
Novel Flexible Statistical Methods for Missing
Data Problems and Personalized Health Care

by

Yilun Sun

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2019

Doctoral Committee:

Associate Professor Lu Wang, Chair
Assistant Professor Peisong Han
Research Associate Professor Matthew J. Schipper
Associate Professor Emily Somers



Yilun Sun

yilunsun@umich.edu

ORCID iD: 0000-0002-1341-382X

c© Yilun Sun 2019



ACKNOWLEDGEMENTS

I want to extend thanks to my instructors, peer students, friends, and family, who so

generously contributed to the work presented in this thesis.

First and foremost, I am indebted to my advisor, Lu Wang. Lu is always generous

with her time, she is always a good listener, and she always provides insightful advice.

Her valuable suggestions, comments, and guidance encourage me to stay persistent

towards my goals. Lu is an inspiring advisor in many ways, and her guidance has

been significantly helping me gain knowledge, develop research interests, grow as a

research scholar, as well as balance work and family. This dissertation would not have

been possible without the consistent guidance, encouragement, and support from Lu.

I want to thank Matthew Schipper, for supervising my GSRA research, supporting

my Ph.D. study, and serving as my dissertation committee member. Matt has been

very understanding and supportive since my first day working with him. He has been

giving me both independence and guidance, teaching me to conduct collaborative

research effectively and helping me gain valuable experience in developing statistical

tools for exciting and meaningful radiation oncology applications.

I am also grateful to the rest of my dissertation committee members, Peisong Han, and

Emily Somers. I collaborated with Peisong in my first thesis project and benefited

greatly from his tremendous passion for research, broad knowledge, and insightful

comments. I am thankful to Emily for agreeing to serve on my dissertation committee

ii



on such short notice, and her invaluable insights and suggestions helped me improve

my thesis.

I want to express my gratitude to Jeremy Taylor. Jeremy supervised my research in

the summer even before I officially started my Ph.D. study, and has always been very

supportive. His excellent guidance and mentorship helped me get on the right track

and realize my research interest. Moreover, his rigorous attitude toward scholarship

has dramatically influenced my work ever since.

Thanks are also due to the faculty, staff, and peer students in the Department of

Biostatistics, University of Michigan. Also, I am grateful to my collaborators from

Michigan Medicine.

Special thanks to my beloved family members. I want to thank my mom, Xi Wang,

without her selfless support, I would not be able to make this accomplishment. I also

want to thank my wife, Yang Jiao, and my two lovely kids, Joanna and Lucas. I

would like to thank them for all the support, joy, and love. I am fortunate to have

them in my life.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Multiply Robust Estimation in Nonparametric Regression

with Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The Proposed Estimator . . . . . . . . . . . . . . . . . . . . . 8
2.3 Large Sample Properties . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Multiple Robustness . . . . . . . . . . . . . . . . . . 13
2.3.2 Asymptotic Distribution and Efficiency . . . . . . . 16

2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Data Applications . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III. Stochastic Tree Search for Estimating Optimal Dynamic Treat-

ment Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Stochastic Tree-based Reinforcement Learning . . . . . . . . . 34

3.2.1 Dynamic Treatment Regimes . . . . . . . . . . . . . 34
3.2.2 Bayesian Additive Regression Trees . . . . . . . . . 36

iv



3.2.3 Stochastic Tree Search Algorithm . . . . . . . . . . 37
3.2.4 Implementation of ST-RL . . . . . . . . . . . . . . . 41

3.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Single-stage Scenarios . . . . . . . . . . . . . . . . . 47
3.4.2 Two-stage Scenarios . . . . . . . . . . . . . . . . . . 50

3.5 Data Applications . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV. A Flexible Tailoring Variable Screening Approach for Esti-

mating Optimal Dynamic Treatment Regimes in Large Ob-

servational Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Optimal Treatment Regime and Additive Models . . 60
4.2.2 Back-fitting Algorithm for Sparse Additive Selection 63
4.2.3 Extension to Multi-stage Setting . . . . . . . . . . . 67

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Single-stage Scenarios . . . . . . . . . . . . . . . . . 68
4.3.2 Two-stage Scenarios . . . . . . . . . . . . . . . . . . 71

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

V. Summary and Future Work . . . . . . . . . . . . . . . . . . . . . 80

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

v



LIST OF FIGURES

Figure

2.1 Simulation results of the estimated nonparametric functions using
naive, AIPW and MR kernel methods based on 500 replications with
sample size n = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Simulation results of the estimated nonparametric functions using
naive, AIPW and MR kernel methods based on 500 replications with
sample size n = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 The naive and multiply robust KEE estimates of ozone exposure (in
ppb) on systolic blood pressure. Each vertical tick mark along the
x-axis stands for one observation. . . . . . . . . . . . . . . . . . . . 29

4.1 The regularization path calculated for HCC data. The ratio between
the two tuning parameters is fixed at λ1/λ2 = 1.5. . . . . . . . . . . 78

vi



LIST OF TABLES

Table

2.1 Simulation results of relative biases, S.E.s and MISEs of the naive,
AIPW and MR estimates of θ(z) based on 500 replications. . . . . . 26

3.1 Simulation results for single-stage scenarios I-IV, with 50, 100, 200
baseline covariates and sample size 500. The results are averaged over
500 replications. opt% shows the median and IQR of the percent-
age of test subjects correctly classified to their optimal treatments.
Ê{Y ∗(ĝopt)} shows the empirical mean and the empirical standard de-
viance of the expected counterfactual outcome under the estimated
optimal regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Simulation results for two-stage scenarios V-VIII, with 50, 100, 200
baseline covariates and sample size 500. The results are averaged over
500 replications. opt% shows the median and IQR of the percent-
age of test subjects correctly classified to their optimal treatments.
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ABSTRACT

Coarsened data, including a broad class of incomplete data structures, are ubiquitous

in biomedical research. Various methods have been proposed when data are coarsened

at random, where it is often required to specify working models for the coarsening

mechanism, or the conditional outcome regression, or both. However, some practical

issues emerge: for example, it is not unusual to have multiple working models that all

fit the observed data reasonably well, or working model specification can be challeng-

ing in the presence of a large number of variables. In this dissertation, we propose

new flexible statistical methods to tackle the challenges mentioned above with two

types of coarsened data: missing data and counterfactual data when optimizing the

dynamic treatment regime (DTR), which is a sequence of decision rules that adapt

treatment to the time-varying medical history of each individual.

In the first project, we develop a multiply robust kernel estimating equations (MR-

KEEs) method for nonparametric regression that can accommodate multiple working

models for either the missing data mechanism or the outcome regression or both.

The resulting estimator is consistent if any one of those models is correctly specified.

When including correctly specified models for both, the proposed estimator achieves

the optimal efficiency within the class of augmented inverse probability weighted

(AIPW) kernel estimators.

In the second project, we develop a stochastic tree-based reinforcement learning

method, ST-RL, for estimating the optimal DTR in a multi-stage multi-treatment set-

ting with data from either randomized trials or observational studies. At each stage,

ST-RL constructs a decision tree by first modeling the mean counterfactual outcomes

via Bayesian nonparametric regression models, and then stochastically searching for

x



the optimal tree-structured regime using a Markov Chain Monte Carlo algorithm.

We implement the proposed method in a backward inductive fashion through multi-

ple decision stages. Compared to existing methods, ST-RL delivers the optimal DTR

with better interpretability and does not require explicit working model specifications.

Besides, ST-RL demonstrates stable and outstanding performance with moderately

high dimensional data.

In the third project, we propose a variable selection technique to screen potential

tailoring variables for estimating the optimal DTR with large observational data.

The proposed method is based on nonparametric sparse additive models and therefore

enjoys superior flexibility. Also, it allows treatments with more than two levels, as well

as continuous doses. In particular, the selection procedure enforces strong heredity

constraint, i.e., the interactions can only be included when both of its main effects

have already been selected.
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CHAPTER I

Introduction

Coarsened data (Heitjan, 1993;Gill et al., 1997) are ubiquitous in biomedical research.

The term coarsened data represents a broad class of incomplete data structures,

where the observed data can be viewed as many-to-one functions of complete data.

For example, investigators aimed to study the relationship between adjuvant therapy

and sexual dysfunction in gynecologic oncology patients. Data were collected from

the clinical records (Y ) in addition to a cross-sectional survey of outpatients in the

gynecologic oncology clinic, where the survey contained both patients information

X1 and behavior questions X2. However, some patients chose not to complete the

behavior part possibly because of privacy concern. As a result, only the coarsened

data (X1, Y ) were observed for these patients, while the complete data (X1, X2, Y )

were obtained for other patients. Other coarsened data examples include censored

data in survival analysis, missing data problems, and potential outcomes in causal

inference.

There are three coarsened-data mechanisms: coarsening completely at random (CCAR),

where coarsening mechanism does not depend on data; coarsening at random (CAR),

that is, the probability of coarsening depends on observed data only; and non-

coarsening at random (NCAR), where coarsening depends on unobserved data. When

data are coarsened at random, existing methods often require specification of work-
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ing models for the coarsening mechanism, or the conditional outcome regression, or

both. However, some issues emerge in practice: for example, it is not unusual to have

multiple working models that all fit the observed data reasonably well, or working

model specification can struggle in the presence of a large number of variables.

In this dissertation, we consider two kinds of coarsened data: missing data and coun-

terfactual data in estimating optimal dynamic treatment regimes (DTRs), which is

a sequence of decision rules that adapt treatment to the time-varying medical his-

tory of each individual. The overarching goal is to propose new flexible statistical

methods to tackle the aforementioned challenges. Missing data are commonly seen in

almost all scientific research areas, and various methods have been proposed in the

statistical literature. Popular approaches include multiple imputation or likelihood-

based methods (Little and Rubin, 2002; Little, 1992). Another stream of research

is weighting-based methods, including inverse probability weighting (IPW, Horvitz

and Thompson, 1952) and augmented inverse probability weighting (AIPW, Robins

et al., 1995). Existing literature often involves working model specification for missing

mechanisms or conditional outcome regression, which often requires a considerable

amount of guesswork; thus it remains a substantial challenge to obtain consistent

estimates when working models are subject to misspecification.

On the other hand, dynamic treatment regimes (DTRs) are sequences of treatment

decision rules, one per stage of intervention. Each decision rule maps up-to-date pa-

tient information to a recommended treatment (Robins , 2004; Murphy , 2003). DTRs

build the basis of common medical practice, and it is essential to identify and eval-

uate optimal DTRs for personalized therapy and tailored management of chronic

health conditions such as cancer, cardiovascular disease, behavioral disorders, and

infections. Recently DTR has become a rapidly growing field, and various statis-

tical methods have been developed to identify optimal DTRs. However, there are

2



still many unsolved questions in this area. For example, most existing methodologies

require specifying parametric or semiparametric models when modeling the counter-

factual outcome, which directly impacts the quality of estimated DTR. Usually, the

consistency of the estimation can only be guaranteed using data from randomized

trials; however, in practice, observational data are more often encountered because

they are much cheaper and easier to obtain. As a consequence, model misspecification

when using large observational data is a big concern, especially given the inherent dif-

ficulty of modeling high-dimensional information in a time-varying setting. Moreover,

it is crucial to deliver interpretable treatment regimes for human experts to under-

stand and gain insights, and however, previous literature has primarily emphasized

on estimation accuracy instead of interpretability.

In Chapter II, we propose a multiply robust estimation method for nonparamet-

ric regression models in the presence of missing data, which provide not only great

flexibility to allow data-driven dependence of the response on covariates, but also

successfully correct for selection bias due to missing data. When data are missing at

random (Little and Rubin, 2002), i.e., the missingness can be fully accounted for by

variables that are completely observed, there has only been limited work addressing

estimation in nonparametric regression problems. We propose new multiply robust

kernel estimating equations (MRKEEs) that can simultaneously accommodate multi-

ple working models for either the missingness mechanism or the outcome regression, or

both. In particular, we consider a new weighted kernel estimating equation approach

using counterpart ideas as empirical likelihood, which incorporates potentially many

working models for outcome regression and missingness mechanism into the weights.

We derive the asymptotic properties using empirical likelihood theory and show that

as long as one of the postulated models is correctly specified, the proposed estima-

tor is consistent, and therefore is multiply robust. It means that compared to the

kernel methods in the literature, MRKEEs provide extra protection against working

3



model misspecification. Furthermore, we demonstrate that when including correctly

specified models for both the missingness mechanism and the outcome regression, our

proposed estimator achieves the optimal efficiency. This work significantly improves

model robustness against misspecification in the presence of missing data and is the

pioneering work in studying the theories of multiply robust estimators in the context

of nonparametric regression.

Chapter III and IV address the problem of estimating the optimal DTR using obser-

vational data. To achieve additional flexibility, we explore nonparametric approaches

that require a minimal amount of working model specification. However, optimal

DTRs estimated from nonparametric models often lack interpretability. To recon-

cile the tension between interpretability and flexibility, in Chapter III we develop a

stochastic tree-based reinforcement learning method, ST-RL, for estimating the opti-

mal DTR in a multi-stage multi-treatment setting with data from either randomized

trials or observational studies. At each stage, ST-RL constructs a decision tree by first

modeling the mean of counterfactual outcomes via Bayesian nonparametric regression

models, and then stochastically searching for the optimal tree-structured regime us-

ing a Markov Chain Monte Carlo algorithm. We implement the proposed method in

a backward inductive fashion through multiple decision stages. Compared to greedy

tree-growing algorithms such as CART, the stochastic tree search can search the de-

cision tree space more efficiently. Besides, we show in theory that the stochastic tree

search will not overfit and that the resulting tree-structured optimal regime is consis-

tent by deriving finite sample bound. Compared to existing methods, ST-RL delivers

optimal DTRs with better interpretability and does not require explicit working model

specifications. Also, ST-RL demonstrates stable and outstanding performance with

moderately high dimensional data.

In large observational data, especially Omics data, the dimensionality further in-
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creases and eventually necessitates variable selection before estimating optimal DTRs.

In Chapter IV, we propose a variable selection technique, Sparse Additive Selection

(SpAS), for identifying potential prescriptive and predictive variables. Existing meth-

ods have some limitations - first, they require modeling the contrast functions and

thus only allow binary treatments, and second, existing methods apply to randomized

trial data only. SpAS allows treatments with more than two levels or even contin-

uous doses. Also, SpAS takes advantage of nonparametric sparse additive models

and therefore has superior flexibility. In particular, SpAS enforces strong heredity

constraint, i.e., the interactions can only be included when both of its main effects

have already been selected.
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CHAPTER II

Multiply Robust Estimation in Nonparametric

Regression with Missing Data

2.1 Introduction

For many biomedical studies, nonparametric regression becomes more and more at-

tractive as it allows for more flexibility on how the outcome depends on a covariate.

For example, how the hormone changes over time (Zhang et al., 2000), how disease

risk changes over a certain biomarker (Kennedy et al., 2013), and how cardiovascular

function changes over air pollution exposure (Donnelly et al., 2011). In this chapter,

we consider nonparametric regression in the presence of missing data. To be specific,

suppose the outcome is subject to missingness. The data we intend to collect consist

of a random sample of n subjects: (Yi, Zi,U i), i = 1, · · · , n, where Y is the outcome,

Z is a scalar covariate and U is a vector of auxiliary variables. We are interested in

making inference about E (Y |Z = z) through a generalized nonparametric model

E (Y |Z) = µ {θ (Z)} , (2.1)

where µ is a known monotonic link function (McCullagh and Nelder , 1989, Chap. 2)

with a continuous first derivative, z is an arbitrary value in the support of Z and θ(z)
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is an unknown smooth function of z that needs to be estimated. The collection of

auxiliary variables U is commonly seen in practice and some examples can be found

in Pepe (1992), Pepe et al. (1994), and Wang et al. (2010). Such variables can help

explain the missingness mechanism and improve the estimation efficiency. Let R be

a missingness indicator so that Ri = 1 if Yi is observed and Ri = 0 otherwise. Given

the covariate Z and a rich collection of auxiliary variables U , we assume that the

missingness of Y is independent of Y . That is

Pr (R = 1|Z,U , Y ) = Pr (R = 1|Z,U) , (2.2)

which is known as the missing at random (MAR) mechanism (e.g., Little and Rubin,

2002, Chap. 1).

To our best knowledge, there has only been limited work addressing the above non-

parametric regression problem with MAR data. Wang et al. (2010) showed that the

inverse probability weighted (IPW) generalized kernel estimating equations (KEEs)

result in consistent estimation when the missingness probability is known or correctly

modeled. They also made the extension to augmented IPW (AIPW) (Robins et al.,

1994) KEEs by modeling E (Y |Z,U) in addition, and their estimator is doubly robust

in the sense that it is consistent if either the missingness probability or E (Y |Z,U) is

correctly modeled. Double robustness allows only one working model for each quan-

tity, yet in practice, it is not uncommon to have multiple working models that all

have a reasonable fit to the observed data and none rules out the possibility of others,

especially when the dimension of U is large. Through simulations, Kang et al. (2007)

demonstrated that the AIPW estimators could be severely biased when both working

models are only mildly misspecified, and this observation makes it desirable to have

a more robust estimation procedure that can simultaneously accommodate multiple

working models so that consistency is achieved if any working model is correctly

7



specified.

Existing multiply robust estimation methods are for marginal mean estimation with

missing data (e.g., Han and Wang , 2013; Chan et al., 2014; Han, 2014a; Chen and

Haziza, 2017), parametric regression with missing data (e.g., Han, 2014b, 2016a) and

causal inference (e.g., Naik et al., 2016; Wang and Tchetgen, 2016). In this chapter,

we make an extension to nonparametric regression and propose a class of multiply

robust KEEs (MRKEEs) that offer more protection against working model misspec-

ification than AIPW KEEs. The MRKEE estimators are consistent if any one of

the multiple working models for either the missingness probability or E (Y |Z,U) is

correctly specified. When correct working models for both are used, the MRKEE

estimators achieve the maximum efficiency based on the observed data. The multi-

ple robustness considered in this chapter is different from that in Tchetgen (2009),

Molina et al. (2017) and Rotnitzky et al. (2017), where the likelihood function can

be factorized into multiple components, for each of which two working models are

postulated, and estimation consistency is achieved if for each component there is one

model correctly specified. Please refer to Molina et al. (2017) for more discussion.

The rest of this chapter is organized as follows. Section 2.2 describes the proposed

MRKEEs and their numerical implementation. Section 2.3 investigates the large

sample properties of the proposed estimators. Sections 2.4 and 2.5 present the nu-

merical studies and an application example, respectively. Some relevant discussions

are provided in Section 2.6, and Appendix A contains some technical details.

2.2 The Proposed Estimator

Without loss of generality, we focus on local linear kernel estimators throughout

this chapter. The proposed estimators and their corresponding properties can be

generalized to higher order kernel estimators based on similar developments. Let

8



Kh(s) = h−1K(s/h), where K(·) is a mean-zero density function and h is the band-

width parameter. Define G(z) = (1, z)T, where z is an arbitrary scalar, and denote

α = (α0, α1)
T . For any target point z, the local linear kernel estimator approximates

θ(Z) in the neighborhood of z by a linear function G(Z − z)Tα. Hereafter in our

notation we occasionally suppress the dependence on data when it does not cause

confusion. To proceed, let m =
∑n

i=1Ri be the number of complete cases, and index

these subjects by i = 1, · · · , m without loss of generality. We consider the following

multiply robust kernel estimating equations (MRKEEs)

m∑

i=1

ŵiKh(Zi − z)µ(1)
i V −1

i G(Zi − z)
[
Yi − µ{G(Zi − z)Tα}

]
= 0, (2.3)

where µ
(1)
i is the first derivative of µ(·) evaluated at G(Zi − z)Tα, Vi is a working

variance model for Var (Yi|Zi) indexed by parameter ζ, and ŵi are certain weights

assigned to the complete cases, which we propose to derive based on empirical likeli-

hood techniques and multiple working models for Pr(R = 1|Z,U) and E(Y |Z,U) to

achieve multiple robustness. More details will be given below. Our proposed multi-

ply robust estimator of θ (z) is θ̂MR (z) = α̂0 where α̂MR = (α̂0, α̂1) is the solution to

(2.3). Usually ζ is unknown and can be estimated via weighted moment equations
∑m

j=1 ŵjV
(1)
j

[
{Yj − α̂0,j(ζ)}2 − V {α̂0,j(ζ), ζ}

]
= 0, where V

(1)
j = ∂V {α̂0,j(ζ); ζ} /∂ζ

and α̂j(ζ) = {α̂0,j(ζ), α̂1,j(ζ)}T solves (2.3) with z = Zj, j = 1, ..., n. As noted in

Wang et al. (2010) and shown in our derivation of Theorem 3 in Appendix, unlike

parametric regression where an incorrect working variance model leads to compro-

mised efficiency, the efficiency in estimating θ(z) will not benefit from correctly esti-

mating ζ. The asymptotic results in Section 2.3 also show that the working variance

model plays no role in improving efficiency of θ̂MR (z). Thus one can simply set it to

be the identity matrix for continuous independent data structure.

If the weights ŵi in (2.3) are set to be all equal to one, then (2.3) becomes the naive

9



complete-case KEEs, which result in biased estimation if the missingness probability

is not completely at random, i.e. Pr (R = 1|Z,U , Y ) = Pr (R = 1). If instead ŵi =

Pr(Ri = 1|Zi,U i)
−1, then (2.3) becomes the IPW KEEs. Consistency of the IPW

KEE estimator requires the missingness probability Pr(R = 1|Z,U) to be known or

correctly modeled. The AIPW KEEs in Wang et al. (2010) added an augmentation

term involving an outcome regression model for E(Y |Z,U) to the IPW KEEs so that

estimation consistency is achieved if either the model for Pr(R = 1|Z,U) or the model

for E(Y |Z,U) is correctly specified. Our aim is to further improve the robustness by

allowing multiple working models for both Pr(R = 1|Z,U) and E(Y |Z,U) so that

estimation consistency is achieved if any one of these working models is correctly

specified, which is the so-called multiple robustness property.

Consider two sets of working models P = {πj(νj) : j = 1, · · · , J} for Pr(R =

1|Z,U) and A = {ak(γk) : k = 1, · · · , K} for E(Y |Z,U), where νj and γk are the

corresponding parameters. We use ν̂j and γ̂k to denote the estimators of νj and γk,

respectively. Usually, ν̂j is taken to be the maximizer of the binomial likelihood

n∏

i=1

{πj
i (ν

j)}Ri{1− πj
i (ν

j)}1−Ri . (2.4)

On the other hand, from (2.2) we have Y ⊥ R|(Z,U) and thus E(Y |Z,U) = E(Y |R =

1, Z,U). Therefore, γ̂k can be derived by fitting the model ak(γk) based on the

complete cases. We consider wi, i = 1, · · · , m, that satisfy the following constraints

m∑

i=1

wiπ
j
i (ν̂

j) = n−1
n∑

i=1

πj
i (ν̂

j) (j = 1, · · · , J), (2.5)

m∑

i=1

wiψ
k
i (α̂

k, γ̂k) = n−1

n∑

i=1

ψk
i (α̂

k, γ̂k) (k = 1, · · · , K),

where ψk(α,γk) = Kh(Z − z)µ(1)V −1G(Z − z)
[
ak(γk)− µ{G(Z − z)Tα}

]
depends

10



on the location z, and α̂k can be obtained by solving the estimating equation

1

n

n∑

i=1

Kh(Zi − z)µ(1)
i V −1

i G(Zi − z)
[
RiYi + (1−Ri)a

k
i (γ̂

k)− µ{G(Zi − z)Tα}
]
= 0.

(2.6)

Here (2.6) is actually KEEs for α with the missing outcomes substituted by the

fitted values based on the k-th outcome regression model ak(γk), and thus α̂k can be

regarded as an imputation-type estimator of α using model ak(γk).

The constraints in (2.5) match the weighted averages of certain functions of the ob-

served data based on complete cases to the unweighted averages of those functions

based on the whole sample. This construction of constraints is similar to the calibra-

tion idea in survey sampling (Deville and Särndal , 1992) and helps achieve multiple

robustness.

In addition to (2.5), we further impose the positivity constraint wi > 0 and a normal-

ization that
∑m

i=1wi = 1. The compatibility between the positivity and normalization

constraints with those in (2.5), or equivalently the existence of a set of weights sat-

isfying all these constraints, can be shown by following the same arguments as those

in Han (2014b). The ŵi we propose to use in (2.3) are then derived by maximizing

∏m
i=1wi subject to wi > 0,

∑m
i=1wi = 1 and the constraints in (2.5).

For ease of presentation, let Πj(νj) = 1
n

∑n
i=1 π

j
i (ν

j) andΨk(α,γk) = 1
n

∑n
i=1ψ

k
i (α,γ

k),

and write ν̂T = {(ν̂1)T, · · · , (ν̂J)T}, α̂T = {(α̂1)T, · · · , (α̂K)T}, γ̂T = {(γ̂1)T, · · · , (γ̂K)T}

and

ĝi(ν̂, α̂, γ̂)
T = [π1

i (ν̂
1)− Π1(ν̂1), · · · , πJ

i (ν̂
J)− ΠJ(ν̂J),

{ψ1
i (α̂

1, γ̂1)−Ψ1(α̂1, γ̂1)}T, · · · , {ψK
i (α̂

K , γ̂K)−ΨK(α̂K , γ̂K)}T].

11



Using the empirical likelihood theory (e.g., Qin and Lawless , 1994), we have

ŵi =
1

m

1

1 + ρ̂Tĝi(ν̂, α̂, γ̂)
(i = 1, · · · , m),

where ρ̂T = (ρ̂1, · · · , ρ̂J+2K) is a (J + 2K)-dimensional Lagrange multiplier solving

1

m

m∑

i=1

ĝi(ν̂, α̂, γ̂)

1 + ρTĝi(ν̂, α̂, γ̂)
= 0. (2.7)

Because of the positivity of ŵi, ρ̂ must satisfy

1 + ρ̂Tĝi(ν̂, α̂, γ̂) > 0 (i = 1, · · · , m). (2.8)

For numerical implementation, calculating ρ̂ by directly solving (2.7) is not recom-

mended because (2.7) may have multiple roots and the ρ̂ we need is the one that sat-

isfies (2.8). Instead, ρ̂ can be derived by minimizing Fn(ρ) = −n−1
∑n

i=1Ri log{1 +

ρTĝi(ν̂, α̂, γ̂)}. Following the same arguments as in Han (2014b), it can be shown

that this minimization is a convex minimization where a unique minimizer always ex-

ists, at least when the sample size is not too small. This minimizer naturally satisfies

(2.8) and solves the equation ∂Fn(ρ)/∂ρ = 0, which turns out to be (2.7). Refer to

Chen et al. (2002) and Han (2014b) for more details, and a Newton-Raphson-type

algorithm for implementation.

Selecting the bandwidth parameter h and estimating the conditional variance V ar(Y |Z

= z) are crucial for our proposed method. We defer the presentation of these topics

to Section 3.2 after we introduce the notation and derive the asymptotics.
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2.3 Large Sample Properties

2.3.1 Multiple Robustness

To derive the asymptotic properties, we assume that z is an interior point of the

support of Z and that h = hn is a sequence of bandwidths selected while the sample

size n changes such that h→ 0 and nh→∞ as n→∞. In addition, we assume the

following regularity conditions hold:

(i) z is in the interior of the support of fZ , that is, z ∈ supp(fZ), where fZ is the

density of Z.

(ii) For each z ∈ supp(fZ), (µ−1)(1){E(Y |Z = z)}, V = Var(Y |Z = z) and

[(µ−1)(1){E(Y |Z = z)}2V ]−1 are nonzero, where (µ−1)(1) is the first derivative

of the inverse function of µ;

(iii) For each boundary point zb of supp(fZ), there exists an interval Zb containing

zb with non-null interior such that infz∈Zb
fZ(z) > 0;

(iv) The functions f ′
Z , θ

(2)(z), V , V ′′ and (µ−1)(3) are continuous;

(v) The function ∂2

∂α2φ is continuous and uniformly bounded at any z ∈ supp(fZ),

where φ is naive kernel estimating equation.

Condition (iv) requires that the underlying conditional mean outcome, θ(z), to be

twice continuously differentiable. This implies that local linear regression is very

flexible in terms that it accommodates a broad class of underlying conditional mean

functions, including all smooth functions and less smooth ones as long as they have

continuous second derivatives. Moreover, in such cases, using restrictive parametric

models such as linear or polynomial regression is unlikely to fit the data well. In this

case, MRKEE is an ideal choice for modeling θ(z) when missing data are present
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because of its flexibility. As a trade-off, we sacrifice estimation efficiency, because

essentially the inference is also made locally.

We first establish the consistency of θ̂MR(z) when P contains a correctly specified

model for Pr(R = 1|Z,U). Without loss of generality, let π1(ν1) be this correct

model and let ν1
0 denote the true value of ν1 so that π1(ν1

0) = Pr(R = 1|Z,U).

Define λ̂
T

= (λ̂1, · · · , λ̂J+2K) in such a way that ρ̂1 = (λ̂1 + 1)/Π1(ν̂1) and ρ̂l =

λ̂l/Π
1(ν̂1), l = 2, · · · , J + 2K. Then (2.7) becomes

0 =
1

Π1(ν̂1)

1

m

m∑

i=1

ĝi(ν̂, α̂, γ̂)

1 +
{

λ̂1+1

Π1(ν̂1
)
, λ̂2

Π1(ν̂1
)
, · · · , λ̂J+2K

Π1(ν̂1
)

}
ĝi(ν̂, α̂, γ̂)

=
1

Π1(ν̂1)

1

m

m∑

i=1

ĝi(ν̂, α̂, γ̂)

1 +
π1
i (ν̂

1
)−Π1(ν̂1

)

Π1(ν̂1
)

+

{
λ̂

Π1(ν̂1
)

}T

ĝi(ν̂, α̂, γ̂)

=
1

m

m∑

i=1

ĝi(ν̂, α̂, γ̂)/π
1
i (ν̂

1)

1 + λ̂
T
ĝi(ν̂, α̂, γ̂)/π

1
i (ν̂

1)
(2.9)

and

ŵi =
1

m

Π1(ν̂1)/π1
i (ν̂

1)

1 + λ̂
T
ĝi(ν̂, α̂, γ̂)/π

1
i (ν̂

1)
. (2.10)

Since λ̂ solves (2.9), we have λ̂
p−→ 0 from the Z-estimator theory (e.g., van der Vaart ,

1998, Chap. 5). Let φi(α) = Kh(Zi − z)µ(1)
i V −1

i G(Zi − z)
[
Yi − µ{G(Zi − z)Tα}

]

and denote the true parameter value as α0, whose first component is θ(z). The
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MRKEEs (2.3) evaluated at α0 become

m∑

i=1

ŵiφi(α0) =
Π1(ν̂1)

m

n∑

i=1

Ri/π
1
i (ν̂

1)

1 + λ̂
T
ĝi(ν̂, α̂, γ̂)/π

1
i (ν̂

1)
φi(α0)

=
1

n

n∑

i=1

Ri

π1
i (ν

1
0)
φi(α0) + op(1)

≃ E

{
R

π1(ν1
0)
Kh(Z − z)µ(1)V −1G(Z − z)

[
Y − µ{G(Z − z)Tα0}

]}

= fZ(z)µ
(1) {θ(z)} V −1 {θ(z)} (1, 0)T [E(Y |Z = z)− µ(θ(z))]

p−→ 0,

where fZ(·) denotes the density of Z and ≃ denotes asymptotic equality because of

an omitted op(1) term. This result implies the consistency of θ̂MR(z) for θ(z).

We now establish the consistency of θ̂MR(z) when A contains a correctly specified

model for E(Y |Z,U). Without loss of generality, let a1(γ1) be this correct model and

γ1
0 the true value of γ

1 such that a1(γ1
0) = E(Y |Z,U). Let νj

∗, α
k
∗, γ

k
∗ and ρ∗ denote

the probability limits of ν̂j, α̂k, γ̂k and ρ̂, respectively. We then have Πj(ν̂j)
p−→ Πj

∗

and Ψk(α̂k, γ̂k)
p−→ Ψk

∗ where Πj
∗ = E{πj(νj

∗)} and Ψk
∗ = E{ψk(αk

∗,γ
k
∗)}. Write

νT
∗ = {(ν1

∗)
T, · · · , (νJ

∗ )
T}, αT

∗ = {(α1
∗)

T, · · · , (αK
∗ )

T}, γT
∗ = {(γ1

∗)
T, · · · , (γK

∗ )
T}, and

g(ν∗,α∗,γ∗)
T = [π1(ν1

∗)− Π1
∗, · · · , πJ(νJ

∗ )−ΠJ
∗ ,

{
ψ1(α1

∗,γ
1
∗)−Ψ1

∗
}T

, · · · ,
{
ψK(αK

∗ ,γ
K
∗ )−ΨK

∗
}T

]. (2.11)

Since a1(γ1) is correctly specified, we must have γ1
∗ = γ1

0 and α1
∗ = α0. After some

algebra, we can write

m∑

i=1

ŵiφi(α0) =
m∑

i=1

ŵi{φi(α0)−ψ1
i (α̂

1, γ̂1)}+ 1

n

n∑

i=1

ψ1
i (α̂

1, γ̂1).
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Further calculation shows that this quantity is equal to

1

m

n∑

i=1

Ri{φi(α0)−ψ1
i (α̂

1, γ̂1)}
1 + ρ̂Tĝi(ν̂, α̂, γ̂)

+ E{ψ1(α0,γ
1
0)}+ op(1)

p−→ 1

P (R = 1)
E

[
R{φ(α0)−ψ1(α0,γ

1
0)}

1 + ρT
∗ g(ν∗,α∗,γ∗)

]

=
1

P (R = 1)
E

(
E

[
R{φ(α0)−ψ1(α0,γ

1
0)}

1 + ρT
∗ g(ν∗,α∗,γ∗)

∣∣∣∣Z,U
])

= 0,

which implies the consistency of θ̂MR(z) for θ(z).

Summarizing the above results, we have the following theorem on the multiple ro-

bustness of θ̂MR(z).

Theorem 2.1. Under Conditions (i) - (iv), when P contains a correctly specified

model for Pr(R = 1|Z,U) or A contains a correctly specified model for E(Y |Z,U),

we have θ̂MR(z)
p−→ θ(z) as n→∞, h→ 0 and nh→∞.

2.3.2 Asymptotic Distribution and Efficiency

We derive the asymptotic distribution of the proposed estimator when Pr(R = 1|Z,U)

is correctly modeled, as is typical in the missing data literature (e.g., Robins et al.,

1994, 1995; Tsiatis , 2006, Chap. 7). In this case, the previously shown result λ̂
p−→ 0

and the asymptotic expansion of
√
nhλ̂ given by the lemma in the Appendix guarantee

a closed-form asymptotic variance, which facilitates explicit assessment and possible

improvement of the efficiency of MRKEEs. In addition, this case is also of practical

importance, because in many two-stage design studies (e.g., Pepe, 1992; Pepe et al.,

1994), the missingness is determined by the investigator and thus Pr(R = 1|Z,U)

is known or can be correctly modeled. On the other hand, when no models for

Pr(R = 1|Z,U) is correctly specified, the derivation of a Taylor series-based asymp-

totic variance estimator of MRKEEs requires asymptotic expansion of
√
nh(ρ̂− ρ∗).
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Since the true value ρ∗ is unknown, the resulting estimator provides little insight

into the efficiency of MRKEEs in this case. Moreover, in the case with one correct

model for E(Y |Z,U), the asymptotic distribution of θMR depends on which model

is correctly specified. Furthermore, with that information, one would directly esti-

mate E(Y |Z,U) by substituting the missing outcome with the fitted value using the

correct model. Therefore, there is little practical interest in deriving the asymptotic

distribution of MRKEEs estimator θ̂MR(Z) when no model for Pr(R = 1|Z,U) is

correctly specified.

Denote π(Z,U) = Pr(R = 1|Z,U),

L = E

{√
hφ(α0)

g(ν∗,α∗,γ∗)
T

π(Z,U)

}
, M = E

{
g(ν∗,α∗,γ∗)

⊗2

π(Z,U)

}
, (2.12)

Q(z) =
R

π(Z,U)

√
hφ(α0)−

R− π(Z,U)

π(Z,U)
LM−1g(ν∗,α∗,γ∗), (2.13)

and c2(K) =
∫
s2K(s)ds, where B⊗2 = BBT for any matrix B. The asymptotic

distribution of θ̂MR(z) is given by the following theorem with the proof given in the

Appendix.

Theorem 2.2. Under Conditions (i) - (iv), suppose that P contains a correctly spec-

ified model for Pr(R = 1|Z,U), then

√
nh

{
θ̂MR(z)− θ(z)−

1

2
h2θ′′(z)c2(K) + o(h2)

}
d−→ N {0,WMR,π(z)}

as n→∞, h→ 0 and nh→∞, where WMR,π(z) is the (1, 1)-element of matrix

[
E

{
∂φ(α0)

∂αT

}]−1

E
{
Q(z)⊗2

} [
E

{
∂φ(α0)

∂α

}]−1

.

The leading bias term of θ̂MR(z) is the same as that of the IPW and AIPW estimators
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(Wang et al., 2010). In general, there is no clear comparison of the asymptotic

efficiency among these estimators. However, whenA also contains a correctly specified

model for E(Y |Z,U), θ̂MR becomes more efficient than the IPW estimator as a result

of the following theorem, the proof of which is provided in the Appendix as well.

Theorem 2.3. Under Conditions (i) - (iv), when P contains a correctly specified

model for Pr(R = 1|Z,U) and A contains a correctly specified model for E(Y |Z,U),

we have

√
nh

{
θ̂MR(z)− θ(z)−

1

2
h2θ′′(z)c2(K) + o(h2)

}
d−→ N {0,WMR, opt(z)}

as n→∞, h→ 0 and nh→∞, where

WMR, opt(z) = bK (z)E

[
Var(Y |Z,U)

π(Z,U)
+ [E(Y |Z,U)− µ{θ(Z)}]2

∣∣∣∣Z = z

]
,

bK (z) =
∫
K2(s)ds/

{
[µ(1){θ(z)}]2fZ(z)

}
.

Note that WMR, opt(z) is also the asymptotic variance of the AIPW estimator with

both Pr(R = 1|Z,U) and E(Y |Z,U) correctly modeled. But θ̂MR(z) achieves this

efficiency in the presence of multiple models without the knowledge of exactly which

ones are correctly specified in P andA. Some simple algebra shows that, the difference

of the asymptotic variances between the IPW estimator and θ̂MR is given by

bK (z)E
[(
π(Z,U)−1 − 1

)
× [E(Y |Z,U)− µ{θ(Z)}]2 |Z = z

]
,

and thus the efficiency improvement of θ̂MR(z) over the IPW estimator is 0 only

when E(Y |Z,U) = µ{θ(Z)}. When U and Y are not independent given Z, which

is typically the case in practice, θ̂MR(z) with one of the E(Y |Z,U) models correctly

specified is always more efficient than the IPW estimator.
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Remark 1: Bandwidth Selection. The asymptotically optimal bandwidth mini-

mizes the weighted mean integrated squared errors (MISE). The rate of convergence

of the optimal bandwidth, is hMR = [{
∫
WMR(z)dz}/{c22(K)

∫
θ′′2(z)f(z)dz}]1/5n−1/5

when ≈ contains a correctly specified model for Pr(R = 1|Z,U). In addition,

when P contains a correctly specified model for Pr(R = 1|Z,U) and A contains

a correctly specified model for E(Y |Z,U), the MISE optimal bandwidth hMR,opt =

[{
∫
WMR,opt(z)dz}/{c22(K)

∫
θ′′2(z)f(z)dz}]1/5n−1/5. When neither ≈ nor P contains

correctly specified model, the MISE optimal rate h ∝ n−1/5. In practice, we can

use a generalized data-driven bandwidth selection approach for nonparametric re-

gression following the empirical bias bandwidth selection (EBBS) method of Ruppert

(1997). The goal is to select the optimal bandwidth hMR, opt that minimizes the em-

pirical mean squared error EMSE {z; h (z)} of θ̂MR (z), where EMSE {z; h (z)} =

b̂ias
{
θ̂MR (z)

}2

+ V̂ar
{
θ̂MR (z)

}
. We calculate EMSE {z; h (z)} at a series of z and

h (z), and choose the h (z) that minimizes EMSE {z; h (z)}. Instead of using plug-in

estimators, b̂ias
{
θ̂MR (z)

}
is calculated empirically: we fit a univariate polynomial

regression model on (h, θ̂(z,h)), where the independent variable h is a series of band-

widths in a neighborhood of the target bandwidth, and outcome θ̂(z,h) is the kernel

estimators evaluated at these bandwidths with fixed z. The desired empirical bias is

estimated using sum of the nonzero-order terms from this model evaluated at target

bandwidth.

Remark 2: Estimation of V ar(Y |Z = z). The variance of θ̂(Z) can be estimated

using the sandwich estimator in Theorem 2.2 in certain scenarios, such as two-stage

design, where the selection probability is known or can be correctly modeled. The
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quantities L, M , Q and E

{
∂φ(α0)

∂αT

}
can be estimated empirically, where

∂φi(α0)

∂αT
= Kh(Zi − z)µ(2)V −1G(Zi − z)GT(Zi − z)

[
Yi − µ{G(Zi − z)Tα0}

]

−Kh(Zi − z)[µ(1)]2V −1G(Zi − z)GT(Zi − z).

To obtain φ̂i and φ̂(1)
i, we estimate the conditional variance, Vi = V ar[µ{G(Zi −

z)Tα0}], using a parametric model and its correct specification is not required to make

valid inference. Specifically, we assume a parametric model V ar[µ{G(Zi−z)Tα0}, ξ],

indexed by parameter ξ. The parameters ξ and α can be estimated by iteratively

solving proposed MRKEE and the weighted estimating equations
∑n

i=1 ŵiV
(1)
i [{Yi −

α̂0}2 − V {α̂0, ξ}] = 0, where ŵi is calculated as in (2.10), V (1) is the first derivative

of proposed parametric model, and α̂0 is obtained by plugging V̂ (ξ̂) from previous

iteration into the MRKEE. Furthermore, when A also contains a correctly specified

model for E(Y |Z,U), we can use the same procedure to estimate the optimal variance

WMR, opt(z). In general cases where the missingness probability is unknown, we rec-

ommend to calculate V̂ar
{
θ̂MR (z)

}
using the bootstrap for constructing point-wise

confidence intervals (McMurry and Politis , 2008). Specifically, we fit a pilot kernel

regression and obtain centered residual estimates ǫ̃i = ǫ̂i − 1
n

∑ns

i=1 ǫ̂i, i = 1, · · · , ns

where ǫ̂ = Y − θ̂h(Z) is the empirical residual and ns is obtained by discarding the

residual estimates near the boundary. Bootstrap samples can then be constructed

from Y ∗ = θ̂(Z) + ǫ̂∗, where ǫ̂∗ are sampled randomly with replacement from ǫ̃.

2.4 Simulation Studies

In this section, we conduct numerical studies to investigate the finite-sample per-

formance of the proposed MRKEEs. We consider the local linear regression with a

continuous outcome. A random sample of size n is generated as (Z, Y, U,R). Re-
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gressor Z is generated from Uniform(0,1) and the auxiliary variable U is generated

independently from Uniform(0,6). The outcome Y is normally distributed with vari-

ance 2 and mean

E(Y |Z, U) = 4 ·m(Z) + 1.3 · U

where m(·) = F8,8(.), a unimodal function Fp,q(x) = Γ(p + q){Γ(p)Γ(q)}−1xp−1(1 −

x)q−1. The selection indicator R follows a binomial distribution

Pr(R = 1|Z, U) = expit{−1.5 + exp(U − 3)},

which makes Y missing at random (MAR) with missingness percentage about 50% on

average. The correctly specified models for Pr(R = 1|Z, U) and E(Y |Z, U) are then

logit{π1(ν1)} = ν10+ν
1
1 ·exp(U−3) and a1(γ1) = γ11 ·m(Z)+γ12 ·U , respectively. We use

the following incorrect models in our simulation study for illustration: logit{π2(ν2)} =

ν20 + ν21 · exp(U) and a2(γ2) = γ21 · sin(2π · Z)I(Z ≥ 0.8) + γ22 · U . In this simulation

study, we use the generalized EBBS bandwidth selection described in Section 3.1.

The number of replications for the simulation study is 500 with sample sizes 1000

and 2000. For each simulated data set, we compute θ̂nomiss (assuming no missing

data), θ̂naive (naive complete-case estimator) and θ̂AIPW and their variances using the

sandwich estimators. We also compute the multiply robust estimator θ̂MR with at

least one model in each class and estimate its variance using both formula-based and

bootstrap estimator over 500 replications. Each estimator is indexed by a four-digit

number, and each digit, from left to right, indicates whether π1(ν1), π2(ν2), a1(γ1)

or a2(γ2) is used, respectively. We will suppress the dependence of all estimators on

z for brevity. For example, θ̂MR, 1011 denotes the proposed multiply robust estimator

based on the correctly specified model π1(ν1) and the two outcome regression models

a1(γ1) and a2(γ2).
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Figure 2.1: Simulation results of the estimated nonparametric functions using naive, AIPW and MR kernel methods based on
500 replications with sample size n = 2000.
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Figure 1 depicts the empirical mean of estimated curves based on 500 replications with

sample size 2000. The naive complete-case estimate is severely biased. The AIPW

kernel estimate is unbiased when either the selection probability model or the outcome

regression model is correct, but is biased when both are incorrect. The proposed

multiply robust estimate is close to the true θ(z) whenever one of the working models

is correctly specified. Figure 3 for sample size 1000 also shows the same pattern.

Table 1 summarizes the performance of each estimator using metrics integrated over

the support of Z. Consistent with Figure 1 and and Figure 3, as well as the theory

in Section 2.3, similar trends on bias are observed for both n = 1000 and n = 2000

when comparing different methods. Additional information is shown in Table 1 with

respect to estimation efficiency of each estimator. Although θ̂AIPW, 1001 based on a

correct model for Pr(R = 1|Z, U) and an incorrect model for E(Y |Z, U) has small

relative bias, it has a significant loss of efficiency compared to θ̂AIPW, 1010: θ̂AIPW, 1001

is only half as efficient in terms of variance and loses 70% of efficiency in terms of

MISE. This observation agrees with existing findings for doubly robust estimators.

For our proposed method, the relative bias is small whenever a correctly specified

model, either for Pr(R = 1|Z, U) or for E(Y |Z, U), is used. For example, θ̂MR, 1010,

θ̂MR, 1001, θ̂MR, 0110, θ̂MR, 0111, θ̂MR, 1011, θ̂MR, 1101, θ̂MR, 1110 and θ̂MR, 1111, all have small

relative bias ranging from 0.034 to 0.036 for n=2000, and from 0.045 to 0.047 for

n=1000. Moreover, when the model of Pr(R = 1|Z, U) is correctly specified while the

regression model is incorrect, in contrast to θ̂AIPW, 1001, our multiply robust estimators

θ̂MR, 1001 and θ̂MR, 1101 not only still has little bias, but also are three times as efficient

as θ̂AIPW, 1001 in terms of the empirical MISE. In addition, θ̂MR, 0101, represents the

scenario in which both propensity models are misspecified, still has small relative

bias and relatively small variance increase compared to AIPW estimator (θ̂AIPW, 0101).
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As an explanation, first note that for an arbitrary function of Z and U , b(Z,U),

E(w(Z,U)[b(Z,U)− E{b(Z,U)}]|R = 1) = 0, (2.14)

where w(Z, U) = Pr(R = 1|Z,U)−1 is the true propensity weight. The constraints

we use to construct the weights w in (2.5) can be viewed as an empirical version of

(2.14). Thus as we include more working models in weight construction, the resulting

wi’s will get closer to normalized true propensity weights. That being said, including

more working models – as long as the number is not too large to trigger numerical

issue – facilitates the achievement of consistency regardless of the specification of

b(Z,U). This phenomenon has also been noted in literature (e.g., Han, 2016b; Chen

and Haziza, 2017).

We also evaluate the proposed variance estimators by comparing empirical and esti-

mated standard errors, denoted as EMPSE and ESTSE, respectively. The EMPSE

measures the variability over simulation replications, which can be viewed as an alter-

native to the true underlying variance; the ESTSE measures the average variability

estimated using either formula- or bootstrap- based estimators. In particular, we

demonstrate the performance of the aforementioned bootstrap variance estimator

and compare it with formula-based estimator in Table 1 below. In general, bootstrap

performs better than formula-based estimator in terms that estimated and empirical

standard errors are closer. When the sample size increases, the differences are getting

smaller. In general, with finite sample size, the class of estimators θ̂MR have more

stable behaviors in terms of bias and efficiency. Comparing to the other methods

listed in Table 1, and Figures 1 & 3, MRKEEs provide reliable protection against

both bias and severe loss of efficiency.
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Table 2.1: Simulation results of relative biases, S.E.s and
MISEs of the naive, AIPW and MR estimates of θ(z) based
on 500 replications.

n = 2000 n = 1000

rbias1 EMPSE2 ESTSE3 EMISE4 rbias1 EMPSE2 ESTSE3 EMISE4

no missing 0.030 0.160 0.155 0.073 0.038 0.232 0.215 0.103
naive 0.226 0.199 0.191 1.901 0.226 0.288 0.263 1.949
aipw1010 0.034 0.196 0.189 0.088 0.044 0.283 0.260 0.136
aipw0110 0.039 0.239 0.229 0.110 0.051 0.342 0.311 0.180
aipw1001 0.049 0.409 0.399 0.294 0.064 0.563 0.540 0.501
aipw0101 0.101 0.615 0.586 1.125 0.112 0.818 0.776 1.396

mr0110 0.035 0.204 0.202 0.091 0.045 0.299 0.287 0.146
mr0101 0.036 0.215 0.201 0.099 0.048 0.316 0.284 0.159
mr0111 0.035 0.205 0.203 0.092 0.046 0.302 0.290 0.148
mr1010 0.034 0.198 0.168 0.088 0.045 0.292 0.227 0.139
mr1010b5 0.034 0.199 0.194 0.089 0.045 0.292 0.275 0.141
mr1001 0.036 0.208 0.180 0.094 0.047 0.306 0.244 0.151
mr1001b 0.036 0.209 0.193 0.094 0.047 0.307 0.272 0.153
mr1110 0.034 0.198 0.168 0.088 0.045 0.293 0.227 0.139
mr1110b 0.034 0.200 0.194 0.089 0.045 0.292 0.275 0.141
mr1101 0.036 0.208 0.180 0.094 0.047 0.306 0.244 0.151
mr1101b 0.036 0.209 0.193 0.094 0.047 0.307 0.273 0.153
mr1011 0.034 0.199 0.167 0.089 0.045 0.295 0.225 0.140
mr1011b 0.034 0.200 0.195 0.089 0.045 0.294 0.277 0.143
mr1111 0.034 0.199 0.167 0.089 0.045 0.295 0.225 0.141
mr1111b 0.034 0.200 0.195 0.089 0.045 0.294 0.278 0.143

1 Relative bias, calculated as
∫
|b̂ias{θ̂(z)}/θ(z)|dF (z).

2 Empirical S.E., defined as
∫
ŜEEMP {θ̂(z)}dF (z), where ŜEEMP {θ̂(z)} is the sampling S.E. of

the replicated θ̂(z).
3 Estimated S.E., defined as

∫
ŜEEST {θ̂(z)}dF (z), where ŜEEST {θ̂(z)} is the sampling average

of the replicated sandwich estimates ŜE{θ̂(z)}.
4 empirical MISE, defined as

∫
{θ̂(z)− θ(z)}2dF (z).

5 b: bootstrap-based variance estimation

2.5 Data Applications

We consider data collected among 2078 high-risk cardiac patients enrolled in a cardiac

rehabilitation program at the University of Michigan from 2003 to 2011 (Giorgini

et al., 2015a,b). All participants have at least one clinical indication for cardiac

rehabilitation, including coronary artery disease (CAD), heart failure, heart valve
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repair or replacement, as well as heart transplantation. Our main interest in this

application is to evaluate the effect of ozone exposure two days prior to the resting

seated systolic blood pressure (SBP). We consider a subset of 704 subjects with

measured ozone exposure, of which 308 (44%) have missing SBP because of failure

to appear at the evaluation exam. For this study cohort, subjects are between 20

and 86 years old, 73% are male and 31% are current or former smokers. The ozone

exposure data are collected two days prior to the exam date from an air pollutants

monitoring site maintained by the Michigan Department of Environmental Quality to

allow for investigation on the delayed effect on the BP outcomes after ozone exposure.

The ozone exposure among our study cohort ranges from 13.1 to 75.5 ppb, with a

median 36.5 ppb and interquartile-range (31.5, 41.8). Although the ozone exposure

has been reported to be significantly associated with increased blood pressure (Day

et al., 2017), the functional form of such an association remains unclear, and is known

as non-linear scientifically.

We apply the MRKEEs method to investigate such a potentially non-linear relation-

ship. Since this is an observational study with missing data and thus we are not

sure of the missingness mechanism, we fit two generalized linear regression models,

using logit link and probit link separately, both with ozone level, age, gender, BMI

and smoking status as the potential predictors. We also include quadratic terms of

BMI and age, as suggested by previous literature (Hirano et al., 2003; Wooldridge,

2007), where they found that overparameterization of missingness probability leads

to a more precisely determined point estimate. We use linear regression to fit two

conditional mean models with different specifications: one with quadratic age and

BMI terms and one without, along with other covariates. Model diagnosis detects

no significant deficiencies in fitting all these four models. Thus we applied MRKEEs

with these four working models together. We also fit naive KEEs to the data for

comparison and use EBBS for bandwidth selection for both methods. The variances
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are estimated using bootstrap for MRKEE and sandwich estimator for naive KEEs,

respectively. The estimated curves and their 95% CIs are shown in Figure 2. Here

we focus our discussion mainly on subjects with ozone exposure from 20 to 50 ppb,

because there are very few patients and kernel estimates are unstable outside this

range. From Figure 2, the multiply robust kernel regression curve shows that in-

creasing ozone exposure is associated with higher SBP, consistent with findings in the

literature (Day et al., 2017). Such an interesting relationship tends to reach a flato

as the ozone level reaches high, which makes sense because the SBP cannot explode

after reaching high enough. In contrast, the naive complete-case analysis suggests

that SBP is relatively stable (around 115 mmHg) and may even slightly decrease as

the ozone exposure increases. Notice that among this study cohort, older participants

have a higher chance to be absent from the exam, but in the meanwhile, they could

be more susceptible to ozone in terms of blood pressure. Therefore, the naive KEEs

estimator using only complete cases fails to capture the increasing trend and thus

leads to a biased estimate. In contrast, our MRKEEs analysis accounts for the bias

due to missing data and suggests that SBP increases relatively fast when subjects

start getting exposed to ozone, with the SBP increase slows down as ozone exposure

keeps increasing after a certain level.

2.6 Discussion

In this chapter, we proposed a novel multiply robust kernel estimating equations

(MRKEEs) method for local polynomial regression when the outcome is missing at

random. This method incorporates the auxiliary information by utilizing weights

computed through the empirical likelihood method based on multiple working models

for the selection probability and/or the outcome regression. Compared to the doubly

robust AIPW kernel estimation, the proposed MRKEEs method provides more pro-

tection against model misspecification, and the resulting estimator is consistent when

28



|||| | || || | || | || | ||| || |||| || | || || || | ||| || ||| || ||| | ||| || | |||| || ||| || ||| || || || || | || ||| | ||| | || ||||| | ||| || ||| ||| || || ||| ||| ||| || ||| || || | ||| | ||| || | || ||| | ||| || |||| | ||| | ||| | || | || || ||| || || || || || |||||| | ||| || | || || ||| || | || ||||| || ||| | || ||| ||||| |||| | || | ||| ||| ||| || || ||||||||| |||||| || |||| | |||| | || | |||||| ||| || | || || ||| | || | | |||| | |||| || ||| | | |||| || ||| | | | ||| |||| || || ||| ||| || ||| || | || | |||||| ||| || || |||| | || || || |||| || | || || |90

100

110

120

130

20 30 40 50 60
O3 Exposure 2 Days Prior to Exam (ppb)

S
B

P
 (m

m
H

g
)

Multiply Robust

Naive

Figure 2.3: The naive and multiply robust KEE estimates of ozone exposure (in ppb)
on systolic blood pressure. Each vertical tick mark along the x-axis stands
for one observation.

any one of those working models is correctly specified. Moreover, when correct models

are used for both quantities, this MRKEE estimator achieves the optimal efficiency

that the optimal AIPW estimator can achieve. Simulation studies indicate that the

proposed estimator generally has better finite sample performance in terms of both

bias and efficiency. Although there is no theory regarding the bias when neither class

contains a correct model, under MAR we are able to investigate the working models

for Pr(R = 1|Z,U) and E(Y |Z,U) using observed data. Regular model checking and

diagnostics are useful in practice, and we will gain efficiency when any one of the

working models for E(Y |Z,U) is approximately correct.

As pointed out in Han and Wang (2013) and Han (2014b), the weight calculation

may encounter numerical issues when the sample size is small, or the number of

constraints is large. This might happen more often for kernel regression due to the
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locality. Therefore some caution is needed when applying this method to datasets

with extremely small sample sizes.

The proposed method can be generalized to cases with multiple covariates. One

possible extension would be modifying the proposed methods to generalized partially

linear model

E(Y |X, Z) = µ
(
XTβ + θ (Z)

)

where X denotes a covariate vector, β is the parameter vector and θ is an unknown

smooth function. When Y is missing at random, β and θ(z) can be estimated in

an iterative fashion based on MRKEEs and a multiply robust version of the profile

estimating equations for β.

Another possible extension would be on single index models assuming that the con-

ditional mean depends on X and Z through a linear combination XTβX + ZβZ ;

i.e.

E(Y |X, Z) = µ
{
θ
(
XTβX + ZβZ

)}
,

where θ (·) is an unknown smooth function that we wish to estimate. Parameters

β = (βX , βZ) and θ(·) can be estimated using a similar iterative method. These

extensions will be reported elsewhere.
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CHAPTER III

Stochastic Tree Search for Estimating Optimal

Dynamic Treatment Regimes

3.1 Introduction

The emerging field of precision medicine has gained prominence in the scientific com-

munity. It aims to improve healthcare quality through tailoring treatment by consid-

ering patient heterogeneity. One way to formalize precision health care is dynamic

treatment regimes (DTRs, e.g. Murphy , 2003; Robins , 2004), which are sequential

decision rules, one per stage, mapping patient-specific information to a recommended

treatment. Consequently, DTRs provide health care that is individualized and also

adapted over time to changes in patient status. This is especially valuable in chronic

health management (e.g. Zhao et al., 2015). Typically, we define optimal DTRs as

the ones that maximize each individual’s long term clinical outcome when applied to

a population of interest, and thus identification of optimal DTRs becomes the key to

precision health care.

Various methods for estimating optimal DTRs have been proposed; some examples

include marginal structural models (e.g. Murphy et al., 2001; Wang et al., 2012),

G-estimation of structural nested mean models (e.g. Robins , 2004), likelihood-based
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approaches (e.g. Thall et al., 2007), Q-learning (e.g. Nahum-Shani et al., 2012), A-

learning (e.g. Murphy , 2003; Schulte et al., 2014), outcome weighted learning (OWL,

Zhao et al., 2012, 2015), and other classification or supervised learning methods (e.g.

Zhang et al., 2012, 2013). Most of these methods require specifying working mod-

els for the treatment assignment mechanism, or the conditional outcome, or both,

which can be difficult when limited knowledge of observed data is available. Besides,

the working model specification can be especially challenging in the presence of a

moderate-to-large number of covariates. Qian and Murphy (2011), Zhao et al. (2011)

and Moodie et al. (2014) developed various nonparametric Q-learning methods, and

Murray et al. (2018) developed a Bayesian machine learning approach based on non-

parametric Bayesian regression models. Such data-driven methods are flexible and

mitigate the risk of model misspecification; however, the resulting DTRs are difficult

to interpret and thus obstruct human experts from understanding the regimes. There-

fore, it is often desirable to have interpretable and parsimonious DTRs, as they bridge

the gap between clinician’s domain expertise and data-driven treatment strategies.

The tension between model interpretability and prediction accuracy occurs because of

competing objectives: interpretability favors simple and generalizable models, while

accuracy often means specialization and sophistication.

In response, a recent research stream has focused on rule-based learning methods

for estimating interpretable optimal treatment regimes. Zhang et al. (2015, 2018b)

proposed a list-based approach to estimate optimal DTRs as a sequence of if-then

clauses. This method is flexible since nonparametric kernel ridge regression is used

for regime value modeling, but one drawback is that such list-based methods are

computationally demanding and therefore, each clause only thresholds two covariates.

As an alternative, Laber and Zhao (2015) and Tao et al. (2018) proposed tree-based

methods through sequentially maximizing the improvement in purity measures for the

quality of the regimes. However, these semiparametric methods will perform poorly
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when working models do not have a good approximation of the underlying truth,

which is likely the case with fairly complex data.

To overcome these limitations, we propose a stochastic tree-based reinforcement learn-

ing method, ST-RL, which combines the powerful predictive model with an inter-

pretable decision tree structure, for estimation of optimal DTRs in a multi-treatment,

multi-stage setting. At each stage, ST-RL evaluates the regime quality using non-

parametric Bayesian additive regression trees, and then stochastically constructs an

optimal regime using a Markov Chain Monte Carlo (MCMC) tree search algorithm.

Our proposed ST-RL has stable performance even when the outcome of interest is

complicated by nonlinearity and low-order interactions. ST-RL significantly reduces

the guesswork to specify working models, which makes it desirable, especially when

data come from complex observational studies. Moreover, compared to existing non-

parametric Q-learning methods, ST-RL constructs tree-structured DTRs that are

easy to interpret and visualize, which allows clinicians to verify, validate and refine

the treatment recommendations using their domain expertise. The greedy splitting

in all existing tree-based methods is likely to result in locally optimal or overly com-

plicated trees (Murthy and Salzberg , 1995; Duda et al., 2012). In contrast, ST-RL

improves the optimality and model parsimony by taking advantage of stochastic tree

search.

The rest of this chapter is organized as follows. Section 3.2 formalizes the problem of

estimating optimal DTRs and describes the proposed method along with the compu-

tational algorithm. Theoretical results are presented in Section 3.3. Sections 3.4 and

3.5 present the numerical studies and an application example, respectively, followed

by Section 3.6 that concludes with some discussion.
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3.2 Stochastic Tree-based Reinforcement Learning

3.2.1 Dynamic Treatment Regimes

Suppose our data consist of n i.i.d. trajectories {(Xt, At, Rt)
T
t=1} that come from

either a randomized trial or an observational study, where t ∈ {1, 2, · · · , T} denotes

the tth stage, Xt denotes the vector of patient characteristics accumulated during the

treatment period t, At denotes a multi-categorical or ordinal treatment indicator with

observed value at ∈ At = {1, . . . , Kt}, Kt (Kt ≥ 2) is the number of treatment options

at the tth stage, and Rt denotes the immediate reward following At. We further let

Ht denote patient history before At, i.e. Ht = {(Xi, Ai, Ri)
t−1
i=1,Xt}. We consider

the overall outcome of interest as Y = f(R1, . . . , RT ), where f(·) is a prespecified

function (e.g., sum, last value, etc.), and we assume that Y is bounded, with higher

values of Y preferable.

We denote a DTR, a sequence of individualized treatment rules, as g = (g1, . . . , gT ),

where gt maps from the domain of patient history Ht to the domain of treatment

assignment At. To define the optimal DTRs, we use the counterfactual outcome

framework of causal inference and start from the last stage in a reverse sequential

order. At the final stage T , let Y ∗(A1, . . . , AT−1, aT ), or Y
∗(aT ) for brevity, denote

the counterfactual outcome had a patient been treated with aT conditional on previous

treatments (A1, . . . , AT−1), and define Y ∗(gT ) as the counterfactual outcome under

regime gT , i.e.,

Y ∗(gT ) =
KT∑

aT=1

Y ∗(aT )I{gT (HT ) = aT}.

The performance of gT is measured by its value function V (gT ) (Qian and Mur-

phy , 2011), which is defined as the mean counterfactual outcome had all patients

followed gT , i.e. V (gT ) ≡ E{Y ∗(gT )}. Therefore, the optimal regime goptT satisfies

V (goptT ) ≥ V (gT ) for all gT ∈ GT , where GT denotes the set of regimes of interest. In

34



order to identify optimal DTRs using observed data, we make the standard assump-

tions to link the distribution law of counterfactual data with that of observational data

(Murphy et al., 2001; Robins and Hernán, 2009). First we assume consistency, i.e.

the observed outcome is the same as the counterfactual outcome under the treatment

actually assigned, i.e. Y =
∑KT

aT=1 Y
∗(aT )I(AT = aT ), which also implies that there is

no interference between subjects. We also assume {Y ∗(1), . . . , Y ∗(KT )} |= AT | HT ,

where |= denotes statistical independence, i.e. no unmeasured confounding assump-

tion (NUCA). Finally, we assume Pr(AT = aT |HT ) ∈ (c0, c1) is bounded by c0 and

c1, where 0 < c0 < c1 < 1. Under these assumptions, the optimal regime at stage T

can be written as

goptT = argmax
gT∈GT

E

[
KT∑

aT=1

E(Y |AT = aT ,HT )I{gT (HT ) = aT }
]
,

where the outer expectation is taken with respect to the joint distribution of the

observed data HT .

At an intermediate stage t (1 ≤ t ≤ T−1), we consider Y ∗(A1, . . . , At−1, gt, g
opt
t+1, . . . , g

opt
T ),

a conditional counterfactual outcome under optimal regimes for all future stages, had

a patient following gt at stage t (Murphy , 2005; Moodie et al., 2012). Similarly un-

der the three aforementioned assumptions, the optimal regime goptt at stage t can be

defined as

goptt = argmax
gt∈Gt

E
{
Y ∗(A1, . . . , At−1, gt, g

opt
t+1, . . . , g

opt
T )
}

= argmax
gt∈Gt

E

[
Kt∑

at=1

E(Ỹt|At = at,Ht)I{gt(Ht) = at}
]
,

where Gt is the set of all potential regimes at stage t, ỸT = Y at stage T , and at any
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earlier stage t, Ỹt can be defined recursively using Bellman’s optimality:

Ỹt = E

{
Ỹt+1|At+1 = goptt+1(Ht+1),Ht+1

}
, t = 1, · · · , T − 1,

i.e. the expected outcome assuming optimal regimes are followed at all future stages.

3.2.2 Bayesian Additive Regression Trees

Accurate estimation of value function is the key to estimating optimal DTRs. To

mitigate the risk of model misspecification, multiple nonparametric regression meth-

ods have been introduced in estimating optimal DTRs, and some recent literature

advocates the use of Bayesian nonparametric approaches for causal inference (Hill ,

2011; Murray et al., 2018). Specifically, Bayesian additive regression trees (BART)

has become popular because it requires minimal effort for model specification and can

well approximate complex functions involving nonlinearity and interactions. Recent

developments in BART have provided theoretical support for its superior performance

(Rockova and van der Pas , 2017; Rockova and Saha, 2018). Moreover, modifications

of BART have been proposed to adapt to sparsity and various level of smoothness

(Linero, 2018; Linero and Yang , 2018), which further increase its potential in a wide

range of scenarios.

We use BART to fit the conditional outcome regression model E(Ỹt|At = at,Ht)

and then predict the counterfactual outcomes for each subject. Other nonparametric

regression models can also be used. Specifically, we model the pseudo-outcome at an

arbitrary stage t using an ensemble of regression trees:

Ỹt =
m∑

i=1

fi(Ht, At;Mi) + ǫ,

where ǫ ∼ N(0, 1), each of fi’s is a binary tree andMi is the parameter set charac-
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terizing the i-th tree. The number of trees, m, is a tuning parameter which can be

selected using cross-validation. BART combines a large number of weak decision tree

learners into a strong one to approximate complex functions, and uses a regularization

prior for each tree to penalize overly complex trees and hence prevent overfitting. We

use the average of after burn-in samples, which approximates the posterior mean, to

obtain a prediction Ê(Ỹt|At,Ht). For technical details readers are refered to Chipman

et al. (2010). As a result, the optimal regime at stage t, goptt can be estimated as

ĝoptt = argmax
gt∈Gt

Pn

[
Kt∑

at=1

Ê(Ỹt|At = at,Ht)I{gt(Ht) = at}
]
. (3.1)

3.2.3 Stochastic Tree Search Algorithm

Constructing an optimal binary decision tree is known to be NP-complete (Laurent

and Rivest , 1976); an exhaustive search is infeasible with even a fairly small number

of nodes. Existing tree-based methods iteratively maximize the improvement in a

purity function at each splitting. Although such greedy algorithms often work rea-

sonably well, they may be affected by local optimality. As a result, the estimated

sub-optimal, unnecessarily complex tree-structured DTRs may have compromised

quality and interpretability. Consider a toy example with two baseline variables, X1

and X2, both uniformly distributed on the interval [0,1], and a randomly assigned

binary treatment A = 0 or 1. The underlying optimal regime gopt(X1, X2) = 1 when

(X1 > 0.5, X2 > 0.5), or (X1 < 0.5, X2 < 0.5), and otherwise gopt(X1, X2) = 0. We

assume a linear reward function Y = X1 + X2 + βI{A = gopt(X1, X2)} + ǫ, where

ǫ ∼ N(0, 1). It is obvious that no matter how we partition the feature space using a

tree-based method to assign treatments at the first step, in principle each treatment

group always has half of patients ending up with suboptimal treatments. Therefore,

the target purity remains the same regardless of any partition in this case, and thus

the existing tree-based methods (e.g. Laber and Zhao, 2015) will fail to identify the
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true optimal regime.

To balance exploration and exploitation, we propose to stochastically search the tree

space for the optimal regime using a Markov chain Monte Carlo (MCMC) algorithm

(Chipman et al., 1998; Denison et al., 1998; Wu et al., 2007). To make the pre-

sentation clear in this section, we suppress the stage subscript t, but the following

procedure works for any stage t. Denote a tree-based regime as g = (P,R), where P

is the parameter set which characterizes the tree topology – i.e., splitting variables,

splitting threshold, and the topological arrangement of nodes and edges – and R is

the treatment assignment rule for each leaf node. Note for any given P, R can be de-

termined by R = argmaxR∈R V (g), i.e., the treatment assignment at each leaf which

maximizes the expected regime value. Given the observed data, we sample P from

π(P|A,H) ∝ π(P)f(A|P,H), (3.2)

where A denotes the observed treatment at the current stage and H denotes pa-

tient medical history up to the current stage. However, this sampling procedure is

inefficient especially when a large proportion of patients did not receive their opti-

mal treatments, in which case the regular stochastic search might fail to converge to

the optimal regime. Alternatively, we use π(P|Âopt,H) to approximate (3.2), where

Âopt = argmaxa∈(1,···,K) Ê(Ỹ |A = a,H) is the estimated optimal treatment and can

be viewed as a warm start.

We specify π(P) using a tree growing process. Let P = (T ,ρ,η), where T is the

topological arrangement of nodes and edges (i.e. a tree skeleton), ρ denotes the

splitting variables, and η denotes the corresponding splitting thresholds. Then the

prior distribution over P can be decomposed as

π(P) = π(T )π(ρ|T )π(η|T ,ρ). (3.3)
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Throughout this process, we set π(ρ|T ) and π(η|T ,ρ) to be uniform, i.e. given the

tree structure, each variable is equally likely to be selected for splitting, and splitting

can take place uniformly on the domain of selected splitting variable. The distribution

π(T ) is specified using a tree growing process. We first draw the tree size s(T ) from

a shifted Poisson distribution Pois(λ)+1, with the shift used to avoid an empty tree.

Growing a tree with a given size s(T ) can be viewed as cascading down s(T ) leaf

nodes from the root. Assuming that at each internal node the available leaf nodes

independently pick the left or right subtree with equal probability, π(T ) can be written

as πPois
λ {s(T )−1}∏u∈T β(sul|su), where πPois

λ denotes the probability mass function of

a Poisson random variable with mean λ, u denotes any internal node, su is the number

of available leaf nodes at u, and sul is the number of leaf nodes picking the left subtree

of u. We set β(sul|su) to be uniform β(sul|su) = 1/(su − 1), for sul = 1, · · · , su − 1.

Such specification of π(T ) favors balanced trees, meaning that for a given size, the

algorithm penalizes deep trees by assigning them smaller probabilities. For more

details regarding the prior specification, the readers are referred to Wu et al. (2007).

Note that the use of uniform distributions assumes no domain knowledge available a

priori; however, other distributions could be used to incorporate human expertise. In

practice, the choice of Poisson parameter should reflect preferences over the regime

complexity, especially when data are limited.

To obtain f(Âopt|P,H), we assume that multi-level Âopt within each leaf node follows

i.i.d. multinomial distributions (binomial in case of two-level treatment), leaf node

parameters follow Dirichlet distributions, and leaf nodes are independent. Conse-

quently,

f(Âopt|P,H) ∝
∫

Θ

f(Âopt|P,H,Θ)π(Θ|P)dΘ

can be calculated analytically because of Dirichlet-Multinomial conjugacy. Thus leaf

parameters Θ are not involved in the sampling scheme.
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Algorithm 1: MCMC Algorithm

Result: ĝopt = (ĝoptt )Tt=1

Initialize P(0) ∼ π(P);

for i← 1, 2, · · · do
1. Propose P∗ using one of the proposals q(P∗|P(i−1)): Grow/Prune, Change,

Swap, Restructure;

2. Acceptance probability: α(P∗|P(i−1)) = min{1, q(P(i−1)|P∗)π(P∗|Âopt,H)

q(P∗|P(i−1))π(P(i−1) |Âopt,H)
};

3. Sample u ∼ Uniform(0,1):

if u < α then

Set P(i) = P∗;

else

Set P(i) = P(i−1);

end

end

To implement the MCMC algorithm, we use multiple proposals, including grow/prune,

change and swap (Chipman et al., 1998; Denison et al., 1998). More specifically, the

grow/prune proposal either splits a randomly chosen leaf node or merges two sibling

leaves into one leaf node, with equal probabilities. The change proposal randomly se-

lects an internal node and resamples the splitting rule using π(ρ|T ) and π(η|T ,ρ). In

addition to these two local movements, swap proposal is more aggressive: it randomly

picks a node Np and one of its children Nc, both of which are internal nodes, and

swaps their splitting rules, i.e., swaps both splitting variables and the corresponding

thresholds. As a result, the whole subtree originally rooted from Np will be restruc-

tured. To facilitate a broader stochastic search, we adopt restructure proposal as in

Wu et al. (2007): for any given tree, the restructure proposal attempts to construct

a different tree while maintaining the current partitioning, i.e., searching for a new

tree with the same leaf nodes. This radical proposal drastically modifies the structure
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of a tree while preserving the information accumulated so far, which allows escaping

from local optimum and leads to a more efficient search on the tree space. Each

proposal has an associated probability; in our MCMC implementation, we assign the

grow/prune proposal with a probability of 0.5, the change proposal with a probability

of 0.5, the swap proposal with a probability of 0.2 and the restructure proposal with

a probability of 0.05. The algorithm is summarized as in Algorithm 1.

As mentioned above, for each sampled tree, the treatment assignment rule in each

leaf node R can be uniquely determined and the tree can be evaluated using V (ĝ).

Therefore, the MCMC algorithm provides a powerful tool for stochastic regime con-

struction.

3.2.4 Implementation of ST-RL

ST-RL is implemented in a reverse sequential order. At the final stage T , the pseudo

outcome ỸT = Y , and therefore it can be directly used in regime estimation. At each

intermediate stage t < T , the pseudo outcome Ỹt relies on the optimal treatment

regimes in all future stages and needs to be estimated. To prevent bias accumulation,

we estimate Ỹt using the actual observed outcomes at stage t plus the predicted future

loss due to sub-optimal treatments (Huang et al., 2015); that is

ˆ̃
Y t = Y +

T∑

j=t+1

{Ê[ ˆ̃Y j|goptj (Hj),Hj]− Ê[
ˆ̃
Y j|Aj = aj ,Hj]},

where
ˆ̃
Y T = Y and the conditional means are estimated using BART. The perfor-

mance of BART can be tuned by some hyperparameters, such as number of trees,

prior hyperparameters for node parameters and noise. These tuning parameters

can be selected using cross-validation; however, in simulation studies, we find that

the default parameters from Chipman et al. (2010) work well in practice. The al-

gorithm of ST-RL is outlined in Algorithm 2, where the value is estimated using
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V̂ (gt) = Pn[
∑Kt

at=1 Ê(
ˆ̃
Y t|At = at,Ht)I{gt(Ht) = at}], and the conditional mean is

also estimated using BART.

Algorithm 2: ST-RL Algorithm

Result: ĝopt = (ĝoptt )Tt=1

Initialize ỸT = Y ;

for t← T to 1 do

1. Estimate Ê(
ˆ̃
Y t|At = at,Ht) =

∑m
i=1 f̂i(Ht, At;M̂i) using BART for each

subject, where at = 1, · · · , Kt;

2. For each subject, obtain Âopt
t = argmaxat∈(1,···,Kt) Ê(

ˆ̃
Y t|At = at,Ht);

3. Perform a stochastic tree search using MCMC Algorithm 1;

4. Estimate the optimal regime using ĝoptt = argmaxgt∈Gt
V̂ (gt);

5. if t > 1 then

Set
ˆ̃
Y t−1 =

ˆ̃
Y t + Ê[

ˆ̃
Y t|ĝoptt (Ht),Ht]− Ê[

ˆ̃
Y t|At = at,Ht];

else

Stop;

end

end

3.3 Theoretical Results

In this section we show that the estimated DTRs using ST-RL are well generalizable

on new data. We use . and & to denote inequality up to a constant, ||·||∞ and ||·||n to

denote the sup norm and empirical norm, respectively. At stage t ∈ (1, · · · , T ), there

are Kt treatment options a1, · · · , aKt
, and we assume Kt is finite. An arbitrary tree-

structured treatment regime gt (with s leaf nodes) can be denoted as gt = (pt,At),

where pt denotes any partition of Ht with Kt subsets and At is a vector of the corre-

sponding treatment assignments. More specifically, pt = {pit : pit ⊂ (L1, · · · , Ls)}Kt

i=1

is coarser than L, and L = {L1, · · · , Ls} is the partition formed by leaf nodes of gt,
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where the i-th leaf Li = {ami < Htm < bmi, m = 1, · · · , dHt
} and dHt

is the number of

variables inHt. The partitioning subsets pit∩pjt = ∅ for any i 6= j, and
⋃Kt

i=1 pit = Ht.

However, there is no natural ordering in a partition; to avoid ambiguity, we explic-

itly order partitioning subsets by defining variables and thresholds: suppose subset

pit contains two hyper-rectangular cells Li and Li′ , then it can be indexed by a

vector of lower bound in each dimension: I i = {min(ami, ami′) : m = 1, · · · , dHt
}.

Two index vectors can be compared element-wise: there must exist some integer

m′ ∈ (1, · · · , dHt
) such that I im′ < Ijm′ and I im′′ = Ijm′′ for ∀m′′ < m′ if i < j.

On the other hand, treatment assignment At represents the recommended treatment

sequence corresponding to the ordered subsets in any partition pt. Each subset has

a unique treatment recommendation, and Ait 6= Ajt for any i 6= j. We use σ(T )

to denote all tree-induced partitions with size Kt as described above. Similarly, we

denote the set of all possible treatment assignments as σ(A).

Remark. In reality, it might be the case that some treatment options do not associate

to any partitions, i.e., such treatments are sub-optimal for all patients. When this is

the case, we let the corresponding pi = ∅.

To facilitate the derivation, we need a distance metric between two partitions, d(p,p′).

Various metrics have been proposed: examples include Hamming distance, symmetric

difference and rank-based partition distance (Rossi , 2011). We use the minimum

sum of pair-wise symmetric difference of two partitions: d(pt,p
′
t) =

∑Kt

i=1 ρ(pit, pf(i)t),

where f(·) is a bijection from index set {1, · · · , Kt} to itself, and ρ(pi, pj) = Pr(Ht ∈

pi△pj) = Pr(Ht ∈ pi∪pj \pi∩pj). It is easy to see d(pt,p
′
t) ≥ 0, d(pt,p

′
t) = d(p′t,pt)

and it follows triangle inequality; moreover d(pt,p
′
t) = 0 does not imply pt = p′t.

Therefore d(pt,p
′
t) is a semi-metric.

Denote the conditional outcome regression model E(Ỹt|At,Ht) as Qt(At,Ht). For
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each t, our proposed estimator can then be rewritten as

(p̂t, Ât) = argmax
pt∈σ(Tt),At∈σ(At)

Pn

[
Kt∑

a=1

Q̂t(a,Ht)
Kt∑

i=1

I(Ht ∈ pit)I(Ait = a)

]

= argmax
pt∈σ(Tt),At∈σ(At)

PnF̂t(pt,At),

where F̂t(pt,At) denotes
∑Kt

a=1 Q̂t(a,Ht)
∑Kt

i=1 I(Ht ∈ pit)I(Ait = a), and Q̂t(a,Ht) =

Ê(
ˆ̃
Y t|At = a,Ht). Similarly, the optimal underlying tree-structured regime g∗opt is

defined as

(p∗t ,A
∗
t ) = argmax

pt∈σ(Tt),At∈σ(At)

EFt(pt,At). (3.4)

In addition to consistency, NUCA, and positivity assumptions, we also make the

following assumptions. First, we assume the variables are bounded. Note when the

dimension of Ht is fixed, the results presented later in this section are still valid, but

in that case, the following assumption of dHt
can be dropped.

Assumption 1. For each t, ||Ht||∞. log1/2 n, |Ỹt|. log1/2 n and dHt
. log1/2 n.

Next we assume certain smoothness of Qt(at, ·) = E(Ỹt|At = at,Ht).

Assumption 2. For each t, Qt(at, ·) is α-Hölder continuous, and 0 < α ≤ 1. That

is,

Qt(at, ·) : [0, 1]p → R; sup
Ht1,Ht2∈[0,1]p

|Qt(at, Ht1)−Qt(at, Ht2)|
||Ht1 −Ht2||α2

<∞,

where 0 < α ≤ 1. Moreover, ||Qt(at, ·)||∞. log1/2 n for all t.

To avoid overfitting, the class of trees under consideration cannot be too complex.

Lugosi et al. (1996) proved the consistency of a binary decision tree by restricting

the number of leaf nodes st to o(n/log n). Recently, Rockova and van der Pas (2017)

proved in regression case that the sampled tree size is bounded in probability when the
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prior tree size is drawn from a Poisson distribution. These conditions are equivalent;

we have similar results for our proposed method, as shown in the following theorem.

Theorem 3.1 (Tree Complexity). For each t, if the stochastic tree search is as de-

scribed previously, then the sampled tree size, i.e., the number of leaf nodes st satisfies

Pr(st & ndHt
/2α+dHt |Ht, Â

opt
t )→ 0

in P n
0 probability.

Theorem 3.1 guarantees that the tree size of our estimated optimal DTR using ST-

RL grows sub-linearly. In other words, ST-RL prevents from overfitting. Compared

to other existing tree-based methods, ST-RL does not require stopping rules and

pruning procedures, which are typically ad hoc. In addition, we make the following

assumption, which guarantees that the optimal tree-structured DTR exists and is

unique, i.e. any other optimal tree-structured DTRs (p∗
′

,A∗′) will satisfy d(p∗
′

,p∗) =

0 and A∗′ = A∗.

Assumption 3. For each t, the following inequalities hold:

• For all ǫ > 0, supd(p,p∗)≥ǫ EF (p,A
∗) < EF (p∗,A∗); moreover, there exists a

constant κ > 0 such that EF (p,A∗)−EF (p∗,A∗) ≤ −κd2(p,p∗) as d(p,p∗)→

0.

• There exists a constant ǫ > 0 such that supA6=A∗ EF (p,A) < EF (p∗,A∗)− ǫ.

Given the above assumptions, the theorem below establishes the stage-specific finite

sample bound to evaluate the performance of ĝoptt compared to goptt in terms of classi-

fication error and difference in value. For each t, we use Vt(gt) = E[
∑Kt

at=1 E(Ỹt|At =

at,Ht)I{gt(Ht) = at}] to denote the stage-specific value function for an arbitrary
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regime gt.

Theorem 3.2 (Finite Sample Bound). Under regularity conditions, for each t and

any ǫ > 0, we have

Pr(ĝoptt 6= goptt ) . n−rt+ǫ,

Pr
{
Vt(g

opt
t )− Vt(ĝoptt ) & τn−rt+ǫ)

}
≤ e−τ ,

where rT = 2
3

αT

2αT+dHT

, and rt =
2
3
min( αt

2αt+dHt

, rt+1) for t < T .

Yang (1999) showed that the minimax convergence rate for nonparametric classifica-

tion in our case is O(nα/(2α+d)). The scaling factor 2/3 arises as a result of non-regular

argmax continuous mapping theorem (Kim et al., 1990; Kosorok , 2008) and implies

that interpretability is achieved at the cost of efficiency. At the final stage T , the

rate of convergence is determined by the convergence rate of the conditional outcome

regression estimator, which is shown to be O(n2α/(2α+d) log n) (Rockova and Saha,

2018). It becomes more complex at an earlier stage t since the rate of convergence at

stage t is also affected by convergence rates at later stages.

3.4 Simulation Study

We demonstrated the performance of ST-RL through a series of simulation studies,

including four single-stage scenarios and four two-stage scenarios. In each scenario

we generated training data with a sample size n = 500 and the dimension of baseline

variables p = 50, 100 and 200. The baseline covariates Xi, i = 1, · · · , p were generated

from a uniform distribution U(0, 1), with an AR1 correlation structure and a correla-

tion coefficient of 0.4. Following the same mechanism, we generate independent test

sets with a sample size of 1000.
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We estimated the optimal regime using training data and then predicted the opti-

mal treatments for subjects in the test sets using our estimated optimal DTRs. The

following metrics were then calculated using test sets: opt% refers to the percent-

age of subjects correctly classified to their optimal treatments, Ê{Y ∗(ĝopt)} refers

to the estimated counterfactual mean outcome under the estimated optimal regime

ĝopt. opt% measures the performance of the estimated optimal regime in assigning

future subjects to their optimal treatments, and Ê{Y ∗(ĝopt)} measures the population

desirable outcome if following ĝopt. ST-RL was implemented using modified BART

with Dirichlet splitting rule prior to induce sparsity (Linero, 2018). Four methods

were compared with ST-RL: Q-learning with linear model (Q-Lin), nonparametric

Q-learning with random forest (Q-RF), outcome weighted learning implemented us-

ing CART (OWL-CART; Zhao et al., 2015) and tree-based reinforcement learning

(T-RL; Tao et al., 2018). In each scenario, the two metrics were averaged over 500

simulation replications.

3.4.1 Single-stage Scenarios

In single-stage setting, we considered four scenarios, all with three-level treatment

A taking values in {0, 1, 2}. In scenarios I and II, the treatment A was gener-

ated from a multinomial distribution with probabilities {π0, π1, π2}, where π0 =

1/{1 + exp(Xβ1) + exp(Xβ2)}, π1 = exp(Xβ1)/{1 + exp(Xβ1) + exp(Xβ2)} and

π2 = 1 − π0 − π1, where β1 = (−1,−1, 0, 2, 0,−1, 1,−1,−1, 2, 0, · · · , 0) and β2 =

(−1,−1,−1,−1, 2, 1, 1, 1, 1, 0, 0, · · · , 0). The underlying optimal treatment regime

gopt(H) was specified as:

gopt(H) =





0 X3 ≤ 0.35

1 X3 > 0.35, 2.5X2
2 − 0.5X1 ≤ 0.5

2 X3 > 0.35, 2.5X2
2 − 0.5X1 > 0.5
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In scenario I, a simple reward function Y was used with equal loss on sub-optimal

treatments Y = 1−X4+X5−X1+X2+2∗I(gopt = A)+ǫ, and hereafter ǫ ∼ N(0, 1).

In contrast, scenario II used a simple reward but with different losses; i.e., the incurred

loss depended on the sub-optimal treatment received: Y = 1 + X4 + X5 + 2I(A =

0) {2 ∗ I(gopt = 0)− 1}+ 1.5I(A = 2) {2 ∗ I(gopt = 2)− 1}+ ǫ.

Scenarios III and IV generated treatment A from a rule-based treatment assignment

mechanism: A = I(X2
1 + X2

2 < 0.5) + I(X2
4 + X2

5 < 0.5), and a relatively com-

plex underlying optimal treatment regime: gopt(H) = I(2X2
4 + X2

4 > 0.6)[I{X2 +

0.5 exp(X1)
2 + X7 < 2.25} + I{X2

3 − log(X5) − X6 < 3.5}]. Moreover, scenarios

III and IV studied complicated reward functions. Scenario III used a reward with

equal loss due to sub-optimal treatments Y = 1 + 2X5 + 2 exp(X1) + 5Φ(X1)X
2
2 +

5X3 log(X5 + 0.1) + exp{2X2 + 1.5I(gopt = A)} + ǫ, while scenario IV used a re-

ward with different losses Y = 1 + 2X5 + 2 exp(X1) + 5Φ(X1)X
2
2 + 5X3 log(X5 +

0.1)+exp[2X2+2.5I(A = 0) {2 ∗ I(gopt = 0)− 1}+2I(A = 1) {2 ∗ I(gopt = 1)− 1}+

1.5I(A = 2) {2 ∗ I(gopt = 2)− 1}] + ǫ, where Φ(·) stands for the cumulative distribu-

tion function of the standard normal distribution.

Table 3.1 summarizes the performance of the compared methods in all 4 scenarios. As

both T-RL and OWL-CART require estimation of the treatment assignment prob-

abilities, a multinomial logistic regression was fitted, with the observed treatment

as the dependent variable and all baseline covariates as explanatory variables. In

addition, T-RL requires specification of an outcome regression model for E(Y |X),

which we assumed to be a linear regression model. In all four scenarios, ST-RL

had outstanding performance compared to the other methods, even when there is

a moderately large number of variables (p=200) and a relatively small sample size

(n=500). The list-based method had competitive performance in Scenarios I and

II; however, its performance was compromised when the underlying optimal regime
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Table 3.1: Simulation results for single-stage scenarios I-IV, with 50, 100, 200 baseline covariates and sample size 500. The
results are averaged over 500 replications. opt% shows the median and IQR of the percentage of test subjects
correctly classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical mean and the empirical standard
deviance of the expected counterfactual outcome under the estimated optimal regime.

Number of Scenario I Scenario II Scenario III Scenario IV

Baseline Covariates Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt%

50

Q-Lin 3.3 (0.1) 65.0 (4.5) 2.5 (0.1) 64.8 (5.2) 16.8 (0.4) 73.5 (3.9) 26.7 (0.9) 73.4 (4.1)

Q-RF 3.8 (0.1) 89.9 (7.0) 2.5 (0.2) 60.4 (17.2) 16.9 (0.5) 70.6 (5.5) 27.8 (1.0) 67.5 (4.1)

OWL 2.7 (0.1) 36.2 (5.8) 1.8 (0.2) 38.2 (6.9) 15.7 (0.4) 60.7 (4.3) 24.0 (1.2) 65.0 (5.7)

List 3.9 (0.1) 95.0 (3.0) 3.1 (0.1) 94.6 (3.3) 17.6 (0.5) 77.0 (5.2) 27.1 (1.1) 63.8 (6.5)

T-RL 3.7 (0.2) 88.0 (9.0) 2.9 (0.2) 83.2 (16.3) 17.7 (1.0) 85.6 (10.8) 28.0 (1.7) 70.6 (5.8)

ST-RL 3.9 (0.1) 95.4 (2.0) 3.2 (0.0) 95.8 (1.5) 18.2 (0.6) 90.4 (3.1) 29.9 (0.9) 89.4 (3.8)

100

Q-Lin 2.9 (0.1) 44.1 (6.3) 2.0 (0.2) 44.6 (6.8) 14.6 (0.9) 56.5 (8.5) 21.8 (2.2) 57.5 (9.2)

Q-RF 3.7 (0.2) 89.2 (9.2) 2.4 (0.2) 54.0 (19.2) 16.7 (0.5) 68.8 (5.4) 27.6 (1.0) 66.5 (4.4)

OWL 2.7 (0.1) 34.4 (3.1) 1.7 (0.1) 35.2 (4.4) 15.9 (0.4) 63.1 (4.4) 24.6 (1.1) 67.1 (5.1)

List 3.9 (0.1) 95.3 (2.7) 3.1 (0.1) 94.8 (3.3) 17.5 (0.5) 76.2 (5.6) 26.9 (1.1) 62.4 (5.9)

T-RL 3.0 (0.4) 52.4 (31.5) 2.2 (0.4) 50.9 (31.1) 16.4 (2.0) 76.0 (23.0) 25.2 (4.5) 65.0 (12.0)

ST-RL 3.9 (0.1) 95.2 (2.5) 3.1 (0.0) 95.8 (1.5) 18.0 (0.8) 90.0 (3.3) 29.7 (1.2) 89.2 (3.7)

200

Q-Lin 2.7 (0.1) 34.6 (4.3) 1.7 (0.1) 35.1 (4.4) 12.0 (0.7) 33.5 (6.9) 14.7 (1.9) 33.9 (6.8)

Q-RF 3.7 (0.2) 88.6 (9.5) 2.3 (0.2) 50.4 (20.7) 16.5 (0.5) 67.2 (5.4) 27.4 (1.2) 65.7 (4.5)

OWL 2.7 (0.1) 34.0 (2.5) 1.7 (0.1) 34.4 (2.7) 15.9 (0.4) 63.1 (3.7) 24.7 (1.1) 67.5 (5.0)

List 3.9 (0.1) 95.1 (3.4) 3.1 (0.1) 94.8 (3.3) 17.5 (0.5) 75.8 (5.7) 26.9 (1.1) 61.8 (5.3)

T-RL 2.7 (0.1) 33.5 (3.0) 1.7 (0.2) 33.4 (2.9) 12.7 (1.5) 35.8 (11.4) 15.9 (4.1) 35.6 (10.9)

ST-RL 3.8 (0.2) 94.8 (3.8) 3.1 (0.1) 95.7 (1.7) 17.7 (1.2) 89.3 (4.8) 29.1 (2.3) 88.6 (4.9)
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and reward became complex (scenarios III and IV). T-RL performed well when the

data dimension is relatively low, even when both propensity and outcome regression

models were incorrectly specified. When the number of variables increased, T-RL

performed poorly. Q-Learning methods also significantly varied by case. Both Q-Lin

and Q-RF performed better with fewer noise variables, with Q-RF being more sta-

ble against increased dimensionality. Consistent with the simulation findings in Tao

et al. (2018), OWL-CART had an unsatisfactory performance, which is probably due

to both misspecification of propensity score models and a low percentage of subjects

receiving optimal treatments in the simulated trial or observational data.

3.4.2 Two-stage Scenarios

We considered four two-stage scenarios with a three-level treatment at each stage,

and the outcome was defined as the sum of immediate rewards from each stage,

i.e. Y = R1 + R2. In scenarios V and VI, stage 1 treatment A1 was generated

from a multinomial distribution similar to Section 3.4.1, with parameters β11 =

(−1,−1, 0, 2, 0,−1, 1, 1,−1, 0, 0, · · · , 0) and β12 = (−1,−1,−1,−1, 0, 1, 0, 0, 1, 2, 0, · · · ,

0). In scenario V, the underlying optimal DTR had a tree structure gopt1, tree = I(X1 <

0.7) {I(X5 < 0.7) + I(X10 > 0.3)}, while in scenario VI the optimal DTR did not

have a tree structure gopt1, nontree = I(X3 > 0.35){I(2.5X2
2 − 0.5X1 > 0.5) + 1}. In both

scenarios V and VI, the immediate reward R1 was generated from Y = 1 + X2 +

X4 +X6 + 2I(A = 0) {2 ∗ I(gopt = 0)− 1} + 1I(A = 1) {2I(gopt = 1)− 1} + 3I(A =

2) {2I(gopt = 2)− 1}+ ǫ.

At stage 2, in both scenarios V and VI the treatment A2 = {0, 1, 2} was gener-

ated from a multinomial distribution with probabilities {π20, π21, π22}, where π20 =

1/{1 + exp(Xβ21 + 0.2R1) + exp(Xβ22 + 0.2R1)}, π21 = exp(Xβ21 + 0.2R1)/{1 +

exp(Xβ21 + 0.2R1) + exp(Xβ22 + 0.2R1)} and π22 = 1 − π20 − π21, with β21 =

(−1,−1, 1, 2, 0,−1, 1, 0, 1,−2, 0, · · · , 0) and β22 = (1, 1,−1,−1,−2, 1, 1, 1, 0,−1, 0, · · · ,
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0). Similarly to stage 1, scenario V used a tree-type optimal treatment regime

gopt2, tree = I(R1 > 1){I(X10 < 0.6) +1} and scenario VI used a non-tree-type regime

gopt2, non−tree = I(1.5X2 +X4 + 0.5R1) + I(0.5R1 +X1 +X9 > 2). The stage 2 reward

R2 was then generated from R2 = 1 +X1 + 2X5 + 2I(A2 = 0)
{
2I(gopt2 = 0)− 1

}
+

1.5I(A2 = 2)
{
2I(gopt2 = 2)− 1

}
+ ǫ.

We also evaluated the performance of our proposed ST-RL in a randomized trial set-

ting through scenarios VII and VIII. In both scenarios, 3-level treatments A1 and A2

were generated from a multinomial distribution with probabilities (1
3
, 1
3
, 1
3
). Scenario

VII used simple tree-type regimes at both stages: gopt2, tree = I(X1 > 0.15){I(X2 > 0.25)

+ I(X2 > 0.6)}, and gopt2, tree = I(X3 > 0.2) {I(R1 > 0) + I(X5 < 0.8)}. Scenario

VIII used non-tree-type underlying optimal regimes: gopt1, nontree = I(2X2
4 + X4 >

0.6){I(X2+0.5 exp(X1)
2+X7 < 2.25)+ I(X2

3− log(X5)−X6 < 3.5)} and gopt2, nontree =

I(1.5X2+X4+0.5R1 > 2)+ I(0.3R1+X1+X9 > 2.5). In both scenarios, a complex

and non-linear reward function was used for stages 1 and 2: R1 = exp{2 + 0.5X4 −

|4.5X1− 1|(A1− gopt1 )2}+ ǫ and R2 = exp{1+X2− |1.5X3+X4+1|(A2− gopt2 )2}+ ǫ.

Simulation results of two-stage treatment regimes are summarized in Table 3.2. Es-

sentially the comparison with other methods showed similar trends as observed in

one-stage scenarios. For OWL, we applied the backward OWL (BOWL) method in

Zhao et al. (2015). ST-RL had a reliable performance in both confounded (scenarios V

and VI) and randomized (scenarios VII and VIII) settings, even with a large amount

of noise interference. The performance of list-based method varied significantly by

simulation scenarios: when the underlying optimal regime was fairly complex (VI and

VIII), the constraint of at most two variables in each clause might be too restrictive

and thus list-based method did not work well. In addition, the list-based method did

not always perform consistently even in a simple setting (V). T-RL performed well in

randomized settings (VII and VIII), but was severely affected when working models
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Table 3.2: Simulation results for two-stage scenarios V-VIII, with 50, 100, 200 baseline covariates and sample size 500. The
results are averaged over 500 replications. opt% shows the median and IQR of the percentage of test subjects
correctly classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical mean and the empirical standard
deviance of the expected counterfactual outcome under the estimated optimal regime.

Number of Scenario V Scenario VI Scenario VII Scenario VIII

Baseline Covariates Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt%

50

Q-Lin 6.0 (0.1) 40.8 (4.3) 6.8 (0.2) 55.8 (5.8) 10.7 (0.2) 43.2 (2.9) 12.2 (0.2) 69.3 (3.8)

Q-RF 6.6 (0.3) 56.6 (11.3) 7.5 (0.4) 72.4 (16.0) 13.2 (0.4) 81.3 (6.8) 12.6 (0.5) 68.3 (10.1)

OWL 4.3 (0.2) 13.3 (2.7) 4.2 (0.2) 11.2 (2.8) 8.7 (0.6) 24.8 (6.3) 8.2 (0.6) 20.2 (5.6)

List 6.3 (0.2) 34.1 (3.2) 6.7 (0.2) 32.4 (10.0) 13.2 (0.7) 83.8 (8.1) 10.6 (0.3) 21.6 (3.0)

T-RL 6.7 (0.6) 51.9 (26.0) 7.7 (0.4) 75.1 (16.8) 13.4 (0.6) 86.2 (14.1) 13.4 (0.2) 85.7 (7.6)

ST-RL 7.6 (0.1) 89.4 (3.9) 8.2 (0.1) 88.5 (1.9) 14.1 (0.1) 96.8 (2.1) 13.6 (0.1) 89.0 (3.3)

100

Q-Lin 4.9 (0.4) 21.0 (8.9) 5.6 (0.4) 33.0 (7.4) 9.6 (0.2) 31.5 (3.2) 10.8 (0.3) 51.7 (4.5)

Q-RF 6.2 (0.4) 47.4 (13.5) 7.3 (0.5) 67.6 (20.2) 12.9 (0.4) 76.2 (8.5) 12.2 (0.5) 62.6 (11.4)

OWL 4.3 (0.2) 13.5 (2.7) 4.2 (0.1) 11.3 (2.5) 8.0 (0.6) 19.1 (6.4) 7.6 (0.4) 16.7 (4.0)

List 6.3 (0.2) 33.6 (2.5) 6.5 (0.3) 34.6 (4.2) 13.4 (0.5) 85.1 (5.2) 10.6 (0.6) 21.6 (4.1)

T-RL 5.8 (0.6) 29.9 (22.5) 7.2 (0.5) 65.1 (22.8) 12.5 (0.6) 67.0 (16.1) 13.1 (0.5) 80.3 (8.5)

ST-RL 7.6 (0.2) 89.2 (4.0) 8.1 (0.1) 88.6 (1.8) 14.0 (0.2) 96.3 (2.5) 13.6 (0.2) 88.5 (4.1)

200

Q-Lin 4.1 (0.1) 9.2 (2.5) 4.0 (0.2) 9.1 (2.8) 6.9 (0.3) 11.5 (2.4) 6.9 (0.3) 11.8 (3.5)

Q-RF 5.9 (0.4) 38.0 (12.5) 7.0 (0.6) 61.3 (25.8) 12.4 (0.6) 69.2 (9.2) 12.0 (0.6) 58.2 (13.4)

OWL 4.8 (0.2) 18.9 (3.8) 4.3 (0.1) 13.2 (2.4) 7.6 (0.6) 15.7 (5.4) 7.5 (0.4) 15.9 (3.8)

List 6.3 (0.2) 34.0 (2.9) 6.5 (0.3) 34.9 (4.0) 13.4 (0.6) 85.4 (5.0) 10.4 (0.4) 20.6 (5.0)

T-RL 4.1 (0.2) 10.9 (5.7) 4.1 (0.2) 10.6 (13.4) 6.9 (0.6) 13.0 (6.9) 6.9 (0.7) 17.2 (16.2)

ST-RL 7.4 (0.4) 86.1 (10.9) 8.1 (0.3) 88.2 (2.1) 13.8 (0.4) 93.7 (5.7) 13.5 (0.2) 87.8 (4.8)
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are wrong. Moreover, T-RL was more susceptible to noise interference.

3.5 Data Applications

We applied the proposed ST-RL to an esophageal cancer dataset of 1170 patients

collected at MD Anderson Cancer Center from 1998 to 2012. At baseline, patients

were between 20 to 91 years old, 85% male, 56% with advanced overall cancer stage

(stage III/IV), 19% with squamous cell carcinoma, 81% with Adenocarcinoma, and

44% with well/moderate tumor differentiation. Patients had an average tumor length

of 33mm with an interquartile range from 30mm to 37mm. A general treatment

strategy for optimizing long-term survival is neoadjuvant chemoradiation followed by

esophagectomy (surgery) (Nieman and Peters , 2013).

In this application, we primarily focused on the two-stage neoadjuvant chemoradiation

disease management before surgery. At baseline, patient characteristics were recorded

and denoted as X, which include patient information like age, gender, BMI, and

disease statuses such as ECOG performance, PET SUV, hypertension status, lesion

location, histology, differentiation, tumor length, and overall stage. At the initial

treatment stage, 41% patients received induction chemotherapy (ICT). We denote this

initial treatment as A1, with the value YES if treated with ICT and NO otherwise. An

intermediate measure of tumor response, R1, was recorded after this initial treatment

to evaluate the effect of A1, and R1 ranged from 0 to 5, with 0 being progression and

5 being the complete response.

At treatment stage 2, there were three radiation modalities: 39% of patients received

3D conformal radiotherapy (3DCRT), 45% patients received intensity-modulated ra-

diation therapy (IMRT) and 16% received proton therapy (PT). We denote the stage

2 treatment as A2, following which, the tumor response R2 (same scale as R1) and any

development of new lesion N2 (0 if developed new lesion and 1 if not) were evaluated.
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Furthermore, side effects were also recorded, including nausea S2,1 (0 if experienced

nausea and 1 if not) and anorexia S2,2 (0 if experienced anorexia and 1 if not). We

defined a composite reward of interest Y = R1 +R2 +2N2 +2S2,1 +2S2,2 to measure

the effectiveness of this two-stage treatment regime. This composite reward balanced

multiple competing clinical priorities by incorporating tumor responses measured at

the end of two stages and accounting for new lesion development and side effects

along the treatment process. Missing data are imputed using IVEware (Raghunathan

et al., 2002).

We then applied ST-RL algorithm to the data described above. We used BART to

fit the response surface of E(Ỹ2|A2 = a2,H2), where Ỹ2 = Y , and obtain the optimal

tree-structured regime ĝopt2 . The same procedure was repeated for treatment stage

1 to obtain ĝopt1 , with H1 = X and Ỹ1 = Y + Ê(Ỹ2|ĝopt2 ,H2) − Ê(Ỹ2|A2,H2). The

estimated optimal DTR was ĝopt = (ĝopt1 , ĝopt2 ), where

ĝopt1 =





YES if tumor differentiation = poor and cancer stage = I/II and

tumor length <41mm

NO otherwise

(3.5)

and

ĝopt2 =





PT if A1 = YES and tumor length > 29mm

IMRT if A1 = YES and tumor length < 29mm

3DCRT otherwise

(3.6)

The estimated optimal DTR suggests that at the initial treatment stage, ICT is

recommended for early-stage esophageal cancer patients with reasonably small-sized

tumors that are poorly differentiated. Although a randomized clinical trial (Ajani

et al., 2013) suggested that ICT before preoperative chemoradiation would not sig-

nificantly benefit the esophageal patient population in terms of complete pathologic
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response and overall survival, our result can serve as a secondary analysis to help iden-

tify subgroups that might benefit from ICT in terms of immediate tumor response and

new lesion development. At treatment stage 2, our result showed that patients who

received ICT and had larger tumors should use PT while patients who received ICT

and had smaller tumors should use IMRT, all other patients should receive 3DCRT.

Although it is difficult to draw definitive conclusions regarding clinical outcomes from

the existing literature due to lack of published large trials comparing the three modal-

ities, clinical findings demonstrate that IMRT and PT allow the radiation beam to be

shaped more precisely to smaller tumors compared to 3DCRT (Xu and Lin, 2016).

This is consistent with our results that ĝopt2 suggests using PT/IMRT as an alterna-

tive treatment for patients if they already used ICT as their initial treatment, which

indicates they have a smaller, early-stage tumor according to ĝopt1 .

3.6 Discussion

The rapid developments in statistical machine learning have significantly enhanced

our ability to flexibly and accurately estimate the most appropriate treatment to

patients. However, explicit and interpretable decision rules are preferred by clini-

cians rather than a machine learning black-box. How to balance the accuracy gain

and compromise of interpretability has drawn attention. Efficient communication is

the key to any data-driven dynamic treatment regimes to make a practical impact.

Therefore, developing methodologies that are both theoretically sound and compu-

tationally efficient is critical for further promoting the broader impact of dynamic

treatment regimes (DTRs).

We have proposed a new method ST-RL to estimate optimal DTRs in multi-stage

multi-treatment settings using potentially large and complex observational data. ST-

RL combines flexible nonparametric BART estimation and stochastic policy search
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to improve interpretability and quality of data-driven DTRs. Many existing methods

focus on randomized trial data; however, in practice, observational data is much

more common. Especially in large observational studies, often little is known about

the intervention assignment mechanism or the relationship between outcome and

covariates. In this case, our newly proposed data-driven and interpretable method ST-

RL can mitigate the model misspecification risk, and perform stably across different

scenarios. The estimated results are helpful to generate scientific hypotheses and to

provide insights on future biomedical research.

The proposed methods can be extended to other types of outcomes, such as binary and

right-censored survival data. One remaining question is how to improve the scalability

of the stochastic tree search when the data are sparse. With high-dimensional sparse

data, one can perform explicit variable selection before regime estimation; however,

how to ensure the selection consistency over multiple stages remains a challenge.
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CHAPTER IV

A Flexible Tailoring Variable Screening Approach

for Estimating Optimal Dynamic Treatment

Regimes in Large Observational Studies

4.1 Introduction

Although the traditional “one-size-fits-all” medicine remains a common practice, it is

inadequate to provide optimal healthcare to each patient. In contrast, the emerging

personalized medicine considers population heterogeneity and is now widely recog-

nized as a promising approach for disease management and treatment for complex

health conditions. The idea of using precisely tailored therapies to accommodate

patient treatment response heterogeneity over time has been formalized as dynamic

treatment regimes (DTRs) in statistics (Murphy , 2003). DTRs are sequential decision

rules that individualize treatments while adapting to disease progression over time.

Optimal DTRs are mappings from up-to-date patient information to treatment rec-

ommendations at each stage, such that an average desirable long-term clinical reward

is maximized. Various methods have been proposed to estimate optimal DTRs, in-

cluding marginal structural models (Murphy et al., 2001), G-estimation of structural

nested mean models (Robins , 2004), likelihood-based approaches (Thall et al., 2007),
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robust approaches (Zhang et al., 2012, 2013), machine learning methods (Zhao et al.,

2012, 2015; Laber and Zhao, 2015).

Nowadays, it is often the case that a large number of variables are collected in obser-

vational studies, which has brought new challenges in estimating optimal treatment

regimes. One popular example is the Omics data. More specifically, most exist-

ing methods require working model specification, such as the model of conditional

outcome regression, or the model of treatment assignment probability, or both. High-

dimensional data would increase the risk of model misspecification. Although non-

parametric techniques can potentially eradicate the need for working models, they are

known to be impacted by the curse of dimensionality. Furthermore, many existing

methods cannot even work without non-trivial modifications when p≫ n. Therefore,

it is of great interest to perform explicit variable selection before estimating optimal

DTRs when there is a large number of variables. Even though variable selection has

been extensively studied in the literature, it is understudied in the area of dynamic

treatment regimes. It was not until recently that this topic has drawn some attention.

In the pioneering work by Gunter et al. (2011), the authors proposed S-Score, a frame-

work for variable selection in treatment individualization. The authors reintroduced

the concept of prescriptive variables, i.e., variables having qualitative interactions

with treatment. Fan et al. (2016) extended this method to a multi-stage scenario and

proposed sequential advantage selection (SAS). SAS is closely related to Q-learning

and identifies prescriptive variables one at a time while taking into consideration the

variables that are already selected in previous steps. Another stream of research is

based on the framework of A-leaning. Lu et al. (2013) developed a penalized regres-

sion approach in single-stage setting; Shi et al. (2018) further proposed penalized

A-learning (PAL) in multi-stage scenario. In parallel, Zhang et al. (2018a) proposed

forward minimal misclassification error rate (ForMMER) selection from classification

perspective. Another line of research focuses on testing for qualitative interactions;
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examples include Gail and Simon (1985); Chang et al. (2015); Hsu (2017); Shi et al.

(2019).

However, existing methods have some limitations. First of all, most existing meth-

ods, if not all, involve modeling the treatment effect contrast functions. As a result,

these methods are naturally restricted to treatments with two levels. Second, exist-

ing methods require working model specification. S-Score and SAS sequentially build

conditional outcome regression models; C-learning and PAL involve modeling the

contrasts using doubly robust estimator and therefore require modeling propensity

scores. For these methods, the quality of working models will determine the vari-

able selection performance; however, it is challenging to construct working models

in high-dimensional data. For example, SAS selects variables sequentially, therefore

will likely be biased when some confounding variables have not been included in the

model. Besides, ForMMER needs pre-screening procedure when constructing aug-

mented inverse probability weighted estimator (AIPWE) for contrasts when p > n.

Partially due to this reason, all existing methods are limited to randomized trial data.

In this chapter, we propose a variable selection procedure, sparse additive selection

(SpAS), to identify predictive and potential prescriptive variables in estimating opti-

mal DTRs. Our proposed method is closely related to Q-learning and is implemented

using backward induction. When modeling the Q-function, i.e., E(Y |X,A), we use

the nonparametric sparse additive model with strong heredity constraint: interactions

can only enter the model when both of its main effects are selected. This will help

improve model interpretability and plausibility. Such hierarchical variable selection

methods have been studied in the case of linear regression (Yuan et al., 2007; Choi

et al., 2010; Bien et al., 2013), and also in additive model (Radchenko and James ,

2010). Moreover, existing methods do not provide the feature of main effect selec-

tion; however, it is of importance to identify these variables: literature has shown
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they should be included in the working models for propensity scores to improve their

quality (Shortreed and Ertefaie, 2017). As an improvement, SpAS allows treatments

with more than two levels and continuous doses. Moreover, when little is known

about the data-generating process, the superior flexibility of SpAS makes it an ideal

choice to reduce the number of variables under consideration or being collected.

The rest of this chapter is organized as follows. In Section 4.2 we present the SpAS

method and also provide a back-fitting algorithm for model fitting. To demonstrate

our proposed method, Section 4.3 compares SpAS with other existing methods in a

series of simulation studies. We further illustrate our method in a real data application

in Section 4.4, and provide some discussions in Section 4.5.

4.2 Method

4.2.1 Optimal Treatment Regime and Additive Models

We start by presenting the proposed method in single-stage setting and later extend to

multi-stage setting in Section 4.2.3. Assume independent data (X1, A1, Y1), · · · (Xn,

An, Yn) are collected, where Yi denotes real-valued outcome, and X i = (Xi1, · · · , Xip)

denotes baseline covariate vector with dimension p, that is potentially large relative

to the number of observations, n. Here we assume treatment Ai to be categorical with

dA levels, however our method can generalize to continuous treatments. A treatment

regime, g(·), maps from the X to the domain of recommended treatment options.

Throughout this chapter, we assume larger values of Y are preferred.

To define optimal treatment regime gopt, we adopt the counterfactual framework in

causal inference. Let Y ∗(a) denote the counterfactual outcome for a patient that

would have been observed had this patient received treatment a, similarly let Y ∗(g)

denote the counterfactual outcome under regime g. Thus the optimal treatment
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regime is the one that maximizes mean counterfactual outcome had all patients fol-

lowed this regime, i.e., gopt = argmaxg∈G E{Y ∗(g)}, where G is the set of all regimes

under consideration. To identify the counterfactual quantities from observed data,

we make the following assumptions. First we assume consistency, i.e., the observed

outcome is the same as the counterfactual outcome under the treatment a patient is

actually given, i.e., Y =
∑dA

a=1 Y
∗(a)I(A = a), where I(·) is the indicator function

that takes the value 1 if · is true and 0 otherwise. This assumption also implies that

there is no interference between subjects. Moreover, we make no unmeasured con-

founding assumption (NUCA) that {Y ∗(1), . . . , Y ∗(dA)} |= A | X . Last, we assume

positivity, that is, there exists constants 0 < c0 < c1 < 1 such that with probability

1, the probability c0 < Pr(A = a|X) < c1.

Under aforementioned assumptions, the optimal regime gopt can be written as =

argmaxg∈G E[
∑dA

a=1Q(A = a,X)I{g(X) = a}], where the Q-function is defined as

Q(A,X) = E(Y |A,X). The Q-function is crucial in estimating optimal DTRs. More-

over, in the Q-function, the predictive variables correspond to main effects, while co-

variates that have interactions with treatment are potentially prescriptive variables.

To estimate the Q-function, we consider the following additive model:

Yi =

p∑

j=1

fj(Xij) + fA(Ai) +

p∑

j=1

fAj(Xij, Ai) + ǫi, (4.1)

where ǫi ∼ N(0, σ2) and is independent of Xi; fj , fA and fAj are functions of co-

variates that are bounded. For simplicity purpose, we assume Y and all the f ’s are

centered so that intercept is omitted. To avoid trivial solutions, we convert these func-

tions to finite dimensions using basis functions with truncation parameter dm and din

for main effects and interactions, respectively. Specifically, let (ψ1(·), · · · , ψdm(·)) be a

family of uniformly bounded, orthonormal basis with dimension dm for main effects,

and (φ1(·, ·), · · · , φdin(·, ·)) be a family of uniformly bounded, orthonormal basis with
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dimension din for interactions. Then we use n by dm matrix Ψj to denote the evalua-

tion of (ψ1(·), · · · , ψdm(·)) on Xij , i = 1, · · · , n, with the (i, k)-th entry being ψk(Xij).

Similarly, we use matrix ΦAj to denote the n by din matrix with (i, k)-th entry being

φk(Xij , Ai). On the other hand, ΨA denotes the n by dA treatment indicator matrix

with (i, k)-th entry being I(Ai = k). Therefore the Q-function becomes

Q(A,X) =

p∑

j=1

Ψjβj +ΨAβA +

p∑

j=1

ΦAjβAj, (4.2)

where βj , βA and βAj are vectors of basis coefficients with lengths dm, dA, din for

j-th main effect, treatment and j-th interactions, respectively. To perform variable

selection, we take regularization-based approach and consider minimization of the

following loss function:

1

2n

∥∥∥∥∥Y −
p∑

j=1

Ψjβj −ΨAβA −
p∑

j=1

ΦAjβAj

∥∥∥∥∥

2

2

+ Pλ, (4.3)

where Pλ is the penalty term indexed by regularization parameters λ. There are

different ways to enforce strong heredity constraint through formulation of Pλ: one

strategy is directly imposing penalty on basis coefficients βj, βA and βAj (Bien

et al., 2013). As an alternative, the penalty can be put on each term of Ψjβj ,

ΨAβA and ΦAjβAj (Radchenko and James , 2010). In this chapter we take the latter

approach because it is reported to have better empirical performance (She et al.,

2018). Specifically, we let

Pλ =Pλ1 + Pλ2

=λ1




p∑

j=1

(∥∥Ψjβj

∥∥2
2
+
∥∥ΦAjβAj

∥∥2
2

)1/2
+

(
‖ΨAβA‖22 +

p∑

j=1

∥∥ΦAjβAj

∥∥2
2

)1/2



+ λ2

p∑

j=1

∥∥ΦAjβAj

∥∥
2
.
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Note Pλ1 penalizes total effect of each variable including main effects and interactions,

while Pλ2 puts an extra penalty on interaction terms. They together enforce strong

hierarchy, details are shown in Section 4.2.2.

4.2.2 Back-fitting Algorithm for Sparse Additive Selection

The optimization in 4.3 can be solved via block-wise coordinate descent (Yuan and

Lin, 2006). In every iteration, the algorithm updates main effects of baseline variables,

treatment and their interactions, one at a time, while holding all other terms fixed.

Correspondingly, we denote the projection matrices for these three types of terms as

Pj = Ψj(ΨjΨ
⊤
j )

−1Ψ⊤
j , PA = ΨA(ΨAΨ

⊤
A)

−1Ψ⊤
A and PAj = ΦAj(ΦAjΦ

⊤
Aj)

−1Φ⊤
Aj. The

algorithm is outlined in Algorithm 3.

The soft thresholding operators can be obtained for baseline variables, treatment and

interactions separately using a solver for linear equations. For j-th main effect Ψjβ̂j ,

when its interaction with treatment
∥∥∥ΦAjβ̂Aj

∥∥∥
2
= 0, the soft thresholding operator

has closed-form Sj = 1/(1−λ1/
∥∥∥P̂ j

∥∥∥
2
)+ (Ravikumar et al., 2009), where (·)+ denotes

the positive part. On the other hand, when j-th interaction
∥∥∥ΦAjβ̂Aj

∥∥∥
2
6= 0, i.e., it

has already been selected, the operator Sj needs to be solved numerically through:

Sj


1 +

λ1√
S2
j

∥∥∥P̂ j

∥∥∥
2

2
+
∥∥∥ΦAjβ̂Aj

∥∥∥
2

2


 = 1.

For treatment main effect, the thresholding operator SA has closed-form SA = 1/(1−

λ1/
∥∥∥P̂ A

∥∥∥
2
)+ when

∑p
k=1

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2
is zero, i.e. none of the interactions are selected.

In this case our model 4.1 degenerates to a regular sparse additive model. When any
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of the interactions are selected, SA can be obtained by solving

SA


1 +

λ1√
S2
A

∥∥∥P̂ A

∥∥∥
2

2
+
∑p

k=1

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2

2

2


 = 1.

The above results show that a term will only be selected when the corresponding pro-

jected residual,
∥∥∥P̂
∥∥∥
2
is above certain threshold. In summary, when j-th interaction

term fAj(Xj, A) is not selected, i.e.
∥∥∥ΦAjβ̂Aj

∥∥∥
2
= 0, both corresponding main effects,

f̂j(Xj) and f̂A(A) needs to be greater than λ1 in order to be selected. Otherwise when

fAj(Xj , A) is selected, the entering threshold for both main effects drops to 0. In other

words, this mechanism guarantees strong heredity principle: an interaction can only

be selected when both its main effects are selected. Similarly for the treatment main

effect, the threshold is λ1 when no interactions are selected; however as soon as one

interaction enters the model, treatment will be selected automatically.

The shrinkage operators for interaction terms are slightly more complicated. For j-th

interaction term ΦAjβ̂Aj, the shrinkage operator SAj = 1/(1− (2λ1 + λ2)/
∥∥∥P̂ Aj

∥∥∥
2
)+

when both j-th main effect
∥∥∥Ψjβ̂j

∥∥∥
2

2
and the residual treatment effect, i.e. treatment

effect excluding j-th interaction
∥∥∥ΨAβ̂A

∥∥∥
2

2
+
∑

k 6=j

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2
are 0. When only one of

quantities
∥∥∥Ψjβ̂j

∥∥∥
2

2
and

∥∥∥ΨAβ̂A

∥∥∥
2

2
+
∑

k 6=j

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2
is zero, let’s say

∥∥∥Ψjβ̂j

∥∥∥
2

2
= 0

without loss of generality, SAj can be obtained by solving

SAj

∥∥∥P̂ Aj

∥∥∥
2


1 +

λ1∥∥∥ΨAβ̂A

∥∥∥
2

2
+
∑p

k=1

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2


 =

(∥∥∥P̂ Aj

∥∥∥
2
− λ1 − λ2

)
+
, (4.4)
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Algorithm 3: Sparse Backfitting Algorithm

Result: β̂j, β̂A and β̂Aj

Initialize β̂j, β̂A and β̂Aj for j = 1, · · · , p;

while Convergence is False do

for j ← 1 to p do

Compute the residual, R̂j = Y −
∑

k 6=j Ψkβ̂k −ΨAβ̂A −
∑p

l=1ΦAlβ̂Al

Projection R̂j onto Xj, P̂ j = PjR̂j

Soft thresholding: f̂ j = SjP̂ j , β̂j = Sj(Ψ⊤
j Ψj)

−1Ψ⊤
j R̂j

end

Compute the residual, R̂A = Y −∑p
l=1Ψlβ̂l −

∑p
l=1ΦAlβ̂Al

Project residuals onto A, P̂ A = PAR̂A

Soft thresholding: f̂A = SAP̂ A, β̂A = SA(Ψ⊤
AΨA)

−1Ψ⊤
AR̂A

for j ← 1 to p do

Compute the residual, R̂Aj = Y −
∑p

l=1Ψlβ̂l −ΨAβ̂A −
∑

k 6=j ΦAkβ̂Ak

Project residuals onto (Xj , A), P̂ Aj = PAjR̂Aj

Soft thresholding: f̂Aj = SAjP̂ Aj, β̂Aj = SAj(Φ
⊤
AjΦAj)

−1Φ⊤
AjR̂Aj

end

end

and in the symmetric case when only
∥∥∥ΨAβ̂A

∥∥∥
2

2
+
∑

k 6=j

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2
equals zero, SAj

can be solved in a similar way. When both quantities
∥∥∥Ψjβ̂j

∥∥∥
2

2
and

∥∥∥ΨAβ̂A

∥∥∥
2

2
+

∑
k 6=j

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2
are nonzero, SAj can be solved via

SAj

∥∥∥P̂ Aj

∥∥∥
2


1 +

λ1√∥∥∥Ψjβ̂j

∥∥∥
2

2
+
∥∥∥ΦAjβ̂Aj

∥∥∥
2

2

+
λ1√∥∥∥ΨAβ̂A

∥∥∥
2

2
+
∑p

k=1

∥∥∥ΦAkβ̂Ak

∥∥∥
2

2




=
(∥∥∥P̂Aj

∥∥∥
2
− λ2

)
+
.
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Therefore, the threshold for an interaction term changes according to whether its

main effects are already in the model. For an arbitrary j-th interaction, if neither f j

nor A is in the model, the threshold is 2λ1 + λ2, which is likely to happen at early

stage of selection. If one of f j and A has been selected, this threshold decreases to

λ1 + λ2 if either main effect is selected, as selecting this interaction only introduces

one additional variable instead of two in the previous scenario. When both main

effects are already in the model, the threshold further drops to λ2. This is also

intuitive because in this case including such an interaction adds no new predictors to

the model, therefore it should be prioritized compared to interactions with one or no

main effects selected.

It is crucial to select the tuning parameters. In practice, we search the tuning pa-

rameter (λ1, λ2) on a 2-dimensional grid. When searching the grid, the solution from

the previous grid point is used as a warm start. Moreover, the active set strategy is

used to speed up the algorithm, which is based on the fact that the set of nonzero

functions (i.e., active set) are often the same or differ by one element when moving

to an adjacent point on the fine grid. Thus when moving to the next point on the

grid, we first iterate on the current active set until convergence and then sweep all

the variables to check for any new selected variables. To determine optimal tuning

parameters, multiple criterions such as GCV, BIC have been tested. When the sam-

ple size is sufficiently large compared to the number of variables, all popular metrics

have similar performance. In cases where p > n, we find none of the metrics can

dominate others in general. In our simulation study, we used a BIC type criterion

(Gao and Carroll , 2017):

BIC(λ) = n log{RSS(λ)/n}+ 6(1 + γ) log(p)d(λ),

where d(λ) is the number of variables selected and γ is an arbitrary positive number.
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In this chapter, we set γ to be 0.1 in simulation studies and data application.

4.2.3 Extension to Multi-stage Setting

The proposed SpAS can be extended to the scenario with multiple decision points,

where the data can come from either sequential multiple assignment randomized tri-

als (SMART) or observational studies. At each decision point, the treatment can

have multiple levels or be continuous. Assume the three causal assumptions, con-

sistency, NUCA and positivity hold. Let {(Xt, At)
T
t=1, Y } denote the data, where

t ∈ {1, 2, · · · , T} denotes tth stage, Xt denotes the vector of patient characteristics

accumulated during treatment period t, At denotes the treatment variable with ob-

served value at ∈ At = {1, . . . , Kt}, and Kt (Kt ≥ 2) is the number of treatment

options at the tth stage. Therefore patient history prior to At can be written as

Ht = {(Xi, Ai)
t−1
i=1,Xt}. We assume that Y is bounded, and higher values of Y are

preferable. A dynamic treatment regime (DTR) is then denoted as g = (g1, . . . , gT ),

where at stage t, gt maps from the domain of patient history Ht to the domain of

treatment assignment At.

To perform variable selection across multiple stages, we start from the final stage T

and proceed in reverse sequential order. At each stage t, (1 < t < T ), we define

pseudo-outcome Ỹt recursively using Bellman’s optimality:

Ỹt = E

{
Ỹt+1|At+1 = goptt+1(Ht+1),Ht+1

}
, t = 1, · · · , T − 1,

I.e. the expected outcome assuming optimal regimes are followed at all future stages

(Murphy , 2005; Moodie et al., 2012). Q-function at stage t can be defined using

Ỹt: Qt(At,Ht) = E(Ỹt|At,Ht). At final stage T , because ỸT = Y , we directly fit

additive model for Qt(At,Ht) and perform variable selection using the proposed SpAS

approach. At intermediate stage t < T , Ỹt is estimated using the actual observed
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outcome, Y , plus the predicted future loss due to sub-optimal future treatments to

prevent bias accumulation:
ˆ̃
Y t = Y +

∑T
j=t+1[Q̂j{ĝoptj (Hj),Hj} − Q̂j(Aj,Hj)]. Here

ĝoptj (Hj) refers to the estimated optimal treatment regime at stage j. Ỹt can be

estimated either directly using fitted sparse additive model, or using other methods

by only including variables selected from SpAS. In our simulations, we estimate Ỹt

by using random forests-based conditional mean estimates (Breiman, 2001).

4.3 Simulation Study

In this section, we conducted simulation studies to evaluate the performance of the

proposed method. In particular, we considered data-generating mechanisms with con-

founding variables, including four single-stage scenarios and two two-stage scenarios.

4.3.1 Single-stage Scenarios

In the single-stage scenarios, the baseline variables X = (X1, · · · , Xp) follow a multi-

variate normal distribution: for each entry the marginal distribution is N(0, 1), and

the correlation structure is AR1 with a correlation coefficient of 0.2 or 0.8. In Scenar-

ios I and II, we considered a binary treatment A = (0, 1), and A = 1 whenX1+X2 < 0

and X9+X10 > 0. In Scenarios III, we considered a three-level treatment A = (0, 1, 2)

generated from a multinomial distribution with probabilities {π0, π1, π2}, where π0 =

1/{1 + exp(Xβπ
1 ) + exp(Xβπ

2 )}, π1 = exp(Xβπ
1 )/{1 + exp(Xβπ

1 ) + exp(Xβπ
2 )} and

π2 = 1 − π0 − π1, where βπ
1 = (−1,−1, 0, 2, 0,−1, 1, 1,−1, 0, 0, · · · , 0) and βπ

2 =

(−1,−1,−1,−1, 0, 1, 0, 0, 1, 2, 0, · · · , 0). In addition, Scenario IV represents a ran-

domized trial setting, and the three treatment options are equally likely to be as-

signed.

We used the following models to generate outcomes:

- Scenario I: Y = 1+Xγ1+βA1A+AXβ1+ ǫ, with γ1 = (1, 1, 06,−1,−1, 0p−10),
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βA1 = 0.2, β1 = (0, 0, 1, 1, 1, 0p−5).

- Scenario II: Y = 1 + sin(X)γ1 + βA1A+ A sin(X)β1 + ǫ.

- Scenario III & IV: Y = 1+0.25(1+Xγ3)
2+βA3I(A = 1)+βA4I(A = 2)+(X−

1)2β31 · I(A = 1) + sin(X)β32 · I(A = 2) + ǫ, with γ3 = (1, 1, 0,−1, 05, 1, 0p−10),

β31 = (1, 07,−1, 2, 0p−10), βA3 = βA4 = 0.1 and β32 = (2, 1, 06, 1,−2, 0p−10).

In all four scenarios, the noise ǫ is normally distributed with mean 0 and variance

0.25. Scenarios I and II have three interaction variables X3, X4, X5, and Scenarios III

and IV have four interaction variables X1, X2, X9 and X10. Besides, strong heredity

constraint does not fully hold in any scenarios considered above. We replicated the

simulation 500 times with sample size n = 400 and p = 1000.

We compared our proposed method with four competing methods: the S-Score method

(Gunter et al., 2011), forward minimal misclassification error rate (ForMMER, Zhang

et al., 2018a), sequential advantage selection (SAS, Fan et al., 2016) and penalized

A-learning (PAL, Shi et al., 2018). The contrast function in ForMMER was imple-

mented using augmented inverse probability weighted estimator (AIPWE), and the

tuning parameter, α was set to be 0.05. Moreover, in order to model the conditional

outcome regression for AIPWE, we adopted the same AIC-based forward selection

approach as in Zhang et al. (2018a). These four methods were proposed for binary

treatment, and it is not trivial to generalize to treatments with more than two levels.

Thus for illustrative purpose, in Scenarios III and IV, we took a naive one-against-all

approach as a workaround: in each case, A = 1 vs. (2,3), A = 2 vs. (1,3) and

A = 3 vs. (1,2), a separate selection procedure was executed to identify prescriptive

variables. Moreover, we set the final selected variables as the union of prescriptive

variables identified in the three regimes.

We evaluated the variable selection performance using two metrics: size and TP (true
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positive). Size is the number of selected interaction variables, and TP is the number

of selected correct interaction variables. The results of the Scenarios I and II are

summarized in Table 4.1 below. In both scenarios, our proposed SpAS has stable and

outstanding performance in terms of reasonable sizes and high TPs. S-Score tends to

be conservative in terms that both methods select a small number of interactions. In

Scenario I where the correct underlying model is linear, ForMMER performs well in

terms of massive TPs. In particular, when baseline variables are weakly correlated,

ForMMER can correctly identify all the interactions in every replication. The reason

is that the AIPW estimator in ForMMER is correctly specified and therefore, the

estimated contrasts approximate the truth well. Similar to SpAS, SAS also involves

fitting conditional outcome regression models; however, SAS has much lower TPs

compared to SpAS. The reason is that SAS fits a sequence of regression models by

including one covariate at a time. Compared to the simultaneous model fitting and

variable selection in SpAS, this approach is more vulnerable to confounding effects

that are yet to be included. Also, highly correlated baseline covariates do not affect

the performance of SpAS. In Scenario II, the data generating model is non-linear, and

the working models in all competing methods are misspecified. This has a detrimental

effect on their performance. On the other hand, SpAS is still able to deliver reliable

selection results.

Table 4.2 summarizes results from Scenarios III and IV, where the outcome models

are non-linear. Note the competing methods are not directly applicable and are

included for illustrative purpose. Therefore we only demonstrated the comparison

when baseline covariates are weakly correlated. In both scenarios, SAS, ForMMER,

and S-Score all tend to over-select the interaction variables. The sizes selected by PAL

differ a lot between the two scenarios. It is worth noting that in Scenario IV, where the

treatments are randomly assigned, the competing methods have undesirable results in

terms of excessively large sizes and small TPs using the one-against-all workaround.
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Table 4.1: Simulation results for single-stage Scenarios I and II based on 500 replica-
tions. Size: number of interactions selected; TP: number of true interac-
tions selected.

Weak Correlation

(ρ = 0.2)

Strong Correlation

(ρ = 0.8)

Methods Size TP Size TP

Scenario I

S-Score 1.03 (0.45) 0.84 (0.49) 1.28 (0.52) 0.69 (0.53)

ForMMER 8.72 (1.81) 3.00 (0.00) 8.67 (2.02) 2.82 (0.44)

SAS 5.09 (3.29) 2.13 (1.36) 4.03 (6.88) 1.55 (0.55)

PAL 1.44 (0.57) 1.43 (0.58) 1.10 (0.30) 1.09 (0.30)

SpAS 4.35 (0.55) 2.95 (0.33) 4.36 (0.72) 2.88 (0.34)

Scenario II

S-Score 0.87 (0.67) 0.56 (0.56) 1.17 (0.40) 0.81 (0.42)

ForMMER 2.30 (2.79) 1.21 (0.90) 4.88 (2.76) 1.24 (0.56)

SAS 0.41 (3.26) 0.13 (0.58) 3.50 (7.59) 1.39 (0.52)

PAL 1.36 (0.84) 1.11 (0.49) 1.35 (0.82) 0.97 (0.45)

SpAS 4.12 (0.72) 2.86 (0.64) 4.26 (0.65) 2.81 (0.62)

Even though in this scenario, the propensity model is guaranteed to be consistent,

the compromised performance of PAL and ForMMER could be due to the failure to

well approximate propensity scores with a large number of covariates. The proposed

SpAS results in reasonable sizes and decent TPs in both scenarios, without fitting

the model multiple times.

4.3.2 Two-stage Scenarios

We illustrated the multi-stage decision making performance of the proposed method

with two-stage Scenarios V and VI. The two scenarios have confounding variables

at both stages. The baseline variables X1 = (X1,1, · · · , X1,p1) were generated from

the same multivariate normal distribution as in Section 4.3.1. To get meaningful

comparison results, we considered binary treatments at both stages in Scenarios V

and VI. The first stage treatment A1 = 1 if X1,1 +X1,2 > 1 or X1,9 +X1,10 < 0. The

intermediate covariates collected at stage two is denoted as X2 = (X2,1, · · · , X2,p2).
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Table 4.2: Simulation results for single-stage Scenarios III and IV based on 500 repli-
cations with ρ = 0.2. The methods S-Score, ForMMER, SAS and PAL are
implemented using one-versus-all approach. Size: number of interactions
selected; TP: number of true interactions selected.

size TP

Scenario III

S-Score 51.2 (38.63) 2.24 (0.53)

ForMMER 13.74 (2.91) 3.33 (0.70)

SAS 21.22 (5.94) 3.96 (0.20)

PAL 4.72 (2.50) 2.39 (0.57)

SpAS 5.15 (1.57) 3.75 (0.41)

Scenario IV

S-Score 19.12 (42.99) 2.00 (0.54)

ForMMER 11.85 (2.40) 2.70 (0.80)

SAS 45.15 (6.15) 3.35 (0.54)

PAL 15.00 (5.43) 2.95 (0.62)

SpAS 8.37 (2.67) 3.70 (0.80)

We let p2 = 5 and X2 = 0.5 · (X1,11, · · · , X1,15)+ ǫ2, where ǫ2 ∼ N(0, 0.25). The stage

two treatment A2 = 1 if X2,3 +X2,4 < 0 or X2,1 +X2,2 < −1.

We generated the outcomes observed at the end of stage two from the following

mechanisms:

- Scenario V: Y = X1γ5,1 +X2γ5,2 + βA1A2A1A2 + A2(a2 +X2β5,2) + A1(a1 +

X1β5,1)+ ǫ, with γ5,1 = (1, 0p1−1), γ5,2 = (1, 0p2−1), βA1A2 = 4, a1 = 1, a2 = 0.5,

β5,1 = (1.55, 0p1−5), β5,2 = −2p2 .

- Scenario VI: Y = sin(X1)γ5,1+sin(X2)γ5,2+βA1A2A1A2+A2{a2+cos(X2)β5,2}+

A1{a1 + sin(X1)β5,1}+ ǫ.

The noise ǫ is normally distributed with mean 0 and variance 0.25. In Scenario

V, it is easy to see the optimal regime at the second stage is gopt2 (X1, A1,X2) =

I(βA1A2A1 + a2 +X2β5,2 > 0) and therefore is determined by six variables (A1,X2).
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At stage one, the Q-function is

Q1(X1, A1) =E{X2γ5,2 + Aopt
2 (βA1A2A1 + a2 +X2β5,2)|X1, A1}+X1γ5,1

+ A1(a1 +X1β5,1)

=E{(βA1A2A1 + a2 +X2β5,2)+|X1, A1}+ Ω(X1, A1)

=σ2
1√
2π

exp

{
− µ2

1

2σ2
2

}
+ µ1[1− Φ(−µ1

σ2
)] + Ω(X1, A1)

(4.5)

where Ω(X1, A1) = E(X2γ5,2|X1, A1)+X1γ5,1+A1(a1+X1β5,1), and µ1 = βA1A2A1+

a2 + 0.5 · (X1,11, · · · , X1,15). The optimal regime at stage 1 is then gopt1 (X1) =

I{Q1(X1, 1) > Q1(X1, 0)}, and involves ten important variables (X1, · · · , X5, X11, · · · ,

X15). Note the interactions between A1 and (X1,11, · · · , X1,15) is induced by µ1, i.e.,

by assuming to follow optimal regime at stage 2. Hereafter we refer to these variables

as Q-interactions, which stand for interactions that arise from backward induction.

Following similar argument, Scenario VI has the same important interactions at both

stages.

Each Scenario was simulated 500 times with sample size n = 400 and p1 = 500.

Because S-Score was only proposed in the single-stage scenario, therefore we compared

the proposed method with ForMMER, SAS, and PAL. The results are summarized

in Table 4.3. In Scenario V, ForMMER has decent performance at stage 2 when

baseline covariates are weakly correlated; increasing correlation coefficient will result

in a drop of TP. Similar to the single-stage scenario, PAL tends to be conservative

and under-selects variables. At stage 1, all competing methods perform poorly, and

none of them (except for ForMMER in Scenario V, ρ = 0.2) have TPs fairly close

to the truth. This is due to the small magnitude of Q-interactions in the stage 1

Q-function (4.5), i.e., interactions between A1 and (X1,11, · · · , X1,15). As an empirical

verification, the column TP(µ1) in Table 4.3 suggests the competing methods are

highly unlikely to identify any Q-interactions. SpAS has an outstanding performance
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Table 4.3: Simulation Results in Two Stage Scenarios V and VI. Size: number of
interactions selected; TP: number of true interactions selected; TP (µ1):
number of true interactions between A1 and (X1,11, · · · , X1,15) selected.

Stage 2 Stage 1

Size TP Size TP TP (µ1)

Scenario V, ρ = 0.2

ForMMER 9.26 (2.08) 4.11 (1.16) 5.16 (3.70) 2.69 (1.59) 0.12 (0.35)

SAS 5.14 (1.67) 2.96 (1.08) 14.51 (3.37) 5.05 (0.67) 0.28 (0.48)

PAL 5.48 (3.18) 1.68 (0.92) 6.20 (2.49) 3.58 (0.98) 0.06 (0.23)

SpAS 8.48 (1.28) 5.65 (1.01) 10.80 (1.55) 7.75 (1.76) 2.85 (0.83)

Scenario VI, ρ = 0.2

ForMMER 2.86 (0.91) 1.19 (0.64) 9.12 (1.65) 4.84 (0.58) 0.08 (0.27)

SAS 0.00 (0.00) 0.00 (0.00) 9.73 (11.88) 0.23 (0.63) 0.09 (0.32)

PAL 0.00 (0.00) 0.00 (0.00) 8.87 (3.44) 2.22 (0.98) 0.07 (0.26)

SpAS 7.95 (1.28) 5.79 (0.96) 11.21 (2.44) 8.01 (1.53) 2.87 (1.06)

Scenario V, ρ = 0.8

ForMMER 7.71 (1.73) 3.06 (0.62) 6.79 (1.73) 2.53 (0.87) 0.38 (0.51)

SAS 4.32 (1.07) 1.90 (0.46) 4.73 (1.46) 3.62 (0.74) 0.91 (0.43)

PAL 3.93 (2.85) 0.73 (0.70) 2.74 (0.75) 2.68 (0.70) 0.00 (0.00)

SpAS 8.68 (1.66) 5.70 (1.34) 12.37 (3.44) 7.66 (1.28) 2.69 (1.16)

Scenario VI, ρ = 0.8

ForMMER 4.27 (1.38) 1.63 (0.57) 7.65 (1.79) 2.90 (0.80) 0.11 (0.33)

SAS 0.09 (0.34) 0.07 (0.25) 8.19 (11.78) 0.45 (0.95) 0.14 (0.38)

PAL 0.00 (0.00) 0.00 (0.00) 3.90 (1.94) 2.20 (0.79) 0.02 (0.19)

SpAS 8.27 (1.32) 5.86 (1.09) 12.87 (3.44) 7.82 (1.31) 2.63 (1.21)

in stage 2. It also has much better TP and TP(µ1) compared to other methods. Also,

SpAS tends to result in slightly larger sizes.

In Scenario VI, similar trends are observed. SpAS has stable performance when the

data generating a model is non-linear, while all competing methods perform poorly

even in stage 2. In stage 1, the three competing methods perform better than they

do in stage 2. This could be due to the larger magnitude of interactions between

A1 and (X1, · · · , X5). TP(µ1) indicates the competing methods still fail to select the

Q-interactions.
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4.4 Application

We applied the proposed method to a hepatocellular carcinoma (HCC) dataset of

227 patients collected at the VA Ann Arbor Healthcare System between January

2006 and December 2013. The median follows up for this cohort is 353 days. Patient

pre-treatment objective clinical/tumor information was collected and summarized

in Table 4.4 below. Besides, 2540 body factor biomarkers were calculated using

analytic morphomics technique from pretreatment CT studies to assess patient body

composition, such as body dimensions, visceral fat, and muscle mass. Patients were

excluded if they lacked CT imaging before HCC-directed treatment, or had technical

issues with CT imaging precluding analytic morphomics.

Table 4.4: Patient Demographics in HCC Study

Age: Median (IQR) 61 (57, 66)

Race (% Caucasian) 95 (41.9%)

Etiology

Hepatitis C 167 (73.6%)

Alcohol-induced 16 (7.0%)

NASH/cryptogenic 12 (5.3%)

Multifocal HCC 110 (48.5%)

Child pugh class

A 130 (57.3)

B 70 (30.8)

C 27 (11.9)

MELD Score 9.0 (8.0, 12.0)

ECOG performance status 1.0 (0.0, 2.0)

TNM stage (I/II/III/IV) 97/49/59/22

Treatment

Resection 25 (11.1%)

TACE 83 (36.7%)

Other 118 (52.2%)

In this application, we considered three types of intervention: resection, transarte-

rial chemoembolization (TACE), and others. Besides, there are one-third censored

observations in this dataset. For illustration purpose, we imputed these censored
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observations using a one-step approach as part of recursively imputed survival tree

algorithm (RIST, Zhu and Kosorok , 2012). Missing covariates were imputed using

hot deck imputation (Little and Rubin, 2019).

It is of interest to learn an optimal treatment rule which maximizes expected sur-

vival time by combining routine clinical information with the analytic morphomics

biomarkers; however, the limited sample size, high-dimensionality, and three-level

treatment impose challenges, and none of existing methods mentioned before can

be applied. Thus it is more realistic to conduct early-stage exploratory analyses;

one option is to identify variables that might determine optimal treatment strategy.

Therefore we analyzed this data using the proposed SpAS method to identify the

predictive and potentially prescriptive variables. We searched for tuning parameters

over a two-dimensional grid. We identified 18 main effects and 17 interaction vari-

ables. The selected variables are summarized in Table 4.5 below. The presence of a

multifocal tumor is the only prognostic variable that was not identified as a treatment

effect modifier. Besides, all clinical factors and one morphomics biomarker represent-

ing muscle measurement have been reported to be prognostic (Singal et al., 2016;

Parikh et al., 2018). Therefore, 15 new markers were identified as potential tailoring

variables, and many of them are measurements for body dimension. In addition, we

further fixed the ratio between the two tuning parameters, λ1 and λ2 to 1.5 and calcu-

lated the regularization path, as shown in Figure 4.4. Regularization path plots can

provide insight into the relative variable importance, and have important applications

in medical science. For example, sometimes, it is preferred to reduce the number of

variables being considered or collected to a certain level due to budget concern. In

such cases, the regularization path can help the investigators determine how many

and what variables to include in further research.
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Table 4.5: The variable selection results for HCC data.

Variable name
Type of

measurement
Interaction

Previously

reported
Description

SPLEENMINBBOXZ BY VISCERALFATAREA Organ Yes No The spleen size divided by the area of fat-intensity pixels in the
visceral cavity

VISCERALFATHU BY MEANPORTALVEINHU Fat Yes No Median fat pixel intensity inside the visceral cavity divided by
average HU value on the portal vein

FASCIACIRCUMFERENCE BY VBSLABHEIGHT Body dimension Yes No Circumference of fascia perimeter divided by Height of the body
slab for this vertebra

PSPVOLOFVB BY VB2FASCIA Muscle Yes Yes Volume of the dorsal muscle group divided by the distance between
the vertebra to the facial envelope

PSPVOLOFVB BY TOTALBODYAREA Muscle Yes No Volume of the dorsal muscle group divided by total body area

VISCERALFATHU BY SUBCUTFATHU Fat Yes No The ratio of median fat pixel intensities between visceral cavity
and subcutaneous region

VISCERALFATHU NORMALIZED Fat Yes No Normalized median fat pixel intensity inside the visceral cavity

DIST INFANTPT2SUPANTPT Body dimension Yes No Height of the vertebral body at anterior aspect

VBSLABHEIGHT Body dimension Yes No Height of the body slab for this vertebra

VB2FRONTSKIN BY FASCIACIRCUMFERENCE Body dimension Yes No Distance from the vertebral body to the front skin divided by
circumference of fascia perimeter

SPLEENMINBBOXZ BY BODYWIDTH Organ Yes No The spleen size divided by the body width

VB2FRONTSKIN BY FASCIAAREA Body dimension Yes No Distance from the vertebral body to the front skin divided by area
of the visceral cavity

FASCIAAREA BY TOTALBODYCIRCUMFERENCE Body dimension Yes No Area of the visceral cavity divided by total body circumference

SPLEENMINBBOXZ BY VBSLABHEIGHT Organ Yes No The spleen size divided by the height of the body slab for this
vertebra

Multifocal Clinical factor No Yes Presence of multifocal tumor

Albumin Clinical factor Yes Yes Albumin

Child pugh class Clinical factor Yes Yes Child pugh class

TNM Stage Clinical factor Yes Yes TNM stage
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Figure 4.1: The regularization path calculated for HCC data. The ratio between the
two tuning parameters is fixed at λ1/λ2 = 1.5.

4.5 Discussion

Estimating optimal dynamic treatment regimes with large observational data has re-

cently started to draw attention in the statistics community. However, most existing

variable selection methods in estimating optimal DTRs, if not all, can only allow

randomized trial data and binary treatments. In this chapter, we proposed SpAS

for identifying predictive and potentially prescriptive variables in multi-stage, multi-

treatment settings using observational data. At each stage, we fit a sparse additive

model which requires little effort for model specification. Furthermore, the proposed

method improves the interpretability and plausibility of fitted models by enforcing

strong heredity constraint, i.e., an interaction can only be included if both corre-

sponding main effects have already entered the model. Besides, the proposed method

explicitly identifies predictive variables. As pointed out by Shortreed and Ertefaie

(2017), these variables can be used to refine propensity score models to account for
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confounding bias while maintaining statistical efficiency. Thus the selected predictive

variables can improve the quality of estimated dynamic treatment regime.

Qian and Murphy (2011) studied the mismatch between minimizing squared error

loss when fitting outcome regression models and maximizing the mean counterfactual

outcome when learning the optimal treatment regimes. In response, recently, there

has been a surge of direct methods for estimating optimal DTRs. Likewise, in this

area, all existing variable selection methods directly target at optimizing the mean

counterfactual outcome based on models for contrast in outcome regression between

two treatment levels. Such a strategy does not solve the challenge of how to construct

working models, especially when p ≫ n. Nevertheless, these methods are restricted

to binary treatment by their nature. On the contrary, our proposed method is ap-

pealing in terms that it allows multi-level treatments and continuous doses, as well

as observational data.

It is still worth noting that SpAS selects treatment effect modifiers, which are not nec-

essarily tailoring variables. Therefore the proposed method would result in a larger

set of variables. However, once the number of selected variables becomes manageable,

domain experts can help further narrow down the variable list to improve the quality

of estimated DTRs and/or to achieve cost-effectiveness. In addition, choosing the

optimal tuning parameter is crucial. The proposed method uses the high-dimensional

BIC for model tuning; however, this criterion was not specifically proposed for our

purpose. It is of both theoretical and practical interest to further study the perfor-

mance of available metrics or to develop new metrics for parameter tuning in variable

selection for estimating optimal DTRs.
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CHAPTER V

Summary and Future Work

In this dissertation, we have explored some flexible modeling strategies for coarsened

data problems including nonparametric kernel regression when the outcome is missing

at random (MAR) and estimating interpretable optimal dynamic treatment regimes

using observational data. The overarching goal is to develop flexible, easy-to-use

statistical methods while improving model robustness.

The MRKEE method proposed in Chapter II is an essential addition to the literature

of multiple robustness. It achieves consistency when any one of missing mechanism

or conditional outcome regression models is known or can be correctly specified, thus

provides more protection against working model misspecification. MRKEE also has

great potential in applications such as flexible dose-response modeling when data are

subject to missingness, which is often the case in radiation oncology. Chapter III and

IV studied the role of nonparametric machine learning methods in estimating opti-

mal dynamic treatment regimes using observational data. The use of such powerful

tools further relaxes model assumptions and requires minimal guesswork in model

specification. The ST-RL method proposed in Chapter III estimates optimal DTRs

as a sequence of decision trees, one per stage, and thus are interpretable to clinicians

and human experts. It also scales well to a moderately large number of covariates.

Chapter III contributes to theory development regarding the finite sample bounds
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when using non-greedy tree search algorithm for estimating optimal DTRs. The

variable selection method proposed in Chapter IV can identify potential predictive

and prescriptive variables when more than two treatment options are available using

observational data.

Some extensions can further enhance the versatility of nonparametric regression in

the presence of missing data. First of all, it is of interest to extend MRKEE to allow

multiple predictors as this is often the case in practice. It is also vital to extend

MRKEE to accommodate other common types of outcomes, such as binary, time-to-

event, and longitudinal data.

One important future research direction of ST-RL is to allow continuous treatment,

such as radiation doses. Although there has been some exploration of optimal dosing

strategy (e.g., Laber and Zhao, 2015; Chen et al., 2016), existing methods are com-

putationally demanding and lacking satisfactory empirical performance. Therefore it

is still of great interest to develop dynamic treatment regimes for multi-stage dose

optimization. Furthermore, the time-to-event outcome is often of interest in clinical

studies. The statistics community only recently started to focus on optimal DTR esti-

mation using survival data (e.g., Jiang et al., 2017; Hager et al., 2018; Simoneau et al.,

2019). Extending our tree-based method to survival outcome can greatly improve the

interpretability of estimated DTRs.

In high-dimensional setting, especially p ≫ n, we explored the variable selection

method in Chapter V to facilitate the construction of optimal DTRs. Similar to

ST-RL, the extension to accommodate survival outcome is also of great importance.

Another important research direction is to further relax the additivity assumption by

considering a more flexible regression framework.
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APPENDIX A

Proofs for Chapter II

Lemma 1.1. When π1(ν1) is the correctly specified model for Pr(R = 1|Z,U) and

ν1
0 is the true parameter value, we have

√
nhλ̂ = (nh)1/2M−1 1

n

n∑

i=1

{
Ri − π1

i (ν
1
0)

π1
i (ν

1
0)

gi(ν∗,α∗,γ∗)

}
+ op(1).

where M is given by (2.12) and g(ν∗,α∗,γ∗) is given by (2.11).

Proof of Lemma. We first show that the asymptotic distribution of λ̂ stays the

same whether π1
0 is known or can be estimated consistently at

√
n-rate, i.e.

√
n(ν̂1−

ν1
0) = Op(1). Suppose, under some regularity conditions, ∂θ̂MR{z; π(ν1)}/∂ν1T is

bounded in a neighborhood of ν1
0, i.e.,

∂θ̂MR{z; π(ν1)}/∂ν1T|ν1∈N (ν1
0)
= Op(1),
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where N (ν1
0)⊃{ν1 : ||ν1 − ν1

0||< ||ν̂1 − ν1
0||}. We have

√
nh[θ̂MR{z; π(ν̂1)} − θ(z)]

=
√
nh[θ̂MR{z; π(ν̂1)} − θ̂MR{z; π(ν1

0)}] +
√
nh[θ̂MR{z; π(ν1

0)} − θ(z)]

=
√
h

[
∂θ̂MR{z; π(ν1)}

∂ν1T
|ν1∗

]
√
n(ν̂1 − ν1

0) +
√
nh[θ̂MR{z; π(ν1

0)} − θ(z)] (A.1)

for some ν1∗ ∈ {ν1 : ||ν1 − ν1
0||< ||ν̂1 − ν1

0||}. Note
√
n(ν̂1 − ν1

0) = Op(1),

∂θ̂MR {z; π(ν1)} /∂ν1T|ν1∗= Op(1), and h → 0 as n → ∞, the first term in (A.1)

is op(1). Therefore, the asymptotic distribution of θ̂MR{z; π(ν̂1)} when ν1 is esti-

mated consistently at
√
n-rate is the same as that of θ̂MR(z; π0) when π0 is known.

Similar argument shows that the asymptotic results remain the same if (ν̂, γ̂) is

replaced with its probability limit (ν∗, γ∗). Taking Taylor expansion of the left-hand

side of (2.9) around (0T,αT
∗ ) leads to

0 = (nh)1/2
1

n

n∑

i=1

Ri

π1
i (ν

1
0)
ĝi(ν∗,α∗,γ∗)−

{
1

n

n∑

i=1

Ri

π1
i (ν

1
0)

ĝi(ν∗,α∗,γ∗)
⊗2

π1
i (ν

1
0)

}
(nh)1/2λ̂

+

K∑

k=1




1

n

n∑

i=1

Ri

π1
i (ν

1
0)




0{J+2(k−1)}×2

∂ψ
k

i
(αk

∗
,γk

∗
)

∂αk − 1
n

∑n
h=1

∂ψ
k

h
(αk

∗
,γk

∗
)

∂αk

0{2(K−k)}×2







(nh)1/2(α̂k −αk
∗)

= (nh)1/2
1

n

n∑

i=1

Ri

π1
i (ν

1
0)
ĝi(ν∗,α∗,γ∗)− (nh)1/2Mλ̂+ op(1).

On the other hand, it is easy to check that

(nh)1/2
1

n

n∑

i=1

Ri

π1
i (ν

1
0)
ĝi(ν∗,α∗,γ∗) = (nh)1/2

1

n

n∑

i=1

Ri − π1
i (ν

1
0)

π1
i (ν

1
0)

gi(ν∗,α∗,γ∗) + op(1).

Then, solving for λ̂ from the above Taylor expansion gives the result.
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Proof of Theorem 2. From the previous proof, we can replace (ν̂, γ̂) estimated at

√
n-rate by its probability limit (ν∗,γ∗) without affecting the asymptotic distribution.

Since α̂MR satisfies

0 =

m∑

i=1

ŵiφi(α̂MR) =
1

m

n∑

i=1

RiΠ
1(ν̂1)/π1

i (ν̂
1)

1 + λ̂
T
ĝi(ν̂, α̂, γ̂)/π

1
i (ν̂

1)
φi(α̂MR),

we have

0 =
1

m

{
1

n

n∑

h=1

π1
h(ν

1
0)

}
(nh)1/2

n∑

i=1

Ri

π1
i (ν

1
0)
φi(α0)

− 1

m

{
1

n

n∑

h=1

π1
h(ν

1
0)

}{
n∑

i=1

Ri

π1
i (ν

1
0)
φi(α0)

ĝi(ν∗,α∗,γ∗)
T

π1
i (ν

1
0)

}
(nh)1/2λ̂

+
1

m

{
1

n

n∑

h=1

π1
h(ν

1
0)

}{
n∑

i=1

Ri

π1
i (ν

1
0)

∂φi(α0)

∂αT

}
(nh)1/2(α̂MR −α0) + op(1)

=
√
n
1

n

n∑

i=1

Ri

π1
i (ν

1
0)

√
hφi(α0)−

√
nLλ̂+ E

{
∂φ(α0)

∂αT

}
(nh)1/2(α̂MR −α0) + op(1)

=
1√
n

n∑

i=1

Qi(z) + E

{
∂φ(α0)

∂αT

}
(nh)1/2(α̂MR −α0) + op(1).

We suppress the denpendence of Qi(z) on z and denote it as Qi. We then have

0 =
1√
n

n∑

i=1

Qi + E

{
∂φ(α0)

∂αT

}
(nh)1/2(α̂MR −α0) + op(1).

Solving for
√
nh(α̂MR −α0) leads to

√
nh{α̂MR −α0} = −

[
E

{
∂φ(α0)

∂αT

}]−1
1√
n

n∑

i=1

Qi,

which gives WMR,π(z).
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The bias term can be derived as follows. We expand the derivative term:

E

{
∂φ(α0)

∂α

}
= E

[
Kh(Z − z)

{
µ(1)(z,α0)

}2
V −1(z,α0)G(Z − z)G(Z − z)T

]
+ op(1)

= −fZ(z)
(
µ(1){θ(z)}

)2
V −1{θ(z)}D(K) + op(1)

where D (K) is a 2 × 2 matrix with the (j, k)th element cj+k−2(K) × h(j+k−2), and

cr(K) =
∫
srK(s)ds.

Moreover, we rewrite 1√
n

∑n
i=1Qi =

√
nh · 1

n

∑n
i=1Qi/

√
h =
√
nh · (Q1n+Q2n−Q3n),

where

Q1n = n−1
n∑

i=1

Ri

π1
i0

Kh(Zi − z)µ(1)
i (z,α0)V

−1
i (z,α0)G(Zi − z) [Yi − µ{θ(Zi)}]

Q2n = n−1
n∑

i=1

Ri

π1
i0

Kh(Zi − z)µ(1)
i (z,α0)V

−1
i (z,α0)G(Zi − z)

[
µ{θ(Zi)} − µ{G(Zi − z)Tα0}

]

Q3n = n−1

n∑

i=1

Ri − π1
i0

π1
i0

LM−1gi(ν∗,α∗,γ∗).

It is easily seen that when π1(ν1) is correctly specified, Q1n and Q3n are asymptot-

ically normal with mean zero. Therefore, Q2n is the leading bias term, and under

MAR we have bias {Q2n} =

E
{
Kh(Z − z)µ(1)(z,α0)V

−1(z,α0)
[
µ {θ(Z)} − µ

{
G(Z − z)Tα0

}]
G(Z − z)

}
+ op(1)

=
1

2
θ′′(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}fZ(z)H(K) + o(h2),

where H(K) is a 2× 1 vector with the kth element ck+1(K)× h(k+1). Note that the

variance of Q2n is of order o(1/nh), and hence can be ignored asymptotically.
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Proof of Theorem 3. Write

H =
R

π1(ν1
0)

√
hφ(α0), A =

R

π1(ν1
0)
g(ν∗,α∗,γ∗).

It is easy to check that L = E(HAT) andM = E(A⊗2). Now P contains a correctly

specified model for P (R = 1|Z,U) (denoted as π1(ν1
0)). When A contains a correctly

specified model for E(Y |Z,U) (denoted as a1(γ1
0)), E{

√
hφ(α0)|Z,U} is a component

of g(ν∗,α∗,γ∗), and thus E{
√
hφ(α0)|Z,U}R/π1(ν1

0) is in the linear space spanned

by A. Since

E

([
H − R

π1(ν1
0)
E{
√
hφ(α0)|Z,U}

]{
R

π1(ν1
0)
f(Z,U)

})
= 0

for any function f(Z,U) and all components of g(ν∗,α∗,γ∗) are functions of Z and

U only, we have that

LM−1A = E(HAT){E(A⊗2)}−1A =
R

π1(ν1
0)
E{
√
hφ(α0)|Z,U}.

This fact yields that LTM−1g(ν∗,α∗,γ∗) = E{
√
hφ(α0)|Z,U}, and thus

Q =
R

π1(ν1
0)

√
hφ(α0)−

R− π1(ν1
0)

π1(ν1
0)

E{
√
hφ(α0)|Z,U}.

Similar to previous proof, we write 1√
n

∑n
i=1Qi =

√
nh · 1

n

∑n
i=1Qi/

√
h =

√
nh ·

(Q1n +Q2n −Q3n), where Q1n is the same as in the previous proof, and

Q2n = n−1
n∑

i=1

{ Ri

π1
i (ν

1
0)
−1}Kh(Zi−z)µ(1)

i (z,α0)V
−1
i (z,α0)

[
a1i (γ

1
0)− µ{θ(Zi)}

]
G(Zi−z),

and

Q3n = n−1
n∑

i=1

Kh(Zi−z)µ(1)
i (z,α0)V

−1
i (z,α0)

[
µ{θ(Zi)} − µ{G(Zi − z)Tα0}

]
G(Zi−z).
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It is easily seen that Q1n and Q2n have mean 0. The third term Q3n is the leading

bias term, and simple calculations show that E [Q3n] is equal to (A.2). It follows that

bias{α̂MR(z)} =
1

2
h2θ′′(z)c2(K) + o(h2).

Note that the variance of Q3n is of order o(1/nh), and hence can be ignored asymp-

totically. When both P and A contain a correctly specified model, Q1n + Q2n is

asymptotically normal with mean 0 and variance

Var {Q1n +Q2n} =
1

n
Var

{
Q1,2

}
,

where

Q1,2 = Kh(Z − z)µ(1)(z,α0)V
−1(z,α0)G(Z − z)

×
(

R

π1(ν1
0)

[Y − µ{θ(Z)}]−
{

R

π1(ν1
0)
− 1

}[
a1(γ1

0)− µ{θ(Z)}
])

Further calculation shows that n−1Var
{
Q1,2

}
equals

1

n
E

[
K2

h(Z − z)
{
µ(1)(z,α0)

}2
V −2(z,α0)G(Z − z)G(Z − z)T

×
(

R

π1(ν1
0)

[Y − µ{θ(Z)}]−
{

R

π1(ν1
0)
− 1

}[
a1(γ1

0)− µ{θ(Z)}
])2
]
,

which can be simplified as

1

nh
fZ(z)

[
µ(1){θ(z)}

]2
V −2{θ(z)}E

[
Var(Y |Z,U)

π0(Z,U)

+ [E(Y |Z,U)− µ{θ(Z)}]2
∣∣Z = z

]
D(K2) + o(

1

nh
)
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Summarizing all these results gives Theorem 3.
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APPENDIX B

Proofs for Chapter III

Proof of Theorem 3.1. Let us consider one-stage case for now. Our proof is a

direct extension of Rockova and van der Pas (2017) (refer to as RP17 hereafter).

Since we stochastically search optimal regime using Bayesian CART algorithm, it

is sufficient to prove that Pr(s & nd0
H
/2α+d0

H |H, Âopt) → 0, where d0
H

is the number

of signal variables in the true tree-structured regime that assigns patients to Âopt.

The sieve Fn, consisting of step functions over small trees that split only on a few

variables, can be constructed for given n ∈ N consisting of step functions over small

trees (sn) that split only on a few (qn) variables using the same way as in RP17:

Fn =

qn⋃

q=0

sn⋃

s=1

⋃

H:dH=q

F(Vs
H
),

where |dH| is the number of variables in H that actually determine the decision rules,

and Vs
H

denotes a family of valid tree partitions with s leaves based on H variables.

The set of step functions supported by Vs
H

is then defined as

F(Vs
H
) =

{
fT ,β : [0, 1]p → (1, · · · , K); fT ,β(H) =

s∑

l=1

βlIΩl
(H); T ∈ Vs

H
,β ∈ (1, · · · , K)s

}
.
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Denote the conditional probabilities (η1,···,K) = Pr(Âopt = 1, · · · , K|H), and (η∗1,···,K)

denotes the conditional probabilities under true data generating process. Define met-

ric d(f, f ∗) =
√∑K

k=1||ηk − η∗k||2n. Therefore for sets Fn ⊂ F , we want to show

Π(F \ Fn) = o(e−(δ+2)nǫ2n), where sequence ǫ2n → 0 and nǫ2n is bounded away from 0,

and δ > 0 satisfies

sup
ǫn>ǫ

logN(ǫ/36, {f ∈ Fn : d(f, f ∗) < ǫn}, d(·, ·)) ≤ nǫ2n, (B.1)

Π(f ∈ Fn : d(f, f ∗) ≤ ǫn) ≥ e−δnǫ2n . (B.2)

The ǫ-covering numbers of the set {f : d(f, f ∗) ≤ ǫ} for d(·, ·) is bounded by the

ǫ
√
n/C̄-covering numbers of a Euclidean ball {η ∈ [0, 1]s×K = (η1,···,K) ∈ [0, 1]s :

√∑K
k=1||ηk − η∗

k|||22 ≤ ǫ
√
n/C̄}. The tree size and variable dimensions that define

the sieve can be selected as qn = ⌈Cmin{dH, nq0/(2α+q0) log2β n/log(p∨n)}⌉ and sn =

⌊C ′nǫ2n/logn⌋ ≍ nq0/(2α+q0) log2β−1 n.

It can be seen that Π(F \ Fn) < Π(s > sn) + Π(q > qn). Using the same arguments

as in Section 8.3 of RP17 completes the proof by showing Π(s > sn) ≍ o(e−(δ+2)nǫ2n)

and Π(s > sn) ≍ o(e−(δ+2)nǫ2n).

The proof of Theorem 3.2 requires several ancillary results shown below.

The following lemma is a modified version of Theorem 7.1 in Rockova and van der

Pas (2017), which provides the finite sample bound of BART. Note the convergence

is evaluated for Ê(Ỹ |A,H), not Q̂, and they are not equivalent except at the last

stage.

Proof. Since ||f̂ ||∞ and ||f0||∞ are bounded, we can verify ||f̂ − f0||42< ∞. Then by
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Bernstein’s inequality (Christmann and Steinwart , 2008), we have

Pr
(∣∣∣Pn||f̂ − f0||22−E||f̂ − f0||22

∣∣∣ & τ/n +
√
τ/n

)
≤ e−τ .

Moreover, under the assumptions, Rockova and van der Pas (2017) showed that with

probability approaching 1, ||f̂ − f0||n. n
− α

2α+dH log1/2 n. Therefore we plug in this

result, and

Pr
(
E||f̂ − f0||22& n

− 2α
2α+dH log n+ τ/n

)
≤ e−τ .

The following lemma establishes the convergence rate of Q̂t, t = 1, · · · , T .

Theorem 2.1. Suppose the assumptions in Section 3 hold, Pr
{
Pn(Ỹt − ˆ̃

Y t)
2 & τn−ζ

}
≤

e−τ , where ξ, ζ > 0, then it follows

Pr

(
E||Q̂t −Qt||22& n

− 2αt
2αt+dHt logn + τn−min(1,ζ)

)
≤ e−τ .

Proof. Recall Q̂t = Ê(
ˆ̃
Y t|At,Ht), and Qt = E(Ỹt|At,Ht). To facilitate the proof, we

denote Qn
t = E(

ˆ̃
Y t|At,Ht). Then we have

E||Q̂t −Qt||22≤ E||Q̂t −Qn
t ||22+E||Qn

t −Qt||22.

To bound the second term, define Zt ≡ ˆ̃
Y t−Ỹt, thus Qn

t −Qt = E(Zt|At,Ht). Consider

the regression model Zt = E(Zt|At,Ht)+ǫ. It can be seen ||Zt||22≥ ||E(Zt|At,Ht)||22−||ǫ||22
and ||ǫ||22= Op(1), then ||Qn

t − Qt||22. ||Zt||22. As a result, and again by Bernstein’s

inequality, E||Q̂t −Qt||22. E||Zt||22+E||f̂ − f0||22, and
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Pr

(
E||Q̂t −Qt||22& n

− 2αt
2αt+dHt log n+ τn−min(1,ζ)

)
≤ e−τ .

With these results, now we prove Theorem 3.2.

Proof of Theorem 3.2. For finite sample bound derivation, we assume the data are

bounded, i.e. there exist some B ∈ R
+ such that ||Y ||∞< B. We start from the

final stage T and omit the subscript notation for stage now. Using the triangular

inequality, we have

Pr(ĝopt 6= g∗opt) ≤
K∑

i=1

Pr(Âi 6= A∗
i ) + d(p̂,p∗). (B.3)

One can easily notice that

K∑

i=1

Pr(Âpi 6= A∗
pi
)

≤Pr
{

sup
p∈σ(T ),Ap 6=A∗

p

PnF̂ (p,Ap) ≥ PnF̂ (p
∗,A∗

p)

}

≤Pr
{

sup
p∈σ(T )

∣∣∣PnF̂ (p,Ap)− EF (p,Ap)
∣∣∣ ≥ τ/2

}
.

(B.4)

The second inequality holds because in assumptions we assume for arbitrarily small

τ , EF (p∗,A∗
p) ≥ supp∈σ(T ),Ap 6=A∗

p
EF (p,Ap) + τ .
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In order to bound this probability, we write

sup
p∈σ(T )

|Pn{F̂ (p,Ap)} − E{F (p,Ap)}|

≤ sup
p∈σ(T )

|Pn{F̂ (p,Ap)} − Pn{F (p,Ap)}|+ sup
p∈σ(T )

|Pn{F (p,Ap)} − E{F (p,Ap)}|.

The first term can then be bounded:

sup
p∈σ(T )

|Pn{F̂ (p,Ap)} − Pn{F (p,Ap)}|

≤ sup
p∈σ(T )

|Pn

Kt∑

a=1

[
Q̂t(a,Ht)−Qt(a,Ht)

] Kt∑

i=1

I(Ht ∈ pit)I(Ait = a)|

≤|Pn

K∑

i=1

[
Q̂(i,H)−Q(i,H)

]
|

≤
K∑

i=1

{
Pn

[
Q̂(i,H)−Q(i,H)

]2}1/2

.n− α
2α+p log1/2 n.

The second term can be bounded by the property of VC-class. Following the argu-

ments in Zhang et al. (2018b), we have

Pr

{
sup

p∈σ(T )

|Pn{F (p,Ap)} − E{F (p,Ap)}|& 1/
√
n+

√
τ/n

}
≤ e−τ

up to a constant determined by the VC index. Therefore, it follows that

Pr

{
sup

p∈σ(T )

∣∣∣PnF̂ (p,Ap)− EF (p,Ap)
∣∣∣ & n− α

2α+p log1/2 n

}
≤ e−τ , (B.5)

and consequently (B.4) becomes
∑K

i=1 Pr(Âpi 6= A∗
pi
) . exp(n

α
2α+p/log1/2 n).
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In order to bound d(p̂, p∗), we first look at

sup
p∈σ(T ),d(p,p∗)≤d

∣∣∣PnF̂ (p,A
∗)− EF (p,A∗)−

{
PnF̂ (p

∗,A∗)− EF (p∗,A∗)
}∣∣∣ (B.6)

≤ sup
p∈σ(T ),d(p,p∗)≤d

|PnF (p,A
∗)− EF (p,A∗)− {PnF (p

∗,A∗)− EF (p∗,A∗)}| (B.7)

+ sup
p∈σ(T ),d(p,p∗)≤d

∣∣∣PnF̂ (p,A)− PnF (p,A)−
{
PnF̂ (p

∗,A)− PnF (p
∗,A)

}∣∣∣ . (B.8)

The first term (B.7) (denoted as T6) can be bounded using VC class property. Again

by VC preservation theorem,

Fd =

{
K∑

i=1

Q(Api ,H)−Q(Ap∗i
,H)}I(H ∈ pi△ p∗i ) : p ∈ σ(T ), d(p, p∗) ≤ d

}

is also VC class. Also because ||f ||∞≤ 2B for ∀f ∈ Fd and V ar(f) ≤ Ef 2 ≤ dB2, by

concentration inequality we have

Pr

{
||Pnf − Ef ||∞&

[
d1/2 log1/2(1/d) + d1/2τ 1/2√

n
+

log(1/d) + τ

n

]}
≤ e−τ ,

and by applying log(1/d) . d−δ for ∀δ ∈ R
+,

Pr{T6 & d1/2−δ(n−1/2 + n−1/2τ 1/2) + d−δ(n−1 + n−1τ)} ≤ e−τ . (B.9)
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To bound the second term (B.8) (denoted as T7), we have

T7 ≤
∣∣∣∣∣Pn

{
K∑

i=1

{Q̂(Api,H)− Q̂(Ap∗i
,H)}I(H ∈ pi△ p∗i )

−
K∑

i=1

{Q(Api ,H)−Q(Ap∗i
,H)}I(H ∈ pi△ p∗i )

}∣∣∣∣∣

≤
∣∣∣∣∣Pn

{
K∑

i=1

{Q̂(Api,H)−Q(Api ,H)}I(H ∈ pi△ p∗i )

−
K∑

i=1

{Q̂(Ap∗i
,H)−Q(Ap∗i

,H)}I(H ∈ pi △ p∗i )

}∣∣∣∣∣ ,

where pi △ p∗i denotes the symmetric difference, equivalent to pi ∪ p∗i /pi ∩ p∗i . We

further let ǫ =
∑K

i=1[E{Q̂(Ap∗i
,H)−Q(Ap∗i

,H)}2]1/2. Now it follows

E

K∑

i=1

{Q̂(Ap∗i
,H)−Q(Ap∗i

,H)}I(H ∈ pi△ p∗i )

≤
K∑

i=1

E[{Q̂(Ap∗i
,H)−Q(Ap∗i

,H)}I(H ∈ pi△ p∗i )]

≤
K∑

i=1

[E{Q̂(Ap∗i
,H)−Q(Ap∗i

,H)}2]1/2[EI(H ∈ pi△ p∗i )]
1/2

≤d1/2ǫ.

As a result ET7 . d1/2ǫ. We further notice that its variance can be bounded by c′d.

Therefore, by concentration inequalities,

Pr{T7 & d1/2−δ(ǫ+ n−1/2 + n−1/2τ 1/2) + d−δ(n−1 + n−1τ)} ≤ e−τ .

Now we take a look at quantity (B.6), hereby denoted as T5:

Pr{T5 & n− α
2α+p log1/2 nτ} ≤ e−τ .
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By Lemma 18 in Zhang et al. (2018b), Pr{d(p̂,p∗) & τn−2/3 α
2α+p log1/2 n} ≤ e−τ .

Thus at stage T , we have Pr(ĝoptT 6= goptT ) . n
−2/3

αT
2αT +dHT log1/2 n . n−rT+ǫ, and

Pr(V (goptT )− V (ĝoptT ) & τn−rT+ǫ) ≤ e−τ .

For stage t = T − 1, we have Pr(||Ỹt − ˆ̃
Y t||n& τn−rT+ǫ) ≤ e−τ , then by Lemma 2.1,

one can easily get

Pr

(
E||Q̂t −Qt||22& n

− 2αt
2αt+dHt log n+ τn−2rT+ǫ

)
≤ e−τ ,

i.e. Pr
(
E||Q̂t −Qt||22& τn

−2min(
αt

2αt+dHt
,rT )+ǫ

)
≤ e−τ , i.e. the rate depends on the con-

vergence rate of BART assuming Ỹt is observed, and also depends on the convergence

rate carried over from previous stage estimations. Using similar arguments, we have

Pr(ĝoptt 6= goptt ) . n
−2/3min(

αt
2αt+dHt

,rT )
log1/2 n . n−rt+ǫ, and Pr(V (goptT ) − V (ĝoptT ) &

τn−rts+ǫ) ≤ e−τ .

Similarly, results can be obtained for all t.
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