n-tuple or nest-

tuple) depending on the arity of the relation and contextual information [3, 75, 17].

For example, an Open-IE method may extract the following tuples from a sentence

“The U.S. Supreme Court believed Tesla originally invented the Radio in 1897.”,

n-tuple t1: 〈Tesla, originally invented, Radio, (in) 1897〉

nest-tuple t2: 〈U.S. Supreme Court, believed, t1〉

where the argument t1 is a reference to the tuple t1. Tuples can also differ in the

ordering of entities, such as in 〈Radio, was invented by, Tesla〉 and 〈Tesla, invented,

induction motor〉.

To retrieve information from KBs, a user can write a structured query (e.g. in

SPARQL), which is answered by performing pattern matching over the KB. Clearly,

the higher the heterogeneity of the KB, the greater the number of semantically equiva-

lent structures a query has to cover. For instance, finding “inventions of Nikola Tesla”

from the tuples in Figure 4.1 will require a complicated query containing multiple

UNION operators.

SELECT ?x WHERE {

{‘Nikola Tesla’ ‘invented’ ?x.} UNION

{?x ‘was invented by’ ‘Tesla’.} UNION

{‘Tesla’ ‘is known for’ ?x.}

}

These query patterns will be far more complex if the user wanted to search for “in-

ventions of Serbian inventors”.

Traditionally, possible query transformations and semantically equivalent struc-

tures are mined [111, 102] in an offline manner, which are then used to expand a given

query at query-time. Such query expansion can be impractical for heterogeneous ex-

tracted KBs, since there will be a combinatorial explosion of expansion possibilities,

particularly for complex queries.

38

Logical	Query:	⟨Tesla,	invented,	?x,	(in)	1891⟩	∧	⟨?x,	is-a,	transformer⟩

Nikola	Tesla

invented

his	tesla	coil	in	1891

Tesla	Coil

was	designed	by

inventor	Tesla

Tesla	Coil

is-a

resonant	transformer

1891 Tesla	Coil

is-a

resonant	transformer

a)

b)
in

Figure 4.2: Heterogeneity in extracted KBs makes it difficult to access them via pat-
tern matching

Example 7. Suppose the user wants to know “which transformer did Nikola Tesla

invent in 1891?”. Figure 4.2 shows tuples from the extracted KB supporting the

answer, ‘Tesla Coil’. The tuples a) and b) containing evidence differ not only in their

structured relation patterns but also in the arguments. It is impractical to formulate

a precise query or learn to expand a given query so it can exactly match the different

expressions in the tuples.

Instead of matching the entire query, finding matches for different query compo-

nents is a much easier task. A simple keyword search [90, 56] can help find matches

for ‘invent’, ‘Nikola Tesla’, ‘in 1891’. These matches do not have to resemble the

query specification. An answer to the query can then be found by reasoning over the

collective evidence. In contrast to learning structured patterns or transformations

from training examples or normalized fact representations, the alignment does not

require any offline processing and can be done online at query-time.

Embodying these ideas, we propose an online schemaless querying method, Nes-

tique, for accessing extracted KBs. Nestique is agnostic about query specification

and can derive answers from facts that do not share the same representation as the

query. It does so by evaluating the query in two distinct phases. It takes a complex

query in a Datalog-like format, where each atom consists of a n-ary predicate and a

vector of n arguments. In the first evidence gathering phase, it finds weak matches for

each atom in the query such that the recall is high. In the second evidence aggrega-

39

Nikola	Tesla

invent	in	1891
?x

is-a

transformer

Inventor	Tesla

designed

?x 1891

resonant	transformer

A:	Tesla	Coil
Pa&ern	Matching/Similarity

a)	Tradi8onal	pa&ern	matching	methods b)	Our	proposed	method,	Nes8que

A:	Tesla	Coil

Keyword-based	search+

Heterogeneous	evidence	set

Answer	Iden8fica8on

Query

Query	Rewri8ng	
(rules	learned	offline)

Figure 4.3: Pattern matching vs. our proposed method

tion phase, it uses more conservative reasoning to derive answers from the collective

evidence. Figure 4.3 shows a comparison of our online, schemaless method with tra-

ditional pattern match-based querying. The two-step querying presents two major

challenges:

Challenge 1 : To support online processing, the evidence gathering from query

components must be fast and efficient. It must achieve a high recall, e.g, by consid-

ering evidence embedded in the context of tuples. Ideally, it should also join across

components to ensure that precision is not too bad.

Challenge 2 : How to find answers from the collective evidence? The evidence can

be structurally and lexically different from the query. The multiplicity of components

in the query and arguments in the evidence involves a complex alignment problem.

We make the following contributions in this chapter:

• We propose a generalized setting for querying extracted knowledge bases with com-

plex queries where the knowledge bases are heterogeneous and do not conform to

a pre-defined ontology.

• We propose Nestique, an online and schemaless querying framework that does not

require the user to write precise, complicated queries to access extracted knowledge

40

bases. We propose a novel approach to match a complex query in parts rather than

relying on exact pattern matching the whole query. Our framework is completely

online and evaluates a query in two phases, namely, evidence gathering and evidence

aggregation.

• We describe an efficient retrieval algorithm for collecting evidence in different ex-

pressions for various query components in an online manner.

• We describe an alignment algorithm based on a novel bipartite graph that finds

answers from aggregated evidence, handling any representational mismatches at

query-time.

• We evaluate the proposed methods by conducting extensive experimental evalu-

ations on three different query sets. We compare with state-of-the-art methods,

OQA [43] and TAQA [108], for querying extracted knowledge bases.

To the best of our knowledge, we are the first to develop a systematic framework

for online and schemaless querying of heterogeneous extracted knowledge bases. Nes-

tique is designed to help users having complex information needs access extracted

knowledge bases. Our flexible framework is capable of finding good matches despite

the high variance in fact representations in the knowledge base.

The rest of the chapter is organized as follows. In Sec. 4.2 we introduce extracted

KBs and formalize the problems studied in this chapter. We describe evidence gath-

ering in Sec. 4.3 and evidence aggregation for querying extracted KBs in Sec. 4.4.

We briefly discuss how we handle front-end engineering issues to make querying ex-

tracted KBs more effective in Sec. 4.5. We evaluate our proposed method in Sec. 4.6

and present a case study in Sec. 4.7.

4.2 Preliminaries and Overview

Extracted Knowledge Bases. An extracted KB is a collection of n-tuples K =

{V,E, L} consisting of a set of arguments V and a set of edges E that are labeled by

41

L. Each edge E is called a n-tuple 〈vh; r; vt1 , . . . vtn〉, where vh is the head argument

and vti are tail arguments in V , and r is a relation name in L. Each edge is associated

with metadata such as unique identifier, source and confidence score. For simplicity,

we represent any nest-tuple as a set of n-tuples using unique identifiers for arguments.

For example, tuples

t1: 〈Tesla, originally invented, Radio, (in) 1897〉 and,

t2: 〈U.S. Supreme Court, believed, t1〉

represent a nest-tuple with t1 and t2 as identifiers. Lastly, V and L are not closed

sets i.e. they can contain multiple semantically equivalent arguments and relations,

respectively.

Queries. A query Q is a Datalog-like program, consisting of a set of RRules

(relational rules). Each RRule is of the form:

Rh(args) : R1(args1), R2(args2)..., Rn(argsn)

We call Rh the head of the rule, and R1, R2.., Rn the body of the rule. Each

Ri(argsi) is a relational atom that evaluates to true when the KB contains the tuple

described by arguments argsi and relation ri. Any variables in the atom bind to

values in the KB. A query can have more than one RRule, but has a variable called

query focus ?xQ. Values that bind to ?xQ form the answers to the query Q.

Traditional pattern-matching assumes that structured queries are formulated us-

ing the well-defined schema and vocabulary of the KB. We consider general queries

that might not exactly follow the structure and semantic specifications of the KB.

Specifically, we do not require each Ri and argsi to exactly match a n-tuple in the KB.

We only assume that the connections between different relational atoms are precisely

specified.

Example 8. A complex query, “which religious group settled near a river in 1638?”

42

Id Subject Relation Arguments

What team did Jordan play for when he played baseball?

play for(Jordan, ?xQ, when play baseball), isa(?xQ, team)

E1 Michael Jordan played minor-league baseball

E2 E1 for Birmingham Barons

E3 Jordan played baseball,for Birmingham Barons

E4 Barons is-a team

Which religious group settled in Delaware in 1638?

settled(?xQ, in Delaware, in 1638), isa(?xQ, religious group)

E5 Finns settle on shores of Delaware in 1638

E6 Delaware settle by the Swedes

E7 E6 around 1638

Table 4.1: Example queries and evidence tuples in KBs.

can be posed as a set of RRules,

R1(?xQ,?y) : settled(?xQ,?y) is a(?y,river) is a(?xQ,religious group)

R2(?xQ,?y,1638) : R1(?xQ,?y), settled in(?xQ,1638), settled in(?y,1638)

R(?xQ) : R2(?xQ,?y,1638)

This query does not specify how to precisely match the relation atom settled(?xQ,

?y). Here, it can match both settle(Roman Catholics, shores of Delaware, in 1638)

and settle by(Delaware, Swedes), which have different orderings and numbers of ar-

guments.

Table 4.1 shows more examples of complex queries that do not match fact represen-

tations. We further represent each Datalog-style query Q as a query graph G(Q).

Definition 3. (Query graph): Query graph G(Q) of a query is an undirected, acyclic

graph with query focus ?xQ as the root. The vertices refer to constants and variables

(e.g., Delaware, ?y). The edges refer to relations (e.g., settled, is a) connecting the

arguments.

A higher-arity relation is represented via an auxiliary vertex (called CVT) with edges

43

CVT	

se#le

head

rel ct:in

1638
?y

ct:near

religious	group

?xq

	arg,	tail

	agent,	head

verb,	rel 4me,	tail2

river
	arg,	tail

is-a

is-a
loc

Figure 4.4: Example query graph and its sub-components

to the relation and the arguments. We also annotate the query graph components

with information such as their semantic roles and lemmatized values.

Definition 4. (Sub-component): A sub-component of Q is a relation edge and all

its incident vertices in the query graph G(Q). In case of a CVT vertex, the sub-

component includes all edges connected to the vertex and their incident vertices.

Figure 4.4 shows a query graph with three sub-components. We find partial matches

for the query by finding heterogeneous tuples from K that contain evidence for each

sub-component of the query.

Definition 5. (Support Set): A support set Ci(Q) is a collection of support items

where each item is a maximal match for a sub-component of G(Q). An item comprises

tuples from K. The argument in the support set that matches ?xQ is the answer.

4.2.1 Online Schemaless Querying

Figure 4.5 provides an overview of our proposed framework, Nestique, for online,

schemaless querying of heterogeneous extracted knowledge bases. Given a query Q,

Nestique represents it as a query graph G(Q). It breaks down Q by identifying sub-

components from G(Q). It then finds weak matches for each sub-component from

44

Input	Query	

⟨?x,	se'led,	in	Delaware,	in	1638⟩	∧	
⟨?x,	type,	religious	group⟩

Query	Graph	Genera.on	
intermediate	query	representa<on

Answer	Extrac.on	
alignment-based	inference

Consolida.on	&	Ranking

Execu.on	
fetch	and	combine	evidence

KB

Swedes Roman	Catholics

Answer	

Swedes,	Roman	Catholics

Figure 4.5: Overview of Nestique schemaless querying.

the KB and extracts an answer to the query Q from this aggregated evidence.

Evidence Gathering. To find evidence for the sub-components that could be en-

coded in heterogeneous tuples, it relies on fast and efficient keyword-based search over

the KB. It finds tuples that contain similar terms as the sub-component. It further

collects additional evidence in tuples related to the retrieved tuples.

Evidence Aggregation. Each support set collected contains an answer to the query.

Nestique derives an answer a by analyzing the components of the query graph and

the support set, and includes a in the answer set A. It consolidates and ranks these

answers using features extracted from various stages of evidence gathering.

Nestique is online and does not rely on any offline process to learn transfor-

mation functions or equivalent patterns. It does not assume a fixed structure and

representation of the tuples in the KB.

45

4.3 Evidence Gathering

4.3.1 Query Graph Representation

A query is specified in a Datalog-like format. In contrast to semantic parsing,

this query is not required to have a precise, formal interpretation in terms of the KB

schema. For example, a user could specify a query as settled(?xQ, in Delaware, in

1638) or be settled by(Delaware, ?xQ, in 1638), both encoding the same information.

Because our KB is unnormalized and contains only strings for arguments and

relations, keyword matching and string similarity become primitive operations for

matching query components. For these operations to have a high recall, we pre-

process the query components: remove stop words, lemmatize, distinguish constraint

modifiers from core entities. For example, the relation settled in in settled in(?xQ,

1638) is transformed to a relation settle and a constraint modifier in for arguments ?xQ

and 1638. We also infer semantic roles for the query components using NLP4J 1. This

helps identify the answer argument from the evidence. We encode all this information

into a query graph, as illustrated in Figure 4.4.

String literals in a query graph correspond to keyword-matching constraints on

the tuples in the KB, while variables correspond to string-similarity join constraints.

A query graph provides a general, high-recall solution to tackle the problem of minor

surface-form variations. Due to the high heterogeneity of the underlying extracted

KB, simply keyword-matching the query components will result in a low recall. For

example, a query

keyword-match(E0.r, ‘settle’) AND

keyword-match(E0.vt1, ‘Delaware’) AND

keyword-match(E0.vt2, ‘1638’) AND

keyword-match(E1.r, ‘is-a’) AND

1https://emorynlp.github.io/nlp4j/

46

keyword-match(E1.vt1, ‘religious group’) AND

string-similarity(E0.vh, E1.vh) > 0.8

will match neither E7 nor E8 in Table 4.1. There is heterogeneity not only in the order-

ing of the arguments and vocabulary, but also in the structure. Nestique addresses

this problem of low recall by breaking down the query graph and finding matches for

sub-components of a query. Specifically, for each sub-component, it finds a ranked list

of tuples based on the terms mentioned in the tuples and those in the sub-component.

Such relaxed query semantics helps achieve high recall despite heterogeneity.

4.3.2 Sub-Component Evaluation

Evaluating the queries in an online manner requires efficient retrieval of tuples

containing information relevant to sub-components. A tuple e = 〈vh, r, vti〉 ∈ K is

relevant if it contains similar terms as those in the arguments and relation of the

sub-component. Since the KB could be very large, exhaustively finding relevant

tuples for each sub-component will be expensive. Furthermore, relevant information

could also be embedded in the context of a tuple (e.g., nest-tuple where one of vh

or vti is a reference to another tuple). We, therefore, construct an inverted index

using ElasticSearch 2 that includes all search terms with their corresponding tuple

identifiers. For tuples that have references to other tuples, we include all terms from

the referenced tuples. For each sub-component, we rank the retrieved tuples based

on the following ranking function.

score(q, e) = queryNorm(q).coord(q, e).
∑
t∈q

tf(t ∈ e).idf(t)2

where queryNorm is the query normalization factor, tf is the term frequency and idf

is the inverse document frequency. One key difference from a vector space model is

the coordination factor (coord) that takes into account how many of the query terms

2https://www.elastic.co

47

?x se%le Delaware 1638

Finns se%led on	the	shores	of	Delaware	in	1638 slot
agent verb

verb loc -me

loc

?x se%le Delaware 1638

Delaware se%le	by the	Swedes 1638
agentverb

verb loc -me

loc
in

-me

slot

a) A1:⟨Finns,	se%led,	on	the	shores	of	Delaware	in	1638⟩

b) A1:⟨Delaware,	se%le	by,	the	Swedes⟩	
A2:	⟨A1,	in,	1638⟩

Figure 4.6: Alignment-based approach to extract answers from heterogeneous tuple
representations

are found in the tuple.

We only retain top-50 of the relevant tuples due to the size of the extracted

KB. While such a simple approach can quickly find pieces of evidence encoded in

different representations (triple, n-tuple, nest-tuple), there may be additional evidence

embedded in the context of the retained tuples that might be useful for answering

the query Q. We, therefore, additionally include tuples that a) are pointed to by the

arguments in a matched tuple, b) point to a matched tuple, or c) share an argument

with a matched tuple. To ensure the support sets are maximal matches for the sub-

components of G(Q), we filter out any contextual tuples that have no overlapping

terms with G(Q).

4.4 Evidence Aggregation

We aggregate evidence for various sub-components of the query graph G(Q) using

a simple query optimizer that makes multiple queries to the inverted index and joins

48

over multiple evidence from different sub-components. For joining the evidence pieces,

we compute the join-key string similarity measured using the Levenshtein distance.

This could return multiple support sets Ci(Q) for the query Q. Note that it is possible

for two support sets to share the same tuple or even the same answer. However, each

support set contains a unique set of tuples as evidence for answering the query Q.

Even though keyword-based search is efficient and ensures a high recall, it can

sometimes find tuples with only a few terms overlap. Such tuples will increase the

noise in the support sets for G as they contain little/no evidence. To alleviate this

problem, we consider a support set Ci only if it matches the following criteria:

• Ci must include at least one term from each query component.

• at least one of the arguments satisfies constraints on answer type.

• rel in G must match to at least one rel in Ci.

A support set Ci for query graph G may not have the same representation. Fig-

ure 4.6 shows two support sets in different formats for a single query. In contrast

to existing methods [43, 108], we do not rewrite or relax the query to handle such

mismatches. We handle mismatches by inferring over various items in a support set.

4.4.1 Answer Extraction

Our evidence gathering does not make any assumptions about the structure or

schema of the tuples. As a result, a support set Ci and query graph G may have

different representations. Figure 4.6 shows two support sets with different number

and roles of items. These representational mismatches must be handled to infer an

answer argument. We allow two types of mismatches between Ci and G:

• different number of components in G and items in C (e.g. 4 fields in G vs. 3 items

in C)

• different roles of components in G and items in C (e.g. Delaware is a vt1 in G vs. a

vh in C)

49

Given a support set C for G, the goal is to find an optimal alignment of fields

in G to items in C. The field aligning to query focus ?xQ in G is the answer. We

model this as a maximum matching problem on a weighted bipartite graph. String

literals and relational edges f ∈ G constitute one type of nodes, and items c ∈ C

the other. In order to handle mismatches, we do not include any constraints on the

alignment. We do not assume that any specific (fi, cj) pair will always align (e.g. vh

in query must always align to a vh in a tuple). We include dummy nodes when G and

C have different numbers of fields and items, respectively. We instead, encode this

information into how we assign weights to the edges connecting (fi, cj). We consider

several indicators to derive the weight on an edge connecting (fi, cj):

Text Similarity, m1: tf-idf of the lemmatized strings for fi and cj. This assigns

high similarity to nodes that are minor surface-form variations (e.g., ‘settle’ vs. ‘settle

by’)

Role Similarity, m2: This is a boolean value indicating if fi and cj have same

semantic role label (e.g., ‘Delaware’ has the same semantic role in the two different

expressions).

Semantic Similarity, m3: similarity of word2vec embeddings of (fi, cj). This cap-

tures semantic similarity of lexically different nodes (e.g., ‘assassinate’ vs. ‘shot by’).

Pattern Similarity, m4: sum of functions pi,

p1 = 1 iff (fi is ?xQ) ∧ (cj is-of answer type)

p2 = 1 iff (fi is ?xQ) ∧ (cj is a noun phrase)

p3 = 1 iff (fi is ?xQ) ∧ (cj is a vh or vt)

These indicators ensure that an answer identity satisfies any constraints on its type

(if specified in the query), is a noun-phrase, and is an argument in the tuple. The

weight on an edge e(fi, cj) is given by, we = f(m1,m2,m3,m4). The function f() to

compute relative weights for the different types of similarity could simply be set to

compute the average, assigning equal weight to each type of similarity. It can also

50

be tuned for optimal performance. For example, we could simply use weights for the

different scoring functions as features and train a linear ranker on a query-answer

dataset. We can then find an optimal alignment using the Hungarian algorithm and

include the argument a aligning to ?xQ in the answer set, A.

4.4.2 Consolidation and Ranking

The answer set A will usually contain repeats: the same answer obtained with

different support for its sub-components. We consolidate A using a set of features

extracted from evidence gathering (e.g., number of components, relevance score of

tuples, rank of retrieved tuple, extractor confidence) and answer extraction (e.g.,

alignment score, word count, average IDF of words). For each unique answer, we take

the best value for each feature across the feature representations [14] and consolidate

A. We score the consolidated answers using a log-linear model. We train the model

using stochastic gradient descent on a set of query-answer pairs.

4.5 System Front-End

Nestique takes as input Datalog-like queries, which are represented as query

graphs. While the user can always write these queries directly, they can also be

obtained by parsing a query in natural language or in any other structured format

(e.g. SPARQL).

4.5.1 Natural Language Parsing

Since most related work for us to compare against starts with natural language

questions, we need to build a natural language front end for a fair comparison. We

provide a light-weight parser for translating user queries in natural language directly

to query graphs to access the extracted knowledge bases. To generate a structured

query, a widely used approach is parsing the input natural language query into the

51

y

Obama do

head rel ct:before

he	was	elected	president?x

tail1
Q1:	What	did	Obama	do	before	he	was	elected	president?

dobjnsubjpass

mark

nsubj

dobj
advcl

Q2:	What	country	gained	independence	from	Britain	in	1960?
det nsubj

dobj pobj pobj

prep prep

y

country

gained

head rel ct:from

Britain?x

tail1

independence 1960

ct:in

is-a

Figure 4.7: Example natural language queries, their dependency parse trees and query
graphs

syntactic dependency representation by employing NLP tools such as the Stanford

Parser [35]. Based on the parsing result, a query skeleton is constructed [58, 113, 104,

108] depending upon target data format (e.g., relational database or RDF).

We build upon these ideas to generate query graph for a NLQ with one difference:

the relation-argument structure of the query graph is not biased towards any specific

knowledge model. This is because the query graph has to be evaluated over a hetero-

geneous KB. However, the task is simplified because instead of precisely identifying

query components, we only have to identify the sub-components. Figure 4.7 illus-

trates some example queries, their dependency structures and corresponding query

graphs.

We first construct a dependency tree for the NLQ using NLP4J. A node in the

tree is a word/phrase in the NLQ while an edge is a dependency relationship between

two nodes. Next, we identify various components of the query graph from the parse

tree:

Identify relation name, rel: If root is a copular verb, rel includes nodes with nsubj

or attr relationship to the root. Otherwise, rel includes all nodes with any of cop,

aux, auxpass relationships to the root. We exclude qword 3 in rel.

3Question Words: what, who, where, when, which

52

Identify head and tail arguments, head and taili : If a copular rel has a qword

as a descendant, head is a query focus, ?xQ. Otherwise, we consider all nodes with

either nsubj or nsubjpass relationships to root as a candidate chead (e.g., as in Q1).

Each candidate chead and nodes in the subtree rooted at chead forms the head, ex-

cept when chead has a qword descendant. In that case, head is simply query focus

?xQ. Tail arguments taili are identified similarly using nodes with either dobj or iobj

relationships to the root.

Identify constraints, cj(target,mod, value) : A constraint modifies either the rel,

the head or any of the tail arguments. For each dependent node of rel, we include a

constraint c with an incoming prep, advmod or mark edge as mod of the constraint,

and the subtree of the dependent node as value of the constraint (e.g., as in Q2 and

Q3). We also include constraints c(?x, is a, type) where type is a subtree of node

connecting qword and root.

Next, we construct the query graph with these components. The rel, head, taili

and valuej form the vertices. A CVT node is used for a rel that has multiple con-

straints. We next add edges connecting head and taili vertices to the rel vertex (in

case rel is CVT), and value to target vertex for constraints (e.g., as in Q2).

4.5.2 Paraphrasing

Users can formulate queries using informal and casual wordings and expressions.

Queries having significantly different vocabulary than the KB can result in low re-

call of support sets for the queries. They, therefore, must be reformulated so they

share similar vocabulary and expressions as the extracted KB tuples. There are

several works that study paraphrasing in relation to querying KBs: template-based

paraphrasing, semantic parsers for curated KBs, paraphrases for neural question-

answering models.

We demonstrate that a simple template-based paraphrasing technique to rewrite

53

natural language queries can significantly boost the performance of a natural language

end-point. We refer to the WikiAnswers paraphrase templates dataset [42, 43] and

rewrite the NLQ using paraphrase operators. Each paraphrase operator comprises of

source and target templates, such as:

What disease killed ?a? → What did ?a die of?

where ?a captures some argument. To use these simple templates to rewrite a com-

plex NLQ, we ignore adverbial and prepositional modifiers in the NLQ when matching

templates. For instance, we drop modifier “in 1960” to paraphrase the NLQ in Fig-

ure 4.7. We consider the top-k paraphrases based on the PMI score of operators and

language model scores of the paraphrases. Each paraphrased NLQ can be translated

to a query graph and evaluated against the KB for answers. While this can improve

the recall of the answers, the candidate answers can still be consolidated and ranked

as usual. Additional features, such as statistical features (e.g. PMI, co-occurrence

count) and syntactical features (e.g. part-of-speech tags of template argument), can

be included to make the ranking function take into account quality of paraphrases.

4.6 Experimentals

We evaluate our proposed framework via empirical study in this section. Sec-

tion 4.6.1 describes our experimental set up, query sets and evaluation metrics. We

demonstrate effectiveness of our method by comparing with methods for querying ex-

tracted knowledge bases (Section 4.6.2) and curated knowledge bases (Section 4.6.3).

We study how the components and KBs affect performance in Section 4.6.4.

4.6.1 System Settings

Extracted Knowledge Bases. We used several well-known extracted KBs.

• Open-IE [43] is constructed using a family of open extractors that extract binary

54

relationships from billions of web pages containing unstructured text (ClueWeb

corpus). Open-IE has a large set of relations. It contains many informal facts,

typically not found in any curated KB.

• Nell [26] is a relatively small extracted KB with much fewer relation phrases. All

facts are triples. Nell generally has high precision, but low recall.

• Probase [97] is an extracted KB with instances of only is-a relation extracted from

1.68B web pages. All facts are triples (e.g., 〈star-fruit, is-a, fresh fruit〉).

• nOKB [108] is an extracted KB containing n-tuple facts for higher-order relation-

ships. These facts are extracted from web pages in English Wikipedia and the

results of a commercial search engine.

• NestKB [17] is an extracted KB containing nest-tuple facts. Like nOKB these

facts are extracted from web pages in Wikipedia and search snippets.

Source # Tuples # Relations KB model

Open-IE 458M 6M binary / triple
Probase 170M 1 triple
Nell 2M 300 triple
nOKB 120M 4.6M n-tuple
NestKB 4M 0.5M nest-tuple

Table 4.2: Extracted KBs used in our experiments

Table 4.2 summarizes these KBs. Combined these form a rich, heterogeneous

knowledge source we used in our experiments.

Query Sets. In our experiments, we use three query sets: WebQuestions (WebQ),

ComplexQuestions (CompQ-T), and ComplexWebQuestions (CompQ-M). Each query

set is a collection of (natural language query, gold-standard-answer) pairs. The queries

in natural language reflect natural, yet complex information needs of the users. They

are not biased towards any specific extracted knowledge base. Table 4.3 shows statis-

tics and example queries from these query sets.

55

CompQ-T what city did the Patriots play in before New England?

300 test
what country did France take over after World War 1?

what money do they use in Spain before 2002?

CompQ-M what is the government of France for 2010?

1300 train when was the first Christmas celebrated in the US?

800 test who was vice president when JFK was president?

WebQ what does Jamaican people speak?

3778 train who is Niall Ferguson’s wife?

2032 test what did George Orwell die of?

Table 4.3: CompQ-T and CompQ-M have complex queries, WebQ has simple queries.

• CompQ-T: This query set was released by the authors of [108]. The queries are

crawled using Google Suggest API. Of the suggested queries, only queries containing

at least one preposition (constraint) are included in the query set. These queries

are not guaranteed to be answerable using a KB, curated or extracted.

• CompQ-M: This query set was released by the authors of [10]. The queries are

selected from a query log of a practical search engine. While these queries are

complex, containing multiple constraints, they are biased to be answerable using

Freebase. They are selected such that each query mentions at least one entity from

Freebase and has a Freebase concept as an answer.

• WebQ: This query set was released by the authors of [16]. The queries were gener-

ated from Google Autocomplete using a seed set of Freebase. Amazon Mechanical

Turk users then provided answers in the form of Freebase concepts entities. Out of

the three test sets, WebQ has the least number of complex queries (only 4% in the

test set are multi-constraint). These queries are known a priori to be answerable

using Freebase.

We want readers to keep a few things in mind. (1) Even though the queries come

56

with gold answers, the answer sets are not known to be complete. We evaluate a top-

ranked answer manually if not already included in an answer set. We found an almost

perfect inter-annotator agreement of 0.894 (Cohen’s kappa) on such answers. (2)

CompQ-M is answerable from Freebase and is included to compare querying methods

designed for curated KBs with querying methods for extracted KBs.

Metrics. Given a query, each method computes a ranked list of answers and returns

the top-ranked one as the final answer or ‘no answer’. Let #QA denote the total

number of queries in a query set, #QC denote the number of queries that are correctly

answered and #QF denote the number of queries with at least one answer. We report

precision P , recall R and F1 scores of the querying methods:

P =
#QC

#QF
; R =

#QC

#QA
; F1 =

1

1/P + 1/R

Baseline Methods. There are several querying methods designed for curated KBs,

but only a handful for extracted KBs.

• OQA [43] assumes the queries and KB facts are triples. It parses a NLQ into a

structured, conjunctive query which is then evaluated via pattern matching. The

authors of OQA have released their learned model and source code. We use OQA

to parse input queries and evaluate them against the same KB as Nestique.

• TAQA [108] assumes the queries and KB facts are n-tuples. It parses a NLQ into

an n-tuple query which is then evaluated via relaxed-pattern matching. The model

and source code of TAQA is not publicly available. We compare with the results

reported in their paper. This comparison is valid because TAQA uses the same

KBs as Nestique, except for the nest-tuples that are extracted from the source as

their KB. Their querying method cannot handle nest-tuples, so including them will

not impact the performance.

57

Systems CompQ-T CompQ-M

Precision Recall F1 Precision Recall F1

Nestique 55.9% 47.0% 51.1% 31.5% 21.5% 25.6%

OQA 26.3% 1.6% 3.1% 25.6% 2.7% 4.9%

TAQA (No relaxation) 27.7% 27.7% 27.7% - - -

TAQA 39.3% 39.3% 39.3% - - -

Table 4.4: Performance of Nestique and other systems on complex questions.

When available, we use the trained models provided by the authors. For Nestique,

we train the ranking model using the standard training set of WebQ with 3778 queries.

4.6.2 Effectiveness Evaluation: extracted KBs

Table 4.4 shows the performance of Nestique, and the two other baseline methods

on the three query sets. In comparison to OQA, Nestique consistently achieves higher

precision and recall on complex queries. OQA is designed to query triple facts by

pattern-matching triple query templates. Lack of expressivity of the query model, in

addition to restrictive pattern-matching, becomes a bottleneck for a complex query.

This is reflected in the low recall and F1 scores. Even when it is provided a background

knowledge source with higher expressiveness (e.g. nOKB and NestKB), its querying

mechanism cannot utilize the additional semantic information. Often the triple query

template will not capture all the constraints in the input query. Pattern-matching

such queries to KB tuples would ignore evidence in the n-ary argument or context

of the tuples that could satisfy the constraints in the queries and prevent the system

from finding erroneous matches.

In comparison to TAQA, Nestique achieves higher precision and recall on com-

plex queries. Even though TAQA uses an expressive query language (n-tuple), its

restrictive querying cannot extract answers from heterogeneous tuples. It enforces

58

Systems WebQ

Precision Recall F1

Nestique 38.3% 26.0% 31.0%

OQA 28.4% 16.7% 21.0%

TAQA (No relaxation) 32.3% 32.3% 32.3%

TAQA 35.6% 35.6% 35.6%

Table 4.5: Performance of Nestique and other systems on simple questions.

certain structural constraints (such as head and rel in a query and tuple should

match) and does not take into account evidence embedded in context of tuples. These

constraints limit recall: 27.7% with no relaxed queries. To boost recall, it reformu-

lates the queries, dropping certain constraints in the queries. While this improves

recall (39.3% with relaxed queries), it hurts precision. Nestique does not enforce

such structural constraints, enabling it to derive correct answers from tuples that are

lexically and structurally different from the query.

Table 4.5 shows the performance of the systems on the WebQ query set. In the

WebQ query set, most of the queries are simple, single-relation queries answerable

from Freebase. Thus, all methods can successfully formulate structured queries for

these queries. While the restrictive representation and querying in OQA achieves

reasonable precision, more flexible execution as in TAQA and Nestique achieves

higher precision.

4.6.3 Effectiveness Evaluation: curated KBs

Freebase has attracted a lot of research attention. It is a curated KB with several

querying methods and benchmark query sets that are guaranteed to be answerable

from Freebase. A direct comparison to these querying methods using these query

sets is not fair for two reasons: a) methods for querying curated KBs can rely on the

59

Settings CompQ-T CompQ-M WebQ

Full Model 51.1% 25.6% 31.1%

No context 28.2% 13.8% 14.9%

No paraphrasing 30.4% 17.1% 16.5%

Table 4.6: Contributions of various components of Nestique : F1 score

accuracy and conciseness of the KB, b) these querying methods only have to learn

to expand and reformulate logical queries for a closed set of predicates in Freebase.

Methods for querying extracted KBs have to deal with higher heterogeneity and open

vocabulary of the KB. We report the performance (F1-scores) of a few advanced

methods for querying Freebase as they provide interesting references.

We found ParaSempre [15] achieved a reasonable F1(31%) on simple queries

in WebQ known to be answerable from Freebase. However, for complex queries its

performance varied depending upon whether the queries were guaranteed to be an-

swerable from Freebase (5% on CompQ-T vs. 17% on CompQ-M). Other meth-

ods [10] report an average F1 as high as (54% on WebQ and 42% on CompQ-M).

These methods and query sets are biased towards queries that can be supported over

Freebase. On the other hand, Nestique provides a mechanism to support generic,

complex queries over extracted KBs.

4.6.4 Ablation Study

Table 4.6 shows the effects of removing different components from Nestique.

It is not surprising that ignoring contextual tuples hurts performance on complex

queries. Surprisingly, ignoring context for simple queries also affects the performance,

implying that the correct answers are often derived using the context. We found

ignoring paraphrases also affected performance, especially for CompQ-T, which is

not targeted towards any specific KB. Paraphrasing bridges the lexical gap between

60

Top-k CompQ-T CompQ-M WebQ

1 55.9% (87.6%) 31.4% (70.5%) 38.8% (78.7%)

2-5 60.7% (95.1%) 37.9% (85.2%) 43.3% (87.8%)

6-10 62.3% (97.6%) 40.5% (91.0%) 45.7% (92.7%)

> 10 63.8% (100%) 44.5% (100%) 49.3% (100%)

Table 4.7: Correct answers in top-k predictions. Numbers in parentheses are normal-
ized to last row.

natural language queries and tuples.

We found that the constraints we used to filter the support sets effectively elimi-

nated bad support sets. When no constraints were enforced on the support set, the

average number of support sets per query increased by 50%, making answer extraction

slower. 84% of the newly discovered support sets didn’t include a correct answer.

We also examined the ranking mechanism in Nestique and report the rank dis-

tribution of ground-truth answers in the top-k predictions. As shown in Table 4.7,

we found that for most of the queries which could be correctly answered, the correct

answer was within the top-5 predictions. For example, over 95% of true answers are

among the top-5 candidates for CompQ-M.

Table 4.8 shows how different extracted KBs affect Nestique’s performance. As

expected, nOKB and NestKB, with rich representations significantly affect perfor-

mance on complex queries. Probase is useful for simple queries in WebQ. Surpris-

ingly, excluding Open-IE does not lower the performance drastically. This is because

Open-IE tuples relevant to the query sets are included in nOKB and NestKB. Unlike

other KBs, Nell had little effect on Nestique’s performance.

Being automatically extracted, tuples in an extracted KB may not always be

correct. To investigate the impact of data quality on the overall system performance,

we examined the tuples returned as evidence along with the answers for 100 randomly

61

Settings CompQ-T CompQ-M WebQ

All KBs 55.9% 25.6% 31.1%

No Open-IE 51.1% 25.4% 30.9%

No nOKB 23.6% 11.1% 12.5%

No NestKB 45.6% 19.2% 23.7%

No Probase 50.7% 25.3% 29.7%

No Nell 51.1% 25.6% 30.9%

Table 4.8: Contributions of extracted KBs: F1 score

selected questions from the test set. We found 12% of the tuples were incorrect and

contribute to the errors made by the system. Although Nestique attempts to mitigate

errors in the data itself by considering metadata information of the tuples (such as

extractor confidence, frequency) when ranking the answers to a question, these errors

can further be reduced if the data quality were improved (e.g. via a human-in-the-loop

approach).

4.7 Case Study

Table 4.9 shows examples from test data where Nestique successfully (examples 1

and 2) or incorrectly (examples 3 and 4) derived an answer. In example 1, Nestique

doesn’t require the query graph to exactly match a support set. It can derive the

correct answer by analyzing the support set (e.g. ‘do’ and ‘served’ are semantically

similar in example 1, even though these words are not themselves synonyms). As

shown in example 2, matching sub-components with keyword queries helps combine

evidence scattered across fields (e.g. ‘Obama’ in ‘president’ in two fields).

As shown in Example 3, Nestique can derive incorrect answers even if the lexical

and structural gap is small because it fails to distinguish semantically different relation

phrases (e.g. ‘led to split of’ and ‘lead’). Future querying methods must explore

62

1

Q what did Thomas Jefferson do before he was President?

A {Secretary of State}
G(Q) 〈Thomas Jefferson, do, ?x〉 ∧ 〈do, before, he was president〉
C(Q) A1:〈President Thomas Jefferson, served, φ〉

A2:〈A1, as, Secretary of State 〉,
A3:〈A1, under, President Washington 〉

2

Q who did president Obama run against in 2008?

A {John McCain, McCain}
G(Q) 〈President Obama, run against, ?x〉 ∧ 〈run against, in, 2008〉
C(Q) A2:〈Obama, run for president, against McCain, in 2008〉

3

Q what led to the split of the republican party in 1912?

A {William Taft}
G(Q) 〈?x, led to split, republican party〉 ∧ 〈led to split, in, 1912〉
C(Q) A3:〈William Taft, lead, divided Republican Party, in 1912〉

Table 4.9: Examples of successful and failed cases in Nestique

semantic similarity of queries and tuples to reduce such cases. As shown in Example

4, ignoring implicit constraints such as aggregation can also lead to incorrect answers.

Identifying and treating these as explicit constraints is one way of validating them in

the evidence.

4.8 Conclusion

We introduced Nestique, an online schemaless querying method for extracted

KBs that leverages heterogeneity in KBs to support complex queries with multiple

constraints. We described algorithms that, given a structured Datalog-like query,

matches different components of the query and finds evidence embedded in struc-

turally diverse expressions. It can, thus, find answers from tuples that may not exactly

match the query specification. Instead of learning query transformation functions of-

63

fline, it handles these mismatches at query-time. Our experiments demonstrate that

Nestique significantly outperforms state-of-the-art querying methods over extracted

KBs in answering complex queries.

64

CHAPTER V

Querying Curated Knowledge Bases with Query

Composition

To design a KB-QA system that can combine both curated and extracted knowl-

edge bases, we must first understand the techniques for querying curated KBs and

the complexity of questions they can support. In this chapter, we focus on the design

of a KB-QA system that exclusively uses a curated KB as the background knowledge

source. We propose a novel decompose-execute-join to construct complex query pat-

terns using a set of simple queries. It uses a semantic matching model which is able

to learn simple queries using implicit supervision from question-answer pairs, thus

eliminating the need for complex query patterns.

5.1 Introduction

An important direction in KB-QA over curated KBs is based on semantic parsing,

where a question is mapped to a structured query over the KB. Consider the simple

question 1 in Fig. 5.1 and its corresponding query,

select ?x where {

Martin Luther King person.education ?c .

?c education institution ?x .

65

Which Portuguese speaking countries import fish from Brazil?

Brazil
country

T A T’
Portuguese

import_by spoken_in

T’’ fish
goods.imported

Where did Martin Luther King Junior go to college ?

Martin Luther King, Jr. College
T Aperson.education education_institution is_a

conjunction

constraints

import_from

is_a

1

Where is the home stadium of the team who won the
1946 World Series?

1946 World Series

Baseball Team

T I A

nesting

sports_event
is_a

arena_stadiumevent.champion
2

3

Figure 5.1: Example queries with constrained main relation (1) and multiple main
relations (2 and 3). A main relation connects a topic T to an intermediate
answer I or query answer A. The relation could be a n-ary relation,
indicated in grey.

?x is a College . }

which is constructed by mapping expressions in the question to query components,

namely a topic entity (Martin Luther King), a main relation path (person.education-

education institution) and any constraints (answer type college). The answers are

retrieved by executing the query over the KB.

A key challenge in KB-QA is learning how to bridge the gap between natural

language expressions in the questions and the complex schema of the KB using only

question-answer pairs. As a result, KB-QA systems have focused on simple questions

which can be answered by querying a single relation (or path) in the KB. Little ef-

fort has been made to support compositional questions where queries involve joining

multiple relations. We call such questions complex questions throughout this chapter.

Consider example questions 2 and 3 in Fig. 5.1. Their corresponding queries have

multiple query components: multiple topic entities (Brazil and Portuguese) and more

66

than one main relation (import from-import by and spoken in). Generating such com-

plex queries is much harder due to the structural complexity of the query patterns

and the many expressions in the questions mapping to query components.

Traditionally, KB-QA systems handled compositionality by using query templates

[87, 113, 1, 31]. While templates can encode complex query patterns, they inevitably

have limited coverage. Modern KB-QA systems [10, 50, 106, 16] offer better cover-

age by modeling semantic parsing as a query generation task, where the goal is to

construct a query pattern for a question using likely candidates for its query compo-

nents. Candidates for query patterns are collected using bottom-up parsing or staged

generation methods. The query candidates are ranked based on their semantic sim-

ilarity to the question, and the best candidate is executed over the KB. Although

more robust, these KB-QA systems face two major challenges: a) searching for good

candidate query patterns, and b) learning the semantic matching function.

When a query becomes complex with many query components and joins, the num-

ber of possible candidates grows exponentially, making the search for good query

candidates significantly harder. Consider the following example where the topic

1946 World Series is 3 hops from the answer. Given the topic entity, collecting and

scoring all 3-hop paths to find the most likely path is too expensive if not infeasible.

Example 9. Where is the home stadium of the team who won the 1946 World Series?

Partial Queries:

q1: ?a event.champion ?c . ?c sports event 1946 World Series .

q2: ?b arena stadium ?x .

Join: q1 join?a=?b q2

Execute: ans = Busch Stadium

We hypothesize that complex query patterns can be constructed by joining a set

of simple queries. Since simple queries have fewer query components, they also have

fewer candidates. In the example above, q1 and q2 have fewer components than the

67

original query. Scoring the candidates for a simple query and executing the best query

(q1) can yield intermediate answers (Cardinals for ?a), which can restrict the search

space for subsequent simple queries (?b in q2 binds to answers of q1). The process

of decomposing the complex query into simple queries makes the search for complex

query patterns tractable.

A natural question then is how to decompose the query generation process and

learn the semantic matching function for simple queries. A simple approach is to

annotate the linguistic parse tree of a question with query components and learn to

map the tree elements to a query pattern [58, 112]. The mapping can be learned

from example questions annotated with complex query patterns. Obtaining complex

query patterns, however, can be cumbersome and error-prone. Recent works [16, 70]

have shown that the mapping can instead be learned using distant supervision from

question-answer pairs. While this works for simple questions, it is challenging for

complex questions where only answers (e.g., Busch Stadium) to complex questions are

available and not the simple queries (e.g., St. Louis Cardinals for q1) that constitute

the complex query. We propose that by restricting each simple query to a single

relation path and by leveraging some prior domain knowledge, a semantic parser can

be trained to answer simple queries using only implicit supervision for the simple

queries.

We have constructed a KB-QA system, TextRay that learns to answer complex

questions using only question-answer pairs. It adopts a decompose-execute-join ap-

proach, where it constructs a complex query by joining a sequence of simple queries.

Each simple query focuses on one relation path, which ensures the search for its candi-

dates is efficient and implicit supervision signals are reliable for learning the semantic

parser. For training the semantic parser, it estimates the quality of a simple query

candidate indirectly based on the answers retrieved by its future complete query can-

didates. It further incorporates simple, light-weight domain knowledge to improve the

68

quality of the weak, implicit supervision signals. To summarize this chapter makes

the following contributions:

• We present a new KB-QA system, TextRay, that automatically translates a given

complex, compositional question to the matching query over a knowledge base

(Section 5.3) .

• We propose a novel decompose-execute-join approach to construct a complex query

pattern from partial queries. This enables efficient search for good candidates for

a complex query (Section 5.4).

• We present a neural-network based semantic matching model that learns to score

candidates for partial queries using implicit supervision from question-answer pairs.

It uses an effective scoring strategy for candidates that combines the quality of full-

query derivations of a candidate with domain knowledge (Section 5.5).

• We provide an extensive evaluation of our system on multiple QA datasets, where it

significantly outperforms previous approaches on complex questions (Section 5.6).

We introduce key concepts in Sec.5.2. We outline problems studied in this chap-

ter and our approach in Sec.5.3 before providing details in Sec.5.4-5.5. We present

experiments in Sec.5.6.

5.2 Background

Our goal is to design a KB-QA system that can map a complex question Q in

natural language to a matching query G, which can be executed against a knowledge

base K to retrieve answers to Q.

Knowledge Base. A knowledge base K is a collection of triples of the form of

(s, r, o), where s, r and o denote subject, relation and object respectively. A triple

can also be interpreted as a directed edge from s to o labeled with relation r, and

K as a directed graph. Higher-order relations are expressed using special mediator

nodes.

69

Complex Question. A complex question Q in natural language corresponds to a

query G over the K such that G involves joining multiple main relations in the K. G

has a single query focus ?x that corresponds to the answer to Q. G can be interpreted

as a sequence of simple partial queries G = (G1, G2, ..., Go) connected via different

join conditions. Each partial query corresponds to a main relation in G. Partial

queries may share the query focus ?x (e.g. example 3 in Fig. 5.2) or a variable (e.g.

example 2 in Fig. 5.2).

Computation Plan. A computation plan C is a tree that decides how a complex

query G is constructed and executed from the partial queries. It uses two main

functions: simQA and join. simQA denotes search and execution of likely partial

query candidates. join denotes the join condition for two partial queries. Fig. 5.2

shows computation plans for running examples 2 and 3.

a) conjunctive query

join(xa, xb)
xa

xa

simQA simQA
xb

b) nested query

simQA

xb

simQA
xa

Figure 5.2: Example computation plan indicating how to construct the complex query
given the partial queries

5.3 Solution Overview

Fig. 5.3 shows the design of a system that answers complex questions with simple

queries. There are several key steps in the process.

Given a question Q, the system generates a computation plan that describes how

its matching query G can be broken down into partial queries Gi. Next, based on the

computation plan it finds candidates for the partial queries {G(k)
i }Lk=1. For instance,

candidates for G1 and G2 can be collected simultaneously for a conjunctive question

70

NLQ

Partial Query Candidates Generation

KBSemantic Matching

Top-k Evaluation

Query Composition

complex SPARQL query

Computation PlanEntity Linking

simQA

Figure 5.3: System Architecture of TextRay

with a computation plan a) in Fig. 5.2. On the other hand, the search for G2 can

benefit from the answers of G1 for the computation plan b). Given the candidates for

partial queries, it computes their semantic similarity Ssem(Q,G
(k)
i) to the question.

The best M candidates for each partial query are executed, their answers help find

the candidates for the subsequent query and so on. In this manner, multiple full-

query derivations are generated from simple query candidates. The derivation with

the highest overall score is finally executed to find answers to the complex question.

The system needs a model for computing the semantic similarity of the partial

query candidates. The model can be learned offline using a set of question-answer

pairs. Learning to guess a good candidate from a set of candidates requires a set of

positive and negative examples of (question-partial query) pairs. The system gen-

erates these examples based on implicit supervision, i.e. whether any of full-query

derivations of a partial query can generate the labeled answers for the question. Since

such implicit supervision can be susceptible to spurious queries, it incorporates simple,

light-weight domain knowledge as priors in scoring the candidates.

Embodying these ideas, we design a system TextRay that adopts a decompose-

71

execute-join approach to answer complex questions. Our query composition approach

and our semantic matching model trained with weak, implicit supervision are the

major contributions of this chapter. Formally, these tasks can be defined as follows:

Query Composition. Given a complex question Q and its computation plan C,

find a sequence of partial queries (G1, G2, ..., Go) and construct the complex query

pattern G such that executing G over K provides answers to Q. To find a correct

partial query Gi, we have to collect candidates {G(k)
i }Lk=1, score them and reserve

the best candidates for finding Gi+1. Given K-best full-query derivations G(k) =

(G
(k)
1 , G

(k)
2 , ..., G

(k)
o), we have to find the derivation G∗ that best captures the meaning

of Q. (Section 5.4)

Semantic Matching. Given a question Q and a partial query candidate G
(k)
i , a

semantic matching model provides a semantic similarity score Ssem(Q,G
(k)
i). We

have to learn the model offline using distant supervision from a collection of question

answer-set pairs {Qi, Ai}Ni=1, where Qi is a complex question and Ai is the set of

entities from K that are answers to the complex question. (Section 5.5)

5.4 Query Composition

We assume that a complex question can be answered using a sequence of simple,

partial queries, each focusing on one main relation in the knowledge base K. Pre-

dicting one main relation at a time offers several benefits. First, it ensures query

composition is tractable. Consider a computation plan that describes how to con-

struct a complex query pattern by joining one component (i.e. an entity node or a

relation edge) at a time. Obtaining the plan reliably will be tedious and error-prone.

In contrast, it is easier to obtain a computation plan that describes how to join partial

queries. Also, independently matching each component will lose useful information

for collectively resolving components in the partial queries. Lastly, executing more

specific partial query patterns will be more efficient than query patterns for individual

72

components. For instance, a query pattern q: Portuguese spoken in ?o will find fewer

matches to join with than q: Portuguese ?r ?o .

Identifying entities. In order to find candidates for the partial queries, we begin

by identifying entities from K that are mentioned in the question. In our example

question 3 from Fig. 5.1, mention ‘Portuguese’ refers to the language Portuguese or

dialect Brazilian Portuguese in K, and ‘Brazil’ refers to the South American country in

K. We delay disambiguation to later steps in order to tolerate errors in entity linking.

We use an entity linking system [103, 13] that returns a set of possibly overlapping

pairs E = {(mention, entity)} with attached confidence scores. We consider 10 best

pairs based on their confidence scores.

Constructing Computation Plan. Even though a computation plan can in-

clude aggregations and value comparisons, we assume it includes two operations,

simQA and join for simplicity. The simQA operator denotes search for a partial query,

and join describes the join condition of two partial queries. Post-order traversal of the

plan yields a sequence in which the partial queries are executed: z = z1, z2, . . . , zn,

where zi ∈ {simQA, join}. Note that we do not chunk the original question into

sub-questions but simply encode the number of partial queries required to construct

the query G. We obtain the computation plan using augmented pointer networks [85]

trained to predict its likelihood as P (C|Q) =
∏j

i=1 P (zi|Q, z1:i−1). In practice, how-

ever, the number of main relations is small (2-3). A computation plan can also be

approximated using simple syntactic cues such as the number of verb phrases in the

question. The dependencies can be estimated from the type of clause connectors in the

question i.e. coordinating (example 1 in Fig. 5.2) vs subordinating clause (example

2 in Fig. 5.2).

73

5.4.1 Partial Query Candidate Generation

We next have to construct the complex query pattern using the sequence described

in the computation plan. We generate candidates for a partial query by staged gen-

eration method, measure their semantic similarities to the question and find the best

candidate (simQA operation). Compared to previous methods [106, 10], we tailor

the staged generation strategy to handle compositionality. The candidate generation

process is described by a set of states S and actions A. We introduce a new state St

and action At (Fig. 5.4).

Se Sr Scϕ
Ac

Ac
ArAe

Ae

St
At

Figure 5.4: Action space showing how to generate candidates for partial query.

States S = {φ, Se, Sr, Sc, St} indicate an empty query (φ), single entity (Se),

a main relation path (Sr), a constraint (Sc) in a partial query candidate. Action

A = {Ae, Ar, Ac, At} grow a candidate by adding one query component at a time. As

shown in Fig. 5.5, action Ae finds candidates for the seed entity, Ar adds main relation

paths to the seed entity candidates and action Ac adds any constraints. Action At

denotes termination of the partial query Gi and the transition to a state St. In the

state St, the candidate generation refers to the computation plan and determines how

to proceed to find candidates for subsequent partial query Gi+1. Concretely, if the

next operation is simQA, Gi+1 depends on the answers of Gi. Candidates for Gi,

therefore, must be scored and the best candidate be executed. The answers of Gi

would become the seed for the collecting candidates of Gi+1. If the next operation

is join, such as in our running example, candidate generation for Gi+1 can resume

independently (see Fig. 5.6).

Identify seed entity (Ae). An entity is a seed for a candidate. It could be an

74

s7

s3
Brazilian Portuguese

s1
Brazil

s2
Portuguese

a) Identify seed

s4
Brazil ?x

currency

s5 Brazil ?x
import_from import_by

s6
Portuguese ?x

spoken_in

b) Identify main relation path

c) Identify constraints

Brazil ?x
import_from import_by

country

Figure 5.5: Staged candidate generation for a partial query in TextRay.

entity from E = {(mention, entity)} pairs identified by the entity linking system or

an answer of a previous partial query. For instance, Brazil, Portuguese or Brazilian

Portuguese are seed entities. We only allow entities that are not consumed by a

previous partial query candidate. For instance, Brazil cannot be the seed for the

subsequent partial query in Fig. 5.6.

Identify main relation path (Ar). We next find different relation paths in K

that connect the seed entities to answers using a relation edge or a mediated 2-hop

relation path. One end of a relation path is a seed entity, and the other end is a

variable denoting the answer to the partial query.

Identify constraints (Ac). We try to attach any constraint entities to the main

relation and variables. We consider a set of constraints Ec =
⋃
{E,Et, Eo}, where E

is the set entity links, Et are entities connected to the answer via specific relations1,

and Eo are named entities of type date, time. We ignore entities in Et that do not

appear in the question. We next collect 1-hop paths connecting constraint entities

to the query. For instance, country is a type constraint on the answer in Fig. 5.5.

We consider all subsets of the constraints to accommodate multiple constraints in the

query.

Terminate partial query (At). After collecting candidates of a partial query

1common.topic.notable types, common.topic.notable for

75

Gi, the search refers to the computation plan to determine the dependencies for

the subsequent partial query Gi+1. When the next operation is a join operation, it

indicates Gi+1 does not share any entities from the question. In that case, thesearch

does not have to wait to generate candidates for Gi+1. A non-overlapping entity in

E becomes the seed for Gi+1 (as shown in Fig. 5.6). When the next operation in

the computation plan is simQA, it indicates the Gi+1 relies on the answers to Gi i.e.

the seed entities for Gi+1 are the answer entities of Gi. In such a case, we score the

partial query candidates G
(k)
i based on their semantic similarity to question Q, and

find the K-best query candidates. We translate these candidates to SPARQL queries

and execute them against K.

s9

?y

s8

a) Identify seed

Brazil ?x
import_from import_by

country

Portuguese

b) Identify main relation path
c) Identify constraints

Brazil ?x
import_from import_bycountry

Portuguese
spoken_in

s10 Brazil ?x
import_from import_bycountry

Portuguese
d) Compose/Execute

Figure 5.6: Staged generation for a subsequent partial query in TextRay

5.4.2 Query Composition and Execution

We score candidates of each partial query based on their semantic similarity to

the question and execute the best candidates. To maintain tractability and effi-

ciency, we adopt a beam search and only execute k best candidates at each level.

The beam search returns a set of k best derivations, where a derivation G(k) =

(G
(k)
1 , G

(k)
2 , ..., G

(k)
o) is a sequence of partial queries.

Note that we only compute semantic similarity of partial queries and not deriva-

tions. We still need to judge which derivation among the k best derivations is the

correct query G∗ for the input question. One approach is to simply aggregate the

76

pn
p2

Question Representation

qtok

Attention
q

imported

qdep

Which Portuguese <E> Which det Portuguese <E> from

piw
avg

imported_from

piid

pi

Relation Representation

pi

p max pooling

….

Multilayer Perceptron

Sigmoid

LSTM

embedding vector

αmα1 α2

attention weightsαi

Figure 5.7: Semantic Matching Model for comparing question representation to par-
tial query representation.

semantic similarities of the partial queries. While such a strategy might work for

aggressively pruning the large search space of derivations, we need a more reliable

scoring function. We train a log-linear model using a set of (question-answer) pairs

for scoring derivations based on the scores of the partial queries and other features.

Some features we use are confidence scores of seed entities in the queries, number of

constraint entities, number of variables, number of partial queries, number of relation

edges, and number of answer entities. Once the features are extracted, the model

next has to be trained for ranking and scoring the derivations. Due to the lack of

correct queries, one effective strategy to learn the model is to rely on the F1 score of

the predicted answer set of a query to determine its correctness. Given the F1 scores

of the queries, we use a pointwise ranking method to determine the best derivation.

We translate the best derivation to a SPARQL query, execute the query and return

the set of answers entities as answers to the question.

77

5.5 Semantic Matching Model

5.5.1 Model Architecture

We use a neural network based model for semantic matching. The architecture

of the proposed model is shown in Fig. 5.7. It encodes both the question and query

as semantic vectors to find their semantic similarity. We use two Long Short-Term

Memory (LSTM) networks and an attention mechanism to learn the latent represen-

tation of the question Q. We only consider the main relation path and constraint

relations to encode the partial query Gi. This is because the entities in the query are

already grounded by the entity linking system, and we only need to infer different

relations in the query. We feed the latent vector q for the question and p for the

partial query as input to a multi-layer perceptron (MLP). The MLP outputs a scalar

that is used as the semantic matching score Ssem(Q,Gi). We first describe how we

encode a question and a partial query. We then describe in detail other elements of

the architecture before discussing the learning objective of the model.

Encoding Question. We encode the question using its word sequence and de-

pendency structure. Since complex questions tend to be longer, they have more

long-range dependencies. Encoding the dependency structure thus becomes crucial.

Specifically, let 〈w1, w2, . . . , wn〉 be the words in Q. We replace the words corre-

sponding to the seed entities with a dummy token wE, and those corresponding to

constraint entities with a dummy token wC . We then use a word embedding matrix

Ew to map the questions words to embedding vectors 〈qw1 , qw2 , . . . , qwn 〉. We take the

last hidden state of an LSTM network as the latent vector representation qw. Simi-

larly, we encode the dependencies by considering the dependency tree as a sequence

of question words and their dependency labels. We use the same embedding matrix

Ew to map the dependency sequence to embedding vectors and use the last hidden

state of another LSTM network to obtain latent vector qdep.

78

Encoding main relation path and constraint relations. We encode the

partial query using the various relations in the query. For each relation Pi in the

partial query, we consider the sequence of both relation ids and relation names [63].

For example, the id sequence of the main relation in Fig. 5.7 is {import by}, while

the word sequence is {‘import’, ‘by’}. We convert the word sequence to a sequence of

embedding vectors and represent Pi as the average embedding pw of the embedding

vectors. At the id level, we translate the relation directly using another embedding

matrix Ep of relations. The semantic vector of Pi then is p = [pw; pid]. We apply max

pooling over the hidden vectors of the relations and obtain a compositional semantic

representation of the partial query.

Attention mechanism. Our goal is to estimate the semantic similarity of a ques-

tion vector q and a partial query vector p. Complex questions, however, are long and

have expressions for matching multiple partial queries in the KB. Irrelevant informa-

tion in the question can thus distract the matching. We use an attention mechanism

to improve the quality of question representation. The idea behind attention is to

learn to emphasize parts of the question that are informative to the given attention

vector. Following [64, 46], we use the partial query vector p as the attention vector to

highlight relevant parts of the question word vector qw. Specifically, given all hidden

vectors ht at time step t ∈ {1, 2, . . . , n}, the context vector c is the weighted sum of

all the hidden states:

c =
n∑

t=1

αtht

where αt is an attention weight. The weights are computed as:

α = softmax(Wtanh(Wqq
w +Wpp))

where W,Wp,Wq are learnable network parameters. The attention weights can be

79

interpreted as the extent to which the model focuses on a specific word in the question

given a partial query.

Objective function. The context vector c, question dependency vector qdep and

query vector p are concatenated and fed to a multi-layer perceptron (MLP), a feed-

forward neural network with two hidden layers and a scalar output neuron indicating

the semantic simlarity score Ssem(q,Gi). Our semantic matching model adopts a cross

entropy loss function during the training:

loss = ylog(Ssem(q,Gi)) + (1− y)log(1− Ssem(q,Gi))

where y ∈ {0, 1} is a label indicating whether Gi is correct or not. Clearly, the model

relies on positive and negative samples of (question, partial query) pairs for training.

Constructing such training data is cumbersome and expensive. We next describe how

training data can be generated from question-answer pairs.

5.5.2 Implicit Supervision

If fully-annotated queries were available, training the semantic matching model

to reward good partial queries will be straight-forward. But obtaining such data is

costly and time-consuming. Obtaining questions annotated with the ground answers,

however, is easier. In such an implicit supervision setting, the quality of a partial

query candidate has to be indirectly measured by computing the F1 score of the

derived answers compared to the labeled answers.

Estimating Candidate Quality. The implicit supervision increases the diffi-

culty to learn a reliable semantic matching model. As the computation plan becomes

deeper, the supervision signals become weaker. For instance, it is difficult to estimate

the quality of a seed entity solely from the labeled answers to the question. Matching

one relation at a time keeps the computation plan simple and provides an opportunity

to reliably estimate the quality of query candidates despite the delayed signals.

80

Our main challenge is that no ground-truth is available for the partial query can-

didates. The supervision signals are delayed. The quality of a partial query candidate

G
(k)
i can be estimated only after a full query derivation is executed. Enumerating and

executing all possible full query derivations becomes expensive as the query becomes

complex. Intuitively, we can leverage the computation plan to prune the search space

of full query derivations, and estimate the quality of a partial query based on the

quality of the derivations. Formally, we model quality of G
(k)
i as:

V (G
(k)
i) = max

i≤t≤n−1
R(D

(k)
t+1)

where Dt is the derivation at level t in the computation plan, n is the number of

partial queries and R is the F1 score of the answers of the derivation. Equivalently,

the score of a partial query candidate is the F1 score of its best future derivations.

Example 10. Consider two candidate partial queries:

G
(1)
1 = ?a event.champion ?c . ?c sports event 1946 World Series .

G
(2)
1 = 1946 World Series sports event.umpire ?a .

Now consider the derivations starting from the candidates, their retrieved answers

and the ground answer ‘Busch Stadium’:

D
(1)
2 = ?a event.champion ?c . ?c sports event 1946 World Series .

?a arena stadium ?x .

A(D
(1)
2): Busch Stadium

D
(2)
2 = 1946 World Series sports event.umpire ?a .

?a place of birth ?x .

A(D
(2)
2): Texas, Missouri, Illinois, New Jersey

The F1 scores and values then are:

R(D
(1)
2) = 1.0, V (G

(1)
1) = 1.0, V (G

(1)
2) = 1.0

R(D
(1)
2) = 0.0, V (G

(2)
1) = 0.0, V (G

(2)
2) = 0.0

81

We use the scores V (G
(k)
i) to approximate the label y(k) ∈ {0, 1} for the candidate.

Intuitively, candidates with scores greater than a threshold can be considered as

positive example for the question, and negative otherwise. However, using a fixed

threshold might lead to many false negatives for questions where no candidate has a

score greater than the threshold. We, therefore, rescale the scores of the candidates by

the maximum score of any candidate before estimating the labels for the candidates.

We propose a strategy to estimate the scores efficiently. The key idea is to leverage

the computation plan to prune the space of full query derivations. If the computa-

tion plan indicates a join between two partial queries, we greedily execute the partial

query candidates G
(k)
i and G

(l)
i+1 and derive the reward for the derivation D

(k)
i+1 and

D
(l)
i+1 from the intersection of the answers of the partial query candidates. If the com-

putation plan indicates a dependency between the results of partial queries, instead

of enumerating all possible relation paths for the subsequent query, we only focus on

paths leading to the ground answer entity. If no such path exists, it indicates that all

derivations of G
(k)
i are negative examples. If such a path exists, then we only collect

subsequent partial query candidates that use the relation path. This ensures that no

true positive examples are missed out.

Addressing Spurious Matches. Implicit supervision strategy described above

is susceptible to spurious partial queries which happen to find correct answers but do

not capture the semantic meaning of the question. Identifying such spurious partial

candidates as positive examples can greatly affect the training data quality and the

performance of the semantic matching model. We propose to alleviate this problem

by incorporating some domain knowledge as priors for scoring. By qualitatively ex-

amining the positive examples, we found that correct candidates tend to use the same

words as the natural language question. For instance, a question “Which governmen-

tal jurisdiction held the LIX Legislature of the Mexican congress in 2011 ?” has a

partial query with main relation governmental jurisdiction.governing officials sharing

82

words governmental and jurisdiction. Thus, surface-form similarity of the main rela-

tion and question can be used to promote true positive and false negative examples.

We define lexical score(Q,G
(k)
i) that computes the ratio of number of words in the

main relation of G
(k)
i that are mentioned in the question Q.

We also use a small hand-crafted lexicon that contains lexical pairs (wG, wQ)

of words from the relation (wG) and keywords from the question (wQ) based on

their co-occurrence frequency. Intuitively, mentions of certain words in the question

should boost the scores of relations that use words that co-occur with the question

words. We define co occur score(Q,G
(k)
i) as the fraction of relation words that hit

the lexicon. Using these priors the quality of a partial query candidate G
(k)
i is given

by: V (G
(k)
i) + γlexical score(Q,G

(k)
i) + δco occur score(Q,G

(k)
i), where γ and δ are

hyper-parameters denoting the strength of the priors. We found γ = 0.75 and δ = 0.75

reduced the number of false positives in the training data.

5.6 Experiments

We present extensive experiments which demonstrate TextRay significantly out-

performs existing KB-QA systems on answering complex questions. We found our

approach to construct the complex query from partial queries is superior to traditional

approaches that map a question directly to a complex query.

5.6.1 Datasets and Baseline Systems

We use two KB-QA benchmark datasets.

• ComplexWebQuestions (CompQWeb)[85]: This is a very recent benchmark

designed specifically for highly compositional questions. The dataset contains

34,689 examples, each containing a complex question, answers (including alias)

and a SPARQL query against the Freebase. We only use the question-answers in

the dataset for training and evaluation. We use the SPARQL queries only for qual-

83

itative analysis of our system. The dataset is divided into 27,734 train, 3,480 dev

and 3,475 test cases.

• WebQuestionSP (WebQSP)[107]: This dataset is an enhanced version of the

de facto benchmark dataset WebQuestions (WebQ) [16]. It consists of 4,737 ques-

tions and their answers, split into 3,098 train and 1,639 test cases. Additionally,

this dataset provides correct SPARQL query for each question, which we reserved

for qualitative analysis. Unlike the CompQWeb dataset, most of the questions in

WebQSP are simple. Only 4% questions in the test set have multiple entity con-

straints [108]. We evaluate on this dataset to demonstrate our proposed approach is

effective across questions of varying complexity. Note that we chose WebQSP over

WebQ because the SPARQL queries provide ground truth for qualitative analysis

of the queries generated by various systems.

Knowledge Bases. We use the entire Freebase2 dump on 2015-08-02 as the back-

ground knowledge source for comparison to baseline systems. We host it with Virtuoso

engine 3. It contains about 46 million entities and 2.9 billion facts. Our approach,

however, can be easily adopted to any other structured knowledge base.

Evaluation Metric. We use averaged F1 score of the predicted answers to measure

the effectiveness of a KB-QA system. We also compute precision@1 as the fraction

of questions that were answered with the exact gold answer [13].

Baseline systems. We compare against two KB-QA systems.

• CompQA[63]: It generates full query candidates for complex questions and uses

a neural network model for semantic matching. They handle complex query struc-

tures by encoding the constraints explicitly in their semantic matching model. We

used the code provided by the authors for experiments.

• Parasempre[16]: It parses questions to logical forms that are executed against

2http://commondatastorage.googleapis.com/freebase-public/rdf/freebase-rdf-2015-08-02-00-
00.gz

3https://virtuoso.openlinksw.com

84

Freebase. It generates query candidates by recursively generating logical forms.

We used the publicly-available implementation of their system and their pre-trained

model.

Many other KB-QA systems [109, 31, 1, 10] powered by Freebase are designed

to handle simple questions with a few additional constraints. We directly report

numbers from their papers. The only systems that can handle highly compositional

questions [80, 85] do not use Freebase as their knowledge source.

5.6.2 Experimental Setup

Entity Linking. We used the entity links released by [103] for the WebQSP

dataset. Since CompQWeb is a new dataset with no entity links, we ran AQQU [13]

to annotate questions with entity links.

Pre-trained embeddings. We initialize the embeddings for word-level represen-

tations for questions and relations with Glove vectors of dimension 300 [71]. There

were 7,371 (906) words in the questions vocabulary, 2,853 (1,982) words in the rela-

tions vocabulary (excluding the stop words) and 6,904 (3,818) unique relations in the

ComplexWeb (WebQSP) dataset. We randomly initialize the embeddings for relation

ids. The embeddings are not fixed during training and are learned along with other

parameters.

Training Semantic Matching Model. We used NVIDIA GeForce GTX 1080

Ti GPU for training the semantic matching model. To encode the question word

sequence and question dependency structure, we use two bi-directional LSTMs. We

set the size of the LSTM hidden layer to 300. For the multi-layer perceptron, we use

1024 as the size of hidden layer and sigmoid as the activation function for hidden

layer. Based on our training data generation for (question, partial query) pairs, we

could find 104k (5,026) positive examples and 2.5M (370k) negative examples for

CompQWeb (WebQSP) dataset when using a threshold of 0.5 for the partial query

85

candidate quality score (V (G(k))). We upsample the positive examples such that there

are 2 negative examples for each positive example. We found similar performances

for training data with 4:1 to 1:1 negative examples to positive examples ratio. We

chose 2:1 balance ratio in our experiments. We trained the model with a batch size

of 64 and used Adam[54] optimizer for adaptive learning rate optimization.

Hyperparameter tuning. We created different configurations with learning rate

in {0.0005, 0.001, 0.002}, learning rate decay in {0.1, 0.5}, attention dimension size

in {100, 300, 500} and number of training epochs in [5, 10]. We used the dev splits

for tuning using different configurations. We used learning rate 0.0005, learning rate

decay 0.5 and attention dimension size 500.

5.6.3 Results and Discussion

Effectiveness on Complex Questions. As reported in Table 5.1, our proposed

system TextRay achieves the best performance (with a large margin of 26.82% ab-

solute gain in F1) among these methods, confirming the potential and effectiveness

of TextRay. While CompQA uses a similar approach of enumerating query can-

didates and scoring them using a semantic matching model, it assumes queries have

a fixed number (one) of main relations. As a result, it does not generate candidates

for multiple main relations to construct complex queries. In contrast, leveraging the

computation plan helps TextRay find candidates for multiple partial queries that

can construct better complex query candidates.

We also achieve significantly higher F1 than Parasempre that generates query

candidates by recursively generating logical forms. By relying on a mapping of natural

language expression to relations and a small set of composition rules, it can generate

highly compositional logical forms. However, the logical forms use relations from

the large vocabulary in the KB instead of the neighborhood of the seed [104]. Also,

Parasempre relies heavily on keeping a large beam of good derivations that lead

86

Method Average F1 Precision@1

TextRay 33.87 40.83

CompQA [63] 4.83 4.83

Parasempre [16] 7.05 12.37

SplitQA (web) [85] - 27.50

MHQA (web) [80] - 30.10

Table 5.1: Average F1 scores and Precision@1 on CompQWeb.

to the correct answer. This becomes the bottleneck when understanding complex

questions. In contrast, our staged generation design ensures that only areas of the

KB that could potentially lead to a successful query are explored. We include results

of SplitQA [85] and MHQA [80] that handle complex questions by decomposing them

into simple questions, but rely on noisy textual data sources. Evidently, we could

answer complex questions more reliably and effectively from structured knowledge

sources which naturally support compositionality.

Effectiveness on Simple Questions. We provide a complimentary evaluation

on simple questions to demonstrate TextRay can adapt to different complexities

of questions. For these experiments, we assume the computation plan simply has

a single simQA operation i.e. the question has one main relation. We found Tex-

tRay achieved comparable if not higher F1 scores on the WebQSP dataset as other

KB-QA systems that adopt a candidate enumeration-scoring strategy (see Table 5.2).

STAGG [106], a popular KB-QA system uses a similar approach but improves the re-

sults using feature engineering and by augmenting entity linking with external knowl-

edge.

Our proposed system can be integrated with better entity linking and more so-

phisticated model architectures [109] for semantic matching. The semantic matching

model, like in TextRay, however, should be able to accommodate for long, complex

question sequences (e.g. via attention). Lastly, we found TextRay adapts well to

87

Method Average F1 Precision@1

TextRay 60.3 72.16

CompQA [63] 59.5 61.64

Parasempre [16] 46.9 51.5

STAGG [106] 66.8 67.3

MulCQA [10] 52.4∗ -

AQQU [13] 49.4∗ -

Table 5.2: Average F1 scores and Precision@1 on WebQSP dataset. * are results on
the WebQ dataset.

Method CompQWeb F ∗1 ∗ WebQSP F ∗1

TextRay 50.83 84.57

CompQA [63] 31.30 75.03

Parasempre [16] 19.15 60.95

Table 5.3: Upper bound F1 scores for candidate generation.

varying complexities of questions compared to other systems tailored to a specific

class of questions [10].

Effectiveness of Candidate Generation. It is possible to pre-train a system’s

semantic matching model on different datasets, which could yield different overall

F1 scores when evaluating a target dataset. Thus, we measure the upper bound F ∗1

scores of the candidate queries each system generates. Comparing these upper bounds

provides insights into the expressivity of their query composition process, agnostic to

the quality of the semantic matching model. We found TextRay could consistently

find better candidate queries than other systems, as reflected in the best F ∗1 scores of

their candidate queries (see Table 5.3).

Top-k results. Table 5.4 shows the top-k results on the two datasets. For a large

majority of the questions, the query with the highest F1 score was among the top-

10 predictions. Despite using an end-to-end semantic matching model, TextRay

88

CompQWeb WebQSP

% Avg. best F1 % Avg. best F1

Top-1 48.7 33.87 66.5 60.31

Top-2 55.6 36.05 79.4 69.73

Top-5 65.6 39.97 89.1 76.5

Top-10 71.5 42.42 93.7 79.9

Table 5.4: Percentage of questions with the highest F1 score in the top-k candidate
derivations, and the average best F1.

Setup CompQWeb F1 WebQSP F1

TextRay (Full System) 33.87 60.31

No constraints 28.16 58.39

No attention 29.92 58.31

No priors 31.28 59.43

Table 5.5: Component-wise ablation results (Average F1) of TextRay.

generates SPARQL queries that can be executed over the KB. It can be treated

as a natural language end-point to the KB. The top-k queries can be provided as

alternative interpretations to the user, who can then select a query to execute. This

process would be less tedious and error-prone for a user than writing a complex

SPARQL query.

5.6.4 Ablation Study

We also investigate the contributions of various components in complex question

answering. Table 5.5 summarizes these results.

Encoding Constraints. Complex questions tend to have additional constraints

on the main path (such as ordinal, answer type, time, etc). Ignoring these constraints

can hurt the F1 score of a query. In the CompQWeb dataset, we observed that 35%

of the queries had at least one constraint. Most of the queries (85%) in WebQSP

89

Variant CompQWeb F1 WebQSP F1

Linear Regression 33.87 60.31

Logistic Regression 28.75 52.53

Sum of partial scores 29.05 59.23

Table 5.6: Average F1 for different ranking variants in TextRay.

were simple with no constraints. To demonstrate the effectiveness of including addi-

tional constraints in query candidates and in semantic matching, we construct simple

baseline: candidate generation does not add additional constraints on the main path

sequence, and semantic matching model does not encode additional constraints. As

can be seen, overall F1 is higher when constraints are included. The performance gains

were smaller on the WebQSP dataset that comprises mostly of simple questions.

Using Attention Mechanism. Attention mechanism helps alleviate the prob-

lem of multiple expressions in the question matching multiple relations in the KB.

Including attention helps the model focus on parts of the question that are relevant

to the main relation. We found the F1 score dropped by 3.95 when attention was

disabled for the CompQWeb dataset. This problem is less severe in simple questions,

as reflected in marginal gains in F1 scores on the WebQSP dataset when attention is

included.

Incorporating Domain Knowledge. We observed that the improvement due

to prior domain knowledge is 2.6% on CompQWeb. While this may seem marginal,

we observe that the improvements were significant over top-k (k > 1) results. We

found the average best F1 was 29.47 for top-10 results when no prior knowledge was

incorporated in the training and ranking phase. The average best F1 was 40.06 when

prior knowledge was considered.

Ranking. As shown in Table 5.4, the upper bound for average F1 score for top-10

query candidates is much higher than the F1 score for the best query predicted by

90

the model. This indicates that a good re-ranking method can significantly improve

the overall performance of the system on the KB-QA task. Our ranking model uses

features including topic entity linking scores, the query structure and the semantic

similarity score for partial queries. We conducted experiments with two different

pointwise-ranking methods: linear regression and logistic regression. We compare

with a simple baseline where score of a complex query derivation is simply the sum

of scores of the partial queries. For training the regression based model, we used

F1 scores as labels for the queries. For training the classifier we used a threshold to

classify an example as positive and negative. We found linear regression outperformed

other ranking methods because it’s learning objective is to best predict the F1 scores

of the queries (see Table 5.6).

5.6.5 Qualitative Analysis

Implicit Supervision. We evaluate the quality of our training data for complex

questions (CompQWeb) obtained with implicit supervision for learning the semantic

matching function. We leverage the ground-truth SPARQL queries of the questions.

For each question, we approximate the true labels for the partial query candidates by

comparing them with the ground-truth SPARQL query. We then compare with the

labels derived by our implicit supervision strategy. We found on an average, there

were 4 partial query candidates that matched the ground-truth. This provides an

upper bound for the number of positive examples per question. Using our approach

for generating training data, we found on average 3.06 partial queries were correctly

labeled as positive (true positives) and 103.08 were correctly labeled as negative (true

negatives). The average number of false positives (1.72) and false negatives (0.78)

were small. We find this quality is sufficient to train a semantic matching model.

Query Analysis. We compared the complex queries generated by TextRay for

complex questions (CompQWeb) with the ground truth queries from the dataset to

91

investigate if our semantic matching model generated any spurious queries that had

high F1 scores but did not capture the meaning of the input question. Specifically, we

looked at the questions for which the predicted answers had F1 scores greater than 0.

Since exactly matching the string representations of the predicted and ground-truth

SPARQL query is too aggressive, we compared the query components of the queries.

In particular, we collect entities, relations, filter clauses (FILTER) and ordering con-

straints (ORDER BY) from the queries for comparison.

Given the set of query components of predicted query and ground query of a ques-

tion, we compute precision, recall and F1 scores for the query components. We found

the precision was 87.02%, recall was 69.37% and F1 was 77.19%. This reflects that

the queries that achieved high F1 scores, were indeed precise and not spurious. We

examine the questions where the predicted query had no overlap with ground query

as candidates for spurious queries. There were very few (28) such questions. Many

of them used relations that were close in meaning (e.g. educational institution.mascot

vs. sports team.team mascot), indicating redundancy in the KB.

5.6.6 Error Analysis

We analyze randomly sampled 50 queries which had F1 scores less than 0.1. We

broadly classified the errors. Table 5.7 shows some of the failed questions. About

36% of the errors were made because incorrect entities were identified by the entity

linking system. 88% of these were made when finding the first partial query. Errors

in entity linking become much severe as they propagate when composing a complex

query from a sequence of partial queries.

Not surprisingly, a large fraction of the errors (45%) was made because a wrong or

ambiguous relation was scored higher than the correct relation by the semantic match-

ing model. It confirms that relation matching is indeed the most crucial component

of a KB-QA system. Interestingly, in 50% of the cases with relation matching errors,

92

Reason Example

entity linking What city was the pro athlete who began his career in 2002 born?

The Pro Comic Book

rel ambiguity Which character did Armie Hammer play in the movie that

included Robin Dowell?

portrayed in films vs. film.film.starring

wrong rel In which movies does Tupac act in, that was edited by Malcolm?

film.actor.film vs. film.editor.film

no constraint Which country with a population of 10,005,000 speaks Portuguese?

Table 5.7: Example failed queries from CompQWeb

TextRay found a relation that had the same domain as the correct path (e.g. edu-

cation.education.student vs. people.person.education – education.education.institution.

The two relation paths were very close in meaning, and are hard to distinguish with

a semantic matching model. Also, often noisy signals (such as in example 3 in Ta-

ble 5.7) made it difficult to correctly predict one of the two main relations in the

question. Lastly, we found that 19% of the errors were made when constraints or

value nodes were missed in a subsequent partial query.

5.7 Conclusion

We have presented TextRay, a new KB-QA system that answers complex ques-

tions over a knowledge base by constructing complex queries from simpler partial

queries. It integrates a novel query candidate generation strategy and a semantic

matching model learned from implicit supervision to find and join partial queries

efficiently. Our system outperforms previous state-of-the-art systems on highly com-

positional questions by a large margin of 26.82% on F1.

93

CHAPTER VI

Querying Curated and Extracted Knowledge Bases

Knowledge-based question answering (KB-QA) can benefit from a combination

of high-coverage facts from an extracted KB and high-quality facts from a curated

KB. In this chapter, we look at answering complex questions using a combination of

different types of knowledge sources. We make two key modifications to our KB-QA

system, TextRay, which answered complex questions over a curated KB. First, we

construct complex query patterns using a sequence of simple queries each targeted at

a specific KB. Second, to enable collective reasoning over different forms of relations

in the KBs, we propose a novel neural-network based model trained using relation

alignment and implicit supervision. We call our new KB-QA system for combining

information from multiple KBs, Multique.

6.1 Introduction

A single knowledge source, curated or extracted, is often sufficient to answer

simple questions which have a single main relation. For instance, example question 1

in Fig. 6.1 can be answered with a query (Rihanna, place of birth, ?) over a curated

KB or (Rihanna, ‘was born in’, ?) over an extracted KB.

Often when questions become complex with multiple relations and entities, no

single KB would provide both high coverage and ontological knowledge representation

94

2. What college did the author of ‘The Hobbit’ attend?
nesting

3. Which Portuguese speaking countries import fish from Brazil?
conjunction

1. Where was Rihanna born?
simple

Figure 6.1: Simple vs Complex questions.

to answer the questions. For instance, to answer complex question 2 in Fig. 6.1, we

need to infer relations corresponding to expressions ‘author of’ and ‘attend’, both of

which may not be present in a single KB. We aim to integrate inference over curated

and extracted KBs to exploit the information across multiple knowledge sources to

answer complex questions. Combining information from multiple sources offers two

benefits: evidence scattered across multiple KBs can be aggregated, and evidence

from different KBs can be used to complement each other. For instance, inference

over ontological relation book author can benefit from textual relation ‘is written by’.

On the other hand, evidence matching ‘attend’ may exclusively be in the curated KB.

Example 11. What college did the author of ’The Hobbit’ attend?

Simple Queries:

G1: The Hobbit ‘is wrtten by’ ?a.

G2: ?b person.education ?c . ?c institution ?x.

Join: G = G1 join?a=?b G2

Evaluate: ans = University of Oxford

Leveraging multiple KBs is an attractive approach to answer complex questions

but is seldom studied. Existing methods [43] assume a simple abstraction over the

KBs and have limited ability to aggregate information across KBs. In this chapter,

we extend our framework TextRay, and design a hybrid KB-QA system Multique

for combining information from a curated KB and an extracted KB. We follow the

95

enumerate-encode-compare approach in TextRay and construct complex query pat-

terns using simple queries. However, in order to leverage multiple knowledge sources,

we allow each simple query to target a specific KB. This enables Multique construct

complex query patterns where the constituent simple queries access potentially dif-

ferent knowledge sources.

The hybrid KB-QA setting poses new opportunities and technical challenges.

First, the rich and ambiguous nature of multiple knowledge sources allows a fact to

be expressed using different relation forms. The semantic matching model trained to

infer over one type of relations (e.g. ontological) may not generalize to other relation

type (e.g. textual). Second, redundancy in facts across multiple knowledge sources

allows interleaved relation inference. For instance, aligning textual relations ‘is written

by’ and ‘is author of’ to ontological relation book author can improve the semantic vec-

tor representation of book author for relation inference. Third, the knowledge source

being queried must be taken into account when aggregating scores of simple query

candidates to find the best complex query derivation. For instance, a simple query

answerable with a curated KB must be preferred over a simple query targeted at an

extracted KB.

In order to address the aforementioned challenges, we propose a neural network

based approach that aligns different relation forms and learns unified semantic rep-

resentations of textual and ontological relations. This enables the model infer over

relations of different forms and provides flexibility to interleave inference over differ-

ent relation forms. Due to the lack of availability of fully-annotated hybrid queries to

train the model, we learn to find simple queries with implicit supervision signals in

the form of labeled answers for complex questions. To predict the best complex query

derivation, we train a log-linear model with features over semantic similarity of con-

stituent partial queries, knowledge source (such as extracted fact confidence, entity

linking scores of the extracted fact) and query structure (such as number of targeted

96

simQA ?xsimQA
A

G1

G2

Derivations (G)

Computation Plan

Partial Queries

The Hobbit ?a
“is written by”

?a The Hobbit
book_author

The Hobbit ?a
book_published_by

✓
✓

A: {JRR Tolkien}

JRR Tolkien
person.education

?x
institution

JRR Tolkien place_of_birth ?x

✓

The Hobbit ?x

“is written by” person.education

institution The Hobbit ?x

book_author person.education

institution

Figure 6.2: Partial queries and derivations.

knowledge sources). The contributions of this chapter are summarized below.

• We propose a novel KB-QA system, Multique, that combines information from

curated and extracted knowledge bases to answer complex questions. To the best of

our knowledge, this is the first attempt to answer complex questions from multiple

knowledge sources.

• To leverage information from multiple KBs, we construct query patterns for com-

plex questions using simple queries each targeting a specific KB. (Section 6.3

and 6.5).

• We propose a neural-network based model that aligns diverse relation forms from

multiple KBs for collective inference. It learns unified semantic representations of

textual and ontological relations, providing flexibility to interleave inference over

different relation forms. The model learns to score simple queries using implicit

supervision from answers to complex questions (Section 6.4).

• To determine the best complex query derivation among potentially multiple cor-

rect derivations, we train a log-linear model with features over semantic similarity,

97

knowledge source and query structure.

• We provide extensive evaluation on benchmarks demonstrating the effectiveness

of proposed techniques on questions of varying complexity and KBs of different

completeness (Section 6.6).

6.2 Task and Overview

Our goal is to map a complex question Q to a query G, which can be executed

against a combination of curated KB Kc and extracted KB Ko.

Knowledge Bases. The background knowledge source K=
⋃
{Kc, Ko} is denoted as

K=(V , E ,R), where V is the set of entities and E is a set of triples (s, r, o). A triple

denotes a relation r ∈ R between subject s ∈ V and object o ∈ V . The relation set R

is a collection of ontological relations Ro from Kc and textual relations Rt from Ko.

A higher order relation is expressed using multiple triples connected using a special

CVT node.

Complex Question, Q corresponds to a query G which has more than one relation

and a single query focus ?x. G is a sequence of partial queries G = (G1, G2, .., Go)

connected via different join conditions. A partial query has four basic elements: a

seed entity sr is the root of the query, a variable node ov corresponds to an answer

to the query, a main relation path (sr, p, ov) is the path that links sr to ov by one or

two edges from either Ro or Rt, and constraints take the form of an entity linked to

the main relation by a relation c. By definition, each partial query targets a specific

KB.

A computation plan C describes how the query G is constructed and evaluated

given the partial queries. It includes two functions, simQA and join. simQA is

the model for finding simple queries. It enumerates candidates for a simple query,

encodes and compares them with the question representation, and evaluates the best

candidate. join describes how to join two partial queries i.e. whether they share

98

question

Candidates Generation extracted KB

Scoring and Evaluation

Query Composition

Computation Plan

curated KB

Partial Queries

answers

derivations

Ranker

best query

Figure 6.3: System Architecture of Multique

the query focus or another variable node. Fig. 6.2 shows the partial queries and

computation plan for the running example 11.

Overview. Given a complex input question, the task is to first compute a computa-

tion plan that describes how to break down the inference into simple partial queries.

We then have to gather candidates for each partial query from both curated and

extracted KBs. For each candidate, we have to measure its semantic similarity to

the question using a neural-network based model that should be capable of inference

over different forms of relations. We then have to join the different partial queries to

find the complex query for the question. Since there can be multiple ways to answer

a complex question, we derive several full query derivations. We rank them based

on the semantic similarity scores of their partial queries, query structure and entity

linking scores. We execute the best derivation over the multiple KBs. Fig. 6.3 shows

the architecture of our proposed system, Multique.

6.3 Partial Query Candidate Generation

We first describe how we find candidates for partial queries given an input ques-

tion. We use a staged generation method with staged states and actions. Compared

to previous methods [106, 63] which assume a question has one main relation, our

99

s1 The Hobbit

seed entity

s2
The Hobbit ?x

“written by”

s4
The Hobbit ?x

book.author

main relation path and constraints

s3
The Hobbit ?x

publication.book publication.year

main relation path and constraints

derivations

s5 JJR Tolkien

s6 1937

s7
JJR Tolkien college is_a

?xeducation institution s8
The Hobbit

“written by”

?x

is_a

school

?ieeducation

institution

seed entity

transition

Figure 6.4: Example Candidate Generation for the running example 1.

strategy can handle complex questions which have multiple main relations (and hence

partial queries). We include a new action At that denotes the end of the search for

a partial query and transition to a state St. State St refers back to the computation

plan to determine the join condition between the current partial query and the next

query. If they share an answer node, candidate generation for the subsequent query

can resume independently. Otherwise, it waits for the answers to the current query.

We generate (entity, mention) pairs for a question using entity linking [13] and then

find elements for query candidates. Fig. 6.4 depicts our staged generation process.

Identify seed entity. The seed sr for a partial query is a linked entity in the question

or an answer of a previously evaluated partial query.

Identify main relation path. Given a seed entity, we consider all 1-hop and 2-hop

paths p. These include both ontological and textual relations. The other end of the

path is the variable node ov.

Identify constraints. We next find entity and type constraints. We consider entities

that can be connected using constraint relations is a relations1 to the variable node

1common.topic.notable types,common.topic.notable for

100

ck

Question Representation

qtok

Attention

q

is

qdep

What school <E> What det school <E>

a

ciw
avg

is_a

ciid

ci

Relation Representation

c1

g
pooling

….

Multilayer Perceptron

Sigmoid

LSTM

embedding vector

αmα1 α2

attention weightsαi

….

rn
r2

book author

riw
avg

book.author

riid

ri
r1book.author

“written by”
“is author of”

pooling

Main relation forms

constraint relation forms

Figure 6.5: Semantic Matching Model for collective reasoning over diverse relation
forms.

ov. We also consider entities connected to the variables on the relation path via a

single relation. We consider all subsets of constraints to enable queries with multiple

constraints.

Transition to next partial query. Once candidates of a partial query Gi are

collected, we refer to the computation plan to determine the start state of the next

partial query Gi+1. If the next operation is simQA, we compute the semantic similar-

ity of the candidates of Gi using our semantic matching model and evaluate K-best

candidates. The answers form the seed for collecting candidates for Gi+1. Otherwise,

candidate generation resumes with non-overlapping entity links in Gi.

6.4 Semantic Matching

We now describe our neural-network based model which infers over different rela-

tion forms and computes the semantic similarity of a partial query candidate to the

question.

101

6.4.1 Model Architecture

Fig. 6.5 shows the architecture of our model. To encode the question, we replace

all seed (constraint) entity mentions used in the query by dummy tokens wE (wC). To

encode the partial query, we consider its query elements, namely the main relation

path and constraint relations. Given the vector representations q for the question

Q and g for the partial query Gi, we concatenate them and feed a multi-layer per-

ceptron (MLP). The MLP outputs a scalar which we use as the semantic similarity

Ssem(Q,Gi). We describe in detail the encoding methods for the question and differ-

ent relation forms in the main relation path. We also describe other design elements

and the learning objective.

Encoding question. We encode a question Q using its token sequence and depen-

dency structure. Since a complex question tends to be long, encoding its dependency

tree captures any long-range dependencies. Let 〈w1, w2, . . . , wn〉 be the tokens in

Q, where seed (constraint) entity mentions have been replaced with wE (wC). We

map the tokens to vectors 〈qw1 , qw2 , . . . , qwn 〉 using an embedding matrix Ew and use

an LSTM to encode the sequence to a latent vector qw. Similarly, we encode the

dependency tree into a latent vector qdep.

Encoding main relation path. The main relation path can have different forms,

a textual relation from Ko or an ontological relation from Kc. In order to collectively

infer over them in the same space, we first align the textual relations to ontological

relations. For instance, we find textual relations‘is author of’, ‘written by’ can be

aligned to ontological relation book.author. We describe how we derive the relation

alignments in Sec. 6.4.2. Given a relation alignment, we encode each relation form i

in the alignment to a latent vector ri. We apply a max pooling over the latent vectors

of different relations in the alignment to obtain a unified semantic representation over

the different relation forms. Doing so enables the model to learn better representations

of an ontological relation which has complementary textual relations.

102

To encode each relation form into vector ri, we consider both sequence of tokens

and ids [63]. For instance, the id sequence of the relation in Fig. 6.5 is {book author},

while its token sequence is {‘book’, ‘author’}. We embed the tokens into vectors using

an embedding matrix and use average embedding rw as the token-level representation.

We translate the relation directly using another embedding matrix Er of relation paths

to derive its id-level representation ridi . The vector representation of a path then is

ri = [rwi ; ridi].

Encoding constraints. Similarly, we encode the constraint relations ci in by com-

bining its token-level representation cwi and id-level representation cidi . Given the uni-

fied vector representation of a relation path, and the latent vectors of the constraint

relations, we apply max pooling to obtain the compositional semantic representation

g of the query.

Attention mechanism. Simple questions contain expressions for matching one main

relation path. A complex question, however, has expressions for matching multiple

relation paths, which could interfere with each other. For instance, words ‘college’ and

‘attend’ can distract the matching of the phrase ‘author of’ to the relation book.author.

We mitigate this issue by improving the question representation using an attention

mechanism [64]. The idea is to learn to emphasize parts of the question that are

relevant to a context derived using the partial query vector g. Formally, given all

hidden vectors ht at time step t ∈ {1, 2, . . . , n} of the token-level representation of

the question, we derive a context vector c as the weighted sum of all the hidden states:

c =
n∑

t=1

αtht

where αt corresponds to an attention weight. The attention weights are computed as:

α = softmax(Wtanh(Wqq
w +Wgg))

103

where W,Wg,Wq are network parameters. The attention weights indicate how much

the model focuses on each token given a partial query.

Objective function. We concatenate the context vector c, question dependency

vector qdep and query vector g and feed to a multi-layer perceptron (MLP). It is

a feed-forward neural network with two hidden layers and a scalar output neuron

indicating the semantic similarity score Ssem(q,Gi). We train the model using cross

entropy loss,

loss = ylog(Ssem) + (1− y)log(1− Ssem)

where y ∈ {0, 1} is a label indicating whether Gi is correct or not. Training the model

requires a) an alignment of equivalent relation forms, and b) examples (question,

partial query) pairs. We describe how we generate them given QA pairs.

6.4.2 Relation Alignment

An open KB has a huge vocabulary of relations. Aligning the textual relations to

ontological relations for collective inference can become challenging if the textual re-

lations are not canonicalized. We, first learn embeddings for the textual relations and

cluster them to obtain canonicalized relation clusters [88]. For instance, a cluster can

include both ‘is author of’ and ‘authored’. We use the canonicalized textual relations

to derive an alignment to the ontological relations. We derive this alignment based

on the support entity pairs (s, o) for a pair of ontological relation and canonicalized

textual relation. For instance, relations ‘is author of’ and book.author in our example

question will share more entities than relations ‘is author of’ and education.institution.

6.4.3 Implicit Supervision

Obtaining questions with fully-annotated queries is expensive, especially when

queries are complex. In contrast, obtaining answers is easier. In such a setting, the

104

quality of a query candidate is often measured indirectly by computing the F1 score

of its answers to the labeled answers [70]. However, for complex questions, answers

to the partial queries may have little or no overlap with the labeled answers. We,

therefore, adopt an alternative scoring strategy where we estimate the quality of a

partial query as the best F1 score of all its full query derivations. Formally, we

compute a score V (G
(k)
i) for a partial query as:

V (G
(k)
i) = max

i≤t≤n−1
F1(D

(k)
t+1)

where Dt denotes the derivation at level t and n denotes the number of partial queries.

Such implicit supervision can be susceptible to spurious derivations which happen

to evaluate to the correct answers but do not capture the semantic meaning of a

question. We, thus, consider additional priors to promote true positive and false

negative examples in the training data. We use L(Q,G
(k)
i) as the ratio of number

of words in the relations of G
(k)
i that are mentioned in the question Q. We also use

C(Q,G
(k)
i) as the fraction of relation words that hit a small hand-crafted lexicon of

co-occurring relation and question words. We estimate the quality of a candidate as:

V (G
(k)
i) + γ L(Q,G

(k)
i) + δ C(Q,G

(k)
i). We consider a candidate a positive example

if its score is larger than a threshold (0.5) and negative otherwise.

6.5 Query Composition

In this chapter, we focus on constructing complex queries using a sequence of

simple partial queries, each with one main relation path. Since the original question

does not have to be chunked into simple questions, constructing computation plans

for such questions is fairly simple. Heuristically, a computation plan can simply be

derived by estimating the number of main relations (verb phrases) in the question

and the dependency between them (subordinating or coordinating). We use a more

105

sophisticated model [85] to derive the computation plan. The post-order traversal of

the plan yields the order in which partial queries should be executed.

Given a computation plan, we adopt a beam search and evaluate best k candidates

for a partial query at each level. This helps maintain tractability in the large space of

possible complex query derivations. The semantic matching model only independently

scores the partial queries and not complete derivations. We, thus, need to find the best

derivation that captures the meaning of the complex input question. To determine

the best derivation, we aggregate the scores over the partial queries and consider

additional features such as entities, structure of the query and targeted knowledge

source. We train a log-linear model on a set of (question-answer) pairs using features

such as semantic similarity scores, entity linking scores, number of constraints in the

query, number of variables, number of relations, number of answer entities, number

of knowledge sources targeted, average confidence score of the matching facts and

average entity linking score of the arguments of the matching facts. Given the best

scoring derivation, we translate it to a KB query and evaluate it to return answers to

the question.

6.6 Experiments

We present experiments that show Multique outperforms existing KB-QA sys-

tems on complex questions. Our approach to construct queries from simple queries

and aggregate multiple KBs is superior to methods which map questions directly to

queries and use raw text instead.

6.6.1 Experimental Setup

Datasets. We use two benchmark QA datasets:

• CompQWeb [85]: A recent dataset with highly complex questions with compo-

sitions, conjunctions, superlatives and comparatives. It contains 34,689 questions,

106

split into 27,734 train, 3,480 dev and 3,475 test cases. For simplicity of evaluation,

we only reserve questions with compositions and conjunctions (90% of the dataset).

• WebQSP [107]: It contains 4,737 questions split into 3,098 train and 1,639 test

cases. Most of the questions are simple; only 4% questions have multiple con-

straints [108]. We evaluate on this dataset to demonstrate our proposed methods

are effective on questions of varying complexity.

Knowledge Bases. We use the Freebase2 dump as the curated KB. We construct

an extracted KB using StanfordOpenIE [4] over the snippets released by [85] for

CompQWeb and [84] for WebQSP.

Evaluation Metric. We report averaged F1 scores of the predicted answers. We

additionally compute precision@1 as the fraction of questions that were answered

with the exact gold answer.

Baseline systems. We compare against two systems that can handle multiple knowl-

edge sources.

• GraftNet+ [84]: Given a question, it identifies a KB subgraph potentially con-

taining the answer, annotates it with text and performs a binary classification over

the nodes in the subgraph to identify the answer node(s). We point that it collects

subgraphs using 2-hop paths from a seed entity. Since this cannot scale for complex

questions which can have arbitrary length paths, we follow our query composition

strategy to generate subgraphs. We annotate the subgraphs with snippets released

with the datasets. We call this approach GraftNet+.

• OQA [43]: It is the first KB-QA system to combine curated KB and extracted

KB. It uses a cascade of operators to paraphrase and parse questions to queries,

and to rewrite and execute queries. It does not generate a unified representation of

relation forms across the KBs. For comparison, we augment its knowledge source

with our extracted KB and evaluate the model released by the authors.

2http://commondatastorage.googleapis.com/freebase-public/rdf/freebase-rdf-2015-08-02-00-
00.gz

107

Several other KB-QA systems [31, 1, 10] use only Freebase and handle simple

questions with a few constraints. SplitQA [85] and MHQA [80] handle complex

questions, but use web as the knowledge source.

Implementation Details. We used NVIDIA GeForce GTX 1080 Ti GPU for our

experiments. We initialize word embeddings using GloVe [71] word vectors of dimen-

sion 300. We use BiLSTMs to encode the question token and dependency sequences.

We use 1024 as the size of hidden layer of MLP and sigmoid as the activation function.

More details can be found in supplementary meterial.

6.6.2 Results and Discussion

We evaluate several configurations. We consider candidates from curated KB as

the only available knowledge source to answer questions and use it as a baseline (cKB-

only). To demonstrate that inference over curated KB can benefit from open KB,

we consider diverse relation forms of curated KB facts from open KB (cKB+oKB).

Lastly, we downsample the curated KB candidates to 90%, 75% and 50% to simulate

incompleteness in KB.

Effectiveness on complex questions. Our proposed system outperforms existing

approaches on answering complex questions (Table 6.1). Even though both Multi-

que and GraftNet+ use the same information sources, our semantic matching model

outperforms node classification. Also, using extracted facts instead of raw text enables

us to exploit the relations between entities in the text. We also achieve significantly

higher F1 than OQA that uses multiple KB but relies on templates for parsing ques-

tions to queries directly and does not deeply integrate information from multiple KBs.

In contrast, we can construct complex query patterns from simple queries, and can

infer over diverse relation forms in the KB facts. SplitQA [85] and MHQA [80] use a

similar approach to answer complex questions using a sequence of simpler questions,

but rely solely on noisy web data. Clearly, by combining the knowledge from curated

108

Method CompQWeb WebQSP

Multique (cKB-only) 31.24/37.61 61.16/69.84

Multique (cKB+oKB) 34.62/41.23 57.49/67.51

Multique (90%cKB+oKB) 27.15/30.21 55.47/65.42

Multique (75%cKB+oKB) 25.54/28.09 50.64/60.17

Multique (50%cKB+oKB) 18.57/20.51 41.72/50.82

GraftNet+ [84] 31.96/44.78 57.21/68.98

OQA [43] 0.42/42.85 21.78/32.63

SplitQA[85] -/27.50 -

MHQA [80] -/30.10 -

Table 6.1: Average F1 / precision@1 of baseline systems and Multique in different
configurations.

KB, we can answer complex questions more reliably.

Effectiveness on simple questions. An evaluation on simpler questions demon-

strates that Multique can adapt to questions of varying complexity. We achieve

the comparable F1 score on the as other KB-QA systems that adopt an enumerate-

encode-compare strategy. STAGG [106], a popular KB-QA system uses a similar

approach for candidate generation but improves the results using feature engineering

and by augmenting entity linking with external knowledge and only uses curated KB.

Multique uses multiple KBs, and can be integrated with a better entity linking and

scoring scheme for derivations.

KB completeness. Our results show that including information from extracted

KB helps improve inference over ontological relations and facts for complex questions

(as indicated by 3.38 F1 gain in cKB+oKB). It instead hurts the performance on

WebQSP dataset. This can be attributed to the coverage of the accompanying textual

data sources of the two datasets. We found that for only 26% of the questions

in WebQSP, an extracted fact could be aligned with a curated KB candidate. In

109

contrast, there were 55% such questions in the CompQWeb. This illustrates that

considering irrelevant, noisy facts does not benefit when curated KB is complete.

Such issues can be mitigated by using a more robust retrieval mechanism for text

snippets or facts from extracted KB.

A KB-QA system must rely on an extracted KB when curated KB is incomplete.

This is reflected in the dramatic increase in the percentage of hybrid queries when

curated KB candidates were downsampled (e.g., from 17% to 40% at 90% complete-

ness). As expected, the overall F1 drops because the precise curated KB facts become

unavailable. Despite the noise in extracted KBs, we found 5-15% of the hybrid queries

found a correct answer. Surprisingly, we find 55% of the queries changed when the KB

is downsampled to 90%, but 89% of them did not hurt the average F1. This indicates

that the system could find alternative queries when KB candidates are dropped.

Ablation Study. Queries for complex questions often have additional constraints on

the main relation path. 35% of the queries in CompQWeb had at least one constraint,

while most of the queries (85%) in WebQSP are simple. Ignoring constraints in

candidate generation and in semantic matching drops the overall F1 score by 9.8%

(8.6%) on CompQWeb (WebQSP) (see Table 6.2). Complex questions also are long

and contain expressions for matching different relation paths. Including the attention

mechanism helps focus on relevant parts of the question and improves the relation

inference. We found F1 drops significantly on CompQWeb when attention is disabled.

Re-ranking complete query derivations by additionally considering entity linking

scores and query structure consistently helps find better queries. We examined the

quality of top-k query derivations (see Table 6.3). For a large majority of the ques-

tions, query with the highest F1 score was among the top-10 candidates. A better

re-ranking model, thus, could help achieve higher F1 score. We also observed that

incorporating prior domain knowledge in deriving labels for partial queries at training

was useful for complex questions.

110

Setup CompQWeb WebQSP

No constraints 31.23/37.87 52.53/60.84

No attention 26.92/31.24 40.29/51.86

No re-ranking 29.39/36.14 55.13/62.78

No prior 30.88/36.68 57.54/64.63

Table 6.2: Ablation results, average F1 / precision@1, of Multique (cKB+oKB).

CompQWeb WebQSP

% Avg. best F1 % Avg. best F1

Top-1 35.11 34.62 69.12 57.49

Top-2 39.73 37.02 76.21 63.74

Top-5 51.12 42.08 85.05 70.00

Top-10 59.19 46.39 89.63 73.37

Table 6.3: Percentage of questions with the highest F1 score in the top-k derivations,
and the average best F1.

Qualitative Analysis. The datasets also provide queries over Freebase. We used

them to analyze the quality of our training data and the queries generated by our

system. We derive labels for each partial query candidate by comparing it to the

labeled query. On an average, 4 candidates per question were labeled correct. We

then compare them with the labels derived using implicit supervision. We found on

average 3.06 partial queries were true positives and 103.08 were true negatives, with

few false positives (1.72) and false negatives (0.78).

We further examined if the queries which achieve a non-zero F1 were spurious.

We compared the query components (entities, relations, filter clauses, ordering con-

straints) of such queries with labeled queries. We found high precision (81.89%) and

recall (76.19%) of query components, indicating the queries were indeed precise.

Error Analysis. We randomly sampled 50 questions which achieve low F1 score

(< 0.1) and analyzed the queries manually. We found 38% errors were made because

111

of incorrect entities in the query. 92% of the entity linking errors were made at the

first partial query. These errors get propagated because we find candidate queries

using a staged generation. A better entity linking system can help boost the overall

performance. 12% of the queries had an incorrect curated KB relation and 18%

of the queries had an incorrect extracted KB relation. In a large fraction of cases

(32%) the predicted and true relation paths were ambiguous given the question (e.g.,

kingdom.rulers vs government for “Which queen presides over the location...”). This

indicates that relation inference is difficult for highly similar relation forms.

Since the extracted KB can contain more noisy tuples than the curated KB, we

investigate how the overall performance is affected by the quality of the tuples being

queried. We examined the randomly sampled questions which had achieved low F1

score and found 70% of support tuples were indeed correct, indicating the errors were

made at the inference. We found 10% of the errors were because incorrect tuples

were extracted automatically and 20% of the errors were because the entities in the

extracted tuples were incorrectly linked to the entities in the curated KB. These errors

can be alleviated with an improved extraction and entity linking systems or with a

human-in-the-loop data integration strategies. These techniques are beyond the scope

of this dissertation.

6.7 Conclusion

We have presented a new KB-QA system that uses both curated and extracted

KBs to answer complex questions. It composes complex queries using simpler queries

each targeting a KB. It integrates an enumerate-encode-compare approach and a novel

neural-network based semantic matching model to find partial queries. Our system

outperforms existing state-of-the-art systems on highly compositional questions, while

achieving comparable performance on simple questions.

112

CHAPTER VII

Concluding Remarks and Future Work

Much information is available to us as natural language text. This information

becomes much easier to query and analyze if it is stored in a database. Therefore,

many have studied how to build a knowledge base (KB), or a large-scale repository

of facts about real-world entities, and relations between them, from natural language

text. Traditionally, domain-specific ontologies have been used to determine how the

knowledge in the text could be encoded as concepts and relationships between the

concepts. Information Extraction (IE) systems only learn to extract relations that

are already defined in the ontology.

The advent of Open Information Extraction (Open-IE) paradigm relaxed the need

for a pre-specified relation vocabulary, focusing on shallow representation of the nat-

ural language text in the form of verbal and noun phrases (as relations) and their

arguments (as entities). Open-IE provides a suitable structure for generic natural

language texts because it requires neither a schema nor annotated corpora. This

dissertation studies different issues involved in constructing and querying large-scale

knowledge bases extracted automatically with Open-IE, specifically to support queries

of varying complexity.

Chapter III describes a novel open information extractor that addresses the prob-

lem of loss of information and granularity at extraction. Instead of having a fixed

113

structure for the extraction problem that cannot accommodate the rich variations in

natural language, we propose to have a single ‘fact’ partitioned into a set of tuples,

which can be joined together to obtain the complete fact. We describe bootstrapping

and extraction pattern learning techniques which can extract facts in an expressive,

nest-tuple format given a natural language statement. Even if the representation for

a tuple is simple, the information in nest-tuples is enriched with connections between

tuples.

In Chapter IV, we describe a KB-QA system that uses an extracted knowledge

base constructed using an Open-IE method such as ours, to answer complex questions

with multiple constraints, such as those expressed via prepositional, conditional and

adverbial modifiers. Since the background knowledge in extracted knowledge base

could have diverse representations (binary, n-ary and nested), we present a schemaless

querying mechanism that is agnostic to the underlying KB representation and can

bridge lexical/syntactic gap between the query specification and relevant facts in the

extracted KB.

We next study how the precise, but incomplete knowledge in curated KBs can be

combined with the broad-coverage and noisier facts in extracted KBs. In Chapter V,

we identify the challenges in answering compositional questions over curated KBs

namely, constructing complex query patterns and learning from implicit supervision.

We describe a KB-QA system that constructs complex query patterns from sequence

of simple queries over a curated KB and uses a neural-network based semantic match-

ing model to find semantically similar simple queries given a question. In Chapter VI,

we describe novel extensions of the system to accommodate multiple KBs. We de-

scribe how hybrid query patterns can be constructed by targeting a specific KB for its

constituent simple queries. We also present a neural-network based semantic match-

ing model equipped for collective inference over different forms of relations in the two

types of KBs. It leverages the alignment between ontological relations in a curated

114

KB and textual relations for collective inference.

This dissertation addresses some of the key challenges in extracting key facts from

natural language text and supporting complex queries efficiently. However, there is a

lot more that can be done to further improve the quality of extracted facts and per-

formance of KB-QA systems powered by automatically extracted and curated KBs.

First, open information extraction must be able to exploit the vast available curated

knowledge sources. The core challenge in designing such ‘knowledge-aware’ Open-IE

system is a knowledge module that can transfer the background knowledge as the ex-

tractor processes the unstructured text. The background knowledge is often limited

and affects the generalization ability of such an approach. To cope with the sparsity

of concepts in the background knowledge, facts must be encoded using continuous

representations. Given an argument/relation phrase being processed by the extrac-

tor, the system should be able to retrieve the embeddings of related phrases in the

background knowledge and integrate them to extract knowledge-aware assertions.

Second, future KB-QA systems should model whether a simple query is answer-

able from a given a KB or not. It should query the reliable, extracted KBs only when

the curated KB lacks sufficient evidence. This could help improve overall precision.

Furthermore, while resolving multiple query components simultaneous is beneficial,

the inference could be improved if the question representation reflected all prior infer-

ences. Lastly, more operations such as value comparisons and aggregations could be

included in the computation plan and incorporated in the semantic matching model

to support database-like analytical queries over extracted KBs.

Alternatively, the techniques presented in this dissertation can be used to design a

human-in-the-loop system for knowledge acquisition. The system can provide answers

to questions posed by users, who in turn can provide labels for the derived answers.

The labels can be used as a feedback to improve both the automatic extraction of

facts and knowledge-based question answering.

115

BIBLIOGRAPHY

116

BIBLIOGRAPHY

[1] A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum. Automated template
generation for question answering over knowledge graphs. In Proc. WWW ’17,
pages 1191–1200. International World Wide Web Conferences Steering Com-
mittee, 2017.

[2] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-
text collections. In Proc. Fifth ACM Conference on Digital Libraries ’2000,
pages 85–94, 2000.

[3] A. Akbik and A. Löser. Kraken: N-ary facts in open information extraction. In
Proc. AKBC ’12, pages 52–56, 2012.

[4] G. Angeli, M. J. Premkumar, and C. D. Manning. Leveraging linguistic struc-
ture for open domain information extraction. In Proc. ACL ’15, pages 26–31,
2015.

[5] Y. Artzi, K. Lee, and L. Zettlemoyer. Broad-coverage ccg semantic parsing with
amr. In Proc. EMNLP ’15, pages 1699–1710, 2015.

[6] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Db-
pedia: A nucleus for a web of open data. Proc. ISWC ’07, pages 722–735,
2007.

[7] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[8] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open
information extraction for the web. In Proc. IJCAI ’07, volume 7, pages 2670–
2676, 2007.

[9] J. Bao, N. Duan, M. Zhou, and T. Zhao. Knowledge-based question answering
as machine translation. In Proc. ACL ’14, pages 967–976, 2014.

[10] J.-W. Bao, N. Duan, Z. Yan, M. Zhou, and T. Zhao. Constraint-based question
answering with knowledge graph. In Proc. COLING ’16, pages 2503–2514, 2016.

[11] H. Bast and E. Haussmann. Open information extraction via contextual sen-
tence decomposition. In Proc. IEEE-ICSC ’13, pages 154–159, 2013.

117

[12] H. Bast and E. Haussmann. More informative open information extraction via
simple inference. In Proc. ECIR ’14, pages 585–590. Springer, 2014.

[13] H. Bast and E. Haussmann. More accurate question answering on freebase. In
Proc. CIKM ’15, pages 1431–1440. ACM, 2015.

[14] P. Baudis and J. Sedivý. Modeling of the question answering task in the yodaqa
system. In Experimental IR Meets Multilinguality, Multimodality, and Inter-
action - 6th International Conference of the CLEF Association, CLEF 2015,
Toulouse, France, September 8-11, 2015, Proceedings, pages 222–228, 2015.

[15] J. Berant and P. Liang. Semantic parsing via paraphrasing. In Proc. ACL ’14,
pages 1415–1425, 2014.

[16] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase
from question-answer pairs. In Proc. EMNLP ’13, volume 2, page 6, 2013.

[17] N. Bhutani, H. Jagadish, and D. R. Radev. Nested propositions in open infor-
mation extraction. In Proc. EMNLP ’16, pages 55–64, 2016.

[18] N. Bhutani, Y. Suhara, W. Tan, A. Y. Halevy, and H. V. Jagadish. Open
information extraction from question-answer pairs. In Proc. NAACL ’19, pages
2294–2305, 2019.

[19] S. Bird, Y. Chen, S. B. Davidson, H. Lee, and Y. Zheng. Designing and evalu-
ating an xpath dialect for linguistic queries. In Proc. ICDE ’06, pages 52–52.
IEEE, 2006.

[20] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In
Proc. SIGMOD ’08, pages 1247–1250. AcM, 2008.

[21] A. Bordes, S. Chopra, and J. Weston. Question answering with subgraph em-
beddings. In Proc. EMNLP ’14, pages 615–620, 2014.

[22] A. Bordes, J. Weston, and N. Usunier. Open question answering with weakly
supervised embedding models. In Proc. ECMD-PKDD ’14, pages 165–180.
Springer, 2014.

[23] E. Brill, S. T. Dumais, and M. Banko. An analysis of the askmsr question-
answering system. In Proc. EMNLP ’02, 2002.

[24] S. Brin. Extracting patterns and relations from the world wide web. In Proc.
WebDB ’98, pages 172–183. Springer, 1998.

[25] Q. Cai and A. Yates. Large-scale semantic parsing via schema matching and
lexicon extension. In Proc. ACL ’13, pages 423–433, 2013.

118

[26] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M.
Mitchell. Toward an architecture for never-ending language learning. In Proc.
AAAI ’10, volume 5, page 3, 2010.

[27] D. Chen, A. Fisch, J. Weston, and A. Bordes. Reading wikipedia to answer
open-domain questions. In Proc. ACL ’17, pages 1870–1879, 2017.

[28] J. Christensen, S. Soderland, O. Etzioni, et al. Semantic role labeling for open
information extraction. In Proc. NAACL ’10, pages 52–60, 2010.

[29] P. Chubak and D. Rafiei. Efficient indexing and querying over syntactically
annotated trees. Proc. VLDB ’12, 5(11):1316–1327, 2012.

[30] L. Cui, F. Wei, and M. Zhou. Neural open information extraction. In Proc.
ACL ’18, pages 407–413, 2018.

[31] W. Cui, Y. Xiao, H. Wang, Y. Song, S.-w. Hwang, and W. Wang. Kbqa:
learning question answering over qa corpora and knowledge bases. Proc. VLDB
’17, 10(5):565–576, 2017.

[32] R. Das, M. Zaheer, S. Reddy, and A. McCallum. Question answering on knowl-
edge bases and text using universal schema and memory networks. In Proc.
ACL ’17, pages 358–365, 2017.

[33] R. Das, M. Zaheer, S. Reddy, and A. McCallum. Question answering on knowl-
edge bases and text using universal schema and memory networks. arXiv
preprint arXiv:1704.08384, 2017.

[34] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy,
A. Smola, and A. McCallum. Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning. In Proc. ICLR ’18,
2018.

[35] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al. Generating typed
dependency parses from phrase structure parses. In Proc. LREC ’06, volume 6,
pages 449–454, 2006.

[36] L. Del Corro and R. Gemulla. Clausie: clause-based open information extrac-
tion. In Proc. IW3C2 ’13, pages 355–366, 2013.

[37] B. Dhingra, K. Mazaitis, and W. W. Cohen. Quasar: Datasets for question
answering by search and reading. arXiv preprint arXiv:1707.03904, 2017.

[38] B. Dhingra, D. Pruthi, and D. Rajagopal. Simple and effective semi-supervised
question answering. In Proc. NAACL ’18, pages 582–587, 2018.

[39] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland,
D. S. Weld, and A. Yates. Unsupervised named-entity extraction from the web:
An experimental study. Artificial intelligence, 165(1):91–134, 2005.

119

[40] O. Etzioni, A. Fader, J. Christensen, and S. Soderland. Open information
extraction: The second generation. In Proc. IJCAI ’11, 2011.

[41] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open informa-
tion extraction. In Proc. EMNLP ’11, pages 1535–1545, 2011.

[42] A. Fader, L. Zettlemoyer, and O. Etzioni. Paraphrase-driven learning for open
question answering. In Proc. ACL ’13, volume 1, pages 1608–1618, 2013.

[43] A. Fader, L. Zettlemoyer, and O. Etzioni. Open question answering over curated
and extracted knowledge bases. In Proc. SIGKDD ’14, pages 1156–1165. ACM,
2014.

[44] Y. Feng, S. Huang, D. Zhao, et al. Hybrid question answering over knowledge
base and free text. In Proc. COLING ’16, pages 2397–2407, 2016.

[45] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,
A. Lally, J. W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An
overview of the deepqa project. AI magazine, 31(3):59–79, 2010.

[46] K. M. Hermann, T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Suley-
man, and P. Blunsom. Teaching machines to read and comprehend. In NIPS,
2015.

[47] D. Hewlett, A. Lacoste, L. Jones, I. Polosukhin, A. Fandrianto, J. Han, M. Kel-
cey, and D. Berthelot. Wikireading: A novel large-scale language understanding
task over wikipedia. In Proc. ACL ’16, 2016.

[48] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spa-
tially and temporally enhanced knowledge base from wikipedia. Proc. Artificial
Intelligence ’13, 194:28–61, 2013.

[49] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. S. Weld. Knowledge-
based weak supervision for information extraction of overlapping relations. In
Proc. ACL ’11, pages 541–550, 2011.

[50] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao. Answering natural language
questions by subgraph matching over knowledge graphs. IEEE Trans. Knowl.
Data Eng., 30(5):824–837, 2018.

[51] M. Iyyer, W. Yih, and M. Chang. Search-based neural structured learning for
sequential question answering. In Proc. ACL ’17, pages 1821–1831, 2017.

[52] D. Khashabi, T. K. A. Sabharwal, and D. Roth. Question answering as global
reasoning over semantic abstractions. In Proc. AAAI ’18, 2018.

[53] T. Khot, A. Sabharwal, and P. Clark. Answering complex questions using open
information extraction. arXiv preprint arXiv:1704.05572, 2017.

120

[54] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proc. ICLR ’15, 2015.

[55] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer. Scaling semantic parsers
with on-the-fly ontology matching. In Proc. EMNLP ’13. Association for Com-
putational Linguistics (ACL), 2013.

[56] W. Le, F. Li, A. Kementsietsidis, and S. Duan. Scalable keyword search on
large RDF data. IEEE Trans. Knowl. Data Eng., 26(11):2774–2788, 2014.

[57] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd. CYC: toward
programs with common sense. Commun. ACM, 33(8):30–49, 1990.

[58] F. Li and H. Jagadish. Constructing an interactive natural language interface
for relational databases. Proc. VLDB ’14, 8(1):73–84, 2014.

[59] F. Li and H. V. Jagadish. Nalir: an interactive natural language interface for
querying relational databases. In Proc. SIGMOD ’14, pages 709–712. ACM,
2014.

[60] C. Liang, J. Berant, Q. V. Le, K. D. Forbus, and N. Lao. Neural symbolic
machines: Learning semantic parsers on freebase with weak supervision. In
Proc. ACL ’17, pages 23–33, 2017.

[61] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional
semantics. Computational Linguistics, 39(2):389–446, 2013.

[62] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Proc. AAAI ’15, volume 15,
pages 2181–2187, 2015.

[63] K. Luo, F. Lin, X. Luo, and K. Q. Zhu. Knowledge base question answering
via encoding of complex query graphs. In Proc. EMNLP ’18, pages 2185–2194,
2018.

[64] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-
based neural machine translation. In Proc. EMNLP ’15, pages 1412–1421, 2015.

[65] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation
extraction without labeled data. In Proc. ACL ’09, pages 1003–1011. ACL,
2009.

[66] N. Nakashole and T. M. Mitchell. A knowledge-intensive model for prepositional
phrase attachment. In Proc. ACL ’15, pages 365–375, 2015.

[67] F. Niu, C. Zhang, C. Re, and J. W. Shavlik. Deepdive: Web-scale knowledge-
base construction using statistical learning and inference. Proc. VLDS ’12, 12:
25–28, 2012.

121

[68] H. Pal et al. Demonyms and compound relational nouns in nominal open ie. In
Proc. AKBC ’16, pages 35–39, 2016.

[69] M. A. Paredes-Valverde, M. Á. Rodŕıguez-Garćıa, A. Ruiz-Mart́ınez,
R. Valencia-Garćıa, and G. Alor-Hernández. Onli: an ontology-based system
for querying dbpedia using natural language paradigm. Proc. Expert Syst. Appl.
’15, 42(12):5163–5176, 2015.

[70] H. Peng, M. Chang, and W. Yih. Maximum margin reward networks for learning
from explicit and implicit supervision. In Proc. EMNLP ’17, pages 2368–2378,
2017.

[71] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word
representation. In Proc. EMNLP ’14, pages 1532–1543, 2014.

[72] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100, 000+ questions
for machine comprehension of text. In Proc. EMNLP ’16, pages 2383–2392,
2016.

[73] E. Riloff. Automatically generating extraction patterns from untagged text. In
Proc. AAAI ’96, pages 1044–1049, 1996.

[74] D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R. Mittal, and
F. Özcan. Athena: An ontology-driven system for natural language querying
over relational data stores. Proc. VLDB ’16, 9(12):1209–1220, 2016.

[75] M. Schmitz, R. Bart, S. Soderland, O. Etzioni, et al. Open language learning
for information extraction. In Proc. EMNLP ’12, pages 523–534, 2012.

[76] Y. Shen, P.-S. Huang, J. Gao, and W. Chen. Reasonet: Learning to stop
reading in machine comprehension. In Proc. SIGKDD ’17, pages 1047–1055.
ACM, 2017.

[77] Y. Shinyama and S. Sekine. Preemptive information extraction using unre-
stricted relation discovery. In Proc. NAACL-HLT ’06, pages 304–311. Associa-
tion for Computational Linguistics, 2006.

[78] A. Singhal. Introducing the knowledge graph: things, not strings. Official google
blog, 2012.

[79] S. Soderland. Learning information extraction rules for semi-structured and
free text. Machine learning, 34(1-3):233–272, 1999.

[80] L. Song, Z. Wang, M. Yu, Y. Zhang, R. Florian, and D. Gildea. Exploring
graph-structured passage representation for multi-hop reading comprehension
with graph neural networks. arXiv preprint arXiv:1809.02040, 2018.

[81] G. Stanovsky, J. Michael, L. Zettlemoyer, and I. Dagan. Supervised open in-
formation extraction. In Proc. ACL ’18, pages 885–895, 2018.

122

[82] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A large ontology from
wikipedia and wordnet. Web Semantics: Science, Services and Agents on the
World Wide Web, 6(3):203–217, 2008.

[83] H. Sun, H. Ma, W.-t. Yih, C.-T. Tsai, J. Liu, and M.-W. Chang. Open domain
question answering via semantic enrichment. In Proc. IW3C2 ’15, pages 1045–
1055. International World Wide Web Conferences Steering Committee, 2015.

[84] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and W. Cohen.
Open domain question answering using early fusion of knowledge bases and
text. In Proc. EMNLP ’18, pages 4231–4242, 2018.

[85] A. Talmor and J. Berant. The web as a knowledge-base for answering complex
questions. In Proc. NAACL-HLT ’18, pages 641–651, 2018.

[86] M. Tu, G. Wang, J. Huang, Y. Tang, X. He, and B. Zhou. Multi-hop read-
ing comprehension across multiple documents by reasoning over heterogeneous
graphs. arXiv preprint arXiv:1905.07374, 2019.

[87] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, and
P. Cimiano. Template-based question answering over rdf data. In Proc. WWW
’12, pages 639–648. ACM, 2012.

[88] S. Vashishth, P. Jain, and P. Talukdar. Cesi: Canonicalizing open knowledge
bases using embeddings and side information. In Proc. WWW ’18, pages 1317–
1327. WWW, 2018.

[89] D. Vrandecic. Wikidata: a new platform for collaborative data collection. In
Proc. WWW ’12, pages 1063–1064, 2012.

[90] H. Wang and C. C. Aggarwal. A survey of algorithms for keyword search on
graph data. In Managing and Mining Graph Data, pages 249–273. Springer,
2010.

[91] Y. Wang, J. Berant, P. Liang, et al. Building a semantic parser overnight. In
Proc. ACL ’15, pages 1332–1342, 2015.

[92] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by
translating on hyperplanes. In Proc. AAAI ’14, volume 14, pages 1112–1119,
2014.

[93] J. Weston, A. Bordes, O. Yakhnenko, and N. Usunier. Connecting language and
knowledge bases with embedding models for relation extraction. arXiv preprint
arXiv:1307.7973, 2013.

[94] J. Weston, S. Chopra, and A. Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

123

[95] G. Wiese, D. Weissenborn, and M. L. Neves. Neural domain adaptation for
biomedical question answering. In Proc. CoNLL ’17, pages 281–289, 2017.

[96] F. Wu and D. S. Weld. Open information extraction using wikipedia. In Proc.
ACL ’10, pages 118–127, 2010.

[97] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic taxonomy
for text understanding. In Proc. SIGMOD ’12, pages 481–492. ACM, 2012.

[98] W. Xiong, T. Hoang, and W. Y. Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. In Proc. EMNLP ’17, pages 564–573,
2017.

[99] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao. Question answering on
freebase via relation extraction and textual evidence. In Proc. ACL ’16, 2016.

[100] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and
G. Weikum. Natural language questions for the web of data. In Proc. EMNLP
’12, pages 379–390. Association for Computational Linguistics, 2012.

[101] M. Yahya, S. Whang, R. Gupta, and A. Y. Halevy. Renoun: Fact extraction
for nominal attributes. In Proc. EMNLP ’14, pages 325–335, 2014.

[102] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and structureless graph
querying. Proc. VLDB ’14, 7(7):565–576, 2014.

[103] Y. Yang and M. Chang. S-MART: novel tree-based structured learning algo-
rithms applied to tweet entity linking. In Proc. ACL’15, pages 504–513, 2015.

[104] X. Yao and B. Van Durme. Information extraction over structured data: Ques-
tion answering with freebase. In Proc. ACL ’14, pages 956–966, 2014.

[105] A. Yates, M. Cafarella, M. Banko, O. Etzioni, M. Broadhead, and S. Soderland.
Textrunner: open information extraction on the web. In Proc. NAACL Demo
’07, pages 25–26, 2007.

[106] W.-t. Yih, M.-W. Chang, X. He, and J. Gao. Semantic parsing via staged query
graph generation: Question answering with knowledge base. In Proc. ACL ’15,
pages 1321–1331, 2015.

[107] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh. The value of
semantic parse labeling for knowledge base question answering. In Proc. ACL
’16, volume 2, pages 201–206, 2016.

[108] P. Yin, N. Duan, B. Kao, J. Bao, and M. Zhou. Answering questions with
complex semantic constraints on open knowledge bases. In Proc. CIKM ’15,
pages 1301–1310. ACM, 2015.

124

[109] M. Yu, W. Yin, K. S. Hasan, C. N. dos Santos, B. Xiang, and B. Zhou. Improved
neural relation detection for knowledge base question answering. In Proc. ACL
’17, pages 571–581, 2017.

[110] Y. Zhang, S. He, K. Liu, and J. Zhao. A joint model for question answering
over multiple knowledge bases. In Proc. AAAI ’16, pages 3094–3100, 2016.

[111] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao. Semantic sparql
similarity search over rdf knowledge graphs. Proc. VLDB ’16, 9(11):840–851,
2016.

[112] W. Zheng, J. X. Yu, L. Zou, and H. Cheng. Question answering over knowledge
graphs: question understanding via template decomposition. Proc. VLDB ’18,
11(11):1373–1386, 2018.

[113] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao. Natural language
question answering over rdf: a graph data driven approach. In Proc. SIGMOD
’14, pages 313–324. ACM, 2014.

125

