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ABSTRACT

As both clinical and cognitive neuroscience matures, the need for sophisticated

neuroimaging analyses becomes more important. The use of imaging markers to

predict clinical outcomes, or even imaging outcomes, can have great impact on public

health. However, such analyses are still under development since it is challenging

for several reasons: 1) the images are of high dimension, and 2) the images may

exhibit complex spatial correlation structure. Bayesian methods play an important

role in solving these problems by dealing with spatial data flexibly and applying

efficient sampling algorithms. This dissertation aims to develop spatial Bayesian

models to predict either scalar or imaging outcomes by using imaging predictors and

seeks computationally efficient approaches.

In Chapter II, we propose a Bayesian scalar-on-image regression model with appli-

cation to Multiple Sclerosis (MS) Magnetic Resonance Imaging (MRI) data. Specif-

ically, we build up a multinomial logistic regression model to predict the clinical

subtypes of MS patients by using their 3D MRI lesion data. Parameters correspond-

ing to MRI predictors are spatially varying in the image space and are assumed to

have a Gaussian Process (GP) prior distribution. Since the covariates are highly cor-

related, we use the Hamiltonian Monte Carlo algorithm, which is more statistically

efficient than other Markov Chain Monte Carlo methods when the parameters are

highly correlated. Finally, to reduce computational burden, we code the problem to

run in parallel on a graphical processing unit. Results from simulation studies and a

real MS data set show that our method has high prediction accuracy as evaluated by

leave-one-out cross validation using an importance-sampling scheme.

xiv



In Chapter III, we propose a novel image-on-image regression model, by extending

a spatial Bayesian latent factor model to neuroimaging data, where low dimensional

latent factors are adopted to make connections between high-dimensional image out-

comes and image predictors. We assign GP priors to the spatially varying regression

coefficients in the model, which capture the complex spatial dependence among image

outcomes as well as that among the image predictors. We perform simulation studies

to evaluate the out-of-sample prediction performance of our method compared with

linear regression and voxel-wise regression methods for different scenarios. We apply

the proposed method to analysis of multimodal image data in the Human Connec-

tome Project (HCP) where we predict task-related contrast maps using sub-cortical

volumetric seed maps. The proposed method achieves a better prediction accuracy

than simpler models by effectively accounting for the spatial dependence and efficient

reduction of image dimension with latent factors.

In Chapter IV, we extend the image-on-image regression model proposed in Chap-

ter III to the case where outcome is a cortical surface image and predictors images are

volumetric seed maps. We expand the surface image on a set of spherical harmonics

basis functions, where coefficients are linked to image predictors through a latent

factor model. We assign GP priors to the spatially varying regression coefficients of

the volumetric predictor images. Compared to ridge regression, the proposed method

performs better in prediction according to simulation studies, and it can identify

active brain regions in spherical z-score images from the HCP.

xv



CHAPTER I

Introduction

The desire to understand the human brain has been one of scientific interest

throughout the ages and our knowledge of the how the brain has exploded in recent

years. Neuroimaging is an umbrella term encompassing a variety of medical imaging

technologies used to non-invasively study the brain. These include various rapidly

evolving techniques to image the brain properties related to structure, function, dis-

ease pathophysiology, or pharmacology of the nervous system. These techniques have

found applications in a wide variety of fields, including neuroscience, cognitive sci-

ence, psychology, neurology, and medicine. And the research of neuroimaging draws

together a multi-disciplinary community of neuroscientists, psychologists, physicists,

statisticians, mathematician, and computer scientists.

Statisticians have played a crucial role in this research and have contributed signif-

icantly to the field. However, the statistical analysis of neuroimaging data is still very

challenging for a number of reasons. Currently, most classical statistical methods do

not account for the spatial structure in the data resulting in underpowered statistical

inferences (Li et al., 2011; Polzehl et al., 2010; Wolfers et al., 2015; Mwangi et al.,

2014). There have been some attempts to model this complex and high-dimensional

spatial correlation (Bowman et al., 2008), however, there are still limitations due to

high dimension, computational capability, and model flexibility (Hyun et al., 2014;
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Zhu et al., 2007). To help fill this gap, this dissertation proposes statistical approaches

for the analysis of neuroimaging data by properly modelling the spatial dependence in

images. The proposed methods are implemented using the Bayesian framework with

fast computational algorithms and techniques. We apply our statistical models (1)

to the associations of disease outcomes with neuroimaging data (Scalar-on-Image re-

gression) and (2)to model task-related brain activity with resting state and structural

imaging (so called Image-on-Image).

The remainder of this chapter is organized as follows: we start in Section 1.1 with

a brief overview of neuroimaging including a variety of modalities. The statistical

methods of neuroimaging data analysis are summarized in Section 1.2. The challenges

of neuroimaging data analysis, in particular accounting for spatial dependence, are

presented in Section 1.3. Finally, we outline the dissertation in Section 1.4.

1.1 Neuroimaging Data

The discovery of X-rays in 1895 by Professor W. C. Röntgen created a revolution-

ary step in the history of health sciences, which enabled physicians for the first time to

noninvasively study the inside structure of a living subject. (Röntgen, 1896; Glasser ,

1993; Donya et al., 2015). X-rays were, and are still, widely used in hospitals to study

damage to bones, teeth, and lungs but inherently limited to the study of anatomical

structures because it projects a three-dimensional (3D) object onto a two-dimensional

(2D) image (Donya et al., 2015; Ardran, 1979). The limitations of X-rays encouraged

the advent of modern advanced imaging modalities. And it is usually important to

separate neuroimaging into structural imaging and functional imaging, each of which

has several modalities.
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1.1.1 Structural Imaging

Structural imaging, used for the study of brain structure and the diagnosis of

disease and injury, typically including computerized tomography(CT), magnetic res-

onance imaging (MRI) and positron emission tomography (PET).

A CT scanner use computerized technology to combine many X-rays measure-

ments taken from different angles to produce cross-sectional (tomographic) images

(virtual “slices”) of an object (Epstein, 2007; Natterer , 2001). In contrast to CT,

PET performs emission tomography to observe metabolic processes in the body. A

positron-emitting radio-ligand is introduced into the subject and distributed across

the organ of interest. The PET scanner has a number of detector surrounding the

subject. When the radioisotope decays, two photons are then detected by the photo-

multipliers, determining the line along which the decay happened (Daghighian et al.,

1990; Shukla and Kumar , 2006; Nasrallah and Dubroff , 2013). A 3D image of tracer

concentration within the body is then reconstructed by a computer algorithm.

MRI provides more detailed anatomical information than CT without exposing

the body to radiation. A MR scanner produces powerful magnetic field and radio

frequency pulses to excite nuclei in the brain, which absorb external energy. Once

the pulse is turned off, the nuclei emit this extra energy and return to their original

aligned positions (a procedure called relaxation) (Wills and Hector , 1924; Hashemi

et al.). The emitted energy is captured in turn in the scanner as the basic MR signal.

A system of gradient coils vary the strength of the magnetic field, so that each location

in the brain has its own resonance frequency as its raw data from the MR scanner. An

inverse Fourier transform is applied to the raw data to reconstruct the image (Heggie,

2001; Bracewell and Bracewell , 1986).

MRI has high spatial resolution and is very adept at morphological imaging and

functional imaging. PET permits the estimation of the density of a variety of neuro-

chemical receptors across the brain (Ombao et al., 2016) so that it is complementary
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to MRI. CT is mostly used for bone injuries, chest or lung imaging and detecting

cancer, while MRI is better suited for soft tissue damage. In addition, MRI is free of

radiation, which is harmful in repeated exposures.

1.1.2 Functional Imaging

To study cognitive and affective processes, commonly used functional imaging

modalities include PET, functional magnetic resonance imaging (fMRI), electroen-

cephalography (EEG) and magnetoencephalography (MEG).

EEG maps brain electrical activity with millisecond temporal resolution while

MEG maps magnetic changes. EEG is non-invasive with a number of electrodes

(usually 32, 64, or 256) placed along the scalp. It measures voltage fluctuations

resulting from ionic current within the neurons of the brain. Similarly, MEG is also

non-invasive and records magnetic fields produced by electrical currents occurring

naturally in the brain, using very sensitive magnetometers.

fMRI extends the use of MRI to indirectly measure neuronal activity via the blood

oxygenation level dependent (BOLD) contrast (Ogawa et al., 1990, 1993). When the

brain is active in response to a particular task, the neurons responsible for that task

require more energy (oxygen) resulting in an increase in oxygenated blood flow. MR

signals reflect the changes in the local magnetic fields caused by the changes of blood

oxygenation in that region (Kwong et al., 1992). During a standard fMRI experiment,

the subject is asked to perform some tasks and the system records BOLD changes.

Usually the number of voxels (n) is greater than 100,000 and the number of time points

(T ) varies from 100 to 2,000 (Dale, 1999; Marshall et al., 2008; Lindquist et al., 2008).

Thus, the recorded signal consists of n time series, each with T observations.

All of these functional imaging modalities produce four-dimensional data but with

different temporal and spatial resolutions. The temporal resolution of EEG and MEG,

on the order of milliseconds, is much better than that of fMRI and PET (between
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seconds and minutes). However, EEG and MEG have obvious limitation in spatial

resolution, on the order of 6 cm3. In contrast, the spatial resolution of PET is on the

order of 200 mm3. The spatial resolution of fMRI is typically on the order of 8-36

mm3 and can be as small as 1 mm3. In addition to the differences in temporal and

spatial resolution, both PET and fMRI measure neuronal activity indirectly, while

signals recorded by EEG and MEG directly measure the current generated by neurons

in the brain.

1.2 Statistical Methods of Neuroimaging Data Analysis

Prior to statistical analysis, a series of preprocessing steps are performed on the

data to minimize the influence of artifacts and to remove extraneous sources of varia-

tion. The steps in the fMRI preprocessing pipeline involve interpolation, slice timing

correction, motion correction, registration, normalization and spatial smoothing (Om-

bao et al., 2016), (Lindquist et al., 2008). These preprocessing steps are crucial for

further statistical analysis and validation of model assumptions.

After preprocessing, which statistical method that is applied to neuroimaging

data much depends on the goal of the study (Ombao et al., 2016; Lazar , 2008). High-

resolution structural imaging has been extensively used in the clinical setting, since

it provides detailed anatomical information, is sensitive to many pathologies and as-

sists in diagnosis of disease (Atlas , 2009). In particular, with the help of statistical

methods, structural MRI (sMRI) plays a fundamental role in the diagnosis, manage-

ment, and study of multiple sclerosis (MS), stroke, cancer, traumatic brain injury,

and Alzheimer’s disease (AD). For example, lesion segmentation is a classification

problem and solved by training statistical classifiers (e.g. logistic regression, support

vector machine, or random forest) given the voxel-level intensity information from

sMRI (Pham et al., 2000; Balafar et al., 2010; Lladó et al., 2012; Sweeney et al.,

2013b). Another example is the study of the association between lesion localization
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and health outcomes (e.g. treatment groups, disease stages or subtype groups), sim-

ple summary statistics and voxel-wise regression methods are commonly used (Charil

et al., 2007, 2003; Sepulcre et al., 2009; Rossi et al., 2012; Ge et al., 2014a). In sum-

mary, almost all of the statistical methods used for sMRI data analyses are simple

and disregard spatial dependence amongst voxels.

Many statistical methods have been proposed for various analysis of functional

neuroimaging data, in particular fMRI data (Lindquist et al., 2008; Lazar , 2008), as

both temporal and spatial information provide researchers unprecedented access to

brain activity. Here, we primarily focus on the massive univariate approach, the most

common and the standard statistical method to measure brain activity in designed

experiments, that constructs brain activation maps (Lazar , 2008). This approach

analyzes fMRI time series, one voxel at a time. In this context, the general linear

model (GLM) (Martin and Maes , 1979) is the statistical model of choice (Worsley

and Friston, 1995). Statistical inference is performed using the statistical parametric

map (SPM), summarizing test statistics (e.g. Student t-tests) for all the voxels. The

classical massive univariate approach ignores spatial dependence in both model fitting

and inference.

1.3 Accounting For Spatial Dependence

The statistical models and methods described in section 1.2 are for voxel-wise anal-

ysis of fMRI data. However, an important aspect of both structural and functional

neuroimaging data is spatial dependence amongst voxels.

For some analyses of structural neuroimaging data the particular classification

algorithm or regression method is less important than characteristics of features

(Sweeney et al., 2014; Hand , 2006) and that spatial dependence is one of the crucial

and widely ignored characteristics in the statistical analysis of neuroimaging data.

Meanwhile, some voxel-wise approaches proposed for fMRI data analysis introduce
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substantial estimation bias and are not optimal for prediction because they do not

account for spatial dependence (Li et al., 2011; Polzehl et al., 2010). In addition,

whole-brain voxel-wise approaches are not optimal for multivariate analyses such as

pattern recognition since voxels lack biological meaning (Wolfers et al., 2015; Mwangi

et al., 2014).

There is some literature that incorporates spatial dependence in neuroimaging

data analyses. See the review in (Bowman et al., 2008). The key in modelling spatial

dependence in neuorimages is the construction and estimation of the covariance ma-

trix amongst voxels. Because neuroimaging data typically has a very large number of

voxels it is computational prohibitive to estimate large unstructured covariance and

precision matrices (Bowman et al., 2008; Hyun et al., 2014). An alternative approach

is to reduce the dimension of the covariance matrix by using a region of interest ap-

proach or by partitioning the brain into a small number of parcels (Bowman, 2007).

Under the Bayesian framework, spatial priors are commonly used such as conditional

autoregressive (CAR) priors, Gaussian process priors and Markov random field priors

(Gössl et al., 2001; Katanoda et al., 2002; Bowman, 2005; Brezger et al., 2007; Groves

et al., 2009). However, these Bayesian approaches come at a huge computational

cost. usually brings heavy computation to calculate the tuning parameters defined

for those priors.

1.4 Dissertation Outline

This dissertation is organized as follows. In Chapter II, we propose a scalar-

on-image regression model to predict clinical subtypes of Multiple Scelrosis using

structural MRI data. In Chapter III, we develop a spatial Bayesian latent factor

model for image-on-image regression to predict task-related contrast maps given a set

of task-free images. In Chapter IV, the model developed in Chapter II is extended to

predict surface images from volumetric images. We wrap up the dissertation with a
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summary and ideas for future extensions.
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CHAPTER II

Scalar-on-Image Regression with Application to

Multiple Sclerosis MRI Data

Multiple sclerosis (MS) is an autoimmune disease that attacks the central nervous

system. Furthermore, MS lesions are visible on magnetic resonance (MR) images.

Hence, magnetic resonance imaging (MRI) plays a central in the diagnosis and man-

agement of MS patients. A research question of interest is whether MS lesion data,

via MR images, can predict the subtypes of MS. To answer this question we propose a

Bayesian scalar-on-image regression model. Specifically, a polytomous logistic regres-

sion model to predict a patient’s clinical MS subtype using her 3D MRI lesion data as

predictors. We assume that the parameters corresponding to these predictors are spa-

tially smooth (correlated) and use a 3D Gaussian Process (GP) prior to model these

parameters and their correlation structure. These parameters are of high dimension,

one parameter for each of the thousands of voxels, and tend to be highly correlated,

at least locally. This high-dimensional problem results in a computationally intense

Bayesian algorithm. Thus, to speed up the algorithm we adopt three ideas: 1) we

sample the discretized GP via the Hamiltonian Monte Carlo (HMC) algorithm which

increases mixing compared to standard Markov chain Monte Carlo algorithms in high-

dimensional problems with highly correlated parameters; 2) since the data reside on

a regular lattice, we embed the covariance matrix (a nested block Toeplitz matrix)
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of the approximate Gaussian Process in a nested block circulant matrix and lever-

age the relationship between these matrices and the 3D Fourier transform; and 3)

we leverage the parallelism of the fast Fourier transform and of the HMC algorithm

and port these portions of the algorithm onto a graphical processing unit. We show

via simulation studies and via an MS data set that our model has high prediction

accuracy as evaluated by leave-one-out cross validation.

2.1 Introduction

MS is an unpredictable and often disabling autoimmune disease of the central ner-

vous system. Chronic inflammation and neuronal demyelination in the brain and the

spinal cord disrupt action potentials within the brain and between the brain and body,

that then cause a multitude of clinical symptoms including, but not limited to, blind-

ness, muscle weakness and gait impairment (Compston and Coles , 2002). Symptoms

occur in isolation (relapsing form), gradually develop over time (progressive form), or

in a combination of both (Lublin et al., 1996). MS is subtyped based on progression

pattern. Until recently, MS was subtyped into 4 distinct clinical courses: relapsing-

remitting (RLRM), secondary progressive (SCP), primary progressive (PRP) and

progressive relapsing (Lublin et al., 2014). However, now, progressive relapsing is

no longer considered to be a subtype as its definition was vague and its progression

pattern overlapped with other MS subtypes (Lublin et al., 2014). While currently

there is no cure for MS, several treatment therapies are beneficial in reducing attacks

in RLRM disease. These drugs are only indicated for RLRM disease and thus it is

crucial to precisely determine subtype as early as possible. (Lövblad et al., 2010).

MRI is an important tool used in the diagnosis of MS and in monitoring its

progression (Lövblad et al., 2010). MS lesions are visible on MRI images. On T1-

weighted MR images, lesions from long-term demyelination appear as “black holes”.

on T2-weighted MR images, inflammatory lesions appear as hyper-intense regions due
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to edema. Hence, MRI is a useful tool to monitor MS disease course in both time

and space (Lövblad et al., 2010; Bakshi et al., 2005).

Although MRI is an important tool for management of MS, conventional MRI

findings are poorly correlated with clinically observed disease progression (Ge et al.,

2014b). Some methodological and statistical analyses have been developed to explore

the association between MRI and clinical progression of MS. These analyses focused

on two main issues: 1) the distribution of lesions counts across patients from different

MS subtypes and 2) the role of MRI variables as surrogate markers in MS clinical

trials (Sormani and Filippi , 2007). Among these studies, “lesion load” is the most

common and simple to use. Lesion load is simply the total lesion volume obtained

from MRI and attempts to predict clinical outcome as well as changes over time as

predictors (Calabrese et al., 2012; Moodie et al., 2012). Other authors have focused

on “mass univariate” techniques. That is independent voxel-by-voxel analyses of le-

sion probability maps (LPM) to compare the distribution of lesions from different MS

subtypes (Filli et al., 2012; Holland et al., 2012) or correlate the lesion maps with

clinical subtypes (Bates et al., 2003). Both of these methods ignore spatial corre-

lation inherent in images. Furthermore, several studies have shown poor predictive

performance of clinical MS subtypes by using these methods. (Lövblad et al., 2010;

MacKay Altman et al., 2012; Morgan et al., 2010).

In contrast to these somewhat naive methods, scalar-on-image regression may be

a more appropriate statistical model in this context. In its simplest form, scalar-on-

image regression is a linear model with scalar response yi, and image covariate xi

(written as a vector):

yi = x′iβ + εi, i = 1, 2, · · · , N

for each of N subjects, where β is an image of parameters (also written as a vector).
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In this chapter, xi is a 3-dimensional discretized image of say L voxels. Typically

L � N so that this model is unidentifiable unless we impose some constraints on

β. Within the Bayesian context one can impose a spatial prior on β such as a

Gaussian Process (GP) (Rasmussen and Williams , 2006) prior or a Gaussian Markov

random field (GMRF) prior (Besag , 1974a; Rue and Held , 2005). In some contexts,

authors have imposed sparsity on β as well (Goldsmith et al., 2014; Kang et al.,

2016; Li et al., 2015). In contrast, some authors have chosen to approximate β via a

basis expansion. The idea behind this basis function approach is that the unknown

image coefficients β can be approximated by a span of K known basis functions

B1, B2, · · · , BK . The total number of image coefficients is hence reduced from L

to K, typically with K � L, since βv ≈
∑K

k=1 bkBk(v). The choice of the basis

functions can be 1) fixed basis functions, e.g. B-Splines (Marx and Eilers , 2005) or

Wavelets (Reiss et al., 2015), 2) data-driven basis functions, e.g. principle component

regression (Müller and Stadtmüller , 2005; Allen, 2013), or 3) a combination of the

two (Reiss and Ogden, 2010a).

All above methods overcome the issue of non-identifiability and make estimation

feasible by giving structural model assumptions. However, these assumptions come at

the price of inducing bias. Both basis function approaches and random field methods

are based on assumptions of smoothness. In contrast, the image coefficients β are

modeled directly by using random field methods without any approximations other

than discretization. What’s more, sparsity is not an appropriate assumption for

prediction as an MS patient whose subtype is to be predicted may have lesions in

areas of the brain outside the assumed sparse model solution.

Therefore, in this paper, we only assume smoothness of the image coefficients β

by proposing a Gaussian Process (GP) prior for β without sparsity and projection

assumptions. To our knowledge, a GP prior has never been used in this context with

such a large 3-dimensional image parameter β. A GP is a probabilistic measure in a
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continuous domain, e.g. time or space, where any finite number of random variables

have a joint Gaussian distribution (Rasmussen and Williams , 2006). It is only deter-

mined by a mean function, commonly assumed to be zero, and a covariance function

(or kernel) with just a few hyperparameters. Because it provides fully probabilistic

predictive distributions and it is a non-parametric model, the GP prior can be used for

a wide variety of tasks and is a popular prior model in Bayesian non-parametric data

analysis. However, in this 3D imaging context with several thousand voxels, Gaussian

processes are limited by their computational complexity—estimating more parame-

ters than voxels. Many approximation techniques have been proposed to overcome

this issue within the machine learning community. Some sparse approximation meth-

ods (Smola and Bartlett , 2001; Seeger et al., 2003; Snelson and Ghahramani , 2006)

introduce latent variables which are then treated exactly, while all other parameters

are approximated to overcome the computation limitation (Quiñonero-Candela and

Rasmussen, 2005). The choice of the number of latent variables determines the per-

formance in these sparse models, but no criteria are set forth for determining the

optimal number of latent variables that balance computational cost and estimation

accuracy. Some other straightforward method use iterative methods, e.g. conjugate

gradients (Golub and Van Loan, 2012), to speed up GP regression and then reduce

the number of iterations to get approximate solutions (Gibbs and MacKay , 1996;

Yang et al., 2005). This algorithmic strategy, however, is most effective when the

input space is low dimensional. No matter the type of GP approximation method

used, computational speed is improved but at the price of estimation bias. Accurate

estimation is crucial for prediction of MS subtypes due to the overlap in the spa-

tial distribution of MS lesions amongst the three subtypes. Estimation bias reduces

prediction accuracy.

Therefore, in this chapter we do not attempt to approximate the Gaussian Process,

rather, we overcome the computational limitations by imbedding the covariance ma-
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trix into a larger matrix. In three dimensions our proposed covariance matrix of the

discretized GP (a multivariate normal distribution) has a nested block Toeplitz struc-

ture. This structure can be embedded into a nested block circulant matrix (Wood and

Chan, 1994). Leveraging the relationship between this circulant matrix and the 3D

Fourier transform, computation cost is significantly reduced Wood and Chan (1994).

Furthermore, both the fast Fourier transform (FFT) and the HMC algorithm are

ameniable to parallelization. Hence, leveraging parallel computing techniques and

porting much of the computation to a graphical processing unit (GPU), we signifi-

cantly reduce the computational burden of our model.

The goals of our work include 1) to build a predictive scalar-on-image regression

model of MS subtypes based on both clinical covariates and MRI lesion; 2) to model

the spatial dependence in the images using GP without specifying assumptions and

approximations other than discretization; and 3) to estimate model parameters, in

particular the GPs, efficiently under the Bayesian framework. In Section 2.2, we first

formulate our scalar-on-image regression model and demonstrate how we consider the

spatial dependence existing in voxel-wise parameters. A Bayesian framework and the

HMC algorithm used for estimation are then introduced. At the end of this section,

we explain how to conduct efficient calculations based on Fast Fourier Transform

(FFT) algorithm. In Section 2.4, we present a simple 2-dimensional simulation study.

Section 2.5 includes a real data analysis of MS MRI lesion data. In section 2.6, we

conclude the paper with a brief discussion.

2.2 The Model

2.2.1 Bayesian Scalar-on-Image Regression Model

We develop a Bayesian scalar-on-image regression model to estimate the probabil-

ities of the different possible outcomes of a scalar variable, given a 3D binary image
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as well as some non-spatially varying variables. The cornerstone of this scalar-on-

image regression model is the multinomial logistic regression model with a logit link

function.

Let Rd be a d-dimensional space of real values for any integer d ≥ 1. Suppose

there are N subjects in the dataset. For each subject i, we have their scalar response

variable Yi ∈ {0, 1, · · · , K−1}, a p-vector of non-spatially distributed variables ZT
i =

(Zi1,Zi2, · · · ,Zip) ∈ Rp. Let B ⊂ R3 denote the common brain space of all subjects.

Note here that each subject’s brain is warped to a representative brain atlas, B. Let

s ∈ B and let Xi : B → {0, 1} denote the function that maps the brain space to the

set {0, 1}. In other words, Xi is a binary image for subject i where if subject i has

a lesion at location s, Xi(s) = 1, otherwise Xi(s) = 0. Let πik = Pr(Yi = k). The

baseline-categories logistic link function, with baseline category k = 0, is then used

to relates the expectation of the random outcome to the systematic component as

below

log

(
πik
πi0

)
= ηik, k = 1, . . . , K − 1

ηik = αk +ZT
i γk +

∫
B

Xi(s)βk(s)ds so that (2.1)

πik =
exp (ηik)

1 +
∑K−1

l=1 exp (ηil)

The systematic component ηik is given by (2.1), containing two main terms. The

non-spatially varying term αk + ZT
i γk consists of the intercept αk and the subject-

specific covariate effects γT
k = (γk1, γk2, · · · , γkp) corresponding to Zi and the spatially

varying term,
∫
BXi(s)βk(s)ds, that integrates lesion location information over B with

spatially varying coefficient function βk : B → R.
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2.2.2 Modelling βk with a Gaussian Process Prior

To model spatial dependence, we assume that the spatially varying coefficient

functions, βk, k = 1, . . . , K − 1, independently follow a GP priors with a zero mean

function and covariance (kernel) function σ2
kC(s−s′; ρk): βk ∼ GP(0, σ2

kC(s−s′; ρk)).

The marginal variance is σ2
k and the correlation function C(s− s′; ρk) are determined

by a strictly positive decay parameter ρk, which controls the smoothness of the pro-

cess and the distance between two points s and s′, respectively. In this chapter we

adopt the Gaussian kernel: C(s − s′; ρk) = exp (−ρk‖s− s′‖2), where ‖ · ‖ signifies

Euclidean distance. As ρk decreases, the process becomes increasingly smooth and as

the distance between s and s′ increases, the correlation decreases.

2.2.3 Discretization

Obviously, the above model is infinite dimensional and not amenable to computa-

tion. By definition a GP is a stochastic process (in our case indexed by space) such

that every finite dimensional collection of these random variables follows a multivari-

ate normal distribution (MVN). Thus by discretizing space, the brain, into a set of

disjoint rectangular prisms (voxels) and evaluating the GP at the centriod of each

voxel, we can approximate each GP with a multivariate normal distribution. The

voxels are selected to correspond to the voxels that define the discreted brain atlas.

Within the space occupied by each voxel, the value of the approximated GP is taken

to be constant and is equal to the expectation at the centroid of this voxel defined by

the associated MVN.

As noted above, we descritize the brain into M voxels denoted by sj, j = 1, . . . ,M .

Let ST = (s1, . . . , SM) where the three dimensional image has been vectorized.

We next discretize each function βk into an M-dimensional column vector βT
k =

(βks1 , . . . , βksM ) with a slight abuse of notation where sj represents both the space

occupied by a voxel when referring to the GP and represents the centroid of the same
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voxel when referring to the MVN distribution. So βk ∼ NM(0, σ2
kC(ρk)) where the

(i, j)th element of the correlation matrix is given by cij(ρk) = exp(−ρk‖si−sj‖2). Cor-

respondingly we descritize the binary-valued fuctions Xi on the same grid of voxels:

XT
i = (Xis1 , . . . , XisM ). For computational reasons (see Section 2.3) we reparametrize

βk = σkC
1
2 (ρk)ζk where ζk ∼ NM(0, I).

Thus, the scalar-on-image regression model on the discretized space is given by

log

(
πik
πi0

)
≈ αk +ZT

i γk + σkX
T
i C

1
2 (ρk)ζk. (2.2)

2.2.4 Prior and Posterior Distributions

A Bayesian framework is formulated for inference and prediction. Briefly, we

assume that the intercept term αk following the standard normal distribution that

αk ∼ N(0, 1), k = 1, . . . , K − 1. The non-spatially varying parameter vectors γk are

given a prior MVN distributions:

γk|U k,Σk ∼ Np(U k,Σk)

with the hyperpriors assigned MVN and an inverse-Wishart distributions

U k|µ0,Λ0 ∼ Np(µ0,Λ0)

Σk|ν0,φ0 ∼ Inverse-Wishart(ν0,φ0).

As defined in Section 2.2.1, for the discretized spatially varying parameter vectors ζk,

we place a prior distribution on it as below

ζk
i.i.d.∼ NM(0, I).
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The hyper-parameters in GP priors follow gamma distributions

σk|aσ, bσ ∼ Gamma(aσ, bσ)

ρk|aρ, bρ ∼ Gamma(aρ, bρ)

where the gamma distribution is parametrized such that the mean is a/b and variance

is a/b2.

We denote all parameters in our model by the set θ = {θ1,θ2, · · · ,θK−1} where

θk = {αk,γk, σk, ρk, ζk,U k,Σk}. And θ−k denotes all other parameters in θ except

θk. Since response category Yi = 0 serves as the baseline group, α0, γ0 and ζ0 are all

set to = 0. Therefore, the joint posterior density of θk, k 6= 0, is

π(θk|Y ,X,Z,θ−k,Ω) =

[ N∏
i=1

K−1∏
l=0

π
I(yi=l)
il

]
× π(αk)π(γk;U k,Σk)π(ζk)

× π(σk; aσ, bσ)π(ρk; aρ, bρ)π(U k;µ0,Λ0)π(Σk;ν0,Φ0)

(2.3)

where Ω is the set of all fixed, known hyperparameters: aσ, bσ, aρ, bρ,µ0,Λ0, ν0, and

Φ0. Thus the log posterior density is

log π(θk|Y ,X,Z,θ−k,Ω) =

[
C +

N∑
i=1

K−1∑
l=0

I(yi = l) log(πil)

]
− 1

2
α2
k −

1

2
ζTk ζk

− 1

2
(γk −U k)

TΣ−1k (γk −U k)

+ (aσ − 1) log(σk)− bσσk + (aρ − 1) log(ρk)− bρρk

(2.4)

where I(·) is the indicator function and C is a constant with respect to θk.
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2.3 Algorithms

By conjugacy, U k and Σk are sampled via a Gibbs updates (Gelman et al., 2014).

Based on the joint posterior distribution of θk in (2.3), however, all other parameters

αk, γk, ζk, σk and ρk don’t have closed-form full conditional posterior distributions.

The Metropolis-Hastings algorithm (Gelman et al., 2014) is a possible way to sample

these parameters but inefficient due to the high-dimensional and highly correlated

parameter space of the spatially varying parameters. Thus, we resort to the HMC

algorithm (Neal et al., 2011) to sample αk, γk, ζk, σk as well as ρk. HMC is well

suited to sample from high-dimensional, highly correlated target distributions. The

HMC algorithm is introduced in the following section.

2.3.1 Hamiltonian Monte Carlo Algorithm

The HMC algorithm is based on Hamiltonian dynamics and consists of a d-

dimensional position vector, θk = (αk,γk, ζk, σk, ρk), the variables that we wish to

sample using HMC, and an artificial d-dimensional momentum vector ξk, one for

each position variable. The seperable Hamiltonian function, the total system energy,

H(θk, ξk) is partitioned into potential energy, U(θk), and kinetic energy, K(ξk):

H(θk, ξk) = U(θk) +K(ξk)

U(θk) = − log
[
P (θk|Y ,X,Z,θ−k,Ω)

]
K(ξk) = ξTkM

−1ξk/2

The potential energy is defined as the negative log of the joint posterior distribution

for θk. The momentum term is a quadratic form (not necessary, but is in our imple-

mentation) where M denotes a “mass matrix”, which is typically diagonal and often

a scalar multiple of the identity matrix. K(ξk) is thus the negative log density of the

mean zero MVN vector ξk with covariance M .
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The dynamics are defined as the partial derivatives of the Hamiltonian H(θk, ξk)

and determine how θk and ξk change over time t. Mathematically,

dθk,j
dt

=
∂H(θk, ξk)

∂ξk,j
=
∂K(ξk)

∂ξk,j
(2.5)

dξk,j
dt

= −∂H(θk, ξk)

∂θk,j
= −∂U(θk)

∂θk,j
(2.6)

for j = 1, 2, ..., d, where j represents the jth element in the corresponding random

vector.

In practice, the Hamiltonian equations (2.5) and (2.6) are approximated by dis-

cretizing time t. By using a small step size, δ, and starting from time t = 0, we

iteratively and approximately compute the state at time δ, 2δ, 3δ and so on. A com-

monly used approximation algorithm is the leapfrog algorithm (Neal et al., 2011):

ξk(t+ δ/2) = ξk(t)− δ/2
∂U

∂θk

(
θk(t)

)
(2.7)

θk(t+ δ) = θk(t) + δM−1ξk(t+ δ/2)

ξk(t+ δ) = ξk(t+ δ/2)− δ/2 ∂U
∂θk

(
θk(t+ δ)

)
(2.8)

Starting from the current state θk(t) and ξk(t) at time t, Hamiltonian dynamics

simulates L steps using the leapfrog algorithm and the resulting approximate solution

is used as a proposed value for the next state of the Markov chain in a Metropolis-

Hastings algorithm. We tune the total number of leapfrog steps L and the step size

δ by using the No U-turns sampling algorithm (Hoffman and Gelman, 2014).

To implement the HMC algorithm, we need to calculate the log joint posterior

density (2.4) and the gradients (2.7) and (2.8). Let P (θk|·) = P (θk|Y ,X,Z,θ−k,Ω).
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The gradients of the log joint posterior are

∇αk logP (θk|·) = C1 +

[ N∑
i=1

(
I(yi = k)− πik

)]
− αk

∇ζk logP (θk|·) = C2 +

[ N∑
i=1

(
I(yi = k)− πik

)
σkC

1
2 (ρk)X i

]
− ζk

∇γk logP (θk|·) = C3 +

[ N∑
i=1

(
I(yi = k)− πik

)
Zi

]
−Σ−1k (γk −U k)

∇σk logP (θk|·) = C4 +

[ N∑
i=1

(
I(yi = k)− πik

)
XT

i C
1
2 (ρk)ζk

]
+
aσ − 1

σk

∇ρk logP (θk|·) = C5 +

[ N∑
i=1

(
I(yi = k)− πik

)
σkX

T
i

(
∂C

1
2 (ρk)

∂ρk

)
ζk

]
+
aρ − 1

ρk
,

(2.9)

where C1, C2, C3, C4, C5 are constants.

Since σk and ρk are constrained to be positive, these parameters must satisfy these

constraints during the leapfrog updating. For example, given upper and lower bounds

of θk denoted as u and l, we repeat following steps until u ≤ θk(t+ δ) ≤ l

• if θk(t+ δ) > u, then

θk(t+ δ) = u−
(
θk(t+ δ)− u

)
and ξk(t+ δ/2) = −ξk(t+ δ/2)

• if θk(t+ δ) < l, then

θk(t+ δ) = l +
(
l− θk(t+ δ)

)
and ξk(t+ δ/2) = −ξk(t+ δ/2).

Of course in practice, we only apply lower bounds to σk and ρk,

Given the above algorithm, we obtain proposed momentum and parameter vectors:

ξ∗k and θ∗k. This proposed state is then accepted as a draw from the posterior at time
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t+ 1 with probability

min

[
1, exp

(
−H(ξ∗k,θ

∗
k) +H(ξk,θk)

)
.

]

2.3.2 Fast Fourier Transform Algorithm

As seen in the last section, two of the gradients depend on the Cholesky decom-

position of C(ρk) and one on its partial derivative with respect to ρk. C(ρk) is a very

large matrix. In our data example the image dimension is 64 × 64 × 64. Therefore

the length of the MVN vector βk is M = 643 = 262144 and C(ρk) is of dimension

643×643 and the calculation of its Cholesky decompostion and its partial derivative is

too computationally expensive to take directly. Therefore we follow Wood and Chan

(1994) and embed C(ρk)—a nested block toeplitz matrix into a nested block circulant

matrix that is symmetric, say G(ρk). Although this appears counter intuitive, there

is a direct relationship between the eigen decomposition of these matrices and the 3D

discrete Fourier transform. Thus, computation of the Cholesky decomposition can be

achieved efficiently in the Fourier domain.

In the remainder of this section, we will give details of this embedding for a 3D

image. Suppose the image dimension is nx×ny×nz with voxel dimensions vx×vy×vz.

Recall that for the image the correlation between any two spatial locations si and sj

(centers of two voxels) for subtype k is exp(−ρ‖si − sj‖2). Since all voxels have

the same dimension, this correlation matrix has a nested block Toeplitz structure.

To embed this correlation matrix into a symmetric nested block circulant matrix we

first embed the image into a larger image with dimensions mx × my × mz where

md = 2qd , d ∈ {x, y, z}, qd an integer with the restriction that 2qd ≥ 2(nd − 1) with

the additional requirement that each new voxel has dimensions vx × vy × vz. We

vectorize this image and call the resulting vector S̃. The choice of restricting qd to

an integer implies that the new dimensions md is highly composite so that we can
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efficiently use the the 3D FFT algorithm.

Next the vectors βk, ζk, both of length nxnynz, are embedded into larger vectors,

β̃k and ζ̃k of lengths mxmymz. β̃k has a MVN distribution with mean zero and nested

block circulant correlation matrix G(ρk), however care must be taken to ensure that

this new matrix is symmetric. The restriction on the qd is the minimum value that

allows this matrix to be symmetric, but distances between voxels must be defined

appropriately. In the 1D case, the extended line is wrapped onto a circle and the

distance between two points is defined as the shortest distance on the circle (see

Figure 2.1). In the 2D case, the extended grid is wrapped onto the surface of a torus

and the distance between two pixels is defined as the shortest distance on the torus.

Analogous results apply to dimensions 3 and higher (see Wood and Chan (1994)).

G(ρk) is thus an mxmymz ×mxmymz symmetric, nested block circulant matrix with

C(ρk) embedded within. In the remainder of this section we will let Q = mxmymz.

A standard result of symmetric nested block circulant matrices is that there always

exists an eigen decomposition of the matrix: G(ρk) = QΛ(ρk)Q
∗. Here, Λ(ρk) is the

mxmymz ×mxmymX diagonal matrix of eigenvalues λ1, λ2, · · · , λQ for G(ρk). Q is

the eigen-matrix, a unitary matrix, and Q∗ is its complex conjugate transpose. This

eigen decomposition of G(ρk) is equivalent to the 3D discrete Fourier transform of the

base of this matrix. The base can be taken as the first row of this matrix. Call it G =

(g0, g1, . . . , gQ−1) with associate voxel locations s0, . . . , sQ−1 where gl = exp(−ρkd2l )

and dl is the minimum distance between voxels sl and s0 defined on the 3D torus

about which the extended grid is wrapped. Also, let dl denote the shortest distance

between voxel v0 and voxel vl on the 3D torus on the extended grid wrapped onto

the surface of a 3D torus The jth eigenvalue of G is

λj =

Q−1∑
l=0

gl exp

(
−2πilj

Q

)
, j = 0, 2, · · · , Q− 1 (2.10)
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where i =
√
−1. This eigen decomposition of the matrix G(ρk) can be efficiently

computed via the 3D FFT.

Once we have the eigenvalues of G(ρk), we can efficiently calculate G
1
2 (ρk) =

QΛ1/2(ρk)Q
∗ and QΛ1/2(ρk)Q

∗ζ̃k using the 3D FFT algorithm. Finally, by set-

ting the corresponding augmented elements in ζ̃k to be 0, we recover C
1
2 (ρk)ζk =

G
1
2 (ρk)ζ̃k. Analogously we can derive C

1
2 (ρk)X i necessary to calculate the gradient

with respect to ζk.

We also need to calculate the partial derivative of ρkC
1
2 (ρk) with respect to ρk

based on the partial derivative ofG
1
2 (ρk) with respect to ρk. Let dl denote the shortest

distance between

∂G
1
2 (ρk)

∂ρk
= Qdiag

{
dλ

1/2
j

dρk

}
Q∗ζ̃k

= Qdiag

{
λ
−1/2
j

Q∑
l=1

[
− 1

2
d2l gl exp(−2πilj

Q
)

]}
Q∗

= Qdiag

{
λ
−1/2
j ψj

}
Q∗

= (QΛ−1/2Q∗)(QΨQ∗)

= G−
1
2 (ρk)S(ρk)

From the above, we can see that ψj is the jth eigenvalue of the symmetric nested

block circulant matrix S(ρk) and that −0.5d2l gl is the lth element of the first row of

S(ρk) and of the base of S(ρk). Hence, we only need to calculate the eigenvalues λj of

G−1/2(ρk) and the eigenvalues ψj of S(ρk) using the FFT perform the above partial

derivative.

Furthermore, the FFT algorithm is highly parallelizable and therefore can be

efficiently computed on a GPU. Also the gradients of log-joint-posterior are amenable

to paralleization and can be efficiently computed on a GPU. GPUs have a massively

parallel architecture consisting of thousands of smaller, more efficient cores designed
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for handling identical simultaneous tasks as compared to Central Processing Units

(CPUs). Our algorithm has been programmed on an NIVIDA Tesla K20 GPU that

has 5GB global memory, 1,024 threads and 49,152 bytes shared memory per block.

2.4 Simulation Study

We conduct a simulation study by generating two groups of 2D images of dimen-

sion 64×64 with outcome labels y = 0 and y = 1. We follow two different probability

generating matrices P0 and P1 as below

P0 =



0.8 0.8−4p 0.8− 24p · · · 0

0.8−4p 0.8, 0.8−4p · · · 4p

0.8− 24p 0.8−4p 0.8 · · · 24p

...
...

...
. . .

...

0 4p 24p · · · 0.8


and

P1 =



0 4p 24p · · · 0.8

0 4p 24p · · · 0.8

0 4p 24p · · · 0.8

...
...

...
. . .

...

0 4p 24p · · · 0.8


where 4p = 0.8/(64− 1). Each element in P 0 and P 1 is the probability that a lesion

is located at the site in the image. These matrices were chosen such that the two

groups have non-overlapping as well as overlapping lesion distributions.

For each group, we generate 55 images. 50 of these in each group are randomly

selected for training and 5 for testing. Images of the empirical lesion probabilities
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averaged over the 50 simulated images in each of the training sets are displayed in the

first row of Figure 2.3. Figure 2.3 displays the difference of the two empirical lesion

images.

We estimate the posterior distribution via MCMC with a total of 10,000 simu-

lated draws and a burn-in of 5,000. The priors distributions of σk and ρk are set to

be Gamma(1, 1) and Gamma(1, 1), respectively. The diagonal elements in the mass

matrix M are set to be 1.0, 1.5, 10.0 and 0.5 for corresponding intercept αk, spa-

tially varying coefficient ζk, marginal variance parameter σk and decay parameter ρk,

respectively. The starting number of steps while using Leapfrog method is L = 100

and the step size is set at δ = 0.001. Both L and δ are updated using the No U-turns

algorithm (Hoffman and Gelman, 2014) and the targeted acceptance rate is restricted

to be in the range of 0.55 to 0.75. In addition, while drawing σk and ρk in the HMC

portion of the algorithm, σk is required to be positive and ρk is bounded between

[0.5, 25].

The mean posterior estimates of the spatially varying parameters β are displayed

in Figure 2.3 (second row, left). The pattern is roughly consistent with the difference

image in the same figure.

To determine prediction accuracy, we simulated data, as noted above, 10 different

times. Each time we predicted accuracy, defined as whether we could correctly predict

in which group each of the 5 test data sets belong. Overall, we correctly identified 49

out of the 50 (98%).

2.5 MS Lesion Data Analysis

We apply our model to a a data set that consists 228 MS patients classified into

one of three clinical subtypes of MS. In increasing order of severity, the three clinical

subtypes are Relapsing Remitting (RLRM, 172 patients), Primary Progressive (PRP,

13 patients) and Secondary Chronic Progressive (SCP, 43 patients). RLRM is used
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as the baseline group in our model. We treat the subtypes as a multinomial variable

since patients do not progress through the three subtypes, although some RLRM MS

patients will convert to SCP.

We consider three patient specific covariates, including sex, age and disease dura-

tion (DD) (Table 2.1). The variables age and disease duration have been mean-zero

centered. More female develop RLRM disease compared to other subtypes. The

average mean centered ages of patients are -2.89, 2.13 and 10.87 for RLRM, PRP

and SCP, respectively (true ages and disease duration are not available). This may

indicate that MS subtype severity increases with age of patients. However, the range

of age for RLRM patients is much wider than the other two groups and also covers

the other two groups’ ages ranges. Meanwhile, SCP patients have the longest dis-

ease duration on average, while PRP patients have the shortest disease duration on

average. However, the distributions of disease duration do overlap one another.

All patients were scanned on 1.5T Siemens Avant scanner. We only consider

the T2-weighted images with a native voxel resolution of 0.997 × 0.997 × 3.000mm3.

Lesions are identified on T2-weighted images by a semi-automatic procedure so that

each patient has a binary lesion map with 1 denoting the presence of a lesion and 0

the absence of a lesion at each voxel. The resulting maps are then affine registered to

the Montreal Neurological Institute (MNI) brain template at 2×2×2mm3 resolution

using trilinear interpolation, and thresholded at 0.5 to retain binary values (Ge et al.,

2014b). The 3D binary lesion maps (91 × 109 × 91) with voxel size 2 × 2 × 2mm3

contain a total of 274,596 in-mask voxels.

To reduce computational burden, we down sample the images to dimensions 64×

64 × 64. Then there are a total of 129,088 in-mask voxels. This image dimension

reduction process is implemented by dividing the original images into larger equal-

sized voxels and interpolating. The lesion status in the new voxels are set to be 1 if any

lesion that appears in the combined neighbor voxels in the original images. Further
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more, since MS is typically a white-matter disease, our analysis is constrained to a

set of voxels with high-probability white matter (> 50%). Finally, we have a total of

70,823 in-mask and in-white matter voxels out of 262,144 voxels in a single 64×64×64

brain image. Our results show that the prediction accuracy and estimations are not

affected by limiting to high-probability white matter voxels.

There are 38,620 (54.53%) voxels in which at least one patient (no matter MS

subtype) has a lesion, out of the 70,823 voxels (Figure 2.2). With respect to MS

subtypes, patients with RLRM disease have the greatest average lesion load (50.15%),

while the average lesion load is 13.64% and 29.01% for subject with PRP and SCP

disease.

Figure 2.4 shows an axial view (slice 33) of the empirical lesion probability maps

for the three MS subtypes. Since only 13 patients in our data set are classified as PRP,

their empirical lesion probability map has a less spatially extensive distribution than

the other two groups. Overall, the shapes of areas with lesions in this axial slice are

similar for the three groups. The highest empirical lesion probabilities are 3.26×10−1,

3.85×10−1 and 4.88× 10−1 for RLRM, PRP and SCP MS subtypes, respectively.

Given that patients with RLRM disease serve as the baseline group , Figure 2.5

(first row) shows the difference of empirical lesion probabilities for patients with PRP

and SCP disease. The area with positive differences means more lesions exist in those

voxels for PRP or SCP than RLRM disease.

Similar to the simulation study, we estimate the posterior distribution via MCMC

using a total of 10,000 simulated draws and a burn-in of 5,000. The diagonal elements

in the mass matrix M are set to be 1.0, 1.0, 1.5, 10.0 and 0.5 for corresponding

intercept αk, non-spatially varying coefficient γk, spatially varying coefficient ζk,

marginal variance parameter σk and decay parameter ρk, respectively. The augmented

image size is 128× 128× 128.

We include three non-spatially varying covariates so that U k is the mean vector
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with three elements and Σk is a 3 × 3 covariance matrix. Their prior distributions

are set to be MVN(0, I3) and Inverse-Wishart(3, I3), where I3 is an identity matrix.

The prior for ρk is Gamma(1, 1). In contrast, we propose a tighter prior distribution

Gamma(18, 6) to σk with prior mean 3 and smaller prior variance 0.5. Different prior

means are placed on σk and it turns out that the large the mean of the prior for σk,

the better the prediction performance. This is reasonable because there are many

voxels that are not covered by a lesion in the full image space and their estimated

spatially varying coefficients are around zero. Higher values of σk increase the scale

of βk. This increases significant non-zero estimates of βk in areas with many lesions

for but not in regions without lesions. Areas with no lesions only introduce ”noise”

in the modelling.

We first include both binary lesion maps and patient specific covariates in our

model. For non-spatially varying parameters γ1 and γ2, we show their posterior esti-

mates in Table 2.3. The estimates indicate that none of the patient specific covariates

have significant effects on the prediction of MS subtypes except the covariate age for

the SCP subtype (posterior mean: 2.03, 95% credible interval: [0.22, 3.91]). Next,

we exclude the three patient specific covariates and only use the binary lesion maps

in our scalar-on-image regression model.

Maps of the mean posterior estimates of the spatially varying parameters β show

some similar patterns to the difference of empirical lesion probabilities, see Figure

2.5. First, those mean posterior estimates of β’s in voxels outside the high-probability

white matter areas are near zero. Second, the estimated βks are positive/negative

(red/blue) in areas where the difference of empirical lesion probabilities are posi-

tive/negative (red/blue), particularly in areas with high absolute difference of empir-

ical lesion probabilities.

Prediction results, computed by using Importance-Sampling Leave-One-Out cross

validation, are shown in Table 2.4. For Table 2.4(a), the results are from a single
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Markov chain of the analysis using binary lesion maps as the only predictors and

there are only 6 prediction errors out of the total of 228 patients (prediction accuracy

is 97.3%). In contrast, if weinclude patient specific covariates as predictors, see Table

2.4(c), the prediction accuracy is reduced to 82.9% with 39 errors. In particular, 28

RLRM patients are predicted as SCP patients. If we remove the binary lesion maps

and only use the three patient-specific covariates, the predictions from a multinomial

regression model are displayed in Table 2.4(b) with 47 prediction errors and 79.39%

prediction accuracy and none of the PRP patiens are correctly prediction correctly.

These results indicate that the inclusion of sex, age, disease duration are not strong

predictors and introduce noise in the prediction of MS subtypes.

2.6 Discussion

In this chapter we propose a Bayesian scalar-on-image regression model with ap-

plication to MS MRI data. Both non-spatially and spatially varying variables can be

used as predictors in the model. Spatial correlation is modelled using a GP prior dis-

tribution and estimated under the Bayesian framework by using the HMC algorithm.

In addition, using the connection between symmetric nested block circulant matrices

and the 3D discrete Fourier transform we can take advantage of the efficiency of the

FFT algorithm and parallelism make to invert the extremely large correlation ma-

trix. Lastly, we use importance-sampling leave-one-out cross validation to evaluate

prediction performance for the MS data set.

Compared with other methods used for modelling scalar outcomes based on brain

images, our scalar-on-image regression model fully considers and estimates the spa-

tially correlations by assuming a flexible GP prior distribution for spatially varying

parameters. Then, information within the entire brain is used for prediction with-

out resorting to region-of-interest analysis or sparsity assumptions. In addition, our

Bayesian estimation framework, adopting HMC and FFT algorithms, makes it fea-
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sible and efficient to deal with the high-dimensional imaging data with complicated

correlation structure. The simulation and application demonstrate that our method

can result high prediction accuracy, especially for the MS data set we analyzed. Fi-

nally, the use of a GPU significantly reduces the computing time from at least 45 days

to less than 24 hours for a single run of 10,000 iterations (at least 45 times faster).

One of the drawbacks of our method is the limitation of the spatial structure of the

covariance matrix for the spatially varying parameters. The covariance matrix must

have a nested block Toeplitz struction so that it can be embedded in a symmetric

nested block circulant matrix so that we may take advantage of the relationship

between the eigen decomposition of these matrices and the discrete Fourier transform.

We greatly increase the computational efficiency of the algorithm at the expense of a

restricted correlation structure, which may not be correct.

Another area of concern is the use of importance-sampling leave-one-out cross

validation. Exact cross-validation requires re-fitting the model each time a subject is

removed for prediction. This would be prohibitively time consuming. Approximate

leave-one-out cross-validation easily calculated using an importance sampling algo-

rithm. However, the approximation results may be biased and noisy if the variance

of importance weights is very large (Vehtari et al., 2016). We conducted exact leave-

one-out cross validation to evaluate our model’s accuracy in our simulation study

and then compared with the accuracy measured by importance-sampling leave-one-

out cross validation, both of which resulted in perfect prediction accuracy.
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Table 2.4: Predictions of MS subtypes (a) using lesion maps only (b)using patient-
specific covariates only (c) using both lesion maps and patient specific covariates

(a)
True subtypes

RLRM PRP SCP Total

Predicted Subtypes
RLRM 167(97.1%) 0 1 168
PRP 1 13(100%) 0 14
SCP 4 0 42(97.7%) 46
Total 172 13 43 228

(b)
True subtypes

RLRM PRP SCP Total

Predicted Subtypes
RLRM 161(93.6%) 13 23 197
PRP 0 0(0.0%) 0 0
SCP 11 0 20(46.5%) 31
Total 172 13 43 228

(c)
True subtypes

RLRM PRP SCP Total

Predicted Subtypes
RLRM 141(90.0%) 1 3 145
PRP 3 11(84.6%) 3 17
SCP 28 1 37(86.0%) 66
Total 172 13 43 228
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Empirical Lesion Probabilities (Y=0)
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Figure 2.3: Maps of simulated data and estimates in the simulation study. (1) Maps
of empirical lesion probabilities of training images in simulated group with outcome
label Y = 0 (first row, left) and group with Y = 1 (first row, right). (2) Difference
of empirical lesion probabilities for training images with label Y = 1 to those with
label Y = 0 (second row, left). (3) Mean posterior estimates of spatially varying
parameters β (second row, right).
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Figure 2.5: Axial view maps for PRP (left) and SCP (right) MS patients, respectively.
(First row) The difference of empirical lesion probabilities by subtracting empirical
lesion probabilities from RLRM patients. (Second row) mean posterior estimates of
spatially varying parameters βk.
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CHAPTER III

A Spatial Bayesian Latent Factor Model for

Image-on-Image Regression

Image-on-image regression analysis, using images to predict images, is a challeng-

ing task, due to 1) the high dimensionality and 2) the complex spatial dependence

structures in image predictors and image outcomes. In this Chapter, we propose a

novel image-on-image regression model, by extending a spatial Bayesian latent factor

model to image data, where low-dimensional latent factors are adopted to make con-

nections between high-dimensional image outcomes and image predictors. We assign

Gaussian process priors to the spatially varying regression coefficients in the model,

which can well capture the complex spatial dependence among image outcomes as

well as that among the image predictors. We perform simulation studies to evalu-

ate the out-of-sample prediction performance of our method compared with linear

regression and voxel-wise regression methods for different scenarios. We apply the

proposed method to analysis of multimodal image data in the Human Connectome

Project where we predict task-related contrast maps using sub-cortical volumetric

seed maps. The proposed method achieves a better prediction accuracy by effectively

accounting for the spatial dependence and efficiently reduce image dimensions with

latent factors.
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3.1 Introduction

Image-related regression analysis has attracted an increasing scientific interest

in many areas, including medicine (Duff et al., 2015), disease diagnosis (Suk et al.,

2017) and neuroscience (Bowman, 2014; Zhou et al., 2013). In these applications,

researchers are often interested in identifying the association between the quantita-

tive images, e.g., functional magnetic resonance imaging (fMRI) (Glover , 2011), and

other variables of interest, e.g. the patient clinical characteristics, where the quanti-

tative images are either considered as the outcome variables or predictors. Two types

of image-related regression models have been extensively studied: scalar-on-image

regression which uses images to predict scalar outcome (Reiss and Ogden, 2010b;

Goldsmith et al., 2011; Huang et al., 2013; Wang et al., 2017; Kang et al., 2018), and

image-on-scalar regression which uses a set of scalar predictors to predict the image

outcome (Gelfand et al., 2003; Reiss et al., 2010; Goldsmith and Kitago, 2016; Chen

et al., 2016; Yan and Liu, 2017). Recently there are increasing interests in developing

regression models where both outcomes and predictors are multiple images, to which

we refer as the image-on-image regression. It has many important applications in

neuroimaging studies, for instance, Tavor et al. (2016) showed that structural and

resting-state fMRI images could predict task-based fMRI images using a large set

of task conditions and spanning several behavioral domains. They trained a simple

linear regression model to predict imaging outcome using many feature images (pre-

dictor). After parcellation, they fitted their model one parcel and one subject at a

time, assuming independence and identical linear relationship across voxels in each

parcel. Then they predicted outcomes for unseen subjects by averaging fitted models

across subjects. Although their linear method is simple to implement for image-on-

image regression analysis, it ignores the spatial dependence structures in images by

assuming voxels are mutually independent. Meanwhile, they fitted their model on

the individual level but predicted for new subjects using averaged estimations, which
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conflicts their assumption of individual variations in their imaging outcomes. In addi-

tion, this model fails to select relevant predictors while giving an amount of correlated

task-independent images.

The spatial correlations and associations can be hard to model due to its hetero-

geneity, complexity and high-dimensionality with limited sample size. For example,

the spatial correlations between neural activity at different voxels might extend be-

yond neighbouring voxels, and may not decrease with increasing distance (Bowman,

2014). Also, the spatial patterns may vary across different types of brain images

and even subjects. Moreover, the effects of features on outcome images may be from

the whole image space but not voxel by voxel. Hence, in order to precisely describe

the spatial patterns and associations of outcome and predictor images, one needs to

define voxel-wise parameters in image space. Those parameters are high-dimensional

and have complex spatial correlations, leading to the potentially over-parameterized

regression model and computational challenges.

In this work, we propose a novel spatial Bayesian latent factor model for the

image-on-image regression. We introduce low-dimensional latent factors to link high-

dimensional outcome images and predictor images. In particular, for each subject, we

represent the expectation of the outcome image as a linear combination of multiple

spatial basis functions, where each basis function is associated with one spatial knot.

The knot-dependent coefficients are decomposed into several latent factors. Each la-

tent factor summarizes one feature of the outcome image. We model each latent factor

as a scalar outcome and assume its expectation is equal to the summation of linear

predictors. Each linear predictor is a linear transformation of one predictor image,

where the corresponding spatially-varying coefficients represent the spatial effects of

the predictor image. We assign Gaussian process (GP) priors to the spatially-varying

coefficients and adopt the basis expansion approach for GP representations, which are

sufficient, flexible and convenient to preserve the complex spatial correlations. With
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an appropriate choice of the basis function, the model can well capture the complex

spatial patterns of the outcome image using a smaller number of spatial knots. Thus,

our basis expansion approach may effectively reduce the model dimensionality. More

importantly, by integrating the whole feature image space, our model can well predict

the outcome images borrowing the strength not only from the same voxels in the pre-

dictor image but also neighbouring and even long-distance voxels. A small number of

spatial latent factors in our model can effectively capture the association between the

predictor images and the outcome image. Thus, our model can make more accurate

prediction compared to the linear model (Tavor et al., 2016) with a small sample size.

A few image-on-image regression models have been proposed recently motivated by

various applications in medical imaging. For example, Sweeney et al. (2013a) applied

the voxel-wise logistic regression models incorporating Multiple Sclerosis imaging se-

quences to predict lesion incidence with T1-weighted, T2-weighted, FLAIR, and PD

volumes from a longitudinal study. The voxel-wise regression method evaluates the

population effects and is simple to implement. However, it ignores the spatial cor-

relations among voxels and thus may lose power to detect the association between

the predictor images and the outcome images. Another voxel-wise regression model

proposed by Hazra et al. (2017) includes prediction effects from the neighboring vox-

els within a given Euclidean distance. The prediction effects are assumed to be the

same when voxels in the predictor image have the same distance to the voxel in the

outcome image. In the outcome images, voxels are assumed to be independent over

space. Their spatial association with the predictor images is restricted to small re-

gions and only related to the spatial distance. In contrast to the above two voxel-wise

regression methods, our spatial latent factor model may capture more complex spatial

dependence between outcome image and the predictor image. Deep learning has been

applied to medical imaging for image-on-image regression analysis, such as the image

recovering and disease diagnosis (Zhu et al., 2017; Isola et al., 2017; Huang et al.,
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2018). However, the performance of deep learning methods relies on very sample size,

which we typically do not have in medical imaging studies; and it is difficult to in-

terpret the specific associations among images using based on a deep neural network

model.

We organize this chapter as follows. We first describe our spatial Bayesian latent

factor models in Section 2. In Section 3, we present the proposed Bayesian frame-

work for estimation and prediction. In Section 4, we conduct a simulation study

under different scenarios and discuss some criteria used for model evaluation and

selection. Next, we illustrate the proposed method using the fMRI data from the

Human Connectome Project database. We close with a discussion of future work.

3.2 Model

In this section, we present our spatial Bayesian latent factor model for image-on-

image regression analysis. We extend the classical Bayesian latent factor model for

functional and longitudinal data (Montagna et al., 2012) to the case where the func-

tional predictors are images with complex spatial dependence. Our goal of statistical

modelling is fundamentally different from the one by Montagna et al. (2018) which

focused on the meta-analysis of functional neuroimaging data.

Suppose the data consists of one outcome image and P predictor images from n

subjects. For all subjects, we assume that both outcome and predictor images have

been preprocessed and registered to the same brain region, denoted R. Note that in

practice R may refer to the whole brain region or one sub region of interest; and the

following model and parameter settings are region-specific. For each subject i(i =

1, . . . , n) at voxel v ∈ R, let Zi(v) and Xip(v)(p = 1, . . . , P ) represent the outcome

image intensity and the pth predictor image intensity, respectively. To identify the

association between Zi(v) and Xip(v) on brain regionR, we develop a spatial Bayesian

latent factor model with three levels of hierarchy.
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3.2.1 Level 1: Approximation of Outcome Images

At Level 1, we approximate the outcome image using a basis expansion approach.

Let {bm(v)}Mm=1 be a set of M spatial knot-dependent basis functions that can well

capture the variation of the outcome image in R. For each subject i and any voxel

v ∈ R, we assume

Zi(v) = U(v) +
M∑
m=1

θimbm(v) + ei(v), U(v) ∼ N(0, σ2
u), ei(v) ∼ N(0, σ2

e),

where U(v) represents the population-level spatial-dependent intercept. As a prior

specification, we assume {U(v)}v∈R are independent and identically distributed as a

normal distribution with mean zero and variance σ2
u. The random errors ei(v) are

assumed to be independent and identically distributed as a normal distribution with

mean zero and variance σ2
e over all subjects across voxels in region R. The parameter

θim is the subject-specific basis coefficient of the mth spatial basis function bm(v).

The term
∑M

m=1 θimbim(v) captures the spatial dependence and smoothness of the

subject-specific outcome images among voxels in parcel l.

3.2.2 Level 2: Sparse latent factor model for basis coefficients

At Level 2, we build a sparse latent factor model for the basis coefficient θim:

θim =
K∑
k=1

λmkηik + ζim, ζim ∼ N(0, σ2
ζ ),

where {ηik}Kk=1 represents a set of K latent factors for subject i and {λmk}Kk=1 are

the corresponding sparse loading coefficients, indicating the effects of the kth latent

factors on the mth basis coefficient. The random error ζim explains the variation

of the basis coefficient θim that cannot be explained by the latent factors. For the

prior specification for the sparse loading coefficients λmk, we resort to inducing prior
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distribution through the parameter-expansion (Ghosh and Dunson, 2009), leading to

more efficient posterior computation. See more details in Section 3.

3.2.3 Level 3: Link to predictor images

At Level 3, we link latent factors to predictor images via a scalar-on-image regres-

sion:

ηik =
∑
v′∈R

X̃i(v
′)βk(v

′) + εik, X̃i(v
′) =

P∑
p=1

γpXip(v
′), εik ∼ N(0, σ2

ε ),

where the error term εik follows a normal distribution with mean zero and variance

σ2
ε . The unit variance assumption on ηik ensures latent factors are identifiable in the

model. In brain imaging applications, we expect the effect of the predictor image from

a voxel v′ on the outcome image at voxel v are generally weak if not zero but similar

across different predictors. Thus, to effectively reduce the dimension of parameter

space, we consider a summarized predictor image X̃i(v
′) as the average of selected

predictor images from {Xip(v
′)}Pp=1. The latent selection indicator γp is assumed

to follow a Bernoulli distribution with prior probability w, while πp may include

the prior knowledge on the proportion of important predictor images. To account for

spatial dependence in predictors, we assign a Gaussian process (GP) prior to spatially-

varying coefficient βk(v) and approximate it using a basis expansion approach: i.e.

βk(v) =
∑M

m=1 αkmbm(v) with αkm ∼ N(0, σ2
α). The spatially-varying coefficient βk(v)

is factor-specific and shared by all subjects. Typically, a small number of latent

factors are needed to capture important feature information from the selected image

predictors at the population level, contributing to predicting the outcome image.
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3.2.4 Model Representation

Our proposed Bayesian hierarchical model has an equivalent model representation

by integrating out θim and ηik (see Appendix B.1). Specifically, we have

Zi(v) = U(v) + fi(v) + ei(v),

fi(v) =
P∑
p=1

γp
∑
v′∈R

ψ(v, v′)Xip(v
′) + ε̃i(v) + ζ̃i(v),

where ε̃i(v) =
∑M

m=1

∑K
k=1 λmkεikbm(v), ζ̃i(v) =

∑M
m=1 ζimbm(v) and

ψ(v, v′) =
K∑
k=1

{[ M∑
m=1

λmkbm(v)
]
×
[ M∑
m′=1

αkm′bm′(v′)
]}

. (3.1)

From this representation, the outcome image Zi(v) has the subject-level component

fi(v) which links to the predictor image Xip(v
′) using the spatially dependent weights

ψ(v, v′) and predictor selection indicator γp. In particular, ψ(v, v′) represents the

average change in the outcome image at voxel v per unit change in the value of

any selected predictor image at voxel v′. Furthermore, equation (3.1) shows that

this spatially varying prediction effect can be decomposed as the summation of K

tensor products of spatially varying coefficients. This representation enables our

model to retain complex spatial dependence structures in the outcome and predictors,

respectively. Hence, our model is flexible to borrow strengths from the whole brain

region to predict the outcome image at each voxel.

3.3 Posterior Computation

We resort to Markov chain Monte Carlo (MCMC) algorithms for posterior com-

putation. For latent factor models, the performance of posterior computation may

depend on prior specifications. In general, we can assign normal and inverse-gamma
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prior distributions to factor loadings and residual variances respectively. Although

those prior distributions produce conditionally conjugate posterior distributions and

lead to straightforward computation by Gibbs sampler, such routine Bayesian imple-

mentations is poorly behaved (Ghosh and Dunson, 2009). To achieve efficient pos-

terior computation for our model, we extend the parameter expansion (PX) method

proposed by Ghosh and Dunson (2009). We construct a hierarchical model for the

latent factors with different covariance structures.

3.3.1 Prior Specifications via Parameter Expansion

Our model needs additional constraints to ensure the K latent factors identifi-

able. Write θi = (θim)M×1, Λ = (λmk)M×K , ηi = (ηik)K×1, ζi = (ζim)M×1, X̃ i =

{X̃i(v)}|R|×1, βk = {βk(v)}|R|×1, β = {βk(v)}|R|×K , εi = (εik)K×1, αk = (αkm)M×1

α = (αkm)K×M and b = {bk(v)}|R|×K , where |R| represents the number of voxels in

R. The matrix representations of the original inferential models in Levels 2 and 3 are

shown in Table 3.1.

Following the PX approach, we develop the working models and the corresponding

transformations between inferential and working parameters as shown in Table 3.1.

We introduce parameters Φ = diag{φ2
1, . . . , φ

2
K} and the sign function S(x) = 1 if

x ≥ 1 and −1 otherwise. An extra working intercept term µ∗i is included for more

efficiently estimating working the latent factor η∗i = (η∗ik). The working factor loading

Λ∗ = (λ∗mk)M×K is a lower triangular matrix without constraints on the elements.

Instead of specifying a prior distribution for Λ directly, we induce a prior distribution

for Λ∗ and then transforms it to the prior distribution for Λ. Specifically, those prior
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distributions placed for working parameters are

λ∗mk ∼ N(0, σ2
λ), m = 1, · · · ,M ; k = 1, · · · ,min(m,K)

λ∗mk ∼ δ0, m = 1, · · · ,M ; k = min(m,K) + 1, · · ·K

φ2
k ∼ Gamma(aφ, bφ), k = 1, · · · , K

µ∗i ∼ NK(0, σ2
µIK), i = 1, · · · , N

α∗k ∼ NM(0, σ2
αIM), k = 1, · · · , K

where δ0 is a measure concentrated at zero. Hyperparameters σ2
λ, σ

2
µ, σ

2
α, aφ, bφ can be

prespecified.

According to the above working model representation and prior specifications, we

develop an efficient Gibbs sampler for posterior computation (see Appendix B.2).

Of note, the PX approach leads to an over-parametrized working model and thus

the posterior computation may exhibit a poor mixing due to the lack of identifiabil-

ity (Ghosh and Dunson, 2009) for the working parameters. The parameters in the

original inferential model are still identifiable and the Markov chains in the posterior

computation usually show a much better mixing.

Gibbs samplers cycle through the simple steps to generate the MCMC samples of

the parameters in the working models, on which after burn-in we take the correspond-

ing transformations (see Table 3.1) to obtain posterior samples for the parameters in

the original inferential model. By collecting those MCMC based posterior samples,

we can make posterior inferences on any functions of the parameters in the original

model, and we also can make predictions on the image outcomes based on their pos-

terior predictive distributions. Details of estimation and prediction method are in

Appendix B.3.
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3.3.2 Basis Functions and Number of Latent Factors

It is challenging to choose the number of basis functions. In each parcel, the more

basis functions are included in the model, the richer the spatially varying patterns

of the outcome image the model can capture. On the other hand, to reduce com-

putational costs, the bases should be locally concentrated and the number of basis

functions should be much smaller than the number of voxels in the parcel. In ad-

dition, the appropriate basis functions are unknown in advance. Conceptually, any

basis functions, like B-spline bases and Gaussian kernels, can be chosen for the smooth

images. Here, we use a 3D isotropic Gaussian kernel.

bm(v) = exp{−b‖v − ψm‖2}, v ∈ R, m = 1, 2, . . . ,M,

with kernel locations {ψm}Mm=1 and parameter b controlling smoothness. Flexible

approaches are available for estimating M , b and {ψm}Mm=1 for basis functions. One

approach is to perform the fully Bayesian inferences using the MCMC algorithm

with appropriate prior specifications for those parameters. However, this approach

suffers very large computational burden as the basis function has to be re-evaluated

in each iteration of the MCMC algorithm. Hereafter, we adopt a relatively less

computational-intense approach. We first choose a reasonable number of bases M

as well as kernel locations {ψm}Mm=1, and then we determine the smooth parameter

b by minimizing the mean squared error (MSE) and mean squared prediction error

(MSPE) of outcome images via cross validation (CV). The metrics MSE and MSPE

are averaged over datasets, observations and voxels. Suppose we consider N folds cross

validation. For the jth fold, let Itsj and Itrj represent the indices of the subjects in

the test set and training set, respectively. Let Ẑi(v) for i ∈ Itrj and Ẑk(v) for k ∈ Itsj

represent the fitted and predicted outcome image at voxel v, respectively. We define
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MSE and MSPE as

MSE =
1

N folds
× 1

N tr
× 1

Nvoxel
×

N folds∑
j=1

∑
i∈Itrj

∑
v∈R

{
Zi(v)− Ẑi(v)

}2

MSPE =
1

N folds
× 1

N ts
× 1

Nvoxel
×

N folds∑
j=1

∑
k∈Itsj

∑
v∈R

{
Zk(v)− Ẑk(v)

}2

where N folds, N tr, N ts and Nvoxel represent the number of folds, sample size of training

set, sample size of the test set and the number of voxels used in the CV study,

respectively.

To select the number of latent factors, a set of widely used model comparison

criteria can be considered, such as deviance information criteria (DIC), Bayesian in-

formation criteria (BIC), Bayes factors (BF) and R-squared. One can fit the model

multiple times with different values of K and choose the optimal value based on the

above criteria. This approach is computationally intensive. We consider an alterna-

tive approach in light of latent factors. In our model, redundant latent factors may

have very sparse, zero-concentrated or similar loading vectors. Hence, the optimal

number of latent factors has a loading matrix with non zero-concentrated and dis-

tinguishable loading vectors. We extend the “elbow method” for clustering analysis

to determine the optimal value of K. First, we fit our model with a relative large

number K, for example K = 20, and then describe the distributions of each estimated

loading vectors using varied metrics, including 1) range, 2) maximum absolute value,

3) standard deviation, 4) the number of values in each loading vector outside the

95%, 90% and 68% credible interval (CI) of the whole loading matrix. By plotting

the sorted summary statistics (descending) to corresponding latent factors, the opti-

mal choice of K is the value which give an angle in the graph. Finally, we need to

refit the model with the choice of K for estimations and predictions.
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3.4 Simulation Study

3.4.1 Data Generation and Method

In this section, we conduct simulation studies to compare the performance of our

proposed method with another two methods, the linear regression model (Tavor et al.,

2016) and the voxel-wise regression. The three methods serve as the generating models

in three different scenarios, respectively. In each scenario, we generate 10 data sets,

each of which contains 100 observations as the training set and another 50 observations

as the test set. Each simulated observation has a two-dimensional outcome image

and a set of 20 two-dimensional predictor images on equally spaced grid points on

{1, . . . , 32}× {1, . . . , 32}. In the simulation study, we treat the whole image space as

a single parcel. Specifically, we generate predictor images from a Gaussian Process

with mean zero and a covariance function that c(v1, v2) = 0.01 exp{−15 × d2v1,v2},

where dv1,v2 is the Euclidean distance between any two grid points v1 and v2.

Scenario 1. We simulate outcome images from the following regression model

Zi(v) = βi0 +
20∑
p=1

βipXip(v) + εi(v), for i = 1, . . . , 150, (3.2)

where the linear coefficients βip are the same over the space but varied among obser-

vations. The error terms εi(v) are independently sampled from a normal distribution

with mean zero and variance 0.1. The true linear coefficient βip is randomly sampled

from a Normal distribution with mean µp and variance σ2
p, where σ2

p is drawn from a

gamma distribution with shape 0.1 and rate 0.1. The mean µp is sampled from the

uniform distribution on interval [−3.5,−1.5] ∪ [1.5, 3.5] if p ≤ 5, and µp is generated

from a uniform distribution on [−0.5, 0.5], otherwise.

Scenario 2. We generate outcome images from the following voxel-wise regression
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model:

Zi(v) = β0(v) +
20∑
p=1

βp(v)Xip(v) + εi(v), for i = 1, . . . , 150, (3.3)

where εi(v) are independently sampled from N(0, 0.1). We simulate βp(v) from a

Gaussian process with mean zero and correlation kernel exp{−15d2v1,v2}. The marginal

variance of βp(v) is 2.0 for p ≤ 5 and 0.5 otherwise.

Scenario 3. We simulate data from our spatial Bayesian latent factor (SBLF)

model (see Figure B.1 for an illustration). We first define a set of basis functions

using Gaussian kernels with equally spaced kernel where the knots are defined on

grid points {1, · · · , 32}× {1, · · · , 32}. We follow the parameter expansion method to

generate working parameters and then take the transformations to obtain the original

parameters. We fix the true number of latent factors K to five. Loading elements are

first generated from a normal distribution. Then, for each simulated loading vector,

we replace those simulated values outside its 50% CI by zero’s to maintain the sparsity

of the loading matrix. . For the imaging predictor indicator γp = 1.0 if p ≤ 5 and

γp = 0 otherwise. See more details in Figure B.1.

We choose the values of parameters in above three scenarios in terms of the signal-

to-noise ratio (SNR), a measure of signal strength relative to background noise. The

definition of SNR used in our study is

SNR =
Var [E{Zi(v) | Xi1(v), . . . , XiP (v)}]

Var{εi(v)}

To make sure that the results in different scenarios are comparable, we choose the

parameter values so that the SNR’s of simulated observations in the three scenarios

have similar distributions with mean 30 and range [1, 100].

We run the MCMC algorithm for 25,000 iterations with 15,000 burn-in. We

compute the posterior mean and credible intervals for the parameters of interest. For
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all the parameters with Gamma priors in Section 3.3.1, we set both shape and scale

parameters to 1.0. We fix σ2
λ = σ2

µ = σ2
α = 1.0. For other hyperprior specifications,

ω ∼ Beta(1.0, 1.0). All initial values are sampled from their corresponding prior

distributions, except that the initial values of γp are 1.0. Further, we fit the model

with 1, 5, 10 and 20 latent factors respectively.

3.4.2 Results

Table 3.2 shows estimation and prediction accuracy for the three scenarios, includ-

ing MSE, MSPE and the proportion of observations for which our method produces

smaller MSE or MSPE compared to the other methods. The method used as the true

generating model in each scenario has the smallest MSE for test sets. In Scenario

1, when the data are generated from the linear regression model, SBLF outperforms

the other methods for about 20% to 30% of observations in the test sets. With a

similar SNR, in Scenario 2, when the data are generated from the voxel-wise regres-

sion model, SBLF achieves a smaller MSPE and over 90% better predictions than

the voxel-wise regression method. In Scenario 3, when the data are generated from

SBLF, SBLF with a correct number of latent factors K leads to the best performance

and incorrect K can result in the estimation bias.

As we discussed in Section 3.3.2, it is of interest to evaluate different criteria for

selecting the number of latent factors K. Our simulation study in Scenario 3 indicates

that some of the widely used model comparison criteria, including DIC, BIC, BF and

R-squared, could not help to identify the correct value of K. Specifically, BIC always

prefers small K, while R-squared and BF are in favor of the largest K. The selection

of K using DIC varied a lot from the 10 repeated data sets. However, the MSPE of

outcomes for test set is a robust measure for choosing K. As shown in Table 3.2,

in Scenario 3, SBLF with a correct value of K, K = 5, has the smallest MSPE and

the largest proportion of outperformed observations than other methods in all ten
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repeated studies. Further more, given K = 20 in Scenario 3. Figure 3.2 shows the

summarized statistics of each of the 20 loading vectors, base on which we correctly

determine the value of K (K = 5) using the “elbow method” mentioned in Section

3.3.2). Since the posterior inference on predictor selection are biased when K = 20,

we fit the model with K = 5 and obtain the estimated posterior inclusion probability

for the first five predictors are exactly 1.0 and zero for the rest predictors. This

perfectly recovers the true parameter settings.

3.5 Application

3.5.1 The motivating HCP data

We apply our SBLF model to analyze a subset of neuroimaging data from the

Human Connectome Project (HCP). Our goal is to make prediction on the individual

task-evoked images using the corresponding task-independent images. Tavor et al.

(2016) performed a similar analysis on the same data set using a simple linear regres-

sion approach ignoring the spatial dependence among voxels within parcels. Their

analysis focused on the cortical surface imaging measurements, while our model is

developed for analysis of the volumetric imaging data on 19 sub-cortical regions. The

data set comprises 98 subjects functional and structure imaging data from the Q3 re-

lease. Details of all acquisition parameters and processing mechanisms are described

in (Barch et al., 2013).

In our analysis, we focus on the 19 sub-cortical regions consisting of 31,870 voxels.

The outcome image is the faces-shapes contrast map derived from the EMOTION

task fMRI data. The predictor images are 32 sub-cortical seed maps derived from the

resting-state fMRI data. More details on the definition of the 32 sub-cortical seed

maps can be found in (Tavor et al., 2016). See examples of the outcome and predictor

images shown in Figure B.2, B.3 and B.4 in the Appendix. It has been well known
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that the amygdala complex as part of the neural circuitry consistently associates with

emotional functioning (Phan et al., 2002). Hence, we report the two amygdala regions

on the left and right sides of the brain as examples to demonstrate our application

analysis and results. There are 315 and 332 volumetric voxels within the left and

right amygdala regions respectively and their corresponding example outcome and

predictor maps are shown in Figure B.5 and B.6 in the Appendix.

3.5.2 Analysis

For SBLF, we run the proposed MCMC algorithm for 50,000 iterations with 25,000

burn-in. We adopt the same prior specifications as those used in simulation study.

The initial values are randomly sampled from their prior distributions except that the

initial values of the predictor selection indicators are set to one. We specify the basis

functions for the left and right amygdala containing 51 and 58 knots respectively.

To choose a good hyper-parameter b in the basis functions, We resort to a cross

validation approach and consider three candidate values {1/10, 1/20, 1/30}. The

basis functions with the three values are shown in Figure B.7, B.8 and B.9 in the

Appendix. A smaller b results in more overlaps among basis functions and leads to

smoother approximations to the outcome images. In contrast, basis functions with a

large b do not overlap much resulting in a less smooth approximation to the outcome

images. A very large b may lead to less flexibility in modeling the spatially-varying

coefficients in the model and a bad approximation to outcome images. To choose

the number of latent factors, we start with a large number K = 20 and applied the

“elbow method” according to the sparsity of loading matrices to determine a smaller

number of latent factors, given which we refit the model.

To the same data set, we also apply the other two simple alternatives: the linear

regression approach (Tavor et al., 2016), and the voxel wise analysis approach as we

described in the simulation study. Given the optimal b and K, we re-fit our model
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using imaging data from all 98 subjects and perform the same analysis for all 19

sub-cortical regions separately.

We check the convergence of all the MCMC simulations using the Gelman-Rubin

diagnostics (Gelman et al., 1992). Given each selected hyper-parameter b and number

of latent factors K, we run five MCMC chains with different initial values. The

potential scale reduction factors (PSRF) are estimated for each voxel point in the

outcome images. The point estimates of PSRF range from 1.000 to 1.005 (median

1.000, mean 1.000) and the upper confidence limits have the maximum value 1.016

(median 1.000, mean 1.000), indicating the convergence of the MCMC simulations.

3.5.3 Results

Table 3.3 shows the 10-fold CV model fitting and prediction accuracy using SBLF

with different values of b and K compared with the other two methods. For both left

and right amygdala regions, when b = 10, SBLF has the smallest averaged MSPE

and the largest proportions of better predicted outcomes for test sets than the other

methods. Compared with the linear and voxel-wise regression methods, SBLF has

the smallest MSE for fitting the outcome images in the training data set for all the

combinations of K and b. For the left amygdala region, the optimal choice for the

number latent factors is 9, with which the MSPE of SBLF is 1.168, smaller than

that of linear regression (1.357) and voxel-wise regression (1.540). For over 69% and

65% of outcome images in the test set, SBLF produces a smaller MPSE compared

to linear regression and voxel-wise regression, respectively. These proportions for the

right amygdala are even larger (77.55% and 73.47%), as shown in Table 3.3.

Table B.2 in the Appendix shows the summarized results for all the 19 sub-cortical

regions compared with the linear regression method. The squared errors of outcomes

from our model are about 10.2 times smaller than the linear regression method on

average for all parcel regions. SBLF has much higher R-Squared values than the
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linear regression method across all parcels (0.934 v.s. 0.428 on average). Hence, our

proposed SBLF model outperforms the linear regression model (Tavor et al., 2016)

for predicting the task-evoked functional brain activity from the task-free volumetric

images in the sub-cortical regions.

From MCMC samples of the predictor selection indicators, γ, we can estimate the

posterior inclusion probability for each predictor image, indicating the uncertainty

of including the corresponding predictor images into the model. For each amygdala

region, by placing a threshold value on the posterior inclusion probability, we can

obtain a set of predictor images that are associated with the outcome image with

certain uncertainty level. We vary the threshold from 0.0 to 0.9 and list the cor-

responding set in Table B.1 in the Appendix. For the right amygdala region, the

posterior probability of including the 28th cortical seed map into the model is larger

than 0.6. Among all the predictor images, this cortical seed map has the strongest

association with the faces-shapes contrast image in the Emotion domain. Similarly,

in the left amygdala region, the same predictor image also has a relative strong asso-

ciation (the posterior inclusion probability larger than 0.5) with the outcomes in the

same task domain. However, in the left amygdala region, the 13th and 15th predictor

images have more contributions to the outcome predictions given their estimations of

their γ’s over 0.8 in the left amygdala region. These strong associations do not appear

in the right amygdala regions. These two sub-cortical seed maps are from the cere-

bellum sub-cortical seeds, indicating the significant associations between cerebellum

structure and emotional functions in left amygdala.

It is of great interest to understand how the predictor images are associated with

the outcome images. As presented in (3.2.4) and (3.1) in our SBLF model, ψ(v, v′)

represents the prediction effect on a voxel v in the outcome image from any voxel v′ in

the predictor image. Figure 3.3 shows the estimated ψ(v, v′) on five outcome voxels v

in the left amygdala region. The same predictor image have varied effects on different
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outcome voxels. For example, the first outcome voxel (the first row in Figure 3.3)

are negatively associated with closed voxels in predictor images, while the last two

voxels (the forth and fifth rows) have more positive affects from voxels in the similar

locations in the predictor images. In contrast, there are not significant effects from

predictor images for the other two voxels (the second and third rows). Meanwhile,

the significant associations exit within not only nearby voxels but also long-distance

voxels. For example, for the first outcome voxel (x = −20, y = −4, z = −30) in Figure

3.3, some long-distance voxels in the image slice (z = −18) positively associated

with it, while its nearby voxels have significant negative effects. Those estimated

associations between predictor and outcome images from our proposed model can be

implicit and significant for exploring brain functions, which cannot be provided by

the other two methods.

3.6 Discussion

In this work, we propose a spatial Bayesian latent factor model for image-on-image

regression. We use low-dimensional latent factors as bridge connecting the outcome

image and predictor images in the same high dimensional imaging space. The pro-

posed method is flexible to model the spatial dependence through pre-specified basis

functions without imposing strong assumptions of spatial patterns. Our SBLF model

can identify the associations between the outcome image and predictor images across

the whole image space, not restricted to voxels from the same locations or nearby

neighbors. The low-dimensional latent factors integrate information from predictor

images through a regression model with spatially-varying coefficients. This regression

model can include other clinical patient characteristics for integrative analysis. Our

method can be applied to jointly analyze multimodality imaging data, such as the

resting-state fMRI and the task fMRI and structural MRI.

We discuss the limitations and potential feature directions for our method. First,
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the cross-validation approach to determine the number of basis functions and the

number of latent factors is very computationally intensive. An alternative way is

to treat those numbers as unknown parameters and assign a multinomial prior dis-

tribution (Ghosh and Dunson, 2009), then we can make fully Bayesian inference on

the model. This approach often requires to develop trans-dimensional MCMC algo-

rithms, which are challenging in practices. Second, we make a strong assumption

that the spatially varying coefficients are common for all predictor images, while

the spatial predictive effects of different predictor images can be different. This as-

sumption might decrease the power to detect the important predictive effects and

may inflate the false positive rate. We can relax this assumption by introducing the

predictor specific spatially-varying coefficients, which will increase model complexity

and thus more efficient computational algorithms are needed. Third, different sub-

jects may have heterogeneous associations between the task related brain activity and

the resting-state activity. Our current SBLF model cannot capture this heterogeneity.

We can potentially extend our model by introducing subject-specific spatially-varying

coefficients with clustering structures. Fourth, our current model focused on volumet-

ric data and not applicable to the surface data, we can further extend our method to

brain surface data by project cortex data in a sphere and then generate smooth basis

functions based on kernels of spherical harmonics in the same sphere.

Table 3.1: Inferential and working models for parameter expansion approach with
i = 1, 2, · · · , N, k = 1, · · · , K, m = 1, · · · ,M .

Inferential Model Working Model Transformations
θi = Ληi + ζi θi = Λ∗η∗i + ζi λmk = S(λ∗kk)φ

−1
k λ∗mk

ηi = βTX̃ i + εi η∗i = µ∗i + [β∗]TX̃ i + ε∗ ηik = S(λ∗kk)φk
(
η∗ik − µ∗ik

)
β = bα β∗ = bα∗ βk = S(λ∗kk)φkβ

∗
k

ζi ∼ N(0, σ2
ζI) ζi ∼ N(0, σ2

ζI) αk = S(λ∗kk)φkα
∗
k

εi ∼ N(0, σ2
εI) ε∗i ∼ N(0, σ2

εΦ
−1) εik = S(λ∗kk)φkε

∗
ik
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Figure 3.2: Statistical measures of the posterior mean estimations of loading matrix
in simulation study Scenario 3, fitted with K = 20 (true K = 5). X-axis is the index
of latent factors from 1 to 20. Figures on top are range (max value - min value),
maximum absolute value and standard deviation of each loading vector, respectively.
Figures on the bottom are number of values in each loading vector outside the 95%,
90% and 68% confidence interval of the whole loading matrix.
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Figure 3.3: Spatially varying prediction effects ψ(v, v′) on five different response voxels
v from all predictor voxels v′. Both v and v′ are in the left amygdala maps. All maps
are plotted on the same color scale.
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Table 3.2: Simulation study results for Scenario 1-3. In each scenario, three models are
fitted and their results compared in terms of 1) MSE, 2) MSPE and 3) the proportions
of observations with smaller MSE/MSPE using SBLF than the linear (%) or voxel-
wise regressions (%*). Results of multiple values of K used in our method are included
and the true value of K used for simulations in Scenario 3 is K = 5. MSE/MSPE
is reported as the averaged values over the total 32 × 32 = 1024 grid points, the 10
simulated datasets and 100/50 subjects for training/ test sets.

Generating Analysis
K

Training Test
Model Method MSE % %* MSPE % %*

Scenario 1: Linear

Linear 0.010 - - 1.024 - -
Voxel-wise 1.016 - - 1.050 - -

SBLF

1 0.014 0.00 100.00 1.231 23.40 27.20
5 0.014 0.00 100.00 1.395 31.60 34.20
10 0.014 0.00 100.00 1.474 29.40 32.60
20 0.014 0.00 100.00 1.509 26.00 27.80

Scenario 2: Voxel-wise

Linear 0.136 - - 0.511 - -
Voxel-wise 0.008 - - 0.496 - -

SBLF

1 0.023 100.00 0.00 0.314 94.40 92.80
5 0.023 100.00 0.00 0.316 94.20 92.60
10 0.023 100.00 0.00 0.322 93.40 91.80
20 0.023 100.00 0.00 0.341 91.80 90.80

Scenario 3: SBLF

Linear 0.896 - - 3.656 - -
Voxel-wise 2.510 - - 3.642 - -

SBLF

1 0.149 100.00 100.00 3.436 59.80 56.40
5 0.149 100.00 100.00 1.633 94.80 94.40
10 0.149 100.00 100.00 1.923 89.40 89.00
20 0.149 100.00 100.00 3.347 58.80 57.20

SBLF: our proposed spatial Bayesian latent factor model.
MSE: mean squared error of outcome estimations for training set.
MSPE: mean squared prediction error of outcome predictions for test set.
%, %*: proportion of simulated observations with smaller MSE/MSPE using SBLF than the linear and
voxel-wise regression method, respectively.
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Table 3.3: Application results of the left (1) and right (2) amygdala region. Perfor-
mance of three different methods are compared in terms of 1) MSE, 2) MSPE and
3) the proportions of observations with smaller MSE/MSPE using SBLF than the
linear (%) or voxel-wise regressions (%*). MSE/MSPE is reported as the averaged
values over all voxels, subjects and 10-folds cross validation. Two tuning parameters,
bandwidth value b for basis functions and the number of latent factors K, are tested
to determine their optimal values b∗ and K∗. The SBLF model is re-fitted with the
value of K∗ determined using the “Elbow” method with the loading matrix estimated
with K = 20.

(1) Left amygdala region

Method Bandwidth NO. of Latents
Training Test

MSE % %* MSPE % %*
Linear - - 0.562 - - 1.357 - -
Voxel-wise - - 0.644 - - 1.540 - -

SBLF

b∗ = 10
K = 20 0.060 100.00 100.00 1.198 66.33 63.37
K∗ = 9 0.063 100.00 100.00 1.168 69.39 66.30

b = 20
K = 20 0.009 100.00 100.00 1.304 54.08 60.02
K∗ = 8 0.009 100.00 100.00 1.348 51.02 58.16

b = 30
K = 20 0.005 100.00 100.00 1.830 29.59 40.82
K∗ = 5 0.005 100.00 100.00 1.830 20.41 40.82

(2) Right amygdala region

Method Bandwidth NO. of Latents
Training Test

MSE % %* MSPE % %*
Linear - - 0.651 - - 1.539 - -
Voxel-wise - - 0.735 - - 1.866 - -

SBLF

b∗ = 10
K = 20 0.066 100.00 100.00 1.359 70.41 73.47
K∗ = 10 0.069 100.00 100.00 1.260 77.55 73.47

b = 20
K = 20 0.010 100.00 100.00 1.398 68.37 74.49
K∗ = 7 0.010 100.00 100.00 1.941 38.78 50.00

b = 30
K = 20 0.005 100.00 100.00 2.127 19.39 42.86
K∗ = 5 0.006 100.00 100.00 3.195 10.26 12.82

SBLF: our proposed spatial Bayesian latent factor model.
MSE: mean squared error of outcome estimations for training set.
MSPE: mean squared prediction error of outcome predictions for test set.
%, %*: proportion of simulated observations with smaller MSE/MSPE using SBLF than the linear and
voxel-wise regression method, respectively.
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CHAPTER IV

Extension of Spatial Bayesian Latent Factor Model

to Cortical Surface Images

In this chapter, we extend the image-on-image regression model proposed in Chap-

ter III to the case where outcome is a cortical surface image and predictor images

are volumetric maps. The two types of spatial dependence are captured through the

basis expansion approach. On one hand, we approximate the surface image using a

set of spherical harmonics basis functions and link the basis coefficients to predictors

through a latent factor model. On the other hand, we approximate the volumetric

predictor images by the Gaussian kernels and assign GP priors to the spatially-varying

regression coefficients. We perform simulation studies to evaluate the out-of-sample

prediction performance of our method compared with ridge regression for different

scenarios. We apply the proposed method to predict task-related spherical z-score

maps using 32 sub-cortical volumetric seed maps from Human Connectome Project.

Our method has a better prediction accuracy and can identify more important active

brain regions compared to the ridge regression.
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4.1 Introduction

The functional magnetic resonance imaging (fMRI) is a popular neuroimaging

technique used to localize regions of brain activated by a task or stimulus (Lindquist

et al., 2008). fMRI uses Blood Oxygenation Level Dependent (BOLD) contrast to

measure neuronal activity indirectly (Ogawa et al., 1990, 1993). The traditional fMRI

is volume data recorded at one single time point and measured in voxels (equally sized)

filling the three-dimensional (3D) brain “native” space. Each voxel contains one value,

representing the average signal measured at the given location. The general linear

model (Martin and Maes , 1979) is the fundamental approach to model volumetric

responses at each and every voxel, providing activation maps linked to a particular

contrast (Worsley and Friston, 1995). It has been known that the neural activity

occurs in gray matter. The volumetric fMRI data, however, consists of some other

tissues involving white matter and cerebral spinal fluid (Mejia et al., 2017).

In the past two decades, there is a growing popularity of surface-based fMRI data

versus the traditional volumetric fMRI. The fMRISurface pipeline in the Human Con-

nectome Project (HCP) has been developed to take a volume time series and map it to

the standard Connectivity Informatics Technology Initiative (CIFTI) grayordinates

space (gray-matter surface vertices or volume voxels) (Glasser et al., 2013). The first

step of this transforming procedure is to use a high-dimensional structural imaging

to define which fMRI voxels are within the grey matter ribbon (Dale et al., 1999).

The second step is to form a smoothed 2D manifold within each hemisphere through

a mesh applied to white matter surface. Third, the smoothed surface is inflated to a

sphere, in which subjects brain are aligned to the template brain by aligning cortical

folding patterns. Finally, the same transformation can be applied to each fMRI vol-

ume to obtain a cortical surface fMRI time series. The fMRISurface HCP pipeline

produces a triangular mesh with approximately 30,000 surface vertices in both left

and right cerebral cortices.
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There are many benefits of cortical surface fMRI over volumetric fMRI data,

including (1) easier imaging visualization, (2) reduced image dimension (less vertices

than voxels), (3) only consisting gray matter tissue and (4) improved across-subject

alignment (Mejia et al., 2017; Glasser et al., 2013; Gao et al., 2015; Coalson et al.,

2018). The most important one is that the distance between two vertices on the

cortical surface is neurologically meaningful. The neighborhood of voxels in Euclidean

distance may be neurologically misspecified, such as two voxels with short straight-

line distance in Euclidean space but from different surface areas or even two types of

tissues. In contrast, neighbour or nearby vertices in cortical surface fMRI are defined

based on the geodesic distance along the surface so that they tend to present similar

neuronal activities.

For cortical surface imaging data obtained along curved non-Euclidean surfaces,

traditional statistical analysis and smoothing techniques based on the Euclidean met-

ric structure are inefficient. For example, spherical wavelets or basis functions are

preferred to approximate signals on the sphere than Gaussian kernels, the non-linear

function of Euclidean distance. In particular, a set of spherical harmonics (SH) func-

tions (Kennedy and Sadeghi , 2013) is a natural choice of basis functions, widely used

for cerebral surface parameterization (Chung et al., 2008; Gerig et al., 2001; Gu et al.,

2004; Kelemen et al., 1999; Yotter et al., 2010). The SH approximation represents the

coordinates of mesh vertices as a linear combination of the SH functions. Each SH is

an orthonormal basis of functions defined on the surface of a unit sphere, encoding

the main global geometric features. Its power lies in the fact that it only requires

a small number of linear coefficients to represent general functions and large data

sets accurately (Schröder and Sweldens , 1995). Those SH linear coefficients can be

estimated in a least-squares fashion, however, it might be difficult to implement due

to the difficulty of high-dimensional matrix inversion given a large number of vertices

(Chung et al., 2008). Alternatively, we can use the iterative residual fitting algo-
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rithm, creating a less accurate reconstruction due space partition (Elahi et al., 2017).

Bayesian methods, however, have been sucecessfully applied for making inference on

the SH coefficients (Das et al., 2015; Muir and Tkalčić, 2015; Pinaud et al., 2015;

Angers et al., 2005).

In Chapter III, we have developed a spatial Bayesian latent factor (SBLF) model

to predict task-related maps using task-free images, where both the outcome and

predictors are volumetric data from the same region of interest (ROI). Considering

that the surface-based fMRI may have better signals of neural activities than vol-

umetric fMRI, we expect some benefits from applying our SBLF model to predict

task-evoked cortical surface image with task-free volumetric maps. We approximate

the volumetric outcome images using a set of linearly weighted basis functions, which

are simulated from isotropic Gaussian kernels based on Euclidean distance and not

suitable for modelling surface-based imaging data. Therefore, we naturally choose

the SH functions as bases for the analysis of cortical surface images mapped to a

sphere. The linear coefficients of SH functions are modeled using latent factor model

and estimated under the hierarchical Bayesian framework proposed for SBLF model.

The remainder of this chapter is organized as follows. Section 4.2 presents the

SBLF model which has been developed in Chapter III with the SH functions defined

in the spherical surface domain. The details of the SH functions are described in

Section 4.2.1. We assess the model performance and compare the proposed method

with ridge regression via simulation studies in Section 4.3. We then apply the model

to the analyses of the HCP data in Section 4.4. Finally, we draw conclusions with a

brief discussion in Section 4.5.

4.2 Methods

In this section, we represent the SBLF model developed in Chapter III with an

extension for the case where the outcome is a cortical surface image and predictors
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are sub-cortical volumetric images. Suppose each of the N observation consists of

one outcome image and P predictor images. Outcome images are cortical surface

data mapped to a unit sphere, denoted S2, while predictor images are registered to a

volumetric space R. Note that (S2,R) may practically refer to either the whole brain

region or some regions of interest; and the following model and parameter settings are

region-specific. For subject i (i=1, · · · , N), let Zi(s) represent the outcome imaging

value at surface vertex s ∈ S2 and Xip(v) (p = 1, . . . , P ) be the pth predictor image

value at voxel v ∈ R. Next, we define a set of SH functions to approximate spherical

surface outcome images.

4.2.1 Spherical Harmonics

We denote by S2 a unit sphere embedded into R3, that is,

S2 = {x ∈ R3 : ‖x‖ = 1},

where ‖ · ‖ represents the Euclidean norm. Consider the parameterization of S2 by

y(ϑ, ψ) = (sinϑ cosψ, sinϑ sinψ, cosψ) where ϑ ∈ [0, π] and ψ ∈ [0, 2π) are the pole

angle and azimuthal angle, respectively, in the spherical coordinate system. In prac-

tice, it is sufficient to only use the real-valued SH functions. It is more convenient for

the real-valued stochastic model (Homeier and Steinborn, 1996; Courant and Hilbert ,

2008). Specifically, the real-valued SH of degree ` and order m is

Y`m(ϑ, ψ) :=


d`mP

|m|
` (cosϑ) sin (|m|ψ), −` ≤ m ≤ −1

d`m√
2
P
|m|
` (cosϑ), m = 0

d`mP
|m|
` (cosϑ) cos (|m|ψ), 1 ≥ m ≥ `
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where d`m =
√

2`+1
2π

(`−|m|)!
(`+|m|)! . P

|m|
` is the associated Legendre functions of order m

(Courant and Hilbert , 2008), defined as

Pm
` (x) =

(1− x2)m/2

2``!

∂`+m

∂x`+m
(x2 − 1)`, x ∈ [−1, 1]

for ` ∈ N0,m = 0, . . . , `. The SH functions are orthonormal basis on L2(S2,C)

and every real-valued function f in L2(S2,C) can be represented by the SH series

expansion

f =
∞∑
`=1

∑̀
m=−`

c`mY`m (4.1)

The coefficients c`m for ` ∈ N0,m = −`, . . . , `) are a sequence of centred, Gaussian

random variables (Müller , 2006; Lang et al., 2015). The expansion (4.1) is commonly

referred as the SH representation.

4.2.2 Spatial Bayesian Latent Factor Model

For the sub-model at Level 1, We first define a set of SH functions {Ylm(s)}|S2|×(L+1)2

with degree l = 0, . . . , L and order m = −l, · · · , l, where |S2| is the number of vertices

in S2 and (L + 1)2 is the total number of SH functions. For each subject i and any

vertex s ∈ S2, we assume

Zi(s) = U(s) +
L∑
`=0

∑̀
m=−`

θi`mY`m(s) + ei(s), ei(s) ∼ N(0, σ2
e)

where U(v) represents the population-level averaged outcome image. As a prior speci-

fication, we assume {U(s)}s∈S2 are independent and identically distributed as a normal

distribution with mean zero and variance σ2
u. The residuals ei(s), ∀i ∈ {1, . . . , N}

and s ∈ S2, are independently and identically distributed random variables follow-

ing N(0, σ2
e). The term

∑L
`=0

∑`
m=−` θi`mYi`m(s) captures the spatial dependence and
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smoothness of the subject-specific outcome images among vertices in S2.

Similar to the models in Chapter III, at Level 2, subject-specific SH coefficient

θi`m are separated into a set of K latent factors {ηik}Kk=1 for subject i and sparse

loading elements {λ`mk}Kk=1 common for all subjects. This sub-model is defined as

θi`m =
K∑
k=1

λ`mkηik + ζi`m, ζi`m ∼ N(0, σ2
ζ )

The error term ζi`m explains the variation of the basis coefficients θi`m that cannot be

explained by the latent factors. Same as Chapter III, for the prior specification for the

sparse loading coefficients λmk, we resort to inducing prior distribution through the

parameter-expansion (Ghosh and Dunson, 2009), leading to more efficient posterior

computation.

At Level 3, we link each subject-specific latent factor ηik via the scalar-on-image

regression:

ηik =
∑
v∈R

X̃i(v)βk(v) + εik, X̃i(v) =
P∑
p=1

γpXip(v), εik ∼ N(0, σ2
ε ),

where the error term εik follows the normal distribution with mean zero and unit

variance σ2
ε to ensure the identifiability of latent factors. We effectively reduce the

dimension of coefficients by introducing a summarized predictor image X̃i(v), the

average of the selected predictor images from {Xip(v)}Pp=1. Each predictor image

{Xip(v
′)}v′∈R has a corresponding selection indication γp. This binary indicator is

assumed to follow a Bernoulli distribution with prior probability w, including the

prior knowledge on the proportion of important predictor images. To account for

spatial dependence in predictors, we assign a GP prior to spatially-varying coefficient

βk(v), approximated using a basis expansion approach, i.e. βk(v) =
∑M

m′=1 αkm′bm′(v)

with αkm′ ∼ N(0, σ2
α) and a set of M bases {bm′(v)}Mm′=1. We use a small number

of latent factors (K) to capture important feature information than other predictors,
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and achieve efficient dimension reduction.

In summary, our proposed Bayesian hierarchical model is

Level 1 : Zi(s) = U(s) +
L∑
`=0

∑̀
m=−`

θi`mY`m(s) + ei(s),

Level 2 : θi`m =
K∑
k=1

λ`mkηik + ζi`m,

Level 3 : ηik =
∑
v∈R

X̃i(v)βk(v) + εik,

where X̃i(v) =
∑P

p=1 γpXip(v) and βk(v) =
∑M

m′=1 αkm′bm′(v).

4.2.3 Model Representation

By integrating out the SH coefficient θi`m and latent factors ηik, the conditional

expectation of outcome

E[Zi(s)|Xi1,Xi2, . . . ,XiP ] = U(s) + fi(s) = U(s) +
P∑
p=1

γp
∑
v∈R

ψ(s, v)Xip(v),

where

ψ(s, v) =
K∑
k=1

{[ L∑
`=0

∑̀
m=−`

λ`mkY`m(s)
]
×
[ M∑
m′=1

αkm′bm′(v)
]}

. (4.2)

We denote |R| by the number of volume voxels v in R, |S2| by the number of surface

vertices s in S2 and write X ip = {Xip(v)}|R|. This conditional expectation consists

of the population-level component U(s) and subject-level component fi(s). In detail,

Xip(v), the subject-specific predictor image value at voxel v ∈ R, contributes to the

prediction of Zi(s) using the spatially dependent weight ψ(s, v) and predictor selection

indicator γp. Each weight ψ(s, v) measures the average change in the outcome image

at any surface vertex s ∈ S2 per unit change in value of any selected predictor image at
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voxel v ∈ R. Furthermore, equation (4.2) suggests that the spatially varying linear

effects ψ(s, v) can be decomposed as the summation of K tensor products of two

linearly weighted basis expansions. Therefore, the weight matrix Ψ = {ψ(s, v)}|S2|×|R|

from our model not only retains complex spatial dependence structures in both the

outcome and predictors but also borrows strengths from the whole brain region to

predict the outcome image at each voxel.

4.2.4 Posterior Computation

As demonstrated in Section 3.3, we extend the parameter expansion (PX) method

proposed by Ghosh and Dunson (2009) to achieve efficient posterior computation for

our model. This posterior computation approach as well as the corresponding prior

distributions assigned to parameters in Section 3.3.1 work in the same way for the

model with cortical surface outcome images. Therefore, we skip the details of posterior

computation here for avoiding redundant demonstrations.

4.3 Simulation Study

In this section, we conduct simulation studies for model assessment. The linear

regression (Tavor et al., 2016) and voxel-wise regression approaches used for data

generation and method comparison in Chapter IV do not work in the case where

the outcome and predictor images are from different image space. We then compare

the performance of our proposed SBLF model with ridge regression method, which is

fitted to each surface vertex s ∈ S independently.

4.3.1 Data Generation and Method

We simulated 50 datasets, each of which contains 100 observations as the training

set and another 100 observations as the test set. Each simulated observation has

20 two-dimensional predictor images {Xi1, · · · ,Xi20} on the {1, . . . , 32}×{1, . . . , 32}
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grid, denoted R. Specifically, we independently generate each predictor image Xip =

{Xip(v)}|R| from a Gaussian Process with mean zero function and a covariance func-

tion that c(v1, v2) = 0.12 × exp{−15 × d2v1,v2}, where dv1,v2 is the Euclidean distance

between any two grid points v1 and v2 in R. Every outcome image consists of 1,250

spherical surface vertices, denoted s ∈ S2, whose coordinates covering 25 ϑ’s (pole

angle) and 50 ψ’s (azimuthal angle) which equally distribute in [0, π) and [0, 2π],

respectively.

We design two scenarios to generate data for the simulation study. In Scenario 1,

our proposed SBLF model serves as the generating model. Except the basis functions

used for approximating outcome images, the model and parameter settings are the

same as the settings in Chapter III Section 3.4.1 with details presented in Figure B.1.

Meanwhile, we generate a set of 121 SH bases with degree L = 10, covering all 1,250

vertices s on the surface of a unit sphere S2.

The generating model of Scenario 2 is based on Equation (4.2) in Section 4.2.2,

where the spatially varying linear coefficient ψ(s, v) is the summation of K tensor

products of two linearly weighted basis expansions. We define a generating model

which only captures the spatial dependence of spherical outcome images, while en-

tirely ignoring the spatial correlation structure in predictor images. In this way, we

can evaluate the performance of SBLF model when it is misspecified to the simulated

data in Scenario 2. The generating model is

Zi(s) =
P=20∑
p=1

γp
∑
v∈R

[
ψ(s, v)Xip(v)

]
+ ei(s), ei(s) ∼ N(0, 0.5)

where the first 10 out of P = 20 predictor images serve as important predictors in the

generating model with γp = 1 and γp = 0 otherwise. The error term ei(s) of every

spherical vertex s ∈ S2 follows independent normal distribution with mean zero and

variance 0.52. The linear coefficient ψ(s, v) only consists of a set of linearly weighted
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SH bases functions to account the spatial dependence in outcome images. Specifically,

ψ(s, v) =
K=5∑
k=1

L=10∑
`=0

∑̀
m=−`

λi`mkY`m(s),

with λi`mk = λ̄`mk + εi`mk, λ̄`mk ∼ N(0, 0.1), εi`mk ∼ N(0, 0.05),

where the basis coefficients λi`mk has a mean term λ̄`mk common for all observations

and subject-specific residuals εi`mk. Given above linear coefficients, the generating

model can be written as

Zi(s) =
[K=5∑
k=1

L=10∑
`=0

∑̀
m=−`

λi`mkY`m(s)
]
×
[ P=20∑
p=1

γp
∑
v∈R

Xip(v)
]

+ ei(s) (4.3)

In above equation 4.3, the term
∑P=20

p=1 γp
∑

v∈RXip(v) indicates that the information

of the all important predictor images is summed as a scalar value across all voxels

v ∈ R equally without accounting for spatial dependence in R.

We run the Markov chain Monte Carlo (MCMC) algorithm for 50,000 iterations

with 25,000 burn-in to compute the posterior mean estimations and predictions. We

use Gamma(1.0, 1.0) as the prior distribution for σ−2e , σ−2ε , σ−2ζ . We also fix the values

of hyper variance parameter σ2
λ, σ

2
µ, σ

2
α at 1.0. The hyper-parameter ω has a prior

distribution Beta(1.0, 1.0). All initial values are sampled from their corresponding

prior distributions, except that all initial values of {γp}P=20
p=1 are set to be 1.0. We

fit ridge regression model using R package “glmnet” and the tuning parameter λ is

selected from 100 candidate values using 10-folds cross-validation (CV) approach.

4.3.2 Results

We use two types of statistical measures for model evaluation, (1) the root mean

squared errors of estimations (RMSE) and predictions (RMSPE) and (2) R-Squared

values, averaged over all spatial vertices s ∈ S2, subjects and 10-folds CV. Table 4.1
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summarizes the two measures under SBLF and ridge regression models fitted to the

simulated datasets in Scenario 1 and 2. In both of the two scenarios, our proposed

SBLF model achieves smaller RMSE/RMSPE and higher R-Squared values for the

training and validation set. Meanwhile, in Scenario 1, we find the large variations

in RMSE/RMSPE and R-Squared values from the results of ridge regression method

from their density plots shown in Figure 4.1. In Scenario 2, both SBLF and ridge

regression model are misspecified. In particular, SBLF in Scenario 2 accounts the spa-

tially dependence in outcome images but incorrectly model the spatial correlations in

predictors, while ridge regression method captures the independent linear associations

of predictor voxels but ignores the spatial structure of outcome images. Therefore,

for both of the two misspecified models in Scenario 2, their values of RMSE/RMSPE

are higher and R-Squared values are smaller than their corresponding values in Sce-

nario 1. However, our SBLF model still has better performance in prediction and

model fitting than ridge regression in Scenario 2 since we can correctly capture the

importance spatial dependence in outcome images.

To determine an optimal number of latent factors, we first fit the SBLF model

with a relatively large enough value K, e.g. K = 20, and then summarize estimated

loading vectors in terms of six statistics to evaluate the sparseness and necessary of

each loading vector. The six statistical measures are 1)standard deviation, 2) range

(max value minus min value), 3) maximum absolute value, 4) the number of values in

each loading vector outside the 95%, 90% and 68% credible interval (CI) of the whole

loading matrix. Figure 4.2 show the plots of six summary statistics corresponding to

20 estimated loading vectors. Based on “Elbow” method, the optimal choice of K is

5 or 6, given the truth that K = 5 latent factors are used in the generating model

of Scenario 1. Therefore, the simulation study confirms that the number of latent

factors can be correctly identified based on the summary statistics of the estimated

loading matrix and “Elbow” method.
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4.4 Application

4.4.1 The motivating HCP data

We apply our method to analyze the HCP data consisting of 98 subjects using

their functional and structural MRI scans in the Q3 release. See the details of the

preprocessing procedure in Barch et al. (2013). In this study, the task-evoked fMRI

data are some faces-shapes contrast maps from the EMOTION task domain. Their

corresponding z-score maps are then derived and have been registered to both volu-

metric and cortical surface system. The CIFIT image consists of 32,492 vertices on

each left and right cerebral surface and can be mapped to a sphere with a radius of

100.

Based on a multimodal parcellation approach of human cerebral cortex (Glasser

et al., 2016), there are 180 distinct cortical surface-based parcels in each left or right

side of the brain. The sizes of parcels vary a lot since the total number of vertices

in those surface-based parcels widely range from 31 to 810. The averaged z-score

outcome values across vertices within a single parcel vary from -1.625 to 7.904. Only a

few of parcels contain the relatively large z-score values, while most parcels have small

z-score values concentrated around zero. It is more likely that those parcels with many

large absolute values indicate strong signals of emotion activity. Therefore, instead

of using all 180 surface parcels, we select 29 surface-based nested parcels on the right

side of the brain as our outcome image space to reduce computation task. We show

some example figures of outcome images of all 180 parcels and the 29 selected parcels

separately in Figure 4.3, displayed on both cortical surface and spherical surface.

For predictor images, we use a set of 32 volumetric sub-cortical seed maps from

resting-state fMRI data. These predictor images consist of 19 sub-cortical regions of

interests (ROIs) and 31,870 volumetric voxels in total. It has been well known that

the amygdala complex as part of the neural circuitry consistently associates with the
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emotion functions (Phan et al., 2002). Therefore, we further reduce the predictor

image space to right amygdala ROI (332 voxels) to predict the outcome image within

the 29 selected parcels in the right hemisphere of the brain.

4.4.2 Methods

We run the MCMC algorithm with a total of 50,000 iterations with 25,000 burn-in.

The priors placed on hyper-parameters are the same as those for simulation studies.

Initial values are all randomly generated from corresponding prior distributions. Also,

the SBLF model is fitted multiple times with a set of candidate SH degree values (L ∈

{5, 10, 15, 20}) and the number of latent factors (K ∈ {10, 20, 30}). We determine the

first-step choices of L and K in terms of RMSE/RMSPE and R-Squared values for the

training and test sets in a 10-fold CV study. We then use the same “Elbow” method

as for simulation studies to choose the optimal number of latent factors by fitting our

model with selected L and a relatively large enough value of K, for example, K = 20.

Given optimal L and K from CV study, the SBLF model is finally re-fitted to the

whole data set. We also fit the ridge regression for comparison and tune the tuning

parameter λ in ridge regression via a 10-folds CV study from 100 candidate values,

implemented in R (version 3.3.3).

4.4.3 Results

We first determine the optimal degree of SH L and the number of latent factors K

based on the results in Table 4.2. As the increase in L and K, the proposed models

achieve reduced RMSE and R-Squared values for the training set because of extra

parameters introduced in the model. To avoid the heavy computation and serious

over-fitting issue with too many parameters, the combination (L = 10, K = 20)

is preferred as the first-step choice, with which the fitted model has relative small

RMSPE for test sets and reasonable RMSE as well as R2-Squared values for the
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training data. Further, we refit the SBLF model with L = 10, K = 20 and describe the

distributions of estimated loading matrix in Figure 4.4. As shown in the three plots

on top, the magnitudes and variations within every loading vector keep decreasing to

zero, suggesting some potential redundant loading vectors concentrated around zero.

The plots on the bottom of Figure 4.4 indicate that about K = 10 latent factors is

enough to conserve most of the significant loading elements (e.g., top 5% absolute

values). Therefore, the optimal number of latent factor is K∗ = 10 and the SBLF

model is refitted given L = 10 and K = 10.

We further compare the SBLF model (L = 10, K = 20) with ridge regression

method from two aspects: (1) model fitting and predictions and (2) brain active

region identification.On one hand, in Table 4.1, the SBLF model fitted to this real

dataset reaches much higher averaged R-Squared values (0.670) and smaller RMSE

(1.705) than the ridge regression method (0.208, 2.380) for the training set. For the

test set, our model achieves an R-Squared value 0.127, higher than that of the ridge

regression method (0.102). When it comes to prediction performance, however, both

of the ridge regression and our proposed method return predicted outcome values

with smaller scales than their truly observed values in the test sets. This issue might

be solved from our method by providing more informative prior distributions for some

model parameters, e.g., αk, the basis coefficients of spatially varying parameters βk ,

which can control the scale of outcomes.

On the other hand, the issue of predictions with smaller scales might not affect the

performance of models in identifying task-related active brain regions. We assume

that large magnitude values in the z-score maps of task-evoked images represent sig-

nals of brain activity. We define subject-specific signal regions by placing some proper

thresholds on the outcome images of every subject. A set of threshold values, the top

1%, 5%, 10%, 20% and 50% of the absolute values, are placed on the observed images,

estimations of the training set, and predictions of test sets from SBLF and ridge re-
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gression methods, respectively. In Table 4.3, we present the number and proportions

of active vertices correctly identified by SBLF and ridge regression methods, averaged

over subjects and the ten folds in CV study. Meanwhile, we include the number and

proportion of subjects, whose active vertices are more accurately identified by SBLF

model than ridge regression method. Based on the results in Table 4.3, the SBLF

model almost always achieve more correctly identified active vertices for training set

than ridge regression method, although the two models have similar performance for

the predictions of test sets. We also provide example figures from a randomly selected

subject to show his/her actual and estimated outcome images and their corresponding

active vertices for model comparisons, as shown in Figure 4.5. The threshold used in

this case is the top 10% of absolute values, resulting in 489 active vertices in his/her

observed outcome image (restricted to the 29 selected parcels). Among the 489 true

active vertices, there are 386 (78.94%) vertices are correctly found by SBLF model,

while just 282 (57.67%) vertices found by ridge regression. Meanwhile, we show the

false active vertices (non-active vertices which are incorrectly identified as active ver-

tices by fitted models) in blue color and the missed vertices (active vertices which are

not identified as active vertices by fitted models) in red color in the last two plots on

the second and third row in Figure 4.5. The two plots indicate that most of the false

active vertices by SBLF model lie in the border of the major active region (e.g., the

region in green). In contrast, the active vertices identified by ridge regression method

shift away from the actual active region, considering the large red region on top and

blue region on the bottom (the plot in the bottom corner in Figure 4.5). Hence, we

come up with the conclusion that our proposed SBLF model has better performance

in identify active regions than ridge regression method.

The posterior mean estimations of predictor selection variables {γp}32p=1 from the

re-fitted model with L = 10 and K = 10 indicate three sub-cortical seed maps re-

stricted to the right amygdala region, which significantly contribute to the prediction
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of the task-evoked surface outcomes within the 29 selected parcels involving brain

activities related to emotion function. The estimated posterior probabilities of the

three predictor images are 0.978, 0.997, and 0.999, respectively, while other predictor

indicators have probabilities less than 0.1. The underlying task-free brain connectiv-

ity and structure presented by the three ROIs (seeds of the selected seed maps) in

the right amygdala region might have important association with the human emotion

function.

4.5 Discussion

In this Chapter, we extend the image-on-image regression model proposed in

Chapter III to the case where the outcome is a cortical surface image, and predictor

images are volumetric maps. This method captures the complex and different spatial

correlation structures in the outcome map and predictor images. We approximated

the subject-level cortical surface image via the expansion on a set of spherical harmon-

ics functions, with basis coefficients linking to image predictors through a latent factor

model. Meanwhile, we assign GP priors to the spatially varying regression coefficients

of the volumetric predictor images. In the simulation study, the proposed method

achieves better performance in prediction accuracy than ridge regression model in

two different scenarios. We also apply our method to predict spherical z-score maps

derived from face-shapes contrast maps with 32 sub-cortical seed maps from resting-

state fMRI. The real data analyses suggest the higher accuracy of identifying active

brain regions using the SBLF method than ridge regression.

The proposed SBLF method has several contributions to general image-on-image

regression. First, this method captures the complex and different spatial correla-

tion structures in the outcome and predictor images. Linear combinations of SH

basis functions and Gaussian kernels are used to account for spatial dependences of

spherical and volumetric imaging data, respectively. Therefore, this image-on-image
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regression model doesn’t have to be restricted the same imaging space of the outcome

and predictor images and will benefit the analysis of multimodal neuroimaging data

and the associations of surface-based parcels and ROIs of volumetric data. Mean-

while, the proposed method implements imaging dimension reduction in two aspects.

First, it reduces the dimension of outcome image to a relatively small number through

a linear expansion of basis functions. Second, the proposed method link the two types

of high-dimensional outcome and predictor images via a few latent factors, where the

optimal number of latent factors is usually smaller than 10 in the application study.

There are several future directions. Some of the other basis functions or para-

metric models can be considered for approximating cortical surface images mapped

on a sphere, such as spherical wavelets, in order to better capture the global and

local spatial dependence. In addition, spatially varying parameters can be different

among multiple predictors, considering the various spatial correlation structures of

multimodal predictor images, although introducing predictor-specific spatially vary-

ing parameters will bring additional computational task and potential identifiable

issues.
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Figure 4.1: Density plots of RMSE/RMPE (1st row) and R-Squared (2nd row) values
for the training (1st column) and validation (2nd column) sets in simulation study
Scenario 1. Two models, SBLF (blue) and ridge regression model (red), are fitted
and compared.
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Figure 4.2: Summary statistics of the posterior mean estimations of loading matrix in
simulation study Scenario 1 with K = 20 (true K = 5). X-axis is the index of latent
factors from 1 to 20. Figures on top row are for statistics including standard deviation,
range (max value - min value) and maximum absolute value of each estimated loading
vector, respectively. Figures on the bottom show the number of values in each loading
vector outside the 95%, 90% and 68% confidence interval (CI) of the whole estimated
loading matrix. The determined optimal value of latent factors is K = 5 or 6.
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(a) Cerebral surface map

(b) Spherical map

(c) Selected Parcels on cerebral surface

(d) Selected Parcels on spherical map

Figure 4.3: Example outcome images from a subject (id=151627) shown on cerebral
surface (a) and spherical surface (b) of the whole left (left column) and right brain
(right column). The cerebral (c) and spherical (d) surface images show the observed
outcome images within 29 selected parcels in the right brain (left column) and another
18 parcels in the left brain (right column).
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Figure 4.4: Summary statistics of the posterior mean of loading matrix estimated
from SBLF with K = 20 in HCP application study. X-axis is the index of latent
factors from 1 to 20. Figures on top row are for statistics including standard deviation,
range (max value - min value) and maximum absolute value of each estimated loading
vector, respectively. Figures on the bottom show the number of values in each loading
vector outside the 95%, 90% and 68% confidence interval (CI) of the whole estimated
loading matrix. The determined optimal value of latent factors is K = 10.
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(a) Real data

(b) estimations of SBLF model

(c) Estimations of ridge regression model

Figure 4.5: Examples of the observed outcome (subject id = 151627) images and
his/her estimated outcome images by SBLF and ridge regression models fitted within
the 29 selected surface parcels. The first and second plots in each row are the outcome
images shown in 29 parcels and only selected active vertices (with the top 10% of the
absolute values as the threshold, resulting in 489 active vertices), respectively. The
last image in the second and third row, contains three types of selected active vertices,
(1) correctly selected active vertices (green), (2) false active vertices (blue, non-active
vertices in observed image but identified as active vertices by fitted models), and (3)
misspecified active vertices (red, active vertices in observed image but not identified as
active vertices by fitted models). The number of the three types of vertices are (386,
103, 103) and (282, 207, 207) using SBLF and ridge regression model, respectively.
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Table 4.1: Results of simulation Scenario 1 and 2, including mean value and range
[min, max] of RMSE/RMSPE and R-Squared values (averaged across subjects and
simulations for each vertex in outcome image) for training and validation sets, re-
spectively.

Generating Analysis Training Set Validation Set
Model Method RMSE R-Squared RMSPE R-Squared

Scenario 1
SBLF

0.189 0.957 0.600 0.715
[0.146, 0.249] [0.749, 0.996] [0.353, 1.069] [0.047, 0.948]

Ridge
0.251 0.829 1.005 0.342

[0.370, 1.636] [0.000, 0.998] [0.370, 2.062] [0.011, 0.647]

Scenario 2
SBLF

0.471 0.904 1.356 0.303
[0.363, 0.590] [0.768, 0.987] [1.008, 2.143] [0.000, 0.863]

Ridge
0.756 0.614 1.577 0.148

[0.044, 2.086] [0.000, 0.999] [1.066, 3.028] [0.000, 0.600]

SBLF: our proposed spatial Bayesian latent factor model.
RMSE/RMPE: root mean squared errors of estimations of training sets and predictions of
validation set, respectively.
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Table 4.2: Model performance of our SBLF and ridge regression models for HCP real
data analysis. Our proposed SBLF model are fitted multiple times with candidate
values of SH degrees (L = 5, 10, 15 or 20) and the number of latent factors (K=10,
20, 30). For each model fitting, results include the averaged values and range [min,
max] of RMSE/RMSPE and R-Squared values at every vertex s ∈ S2 for the training
and validation sets, averaged across subjects and 10-folds CV . The optimal choice is
(L=10, K=10).

Model
SH Latent Training Set Validation Set

Degree Factors RMSE R-Squared RMSPE R-Squared
Ridge

- -
2.380 0.208 2.647 0.102

Regression [0.060, 5.290] [0.000, 0.998] [0.565, 5.928] [0.000, 0.870]

SBLF

L=5

K=10
2.224 0.517 3.444 0.125

[0.677, 6.225] [0.044, 0.869] [0.589, 10.674] [0.000, 0.848]

K=20
2.242 0.516 3.371 0.124

[0.677, 6.334] [0.043, 0.891] [0.635, 10.426] [0.000, 0.827]

K=30
2.228 0.519 3.493 0.117

[0.639, 6.276] [0.042, 0.878] [0.553, 10.862] [0.000, 0.790]

L=10

K=10
1.705 0.670 3.299 0.127

[0.559, 4.022] [0.141, 0.936] [0.569, 9.756] [0.000, 0.871]

K=20
1.674 0.685 3.273 0.109

[0.533, 4.007] [0.156, 0.950] [0.543, 9.535] [0.000, 0.816]

K=30
1.674 0.687 3.293 0.100

[0.540, 4.042] [0.161, 0.964] [0.578, 9.589] [0.000, 0.716]

L=15

K=10
1.371 0.772 3.281 0.120

[0.387, 3.213] [0.187, 0.963] [0.566, 9.432] [0.000, 0.772]

K=20
1.339 0.784 3.627 0.099

[0.372, 3.163] [0.206, 0.967] [0.536, 10.907] [0.000, 0.749]

K=30
1.328 0.788 3.429 0.107

[0.363, 3.162] [0.201, 0.969] [0.571, 10.273] [0.000, 0.868]

L=20

K=10
1.098 0.847 3.333 0.113

[0.295, 2.777] [0.378, 0.973] [0.637, 9.299] [0.000, 0.923]

K=20
1.066 0.856 3.783 0.074

[0.306, 2.721] [0.397, 0.976] [0.540, 12.032] [0.000, 0.707]

K=30
1.051 0.860 3.488 0.110

[0.277, 2.706] [0.409, 0.977] [0.549, 10.384] [0.000, 0.833]

SBLF: our proposed spatial Bayesian latent factor model.
RMSE/RMPE: root mean squared errors of estimations of training sets and predictions of
validation set, respectively.
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Table 4.3: Results of HCP data analysis using SBLF and ridge regression models to
identify active vertices. A sequence of thresholds, (top 1%, 5%, 10%, 20% and 50% of
the absolute values), are used to define the active points in the observed, estimated
and predicted outcome images, respectively. The number and proportion of active
vertices correctly identified by SBLF and ridge regression methods are averaged over
subjects and 10-folds CV, respectively. The table also include the metric Nsubj(SBLF),
the number and proportion of subjects who have more correctly identified active
vertices by our SBLF method than ridge regression model.

Threshold
Training Set test Set

SBLF Ridge Nsubj(SBLF) SBLF Ridge Nsubj(SBLF)
Top 1% 11 12 37 3 4 4
(N s=49) (22.49%) (24.35%) (42.05%) (6.94%) (7.75%) (40.00%)
Top 5% 136 115 64 90 102 3

(N s=245) (55.41%) (46.84%) (72.72%) (36.82%) (41.71%) (30.00%)
Top 10% 344 303 74 269 283 1
(N s=489) (70.37%) (62.00%) (84.09%) (54.91%) (57.96%) (10.00%)
Top 20% 750 684 81 620 614 6
(N s=977) (76.77%) (70.09%) (92.05%) (63.46%) (62.86%) (60.00%)
Top 50% 1940 1740 87 1628 1622 5

(N s=2441) (79.46%) (71.32%) (98.86%) (66.69%) (66.46%) (50.00%)

SBLF: our proposed spatial Bayesian latent factor model.
Ridge: ridge regression method.
Threshold: the top percentage of the absolute values.
N s: the number of vertices with absolute values above the threshold placed on the observed
outcome images.
Nsubj(SBLF): the number of subjects who have more active vertices correctly identified by
SBLF model than ridge regression method.
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CHAPTER V

Conclusion

In this dissertation, we develop two spatial Bayesian models for scalar-on-image

and image-on-image regression, respectively. We account for complex spatial correla-

tions in high-dimensional images and use efficient sampling algorithms, fast compu-

tational techniques and dimension reduction methods.

In Chapter II, we propose a Bayesian scalar-on-image regression model to predict

clinical subtypes of MS using MRI lesion images. Both non-spatially and spatially

varying variables can be used as predictors in the logit link function for multinomial

logistic regression model. The spatial correlations existing in brain image space are

measured through a GP prior distribution and estimated under the Bayesian frame-

work by using HMC algorithm. In addition, the application of FFT algorithm make

it feasible and efficient to manipulate the high-dimensional correlation matrix. Both

simulation study and the application analysis of MS data prove the high prediction

accuracy of our method. In practical applications, our method is able to help doctors

to determine the subtypes for MS patients with their MRI lesion images at a single

time point instead of monitoring the disease progression for a very long time.

In Chapter III and IV, we develop a fully Bayesian hierarchical spatial model for

image-on-image regression. We introduce low-dimensional latent factors as a bridge

linking high-dimensional outcome and predictor images. Those latent factors serve as
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various scalar measures summarized from predictor images. Furthermore, we assign

flexible prior distributions to capture the complex and various spatial dependence

within multimodal outcome and predictor images. In particular, we use isotropic

Gaussian kernels and SH basis functions to approximate cortical surface-based and

volumetric images. In addition, we resort to inducing prior distributions for the sparse

loading elements through the parameter expansion approach, leading to more efficient

posterior computation. In multiple simulation studies, our proposed spatial Bayesian

latent factor models achieve better performance in prediction accuracy than linear

regression and voxel-wise regression methods (in cases where outcome and predictors

share the same imaging space), and ridge-regression method (in the case of various

imaging spaces). We also apply our model to predict task-evoked images in Emotion

task domain from subcortical seed-based maps (within amygdala region) from resting-

state fMRI given data from HCP.

Given multiple neuroimaging modalities, our methods are limited by assuming the

same spatial correlation structure for all imaging predictors. In the future, we plan

to expand the model involving a set of various spatially varying coefficients {βkq(v)},

where q is the index of different spatial dependence. Furthermore, we can also include

corresponding latent indicator of important predictors {γpq} to each spatial structure.

These expansions may lead to more explicit measures of predictor images and the

selection of grouped predictor images with similar structure or function connectivity.

However, the newly introduced parameters will result in extra computational task so

that other efficient methods or sampling algorithm are in need for estimating spatially

varying parameters.

Our proposed methods can be used to either the whole image space or any sin-

gle region/parcel of interest, however, ignore the spatial correlations among regions

for independent region-wise analyses. Hence, another promising future direction is

to expand the spatial Bayesian latent factor model to a hierarchical model for the
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integration analysis of multiple regions with both within-region and region-wise spa-

tial effects or correlation structures. We will benefit from this future work in the

analysis of brain activity and functional connectivity among multiple neuroimaging

modalities.
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APPENDIX A

Appendices of Chapter III

A.1 Gradient of Log-Joint-Posterior

To implement HMC algorithm using Leapfrog method for our model, we need to

calculate the log-joint-posterior density and its gradient. By Brook’s lemma Besag

(1974b), the joint distribution (2.3), up to a constant of proportionality, can be written

as

P (θk|Y ,X,Z,θ−k,Ω) ∝
[ N∏
i=1

K−1∏
l=0

π
I(yi=l)
il

]
× exp (−1

2
α2
k)× exp

(
− 1

2
ζTk ζk

)
× |Σk|−1/2 exp

(
− 1

2
(γk −U k)

TΣ−1k (γk −U k)
)

× σaσ−1k exp (−bσσk)× ρaρ−1k exp (−bρρk)

× exp
(
− 1

2
(U k − µ0)

TΛ−10 (U k − µ0)
)

× |Σ−1k |
− ν0+p+1

2 exp
(
− 1

2
Tr(Φ0Σk)

)
(A.1)
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where

πik = P (yi = k) =
exp

[
αk + zTi γk + σkX

T
i C

1
2 (ρk)ζk

]
1 +

∑K−1
l=1 exp

[
αl + zTi γl + σlX

T
i C

1
2 (ρl)ζl

] (A.2)

I(yi = k) =


1 if yi = k

0 if yi 6= k

Then, the log-joint-posterior density is

logP (θk|Y ,X,Z,θ−k,Ω) ∝
[ N∑
i=1

K−1∑
l=0

I(yi = l) log(πil)

]
− 1

2
α2
k −

1

2
ζTk ζk

− 1

2
(γk −U k)

TΣ−1k (γk −U k)

+ (aσ − 1) log(σk)− bσσk + (aρ − 1) log(ρk)− bρρk.

Then, the gradients of the log-joint-posterior density are derived as:

∇αk logP (θk|Y ,X,Z,θ−k,Ω) ∝
[ N∑
i=1

(
I(yi = k)− πik

)]
− αk

∇ζk logP (θk|Y ,X,Z,θ−k,Ω) ∝
[ N∑
i=1

(
I(yi = k)− πik

)
σkC

1
2 (ρk)X i

]
− ζk

∇γk logP (θk|Y ,X,Z,θ−k,Ω) ∝
[ N∑
i=1

(
I(yi = k)− πik

)
Zi

]
−Σ−1k (γk −U k)

∇σk logP (θk|Y ,X,Z,θ−k,Ω) ∝
[ N∑
i=1

(
I(yi = k)− πik

)
XT

i C
1
2 (ρk)ζk

]
+
aσ − 1

σk

∇ρk logP (θk|Y ,X,Z,θ−k,Ω) ∝
[ N∑
i=1

(
I(yi = k)− πik

)
σkX

T
i ζk

]
+
aρ − 1

ρk

A.2 Constraints on σ and ρ

Since σk and ρk have to be positive, some constraints must be considered while

updating the state at each time in (??). For example, given upper and lower bounds
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of θk denoted as u and l, we repeat following steps until u ≤ θk(t+ δ) ≤ l

• if θk(t+ δ) > u, then

θk(t+ δ) = u−
(
θk(t+ δ)− u

)
and ξk(t+ δ/2) = −ξk(t+ δ/2)

• if θk(t+ δ) < l, then

θk(t+ δ) = l +
(
l− θk(t+ δ)

)
and ξk(t+ δ/2) = −ξk(t+ δ/2)

A.3 Posterior Estimates of ρ, σ and α

Table A.1: Posterior estimates (mean, standard deviation (SD) and 95% Confidence
Interval (CI)) of ρ, σ and α.

Parameter MS subtype Mean SD 95% CI
ρ PRP MS 4.50 1.69 [1.19, 7.81]

SCP MS 7.98 2.11 [3.85, 12.12]
σ PRP MS 2.81 0.60 [1.64, 3.99]

SCP MS 2.92 0.60 [1.74, 4.10]
α PRP MS -0.31 1.04 [-2.35, 1.73]

SCP MS -0.39 0.96 [-2.28, 1.49]

A.4 Trace plots and ACF plots of ρ, σ, α and β
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Figure A.1: Trace plots and ACF plots of ρ for PRP (first row) and SCP (second
row) MS subtype groups, respectively.
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Figure A.2: Trace plots and ACF plots of σ for PRP (first row) and SCP (second
row) MS subtype groups, respectively.
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Figure A.3: Trace plots and ACF plots of α for PRP (first row) and SCP (second
row) MS subtype groups, respectively.
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Figure A.4: Trace plots and ACF plots of α for PRP MS subtype group.
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Figure A.5: Trace plots and ACF plots of α for SCP MS subtype group.
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APPENDIX B

Appendices of Chapter IV

B.1 Full Model

Our hierarchical full model is:

Level 1 : Zi(v) = U(v) +
M∑
m=1

θimbm(v) + ei(v)

Level 2 : θim =
K∑
k=1

λmkηik + ζim

Level 3 : ηik =
∑
v′∈R

X̃i(v
′)βk(v

′) + εik

where X̃i(v
′) =

P∑
p=1

γpXip(v
′), βk(v

′) =
M∑
m=1

αkmbm(v′)
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Combining the two sub-models on Level 1 and 2, we get

Zi(v) =U(v) +
M∑
m=1

[ K∑
k=1

λmkηik + ζim

]
bm(v) + ei(v)

=U(v) +
M∑
m=1

K∑
k=1

λmkηikbm(v) +
M∑
m=1

ζimbm(v) + ei(v)

=U(v) +
K∑
k=1

[ M∑
m=1

λmkbm(v)
]
ηik + ζ̃i(v) + ei(v)

=U(v) +
K∑
k=1

λ̃k(v)ηik + ζ̃i(v) + ei(v) (B.1)

where the spatially varying prediction effect on response voxel v from predictor voxel

v′ is

λ̃k(v) =
M∑
m=1

λmkbm(v), ζ̃i(v) =
M∑
m=1

ζimbm(v)

By plugging equations on Level 3 in equation (B.1), we get

Zi(v) =U(v) +
K∑
k=1

λ̃k(v)ηik + ζ̃i(v) + ei(v)

=U(v) +
K∑
k=1

λ̃k(v)
[∑
v′∈R

( P∑
p=1

γpXip(v
′)
)
βk(v

′)
]
+

K∑
k=1

λ̃k(v)εik + ζ̃i(v) + ei(v)

=U(v) +
P∑
p=1

γp
∑
v′∈R

[ K∑
k=1

λ̃k(v)βk(v
′)
]
Xip(v

′) + ε̃i(v) + ζ̃i(v) + ei(v)

=U(v) +
P∑
p=1

γp
∑
v′∈R

ψ(v, v′)Xip(v
′) + ε̃i(v) + ζ̃i(v) + ei(v)
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where

ψ(v, v′) =
K∑
k=1

λ̃k(v)βk(v
′)

=
K∑
k=1

M∑
m=1

λmkbm(v)βk(v
′)

=
M∑
m=1

[ K∑
k=1

λmkβk(v
′)
]
bm(v)

=
M∑
m=1

[ K∑
k=1

λmk

( M∑
m′=1

αkm′bm′(v′)
)]
bm(v)

=
M∑
m=1

M∑
m′=1

[ K∑
k=1

λmkαkm′

]
bm′(v′)bm(v)

=
K∑
k=1

{[ M∑
m=1

λmkbm(v)
]
×
[ M∑
m′=1

αkm′bm′(v′)
]}

and

ε̃i(v) =
K∑
k=1

λ̃k(v)εik =
M∑
m=1

K∑
k=1

λmkεikbm(v)

B.2 Full Conditional Posterior Distributions

Elements in the lower triangular part of the working loading matrix, denoted

λ∗m = {λ∗m1, λ
∗
m2, . . . , λ

∗
mq}T with q = min(m,K), are sampled from a multivariate

normal distribution that

π(λ∗m|·) ∼ Nq(Mean,Cov)

Mean = Cov × σ−2ζ
N∑
i=1

θimη
∗
im

Cov =
[ N∑
i=1

(
σ−2ζ η

∗
imη

∗T
im

)
+ σ−2λ Iq

]−1
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where η∗im = (η∗i1, η
∗
i2, . . . , η

∗
iq)

T , the corresponding latent vector to λ∗m. Other working

loading matrix elements in the upper triangular part are set to be 0.

The subject-specific working latent vector η∗i = (η∗ik)K×1 = (ηi1, ηi2, . . . , ηiK)T is

sampled from a posterior multivariate normal distribution that

π(η∗i |·) ∼ NK

(
Mean,Cov

)
,

Mean = Cov ×
{
σ−2ζ Λ∗

T

θi + σ−2ε Φ
(
µ∗i + β∗

T

X̃ i

)}
Cov =

(
σ−2ζ Λ∗

T

Λ∗ + σ−2ε Φ
)−1

where we write Λ∗ = (λ∗mk)M×K , θi = (θim)M×1, Φ = diag{φ2
1, φ

2
2, . . . , φ

2
K}, µ∗i =

(µ∗ik)K×1, β
∗ = {β∗k(v)}|R|×K , X̃ i = {X̃i(v)}|R|×1 and let |R| represent the number

of voxels in R. Similarly, the extra K-length intercept vector µ∗i is sampled from a

multivariate normal distribution that

π(µ∗i |·) ∼ NK

{
σ−2ε Φ

(
σ−2ε Φ + σ−2µ I

)−1(
η∗i − β∗

T

X̃ i

)
,
(
σ−2ε Φ + σ−2µ IM

)−1}

The working basis coefficient vector α∗k for approximating β∗k has the following

full conditional posterior distribution that

π(α∗k|·) ∼ NM(Mean,Cov)

Mean = Cov × σ−2ε φ2
kb

T
( N∑
i=1

(
η∗ik − µ∗ik

)
X̃ i

)
Cov =

[
σ−2ε φ2

kb
T
( N∑
i=1

X̃ iX̃
T

i

)
b+ σ−2α IM

]−1
where α∗k = (αmk)M×1 and b = {bm(v)}|R|×M .

The reciprocal of diagonal element φ2
k in the working matrix Φ is sampled from a
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Gamma full conditional posterior distribution that

π(φ−2k |·) ∼ Gamma

(
aφ +

N

2
, bφ +

1

2
σ−2ε

N∑
i=1

(
η∗ik − µ∗ik − X̃

T

i β
∗
k

)2)

Here we list the full conditional posterior distributions for other parameters outside

the inferential models.

π(U |·) ∼ N|R|

(
σ−2e

Nσ−2e + σ−2u

N∑
i=1

(
Zi − bθi

)
,
(
Nσ−2e + σ−2u

)−1
I |R|

)

π(σ−2u |·) ∼ Gamma
(
au +

1

2
, bu +

1

2
UTU

)
π(θi|·) ∼ NM

([
σ−2e b

Tb+ σ−2ζ IM

]−1(
σ−2e b

T (Zi −U) + σ−2ζ Λ∗η∗i

)
,

[
σ−2e b

Tb+ σ−2ζ IM

]−1)

π(σ−2e |·) ∼ Gamma

(
ae +

QN

2
, be +

1

2

N∑
i=1

(
Zi −U − bθi

)T (
Zi −U − bθi

))

π(σ−2ζ |·) ∼ Gamma

(
aζ +

MN

2
, bζ +

1

2

N∑
i=1

(
θi −Λ∗η∗i

)T (
θi −Λ∗η∗i

))

π(σ−2ε |·) ∼ Gamma

(
aε +

KN

2
, bε +

1

2

N∑
i=1

[
η∗i − µ∗i − β∗

T

X̃ i

]T
Φ
[
η∗i − µ∗i − β∗

T

X̃ i

])
π(γp|·) ∼ Bernoulli

( c1
c0 + c1

)
c1 = exp

{
− 1

2

N∑
i=1

K∑
k=1

σ−2ε φ2
k

(
τik,−p − β∗

T

k X ip

)2}
× w

c0 = exp

{
− 1

2

N∑
i=1

K∑
k=1

σ−2ε φ2
kτ

2
ik,−p

}
× (1− w)

τik,−p = η∗ik − µ∗ik − β∗
T

k

P∑
h=1,h6=p

γhX ih

π(w|·) ∼ Beta

(
aw +

P∑
p=1

γp, bw + P −
P∑
p=1

γp

)

where U = {U(v)}|R×1|, Zi = {Zi(v)}|R×1|, β∗k = {β∗k(v)}|R|×1, X ip = {Xip(v)}|R|×1
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and γ = (γp)P×1.

B.3 Estimations and Predictions from Gibbs Sampler

Let Θ̂
(t)

be the set of posterior samples of all parameters in every iteration t given

the dataset (Z,X), that Θ̂
(t)

= (α̂(t), β̂
(t)
, γ̂(t), η̂(t), Λ̂

(t)
, θ̂

(t)
, Û (t), σ̂

(t)
ε , σ̂

(t)
ζ , σ̂

(t)
e ).

In every iteration t, the posterior estimations of outcome image at voxel v for

subject i in training set that i ∈ Itri is defined as

[Ẑi(v)](t) = Û (t)(v) +
M∑
m=1

θ̂
(t)
imbm(v) + ê

(t)
i (v), i ∈ Itri

where

θ̂
(t)
im =

K∑
k=1

λ̂
(t)
mkη̂

(t)
ik + ζ̂

(t)
im

η̂
(t)
ik =

∑
v∈R

[ P∑
p=1

γ̂(t)p Xip(v)
]
β̂
(t)
k (v) + ε̂

(t)
ik

ê
(t)
i (v) ∼ N(0, σ̂(t)

e ), ζ̂
(t)
im(v) ∼ N(0, σ̂

(t)
ζ ), ε̂

(t)
i (v) ∼ N(0, σ̂(t)

ε )

For a total of T iterations, the posterior mean estimation of outcome image at voxel

v for subject i ∈ Itri from the training set is

Ẑi(v) =
T∑

t=T/2+1

[Ẑi(v)](t), i ∈ Itri

Given the new predictor images {Xj1,Xj2, . . . ,XjP} (Xjp = {Xjp(v)}|R|×1) of sub-

ject j ∈ Itsj in the test set, the prediction of the corresponding outcome image

Zj = {Zj(v)}|R|×1 at voxel v in each iteration t is defined as

[Ẑj(v)](t) = Û (t)(v) +
M∑
m=1

θ̂
(t)
jmbm(v) + êj(v)(t), j ∈ Itsj
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where

θ̂
(t)
jm =

K∑
k=1

λ̂
(t)
mkη̂

(t)
jk + ζ̂

(t)
jm

η̂
(t)
jk =

∑
v∈R

[ P∑
p=1

γ̂(t)p Xjp(v)
]
β̂
(t)
k (v) + ε̂

(t)
jk

ê
(t)
j (v) ∼ N(0, σ̂(t)

e ), ζ̂
(t)
jm(v) ∼ N(0, σ̂

(t)
ζ ), ε̂

(t)
j (v) ∼ N(0, σ̂(t)

ε )

In particular, Û (t)(v), λ̂
(t)
mk, γ

(t)
p , β̂

(t)
k (v), σ̂

(t)
e , σ̂

(t)
ζ and σ̂

(t)
ε are posterior samples from

training set in iteration t. Therefore, the final prediction of outcome image at voxel

v for a subject j in test test (j ∈ Itsj ) is calculated as

Ẑj(v) =
T∑

t=T/2+1

[Ẑj(v)](t)

B.4 Graphical Representation of The Generating Models Used

For Simulation Study

B.5 Figures and Tables of Real Data Analysis
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Figure B.2: Examples of outcome images (whole-brain faces-shapes contrast maps in
EMOTION domain) from 5 subjects. Maps are shown at six different axial slices. All
maps are plotted on the same color scale.
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Figure B.3: Examples of six predictor maps (whole-brain sub-cortical seed maps)
from a single subject (id = 110411), shown at six different axial slices. All maps are
plotted on the same color scale.
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Figure B.4: Examples of six feature whole-brain maps (sub-cortical seed maps) from
a single subject (id = 139637), shown at six different axial slices. All maps are plotted
on the same color scale.
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Amygdala (Left) Response Map
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Figure B.5: Example images of outcome (faces-shapes contrast maps in EMOTION
domain) and predictor (five sub-cortial seed maps) within the left amygdala region
from a single subject (id = 110411), shown at axial slices.
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Figure B.6: Example images of outcome (faces-shapes contrast maps in EMOTION
domain) and predictor (five sub-cortial seed maps) within the right amygdala region
from a single subject (id = 110411), shown at axial slices.
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Figure B.7: Maps of basis functions with bandwidth value b = 1/10 and five different
kernel locations for application analysis within the left amygdala region, shown at
axial slices.
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Figure B.8: Maps of basis functions with bandwidth value b = 1/20 and five different
kernel locations for application analysis within the left amygdala region, shown at
axial slices.
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Figure B.9: Maps of basis functions with bandwidth value b = 1/30 and five different
kernel locations for application analysis within the left amygdala region, shown at
axial slices.
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Table B.1: Selected feature images in application analysis based on posterior esti-
mations of γ and varied thresholds for the left (1) and right (2) amygdala regions,
respectively.

(1) Left amygdala region

Threshold NO. of Features Selected Feature (Index)
0.0 10 1, 2, 6, 13, 15, 21, 22, 28, 29, 31
0.1 8 1, 2, 13, 15, 21, 22, 28, 29
0.3 7 1, 2, 13, 15, 21, 22, 28
0.4 5 1, 2, 13, 15, 28
0.5 4 2, 13, 15, 28
0.8 2 13, 15
0.9 0 None

(2) Right amygdala region

Threshold NO. of Features Selected Feature (Index)
0.0 10 1, 2, 4, 13, 15, 21, 22, 28, 29, 31
0.1 9 1, 2, 4, 13, 15, 21, 22, 28, 31
0.2 6 1, 13, 15, 21, 22, 28
0.3 5 1, 13, 21, 22, 28
0.4 4 1, 21, 22, 28
0.5 2 21, 28
0.6 1 28
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