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ABSTRACT

In this thesis, we study high dimensional phenomena arising in convexity and

probablistic combinatorics. The main object of the first part is high dimensional

convex bodies. We study random almost spherical sections of a convex body,

which is related to Dvoretzky’s theorem. We also investigate the mass distribution

in a convex body with respect to its maximum volume ellipsoid. Furthemore, we

study the approximation of convex bodies by polytopes with few facets. We also

construct a special class of convex bodies which we use to define affine surface

area.

The second part of the thesis is devoted to the study of nodal domains of

Erdös Rényi graphs. An Erdös Rényi graph G (n, p) is a random graph with

n vertices where any two vertices are connected by an edge with probability p

independently of other edges. Consider an eigenvector of the adjacency matrix

of such random graph. A nodal domain corresponding to this eigenvector is a

connected component of the set of vertices where the vector has a constant sign.

It was proved by Dekel et. al. that with high probability, there are exactly two

nodal domains for every non-leading eigenvector. We show that the sizes of these

two nodal domains are almost exactly equal to each other.

v



CHAPTER 1

Introduction

1.1 Geometric Functional Analysis

A convex body K ⊆ Rn is a convex, compact subset with non-empty interior. The study
of convex bodies can be traced back to Euclid. In the past century, functional analysis
provided a new perspective on the study of convex bodies. The connection between the
two subjects is simple: If we embed a finite-dimensional normed space X to Rn, its unit
ball becomes an origin-symmetric convex body in Rn. Moreover, for any origin-symmetric
convex body K ⊆ Rn, the gauge function ‖x‖K := inf {r > 0 : x ∈ rK} defines a norm.
The most natural examples of such convex bodies are the Euclidean ball Bn

2 , the unit cube
which is the l∞-ball Bn

∞, and, correspondingly, the l1-ball Bn
1 . In functional analysis,

Banach-Mazur distance for two n-dimensional normed spaces X, Y is defined as

dBM (X, Y ) = inf
{
‖T‖

∥∥T−1
∥∥ : T∈ GL (X, Y )

}
,

whereGL (X, Y ) is the collection of linear isomorphisms fromX to Y . Notice that dBM is
not a metric but its log is. However, it is more convenient to use dBM in the study of linear
operators. Suppose we embedded both X and Y to Rn (we can choose any isomorphic
embedding) and let BX and BY be the corresponding unit balls of X and Y respectively.
Then, the Banach Mazur distance of X and Y can be expressed in terms of BX and BY :

dBM (BX , BY ) := inf {R ≥ 1 : ∃T ∈ GLn (R) such thatTBY ⊆ BX ⊆ RTBY } ,

where GLn (R) is the general linear group of degree n. This definition is geometric: We
try to rotate, stretch, and compress BY so that it lies in BX . Meanwhile, we want to
scale the transformed BY by the smallest possible factor R so that it contains BX . For
example, for Banach Mazur distance between the cube Bn

∞ and Bn
2 is
√
n. The ratio of

the outer and inner radius of Bn
∞ is exactly

√
n. Also, for the crosspolytope Bn

1 , we also
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have dBM (Bn
1 , B

n
2 ) =

√
n. Influenced by this, we often consider a convex body K and its

affine linear images as one object.
High dimensional measure concentration also plays an important role. To give a brief

idea of what is this high dimensional phenomenon means, consider a unit sphere Sn−1. If
we intersect Sn−1 with a centered strip with width about 1√

n
, the remaining covers more

than 99% of the volume of ball. In other words, a C√
n

neighbourhood of the equator
basically covers almost everything volumetrically. This contradicts our intuition from
small-dimensional world, but it demonstrates the measure concentration phenomenon. Relying
on measure concentration on sphere, in 1971, Milman found a quantitative proof of Dvoretzky
theorem. Roughly speaking, for any origin-symmetric convex body K ⊆ Rn, there exists a
large dimension k such that a random k-dimensional subspaceF satisfies dBM

(
K ∩ F, Bk

2

)
≤

1 + ε with high probability. Precisely, the theorem is stated as follows:

Theorem 1.1. [24, Theorem 5.2.10] Let K ⊆ Rn be an origin-symmetric convex body. Let

M be the average of ‖θ‖K over Sn−1 (with respect to the normalized Haar measure on

Sn−1) and b = maxθ∈Sn−1 ‖θ‖K . For any ε ∈ (0, 1), if k ≤ C1ε
2 log−1 (2/ε)n

(
M
b

)2, then

νn, k ({F ∈ Grn, k : (1− ε)M < ‖·‖K∩F < (1 + ε)M}) ≥ 1− exp
(
C2ε

2k
)
,

where νn, k is the normalized Haar measure on Grassmannian Grn, k. For some convex

bodies, k can be of order n. For instance, an n-dimensional crosspolytope is one of such

examples. Also, C,C1, C2 etc, shall denote absolute constants that may change from line

to line.

Among all affine linear images of K, there are two classical choices: isotropic and
John’s position (named after Fritz John). Isotropic position refers to the case where K is
volumetrically balanced. An isotropic convex body K is a convex body of volume 1 with
the following property: Suppose X is a random vector uniformly distributed on K, then,
EX = 0 and for any α, β ∈ Sn−1, E〈X, α〉2 = E〈X, β〉2 (the second moments in any
direction are the same).

John’s position focuses on the geometric shapes of convex bodies. A convex body K is
in John’s position if K contains Bn

2 and Bn
2 has the maximum volume among all ellipsoids

contained in K. In general, we will let EK ⊆ K be the maximum volume ellipsoid (John
ellipsoid), so that it has the maximum volume among all ellipsoids that are contained in K.
(For the existence and uniqueness of the maximum volume ellipsoid EK , we refer to [24,
Proposition 2.1.6] ) A theorem of F. John shows that K is isotropic in a different sense if it
is in John’s position:

2



Theorem 1.2. [24, Theorem 2.1.10] For a convex body K ⊆ Rn we have EK = Bn
2 if and

only if there exists a finite subset in the intersection of boundaries of K and Bn
2 , {ui}mi=1 ⊆

∂K ∩Sn−1 , and positive numbers {ci}mi=1 such that
∑m

i=1 ciui = 0 and
∑m

i=1 ciuiu
>
i = In.

To see why it is isotropic, consider the random vector X defined on {ui}mi=1 with
P (X = ui) = ci∑m

i=1 ci
. Then, X satisfies EX = 0 and E〈X, α〉2 = E〈X, β〉2 for any

α, β ∈ Sn−1. As an application of John’s theorem, we are able to show that for any convex
body K ⊆ Rn, we have

dBM (Bn
2 , K) ≤

√
n

(see [24, Theorem 2.1.3]). In particular, this bound is sharp. For instance, if we pick K
to be Bn

∞ or Bn
1 , then the equality holds.

1.1.1 Overview of Results in Asymptotic Geometric Analysis

Here we describe the results of this thesis in convex geometry.

The Upper Bound in Dvoretzky Theorem and Milman–Schechtman Theorem After
the Milman’s Dvoretzky theorem is proved, with ε > 0 fixed, one ask whether the cricitical
dimension k '

(
M
b

)2
n is optimal. This is answered by Milman and Schechtman in 1997.

For a fixed ε > 0, they define the Dvoretzky’s dimension k (K) for a convex body K to be
the largest integer k such that

νn, k ({F ∈ Grn, k : (1− ε)M < ‖·‖K∩F < (1 + ε)M}) > pn, k :=
n

n+ k
.

Theorem 1.3. (Milman–Schechtman [24, Theorem 5.3.4]). Fix ε > 0. There exist

constants C1, C2 > 0 such that for any an origin-symmetric convex body K ⊆ Rn, we

have

C1n(M/b)2 ≤ k(K) ≤ C2n(M/b)2

whenever M
b
> c
√

logn
n

.

We improve Milman-Schechtman’s theorem by removing the condition M
b
> c
√

logn
n

.
In our case we define pn,k = 1

2
instead of pn,k = n

n+k
, which is more natural. Therefore, we

have k (K) ' n(M/b)2 for any origin-symmetric convex bodies with no restriction. Let

f (k) := νn, k ({F ∈ Grn, k : (1− ε)M < ‖·‖K∩F < (1 + ε)M}) .

More precisely, we show:
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Theorem. (Theorem 2.5 in Chapter 2) There exists a constant c1 > 0 such that the

following holds: For any origin-symmetric convex body K ⊆ Rn, if k ≥ c1

(
M
b

)2
n, then

f (k) ≤ exp
(
−c0

4
k
)
<

1

2
.

Together with Millman’s result (Theorem 1.1), we realize that there is a threshold effect
happenning at the level k '

(
m
b

)2
n for the function f (k). This result does not put any

assumption on the convex body, and thus proves that the lower bound of Milman is actually
not a bound, but a formula which is precise up to a constant. Finding such formulas is rare
in Geometric Functional Analysis.

Figure 1.1.1: Threshold Phenomenon of f (k)

This result is a joint work with F. Wei. It is published in [35]. We present it in Chapter
2.

Does the maximum volume ellipsoid contain the barycenter? The title is a problem
asked by S. Vempala. Does the maximum volume ellipsoid contain the barycenter of a
convex body? If not, how much does one need to scale the maximum volume ellipsoid so
that it contains the barycenter? Roughly speaking, we realize that the maximum volume
ellipsoid does not contain significant volumetric information about the convex body. It
is shown that one can find a convex body K with the following property: inflating the
maximum volume ellipsoid by a factor (1− o (1))n, it does not contain the barycenter of
K. In order to interpret this, it is worth mentioning that the maximum volume ellipsoid
contains K, if it is inflated by a factor n.

The importance of this question stems from its relation to the efficiency of algorithms
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for convex bodies. The efficiency of many such algorithms depends on the "roundness" of
the body. This can be measured in two ways:

1. the traditional way, as the ratio of the radii of the circumscribed to the inscribed ball;

2. as the ratio of the radii of the smallest ball that contains the most points (say 1/2 of
the volume) to the inscribed ball.

For instance, the complexity of sampling algorithms grows quadratically with the latter
ratio. Thus, a common pre-processing step is to find a good rounding–in other words, find
an ellipsoid for which this ratio is reasonably small and then map it to the unit ball using
an affine transformation. This can be done in a randomized polynomial in n time
algorithm by estimating the inertia ellipsoid (defined by the covariance matrix of the
uniform random point from K), wherein the complexity depends logarithmically on the
initial ratio of the radii, but as a large degree polynomial in the dimension. The other
possible candidate is the maximum volume ellipsoid. This ellipsoid is difficult to construct
in general, but for explicit polytopes, a simple iterative algorithm identifies the inscribed
ellipsoid of the maximum volume quite efficiently. The polytopes here are formulated by
linear constraints. For instance, here is a polytope defined by linear inequalities:

P := {x ∈ Rn : ∀i ∈ [m] 〈ui, x〉 ≤ ai}

where {ui}mi=1 ⊆ Rn and {ai}mi=1 ⊆ R. In particular, each facet of the polytope comes
from a linear constraint. This algorithm was developed by L. G. Khachiyan [39].
Recently, Y. Lee and A. Sidford have provided a faster algorithm [42]. In contrast to the
inertia ellipsoid, whose construction requires sampling, the John ellipsoid is constructed
deterministically. The John ellipsoid can be used to reduce the ratio (1) but it can be as
large as n, which is the dimension of the body. On the other hand, the inertia ellipsoid
yields the bound O(

√
n) for the ratio (2). Indeed, the counterexample K above implies

that the ratio (2) for maximum volume ellipsoid can still be of order n. So the next
question will be: if we restrict convex bodies to polytopes with few facets, can we provide
O (
√
n) for ratio (2) for maximum volume ellipsoid? Indeed, if ratio (2) can be of order

O (
√
n) for the maximum volume ellpsoid, then the deterministic algorithm we mentioned

before has a faster compute volume of polytope. It turns out we can construct a polytope
P with O (n2) facets so that its inflated maximum volume ellipsoid does not contain the
barycenter. In this case, the scaled factor is slightly weaker: it is of order n

logn
instead of

(1− o (1))n. Nevertheless, this example shows that the ratio (2) for the maximum volume
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ellipsoid can be of order n
logn

even if we restrict ourselves to polytopes with O (n2) facets.
This result was published in [32]. We present it in Chapter 3.

Approximation of convex bodies by polytopes and John’s position Here we consider
a classical question: how well can one approximates a convex body by polytopes with few
facets or vertices? Certainly there are several ways to quantify the approximation. Here we
consider the Banach-Mazur distance we described above. In the non-symmetric case, the
Banach-Mazur distance dBM(K,L) is defined by

dBM(K,L) := inf

{
r ≥ 1 : ∃T ∈ GLn(R) and x, y ∈ Rn

such that K − x ⊂ T (L− y) ⊂ r(K − x)

}
. (1.1)

The current results have a big gap between approximating origin-symmetric convex bodies
and non-symmetric convex bodies. To see that, we consider approximating convex bodies
in Rn by polytopes with O (n) facets. It is known that one can approximate an origin-
symmetric convex body with a Banach-Mazur distance O (

√
n). Non-symmetric convex

bodies are only known to have distance at most O (n). In particular, the approximating
polytope P is constructed based on John’s Theorem 1.13. Specifically, let {ui}mi=1 be the
contact points that appeared in John’s theorem 1.13, the polytope P is defined as

P := {x ∈ Rn : ∀ui ∈ J 〈ui, x〉 ≤ 1}

where J is a subset of {ui}mi=1 with cardinality of order O (n). (The choice of J is based
on a result of [?].)

There are more results in this problem if more facets are allowed. However, the gap
between the symmetric case and non-symmetric case remains. We will discuss the progress
more in Chapter 4.

In the non-symmetric case, we are facing a new obstacle: it is not clear what is a good
choice for the center of scaling. In other words, it is not clear which x we should pick
in (1.1). Since John’s theorem works very well in the symmetric case, one of the natrual
candidate will be the center of maximum volume ellpisoid as suggested from the example
P we discussed above. Thus, we study the following problem:

Problem. (Problem 4.1 Chapter (4)) Let R = o(n), and K ⊂ Rn be a convex body is in
John’s position. Is there a polytope P with a polynomial number of facets in n, such that

K ⊂ P ⊂ RK ?
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We have an unexpected negative answer:

Theorem. (Theorem 4.2 in Chapter (4)) For a sufficiently large n and for any c0

√
n ≤

R ≤ c1n, there exists a convex body K ⊂ Rn whose John’s ellipsoid is centered at the

origin, and such that any polytope P satisfying

K ⊂ P ⊂ RK,

has at least exp
(
C log

(
R2

n

)
n
R2n
)

facets, where c0, c1, C > 0 are some universal constants.

To interpret this theorem, if R = o (n), then exp
(
C log

(
R2

n

)
n
R2n
)

has a faster growth
than polynomial of n. Furthermore, if R = O (

√
n), then the number of facets can be

exponential in n. Therefore, in the non-symmetric case, the maximum volume ellpsoid
does not yield anything useful in contrast to the symmetric case. This result was published
in [31]. We present it in Chapter 4.

From polytope to measure generated set, and floating bodies Suppose a polytope P
has m vertices x1, . . . , xm ∈ Rn, then we can describe P as the following set

P =

{
m∑
i=1

λixi : λi ≥ 0 and
m∑
i=1

λi = 1

}
.

One may view
∑m

i=1 λi and
∑m

i=1 λixi as integrals. Suppose µ is a Borel measure on
Rn. B. Slomka defines the following set

M (µ) :=

{∫
Rn
f (x)x dµ (x) : 0 ≤ f (x) ≤ 1 and

∫
Rn
f (x) dµ (x) = 1

}
.

The reason we introduced the extra condition f (x) ≤ 1 is because otherwise M (µ) =

conv (supp (µ)). If µ =
∑m

i=1 δxi where δx is the Dirac measure on x, then, M (µ) = P .
Also, one can verify that M (µ) is a convex body if µ is non-degenerate ( supp (µ) 6⊆ H

for any affine subspace H of Rn) with bounded support and µ(Rn) > 1. In this way, we
generalize polytopes to measure-generating sets. We explore various properties of this new
type of convex sets and show that a special collection of them is very close to floating
bodies.

Floating bodies are introduced independently in [?] and [67]. For a convex body K,
if we cut off δ volume in every direction, the remaining is called a floating body, Kδ.
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Precisely,
Kδ = ∩|K∩H−|=δH+,

where H is a hyperplane and H+, H− are the corresponding closed half-spaces. One of
the most stunning results about the floating body is its relation to affine surface area. Affine
surface area is an analogue of surface area that is SLn (R) and translation invariant. For a
smooth convex body K, the affine surface area is defined by

as (K) =

∫
∂K

κK (x)
1

n+1 dµK ,

where µK is the surface area measure on ∂K and κK is the (generalized) Gaussian curvature.
In 1990, Schï¿œtt and Werner [67] showed that the affine surface area arises as a limit

of the volume difference of the convex body and its floating body. In particular, this was
the first way to define the affine surface area for convex bodies with a general (non-smooth)
boundary.

In short, we have

lim
δ↘0

|K| − |Kδ|
cnδ2/(n+1)

= as (K) .

Consider µ uniform measure on convex body K. More specifically, let dµδ (x) =
1
δ
1K dm ( dm is the Lebesgue measure) where 1K is the indicator function of K. Then,

M (µδ) behaves similarly to the floating body Kδ. Also, the same type of result on affine
surface area (and lp version of affine surface area) can be deduced as well. Precisely, we
have

Theorem 1.4. Let K ⊆ Rn be a convex body and φ : K → (0,∞) be a continuous

function. We define

Mδ (K,φ) := M

(
φ (x)

δ
1K (x) dx

)
.

Then,

lim
δ↘0

|K| − |Mδ (K,φ)|
δ

2
n+1

= cn

∫
∂K

κK (x)
1

n+1 φ (x)−
2

n+1 dµK (x) , (1.2)

where cn = 2n+1
n+3

(
|Bn−1

2 |
n+1

) 2
n+1

. In particular, if φ = 1, then, Mδ (K,φ) = Mδ (K) and∫
∂K
κK (x)

1
n+1 φ (x)−

2
n+1 dµK (x) = as (K) .

We also show the smoothness of boundary of Mδ (K) and its relation to Kδ. This is a
joint work with B. Slomka and E. Werner. The contents are from [34] and partially from
[33]. This part will be presented in Chapter 5.
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1.2 Nodal Domains for graphs

Nodal domains of the eigenfunctions of the Laplacian on smooth manifolds have been
studied for more than a century. For the detail, we refer the readers to the book [78].
If f : M → R is such an eigenfunction on a manifold M , then the nodal domain is a
connected component of the set where the function f has a constant sign. Precisely, for
an eigenfunction f , a nodal domain is a maximal connected subset such that f is strictly
positive (or strictly negative) on this subset.

Let’s consider the simplest example: the Laplace operator on an open interval [0, 1] ⊆
R with Dirichlet boundary condition. If we list the eigenvalues in an increasing order, then
the nth eigenfunction is sin (nπx) up to a scaling.

Figure 1.2.1: Nodal Domains

Thus, there are exactly n nodal domains for nth eigenfunction. Indeed, this is exactly
the maximal number of possible nodal domains. The following celebrated result was
discovred by Courant in 1923: there are at most n + r nodal domains corresponding to
nth eigenfunctions and r is the multiplicity of that eigenavlue. For the fruitful results in the
study of nodal domains, we refer to the book of Zelditch[78].

Since Laplace operator also exists for graphs, there is a discrete version of nodal domains
for graph. In the graph case, we consider the adjacency matrix A: the ijth entry equals 1

if there is an edge connecting ith and jth vertices. If there is no edge connecting them,
then the corresponding entry equals 0. For an eigenvector u of A, a strong nodal domain is
defined as the maxmal connected subset such that u is strictly positive (or strictly negative)
on this subset. The definition of weak nodal domains will be the same as strong nodal
domain but replacing the condition strictly positive(or strictly negative) by non-negative(or

9



non-positive).
In 2008, Dekel, Lee, and Linial[?] discovered that nodal domains for an Erdös-Rï¿œnyi

G (n, p) graph with a fixed p behave different from the eigenfunctions of the Laplacian on
a manifold. Namely, the number of nodal domains for any non-leading eigenvector of
G (n, p) is bounded by a constant depending only in p. Later, their result was improved
by Arora and Bhaskara, who shows that there are exactly 2 nodal domains for non-leading
eigenvector (non-leading means the corresponding eigenvalue is not the largest one). In [?]
Dekel, Lee, and Linial pioneered the study of the nodal domains for graphs. This study
was motivated by the usefulness of the eigenvectors of graphs in a number of partitioning
and clustering algorithms, see [?] and the references therein.

Here, we establish another natural property of nodal domains. Namely, we will show
that with high probability, the nodal domains are balanced, i.e. each one of them contains
close to n/2 vertices with high probability. Unlike the previous ones, this property does
not follow from the combination of the no-gaps and the `∞ delocalization. Indeed, the
vector u ∈ Sn−1 with n/3 coordinates equal to

√
2
n

and the rest 2n/3 coordinates equal
to − 1√

2n
satisfies both properties. Moreover, for such vector,

∑n
j=1 u(j) = 0, so it is

orthogonal to the vector (1/
√
n, . . . , 1/

√
n) which is close to the leading eigenvector with

high probability.
We prove that the nodal domains are roughly of the same size. Here we break the

eigenvalues into two types: The bulk eigenvalues refer to intermediate eigenvalues and the
edge eigenvalues are those close to the extreme of the spectrum. The precise definitions
appear in formulations of the theorems as well as in Chapter 6. Here we state our theorem
in bulk and edge cases:

Theorem 1.5. (Bulk case) There is c ∈ (0, 1) such that the following holds. Let G (n, p)

be an Erdös-Rï¿œnyi Graph with p ∈
[
n−c, 1

2

]
. Fix ε, κ ∈ (0, 1) and ρ > 1. Suppose n

is sufficiently large. Let uα be an eigenvector of G (n, p) for α ∈ [κn, n− κn]. Then there

exists η = η (ε, κ) > 0 such that, for a sufficiently large n,

P
(
|P | ∨ |N | ≥

(
1

2
+ ε

)
n

)
≤ n−η

where P and N are the two nodal domains corresponding to uα.

Theorem 1.6. (Edge case) Let G (n, p) be an Erdös-Rï¿œnyi Graph with p ∈ (0, 1). Fix a

sufficiently large ρ > 0. Suppose n is sufficiently large. Let uα be a non-leading eigenvector

of G (n, p) with min {α, n− α} ≤ (log n)ρ log logn. Then, for any ε > 0, there exists δ > 0

10



such that

P
(
|P | ∨ |N | ≥

(
1

2
+ n−

1
6

+ε

)
n

)
≤ n−δ

where P and N are the two nodal domains corresponding to uα.

This is a joint work with M. Rudelson. We present this result in Chapter 6.
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1.3 Notations and Preliminaries

We denote [m] := {1, 2, 3, . . . , m} for m ∈ N. Let Rn be the n-dimensional Euclidean
space and {ei}ni=1 denotes the standard orthonormal basis. For x, y ∈ Rn,

• 〈x, y〉 denotes the standard inner product,

• |x| denotes the Euclidean norm, and

• xi denotes the ith component of x.

For a Borel measurable subset K ⊆ Rn, we define 1K to be the indicator function of K.
Furthermore, we set |K| be the volume of K. (The Lebesgue integral of 1K .)

By Bn
2 we denote the unit Euclidean ball. Let GLn (R) denote the group of invertible

linear transformations.

Convex Geometry

We begin with the definition of convexity and convex bodies.

Definition 1.7. A subset A ⊆ Rn is called convex if for any points x, y ∈ A we have
λx + (1− λ) y ∈ A for λ ∈ [0, 1]. A convex body K ⊆ Rn is a convex, compact subset
with non-empty interior.

There are several functions corresponding to a convex body:

Definition 1.8. (Radial funciton, support function and gauge function) For a convex body
K ⊆ Rn containing the origin, the radial function ρ : Rn → R+ is defined as

ρ(x) = max{t > 0 , tx ∈ K}.

The support function is

hK (x) := sup {〈x, y〉 : y ∈ K} ∀x ∈ Rn

and the gauge function is

‖x‖K := inf {r > 0 : x ∈ rK} .

In the case K is origin-symmetric, then ‖x‖K defiines a norm on Rn. Notice that we
have

‖x‖K =
1

ρ (x)
.

12



Definition 1.9. For a convex body K, let xK denote the barycenter of K. Specifically,

xK :=
1

|K|

∫
K

x dm.

If we embedded an n dimensional normed spaceX to Rn, then its dual spaceX∗ is also
embedded to Rn automatically via the standard inner product in Rn. Specifically, we can
define the dual norm as

∀x ∈ Rn, ‖x‖X∗ := max
y∈BX

{〈x, y〉} .

This relation is naturally adapted to convex bodies.

Definition 1.10. For a convex body K ⊆ Rn containing 0, its dual K◦ is defined as

K◦ := {x ∈ Rn : ∀y ∈ K, 〈x, y〉 ≤ 1} .

Remark 1.11. There are several properties with respect to the ◦ operation:
1. K◦ is also a convex body containing the origin.
2. (Order reversing) K ⊆ L implies L◦ ⊆ K◦.
3. (K◦)◦ = K.
4.
(
∩di=1Ki

)◦
= conv ({K◦1 , · · · , K◦d}) where conv (K, L) is the convex hull of K,L.

Definition 1.12. Suppose K ⊆ Rn is a convex body with smooth boundaries. For x ∈ ∂K,
we define N (x) to be the unique outer normal vector at x ∈ ∂K. The Gaussian curvature
κ (x) is defined as

κ (x) := det (dN (x)) .

John’s Decomposition

Let K ⊂ Rn be a convex body in John’s position. Recall a point u ∈ Rn is a contact point
of K and Bn

2 if u ∈ ∂K ∩ ∂Bn
2 . A classical theorem of F. John provides a decomposition

of identity operator in terms of contact points.([24, Theorem 2.1.10])

Theorem 1.13. Let K be a convex body in Rn that contains Bn
2 . Then, K is in John’s

position if and only if there exist contact points u1, .., um and c1, .., cm > 0 such that

1.
∑m

i=1 ciui ⊗ ui = In, and

2.
∑m

i=1 ciui = 0.

Moreover, one may choose m ≤
(
n+1

2

)
+ 1.
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Measure Concentration

We will state a few standard results in measure concentration.

1.3.1 Concentration on the Sphere

Let σn−1 denote the normalized Haar measure on Sn−1. We will introduce two
concentration inequalities on sphere. The following inequality is the concentration
inequality for Lipschitz functions on the sphere (see, e.g., [24, Theorem 3.2.2]):

Theorem 1.14. Let f : Sn−1 → R be a Lipschitz function with Lipschitz constant b. Then,

for every t > 0,

σn−1({x ∈ Sn−1 : |f(x)− E(f)| ≥ bt}) ≤ 4 exp(−C4t
2n),

where C4 > 0 is a universal constant.

The proposition below provides an upper bound for the measure of a spherical cap (see,
e.g., [24, Remark 3.1.8]):

Proposition 1.15. Let At = {θ ∈ Sn−1 , θ1 > t}, then σn−1(At) ≤ 2 exp(−C3t
2n) where

C3 > 0 is a universal constant.

1.3.2 Log-concave measures

Log-convave measures can be treated as a functional form of convex bodies. Before we
move on to the detail, we begin with the definition.

Definition 1.16. A Borel probability measure µ on Rn is called log-concave if for all non-
empty compact subsets A, B of Rn and all 0 < λ < 1 we have

µ ((1− λ)A+ λB) ≥ µ (A)1−λ µ (B)λ .

A non-negative function f defined on Rn is log-concave if, for any λ ∈ (0, 1) and
x, y ∈ Rn, we have

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ. (1.3)

14



It is shown by Borell[?] that a non-degenerate (supp (µ) 6⊂ H for any n−1 dimensional
affine subspace H of Rn) Boral probability measure µ is log-concave if and only if there
exists a log-concave function f such that dµ = f dm. ( dm is the usual Lebesgue measure
on Rn.) Thus, suppose that K ⊆ Rn is a convex body, then, 1Kdx is a log-concave
measure on Rn. Many results in the theory of convex bodies can be extended to log-
concave measures. In some cases, it is even more convenient to discuss in log-concave
measure instead. For instance, the k dimeinsonal marginal of a convex body K is a log-
concave measure.

We state Borell’s theorem ([24, Theorem 1.5.7]) and its application on comparison of
moments ([24, Theorem 3.5.11]):

Theorem 1.17. Let K ⊂ Rn be a convex body with volume |K| = 1. Let U be a closed,

convex and symmetric set such that |K ∩ U | = δ > 1/2. Then, for any t > 1, we have

|K ∩ (tU)c| ≤ δ

(
1− δ
δ

) t+1
2

.

Theorem 1.18. Let µ be a non-degenerate log-concave probability measure on Rn. If

f : Rn → R is a seminorm, then, for any q > p ≥ 1, we have

(E|f |p)1/p ≤ (E|f |q)1/q ≤ C5
q

p
(E|f |p)1/p,

where C5 > 0 is some universal constant.

In the end, we include one more theorem about log-concave probability measures
(Corollary 1 in [41]):

Theorem 1.19. For each 0 < b < 1 there exists a constant Cb such that for every

log-concave probability measure µ and every measurable convex symmetric set U with

µ(U) = b we have

µ(tU) ≤ Cbtµ(U) for t ∈ [0, 1].
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CHAPTER 2

The Upper Bound in Dvoretzky theorem and
Milman–Schechtman Theorem

For an origin-symmetric convex body K, let M = M(K) :=
∫
Sn−1 ‖x‖Kdνn and

b = b(K) := sup{‖x‖K , x ∈ Sn−1} be the mean and the maximum of the norm over the
unit sphere. In 1971, V. D. Milman proved the following Dvoretzky-type theorem [24,
Theorem 5.2.10]:

Theorem 2.1. Let K be a symmetric convex body in Rn. Assume that ‖x‖K ≤ b|x| for all

x ∈ Rn. For any ε ∈ (0, 1), there is k ≥ Cε(M/b)2n such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > 1− exp(−c̃k)

where c̃ > 0 is a universal constant, Cε > 0 is a constant depending only on ε.

The quantity Cε was of the order ε2 log−1(1
ε
) in the original proof of V. D. Milman. It was

improved to the order of ε2 by Y. Gordon [26] and later, with a simpler argument, by
G. Schechtman [62].

In 1997, V. D. Milman and G. Schechtman [56] found that the bound on k appearing in
Theorem 2.1 is essentially optimal. More precisely, they proved the following theorem.

Theorem 2.2. (Milman–Schechtman [24, Theorem 5.3.4]). Let K be a symmetric convex

body in Rn. For ε ∈ (0, 1), define k(K) to be the largest dimension k such that

νn,k
(
{F ∈ Gn,k : ∀x ∈ Sn−1 ∩ F , (1− ε)M < ‖x‖K < (1 + ε)M}

)
> pn,k =

n

n+ k
.

Then,

C̃εn(M/b)2 ≥ k(K) ≥ C̄εn(M/b)2
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when M
b
> c( log(n)

n
)
1
2 for some universal constant c > 0, where ‖ · ‖F denotes the norm

corresponding to the convex body K ∩ F in F , and C̃ε, C̄ε > 0 are constants depending

only on ε.

Because the Dvoretzky-Milman theorem cannot guarantee the lower bound with small M
b

for pn,k = n
n+k

, the original proof required an assumption that M
b
> c( log(n)

n
)
1
2 for some c.

In [24, p. 197], S. Artstein-Avidan, A. A. Giannopoulos, and V. D. Milman addressed it as
an open question whether one can prove the same result when we define pn,k to be a
constant, instead of n

n+k
. If we define pn,k = 1

2
, the lower estimate on k(K) is a direct

result of Dvoretzky-Milman theorem 2.1, but the upper bound was unknown. Our main
result is the following theorem:

Theorem 2.3. Let K be a symmetric convex body in Rn. Fix a constant ε ∈ (0, 1), let

k = k(K) be the largest dimension such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > 1

2
.

Then,

Cn(M/b)2 ≥ k(X) ≥ C̄εn(M/b)2

where C > 0 is a universal constant and C̄ε > 0 is a constant depending only on ε.

In the next section, we will provide a proof of Theorem 2.1with no restriction on M
b

. In
fact, from the proof, one can see that 1

2
can be replaced by any c ∈ (0, 1) or 1− exp(−c̃k),

which is the probability appearing in Milman-Dvoretzky theorem.

2.1 Proof of Theorem 2.3

Let H ⊆ Rn be an k-dimensional subsapce of Rn. Consider the orthogonal projection Pk
from Rn to H .

Lemma 2.4. For k > 8
c0

we have

νn

({
x ∈ Sn−1 : |Pk (x)| < 1

4

√
k

n

})
≤ 4 exp

(
−c0

4
k
)
.

Proof. First, we will show E|Pk(x)| about
√

k
n

where the expectation is taken over the
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normalized Haar measure on Sn−1. To see that, observe that

E|Pk|2 = E
k∑
i=1

|xi|2 =
k

n
.

Using the fact that |Pk| is a 1-Lipschitz function on Sn−1, by Theorem 1.14 we have

νn(||Pk(x)| − E|Pk(x)||2 > t) ≤ 4 exp(−c0tn).

Then,

E|Pk|2 − (E|Pk|)2 = E(|Pk|(x)− E|Pk|)2

<

∫ ∞
0

νn(||Pk(x)| − E|Pk(x)||2 > t)dt

≤
∫ ∞

0

4 exp(−c0tn)dt =
4

c0n
.

If k > 8
c0

, then we have

E (|Pk|) ≥
√
k

n
− 4

c0n
≥
√

k

2n
.

We apply Theorem 1.14 again and get

νn(|Pk| <
1

4

√
k

n
) < νn

(
||Pk| − E|Pk|| > E(|Pk|)−

1

4

√
k

n

)

≤ 4 exp(−c0(E(|Pk|)−
1

4

√
k

n
)2n)

≤ 4 exp(−c0(
1

2

√
k

n
)2n) ≤ 4 exp(−c0

4
k).

Theorem 2.5. There exists a concstant c1 > 0 such that the following holds: For any

origin-symmetric convex body K ⊆ Rn. If k ≥ c1

(
M
b

)2
n, then

νn,k ({F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M}) ≤ exp
(
−c0

4
k
)
<

1

2
.

(The last inequality guarantees that exp
(
− c0

4
k
)

won’t be too big.)

Proof. We may assume ‖e1‖K = b, then K ⊂ S = {x ∈ Rn : |x1| < 1
b
}, thus
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‖x‖K ≥ ‖x‖S = b|〈x, e1〉|. This implies

{V ∈ Gn,k : ∀x ∈ V ∩ Sn−1 , (1− ε)M < ‖x‖K < (1 + ε)M}
⊂ {V ∈ Gn,k : ∀x ∈ V ∩ Sn−1 , ‖x‖S < (1 + ε)M}
= {V ∈ Gn,k : supx∈V ∩Sn−1 |〈x, e1〉| < (1 + ε)M

b
}

= {V ∈ Gn,k : |PV (e1)| < (1 + ε)M
b
}

(2.1)

where PV is the orthogonal projection from Rn to V . If V is uniformly distributed on Gn,k

and x is uniformly distributed on Sn−1, then |PV0(x)| and |PV (e1)| are equi-distributed for
any fixed k-dimensional subspace V0. Therefore,

νn,k

({
V ∈ Gn,k : |PV (e1)| < (1 + ε)

M

b

})
=νn

({
x ∈ Sn−1 : |PV0(x)| < (1 + ε)

M

b

})
.

As shown in the Remark 5.2.2(iii) of [24, p. 164], the ratio M
b
≥ c′√

n
. Thus, there exists a

constant c1 such that if k is the smallest integer greater than c1

(
M
b

)2
n, then,

1

4

√
k

n
≥ (1 + ε)

M

b
and k ≥ 16

c0

.

Now, by Lemma 2.4, we get

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} ≤ 4 exp(−c0

4
k)

and the last term is smaller than 1
2

since k ≥ 16
c0

.

Now we can prove Theorem 2.3 as a corollary of Theorem 2.5 and Theorem 2.1:

Proof. [Proof of Theorem 2.3] Theorem 2.1 shows that if Cε(M/b)2n > log(2)
c̃

, then there
is k ≥ Cε(M/b)2n such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖F < (1 + ε)M} > 1− exp(−c̃k) >
1

2
.

Otherwise, (M/b)2n < log(2)
c̃Cε

. Therefore, k(K) ≥ min{ c̃Cε
log(2)

, Cε}(M/b)2n. Combining it
with Theorem 2.5

c1

(
M

b

)
2n ≥ k(K) ≥ min

{
c̃Cε

log(2)
, Cε

}(
M

b

)2

n.
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Remark. (1) It is worth noticing that the number 1
2

plays no special role in our proof.
Thus, if we define the Dvoretzky dimension to be the largest dimension such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > c

for some c ∈ (0, 1), then exactly the same proof will work. We will still have
k(K) ∼ (M

b
)2n. Similarly, if we fix ε and replace 1

2
by 1− exp(−c̃k), then the lower

bound of k(K) is the one from Theorem 2.1. For k bigger than some absolute constant,
we have 1− exp(−c̃k) > 1

2
. Thus, the upper bound is still of order

(
M
b

)2
n. Therefore, we

can replace 1
2

by 1− exp(−c̃k) in Theorem A. With this choice, it also shows Theorem
2.1 provides an optimal k depending on M, b.

(2) Usually, we are only interested in ε ∈ (0, 1). In the lower bound, C̄ε = oε(1). It is a
natural question to ask if we could improve the upper bound from a universal constant C
to oε(1). Unfortunately, it is not possible due to the following observation. Let
K = conv(Bn

2 , Re1)◦. By passing from the intersection on K to the projection of K◦, one
can show that k(K) does not exceed the maximum dimension k such that
νn(Pk(Rx) < 1 + ε) > 1

2
. Choosing R =

√
n
l
, we get n(M

b
)2 ∼ l and k(X) ∼ l by

Theorem 1.14 and a similar argument to that of Lemma 2.4. This example shows that no
matter what M

b
is, one cannot improve the upper bound in Theorem A from an absolute

constant C to oε(1).
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CHAPTER 3

Barycenter and maximum volume ellipsoid

In this chapter we focus on the question on the relation between the barycenter of a convex
body K and its maximum volume ellipsoid EK . A natural question asked by S. Vempala
is whether the barycenter of K lies in a small dilation of its John ellipsoid. We formulate it
as the following conjecture.

Conjecture 3.1. For any convex body K in Rn, the John ellipsoid of K scaled by a factor

of O(
√
n) about the ellipsoid’s center will contain at least half of the volume of K.

This can be formulated in terms of the barycenter of K. We will show in Section 4 that
Conjecture 3.1 is equivalent to the following conjecture:

Conjecture 3.2. For any convex body K in Rn, the John ellipsoid of K scaled by a factor

of O(
√
n) about the ellipsoid’s center will contain the barycenter of K.

The main result is the following:

Theorem 3.3. For a sufficiently large n ∈ N,

1. There exists a convex body K ⊂ Rn such that its barycenter does not lie in the John

ellipsoid scaled by a factor of (1 − C0

√
log(n)
n

)n about the ellipsoid’s center, where
C0 > 0 is a universal constant.

2. There exists a polytope P ⊂ Rn with O(n2) facets such that its barycenter does not
lie in the John ellipsoid scaled by a factor of C1

n
log(n)

about the ellipsoid’s center,
where C1 > 0 is a universal constant.

Remark: It is well known that for any convex body K ⊂ Rn, the John ellipsoid of K
scaled by a factor n about the ellipsoid’s center contains the original body K. (see [24,
Theorem 2.1.3 and Remark 2.1.4])
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Thus, the example in Theorem 3.3(1) is the asymptotically optimal in the sense that

limn→+∞
(1−C0

√
log(n)
n

)n

n
= 1.

A consequence of this theorem is the following:

Corollary 3.4. For a sufficiently large n ∈ N,

1. There exists a convex body K ⊂ Rn such that the center of its John ellipsoid BK is
0 and

vol

((
1− C ′0

√
log(n)

n

)
nBK ∩K

)
≤ 1

2
vol(K),

where C ′0 > 0 is a universal constant.

2. There exists a polytope P ⊂ Rn with O(n2) facets such that the center of its John
ellipsoid BP is 0 and

vol
(
C ′1

n

log(n)
BP ∩ P

)
≤ 1

2
vol(P ),

where C ′1 > 0 is a universal constant.

Thus, Conjecture 3.1 and Conjecture 3.2 are not true due to Theorem 3.3 and Corollary
3.4. In particular, both conjectures will not hold even if one restricts the collection of
convex bodies to polytopes with O(n2) facets.

This Chapter is structured as follows. The proof of Theorem 3.3 is presented in Section
3.1. Corollary 3.4 and the relation between Conjecture 3.1 and 3.2 are examined in
Section 3.2.

3.1 Proof of Theorem 3.3

Since the result of Theorem 3.3 is not affected by applying an affine transformation on K
or P , Theorem 3.3 can be rephrased in the following way: Recall that xK denotes the
barycenter for a convex body K and |·| denotes the Euclidean norm. We have

Theorem 3.5. For a sufficiently large n ∈ N,

1. There exists a convex body K ⊂ Rn in John’s position such that

|xK | ≥
(

1− C0

√
log(n)
n

)
n where C0 > 0 is a universal constant.
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2. There exists a convex polytope P ⊂ Rn in John’s position with O(n2) facets such that

|xP | ≥ C1
n

log(n)
where C1 > 0 is a universal constant.

We write points in the form x = (y, t) where y ∈ Rn−1 corresponds to {ei}n−1
i=1 and t ∈ R

corresponds to en. For a convex body K, we write xK := (yK , tK). Observe that, for
R > 0,

tK −R ≥ 0

⇔ 1
vol(K)

∫
K

(t−R)dx ≥ 0

⇔
∫
K

(t−R)dx ≥ 0.

Also, for a convex body K ⊂ Rn, let Kt := {y ∈ Rn−1 , (y, t) ∈ K}, which is a slice of
the convex body K. Let [aK , bK ] be the orthogonal projection of K to the span of en.

Assuming 0 ∈ Kt for all t ∈ [aK , bK ], let ρK(·, t) denote the radial function of Kt as a
convex body in Rn−1. Then,

∫
K

(t−R)dx

=

∫ bK

aK

(t−R)

∫
Kt

dydt

=

∫ bK

aK

(t−R)(n− 1)κn−1

∫ ρK(θ,t)

0

∫
Sn−2

rn−2drdσn−2(θ)dt

= κn−1

∫
Sn−2

∫ bK

aK

ρK(θ, t)n−1(t−R)dtdσn−2(θ),

where κn denote the volume of Bn
2 . With |xK | ≥ |tK |, we conclude

∫
Sn−2

∫ bK

aK

ρK(θ, t)n−1(t−R)dtdσn−2(θ) ≥ 0

⇒|xK | ≥ R.

(3.1)

Before moving on to the proof of the main theorem, we examine two simple convex
bodies in Rn.
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B B1 B2

Figure 3.1.1: B, B1, and B2

Let 0 ∈ B ⊂ Rn−1 be a n− 1 dimensional convex body. We define B1, B2 ⊂ Rn as

B1 := {(y, t) ∈ Rn , y ∈ B and t ∈ [0, n+ 1]}, and

B2 := {(y, t) ∈ Rn , y ∈ t

n+ 1
B and t ∈ [0, n+ 1]}.

In other words, B1 is a cylinder and B2 is a cone. (see figure 3.1.1) Both of them have the
same base B and height n+ 1. We have tB1 = n+1

2
.

For tB2 , using the fact that B2 is a cone, we have

tB2 = 〈xB2 , en〉

=
1

vol(B2)

∫
B2

tdx

=
n

(n+ 1)vol(B)

∫ n+1

0

vol(B)(
t

n+ 1
)n−1tdt

= n.

Comparing these two examples, we see that xB2 is much closer to its base. For the same
reason, the convex hull of Bn

2 and nen, which is in John’s position, has a barycenter that
lies in Bn

2 , because its shape is similar to that of a cone.

We will construct examples in the Theorem 3.3 as the intersection of two convex bodies,
Q ∩ L. Q and L will satisfy the following:

1. Q is in John’s position. L contains Bn
2 . Thus, Q ∩ L is also in John’s position.

2. L will be a cone (or a cylinder) with the property that Q ∩ L and L have a similar
shape. Therefore, xQ∩L behaves like the barycenter of a cone (or a cylinder).
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3.1.1 Construction of Q

The following proposition is related to the contact points decomposition of the identity:

Proposition 3.6. Let u1, ..., um be unit vectors in Rn−1 = span{e1, .., en−1} ⊂ Rn, and

c1, ..., cm > 0 be some positive numbers such that

m∑
i=1

ciui ⊗ ui = In−1 and
m∑
i=1

ciui = ~0.

Set vi = (
√

1− 1
n2ui,

1
n
) ∈ Rn for i = 1, ...,m and v0 = (~0,−1). With c′i = ci

1− 1
n2

and

c′0 = n
n+1

, we obtain

m∑
i=0

c′ivi ⊗ vi = In, and
m∑
i=0

c′ivi = ~0.

Proof. From the definition of vi, we have

vi ⊗ vi =
1

n2
en ⊗ en +

1

n

√
1− 1

n2
(en ⊗ ui + ui ⊗ en) + (1− 1

n2
)ui ⊗ ui.

We know that n− 1 = Tr(In−1) = Tr(
∑m

i=1 ciui ⊗ ui) =
∑m

i=1 ci. Thus, we have

m∑
i=0

civi ⊗ vi =
n− 1

n2
en ⊗ en + (1− 1

n2
)In−1.

where we use the fact that
∑m

i=1 ci = n− 1 and
∑m

i=1 ciui = ~0. Now let
c′i = ci

1− 1
n2

= n2ci
n2−1

for i = 1, ...,m and c′0 = n
n+1

. We then have

m∑
i=1

c′ivi ⊗ vi + c′0(−en)⊗ (−en) =
n− 1

n2 − 1
en ⊗ en + In−1 +

n

n+ 1
en ⊗ en = In.

Also,

m∑
i=1

c′ivi − c′0en = (
n− 1

n

n2

n2 − 1
− n

n+ 1
)en = ~0.

The points {uj}2(n−1)
j=1 = {±ei}n−1

i=1 with cj = 1
2

satisfy the assumption of Proposition 3.6.
We set
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A :=

{(
±
√

1− 1

n2
ei,

1

n

)}
n−1
i=1 ∪

{(
~0,−1

)}
and

Q := {x ∈ Rn , ∀u ∈ A 〈x, u〉 ≤ 1}.

The set A is the collection of contact points of Q. By Proposition 3.6 and Theorem 1.13,
Q is in John’s position.

Let Bn−1
∞ := {y ∈ Rn−1 , ∀i = 1, 2, · · · , n− 1 |〈y, ei〉| ≤ 1} be the unit cube in Rn−1.

Q = {x ∈ Rn , ∀u ∈ A 〈x, u〉 ≤ 1}

= {(y, t) ∈ Rn , y ∈ n− t√
n2 − 1

Bn−1
∞ and t ∈ [−1, n]}.

Q is in John’s position and it is a cone with base n+1√
n2−1

Bn−1
∞ and height n+ 1. Thus, Qt is

n−t√
n2−1

Bn−1
∞ for t ∈ [−1, n]. Since the radial function of Bn−1

∞ is
ρBn−1
∞

(θ) = 1
max{|〈θ,ei〉|}n−1

i=1

. We have

ρQ(θ, t) =
1

max{|〈θ, ei〉|}n−1
i=1

n− t√
n2 − 1

. (3.2)

3.1.2 Proof of Theorem 3.3(1)

We define
L := {(y, t) ∈ Rn , y ∈ (2 +

t

n
)Bn−1

2 and t ∈ [−1, n]}. (3.3)

In particular, Lt is equal to (2 + t
n
)Bn−1

2 and the radial function is ρL(θ, t) = 2 + t
n

.

Fix R0 = n− C0

2

√
log(n)n for some C0 > 0 that we will determine later. Then, we have

ρL(θ, R0) = 3− C0

2

√
log(n)
n

. By (3.2),

ρQ(θ, R0) =
1

max{|〈θ, ei〉|}n−1
i=1

C0

2

√
log(n)n√
n2 − 1

.
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We split Sn−2 into two components by defining

O1 := {θ ∈ Sn−2, ρQ(θ, R0) ≤ ρL(θ, R0)}.

For a sufficiently large n, we have

O1 = {θ ∈ Sn−2 ,
1

(3− C0

2

√
log(n)
n

)

C0

2

√
log(n)n√
n2 − 1

≤ max{|〈θ, ei〉|}n−1
i=1 }

⊂ {θ ∈ Sn−2 ,
C0

6

√
log(n)n√
n2 − 1

≤ max{|〈θ, ei〉|}n−1
i=1 }

⊂ ∪n−1
i=1 {θ ∈ Sn−2,

C0

6

√
log(n)n√
n2 − 1

≤ |〈θ, ei〉|}.

Due to Proposition 1.15, the measure of O1 can be bounded:

σn−2(O1) ≤ 4n exp(− 1

36
C3C

2
0

n2

n2 − 1
log(n))

≤ 4 exp

(
(1− 1

36
C3C

2
0) log(n)

)
.

By setting C0 :=
√

72
C3

, for a sufficiently large n, we have

σn−2(O1) ≤ 4 exp(− log(n)) ≤ 1

2
. (3.4)

Moreover, ρL(θ, t) is increasing with respect to t ∈ [−1, n], while ρQ(θ, t) is decreasing
with respect to t ∈ [−1, n]. We may conclude that,

∀θ ∈ Oc
1 , ρQ(θ, t) ≥ ρL(θ, t) for t ∈ [−1, R0]. (3.5)

We define K to be the intersection of Q and L, K = Q ∩ L. Then, we have Kt = Qt ∩ Lt
and thus ρK(θ, t) = min{ρQ(θ, t), ρL(θ, t)}.

By (3.1), it is sufficient to prove∫
Sn−1

∫ n

−1

ρK(θ, t)n−1(t−R)dtdσn−2(θ) ≥ 0, (3.6)

with R = n− C0

√
log(n)n. For the inner integral in (3.6):
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∫ n

−1

ρK(θ, t)n−1(t−R)dt

≤
∫ R0

−1

ρK(θ, t)n−1(t−R)dt

=−
∫ R

−1

ρK(θ, t)n−1(R− t)dt+

∫ R0

R

ρK(θ, t)n−1(t−R)dt.

For the first component, with ρK(θ, t) ≤ ρL(θ, t) = 2 + t
n

, we have∫ R

−1

ρK(θ, t)n−1(R− t)dt ≤
∫ R

−1

(2 +
t

n
)n−1(R− t)dt.

The integral on the right side is computable via integration by parts:∫ R

−1

(2 +
t

n
)n−1(R− t)dt

= (2 +
t

n
)n(R− t)

]R
−1

+

∫ R

−1

(2 +
t

n
)ndt

=− (2− 1

n
)n(R + 1) +

n

n+ 1
(2 +

R

n
)n+1 − n

n+ 1
(2− 1

n
)n+1

≤ n

n+ 1
(2 +

R

n
)n+1.

Thus, ∫ R

−1

ρK(θ, t)n−1(R− t)dt ≤ n

n+ 1
(2 +

R

n
)n+1. (3.7)

For θ ∈ Oc
1, due to (3.5) we have ρK(θ, t) = ρL(θ, t) = (2 + t

n
) for t ∈ [−1, n]. Thus, we

have the equality when θ ∈ Oc
1:∫ R0

R

ρK(θ, t)n−1(t−R)dt =

∫ R0

R

ρL(θ, t)n−1(t−R)dt.

Again, the integral on the right side is computable:∫ R0

R

(2 +
t

n
)n−1(t−R)dt

= (2 +
t

n
)n(t−R)

]R0

R

−
∫ R0

R

(2 +
t

n
)ndt

=(2 +
R0

n
)n(R0 −R)− n

n+ 1
(2 +

R0

n
)n+1 +

n

n+ 1
(2 +

R

n
)n+1.
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Observe that, for a sufficiently large n, we have

(R0 −R) =
C1

2

√
log(n)n > 4 > 2

n

n+ 1
(2 +

R0

n
).

Hence, the previous equality can be bounded:

(2 + R0

n
)n(R0 −R)− n

n+1
(2 + R0

n
)n+1 + n

n+1
(2 + R

n
)n+1

≥ 1
2
(2 + R0

n
)n(R0 −R).

We conclude that, for any θ ∈ Oc
1,∫ R0

R

ρK(θ, t)n−1(t−R)dt ≥ 1

2
(2 +

R0

n
)n(R0 −R). (3.8)

Now we can derive the main inequality (3.6). First, we split the integral:

∫
Sn−1

∫ n
−1
ρK(θ, t)n−1(t−R)dtdσn−2(θ)

=
∫
Sn−1

∫ R
−1
ρK(θ, t)n−1(t−R)dtdσn−2(θ)

+
∫
Sn−1

∫ R0

R
ρK(θ, t)n−1(t−R)dtdσn−2(θ)

+
∫
Sn−1

∫ n
R0
ρK(θ, t)n−1(t−R)dtdσn−2(θ).

By (3.7), the first summand satisfies∫
Sn−1

∫ R

−1

ρK(θ, t)n−1(t−R)dtdσn−2(θ) ≥ − n

n+ 1
(2 +

R

n
)n+1.

According to (3.8) and (3.4), the second summand satisfies∫
Sn−1

∫ R0

R

ρK(θ, t)n−1(t−R)dtdσn−2(θ)

≥
∫
Oc1

∫ R0

R

ρK(θ, t)n−1(t−R)dtdσn−2(θ)

≥ 1

4
(2 +

R0

n
)n(R0 −R).
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Noticing that the third summand is non-negative, we conclude that

∫
Sn−1

∫ n
−1
ρK(θ, t)n−1(t−R)dtdσn−2(θ)

≥ − n
n+1

(2 + R
n

)n+1 + 1
4
(2 + R0

n
)n(R0 −R).

With 1
4
(R0 −R) > 2 > n

n+1
(2 + R

n
) and (2 + R0

n
)n > (2 + R

n
)n, we get

− n

n+ 1
(2 +

R

n
)n+1 +

1

4
(2 +

R0

n
)n(R0 −R) > 0

for a sufficiently large n. Hence,∫
Sn−1

∫ n

−1

ρK(θ, t)(t−R)dtdσn−2(θ) > 0.

We conclude from (3.1) that

|xK | > R = n− C0

√
log(n)n = (1− C0

√
log(n)

n
)n.

3.1.3 Proof of Theorem 3.3 (2)

To construct P in Theorem 3.3 (2) we define a cylinder L2, which is the intersection of
O(n2) number of halfspaces and set P := Q ∩ L2, where Q is the same as above.

Let {εn} be a decreasing sequence. Later we will specify εn, but for now we assume that

10

n
< εn < 1 , and (3.9)

lim
n→+∞

εn = 0. (3.10)

Let
A′ := {±(1− εn)ei ±

√
1− (1− εn)2ej}i,j<n i6=j,

and
L2 := {(y, t) ∈ Rn, 〈y, u〉 ≤ 1 ∀u ∈ A′ and t ∈ [−1, n]}.

We have |A′| = 4n(n− 1) and L2 is a cylinder with

L2,t = {y ∈ Rn−1, 〈y, u〉 ≤ 1 ∀u ∈ A′}
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for t ∈ [−1, n]. Let P = Q ∩ L2. Since Bn
2 ⊂ L2 and Q is in John’s position, P is in

John’s position. Following the same approach from the proof of Theorem 3.5 (1), we want
to show

∫
Sn−2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ) > 0. (3.11)

Then, we can conclude |xP | > 1
5
εnn.

For convenience, let Q′ := Qεnn and L′ := L2,εnn. Also, let ρQ′(·) := ρQ(·, εnn) and
ρL′(·) := ρL2(·, εnn). We will show that for the majority of θ ∈ Sn−2, ρP (θ, t) = ρL2(θ, t)

for t ∈ [−1, εnn]. In the case that ρP (θ, t) 6= ρL2(θ, t) for some t in [−1, εnn], ρP (θ, t) will
be nicely bounded.

Proposition 3.7.

With the notation above, let

O2 := {θ ∈ Sn−2 , ρQ′(θ) ≤ ρL′(θ)}.

For a sufficiently large n, we have

∀θ ∈ O2, ρQ′(θ) ≤ 4
√
εnn.

σn−2(O2) ≤ 4n exp(−C6

εn
), where C6 > 0 is a universal constant.

Proof. Let y ∈ ∂Q′ ∩ L′. Then, there exists i such that |yi| = (1− εn) n√
n2−1

= ρQ′(
y
|y|).

Following the conditions from the definition of L′, we have, for j 6= i,

(1− εn)|yi|+
√

1− (1− εn)2|yj| ≤ 1

⇒
√

1− (1− εn)2|yj| ≤ 1− (1− εn)2

⇒ |yj| ≤
√

1− (1− εn)2,

where for the second inequality we use n√
n2−1

≥ 1.

From the previous argument, y ∈ ∂Q′ ∩ L′ implies that

|y| ≤
√

(n− 2)(1− (1− εn)2) + (1− εn)2
n2

n2 − 1
. (3.12)
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By (3.9) and (3.10), we have 0 < (1− (1− εn)2) = 2εn − ε2n ≤ 2εn and nεn > 1. Hence,
(3.12) becomes

|y| ≤
√

(n− 2)(1− (1− εn)2) + (1− εn)2 n2

n2−1

≤
√

2εnn+ 2

≤ 2
√
εnn,

which proves Claim (1) in Proposition 3.7.

For θ ∈ O2, we have ρQ(θ)θ ∈ ∂Q′ ∩ L′. There exists i such that
|(ρQ′(θ)θ)i| = (1− εn) n√

n2−1
. By (3.10), we have (1− εn) n√

n2−1
> 1

2
for large n.

Together with ρQ′(θ) ≤ 2
√
εnn,

|θi| =
(1− εn) n√

n2−1

ρQ′(θ)
≥ 1

2ρQ′(θ)
≥ 1

4
√
εnn

. (3.13)

Thus, inequality (3.13) leads to the following inclusion:

O2 ⊂ ∪n−1
i=1

{
θ ∈ Sn−2 , |θi| ≥

1

4
√
εnn

}
.

By Proposition 1.15,

σn−2

({
θ , |θi| ≥

1

4
√
εnn

})
≤ 4 exp

(
− C3

16εn

n− 1

n

)
≤ 4 exp

(
−C6

εn

)
.

Therefore, using the union bound, we conclude that

σn−2 (O2) ≤ 4n exp

(
−C6

εn

)
.

Proposition 3.8. With the notation above, there exists a constant C7 > 0 such that if the

sequence {εn} satisfies C7

log(n)
> εn for a sufficiently large n, then

σn−2({θ , ρL′(θ) ≤ 5
√
εnn}) ≤ 4 exp(−C8

εn
),

where C8 > 0 is a universal constant.
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Proof. Let ‖ · ‖ be the norm on Rn−1 such that L′ is the unit ball that corresponds to the
norm ‖ · ‖. More specifically, for y ∈ Rn−1,

‖y‖ = max
1≤i,j<n , i6=j

{(1− εn)|yi|+
√

1− (1− εn)2|yj|}.

Let g = (g1, g2, .., gn−1) be the standard Gaussian random vector in Rn−1. Then,

E‖g‖ = E max
1≤i,j<n , i6=j

{(1− εn)|gi|+
√

1− (1− εn)2|gj|}

≤ 2E max
i=1,..,n−1

|gi| ≤ c′
√

log(n),

where c′ > 0 is a universal constant and the last inequality is a classical result for the
extreme value of independent Gaussian random variables.

Using the standard polar integration, we obtain the following inequality,∫
Sn−2

‖θ‖dσn−2(θ) ≤ c′′√
n
E‖g‖,

where c′′ > 0 is a universal constant. Thus, Eσn−2‖θ‖ ≤ c′c′′
√

log(n)
n

. Moreover,
supθ∈Sn−2 ‖θ‖ ≤ 1 due to the fact that Bn−1

2 ⊂ L′. Therefore, the function θ → ‖θ‖ is

1-Lipschitz on Sn−2. We set C7 > 0 to be small enough so that 1
2

1
5
√
εnn

> c′c′′
√

log(n)
n

.
Since ρL′(θ) = 1

‖θ‖ , we have the equality

{θ ∈ Sn−2 , ρL′(θ) ≤ 5
√
εnn} = {θ ∈ Sn−2 , ‖θ‖ ≥ 1

5
√
εnn

).

Furthermore, the inequality Eσn−2‖θ‖ ≤ 1
2

1
5
√
εnn

implies

{
θ ∈ Sn−2 , ‖θ‖ ≥ 1

5
√
εnn

}
⊂
{
θ ∈ Sn−2 , |‖θ‖ − E‖θ‖| > 1

10
√
εnn

}
.

Together with Theorem 1.14, we may conclude that

σn−2({θ ∈ Sn−2 , ρL′(θ) ≤ 5
√
εnn})

≤ σn−2({θ ∈ Sn−2 , |‖θ‖ − E‖θ‖| > 1

10
√
εnn

)}

≤ 4 exp(−C8

εn
),
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where we use Theorem 1.14 in the last inequality.

Now we are able to prove Theorem 3.3 (2).

Proof. [Proof of Theorem 3.3 (2)]

We want to choose εn so that
σn−2(O2) <

1

4
, (3.14)

and

σn−2({θ ∈ Sn−2, ρL′(θ) ≤ 5
√
εnn}) ≤

1

4
, (3.15)

for a large n.

According to Proposition 3.7, the first condition can be achieved if εn < c
log(n)

for some
c > 0 when n is large.

Moreover, we also want to choose εn < c′

log(n)
so that we can apply Proposition 3.8 to get

σn−2({θ ∈ Sn−2, ρL′(θ) ≤ 5
√
εnn}) ≤ 1

4
. Therefore, we can set εn = c′′

log(n)
for some

c′′ > 0 so that (3.14) and (3.15) hold.

Recall that from (3.11) our goal is to show that∫
Sn−2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ) > 0.

Since P = Q ∩ L2,

ρ(θ, t) = min{ρQ(θ, t), ρL2(θ, t)} = min{ρQ(θ, t), ρL′(θ)}.

We handle the inner integral differently for θ ∈ O2 and θ /∈ O2.

In the case that θ /∈ O2:
First, we have ρQ(θ, εnn) ≥ ρL2(θ, εnn). Thus, ρP (θ, t) = ρL′(θ) for t ∈ [−1, εnn]. This is
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because ρL′(θ) is a constant and ρP (θ, t) is decreasing with respect to t. Thus,∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dt

≥
∫ εnn

−1

ρP (θ, t)n−1(t− 1

5
εnn)dt

=

∫ εnn

−1

ρL′(θ)
n−1(t− 1

5
εnn)dt.

We split the integral to two parts:∫ εnn

−1

ρL′ (θ)
n−1

(
t− 1

5
εn

)
dt

=

∫ 2 1
5
εnn+1

−1

ρL′(θ)
n−1

(
t− 1

5
εnn

)
dt

+

∫ εnn

2 1
5
εnn+1

ρL′(θ)
n−1

(
t− 1

5
εnn

)
dt.

Due to the symmetry of the integrand with respect to t = 1
5
εnn, the first summand is 0. For

the second summand, we have∫ εnn

2
5
εnn+1

ρL′(θ)
n−1(t− 1

5
εnn)dt

≥ (εnn−
2

5
εnn− 1)ρL′(θ)

n−1(
1

5
εnn+ 1)

≥ (εnn)2

10
ρL′(θ)

n−1,

where in the second to last inequality we used that 2
5
εnn+ 1 ≤ 1

2
εnn by (3.9). We conclude

that
∀θ ∈ Oc

2 ,

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dt ≥ (εnn)2

10
ρL′(θ)

n−1. (3.16)

In the case that θ ∈ O2:
From Proposition 3.7, we know that ρQ(θ, εnn) ≤ 2

√
εnn. Therefore, since ρQ(θ, t) is

linear on [−1, n] and ρQ(θ, n) = 0, we see that for any t ∈ [−1, n],

ρQ(θ, t) ≤ n+ 1

n− εnn
2
√
εnn ≤ 4

√
εnn,

for a sufficiently large n. We have
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∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dt ≥

∫ 1
5
εnn

−1

ρP (θ, t)n−1(t− 1

5
εnn)dt,

because the integrand is positive for t > 1
5
εnn. Then, using the estimate of ρQ(θ, t) ≤

4
√
εnn,

∫ 1
5
εnn

−1

ρP (θ, t)n−1(t− 1

5
εnn)dt

≥ −(
1

5
εnn+ 1)(4

√
εnn)n−1(1 +

1

5
εnn)

≥ − 4

25
(εnn)2(4

√
εnn)n−1,

where in the last inequality we used 1
5
εnn + 1 ≤ 2

5
εnn, which is valid for a large n.

Therefore, we have

∀θ ∈ O2 ,

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dt ≥ − 4

25
(εnn)2(4

√
εnn)n−1. (3.17)

Now we are able to derive the main inequality.∫
Sn−2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ)

=

∫
O2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ)

+

∫
Oc2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ).

(3.18)

Applying (3.16), the second summand satisfies∫
Oc2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ) ≥ (εnn)2

∫
Oc2

1

10
ρL′(θ)

n−1dσn−2(θ).

Let U := {θ , ρL′(θ) ≥ 5
√
εnn}. From (3.14) and (3.15) we know that σn−2(U ∩Oc

2) ≥ 1
2

for a large n. Since the integrand is positive,∫
Oc2

1

10
ρL′(θ)

n−1dσn−2(θ) ≥
∫
U∩Oc2

1

10
ρL′(θ)

n−1dσn−2(θ).
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Thus,∫
Oc2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ) ≥ (εnn)2

∫
U∩Oc2

1

10
ρL(θ)n−1dσn−2(θ).

For the first summand of (3.18), we apply (3.17) and (3.14) to get∫
O2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ)

≥ −(εnn)2σn−2(O2)
4

25
(4
√
εnn)n−1.

Combining the inequalities for the two summands together we have

∫
Sn−2

∫ n

−1

ρP (θ, t)n−1(t− 1

5
εnn)dtdσn−2(θ)

≥ (εnn)2[
1

20
(5
√
εnn)n−1 − 1

25
(4
√
εnn)n−1]

≥ 0.

Therefore, the barycenter is at least C1
n

log(n)
away from 0, where C1 := c′′

5
.

3.2 The relation between the conjectures

Let K ⊂ Rn be a convex body in John’s position and X be a random vector uniformly
distributed in K. Let MK denote the median of |X|, which is the unique value satisfying

P(|X| ≤MK) =
1

2
.

Lemma 3.9. Let K ⊂ Rn be a convex body. Let X be a random vector uniformly

distributed in K. Let MK denote the median of |X|. Then, we have

MK√
2
≤ (E|X|2)1/2 ≤ C9MK ,

where C9 > 0 is a universal constant.
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Proof. The first inequality is standard:

E|X|2 ≥ E(|X|21|X|≥MK
) ≥ 1

2
M2

K

Thus, the first inequality can be obtained by taking square root on both sides.

To prove the second one, let R be the number such that P(|X| ≤ R) = 2
3
. We can apply

Theorem 3.3 with U = RBn
2 and δ = 2

3
to get

P(|X| > tR) ≤
√

2

3
2−t/2 for t > 1.

A simple integration shows that

E|X|2 ≤ cR2,

for a universal constant c > 0.

Now we apply Theorem 1.19 with b = 2
3

and U = RBn
2 to obtain

P(|X| ≤MKB
N
2 )) ≤ Cb

MK

R
P(|X| ≤ R),

which implies that MK ≥ 3
C2/3

R.

We could also relate E|X|2 and the barycenter xK of K when K is in John’s position.

Lemma 3.10. There exists C10, C11 > 0 such that, for any convex body K ⊂ Rn in John’s

position, we have

|xK |2 ≤ E|X|2 ≤ C10|xK |2 + C11n,

where X is a random vector uniformly distributed in K.

This result was proved by M. Fradelizi, G. Paouris and C. Schï¿œtt in [22].

Here we present a different proof.

Proof. Since K is in John’s position, there exist {ui}mi=1 ⊂ Sn−1 and {ci}mi=1 with ci > 0

such that
∑m

i=1 ciui = 0 and
∑m

i=1 ciui ⊗ ui = In.

38



In particular,

E|X|2 = E
m∑
i=1

ci(〈X, ui〉)2.

Also, |xK |2 =
∑m

i=1 ci(〈xK , ui〉)2.

Given that ui is a contact point of K, we have 〈x, ui〉 ≤ 1 for all x ∈ K. As a
consequence, with 〈xK , ui〉 = E〈X, ui〉 we have

0 ≤ E|〈X, ui〉| − |〈xK , ui〉| ≤ 2.

Here, the first inequality follows from Jensen’s inequality while the second one relies on
an elementary observation that for any random variable Y ≤ 1,
E|Y | = 2Emax{Y, 0} − EY ≤ 2 + |EY |. Thus,

|〈xK , ui〉|2 ≤ (E|〈X, ui〉|)2 ≤ 3(|〈xK , ui〉|2 + 2).

According to Theorem 1.18, we have

E|〈X, ui〉| ≤ (E|〈X, ui〉|2)1/2 ≤ 2C5E|〈X, ui〉|.

Therefore, we can conclude that

|xK |2 ≤ E|X|2 ≤ 12C5(|xK |2 + 2
∑

ci) ≤ C|xK |2 + C ′n,

where the last inequality uses the fact that
∑m

i=1 ci = n.

Corollary 3.11. Conjecture 3.2 and Conjecture 3.1 are equivalent.

Proof. Let K ⊂ Rn be a convex body. Since the result is invariant under affine
transformations, we may assume that K is in John’s position. Let X be a random vector
uniformly distributed in K and MK be the median of the random variable |X|.

Suppose Conjecture 3.1 is true. There exists a universal constant C > 0 such that
|xK | ≤ C

√
n. According to Lemma 3.9 and Lemma 3.10,
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MK ≤
√

2(E|X|2)1/2

≤
√

2
√
C10|xK |2 + C11n

≤
√

2n
√
C10C2 + C11.

This argument is valid for any convex body K; therefore, Conjecture 3.2 is true.

On the other hand, assuming Conjecture 3.2 is valid, there exists a universal constant
C > 0 such that MK ≤ C

√
n. Again, according to Lemma 3.9 and Lemma 3.3,

|xK | ≤ (E|X|2)1/2

≤ C9MK

≤ C9C
√
n.

Therefore, Conjecture 3.1 is true.

The examples in Corollary 3.4 will be examples K,P , which are constructed in Theorem
3.3. For Corollary 3.4(2), the result will follow by |xP | ≤ C9MP . Corollary 3.4(1) is a
more delicate situation, and so the same argument does not apply. Observe that, for R > 0,

K ∩RBn
2 ⊂ K ∩ {x ∈ Rn, 〈x, e1〉 ≤ R}.

It is sufficient to show a stronger statement:

vol(K ∩ {x ∈ Rn, 〈x, en〉 ≤ R}) ≤ vol(K ∩ {x ∈ Rn, 〈x, e1〉 > R})

for R = n− C ′0
√

log(n)n. Adapting the notations from the proof, this is equivalent to
show ∫

Sn−1

∫ n

−1

ρK(θ, t)n−1sign(t−R)dtdσn−2 > 0.

The proof of this statement is almost identical to the proof of Theorem 3.3(1).
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CHAPTER 4

Approximation of Convex Bodies by Polytopes
with few facets

One of the most natural questions in convex geometry is how well a convex body in Rn

can be approximated by polytopes with as few facets (or vertices) as possible. How closely
a polytope approximates a convex body can be measured in different ways. We refer to
the papers [29, 15] for a more detailed discussion. In this chapter, we are interested in the
Banach-Mazur distance which, for convex bodies K,L ⊆ Rn, is defined by

dBM(K,L) := inf{r ≥ 1 : ∃T ∈ GLn(R) andx, y ∈ Rn such that K ⊂ TL ⊂ rK}.

Interestingly, John’s theorem 1.13 provides a way to approximate convex bodies by
polytopes. We putK in John’s position and let contact points {ui}mi=1 and positive constants
{ci}mi=1 be the pairs that are described in Theorem 1.13 with m ≤

(
n+1

2

)
− 1. Observe that

for each i ∈ [m], we have 〈x, ui〉 ≤ 1 for every x ∈ K. Thus, K is contained in the
polytope

P := {x ∈ Rn : ∀i ∈ [m] , 〈ui, x〉 ≤ 1} ,

which has m facets. Furthermore, P is also in John’s positions with the same pairs
of contact points {ui}ni=1 and {ci}mi=1. Suppose K is origin-symmetric, we may replace
{ui}mi=1 by {ui,±}mi=1 where ui,+ = ui and ui,− = uj . (Correspondingly, we set ci,± =
1
2
ci) So we may assume P is origin-symmetric. Suppose x ∈ P , using the identity

decomposition In =
∑m

i=1 ciuiu
>
i , we have

‖x‖2
2 =

m∑
i=1

ci〈ui, x〉2 ≤
m∑
i=1

ci, (4.1)

and the last term is equal to n due to TrIn = Tr
∑m

i=1 ciuiu
>
i . Therefore, we have the
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relation Bn
2 ⊆ K ⊆ P ⊆ nBn

2 . That means we can find a Polytope P with about n2 facets
such that

dBM (K, P ) ≤
√
n.

This bound is indeed sharp. To see that, we have the following lower bound for
approximating the unit ball by polytope:

dBM(Bn
2 , P ) ≥ c

√
n

log(m
n

)

where m is the number of facets or vertices of P . This was proven independently (and
using different methods) in [7],[14], [18] and [25]. Developing from this construction of
P and, along with tools such as tensor algebra and Chebyshev’s polynomial, Barvinok [8],
in 2012, showed that for any symmetric convex body K ⊂ Rn, one can find a polytope
P with a number of facets, m, which is at least polynomial in n, such that dBM(K,P ) =

O(
√

n log(n)
log(m)

). In the fine scale, which means that dBM (K, P ) ≤ 1 + ε , this result is
improved by Naszï¿œdi, Nazarov, and Ryabogin [57]. We remark that the result of [57]
also works in the non-symmetric setting that we describe below.

For the non-symmetric case, one has to modify the definition of the Banach-Mazur
distance: For convex bodies K,L ⊆ Rn, the Banach-Mazur distance dBM(K,L) is defined
by

dBM(K,L) := inf

{
r ≥ 1 : ∃T ∈ GLn(R) and x, y ∈ Rn

such that K − x ⊂ T (L− y) ⊂ r(K − x)

}
.

The polytope P constructed from the contact points from John’s theorem provides
a similar but weaker result. In the case P is not origin-symmetric, we no longer have
〈ui, x〉2 ≤ 1 for x ∈ P and thus 4.1 does not hold. Instead, relying on

∑m
i=1 ciui = 0, we

have

x =
m∑
i=1

ci〈x, ui〉ui =
m∑
i=1

ci

(
〈x, ui〉 −min

j
〈x, uj〉

)
ui.

Then, using 〈x, ui〉 ≤ 1, we obtain

〈x, x〉 ≤
m∑
i=1

ci

(
〈x, ui〉 −min

j
〈x, uj〉

)
= −

m∑
i=1

ci min
j
〈x, uj〉 ≤ n |x|

and conclude |x| ≤ n. Therefore, the same argument leads to dBM (K, P ) ≤ n.
The choice of the origin x of K in this definition is crucial. For a symmetric convex

body, classical choices such as the barycenter, the center of the John ellipsoid, and the
Santalï¿œ point, all coincide with the center of symmetry. However, this is not the case for
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a general convex body, a fact that makes the choice of origin an obstacle.
The following results make use of the barycenter as the origin. The first result, by

Szarek [72], states that for any convex body in Rn, there exists a polytope with either m
facets or m vertices, such that dBM(K,P ) ≤ n

log(m
n

)
. Using a random method, Brazitikos,

Chasapis, and Hioni obtain an upper bound of the order of n√
log(m

n
)
, where m is the number

of vertices.
Here, we examine the case by taking the origin of a convex body K ⊆ Rn as the center

of its John ellipsoid. We investigate the following problem.

Problem 4.1. Let R = o(n), and K ⊂ Rn be a convex body is in John’s position. Is there
a polytope P with a polynomial number of facets in n, such that

K ⊂ P ⊂ RK ?

We prove the following main theorem.

Theorem 4.2. For a sufficiently large n and for any c0

√
n ≤ R ≤ c1n, there exists a convex

body K ⊂ Rn whose John’s ellipsoid is centered at the origin, and such that any polytope

P satisfying

K ⊂ P ⊂ RK,

has at least exp(C log(R
2

n
) n
R2n) facets, where c0, c1, C > 0 are some universal constants.

Remark :

1. Notice that the inclusion relations are invariant under linear transformations. We may
assume that the constructed body K is in John’s position.

2. For each R ∈ [c0

√
n, c1n], the constructed body K in the Theorem 4.2 is a polytope.

Moreover, for any polytope P satisfying K ⊂ P ⊂ RK, we have:

number of facets of P ≥ c

n
· (number of facets of K) .

A direct consequence of Theorem 4.2 solves Problem 4.1 in the negative:

Corollary 4.3. LetRn → +∞ be a positive increasing sequence that satisfies limn→∞
Rn
n
→

0. For any constant k > 0, there exists a convex body K ⊂ Rn in John’s position such that

for a sufficiently large n such that there is no polytope that has at most nk number of facets

that satisfy

K ⊂ P ⊂ RnK.
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In the other extreme, we have the following corollary:

Corollary 4.4. For a sufficiently large n, there exists a convex body K ⊂ Rn in John’s

position such that there is no polytope P that has less than exp(cn) number of facets, and

satisfies

K ⊂ P ⊂
√
nK,

where c > 0 is a universal constant.

As we previously mentioned, for a symmetric convex body K, there exists a polytope
P with O (n2) facets such that K ⊂ P ⊂

√
nK. Corollary 4.4 shows that approximating a

non-symmetric body, in the same scale of
√
n could be much more expensive.

The fact that Theorem 4.2 cannot provide a better result when R = o(
√
n) is not

surprising. Using a net argument, one can derive the following:

Proposition 4.5. Suppose Bn
2 ⊂ K ⊂ RBn

2 . For a sufficiently small δ > 0, there exists a

polytope Pδ with no more than exp(c log(2R
δ

)n) facets such that

(1− δ)Pδ ⊂ K ⊂ Pδ.

Applying the proposition to convex bodies in John’s position, we conclude the following.

Corollary 4.6. Let K be a convex body in Rn in John’s position, where n is sufficiently

large. Then, there exists a polytope P with at most exp(c log(n)n) facets such that

1

2
P ⊂ K ⊂ P,

where c > 0 is a universal constant.

The proof of Theorem 4.2 is presented in Section 4.1. In Section 4.2 we prove Propostion
4.5.

4.1 Proof of the main result

In this section, we prove Theorem 4.2. The proof will be divided into three main propositions.
The body K is obtained by intersecting a simplex in John’s position with a large number
of halfspaces. As long as each halfspace contains the John ellipsoid of the simplex, the
new body will be in John’s position as well. The construction of the body uses both certain
structures and randomness.
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Let ∆n be the regular simplex in Rn that has an inner radius equal to 1. Using the
symmetry of ∆n and uniqueness of the John ellipsoid, it is not difficult to check that ∆n is
in John’s position. Suppose u1, · · · , un+1 are contact points of ∆n. Then, 〈ui, uj〉 = − 1

n

for i 6= j and {−nui}n+1
i=1 are the vertices of ∆n. We can express ∆n and ∆◦n in terms of

{ui}n+1
i=1 :

∆n =
{
x ∈ Rn : 〈x, u〉 ≤ 1 ∀u ∈ {ui}n+1

i=1

}
, ∆◦n = conv

(
{ui}n+1

i=1

)
.

4.1.1 Lower bound of facets

The first proposition below shows how to determine if a convex body cannot be approximated
by polytopes that have few facets with a fixed origin.

Proposition 4.7. Let K := {x ∈ Rn : 〈x, yi〉 ≤ 1 ∀i ∈ [m]} ∩ L, where y1, ..., ym are

vectors in Rn and L is a convex body in Rn that has 0 as an interior point. Suppose there

are points x1, ..., xm ∈ K such that for some R > 1, we have

〈xi, y〉


= 1 if y = yi,

≤ 1
2R

if y = yj with i 6= j.

≤ 1
2R

if y ∈ L◦

Then, there is no polytope P that has fewer than m
2R

facets such that

K ⊂ P ⊂ RK.

Proof. Suppose there exist {wi}m1

i=1 ⊂ Rn such that P := {x ∈ Rn : 〈x,wl〉 ≤ 1 ∀l ∈
[m1]} satisfies

K ⊂ P ⊂ RK.

The first inclusion indicates that {wi}m1

i=1 ⊂ K◦. The second inclusion is equivalent to
the following: ∀x ∈ ∂K, R〈x,wl〉 ≥ 1 for some l ∈ [m1]. Due to 〈xi, yi〉 = 1, we also
have xi ∈ ∂K for i ∈ [m].

For l ∈ [m1], let Ol be the sub-collection of {xi}mi=1 such that R〈xi, wl〉 ≥ 1. Observe
that K◦ = conv({yi}mi=1, L

◦). Thus, wl can be expressed as a convex combination:

wl =
m∑
i=1

λiyi + λm+1y,

where y ∈ L◦, λi ≥ 0, and
∑m+1

i λi = 1.
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This expression is not necessarily unique, but we fix one such expression. Taking inner
product with Rxi we have

R〈xi, wl〉 =
m∑
i 6=j

λjR〈xi, yj〉+ λm+1R〈xi, y〉+ λiR

≤ 1

2
+ λiR.

If xi ∈ Ol, then λi ≥ 1
2R

. Due to
∑m+1

i=1 λi = 1, we conclude that |Ol| ≤ 2R.
Observe that ∪l∈[m1]Ol = {xi}i∈[m]; we conclude that m1 ≥ m

2R
. Therefore, P has at

least m
2R

facets.

The example in the main theorem will be in the form K := {x : 〈x, yi〉 ≤ 1 ∀i ∈
[m]} ∩ ∆n, where {yi}mi=1 ⊂ Sn−1 and ∆n is a regular simplex in John’s position. Then,
we will find {xi}mi=1, which satisfies the assumption of Proposition 4.7.

4.1.2 Structure

The following is a deterministic statement about points in Sn−1.

Proposition 4.8. Let S := Sn−1 ∩ {x : 〈β, x〉 = 0} for some β ∈ Sn−1. For θ ∈ S, let

θ↓ := −1
8
β +

√
1−

(
1
8

)2
θ and θ↑ :=

√
1− (1

7
)2β + 1

7
θ. Then,

1. For α, θ ∈ S, 〈α↓, θ↑〉 > 0 implies 〈α, θ〉 > 3
4
, and

2. 〈θ↑, θ↓〉 = 1
C0

for θ ∈ S where C0 := 1
1
7

√
1−( 1

8)
2
(

1−
√

48
63

) > 1.

In our construction of K, yi will be θ↑i for some θi ∈ S and xi will be C0θ
↓
i . In particular,

the first statement of Proposition 4.8 implies that 〈xi, yj〉 < 0 when 〈θi, θj〉 < 3
4
.
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Figure 4.1.1: Inner Product for shifted unit vectors

Proof. We fix θ ∈ S. For α ∈ S, it can be expressed as

α = sθ +
√

1− s2α′,

where s = 〈α, θ〉 and α′ = α−sθ
|α−sθ| . Notice that α′ ⊥ θ and α′ ∈ S. Thus,

〈α↓, θ↑〉 = 〈−1

8
β +

√
1−

(
1

8

)2

(sθ +
√

1− s2α′),

√
1− (

1

7
)2β +

1

7
θ〉

= −1

8

√
1− (

1

7
)2 + s

1

7

√
1−

(
1

8

)2

.

Suppose 〈α↓, θ↑〉 > 0. Then, s ≥ 7
8

√
48
49

64
63

=
√

48
63
> 3

4
.

Observe that 〈θ↓, θ↑〉 is the same for all θ ∈ S,

〈θ↓, θ↑〉 =
1

7

√
1−

(
1

8

)2

− 1

8

√
1− (

1

7
)2

=
1

7

√
1−

(
1

8

)2
(

1−
√

48

63

)
.
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Since 0 < 1
7

√
1−

(
1
8

)2
(

1−
√

48
63

)
< 1, we conclude that C0 = 1

1
7

√
1−( 1

8)
2
(

1−
√

48
63

) >
1.

4.1.3 Randomness

In the construction, we will choose {θi} independently and uniformly from a probability
distribution. In order to apply Proposition 4.7, we need to choose θi so that 〈xi, y〉 ≤ 1

2R
for

all y ∈ ∆◦n. Equivalently, ρ∆n(θ↓i ) needs to be larger than 2RC0. The uniform randomness
on S does not work in this case. Thus, a probability that is compatible with the structure of
∆n is required.

The following proposition provides a tail bound for hypergeometric distribution.

Proposition 4.9. For a sufficiently large n ∈ N+, let k be a positive integer satisfying 100 <

k < 1
2e8
n. Suppose I, J are chosen independently and uniformly from {W ⊂ [n] : |W | = k}.

Then,

P
(
|I ∩ J | ≥ k

2

)
≤
(

2k

n

)k/5
.

Proof. We may assume that J is fixed. For any positive integer 1 ≤ l ≤ k,

P(|I ∩ J | = l) =

(
k
l

)(
n−k
k−l

)(
n
k

) . (4.2)

For positive integers a ≥ b,
(
a
b

)
= a(a−1)···(a−b+1)

b(b−1)···1 . A standard estimate of
(
a
b

)
is the

following:

(
a

b
)b ≤

(
a

b

)
≤ (

ea

b
)b.

Applying these bounds to (4.2), we have

P(|I ∩ J | = l) ≤
(
ek

l

)l(
e(n− k)

k − l

)k−l(
k

n

)k
= ek

(
k2

ln

)l(
n− k
n

)k−l(
k

k − l

)k−l
.

(4.3)

Assuming that l ≥ k
2

and 2k < n,

(
k2

ln
)l ≤ (

2k

n
)l ≤ (

2k

n
)
k
2 .
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Also, using (1 + x) ≤ ex for x ∈ R we have

(
k

k − l
)k−l = (1 +

l

k − l
)k−l ≤ el ≤ ek.

Together with (n−k
n

)k−l ≤ 1,

P(|I ∩ J | = l) ≤ exp

(
k − log

( n
2k

) k
2

+ k

)
= exp

(
2k − log

( n
2k

) k
2

)
.

If n
2k
≥ e8, then 2k ≤ log( n

2k
)k

4
. We have the following:

P(|I ∩ J | = l) ≤ exp(− log(
n

2k
)
k

4
) ∀l ≥ k

2
.

Using an union bound,

P(|I ∩ J | ≥ k

2
) ≤ k exp(− log(

n

2k
)
k

4
) ≤ exp(− log(

n

2k
)
k

5
) = (

2k

n
)k/5,

where the last inequality requires k ≥ 100.

4.1.4 The construction

Let ∆n be the n−dimensional simplex in John’s position and u1, · · · , un+1 be its contact
points. We define S := Sn−1∩{x ∈ Rn : 〈x, u1〉 = 0}. Notice that ∆′n = ∆n∩{〈x, u1〉 =

0} is a n − 1 dimensional regular simplex. Let v1, ..., vn ∈ S such that {cnnvi}ni=1 are
vertices of ∆′n. It is not hard to verify that cn → 1 as n→∞. Let 1 ≤ k ≤ n. For I ⊂ [n]

with |I| = k, we define

vI =

∑
i∈I vi

|
∑

i∈I vi|
∈ S.

Proposition 4.10. For a sufficiently large n, let 1 ≤ k ≤ n+3
4

. Suppose I, J ⊂ {W ⊂ [n] , |W | = k}
satisfy |I ∩ J | < k

2
. Then,

〈vI , vJ〉 ≤
3

4
.

Proof. Because {vi}ni=1 are in the vertex directions of a regular simplex, 〈vi, vj〉 = − 1
n−1
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if i 6= j. We have

〈
∑
i∈I

vi,
∑
i∈I

vi〉 =
∑
i,j∈I

(
− 1

n− 1
+ δij(1 +

1

n− 1
)

)
= − k2

n− 1
+ k(1 +

1

n− 1
)

= k(1− k − 1

n− 1
).

Thus,
vI =

cn,k√
k

∑
i∈I

vi,

where cn,k = 1√
1− k−1

n−1

. Suppose 1 ≤ k ≤ n+3
4

, then 1 ≤ cn,k ≤
√

4
3
.

Let J ⊂ [n] with |J | = k. Then,

k

c2
n,k

〈vI , vJ〉 =
∑
i∈I

∑
j∈J

〈vi, vj〉

=
∑
i∈I

∑
j∈J

(
− 1

n− 1
+ (1 +

1

n− 1
)δij

)
= − k2

n− 1
+ |I ∩ J |(1 +

1

n− 1
)

≤ |I ∩ J |(1 +
1

n− 1
).

Suppose |I ∩ J | < k
2

and n is large enough. Then,

〈vI , vJ〉 ≤
c2
n,k

2
(1 +

1

n− 1
) ≤ 2

3
(1 +

1

n− 1
) <

3

4
.

We are now ready to prove the main theorem.

Proof of Theorem 4.2 . For a sufficiently large n, we fix 100 ≤ k ≤ n
2e8

. Then, n and k
satisfy the assumptions in Proposition 4.9 and Proposition 4.10. Let m ⊂ N be an integer
that we will specify later. Let I1, I2, . . . , Im be chosen independently and uniformly from
{W ⊂ [n] : |W | = k}. Let u1 be the β described in Proposition 4.8. In particular,
S := Sn−1 ∩ {x : 〈u1, x〉 = 0}. We adapt the definition of θ↑ and θ↓ for θ ∈ S. Let

K := ∆n ∩ (∩mi=1{x ∈ Rn : 〈x, u↓Ii〉 ≤ 1}).
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By Propositoin 4.9, we have P(|Ii ∩ Ij| ≥ k
2
) ≤ (2k

n
)
k
5 . An union bound argument shows

that

P(∃1 ≤ i < j ≤ m such that |Ii ∩ Ij| ≥
k

2
) ≤

(
m

2

)
(
2k

n
)
k
5 < m2(

2k

n
)
k
5 .

By setting m = ( n
2k

)k/20, we have

P(∃1 ≤ i < j ≤ m such that |Ii ∩ Ij| ≥
k

2
) ≤ (

2k

n
)
k
10 . (4.4)

Since the probability is strictly smaller than 1, there exists a sample such that |Ii ∩ Ij| < k
2

for all 1 ≤ i < j ≤ m. From now on, we fix such a sample.
We want to apply Proposition 4.7 with L = ∆n, yi = v↑Ii , and xi = 1

〈v↓Ii , v
↑
Ii
〉
v↓Ii = C0v

↓
Ii

,

where C0 is the constant defined in Proposition 4.8. We start verifying the assumptions that
are described in Proposition 4.7.

First, ∆◦n = conv{u1, · · · , un+1}. Because {cnnvi}mi=1 ⊂ ∆
′
n ⊂ ∆n, 〈cnnvi, uj〉 ≤ 1

for i ∈ [n] and j ∈ [n+ 1]. Thus, for any I ⊂ [n] with |I| = k and j ∈ [n+ 1],

〈vI , uj〉 =
cn,k√
k

∑
i∈I

〈vi, uj〉 ≤
cn,k√
k
k

1

cnn
≤ cn,k

√
k

cnn
.

Since 〈−ui, uj〉 = −(1 + 1
n
)δij + 1

n
≤ 1

n
,

〈v↓I , uj〉 =
1

8
〈−u1, uj〉+

√
1−

(
1

8

)2

〈vI , uj〉

≤ 1

8

1

n
+

√
1−

(
1

8

)2
cn,k
√
k

cnn
.

Since n
2e8
≥ k ≥ 1 , 1 ≤ cn,k ≤

√
4
3

and cn → 1 as n→ +∞,

1

8

1

n
+

√
1−

(
1

8

)2
cn,k
√
k

cnn
≤ 1

n
+

1

cn

√
4

3

√
k

n

≤

(
1

cn

√
4

3
+ 1

) √
k

n

≤ 3

√
k

n
.
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We conclude that

〈C0v
↓
I , uj〉 ≤ 3C0

√
k

n
.

For y ∈ ∆◦n, it can be written as a convex combination of {ui}n+1
i=1 . Thus, the same

inequality holds:

〈C0v
↓
Ii
, y〉 ≤ 3C0

√
k

n
∀y ∈ ∆◦n. (4.5)

Let i, j ∈ [m+ 1] with i 6= j. Applying Proposition 4.10, we obtain 〈vIi , vIj〉 < 3
4

since
|Ii ∩ Ij| < 3

4
. According to Proposition 4.8, we obtain 〈C0v

↓
Ii
, v↑Ij〉 < 0. In the case i = j,

by definition we have 〈C0v
↓
Ii
, v↑Ij〉 = 1. To summarize,

〈c1v
↓
Ii
, y〉


= 1 if y = v↑Ii ,
≤ 0 if y = v↑Ij with j 6= i,

≤ 3C0

√
k
n

if y ∈ ∆◦n.

(4.6)

Now, we can apply Proposition 4.7 with m = ( n
2k

)k/10, yi = u↑Ii , xi = C0u
↓
Ii

, L = ∆n and
R = n

6C0

√
k

with the condition that 100 ≤ k ≤ n
2e8

. Expresssing these relations in terms of
R and n, we have

k = (
n

6C0R
)2, m =

(
18C2

0R
2

n

)( n
6C0R

)2/20

, and
√

2e4

6C0

√
n ≤ R ≤ n

60C0

.

The lower bound of the facets of the polytope P in Proposition 4.7 is m
2R

. To simplify m,
we further restrict R >

√
en so that R

2

n
> e. Since C0 > 1, we have log (18C2

0) > 0. Thus,

log(
18C2

0R
2

n
) = log(18C2

0) + log(
R2

n
) ≥ log(

R2

n
) > 1 > 0.

Then,

m

2R
= exp(− log(2R) + log(

18C2
0R

2

n
)

n2

720C2
0R

2
)

≥ exp(− log(2R) +
1

720C2
0

log(
R2

n
)
n2

R2
)

≥ exp(− log(2n) + C ′ log(
R2

n
)
n2

R2
),

when C ′ = 1
720C2

0
> 0. In order to take care of the log(2n) term we need to check the last
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term carefully. First,

d

dR
log(

R2

n
)
n2

R2
= −2n2

R3

(
log(

R2

n
)− 1

)
< 0

for R >
√
en. Let c1 = min

{
1,
√

C′

8
, 1

60C0

}
. Suppose R = c1n, we have

C ′ log(
R2

n
)
n2

R2
=
C ′

c2
1

log(n) +
C ′

c2
1

log(c1
2) > 4 log (n) ,

where the last inequality holds for large n. Together with 2 log(n) ≥ log(2n),

1

2
C ′ log(

R2

n
)
n2

R2
≥ log(2n)

when R = c1n. Since log(R
2

n
) n
R2 is a decreasing function for R >

√
en, 1

2
C ′ log(R

2

n
) n
R2 ≥

log(2n) for
√
en < R < c1n. Therefore, we conclude that for c0

√
n < R < c1n,

m

2R
≥ exp(C log(

R2

n
)
n2

R2
)

where C > 0 is an universal constants. Therefore, for c0

√
n ≤ R ≤ c1n, there exists

a convex body K ⊂ Rn in John’s position such that no polytope P that has less than
exp(C log(R

2

n
) n

2

R2 ) facets satisfies

K ⊂ P ⊂ RK.

4.2 Upper bound for small R

Proposition 4.11. Suppose Bn
2 ⊂ K ⊂ RBn

2 . For 0 < δ < 1, there exists a polytope Pδ
with no more than exp(c log(2R

δ
)n) facets such that (1 − δ)Pδ ⊂ K ⊂ Pδ. Here c > 0 is

an universal constant.

Proof. Let Bn
2 ⊂ K ⊂ RBn

2 be a convex body. Let h : Sn−1 → [1, R] be the support
function of K. Observe that h is also the gauge function of 1

R
Bn

2 ⊂ K◦ ⊂ Bn
2 . Thus, h is

a R−Lipschitz function.
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Let N be a δ
2R

-net of Sn−1. We define

Pδ : = {x ∈ Rn : ∀α ∈ N 〈α, x〉 ≤ h (α)} .

Thus, Pδ is a polytope with at most |N | number of facets. Recall that by a volumetric
argument, the size of a ε−net on Sn−1 is bounded by exp

(
c log

(
1
ε

)
n
)

for an universal
constant c > 0. Hence, Pδ has no more than exp

(
c log

(
2R
δ

)
n
)

number of facets.
Since

K =
{
x ∈ Rn : ∀α ∈ Sn−1 〈α, x〉 ≤ h (α)

}
,

we have K ⊂ Pδ. Observe that

(1− δ)Pδ = {x ∈ Rn : ∀α ∈ N 〈α, x〉 ≤ (1− δ)h (α)} .

For x ∈ ∂K, there exists θ such that 〈x, θ〉 = h(θ). We pick α ∈ N such that
‖α− θ‖ < δ

2R
. Then,

〈x, α〉 = 〈x, θ〉+ 〈x, α− θ〉 ≥ h (θ)− |x| |α− θ| > h (θ)−R δ

2R
= h (θ)− δ

2
. (4.7)

Since h is a R−Lipstichz continuous function, we have

h (θ) ≥ h (α)− δ

2
.

Together with h (α) ≥ 1, the equation (4.7) becomes

〈x, α〉 > h (α)− δ

≥ (1− δ)h (α) .

Thus, x /∈ (1− δ)Pδ. In paricular, we conclude the radial function of K is always
greater than the radial funciton of (1− δ)Pδ. Therefore, we have (1− δ)Pδ ⊂ K.
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CHAPTER 5

Ulam’s floating body

5.1 Introduction

5.1.1 Metronoids

We study a new family of convex bodies Mδ (K) associated to K, where 0 < δ < |K| is a
parameter. Given a Borel measure µ on Rn, the metronoid associated to µ is the convex set
defined by

M (µ) =
⋃

0≤f≤1,∫
Rn f dµ=1

{∫
Rn
yf (y) dµ (y)

}
,

where the union is taken over all functions 0 ≤ f ≤ 1 for which
∫
Rn f dµ = 1 and∫

Rn yf (y) dµ (y) exists. Note that for a discrete measure of the form
∑N

i=1 δxi , the corresponding
metronoid is the convex hull of x1, . . . , xN . Hence M (µ) can be thought of as a fractional
extension of the convex hull.

Our main object Mδ (K) is the metronoid generated by the uniform measure on K with
total mass δ−1 |K|. Namely, let µ be the measure whose density with respect to Lebesgue
measure is δ−11K . Then Mδ (K) := M (µ). It turns out that Mδ (K) is intimately related
to the following long-standing problem proposed by Ulam, see e.g., [?, ?, ?, 23]: Is a
solid of uniform density which floats in water in every position a Euclidean ball? While
counterexamples were found in R2 (convex and non-convex) and R3 (only non-convex),
this problem remains open in arbitrary dimensions. For a full account of the progress made
on this problem, see [?] and references therein.

As we show in Section 5.2.2 below, along with a precise description of Ulam’s problem,
one can restate Ulam’s problem in terms of Mδ (K) as follows: If Mδ (K) is a Euclidean
ball, must K be a Euclidean ball as well? For that reason, we call Mδ (K) an Ulam

floating body. As far as we know, this construction and its relation to Ulam’s problem
is not mentioned anywhere in the literature.
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We also define weighted variations of Mδ (K) where the weight is given by a positive
continuous function φ : K → R. Namely, we define

Mδ (K,φ) := M

(
φ (x)

δ
1K (x) dx

)
.

To understand Mδ (K) geometrically, for every direction θ ∈ Sn−1, let H (δ, θ) be the
hyperplane orthogonal to θ that cuts a set of volume δ from K. That is

Cδ (θ) = K ∩ {x : 〈x, θ〉 ≥ 〈yθ, θ〉}

has volume δ for any yθ ∈ H (δ, θ). Then, the barycenter of Cδ (θ) is a point on the
boundary of Mδ (K). The proof of these properties will be shown in Section 5.2.

As illustrated in Figure 5.1.1, the body Mδ (K) is closely related to the convex floating
body Kδ, introduced independently in [?] and [67]. Using the above notation, we have that

Kδ =
⋂

θ∈Sn−1

{x : 〈x, θ〉 ≤ 〈yθ, θ〉} ,

which is a non-empty convex set for a sufficiently small 0 < δ. In fact, Mδ (K) is
isomorphic to Kδ in the sense that K e−1

e
δ ⊆ Mδ (K) ⊆ K 1

e
. We discuss this property

in the more general case of weighted Ulam floating bodies in Section 5.2.3 below (also see
Theorem 5.1).

θ

xθ
0

K

Cδ(θ)H(δ, θ)

yθ

Figure 5.1.1: H (δ, θ) is the hyperplane orthogonal to θ that cuts a set Cδ (θ) of volume
δ from a convex body K. The point xθ is the barycenter of Cδ (θ). Then, Kδ ⊂
{x : 〈x, θ〉 ≤ 〈yθ, θ〉} while δ (K) ⊂ K ∩ {x : 〈x, θ〉 ≤ 〈xθ, θ〉}.

The convex floating body is a natural variation of Dupin’s floating body [19] from 1822.
Dupin’s floating body K[δ] is defined as the body whose boundary is the set of points that
are the barycenters of all the sections of K of the form K ∩ H (δ, θ), where H (δ, θ) are
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the aforementioned hyperplanes that cut a set of volume δ from K. However, while Kδ

coincides with K[δ] whenever K[δ] is convex (e.g., for centrally-symmetric K, see [54]), in
the non-centrally symmetric case, Dupin’s floating body need not be convex, as in the case
of some triangles in R2 (see e.g., [44]). Restating the above, every point on the boundary
of Kδ is the barycenter of K ∩H (δ, θ) for some θ, but the converse holds only if Dupin’s
floating body is convex.

Note that our construction Mδ (K) corresponds nicely to both definitions, that of the
floating body and that of the convex floating body in the sense that it enjoys being convex
as well as having the property that a point is on the boundary of Mδ (K) if and only if it is
the barycenter of a set of volume δ that is cut off by a hyperplane.

5.1.2 Main results

We present three main theorems concerning Ulam floating bodies. While the first result
establishes an explicit relation between (weighted) floating bodies and (weighted) Ulam
floating bodies, the other two results are the analogous counterparts to the classical floating
bodies.

5.1.2.1 Relation to floating bodies

Our first theorem shows that (weighted) Ulam floating bodies are isomorphic, in a sense,
to (weighted) floating bodies. Weighted floating bodies were introduced in [74] (also see
[9, ?] for recent applications) as follows. Let K ⊆ Rn be a convex body, 0 < δ, and
φ : K → R be integrable and such that φ > 0 almost everywhere with respect to Lebesgue
measure. For a hyperplane H in Rn, let H± be the half-spaces separated by H . Then the
weighted floating body Fδ (K,φ) is defined as

Fδ (K,φ) =
⋂{

H− :

∫
H+∩K

φ (x) dx ≤ δ

}
.

Note that for φ ≡ 1, we have that Fδ (K,φ) = Kδ.

We prove the following.

Theorem 5.1. Let K be a convex body in Rn, and let φ : K → R+ be an integrable

log-concave function. Then for all 0 < δ < |K|, we have

F e−1
e
δ (K,φ) ⊆ Mδ (K,φ) ⊆ F δ

e
(K,φ) .
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In particular, for φ ≡ 1 we have that

K e−1
e
δ ⊆ Mδ (K,φ) ⊆ K δ

e
.

5.1.2.2 Smoothness of Ulam floating bodies

Our second main result states that the boundary ∂Mδ (K) of an Ulam floating body Mδ (K)

is always smoother than the boundary of K.

Theorem 5.2. Let K ⊆ Rn be a convex body, Suppose that ∂K ∈ Ck for some k ≥ 0.

Then for any 0 < δ < |K|, we have that ∂Mδ (K) ∈ Ck+1.

We remark that in the case of the convex floating body, an analogous result to Theorem
5.2 is known only in the centrally-symmetric case [54]. The main reason for this is that the
proof in [54] relies on the above mentioned fact that in the centrally-symmetric case the
convex floating convex body and Dupin’s floating body coincide.

5.1.2.3 Affine Surface Area

The affine surface area was introduced by W. Blaschke [10] in 1923 for smooth convex
bodies in Euclidean space of dimensions 2 and 3, and extended to Rn by K. Leichtweiss
[43]. Given a convex body K ⊆ Rn with a sufficiently smooth boundary, let κK (x) be the
generalized Gaussian curvature at x ∈ ∂K (see Definition 1.12), and µK the surface area
measure on ∂K. The affine surface area of K is defined by

as (K) =

∫
∂K

κK (x)
1

n+1 dµK .

Even though it proved to be much more difficult to extend the notion of affine surface
area to general convex bodies than other notions, like surface area measures or curvature
measures, successively such extensions were achieved, by e.g., Leichtweiss [43], Lutwak
[47], who also proved the long conjectured upper semicontinuity of affine surface area [47]
and by Schï¿œtt and Werner [67] who showed that the affine surface area arises as a limit
of the volume difference of the convex body and its floating body. All these extensions
coincide as was shown in [65, ?].

Affine surface area is among the most powerful tools in equiaffine differential geometry
(see Andrews [3, 4], A. Stancu [70, 71], Ivaki [37], Ivaki and Stancu [38] and Ludwig
and Reitzner [46]). It appears naturally as the Riemannian volume of a smooth convex
hypersurface with respect to the affine metric (or Berwald-Blaschke metric), see e.g., the
thorough monograph of Leichtweiss [44] or the book by Nomizu and Sasaki [58]. In

58



particular the upper semicontinuity proved to be critical in the solution of the affine Plateau
problem by Trudinger and Wang [73].

Applications of affine surface areas have been manifold. For instance, affine surface
area appears in best and random approximation of convex bodies by polytopes, see Bï¿œrï¿œczky
Jr. [12, 11], Gruber [27, 28, 30], Ludwig [45], Reitzner [59], Schï¿œtt [64, 66] and Grote
and Werner, [?] and Schï¿œtt and Werner [68]. Furthermore, recent contributions indicate
astonishing developments which open up new connections of affine surface area to, e.g.,
concentration of volume (e.g. [21, 49]), spherical and hyperbolic spaces [?, ?], geometric
inequalities [52, 76] and information theory (e.g. [6, 17, 50, 51, 77, ?]).

The Lp-affine surface area is a generalization of the classical affine surface area and
a central part in the Lp-Brunn-Minkowski theory. It was introduced by Lutwak [48] for
p > 1 (see also Hug [36] and Meyer and Werner [55]) and extended for all p ∈ [−∞,∞]

in [69]. For −∞ < p < ∞ , the Lp-affine surface area of a convex body K ⊆ Rn is given
by

asp(K) =

∫
∂K

κK(x)
p

n+p

〈x,NK(x)〉
n(p−1)
n+p

dµK(x), (5.1)

where NK (x) is the outer normal of K at x. For p = ±∞, it is given by

as±∞(K) =

∫
∂K

κK(x)

〈x,NK(x)〉n
dµK(x). (5.2)

As in the case of the classical affine surface area, several geometric extensions for the Lp-
affine surface area have been proven. We refer to [69, 75] and references therein. These
extensions all involve a construction of a special family of convex bodies {Kt}t>0 which
is related to a given convex body K, where the Lp-affine surface area can be written as a
limit involving their volume difference.

We prove the following theorem which shows that this can also be achieved using
weighted Ulam floating bodies.

Theorem 5.3. Let K ⊆ Rn be a convex body and φ : K → (0,∞) be a continuous

function. Then

lim
δ↘0

|K| − |Mδ (K,φ)|
δ

2
n+1

= cn

∫
∂K

κK (x)
1

n+1 φ (x)−
2

n+1 dµK (x) , (5.3)

where cn = 2n+1
n+3

(
|Bn−1

2 |
n+1

) 2
n+1

.
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For −∞ ≤ p ≤ ∞, p 6= −n, define the function φp : ∂K → [0,∞] by

φp (x) =
〈x, NK (x)〉

n(n+1)(p−1)
2(n+p)

κK (x)
n(p−1)
2(n+p)

. (5.4)

Note that φ1 (x) = 1 for all x ∈ ∂K. If κK(x) = 0, which is the case, e.g., when K = P

is a polytope and x belongs to an (n− 1)-dimensional facet of P , then

φp (x) =

{
∞ p > 1 or p < −n
0 −n < p < 1.

If κK(x) = ∞, which is the case, e.g., when K = P is a polytope and x is a vertex of P ,
then

φp (x) =

{
0 p > 1 or p < −n
∞ −n < p < 1.

If K and p are such that φp is continuous on ∂K, we extend φp to a continuous function on
K which we call again φp.

Applying Theorem 5.3 with φp yields the following extension ofLp-affine surface areas.

Corollary 5.4. Let K ⊆ Rn be a convex body. If φp is continuous on K, then

lim
δ↘0

|K| − |Mδ (K,φp)|
δ

2
n+1

= cn asp(K).

In particular, for p = 1 we have

lim
δ↘0

|K| − |Mδ(K)|
δ

2
n+1

= cn as1(K).

5.1.3 Some additional notation

We denote by Bn
2 (u, ρ) the Euclidean ball with radius ρ > 0 centered at u. For u, v ∈ Rn,

[u, v] will denote the line segment between u and v. We denote the interior of a set C ⊆ Rn

by int (C). In the sequel, we will always assume that our convex body K contains the
origin in its interior. Let On denote the orthogonal group of dimension n.

In Section 5.2 we discuss some properties of Ulam floating bodies, and prove Theorems
5.1 and 5.2. Section 5.3 is devoted for the proof of Theorem 5.3.ester.
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5.2 Properties of Ulam floating bodies

5.2.1 Basic properties

We begin with the basic property for M (µ):

Proposition 5.5. Consider a Borel measure µwith bounded support, absolutely continuous,

and 1 < µ (Rn) < +∞. Let

R (θ, λ) := sup {R ∈ R, µ ({x ∈ Rn : 〈x, θ〉 ≥ R} ≥ λ)}

and fθ (x) be the indicator function of {x : 〈x, θ〉 ≥ R (θ, 1)}. Then,

xµ (θ) :=

∫
Rn
xfθ (x) dm ∈ M (µ) , and hM(µ) (θ) = 〈xµ (θ) , θ〉.

Furthermore, for any sufficiently small η > 0, there exists an ε > 0 such that if y ∈
M (µ) satisfies 〈y, θ〉 > hM(µ) (θ) − ε, then |y − xµ (θ)| ≤ η. In particular, it means that

xµ (θ) is the unique extreme point of M (µ) in θ direction.

Proof. Fix θ ∈ Sn−1. By definition, xµ (θ) ∈ M (µ). Now let y ∈ M (µ) and 0 ≤ f(x) ≤ 1

be a function such that
∫
Rn f(x) dµ (x) = 1 and

∫
Rn xf(x) dµ (x) = y. Notice that we have∫

〈θ, x〉≥R(θ, κ)
fθ (x) dµ (x) = κ for κ ∈ (0, 1]. Thus, we have∫

Rn
fθ (x) 〈x, θ〉 dµ (x) =

∫
〈θ, x〉≥R(θ, κ)

fθ (x) 〈x, θ〉dµ (x) +

∫
〈θ, x〉<R(θ, κ)

fθ (x) 〈x, θ〉 dµ (x)

>

∫
〈θ, x〉≥R(θ, κ)

fθ (x) 〈x, θ〉dµ (x) +R (θ, 1) (1− κ)︸ ︷︷ ︸
Lκ

.

Notice that, due to absolutely continuity of µ, Lκ is a monotone increasing function and
converge to

∫
Rn fθ (x) 〈x, θ〉 dµ (x) as κ↗ 1. From now on, we fix κ =

∫
〈x, θ〉≥R(θ, 1)

f (x) dµ (x),
we have∫

Rn
f (x) 〈x, θ〉 dµ (x) ≤ (1− κ)R (θ, 1) +

∫
〈θ, x〉≥R(θ, 1)

f (x) 〈x, θ〉 dµ (x) . (5.5)
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For 〈x, θ〉 ≥ R (θ, κ), f (x) ≤ 1 = fθ (x). Then,∫
〈x, θ〉≥R(θ, κ)

fθ (x) 〈x, θ〉 dµ (x)−
∫
〈θ, x〉≥R(θ, 1)

f (x) 〈x, θ〉 dµ (x)

=

∫
〈x, θ〉≥R(θ, κ)

(fθ (x)− f (x)) 〈x, θ〉 dµ (x)−
∫
〈x, θ〉∈[R(θ, 1), R(θ, κ)]

f (x) 〈x, θ〉 dµ (x)

≥
∫
〈x, θ〉≥R(θ, κ)

(fθ (x)− f (x))R (θ, κ) dµ (x)−R (θ, κ)

∫
〈x, θ〉∈[R(θ, 1), R(θ, κ)]

f (x) dµ (x)

=R (θ, κ) (κ− κ) = 0.

Replacing the second summand in 5.5, we have∫
Rn
f (x) 〈x, θ〉 dµ (x) ≤ Lκ < 〈xµ (θ) , θ〉.

In particular, this implies that hM(µ) (θ) = 〈xµ (θ) , θ〉. Next, let’s consider the distance
between x and y. Let M = supx∈supp(µ) |x|. Then, we have

|y − x| ≤M

∫
Rn
|f (x)− fθ (x)| dµ (x)

= M

[∫
〈θ, x〉≥R(θ, 1)

fθ (x)− f (x) dµ (x) +

∫
〈θ, x〉<R(θ, 1)

fθ (x) dµ (x)

]
= 2M [1− κ] .

For any given η > 0, we set ε = hM(µ) (θ) − L1− η
2M
. If 〈y, θ〉 ≥ hM(µ) (θ) − ε, then,

we have L1− η
2M
≤ Lκ. By monotoniciy, we have 1 − η

M
≤ κ. Therefore, it leads to

|y − x| ≤ η.

Corollary 5.6. Consider a Borel measure µ with bounded support, absolutely continuous,

and 1 < µ (Rn) < +∞. Then, M (µ) is a convex compact set.

Proof. Convexity is immediate from its definition. So we want to show M (µ) is closed. If
a sequence of points in M (µ) converge to some y, then, y is a boundary point of M (µ).
No

For θ ∈ Sn−1 and d ∈ R, we define the hyperplane orthogonal to θ at distance d from the
origin byH (θ, d) := {x ∈ Rn : 〈x, θ〉 = d}. We also define one of the closed half-spaces
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determined by H (θ, d) by H+ (θ, d) := {x ∈ Rn : 〈x, θ〉 ≥ d}. The function

Sn−1 × R −→
[
0,

∫
K

φ(z)dz

]
(θ, d) −→ δ (θ, d) :=

∫
K∩H+(, θ)d

φ (z) dz

is continuous in the product metric. Observe also that the function (θ, r)→ (θ, δ (θ, r)) is
a bijection from

{
(θ, r) : θ ∈ Sn−1, −hK (−θ) ≤ r ≤ hK (θ)

}
to Sn−1 ×

[
0,
∫
K
φ (x) dx

]
. We denote

(θ, δ)→ (θ, d (θ, δ)) (5.6)

as the inverse function of (θ, d) → (θ, δ (θ, d)), which is also a continuous function.
Abusing the notation we denote

H+ (, θ) δ := H+ (, θ) d (θ, δ), (5.7)

Let hMδ(K,φ) (θ) be the support function of Mδ (K,φ). By definition of Mδ (K,φ),

hMδ(K,φ) (θ) = max
x∈Mδ(K,φ)

〈θ, x〉 = sup
0≤f≤1,

∫
K
f(y)φ(y)

δ
dy=1

∫
K

〈y, θ〉f (y)

δ
φ (y) dy. (5.8)

It follows from 5.5 that the maximum in the above equation is attained for the function

f = 1K∩H+(θ, δ)

and this maximal function is unique as φ (y)
−→
1 K dy is absolutely continuous with respect

to Lebesgue measure.

Proposition 5.7. Let K ⊆ Rn be a convex body and φ : K → (0,∞) be a continuous

function. Let θ ∈ Sn−1 and δ ∈
(
0,
∫
K
φ (y) dy

)
. Then, the barycenter of K ∩H+ (, θ) δ

with respect to the weight function φ,

xK,φ (θ, δ) :=

∫
K∩H+(, θ)δ

yφ (y) dy

δ

is the unique point in ∂Mδ (K,φ) with normal θ. In particular, Mδ (K,φ) is strictly convex.
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Moreover,

hMδ(K,φ) (θ) =

∫
K∩H+(, θ)δ

〈θ, y〉φ (y) dy

δ
.

Extending by limit, hMδ(K,φ) is a continuous function on Sn−1 ×
[
0,
∫
K
φ (y) dy

]
and

hM0(K,φ) is the support function hK of K.

We remark that we will use x (θ, δ) in short for xK,φ (θ, δ) whenever there is no
ambiguity (which is actually everywhere, except for the proof of Theorem 5.2).

Proof. We only need to show that hMδ(K,φ) is continuous as a function of θ and δ. We put
g (θ, d) =

∫
K∩H+(θ, d)

〈θ, y〉φ (y) dy. Then g is continuous in the product metric. By the
above, the function (θ, δ)→ (θ, d (θ, δ)) is continuous in the product metric. Now

hMδ(K,φ) (θ) =
g (θ, d (θ, δ))

δ
,

and therefore it is continuous for 0 < δ ≤
∫
K
φ (y) dy, θ ∈ Sn−1. Moreover, for all

θ ∈ Sn−1 and for all δ ∈ (0,
∫
K
φ (y) dy],

d (θ, δ) ≤ hMδ(K,φ) (θ) ≤ hK (θ) .

Note that for δ = 0, d (θ, 0) = hK(θ). Let θ0 ∈ Sn−1 be fixed. For ε > 0, there exists
an open ball O containing (θ0, 0) ∈ Sn−1 ×

[
0,
∫
K
φ (y) dy

]
such that for (θ1, δ1) ∈ O

we have |hK (θ0)− d (θ1, δ1)| < ε. Thus, we conclude that
∣∣∣hK (θ0)− hMδ1

(K,φ) (θ1)
∣∣∣ < ε

and hence hMδ(K,φ) (θ) is continuous at (θ0, 0) if we define hM0(K,φ) (θ0) := hK (θ0).

5.2.2 Ulam’s floating body problem

Let K ⊆ Rn be a body with a uniform density 0 < ρ < 1. Suppose we put K in a liquid of
uniform density 1, such that the surface of the liquid is orthogonal to the direction u. Let g
be the barycenter of K, and b its center of buoyancy, that is the barycenter of the portion of
K which is submerged in the liquid. We say that K floats in equilibrium in direction u if
the barycenter of K is directly above its buoyancy center, namely g − b is parallel to u.

A well-known fact in hydrostatics which was pointed out to us by Ning Zhang (see
e.g., [?, Theorem 2]) states that if a body floats in liquid, then its barycenter, its center
of buoyancy, and the barycenter of the portion of the body that is above the surface of
the liquid, are all collinear. In terms of Mδ (K), this property translates to the following
proposition:
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Proposition 5.8. Let K ⊆ Rn be a convex body with xK = 0 (xK is the barycenter of K)

and |K| = 1. Then, M1−δ (K) = − δ
1−δMδ (K).

Remark 5.9. An immediate consequence of the above proposition is that for any convex
bodyK ⊆ Rn, M 1

2
(K) is centrally-symmetric. Moreover, by Theorem 5.1 and Proposition

5.12, it follows that M 1
2

(K) is isomorphic to Bn
2 .

Proof. Recall that hMδ(K) (θ) = 〈x (θ, δ) , θ〉 where

x (θ, δ) :=

∫
K∩H+(, θ)δ

y dy

δ

and H+ (θ, δ) is the halfspace in direction θ such that |K ∩H+ (θ, δ)| = δ. Observe that

0 = bar (K) =

∫
K

x dx =

∫
K∩H+(θ, δ)

x dx+

∫
K∩H−(θ, δ)

x dx,

which is equivalent to

0 = δx (θ, δ) + (1− δ)x (−θ, 1− δ) .

Therefore, x (−θ, 1− δ) = − δ
1−δx (θ, δ), which is equivalent to M1−δ (K) = − δ

1−δMδ (K).

As mentioned in the introduction, Ulam’s long-standing floating problem asks whether
the only body of uniform density that floats in equilibrium in every orientation must be a
Euclidean ball. A direct consequence of Proposition 5.8 is that Ulam’s floating problem
can be restated in terms of Mδ (K):

Corollary 5.10. Ulam’s floating problem is equivalent to the following problem: Suppose

Mδ (K) is a Euclidean ball. Must K be a Euclidean ball?

We remark that this new form of Ulam’s problem remains open if one replaces Mδ (K)

with the convex floating body Kδ. Another related open problem asks whether a convex
bodyK is centrally-symmetric if and only ifKδ is symmetric. When replaced withMδ (K),
this problem seems also interesting. Note that Auerbach’s counterexample in [?] to Ulam’s
problem in the plane, provides an example for a non-centrally-symmetric convex body
K ⊆ R2 for which Mδ (K) is a Euclidean ball, thus answer both of the above problems in
this case.
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5.2.3 Connection to floating bodies.

We begin with the proof of Theorem 5.1:

Proof of Theorem 5.1 . By Proposition 5.7 we have that

hMδ(K,φ) (θ) =
1

δ

∫
K∩{y∈Rn : 〈y, θ〉≥d(θ, δ)}

〈x, θ〉φ (x) dx ≥ d (θ, δ) ≥ hFδ(K,φ) (θ) .

Therefore, Fδ (K,φ) ⊆ Mδ (K,φ).
Fix δ > 0 and θ ∈ Sn−1. For β ∈ Sn−1, let H+

β := {y ∈ Rn : 〈y, β〉 ≥ 〈x (θ, δ) , β〉} .
Consider the function gβ (t) :=

∫
{y : 〈y, β〉=t} 1K∩H+(θ, δ) (y)φ (y) dy. Since φ is log-concave,

it follows by Prï¿œkopa-Leindler’s inequality that gβ is also log-concave. By [?, Lemma
5.4] (a generalization of Grï¿œnbaum’s inequality), we have that

1

e

∫
gβ (t) dt ≤

∫
t≥〈x(θ, δ), β〉

gβ (t) dt ≤
(

1− 1

e

)∫
gβ (t) dt

or equivalently,

1

e

∫
K∩H+(θ, δ)

φ (y) dy ≤
∫
H+
β ∩K∩H+(θ, δ)

φ (y) dy ≤
(

1− 1

e

)∫
K∩H+(θ, δ)

φ (y) dy.

Taking β = θ, we haveH+
θ ∩K∩H+ (θ, δ) = H+

θ ∩K. Since
∫
H+
θ ∩K

φ (y) dy ≤
(
1− 1

e

)
δ,

we obtain

hF
(1− 1

e)δ
(K,φ) (θ) ≤ d

(
θ,

(
1− 1

e

)
δ

)
≤ 〈x (θ, δ) , θ〉 = hMδ(K,φ) (θ) ,

and thus F(1− 1
e)δ

(K, φ) ⊆ Mδ (K,φ) . On the other hand (see Figure 5.2.1), for β ∈ Sn−1

we have∫
H+
β ∩K

φ (y) dy ≥
∫
H+
β ∩K∩H+(θ, δ)

φ (y) dy ≥ δ

e
=

∫
H+(β, δe)∩K

φ (y) dy.

Hence, d
(
β, δ

e

)
≥ 〈x (θ, δ) , β〉. Therefore we have

x (θ, δ) ∈
⋂

β∈Sn−1

{
y : 〈y, β〉 ≤ d

(
θ,
δ

e

)}
= F δ

e
(K, φ) .

Since Mδ (K,φ) and F δ
e

(K, φ) are convex sets, we conclude that Mδ (K,φ) ⊆ F δ
e

(K, φ) .
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K

H(θ, δ) x(θ, δ)

H+
β ∩ (K ∩H+(θ, δ))

β

Figure 5.2.1: H+
β ∩ (K ∩H+(θ, δ))

The Lp centroid bodies were introduced by Lutwak and Zhang [52] (using a different
normalization) as follows: For a convex body K in Rn of volume 1 and 1 ≤ p ≤ ∞, the
Lp centroid body Zp(K) is this convex body whose support function is given by:

hZp(K)(θ) =

(∫
K

|〈x, θ〉|pdx
)1/p

. (5.9)

It is known that the floating body Kδ is close to some Lp centroid body of K. More
precisely, one has:

Theorem 5.11. ( [?, Theorem 2.2]) Let K be a symmetric convex body of volume 1. For

δ ∈
(
0, 1

2

)
, we have

c1Zlog( e
2δ )

(K) ⊆ Kδ ⊆ c2Zlog( e
2δ )

(K) ,

where c1, c2 > 0 are universal constants.

We obtain a similar result for Ulam floating bodies:

Proposition 5.12. Let K be a symmetric convex body in Rn of volume 1 . Then there is an

absolute constant c1 > 0 such that for all δ < 1
e

c1Zlog( e
2δ )

(K) ⊆ Kδ ⊆ Mδ (K) ⊆ eZlog( 1
δ )

(K) .

Proof. The first inclusion holds by Theorem 5.11. The second one, Kδ ⊆ Mδ (K), follows
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from Theorem 5.1. By Hï¿œlder’s inequality, we have for p ∈ [1, ∞],

∫
K∩H+(θ, δ)

〈y, θ〉 dy ≤
(∫

K∩H+(θ, δ)

1q dy

) 1
q
(∫

K

|〈θ, y〉|p dy

) 1
p

= δ
1
qhZp(K) (θ) ,

where q satisfies 1
p

+ 1
q

= 1. Dividing both sides by δ, we get

hMδ(K) (θ, δ)≤
(

1

δ

) 1
p

hZp(K) (θ) .

Putting p = log
(

1
δ

)
yields

hMδ(K) (θ, δ) ≤ e hZ
log( 1

δ )
(K) (θ) .

Therefore, we have that
Mδ (K) ⊆ e Zlog( 1

δ )
(K) .

5.2.4 Smoothness of Ulam floating bodies

In this section we prove Theorem 5.2. To this end, let ρv (·) denote the radial function of
K with center v. That is,

ρv (θ) = max
{
r ∈ R+ : v + rθ ∈ K

}
.

We will need the following fact, which can be found implicitly in e.g., [63].

Fact 5.13. Let K ⊆ Rn be a convex body. Then, the following are equivalent:

1. K has Ck boundary;

2. The function (v, θ)→ ρv (θ) is Ck for every v ∈ int (K) and θ ∈ Sn−1;

3. There exists v ∈ int (K) such that θ → ρv (θ) is Ck.

Proof of Theorem 5.2. For a ∈ Rn\{0}, letH := {x : 〈x, a〉 = 1}, δ (a) = |K ∩ {〈x, a〉 ≥ 1}|,
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and U (a) :=
∫
K∩{〈x, a〉≥1} x dx. We would like to show that

∇δ (a) =
1

‖a‖

∫
K∩H

x dx (5.10)

DU =
1

‖a‖

(∫
K∩{〈x, a〉=1}

xixj dx

)
i,j∈[n]

. (5.11)

Equation (5.10) was proved in [53, Lemma 5]. Using the same ideas, we prove (5.11) as
follows. Pick a direction θ so that θ is not parallel to a, and letHε := {x : 〈x, a+ εθ〉 = 1} .
As illustrated in Figure 5.2.2, we also define:

K− (ε) = int (K) ∩ {y ∈ Rn : 〈y, a〉 ≥ 1, 〈y, a+ εθ〉 ≤ 1} ,

K+ (ε) = int (K) ∩ {y ∈ Rn : 〈y, a〉 ≤ 1, 〈y, a+ εθ〉 ≥ 1} .

K

θ

a a+ εθ

H

Hε

K+(ε)

K−(ε)

Figure 5.2.2: K±(ε)
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Let Uj denote the jth coordinate of U . We have

Uj (a+ εθ)− Uj (a) =

∫
K+(ε)

〈x, ej〉 dx−
∫
K−(ε)

〈x, ej〉 dx.

From now on we choose ε > 0 small enough so that 〈a, a + εθ〉 > 0. For y ∈ Rn,
we write y uniquely in the form x + t a

‖a‖ , where x = y + 1−〈y, a〉
〈a, a〉 a and t = −1−〈y, a〉

〈a, a〉 ‖a‖.
Notice that x ∈ H . Then,

{y ∈ Rn : 〈y, a〉 ≥ 1, 〈y, a+ εθ〉 ≤ 1} ={
x+ ta : x ∈ H, t ∈ R, 〈x+ t

a

‖a‖
, a〉 ≥ 1, 〈x+ t

a

‖a‖
, a+ εθ〉 ≤ 1

}
={

x+ ta : x ∈ H, 0 ≤ t ≤ −ε〈x, θ〉 ‖a‖
〈a, a+ εθ〉

}
={

x+ ta : x ∈ H, 〈x, θ〉 ≤ 0, 0 ≤ t ≤ −ε〈x, θ〉 ‖a‖
〈a, a+ εθ〉

}
.

Thus,

K− (ε) =

{
x+ ta : x ∈ H, 〈x, θ〉 ≤ 0, 0 ≤ t ≤ −ε〈x, θ〉 ‖a‖

〈a, a+ εθ〉

}
∩ int (K) .

Let

O− (ε) : =

{
x ∈ H : 〈x, θ〉 ≤ 0,

[
x, x+

−ε〈x, θ〉 ‖a‖
〈a, a+ εθ〉

a

]
∩ int (K) 6= ∅

}
.

For x ∈ H such that 〈x, θ〉 ≤ 0, we have that

−ε〈x, θ〉 ‖a‖
〈a, a+ εθ〉

=
ε |〈x, θ〉| ‖a‖
〈a, a+ εθ〉

=
|〈x, θ〉| ‖a‖

〈a, a〉ε−1 + 〈a, θ〉

decrease to 0 as ε↘ 0. Thus, O (ε) shrinks to

O− (0) = {x ∈ H : 〈x, θ〉 ≤ 0, [x, x] ∩ int (K) 6= ∅}

= {x ∈ H ∩ int (K) : 〈x, θ〉 ≤ 0} .

For x ∈ O− (ε), let 0 ≤ t1 (ε, x) ≤ t2 (ε, x) ≤ −ε〈x, θ〉
〈a, a+εθ〉 ‖a‖ be defined such that

{
x+ ta : 0 ≤ t ≤ −ε〈x, θ〉 ‖a‖

〈a, a+ εθ〉

}
∩ int (K) = {x+ ta : t1 (ε, x) < t < t2 (ε, x)} .
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Then, by Fubini’s theorem, we have∫
K−(ε)

〈y, ej〉 dy =

∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈x+ t
a

‖a‖
, ej〉 dt dx

=

∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈x, ej〉 dt dx+

∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈t a
‖a‖

, ej〉 dt dx.

We analyze each of the above terms, separately, as follows.
Firstly, we have that∣∣∣∣∣

∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈t a
‖a‖

, ej〉 dt dx

∣∣∣∣∣ ≤
∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

t dt dx

≤
∫
O−(ε)

∫ −ε〈x, θ〉‖a‖
〈a, a+εθ〉

0

t dt dx

≤1

2

ε2 ‖a‖2

〈a, a+ εθ〉2

∫
O−(ε)

〈x, θ〉2 dx.

Since O− (ε) is bounded and shrinks as ε decreases, we conclude that

lim
ε↘0

1

ε

∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈t a
‖a‖

, ej〉 dt dx = 0.

Secondly, we have that∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)
〈x, ej〉 dt dx

ε
=

∫
H

(t2 (x, ε)− t1 (x, ε)) 〈x, ej〉1O−(ε) (x)

ε
dx.

Fix ε0 > 0. For ε0 > ε > 0, we have that∣∣∣∣(t2 (x, ε)− t1 (x, ε)) 〈x, ej〉1O−(ε) (x)

ε

∣∣∣∣ ≤ |〈x, θ〉| ‖a‖
〈a, a〉 − ε0 |〈a, θ〉|

|〈x, ej〉|1O−(ε0),

where the function on the right hand side is integrable.
Suppose x /∈ O− (0). Then,

(t2(x, ε)−t1(x, ε))〈x, ej〉1O−(ε)(x)

ε
→ 0 as ε↘ 0 since 1O−(ε) (x) =

0 for small ε > 0. For x ∈ O− (0), we have t1 (x) = 0 and t2 (x) = −ε〈x, θ〉‖a‖
〈a, a+εθ〉 for

sufficiently small ε. We conclude that, as ε↘ 0,

(t2 (x, ε)− t1 (x, ε)) 〈x, ej〉1O−(ε) (x)

ε
→ −〈x, θ〉〈x, ej〉

‖a‖
1O−(0) (x) .
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By Lebesgue’s dominated convergence theorem, we have

lim
ε↘0
−

∫
K−(ε)

〈x, ej〉 dx
ε

= lim
ε↘0
−

∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)
〈x, ej〉 dt dx

ε

=
1

‖a‖

∫
K∩H∩{〈x, θ〉≤0}

〈x, θ〉〈x, ej〉 dx.

Via the same argument, one also shows that

lim
ε↘0

∫
K+(ε)

〈x, ej〉 dx
ε

=
1

‖a‖

∫
K∩H∩{〈x, θ〉≥0}

〈x, θ〉〈x, ej〉 dx.

Thus we conclude that

lim
ε↘0

Uj (a+ εθ)− Uj (a)

ε
=

1

‖a‖

∫
K∩H
〈x, θ〉〈x, ej〉 dx.

This completes the proof of (5.11).
Next, we show that DU (a) and ∇δ (a) are Ck functions.
Pick v ∈ int (K) ∩H . Let σa be the normalized Haar measure on S (a) = Sn−1 ∩ a⊥.

Then ∫
K∩H

x dx = (n− 1)
∣∣Bn−1

2

∣∣ ∫
S(a)

∫ ρv(θ)

0

rn−2 (v + rθ) dr dσa (θ)

=
∣∣Bn−1

2

∣∣ ∫
S(a)

(
ρn−1
v (θ) v +

n− 1

n
ρnv (θ) θ

)
dσa (θ) . (5.12)

Fix a0 ∈ Rn so that int(K) ∩ {〈x, a0〉 = 1} 6=∅ and let v0 ∈ int (K) ∩ {〈x, a0〉 = 1}.
By Fact 5.13, (v, θ)→ ρv (θ) is Ck, and hence the function Fa0 : Rn × On → Rn defined
by

(v, T ) 7→
∣∣Bn−1

2

∣∣ ∫
S(a0)

(
ρn−1
v (Tθ) v +

n− 1

n
ρnv (Tθ)Tθ

)
dσa0 (θ)

is also Ck. We can find a smooth function a 7→ (v (a) , T (a)) in a neighborhood of a0 so
that v (a) ∈ int (K) ∩ {〈x, a〉 = 1} and T (a)S (a0) = Sn−1 ∩ a⊥. Indeed, for a close to
a0, we define the unique two-dimensional rotation T (a) satisfying T (a) a0

‖a0‖ = a
‖a‖ and

T (a) v = v for all v ∈ span (a, a0)⊥. In particular, a 7→ T (a) is a smooth function around
a0. Also, T (a) (S (a0)) = S (a). Let v (a) be the projection of v0 onto {〈x, a〉 = 1}. In
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other words,
v (a) := v0 − 〈v0,

a

‖a‖
〉 a
‖a‖

+
a

‖a‖2 ,

which is again smooth when a 6= 0. Also, v (a0) = v0, and v (a) ∈ int (K) if a is close to
a0.

Next, we express∇δ in terms of v (a) and T (a): By (5.12) we have

∇δ (a) =

∫
K∩{〈x, a〉=1}

x dx

=
1

‖a‖
∣∣Bn−1

2

∣∣ ∫
S(a)

(
ρn−1
v(a) (θ) v (a) +

n− 1

n
ρnv(a) (θ) θ

)
dσa (θ)

=
1

‖a‖
∣∣Bn−1

2

∣∣ ∫
S(a0)

(
ρn−1
v(a) (T (a) θ) v (a) +

n− 1

n
ρnv(a) (T (a) θ)T (a) θ

)
dσa0 (θ)

=
1

‖a‖
Fa0 (v (a) , T (a)) .

We conclude that∇δ (a) is Ck and thus δ (a) is Ck+1.
Recall that δ(θ, d) = |K ∩ {〈x, θ〉 ≥ d}|. Consider the function from Sn−1 × R to

Sn−1 × R defined by

(θ, d) 7→
(
θ, δ

(
1

d
θ

))
= (θ, δ (θ, d)) .

By the above, it is Ck+1 whenever int (K) ∩ {〈x, θ〉 = d} 6= ∅. Thus, its inverse function
(θ, d (θ, δ)) is also Ck+1 for (θ, δ) ∈ Sn−1× [0, |K|]. Repeating the same argument as for
∇δ (a) implies that U (a) is also Ck+1.

Recall that if d (θ, δ) > 0,

xK (θ, δ) =
1

δ

∫
K∩{〈x, θ〉≥d(θ, δ)}

x dx =
1

δ
U

(
θ

d (θ, δ)

)
.

Therefore, for a fixed 0 < δ < |K|, and θ such that d (θ, δ) > 0, the function θ 7→ xK(θ, δ)
‖xK(θ, δ)‖

isCk+1. Moreover, it is invertible since Mδ (K) is strictly convex. Thus its inverse, denoted
by Gδ : Sn−1 → Sn−1 is also Ck+1. Therefore, the radial function of Mδ (K), which is
given by ρ (θ) = ‖x (Gδ (θ) , δ)‖ is also Ck+1.

Finally, we need to show that θ → xK (θ, δ) is Ck+1 whenever d (θ, δ) ≤ 0. Indeed,
we may choose some vector v ∈ Rn and consider Mδ (v +K). Then, xK (θ, δ) =

xv+K (θ, δ) − v. Clearly, we can always choose v such that, for v + K, d (θ, δ) > 0.
Thus, following the same argument, we can show xv+K (θ, δ) is Ck+1. As a consequence,
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xK (θ, δ) is Ck+1. Therefore, we conclude that ρ (θ) is Ck+1 on Sn−1. By Fact (5.13), the
boundary of Mδ (K) is Ck+1.

5.3 Relation to p-affine surface area

This section is devoted to the proof of Theorem 5.3.

5.3.1 Preliminary results

For the proof of Theorem 5.3, we will need a few preliminary results.

First, we focus on Mδ (ρBn
2 , φ), where ρBn

2 is the Euclidean ball centered at 0 and with
radius, and φ (x) is a constant function. By symmetry, we know that Mδ (ρBn

2 , φ) is again
a Euclidean ball with the same center. Let ∆ (ρ, δ) be the difference of the radius of ρBn

2

and Mδ (ρBn
2 , φ). If φ : ρBn

2 → (0,∞), is a constant function, φ(x) = s, for all x ∈ ρBn
2 ,

then, we define ∆ (ρ, δ, s) to be the difference of radius of ρBn
2 and Mδ (ρBn

2 , s). One
easily verifies that

∆ (ρ, δ, s) = ∆

(
ρ,
δ

s

)
. (5.13)

Proposition 5.14. limδ↘0 ∆ (ρ, δ) /δ
2

n+1ρ
n+1
n−1 = cn, where cn = 1

2
n+1
n+3

(
n+1

|Bn−1
2 |

) 2
n+1

.

Proof. We denote h (ρ, δ) to be height of the cap of ρBn
2 which has volume δ. To be

specific, h (ρ, δ) satisfies the equality

δ =
∣∣Bn−1

2

∣∣ ∫ h(ρ,δ)

0

gn−1 (t) dt,

where g (t) =
(
ρ2 − (ρ− t)2)1/2

. Moreover,

g (t) =
(
ρ2 − (ρ− t)2)1/2

= ρ
(
1− (1− t/ρ)2)1/2

= ρ (2− t/ρ)1/2 (t/ρ)1/2 .

We have

δ =
∣∣Bn−1

2

∣∣ ρn−1

∫ h(ρ, δ)

0

(2− t/ρ)
n−1
2 (t/ρ)

n−1
2 dt.
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Thus, we have the inequality

∣∣Bn−1
2

∣∣ ρn−1 (2− h (ρ, δ) /ρ)
n−1
2

∫ h(ρ, δ)

0

(t/ρ)
n−1
2 dt ≤ δ

≤
∣∣Bn−1

2

∣∣ ρn−12
n−1
2

∫ h(ρ, δ)

0

(t/ρ)
n−1
2 dt.

Since ∫ h(ρ, δ)

0

(t/ρ)
n−1
2 dt =

2

n+ 1
h (ρ, δ)

n+1
2 ρ−

n−1
2 ,

we obtain

1

2

(
n+ 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 ≤ h (ρ, δ)

δ
2

n+1

≤ 1

2− h (ρ, δ) /ρ

(
n+ 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 .

We conclude that

lim
δ↘0

h (ρ, δ)

δ
2

n+1

=
1

2

(
n+ 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 .

Recall that

∆ (ρ, δ) =

∣∣Bn−1
2

∣∣ ∫ h(ρ, δ)

0
tg (t)n−1 dt∣∣Bn−1

2

∣∣ ∫ h(ρ, δ)

0
g (t)n−1 dt

.

To compute the next limit, we apply twice L’Hospital’s Rule,

lim
h→0

h

∆
= lim

h
∫ h

0
hn−1 dt∫ h

0
tgn−1 dt

L
= lim

∫ h
0
gn−1 dt+ hg (h)n−1

hg (h)n−1 = 1 + lim

∫ h
0
gn−1 dt

hg (h)n−1

L
= 1 + lim

ρn−1
(

2− r
ρ

)n−1
2
(
r
ρ

)n−1
2

ρn
(

1
ρ
n+1

2

(
r
ρ

)n−1
2
(

2− r
ρ

)n−1
2 − 1

ρ
n−1

2

(
r
ρ

)n+1
2
(

2− r
ρ

)n−3
2

)

= 1 + lim

(
2− r

ρ

)
n+1

2

(
2− r

ρ

)
− n−1

2

(
r
ρ

) = 1 +
2

n+ 1
=
n+ 3

n+ 1
.

So,

lim
δ↘0

∆ (ρ, δ)

δ
2

n+1

= lim
δ↘0

h (ρ, δ)

δ
2

n+1

· ∆ (ρ, δ)

h (ρ, δ)
=

1

2

n+ 1

n+ 3

(
n+ 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 .

We will also need the next lemma from [67]:
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Lemma 5.15. Let K and L be convex bodies in Rn such that 0 ∈ int(L) and such that

L ⊆ K. Then

|K| − |L| = 1

n

∫
∂K

〈x,N(x)〉
(

1−
∣∣∣∣‖xL‖‖x‖

∣∣∣∣n) dµK (x) ,

where xL is the unique point in the intersection ∂L ∩ [0, x].

For the next lemma we need a notion that was introduced in [67]. Let K be a convex
body in Rn and let x ∈ ∂K be such that NK(x) is unique. We put r(x) to be the radius of
the biggest Euclidean ball contained in K that touches K in x,

r(x) = max{ρ : Bn
2 (x− ρNK(x), ρ) ⊆ K}.

If NK(x) is not unique, r(x) = 0. It was shown in [67, Lemma 5] that for any convex body
K in Rn and any 0 ≤ α < 1, ∫

∂K

r(x)−αdµ(x) <∞. (5.14)

Lemma 5.16. Let K be a convex body in Rn. Let x ∈ ∂K and let xM,δ = ∂ (Mδ (K,φ)) ∩
[0, x]. Then

〈x, NK (x)〉
δ

2
n+1

(
1−

∣∣∣∣‖xM,δ‖
‖x‖

∣∣∣∣n) ≤ c n r(x)−
n−1
n+1 ,

where c is a constant independent of x and δ.

Proof. Let xF,δ = ∂ (Fδ (K,φ)) ∩ [0, x]. By Theorem 5.1, we have that Fδ (K,φ) ⊆
Mδ (K,φ) and hence ‖xF,δ‖ ≤ ‖xM,δ‖. Therefore

〈x, NK (x)〉
δ

2
n+1

(
1−

∣∣∣∣‖xM,δ‖
‖x‖

∣∣∣∣n) ≤ 〈x, NK (x)〉
δ

2
n+1

(
1−

∣∣∣∣‖xF,δ‖‖x‖

∣∣∣∣n)

and it was shown in [67], Lemma 8, that the latter is smaller than or equal c n r(x)−
n−1
n+1 .

The next lemma was proved in [67]. There, and in the proof of the main theorem, we need
the indicatrix of Dupin (see, e.g., [68]). A theorem of Alexandrov [2] and Busemann and
Feller [16] shows that the indicatrix of Dupin exists almost everywhere on ∂K and is an
ellipsoid or an elliptic cylinder. We also use the notation C(r, h) for the cap of a Euclidean
ball with radius r and height h.

Lemma 5.17. [67] Let K be a convex body in Rn with 0 ∈ ∂K and NK(0) = −en =

(0, · · · , 0,−1). Suppose the indicatrix of Dupin at 0 exists and is an (n − 1)-dimensional
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sphere with radius
√
ρ. Let ξ be an interior point of K.

(i) Let H be the hyperplane orthogonal to NK(0) and passing through z in [0, ξ]. We

put zn = 〈z, en〉. Then we have for 0 ≤ zn ≤ ρ,

∣∣K ∩H+
∣∣ ≤ f(zn)n−1 |C(ρ, zn)| .

(ii) Let d = dist
(
z,Bn

2 (ρ en, ρ)C
)
. There is ε0 > 0 such that we have for all z ∈ [0, ξ] with

‖z‖ ≤ ε0

d ≤ zn ≤ d+
2 d2

ρ〈 ξ
‖ξ‖ , NK(0)〉2

.

(iii) There is ε0 > 0 and an absolute constant c > 0 such that for all z ∈ [0, ξ] with

‖z‖ ≤ ε0 and all hyperplanes H passing through z

∣∣K ∩H+
∣∣ ≥ f(γ)−n+1 |C(ρ, d(1− c(f(γ)− 1))| .

Here, γ = 2
√

2 ρ d and f is a monotone function on R+ such that limt→ f(t) = 1.

Lemma 5.18. Let K ⊆ Rn be a convex body. Moreover, we assume that 0 ∈ ∂K and that

NK(0) = −en is the unique outer normal to ∂K at 0. Let φ : K → (0,∞) be a continuous

function. We set H+
t = H+(−en,−t) = {y : 〈y, en〉 < t}. Then, for each t > 0, there

exists r > 0 such that for any δ > 0,

Mδ (K,φ) ∩Bn
2 (0, r) = Mδ

(
K ∩H+

t , φ
)
∩Bn

2 (0, r) .

Proof. It is obvious that

Mδ

(
K ∩H+

t , φ
)
∩Bn

2 (0, r) ⊆ Mδ (K,φ) ∩Bn
2 (0, r) .

Therefore, it is sufficient to show the other inclusion. Let d ≥ 0. Observe that if (θ, d) is
sufficiently close to (−en, 0), thenH+(θ,−d)∩K ⊆ H+

t , whereH+(θ,−d) = {y : 〈y,−θ〉 < d}.
As noted in (5.6), the function d (θ, δ) is continuous in (θ, δ). Therefore, there exists δ0 > 0

and ε > 0 such that
K ∩H+ (θ, d (θ, δ)) ⊆ H+

t , (5.15)

for ‖θ − (−en)‖ < ε and 0 ≤ δ < δ0. For each x in the interior of K, let δ (x) be the value
such that x ∈ ∂Mδ(x) (K,φ) and θ (x) denote the unique outer normal at x of Mδ(x) (K,φ).
Claim : For any δ0 > 0 and ε > 0, there exists r > 0 such that δ (x) < δ0 and
‖θ (x)− (−en)‖ < ε, for x ∈ int (K) ∩Bn

2 (0, r).
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Indeed, note that Mδ0 (K,φ) is strictly contained in K. Thus, 0 /∈ Mδ0 (K,φ). Since
Mδ0 (K,φ) is convex, there exists r > 0 so that Bn

2 (0, r)∩Mδ0 (K,φ) = ∅. Then, δ (x) <

δ0 for x ∈ int (K) ∩Bn
2 (0, r).

It remains to show that there exists r > 0 such that ‖θ (x)− (−en)‖ < ε for int (K) ∩
Bn

2 (0, r). Suppose it is false. Then there exists a sequence (xk)k∈N in int (K) such that
xk → 0 and such that ‖θ (xk)− (−en)‖ > ε. By the compactness of Sn−1, we may replace
(xk)k∈N by a subsequence, again denoted by (xk)k∈N, so that θ (xk) converges to some
θ1 6= −en. Moreover, δ (xk) → 0 since the first claim is true. Continuity of hMδ(K,φ) (θ)

implies that hMδ(xk)(K,φ) (θ (xk)) → hK (θ1). As −en is the unique outer normal to ∂K in
0, hK (θ1) > 〈0, θ1〉 = 0. Therefore, we obtain a contradiction, as hMδ(xk)(K,φ) (θ (xk)) =

〈xk, θ (xk)〉, which converges to 0 as xk → 0. This completes the proof of the claim.
Hence, with the assumptions on δ0 and ε, we conclude that there exists r > 0 such that for
x ∈ int (K) ∩Bn

2 (0, r),

K ∩H+ (θ (x) , d (θ (x) , δ (x))) ⊆ H+
t .

Let x ∈Mδ (K, φ) ∩Bn
2 (0, r). Since x ∈ int (K) ∩Bn

2 (0, r),

K ∩H+ (θ(x), d (θ(x), δ(x))) ⊆ H+
t ,

and thus x ∈ Mδ(x)

(
K ∩H+

t , φ
)
. Moreover, notice that δ (x) ≥ δ and hence we have

Mδ(x)

(
K ∩H+

t , φ
)
⊆ Mδ

(
K ∩H+

t , φ
)
.

Hence, x ∈ Mδ

(
K ∩H+

t , φ
)
. Therefore, Mδ (K,φ) ∩ B (0, r) ⊆ Mδ

(
K ∩H+

t , φ
)
∩

B (0, r) .

5.3.2 Proof of Theorem 5.3

Recall that xM is the unique point in ∂ (Mδ (K,φ)) ∩ [0, x]. We will sometimes write in
short xM for xM,δ. By Lemmas 5.15 and 5.16, we have that

lim
δ→0

|K| − |Mδ (K,φ)|
δ

2
n+1

=
1

n

∫
∂K

lim
δ→0

δ−
2

n+1 〈x, NK (x)〉
(

1−
∣∣∣∣‖xM‖‖x‖

∣∣∣∣n) dµK (x) .

For x ∈ ∂K fixed, the goal is to understand

lim
δ↘0

1

n

∫
∂K

δ−
2

n+1 〈x, NK (x)〉
(

1−
∣∣∣∣‖xM‖‖x‖

∣∣∣∣n) dµK (x) .
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As x and xM are collinear and as for all 0 ≤ a ≤ 1,

1− na ≤ (1− a)n ≤ 1− na+
n (n− 1)

2
a2,

we get for δ sufficiently small that

‖x− xM‖|
‖x‖

(
1− n− 1

2

‖x− xM‖|
‖x‖

)
≤ 1

n

(
1−

∣∣∣∣‖xM‖‖x‖
∣∣∣∣n) =

1

n

[
1−

(
1− ‖x− xM‖

‖x‖

)n]
≤ ‖x− xM‖|

‖x‖
. (5.16)

(i) We assume first that the indicatrix of Dupin at x ∈ ∂K is an ellipsoid. In fact, by a
change of the coordinate system, we may also assume that x = 0 and NK (0) = −en. Let
ζ ∈ Rn be the origin in the previous coordinate system. Let yM,δ := ∂ (Mδ (K,φ))∩ [0, ζ].
Notice that ‖yM,δ‖ = ‖x− xM,δ‖ and that yM,δ → 0 as δ ↘ 0. Thus

lim
δ↘0
〈x, NK (x)〉‖x− xM,δ‖

‖x‖
= lim

δ↘0
〈ζ, en〉

‖yM,δ‖
‖ζ‖

= lim
δ↘0
〈yM, δ, en〉. (5.17)

There exists a volume preserving positive definite linear transform T such that NTK (0) =

−en and such that the indicatrix of Dupin at 0 becomes a Euclidean ball with radius
√
ρ

(see, e.g., equation (5) in [68]). Moreover, ρ satisfies

κK (0) =
1

ρn−1
.

Let H+ be the halfspace such that

δ =

∫
K∩H+

φ (y) dy and yM, δ =

∫
K∩H+ yφ (y) dy

δ
.

As T is volume preserving,
∫
TK∩TH+ φ (T−1y) dy = δ, and thus

TyM, δ =

∫
K∩H+

Tyφ (y) dy/δ =

∫
TK∩TH+

yφ
(
T−1y

)
dy/δ

∈ ∂Mδ

(
TK, φ ◦ T−1

)
.

As a consequence we have

[0, T ζ] ∩ ∂Mδ

(
TK, φ ◦ T−1

)
= TyM, δ,
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φ
(
T−10

)
= φ (0) ,

and
〈TyM,δ, en〉 = 〈yM,δ, T en〉 = 〈yM,δ, en〉.

Hence we have reduced the problem to the case when the indicatrix of Dupin at 0 ∈ ∂K is
a Euclidean sphere with radius

√
ρ and κK (0) = 1

ρn−1 .
Moreover, ∂K can be approximated in 0 by a Euclidean ball Bn

2 (ρen, ρ) of radius ρ and
center ρen in the following sense (see, e.g., [69, Proof of Lemma 23]):
Let ε > 0 be given. Let Bn

2 ((1− ε)ρen, (1− ε)ρ) be the Euclidean ball centered at (1 −
ε)ρen whose radius is (1− ε) ρ. Similarly, let Bn

2 ((1 + ε)ρen, (1 + ε)ρ) be the Euclidean
ball centered at (1 + ε)ρ with radius (1 + ε)ρ. Then,

0 ∈ ∂ [Bn
2 (ρen, ρ)] , 0 ∈ ∂ [Bn

2 ((1− ε)ρen, (1− ε)ρ)] ,

0 ∈ ∂ [Bn
2 ((1 + ε)ρen, (1 + ε)ρ)] ,

and
NBn2 (ρen,ρ) = NBn2 ((1−ε)ρen,(1−ε)ρ) = NBn2 ((1+ε)ρen,(1+ε)ρ) = −en

and (see, e.g., [69, Proof of Lemma 23]) there exists ∆0
ε such that for 0 < t < ∆0

ε, the
half-space H+

t = {y : 〈y, en〉 ≤ t} determined by the hyperplane orthogonal to en through
the point ten is such that

H+
t ∩Bn

2 ((1− ε)ρen, (1− ε)ρ) ⊆ H+
t ∩ K

⊆ H+
t ∩Bn

2 ((1 + ε)ρen, (1 + ε)ρ) . (5.18)

By continuity of φ there exists s > 0 such that for all y ∈ int(Bn
2 (0, s)),

(1− ε)φ(0) ≤ φ(y) ≤ (1 + ε)φ(0). (5.19)

We will apply Lemma 5.18 with t = ∆0
ε simultaneously to K, Bn

2 ((1− ε)ρen, (1− ε)ρ)

andBn
2 ((1 + ε)ρen, (1 + ε)ρ) with weights φ, (1− ε)φ (0) , and (1 + ε)φ (0) respectively.

Let H+
∆ε

= {y : 〈y, en〉 ≤ ∆ε}. We choose ∆ε ≤ ∆0
ε so small that

H+
∆ε
∩ Bn

2 ((1 + ε)ρen, (1 + ε)ρ) ⊆ Bn
2 (0,min {s, r}),

where r is given by Lemma 5.18. We denote

d−M, δ = dist (yM, δ, B
n
2 ((1− ε)ρen, (1− ε)ρ)c)

80



and

d+
M, δ = dist (yM, δ, B

n
2 ((1 + ε)ρen, (1 + ε)ρ)c) .

Boundedness of φ on Bn
2 (0, s) and (5.18) imply that for δ ≥ 0,

Mδ

(
Bn

2 ((1− ε)ρen, (1− ε)ρ) ∩H+
∆ε
, (1− ε)φ (0)

)
⊆ Mδ

(
K ∩H+

∆ε
, φ
)

⊆ Mδ

(
Bn

2 ((1 + ε)ρen, (1 + ε)ρ) ∩H+
∆ε
, (1 + ε)φ (0)

)
.

By Lemma 5.18 and the choice of ∆ε we have

Mδ (Bn
2 ((1− ε)ρen, (1− ε)ρ) , (1− ε)φ (0)) ∩H+

∆ε
⊆ Mδ (K,φ) ∩H+

∆ε

⊆ Mδ (Bn
2 ((1 + ε)ρen, (1− ε)ρ) , (1 + ε)φ (0)) ∩H+

∆ε
.

Choose δ so small that yM,δ ∈ H+
∆ε

. Then

yM, δ /∈ int (Mδ (Bn
2 ((1− ε)ρen, (1− ε)ρ) , (1− ε)φ (0)))

and
yM, δ ∈ int (Mδ (Bn

2 ((1− ε)ρen, (1 + ε)ρ) , (1 + ε)φ (0))) .

Thus, we conclude that

d−M, δ ≤ ∆ ((1− ε) ρ, (1− ε) δφ (0)) and d+
M, δ ≥ ∆ ((1 + ε) ρ, (1 + ε) δφ (0)) ,

where ∆ ((1 + ε) ρ, (1 + ε) δφ (0)) and ∆ ((1− ε) ρ, (1− ε) δφ (0)) are the differences of
the radii of (1 + ε) ρBn

2 and Mδ (ρBn
2 , (1 + ε)φ(0)), and of (1− ε) ρBn

2 and Mδ (ρBn
2 , (1− ε)φ(0)),

respectively. Applying Lemma 5.17(ii) with z = yM, δ and Proposition 5.14 for sufficiently
small δ, yields

(1− ε)
n+1
n−1

+ 2
n+1 ≤ 〈yM, δ, en〉

cnδ
2

n+1ρ−
n−1
n+1φ(0)

2
n+1

≤ (1 + ε)
n+1
n−1

+ 2
n+1 .

Since ε > 0 can be chosen arbitrary, we obtain, also using (5.17),

lim
δ→0

φ(x)
2

n+1 〈x, NK (x)〉‖x− xM,δ‖
‖x‖ δ

2
n+1

= cn ρ(x)−
n−1
n+1 = cn κK(x)

1
n+1 .

(ii) Now we assume that x is such that the indicatrix of Dupin at x is an elliptic cylinder.
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We will show that then
lim
δ→0
〈x, NK (x)〉‖x− xM,δ‖

‖x‖ δ
2

n+1

= 0.

We only need to show that limδ→0〈x, NK (x)〉‖x−xM,δ‖
‖x‖δ

2
n+1
≤ 0.

We may assume that the first k axes of the elliptic cylinder have infinite lengths and the
others not. Then, as above (see, e.g., [69, Proof of Lemma 23]) for all ε > 0 there is
an approximating ellipsoid E and ∆ε such that the hyperplane H (NK(x), x−∆ε)NK(x))

orthogonal to NK(x) through the point x−∆εNK(x) is such that

H+ (NK(x), x−∆ε)NK(x)) ∩ E ⊆ H+ (NK(x), x−∆ε)NK(x)) ∩ K

and such that the lengths of the k first principal axes of E are larger than 1
ε
. As noted

above, there is a support hyperplane Hδ to Fδ (K,φ) such that xF,δ ∈ Hδ and such that
δ =

∫
K∩H+

δ
φ(y)dy [74]. Then

δ ≥ min
y∈K

φ(y)|K ∩H+
δ | ≥ min

y∈K
φ(y)|E ∩H+

δ |.

As above, we may assume that the approximating ellipsoid E is a Euclidean ball with radius
ρ = ρ(x) where ρ ≥ 1

ε
. Then

〈x, NK (x)〉‖x− xM,δ‖
‖x‖ δ

2
n+1

≤ 〈x, NK (x)〉‖x− xF,δ‖
‖x‖ δ

2
n+1

≤
〈 x
‖x‖ , NK(x)〉 ‖x− xF,δ‖

(miny∈K φ(y))
2

n+1
(
|Bn

2 (x− ρNK(x), ρ) ∩H+
δ |
) 2
n+1

≤ ρ−
n−1
n+1

cn (miny∈K φ(y))
2

n+1

.

The last inequality can be shown using similar methods as in the case (i). Or, one notices
that we are precisely in the situation of Lemmas 7 and 10 of [67] where exactly this estimate
is proved. As ρ is arbitrarily small, the proof is completed.
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CHAPTER 6

Size of nodal domains for G (n, p) graph

6.1 Introduction

Let Ap be the adjacency matrix of G (n, p). We denote eigenvalues of Ap by λ1 ≥ · · · ≥
λn and the corresponding unit eigenvectors by u1, . . . , un. Recall the theorem of nodal
domain theorem of Dekel, Lee and Linial [?] which improved by Arora and Bhaskara [5]:

Theorem 6.1. For p ≥ n−1/19+ε, D > 0, and v an eigenvector of Ap for non-first

eigenvalue λ. Then, v has precisely 2 nodal domains with probability greater than 1−n−D.

Before we state our theorems, we seperate the eigenvalues of Ap in the following 2
types: Let κ ∈ (0, 1), we say λi is an bulk eigenvalue if i ∈ [κn, n− κn] . For ρ > 0, we
say λi is an edge eigenvalue if min {i, n− i} ≤ (log n)ρ log logn. To explain why we call
them bulk and edge eigenvalues, let us introduce the semicircle law

ρsc (x) =
1

2π

√
(4− x2)+

where (4− x2)+ = max {4− x2, 0}, which arises as the limiting ditribution of eigenvalues
of many random matrix models. Consider a n × n wigner matrix W = {wij}ni,j=1.
Precisely, the entries of W are independent, mean 0 and E |wij|k exists for every k ∈ N.
Furthermore, the variance of the off-diagonal and diagonal terms are 1 and C respectively.
Let µ1, · · · , µn denote the eigenvalues of W in a non-increasing order. We define the
empirical measure of its eigenvalues as

Em (W ) =
n∑
i=1

1

n
δµi .

Then, it is known that asymptotically, we have EM
(

1√
n
W
)

converge weakly to ρsc (x) dx.

Our matrixAp is not far away from this model. Let
−→
1 ∈ Sn−1 be the vector such that every
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component equals 1√
n

. The entries of

1√
p (1− p)

Ap −
pn√

p (1− p)
−→
1
−→
1 >

have mean 0, variance 1 and bounded kth moments for every k. In other words, it is also
a wigner matrix. Thus, we expect the eigenvalues of Ap are distributed according to the
semi-circle law (with a proper scaling) with one exception: The leading eigenvalue is much
larger due to the rank 1 shift pn√

p(1−p)

−→
1
−→
1 >. Bulk eigenvalues refer to eigenvalues appeared

in the bulk region of the semi-circle and edge eigenvalues correspond to eigenvalues close
to the edge. (i.e. eigenvalues of 1√

p(1−p)n
Ap close to {−2, 2}) We prove that the nodal

domains are roughly of the same size both for the bulk and for the edge eigenvectors. Yet
the methods of proof in these cases are entirely different. Let us consider the bulk case first
as the proof in this case is shorter.

Theorem 6.2. (Bulk case) There is c ∈ (0, 1) such that the following holds. Let G (n, p)

be an Erdös-Rï¿œnyi Graph with p ∈
[
n−c, 1

2

]
. Fix ε, κ ∈ (0, 1). Suppose n is sufficiently

large. Let uα be an eigenvector of G (n, p) with α ∈ [κn, n− κn]. Then there exists

η = η (ε, κ) > 0 such that, for a sufficiently large n,

P
(
|P | ∨ |N | ≥

(
1

2
+ ε

)
n

)
≤ n−η,

where P is the collection of indexes of uα with positive components and N is the

collection of indexes of uα with negative components

Remark 6.3. By Theorem 6.1, we know that P and N are exactly the two nodal domains
with probability greater than 1− n−D.

The proof relies on Theorem 1.1 from [13]. (see Theorem 6.5 in section 6.2 for the
statement of the theorem)

For the edge case, the bound similar to Theorem 6.5 has not been established yet. On
the other hand, the gaps between the eigenvalues near the edges of the spectrum are much
larger. The eigenvalue gap is at least n−2/3−o(1) for edge eigenvalues while it is of order
n−1−o(1) for bulk eigenvalues. Also, the edge eigenvalues enjoy stronger rigidity properties
than the bulk ones.

Theorem 6.4. (Edge case) Let G (n, p) be an Erdös-Rï¿œnyi Graph with p ∈ (0, 1). Fix a

sufficiently large ρ > 0. Suppose n is sufficiently large. Let uα be a non-leading eigenvector

of G (n, p) with min {α, n− α} ≤ (log n)ρ log logn. Then, for any ε > 0, there exists δ > 0
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such that

P
(
|P | ∨ |N | ≥

(
1

2
+ n−

1
6

+ε

)
n

)
≤ n−δ

where P is the collection of indexes of uα with positive components and N is the

collection of indexes of uα with negative components.

Our goal here is to show that with high probability we have

n∑
i=1

signu (i) = o (n)

for an eigenvector u ofAp. This can be derived by Markov inequality if E (
∑n

i=1 sign (u (i)))
2

=

o (n2). The later equation can be derived if for i 6= j,

Esign (u (i)u (j)) = o (1) . (6.1)

The proof on both bulk and edge case are aiming to show (6.1). Yet, the approaches are
completely different.

6.2 Tools

Theorem 6.5. [13, Theorem 1.1] Fix arbitrary constants d, κ > 0 Let A be an n × n

be the adjacency matrix of a G(n, p) graph with n−1+ d ≤ p ≤ 1/2. Let v1, . . . , vn be

its eigenvectors corresponding to the eigenvalues λ1 ≥ . . . ≥ λn. For any polynomial

f : R→ R for any n ≥ n(f), j ∈ [κn : n− κn] and any q ∈ Sn−1, q ⊥ −→1 , there exists an

ν > 0 such that

|Ef(n〈q, vj〉2)− Ef(g2)| ≤ n−ν .

We will also use a partial case of the no-gaps delocalization theorem [61].

Theorem 6.6. Let p ∈ (0, 1) be an arbitrary constant. Let A be the adjacency matrix of

a G (n, p) graph. Then, for any ε > Cn−1/7with probability at least 1 − exp (−εn) any

non-leading eigenvector v ∈ Sn−1 satisfies

∣∣{j : |v (j)| ≤ c′ε11/2n−1/2
}∣∣ ≤ εn.

Next, we will introduce a generalized Wigner matrix model:

Condition 6.7. Let H = (hij) be a Hermitian n × n random matrix with Ehij = 0 and
variances σ2

ij := Eh2
ij . Denote by Σ :=

(
σ2
ij

)
the matrix of variances. H satisfies this

condition if
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1.
∑n

i=1 σ
2
ij = 1.

2. There exists δW > 0 such that 1 is a simple eigenvalue of Σ and Spec (B) ⊆
[−1 + δW , 1− δW ] ∪ {1}.

3. There is a constant CW , independent of n, such that maxij
{
σ2
ij

}
≤ CW

n
.

4. hij have a uniformly subsexponential decay: There exists a constant ν > 0, independent
of n,such that for any x ≥ 1 and 1 ≤ i, j ≤ n we have

P (|hij| > xσij) ≤ ν−1 exp (−xν) .

Here is a summarized partial results of strong local statistic results and its consequences,
rigidity of eigenvalues and l∞-norm of eigenvectors, by Erdös, Yau and Yin:

Theorem 6.8. [20, Theorem 2.1, 2.2] Let H = (hij) be Hermitian n × n random matrix.

Suppose H satisfies Condition 6.7. Then, there exist positive constants Asls > 1, Csls, csls
and φsls < 1 depending only on ν and δW and CW from Condition 6.7 such that the

following estimates hold for any sufficiently large n ≥ n0 (ν, δW , CW ). Letϕn := (log n)log logn,

G (z) be the Green funtion of H , m (z) be the Stieltjes transform of H and msc (z) be the

Stieltjes transform of the semicircle law. We have

1.

P

(
sup
z∈SA0

|m (E + iη)−msc (E + iη)| ≤ ϕ4Asls
n

Nη

)
≥ 1− exp

(
−ϕφslsAslsn

)
(6.2)

where SA0 =
{
z = E + iη : |E| ≤ 5, n−1ϕ10A0

n < η ≤ 10
}
.

2.

P
(
∀α : |λα − γα| < ϕAslsn [min (α, n− α + 1)]−1/3 n−2/3

)
≥ 1− exp

(
−ϕφslsAslsn

)
,

(6.3)

where γα is the expected location of αth eigenvalue for random matrix satisfying
semicircle law. In other words, γα satisfies

∫ 2

2−γα
1

2π

√
4− x2 dx = α

n
.

3.

P
(
∀α, ‖uα‖∞ ≤

ϕCn√
n

)
(6.4)
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The following level repulsion condition was introduced in [40, Definition 1.3], which are
satisfied for many generalized wigner matrices.

Condition 6.9. (Level Repulsion on Edge) A random Hermitian matrix H is said to satisfy
level repulsion at the edge, if for any CLR > 0, and εLR > 0, there exists δLR > 0, with
probability at least 1− n−δLR

max
E⊆
[
2−n−2/3ϕ

CLR
n , 2+n−2/3ϕ

CLR
n

]N (
E − n−2/3−εLR , E + n−2/3−εLR

)
< 2. (6.5)

Theorem 6.10. [1, Theorem 2.12](Isotropic local semicircle law)H is a generalized Wigner

matrix and for all k ∈ N there exists a constant Ck > 0 such that E |
√
nhij|

k ≤ Ck for

all n, i and j. Then, for every s, D > 0, 0 < ε < 1/3, and deterministic unit vectors

v, w ∈ Cn we have

sup
z∈SW

P

(
|〈v, G (E + iη)w〉 − 〈v, w〉m (E + iη)| > ns

(√
Immsc (E + iη)

nη
+

1

nη

))
≤ n−D

where η = n−2/3−ε and n ≥ n (s, D).

Remark 6.11. To understand what this inequalities means, let’s consider z = E + iη with
|E − 2| ≤ n−2/3+ε. We have

Immsc (z) ≤
√
|E − 2|+ η ≤ 2n−1/3+ε/2.

Then, √
Immsc (E + iη)

nη
+

1

nη
≤ 2

nη
≤ 2n−

1
3

+ε.

We obtain

sup
|E−2|≤n−2/3+ε

P
(
|〈v, G (E + iη)w〉 −msc (E + iη)| > 3n−

1
3

+s+ε
)
≤ n−D

for n ≥ n (s, D). Suppose E, E ′ ∈ R satisfies |E − E ′| < n−13. Then,

|〈v, G (E + iη)w〉 − 〈v, G (E ′ + iη)w〉|

≤

∣∣∣∣∣∑
α

〈uα, v〉〈uα, w〉
E − E ′

(λα − E − iη) (λα − E ′ − iη)

∣∣∣∣∣
≤nn−13η−2 ≤ n−10 < n−

1
3

+s+ε.
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Now taking a union bound we obtain the following Corollary:

Corollary 6.12. (Isotropic local semicircle law) H is a generalized Wigner matrix and for

all k ∈ N there exists a constant Ck such that E |
√
nhij|

k ≤ Ck for all n, i and j. Then,

for every s, D > 0 and 0 < ε < 1/3, we have

P

(
sup

|E−2|≤n−2/3+ε

|〈v, G (E + iη)w〉 −msc (E + iη)| < 4n−
1
3

+s+ε

)
≥ 1− n−D (6.6)

where η = n−2/3−ε and n ≥ n (s, D).

In other words, G (E + iη) behaves like msc (E + iη) In. Next, we have the isotropic
delocalization theorem:

Theorem 6.13. [1, Theorem 2.16](Isotropic delocalization) H is a generalized Wigner

matrix and for all k ∈ N there exists a constant Ck such that E |
√
nhij|

k ≤ Ck for all n, i

and j. Then, for every s, D > 0 and deterministic unit vector v,∈ Cn we have

P
(

max
α∈[n]
|〈uα, v〉|2 < ns−1

)
≥ 1− n−D

when n is sufficiently large.

We also needs a Hanson-Wright Inequality for i.i.d subgaussian vectors:

Theorem 6.14. [60]Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent

components Xi with satisfy EXi = 0, and ‖Xi‖ψ2
≤ K. Let A be an n × n matrix. Then,

for every t ≥ 0,

P
(∣∣X>AX − EX>AX

∣∣ > t
)
≤ 2 exp

(
−cmin

(
t2

K4 ‖A‖2
HS

,
t

K2 ‖A‖

))
(6.7)

Theorem 6.15. (Berry-Esseen) Suppose X = (X1, . . . Xn) are i.i.d random varaibles with

mean 0 and variance σ2
i . Let ρi = E |Xi|3. Consider Sn =

∑n
i=1Xi√∑n
i=1 σ

2
i

. Let Fn and Φ be the

cumulative distribution function of Sn and standard norml distribution respectively. Then,

sup
x∈R
|Fn (x)− Φ (x)| ≤

(
n∑
i=1

σ2
i

)−1/2

max
i

ρi
σ2
i

.
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6.3 Bulk eigenvector

Consider a graph G with the adjacency matrix A, and let v ∈ Sn−1 be its eigenvector. In
order to show that

∑n
j=1 sign

(
v(j)

)
= o(n), consider a random pair of distinct indices

(k, l) ⊂ [n], which is uniformly chosen among all such pairs. We will check below that if
Esign(vj(k) · vj(l)) = o(1), then the nodal domains are of the size close to n/2. We are
going to establish this bound for the adjacency matrix of a typical G(n, p) graph. Since
sign is not a continuous function, it is hard to approach this task directly. Instead, we will
approximate the function sign by a suitable polynomial f and show that E

[
f(vj(k) ·vj(l)) |

A
]

= o(1) where the expectation is taken with respect to the random pair (k, l) andA is the
adjacency matrix of a typical G(n, p) graph, i.e., it is chosen from some set of adjacency
matrices whose probability is 1 − o(1). After that, we will have to estimate the error
of this approximation. To implement the first step, we will use Theorem 6.5 to derive a
similar bound for the expectation of an even polynomial of four random coordinates of
the eigenvector. This will lead to a stronger bound for an even polynomial of two random
coordinates. Finally, applying the latter bound to a one-variable polynomial of the product
of two coordinates, we will get the desired estimate.

Let us formulate this statement precisely. Let vj ∈ Sn−1 be a bulk eigenvector of
the G(n, p) graph, and let g1, . . . , gn ∼ N(0, 1) be independent standard normal random
variables. Denote by E(k,l) the expectation with respect to the random pair of coordinates
(k, l), where the matrix A is regarded as fixed.

Lemma 6.16. LetA, vj be as in Theorem 6.5. Let (k, l) be a uniformly chosen random pair

of elements of [n]. For any even polynomial F : R2 → R, there exists a ν > 0 and a set

AF ∈Matsym(n) such that for all sufficiently large n,

P(A ∈ AF ) ≥ 1− n−ν ,

and for any A ∈ AF ,

|E(k,l)F (n1/2vj(k), n1/2vj(l))− EF (g1, g2)| ≤ n−ν .

Proof. The proof breaks in two parts. First, we will show that the statement of Theorem
6.5 holds for any q ∈ Sn−1 such that |supp(q)| ≤ 4. It is enough to prove the statement for
f(x) = xd. Without loss of generality, assume that q =

∑4
j=1 αej with

∑4
j=1 α

2
j = 1. Set
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β := 〈−→1 , q〉 = n−1/2
∑4

j=1 αj . Then

|β| ≤ 4√
n
, q0 := q − β−→1 ⊥ −→1 and ‖q0‖2 = 1 +O(n−1/2). (6.8)

Recall that w :=
−→
1 − v1 satisfies

‖w‖2 ≤ 2
log n√
n
, (6.9)

see [61, Theorem 3].
Let us check that for any d ∈ N,

E(n〈q, vj〉2)d ≤ C(d)

for some function C(d) > 0. Indeed, since
〈−→

1 , vj

〉
= 〈w, vj〉,

E(n〈q, vj〉2)d = E(n〈q0 + β
√
nw, vj〉2)d ≤ 22d

(
E(n〈q0, vj〉2)d + β2dnd ‖w‖2d

2

)
≤ 22d

(
E(2g2

1)d +

(
16

log2 n

n

)d)
≤ C(d).

where we used (6.8), (6.9) and Theorem 6.5 in the second inequality. By Cauchy-Schwarz
inequality, this means that for any k ∈ N,

E|
√
n 〈q, vj〉 |k ≤ C ′(k). (6.10)

Therefore, for any d ∈ N,

∣∣E(n〈q, vj〉2)d − Eg2d
∣∣ ≤ ∣∣∣∣E(n〈q, vj〉2)d − E(n〈 q0

‖q0‖2

, vj〉2)d
∣∣∣∣+

∣∣∣∣E(n〈 q0

‖q0‖2

, vj〉2)d − Eg2d

∣∣∣∣
≤

∣∣∣∣∣E(n〈q, vj〉2)d − 1

‖q0‖2d
2

E(n〈q − β−→1 , vj〉2)d

∣∣∣∣∣+ n−ν

≤
∣∣E(n〈q, vj〉2)d − E(n〈q − βw, vj〉2)d

∣∣+ 2n−ν

≤
n∑
j=1

(
2d

j

)
E|
√
n〈q, vj〉|2d−j ·

(
8

log n√
n

)j
+ 2n−ν ≤ n−ν

′

for large n. Here, the third inequality follows from Theorem 6.5, the fourth one from (6.8)
and (6.9), and the last one from (6.10). This shows that the conclusion of Theorem 6.5
holds for any q ∈ Sn−1 supported on four coordinates. The same argument can be used to
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prove this statement for any fixed number of coordinates, but we would not need it here.
Let us extend the conclusion of Theorem 6.5 to even polynomials of four variables.

Consider an even monomialG(x1, . . . , x4) := xd11 ·xd22 ·xd33 ·xd44 with d = d1+d2+d3+d4 ∈
2N. Note that for this monomial, G(

√
nvj(k1), . . . ,

√
nvj(k4)) can be represented as a

finite linear combination of (
√
n 〈q, vj〉)d for different values of q ∈ Sn−1, supp(q) ⊂

{k1, . . . , k4}. Hence,

∣∣EG(
√
nvj(k1), . . . ,

√
nvj(k4))− EG(g1, . . . , g4)

∣∣ ≤ n−ν (6.11)

and this ine quality can be extended to all even polynomials of four variables.
Now, let F : R2 → R be an even polynomial. Let s ∈ [κn : n − κn]. For a pair

(i, j) ∈
(

[n]
2

)
, define a random variable

Y(i,j) = F (
√
nvs(i),

√
nvs(j))− EF (gi, gj),

where g1, . . . , gn are independentN(0, 1) random variables. Then for any distinct i, j, k, l,∈
[n],

|EY(i,j)Y(k,l)| = |EF (
√
nvs(i),

√
nvs(j))F (

√
nvs(k),

√
nvs(l))

− EF (
√
nvs(i),

√
nvs(j))EF (gk, gl)

− EF (gi, gj)EF (
√
nvs(k),

√
nvs(l))

+ EF (gi, gj)EF (gk, gl)|

≤ |EF (gi, gj)F (gk, gl)− 2EF (gi, gj) · EF (gk, gl)

+ EF (gi, gj)F (gk, gl)|+ n−ν

= n−ν ,

where we used (6.11) with G1(x1, x2, x3, x4) = F (x1, x2)F (x3, x4), G2(x1, x2, x3, x4) =

F (x1, x2), and
G3(x1, x2, x3, x4) = F (x3, x4) to derive the inequality. A similar calculation shows that
|EY(i,j)Y(k,l)| = O(1) when i, j, k, l are not necessarily distinct. Hence,

E

 1(
n
2

) ∑
(i,j)∈([n]

2 )

Y(i,j)


2

≤ 1(
n
2

)2

∑
(i,j,k,l)∈([n]

4 )

EY(i,j)Y(k,l) +O(n−1) ≤ n−ν .

The Markov inequality implies that there exists a set A′F ∈ Matsym(n) such that for all
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sufficiently large n,
P(A ∈ A′F ) ≥ 1− n−ν/2,

and for any A ∈ A′F ,∣∣∣∣∣∣∣
1(
n
2

) ∑
(i,j)∈([n]

2 )

F (
√
nvs(i),

√
nvs(j))− EF (g1, g2)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1(
n
2

) ∑
(i,j)∈([n]

2 )

Y(i,j)

∣∣∣∣∣∣∣ ≤ n−ν/4.

The lemma is proved.

Applying the previous lemma to a polynomial F (x, y) = f(x · y) for a one-variable
polynomial f , we derive the following corollary.

Corollary 6.17. Let A, vj be as in Theorem 6.5. Let (k, l) be a uniformly chosen random

pair of elements of [n]. For any polynomial f : R → R, there exists a ν > 0 and the set

Af ∈Matsym(n) such that for all sufficiently large n,

P(A ∈ Af ) ≥ 1− n−ν ,

and for any A ∈ Af ,

|E(k,l)f(nvj(k) · vj(l))− Ef(g1g2)| ≤ n−ν .

To prove that the nodal domains are balanced, we will use Corollary 6.17 with f

being an odd polynomial approximating sign(x) on some interval [r, R]. Since f is odd,
Ef(g1g2) = 0. Hence, assuming that the nodal domains are unbalanced, it would be enough
to show that |E(k,l)f(nvj(k) · vj(l))| is non-negligible to get a contradiction. The values of
r and R will be chosen so that the absolute values of most of the coordinates will fall into
this interval. A simple combinatorial calculation will show that if the nodal domains are
unbalanced, then E(k,l)sign(vj(k) · vj(l)) = Ω(1). Indeed, assume that for a given matrix
A and vector vj ,

|P | ∨ |N | ≥
(

1

2
+ ε

)
.

Then

E(k,l)sign(vj(k) · vj(l)) =

(
n

2

)−1

·
[(
|P |
2

)
+

(
|N |
2

)
− |P | · |N |

]
≥ 4ε2 +O(n−1).

This reduces our task to the comparison between this quantity and |E(k,l)f(nvj(k) · vj(l))|.
To achieve it, we construct f approximating sign(x) pointwise on the set [−R,−r]∪ [r, R]
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and show that the contribution of the coordinates falling outside of this set is negligible.
For the interval (−r, r), this will be done using the no-gaps delocalization. Handling the
set (−∞,−R) ∪ (R,∞) is more delicate. Since the polynomial is unbounded on this set,
we will control the L2 norm of f and use the Markov inequality. This argument requires
constructing the polynomial f which approximates sign(x) in two metrics simultaneously:
uniformly on the set [−R,−r] ∪ [r, R] and in L2(µ) norm on R. The measure µ here will
be the probability measure on R defined by

µ(B) = P(g1g2 ∈ B).

Instead of controlling two metrics at the same time, we will introduce one Sobolev
norm which will be stronger than both metrics. Such norm can be chosen in many different
ways. We will chose a particular way which makes the argument shorter.

Let η : R \ {0} → (0,∞) and ψ : R→ (0,∞) be even functions such that

• η ∈ C1((0,∞)), ψ ∈ C1(R);

• η(x), ψ(x) = 1
π

exp(−x/2) for all x ≥ 2;

• η(x) ≥ φ(x) for all x > 0, and η ∈ L1(R).

Consider a weighted Sobolev space H defined as the completion of the space of C1(R)

functions for which the norm

‖f‖2
H :=

∫
R
f 2(x)η(x) dx+

∫
R
(f ′(x))2ψ(x) dx

is finite. Note that H ⊂ C (R). Indeed, for any M > 0, a < b, a, b ∈ [−M,M ] and any
f ∈ C1 (R),

|f(b)− f(a)| =
∣∣∣∣∫ b

a

f ′(a) dx

∣∣∣∣ ≤ ( min
x∈[−M,M ]

ψ(x)

)−1

·
∫ b

a

|f ′(x)|ψ(x) dx

≤
(

min
x∈[−M,M ]

ψ(x)

)−1

·
(∫ b

a

(f ′(x))2ψ(x) dx

)1/2(∫ b

a

ψ(x) dx

)1/2

(6.12)

≤
(

min
x∈[−M,M ]

ψ(x)

)−1

· ‖f‖H ·
(

max
x∈[−M,M ]

ψ(x)

)1/2

· (b− a)1/2,

and the same inequality holds for the completion.
We will need the following lemma.
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Lemma 6.18. Let h ∈ C1(R) be an odd function such that ‖h‖∞ + ‖h′‖∞ <∞. Then for

any δ > 0, there exists an odd polynomial Q satisfying ‖Q− h‖H < δ.

Proof. Denote by P the set of all polynomials. Let Eodd be the set of all odd functions
h ∈ C1(R) such that ‖h‖∞+‖h′‖∞ <∞. It is enough to prove that Eodd ⊂ ClHP. Indeed,
if this is proved, then for any δ > 0 there exists q ∈ P such that ‖h− q‖H < δ. Setting
Q(x) = 1

2
(q(x)− q(−x)) to make the polynomial odd would finish the proof.

Assume to the contrary that Eodd 6⊂ ClHP. Then there exists h ∈ ClH(Eodd) \ {0} such
that 〈h, xn〉H = 0 for any n ∈ {0} ∪ N. We will prove that this assumption leads to a
contradiction. To this end, set

F (z) =

∫
R
h(x)ezxη(x) dx+

∫
R
h′(x)zezxψ(x) dx.

Using the Cauchy-Schwarz inequality, one can check that the function F is analytic in
{z : |Re(z)| < 1/2} and

F (n)(0) =

∫
R
h(x)xnη(x) dx+

∫
R
h′(x)nxn−1ψ(x) dx = 〈h, xn〉H = 0.

Hence, F (z) = 0, and applying this conclusion to z = it, t ∈ R, we see that h satisfies the
equality

(
hη − (h′ψ)′

)∧
= 0 and thus hη − (h′ψ)′ = 0

in the sense of distributions. Since the function hη is continuous on (0,∞), h satisfies the
differential equation

h(x)η(x)− (h′(x)ψ(x))′ = 0 (6.13)

pointwise for all x ∈ (0,∞). This in turn means that h′′ is well-defined on (0,∞). Actually,
with a little effort, one can prove that this differential equation is satisfied for all x ∈ R, but
we would not need it for our proof.

Since h ∈ ClH(Eodd), h is an odd continuous function. For x ≥ 2, (6.13) reads

h(x) +
1

2
h′(x)− h′′(x) = 0,

and so h(x) = C1 exp(λ1x) + C2 exp(λ2x) with

λ1 =
1−
√

17

4
, λ2 =

1 +
√

17

4
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for all x ≥ 2. Since λ2 > 1/2 and h ∈ H , C2 = 0. Without loss of generality, assume
that h(2) > 0, i.e., C1 > 0. Then h′(2) < 0 and since h(0) = 0, h(2) > 0, there exists
x ∈ (0, 2) such that h′(x) > 0. Denote

x0 = sup{x ∈ (0, 2) : h′(x) > 0}.

Then h′(x0) = 0 and since h′(x) ≤ 0 for x > x0, we have h(x0) > 0. Hence, (6.13)
implies that h′′(x0) > 0. Therefore h′(x) > 0 for some x > x0, which contradicts the
definition of x0. This contradiction finishes the proof of the lemma.

We are now ready to prove the main result of this section.

Proof. [Proof of Theorem 6.2] Fix an ε > 0, and let Ω be the event that |P | ∨ |N | ≥
(1/2 + ε)n. Let (k, l) be a uniformly chosen random pair of distinct elements of [n].
Assume that Ω occurs. Then

P(v(k)v(l) > 0 | A) ≥
(

(1/2+ε)n
2

)
+
(

(1/2−ε)n
2

)(
n
2

) =
1

2
+ 2ε2 +O(n−1) (6.14)

and

P(v(k)v(l) < 0 | A) ≤
(

1
4
− ε2

)
n2(

n
2

) =
1

2
− 2ε2 +O(n−1). (6.15)

By Theorem 6.6, for r = cε22,

P
(
|{j ∈ [n] : |v(j)| ≤ r1/2n−1/2}| ≥ (ε2/8)n

)
≤ exp(−cεn).

Let Ωlarge be the event that |{j ∈ [n] : |v(j)| ≤ r1/2n−1/2}| ≤ (ε2/8)n, and assume that
Ω ∩ Ωlarge occurs. Then

P(n|v(k)| · |v(l)| ≤ r | A) ≤ P(|v(k)| ∧ |v(l)| < r1/2n−1/2 | A) ≤ 1−
(

(1−(ε2/8))n
2

)(
n
2

) ≤ ε2

4
.

(6.16)
Let R ≥ (c0ε)

−4, where the constant c0 > 0 will be chosen later. Since ‖v‖2 = 1,

|{j ∈ [n] : |v(j)| ≥ R1/2n−1/2} ≤ n

R
≤ (c0ε)

4n,

so

P(n|v(k)|·|v(l)| ≥ R | A) ≤ P(|v(k)| ≥ R1/2n−1/2 or |v(l)| ≥ R1/2n−1/2 | A) ≤ 2(c0ε)
4.

(6.17)
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Summarizing (6.14), (6.15), (6.16), and (6.17), and choosing c0 small enough, we conclude
that on the event Ω ∩ Ωlarge,

P(nv(k)v(l) ∈ [r, R] | A) ≥ 1

2
+

3

2
ε2 +O(n−1)

and

P(nv(k)v(l) ∈ [−r,−R] | A) ≤ 1

2
− 3

2
ε2 +O(n−1).

Let h ∈ C∞(R) be an odd function such that h(x) = sign(x) for any x /∈ (−r, r).
Lemma 6.18 and inequality (6.12) imply that there exists an odd polynomial Q such that
‖h−Q‖L2(φ dx) < ε and

max
x∈[−R,R]

|h(x)−Q(x)| ≤ ε2

2
.

By Corollary 6.17, there exists AQ with P(A ∈ AQ) ≥ 1− n−ν such that for any A ∈ AQ,

E(k,l)Q(nv(k)v(l)) ≤ EQ(g1g2) + n−ν = n−ν ,

for sufficiently large n, since the polynomial Q is odd. We will provide a lower estimate of
this expectation in terms of P(Ω). We have

E(k,l)Q(v(k)v(l)) = E(k,l)Q(nv(k)v(l)) · 1n|v(k)v(l)|≤R +E(k,l)Q(nv(k)v(l)) · 1n|v(k)v(l)|>R.

Let us estimate these terms separately. On the event Ω ∩ Ωlarge,

E[Q(nv(k)v(l)) · 1n|v(k)v(l)|≤R | A] ≥
(

1− ε2

2

)
P(nv(k)v(l) ∈ [r, R] | A)

−
(

1 +
ε2

2

)
P(nv(k)v(l) ∈ [−R,−r] | A)

−
(

1 +
ε2

2

)
P(nv(k)v(l) ∈ [−r, r] | A)

≥ 2ε2 +O(n−1).

If A ∈ AQ2 , then

E[Q2(nv(k)v(l)) | A] ≤ EQ2(g1g2) + n−ν ≤
(
‖f‖L2(φ dx) + ε

)2

+ n−ν ≤ C.
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Hence, by (6.17) and Cauchy-Schwarz inequality, for any A ∈ AQ2 ,

E
[
Q(nv(k)v(l)) · 1n|v(k)v(l)|>R | A

]
≤ (P[n|v(k)v(l)| ≥ R | A])1/2 ·

(
E[Q2(nv(k)v(l)) | A]

)1/2

≤ C(c0ε)
2 ≤ ε2

2

if c0 is chosen sufficiently small. Thus, if A ∈ AQ2 and the event Ω ∩ Ωlarge occurs and n
is sufficiently large to absorb the O(n−1) term, then

E [Q(nv(k)v(l)) | A] ≥ ε2

4
,

and so, A /∈ AQ. This means that Ω ∩ Ωlarge ∩ {A ∈ AQ2 ∩ AQ} = ∅, and so

P(Ω) ≤ P(Ωc
large) + P(A ∈ AcQ2) + P(A ∈ AcQ) ≤ n−ν .

The theorem is proved.

6.4 Edge Eigenvector

In this section we will prove Theorem 6.4:

Theorem. (Edge case) Let G (n, p) be an Erdös-Rï¿œnyi Graph with p ∈ (0, 1). Fix a

sufficiently large ρ > 0. Suppose n is sufficiently large. Let uα be a non-leading eigenvector

of G (n, p) with min {α, n− α} ≤ ϕρn = (log n)ρ log logn. Denote by P and N the nodal

domains of this eigenvector. Then, for any ε > 0, there exists δ > 0 such that

P
(
|P | ∨ |N | ≥

(
1

2
+ n−

1
6

+ε

)
n

)
≤ n−δ.

Let Ap be the adjacency matrix of the G (n, p) graph with a fixed p ∈ (0, 1). Suppose
u is a non-leading edge eigenvector. We are aiming to show that

E (sign (u (1)u (2))) ≤ n−1/3+ε (6.18)

for a sufficiently small ε > 0. If proved, it leads to

E

(∑
i

signu (i)

)2

= n+
∑
i 6=j

Esign (u (i)u (j)) ≤ n+

(
n

2

)
n−1/3+ε ≤ n5/3+ε.

By Markov’s inequality, we can derive a bound for P
(
|
∑

i signu (i)| ≥ n5/6+ε
)

and

97



thus prove Theorem 6.4. Due to technical difficulties, we would not derive (6.18) directly.
Instead, we find an event A so that

E (sign (u (1)u (2)) |A ) ≤ n−1/3+ε.

For the event A , P (A c) ≤ n−δ where δ > 0 is ε dependent. Suppose we are able to
find such event, then, we have

P

(∣∣∣∣∣∑
i

signu (i)

∣∣∣∣∣ ≥ n5/6+ε/2

)
≤ P (A c) + P

(∣∣∣∣∣∑
i

signu (i)

∣∣∣∣∣ ≥ n5/6+ε |A

)
≤ n−δ + n−ε ≤ n−δ

′
,

which finishes the proof of Theorem (6.4).
The adjacency matrix Ap can be represented as a rank one shift of a scaled Wigner

matrix:
Ã := H +

√
pn

1− p
−→
1
−→
1 > (6.19)

where Hij = (hij) is a Wigner matrix with

hij =


√

1−p
p

1√
n

with probability p,

−
√

p
1−p

1√
n

with probability 1− p.
(6.20)

and
−→
1 ∈ Sn−1 is the vector such that every component equals 1√

n
.

The matrix H satisfies both Condition 6.7 and Condition 6.9.

Lemma 6.19. The matrix H satisfies Condition 6.9.

The proof of this lemma is based on Green function comparison theorem. The proof
is almost identical to that of [40, Proposition 2.4] and relies on comparison with the GOE
matrix. We omit the details.

In this section, we will fix a sufficiently large ρ > 0 appearing in the Theorem 6.4.
In particular, we require that ρ > 4Asls where Asls is the constant from the strong local
statistic Theorem 6.8.
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6.4.1 Outline of the proof

To lighten the notation, assume that Ap is n + 2 by n + 2. It is convenient to break the
matrix Ã into the blocks:

Ã =


D W>

W B

 , (6.21)

where B is of size n × n and D is of size 2 × 2. Let G (z) := 1
B−z be the Green function

of B. We will write the eigenvalues of Ã in terms of B, W and D:

Proposition 6.20. Any λ ∈ R satisfying

det
(
W>G (λ)W −D + λI2

)
= 0 (6.22)

is an eigenvalue λ of Ã. Furthermore, let q ∈ R2 be a non-trivial null vector ofW>G (λ)W−

D + λI2. Then,

[
q

−G (λ)Wq

]
is an eigenvector corresponding to λ.

Proof. Assume that
det
(
W>G (λ)W −D + λI2

)
= 0.

Let q ∈ R2 be a non-trivial null vector of W>G (λ)W −D + λI2. Then, we have
D − λ W>

W B − λ


[

q

−G (λ)Wq

]
= ~0.

Therefore, we have λ is an eigenvalue of Ã and u =

(
q

−G (λ)Wq

)
is the corresponding

eigenvector.

Up to a scaling, we have q =

[
1

−w>1 G(λ)w1−d11+λ

w>1 G(λ)w2−d12

]
where w1, w2 are the column

vectors of W and D =

[
d11 d12

d12 d22

]
. Therefore,

sign (u (1)u (2)) = sign

(
−w

>
1 G (λ)w1 − d11 + λ

w>1 G (λ)w2 − d12

)
. (6.23)
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Our goal is to estimate Esign
(
−w>1 G(λ)w1−d11+λ

w>1 G(λ)w2−d12

)
. Notice that G (z) depends only on

B, but λ depends on W,B and D. Instead on dealing with λ directly, we will study

s (E) := sign

(
−w

>
1 G (E)w1 − d11 + E

w>1 G (E)w2 − d12

)
for a constant E. To achieve this, it is necessary to know how the matrix B looks like.

Let {µα}nα=1 be the eigenvalues of B arranged in a non-increasing order and {uα}nα=1

be the corresponding unit eigenvectors. Observe that, up to a scaling factor
√

n+2
n

, B is a
Wigner matrix with a rank 1 shift:

B = M +

√
p (n+ 2)

(1− p)
ll>,

where M is the lower right n by n minor of H , and l ∈ Rn is the vector with all its
components equal to 1√

n+2
.
√

n+2
n
M is a generalized Wigner matrix satisfying both Conditions

6.7 and 6.9.
The proof will be break into 4 steps:

1.FromTypical Sample of H ToTypical Sample ofM

Here we are facing one obstacle. We want to fix a typical sample M to compute s(λ).
In particular, we want the level repulsion event described in Condition 6.9 to hold for M .
Unfortunately, if we choose A to be the event that every n × n principal minor of M̃
satisfies Condition 6.9, then we are not able to bound the probability nicely.

Indeed, we pick A to be what a typical H would looks like. A includes the event
that H satisfies the level repulsion Condition with εLR > 0 and CLR = ρ. In particular,
P(A c) < nδLR for some δLR depending on εLR and ρ. However, we cannot condition on
A directly , in this way we will lose the independence of B, W and D when we try to
estimate s(E). Therefore, in the first step we will define A and show the following:

E (|1H is typical − 1M is typical|) is small enough.

2.ATypical Sample of B

In the second step, we will show that if we fix a typical M , then B behaves like a Wigner
matrix. We expect B to behave like a Wigner matrix with an exceptional eigenvector
almost parallel to l with eigenvalue close to

√
p(n+2)

1−p . We will quantify these properties
in Definition (6.28) in section 6.4.3.
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3.Concentrationof w>i G (E)wj − dij + E

Thirdly, we will derive concentration of w>i G (E)wj for i, j ∈ {1, 2}. By definition,

w>i G (E)wj =
∑
α∈[n]

1

µα − E
〈wi, uα〉〈wj, uα〉.

If E is much closer to an eigenvalue µαE than any other eigenvalues, then, we expect
w>i G (E)wj to be dominated by the term 1

µαE−E
〈wi, uαE〉〈wj, uαE〉. We will show that by

freezing a typical B, with high probability in W and D we have

∀i, j ∈ {1, 2} w>i G (E)wj ' −δij +
〈wi, uαE〉〈wj, uαE〉

µαE − E
(6.24)

4.Estimate of s (λ)

Finally, we will derive the theorem by showing that

E (s (λα)1H is typical) = n−1/3+CεLR .

Once all these lemmas are proved, the main theorem follows immediately.

6.4.2 A typical sample of M

Let M be an n × n principal submatrix of H . Let {να}nα=1 be the eigenvalues of M
arranged in a non-increasing order and let {vα}nα=1 be the corresponding unit eigenvectors.
Let GM (z) := (M − z)−1 be the Green function of M and mM (z) := 1

n

∑n
α=1

1
να−z be

the Stieltjes transform of M .
A special role in the proof will be played by the level repulsion property, and the

strength of the level repulsion has to be carefully chosen for matrices of different sizes. Let
t > 0. We will say that an m×m symmetric matrix B satisfies the level repulsion property
with parameter t if for any two distinct eigenvalues ν, ν ′ ofA in

[
2− n−2/3ϕ3ρ

n , 2 + n−2/3ϕ3ρ
n

]
,

we have
|ν − ν ′| > t.

Denote the set of such matrices by L R(n, t). Lemma 6.21 asserts that

P(M ∈ L R(n, n−2/3−εLR)) ≥ 1− n−δLR

for some δLR > 0. We start with a lemma showing that the parameter t in the definition of
level repulsion can be adjusted without significantly changing this probability.
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Lemma 6.21. Let C > 0. Let M be an n × n symmetric random matrix. There exists

θ ∈ (1/2, 1) which depends on the distribution of M such that

P
(
M ∈ L R

(
n, θn−2/3−εLR − 4

ϕCn
n

))
−P

(
M ∈ L R(n, θn−2/3−εLR)

)
≤ n−1/3+2εLR .

Proof. For k ≥ 0, denote

Pk := P
(
M ∈ L R

(
n, n−2/3−εLR − kϕ

C
n

n

))
.

Then Pk ∈ (0, 1) form an increasing sequence. Hence, there exists k ≤ 4n1/3−2εLR such
that

Pk+4 − Pk ≤ n−1/3+2εLR .

This implies the lemma if we choose θ so that θn−2/3−εLR = n−2/3−εLR − kϕ
C
n

n
and note

that θ > 1/2.

We will fix this value of θ throughout the rest of the proof, but the distribution of M
will be specified later in Theorem 6.24.

Definition 6.22. Let us collect the properties of the n× n submatrices of H which we will
use throughout the proof. Fix a sufficiently small εLR > 0 and set

η = n−2/3−2εLR . (6.25)

Denote by A(n,k) the set of symmetric n×nmatricesM having the following properties:
Isotropic local semicircular law:

sup
|E−2|≤n−2/3+3εLR

sup
x,y∈{ei}ni=1∪{l}

|〈x, GM (E + iη) y〉 − 〈x, y〉msc (E + iη)| < 3n−
1
3

+3εLR ,

(6.26)
Rigidity of eigenvalues:

|να − γα| ≤ ϕAslsn [min (α, n− α + 1)]−1/3 n−2/3, (6.27)

where γα is defined so that
∫ 2

2−γα
2
π

√
4− x2dx = α

n
.

l∞-delocalization of eigenvectors:

∀α, ‖vα‖∞ ≤
ϕCn√
n
, (6.28)
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Isotropic delocalization of eigenvectors:

max
α∈[n]
|〈vα, l〉|2 < nεLR−1, (6.29)

Level repulsion at the edge: M ∈ L R
(
n, θn−2/3−εLR − kϕ

C
n

n

)
, i.e.,

for any two distinct eigenvalues ν, ν ′ of M in
[
2− n−2/3ϕ3ρ

n , 2 + n−2/3ϕ3ρ
n

]
, we have

|ν − ν ′| > θn−2/3−εLR − kϕ
C
n

n
. (6.30)

A typical Wigner matrix belongs to the set A(n,0). However, we need this fact not
for a single matrix M , but for all n × n principal submatrices of the (n + 2) × (n + 2)

matrix H . Denote by H(k) the (n + 1) × (n + 1) principal submatrix of H with row and
column k removed. Similarly, denote by H(i,j) the n × n) principal submatrix of H with
rows and columns i, j removed. The properties (6.26) – (6.27) hold with an overwhelming
probability, which allows to use a union bound while establishing them. In contrast to it,
condition (6.5) holds only with probability 1 − n−δLR for some δLR > 0, which is too
weak to be combined with the union bound. To guarantee that the level repulsion holds
with high probability for all principal submatrices, we show that the eigenvalues of these
submatrices are located closely to the eigenvalues of the original matrix. To this end, we
need the following lemma.

Lemma 6.23. Let J be anm×m symmetric matrix satisfying conditions (6.27) and (6.28),

with n = m. Let k ∈ [m], and let J (k) be the (m− 1)× (m− 1) principal submatrix of J

with row and column k removed. Let µ ∈
[
2− n−2/3ϕ3ρ

n , 2 + n−2/3ϕ3ρ
n

]
be an eigenvalue

of J (k). If J or J (k) satisfies (6.9), then there exists an eigenvalue λ of J such that

0 ≤ λ− µ ≤ ϕCn
n
.equationequation (6.31)

Consequently, if one of the matrices J or J (k) satisfies (6.5), then the other one satisfies the

same condition with a extra lose of ϕ
C
n

n
.

Proof. Note that µ is an eigenvalue of the matrix J − eke>k J as well since the k-th row of
this matrix is 0. We will start with showing that there exists an eigenvalue λ of J satisfying
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(6.31). Let GJ be the Green function of J . By Sylvester’s determinant identity, we have

0 = det
(
J − µ− eke>k J

)
= det (J − µ) det

(
In − eke>k JGJ (µ)

)
= det (J − µ)

(
1− e>k JGJ (µ) ek

)
.

If det (J − µ) = 0, then we are done. Otherwise, 1− e>k JGJ (λ) ek = 0, which can be
rewritten as ∑

α

λα
λα − µ

〈ek, uα〉2 = 1,

where λ1 ≥ · · · ≥ λm are the eigenvalues of J , and u1, . . . , um are the corresponding unit
eigenvectors.

By (6.27), for λα < 0 we have 0 < λα
λα−µ <

2
3
. Then,

∑
α,λα<0

λα
λα − µ

〈ek, uα〉2 ≤
∑

α,λα<0

2

3
〈ek, uα〉2 ≤

2

3
.

Hence, ∑
α,λα>µ

λα
λα − µ

〈ek, uα〉2 ≥
1

3
.

Let β be the largest positive integer so that λβ > µ. Assume that β > 1, and let α < β. If
J satisfies (6.5), then

λα − µ ≥ λβ−1 − λβ ≥ n−2/3−εLR .

On the other hand, if J (k) satisfies (6.5), and µ′ is the smallest eigenvalue of J (k) which is
greater than µ. Due to the Cauchy interlacing theorem, we know that

µ < λβ < µ′ < λα.

Then,
λα − µ ≥ µ′ − µ ≥ n−2/3−εLR .

In both cases, (6.28) and (6.27) applied with α = 1 imply

∑
α<β

λα
λα − µ

〈ek, uα〉2 ≤ β
λ1

n−2/3−εLR
max
α
‖uα‖∞ = O

(
n−1/3+Cε

)
.
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If β = 1, the inequality above is vacuous. Thus, in both cases,

λβ
λβ − µ

〈ek, uα〉2 ≥
1

3
+O

(
n−1/3+Cε

)
which in combination with (6.27), (6.28) leads to

ϕCn
n
≥ λβ − µ > 0

establishing (6.31). Since (6.31) holds for all µ ∈
[
2− n−2/3ϕ3ρ

n , 2 + n−2/3ϕ3ρ
n

]
, the

second part of the lemma follows from (6.5) for one of the matrices J or J (k) and interlacing
of their eigenvalues.

Equipped with Lemma 6.23, we derive the desired result about the typical behavior of
the principal submatrices. We remind the reader that for convenience, we consider graphs
with n+ 2 vertices.

Theorem 6.24. Let Ap be the adjacency matrix of a G(n+ 2, p) graph, and let

H =
1√

p (1− p) (n+ 2)
Ap −

√
p(n+ 2)

1− p
−→
1
−→
1 >,

where
−→
1 ∈ Sn+1 is the vector such that every component equals 1√

n
. Let A be the set of

(n+ 2)× (n+ 2) symmetric matrices H such that the matrix itself belongs to A(n+2,2), all

its principal (n+ 1)× (n+ 1) submatrices belong to A(n+1,3), and all its principal n× n
submatrices belong to A(n,4).

Then

P(H ∈ A ) ≥ 1− n−δ

for some δ = δ(p, ρ, εLR) > 0. Moreover, for any i, j ∈ [n],

E
∣∣∣1A(n,0)

(H(i,j))− 1A (H)
∣∣∣ ≤ n−1/3+2εLR .

Proof. Combining Theorem 6.8, Corollary 6.12, and Theorem 6.13 with the union bound
shows that conditions (6.26) – (6.29) hold for the matrix H itself, as well as for all its
(n + 1) × (n + 1) and n × n principal submatrices with probability at least 1 − n−1. In
addition to it, (6.5) holds for H with k = 2 with probability at least 1− n−δ (See 6.19 and
Condition 6.9). Then Lemma 6.23, together with the properties (6.26) – (6.29) allow us
to extend (6.5) with k = 3 to all its (n + 1) × (n + 1) principal minors. As these minors
possess the same properties, (6.5) further extends with k = 4 to all n× n principal minors.
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Let us prove the second inequality. Denote by B the set of all (n+ 2)× (n+ 2) symmetric
matrices satisfying conditions (6.26) – (6.29). Then

P
(
H(i,j) ∈ A(n,0) and H /∈ A

)
≤P
(
H(i,j) ∈ A(n,0) and H /∈ A and H ∈ B

)
+ P(H /∈ B)

≤n−1

since by Lemma 6.23, A(n,0) ∩A c ∩B ⊂ A(n,0) ∩A c
(n+2,2) ∩B = ∅. Also, notice that all

the minors H(i,j) have the same distribution. Now we specify that the θ from Lemma 6.21
is chosen according to the distribution of H(i,j). Hence,

P
(
H(i,j) /∈ A(n,0) and H ∈ A

)
≤ P

(
H(i,j) /∈ A(n,0) and H(i,j) ∈ A(n,4)

)
≤ n−1/3+2εLR

by Lemma 6.21. The result follows.

6.4.3 Introduction of the shift

In this section, we will derive the typical properties of all n× n principal submatrices of a
normalized adjacency matrix of aG(n+2, p) graph. Recall that we denoted such submatrix
by B, and

B = M +

√
p (n+ 2)

(1− p)
ll> (6.32)

whereM is an n×n principal submatrix of H , and l =
(

1√
n+2

, . . . , 1√
n+2

)
is almost a unit

vector. We expect B to behave close to M in a sense that its non-leading eigenvalues and
eigenvectors possess similar properties. The argument at this stage is deterministic. We fix
the matrix M ∈ A(n) and treat B as its rank one perturbation.

We start with showing that the non-leading edge eigenvalues of B are very close to that
of M .

Lemma 6.25. Let M ∈ A(n,0) be an n×n symmetric matrix, and let B be as in (6.32). Let

µ1 ≥ · · · ≥ µn be the eigenvalues of B. If β is such that |µβ+1 − 2| ≤ n−2/3ϕ2ρ
n , then

|νβ − µβ+1| ≤ n−1+CεLR (6.33)

for some universal constant C > 0. Futhermore, µβ+1 is an eigenvalue of M if and only if
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〈l, vβ〉 = 0. In the case µβ+1 is not an eigenvalue of M , we have

〈l, vβ+1〉2

νβ − µβ+1

≥ 1− o (1) (6.34)

Proof. Suppose that µ is an eigenvalue of B. By Sylvester’s determinant identity we have

0 = det

(
M − µIn +

√
p (n+ 2)

1− p
ll>

)

= det (M − µIn) det

(
In +GM (µ)

√
p (n+ 2)

1− p
ll>

)

= det (M − µIn)

(
1 + l>GM (µ)

√
p (n+ 2)

1− p
l

)
.

(
1 + l>GM (µ)

√
p(n+2)

1−p l
)

equals to 0 if

∑
α∈[n]

〈l, vα〉2

vα − µ
= − 1√

p(n+2)
1−p

. (6.35)

Now we assume that 〈l, vα〉 6= 0 for α ∈ [n]. Observe that the function x 7→
∑

α∈[n]
〈l, vα〉2
να−x

have vertical asymptotes when x = να for α ∈ [n]. Away from the asymptotes, it is a
monotone increasing function. For x ∈ (ν1,∞), it increases from −∞ at ν1 to 0 when
x approaches +∞. For x < νn, the function is positive. Hence, (6.35) hold at exactly n
points. We conclude that the eigenvalues of M and B are interlacing:

µ1 ≥ ν1 ≥ µ2 ≥ · · · ≥ µn ≥ νn. (6.36)

If 〈l, vα〉 = 0 for some α ∈ [n], then, να is an eigenvalue of B with the same eigenvector
vα and the function we described above lose the corresponding vertical intercept at να. One
can easily verify that the eigenvalues are still interlacing.

For the leading eigenvalue, µ1 ≥ 1
2

√
p(n+2)

1−p due to the fact that |M | = O(1) by (6.27).
Suppose we have

να − n−1+CεLR ≤ µα+1 ≤ να

for α = 1, . . . , β − 1 and νβ > 2− n−2/3ϕ2ρ
n . Now we check the case for νβ . Assume that

〈l, vβ〉 6= 0.
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Suppose that ∑
α 6=β

〈l, vα〉2

vα − E
≤ −1 + o (1) (6.37)

for all E ∈ (νβ+1, νβ). Then, by (6.35),

〈l, vβ+1〉2

νβ − µβ+1

= − 1√
p(n+2)

1−p

−
∑
α 6=β

〈l, vα〉2

vα − µβ+1

≥ 1− o (1)

By (6.29), we have 〈l, vβ+1〉2 < nεLR−1, which allows to conclude that

0 < νβ − µβ+1 ≤ n2εLR−1

as required. In the case 〈l, vβ〉 = 0, we have µβ+1 = νb. Hence, by an induction, the proof
of our statement is complete. In particular, we also conclude that µβ+1 ∈ {να}ni=1 if and
only if 〈l, vβ〉 = 0.

It remains to verify (6.37). This will be done by comparing the right hand side of (6.37)
with

Re 〈l, GM (E + iη) l〉 =
∑
α∈[n]

να − E
(να − E)2 + η2

〈l, vα〉2.

Assume first that 1
2
νβ + 1

2
νβ+1 ≤ E ≤ νβ . In view of (??),

νβ+1 +
1

2
n−2/3−εLR <

νβ+1 + νβ
2

< E < νβ < νβ−1 − n−2/3−εLR .

(we omit the last inequality if β = 1.) Hence, for α 6= β, we have

|E − να| >
1

2
n−2/3−εLR =

1

2
ηnεLR (6.38)

(recall that η = n−2/3−2εLR) and so

1

να − E
=
(
1 +O

(
n−2εLR

)) να − E
(να − E)2 + η2

.
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Therefore,∑
α>β

1

να − E
〈l, vα〉2

=
(
1 +O

(
n−2εLR

))∑
α>β

να − E
(να − E)2 + η2

〈l, vα〉2

=
(
1 +O

(
n−2εLR

))(
Re 〈l, GM (E + iη) l〉 −

∑
α≤β

να − E
(να − E)2 + η2

〈l, vα〉2
)
.

since all the summands have the same sign. Now we will evaluate the two terms in the
brackets. The first one can be approximated using the local semicircular law, and the second
one is negligible, because the sum consists of a few terms, and each term is small. Indeed,
by rigidity of eigenvalues (6.27), we have |2− γβ| < n−2/3ϕ4ρ

n and thus β < ϕCρn for some
constant C > 0. With the trivial bound |να − E| < 2n−2/3ϕ3ρ

n , we get∣∣∣∣∣∑
α≤β

να − E
(να − E)2 + η2

〈l, vα〉2
∣∣∣∣∣ ≤ β

n−2/3ϕ3ρ
n

η2
n−1+εLR ≤ n−1/3+6εLR

if n is sufficiently large. The isotropic local semicircular law (6.26) yields

Re 〈l, GM (E + iη) l〉 = 〈l, l〉msc (E + iη) +O
(
n−1/3+3εLR

)
.

Using the fact thatmsc (z) = −z+
√
z2−4

2
with the branch cut at [−2, 2], we havemsc (E + iη) =

−1 +O
(
n−1/3ϕ3ρ

n

)
. Thus,

Re 〈l, GM (E + iη) l〉 = −1 +O
(
n−1/3+3εLR

)
and we conclude that ∑

α>β

1

να − E
〈l, vα〉2 ≤ −1 + o (1) (6.39)

for all E ∈
(

1
2
νβ + 1

2
νβ+1, νβ

)
. Since E 7→

∑
α>β

1
να−E 〈l, vα〉

2 is increasing for E >

νβ+1, the inequality above extends to all E ∈ (νβ+1, νβ). Together with

∑
α<β

1

να − E
〈l, vα〉2 ≤ β

1

n−2/3−εLR
n−1+εLR = o (1)
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for E ∈ (νβ+1, νβ), we conclude that all E ∈ (νβ+1, νβ) satisfy

∑
α 6=β

1

να − E
〈l, vα〉2 ≤ −1 + o (1) ,

completing the proof of the lemma.

Our next aim is comparing the Stieltjes transform of B to that of the semicircular law.
This will be done via the comparison of the former to the Stieltjes transform of M .

Lemma 6.26. Let M ∈ A(n) be an n×n symmetric matrix, and let B be as in (6.32). Then

sup
E: |E−2|≤ϕ2ρ

n

|mB (E + iη)−msc (E + iη)| ≤ n−1/3+CεLR ,

where

mB (z) :=
1

n

n∑
α=1

1

uα − z

is the Stieltjes transform of B and η = n−2/3−2εLR .

Proof. Fix E such that |E − 2| ≤ ϕ2Asls
n . We estimate the real part and imaginary of the

Stieltjes transform part separately. Let us start with the real part.

RemB (E + iη) =
1

n

∑
α

µα − E
(µα − E)2 + η2

.

The function x → x
x2+η2

is decreasing when |x| > η. Based on this fact, let β be the
smallest integer such that νβ < E − η. Recall that we have the interlacing property:

E − η > νβ ≥ µβ+1 ≥ νβ+1 ≥ µβ+2 · · · ≥ µn ≥ νn.

Then, we have

n−1∑
α=β

να − E
(να − E)2 + η2

≤
n∑

α=β+1

µα − E
(µα − E)2 + η2

≤
n∑

α=β+1

να − E
(να − E)2 + η2

.

Furthermore, as x
x2+η2

lies in
[
− 1

2η
, 1

2η

]
for all x ∈ R, we have

RemM (E + iη)− β

nη
≤ RemB (E + iη) ≤ RemM (E + iη) +

β

nη
,

and the bound for the real part follows.
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For the imaginary part we have

ImmB (E + iη) =
1

n

∑
α

η

(λB − E)2 + η2
.

The function x → η
x2+η2

is increasing if x < 0. Let β be the smallest constant such that
λβ < E. We have

n−1∑
α=β+1

η

(να − E)2 + η2
≤

n∑
α=β+1

η

(µα − E)2 + η2
≤

n∑
α=β

η

(να − E)2 + η2
.

Since η
x2+η2

∈
[
0, 1

η

]
for all x, we conclude that

ImmM (E + iη)− 2β

nη
≤ ImmB (E + iη) ≥ ImmM (E + iη) +

2β

nη
.

Due to (6.27) and
∫ 2

2−γα
1

2π

√
4− x2 dx = α

n
we have β ≤ ϕCρn . We conclude that

|mM (E + iη)−mB (E + iη)| ≤ ϕCρn n−1/3+2εLR .

In view of (6.26),

|mM (E + iη)−msc (E + iη)| =

∣∣∣∣∣ 1n∑
i

〈ei, G (E + iη) ei〉 −msc (E + iη)

∣∣∣∣∣ ≤ 3n−
1
3

+3εLR

which in combination with the previous inequality finishes the proof.

Next, we will derive the delocalization properties of edge eigenvectors of B.

Lemma 6.27. Let M ∈ A(n,0) be an n × n symmetric matrix, and let B be as in (6.32).

Let µ1 ≥ · · · ≥ µn be the eigenvalues of B, and let u1, . . . , un be the corresponding unit

eigenvectors. If β is such that |µβ+1 − 2| ≤ n−2/3ϕ2ρ
n , then

|〈uβ, l〉| ≤ n−1+2εLR . (6.40)

and

‖uβ‖∞ ≤
n1/6+6εLR

√
n

. (6.41)

Proof. As pointed out in Lemma 6.25, µβ+1 is an eigenvalue ofM if and only if 〈l, vβ〉 = 0.
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In this case, we have vβ = uβ+1 so we are done.
Now we assume µβ+1 is not an eigenvalue of M . In particular, it satisfies (6.35). Using

this equality, one can directly check that

u =
∑
α∈[n]

〈l, vα〉
να − µβ+1

vα

is an eigenvector corresponding to eigenvalue µβ+1.
First, we provide a lower bound for ‖u‖2. By Lemma 6.25, we have 〈l, vβ+1〉2

|νβ−µβ+1| ≥
1
2
.

Using 〈l, vβ+1〉2 ≤ n−1+εLR from (6.29), we bound the norm by one of the coefficients:

‖u‖2
2 ≥

〈l, vβ+1〉2

|νβ − µβ+1|2
=

1

〈l, vβ+1〉2

(
〈l, vβ+1〉2

|νβ − µβ+1|

)2

≥ 1

4
n1−εLR . (6.42)

Recall from (6.35) that
∑

α∈[n]
〈l, vα〉2
να−µβ+1

= − 1√
p(n+2)
1−p

and the left hand side is exactly

〈u, l〉. This yields

|〈uβ, l〉| =
〈u, l〉
‖u‖2

≤ n−1+2εLR

if n is sufficiently large.
Now we will estimate ‖u‖∞ = maxi∈[n]

∣∣∣∑α∈[n]
〈l, vα〉〈ei, vα〉
να−µβ+1

∣∣∣. We break the sum to
isolating the main term:

|〈u, ei〉| ≤
∣∣∣∣ 〈l, vβ〉νβ − µβ+1

∣∣∣∣ ‖vβ‖∞ +

∣∣∣∣∣∑
α 6=β

〈l, vα〉〈ei, vα〉
να − µβ+1

∣∣∣∣∣
≤
∣∣∣∣ 〈l, vβ〉νβ − µβ+1

∣∣∣∣ ‖vβ‖∞ +

√√√√∑
α 6=β

〈l, vα〉2

(να − µβ+1)2

√∑
α 6=β

〈ei, vα〉2

≤
∣∣∣∣ 〈l, vβ〉νβ − µβ+1

∣∣∣∣ ‖vβ‖∞ +

√√√√∑
α 6=β

〈l, vα〉2

(να − µβ+1)2 .

We will show below that√√√√∑
α 6=β

〈l, vα〉2

(να − µβ+1)2 ≤ n1/6+4εLR . (6.43)
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If this inequality holds, (6.42) implies

‖uβ+1‖∞ =
‖u‖∞
‖u‖2

≤

∣∣∣ 〈l, vβ〉νβ−µβ+1

∣∣∣ ‖vβ‖∞
‖u‖2

+
n1/6+4εLR

‖u‖2

≤

∣∣∣ 〈l, vβ〉νβ−µβ+1

∣∣∣ ‖vβ‖∞∣∣∣ 〈l, vβ〉νβ−µβ+1

∣∣∣ + 4n1/6−1/2+5εLR ≤ n−1/3+6εLR ,

where we used ‖vβ‖∞ ≤
ϕCn√
n

from (6.28) in the last inequality. This completes the proof of
the lemma modulus (6.43).

Now we will focus on establishing (6.43) by comparing
∑

α 6=β
〈l, vα〉2

(να−E)2
with

1

η
Im 〈l, GM (E + iη) l〉 =

1

η
Im

∑
α∈[n]

〈l, vα〉2

να − E − iη
=
∑
α∈[n]

〈l, vα〉2

(να − E)2 + η2

for any E ∈
(
νβ+νβ+1

2
, νβ

)
which includes µβ+1. The approach is basically the same as in

approximation of
∑

α6=β
〈l, vα〉2
vα−E by Re 〈l, G (E + iη) l〉 in Lemma 6.25. As in this lemma,

we use |να − E| > 1
2
ηnεLR for α 6= β to derive

η

(να − E)2 =
(
1 +O

(
n−2εLR

)) η

(να − E)2 + η2
.

Thus,

∑
α 6=β

〈l, vα〉2

(να − µβ+1)2 =
(
1 +O

(
n−2εLR

)) [1

η
Im 〈l, GM (E + iη) l〉 − 〈l, vβ〉2

(νβ − µβ+1)2 + η2

]

≤
(
1 +O

(
n−2εLR

)) 1

η
Im 〈l, GM (E + iη) l〉.

By (6.26) we have

Im 〈l, G (E + iη) l〉 = Immsc (E + iη) +O
(
n−1/3+3εLR

)
.

As |E − 2| < n−2/3ϕ3ρ
n and η = n−2/3−2εLR , a direct estimate yields Immsc (E + iη) =

O
(
n−1/3ϕ3ρ

n

)
. Therefore,

∑
α 6=β

〈l, vα〉2

(να − µβ+1)2 ≤ n1/3+4εLR
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proving (6.43) and finishing the proof of the lemma.

We have shown that if M ∈ A(n,0), then the matrix B shares the spectral properties of
M . Let us summarize these properties.

Definition 6.28. Denote by T(n,k) the set of n × n symmetric matrix B with eigenvalues
µ1 ≥ · · · ≥ µn and unit eigenvectors u1, . . . , un possessing the following properties.

Eigenvalue properties:

Definition 6.29. Isotropic local semicircular law:

sup
E: |E−2|≤ϕ2ρ

n

|mB (E + iη)−msc (E + iη)| ≤ n−1/3+CεLR , (6.44)

where mB (z) := 1
n

∑n
α=1

1
uα−z is the Stieltjes transform of B and η = n−2/3−2εLR .

Rigidity of the eigenvalues:

∀α = 1, . . . , n− 1 |µα+1 − γα| ≤ 2ϕAslsn [min (α, n− α + 1)]−1/3 n−2/3. (6.45)

Leading eigenvalue:

µ1 ≥
1

2

√
p

1− p
n. (6.46)

Edge eigenvector properties:

Definition 6.30. Isotropic delocalization:
for β such that |µβ − 2| ≤ n−2/3ϕ2ρ

n , we have

〈uβ, l〉 = O
(
n−1+cεLR

)
. (6.47)

`∞ delocalization:
for β such that |µβ − 2| ≤ n−2/3ϕ2ρ

n ,

‖uβ‖∞ ≤
n−1/6+4εLR

√
n

. (6.48)

Level repulsion at the edge: B ∈ L R
(
n, θn−2/3−εLR − kϕ

C
n

n

)
, i.e.,

for any two distinct eigenvalues ν, ν ′ of B in
[
2− n−2/3ϕ3ρ

n , 2 + n−2/3ϕ3ρ
n

]
, we have

|ν − ν ′| > θn−2/3−εLR − kϕ
C
n

n
. (6.49)
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The matrices B ∈ T(n,1) will be called typical below. In particular, we’ve shown that
M ∈ A(n,0) implies B ∈ T(n,1).

Theorem 6.24 implies that probability close to 1, the normalized adjacency matrix of
a G(n, p) graph is typical along with its principal submatrices. We will formulate it as a
corollary.

Corollary 6.31. Let Ap be the adjacency matrix of a G(n+ 2, p) graph, and let

Ãp =
1√

p (1− p) (n+ 2)
Ap.

In particular, we have

Ãp = H +

√
p(n+ 2)

1− p
−→
1
−→
1 >.

We can view A as an event of Ap. For convenience, we denote it as T . Precisely,

1T (Ap) = 1A (H). Then

P(Ap ∈ T ) ≥ 1− n−δ

for some δ = δ(p, ρ, εLR) > 0. Moreover, for any i, j ∈ [n],

E
∣∣∣1T(n,1)

(Ã(i,j)
p )− 1T (Ap)

∣∣∣ ≤ n−1/3+2εLR .

Proof. Except for (6.45) and (6.46), these are conditions have been derived from the corresponding
conditions on H above. Condition (6.45) follows from the interlacing of the eigenvalues of
Ãp and its principal submatrices. Finally, (6.46), follows from (6.27) for α = 1 since

µ1 ≥ 〈l, Bl〉 ≥

√
p (n+ 2)

1− p
‖l‖4

2 − λ1(M) ‖l‖2
2 ≥

1

2

√
p

1− p
n.

Both probability estimates follow now from Theorem 6.24.

6.4.4 Concentration of w>i G (E)wj − dij + E

In this section, we fix an n×n matrix B ∈ T(n,1). Let E be a constant such that |E − 2| ≤
n−2/3ϕ2ρ

n . Let {µα}nα=1 be eigenvalues of B arranged in the non-increasing order and let
{uα}nα=1 be the corresponding unit eigenvectors. LetG (E) =

∑
α

1
µα−Euαu

>
α be the Green

function of B.
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Denote by αE the integer such that

|µαE − E| = min
α
|µα − E| .

In this section we will prove the following lemma:

Lemma 6.32. Fix a sample ofB ∈ T(n,1). With probability greater than 1−exp (−c (p)ϕn)

(ϕn := (log n)log logn) in w1 and w2, we have

∀i, j ∈ {1, 2} w>i G (E)wj = −
(
1 +O

(
n−2εLR

))
δij+
〈wi, uαE〉〈wj, uαE〉

µαE − E
+O

(
n−1/3+Cε

)
(6.50)

for all E ∈
[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
and αE ∈ [n] is the integer so that |µαE − E| ≤

minα∈[n] |µα − E|.

By level repulsion (6.49), we have

|µα − E| >
1

8
n−2/3−εLR (6.51)

for α 6= αE . Now, we decompose G to separate the main term:

G (E) =
∑
α

1

µα − E
uαu

>
α =

∑
α6=αE

1

µα − E
uαu

>
α +

1

µαE − E
uαEu

>
αE

:= L (E) +
1

µαE − E
uαEu

>
αE
.

For i = 1, 2, we express wi as

wi = w̃i +

√
p

1− p
l,

where w̃i has i.i.d components which has the distribution as (6.20). In particular, one can
treat

√
n+ 2w̃i as an isotropic subgaussian vector whose entries have ψ2-norms bounded

by K (p).
Our goal is to show that w>i L (E)wj is concentrated about −δi,j . To achieve that, we

break it into the form

w>i L (E)wj = w̃>i L (E) w̃j +

√
p

1− p
l>L (E) w̃j +

√
p

1− p
w̃>i L (E) l+

p

1− p
l>L (E) l

(6.52)
and estimate each summand separately. We start with the bilinear term.
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Lemma 6.33. Fix an n×nmatrixB ∈ T(n,0). With probability greater than 1−exp (−c (p)ϕn)

(ϕn := (log n)log logn) in w1 and w2, we have

w̃>i L (E) w̃j = −
(
1 +O

(
n−2εLR

))
δij +O

(
n−1/3+CεLR

)
(6.53)

for E ∈
[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
. Here, O (n−2εLR) and O

(
n−1/3+CεLR

)
mean some

deterministic functions of n with the prescribed asymptotic, and c (p) is a constant that

depends only on p.

Proof of Lemma (6.33). FixE ∈
[
2− n−2/3ϕ2Asls

n , 2 + n−2/3ϕ2Asls
n

]
. We will first estimate

the expectation of w̃>1 L (E) w̃1 and then use the Hanson-Wright inequality to derive the
concentration.

Expectation

Since Ew̃1,w̃2w̃
>
1 L (E) w̃2 = 0 by independence of w̃1 and w̃2, and since Ew̃2w̃

>
2 L (E) w̃2 =

Ew̃1w̃
>
1 L (E) w̃1, we have to evaluate only the last quantity. Using the fact that w̃1 has

independent entries with mean 0 and variance 1
n+2

, we obtain

Ew̃1w̃
>
1 L (E) w̃1 = Ew̃1

∑
α 6=αE

1

µα − E
〈uα, w̃1〉2

=
∑
α 6=αE

1

µα − E

∑
i∈[n] u

2
α (i)

n+ 2

=
1

n+ 2

∑
α 6=αE

1

µα − E
.

Recall that for all α ∈ [n− 1], we have rigidity of eigenvalues (6.45):

|µα+1 − γα| ≤ 2ϕAslsn [min (α, n− α + 1)]−1/3 n−2/3.

Hence, |{α : µα > E, &α 6= αE}| ≤ ϕCρn , and

∑
α:µα>E&α 6=αE

1

µα − E
≤ |{α : µα > E, &α 6= αE}| ·

1

4
n2/3+εLR ≤ n2/3+2εLR (6.54)

We write
1

µα − E
=

(
1 +

η2

(µα − E)2

)
µα − E

(µα − E)2 + η2
,

and set η := n−2/3−2εLR . With this choice of η, we have |µα − E| > 1
4
nεLRη from (6.51),
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and so
(

1 + η2

(µα−E)2

)
= 1 +O (n−2εLR). Therefore,

1

n

∑
α:µα<E&α 6=αE

1

µα − E

=
(
1 +O

(
n−2εLR

)) ∑
α:λα<E&α 6=αE

1

n

µα − E
(µα − E)2 + η2

(6.55)

=
(
1 +O

(
n−2εLR

)) [
RemB (E + iη)− 1

n

∑
α:µα>E orα=αE

µα − E
(µα − E)2 + η2

]
=
(
1 +O

(
n−2εLR

))
RemB (E + iη) +O

(
n−1/3+3εLR

)
, (6.56)

where the last equality relies on (6.54). Combining (6.54) and (6.56), we get

1

n

∑
α 6=αE

1

µα − E
=
(
1 +O

(
n−2εLR

))
RemB (E + iη) +O

(
n−1/3+3εLR

)
.

We have RemB (E + iη) = Remsc (E + iη) + O
(
n−1/3+CεLR

)
= −1 + O

(
n−1/3+CεLR

)
by (6.44). Thus, if εLR is small enough, then

1

n

∑
α 6=αE

1

µα − E
= −1 +O

(
n−2εLR

)
.

We conclude that
Ew̃1w̃

>
1 L (E) w̃1 = −1 +O

(
n−2εLR

)
.

Concentration

Next, we would like to apply Hanson-Wright inequality from Theorem 6.14. Tho this
end, we need to estimate the operator norm and Hilbert Schmidt norm of L (E). The
operator norm can be estimated directly:

‖L (E)‖ ≤ max
α 6=αE

1

µα − E
≤ 1

4
n2/3+εLR .
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For the Hilbert Schmidt norm, a derivation similar to (6.56) yields

‖L (E)‖2
HS =

∑
α 6=αE

1

(µα − E)2

= (1 + o (1))
∑
α 6=αE

1

(µα − E)2 + η2
= (1 + o (1))

n

η

∑
α 6=αE

η

n

1

(µα − E)2 + η2

= (1 + o (1))
n

η

[
ImmB (E + iη)− η

n

1

(µαE − E)2 + η2

]
= (1 + o (1))

n

η

(
Immsc (E + iη) +O

(
n−1/3+CεLR

)
− η

n

1

(µαE − E)2 + η2

)
,

(6.57)

where we used |msc (E + iη)−m (E + iη)| ≤ O
(
n−1/3+CεLR

)
from (6.44). Now, a

direct computation shows that Im (msc (E + iη)) = O
(
n−1/3+CεLR

)
and η

n
1

(µαE−E)
2
+η2

=

O
(

1
nη

)
= O

(
n−1/3+2εLR

)
. Hence,

‖L (E)‖2
HS =

∑
α 6=αE

1

(µα − E)2 = (1 + o (1))
n

η
O
(
n−1/3+CεLR

)
= O

(
n4/3+CεLR

)
.

One can easily show that
∥∥√n+ 2w̃1 (i)

∥∥
ψ2
≤ C

√
1−p
p

. An application of (6.7) with

X =
√
n+ 2w̃1 and A = L (E) yields

P
(∣∣w̃>1 L (E) w̃1 − Ew1w̃

>
1 L (E) w̃1

∣∣ ≥ t

n+ 2

)
≤ 2 exp

(
−c (p)

t

n2/3+CεLR

)
.

Taking t = n2/3+C′εLR , we get w̃>1 L (E) w̃1 = −1 +O
(
n−2εLR

)︸ ︷︷ ︸
Ew̃>1 L(E)w̃1

+O
(
n−1/3+C′εLR

)
with

probability at least 1− exp (−c (p)ϕn). (Recall that ϕn = log nlog logn. )
Notice that, the same estimate works for w̃2 and w̃1 + w̃2 as well: with probability at

least 1− exp (−c (p)ϕn),

(w̃1 + w̃2)> L (E) (w̃1 + w̃2) = Ew̃>1 L (E) w̃1 + Ew̃>2 L (E) w̃2︸ ︷︷ ︸
E(w̃1+w̃2)>L(E)(w̃1+w̃2)

+O
(
n−1/3+CεLR

)
.

Therefore, by the linearity, with probability at least 1− exp (−c (p)ϕn) we have

w̃>1 L (E) w̃2 = O
(
n−1/3+CεLR

)
,
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obtaining (6.53) for a fixed E.
To extend this to all E ∈

[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
, we will use a net argument.

Let N be a κ-net on
[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
with κ = n−100 and assume that (6.53)

holds for all E ∈ N . Since |N | is polynomial in n, this event has probability bounded by
exp (−c (p)ϕn).

Recall that the coordinates of
√
n+ 2w̃i are independent, centered, subgaussian random

variables. One can easily deduce that
∥∥√n+ 2w̃1 (k)

∥∥
ψ2
≤ C

√
1−p
p

. By Hoeffding’s
inequality,

√
n+ 2〈w̃i, uα〉 =

n∑
k=1

√
n+ 2w̃i (k)uα (k)

is also subgaussian since ‖uα‖2 = 1. Similarly, (n+2) ‖w̃i‖2
2, being a sum of subexponential

random variables, satisfies Bernstein’s inequality. Together with a union bound, these two
fact imply

P
(
∃α ∈ [n] , i ∈ {1, 2} |〈w̃i, uα〉| ≥

ϕn√
n+ 2

& ‖wi‖2 ≤ ϕn

)
≤ exp (−c (p)n) .

Assume that these two events occur in addition to the assumption that (6.53) holds for all
E ∈ N which we already made. Let E ∈

[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
, and choose

E ′ ∈ N such that |E − E ′| < κ. Suppose αE 6= αE′ , then

∣∣w̃>i L (E) w̃j − w̃>i L (E ′) w̃j
∣∣

≤‖w̃i‖2 ‖w̃j‖2

∑
α 6=αE , αE′

∣∣∣∣ 1

µα − E
− 1

µα − E ′

∣∣∣∣+

∣∣∣∣〈w̃i, uαE′ 〉〈w̃j, uαE′ 〉µαE′ − E

∣∣∣∣+

∣∣∣∣〈w̃1, uαE〉〈w̃j, uαE〉
µαE − E ′

∣∣∣∣
≤‖w̃1‖2 ‖w̃2‖2

∑
α 6=αE , αE′

4κ

η2
+

∣∣∣∣〈w̃i, uαE′ 〉〈w̃2, uαE′ 〉
µαE′ − E ′

∣∣∣∣+

∣∣∣∣〈w̃i, uαE〉〈w̃j, uαE〉µαE − E ′

∣∣∣∣
≤‖w̃i‖2 ‖w̃j‖2

4n

η2
κ+

∣∣∣∣〈w̃i, uαE′ 〉〈w̃j, uαE′ 〉µαE′ − E

∣∣∣∣+

∣∣∣∣〈w̃i, uαE〉〈w̃j, uαE〉µαE − E ′

∣∣∣∣
Since αE 6= αE′ , we have min

{∣∣µαE′ − E∣∣ , |µαE − E ′|} ≥ 1
8
n2/3−εLR . Together with

|〈w̃i, uα〉| ≤ ϕn√
n+2

, this yields∣∣∣∣〈w̃i, uαE′ 〉〈w̃j, uαE′ 〉µαE′ − E

∣∣∣∣+

∣∣∣∣〈w̃i, uαE〉〈w̃j, uαE〉µαE − E ′

∣∣∣∣ = O
(
n−1/3+2εLR

)
.
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Thus,

∣∣w̃>i L (E) w̃j − w̃>i L (E ′) w̃j
∣∣ ≤ ‖w̃i‖2 ‖w̃j‖2

4n

η2
κ+O

(
n−1/3+2εLR

)
As κ = n−100, the difference is bounded by O

(
n−1/3+2εLR

)
. The same bound holds

for the case αE = αE′ , and the proof is simpler, since the last two terms do not appear.
Therefore, (6.53) holds for E as well. if constant C is appropriately adjusted.

Next, we bound the linear and constant terms in (6.52).

Lemma 6.34. Fix an n×nmatrixB ∈ T(n,1). With probability greater than 1−exp
(
c (p)ϕCnn

)
,

for any E such that |E − 2| ≤ n−2/3ϕ2ρ
n ,

l>L (E) l = O
(
n−1/3+CεLR

)
, and w̃>1 L (E) l = O

(
n−1/3+CεLR

)
. (6.58)

Here, c (p) is a constant that depends only on p.

Proof. Applcation of Hoeffding’s inequality to 〈w̃i, uα〉 yields

P
(
〈w̃i, uα〉2 ≥

ϕn
n+ 2

)
≤ exp (−c (p)ϕn) ,

and so
max
α, i
〈w̃i, uα〉2 ≤

ϕn
n

with probability greater than 1 − exp (−c (p)ϕn). In view of this inequality and the fact

that
(∑

α6=1〈l, uα〉2
) 1

2
=
∣∣∣Pu⊥1 l∣∣∣ = O

(
logC n√

n

)
,

∣∣∣∣∣ ∑
α 6=1, αE

〈w̃i, uα〉〈l, uα〉
µα − E

∣∣∣∣∣ ≤
( ∑
α 6=1, αE

〈l, uα〉2
) 1

2
( ∑
α 6=1, αE

〈w̃i, uα〉2

(µα − E)2

) 1
2

= O

(
ϕCn
n

)√ ∑
α 6=1, αE

1

(µα − E)2 .

Again, one can approximate
∑

α 6=1, αE
1

(µα−E)2
by n

η
Immsc (E + iη) as before and obtain

∑
α 6=1, αE

1

(µα − E)2 = O
(
n4/3+CεLR

)
.
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This shows that ∣∣∣∣∣ ∑
α 6=1, αE

〈w̃i, uα〉〈l, uα〉
µα − E

∣∣∣∣∣ = O
(
n−1/3+CεLR

)
.

with probability greater than 1− exp (−c (p)ϕn).
Furthermore, recall from (6.46) that µ1 ≥ 1

2

√
p(n+2)

1−p . Thus
∣∣∣ 〈w̃i, u1〉〈l, u1〉µ1−E

∣∣∣ = o
(

1√
pn

)
,

and

|l>L (E) l| =

∣∣∣∣∣ ∑
α 6=αE

〈l, uα〉2

µα − E

∣∣∣∣∣ ≤
(

1

4
n2/3+εLR

∑
α 6=1, αE

〈l, ũα〉2
)

+
1

µ1 − E
≤ n−1/3+CεLR .

Again, this result can extend easily for all E ∈
[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
by a

net argument. We omit the proof here since it is the same as the net argument in Lemma
6.33.

Combining Lemmas 6.33 and 6.34, we obtain Lemma 6.32.

6.4.5 Estimate of s (λ)

Recall that in Corollary 6.31, we denoted by T be the set of (n+ 2)× (n+ 2) symmetric
matrices all whose n × n principal submatrices are typical in a sense that they satisfy
the conditions in T(n,0). Suppose that λα is an eigenvalue of Ãp and vα ∈ Rn+2 is the
corresponding unit corresponding eigenvector. As in (6.23),

sign (vα (1) vα (2)) = s (λα) = sign

(
−w

>
1 G (λα)w1 − d11 + λα
w>1 G (λα)w2 − d12

)
.

In this section, we will prove the following:

Lemma 6.35. Let Ap be the adjacency matrix of a G(n, p) graph, and let λ1 ≥ · · · ≥ λn

be the eigenvalues of the matrix

Ãp =
1√

p (1− p)n
Ap.

Fix 2 ≤ α ≤ ϕρn. Then

E (s (λα) · 1A (H)) = O
(
n−1/3+CεLR

)
.
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As T pertains to all n× n principal submatrices, the same bound holds for

E
(

sign (vα (i) vα (j)) · 1T (Ãp)
)

for any i 6= j.
Once this lemma is proved, Theorem 6.4 follows easily:

Proof. For 2 ≤ α ≤ ϕρn, we have

E

(
(
n+2∑
i=1

sign(uα(i)))2|A

)
= O(n5/3+CεLR).

Applying Markov’s inequlaity we get

P

(
|
n+2∑
i=1

sign(uα(i))| > n5/3+C′ε

)
< n−δLR + n−εLR .

The proof of this lemma will be based on the concentration we get from Lemma 6.32.
LetB be the n×n principal submatrix containing the last n rows and columns. If Ãp ∈ T ,
then B ∈ T(n,0).

Consider α = 2 first. Let µ′1 ≥ µ′n+1 be the eigenvalues of the (n + 1) × (n + 1)

matrix containing the last (n + 1) rows and columns of Ãp. Per (6.45) for Ãp, λ2 ∈[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
, so interlacing and Lemma 6.23 imply that

µ′2 ≤ λ2 ≤ µ′2 +
ϕCn
n

< µ′1

where µ′1 satisfies (6.46). Repeating this argument for B, in view of (6.49) and (6.46), we
conclude that λ2 ∈ [µ2, µ1]. For 2 < α ≤ ϕρn, (6.49) similarly yields λα ∈ [µα, µα−1].

Condition on a submatrix B. Since α ≤ ϕρn, by the estimate that
∫ 2

2−t
1

2π

√
4− x2 dx ≥

1
2π
t3/2, we have 2−γα ≤ n−2/3ϕρn and thus 2−µα ≤ n−2/3ϕ2ρ

n due to rigidity of eigenvalues
(6.45).

Let AwGw be the set of n×2 matricesW such that (??) in Lemma 6.32 holds. Specifically,
AwGw is defined by the condition

∀i, j ∈ {1, 2} w>i G (E)wj = −
(
1 +O

(
n−2εLR

))
δij+
〈wi, uαE〉〈wj, uαE〉

µαE − E
+O

(
n−1/3+C1εLR

)
(6.59)
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for all E ∈
[
2− n−2/3ϕ2ρ

n , 2 + n−2/3ϕ2ρ
n

]
and a universal constant C1 > 0. Here, αE ∈ [n]

is the integer so that |µαE − E| ≤ minα∈[n] |µα − E|.
Before we move on to the proof directly, let us introduce another set. Let AW be an set

of W such that for i ∈ {1, 2}

n−1/3+κεLR ≤
√
n |〈w̃i, uα〉| ≤ log2 n (6.60)

where κ ≥ max {2C1, 8} and and

w̃i = wi −
√

p

1− p
l.

Lemma 6.36. Let the W be the n × 2 block W of Ãp defined in (6.21). With the notation

above, we have

P (W ∈ AW ) ≥ 1− n−1/3+2κεLR ,

and

P (〈w̃i, uα〉 > 0) =
1

2
+O

(
n−1/3+5εLR

)
for i = 1, 2. (6.61)

Proof. The upper bound in (6.60) holds with the desired probability due to Hoeffding’s
inequality. We will estimate the probability that the lower bound holds and prove (6.61)
at the same time. Let Xk :=

√
n+ 2w̃1 (k)uα (k). Since w̃1 (k) has mean 0 and variance

1
n+2

, we set

Sn =

∑
k∈[n] Xk∑
k∈[n] EX2

k

=
〈w̃1, uα〉√
n+ 2

.

Observe that EX2
k = uα (k)2 and EX3

k ≤ c (p) |uα (k)|3 where c (p) > 0 is a constant
depends on p. Let Fn and Φ be the cumulative distributions of Sn and the normal random
variable respectively. By the Berry-Esseen Theorem 6.15, we have

sup
x∈R
|Fn (x)− Φ (x)| ≤ C

(
n∑
i=1

EX2
i

)−1/2

max
i

E |Xi|3

EX2
i

≤ c (p)
‖uα‖∞
‖uα‖2

.

Recall from (6.41) in the defintion of T(n,0), we have the l∞-norm bound:
√
n ‖uα‖∞ ≤

n−1/3+4εLR . Together with ‖uα‖2 = 1 we get

sup
x∈R
|Fn (x)− Φ (x)| ≤ n−1/3+5εLR
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if n is large enough. Thus,

P
(√

n |〈w̃1, uα〉| ≤ n−1/3+κεLR
)
≤ P

(√
n |g| ≤ n−1/3+κεLR

)
+2n−1/3+5εLR ≤ n−1/3+1.5κεLR ,

where g ∼ N (0, 1) is a normal random variable. Furthermore, we also obtain (6.61) by
comparing Φ and Fn.

Proof of Lemma 6.35. By (6.22), if λ ∈ R is an eigenvalue of Ãp, then

det
(
W>G (λ)W −D + λI2

)
= 0.

Let

f (E) :=

(
w>1 G (E)w1 − d11 + E

) (
w>2 G (E)w2 − d22 + E

)(
w>1 G (E)w2 − d12

)2 .

Thus, λ is an eigenvalue whenever f (λ) = 1. We will use the function f (E) to determine
the location of the eigenvalues.

Let AD be the set of all 2 × 2 symmetric matrices D such that maxi,j∈{1,2} |dij| =

O
(
c (p)n−1/2

)
. Assume that W ∈ AwGw ∩ AW and D ∈ AD. We will see below that this

is a likely event.
Under these conditions, the argument becomes deterministic. By (6.41) from the definition

of T(n,0), we have |〈uα, l〉| ≤ n−1+2εLR . Hence,

〈wi, uα〉 = (1 + o (1)) 〈w̃i, uα〉

and in particular 〈wi, uα〉 and 〈w̃i, uα〉 have the same sign.
Observe thatE 7→ w>1 G (E)w1−d11+E is a strictly increasing function on (µα, µα−1).

It tends to −∞ as E → µ+
α and +∞ as E → µ−α−1. Thus, it crosses 0 only once. Let E0 be

maximum of the roots of w>1 G (E)w1−d11 +E and w>2 G (E)w2−d22 +E on (µα, µα−1).
Then by (6.59) and |dij| = O

(
c (p)n−1/2

)
,

−
(
1 +O

(
n−2εLR

))
+
〈wi, uαE0

〉2

µαE0
− E0

+ E0 = 0

for some i ∈ {1, 2}. As µα−1 > E0 > µα ≥ 2 − n−2/3ϕ2ρ
n , this implies that E0 > µαE0

,
and thus αE0 = α. Moreover, E0 − 1 = 1 +O (n−2εLR), and so

E0 =
(
1 +O

(
n−2εLR

))
max

{
〈w1, uα〉2, 〈w2, uα〉2

}
+ µα.

For E > E0, both w>1 G (E)w1 − d11 + E and w>2 G (E)w2 − d22 + E are positive.
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Setting
E1 = 2 max

{
〈w1, uα〉2, 〈w2, uα〉2

}
+ µα,

for E ∈ [µα, E1], we also have αE = α, and∣∣∣∣〈w1, uα〉〈w2, uα〉
µα − E

∣∣∣∣ ≥ ∣∣∣∣〈w1, uα〉〈w2, uα〉
µα − E1

∣∣∣∣ (6.62)

=
1

2
min

{∣∣∣∣〈w1, uαE〉
〈w2, uα〉

∣∣∣∣ , ∣∣∣∣〈w2, uα〉
〈w1, uα〉

∣∣∣∣} > log−2 n · n−1/3+κεLR

(6.63)

by (6.60). Sow>1 G (E)w2−d12 has no zeros in the interval [λα, E1]. Furthermore, because

min

{∣∣∣∣〈w1, uα〉
〈w2, uα〉

∣∣∣∣ , ∣∣∣∣〈w2, uα〉
〈w1, uα〉

∣∣∣∣} ≤ 1,

using (6.59) and |dij| = O
(
c (p)n−1/2

)
again, we get

(
w>1 G (E1)w2 − d12

)2
=

(
〈w1, uα〉〈w2, uα〉

µα − E1

+O
(
n−1/3+C1ε

))2

=

(
1

2
min

{∣∣∣∣〈w1, uα〉
〈w2, uα〉

∣∣∣∣ , ∣∣∣∣〈w2, uα〉
〈w1, uα〉

∣∣∣∣}+O
(
n−1/3+C1εLR

))2

≤ 1

4
+ o (1) ≤ 1

2
.

Together with

(
w>1 G (E1)w1 − d11 + E1

) (
w>2 G (E1)w2 − d22 + E1

)
= 1 + o (1)

this yields f (E1) ≥ 1. Since f (E0) = 0, there exists λ ∈ (E0, E1) such that f (λ) = 1,
which shows that λα ∈ (E0, E1).

Now we will focus on s (λα). Since λα > E0 , the w>1 G (λα)w1− d11 + λα is positive.
Also,

w>1 G (λα)w2 − d12 =
〈w1, uα〉〈w2, uα〉

µα − λα
+O

(
n−1/3+CεLR

)
,

and the magnitude of the leading term is significantly greater than O
(
n−1/3+CεLR

)
by

(6.62). Since µα − λα < 0, the expression above has the same sign as −〈w1, uα〉〈w2, uα〉.
Therefore, we conclude that

s (λα) =

(
−w

>
1 G (λα)w1 − d11 + λ

w>1 G (λα)w2 − d12

)
= sign (s (〈w1, uα〉〈w2, uα〉)) = sign (s (〈w̃1, uα〉〈w̃2, uα〉))
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for any Ãp ∈ T , W ∈ AwGw ∩AW , and D ∈ AD.
It remains to estimate the expectation of s (λα). Recall that we conditioned on the block

B, andW andD are independent ofB. Denote this conditional expectation and probability
by EW,D and PW,D. We have

|EW,D (s (λα)1T (Ap))| ≤ |EW,D (s (λα)1T (Ap)1AW (W )1AwGw(W )1AD(D))|

+ PW,D (W /∈ AwGw ∪AW ) + PW,D (D /∈ AD)

= |EW,D (sign (s (〈w̃1, uα〉〈w̃2, uα〉))1T (Ap)1AW (W )1AwGw(W )1AD(D))|

+O
(
n−1/3+C′εLR

)
.

We can get rid of the indicators in the leading term in a similar way:

|EW,D (sign (s (〈w̃1, uα〉〈w̃2, uα〉))1T (Ap)1AW (W )1AwGw(W )1AD(D))|

≤ |EW,D (sign (s (〈w̃1, uα〉〈w̃2, uα〉))1T (Ap))|+ PW,D (W /∈ AwGw ∪AW ) + PW,D (D /∈ AD)

≤ |EW,D (sign (s (〈w̃1, uα〉〈w̃2, uα〉))1T (Ap))|+O
(
n−1/3+C′εLR

)
.

Removing the conditioning over B, we get∣∣∣E(s (λα)1T (Ãp)
)∣∣∣

≤ |E (sign (s (〈w̃1, uα〉〈w̃2, uα〉))1T (Ap))|+O
(
n−1/3+C′εLR

)
≤
∣∣∣E(sign (s (〈w̃1, uα〉〈w̃2, uα〉))1T(n,1)

(A(1,2)
p )

)∣∣∣
+ E

∣∣∣1T (Ap)− 1T(n,1)
(Ã(1,2)

p )
∣∣∣+O

(
n−1/3+C′εLR

)
In view of Corollary 6.31, the second term does not exceed n−1/3+2εLR . To bound the first
term, we condition again on the blockB = Ã

(1,2)
p such that Ã(1,2)

p ∈ T(n,1) and apply (6.61).
By this inequality,

Pi := P
[
〈w̃1, ua〉 ≥ 0 | Ã(1,2)

p

]
:=

1

2
+ pi

where pi = O
(
n−1/3+5εLR

)
. Using the independence of w̃1 and w̃2, we get

E
[
sign (〈w̃1, ua〉〈w̃2, uα〉) | Ã(1,2)

p

]
= P1P2 + (1− P1)(1− P2)− P1(1− P2)− (1− P1)P2

= 4p1p2 = O
(
n−2/3+10εLR

)
.

Removing the conditioning completes the proof of Lemma 6.35.
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