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ABSTRACT

Extremal transitions are a contract-deform surgery, which play a significant role

in spacetime topology change in string theory. From a physical point of view, we

expect that mirror symmetry might be preserved under extremal transitions. Li-

Ruan initiated the study of the change of Gromov-Witten theory under conifold

transitions twenty years ago and some generalizations to other Type I transitions

have been made over the years, but no work on Type II extremal transitions has

been known before. In this thesis, we propose a very general conjectural framework

which relates two quantum D-modules under a primitive extremal transition. We

verify this framework for a number of examples of Type II extremal transitions. In

the case of cubic extremal transitions, we find an interesting connection between the

quantum D-module and the genus zero FJRW theory of the cubic singularity.
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CHAPTER I

Introduction

The interplay between mathematics and physics has proven extremely fruitful

over the past few decades. String theory, a physical model of the universe proposed

by physicists in hopes of reconciling quantum physics with general relativity, has

stimulated plenty of new developments in mathematics. One of the most intriguing

impetuses comes from the study of physical dualities. Interesting dualities often arise

naturally in physics where different models may describe the same physical theories.

On the mathematical side, however, such a duality can give rise to a highly nontrivial

correspondence between two rather different mathematical theories.

One prominent example is mirror symmetry, a physical duality between two forms

of string theory. Mirror symmetry conjectures that there exists a pair of Calabi-

Yau 3-folds (X, X̂) such that the symplectic geometry of X is equivalent to the

complex geometry of X̂. On the symplectic side of X, we can define Gromov-Witten

invariants, which can be viewed as the virtual number of holomorphic curves of a

fixed genus and degree in X. If mirror symmetry holds for (X, X̂), then we expect

the Gromov-Witten invariants of X can be computed from the period integrals on X̂,

which purely depend on the complex geometry of X̂. The idea of mirror symmetry

has led to many important breakthroughs, including the solution to a long-standing

1
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problem in enumerative geometry: counting rational curves on a general quintic

3-fold (see e.g. [4, 17, 28]).

This thesis focuses on understanding how Gromov-Witten invariants change un-

der extremal transitions. Extremal transitions are a topological surgery, which serves

as the basic building blocks for topological changes of Calabi-Yau 3-folds. If one can

establish a mirror symmetry statement under extremal transitions, then mirror sym-

metry conjectures may be proved for a huge family of Calabi-Yau 3-folds from known

examples. Our current approach is through quantum D-modules, which encode the

genus zero Gromov-Witten invariants. In this work, we will propose a conjectural

framework that relates two quantum D-modules under an extremal transition, and

we will verify this framework for a number of examples involving Calabi-Yau 3-folds.

In the case of cubic extremal transitions, we will also show an interesting connection

between the quantum D-modules and the Fan-Jarvis-Ruan-Witten (FJRW) theory

of the cubic singularity.

1.1 Reid’s Fantasy

Classification of Calabi-Yau 3-folds presents an important problem in algebraic

geometry. A construction by Batyrev using toric geometry [2] revealed more than

470 million families of Calabi-Yau 3-folds, with more than 30,000 distinct Hodge dia-

monds, which made the classification problem nearly impossible. It is even unknown

whether the number of topologically distinct Calabi-Yau 3-folds is finite or not.

A popular classifying scheme from the 1990s is to classify Calabi-Yau 3-folds up to

surgeries. There are two types of surgeries involved in this picture: flops and extremal

transitions. Flops are a birational surgery and usually arise as different resolutions

of a singular variety. It is known that any two Calabi-Yau 3-folds are birationally
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equivalent if and only if they are connected by a sequence of flops. On the other

hand, for two birationally non-equivalent classes of Calabi-Yau 3-folds, Miles Reid

speculated that they might be connected through a sequence of extremal transitions

(known as Reid’s fantasy [32]). One strong support for Reid’s Fantasy is that there

are 7555 Calabi-Yau hypersurfaces in weighted P4 that are indeed connected through

extremal transitions [5].

1.2 Gromov-Witten theory under surgeries

Two decades ago, Li-Ruan [27] initiated a program to study the change of Gromov-

Witten theory under flops and conifold transitions. Their motivation is to extend

mirror symmetry to a larger class of Calabi-Yau 3-folds. The strategy can be sum-

marized as follows: one starts with a mirror pair (X, X̂), and assumes that another

Calabi-Yau 3-fold Y is obtained by applying a flop/extremal transition on X. Then

conjecturally there should exist a reverse flop/transition which allows one to obtain

the mirror partner Ŷ for Y from the mirror partner X̂ for X.

X X̂

Y Ŷ

mirror

extremal

transition

∃?
reverse

transitionmirror

Assuming Reid’s Fantasy holds, if one can prove a mirror symmetry statement

for flops and extremal transitions, then mirror symmetry for all Calabi-Yau 3-folds

would follow directly from one single mirror pair (X, X̂). Hence the very first step

would be to understand how Gromov-Witten invariants change under flops as well

as under extremal transitions.

In their pioneering work [27], Li-Ruan show that a flop between two Calabi-Yau 3-
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folds induces a natural equivalence between their genus zero Gromov-Witten theories.

More precisely, there is an isomorphism between their quantum cohomology rings,

up to analytic continuation over the extended Kähler moduli space. Here quantum

cohomology rings can be viewed as encoding the genus zero Gromov-Witten invari-

ants. Later, Lee-Lin-Wang [25] generalized the invariance of quantum cohomology

to higher dimensional flops in various settings. A general expectation is that two

Gromov-Witten theories related by a flop are essentially equivalent via an appropri-

ate analytic continuation of the quantum variables.

In sharp contrast to flops, the change of Gromov-Witten theory under an extremal

transition is much subtler and more complicated. If X and Y are related by an

extremal transition, a general expectation is that the Gromov-Witten theory of Y

can be realized as a sub-theory of the Gromov-Witten theory of X. However, it is

not clear what statement one can prove for extremal transitions.

1.3 Extremal Transitions

Let X and Y be two smooth varieties over C. The process of going from X to Y

is called an extremal transition if Y is obtained by applying a birational contraction

π : X → Y followed by a complex smoothing Y  Y .

X

Y Y

π

An extremal transition is called primitive if the birational contraction cannot be

factored further in the algebraic category. According to Wilson’s classification [33],

we have the following three types of primitive extremal transitions:

• Type I (small transition): π contracts a union of curves
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• Type II: π contracts a divisor to a point

• Type III: π contracts a divisor to a curve

In the case of Type II transitions between 3-folds, when the exceptional locus of

π : X → Y is a del Pezzo surface of degree k, we will say this a degree-k extremal

transition.

Li-Ruan [27] showed that a conifold transition (or more generally, any Type I ex-

tremal transition) between two Calabi-Yau 3-folds induces a natural homomorphism

between their quantum cohomology rings. There are many further generalizations

(see e.g. [21, 23, 26]) for Type I extremal transitions using different formulations.

1.4 The main results

This thesis work is devoted to studying Gromov-Witten theory under Type II

extremal transitions since no such work1 had been published in the prior twenty

years and the most difficult problem is that it is unclear what kind of statement one

can prove. we will formulate a conjectural framework using the language of quantum

D-modules and verify this framework for the local model and Calabi-Yau examples

of Type II extremal transitions in both degree-3(cubic) and degree-4 cases. In the

cubic case, we will show an interesting connection between the quantum D-modules

and the Fan-Jarvis-Ruan-Witten (FJRW) theory of the cubic singularity. This thesis

work is primarily based on [30, 31].

The notion of the quantum D-module of X, denoted byH(X), is a cyclic D-model

generated by the generating function of Gromov-Witten invariants of X with only

one insertion. Due to a reconstruction theorem in Gromov-Witten theory (see e.g.

[24]), the quantum D-module can be viewed as encoding the genus zero Gromov-

1Lee-Lin-Wang initiated the study on A-model and B-model transitions of k-fold singularities. However, their
results have not been published and we were only aware of their results after the completion of the current work.
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Witten theory of X. When X is a complete intersection in toric variety, we usually

consider the ambient part quantum D-module, which is still denoted by H(X) if

there is no risk of confusion. Detailed explanations can be found in Chapter II.

I propose the following framework in [30] that relates the quantum D-modules

under a primitive extremal transition.

Conjecture I.1. Suppose two smooth projective varieties X and Y are related by

a primitive extremal transition. One may perform analytic continuation of H(X)

over the extended Kähler moduli space of X to obtain a D-module H̄(X). There is

a divisor E and a submodule H̄E(X) ⊆ H̄(X) with maximum trivial E-monodromy

such that

H̄E(X)|E ' H(Y ),

where H̄E(X)|E is the restriction to E.

The above conjecture is based on several observations: first, the quantum D-

modules of X and Y usually involve different quantum variables. To compare their

quantum D-modules, one must find a way to relate their quantum variables. This is

usually done by analytic continuation over the extended Kähler moduli, and in this

way, we obtain a D-module H̄(X). Moreover, a discrepancy exists between the rank

of H̄(X) and H(Y ), which leads us to identify H(Y ) as a submodule of H̄(X) after

restriction to a transition divisor E in the extended Kähler moduli space. There is

also the issue of monodromy involved when we want to make sense of the restriction

of a quantum D-module. For this reason, we need to require this submodule admit

only trivial monodromy around the transition divisor in question. Finally, it turns

out that in many cases, this submodule should have maximum trivial E-monodromy.

The above conjectural framework is verified for the following examples.
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Theorem I.2. Conjecture I.1 holds for the following cases:

1. X := P(KS ⊕O), and Y is a cubic 3-fold in P4, where S is a cubic surface;

2. Degree-3 Type II extremal transitions between two Calabi-Yau 3-folds {X0, Y0};

3. X ′ := P(KE ⊕O), and Y ′ is a (2,2) complete intersection in P5, where E is a

del-Pezzo surface of degree 4;

4. Degree-4 Type II extremal transitions between two Calabi-Yau 3-folds {X1, Y1};

5. Degree-4 Type II extremal transitions between two Calabi-Yau 3-folds {X2, Y2}.

The descriptions of these examples are as follows. More detailed explanations and

the proof of Theorem I.2 can be found in Chapter III and Chapter V, respectively.

1. The local model of degree-3 extremal transition {X, Y }: Let S be a cubic surface

inside a Calabi-Yau 3-fold V and assume the curves on S generate an extremal

ray in the Mori cone of V . One may contract S to a point with cubic singularity

whose local equation is given by

x3 + y3 + z3 + w3 = 0,

Deforming this equation, we obtain a smoothing

x3 + y3 + z3 + w3 = t (t 6= 0).

Consider a tubular neighborhood around E, which is identified with its normal

bundle NE/X . Since the ambient variety is a Calabi-Yau 3-fold, we also have

NE/X ' KE. Compactifying both sides, we take X := P(KS ⊕ O), and Y

is a cubic 3-fold in P4. This is the local model of degree-3 Type II extremal

transitions.

2. A Calabi-Yau example of cubic extremal transitions {X0, Y0} (appeared in [30])

is obtained in the following way: Let Y0 be a quintic hypersurface in P4 which
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can be deformed into a singular quintic Ȳ0 with a unique triple point singular-

ity, then let X0 be the blow-up of Ȳ0 at the unique singular point, which is a

crepant resolution. The passage from X0 to Y0 is an example of degree-3 Type

II extremal transition between two Calabi-Yau 3-folds.

3. The local model of degree-4 Type II extremal transitions {X ′, Y ′}: Let E be the

degree-4 del Pezzo surface inside a Calabi-Yau 3-foldX, which gets contracted to

a point under π. Consider a tubular neighborhood around E, which is identified

with its normal bundle NE/X . Since the ambient variety is a Calabi-Yau 3-fold,

we also have NE/X ' KE. Under the birational morphism π, the divisor is

contracted to a point with singularity locally given by a complete intersection

of two equations with quadratic leading terms. Smoothing out the singularity

locally yields a (2,2) complete intersection in P5. We compactify NE/X ' KE

and take X ′ := P(KE ⊕O), while Y ′ is a (2,2) complete intersection in P5. The

transition from X ′ to Y ′ is the local model of Type II extremal transitions in

degree 4.

4. A Calabi-Yau example of degree-4 Type II extremal transitions {X1, Y1}: In the

first example, Y1 is a (2,4) complete intersection in P5, which can be deformed

into Ȳ1 with a unique singularity, and the Taylor expansions of the two polyno-

mials at the singular point begin with a general quadratic term. Then we take

X1 to be the blow-up of Ȳ1 at the unique singular point. Thus the passage from

X1 to Y1 is a Calabi-Yau example.

5. The second Calabi-Yau example {X2, Y2} is obtained in a similar fashion. We

take Y2 to be a (3, 3) complete intersection in P5 which can be also deformed into

Ȳ1 with a unique singularity, and the Taylor expansions of the two polynomials

at the singular point begin with a general quadratic term. Then we take X2 to
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be the blow-up of Ȳ2 at the unique singular point. The passage from X2 to Y2

is another Calabi-Yau example.

The second major result in this work is to show that, in the case of cubic ex-

tremal transitions {X, Y }, there is an interesting connection between the quantum

D-module of X and the genus zero FJRW theory of the cubic singularity (represented

as FJRW D-module). We note that Lee-Lin-Wang [23] also observed that the mon-

odromy non-invariant part of the quantum D-module H̄(X) should be related to the

deformation of the singularity of Ȳ . Thus we confirm Lee-Lin-Wang’s observation in

the case of cubic extremal transitions.

In the early days of mirror symmetry, physicists observed that the defining equa-

tion of a Calabi- Yau 3-fold in weighted projective space naturally leads to a Landau-

Ginzburg (LG) model of the singularity. A Gromov-Witten-type theory for singular-

ities was later worked out by Fan, Jarvis, and Ruan [12, 13, 14], based on Wittens

proposal on the LG A-model, and now this theory is referred to as Fan-Jarvis-Ruan-

Witten (FJRW) theory. Inspired by physics, a correspondence between Calabi-Yau

geometry (considered from the point of view of Gromov-Witten theory) and the

Landau-Ginzburg model for singularity (considered from the point of view of FJRW

theory) has been established (known as LG/CY correspondence) and led to many

important consequences (see e.g. [6, 7, 8]). Later an analogous LG/(Fano/General

Type) correpondence was studied in Acosta’s thesis work [1]. The genus zero FJRW

invariants are encoded in FJRW I-function, which is a formal hypergeometric series

valued in FJRW state space. In Fano case, Acosta introduces a notion of regular-

ized FJRW I-function, which determines the ordinary FJRW I-function by Laplace

transformation and asymptotic expansion. The D-module attached to the regular-

ized FJRW I-function is defined as the FJRW D-module in this work, where more
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detailed explanations can be found in Chapter IV.

The connection between the quantum D-module of X and the FJRW D-module

of the cubic singularity is the following.

Theorem I.3. Let H̄(X) be the D-module obtained by analytic continuation consid-

ered in the example (1) or (2) in Theorem I.2, then there is another divisor F in the

extended Kähler moduli and a submodule H̄F (X) ⊆ H̄(X) which has maximal trivial

F -monodromy such that

H̄F (X)/H̄E(X)|F ' L(W ),

where L(W ) is the FJRW D-module of the polynomial W = x3 + y3 + z3 + u3.

Theorem I.3 is stated and proved in Chapter IV. Combining Theorem I.2 and

Theorem I.3, we can conclude that in the case of cubic extremal transitions, the

genus zero Gromov-Witten theory of X recovers not only the genus zero Gromov-

Witten theory of Y but also the genus zero FJRW theory of the cubic singularity.

This can be schematically summarized as follows:

GW theory (X) =⇒



GW theory (Y )

+

FJRW theory (cubic singularity)

(for g = 0).
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1.5 Outline

The thesis is organized as follows: In Chapter II, we will review the basics of

Gromov-Witten theory and quantum D-modules. We will establish the necessary

notations and terminologies used throughout this work. In Chapter III, we will

explain the local model and the Calabi-Yau example of cubic extremal transitions

and prove the part (1) and (2) of Theorem I.2. In Chapter IV, we will give a brief

survey of FJRW theory and prove Theorem I.3. In Chapter V, we will describe the

local model and Calabi-Yau examples of degree 4 Type II extremal transitions. We

will prove the part (3), (4) and (5) of Theorem I.2.



CHAPTER II

Background in Gromov-Witten theory

In this chapter, we will begin reviewing the basics of Gromov-Witten theory.

General references on this subject are [10, 15, 20].

2.1 Gromov-Witten invariants and quantum D-module

Let P be a smooth projective variety, H∗(P ) be its cohomology ring in even

degrees, with coefficients in Q unless specified otherwise. Let M0,n(P, β) be the

moduli space of genus zero stable maps f : (C, x1, · · · , xn) → P from a rational

nodal curve C with n markings and f∗[C] = β ∈ NE(P ), the Mori cone of effective

curves. Given γ1, · · · , γn ∈ H∗(P ), a1, · · · , an ∈ N, the descendent Gromov-Witten

invariant is defined as

〈τa1(γ1) · · · τan(γn)〉β :=

∫
[M0,n(P,β)]vir

ψa11 ev∗1γ1 · · ·ψann ev∗nγn,

where

• evi :M0,n(P, β)→ P is the i-th evaluation map.

• ψi = c1(Li), where Li is the line bundle over M0,n(P, β) whose fiber over a

moduli point [(C, x1, · · · , xn, f)] is the cotangent line T ∗xiC at the i-th marked

point.

12
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When a1 = · · · = an = 0, we call this primary Gromov-Witten invariant, and write

it as

〈γ1 · · · γn〉β :=

∫
[M0,n(P,β)]vir

ev∗1γ1 · · · ev∗nγn.

To introduce the notion of quantum D-module of H(P ), we choose a basis {Ti}mi=0

for H∗(P ) such that T0 = 1 and {T1, · · · , Tr} is a nef basis for H2(P ). Let {T i}

be the dual basis for {Ti}. Choose a generic cohomology class T =
∑
tiTi with

coordinate t = (ti)
m
i=0, then the genus zero Gromov-Witten potential is defined as

Φ(T ) :=
∞∑
n=0

∑
β∈NE(P )

Qβ

n!
〈T, T, · · · , T︸ ︷︷ ︸

n-tupe

〉β.

The (big) quantum product is defined as

Ti ?t Tj :=
m∑
k=0

ΦijkT
k,

where the structure coefficients are Φijk = ∂ti∂tj∂tkΦ. This product is associative

due to WDVV equation.

In Givental’s approach to the mirror theorem [16], the following generating func-

tion is introduced, which is usually called the big J-function

Jbig(t, z−1) := 1 +
T

z
+
∞∑
n=0

∑
β∈NE(P )

Qβ

n!

m∑
k=0

〈
Tk

z(z − ψ1)
, T, T, · · · , T︸ ︷︷ ︸

n-tupe

〉
β

T k.

It is usually convenient to consider the small J-function, which is obtained by

restricting the big J-function to tr+1 = · · · = tm = 0. Let qi = eti for i = 1, · · · , r.

These variables are usually called small parameters and may be viewed as local

coordinates of the Kähler moduli space. In this setting, the Novikov varible Q may

be eliminated by setting Q ≡ 1. By divisor equation, the small J-function takes the

following form

(2.1) Jsm(t0, q, z
−1) := et0/zqT/z

(
1 +

∑
β 6=0

qβ
m∑
k=0

〈
Tk

z(z − ψ1)

〉
β

T k

)
,
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where

qT/z :=
r∏
i=1

q
Ti/z
i , q

Ti/z
i := exp

(
Ti
z

log qi

)
, qβ := qT1·β1 · · · qTr·βr .

Let Dq be the ring generated by the log differential operator zδqi := zqi∂qi over

C[qi, q
−1
i , z], where we view z as a formal parameter. Let J(q, z−1) := Jsm(0, q, z−1).

We make the following definition

Definition II.1. The (small) quantum D-module H(P ) is the cylic Dq-module gen-

erated by J(q, z−1).

Remark II.2. It is well known that the cyclic D-module generated by Jbig(t, z−1) can

be identified with the Dubrovin connection associated to the big quantum product.

Our definition above coincides with the Dubrovin connection restricted to the small

parameter space H2(P ).

2.2 Quantum Lefschetz theorem and ambient quantum D-module

Having defined quantum D-module for a general smooth projective variety P ,

now we turn into the case where Z is a smooth complete intersection inside P . Let

Li be convex line bundles over P and V = ⊕Li, and assume Z = σ−1(0) for a section

σ ∈ H0(⊕V). The quantum Lefschetz theorem gives a way to compute QH∗(Z) from

QH∗(P ).

In Coates-Givental’s work [9], a twisted version of J-function is introduced for the

pair (P,V) as follows

JVbig(t, z−1) := 1 +
T

z
+
∞∑
n=0

Qd

n!
(evn+1)∗

(
V ′0,n+1,d

z(z − ψn+1)

n∏
i=1

ev∗iT

)
,

where V ′0,n+1,d is the kernel of the mapR0π∗ev∗n+1V → ev∗n+1V and π :M0,n+1(P, β)→

M0,n(P, β) forgets the last marking. Let JPbig(t, z−1) be the big J-function for P , we
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write

JPbig(t, z−1) =
∑
β

QβJβ(t, z).

Then we define the function IVbig(t, z) as the following

IVbig(t, z, z−1) :=
∑
β

QβJβ(t, z)
∏
i

Li·β∏
k=1

(c1(L) + kz).

When c1(Z) ≥ 0, the mirror theorem shows that JPbig(τ(t), z−1) = IPbig(t, z−1) for

the mirror transformation t 7→ τ(t). However, without the restriction c1(Z) ≥ 0, the

function IVbig(t, z, z−1) may have positive powers of z. In this situation, a fundamental

result in Coates-Givental’s work [9] is the following.

Theorem II.3. JVbig(τ, z) is recovered from IVbig(t, z, z−1) via the Birkhoff factoriza-

tion procedure followed by a (generalized) mirror transformation t 7→ τ(t).

Let JZbig(t, z−1) be the big J-function for Z. The full genus zero Gromov-Witten

theory of Z is hard to determine due to the existence of primitive cohomology classes,

which lie in the kernel of ι∗. However, we have the following relation

e(V)JVbig(t, z−1) = ι∗J
Z
big(ι∗T, z−1).

As before, we consider the small version of the big J(resp. I)-functions. By setting

tr+1 = · · · = tm = 0, Q ≡ 1 and q := (qi) = (eti) for i = 1, · · · , r, we obtain the (mul-

tivalued) small J-function JVsm(t0, q, z
−1) (resp. small I-function IVsm(t0, q, z, z

−1)).

Now we make the following definition for the ambient part quantum D-module of Z.

Definition II.4. The ambient part quantum D-module of Z is the cyclic Dq-module

generated by e(V)JVsm(0, q, z−1), which is still denoted by H(Z) when there is no risk

of confusion.

Remark II.5. It follows directly from Theorem II.3 that the ambient part quantum D-

module of Z may be identified with the cyclic D-module generated by e(V)IVsm(0, q, z, z−1).
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It is often easy to write down the explicit expression of e(V)IV(0, q, z, z−1) provided

that P is a toric projective variety or certain GIT quotients. The left ideal in Dq

that annihilates IVsm(0, q, z, z−1) is called Picard-Fuchs ideal.

Remark II.6. Suppose H∗(P ) is generated by divisors, then by a reconstruction theo-

rem [24], we can recover the genus zero Gromov-Witten potential of P from the small

J-function. In the case above where Z is a complete intersection, this reconstruction

procedure yields all the genus zero Gromov-Witten invariants in which the insertions

are pulled back from the ambient space P . This allows us to use the ambient part

quantum D-module H(Z) to represent the genus zero Gromov-Witten theory of Z.

Remark II.7. One may also adopt the viewpoint of integrable connection to define the

ambient part quantum D-module. A closely related definition for toric nef complete

intersections is given by Mann-Mignon [29].

2.3 Conifold transition and Li-Ruan’s theorem

In this section, we will reformulate Li-Ruan’s result on conifold transitions [27,

Corollary B.1]. Let P be a smooth Calabi-Yau 3-fold, then the genus zero Gromov-

Witten theory of P boils down to the following numbers

NP
β := deg([M0,0(X, β)]vir) ∈ Q ∀β ∈ NE(X),

as the virtual dimension of M0,0(X, β) is zero.

Let X and Y be smooth Calabi-Yau 3-folds such that Y is obtained by contracting

finitely many OP1(−1)+OP1(−1)-rational curves on X followed by a smoothing. This

surgery is called a conifold transition. The following theorem is proved in [27].

Theorem II.8 (Li-Ruan). The conifold transition from X to Y induces the following

morphisms:

ϕ∗ : H2(X)→ H2(Y ), ϕ∗ : H∗(Y )→ H∗(X)
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such that

1. ϕ∗ is surjective;

2. ϕ∗ : H2(Y ) → H2(X) is dual to ϕ∗ and the dual map to ϕ∗ : H4(Y ) → H4(X)

gives a right inverse to ϕ∗;

3. For every 0 6= β′ ∈ H2(Y ), the set Λ = {β ∈ NE(X) : ϕ∗(β) = β′} is finite;

4. For every 0 6= β′ ∈ H2(Y ), the following relation holds

∑
β∈Λ

NX
β = NY

β′ .

We will study the implication of this theorem on quantum D-modules. For a

Calabi-Yau 3-fold P , the small J-function takes a simpler form, which is proved in

[10, Section 10.3.2].

Lemma II.9. Setting t0 = 0, the J-function of P defined in Equation (2.1) is

JP (q, z) = qT/z

(
1 + z−2

∑
β 6=0

qβNP
β [β]− 2z−3

∑
β 6=0

qβNP
β [pt]

)
,

where [· · · ] means the Poincare dual.

This lemma is useful way in comparing the small J-functions of X and Y . The

topological change of the cornifold transition has been studied in [21]. It is shown

that there is an exact sequence:

⊕ki=1C[Ei] H2(X) H2(Y ) 0,
ϕ∗

where ϕ∗ is the morphism in Theorem II.8, and [Ei] are the exceptional curve classes

in the contraction of X. According the multiple cover formula, we have

NX
nEi

=
1

n3
, i = 1, 2, · · · , k.

Following [21], we choose a basis b1, · · · , br+m of H2(X) in such a way that

b1, · · · , br+m span a cone containing the Mori cone of X, and the last m elements



18

br+1, · · · , br+m span a cone containing the classes [E1], · · · , [Ek], where m is the di-

mension of the cone spanned by the classes [E1], · · · , [Ek]. In general we have m ≤ k,

since the curve classes [Ei] have a nontrivial linear relation. Once such a basis is cho-

sen, we get a natural basis ϕ∗b1, · · · , ϕ∗br for H2(Y ). So we may use q1, · · · , qr+m as

the small parameters for X which are dual to b1, · · · , br+m, and q̃1, · · · , q̃r for Y dual

to ϕ∗b1, · · · , ϕ∗br.

Lemma II.10. The small J-function of X can be written as a sum

(2.2) JX(q, z−1) = JX1 (q, z−1) + JX2 (q, z−1),

such that

(2.3) lim
qi→1

r+1≤i≤r+m

L ◦ JX1 (q, z−1) = JY (q̃, z−1),

where L : H∗(X) → H∗(Y ) is the dual morphism to ϕ∗ given in Theorem II.8, and

q̃i 7→ qi for i = 1, 2, · · · , r.

Proof. We define the following series:

JX1 (q, z−1) :=
b+m∏
i=1

q
[bi]/z
i

1 + z−2
∑

ϕ∗(β)6=0

qβNX
β [β]− 2z−3

∑
ϕ∗(β) 6=0

qβNX
β [pt]X

 ,

JX2 (q, z) =
b+m∏
i=1

q
[bi]/z
i

z−2
∑

ϕ∗(β)=0
β 6=0

qβNX
β [β]− 2z−3

∑
ϕ∗(β)=0
β 6=0

qβNP
β [pt]X


=

b+m∏
i=1

q
[bi]/z
i

(
z−2

k∑
i=1

∞∑
n=1

qnEiNX
nEi

[nEi]− 2z−3

k∑
i=1

∞∑
n=1

qnEiNX
nEi

[pt]X

)

=
b+m∏
i=1

q
[bi]/z
i

(
z−2

k∑
i=1

∞∑
n=1

qnEi

n2
[Ei]− 2z−3

k∑
i=1

∞∑
n=1

qnEi

n3
[pt]X

)
.

Obviously, we have

JX(q, z−1) = JX1 (q, z−1) + JX2 (q, z−1).
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The small J-function of Y is the following

JX1 (q̃, z−1) :=
b∏
i=1

q̃
[bi]/z
i

(
1 + z−2

∑
β′ 6=0

q̃β
′
NY
β′ [β

′]− 2z−3
∑
β′ 6=0

q̃β
′
NY
β′ [pt]Y

)
.

Since L is dual to ϕ∗, by Theorem II.8(1-2) we have that

L[β] = [ϕ∗(β)], L[pt]X = [pt]Y .

Comibing this with Theorem II.8 gives the desired result.

Let E be the locus {qr+1 = · · · = qr+m = 1} in Cr+m. We call E the transition

locus. Consider a small punctured neighborhood U of the point q = (q1 = · · · =

qr = 0, qr+1 = · · · = qr+m = 1) with each qi = 0(or 1) deleted. Fixing q1, · · · , qr, we

choose a path to analytically continue JX(q, z−1) to a point in U , so that we obtain

a function J̄X(q, z−1). As in the decomposition (2.2), we have

J̄X(q, z−1) = J̄X1 (q, z−1) + J̄X2 (q, z−1).

Lemma II.11. J̄X1 (q, z−1) has trivial E-monodromy, i.e. J̄X1 (q, z−1) remains un-

changed under analytical continuation of J̄X1 (q, z−1) along any loop circulating around

E (with fixed q1, · · · , qr).

Proof. This follows from the fact that the set Λ = {β ∈ NE(X) : ϕ∗(β) = β′}

is finite (in Theorem II.8). For fixed q1, · · · , qr, both terms
∑

ϕ∗(β)6=0 q
βNP

β [β] and∑
ϕ∗(β)6=0 q

βNP
β [pt] are polynomials in qr+1, · · · , qr+m, thus admitting trivial E-monodromy

after performing the analytic continuation.

Remark II.12. We note that J̄X2 (q, z−1) has nontrivial monodromy. This follows from

the fact that the polylogarithm function

Lis(q) =
∞∑
n=1

qn

ns
, s = 2, 3,
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is analytic in |q| < 1 and branched at q = 1 with the monodromy operator M1 around

q = 1 given by

M1(Lis(q)) = Lis(q) +
2πi

Γ(s)
logs−1(q).

This has been computed in [3].

Now we are in a position to reformulate Li-Ruan’s result (Theorem II.8) as follows

Theorem II.13. For conifold transition of Calabi-Yau 3-folds X to Y , one may

analytically continue the quantum D-module H(X) to obtain a D-module H̄(X) over

U , let E be the transition locus qr+1 = · · · = qr+m = 1, then there is a submodule

H̄E(X) ⊆ H̄(X) which has maximal trivial E-monodromy such that

H̄E(X)|E ' H(Y ),

Here H̄E(X)|E is the restriction of H̄E(X) to the transition locus E.

Proof. By definition, H(X) is identified with the Dq-module generated by JX(q, z−1).

After performing the analytic continuation, we see that J̄X1 (q, z−1) has trivial mon-

odromy around E. Let H̄E(X) be the sub-local system attached to J̄X1 (q, z−1). After

performing the analytic continuation, by Lemma II.11 and Remark II.12, we see that

H̄E(X) is the submodule of H̄(X) with maximum trivial E-monodromy. Restriction

this to E amounts to taking the limit qi → 1 (i = r + 1, · · · , r +m). It follows from

Lemma II.10 that H̄E(X)|E ' H(Y ).



CHAPTER III

Cubic Extremal Transitions

In this chapter, we will study the example of cubic extremal transitions. Let V

be a Calabi-Yau 3-fold that contains a smooth cubic surface S. Assume that the

rational curves on S generate an extremal ray of the Mori cone of V , then we can

birationally contract S to a point to obtain a singular Calabi-Yau 3-fold V̄ with local

singularity given by

x3 + y3 + z3 + u3 = 0.

To smooth out the singularity, we consider the following deformation of the above

equation

x3 + y3 + z3 + u3 = t (t 6= 0).

This is a local surgery. According to Gross’ work [18], this surgery can be done

globally. In other words, there is a Calabi-Yau 3-fold Ṽ obtained by the smoothing.

The process of going from V to Ṽ is called a cubic extremal transition.

3.1 The local model

If we only consider a small neighborhood where this surgery takes place, we ob-

tain the local model. Viewing S as a smooth cubic surface in P3, we close up a

21
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neighborhood of S and then define

X := P(NS/V ⊕O) = P(KS ⊕O).

The second equality follows from KV ' OV and the adjunction formula.

Smoothing out the cubic singularity gives a cubic 3-fold in P4, i.e.

Y = {x3 + y3 + z3 + u3 = tv3} ⊆ P4.

We note first that both X and Y can be naturally embedded into smooth projective

toric varieties. Indeed, for X, by adjunction formula

KS = KP3 ⊗OP3(S)|S = OP3(−1)|S,

so we have the following diagram

X P(OP3(−1)⊕OP3)

S P3

iX

π

and X is the vanishing locus of a section of π∗OP3(3). Moreover, Y is a hypersurface

defined by a section of OP4(3)

OP4(3)

Y P4iY

Let H(X) (resp. H(Y )) be the ambient part quantum D-module of X (resp. Y ). To

give an explicit description of the quantum D-modules, we introduce the following

notations:

Notation III.1. OX̃(1) is the anti-tautological line bundle over X̃ = P(OP3 ⊕

OP3(−1)).

• h := c1(π∗OP3(1)), ξ := c1(OX̃(1)).
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• p := c1(OP4(1)).

By toric geometry, we know that H∗(X̃) is generated by h, ξ, so we use q1 and q2 as

small parameters for X0, which correspond to h and ξ, respectively. On the other

hand, the cohomology of Ỹ0 := P4 is generated by p, and dimH2(Y ) = dimH2(Ỹ ) =

1, so we use y as the small parameter for Y , which corresponds to p. We also

introduce the following differential operators:

zδq1 := zq1
∂

∂q1

, zδq2 := zq2
∂

∂q2

, zδy = zy
∂

∂y
.

The small I-function for X is the following

IX(q1, q2) := (3h)q
h/z
1 q

ξ/z
2

∑
(d1,d2)∈N2

qd11 q
d2
2

0∏
m=−∞

(ξ − h+mz)
3d1∏
m=1

(3h+mz)

d1∏
m=1

(h+mz)4
d2∏
m=1

(ξ +mz)
d2−d1∏
m=−∞

(ξ − h+mz)

,

subject to the relation h4 = hξ − ξ2 = 0.

On the other hand, the small I-function for Y is the following

IY (y) = (3p)yp/z
∑
d∈N

3d∏
m=1

(3p+mz)

d∏
m=1

(p+mz)5

,

subject to the relation p5 = 0.

According to Remark II.5, the ambient quantum D-module H(X) for X may

be identified with the cyclic Dq-module generated by IX(q1, q2), and H(Y ) may be

identified with the cyclic Dy-module generated by IY (y). Our goal is to study the

relation between H(X) and H(Y ).

Lemma III.2. The Picard-Fuchs ideal associated to IX(q1, q2) is generated by 41

and 42, where

41 = (zδq1)
3 − 3q1 (3zδq1 + z) (3zδq1 + 2z) (zδq2 − zδq1) ,
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42 = (zδq2) (zδq2 − zδq1)− q2.

In other words, the components of IX gives a full basis of solutions to 41I = 42I = 0

at any point near the origin in (C∗)2.

Proof. By a ratio test, we find that IX(q1, q2) is holomorphic when (q1, q2) ∈ (C∗)2 is

sufficiently close to the origin. It is straightforward to check that 41, 42 annihilates

IX(q1, q2): if we write IX(q1, q2) in the following way

IX(q1, q2) = (3h)q
h/z
1 q

ξ/z
2

∑
(d1,d2)∈N2

qd11 q
d2
2 Ad1,d2 ,

then the differential equation 41I = 0 (resp. 42I = 0) follows from the recursion

relation between Ad1,d2 and Ad1−1,d2 (resp. Ad1,d2−1), and the cohomology relation

h4 = ξ(ξ − h) = 0 is equivalent to the fact that Ad1,d2 = 0 for d1 < 0 or d2 < 0.

Moreover, we see that the 6 components of IX(q1, q2) are linearly independent due

to their initial terms, but the differential equation system has at most 6-dimensional

solution space by a holonomic rank computation. So we obtain a full basis to the

differential equation system, and the lemma is proved.

We note that IX involves two small parameters q1 and q2, whereas IY involves only

a single small parameter y. To compare them, we introduce the following auxiliary

function in two variables x and y.

ĪY (x, y) := (3p)yp/z
∑
i>0
j>0

xiyj

0∏
m=−∞

(p+mz)4
3j−3i∏
m=−∞

(3p+mz)

j−i∏
m=−∞

(p+mz)4
j∏

m=1

(p+mz)
i∏

m=1

(mz)
0∏

m=−∞
(3p+mz)

,

subject to the relation p5 = 0. This may be viewed as an extension of IY (y) in the

following sense

Lemma III.3. ĪY (x, y) has trivial monodromy around x = 0 and we have

lim
x→0

ĪY (x, y) = IY (y).
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Proof. Since the initial term yp/z does not involve x, the monodromy around x = 0

is trivial. The second part is straightforward to check.

In a similar fashion, we obtain the partial differential equation satisfied by ĪY (x, y)

by studying the recursion relation in their coefficients of xiyj. However, the natural

partial differential equation system attached to ĪY (x, y) has 6-dimensional solution

space, but the components of ĪY (x, y) give only 4 linearly independent solutions. We

introduce another two hypergeometric series as follows.

I5(x, y) = x
1
3

∑
i>j>0

xiyj
(−1)i−jΓ(1

3
+ i− j)4

Γ(4
3

+ i)Γ(3i− 3j + 1)Γ(1 + j)z2j
,

I6(x, y) = x
2
3

∑
i>j>0

xiyj
(−1)i−jΓ(2

3
+ i− j)4

Γ(5
3

+ i)Γ(3i− 3j + 2)Γ(1 + j)z2j
.

Lemma III.4. The function ĪY (x, y) is analytic at any point near the origin in

(C∗)2, and can be annihilated by the following differential operators:

4′1 := x (zδy − zδx)3 − 3 (3(zδy − zδx) + z) (3(zδy − zδx) + 2z) (zδx) ,

4′2 := (zδy) (zδx)− xy.

The components of ĪY (q1, q2), together with I5 and I6, give a full basis of solutions

to the differential equation system 4′1I = 4′2I = 0 at any point near the origin in

(C∗)2.

Proof. The proof is parallel to that of Lemma 3.2, so we omit it.

We notice that the differential equation systems {41I = 42I = 0} and {4′1I =

4′2I = 0} both have 6 dimensional solution spaces. Under an appropriate change of

variables, these two systems are indeed equivalent. Our key lemma is the following:
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Lemma III.5. The change of variables x 7→ q−1
1 and y 7→ q1q2 induces an equivalence

between the differential equation systems {41I = 42I = 0} and {4′1I = 4′2I = 0}.

Proof. The change of variables x 7→ q−1
1 and t 7→ q1q2 yields the following relation of

the differential operators:

zδq1 = zδy − zδx, zδq2 = zδy.

It follows directly that42I = 0 is converted to 4′2I = 0 and vice versa. For 41I = 0

and 4′1I = 0, one just has to notice that since x 6= 0, 4′1I = 0 is equivalent to

[
(δy − δx)3 − 3x−1 (3(δy − δx) + z) (3(δy − δx) + 2z) (δx)

]
I = 0,

which is converted to41I = 0 term by term under the relation among the differential

operators.

From Lemma III.5, we see that the function IX(q1, q2) and ĪY (x, y) satisfies the

same system of differential equations under an appropriate change of variables. Since

they are both holomorphic on certain domains, it is expected that ĪY (x, y) may be

obtained by analytic continuation of IX(q1, q2) followed by a linear transformation

L : H∗(X̃) → H∗(Ỹ ). This subsection is devoted to working out this analytic

continuation using Mellin-Barnes method. For a similar computation, we refer the

reader to [6].

We will frequently use the following identity.

Lemma III.6. For any a ∈ Z, we have

a∏
m=−∞

(u+mz)

0∏
m=−∞

(u+mz)

=
zaΓ

(
1 +

u

z
+ a
)

Γ
(

1 +
u

z

) .
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By this lemma, we can rewrite IX(q1, q2) and ĪY (x, y) in the following way.

IX(q1, q2) = 3q
h
z
1 q

ξ
z
2 ·

hΓ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

Γ(1 + 3h
z

)
·

∑
d1>0
d2>0

qd11 q
d2
2

Γ(1 + 3h
z

+ 3d1)

Γ(1 + h
z

+ d1)4Γ(1 + ξ
z

+ d2)Γ(1 + ξ−h
z

+ (d2 − d1))z2d2
,(3.1)

subject to the relation h4 = hξ − ξ2 = 0.

(3.2)

ĪY (x, y) =
(3p)y

p
zΓ(1 + p

z
)5

Γ(1 + 3p
z

)

∑
i>0
j>0

xiyj
Γ(1 + 3p

z
+ 3j − 3i)

Γ(1 + p
z

+ j − i)4Γ(1 + p
z

+ j)Γ(1 + i)z2j
,

subject to relation p5 = 0.

Theorem III.7. One may analytically continue the function IX(q1, q2) to obtain a

holomorphic function ĪX(x, y) near the origin in (C∗)2, where the change of vari-

ables is given by x 7→ q−1
1 and y 7→ q1q2. There exists a degree-preserving linear

transformation L : H∗(X̃)→ H∗(Ỹ ) such that IY (y) is recovered by

IY (y) = lim
x→0

L ◦ ĪX(x, y).

Proof. By Lemma III.3, we need to show there exists a degree-preserving linear

transformation L : H∗(X̃) → H∗(Ỹ ) such that ĪY (x, y) = L ◦ ĪX(q1, q2) under the

change of variables x 7→ q−1
1 and y 7→ q1q2. To begin with, for every d2 ∈ N, we

define the following function

ϕd2(s) : = (−1)d2
sin( ξ−h

z
)π

sin(3h
z

)π
·

sin(−3h
z
− 3s)π

sin(s− d2 − ξ−h
z

)π

= (−1)d2
sin( ξ−h

z
)π

sin(3h
z

)π
·
π/ sin(s− d2 − ξ−h

z
)π

π/ sin(−3h
z
− 3s)π

= (−1)d2
sin( ξ−h

z
)π

sin(3h
z

)π
·

Γ(1 + ξ−h
z

+ d2 − s)Γ(s− d2 − ξ−h
z

)

Γ(1 + 3h
z

+ 3s)Γ(−3h
z
− 3s)

.
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It is clear that ϕd2(s) is periodic with period 1, and takes value 1 at any integer

s ∈ Z. Using (3.1), the function IX(q1, q2) may be further written as:

IX(q1, q2) = 3q
h/z
1 q

ξ/z
2

hΓ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

Γ(1 + 3h
z

)
·

∑
(d1,d2)∈N2

qd11 q
d2
2

Γ(1 + 3h
z

+ 3d1)ϕd2(d1)

Γ(1 + h
z

+ d1)4Γ(1 + ξ
z

+ d2)Γ(1 + ξ−h
z

+ (d2 − d1))z2d2
,

= 3q
h/z
1 q

ξ/z
2

h sin(π ξ−h
z

)Γ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

sin(π 3h
z

)Γ(1 + 3h
z

)
·

∑
(d1,d2)∈N2

qd11 q
d2
2

(−1)d2Γ(d1 − d2 − ξ−h
z

)

Γ(1 + h
z

+ d1)4Γ(1 + ξ
z

+ d2)Γ(−3h
z
− 3d1)z2d2

.(3.3)

Then define a sequence of functions gd2(s, q1) for each d2 ∈ N as follows:

gd2(s, q1) :=
Γ(s− d2 − ξ−h

z
)qs1

(e2π
√
−1s − 1)Γ(1 + h

z
+ s)4Γ(−3h

z
− 3s)

.

It is clear that gd2(s, q1) is a meromorphic function in s with simple poles at every

integer, as well as s = d2 + ξ−h
z
− l for l ∈ N.

We claim that the function IX(q1, q2) may be represented as the following integral:

IX(q1, q2) = 3q
h/z
1 q

ξ/z
2

h sin(π ξ−h
z

)Γ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

sin(π 3h
z

)Γ(1 + 3h
z

)

·
∑
d2∈N

(−q2)d2

Γ(1 + ξ
z

+ d2)z2d2

∫
C+

gd2(s, q1)ds,(3.4)

where for a fixed d2, the contour C+ goes along the imaginary axis and closes to the

right in such a way that only the simple poles at nonnegative integers are enclosed

inside C+.

Indeed, according to the residue theorem, for each d2 ∈ N we have∫
C+

gd2(s, q1)ds = 2π
√
−1
∑
d1∈N

Res
s=d1

gd2(s, q1)

=
∑
d1∈N

Γ(d1 − d2 − ξ−h
z

)qd11

Γ(1 + h
z

+ d1)4Γ(−3h
z
− 3d1)

.(3.5)
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Substuiting (3.5) into (3.4) for each d2 ∈ N, we obtain (3.3), hence the the claim

follows.

To perform the analytic continuation, we notice that for |q1| sufficiently large, we

may close up the imaginary axis to the left in such a way that all the remaining poles

are enclosed in this contour, denoted by C−. Using the residue theorem again, we

obtain∫
C−

gd2(s, q1)ds = 2π
√
−1
∑
l∈N

(
Res
s=−l−1

gd2(s, q1) + Res
s=d2+ ξ−h

z
−l
gd2(s, q1)

)

= 2π
√
−1
∑
l∈N

Γ(−l − 1− d2 − ξ−h
z

)q−l−1
1

Γ(h
z
− l)4Γ(−3h

z
+ 3l + 3)

+

2π
√
−1
∑
l∈N

(−1)lq
d2−l+ ξ−h

z
1

(e2π
√
−1 ξ−h

z − 1)Γ(1 + l)Γ(1 + ξ
z

+ d2 − l)4Γ(3l − 3d2 − 3ξ
z

)
.(3.6)

Replacing C+ by C− in (3.4), and substuiting (3.6) into (3.4) for each d2 ∈ N, we

obtain the following analytic continuation of IX(q1, q2):

(3.7) ĪX(q1, q2) = 3(q1q2)ξ/z
∑

(l,d2)∈N2

qd2−l1 (q2)d2Al,d2 + h4f(q1, q2, log q1, log q2, h, ξ),

for some f(q1, q2, log q1, log q2, h, ξ) ∈ C[[q1, q2, log q1, log q2, h, ξ]] and

Al,d2 =
(−1)l+d2(2π

√
−1)h sin π( ξ−h

z
)

sin π(3h
z

)Γ(1 + 3h
z

)(e2π
√
−1 ξ−h

z − 1)

·
Γ(1 + ξ−h

z
)Γ(1 + h

z
)4Γ(1 + ξ

z
)

Γ(1 + ξ
z

+ d2)Γ(1 + l)Γ(1 + ξ
z

+ d2 − l)4Γ(3l − 3d2 − 3ξ
z

)z2d2

=
(2
√
−1)h sin(3ξ

z
π) sin( ξ−h

z
π)Γ(1 + ξ−h

z
)Γ(1 + h

z
)4Γ(1 + ξ

z
)

sin(3h
z
π)(e2π

√
−1 ξ−h

z − 1)Γ(1 + 3h
z

)

·
Γ(1 + 3 ξ

z
+ 3d2 − 3l)

Γ(1 + ξ
z

+ d2)Γ(1 + l)Γ(1 + ξ
z

+ d2 − l)4z2d2
.

Replacing q1, q2 by x, y using the change of variables, and repeatedly applying the

relation h4 = hξ − ξ2 = 0, (3.7) eventually reduces to

(3.8)

ĪX(x, y) =
(3ξ)y

ξ
zΓ(1 + ξ

z
)5

Γ(1 + 3ξ
z

)

∑
(i,j)∈N2

xiyj
Γ(1 + 3 ξ

z
+ 3j − 3i)

Γ(1 + ξ
z

+ j)Γ(1 + i)Γ(1 + ξ
z

+ j − i)4z2j
.
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Comparing (3.8) with (3.2), it is clear that the following linear transformation

does the job:

L : ξ 7→ p, ξ2 7→ p2, ξ3 7→ p3, ξ4 7→ p4,

hence we are done.

Now we are in a position to state and prove Theorem I.2(1) for the local model.

Theorem III.8 (=Theorem I.2(1)). One may perform analytic continuation of

H(X) to obtain a D-module H̄(X), then there is a divisor E in the extended Kähler

moduli space and a submodule H̄E(X) ⊆ H̄(X) with maximum trivial E-monodromy

such that

H̄E(X)|E ' H(Y ),

where H̄E(X)|E is the restriction to E.

Proof. We may identify the ambient part quantum D-module H(X) with the local

system attached to IX(x, y) (Remark II.5). By Theorem III.7, we see that IX(x, y)

can be analytically continued to ĪY (x, y) up to a linear transformation. Let H̄(X)

be the D-module that correpsonds to the system 4′1I = 4′2I = 0.

Next, we claim the components of ĪY (x, y) give a sub-solution space which has

maximum trivial x-monodromy. Indeed, their x-monodromy is trivial by Lemma

3.4, and maximal because the remaining two solutions I5 and I6 have non-trivial

x-monodromy due to their initial terms x1/3 and x2/3. Hence our claim follows.

Consider the sub-local system H̄E(X) attached to the components of ĪY (x, y),

since their x-monodromy is trivial, we may consider the natural restriction of ĪY (x, y)

to x = 0. By Lemma III.4, we recover the I-function IY (y) for Y through this process,

so the local system H(Y ) is obtained by restricting the local system of H̄E(X) to
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x = 0, which is viewed as a divisor E in the extended Kähler moduli. Therefore the

theorem is proved.

3.2 A Calabi-Yau Example

In this section, we will study one particular example of cubic extremal transitions

for Calabi-Yau 3-folds (which appears in [11]), and we will show that Conjecture I.1

holds in this case.

Let Y0 be a quintic hypersurface in P4 defined by the following homogenous equa-

tion:

x2
0(tx3

0 + x3
1 + x3

2 + x3
3 + x3

4) + x0f(x1, x2, x3, x4) + g(x1, x2, x3, x4) = 0, (t 6= 0)

where f and g are generic homogenous polynomials of degree 4 and 5, respectively. Y0

is generically a smooth Calabi-Yau 3-folds, which can be deformed into the following

singular quintic Y 0 with singularity only at [1 : 0 : 0 : 0 : 0] ∈ P4:

Y 0 : x2
0(x3

1 + x3
2 + x3

3 + x3
4) + x0f(x1, x2, x3, x4) + g(x1, x2, x3, x4) = 0.

Let X0 be the Calabi-Yau 3-folds obtained by blowing up Y 0 at the triple point

[1 : 0 : 0 : 0 : 0] ∈ P4. Clearly X0 is a smooth Calabi-Yau 3-fold and the exceptional

divisor over [1 : 0 : 0 : 0 : 0] ∈ P4 is a cubic surface. The passage from X0 to Y0 is a

global example of cubic extremal transitions.

On the same line of reasoing, X0 is a hypersurface inside X̃0 = P(OP3⊕OP3(−1)).

We will still adopt the same notations in III.1, where

• π : P(OP3 ⊕ OP3(−1)) → P3 is the projection map, and OX̃0
(1) is the anti-

tautological line bundle over X̃0 = P(OP3 ⊕OP3(−1)).

• h := c1(π∗OP3(1)), ξ := c1(OX̃0
(1)). Let q1, q2 be the small parameters for X0,

correpsonding to h and ξ.
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• p := c1(OP4(1)). Let y be the small parameter for Y0, corresponding to p.

Then X0 represents the divisor class 3h + 2ξ in X̃0, whereas Y0 represents the

divisor class 5p in Ỹ0 = P4. The I-functions of X0 and Y0 are the following:

IX0(q1, q2) := (3h+2ξ)q
h/z
1 q

ξ/z
2

∑
(d1,d2)∈N2

qd11 q
d2
2

0∏
m=−∞

(ξ − h+mz)
3d1+2d2∏
m=1

(3h+ 2ξ +mz)

d1∏
m=1

(h+mz)4
d2∏
m=1

(ξ +mz)
d2−d1∏
m=−∞

(ξ − h+mz)

,

subject to the relation h4 = hξ − ξ2 = 0.

IY0(y) = (5p)yp/z
∑
d∈N

5d∏
m=1

(5p+mz)

d∏
m=1

(p+mz)5

,

subject to the relation p5 = 0.

Following Section 3.1, we may also construct a hypergeometric series IY0(x, y) in

x and y such that

lim
x→0

ĪY0(x, y) = IY0(y),

where ĪY0(x, y) is given by:

ĪY0(x, y) := (5p)e(p log y)/z
∑
i>0
j>0

xiyj

0∏
m=−∞

(p+mz)4
5j−3i∏
m=−∞

(5p+mz)

j−i∏
m=−∞

(p+mz)4
j∏

m=1

(p+mz)
i∏

m=1

(mz)
0∏

m=−∞
(5p+mz)

,

subject to the relation p5 = 0.

With the explicit formulas of IX0(q1, q2), we have the following lemmas. (The

differential operators below are also computed in [29].)

Lemma III.9. The components of IX0(q1, q2) give a full basis of solutions to the

system 41I = 42I = P0I = 0 near the origin in C∗, where

41 = (zδq1)
4−q1(3zδq1 +2zδq2 +z)(3zδq1 +2zδq2 +2z)(3zδq1 +2zδq2 +3z)(zδq2−zδq1),

42 = (zδq2)(zδq2 − zδq1)− q2(3zδq1 + 2zδq2 + z)(3zδq1 + 2zδq2 + 2z),
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P0 =− 5(zδq1)
3 + 2(zδq1)

2(zδq2) + 15q1(zδq2 − zδq1)(3zδq1 + 2zδq2 + z)(3zδq1 + 2zδq2 + 2z)

− 4q2(zδq2)
2(3zδq1 + 2zδq2 + z).

Proof. By a computation in [29], the differential system 41I = 42I = P0I = 0

has a six-dimensional solution space. It is straightforward to check that IX0 are

annihilated by 41,42 and P0. Due to the cohomological relation h4 = hξ − ξ2 =

0, the components of IX0 would give 6 dimensional linearly-independent solutions.

Hence they must form a basis.

In a similar fashion, we introduce the following two hypergeometric series:

I5(x, y) = x
1
3

∑
i>j>0

xiyj
(−1)i−jΓ(1

3
+ i− j)4

Γ(4
3

+ i)Γ(3i− 5j + 1)Γ(1 + j)
,

I6(x, y) = x
2
3

∑
i>j>0

xiyj
(−1)i−jΓ(2

3
+ i− j)4

Γ(5
3

+ i)Γ(3i− 5j + 2)Γ(1 + j)
.

Lemma III.10. The components of ĪY0(q1, q2), together with I5, I6, give a full basis

to the system 4′1I = 4′2I = P ′0I = 0, where

4′1 = x(zδy − zδx)4− (5zδy − 3zδx + 3z)(5zδy − 3zδx + 2z)(5zδy − 3zδx + z+ z)(zδx),

4′2 = (zδx)(zδy)− xy(5δy − 3δx + z)(5δy − 3δx + 2z),

P ′0 =− 5(zδy − zδx)3 + 2(zδy − zδx)2(zδy) + 15x−1(zδx)(5zδy − 3zδx + z)(5zδy − 3zδx + 2z)

− 4xy(zδy − zδx)2(5zδy − 3zδx + z).

Proof. This is parallel to Lemma III.9, one can check this directly.

The differential equation systems {41I = 42I = P0I = 0} and {4′1I = 4′2I =

P ′0I = 0} both have 6-dimensional solution spaces. We can relate them using an

appropriate change of variables as follows
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Lemma III.11. The change of variables x 7→ q−1
1 and y 7→ q1q2 induces an equiv-

alence between the differential equation systems {41I = 42I = P0I = 0} and

{4′1I = 4′2I = P ′0I = 0}.

Proof. Notice that under the change of variables x 7→ q−1
1 and y 7→ q1q2, the differ-

ential operators have the following relations:

δq1 = δy − δx, δq2 = δy.

It is straightfoward to check that this change of variables converts 41I = 42I =

P0I = 0 directly into 4′1I = 4′2I = P0I = 0, provided that x 6= 0 Hence we are

done.

Since IX0(q1, q2) and ĪY0(x, y) satisfy the the same differential equation up to a

change of variables, we would expect that IX0(q1, q2) can be analytic continued to

ĪY0(x, y) up to a linear transformation. Indeed, we may still work out this analytic

continuation explicitly using Mellin-Barnes method, which is completely parallel to

Section 3.1.

First, we rewrite IX0(q1, q2) and ĪY0(x, y) using Lemma III.6 as follows.

IX0(q1, q2) = (3h+ 2ξ)q
h
z
1 q

ξ
z
2 ·

Γ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

Γ(1 + 3h+2ξ
z

)
·

∑
d1>0
d2>0

qd11 q
d2
2

Γ(1 + 3h+2ξ
z

+ 3d1 + 2d2)

Γ(1 + h
z

+ d1)4Γ(1 + ξ
z

+ d2)Γ(1 + ξ−h
z

+ (d2 − d1))
,(3.9)

subject to the relation h4 = hξ − ξ2 = 0.

(3.10) ĪY0(x, y) =
(5p)y

p
zΓ(1 + p

z
)5

Γ(1 + 5p
z

)

∑
i>0
j>0

xiyj
Γ(1 + 5p

z
+ 5j − 3i)

Γ(1 + p
z

+ j − i)4Γ(1 + p
z

+ j)Γ(1 + i)
,

subject to relation p5 = 0.
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For every d2 ∈ N, we define the following function

ϕd2(s) : = (−1)d2
sin( ξ−h

z
)π

sin(3h+2ξ
z

)π
·

sin(−3h+2ξ
z
− 3s− 2d2)π

sin(s− d2 − ξ−h
z

)π

= (−1)d2
sin( ξ−h

z
)π

sin(3h+2ξ
z

)π
·

π/ sin(s− d2 − ξ−h
z

)π

π/ sin(−3h+2ξ
z
− 3s− 2d2)π

= (−1)d2
sin( ξ−h

z
)π

sin(3h+2ξ
z

)π
·

Γ(1 + ξ−h
z

+ d2 − s)Γ(s− d2 − ξ−h
z

)

Γ(1 + 3h
z

+ 3s+ 2d2)Γ(−3h+2ξ
z
− 3s− 2d2)

.

By definition, ϕd2(s) is periodic with period 1, and takes value 1 at every integer

s ∈ Z. It follows that IX0(x, y) can be further written as

IX0(q1, q2) = (3h+ 2ξ)q
h/z
1 q

ξ/z
2

Γ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

Γ(1 + 3h+2ξ
z

)
·

∑
(d1,d2)∈N2

qd11 q
d2
2

Γ(1 + 3h+2ξ
z

+ 3d1 + 2d2)ϕd2(d1)

Γ(1 + h
z

+ d1)4Γ(1 + ξ
z

+ d2)Γ(1 + ξ−h
z

+ (d2 − d1))
,

= (3h+ 2ξ)q
h/z
1 q

ξ/z
2

sin(π ξ−h
z

)Γ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

sin(π 3h+2ξ
z

)Γ(1 + 3h+2ξ
z

)
·

∑
(d1,d2)∈N2

qd11 q
d2
2

(−1)d2Γ(d1 − d2 − ξ−h
z

)

Γ(1 + h
z

+ d1)4Γ(1 + ξ
z

+ d2)Γ(−3h+2ξ
z
− 3d1 − 2d2)

.(3.11)

Similarly, we define a sequence of functions gd2(s, q1) for each d2 ∈ N as follows.

gd2(s, q1) :=
Γ(s− d2 − ξ−h

z
)qs1

(e2π
√
−1s − 1)Γ(1 + h

z
+ s)4Γ(−3h+2ξ

z
− 3s− 2d2)

.

We see that gd2(s, q1) is a meromorphic function in s with simple poles at every

integer, as well as s = d2 + ξ−h
z
− l for l ∈ N. We claim that IX0(x, y) admits the

following integral representation.

IX0(q1, q2) = (3h+ 2ξ)q
h/z
1 q

ξ/z
2

sin(π ξ−h
z

)Γ(1 + ξ−h
z

)Γ(1 + h
z
)4Γ(1 + ξ

z
)

sin(π 3h+2ξ
z

)Γ(1 + 3h+2ξ
z

)

·
∑
d2∈N

(−q2)d2

Γ(1 + ξ
z

+ d2)

∫
C+

gd2(s, q1)ds,(3.12)

where for a fixed d2, the contour C+ goes along the imaginary axis and closes to the

right in such a way that only the simple poles at nonnegative integers are enclosed

inside C+.
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Again, this follows from the residue computation. For each d2 ∈ N we have∫
C+

gd2(s, q1)ds = 2π
√
−1
∑
d1∈N

Res
s=d1

gd2(s, q1)

=
∑
d1∈N

Γ(d1 − d2 − ξ−h
z

)qd11

Γ(1 + h
z

+ d1)4Γ(−3h+2ξ
z
− 3d1 − 2d2)

.(3.13)

Substuiting (3.13) into (3.12) gives (3.11). Hence our claim is proved.

To perform the analytic continuation, we notice that for |q1| sufficiently large, we

may close up the imaginary axis to the left in such a way that all the remaining poles

are enclosed in this contour, denoted by C−. Using the residue theorem again, we

obtain∫
C−

gd2(s, q1)ds = 2π
√
−1
∑
l∈N

(
Res
s=−l−1

gd2(s, q1) + Res
s=d2+ ξ−h

z
−l
gd2(s, q1)

)

= 2π
√
−1
∑
l∈N

Γ(−l − 1− d2 − ξ−h
z

)q−l−1
1

Γ(h
z
− l)4Γ(−3h+2ξ

z
+ 3l − 2d2 + 3)

+

2π
√
−1
∑
l∈N

(−1)lq
d2−l+ ξ−h

z
1

(e2π
√
−1 ξ−h

z − 1)Γ(1 + l)Γ(1 + ξ
z

+ d2 − l)4Γ(3l − 5d2 − 5ξ
z

)
.(3.14)

Replacing C+ by C− in (3.12), and substuiting (3.14) into (3.12) for each d2 ∈ N,

we obtain the following analytic continuation of IX0(q1, q2).

(3.15)

ĪX0(q1, q2) = (3h+2ξ)(q1q2)ξ/z
∑

(l,d2)∈N2

q−l1 (q1q2)d2Al,d2 +h4f(q1, q2, log q1, log q2, h, ξ),

for some f(q1, q2, log q1, log q2, h, ξ) ∈ C[[q1, q2, log q1, log q2, h, ξ]] and

Al,d2 =
(2
√
−1)h sin(5ξ

z
π) sin( ξ−h

z
π)Γ(1 + ξ−h

z
)Γ(1 + h

z
)4Γ(1 + ξ

z
)

sin(3h+2ξ
z

π)(e2π
√
−1 ξ−h

z − 1)Γ(1 + 3h+2ξ
z

)

·
Γ(1 + 5 ξ

z
+ 5d2 − 3l)

Γ(1 + ξ
z

+ d2)Γ(1 + l)Γ(1 + ξ
z

+ d2 − l)4
.

Replacing q1, q2 by x, y using the change of variables, and repeatedly applying the

relation h4 = hξ − ξ2 = 0, (3.15) eventually reduces to

ĪX0(x, y) =
(5ξ)y

ξ
zΓ(1 + ξ

z
)5

Γ(1 + 3ξ
z

)

∑
(i,j)∈N2

xiyj
Γ(1 + 5 ξ

z
+ 5j − 3i)

Γ(1 + ξ
z

+ j)Γ(1 + i)Γ(1 + ξ
z

+ j − i)4
.
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Thus using the linear transformation L : H∗(X̃0)→ H∗(Ỹ0) given by

L : ξ 7→ p, ξ2 7→ p2, ξ3 7→ p3, ξ4 7→ p4,

we have

ĪY0(x, y) = L ◦ ĪX0(x, y),

and

IY0(y) = lim
x→0

ĪY0(x, y) = lim
x→0

L ◦ ĪX0(x, y).

Following a similar argument as in Theorem III.8, now we may conclude that Theo-

rem I.2(2) holds, namely

Theorem III.12 (=Theorem I.2(2)). For cubic extremal transition between two

Calabi-Yau 3-folds X0 to Y0 given above, one may perform analytic continuation

of H(X0) to obtain a D-module H̄(X0), then there is a divisor E in the extended

Kähler moduli space and a submodule H̄E(X0) ⊆ H̄(X0) with maximum trivial E-

monodromy such that

H̄E(X0)|E ' H(Y0).



CHAPTER IV

Connection to FJRW theory

In this chapter, we will begin by reviewing Fan-Jarvis-Ruan-Witten (FJRW) the-

ory and LG/Fano correspondence. We will introduce our key notion – FJRW D-

module, which encodes the genus zero FJRW theory. Following the notations in

Chapter III, we will prove Theorem I.3, which gives a relationship between the quan-

tum D-module of X and the FJRW D-module of the cubic singularity.

4.1 FJRW theory and LG/Fano correspondence

Fan-Jarvis-Ruan-Witten(FJRW) theory is a quantum singuarity theory, worked

out by Fan, Jarvis and Ruan [12, 13, 14], based on Witten’s propsal on the Landau-

Ginzburg A-model. FJRW theory turns out to be a kind of cohomological field

theory, and in many ways very similar to Gromov-Witten theory. Here we will give

a very short review of FJRW theory, and we refer the reader to [22] for a detailed

survery of this theory.

One may associate FJRW theory to a pair (W,G), where W is a non-degenerate

quasihomogenous polynomial of degree d in x1, · · · , xn, where xi has weight wi. Here

W has an isolated singularity at the origin, and G is a subgroup of (C∗)n that fixes
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W and contains 〈JW 〉, where

JW :=

(
exp

2π
√
−1w1

d
, · · · , exp

2π
√
−1wn
d

)
.

Given W , a canonical choice of G would simply be 〈JW 〉.

The FJRW theory of (W,G) has the following ingredients:

• A state space H which is defined as the relative Chen-Ruan cohomology:

H :=
⊕
g∈G

Hg =
⊕
g∈G

H∗CR([Fix(g)/G],W+∞
g ),

where [Fix(g)/G] is the quotient stack obtained by the G-action on the fixed

locus Fix(g) under g ∈ G, and W∞
g := Re−1(M,+∞) ∩ Fix(g) for M >> 0.

The state space H can be decomposed into the direction sum of narrow sectors

(Fix(g) = 0) and broad sectors (Fix(g) 6= 0).

• A moduli stack WW,G
g,n which parametrizes (the equivalence classes of) genus g,

n-pointed (x1, · · · , xn) stable orbicurve C equipped with obifold line bundles Li

such that for every monoimals Wj involved in W we have

Wj(L1, · · · , Ln) ' ωC,log := ωC(x1 + · · ·+ xn).

• A virtual cycle [WW,G
g,n ]vir onWW,G

g,n and FJRW invariants defined by integrating

the narrow insertions and ψ classes against the virtual cycle.

Analogous to Gromov-Witten theory, one can define the J-functions and the I-

function for FJRW theory of (W,G). The J-function is a generating series of genus

zero FJRW invariants, while the I-function arises as period integrals at the Gepner

point. FJRW mirror theorem basically says that the J-function of FJRW theory can

be identified with the I-function of FJRW theory after an explicit change of variables.

Since I-functions are usually explicit hypergeometric series, one can extract genus
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zero FJRW invariants from the identification J = I in FJRW mirror theorem. We

note that FRJW mirror theorem has been proved in many different settings (see e.g.

[6, 19]).

The celebrated LG/CY correspondence was initially proposed by physicists, who

observed that the defining equation of a Calabi-Yau 3-fold as a hypersurface in

weighted projective space will naturally lead to a Landau-Ginzburg model of the sin-

gularity. This correpsondence has been formulated mathematically under the frame-

work of Gromov-Witten theory and FJRW theory (see e.g. [6, 7]). More precisely,

for the FJRW theory of (W,G), when
∑
wi = d, we call (W,G) satisfies Calabi-

Yau condition, in which case one can define a Calabi-Yau hypersurface [XW/G̃] in

weighted projective space P(w1, · · · , wn), where XW is defined by {W = 0} and

G̃ = G/〈JW 〉. The LG/CY correspondence predicts that the FJRW theory of (W,G)

should be equivalent in all genera to the Gromov-Witten theory of [XW/G̃] up to

certain analytic continuation and a symplectic transformation bewteen their state

spaces.

While the LG/CY correspondence has been verified in many different settings,

Acosta [1] generized this correspondence to the case where W does not satisfy the

Calabi-Yau condition. We will give a brief account of Acosta’s work in the Fano case,

which is known as LG/Fano correspondence.

When
∑
wi < d, (W,G) would corresponds to a Fano hypersurface [XW/G̃], and

then the FJRW I-function of (W,G) would have zero radius of convergence, which

makes it only a formal power series. Acosta introduced the notion of regularized

FJRW I-function IregFJRW (τ), which is obtained by term-by-term modification of the

original FJRW I-function IFJRW (t). The regularized I-function has the property
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that the radius of convergence is positive. Furthermore, if we define

IFJRW (u) := u

∫ ∞
0

e−uτIregFJRW (τ)dτ,

then by Watson’s lemma, IFJRW (u) recovers the original FJRW I-function IFJRW (q)

via asymptotic expansion. Let Hamb
CR ([XW/G̃]), Hnar

(W,G) be the ambient part coho-

mology of [XW/G̃] and the narrow part of the FJRW state space of (W,G). In [1],

Acosta shows the following LG/Fano correspondence:

Theorem IV.1. There is a linear transformation L : Hamb
CR ([XW/G̃])→ Hnar

(W,G) such

that

L · IGW (q) = IFJRW (u)

after an explicit change of variable u 7→ u(q). Furthermore, IFJRW (u) recovers the

original FJRW I-function IFJRW (t) via asymptotic expansion.

The key ingredient in this theorem is the regularized FJRW I-function IregFJRW (τ),

which may be viewed as encoding the genus zero FJRW theory of (W,G). We may

associate a D-module to this function, as stated in the following definition.

Definition IV.2. The FJRW D-module of (W, 〈JW 〉) is the cyclic D-module gener-

ated by the components of the regularized FJRW I-function IregFJRW (τ), denoted by

L(W ).

4.2 Proof of Theorem I.3

Let W = x3 +y3 +z3 +w3, which is precisely the local equation for the singularity

in cubic extremal transition. We consider the FJRW I-function associated to the

pair (W,G), where G = 〈JW 〉 is generated by

JW :=

(
exp

(
2
√
−1π

3

)
, exp

(
2
√
−1π

3

)
, exp

(
2
√
−1π

3

)
, exp

(
2
√
−1π

3

))
.
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The (small) FJRW I-function of (W,G) is a formal power series given by:

(4.1) IFJRW (t) := −
∞∑
l=0

t3l+1 (−1)lΓ(l + 1
3
)4

(3l)!Γ(1
3
)4

φ0 +
∞∑
l=0

t3l+2 (−1)lΓ(l + 2
3
)4

(3l)!Γ(2
3
)4

φ1,

where φ0 and φ1 are generators of the narrow sector of the state space of (W,G).

The regularized FJRW I-function is defined in [1] as follows:

IregFJRW (τ) :=
∞∑
l=0

τ l+
1
3 (−1)3l+1Γ(l + 1

3
)4

(3l)!Γ(l + 4
3
)Γ(1

3
)4

φ0 +
∞∑
l=0

τ l+
2
3 (−1)3l+2Γ(l + 2

3
)4

(3l + 1)!Γ(l + 5
3
)Γ(2

3
)4
φ1,

Remark IV.3. The components of the regularized FJRW I-function of (W,G) are

both analytic near τ = 0. It is shown in [1] that this IregFJRW (τ) may be used to recover

the ordinary FJRW I-function IFJRW (t, z = 1), through the method of asymptotic

expansion. So IregFJRW (τ) can be viewed as encoding the genus zero data of the (narrow

part) FJRW theory of (W,G).

In Chapter III Section 1 (or Section 2), we defined the hypergeometric series

I5(x, y) and I6(x, y) as the ”extra” solutions coming from the analytic continuation

of the ambient part quantum D-module of X. Interestingly, these functions are

directly related to the regularized FJRW theory of (W,G) in the following way:

Proposition IV.4. The function I5(x, y) (resp. I6(x, y)) is analytic in y near the

origin, and also it has trivial monodromy around y = 0. It recovers, up to scalar

multiple, the coefficient of φ0 (resp. φ1) in IregFJRW (τ) by setting x = τ , z = 1 and

y → 0.

Proof. It is analytic by a ratio test, and monodromy around y = 0 is trivial because

it is an ordinary power series in y for every fixed value of x. As for the last part, it

is straightforward to check.

As a direct corollary, we restated Theorem I.3 and prove it below:
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Theorem IV.5 (=Theorem I.3). Let H̄(X) be the D-module obtained by analytic

continuation considered in Theorem III.8 (or Theorem III.12), then there is another

divisor F in the extended Kähler moduli and a submodule H̄F (X) ⊆ H̄(X) which has

maximal trivial F -monodromy such that

H̄F (X)/H̄E(X)|F ' L(W ),

where L(W ) represents the FJRW D-module of the pair (W,G), in which W =

x3 + y3 + z3 + u3 and G = 〈JW 〉.

Proof. Using the notations from Chapter III Section 1 (or Section 2), we let I1, I2, I3, I4

be the components of ĪY (x, y), where I1 represents the constant term in ĪY (x, y). We

notice that I1 is analytic in an open neighborhood of the origin, and I5 and I6 have

trivial monodromy around y = 0. Thus to single out the components I5, I6, we should

take the maximal components that have trivial y-monodromy, namely I1, I5, I6, and

then modulo the maximal components with trivial x−mondromy, namely I1, I2, I3, I4.

In terms of D-modules, we just need to take the restriction H̄F (X)/H̄E(X)|F , in

which the divisor F corresponds to y = 0 in the extended Kähler moduli. Hence the

theorem is proved.



CHAPTER V

Type II deg-4 extremal transitions

Let us first introduce the setup of the Type II extremal transition in degree 4:

We have a pair of Calabi-Yau 3-folds (X, Y ) related in the following diagram

X

Y Y

π

in which π : X → Y is a birational contraction of a divisor E ↪→ X to a point p ∈ Y ,

and going from Y to Y is given by smoothing out the singularity at p. We further

require that E be a del Pezzo surface of degree 4 in P4, and the curve classes on E

generate an extremal ray in the Mori cone of X. In this case, the singularity aournd

p is a complete intersection of two equations with quadratic leading terms. We call

the process of going form X to Y a Type II extremal transition in degree 4 (degree-4

transition for short). We are going to consider the following local model and global

examples.

5.1 The local model

In this section, we begin to study the change of quantum D-modules associted to

the local model of degree-4 transition. Let E be the degree-4 del Pezzo surface inside

a Calabi-Yau 3-fold X, which gets contracted to a point under π. Consider a tubular
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neighborhood around E, which is identified with its normal bundle NE/X . Since

the ambient variety is a Calabi-Yau 3-fold, we also have NE/X ' KE. Under the

birational morphism π : X → Y , the divisor is contracted to a point with singularity

given by a complete intersection of two equations with quadratic leading terms.

Smoothing out the singularity locally yields a (2,2) complete intersection in P5. To

study the Gromov-Witten theory of this local picutre, we usually compactify NE/X '

KE and take X ′ := P(KE ⊕O), while Y ′ := (2, 2) complete intersection in P5. The

transition from X ′ to Y ′ is the local model of the Type II extremal transition in

degree 4. Let i : E ↪→ P4 be the embedding. By adjuction formula, we have

KE = i∗(KP4 ⊗OP4(2)⊗OP4(2)) = i∗OP4(−1).

Thus X ′ is embedded into P(OP4(−1) ⊕ OP4) as a complete intersection. Let π :

P(OP4(−1) ⊕ OP4) → P4 be the natural projection, then X ′ can be viewed as the

zero locus of a section of π∗(OP4(2) ⊕ OP4(2)). On the other hand, Y ′ is the zero

locus of a section of OP5(2)⊕OP5(2). We will adopt the following notations in this

section.

• h := c1(π∗OP4(1)), corresponding to small parameter q1

• Let OP(1) be the anti-tautological bundle over P(OP4(−1) ⊕ OP4), and ξ :=

c1(OP(1)), corresponding to small parameter q2.

• p := c1(OP5(1)), corresponding to small parameter y.

According to the combinatorical data of P(OP4(−1)⊕OP4) and P5, it is straight-

forward to write down the twisted I-functions for X ′ and Y ′ as follows.

IX
′
(q1, q2) := (2h)(2h)q

h/z
1 q

ξ/z
2

∑
(d1,d2)∈N2

qd11 q
d2
2

0∏
m=−∞

(ξ − h+mz)
2d1∏
m=1

(2h+mz)2

d1∏
m=1

(h+mz)5
d2∏
m=1

(ξ +mz)
d2−d1∏
m=−∞

(ξ − h+mz)

,
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subject to the relation h5 = ξ(ξ − h) = 0,

IY
′
(y) := (2p)(2p)yp/z

∑
j∈N

2j∏
m=1

(2p+mz)2

j∏
m=1

(p+mz)6

,

subject to the relation p6 = 0.

To compare these two functions, it is helpful to introduce the following auxcillary

hypergeometric series:

ĪY
′
(x, y) := (2p)(2p)yp/z

∑
(i,j)∈N2

xiyj

0∏
m=−∞

(p+mz)5
2j−2i∏
m=−∞

(2p+mz)2

j−i∏
m=−∞

(p+mz)5
j∏

m=1

(p+mz)
i∏

m=1

(mz)
0∏

m=−∞
(2p+mz)2

.

We note that ĪY
′
(x, y) involves two variables x, y. It’s easy to check that ĪY

′
is a

holomorphic function on a small domain minus the origin. We also observe that ĪY
′

has trivial monodromy around x = 0, thus it makes sense to take the limit x → 0,

we obtain

lim
x→0

ĪY
′
(x, y) = IY

′
(y),

which precisely recovers the twisted I-function for Y ′.

Lemma V.1. The components of IX
′
(q1, q2) comprise a basis of solutions to the

differential equation system {41I = 42I = 0} at any point around the origin in

(C∗)2, where

41 := (zδq1)
3 − 4q1(2zδq1 + z)2,

42 := zδq2(zδq2 − zδq1)− q2.

Proof. First we write

IX
′
(q1, q2) = (2h)(2h)q

h/z
1 q

ξ/z
2

∑
(d1,d2)∈N2

qd11 q
d2
2 Ad1,d2 .
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These two differential operators are obtained precisely by the recursion reltaions

between Ad1,d2 and Ad1+1,d2 (or Ad1,d2+1), and the cohomology relation h5 = ξ(ξ−h) =

0 amounts to the fact that Ad1,d2 = 0 unless (d1, d2) ∈ N2. The components of

IX
′
(q1, q2) give rise to 6 linearly-independent solutions to the differential equation

system. On the other hand, this differential equation system can have at most 6-

dimensional solution space due to a holonomic rank computation. Hence the lemma

follows.

Insipred by the work of Lee-Lin-Wang[26], we apply the following change of vari-

able to the above differential equation system

q1 7→ x−1, q2 7→ xy.

Then we have the relation

δq1 = δy − δx, δq2 = δy.

Let 4′1, 4′2 denote the differential operators obtained by applying the above change

of variable, then we have the following lemma

Lemma V.2. The components of ĪY
′
(x, y) comprise 4 linearly independent solutions

to the differential equation system {4′1I = 4′2I = 0} at any point around the origin

in (C∗)2, where

4′1 := x(zδy − zδx)3 − 4(2(zδy − zδx) + z)2],

4′2 := (zδy)(zδx)− xy.

Proof. This is straightfoward to check.
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To find the extra solutions to the differetial equation system {4′1I = 4′2I = 0},

we define ĪY
′

ext(x, y) in the following way,

(5.1) ĪY
′

ext(x, y) = x
1
2

+u
∑

(i,j)∈N2

xiyjCi,j,

where {Ci,j} satisfies the following recursion relations for (i, j) ∈ Z2:

(5.2) Ci−1,j(j − i+
1

2
− u)3z = 16Ci,j(j − i− u)2,

(5.3) Ci−1,j−1 = Ci,j(zj)(zi+
1

2
+ u).

Lemma V.3. Let I5, I6 ∈ C[[x, y, log x]][x
1
2 ] be the components of ĪY

′
ext(x, y) in the

following sense

π : C[[x, y, u, log x]][x
1
2 ] −→ C[[x, y, u, log x]][x

1
2 ]/(u2),

x
1
2 eu log x

∑
(i,j)∈N2

xiyjCi,j 7−→ I5 + I6u,

where π is the obvious projection map, and Ci,j are defined by the recursion relations

(5.2) and (5.3) with initial condition C0,0 = 1. Then I5 and I6, together with the

components of ĪY
′
(x, y), comprise a basis of solutions to the differential equation

system {4′1I = 4′2I = 0} at any point around the origin in (C∗)2.

Proof. Given the solution form (5.1), it is straightfoward to check that the recursion

relation (5.2) and (5.3) correspond precisely to the differential operator 4′1 and 4′2,

respectively. Choosing initial condition C0,0 = 1, it follows that Ci,j are uniquely

determined for all (i, j) ∈ N2. If we require u2 = 0, we see that Ci,j = 0 if i < 0

or j < 0. Thus I5 and I6 are solutions to the differential equation system {4′1I =

4′2I = 0}. It is clear that I5, I6, as well as the components of ĪY
′
(x, y), are all

linearly-independent because of their initial terms. On the other hand, the differential

equation system {4′1I = 4′2I = 0} should have 6-dimensional solution space, hence

the lemma is proved.
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Now we are ready to prove the main theorem in this section.

Theorem V.4 (=Theorem I.2(3)). The Conjecture I.1 holds for the local model

{X ′, Y ′}, namely: one may perform analytic continuation of H(X ′) over the extended

Kähler moduli to obtain a D-module H̄(X ′), then there exists a divisor E and a

submodule H̄E(X ′) ⊆ H̄(X ′) with maximum trivial monodromy around E, such that

H̄E(X ′)|E ' H(Y ),

where H̄E(X ′) is the restriction to E.

Proof. We begin by identifying the ambient part quantum D-module H(X ′) and

H(Y ′) with the cyclic D-modules generated by IX
′
(q1, q2) and IY

′
(y), respectively.

The change of variable x 7→ q−1
1 and y 7→ q1q2 give rise to the anayltic continuation

H(X ′) H̄(X ′).

By Lemma V.1 and Lemma V.2, we may consider the submodule of H̄(X ′) cor-

responding to the sub D-module generated by the components of ĪY
′
(x, y). It has

trivial monodromy around x = 0 as the initial term of ĪY
′
(x, y) does not involve

x. This trivial monodromy is also maximal because by Lemma III.3, the remaining

two solutions I5, I6 have non-trivial monodromy around x = 0. Let E denote the

transition divisor x = 0, and H̄E(X ′) denote this submodule.

Since IY
′
(y) is recovered by IY

′
(y) = limx→0 Ī

Y ′(x, y), we see that H(Y ′) is iso-

mophic to the restriction of H̄E(X ′) to E. Hence our theorem is proved.

5.2 A Calabi-Yau example of type (2,4)

In this section, we study our first global example of Type II transition in degree

4. Let Y1 be a (2,4) complete intersection in P5 defined by the following equations:

f(x1, x2, x3, x4, x5) + tx2
0 = 0,
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x2
0(g(x1, x2, x3, x4, x5) + tx2

0) + x0g1(x1, x2, x3, x4, x5) + g2(x1, x2, x3, x4, x5) = 0,

where f and g are quadratic homogenous polynomial which form a complete inter-

section, g1 is a generic cubic homogenous polynomial and g2 is a generic quartic

homogenous polynomial.

By deforming the above equations to t = 0, we obtain a singular variety Ȳ1 ⊆ P5

defined by

f(x1, x2, x3, x4, x5) = 0,

x2
0g(x1, x2, x3, x4, x5) + x0g1(x1, x2, x3, x4, x5) + g2(x1, x2, x3, x4, x5) = 0.

Choosing g1 and g2 appropriately, we may assume Y1 has a unique singularity at

[1 : 0 : 0 : 0 : 0 : 0] arised from the (2,2) complete intersection (f, g).

Now we take X1 to be the blow up of Ȳ1 at the point [1 : 0 : 0 : 0 : 0 : 0]. The

expectional divisor is given by {f = g = 0} in P4, which is a del Pezzo surface in

degree 4. Clearly, both X1 and Y1 are Calabi-Yau 3-folds. The transition from X1 to

Y1 is our primary example in this section. In our case here, Y1 is the zero locus of a

section of OP5(2)⊕OP5(4), whereas X1 is natrually embeded into P(OP4(−1)⊕OP4)

as a complete intersection.

We adopt the following notations throughout this section.

• h := c1(π∗OP4(1)), corresponding to small parameter q1

• Let OP(1) be the anti-tautological bundle over P(OP4(−1) ⊕ OP4), and ξ :=

c1(OP(1)), corresponding to small parameter q2.

• p := c1(OP5(1)), corresponding to small parameter y.

Then X1 is the zero locus of a section of the vector bundle O(2h)⊕O(2h+ 2ξ) over
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P(OP4(−1)⊕OP4), whose I-function is the following:

IX1(q1, q2) : = (2h)(2h+ 2ξ)q
h/z
1 q

ξ/z
2

·
∑

(d1,d2)∈N2

qd11 q
d2
2

0∏
m=−∞

(ξ − h+mz)
2d1∏
m=1

(2h+mz)
2d1+2d2∏
m=1

(2h+ 2ξ +mz)

d1∏
m=1

(h+mz)5
d2∏
m=1

(ξ +mz)
d2−d1∏
m=−∞

(ξ − h+mz)

,

subject to the relation h5 = ξ(ξ − h) = 0.

On the other hand, the I-function for Y1 is the following:

IY1(y) := (2p)(4p)yp/z
∑
j∈N

4j∏
m=1

(4p+mz)
2j∏
m=1

(2p+mz)

j∏
m=1

(p+mz)6

,

subject to the relation p6 = 0.

Similar to the local model, we introduce the following auxcillary hypergeometric

series ĪY1 in two variables x and y.

ĪY1(x, y) := (2p)(4p)yp/z
∑

(i,j)∈N2

xiyj

0∏
m=−∞

(p+mz)5
2j−2i∏
m=−∞

(2p+mz)
4j−2i∏
m=−∞

(2p+mz)

j−i∏
m=−∞

(p+mz)5
j∏

m=1

(p+mz)
i∏

m=1

(mz)
0∏

m=−∞
(2p+mz)2

.

It’s easy to check that ĪY1 is a holomorphic function on a small domain minus the

origin, and it has trivial monodromy around x = 0. Taking the limit x → 0, we

obtain

lim
x→0

ĪY1(x, y) = IY1(y),

which precisely recovers the I-function for Y1.

To study the relation between the ambient part quantum D-modules of X1 and

Y1, we want to find a way to relate IX1(x, y) and IY1(y). As IY1 is recovered from

ĪY1 , it is tempting to study the relation between IX1 and IY1 as they both involve 2

parameters.



52

We consider the Picard-Fuchs equations that annihilate IX
′
, which usually origi-

nates from a GKZ system attached to the toric data. We have the following lemma:

Lemma V.5. The components of IX1(q1, q2) comprise a basis of solutions to the

differential equation system {41I = 42I = LI = 0} at any point around the origin

in (C∗)2, where

41 := (δq1)
5 − 4(δq1)(δq1 + δq2)(2δq1 − 1)(δq2 − δq1 + 1)(2δq1 + 2δq2 − 1)q1,

42 := δq2(δq2 − δq1)− 2(δq1 + δq2)(2δq1 + 2δq2 − 1)q2,

L := (2δ3
q1
−2δ2

q1
δq2+δq1δ

2
q2

)−8(2δq1−1)(δq2−δq1+1)(2δq2+2δq1−1)q1−2δq1δq2(2δq1+2δq2−1)q2.

Moreover, these differential operators are related in the following factorization

(5.4) 241 + δ2
q1
δq242 = (δq1 + δq2)δq1L.

Proof. Indeed, the GKZ system attached to the toric data yields the generators 41

and 42. By the factorization (5.4), we obtain a differential operator L of order 3,

thus the system {41I = 42I = LI = 0} can have at most 6-dimensional solution

space. It is direct to check that the components of IX1 give 6 linearly independent

solution to this differential equation system, hence they must form a basis.

Similar to Section 3, we apply the following change of variables

q1 7→ x−1, q2 7→ xy,

which yields the following relations between differential operators

δq1 = δy − δx, δq2 = δy.

Let 4′1, 4′2, L′ denote the differential operators obtained by applying the above

change of variables to 41,42,L, respectively. Then we have



53

Lemma V.6. The components of ĪY1(x, y) comprise 4 linearly independent solutions

to the differential equation system {4′1I = 4′2I = L′I = 0} at any point around the

origin in (C∗)2, where

4′1 := (δy − δx)5 − 4(δy − δx)(2δy − δx)(2δy − 2δx − 1)(δx + 1)(4δy − 2δx − 1)x−1,

4′2 := δyδx − 2(2δy − δx)(4δy − 2δx − 1)xy,

L′ := (2(δy − δx)3 − 2(δy − δx)2δy + (δy − δx)δ2
y)− 8(2δy − 2δx − 1)(δx + 1)(4δy − 2δx − 1)q1

− 2(δy − δx)δy(4δy − 2δx − 1)xy.

Proof. This can be checked directly.

To find the extra solutions to the above differetial equation system {4′1I = 4′2I =

0}, we introduce ĪY1ext(x, y) in the following way,

(5.5) ĪY1ext(x, y) = x
1
2

+u
∑

(i,j)∈N2

xiyjCi,j,

where {Ci,j} satisfies the following recursion relations for (i, j) ∈ Z2:

(5.6)

Ci,j(j−i−
1

2
−u)4 = Ci+1,j(2j−u−i−

1

2
)(2j−2u−2i−2)(u+i+

3

2
)(4j−2u−2i−2),

(5.7) (4j − 2u− 2i− 1)(4j − 2i− 2u− 2)Ci−1,j−1 = Ci,j(j)(i+
1

2
+ u).

Lemma V.7. Let I5, I6 ∈ C[[x, y, log x]][x
1
2 ] be the components of ĪY1ext(x, y) in the

following sense

π : C[[x, y, u, log x]][x
1
2 ] −→ C[[x, y, u, log x]][x

1
2 ]/(u2),

x
1
2 eu log x

∑
(i,j)∈N2

xiyjCi,j 7−→ I5 + I6u,
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where π is the obvious projection map, and Ci,j are defined recursively by (5.6) and

(5.7) with initial condition C0,0 = 1. Then I5 and I6, together with the components

of ĪY1(x, y), comprise a basis of solutions to the differential equation system {4′1I =

4′2I = L′I = 0} at any point around the origin in (C∗)2.

Proof. Given the solution form (5.5), it is straightfoward to check that the recursion

relation (5.6) and (5.7) are compatible with 4′1, 4′2 and L′. If we require u2 = 0,

we see that Ci,j = 0 if i < 0 or j < 0. Given initial condition C0,0 = 1, it is

clear that Ci,j are uniquely determined for all (i, j) ∈ N2. Thus I5 and I6 are

solutions to the differential equation system {4′1I = 4′2I = L′I = 0}. We also

note that I5, I6, together with the components of ĪY1(x, y), are linearly-independent

because of their initial terms. On the other hand, the differential equation system

{4′1I = 4′2I = L′I = 0} should have at most 6-dimensional solution space, hence

the lemma follows.

We are now in a position to prove the main theorem in this section.

Theorem V.8 (=Theorem I.2(4)). The Conjecture I.1 holds for the {X1, Y1}, namely:

one may perform analytic continuation of H(X1) over the extended Kähler mod-

uli to obtain a D-module H̄(X1), then there exists a divisor E and a submodule

H̄E(X1) ⊆ H̄(X1) with maximum trivial monodromy around E, such that

H̄E(X1)|E ' H(Y1),

where H̄E(X1) is the restriction to E.

Proof. Following the argument in Chapter III, we first identify the ambient part quan-

tum D-module H(X1) and H(Y1) with the cyclic D-modules generated by IX1(q1, q2)

and IY1(y), respectively. The change of variable x 7→ q−1
1 and y 7→ q1q2 give rise to

the anayltic continuation H(X1) H̄(X1).
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By Lemma V.5 and Lemma V.6, we consider the submodule of H̄(X1) correspond-

ing to the sub D-module attached to the components of ĪY1(x, y). It has trivial mon-

odromy around x = 0 as the initial term of ĪY1(x, y) does not involve x. This trivial

monodromy is also maximal because by Lemma V.7, it is clear that the remaining

two solutions I5, I6 have non-trivial monodromy around x = 0. Let E denote the

transition divisor corresponding to x = 0, and H̄E(X1) denote this submodule.

As IY1(y) is recovered by IY1(y) = limx→0 Ī
Y1(x, y), we obtain immediately that

H(Y1) is isomophic to the restriction of H̄E(X1) to E. Hence the theorem is proved.

5.3 A Calabi-Yau example of type (3,3)

In this section, our goal is to verify Conjecuture 1.1 for another global example

of degree-4 transition. Let Y2 be a (3, 3)-complete intersection in P5 defined by the

following two equations:

x0(f(x1, x2, x3, x4, x5) + tx2
0) + f1(x1, x2, x3, x4, x5) = 0,

x0(g(x1, x2, x3, x4, x5) + tx2
0) + g1(x1, x2, x3, x4, x5) = 0,

where f and g are quadratic homogenous polynomials that form a complete intere-

section, while f1 and g1 are generic homogenous polynomial in degree 3. Deforming

the above equations by letting t = 0, we obtain a singular 3-fold Ȳ2 ⊆ P5, whose

defining equations are:

x0f(x1, x2, x3, x4, x5) + f1(x1, x2, x3, x4, x5) = 0,

x0g(x1, x2, x3, x4, x5) + g1(x1, x2, x3, x4, x5) = 0.

As f1 and g1 are choosen to be generic, we may assume that Ȳ2 has a unique singu-

larity at [1 : 0 : 0 : 0 : 0 : 0], which is a (2,2) complete intersection singularity. If
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we blow up Y0 at this point, we obtain a smooth Calabi-Yau 3-fold X2, where the

exceptional divisor is a (2,2)-complete intersection in P4, namely, a del Pezzo surface

in degree 4.

Going backwards, we see that Y2 is obtained by birationally contracting a degree-4

del Pezzo surface in X2 and followed by smoothing out the singularity. Thus {X2, Y2}

is another global example of degree-4 transitions, where both sides are Calabi-Yau

3-folds. In this case, Y2 is the zero locus of a section of OP5(3)⊕OP5(3), whereas X2

natrually sits inside P(OP4(−1)⊕OP4) as a complete intersection.

As before, we shall adopt the following notations throughout this section.

• h := c1(π∗OP4(1)), corresponding to small parameter q1

• Let OP(1) be the anti-tautological bundle over P(OP4(−1) ⊕ OP4), and ξ :=

c1(OP(1)), corresponding to small parameter q2.

• p := c1(OP5(1)), corresponding to small parameter y.

Then X2 is the zero locus of a section of the vector bundle O(2h + ξ) ⊕ O(2h + ξ)

over P(OP4(−1)⊕OP4), whose I-function is the following:

IX2(q1, q2) : = (2h+ ξ)2q
h/z
1 q

ξ/z
2

·
∑

(d1,d2)∈N2

qd11 q
d2
2

0∏
m=−∞

(ξ − h+mz)
2d1∏
m=1

(2h+mz)
2d1+d2∏
m=1

(2h+ ξ +mz)2

d1∏
m=1

(h+mz)5
d2∏
m=1

(ξ +mz)
d2−d1∏
m=−∞

(ξ − h+mz)

,

subject to the relation h5 = ξ(ξ − h) = 0.

On the other hand, the I-function for Y2 is the following:

IY2(y) := (3p)2yp/z
∑
j∈N

3j∏
m=1

(3p+mz)2

j∏
m=1

(p+mz)6

,

subject to the relation p6 = 0.
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To compare IX2 and IY2 , we introduce the following auxcillary hypergeometric

series ĪY2 in two variables x and y.

ĪY2(x, y) := (3p)2yp/z
∑

(i,j)∈N2

xiyj

0∏
m=−∞

(p+mz)5
3j−2i∏
m=−∞

(3p+mz)2

j−i∏
m=−∞

(p+mz)5
j∏

m=1

(p+mz)
i∏

m=1

(mz)
0∏

m=−∞
(2p+mz)2

.

It is clear that ĪY2 is a holomorphic function on a small domain minus the origin,

and it has trivial monodromy around x = 0. Taking the limit x→ 0, we obtain

lim
x→0

ĪY2(x, y) = IY2(y),

which still recovers the I-function for Y2.

To compare IX2 and IY2 , we turn our attention to the relation betwen IX2 and

ĪY2 , as ĪY2 involves two variables x and y, and recovers IY2 naturally. We consider

the Picard-Fuchs equations that annihilates IX2 , which usually arises from a GKZ

system attached to the toric data.

Lemma V.9. The components of IX2(q1, q2) comprise a basis of solutions to the

differential equation system {41I = 42I = LI = 0} at any point around the origin

in (C∗)2, where

41 := (δq1)
5 − q1(δq2 − δq1)(2δq1 + δq2 + 1)2(2δq1 + δq2 + 2)2,

42 := δq2(δq2 − δq1)− q2(2δq2 + δq1 + 1)2,

L := 9δ3
q1
−5δ3

q2
−36(δq2−δq1+1)(2δq1+δq2−1)2q1+(36δ3

q1
+45δ2

q1
δq2+25δq1δ

2
q2

+5δ3
q2

)q2.

Moreover, these differential operators are related in the following factorization

(5.8) 3641 − (36δ3
q1

+ 45δ2
q1
δq2 + 25δq1δ

2
q2

+ 5δ3
q2

)42 = (2δq1 + δq2)
2L.

Proof. The GKZ system attached to the toric data gives rise to the generators 41

and 42. By the factorization (5.8), we obtain a differential operator L of order 3,
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thus the system {41I = 42I = LI = 0} can have at most 6-dimensional solution

space. It is straightforward to check that the components of IX2 comprise 6 linearly

independent solution to this differential equation system, hence they must form a

basis.

On the other hand, by making the change of variable x 7→ q−1
1 and y 7→ q1q2, the

resulting differential operators turn out to be the annihilators of ĪY2 . We have the

following lemma.

Lemma V.10. The components of ĪY2(x, y) comprise 4 linearly independent solu-

tions to the differential equation system {4′1I = 4′2I = L′I = 0} at any point around

the origin in (C∗)2, where

4′1 := x(δy − δx)5 − δx(3δy − 2δx + 1)2(3δy − 2δx + 2)2,

4′2 := δyδx − xy(3δy − 2δx + 1)2,

L′ := 9(δy − δx)3 − 5δ3
y − 36(δx + 1)(3δy − 2δx − 1)2x−1 + (36(δy − δx)3 + 45(δy − δx)2δy

+ 25(δy − δx)δ2
y + 5δ3

y)xy.

Proof. This is easy to check.

To find the extra solutions to the above differential equation system, we adopt

the same method used in previous sections, namely, define ĪY2ext(x, y) in the following

way.

(5.9) ĪY2ext(x, y) = x
1
2

+u
∑

(i,j)∈N2

xiyjCi,j,

where {Ci,j} satisfies the following recursion relations for (i, j) ∈ Z2:

(5.10) Ci−1,j(j − u+
1

2
)5 = Ci,j(i+ u+

1

2
)(3j − 2i− 2u)(3j − 2i− 2u+ 1)2,
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(5.11) (3j − 2i− 2u− 1)2Ci−1,j−1 = Ci,j(j)(i+
1

2
+ u).

Lemma V.11. Let I5, I6 ∈ C[[x, y, log x]][x
1
2 ] be the components of ĪY2ext(x, y) in the

following sense

π : C[[x, y, u, log x]][x
1
2 ] −→ C[[x, y, u, log x]][x

1
2 ]/(u2),

x
1
2 eu log x

∑
(i,j)∈N2

xiyjCi,j 7−→ I5 + I6u,

where π is the obvious projection map, and Ci,j are defined recursively by (5.10) and

(5.11) with initial condition C0,0 = 1. Then I5 and I6, together with the components

of ĪY2(x, y), comprise a basis of solutions to the differential equation system {4′1I =

4′2I = L′I = 0} at any point around the origin in (C∗)2.

Proof. As ĪY1ext(x, y) is of form (5.9), it is easy to check that the recursion relation

(5.10) and (5.11) are compatible with 4′1, 4′2 and L′. If we require u2 = 0, we see

that Ci,j = 0 if i < 0 or j < 0. Moreover, the initial condition C0,0 = 1 allows

us to determine Ci,j uniquely for all (i, j) ∈ N2. Thus I5 and I6 are solutions to

the differential equation system {4′1I = 4′2I = L′I = 0}. We also note that I5,

I6, together with the components of ĪY2(x, y), are linearly-independent because of

their initial terms. On the other hand, the differential equation system {4′1I =

4′2I = L′I = 0} should have at most 6-dimensional solution space, hence the lemma

follows.

Now we arrive at the proof of the main theorem in this section.

Theorem V.12 (=Theorem I.2(5)). The Conjecture I.1 holds for the {X2, Y2},

namely: one may perform analytic continuation of H(X2) over the extended Kähler

moduli to obtain a D-module H̄(X2), then there exists a divisor E and a submodule
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H̄E(X2) ⊆ H̄(X2) with maximum trivial monodromy around E, such that

H̄E(X2)|E ' H(Y2),

where H̄E(X2) is the restriction to E.

Proof. Following the same line of arguments in previous sections, we identify the

ambient part quantum D-module H(X2) and H(Y2) with the cyclic D-modules gen-

erated by IX2(q1, q2) and IY2(y), respectively. The change of variable x 7→ q−1
1 and

y 7→ q1q2 give rise to the anayltic continuation H(X2) H̄(X2).

By Lemma V.9 and Lemma V.10, we may consider the submodule of H̄(X2)

corresponding to the sub D-module attached to the components of ĪY2(x, y). It has

trivial monodromy around x = 0 as the initial term of ĪY2(x, y) does not involve

x. This trivial monodromy is also maximal because by Lemma 5.3, the remaining

two solutions I5, I6 have non-trivial monodromy around x = 0. Let E denote the

transition divisor x = 0, and H̄E(X1) denote this submodule.

Since IY2(y) is recovered by IY2(y) = limx→0 Ī
Y2(x, y), we conclude that H(Y2) is

recovered as the restriction of H̄E(X2) to E. Hence the theorem is proved.
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