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ABSTRACT

Fluorescence microscopy is a powerful technique for understanding the organization,

structure and dynamics of cells. Single-molecule imaging techniques extend our ability to

probe cellular systems down to a range of only a few tens of nanometers. Observing the

motion of single molecules inside living cells and tracking their behavior can give insight

into the native biochemical and biophysical environment of the molecule. If certain condi-

tions, such as the cell being in equilibrium, are met, we can relate the motion observed to

the functional role of the molecule. However, biological systems are complex and single-

molecule data can be noisy, so care must be taken when analyzing single-particle track-

ing data sets such that supervisory biases and other external constraints are not placed

on the analysis. There is a wealth of information hidden inside tracking data sets that

careful analysis can uncover, leading to more concrete conclusions and informing further

investigations.

In this Thesis, I present my work on expanding the scope and quality of single-particle

tracking analysis and, using this new method, present my investigations of the dynam-

ics involved in several complex biological questions in both prokaryotes and eukary-

otes. Traditional curve-�tting analysis methods for single-particle tracking data require

supervisory input and can su�er from parameter identi�ability issues. Chapter II pro-

poses a new analysis method for single-particle tracking data based on a nonparametric

Bayesian statistical framework that we call Single-Molecule Analysis by Unsupervised

Gibbs (SMAUG). The accuracy and precision of this method, as well as its ability to un-

cover the true dynamics, is investigated using realistic simulations and in vitro experimen-

x



tal systems. This new method increases the information available from tracking experi-

ments while not sacri�cing accuracy or precision, thus allowing for more rigorous conclu-

sions. In addition, this method is also applied to in vivo data from two relevant biological

systems and the analysis identi�es potential biological roles for the uncovered di�usive

states. Chapter 2 demonstrates a method for improving the scope of single-molecule anal-

ysis by introducing a new analysis framework that increases the information available.

Di�erential gene expression patterns are the basis of cellular biology. The markers that

modulate which genes are active and which are silenced are called epigenetic markers. The

dynamics involved in establishing, maintaining and removing these markers are not well

understood. In Chapter III, I use single-particle tracking and the SMAUG algorithm to

investigate the dynamics behind epigenetic silencing in a �ssion yeast model system and

uncover the hidden complexity of the system. I present the dynamics uncovered for the

key protein in the pathway, Swi6, in otherwise wild-type cells. This measurement resolves

four distinct biochemical states. Then, using targeted mutation studies, I investigate and

assign a biological role to each of the four identi�ed states, and I uncover the impact that

DNA compaction has upon the system. Overall, my application of single-particle tracking

and SMAUG analysis to this system provides an example of expanding the scope of single-

particle imaging techniques to complex systems and using the information obtained to

gain biological insight.

Bacterial virulence is a complex pathway that requires precise timing and organization

of the proteins involved to e�ect a response. In Chapter IV, I present my investigations

deeper into the dynamics of Vibrio cholerae bacterial virulence that was started in Chapter

II. Using single-particle tracking and SMAUG analysis I found three distinct biological

states for the keystone protein TcpP in otherwise wild-type cells. Based on mutations of

the protein sequence and other regions of the bacterial DNA, I present the biological roles

for the states uncovered and discuss future investigations into the system using more

mutation studies. The work in this chapter expands the scope of single-molecule imaging

xi



experiments by uncovering new information that can lead further developments against

bacterial virulence. The work presented in this Thesis will have broad impact on the �elds

of biophysics and cell biology by both expanding the scope and quality of the information

gathered of single-particle tracking experiments as well as by answering speci�c questions

about the dynamics of several biological pathways.

xii



CHAPTER I

Introduction

In this Thesis, I expand both the quantity and the quality of information that can

be gained from single-particle tracking (SPT) experiments by designing a new analysis

method free from supervisory biases and weak parameters. I then apply this method to

several outstanding questions in microbiology that require a deeper mathematical foun-

dation to answer. However, to fully grasp the details of this Thesis, I will use this chapter

to explain the necessary background information that will be needed in all other sections

of this work. As the work presented here is heavily reliant on super-resolution �uores-

cent imaging techniques, I will begin by discussing what �uorescence imaging is, and its

drawbacks, before moving onto how these limitations are overcome in super-resolution

imaging and how the information gathered from these experiments are typically analyzed

before �nally providing an outline for the subsequent chapters of the Thesis.

1.1 Fluorescence Microscopy

Cells are extremely small; bacterial cells are on the order of 1 to 3 microns in length

and eukaryotic cells are generally about ten times larger. Therefore, in order to study

these organisms, the ability to see and image them in high contrast and high resolution is

needed. Light microscopy has thus been an invaluable tool for cell biology. Unlike other

techniques with enough magni�cation to see inside cells, such as electron microscopy
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where the cells must be �xed and extensive sample preparation used, light microscopy

can be performed on cells while they are still alive and in a minimally invasive manner.

Live-cell light microscopy has been extremely useful for hundreds of years in e�orts such

as histology or bacterial cell sorting, both of which are based on the size and shape of

cells [1].

However, light microscopy is not without limitations. The 400-750 nm wavelength

range of visible light, as well as the low absorbance cross section of most biological sam-

ples, hinder light microscopy. While light microscopy is useful to determine size and shape

based on cellular boundaries, it is less useful in determining internal structure, especially

if the internal structure is small or low contrast. These limitations are also especially true

for bacteria which are both very thin and rather transparent. In fact, despite bacteria hav-

ing been imaged with light microscopy for hundreds of years, it was not until the early

1990s, with the publication of papers from Pogliano et al. [2] and Maddock and Shapiro [3],

that an internal structure for bacteria became widely accepted (Fig. 1.1).

The technique of �uorescence microscopy has been used to overcome these limi-

tations and has spurred investigations into the organization and dynamics of speci�c

biomolecules. This technique utilizes the phenomenon of �uorescence, where a �uoro-

phore absorbs a photon of a speci�c range of wavelengths (excitation spectrum) and

then emits a photon at a longer wavelength (emission spectrum) [4]. More speci�cally,

a molecule may absorb a photon of incident light and become excited and transition to a

higher energy state. That molecule will then lose some energy through vibrational relax-

ation, called internal conversion, to the lowest energy state of S1, a thermally equilibrated

excited state. In order to return to the ground state it may eject a photon of its own, but due

to the loss of energy through the vibrational modes that emitted photon will be of lower

energy and longer wavelength than the incoming one, a phenomena known as the Stokes’

Shift (Fig. 1.2A). By using dichroic �lters that are re�ective to the incident light and are

transparent to the emitted light, we can collect only the light that has been emitted from

2



A

B

C

Figure 1.1: OpticalMicroscopy. Optical microscopy allows direct imaging of living cells

but can hide inner structure. A: Phase-contrast image of the �ssion yeast Schizosaccha-
romyces pombe. B: Phase-contrast image of the bacteria Vibrio cholerae. C: Fluorescence

microscopy provides better contrast and the ability to label speci�c cellular components,

improving the ability to study cellular behavior. COS-1 cells stained for mitochondria

(red), actin (green) and the nucleus (blue). Image taken from the Nikon MicroscopyU

website at https://www.microscopyu.com/gallery-images/transformed-simian-virus-40-

african-green-monkey-kidney-�broblast-cells-cos-1-line-1. Scale bars: 2 µm

the sample, improving the contrast of the image. Originally many inorganic dyes were

used to label speci�c parts of a cell such as the DNA, the cytoskeleton or the membrane,

but with the discovery of Green Fluorescent Protein (GFP) [5] and concurrent advances in

molecular biology [6], a vast majority of proteins of interest could be attached to GFP and

become visible under proper illumination while the cell remains alive and active. Encoding

a �uorescent protein (FP) label into the genome has the added bene�t of maintaining the

native expressive levels and control of the protein. These advances have led �uorescence

microscopy to become an indispensable tool of cellular biology and an important aspect

of many studies on proteins and other biomolecules [7]. Since that discovery, a vast array

of FPs with di�ering properties have been characterized, allowing for multi-color label-

ing experiments on interactions between di�erent cellular structures/proteins providing

a more detailed picture into the complexity of cellular organization and processes [8].
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1.2 Super-Resolution Fluorescence Imaging

While �uorescence microscopy has been incredibly useful for helping to understand

the subcellular organization of cells, it too has limitations, chie�y that it cannot provide

information on any structure that is smaller than the di�raction limit of the emitted light.

The di�raction limit is the result of the fact that light has a wavelength. Thus an in�nitesi-

mally small emitter will appear larger when observed (Fig. 1.2B). This result was originally

discovered in the �eld of astronomy in the 1800s when Airy described stars appearing not

as points but as bright disks inside a telescope [9]. Many biological processes, such as DNA

replication, protein transcription or extra-cellular signalling, occur at length scales well

below this di�raction limit and thus remained hidden from investigation by microscopy

for decades. In addition bulk �uorescent measurements can mask the fast, rare or transient

interactions/events of biological processes behind ensemble averaging [10].

Today we describe this disk as the Point Spread Function (PSF) of the emitter, the result

of a mathematical convolution of the light from a point source with the lenses and mirrors

of a microscope. Two PSFs are considered resolveable if their separation, d, is greater than

that given by the equation:

d =
λ

2NA
(1.1)

where λ is the is the wavelength of the emission light and NA is the numerical aperture of

the objective. Most FPs and dyes work in the visible range of light (400-750 nm) and even

with modern oil-immersed objectives that are approaching the theoretical limit of NA =

1.5 the limits of a �uorescence image using visible light to a resolution in the range of 150-

250 nm. For example, using the most commonly used FP from my lab, PAmCherry [11],

which has an emission peak at 610 nm, and using our main objective, which has an NA

of 1.4, our resolution limit is roughly 220 nm in a bulk experiment.

Beating the di�raction limit was the result of several complementary events that came

together at roughly the same time. First, improvements in instrumentation allowed re-

4



searchers to reliably detect the emission from a single �uorophore [12, 13], experiments

which laid the groundwork that single-molecule detection was feasible. Further progres-

sion in instrumentation allows for single-molecule detection to be performed at room

temperature today using widely available experimental setups.

The signal PSF collected from a single molecule isolated in time and space is extremely

well approximated by a Gaussian function (Fig. 1.2 C). By �tting the intensity pro�le with

this function the center position of the emitter can be reliably determined to a precision

much smaller than the diameter of the PSF. Many studies can reliably reach resolutions

of ~20-30 nm, roughly an order of magnitude improvement over bulk methods (Fig. 1.2

D) [14]. However, this �tting method requires isolated emitters. Emitter spacing must be

such that any two PSFs do not overlap in time and space (a "sparse" density), a technical

detail which requires attention to sample preparation or other methods to achieve. Many

systems with �uorescently labeled samples, such as proteins tagged with genetically en-

coded FPs, could contain anywhere from dozens to thousands of emitters (or more!) de-

pending on the number of native protein copies in the cell and the organism [15]. This

resulting high density of emitters has extensive PSF overlap, limiting the ability of this

�tting method to be used in biological samples, though some studies were able to label

sparsely enough to take advantage of it [16, 17].

The second improvement was the development of methods that allow for isolating

single emitters in time and space with the discovery of photoconvertible emitters. Pho-

toconvertible �uorophores, both dyes and FPs, begin in either a dark (non-�uorescing)

state or in a state whose �uoroesence emission spectrum is not in a range of interest and

can be removed through the use of �lters and thus appears dark on the camera. Upon

illumination at the activation wavelength, usually ~400 nm, a subset of �uorophores will

stochastically convert into a state in which visible photons can be absorbed (Fig. 1.3A).

With proper tuning of the activation laser with intensity and duration, the subset of con-

verted emitters can be sparse enough to not overlap and the molecules’ emission patterns

5
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Figure 1.2: Fluorescence Microscopy and PSF Fitting. A: Simpli�ed Jablonbski Dia-

gram. S0 is the ground state and S1 is a singlet excited state. An incident exciting photon

elevates the system to an excited state (ex). After some vibrational loss the excited elec-

tron returns to the ground state and the molecule can either emit a photon (f) or can decay

nonradiatively (sg). An emitted photon will have less energy then the incoming photon

had and so will be red-shifted. B: Due to light having a wavelength and interactions in-

side the microscope any point source will appear as a disk of light (PSF) on the camera,

limiting the resolution of structures smaller than the PSF size. C: Using knowledge about

the shape of the PSF allow for more precise localization of the emitter. The Airy function

is well approximated by a Gaussian, here shown in 1 dimension. D: left The raw image of

an isolated �uorophore as a disk of light. right The intensity pro�le is �t to a 2D Gaussian

to more precisely locate the center. Figure A adapted from Ben Isaaco�, Figure C courtesy

of Steve Lee and Figure D adapted from Tuson et al. [14]
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can then be �t to a 2D Gaussian and their centers localized much more precisely. Then

repeated rounds of activation and localization occur until enough molecules have been lo-

calized (Fig. 1.3B). This method using FPs has been named (�uorescence) Photoactivated

Localization Microscopy ((f)PALM) [18, 19] while a similar method using dyes is called

Stochastic Optical Reconstruction Microscopy (STORM) [20]. These methods e�ectively

reduce the labeling density of emitting �uorophores enough that their PSFs can be �t and

the centers localized much more precisely. Fig. 1.3 has a schematic of the experimental

setup used in these types of experiments.

1.3 Single-Particle Tracking

Electron multiplying charge-coupled device (EMCCD) cameras are capable of achiev-

ing single-molecule detection while using aquistion times in the tens of milliseconds. As

a result, even FPs or dyes that are dim (i.e. �uorophores with poor quantum e�ciency) or

that have short lifetimes are capable of being captured for several frames in a row before

photobleaching. Connecting those localizations together into trajectories that describe

the motion of the �uorophore is called single-particle tracking (SPT). SPT is a powerful

tool of super-resolution microscopy as the dynamics of a molecule are directly related

to the biochemical and biophysical state of that molecule. The most common descriptor

of the dynamics of a molecule, or a set of similar molecules, is the di�usion coe�cient

as changes in the environment of a molecule directly change the values encoded in the

di�usion coe�cient. Molecules that are bound or con�ned behave di�erently than those

that are free or actively tra�cked [7]. SPT has the necessary spatial and temporal resolu-

tion to observe these events as it provides nanometer-scale resolution at millisecond-scale

time. These lengths and times are the relevant scales on which much of cellular biology

occur. In the past decade, SPT measurements have uncovered the positioning and inter-

actions inherent to many di�erent biological systems, from membrane proteins and lipids

to transcription factors and DNA replication machinery, among others [22, 23].
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There are many methods for linking a collection of localizations together through

time to get trajectories [10]. Our lab uses an energy minimization approach in which all

the localizations are put into a matrix and connections are made such that the energy of

the matrix is minimized according to the Hungarian algorithm [24] using an exponential

merit function that penalizes connections for spatial and temporal distance and intensity

mismatch [25].

One method to determine di�usion coe�cients from SPT data has been that, once

these trajectories were constructed, the squared distances between all localizations in

the trajectory is calculated as a function of increasing time lag between the localizations

("steps") [26,27]. The mean of these squared distances for each of the time lags is plotted to

create a Mean-Squared Displacement (MSD) plot. Next, a linear �t to the data is performed

by a non-linear least-squares method (Fig. 1.4 C) [28, 29], either �tting the MSDs of indi-

vidual trajectories (i.e. �tting each grey line in Fig. 1.4C and taking the average of those

�ts) or by �tting the mean of all MSDs (red line in Fig. 1.4C). The slope of the �t line is

directly proportional to the di�usion coe�cient of the system and is an easy and intuitive

measure of a system. However, the MSD method assumes a homogeneous system (or, at

least, that each individual trajectory is representative of a single state) and returns a sin-

gle parameter value for the slope of the �t line. This single value for di�usion is unlikely

to be su�cient for many biological systems as molecules have many di�erent functions

and might, for example, switch between a bound and an unbound state which will have

di�erent dynamics poorly described by a single di�usion value. Some more recent e�orts

have been made to extend MSD �tting to include multiple di�usive states [30] but these

methods remain reliant on user supervision, which can lead to biases and other issues.

To accommodate more complex and heterogeneous systems, a method of �tting the

Cumulative Probability Distribution (CPD) of squared-step sizes was developed [31, 32].

Similar to the MSD method, collections of squared step sizes is calculated as a function

of increasing time lag (Fig. 1.4D). Unlike the MSD method, the CPD method is a two step
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curve-�tting method that �rst �ts the collection of squared step sizes directly using an

expandable function such as the one below:

CPD(x2,τ ) = 1 − α1e
−x2

MSD1,τ − ... − (1 −

K∑
i=1

αi)e
−x2

MSDK,τ (1.2)

where x2 is the squared distance between two points, τ is the time lag in question, αi is the

fraction of the total steps allocated to the the ith term and MSDi,τ is the MSD for the ith

term at time lag τ . This MSD term is equal to MSD = 2dDτ +ϵ2, where d is the dimension,

D is the di�usion coe�cient and ϵ2 is the error. In the next step, the �t values for the

MSD for each ith term is plotted as a function of τ and �t similarly to the MSD method

described above (Fig. 1.4E). For example, if we have reason to suspect that there exist two

distinct di�usive states within a system we would �t the collection of squared step sizes

to a CPD function described above with two states, K = 1, 2. Next, we would plot the

MSD1 values for all τ values and �t that curve with a linear function to get the slope and

thus the di�usion coe�cient of that term. The α parameters inform us how much of the

total each di�usive state exists in. We would then repeat for the MSD2 �t values. In this

manner we could in theory �t our data to any number of di�usive states.

While this method allows for multiple di�usive states, CPD �tting does su�er from

several drawbacks including weak parameters and supervisory biases. Recent work from

our lab published by Rowland et al. [27] improved the CPD method by �tting all the time

lags simultaneously, thus reducing the parameter space, and removing the two step �t-

ting method outlined above. Further, he implemented a penalty function for adding more

di�usive states to the function, in an attempt to remove the desire to "over�t" the data and

thereby remove some model selection and user bias. While an improvement, the method

fails to completely remove the issues associated with the weak parameters in the �t func-

tion and to completely remove issues inherent to curve-�tting, such as the importance of

starting values on the �nal parameter values. Other groups have also tried to address the
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weaknesses in current SPT analysis methods using various approaches, such as by im-

plementing an expectation maximization algorithm or statistical approaches with more

stringent penalty functions, with various degrees of success [30, 33, 34]. SPT experiments

provide a wealth of data but without a rigorous mathematical analysis method, conclu-

sions drawn from SPT experiments are, at best, subject to debate and at worst may be

actually misleading. For example, if a system has two di�usive states but a given analysis

method introduces or includes a third state conclusions about the biological role of that

spurious state could lead to incorrect models and wild goose-chases for drugs that a�ect

the state that is not present. SPT experiments have the unparalleled ability to observe

biology in real time and at length scales that matter to the molecules themselves. Ob-

servations of binding and unbinding kinetics, detailed organizational structure and more

are possible with this powerful technique and it is imperative that this wealth of data be

underpinned with a foundation of mathematical rigor.

1.4 Thesis Outline

As stated above, my aim in this Thesis was to expand both the quantity and the quality

of information that can be gained from SPT experiments by designing a new analysis

method free from supervisory biases and weak parameters. I then applied this method

to several outstanding questions in microbiology that required a deeper mathematical

foundation in order to pursue.

In Chapter 2, I present a new method for the analysis of SPT experiments based on a

non-parametric Bayesian statistical approach, which we call SMAUG. I �rst present the

theory behind the approach and my application of this method to the speci�c dataset

of SPT trajectories. I then set out to rigorously test this method using a variety of in

silico and in vitro controlled experiments to validate its accuracy and precision. Finally, I

demonstrate SMAUG on two real experimental systems: one in a prokaryotic system and

one in eukaryotes.
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In Chapter 3, I present my work in understanding the dynamics that govern the pro-

cess of epigenetic silencing in a yeast model system using SPT and SMAUG. I begin by

�rst providing some biological background about the system and explain why this sys-

tem needs a method like SMAUG to understand the dynamics involved. I then present

the �ndings for the dynamics uncovered in a minimally perturbed system in which the

keystone protein is �uorescently tagged and tracked. Next, I present the �nding from an

extensive list of mutation studies that perturb the system in illustrative ways. Finally, I

close the chapter with some conclusions about the reach and impact of this study.

In Chapter 4, I present my work in uncovering the dynamics of bacterial pathogenesis

in Vibrio cholerae as a model system using SPT and SMAUG. again, I begin by provid-

ing the relevant background needed to understand the system and appreciate why it is

a system that requires a method such as SMAUG to analyze. I then present the uncov-

ered dynamics on the minimally perturbed system, followed by the results of targeted

mutation experiments that help identify the behavior of the system. I then close the chap-

ter discussing the conclusions and impact of this study on the �eld and for other similar

bacterial systems.

In Chapter 5, I discuss the conclusions of my work in regards to its scope and impact

as well as some future directions for these projects. I discuss how SMAUG will provide

a foundation for further SPT experiments as it provides a rigorous analysis method from

which investigators can draw concrete conclusions from their experiments and that can

be widely adopted in the �eld. In addition, by using the examples from Chapters 3 and 4

as guides, this work demonstrates the strength and versatility of using SPT data to guide

further hypotheses and studies.

The work presented in this Thesis has a broad impact for the scienti�c community by

combining aspects of computer science, microbiology, biophysics and mathematics to an-

swer fundamental questions in cellular biology. Additionally, it identi�es and addresses

several shortcomings in the realm of single-molecule super-resolution �uorescence mi-
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croscopy by introducing a new analysis framework for the data gathered that can be easily

and broadly adopted to expand the quality of information gained from these experiments.
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Figure 1.3: Experimental Setup. A: Spectra of the FP PAmCherry. Blue trace is the

absorbance of the protein in the dark state. Upon activation the protein switches into

a �uorescent state with an excitation (red solid) and emission (red dashed) spectrum in

the visible range of light. B: Overlapping PSFs can hide smaller structures. A sample is

bleached with an appropriate excitation laser, then a quick pulse of 405-nm light illumi-

nates the sample and a small subset of �uorophores are activated and imaged with the

excitation laser until they bleach. This process is then repeated until all probes are acti-

vated and imaged. Non-overlapping PSFs can be �t in order to more precisely localize their

centers, leading to increased resolution and undercovering of previously hidden structure.

C: Schematic of our lab’s experimental setup for achieving super-resolution imaging us-

ing phtotoconvertible �uorophores. Figure B from Biteen [21]. Figure C from Tuson et
al. [14]
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Figure 1.4: Single-Particle Tracking and Analysis. A: Localizations from one simu-

lated molecule over time. B: Connecting the localizations from A into a trajectory reveals

details about the molecule’s motion, and thus its environment, at each time. Blue to red

represents increasing time C: MSD curves for the simulated dataset. Individual trajec-

tories’ MSD curves are shown in gray. The mean of all MSD curves is shown in red and

�tting this line gives an average di�usion value for the system but can hide heterogeneity.

D: CPD curves for the same simulated dataset as in C. Red to purple represents increas-

ing time lag. E: Each �t to the CPD curves returns a value for the MSD at that time lag.

Plotting those values and then �tting that curve provides a di�usion value for that term.

Circle colors correspond to the CPD curve in D with the same color. Data for C, D and

E is the same dataset used in the 4-Term Test (Fig. 2.2) in Chapter II, Section 2.4 which in

this case is �t to two states.
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CHAPTER II

SMAUG: Analyzing Single-Molecule Tracks with

Nonparametric Bayesian Statistics.

The work presented in the chapter has been submitted to the journal Biophysical Journal

Karslake, J.D., Donarski, E.D., Shelby, S.A., Demey, L.M., DiRita, V.J., Veatch, S.L., and

Biteen, J.S. SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian

statistics. Submitted March 2019 bioRxiv: 10.1101/578567
1

2.1 Introduction

As discussed in the previous chapter, super-resolution �uorescence microscopy is a

powerful probe for subcellular biology and single-particle tracking (SPT) measurements

have played a central role in measuring the regulation and dynamics of biomolecules

inside living cells [22]. In this chapter, I address a key challenge in SPT analysis: our abil-

ity to interpret the data provided by high-quality experimental measurements is limited

1Author contributions - J.D.K. and J.S.B. designed the research. J.D.K. implemented the SMAUG al-

gorithm, wrote the code, performed the simulations, and analyzed the data. J.D.K. and E.D.D. performed

the in vitro and bacterial imaging experiments. S.A.S. performed the B cell imaging experiments. L.M.D.

constructed the bacterial strains and performed the biochemical assays. All authors discussed the results.

The manuscript was written and edited by all authors. All authors read and approved the manuscript.
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by the analysis framework. To address these limitations in the state of the art, I devel-

oped a supervisory-free method for measuring heterogeneous single-molecule dynamics

by applying nonparametric Bayesian estimation to SPT experiments, an approach we have

termed a Single-Molecule Analysis by Unsupervised Gibbs (SMAUG). Bayesian statistical

approaches provide a �exible and robust framework for estimating system parameter val-

ues from experimental data. In contrast to more familiar curve-�tting approaches (like

those described in Section 1.3), which �t data to a pre-determined function by iteratively

adjusting the parameters and checking the residuals, Bayesian approaches estimate the

most probable parameters by investigating regions in parameter space where the value

of the posterior probability function is very high in order to form a type of topological

map of the parameter space. Bayesian approaches have been extensively reviewed, for

instance in refs [35–37]. Recently, Bayesian analysis techniques have gained popularity

in many �elds of biophysics due to their robustness and �exibility. Several recent ap-

plications include: analyzing Forster resonance energy transfer (FRET) traces and step-

wise photobleaching curves [38], increasing the ability to �nd and track molecules within

single-molecule imaging movies [39], attaining more information from Mean-Squared

Displacement (MSD) curves of tracked molecules [30], and mapping the local di�usion co-

e�cients within a cell based on the single-molecule trajectories in each small constructed

domain [40].

Parameter Symbol Description
Number of K Number of distinct mobility states

mobility states present in the dataset

Di�usion Coe�cient D 1 × K vector of di�usion values (µm2/s)
Localization Noise ϵ2 1 × K vector of localization noise (nm)

Weight Fraction π 1 × K vector of weight fractions

Transition Matrix T K × K matrix where Tij is the probability

of transitioning from state i to state j
Theta θ A vector of vectors containing all the parameters

Table 2.1: SMAUG parameters. Set of parameters estimated by the SMAUG algorithm

to describe a collection of single-molecule trajectories experiencing K mobility states
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Figure 2.1: SMAUG algorithm. Graphical representation of the SMAUG algorithm,

which combines the likelihood, prior, and dataset (top) into a Bayesian framework Markov

Chain Monte Carlo (MCMC) algorithm that iterates through four steps to re�ne the pa-

rameter estimates (dashed line) until some exit criteria are satis�ed.

In this chapter, I will introduce SMAUG, an algorithm that uses Gibbs sampling to im-

plement a nonparametric Bayesian approach to estimate the most probable information

about a heterogeneous collection of mobile molecules. In SPT experiments where mul-

tiple biochemical functions give rise to multiple observable mobility states, the SMAUG

approach allows us to accurately and precisely determine the underlying parameters of

the system. In such a system, the biophysical behavior is described by a set of mobility

states, each with an average apparent di�usion coe�cient and weight fraction, as well as

by the likelihood of transitions between the various mobility states. We use SMAUG to

extract these parameters from a collection of single-molecule trajectories free of any su-

pervisory bias such as a priori model selection or parameter constraints. Importantly, we

uncover novel information that could not be attained with many previous approaches:

the probability that a molecule in one mobility state will transition to a di�erent state.

The full list of the parameters achieved by SMAUG and a schematic of the algorithm are
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presented in Table 2.1 and Fig. 2.1, respectively. In the next section I will present the the-

ory of Bayesian inference and its application to SPT. I will then present validations of

the SMAUG algorithm on a variety of simulated SPT datasets. Finally, I apply SMAUG to

SPT experiments in vitro, in bacterial cells, and in eukaryotic systems. Overall, SMAUG

provides a concrete mathematical framework that can interpret SPT datasets to provide

novel biological insight.

2.2 Methods

Data Analysis

The analysis algorithms used are described in detail in the Theory section. All code and

some test datasets are available on github at https://github.com/BiteenMatlab/SMAUG.

Simulated SPT Trajectories

Simulations of SPT experiments were constructed with custom-built MATLAB code

(Matlab R2017b, The MathWorks). Each track was constructed with a random track length

drawn from an exponential distribution with mean 10 localizations. Each step along the

track could belong to one of several mobility states with corresponding di�usion coe�-

cient, Di . Mobility state labels were assigned for each localization by a random draw from

the Transition Matrix. Steps along the trajectory were then constructed using a zero-mean

Gaussian distribution with variance equal to 2Di∆t , where ∆t is the frame imaging time.

Camera noise and motion blur were applied as described in [41]. The "realistic" range

imaging parameters were based on reference [26].

in vitro experiments

Fluoresbrite
®

microspheres with diameters of 100, 200, and 350 nm (Cat # 21636, Poly-

sciences Inc.) in water were diluted 1:1 v/v with glycerol, and 5 µL of the 50% glycerol

mixture was placed between two glass coverslips and imaged with a frame exposure time

of 40 ms. Imaging was done in an Olympus IX71 inverted epi�uorescence microscope with

a 60x 1.20 NA water-immersion objective. Samples were excited by a 488 nm laser (Co-
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herent Sapphire 488-50) with power density 140 W/cm2
. The �uorescence emission was

�ltered with appropriate �lters and imaged on a 512 by 512 pixel Photometrics Evolve

electron multiplying charge-coupled device (EMCCD) camera. Recorded single-molecule

positions were detected and localized using home-built code as previously described [27],

and connected into trajectories using the Hungarian algorithm [24].

Vibrio cholerae experiments

V. cholerae cells containing a chromosomal fusion of the photoactivatable red �uores-

cent protein, PAmCherry, to TcpP, a membrane-localized transcriptional regulator (TcpP-

PAmCherry) as the sole source of TcpP. TcpP-PAmCherry is expressed at the native tcpP

locus (strain LD51) and cells were grown under conditions known to stimulate TcpP-

mediated expression of virulence genes [42] (LB rich media at pH 6.5 and 30 °C). Once

cells reached mid log-phase they were diluted into M9 minimal media, and then imaged

at room temperature on agarose pads using a 406-nm laser (Coherent Cube 405-100; 102

W/cm
2
) for photo-activation and a 561-nm laser (Coherent-Sapphire 561-50; 163 W/cm

2
)

for imaging. Continual images were collected with a 40-ms exposure time per frame in an

Olympus IX71 inverted epi�uorescence microscope with a 100x 1.40 NA oil-immersion

objective. The �uorescence emission was �ltered with appropriate �lters and imaged on

a 512 by 512 pixel Photometrics Evolve EMCCD camera. Recorded single-molecule posi-

tions were detected and localized as previously described using home-built code [27], and

connected into trajectories using the Hungarian algorithm [24].

B-cell receptor (BCR) experiments

The BCR dynamics were measured in CH27 mouse lymphoma B cells (RRID:CVCL_

7178) as described in [43]. Brie�y, cells were transiently expressing full-length versions

of Lyn kinase or LAT2 (linker for activation of T cells 2)/LAB (linker for activation of B

cells) conjugated to mEos3.2. Endogenous, plasma membrane-localized BCR was labeled

for 10 min at room temperature with 5 mg/mL goat anti-mouse IgM (Jackson ImmunoRe-

search; RRID: AB_2338477) f(Ab)1 fragments conjugated to both silicon rhodamine (SiR)
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dye (Spirochrome, Switzerland) and biotin. Cells were imaged in a live-cell bu�er compat-

ible with BCR signaling both before and after the addition of 1Âţg/ml streptavidin, which

clusters and activates receptors. Imaging was performed on an Olympus IX81-XDC in-

verted microscope with a cellTIRF module, a 100x UAPO TIRF objective (NA = 1.49), and

active Z-drift correction (ZDC). Excitation of the SiR dye was accomplished using a 647 nm

solid-state laser (OBIS, 100 mW, Coherent, Santa Clara, CA). Photoactivation of mEos3.2

was accomplished with a 405 nm diode laser (CUBE 405-50FP, Coherent) with excitation

using a 561 nm solid-state laser (Sapphire 561 LP, Coherent). All images were taken on

an iXon-897 EMCCD camera (Andor, CT) at approximately 45 frames/s with an exposure

time of 20 ms. Recorded single-molecule positions were detected, localized, and connected

into trajectories as described in [44]. Data acquired for Lyn was reported previously [43]

and reanalyzed for this work.

2.3 Theory

2.3.1 Bayesian Statistics

Using SMAUG, we interpret collections of single-particle trajectories: a set of single-

molecule positions that are connected in time as the molecule moves along some path.

The data set, y, is therefore a distribution of step sizes that remain connected by their

trajectories, and this data set as a whole is the consequence of the physical parameters

that govern the motion of the individual single-molecules observed during an experiment

(parameters summarized in Table 2.1). Here, we consider these physical parameters as a

vector of parameters, θ = {D, ϵ2,π,T }, to ease notation.

Whereas traditional �tting algorithms assume a model function, f, and �t the function

to the data by iteratively adjusting the parameters by some some described method until a

cut-o� is reached, Bayesian estimation instead looks to maximize the posterior probability

distribution, p(θ |y), which is a measure of where in probability space the most likely set
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of parameters are that gave rise to the observed data. For some simple cases this calcula-

tion might be rather straightforward but for more complicated calculations we can take

advantage of some mathematical tricks to arrive at a solution.

Treating both the data and the parameters as random variables instead of thinking of

the data as �xed leads us to calculating the joint probability, p(y,θ ), of the data and the

parameters together. The place in parameter space where this function is highest should

correspond to the most likely parameter values of the posterior as well. However what

functional form that this joint probability calculation exists in might not be readily appar-

ent but we can use the de�nition of the conditional probability for each "set" of random

variables to arrive at an equation that can be manipulated further.

p(y,θ ) = p(y |θ )p(θ ) = p(θ |y)p(y) (2.1)

In other words the joint probability of the combined random variables is equal to the

probability of one of the random variables conditioned on the other set being treated as

�xed. Simple manipulation of the two expressions yields Bayes’ Rule, a general expression

for calculating the posterior distribution:

p(θ |y) =
p(y |θ )p(θ )

p(y)
(2.2)

Where p(θ |y) is the posterior distribution and describes how likely a set of parameters

is given the data. The remaining factors of this calculation are: the likelihood, p(y |θ ), a

measure of how probable a the data is given a set of parameters; the prior probability

of the parameters, p(θ ), which encodes our knowledge and physical intuition about the

system before any data is collected; and the marginal likelihood of the data, p(y), also

called the evidence. Because the evidence is hard to calculate and is independent of the

parameters and is thus constant it is usually dropped and Bayes’ Rule is more commonly
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rewritten as:

p(θ |y) ∝ p(y |θ )p(θ ) (2.3)

Again, in the most general and simple of cases, the posterior distribution could be cal-

culated by evaluating the data set at all possible parameter values and then looking for

the point at which the calculation is maximized. However, for more complex cases where

the posterior can be a mixture of several states and/or where several di�erent posteriors

distributions must be calculated, straightforward calculation of all parameter space is im-

practical if not impossible. In such cases, the main goal of a Bayesian algorithm remains

the same: to calculate the posterior distribution in order to �nd regions of high probabil-

ity that in turn describe the mostly probable estimates that explain the observed dataset.

However, in these cases, the calculation requires methods that are more advanced.

Accordingly, SMAUG uses a Gibbs analysis based approach for the analysis of SPT

data by embedding a Gibbs sampling scheme [45, 46] within a Markov Chain Monte

Carlo (MCMC) framework [47]. SMAUG implements this Markov scheme iteratively in

two broad steps (Fig. 2.1). In the �rst step, SMAUG calculates the posterior distribution of

each of the parameters in θ using Gibbs sampling. The Gibbs sampling method iteratively

updates each parameter’s posterior distribution individually while holding all other pa-

rameters constant to reduce an otherwise impossibly complex posterior calculation into

manageable and calculable chunks. In the second step, new parameter values are sampled

(i.e., new values for θ are pulled from these calculated posterior distributions) and saved

for the �rst step of the next iteration.

Here, in addition to being a complex mixture of distributions for one mobility state

the posterior is also a mixture model of multiple mobility states that can be present in

the dataset. Thus, a data-selection step precedes the sampling step described above. In

this data-selection step, each data point in y is assigned to a particular mobility state of

the mixture, and only the subset of data belonging to that state is used in the posterior

calculations that describe it. Below, we describe our Gibbs sampling process �rst for a
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known number, K, of mixture states as it is more straightforward; afterward, we describe

the process for expanding to an in�nite number of states, which is necessary for SMAUG

to learn the correct number of states present in a dataset.

2.3.2 Constructing a Gibbs Sampler for a known K

With the basics of Bayes’ method discussed, I can now discuss how SMAUG actu-

ally achieves the steps of the Markov Chain process and estimates parameters for a SPT

dataset. For a model of given complexity, K, we compute the conditional posterior dis-

tribution: the posterior distribution for one single parameter while all other parameters

remain constant. Before we can preform the calculations we �rst need to assign data to

the various K states. To identify which data point comes from which of the K mixture

states, we introduce a latent variable, li , which labels each of the data points with the

number of the state from which it was likely drawn. Lj is the set of all data points with

li = j. For each li , we calculate the likelihood function, p(yi |θj), (explained below) for each

data point (i.e. each step in the set) belonging to each of the K states individually and

then we draw the assignment using the categorical distribution with weights equal to the

likelihood calculated for each state:

p(li = j |...) ∝ p(yi |θj) (2.4)

li ∼ Cat(p(li = 1|...),p(li = 2|...), ...,p(li = K |...)) (2.5)

The very �rst assignment of the data can be random (or some other method), as informa-

tion about the likelihood has not yet been calculated. In every iteration, having sorted the

data into subsets Lj that are relevant to each state, SMAUG then proceeds to the Gibbs

sampler.

Two of the parameters we wish to �nd for our dataset are the di�usion coe�cient

values, Dj, and the localization noise, ϵ2. In a model derived by Berglund [41, 48], our
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dataset of step sizes from SPT experiments can be related directly to these quantities of

interest. By this model, the measured steps sizes, ∆x , are zero-mean Gaussian variables

whose covariances are related to Dj and ϵ2 by:

< ∆x2i >= 2Dj∆t(1 − 2R) + 2ϵ
2

j < ∆xi∆xi±1 >= 2Dj∆tR − ϵ
2

j (2.6)

where ∆t is the exposure time of the frame and R is the motion blur coe�cient, which

is set to 1/6 in the algorithm as our acquisition and exposure times are equal [41]. While

SMAUG could in principle be adapted to include other physical manifestations like con-

�nement, we focus here on apparent free di�usion and therefore we model the trajec-

tories as from the result of a zero-mean Gaussian process as stated above. Speci�cally,

the likelihood function, p(y |θ ), for our system is a Gaussian, denoted N (µ,σ 2), with un-

known mean, µ, and unknown variance, σ 2
. For most purposes, these step size distribu-

tions should be zero-mean (µ = 0), but we retain the unknown mean parameter to be as

general as possible. Since we have speci�ed that there are K distinct states in this dataset,

we expand the likelihood to a Gaussian Mixture Model [49] that includes K such Gaussian

distributions, each scaled by the amount of data in that state, expressed as the fraction of

the whole, πi (this weight parameter is discussed more below):

p(y |π1θ1, ...,πKθK ) ∝ π1N (µ1,σ
2

1
) + ... + πKN (µK ,σ

2

K ) (2.7)

For the prior distribution for Dj and ϵ2, SMAUG takes the conjugate prior to our likeli-

hood: the Inverse-Gamma function, IG(a,b). A conjugate prior is a prior distribution that

when multiplied to the likelihood returns a posterior that is of the same mathematical fam-

ily as the likelihood, simplifying the computation. Using the conjugate Inverse-Gamma

has and added bene�t that it is constrained to be positive valued, as di�usion cannot be

negative. Additionally, if we have some other knowledge about the system (say from a

previous experiment) we could encoded that knowledge into the prior, such as adjusting
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the mean of the Inverse-Gamma to in�uence the resulting variance distribution to re�ect

this previous knowledge. However, by default SMAUG uses �at priors to let the data speak

for itself as much as possible but this can altered easily by changing the prior parameters

in the code. By constructing the likelihood and the prior this way, SMAUG arrives at the

full conditional posterior distribution function for di�usive motion: the Normal-Inverse-

Gamma function, denoted NIG(µi ,σ
2

i ,a,b), the estimates for the covariances of which for

the input step size distributions can be related to our parameters of interest by Equation

2.6:

p(θ |y, l1, ..., lN ) ∼
∏
i∈Lj

NIG(µj ,σ
2

j ,a,b) (2.8)

With the conditional for Dj and ϵ2 described, I will now turn to describing two other

parameters: the weight fraction for each of the K states, πj, and the rows of the transition

matrix, Tj . Each data point can only have come from a single mobility term and so the

likelihood function for the weight fraction is the categorical distribution (which is a spe-

cial case of the more generalized multinomial distribution where only a single outcome is

observed). The prior distribution is chosen as the conjugate Dirichlet distribution, which

is the multivariate generalization of the Beta distribution as has the property of always

summing to 1. The resulting posterior distribution is also a Dirichlet distribution, denoted

DIR(a):

p(π1, ...,πK |...) ∼ DIR(L1 + c, ...,LK + c) (2.9)

where the Ljs are the number of data points assigned to each mobility state described

above and the vector (c, ..., c) is a vector of pseudo-counts that are used to describe the

prior weight, for SMAUG we use a vector where all the values of this vector are the same

and set to 1/K, a common uninformative prior.

Similarly, we can construct a transition matrix that describes the probability that a

molecule in state i at time t will transition to any of the possible K state, including re-

maining in state i, at time t+1. Using the state assignments coded in the set of lis and the
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trajectory information from the track data we can construct a K × K matrix that counts

when subsequent steps within a trajectory change their assignment. Ni,j counts the num-

ber of transitions from state i to state j. Each of the K rows of the transition matrix,T , are

then sampled using the Dirichlet distribution again with the counts in N as inputs and a

vector of pseudo-transition counts, (c, ..., c), used as before to describe the prior weight:

p(Ti |...) ∼ DIR(Ni,1 + c, ...,Ni,K + c) (2.10)

Taken together, this collection of conditional posterior distributions is an e�ective

method for calculating the full posterior of the system. In the second step, these newly

de�ned distributions are used as the basis from which new parameter values are sampled

to get the parameter values that will be used in the calculations of the next iteration. Iter-

ating between assigning data based on the previous parameter values, then recalculating

the distributions based on the new data assignments and �nally sampling parameter val-

ues from the calculated distributions leads to an e�ective and e�cient sampler for �nding

the most probable parameter values for a system of K states.

However, we rarely know a priori how many distinct states to include in an analysis;

in fact learning this number is usually one of the principle goals of an SPT experiment

[26, 27, 50]. We could possibly set some large upper bound for K, but then much of our

computational power would be directed towards calculating states with zero occupancy,

leading to a computationally ine�cient process. Instead, in the next section, we outline a

Dirichlet process mixture model (DPMM) method that allows the number of states present

to expand or contract organically in response to the data based on a nonparametric Bayes

approach.
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2.3.3 Constructing a nonparametric Bayes sampler

Like before where we treated both the data and the parameters as random variables

in order to construct an estimator, nonparametric Bayesian techniques rely on treating

the probability distributions themselves as random. Random probability measures ex-

tend a �nite-component mixture like the one described above in section 2.3.2 into an

in�nite-component mixture model needed for completely hands-o� estimator (free from

supervisory bias) [51]. SMAUG uses the Dirichlet Process (DP), DP(α , P0), one such ran-

dom probability measure which is generally described as a "distribution of distributions".

Speci�cally, DP(α , P0) is a distribution with base probability distribution, P0 (such as a

normal Gaussian or a beta distribution), and concentration parameter, α (which controls

the variance around P0). The DP can be seen as the in�nite dimensional generalization

of the standard Dirichlet distribution and, as with the standard Dirichlet, the "weights"

drawn must sum to 1, which helps induce a clustering onto the in�nite collection of pos-

sible states present in the nonparametric realization of the sampler.

A helpful visualization for understanding what a draw from a Dirichlet process looks

like is the stick-breaking construction [52], which represents the total probability available

to the system as a stick of unit length. First, a random sample, θ ∼ P0, is drawn from the

base probability measure P0 (θ1 can be a single value or a vector), and random weight,

V1 ∼ Beta(1,α), is pulled from the Beta distribution. We give a probability weight of

π1 = V1 to point mass θ1. We then break the unit stick at V1 and there now remains an

amount of stick, (1−V1), to be allocated to the many other draws. We then break an amount

V2 ∼ Beta(1,α) o� the remaining stick and assign probability π1 = V2(1 −V1) to another

point mass of probability θ2 ∼ P0. As we continue, the stick gets shorter and shorter and

the weight assigned to each new draw from P0 decreases with a rate that depends on the

concentration parameter, α .Thus, our random probability measure is an arbitrarily large

collection of segments of which only several have the vast majority of the probability

weight; the rest of the segments have negligible mass. This stick-breaking construction
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can be summarized as:

P ∼
∞∑
h=1

πhδθ1, πh = Vh
∏
l<h

(1 −Vh), Vh ∼ Beta(,α), θh ∼ P0 (2.11)

where the θh parameter value vectors are generated independently from P + 0, δθh is the

point mass where the parameters θh are concentrated, and πh is the probability weight

associated with that point mass.

This method results in an in�nitely large parameter space of which only a few states

actually occupy any meaningful probability mass. SMAUG uses the Slice Sampler method

from Walker to reduce the in�nite state model that results from the distributions above,

in Equation 2.11, to a model with only �nitely many states capable of being calculated

at each iteration [53]. The Slice Sampler method introduces another latent variable, u,

which is drawn from the uniform distribution as ui ∼ U (0,πli ), for each data point in

the set. Thus, any draw for u splits the in�nite set of possible states into two categories:

a �nite set of states for which πj > u and an in�nite set for which πj < u. By looking

for the minimum entry over the set of all u and seeing how many of the �nitely many

states with probability weight greater than that value there are we know the maximal

size of the model we need to include for any iteration, i.e. the minimum value for u over

the set provides an upper bound on the number of states, K , we need at any given time.

Speci�cally SMAUG attempts in every iteration to satisfy the inequality:

K ′∑
1

πj > 1 −min(u1, ...,uN ) (2.12)

where K′ is the number of states present in the model at any time. In this way, only K′

states need to be calculated, but over the course of sampling many iterations, we integrate

over an "in�nite" (or at least arbitrarily large) number of possible states. The value of K′

can expand or contract over the course of the analysis with new terms being added when

needed and terms whose occupancy is very low (i.e., states of a few data points or less)
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removed. In this way the sampler "learns" from the data itself how many clusters exist in

the data set, removing the need to specify the number at the start.

Taken all together, SMAUG provides an e�cient nonparametric Bayesian analysis

framework for analyzing SPT data that returns accurate and precise estimates of the num-

ber of mobility states within a dataset, their di�usion coe�cients, weights, localization er-

rors and transitions in a hands-free manner. During each iteration of the sampler, SMAUG

follows a simple stepwise process as outlined above (Fig. 2.1):

1. First iteration only: choose an initial number of states. This number should be

selected to be several times bigger than the expected number for the experiment.

Assign each of the data points to a state by some method.

2. Assign a vector of parameter values to each state, for instance by random draws

from a base distribution, P0, or by calculating the simple statistics (mean and vari-

ance) from the previous step’s assignment.

3. Second iteration onward: Assign each data point a latent variable,u, and use these

values of u to determine K′, the number of states present for this iteration.

(a) If K′ is greater than the current number of states then states need to be added;

assign each of the new states a weight by breaking the stick and pulling a

parameter vector from P0.

(b) IfK′ is less than the current number of states then a state needs to be removed;

remove the state with smallest weight and add its weight to the next smallest

weight.

(c) If a state’s occupancy drops out (by receiving zero weight fraction), remove

the values for that state from the parameter vector

4. Implement a Gibbs Sampler with the �xed number of states,K′, from step (3). Assign

labels and update parameters by calculating the conditional posterior distributions
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described in equations 2.5 - 2.10 above, then sample from these distributions to col-

lect new parameter values for the next iteration.

5. Exit criteria: Repeat steps (3) and (4), saving values periodically, until some cuto�

criterion has been achieved, either based on performing some number of total it-

erations or attaining some convergence metric, then construct parameter estimates

from the back half of saved iterations.

The e�cient SMAUG algorithm we have built provides a �exible method for determin-

ing all the relevant parameters for an arbitrary SPT trajectory dataset without supervisory

bias. For instance, the amount of data generated in step (4) can be controlled by not saving

the parameters of interest every iteration (by default, SMAUG saves every tenth iteration

to minimize any possible autocorrelation between iterations).

We demonstrate below that SMAUG accurately and precisely estimates for SPT exper-

iments the number of mobility states, the di�usion coe�cients, the weight fractions, the

noise values, and the frequencies of transitions between states. To demonstrate the value

and feasibility of this nonparametric Bayesian algorithm, we validate our method �rst

by using simulated di�usion trajectories with realistic parameter values (section 2.4) and

an in vitro experimental system (section 2.5), and then we apply SMAUG to subcellular

tracking in bacterial cells and in eukaryotic cells (sections 2.6).

2.4 in silico Validations

To begin, We validated the SMAUG algorithm with a simulated dataset (ref table) con-

taining 13,636 steps (1090 trajectories) drawn from a di�usive mixture with four distinct

mobility states, i = {1, 2, 3, 4}. The di�usion coe�cients for the terms were seeded with

the values D = {0.005, 0.03, 0.09, 0.20} µm2
/s, and the localization error for each localiza-

tion, ϵ2j , were pulled from a distribution with a mean of 10 nm and a variance of 5 nm.

The weight fractions of each term were: {π1,π2,π3,π4} = {0.196, 0.301, 0.291, 0.212}. The
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transition matrix was:

T=

©«

.806 .104 .090 0

.107 .801 .092 0

0 .104 .801 .095

0 .097 .097 .806

ª®®®®®®®®¬
where Tij is the probability of a step in mobility state i preceding a step in mobility state

j as mentioned above. In these realistic simulations, the track lengths and transitions are

random events: each track length is pulled from an exponential distribution with a mean of

10 localizations, and ti→j , the likelihood of transitioning from state i to state j, is governed

by a �at distribution. The seed values for the simulations, which gave rise to the simulated

values, are given in Table 2.2. As opposed to methods that �t data to a speci�c model with

a selected number of mobility states, K , one strength of the SMAUG algorithm lies in its

ability to identify the correct number of mobility states. The algorithm was initialized

with a large number of components (K ≥ 10), but quickly collapsed to the correct number

(K = 4) (Figure 2.2 A). In general, the model complexity is increased or decreased until

it converges at the correct number, though SMAUG continues to explore state space by

adding states on occasion and then removing them (e.g., the bumps up to 5 in Fig. 2.2 A).

To construct parameter estimates for this case, we only use posterior draws from saved

iterations where K is the convergence value (here K = 4) in the back half of all saved

iterations (iterations 501-1000, red box in Fig. 2.2 B).

Each parameter is observed throughout the course of the simulation (Fig. 2.2 B, Fig.

2.3) and the terms are sorted by D in the �nal output. We use only the second half of saved

iterations (red box in Fig. 2B) to construct estimates. The posterior distributions are plot-

ted for several parameters (Fig. 2.2C, Fig. 2.3). Because these data points represent draws

from the converged posterior distributions for the parameters, we use these histograms to

calculate statistics about our estimates or construct con�dence intervals. The mean values

in all cases are close to the true values (black arrows in Fig. 2.2C and Fig. 2.3). At each step

in the analysis, the best estimates for all parameters are generated, and each pair {Di ,πi}
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Figure 2.2: SMAUG Analysis of Simulated Test Data. A: SMAUG analysis of the sim-

ulated input data as a Gaussian Mixture Model. The algorithm initializes at a large number

of states and quickly converges to the correct value of K = 4. However, after convergence

additional states are added stochastically as the algorithm explores state space looking

for other regions of high probability. B: Estimates of the di�usion coe�cients, D, for each

term (sorted in order of increasing D) as the algorithm progresses. Black lines are the true

simulation values (Table 2.2). C: Histogram de�ning the probability of a given di�usion

coe�cient for the slowest term in the analysis (term 1 in Table 2.2). Histograms are con-

structed using the back half of saved iterations for the blue/slowest term (red box in B).

Black arrow is the true value for the simulation. D: Di�usion Coe�cients and weight frac-

tion estimates for each saved iteration in the back half of the analysis run that also meets

the K = 4 criterion. The analysis shows distinct clusters whose estimates do not overlap.

Black dots are the true simulation values. Full histograms for all output values are in Fig

2.3

for every saved iteration is plotted as a point in Fig. 2.2 D. True values for the simulation

(Table 2.2) are indicated by the large black data points in Fig. 2.2D.

To examine the ability of SMAUG to detect rare occurrences, we simulated a dataset

(Table 2.3) containing 9,445 steps in which the majority of trajectories (95.5%) belonged

to a fast di�using state (D1 = 0.15µm2/s) while the rest belonged to a slower state (D2 =
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Figure 2.3: Full SMAUG analysis for simulated data. A: Estimates of the weight frac-

tion for each term (sorted in order of increasing di�usion coe�cient) as the algorithm

progresses. Black lines are the simulation true values (2.2). B-E: Histograms of the dif-

fusion coe�cient estimates for each of the 4 terms over the back half of iterations. F-I:
Histograms of the estimates of the localization noise for each of the 4 terms over the back

half of iterations. J-M: Histograms of the estimates of the weight fractions for each of the

4 terms over the back half of iterations. N-Q: Histograms of the estimates for the transi-

tion matrix elements giving the probability that a step in Term 1 is followed by a step in

Term 1 on the next step (N), that a step in Term 1 transitions to a step in Term 2 (O), that

a step in Term 1 transitions to a step in Term 3 (P), or that a step in Term 1 transitions to

a step in Term 4 (Q). Black arrows in B - Q are the true simulation values.
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Figure 2.4: Rare states simulation. Full SMAUG analysis for the rare states simula-

tion. A: Estimated mobility states over the course of the analysis run. SMAUG quickly

converges to the correct value of K = 2, but continues to explore alternative hypotheses

stochastically. B: Di�usion coe�cient and weight fraction estimates for each saved itera-

tion in the back half of the analysis run that also meets the K = 2 criterion. Black dots are

the true simulation values. C-D: Histograms for the estimated di�usion coe�cient values

for the simulation. E-F: Weight fraction estimates. Black arrows are the true simulation

values (Table 2.3).
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Parameter Seed Values True Values SMAUG Results
Number of Mobility States 2 2 2

Di�usion Coe�cient (µm2/s) 0.01, 0.15 0.01, 0.15 0.011, 0.146

Standard Deviation NA NA 0.0011, 0.0019

Localization Noise (nm) 10 ± 10 10 ± 10 12.1, 15.7

Weight Fractions 0.05, 0.95 0.045, 0.955 0.048, 0.952

Standard Deviation NA NA 0.0033, .0035

Transition Matrix

(
0.99 0.01
0.01 0.99

) (
0.987 0.013
0.009 0.991

) (
0.969 0.031
0.001 0.999

)
Table 2.3: Rare states simulation values. Seed values, true values, and SMAUG results

for the rare-states simulation in FIG. Total number of steps included is 9,445.

0.01µm2/s). Furthermore, the transitions between states 1 and 2 were rare (T12 = T21 =

0.01). This distribution is relevant for experiments in which the binding events of bio-

molecules are rare, and analyzing this simulation explores the ability of SMAUG to con-

�dently distinguish rare states from random events within a homogeneous distribution.

SMAUG isolates the two distinct populations (Fig. 2.4) and accurately estimates their pa-

rameter values (Table 2.3). SMAUG can easily identify states whose occupancy is only a

small fraction of the whole dataset.

2.5 Validations in vitro

We further tested the SMAUG method with an in vitro experimental system consist-

ing of three di�erent sizes of di�using �uorescent beads in a 50/50 water/glycerol mixture.

The Stokes-Einstein equation predicts a di�usion coe�cient of D = kT /6πηr for a par-

ticle of radius, r , undergoing Brownian motion in a �uid with viscosity, η; this equation

predicts theoretical di�usion coe�cients of D = {0.182, 0.319, 0.637}µm2/s for this sys-

tem. SMAUG analysis of the bead trajectories (Table 2.4) correctly identi�ed the number

of distinct di�usors (K = 3) and estimated values of D = {0.168, 0.329, 0.675}µm2/s ( Fig.

2.5 ). The distributions of the estimations of D at every saved iteration (Fig. 2.5) show that

the theoretical D values are within the con�dence intervals of the estimations. Further-

more, the transition matrix shows negligible transitions between states (T(ij)(i,j)) < 0.03).
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This observation is consistent with our attribution of each state to one bead size as beads

cannot change sizes spontaneously and thus no transitions are allowed.
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Figure 2.5: SMAUG analysis of the beads in vitro experiments. A: Di�usion coef-

�cient estimates for the analysis run. Black lines are the theoretical values for di�usion

of beads in 50% glycerol. B: Weight fraction estimates for the analysis. Black lines are

the true value of the number of steps from each size of bead. C: Di�usion coe�cient and

weight fraction estimates for each saved iteration in the back half of the analysis run that

also meets the K = 3 criterion. Black dots correspond to the black lines in A and B. D-F:

histograms for the di�usion coe�cient estimates. Black arrows represent the theoretical

values (Table 2.4).
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Parameter Theoretical Values SMAUG Results
Number of Mobility States 3 3

Di�usion Coe�cient (µm2/s) 0.182, 0.319, 0.637 0.168, 0.329, 0.675

Standard Deviation NA 0.0027, 0.0083, 0.0166

Weight Fraction 0.411, 0.350, 0.239 0.423, 0.358, 0.219

Standard Deviation NA 0.0110, 0.0119, 0.0106

Transition Matrix
©«
1 0 0

0 1 0

0 0 1

ª®¬ ©«
0.977 0.018 .005
0.021 0.946 .036
.008 0.059 0.932

ª®¬
Table 2.4: in vitro validation values. Theoretical values and SMAUG results for the

di�using beads experiments in Fig. 2.5. The theoretical di�usion coe�cient is calculated

from the Stokes-Einstein Equation. The theoretical weight fraction is based on taking the

fraction of number of steps that came from each bead in the total combined data set. The

theoretical transition matrix includes no transitions as the beads cannot spontaneously

change sizes. Total number of steps included is 31,949.

Overall, SMAUG accurately determines the values for parameters of interest (Table

2.4): the number of distinct mobility states within a dataset; the di�usion coe�cient, and

the weight fraction, of each state; and the transition probabilities between the states at

each iteration for these in vitro experiments.

2.6 Live-cell Investigations

2.6.1 Application to measuring protein cooperativity in living Vibrio cholerae

bacteria cells

We extended SMAUG to live-cell single-molecule tracking to quantify the di�usion

coe�cients and distributions in biological systems. The pathogenic bacterium V. cholerae

remains a global health concern, infecting millions each year leading to the diarrheal dis-

ease cholera [54]. The cholera toxin (CtxAB) and an adherence organelle called the toxin-

coregulated pilus (TcpA-F) are key determinants of virulence that are under the regulatory

control of ToxT, which itself is regulated by the membrane protein TcpP [42]. In collabora-

tion with other membrane proteins (TcpH, ToxR, and ToxS), TcpP initiates the V. cholerae

virulence cascade by binding to the promoter region of the toxT gene while remaining
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in the membrane (Fig. 2.6). Accurately measuring TcpP dynamics in live cells will enable

investigations of this unusual membrane-localized mechanism of transcription activation.

Previously, our lab used fusions to the photoactivatable �uorescent protein PAmCherry

to show that TcpP-PAmCherry di�uses heterogeneously in living cells [26].

We tested the SMAUG algorithm on V. cholerae cells which encode a chromosomal

copy of tcpP-PAmCherry that remains under the control of its native promoter (Methods

2.2). These TcpP-PAmCherry fusions were fully functional based on expression levels of

downstream protein CtxB and the cells (strain LD51) exhibited wild-type growth rates

(Fig. 2.7). Furthermore, we observed regular cell morphology under the microscope (Fig.

2.6B). We grew these cells under virulence-inducing conditions (Methods 2.2) and col-

lected 11,403 steps from 2404 trajectories; representative trajectories are shown in Fig.

2.6B. Analysis of this dataset by SMAUG indicated a most probable interpretation of a

K = 3-term model with di�usion coe�cients of Di = {0.006, 0.044, 0.368}µm
2/s and

weight fractions of πi = {0.18, 0.53, 0.29}(Fig. 2.6 C&D, Table 2.5). The combined dataset

for TcpP-PAmCherry trajectories results from four days of experiments in 111 cells. We

then created 100 independent analysis runs using random sampling with replacement of

the entire V. cholerae dataset of tracks and found that K = 3 was by far the most likely

outcome (77 of the runs returned a 3-state model as the most likely (Table 2.5)).

Fig. 2.6D summarizes the key results for our measurements of TcpP-PAmCherry mo-

bility: we observe three distinct mobility states, which we attribute to di�erent binding

states of the protein. Of the three states identi�ed in our experiments, the intermedi-

ate state (D2 = 0.044µm2/s; red circle in Fig. 2.6D) is the most highly occupied state

(π2 = 0.53). TcpP exists in the membrane as either a monomer or a dimer [55], and we

propose that the fastest di�usive state is free monomeric or dimeric TcpP-PAmCherry

(yellow circle in Fig. 2.6C). We further hypothesize that TcpP association with other pro-

teins in the membrane-most importantly its interaction partners, TcpH and ToxR-leads

to its scanning the DNA for its binding target in the toxT promoter [26, 42]. We propose
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Figure 2.6: SMAUG analysis for bacterial imaging. A: Schematic of the V. cholerae vir-

ulence pathway. The membrane-bound protein TcpP binds the DNA directly along with

other supporting proteins, leading to the hypothesis that the dynamics of TcpP re�ect mul-

tiple mobility states. B: Representative image of individual TcpP-PAmCherry molecules

trajectories inside live V. cholerae cells. Scale bar: 1 µm. C: Di�usion coe�cient and weight

fraction estimates from the output of the SMAUG analysis. SMAUG identi�es three dis-

tinct clusters within the dataset. D: Cartoon depiction of the full SMAUG results for this

dataset, including transition probabilities. Bubble colors correspond to the term colors in

C and bubble sizes represent the weight fractions. Arrows between bubbles indicate the

mean of the transition matrix elements for transitions between those terms. Dashed lines

indicate transition probabilities that are negligible.

that the intermediate state is this protein complex DNA-searching state (red circle in Fig.

2.6D). Finally, to initiate the virulence cascade, this protein complex stops scanning and

binds more tightly to the toxT promoter region of the DNA, and we propose the slowest
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Figure 2.7: Biochemical validations of TcpP. A: CtxB levels in culture supernatants

after 24 h in LB media (pH 6.5, 30 °C) show that LD51 expresses the same amount of CtxB

protein as wild-type (WT) V. cholerae cells. B: Growth of WT and LD51 cells in LB (pH

6.5, 30 °C ). OD600 nm values are an average of three biological replicates. Data courtesy

of Lucas Demey

term (blue circle in Fig. 2.6D) is this promoter-bound state. Our model is further supported

by the transition matrix (arrows in Fig. 2.6D and Table 2.5), which shows negligible transi-

tions from the fastest to the slowest terms and instead outlines a path from the fastest state

through the intermediate state to the slowest state, indicating that the TcpP monomers

and dimers cannot directly bind the DNA, but rather that TcpP must form a complex with

ToxR and/or TcpH before binding DNA and promoting toxT transcription. Testing these

hypotheses to de�nitively assign the true nature of these identi�ed mobility states will re-

quire further study (and is discussed in some detail in Chapter 4 of this Thesis). However,

this analysis illustrates the utility of SMAUG for bacterial systems and provides a base-

line to which future studies can be compared to more fully understand the mechanistic

behavior of the V. cholerae virulence mechanism.

2.6.2 Application to antigen response in eukaryotic B cells

Finally, we applied our analysis method to investigate the dynamics of proteins in-

volved in B-cell receptor (BCR) signaling. Situated in the plasma membrane of B cells, the
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BCR recognizes and binds antigens, causing BCR clustering and initiating a downstream

signaling pathway that results in BCR endocytosis and antigen processing. Following re-

ceptor clustering, the BCR is phosphorylated by the Src-family kinase Lyn [56], leading

to recruitment and activation of the cytoplasmic kinase Syc which plays multiple roles

in propagating the initial immune response. One target of Syc phosphorylation is the

transmembrane adaptor protein LAB/LAT2, one of many proteins found within the BCR

signalosome [54], a collection of proteins that localize, stabilize, and extend sites of BCR

activation. Previously, it was found that membrane domains and lipid organization play

a role in BCR activation by clustering BCR receptors upon antigen binding [43].

Using simultaneous two-color super resolution imaging, we analyzed the single-mole-

cule trajectories of BCR and downstream protein Lyn or LAT2 at room temperature before

and after stimulation by antigen addition [43] (Fig. 2.8 A-B). We split the trajectories into

groupings of 1000 frames; each group contained on average 20,000 - 30,000 steps and

occurred over 22 s, during which time frame we assume the dynamics do not change. In

this way, we used SMAUG to analyze the evolution of the dynamics of the system over

time. Before stimulation (Fig. 2.9C, left and Fig. 2.8D, �rst bar), the BCR dynamics are best

described by three mobility states, with very little weight fraction in the slowest state (red).

In other words, most BCR molecules are highly mobile. Immediately after stimulation (Fig.

2.8D, second bar), SMAUG �nds four mobility states: the intermediate term is split into

two mobility terms (brown and yellow). This �nding may indicate a transition shortly

after stimulation. Quickly, SMAUG returns only two mobility states, one of which is not

observed pre-stimulation (blue) which we attribute to a new physiological state (Fig. 2.9).

The most mobile terms have disappeared from the analysis as the system responds to

antigen stimulation. This slower collection of mobility states persists for several minutes

until the end of the measurement.

Simultaneously, we monitored the dynamics of Lyn or LAT2, and we matched the

dynamics of the downstream protein with the response from the BCR itself. Analysis
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of LAT2 indicates four mobility states whose dynamics change greatly after BCR stim-

ulation (Fig. 2.8E). Like BCR, the LAT2 dynamics slow over time post-stimulation: the

slower LAT2 mobility state’s population fraction increases and the faster LAT2 mobility

stateâĂŹs population fraction decreases after stimulation. In contrast, for Lyn, a tyrosine

kinase and the �rst protein in the downstream cascade, analysis with SMAUG consistently

returns a three-term model with similar weight fractions and di�usion coe�cients before

and after BCR stimulation (Fig. 2.8F), with a slight change in the weight of the middle

term occurring at 45 seconds and persisting through the end of the measurement. Consis-

tent with this mobility analysis, we �nd that LAT2 colocalizes much more strongly with

cross-linked BCR than does Lyn. A second analysis on di�erent cells returns very similar

results to those described above (Fig. 2.10). More studies are needed to assign biochemical

and biophysical roles to the states uncovered by SMAUG, but this experiment proves the

e�cacy and utility of SMAUG analysis for both eukaryotic systems as well as for time

series data.
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Figure 2.8: SMAUG analysis for single-molecule motion in a eukaryotic sys-
tem. A: Super-resolution reconstruction image of BCR-SiR (magenta) and LAT2-mEos3.2

(green) in a representative B cell pre-stimulation. White: overlapping magenta and green

signals. Inset is a higher resolution reconstruction of the 1.5 µm by 1.5 µm white boxed re-

gion. Scale bar: 2 µm. B: Super-resolution image of the cell in A 12.8 min post-stimulation.

White: overlapping magenta and green signals. Inset shows same 1.5 µm by 1.5 µm white

boxed region as in A at a higher resolution. Scale bar: 2 µm. C: Di�usion coe�cient and

weight fraction estimates for BCR molecules pre-stimulation and at the end of the mea-

surement. Three distinct clusters are found pre-stimulation, but only two at the end of the

measurement. D: Bar graphs showing the mean weight fraction of each identi�ed state as

a function of time for the BCR dataset. The bars labeled "Pre" and "End" correspond to the

data in C. All other bars are labeled with the time post-stimulation. Identi�ed mobility

states are states whose estimates overlap in di�usion coe�cient and weight fraction. A

new, slower state (blue) emerges 23 s after antigen stimulation. E: The bar graphs for the

weight fractions of LAT2 states over time show that the slowest mobility states (blue and

red) increase in weight fraction relative to the faster terms (yellow and purple) suggest-

ing the assembly of the BCR signalosome. F: The bar graphs for the weight fractions of

Lyn states over time show that there is no change upon antigen stimulation and a slight

overall decrease in mobility of the system starting at 45 seconds. The full cluster analysis

is in Fig. 2.9.

45



0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

10-3

10-2

10-1

10-3

10-2

10-1

10-3

10-2

10-1

10-3

10-2

10-1

D
 (µ

m
2 /s

)
D

 (µ
m

2 /s
)

Weight Fraction Weight Fraction Weight Fraction

0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8

10-1

100

0 0.2 0.4 0.6 0.8

10-1

100

D
 (µ

m
2 /s

)

0 0.2 0.4 0.6 0.8

10-1

100

10-1

100

D
 (µ

m
2 /s

)

Weight Fraction Weight Fraction Weight Fraction

A B C

D E F

G H I

J K L

Weight Fraction Weight Fraction Weight Fraction

D
 (µm

2/s)
D

 (µm
2/s)

D
 (µm

2/s)
D

 (µm
2/s)

0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.810-2

10-1

100

0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8

D
 (µ

m
2 /s

)
D

 (µ
m

2 /s
)

M N O

P Q R

D
 (µm

2/s)
D

 (µm
2/s)

BCR - Pre BCR - 1 BCR - 23

BCR - 45 BCR - 67 BCR - End

LAT2 - Pre LAT2 - 1 LAT2 - 23

LAT2 - 45 LAT2 - 67 LAT2 - End

Lyn - Pre Lyn - 1 Lyn - 23

Lyn - 45 Lyn - 67 Lyn - End
10-2

10-1

100

10-2

10-1

100

10-2

10-1

100

Figure 2.9
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Figure 2.9 (previous page): Full cluster analysis for the BCR, LAT2 and LYN
molecules. A-F: SMAUG analysis of the di�usion coe�cients and weight fractions for

BCR-SiR. A corresponds to the ’Pre’ bar in Fig. 2.8D, B-E correspond to the middle bars,

and ’F’ corresponds to ’End’. A and F are the same as in Fig. 2.8C. G-L: SMAUG analysis

of the di�usion coe�cient and weight fraction for the LAT2. G corresponds to the ’Pre’

bar in Fig. 2.8E, H-K correspond to the middle bars and L corresponds to ’End’. M-R:

SMAUG analysis of the di�usion coe�cient and weight fraction for LYN. M corresponds

to the ’Pre’ bar in Figure 4F, N-Q correspond to the middle bars and R corresponds to

’End’.

2.7 Conclusions

Single-molecule experimental techniques have greatly enhanced the �eld of biophysics

and our understanding of many biological problems. However, as SPT experiments are ex-

tended to include more complex systems, the need for a mathematically rigorous analysis

method has increased. The SMAUG method we developed in this paper allows completely

hands-free analysis of single-molecule tracking data by using a nonparametric Bayesian

approach to fully characterize the posterior distributions of many of the relevant param-

eters and enables us to quantify the corresponding parameter uncertainties. This method

allows more concrete and objective conclusions to be drawn from SPT experiments as it

bypasses the issues of supervisory bias and model selection that can alter the data pro-

cessing and the conclusions drawn.

However, certain limitations do exist for this method, both in the assumptions that

the method makes and in the ability of SMAUG to resolve the dynamics of the system.

The SMAUG algorithm, as mentioned before, assumes free di�usion. While we believe

this is a reasonable assumption for the cases presented in this chapter, it could possibly

bias results in systems where this is not the case and there is some active con�nement

or tra�cking of the protein of interest. E�ects from supra- or sub-di�usive behavior will,

however, be mitigated somewhat because we use step sizes of 1 imaging frame where

those e�ects are less pronounced as deviations from free di�usion are more pronounced
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Figure 2.10: SMAUG analysis for single-molecule motion in a second B cell. A:

Super-resolution reconstruction image of BCR-SiR (magenta) and LAT2-mEos3.2 (green)

in a representative B cell pre-stimulation. Scale bar: 2 µm. B: Super-resolution image of

the cell in A 12.8 min post-stimulation. Scale bar: 2 µm. C: Di�usion coe�cient and weight

fraction estimates for BCR molecules pre-stimulation and at the end of the measurement.

D: Bar graphs showing the mean weight fraction of each identi�ed state as a function of

time for the BCR dataset. The bars labeled ’Pre’ and ’End’ correspond to the data in C. All

other bars are labeled with the time post-stimulation. Identi�ed mobility states are states

whose estimates overlap in di�usion coe�cient and weight fraction. E: The bar graphs for

the weight fractions of LAT2. F: The bar graphs for the weight fractions of Lyn. Analysis

shows similar results to the cells used in Fig. 2.8.

at longer time intervals. An analysis method by the Bathe lab can be used to test if the

dataset resembles free di�usion [57]. Another pair of assumptions that go into the SMAUG

algorithm is that the system under investigation is at equilibrium on the timescale of the

experiment and that the dynamics of the biomolecules involved are in a steady state. If

the system is undergoing rapid change that will alter the states, the SMAUG algorithm

will still �nd the most probable parameters to describe the system, though that will likely

be some amalgam or average of all the states present in the dataset. We overcame this

limitation in the B-cell experiments (2.6.2) by analyzing small subsets of the total experi-

ments, over timescales during which we assume the dynamics are roughly steady. Finally,

SMAUG assumes that the di�usive states are indeed separate and distinct. If the dynamics
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underlying the dataset are drawn from a distribution whose component parameters over-

lap signi�cantly, SMAUG’s use of the slice sampler method will cluster in the data in a

way that does not represent the underlying distribution. However, if given su�cient data

to sample the entire continuous range of values well, it is probable that SMAUG would

uncover a su�ciently large number of di�usive clusters that the resulting conclusions

could still be useful in a biological sense. This brings up the point that SMAUG is depen-

dent on the number of data points it has to work with. For the analysis in this chapter,

and throughout this Thesis, we aim to surpass ten thousand steps for each dataset ana-

lyzed. This is because the number of resolvable states is proportional to the square root of

the total data points and we have found that above ten thousand is su�cient to uncover

the dynamics involved in our sorts of experiments where we expect less than 10 distinct

di�usive states.

In this chapter, I began by outlining the theory behind constructing a nonparametric

Bayesian analysis method as well as the speci�cs of constructing one for use in analyzing

SPT data. I then used various realistic simulations and in vitro experiments to validate the

accuracy and precision of the SMAUG method. Using the ability of this method to un-

cover hidden information, we then investigated the dynamics of two biological systems,

one prokaryotic and one eukaryotic. SMAUG uncovered three distinct states for the dy-

namics of TcpP in wild-type V. cholerae cells. When SMAUG was applied to the dynamics

of the BCR, it uncovered four total states for the BCR, one of which was not present pre-

stimulation and two of which disappeared post-stimulation. Additionally, SMAUG found

that the system rapidly shifted to from its pre-stimulation dynamics to its �nal state, the

whole conversion taking less than 30 seconds total. The �nal state then lasted for several

minutes. Similarly, it was found that the dynamics of LAT2 began with 3 distinct states and

added a slower di�using fourth state in concert with the shift of the BCR. Somewhat sur-

prisingly, Lyn dynamics seem una�ected by alterations in BCR dynamics, indicating that

any action of Lyn on BCR must occur within roughly ten secons or so and then resume
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its pre-stimulated dynamics.

As the work in this chapter demonstrates, the SMAUG analysis method provides re-

searchers with a powerful tool for analyzing SPT experiments. Crucially, it removes su-

pervisory biases while not sacri�cing accuracy and precision in the estimation of the

underlying dynamics under investigation. SMAUG allows researchers to draw concrete

conclusions of the dynamics of biomolecules that can, in turn, provide mechanistic or

biochemical insight into the environment or behavior of biomolecules in many systems

relevant to cellular biology.
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CHAPTER III

Investigating the Hidden Dynamics of Epigenetic

Silencing in the Yeast Model System S. pombe

The work presented in the chapter is in preparation to be for publication

Karslake, J.D.*, Biswas, S.*, Biteen, J.S., and Ragunathan, K. Investigating the Hidden

Dynamics of Epigenetic Silencing in the Yeast Model System S. pombe. in prep 1

3.1 Introduction

Cells with the same genotype can display distinct phenotypes and gene expression

patterns. This ability is the basis of all multicellular life, as cells take on speci�c roles

but have no changes in the underlying sequence of their DNA. These patterns of gene

expression that persist despite the removal of the initial signal and regardless of the ex-

ternal environmental are referred to as epigenetic states [58]. Epigenetic states have been

shown to persist through many cell cycles and are inherited along with the genome it-

self [59]. Epigenetic states also play a role in single-cell organisms as well, even where

1Author contributions - J.D.K. and S.B. contributed equally to this work. All authors designed the

research. J.D.K and S.B. preformed the live cell microscopy experiments and analyzed the results. J.D.K

designed the image analysis algorithms. S.B. and K.R. constructed the yeast strains and preformed the bio-

chemical assays.
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cell specialization/di�erentiation into di�erent cell types are not present. Daughter cells

from a mitotic event might display di�erent gene expression patterns from the mother

cell despite having an identical genome. While this di�erence could arise from a random

or unequal distribution of transcription factors during division, it can also arise from a

change in the covalently bonded, post-transcriptional modi�cations that are attached to

either the DNA itself or to various DNA-associated proteins. This collection of modi�ca-

tions is termed the "epigenome" of the organism, as it is another layer on top of the DNA

sequence itself that helps determine gene expression. A phenotypic change in a cell that

was the result of the random distribution process would not be expected to persist over the

long term through many cell divisions and thus it would not be considered an epigenetic

shift. However, directed changes in the post-translational modi�cations of DNA associ-

ated proteins or post-replicative modi�cations of the DNA itself are long-lived epigenetic

changes.

In 1928, Heitz discovered that parts of the DNA of a moss species remain visible by

staining even after mitosis has completed. When the cell was in interphase, most of the

stained genetic material disappeared but a fraction stayed visible throughout the entire

cell cycle [60]. He called the regions that remain visible "heterochromatin" because they

were somehow di�erent from the other, "euchromatin", regions though he did not know

how or why. Later studies on other organisms showed that these heterochromatin regions

were genetically silenced, and if a usually transcriptionally active gene were transposed

near to these regions it could be silenced as well [61,62]. We now know that these regions

are highly enriched for the types of post-replicative modi�cations to the DNA and/or post-

translational modi�cation of DNA-associated proteins mentioned above and discussed

in more detail in the next section. Heterochromatin formation is highly correlated with

the establishment of post-translational modi�cations that silence gene activity and the

silencing of particular genes helps promote distinct phenotypic states that persist through

generations [63, 64].
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In this chapter, I discuss my investigation of one of the epigenetic gene-silencing path-

ways using super-resolution microscopy and single-particle tracking (SPT). To begin, I

will discuss the relevant biological background and reasons for using single-molecule

methods to probe this system. In the following sections, I will present the results of the

dynamics of this system and how genetic mutations perturb the system in illuminating

ways. Finally, I will conclude with some thoughts on the impact and reach of this study.

3.2 Biological Background

Regions of heterochromatin have been shown to have several general properties. In

addition to the aforementioned gene silencing e�ect, heterochromatin regions are also

generally sequestered to the nuclear periphery, replicate late in the cell cycle, and recom-

bine less frequently than euchromatic regions [63]. The functional unit of heterochro-

matin is the nucleosome, which contains an octamer of histone proteins (dimers of H2A,

H2B, H3, and H4) along with 147 base pairs of DNA which wrap around the histone oc-

tomer core [65]. The N-terminal region of some of these histones have accessible residues,

especially lysine residues, that can be modi�ed with various adapter molecules of which

there exist at least 8 known classes [66, 67]. Acetylation of lysines generally corresponds

to an increase in gene transcription whereas methlyation of histone lysines is generally

correlated with increased silencing. Methylation of the lysine 9 residue (K9) of the H3 hi-

stone (H3K9me) is an especially important marker for the formation of heterochromatin

as disruption of this residue results in the removal of silencing [68, 69].

The HP1 family of proteins recognizes the H3K9 methlyation mark speci�cally and is

the key regulator of the formation of the heterochromatin-associated silencing complexes

such as RITS and RDRC which are known to extend heterochromatin domains and silence

gene expressions [70]. The model organism of �ssion yeast, Schizosaccharomyces pombe,

lacks any other type of post-transcriptional epigenetic modi�cations and so is a good

system in which to study the behavior of histone-mediated epigenetic silencing of genes
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without compounding factors, as S. pombe does not undergo direct DNA methylation.

The homolog of HP1 in S. pombe is Swi6. Swi6 has no enzymatic activity of any kind but

contains two distinct domains and a �exible hinge region between them directly related

to its function as a recognition marker and sca�old. The chromodomain (CD) recognizes

the H3K9me mark of the histone and can bind directly to it. The chromoshadow domain

(CSD) is responsible for the dimerization of two Swi6 proteins into the functional unit and

also has interaction areas that are needed to recruit other chromatin associated proteins

[70]. Attached to the CD domain is the conserved ARK loop which, in dimeric unbound

Swi6, interacts with the ARK loop on the other subunit of the dimer and auto-inhibits

its binding to any other Swi6 molecules. Upon binding to the histone, however, these

loops are displaced and become accessible for interactions with other Swi6 dimers (Fig.

3.1A). Interaction between neighboring Swi6 ARK loops into extended chains is thought

to help extend regions of heterochromatin [71]. The hinge region is a �exible and highly

positively charged region between the CD and the CSD. Less is known about the function

of the hinge region between these domains, but recent work has suggested that this region

is involved binding to DNA and/or nascent mRNA. Being highly positively charged, it

is thought to trap and newly made RNA chains from silenced regions and escort these

strands to degradation nearby complexes such as RITS and RDRC can cut and break these

strands apart [72] (Fig. 3.1B).

The binding of Swi6 to the H3K9me mark is reversible and highly dynamic, it has

been shown to occur on the timescale of milliseconds to seconds [73]. The bound Swi6

molecule then recruits other remodelers to the site in order to extend the region of het-

erochromatin. Clr4, a histone methlytransferase, is responisible for making the H3K9me

mark and its recruitment to regions of heterchromatin extends the domain by methylat-

ing other nearby histones (Fig. 3.1C). Eventually, the presence of the remodelers recruits

the protein Epe1 to the heterochromatin. Epe1, a demethylase, acts in opposition to Clr4

by removing the H3K9me mark from histones, thereby removing the Swi6 binding site
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Figure 3.1: Swi6 structure and pathway. A: Schematic of the functional roles of Swi6.

The CD binds to the H3K9me mark, the CSD is involved in the dimerization of two Swi6

molecules. These two domains are connected by a �exible linker region and the ARK loop

(red) is thought to mediate higher order structures. Figure from [71]. B: The hinge region

of Swi6 is thought to help keep silenced genes from being expressed by trapping newly

made RNA chains and escorting them to degradation. Figure from [72]. C: Cartoon de-

piction of the histone modi�cation machinery. Swi6 has been tagged with the �uorescent

protein PAmCherry for tracking.
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and contracting zones of heterochromatin to stop them from spreading. The interplay of

these two proteins, Clr4 and Epe1, in extending and constricting regions of heterochro-

matin is further complicated by the e�ect of two other proteins, Mst2 and Clr3 (Fig. 3.1C).

Mst2 and Clr3 are a part of the histone acetylation pathway, which promotes antisilenc-

ing and increased gene expression. Mst2 is the histone acetyltransferase and the Clr3 is

the deacetylase. Thus Mst2 increases antisilencing by extending regions of euchromatin

and Clr3 promotes silencing by cutting back regions of increased expression [70]. At any

histone site, the balance of these opposing outcomes from the proteins involved will de-

termine the functional state of the genes nearby (Fig. 3.1C).

In such a dynamic and complex system, several questions emerge. First, how are epi-

genetic states maintained over generations, which can range from hours to days, if the

system is in such a constant �ux? Second, what are the functional roles and steps inside

the system that lead to these outcomes? To answer these questions, we need to identify

distinct biochemical states within a complex system. Using super-resolution microscopy

and SPT, along with an analysis method such as Single-Molecule Analysis by Unsuper-

vised Gibbs (SMAUG) (Chapter II), I was able to look directly at the dynamics of this sys-

tem by observing individual molecules inside living cells and uncover distinct biological

states that are hidden or averaged over using other methods.

3.3 Methods

Strain Construction

Endogenous copy of Swi6 was deleted and replaced with natamycin antibiotic. PAm-

cherry was tagged at the N-term of Swi6 by Gibson cloning method. The strain containing

PAmcherry-Swi6 was made by insertion of �uorophore tagged Swi6 at the ura4+ locus

using PCR-based gene targeting approach. In strains where WT copy of swi6 is intact,

mNeongreen tagged Swi6 is inserted at leu1+ locus. The deletions of the various RNAi

and chromatin components were achieved by PCR-based gene-targeting approaches. To
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select colonies harboring the reporter gene PCR-based screening approach was applied.

Mutation at di�erent position of protein under investigation is done by site directed mu-

tagenesis approach.

Microscopy experiments

S. pombe cells containing a chromosomal fusion of the photoactivatable red �uorescent

protein, PAmCherry, to Swi6 as the sole source of Swi6, except for strains containing extra

copies of Swi6 which inserted into the trp1 locus. These cells were grown in Yeast Extract

with Supplments (YES) media [74] at 25 °C for 2 days to mid-exponential phase. The cells

were then diluted and allowed to grow for another 3 hours. The cells are then harvested by

centifugation and the media exchanged for minimal media with n-propal galate added and

plated on an agarose pad. Imaging occured at room temperature and only cells in G2 phase

were selected. Phase-contrast images were obtained before each imaging experiment us-

ing a phase-condenser to illuminate the sample. Cells are imaged using a 406-nm laser

(Coherent Cube 405-100; 102 W/cm
2
) for photo-activation and a 561-nm laser (Coherent-

Sapphire 561-50; 163 W/cm
2
) for imaging. Continual images were collected with a 40-ms

exposure time per frame in an Olympus IX71 inverted epi-�uorescence microscope with a

100x 1.40 NA oil-immersion objective. The �uorescence emission was �ltered with appro-

priate �lters and imaged on a 512 by 512 pixel Photometrics Evolve electron multiplying

charge-coupled device (EMCCD) camera. Protein copy number experiments were carried

out using a custom built MATLAB code. By hand, we identi�ed single mCherry molecules

at the end of movies, calculated the total intensity for several such molecules, and aver-

aged them. We divided the intensity of the total �uorescence in the nucleus by this average

value to roughly estimate the protein copy number. Recorded single-molecule positions

were detected and localized as previously described using home-built code [27], and con-

nected into trajectories using the Hungarian algorithm [24].

Data Analysis

Trajectory analysis was performed using home built MATLAB code, called SMAUG,
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that embeds a Hidden Markov Model embedded inside a Gibbs Sampler to estimate the

parameters of interest in a data set(Chapter II, [75]). All trajectories for a given condition

were bundled together and analyzed. Brie�y, the SMAUG algorithm takes in a data set

of trajectories and estimates the parameters of interest using a Bayesian statistical frame-

work. Data is sorted probabilisticly into terms and then used to re�ne parameter estimates

for that term and then the process is repeated. Over time, this iterative process converges

onto the most likely values for the parameter estimates given the input data set. Param-

eters of interest from the data set are the number of mobility states within the set, the

di�usion coe�cient, weight fraction,and transition probabilities between the states.

3.4 Swi6 Motion in Wild-type Cells Display Complex Dynamics

To begin our investigations into this system, we �rst constructed a strain which con-

tained a genetically-encoded, �uorescently labeled copy of Swi6 tagged at the N-terminus

with the �uorescent protein (FP) mCherry at the endogenous ura4 locus. These cells were

shown to have normal cellular morphology under phase-contrast imaging (Fig. 3.2A).

Imaging these cells under 561 nm excitation we detected a region of �uorescent signal

from the nucleus containing a variable number of distinct spots (Fig. 3.2B). This fusion

protein was shown to be functional, as seen by the silencing of a reporter gene inserted

in the chromosome (Fig. 3.1C). ura4 encodes a genes for Orotidine 5’-phosphate decar-

boxylase (ODCase), an enzyme that catalyzes one reaction in the synthesis of pyrimidine

ribonucleotides. If 5-Fluoroorotic acid (FOA) is added to the media, the active ODCase

will convert FOA into the toxic compound 5-�uorouracil, a suicide inhibitor of transla-

tion, causing cell death and allows for selection against yeast carrying the gene. Lanes

1 and 6 in Fig. 3.2C contain wildtype cells, in which this locus is silenced, and so cells

grow normally when plated on media containing FOA. Lanes 2 and 5 contain cells which

harbor the clr4∆ deletion, which removes the H3K9me mark and so the ODCase gene

will be expressed, causing cells plated with FOA to die. Lanes 3 and 4 contain cells with
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the PAmCherry-Swi6 fusion as the only Swi6 in the cell and grow on media containing

FOA, indicating that the gene remains silenced and the fusion protein is functional (Fig.

3.1C). Using our �uorescence setup, we captured images (such as in Fig. 3.2B) and, using

a custom built MATLAB script, manually identi�ed the nucleus region inside. The total

intensity of the identi�ed nuclear region was divided by the average integrated intensity

of a single mCherry molecule to roughly estimate the number of Swi6 fusion proteins

inside the cell. Total cells counted in this manner was 44 and the mean number of Swi6

molecules detected was 330, with a standard deviation of 130 molecules.

Next, to investigate the dynamics of the system, we constructed a new strain where

Swi6 was tagged with the phtotoactivatable FP PAmCherry [11], still at the N-terminus.

This protein is initially in a dark state and, by tuning the power of the excitation laser, we

can stochastically activate a few molecules at a time into a �uorescent state. We can then

use repeated rounds of this activation cycle to track single molecules inside the nucleus.

We imaged these cells under the microscope collecting 19,273 steps from 2971 trajectories.

Some representative trajectories are shown in Fig. 3.3A. The biochemical environment of

Swi6 inside the cell should be directly related to its motion and so by identifying the

di�erent types of motion described by the trajectories of the molecules, we can learn

about the behavior of the protein inside the cell. Of particular interest is: 1) information

about the number of these distinct states of motion that exist, which I refer to as the

"di�usive model" of the system; 2) what the value of the di�usion coe�cient for each

of these identi�ed states in the di�usive model is along with the fraction of the total

that each state represents and 3) what, if any, is the probability of transitioning between

these states. Using our SMAUG Hidden Markov Model Gibbs sample (Chapter II, [75]) we

use a nonparametric Bayesian probability framework to make estimates about the most

probable values for these pieces of information in an iterative process. Brie�y, SMAUG

sorts each data point into a speci�c state by likelihood and then takes only the sorted

data for each term to update the probability distribution that describes that term. In an
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Figure 3.2: Swi6 functionality. A: Phase-contrast image of representative S. pombe cells

containing the fusion Swi6-mCherry and showing normal cell morphology. B: Same cells

as in A imaged under 561 nm laser excitation showing �uorescence in the nuclei. C: Gene

silencing assay that demonstrates the fusion Swi6 is functional. Cells plated on media

containing 5-Fluoroorotic acid (FOA) will die if the usually silenced gene region ura4 is

no longer silenced. Lanes 1 and 6 contain wildtype cells that grow in both FOA containing

media and rich media, indicating the gene is silenced. Lanes 2 and 5 contain strains that

lack the ability to silence and thus these cells die when plated on media containing FOA.

Lanes 3 and 4 are strains that contain a fusion PAmCherry-Swi6 and these cells live on

media containing FOA, indicating the gene is silenced and the protein fusion is functional.

Columns indicate serial 10-fold dilution of cells. Scale bars = 2 µm.
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iterative process, these distributions are re�ned until the most likely parameter values are

found. Crucially, SMAUG requires no user input or supervision and can identify the most

likely parameters,including the di�usive model, without oversight.

Using the data set for the PAmCherry-Swi6, SMAUG identi�ed the most probable dif-

fusive model as having four distinct mobility states with di�usion coe�cients of D =

{0.007, 0.021, 0.081, 0.521} µm2/s and with weight fractions of π = {0.23, 0.32, 0.20, 0.25}

(Fig. 3.3B and C) and with transition between states given by the matrix:

T=

©«

.85 .13 < .01 < .01

.09 .78 .08 .04

< .01 .19 .58 .21

< .01 .07 .16 .75

ª®®®®®®®®¬
where each value,Tij , is the probability of transitioning from state i to state j. For example,

the probability that a molecule in State 1 transitions into State 2 is 0.13 (Fig. 3.3).

We attribute these distinct states to various binding and biological roles of the protein.

The most highly occupied state is the second slowest (red) state, which we hypothesis is a

type of searching mechanism of the protein as it binds to histones looking for the H3K9me

mark. We will refer to these states as State 1—4, with State 1 being the one with the slowest

di�usion coe�cient (blue in Fig 3.3B) and State 4 being the most mobile state (purple). For

State 4, we propose that it is representing the freely di�using dimer within the nucleus.

State 1 we suggest is the bound state of the molecule with the Swi6 fusion bound to a

H3K9-methylated histone and interacting with the various associated complexes. State 2

is hypothesized to be the Swi6 search process where the protein is transiently binding

histones that lack the H3K9me mark. SMAUG analysis of these PAmCherry-Swi6 cells

provides a baseline of dynamical processes for this system. We then perturbed the system

using a variety of genetic mutations that are detailed below to better understand the role

each of these states might be. A full list of the mutants utilized in this study is found in

Tables 3.1, 3.2, and 3.3.
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Figure 3.3: SMAUG analysis for the dynamics of PAmCherry-Swi6. A: Representa-

tive image of the trajectories of PAmCherry-Swi6 in one cell superimposed on top of the

phase contrast image. All of the tracks are inside a volume determined to be the nucleus of

the cell. Trajectory colors indicate separate tracks. Scale bar: 2µm B: Di�usion coe�cient

and weight fraction estimates from the output of the SMAUG analysis. SMAUG identi�es

four distinct clusters within the data set. C: Cartoon depiction of the full SMAUG results

for this data set, including transition probabilities. Bubble colors correspond to the term

colors in B and bubble sizes represent the weight fractions. Arrows between bubbles in-

dicate the mean of the transition matrix elements for transitions between those terms.

Dashed lines indicate transition probabilities that are negligible.
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3.5 Swi6 Dynamics With Chromatin Remodeling Mutations Dis-

plays Altered Mobility

3.5.1 H3K9 Methylation Pathway Deletions

To discover how changing the heterochromatin state of the cell a�ects the dynamics

of Swi6 and also uncover the biological roles of the states found in the wildtype analy-

sis, we created several mutation strains (Table 3.1). We built strain clr4∆, which lacks the

H3K9me methyltransferase Clr4. In this strain, the deletion of the clr4 gene removes the

ability of the cell to methylate H3K9, an anti-silencing mutation that promotes more eu-

chromatin and increased gene transcription. Consequently, with the Swi6 target removed

we expected to observe a decrease or removal of State 1 (blue term in Fig. 3.3B,C) from

the wildtype dynamics of Swi6. We imaged these clr4∆ cells to obtain a data set of 3,288

trajectories and 12,773 steps from 29 cells.

Accordingly, when these cells were analyzed using the SMAUG algorithm the most

probable di�usion model was one with 3 states whose di�usion coe�cients were D =

{0.031, 0.104, 0.556} µm2/s and weight fractions π = {0.14, 0.25, 0.61} (Fig. 3.4A). The

lowest di�usive state from PAmCherry-Swi6 in otherwise wildtype cells has been re-

moved and a state with di�usion value close to State 2 has been reduced in weight fraction

(Fig. 3.4A, red). Additionally, the state with di�usion coe�cient very similar to State 4 has

been greatly increased in weight fraction and now represents the majority of the system

(Fig. 3.4A, purple). This output from SMAUG supports the idea that State 1 is the state

that represents Swi6 bound to the H3K9me target in regions of heterochromatin and with

its removal a majority of the Swi6 is in a freely di�usive state throughout the nucleus.

The transition matrix for this system still clearly shows a path for moving from highest to

lowest di�usive state, indicating that while the H3K9me target is missing, the other bio-

physical states are present and the transitions between these states remain present (Fig.

3.4B).
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Figure 3.4: Dynamics of PAmCherry-Swi6 in clr4∆ and epe1∆ cells. A: Di�usion co-

e�cient and weight fraction estimates from the output of the SMAUG analysis for clr4∆.

SMAUG identi�es three distinct clusters within the data set. B: Cartoon depiction of the

full SMAUG results for this data set, including transition probabilities.C: Di�usion coef-

�cient and weight fraction estimates from the output of the SMAUG analysis for epe1∆.

SMAUG identi�es four distinct clusters within the data set. D: Cartoon depiction of the

full SMAUG results for this data set. Bubble colors correspond to the term colors in A or

C and bubble sizes represent the weight fractions. Arrows between bubbles indicate the

mean of the transition matrix elements for transitions between those terms. Dashed lines

indicate transition probabilities that are negligible.
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Strain Name Mutation Description
clr4∆ PAM-Swi6 + clr4∆ Deletion of lysine histone methyltransferase

Clr4 and PAmCherry-Swi6

epe1∆ PAM-Swi6 + epe1∆ Deletion of lysine histone demethylase

Epe1 and PAmCherry-Swi6

mst2∆ PAM-Swi6 + mst2∆ Deletion of lysine histone acetyltransferase

Mst2 and PAmCherry-Swi6

clr3∆ PAM-Swi6 + clr3∆ Deletion of lysine histone deacetylase

Clr3 and PAmCherry-Swi6

Table 3.1: Strain list for the deletion analysis. PAM is the photoactivatable red FP

PAmCherry and NG is the green FP mNeonGreen. All mutations are made at the en-

dogenous ura4 locus. FP and protein name in the description represents gene orientation

with FP before the protein indicating an N-terminal fusion and after the protein being

C-terminal.

To further understand the e�ect the H3K9me mark has on the dynamics of Swi6,

we deleted the protein responsible for its removal, the lysine histone demethylase Epe1.

epe1∆ cells should be unable to remove the H3K9me mark once it has been installed and

epe1∆ is thus a pro-silencing mutation that extends regions of heterochromatin. We im-

aged this strain and obtained 1,176 trajectories and 12,790 steps. SMAUG analysis returns

a 4 state model where the di�usion coe�cients and weight fractions are all extremely

similar to the dynamics of Swi6 in the wildtype cells (Fig. 3.3A). Mean di�usion coe�-

cients for epe1∆ are D = {0.008, 0.025, 0.093, 0.475} µm2/s and with weight fractions of

π = {0.23, 0.35, 0.19, 0.23} (Fig. 3.4C). The transition matrix elements are similar but show

a slight shift towards a less dynamic system, as most of the transitions are less likely for

the same transition than in the Swi6 dynamics in the wildtype cells (Fig. 3.4D). This ev-

idence strongly suggests that the removal of the downstream protein Epe1 has no a�ect

on the dynamics of Swi6. One possible explanation is that there might only a marginal

increase in the amount of heterochromatin compared to strains containing Epe1 as the

other machinery for epigenetic modi�cation is still present and working to counteract

any large-scale increase in heterochromatin formation.
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3.5.2 H3K Acetylation Pathway Deletions

To further test how remodeling of heterochromatin a�ects the dynamics of Swi6, two

further strains were created: mst2∆ and clr3∆. Both of these proteins are involved in the

the acetlyation of histones and thus are important regulators of euchromatin. Mst2 is one

of two epigenetic acetyltranserases in the cell but is very speci�c for the H3K14 residue

whereas Clr3 is a more general deacetlyase, though still lysine-speci�c. Thus, in themst2∆

strain there is less euchromatin as one of the main promoters of histone acetlyation is

removed. On the other hand, in the clr3∆ strain, there exists more euchromatin as once

placed an acetyl group cannot be removed, which encourages euchromatin formation.

Figure 3.5 shows the output of the SMAUG analysis for these strains. Both strains return

a most probable four state model with coe�cient estimates similar to those estimated

for the four states identi�ed for the Swi6 dynamics in wildtype cells. The mst2∆ data set

contained 11,341 steps and the clr3∆ data set contained 9,049 steps. In mst2∆, the mean of

the di�usion coe�cients were D = {0.007, 0.018, 0.096, 0.615} µm2/s with mean weight

fractions of π = {0.25, 0.39, 0.22, 0.14} (Fig. 3.5A). In this analysis, State 2 (Fig. 3.5A, red)

is increased and State 4 (Fig. 3.5A, purple) is decreased in weight fraction relative to the

dynamics of Swi6 in wildtype cells. We hypothesized that State 2 was Swi6 searching

histones for the H3K9me mark and, with the deletion of Mst2, there exist more "naked"

histones, i.e. histone lacking in both the methyl and acetyl modi�cations, for Swi6 to

search, which would help explain the increase of State 2 while State 1 remains constant.

Additionally, there are increased transition probabilities in and out of the most mobile

states, including a much larger 4 to 2 transition (Fig. 3.5B, green and purple), supporting

the idea that much more Swi6 are moving out of these states and into the searching state

(Fig. 3.5B, red) with the increase in the amount of histones available for binding (Fig. 3.5B).

In the case of removing Clr3 however, the amount of acetylated histones will increase

and acetlyated histones have been shown to reduce Swi6 binding [76], either through

steric interactions or some other method. SMAUG returns a most probable four state
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Figure 3.5: Dynamics of PAmCherry-Swi6 in mst2∆ and clr3∆ cells. A: Di�usion

coe�cient and weight fraction estimates from the output of the SMAUG analysis of

PAmCherry-Swi6 in mst2∆. SMAUG identi�es four distinct clusters within the data set.

B: Cartoon depiction of the full SMAUG results for this data set, including transition

probabilities.C: Di�usion coe�cient and weight fraction estimates from the output of the

SMAUG analysis of PAmCherry-Swi6 in clr3∆. SMAUG identi�es four distinct clusters

within the data set. D: Cartoon depiction of the full SMAUG results for this data set. Bub-

ble colors correspond to the term colors in A or C and bubble sizes represent the weight

fractions. Arrows between bubbles indicate the mean of the transition matrix elements

for transitions between those terms. Dashed lines indicate transition probabilities that

are negligible.

model with mean di�usion coe�cients D = {0.010, 0.039, 0.147, 0.639} µm2/s and with

weight fractions of π = {0.18, 0.29, 0.25, 0.27} (Fig. 3.5C). Overall, the di�usion coe�-

cient for each term is slightly elevated and indicates a more mobile system as a whole. The

weight fraction of both State 1 and State 2 has decreased (Fig. 3.5C,blue and red) relative

67



C
um

ul
at

iv
e 

W
ei

gh
t F

ra
ct

io
n

0

0.2

0.4

0.6

0.8

1

D (µm2/s):  ~0.007  ~0.025  ~0.1  >0.4

Swi6 clr4∆ epe1∆ mst2∆ clr3∆

Figure 3.6: Dynamics of PAmCherry-Swi6 with chromatin remodeler mutants.
Bar graph showing the amount of weight fraction for the system that each colored state

identi�ed for Swi6 in wildtype cells occupies. Purple: most mobile state (D > 0.4µm2/s);
blue: least mobile state (D < 0.01µm2/s)

to the Swi6 State1 and 2 populations in wildtype cells while States 3 and 4 are increased

(Fig. 3.5C, green and purple), suggesting that the acetyl marks hamper the protein-target

binding, both at histones with the H3K9me mark and at those without. Moreover, all of

the transitions between states are increased, indicating a lower dwell time of Swi6 in each

state. Perhaps, again, the increased number of acetlyated histones leads to faster Swi6

unbinding (Fig. 3.5D).

Taken together, these results support the idea that the DNA topology itself is, at least in

part, a driver of the dynamics seen in Swi6 and therefore in�uences its role. Anti-silencing

mutations such as clr4∆ and clr3∆ both increase the overall mobility of Swi6, either by re-

moving the target and thereby causing Swi6 to be more di�usive (clr4∆) or by decreasing

the populations of Swi6 in the slowest di�using states and instead increasing the transi-

tions into the more mobile states (clr3∆). Conversely, the results for silencing mutations,

such as epe1∆ and mst2∆, are more di�cult to generalize. On the one hand, mst2∆ caused

a slight shift towards a less mobile system with more weight fractions in the two least
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mobile terms and fewer transitions overall. However, another silencing mutation, epe1∆,

resulted almost no shift at all in the dynamics of Swi6, though we have hypothesized that

this result could be in part due to the extremely low copy number of Epe1 in even wildtype

cells, leading to a lesser e�ect on the chromatin state of the DNA in its absence. Figure 3.6

has an overview of the e�ect of these mutations on the dynamics of PAmCherry-Swi6.

3.6 Sequence Mutations in Swi6 Reveal Functional Roles

To investigate the role of the various domains of Swi6 in the dynamics of the protein

we created several in which Swi6 contains mutations strains that have been shown to

a�ect known biochemical activities of the protein. Table 3.2 has a list of strains used in

this section. Because Swi6 plays an important role in the cell we worried that creating

mutant copies of this protein might a�ect the health of the cell. Additionally, we wanted

to separate out the e�ect that a particular sequence mutation has on the dynamics of Swi6

from any other e�ects on the dynamics stemming from a lack of a completely functional

Swi6 in the cell. Thus, we created strains where a fusion of the FP mNeonGreen and

Swi6 was added back into the genome at the leu1 locus (denoted Swi6+ in Table 3.2).

To investigate the e�ect of that Swi6 overexpression from the double copies has on the

system, we imaged cells containing a PAmCherry-Swi6 fusion at the native locus and a

separate mNeonGreen-Swi6 fusion at the leu1 locus, called Swi6/Swi6+. We imaged these

cells using phase-contrast and found they contained no change in cellular morphology

(Fig. 3.7A). We then imaged using SPT and collected a data set of 12,016 steps from 58

cells and performed SMAUG analysis on the data set. SMAUG returned a most probable

four state model with mean di�usion coe�cients ofD = {0.010, 0.047, 0.116, 0.662} µm2/s

and with weight fractions of π = {o.36, 0.21, 0.23, 0.21} (Fig. 3.7B). This analysis shows

that all terms identi�ed in the analysis for Swi6 alone in wildtype cells are present but that

the weight fraction of the slowest di�using state is increased whereas the amount in the

second state is lowered. This result could possibly arise from an over-expression of Swi6
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Strain Name Mutation Description
Swi6/Swi6+ PAM-Swi6 + NG-Swi6 Additional mNeonGreen-Swi6

CD* PAM-W104A PAmCherry-Swi6 with

W104A point mutation

CD*/Swi6+ PAM-W104A + NG-Swi6 PAmCherry-Swi6 with W104A

point mutation + mNeonGreen-Swi6

ARK* PAM-K93A/R94A PAmCherry-Swi6 with double

point mutant K93A/R94A

ARK*/Swi6+ PAM-K93A/R94A PAmCherry-Swi6 with double point

+ NG-Swi6 mutant K93A/R94A + mNeongreen-Swi6

CSD* PAM-L315E PAmcherry-Swi6 with

L315E point mutation

CSD*/Swi6+ PAM-L315E + NG-Swi6 PAmCherry-Swi6 with L315E

point mutation + mNeonGreen-Swi6

F324A PAM-F324A PAmCherry-Swi6 with

F324A point mutation

F324A/Swi6+ PAM-F324A + NG-Swi6 PAmCherry-Swi6 with F324A

point mutation + mNeonGreen-Swi6

KR25A PAM-KR25A PAmCherry-Swi6 with 25 K & R residues

from the Hinge region mutated to A [72]

Table 3.2: Strain List for the Sequence Mutation experiments. PAM is the photoac-

tivatable red FP PAmCherry and NG is the green FP mNeonGreen. All Swi6 mutations are

inserted at the endogenous ura4 locus. FP and protein name in the description represents

gene orientation with FP before the protein indicating an N-terminal fusion and after the

protein being C-terminal. All mneongreen-swi6 genes were inserted at the leu1 locus.

being a pro-silencing-like mutation, leading to more regions of heterochromatin which,

as we found above, tends to create a system with more occupancy in the lowest di�usive

states. Such a hypothesis is further strengthened by the transition elements: transitions

into State 1 are increased, including relatively high transition probabilities from State 4

(Fig. 3.7C). In any case, the addition of an extra gene copy of a fusion swi6 does not seem

to perturb the dynamics of the system too greatly, by, for example, creating terms unseen

previously or by shuttling all extra copies into State 4.

3.6.1 Chromodomain Mutations Alter Swi6 Dynamics to be More Di�usive

Swi6 is made up of the chromodomain (CD) and the chromoshadow domain (CSD).

The CD is responsible for recognizing the H3K9me mark and binding to it (Fig. 3.1). To
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Figure 3.7: Dynamics of the control Swi6/Swi6+ strain. A: Phase-contrast image of

a cell containing the PAmCherry-Swi6/mNeonGreen-Swi6+ strain and showing normal

morphology. Scale bar = 2 µm. B: Di�usion coe�cient and weight fraction estimates from

the output of the SMAUG analysis for Swi6/Swi6+ strain. SMAUG identi�es four distinct

clusters within the data set. C: Cartoon depiction of the full SMAUG results for this data

set, including the transition probabilities.

investigate the e�ect of the chromodomain binding to the H3K9me mark and its role in

the dynamics of Swi6, we created a mutant of the Swi6 protein containing a point mu-

tation (W104A). This mutant has been shown in vitro to have decreased binding a�n-

ity for histones containing the H3K9me [76, 77]. We have labeled this strain CD* as the

mutation is in the chromodomain and e�ects binding of Swi6, the essential function of

the CD. We imaged these cells and collected a data set of 9,274 steps and analyzed with

eh SMAUG algorithm. SMAUG returns a most probable model with three states, with

mean di�usion coe�cients D = {0.019, 0.104, 0.681} µm2/s and with weight fractions of

π = {0.21, 0.37, 0.42} (Fig. 3.8A). State 1 from the dynamics of Swi6 inside the wildtype

cells is not present in the model, similar to the dynamics of PMmCherry-Swi6 in clr4∆,

though with a much higher transition probability between the most di�usive states (Fig.

3.8B). This analysis suggests that the W104 residue is required for methyl mark recogni-

tion and subsequent binding to the histone, or perhaps that the W to A mutation disrupts

this recognition.

We also constructed the CD*/Swi6+ strain which contains the CD point mutant Swi6

(W104A) fused to the PAmCherry tag but also contains a a copy of the unmutated mNeon-
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Green-Swi6 fusion. We imaged these cells collecting 12,481 steps. SMAUG analysis of

the data supports a four state model as the most probable one (Fig. 3.8C), with mean dif-

fusion coe�cients D = {0.011, 0.049, 0.192, 0.717} µm2/s and with weight fractions of

π = {0.10, 0.19, 0.29, 0.42} . The four states all contain higher di�usion coe�cient es-

timates than the four states identi�ed for the Swi6 in wildtype cells. We hypothesize

that the reappearance of the 4th state with a very low di�usion coe�cient is due to

the heterodimerization of a Swi6 containing the W104A mutant with an mutationless

mNeonGreen-Swi6 molecule. The transition matrix shows a much more dynamic system

overall, perhaps indicative of the role that binding plays in pushing the system towards

the slower mobility states when present (Fig. 3.8D). This analysis suggests that binding

to a H3K9me histone may only require a single full length copy of the swi6 gene. Ad-

ditionally, even with the extra fusion copy, the amount of weight occupied in State 2 is

decreased in both strains, perhaps indicating that the W104A mutation has a�ected the

non-speci�c binding of histones and/or the search mechanism of Swi6 as well.

Another important aspect of the chromodomain is its role in forming extended, linked

regions of heterochromatin. Dimers of Swi6 bound to histones containing the H3K9me

mark can interact with other, nearby Swi6 dimers bound to other histones. This interac-

tion occurs through the "ARK loop" (Fig. 3.1A red loops), a 3 residue loop in the CD that,

upon binding to the H3K9me histone, opens up into a con�guration that is accessible to

other Swi6 molecules [71]. We constructed two strains wherein the ARK loop is mutated

to AAA, one where the mutant copy is the only copy of Swi6 in the cell and another

that contains the AAA mutant plus a copy of mNeonGreen-Swi6. The ARK* strain has

a data set containing 13,577 steps. SMAUG analysis returns a model that that has some

striking characteristics. SMAUG returns a most probable four state system with mean

di�usion coe�cients D = {0.009, 0.029, 0.135, 0.652} µm2/s and with weight fractions of

π = {0.29, 0.36, 0.15, 0.20} (Fig. 3.9A). While this result seems to resemble the dynamics

of Swi6 in wildtype cells at �rst glance, the striking aspect is the transition matrix en-
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Figure 3.8: Dynamics of PAmCherry-Swi6 in CD* and CD*/Swi6+. A: Di�usion co-

e�cient and weight fraction estimates from the output of the SMAUG analysis for CD*.

SMAUG identi�es three distinct clusters within the data set. B: Cartoon depiction of the

full SMAUG results for this data set.C: Di�usion coe�cient and weight fraction estimates

from the output of the SMAUG analysis for CD*/Swi6+. SMAUG identi�es four distinct

clusters within the data set. D: Cartoon depiction of the full SMAUG results for this data

set.
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tries. There are negligible transition probabilities between Sates 2 and 3 and instead the

transition path has bypassed State 3 completely in order to move directly to the other

intermediate. The transitions between States 4 and 2 have increased in order to compen-

sate for this isolation of State 3 (Fig. 3.9B). This analysis suggests that the interactions of

the ARK loop, or at least its accessibility/conformational changes upon binding, are an

important aspect of moving between the more di�usive State 3 and the relatively slowly

di�using State 2.

The data set for the ARK*/Swi6+ strain contained 14,007 steps and SMAUG analysis

returned as the most probable a four state system with mean di�usion coe�cients D =

{0.007, 0.019, 0.091, 0.707} µm2/s and with weight fractions of π = {0.09, 0.32, 0.32, 0.27}

(Fig. 3.9C). The addition of the extra fusion copy has restored the transitions into and out

of State 3 and consequently reduced the minor path transitions, indicating that at least

1 functional copy of the ARK is su�cient for the molecule to function. Additionally, the

amount of the system occupying the slowest state as decreased to roughly 10%, similar to

the CD*/Swi6+ strain, perhaps as a result of the molecules containing the ARK* mutation

being out-competed or less stable while bound and so fewer molecules occupy that state

was a fraction of the whole system (Fig. 3.9D).

Taken as a whole, the mutations inside the choromodomain provide a details about the

biochemical roles of several of the states identi�ed for the dynamics of Swi6. Mutation

of the important recognition residue W104 causes the loss of the bound state but the

introduction of extra mutationless copies restores some bound state, indicating that the

presence of 1 functional copy of the CD is su�cient for binding to the histone mark.

Further, mutation of the residues inside the ARK loop provides the surprising evidence

that the presence of at least one functional ARK loop inside the Swi6 dimer is required

for transitions through the intermediate states, suggesting that State 3 might be involved

with protein-protein interactions. Figure 3.10 has a summary of the dynamics discussed

in this section.
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Figure 3.9: Dynamics of PAmCherry-Swi6 in ARK loop mutants. A: Di�usion co-

e�cient and weight fraction estimates from the output of the SMAUG analysis for ARK*.

SMAUG identi�es four distinct clusters within the data set. B: Cartoon depiction of the

full SMAUG results for this data set. Interestingly, the transitions between States 2 and 3

have disappeared. C: Di�usion coe�cient and weight fraction estimates from the output

of the SMAUG analysis for ARK*/Swi6+. SMAUG identi�es four distinct clusters within

the data set. D: Cartoon depiction of the full SMAUG results for this data set, showing

recovered transitions into and out of State 3.
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Figure 3.10: Dynamics of PAmCherry-Swi6 with CDmutations. Bar graph showing

the amount of weight fraction for the system that each colored state identi�ed for Swi6

in wildtype cells occupies. Purple: most mobile state (D > 0.4µm2/s); blue: least mobile

state (D < 0.01µm2/s).

3.6.2 Chromoshadow Domain Mutations Reveal Importance of Dimerization

and Identity of Third State

The other main domain of the Swi6 molecule is the chromoshadow domain (CSD). The

CSD is involved in protein-protein interactions. It contains the dimerization region as well

as mediates other protein interactions important for building the heterochromatin remod-

eling sca�olds. We constructed several strains that are aimed at understanding the e�ect

that protein interactions has on the dynamics of the molecule. We constructed a strain,

CSD*, which contains the point mutation L315E, which has been shown to disrupt the

dimerization of two Swi6 molecules [78,79]. We then imaged the CSD* strain and collected

a data set of only 3,566 steps from 61 cells. This data set was very hard to image as their

was very little amount of activatable PAmCherry-Swi6 in the nucleus. I would guess some-

where in the range of 1-10% the normal amount we see in our experiments. This persists

even under very high 405 nm photoactivation pulses, indicating that the mutation caused

some issue with the folding of the protein or perhaps is leading to a more rapid degra-
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dation inside the cell. We nonetheless still analyzed this data set and SMAUG returned

a three state model with mean di�usion coe�cients D = {0.019, 0.086, 0.639} µm2/s and

with weight fractions of π = {0.19, 0.39, 0.42} (Fig. 3.11A), though the variance of the es-

timates around these means is much greater than in other strains due to the lack of data.

Overall, the mean of the parameter estimates and transition elements in the CSD* strain

are very similar to those discovered from the CD* strain: the slowest state is gone and the

di�usion estimates are very similar (Fig. 3.11B). Qualitatively, while the di�usion of the

system seems similar, the lack of normal protein in the cells indicates that dimerization is

important for Swi6 for more than simply binding the H3K9me mark.

We also constructed a strain that contains a Swi6 fused to mNeonGreen along with

the CSD* mutant, this strian is labeled CSD*/Swi6+. We then imaged this strain and found

that much like the CSD* strain, the cells had very little photo activatable protein, making

data collection di�cult. We nonetheless collected 2,576 steps from 33 cells and analyzed

the data set using the SMAUG algorithm. SMAUG returned a three state model, similar to

the CSD* strain, with mean di�usion coe�cients of D = {0.014, 0.088, 0.762} µm2/s and

mean weight fractions of π = {0.21, 0.32, 0.48} (Fig. 3.11C), though again with a larger

variance around these means then in other strains. The transition elements are also very

similar to the CD* and CSD* cases (Fig. 3.11D). This analysis makes sense as the CSD*

lacks dimerization ability and thus should be insensitive to the presence or absence of the

extra fusion mNeonGreen-Swi6 copies and reinforces the conclusion that dimerization is

an important factor in the ability of Swi6 to not just bind but to stay present in the cell.

Swi6 acts as a sca�old for the recruitment of other proteins whose biological func-

tions can vary. The CSD of Swi6 is the site at which many of these protein-protein in-

teractions occur, especially important is the residue phenylalanine 324, which has been

shown to mediate Swi6 interactions with other DNA associated proteins, such as Cdc18,

a replication protein [80]. To investigate the role of protein-protein interactions on the

dynamics of Swi6, we constructed a strain, F324A, with this residue mutated into a non-
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Figure 3.11: Dynamics of PAmCherry-Swi6 in CSD* mutants. A: Di�usion coe�-

cient and weight fraction estimates from the output of the SMAUG analysis for CSD*.

SMAUG identi�es three distinct clusters within the data set. B: Cartoon depiction of the

full SMAUG results for this data set.C: Di�usion coe�cient and weight fraction estimates

from the output of the SMAUG analysis for CSD*/Swi6+. SMAUG identi�es three distinct

clusters within the data set. D: Cartoon depiction of the full SMAUG results for this data

set.
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Figure 3.12: Dynamics of Swi6 F324A mutants. A: Di�usion coe�cient and weight

fraction estimates from the output of the SMAUG analysis for F324A strain. SMAUG iden-

ti�es three distinct clusters within the data set, interestingly State 3 seems to be the one

that has been removed. B: Cartoon depiction of the full SMAUG results for this data set.C:

Di�usion coe�cient and weight fraction for F324A/Swi6+. SMAUG identi�es four distinct

clusters within the data set. D: Cartoon depiction of the full SMAUG results for this data

set.
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functional form. We imaged this strain collecting 10,083 steps from 36 cells. SMAUG

analysis returns a most probable three state model with mean di�usion coe�cients of

D = {0.013, 0.047, 0.755} µm2/s and mean weight fractions of π = {0.40, 0.38, 0.22} (Fig.

3.12A). These identi�ed states are interesting in that they seem to lack any state that over-

laps with State 3 from the Swi6 dynamics in wildtype cells (Fig. 3.3B, green), i.e. a state with

a di�usion coe�cient around 0.1 - 0.2 µm2/s , a state present in the analysis of every other

strain. Additionally, the two states with the slowest di�usion coe�cient contain around

80% of the weight in the system and have di�usion coe�cients slightly higher than similar

states identi�ed in the analysis of our other cell strains. Transitions between the slowest

states is rapid as is the transition from State 4 to State 2 (Fig. 3.12B). We also constructed

a Swi6+ version of this strain, called F324a/Swi6+ that contains the extra fusion copy of

mNeonGreen-Swi6. We imaged these cells, collecting a data set of 10,657 steps and ana-

lyzed those steps using the SMAUG algorithm. SMAUG returns a most probable four state

model where the mean di�usion coe�cients of D = {0.008, 0.022, 0.097, 0.658} µm2/s and

mean weight fractions of π = {0.12, 0.37, 0.26, 0.25} (Fig. 3.12C). The addition of the extra

fusion mNeonGreen-Swi6 copy has restored State 3 to the system as well as decreased the

di�usion coe�cient values for the slowest two states. This analysis resembles very closely

the output from the SMAUG method for the ARK*/Swi6+ strain (Fig. 3.9D), except that the

transitions between the intermediate states shows no preference for going through State

3 over going straight to State 2 as it does in the ARK*/Swi6+ strain and similar strains

(Fig. 3.12D).

Another potential role for Swi6 is that of monitor of silenced genes. If a silenced gene

is accidentally transcribed, it has been proposed that Swi6 will bind the mRNA through

interaction with the highly-positively charged hinge region, release the H3K9me mark,

and transport it for degradation [72] (Fig. 3.1B). To investigate how the hinge region might

be in�uencing Swi6 dynamics we constructed a strain, KR25A, in which 25 positively-

charged residues of PAmCherry-Swi6 from the hinge region are mutated to alanine. We
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imaged this strain and collected 10,038 steps. SMAUG analysis returns a most probable

three state model with mean di�usion coe�cients of D = {0.009, 0.038, 0.416} µm2/s

and mean weight fractions of π = {0.51, 0.37, 0.12} (Fig. 3.13A). Like the F324A strain,

this analysis indicates a total lack of State 3, with a majority of the population existing

in the slowest, histone-bound form of the molecule. Additionally, the transition matrix

indicate very low transition probabilities out of the slowest states, indicating tight binding

between the histones and Swi6 (Fig. 3.13B). The absence of State 3 indicates that the hinge

region is an important part of the protein-protein interactions, perhaps due to the highly-

charged nature of the mutationless hinge or through interaction with mRNA degradation

complexes. The large weight fraction of the bound state and the low transition probability

out of that state may also indicate that Swi6 binding to mRNA (and thereby releasing the

H3K9me mark) constitutes a large amount of the unbinding events for Swi6.

Putting it all together, observing the dynamics of PAmCherry-Swi6 containing muta-

tions inside the chromoshadow domain provides a wealth of details about the biochemical

roles of several of the states identi�ed for the dynamics of PAmCherry-Swi6. Mutation of

the residue involved in Swi6 dimerization both removes it ability to bind the H3K9me

mark and also seems to cause a more rapid degradation of the protein. The addition of

a mutationless copy does not alleviate these issues as the mutationless copy cannot bind

to the mutated one. Additionally, by mutating the important protein-interaction residue

F324 we were able to identify that State 3 is involved in protein-protein interactions that

are separate from Swi6’s binding to the H3K9me mark and that the addition of mutation-

less Swi6 was again able to rescue this state, indicating that a single functional interaction

face is needed. Finally, by mutating the hinge region into a form that will no longer bind

to RNA we were able to discover that the State 3 protein interactions require a functional

hinge region, either because the hinge is important in its own right or because this state

requires RNA to exist. Figure 3.13C has a summary of the dynamics discussed in this sec-

tion.
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�cient and weight fraction estimates from the output of the SMAUG analysis for KR25A

strain. SMAUG identi�es three distinct clusters within the data set, with State 3 not

present. B: Cartoon depiction of the full SMAUG results for this data set. C: Bar graph
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Strain Name Mutation Description
Clr3PAM PAM-Clr3 + swi6∆ PAmCherry-Clr3 + swi6∆

Clr3PAM/Swi6+ PAM-Clr3 +swi6∆ PAmCherry-Clr3 +

+NG-Swi6 swi6∆ + mNeonGreen-Swi6

Epe1PAM Epe1-PAM + swi6∆ Epe1-PAmCherry + swi6∆
Epe1PAM/Swi6+ Epe1-PAM +swi6∆ Epe1-PAmCherry +

+NG-Swi6 swi6∆ + mNeonGreen-Swi6

Table 3.3: Strain list for dynamics of accessory proteins. PAM is the photoactivatable

red FP PAmCherry and NG is the green FP mNeonGreen. All mutations are made at the

endogenous ura4 locus except for the mNeonGreen-Swi6 insertions which are inserted at

the leu1 locus. FP and protein name in the description represents gene orientation with FP

before the protein indicating an N-terminal fusion and after the protein being C-terminal.

3.7 Dynamics of Accessory Chromatin Proteins

Having a clearer view of the dynamics of Swi6 and the biochemical roles played by

each of the identi�ed states, we also decided to investigate the dynamics of the other pro-

teins involved in chromatin remodeling. We constructed strains containing fusions of Clr3

and Epe1 with PAmCherry for single-particle tracking experiments, in both swi6∆ and

swi6+ backgrounds for both (Table 3.3). We then imaged these strains in SPT experiments

to determine their dynamics. The two strains containing Epe1-PAmCherry showed es-

sentially zero photo activatatable signal inside the cellular nucleus, even under such high

activation pulses that they caused the cells to form vesicles, we assume from acute stress.

Because of this lack of signal, I abandoned this avenue of investigation but I include it here

in this Thesis for the sake of completeness and also so that others may know that the live-

cell imaging of Epe1 may be too di�cult without inducing high levels of overexpression

in the cells.

We then imaged the two strains containing Clr3-PAmCherry fusions. Clr3 is the his-

tone deacetlyase protein that removes the acetly marks from histone, restricting euchro-

matin regions. These strain are harder to image as there exists less Clr3 in the cells and

preliminary data is insu�cient for quantitative analysis, but in the future, this strain will

allow us to observe the dynamics of Clr3 in similar ways to those discussed above for Swi6
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and investigate the hypothesis that Clr3 has only the single function of histone deacety-

lase and so we suspect relatively simple dynamics representing bound and unbound Clr3.

Deviations from this expected result would suggest other roles for Clr3 and can inform

further biological experiments.

3.8 Conclusions

The processes that alter the epigenetic state of an organism are complex and contain

competing pathways: the establishment and maintenance of epigenetically silenced re-

gions involves a large array of proteins whose actions compete with opposing pathways

and whose timing must be tightly controlled. The protein Swi6 is the key protein respon-

sible for the the creation of heterochromatin regions, thus its dynamics are of particu-

lar interest to researchers. The studies presented in this chapter have used single-particle

tracking to observe this protein, and others, in real time inside living cells. We then utilized

the SMAUG algorithm to uncover the hidden states within the data to draw conclusions

about the biochemical roles of the identi�ed states. We identi�ed four distinct states in the

dynamics of Swi6 inside wildtype cells. Using our mutation studies, we were able to deter-

mine that the dynamics displayed by Swi6 are related to both the global compactness of the

DNA as well as to speci�c functional interactions of the molecule. Through these studies,

we identi�ed the identities of the di�usive states and the contributions of DNA topology,

and using this information we can propose a potential model pathway for the function of

Swi6. To begin, dimerization of the protein is a crucial �rst step for the presence and func-

tion of the protein and without dimerization, protein stability and the function of the rest

of the proposed pathway is altered. Through our mutation studies, we were able to dis-

cover four distinct di�usive states for the Swi6 molecule, corresponding to four identi�ed

biochemical roles. In order of decreasing di�usion coe�cient they are: freely di�usive,

interacting with or binding to DNA, interacting with histones lacking the H3K9me mark

and, �nally, bound to histones containing the H3K9me mark. Using the transition ma-
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trix probabilities we can also conclude that freely di�usive Swi6 proteins must either �rst

bind to DNA or to a histone before moving into the �nal completely bound state. Thus

our model is that freely di�usive Swi6 proteins �rst bind directly to DNA in the nucleus,

which brings the protein close to the histones. Transitions out of the DNA binding state

and to the histone binding state was shown to require the conserved ARK loop in the chro-

modomain, suggesting that interactions between di�erent Swi6 molecules is essential for

this transition. From this state, the Swi6 protein can continue to sample histones in the

dense heterochromatin region until it encounters one containing the H3K9me mark and

binding to it, recruiting further remodeling proteins through the CSD domain. The topol-

ogy of the DNA can a�ect the steps in this pathway by encouraging certain transitions

over others, as we found that with anti-silencing mutations, the more di�usive states of

free di�usion and DNA interaction were favored over histone bound states.

Taken together, the work presented in this chapter shows the power of combining real

time measurements of single molecule dynamics and an analysis method such as SMAUG

for determining the dynamics and biochemical roles of proteins. Both components are

needed to discover the true behavior of a complex system such as this one and to use

that information to construct a model for the behavior that �ts with the results and that

can then be further tested and re�ned. The results stated in this chapter advance our

knowledge of this important system by providing a potential mechanistic model for the

interactions of Swi6 while also providing a proof-of-concept that complex systems can be

investigated by SPT, leading to meaningful and robust conclusions.
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CHAPTER IV

Revealing the Dynamics of a Bacterial Virulence

Pathway in V. cholerae

The work presented in the chapter is a collaboration between the Biteen Lab and the DiRita

lab at Michigan State University

In preparation as a manuscript by Karslake, J.D.*, Demey, L.M.*, Donarski, E.D., DiRita,

V.J., and Biteen, J.S.
1

4.1 Introduction

Since records began to be kept in 1817, eight separate epidemics of the disease cholera

have been recorded worldwide [81–83]. While the disease is almost entirely absent from

the Unites States and similarly industrialized countries, it remains a global health concern.

The disease is found mainly in regions with poor sanitation, regions that are experiencing

prolonged violence, such as the recent outbreak in Yemen, or are recovering from a disas-

ter, such as the Haitian outbreak in 2010 after the earthquake. The disease is estimated to

1Author contributions - J.D.K. and L.M.D. contributed equally to this work. All authors designed the

research. J.D.K and E.D.D. preformed the live cell experiments and analyzed the results. L.M.D. constructed

the bacterial strains and performed the biochemical assays.
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a�ect as many as 5 million people annually [54]. Cholera is a disease caused by a bacte-

rial infection by the Gram-negative bacterium, Vibrio cholerae, usually contracted through

the ingestion of contaminated food and water. V. cholerae strains are classi�ed by both the

agglutination state of the O group 1-speci�c antiserum directed against the bacterial cell

wall, as well by the bacterium’s enterotoxigenicity [84]. Within the main toxigenic strain,

O1, there are two biotypes, classical and El Tor, each with distinct serotypes. The El Tor

biotype is generally associated with milder clinical symptoms than the classical biotype

and is responsible for more cases of the disease globally since the mid 1980s [36]. How-

ever, the work presented here in this chapter focuses on the O1 classical biotype, serotype

Ogawa 395 (shortened to O395), as it has historically caused seven of the eight disease epi-

demics and as this strain has been extensively characterized genetically. Thus, the study

of this biotype could lead to better understanding of the pathogenicity of this organism

and help to reduce the severity of possible future outbreaks.

In this chapter, I discuss my investigations of the dynamics involved in a bacterial vir-

ulence pathway using super-resolution microscopy and single-particle tracking (SPT) and

the model system V. cholerae. To begin, I will discuss the relevant biological background

and reasons for using single-molecule methods to probe this system. In the following sec-

tions, I will present the results of my measurements of the dynamics of this system and

use speci�c genetic mutations to perturb the system in illuminating ways. Finally, I will

conclude with some thoughts on the impact and reach of this study.

4.2 Biological Background

For V. cholerae to infect humans, it must be ingested and, passing through the gut to

the intestines, colonize the surface of the intestinal epithelial cells. Adherence to the host’s

epithelial cells requires a specialized protein complex called the toxin co-regulated pilus

(TCP), a type IV pilus. Upon adherence, host factors and environmental changes induce

the production of the virulence pathway and the �nal product, the cholera toxin (CTX).
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Figure 4.1: The Vibrio cholerae Virulence Pathway. A: Schematic of the virulence

pathway for V. cholerae under di�erent conditions. Adhered to the intestinal wall the bac-

terium is exposed to mucins and other signals that upregulates the virulence pathway. Fig-

ure from [86]. B: Schematic of the V. cholerae virulence pathway. The membrane-bound

protein TcpP binds the DNA directly along with other supporting proteins, leading to

the hypothesis that the dynamics of TcpP re�ect multiple mobility states. Reproduced

from [75].

CTX is a heterohexamer, with one CTxα subunit surrounded by �ve CTxβ subunits [85]

(Fig. 4.1B, bottom left cartoon). This protein is secreted from the bacterium under viru-

lence conditions and it adheres to the host epithelial cells through interactions between

the CTxβ subunit and the membrane ganglioside GM1 and is endocytosed. When inside

the host cells the CTxβ subunits are removed leaving the catalytic CTxα subunit exposed.

The CTxα subunit then ADP-ribosylates host G-proteins to constitutively activate cyclic-

AMP production. Such high levels of cAMP lead to a large increase in the secretion of

chloride ions and then water out of the host cells and into the intestinal lumen, causing

severe dehydration and death within as little as a few hours if untreated [42] (Fig. 4.1A).

CTX production is regulated by the binding of a regulatory transcription factor ToxT.

ToxT is a member of the large AraC/XylS family of proteins and has two domains [87].

The C-terminal domain is known to mediate binding of the ToxT protein to DNA regions

called toxboxes, 13-bp degenerate sequence of repeats just upstream of the ToxT activated

genes, through a helix-turn-helix motif. The N-terminal domain shares no homology with

any other protein domain, as determined by BLAST analysis, and its functional role is
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unclear, though some studies have suggested that it may be involved in dimerization [88]

or recognition of small molecule e�ectors such as bicarbonate or bile [89].

ToxT production is itself under the regulatory control of another set of proteins, the

ToxR regulon, named for the �rst identi�ed positive regulator [90] (Fig. 4.1B). This regulon

is made up of four proteins: ToxR, ToxS, TcpH, and the most important factor TcpP. ToxR

and TcpP are bitopic membrane proteins that each contain a cytoplasmic DNA-binding

domain, a single transmembrane domain, and a periplasmic domain. The function of the

periplasmic domains of these proteins is not totally clear, though they are thought to be

involved in protein-protein interaction such as dimerization [91,92]. The activity of ToxR

and TcpP has been shown to require the presence of other proteins, ToxS and TcpH re-

spectively. Both ToxS and TcpH have a single transmembrane helix and a periplasmic

domain. The role of these accessory proteins is still unclear, though they are thought to

in�uence stability or promote dimerization, as in cells lacking in TcpH, TcpP is rapidly

degraded, though ToxR is not when ToxS is not present [93–95]. ToxR and TcpP bind to

the promoter region of the toxT gene and initiate gene production under conditions fa-

vorable to virulence. The exact mechanism of how this initiation occurs and which signals

are important are not entirely clear, but in vitro it has been shown that virulence factors

are responsive to changes in pH and temperature [94, 96]. As mentioned above, TcpP is

the most important protein in the regulon. ToxS and TcpH cannot bind DNA, ToxR by it-

self cannot induce the production of ToxT, while over-expression of TcpP alone has been

shown to activate the production of ToxT [97].

The regulation of this virulence cascade is a complex and carefully controlled pro-

cess. Using single-particle tracking (SPT), and Single-Molecule Analysis by Unsupervised

Gibbs (SMAUG) (Chapter II), I observe the dynamics of this system directly by monitoring

individual molecules inside living cells under virulence-inducing conditions and uncover

distinct biological states that are hidden or averaged over using other methods. Accurately

measuring the dynamics of TcpP under various situations will enable investigations into
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the role of this unusual membrane-localized mechanism of transcription activation. Pre-

viously, our lab used fusions to the photoactivatable �uorescent protein PAmCherry to

show that TcpP-PAmCherry di�uses heterogeneously in living cells [26].

4.3 Methods

Strain Construction

Strain construction follows protocol outlined in Reference [98]. In brief, strain con-

struction uses donor strain S-17 and Vibrio cholerae strains harboring a pKAS plasmid con-

struct with the mutation desired were selected for on LB plates containing ampicillin and

streptomycin (both 100 µg/ml) or TCBS plates containing ampicillin (100 µg/ml). Counter

selection for loss of the pKAS construct was done by incubating V. cholerae strains harbor-

ing the pKAS construct in LB for 2hrs and then 2hrs with 2500 µg/ml streptomycin at 37

°C. 20 µl of this culture was then spread onto LB plates containing 2500 µg/ml of strepto-

mycin and incubated overnight at 37 °C. Streptomycin resistant colonies were screened for

the chromosomal mutation of interest via colony PCR and genetic sequencing to validate

the exchange.

Microscopy experiments

TcpP-PAmCherry was expressed at the native tcpP locus and cells were grown un-

der conditions known to stimulate TcpP-mediated expression of virulence genes [42] (LB

rich media at pH 6.5 and 30 °C). Once cells reached mid log-phase, they were diluted

into M9 minimal media, and then imaged at room temperature on agarose pads using

a 406-nm laser (Coherent Cube 405-100; 102 W/cm
2
) for photo-activation and a 561-nm

laser (Coherent-Sapphire 561-50; 163 W/cm
2
) for imaging. Samples are mounted on an

Olympus IX71 inverted epi�uorescence microscope with a 100x 1.40 NA oil-immersion

objective. The �uorescence emission was �ltered with appropriate �lters and imaged

on a 512 by 512 pixel Photometrics Evolve electron multiplying charge-coupled device

(EMCCD) camera and continual images were collected with a 40-ms exposure time per
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frame. Recorded single-molecule positions were detected and localized as previously de-

scribed using home-built code [27], and connected into trajectories using the Hungarian

algorithm [24].

Data Analysis

Trajectory analysis was performed using home built MATLAB code that uses a Hidden

Markov Model embedded inside a Gibbs Sampler to estimate the parameters of interest in

a data set, called SMAUG (Chapter II). All trajectories for a given condition are bundled

together and analyzed together. Brie�y, the SMAUG algorithm takes in a data set of tra-

jectories and estimates the parameters of interest using a Bayesian statistical framework.

Data is sorted probabilisticly into terms and then used to re�ne parameter estimates for

that term and then the process is repeated. Over time, this iterative process converges

onto the most likely values for the parameter estimates given the input data set. Param-

eters of interest from the data set are the number of mobility states within the set, the

di�usion coe�cient, weight fraction, and transition probabilities between the states.

4.4 Dynamics of TcpP in living cells

4.4.1 Strain construction of cells with TcpP-PAmCherry

We began our investigations into the dynamics of TcpP in a strain of V. cholerae that

contained a genetically encoded fusion of TcpP to the photoactivatable �uorescent protein

PAmCherry. Due to overlapping reading frames of tcpP and tcpH, the entire tcpH gene was

moved to downstream of the tcpP-PAmCherry fusion to avoid an internal PAmCherry in

TcpH (strain LD47; Table 4.1). Additionally, a companion strain was created in which the

tcpH gene was removed entirely (strain LD48; Table 4.1). A list of all the strains used in

this section can be found in Table 4.1.
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4.4.2 Spurious mutations can decreased protein expression levels

It was later found that all LD47/48 strains carried a spurious mutation in the promoter

region of the gene, leading to vastly decreased levels of TcpP and TcpH in the cells. Thus,

all strains carrying the LD47/48 as the parent strain were subsequently abandoned as we

do not believe the dynamics displayed represent a true picture. I mention these issues here

for completeness in reporting but no further work has occurred on these strains.

4.4.3 Biochemical characterization and the dynamics of TcpP

After the discovery of the mutation, new strains were constructed bearing the correct

target genetics (LD51 and LD52; Table 4.1). LD51 contains a full length TcpP-PAmCherry

fusion with a downstream TcpH and LD52 is LD51 lacking the tcpH gene. Biochemical

characterization shows that these strains behave as wild-type cells do in that they pro-

duce CTxβ at wildtype levels, carry a fusion TcpP-PAmCherry protein that is degraded

in cells lacking TcpH, and have wild-type growth and normal cellular morphology under

the microscope (Fig. 4.2).

We then imaged these cells in SPT experiments and collected 11,403 steps from 2404

trajectories for LD51. LD52 contained almost no photoactivatable molecules, which aligns

with the biochemical data (Fig. 4.2) that TcpP is degraded rapidly in the absence of TcpH.

Analysis of the LD51 dataset by SMAUG indicated a most probable interpretation of a

K = 3-state model with di�usion coe�cients of Di = {0.006, 0.044, 0.368}µm
2/s and

weight fractions of πi = {0.18, 0.53, 0.29} (Fig. 4.3). We attribute these identi�ed states

to di�erent biological roles of the protein in the cell. Additionally, the transition elements

depict a clear path from the state with the highest di�usion coe�cient through an in-

termediate state and from there to the slowest state. This trajectory indicates that the

moderate mobility state (red, Figure 4.3C) is a necessary intermediate between fast- and

slow-di�using states (green and blue, respectively, Figure 4.3C). This analysis provides us

with a baseline of dynamics which we can then use in conjunction with targeted mutation
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Figure 4.2: Biochemical characterization of cells containing TcpP-PAmCherry. A: CTxβ
levels in culture supernatants after 24 hrs of incubation in LB, pH 6.5, at 30 °C. B: Western

blots of whole cell lysates collected after 24 hrs of incubation in LB, pH 6.5, at 30 °C. West-

ern blots were probed with either α-TcpP (Top blot) or α-TcpH (bottom blot). C: Growth

of WT, LD51 and LD52 in LB, 37 °C. OD600nm values are an average of three biological

replicates. D: Phase-contrast image of LD51 cells showing normal cellular morphology.

Scale bar: 2 µm.
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Figure 4.3: Baseline Dynamics of TcpP-PAmCherry. A: SMAUG analysis of the LD51

data set displaying the number of distinct di�usive states in the model vs iteration. The

algorithm initializes at a large number of states, K, and converges to a most probable value

of K = 3. B: Di�usion coe�cient and weight fraction estimates from the output of the

SMAUG analysis. SMAUG identi�es three distinct clusters within the dataset. C: Cartoon

depiction of the full SMAUG results for this dataset, including transition probabilities.

Bubble colors correspond to the term colors in B and bubble sizes represent the weight

fractions. Arrows between bubbles indicate the mean of the transition matrix elements

for transitions between those terms. Dashed lines indicate transition probabilities that

are negligible. Figure reproduced form [75].

studies to understand what biological role each of the identi�ed states is.

4.4.4 Dynamics of TcpP-PAmCherry with mutations

To that end we constructed several strains with targeted mutations to assist in iden-

tifying the biological roles of the identi�ed states from the SMAUG analysis of the dy-

namics of TcpP in wild type cells, a list of which can be found in Table 4.1. To begin, we

constructed a point mutant in the sequence of TcpP to alter the binding a�nity of TcpP

for the toxT promoter (LD232). Residue lysine 94 lies in the domain of TcpP that inter-

acts with the DNA and in LD232, we have introduced a charge-inversion mutation in the

protein sequence as lysine has been swapped for glutamic acid, K94E. As K94 lies in the

region that interacts with the DNA, we expect this mutation to reduce any states with

DNA binding. We then imaged these cells under virulence inducing conditions and col-

lected 24,754 steps. SMAUG analysis returns a most probable three state model with mean

with di�usion coe�cients of D = {0.009, 0.049, 0.469}µm2/s and mean weight fractions

of π = {0.09, 0.54, 0.37} (Fig. 4.4A&B). As expected the slowest state, which we hypothe-
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Strain Name Organism Background Genotype Plasmid Resistance
LD47 0395 TcpP-PAmCherry, TcpH-FL* StrR
LD48 0395 TcpP-PAmCherry, tcpH∆ StrR
LD51 0395 TcpP-PAmCherry, TcpH-FL* StrR
LD52 0395 TcpP-PAmCherry, tcpH∆ StrR
LD137 0395 LD47 ∆ToxTpro (-180 to -67), ToxR binding site removed StrR
LD139 0395 LD48 ∆ToxTpro (-180 to -67), ToxR binding site removed StrR
LD141 0395 LD47 ∆ToxTpro (-112 to +1), ToxR and TcpP binding site removed StrR
LD142 0395 LD48 ∆ToxTpro (-112 to +1), ToxR and TcpP binding site removed StrR
LD231 0395 LD52 TcpP-PAmCherry K94E StrR
LD232 0395 LD51 TcpP-PAmCherry K94E StrR
LD235 0395 LD51  ∆ToxTpro (-55 to +1), TcpP binding site removed StrR
LD236 0395 LD52  ∆ToxTpro (-55 to +1), TcpP binding site removed StrR
LD241 0395 psT 81DABp15DL15DL KanR; StrR
LD247 0395 RrtSSRxoT∆15DL
LD248 0395 RrtSSRxoT∆25DL
LD268 0395 RrtSdevomer etis gnidnib PpcT/RxoT ,)1+ ot 211-( orpTxoT∆15DL
LD290 0395 HpcT-81DABp25DL25DL CmR; StrR

LD291 0395 LD247 LD247
pBAD18-ToxR 
(classical; 0395) AmpR; StrR

LD292 0395 LD247 LD247
pBAD18-ToxR            
(El Tor; C6706) AmpR; StrR

LD293 0395 LD235 LD235
pUC19-

toxtpro::toxT AmpR; StrR

Table 4.1: Strains used in TcpP investigations. Table containing information on the

strains used in our investigations of TcpP-PAmCherry dynamics. TcpH-FL* indicates full

length TcpH moved downstream of TcpP-PAmCherry and start codon changed from ATG

to GTG. StrR indicates Streptomycin resistance, AmpR indicates Ampicillin resistance,

KanR indicates Kanamycin resistance and CmR indicates Chloramphenicol resistance.
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size to be the bound state of the protein binding to the toxT promoter region, decreases in

weight fraction to roughly half its previous weight. Additionally, the transition out of this

proposed bound state has increased dramatically, likely indicating that the binding a�nity

of the protein is lowered as it unbinds more quickly. The companion strain, LD231, which

contains the LD52 background (tcpH∆), again shows very little �uorescence activation.

We then constructed a strain in which the stretch of the DNA that TcpP is known to

bind to as been removed from the genome, LD235. Base pairs -55 through +1 upstream

from the toxt gene (in the toxT promoter region) have been removed, leaving no target for

the protein to bind. We imaged these cells under virulence-inducing conditions, collecting

25,492 TcpP-PAmCherry steps. SMAUG analysis returns a most probable two state model

with mean with di�usion coe�cients of D = {0.041, 0.336}µm2/s and mean weight frac-

tions of π = {0.677, 0.322} (Fig. 4.4C). Without the DNA target, the state with the lowest

di�usion coe�cient from the previous analyses has been lost (Fig. 4.3B, blue). With the

loss of the state from the model, the transition elements simply display a increased tran-

sition probability of inter-conversion between the leftover states. (Fig. 4.4D). This result

supports our hypothesis that the slowest di�usive state was the DNA-bound form. Again,

the companion strain lacking TcpH (LD 236 in Table 4.1) shows little to no activatable �uo-

rescence, matching expectations that without TcpH the fusion TcpP is degraded. Similarly,

we also constructed another strain that lacks the entire toxT promoter region upstream

of the gene. Base pairs -112 through +1 are removed, removing both the TcpP binding

site and the ToxR binding site. Preliminary investigations of this new strain (LD268; Table

4.1) has only collected 5,288 steps from imaging experiments, insu�cient for a quantita-

tive analysis by SMAUG, though we expect to see similar dynamics as LD235.

To investigate the e�ect that binding to ToxR has on the dynamics of TcpP, we con-

structed a strain lacking both ToxR and ToxS, LD247, and its companion strain of the

same genetics but additionally lacking TcpH, LD248. LD248 again matched our expec-

tation: without TcpH, TcpP-PAmCherry is degraded and the cells lack activatable �uo-
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rescence and so no imaging experiments can be preformed. On the other hand, we im-

aged LD247 and collected 11,646 steps. SMAUG analysis of this prelimiinary data set re-

turns a most probable three state model, with mean with di�usion coe�cients of D =

{0.011, 0.041, 0.449}µm2/s and mean weight fractions of π = {0.385, 0.514, 0.101} (Fig.

4.4E). Interestingly, the state with the lowest di�usion coe�cient increases in weight frac-

tion while the state with the highest di�usion coe�cient decreases signi�cantly when

compared to the TcpP dynamics in the wild type cells. Also of note, there exists for TcpP-

PAmCherry in LD247 a transition directly from the state with the highest di�usion co-

e�cient to the lowest (Fig. 4.4F). This di�erence between strain LD51 and strain LD247

suggests that the highest di�usive state is TcpPH bound to ToxRS (Fig. 2.6, at least in part,

and that this binding helps shuttle TcpP through the intermediate state and not directly

to the bound state, perhaps as part of a regulatory function for ToxRS in the virulence

pathway [42]. More experiments are needed to obtain good statistics for this strain.

4.4.5 Future work

The role of ToxR in TcpP dynamics will be further investigated by imaging two new

strains, LD 291 and LD292, which contain plasmids carrying the toxR gene from both the

classical and El Tor biotypes, respectively (Table 4.1). These proteins will help uncover

what role the ToxR is playing in the dynamics of TcpP while also helping to uncover if

there are di�erences between the biotypes. However, these strains, along with LD290 and

LD293, are new and growth conditions are still being optimized. Despite containing the

antibiotic resistance gene on the plasmids listed, the growth of these strains in media with

the antibiotic added has been stunted and cellular morphology under the microscope is

badly changed as a majority of the cells are vastly oversized, indicating that, while the

cells can grow, they are not healthy. Our lab has not used these antibiotics before in V.

cholerae, and if the growth defects continue we will ask our collaborators to swap out the

ampicillin/chloramphenicol resistance genes for kanamycin, which we know to not cause
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growth issues in this system [26]. I have included these strains here both for completeness

and also to emphasize that this project is ongoing.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

10-2

10-1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

10-2

10-1

D = 0.009
π = 0.09

D = 0.049
π = 0.54

D = 0.469
π = 0.37 

0.29

0.19

0.2 0.4 0.6 0.8

10-2

10-1 D = 0.041
π = 0.67

D = 0.336
π = 0.32 

0.27

0.12

D
iff

us
io

n 
C

oe
ffi

ci
en

t (
µm

2 /s
)

D
iff

us
io

n 
C

oe
ffi

ci
en

t (
µm

2 /s
)

Weight Fraction

Weight Fraction

LD232

LD235

B

DC

A

D
iff

us
io

n 
C

oe
ffi

ci
en

t (
µm

2 /s
)

Weight Fraction

LD247
E F

D = 0.011
π = 0.38

D = 0.041
π = 0.51

D = 0.449
π = 0.10 

0.36

0.06

0.04

Figure 4.4

98



Figure 4.4 (previous page): Dynamics of TcpP-PAmCherry under mutations. A:

Di�usion coe�cient and weight fraction estimates from the output of the SMAUG anal-

ysis for LD232. SMAUG identi�es three distinct clusters within the data set. B: Cartoon

depiction of the full SMAUG results for this data set.C: Di�usion coe�cient and weight

fraction estimates from the output of the SMAUG analysis for LD235. SMAUG identi�es

only two distinct clusters within the data set. D: Cartoon depiction of the full SMAUG

results for this data set. E: Di�usion coe�cient and weight fraction estimates from the

output of the SMAUG analysis for LD247. SMAUG identi�es only two distinct clusters

within the data set. F: Cartoon depiction of the full SMAUG results for this data set.

4.5 Conclusions

The timing and organization of bacterial virulence is a complex problem. Cells must

combine various competing signals from their environment about whether or not to in-

duce the virulence cascade, into a coherent, single action for the cell. The timing of this

action also needs to be precise if the bacterial community is going to grow and expand. In

the case of Vibrio cholerae, this process is ultimately under the control of TcpP. The work

presented in this chapter has utilized SPT techniques to observe the dynamics of TcpP in-

side living cells under virulence-inducing conditions. We then used the SMAUG algorithm

in order to �nd the hidden states that exist within our tracking data and uncover biolog-

ical function. It was found that TcpP exists under virulence inducing conditions in three

distinct di�usive states. Then, using the information from a series of mutation studies, we

can propose a model of dynamics of the system. TcpP exists mainly in the intermediate

state, which we believe is a monitoring state. However, this state is not one that directly

binds DNA, as mutations in the DNA binding region of TcpP did not a�ect this state. It

is only from the intermediate state that TcpP can bind to the ToxT promoter region and

initiate the virulence cascade. The slowest di�usive state is this state of TcpP bound to

the DNA, presumably at the toxT promoter region, though that will be investigated in

future studies. Furthermore, ToxR is sequestering a portion of the TcpP molecules away

from the intermediate state and into the most di�usive state, which is a freely di�usive

state for the protein complex of at least TcpP and ToxR, though it can be assumed TcpH
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and ToxS are likely present as well. Combining the knowledge that the presence of ToxR

helps increase the production of CTX with the data presented here, suggests that the role

of moderator of ToxT production is preformed by ToxR, as it can both sequester TcpP

away from, and enhance the binding of, TcpP to the toxT promoter region. Further inves-

tigations into this system are planned, but overall the work presented in this chapter lays a

solid foundation for understanding this system and provides information that will guide

future experiments. As discussed in previous chapters, the combination of biochemical

techniques, single-particle tracking experiments and SMAUG analysis is a powerful tool

for investigating complex biological systems.
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CHAPTER V

Conclusions and Future Directions

5.1 Introduction

The overarching goal of this Thesis was to expand the scope and quality of single-

particle tracking experiments and analysis. In the preceding chapters, I presented the the-

ory and construction of a new analysis method for single-particle tracking (SPT) data and

my investigations into the dynamics of several complex biological systems using this new

method. In this �nal chapter, I will review the conclusions and impacts that are drawn

from each of the chapters and discuss some possible future directions for these projects.

Finally, I will wrap up with some overarching conclusions.

5.2 SMAUG

In Chapter 2, I presented the rationale, theory, validation and some applications of a

new analysis method for SPT data that we titled Single-Molecule Analysis by Unsuper-

vised Gibbs (SMAUG) [75]. By changing the analysis framework from a curve-�tting based

method into a non-parametric Bayesian method, the conclusions drawn gain an increased

measure of mathematical rigor while removing possible supervisory biases. This method
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was shown to be both precise and accurate in estimating a variety of of parameters of

interest and, when applied to live-cell tracking data, SMAUG is capable of uncovering

the dynamics of a system. Using SMAUG we uncovered a three state dynamical system

for bacterial virulence in Vibrio cholerae and found the timing and dynamical changes in-

volved in B-cell activation by antigen stimulation. Both of these biological results provide

new information for the �eld and show the utility of the SMAUG algorithm.

A method like SMAUG is required if SPT experiments are going to continue to be ap-

plied to ever more complex systems. SMAUG is an excellent �rst step in expanding the

scope and quality of information gained from SPT data and further work will push this

ability even further. The future directions I envision for this project are split into short-

and long-term directions. In the short-term, the SMAUG code itself could be enhanced to

provide better functionality and speed. For example, the algorithm itself has no method for

self-determining when the analysis should be completed, instead the algorithm is simply

allowed to run for an extremely long duration and then stopped at a pre-de�ned number

of iterations to ensure that the sampler has converged on the most probable values. This

setup takes extra time and computing power. One method by which the code could be

altered to directly probe convergence is through the introduction of independent Markov

chains analyzing the same data set separately. Then, every so often, the values of the

chains are compared and the variances between chains (inter) and inside each chain (in-

tra) calculated and compared to some cuto� criteria. Gelman et al. have a calculation and

method for determining a cuto� in Reference [99]. However, adding addition indepen-

dent chains will increase the time required for analysis and so optimizing the code for

speed would need to be a secondary priority. Recently, a paper describing a method for

using GPUs for accelerating a Gibbs sampler was published and would greatly assist in

reducing the time required for analysis [100]. Such improvements to the SMAUG code

itself, along with others such as implementing GUIs or other ease-of-use improvements,

are worthwhile short-term directions for this project.
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A more long-term direction for this project would be to switch our entire analysis

pipeline over to a Bayesian framework. The SMAUG code works on the very end of our

analysis of SPT data: it will estimate the most probable parameter values for a given input

data set. However, if the quality of the input data is poor, then the estimates will not be

accurate. We currently use curve-�tting methods for localizing single-molecules to sub-

di�raction positions and we use an energy minimization algorithm for connecting those

localizations into trajectories. Both our �tting and tracking steps could, in theory, instead

be performed using a Bayesian method, improving the amount and quality of data that

is fed to SMAUG while reducing points of user interaction and thus potential bias. Some

of the work for this has already be attempted, though until now these have mostly not

been implemented as the cost in computing time did not outweigh the bene�ts of such

methods [10]. However, now with increases in computing power and decreases and cost,

coupled with new GPU-accelerated analysis methods, these Bayesian based algorithm

might be more readily useable. A fully Bayesian approach to SPT analysis would expand

the scope and quality of SPT experiments.

5.3 Epigenetic Silencing in Yeast

In Chapter 3, I presented results from an investigation into the dynamics of Swi6, the

key protein in epigenetic silencing, in the yeast model system Schizosaccharomyces pombe.

We found that the dynamics involved are complex and rely on an interplay between the

DNA topology and the protein’s a�nity for its target, its ability to dimerize and to inter-

act with other proteins. We expected this system to be complex from the start and thus

knew we would require an analysis method like SMAUG to draw accurate conclusions.

Combining SMAUG analysis with genetic knockouts and functional mutations allowed

us to investigate the complexities of the system and interrogate the roles that each of the

identi�ed states plays inside the cell. Using all of these results, we then proposed model

of behavior and interactions for the protein that we can use future experiments to re�ne

103



and correct. This work advances knowledge in this �eld by providing a much more re�ned

look at the processes involved and their relation to each other. Such information on the

dynamics involved with individual molecules can only be accessed by single-molecules

methods and therefore, while many of these biological roles had been proposed previously,

their relationship to each other and the order in which they occur remained unclear.

This project is ongoing as we continue to test more of our hypotheses and re�ne our

model using targeted mutations. While we are close to wrapping up the �rst stage of the

exploration into this system, there are many future directions that will be explored, in the

near and long term. In the short term, this project will continue to look at the dynamics

of Swi6 inside living cells in a variety of conditions and genetic backgrounds. Several

strains are being constructed currently that we think will shed more light on the roles

of the identi�ed states. One such strain is a double point mutant that has been shown

in vitro to increase the amount of oligomerization between neighboring Swi6 molecules

[78]. Additionally, a triple knockout mutant, mst2∆clr3∆gcn5∆, is being constructed. This

triple knockout strain will completely abolish both the histone acetlyation and histone

methylation pathways, providing a system in which "naked" histones are the only histones

present. Both of these strains, and others that will follow, will continue to provide evidence

for the biological function of the various identi�ed states present in Swi6.

In the longer term, this project will expand to observing epigenetic changes as they

happen in real time. Using micro�uidics chambers, our collaborators in the Ragunathan

lab have shown that they can image the same yeast cell as it grows and divides for up

to a week. Thus we envision watching the same cell over time to see how its epigenetic

state changes with generational time, either using single-molecule methods or more con-

ventional bulk �uorescence techniques. The dynamics of Swi6-PAmCherry fusions inside

the cell could provide a real-time readout of the epigenetic state of that cell. Alternatively,

genes for �uorescent proteins could be encoded into silenced regions and the presence/ab-

sence of �uorescent signal used as a readout of the epigenetic state of the cell. Investiga-
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tions into the timing or cell-cycle dependence of epigenetic changes or of the e�ect of

stress on epigenetic patterning could be investigated with such a setup. In addition, this

project could also investigate the dynamics of not just Swi6, but any of the other proteins

involved in the silencing or anti-silencing pathways, such as we did in Chapter 3 for the

Clr3-PAmCherry strain. Each of the proteins involved in the epigenetic silencing or anti-

silencing pathways is a potential target for SPT studies and analysis, using the analysis

and methods outlined in Chapter 3 as a guide. The �eld of epigenetics is relatively new but

growing quickly and so there are many unanswered questions that can be investigated by

this approach and just as many potential future directions for this study to take.

5.4 Dynamics of Proteins Involved in Bacterial Virulence

In Chapter 4, I presented work from our further investigations into the dynamics of

bacterial virulence using the model system Vibrio cholerae, the causative agent of the

disease cholera. We used a TcpP-PAmCherry fusion to track the molecule in real time

and analyzed the trajectories with SMAUG. We found that the system is complex under

virulence-inducing conditions and used targeted mutations to discover biological roles

for the identi�ed di�usion states. Our lab has been working on observing the dynamics

of TcpP inside V. cholerae for a long time. Only recently have we constructed strains in

which the protein fusion is inserted into the genome and lacks any non-intended muta-

tions. Using these strains, along with other mutations, we have been able to identify the

biochemical roles of the distinct di�usive states identi�ed from the TcpP dynamics in the

wildtype cells.

Using the work presented in Chapter 4, others can continue the investigation of this

system, having a solid baseline of results from which to build a more complete model for

the binding of TcpP. One future plan is to observe TcpP dynamics while the cells are in con-

ditions that have been proposed as factors for virulence activation, such as high levels of

bile in the media or the presence of quorum sensing auto-inducers [55]. By watching TcpP
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dynamics under these conditions the e�ect of these molecules can be directly observed.

Another avenue of interest would be to fuse ToxR with a label and watch its dynamics

under both virulence-inducing and non-inducing conditions, as ToxR is not degraded like

TcpP is under non-inducing conditions. This information could help illuminate both the

cause and the timing of the switch from a non-virulent state to the virulent state. In ad-

dition, investigating the di�erences between the biotypes would be very illuminating. If

TcpP dynamics in El Tor are su�ciently di�erent from the classical strain, this di�erence

could help explain the milder symptoms that El Tor presents in people with the disease

and lead to better understanding of how to combat the more deadly strains. For any and

all of these proposed ideas, the work presented in Chapter 4 serves as both a guide in

how to conduct the experimental design and as a basis to which further studies can be

compared.

5.5 Overarching Conclusions

Throughout this Thesis, I have shown that single-molecule methods are powerful tools

for biological investigations as they provide the unique advantage of directly observing

molecules in real time inside living cells. By capturing, measuring and analyzing the mo-

tion of single molecules, we can directly probe biological functions as they occur. This

advantage can be wasted however if care is not taken to analyze the resulting data in a

mathematically rigorous way. The work presented here shows that while biological sys-

tems can be complex, a wealth of information can be gained when the analysis is done

carefully and thoughtfully. The work presented in this Thesis includes the theory, ap-

plication and validation of a novel method of analysis for single-particle tracking data,

pushing the state of the art for analysis into a more rigorous mathematical regime. Addi-

tionally, this Thesis includes many applications of this method to biological systems from

which novel information is gained that provide a mechanistic look into the behavior of

the system while also providing a basis for further investigations. The novel combina-
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tion of single-molecule dynamics studies, biochemical and molecular genetic techniques

and advanced mathematical analysis methods provide researchers with a potent tool for

investigations into a myriad of outstanding questions. The work presented here lays the

ground work for those future studies, where investigators use sophisticated biophysical

methods to answer outstanding questions in cell biology.
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