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P/Ēh = 0.00044, and α = 90◦. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.16 Effect of different traction-separation laws on the phase angle plateau for
non-crack fillet angles. (a) These plateaus are generated using Dugdale
laws, where four instances were chosen with different composite cohesive-
length scales. These same composite cohesive-length scale values were then
implemented using mixed-linear laws in (b). For comparison, the dotted
lines in (a) correspond to the mixed-linear law asymptotes from (b). These
findings suggest that the asymptotic phase angle of a fillet angle depends on
the shape of the traction-separation laws for non-crack fillet angles, as the
only difference between the two calculations was the choice of the cohesive
laws. The paired calculations had equivalent values of work done at the
singularity to within numerical uncertainty. L/h = 20 for all calculations. 55

xii



4.1 (a) Free-body diagram of the lap-shear joint how it is often drawn. (b)
By testing the lap-shear joint using wedge grips (or another method that
clamps the ends), the vertical displacement of the two ends are restricted.
(c) By restricting the vertical motion, an unknown shear load and bending
moment is required for the tabs not to move vertically nor rotate within
the grips. (d) When considering the general loading of the single lap-shear
joint with a constrained field of view, one must measure the axial load, shear
load, and two bending moments. The axial load is typically measured via a
load cell in an experiment. However, the shear load and bending moments
are (generally) unknown. Using full-field measurement techniques, one can
extract the curvatures at two points and use moment balance to determine
the unknown shear load. Note that in an anti-symmetric lap-shear joint, the
bending moment in the middle of the joint must be zero, and in this case
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ABSTRACT

Linear-elastic fracture mechanics (LEFM) has been successfully used to model and pre-

dict fracture of brittle materials and those undergoing small-scale plasticity. However, with

the increasing use of fiber-reinforced composites and rubber-toughened epoxies, LEFM is

no longer applicable in these circumstances and other tools must be used to determine

crack-propagation. The cohesive-zone model (CZM) is becoming a standard tool to analyze

fracture, and it is used here in conjunction with the finite element method to consider the

effects of large cohesive-length scales. The cohesive-zone model works by specifying interface

separation through characteristic stress-displacement relations (commonly termed cohesive

or traction-separation laws). Furthermore, CZM has been shown to bridge the gap between

the energy-based and strength-based approaches to fracture.

Over the last few decades, digital image correlation (DIC) has become a standard, non-

contact method of analyzing surface deformation. DIC allows sub-pixel displacement mea-

surement, and the quantity of data produced allows one to compare entire specimen results

with numerical calculations. When dealing with beam-like geometries, one can use the vast

amount of data provided by DIC to reduce error by treating digital data in a continuous

(analog) fashion. With this in mind, the work presented here gives a methodology on how

one uses full-field measurement techniques to analyze beam-like geometries.

The first specimen analyzed is the symmetric double-cantilever beam (DCB), which is a

geometry that is commonly used to extract the mode-I traction-separation law. While many

groups have used various methods of extracting the mode-I (opening) traction-separation

law using the DCB, the two broad categories generally used are either direct measurement

or an inverse method. However, no group has used a directly-measured traction-separation

law to predict the cohesive-zone (displacement profile) ahead of the crack-tip. The cohesive-

zone measurement was accomplished using the full-field measurement capabilities of digital

image correlation. DIC also allows users to measure beam rotation and shear around the

crack-tip, and the beam deformation was found to be in good agreement with the treatment

of an Euler-Bernouli beam deformation with a root displacement and rotation boundary

conditions. It was experimentally observed that the cohesive-length scale evolved during

loading, and LEFM predictions agreed with the experimental observations at the smallest

resolvable scale.
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The single lap-shear joint was the next geometry considered. Initially, the geometry is

only loaded via an axial load and bending moment. It has been experimentally observed

that the lap-shear joint can behave the same whether a crack or corner is present in the

geometry, even though a theoretical analysis using LEFM requires a crack. Here, numerical

calculations were run across various fillet angles, and it was observed that the cohesive-length

scale determined whether or not the work done against the tractions at a singularity was

equivalent to the J-integral. At large cohesive-length scales, all singularities behave the same

way and the fine aspects of the fillet angle are swamped by the large cohesive-length. While

it has been shown previously that at small cohesive-length scales, when LEFM is expected

to be valid, that the phase angle will asymptote to the LEFM value at a crack-tip regardless

of the shape of the law, this was not the case for non-crack singularities.

A more detailed analysis of the single lap-shear joint followed. When the lap-shear joint

is clamped, an unknown reactionary shear load is imposed on the specimen. This load

depends on the traction-separation laws and geometry, and cannot be neglected in general

as it can affect the work done at the crack-tip. Geometric constraints were considered, and

it was observed that the deformation is pushed towards pure mode-II (in-plane shear) at

large cohesive-length scales. To account for the unknown shear load and possible geometric

constraints, two methods were developed and carried out on a numerical example: the

large-deformation J-integral and the numerical partial-model. The numerical partial-model

method was experimentally-validated using the same adhesive characterized by the DCB.

The last aspect considered here is fracture along a dissimilar-material interface. It has

been known for some time that LEFM predicts oscillatory stress fields and interpenetra-

tion at the crack-tip along a bi-material interface. Even though the cohesive-zone model

does not have such a drawback, when dealing with mixed-mode fracture one must know one

traction-separation law in order to extract the other. A method around this was was found

for an epoxy undergoing cohesive failure (failure within the adhesive layer). The mode-I

traction-separation laws describing cohesive failure along a steel-steel interface were found

to adequately predict mode-I cohesive failure along a composite-steel interface. Through

this assumption, the mode-II traction-separation law was able to be extracted and ade-

quate agreement was found between the experimentally-measured and numerically-predicted

cohesive-zone displacements of the lap-shear joint.
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CHAPTER 1

Introduction

1.1 Overview

This dissertation is divided into six chapters. This first chapter provides the scope of

this work. Furthermore, it provides an introduction to fracture: namely, linear-elastic frac-

ture mechanics and the cohesive-zone model (Section 1.2), and the cohesive-length scale

(Section 1.3). Background information is also provided on digital image correlation (DIC)

(Section 1.4), which is the non-contact, full-field displacement measurement technique used

to analyze the experiments.

Chapter 2 considers the quantitative experimental, analytical, and numerical analysis

of the symmetric double-cantilever beam (DCB) geometry. Quantitative replication of ex-

perimental results was accomplished, as was the experimental observation of an evolving

cohesive-length scale. A detailed method for extracting the mode-I traction-separation law

from the DCB is also provided, and this law is validated by comparison of the numerical and

experimental cohesive-zone displacements.

Chapter 3 pursues a numerical analysis of the single lap-shear joint when it is loaded only

by axial loads and bending moments. The effect of a large cohesive-length scale is considered,

in addition to non-180 degree fillet angles (i.e. when the geometry does not include a sharp

crack). It is shown that at small cohesive-length scales, particularly when LEFM is expected

to be valid, the precise nature of the singularity is important; however, as the cohesive-length

scale increases the precise nature of the singularity matters less.

Chapter 4 expands on the results of Chapter 3 and considers the loading of the lap-

shear geometry via clamped tabs. When loading is done in this way, an unknown shear

load and bending moment is applied at the grips and must be considered in the analysis.

Geometric constraints on the single lap-shear joint are also considered. A numerical example

is analyzed to demonstrate two methods that can be used to account for this unknown shear
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load: large-deformation J-integral (valid at small cohesive-lengths) and a numerical partial-

model approach (particularly useful when dealing with a constrained field-of-view). The use

of a numerical partial-model is experimentally validated using the same adhesive that was

characterized in Chapter 2.

Chapter 5 introduces the reader to the unique challenges one faces when considering

fracture along a dissimilar-material interface. The significance of the experimental validation

results of Chapter 4 are put in context. Finally, the limitations of this method are also

considered, along with potential paths forward for this challenge.

Chapter 6 gives some conclusions and provides direction for future work, while Ap-

pendix A includes the updated FORTRAN user-defined element (UEL) implemented in

Abaqus 6.14 [1] that was used in the numerical calculations performed in this dissertation.

This version builds off the work of previous authors [2, 3, 4], and allows for the implementa-

tion of a six-part piecewise-linear traction-separation law, with a two-part piecewise-linear

compression law. Appendix B is a piecewise-polynomial, C1-continuous, least squares fitting

scheme written in Python 2.7 that was used to fit some of the data.

1.2 Introduction to fracture mechanics

Linear-elastic fracture mechanics (LEFM) has been a standard tool to analyze crack

propagation since the 1950s. With the weld failure of numerous Liberty ships [5] during

World War II, there was renewed interest to determine why crack propagation occurred.

Griffith [6] was the first to quantitatively connect flaw size with crack-propagation, but his

analysis assumed perfect elasticity and therefore was only applicable on brittle materials such

as glass. Irwin [7] expanded on Griffith’s work to include the effect of plastic flow, which

allowed crack propagation to be predicted in metals. Further work by Irwin [8] resulted in the

common use of stress-intensity factors, with KI,◦
1 and KII,◦ for normal and in-plane shear

components, respectively. Being proportional to both stress and displacement, this allowed

these quantities to be added vectorially instead of the more-complicated energy relations.

One drawback to LEFM is that it predicts a singular stress field at the crack-tip. This

result is physically impossible, as no real material can support an infinite stress but instead

will yield first [9, 10] if surface separation (i.e. crack propagation) does not occur first [6, 8].

The cohesive-zone model (CZM) is a more-recent model of fracture mechanics that was

brought into common use by Hillerborg [11] and Needleman [12] in the 1970s and 1980s. CZM

works by using a characteristic traction-separation law defining the normal/shear separation

across an interface. An example selection of “uncoupled” laws (explained below) are provided

1The “◦” subscript will be used to designate those values which take place at the crack-tip.
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in Figure 1.1. The stress response across the interface can be thought of as the resistance

(whether through an adhesive layer, van der Waals attraction, hydrogen bonding, etc.) of

the two materials being separated from an equilibrium separation. By using a traction-

separation law with finite stress values, one removes the singular stress field predicted by

LEFM.

The traction-separation laws used in the cohesive-zone model fall into two basic cate-

gories: coupled and uncoupled laws. Coupled traction-separation laws [13, 14] recognize

the reality that, in general, normal and shear stresses may be dependent on both the nor-

mal and shear displacements across an interface. One example of this is in fiber-reinforced

composites [15], where fiber-bridging across the interface may cause a shear displacement to

induce a normal stress or vice versa. As a simplicification, particularly when dealing with

failure along an isotropic interface (e.g. an adhesive layer), one often makes the assumption

that normal displacements only induce normal stresses and shear displacements only intro-

duce shear displacements; such laws are uncoupled. This has been shown [3, 16, 17, 4] to

adequately describe some experimental systems.

When uncoupled laws are used, a failure criterion must be implemented. It has been

experimentally observed that the mixed-mode failure criterion

WI

ΓI
+
WII

ΓII
≥ 1 (1.1)

can adequately describes crack propagation and failure in some instances [18, 19, 3, 20,

16, 17], where WI/WII are the mode-I/-II work done by the tractions along the interface

and ΓI/ΓII are the mode-I/-II toughness. While this failure definition could be extended

to include the effects of out-of-plane shearing (mode-III fracture) [21, 22], this dissertation

only considers planar geometries and therefore this generalization is not considered. The

benefit to this formulation is that the failure evolves as loading progresses as a function of

the traction-separation laws, without other pre-defined measurements.

It has often been observed experimentally that crack-propagation is mode-dependent [2,

23, 16]; that is, the minimum energy required to drive crack-propagation matters if the crack-

tip is opening, shearing, or some combination thereof. From LEFM, the stress-intensity

factors determine the phase angle [24, 19], ψ◦, or mode-mixity at the crack-tip2:

ψ◦ = tan−1

(
KII,◦

KI,◦

)
. (1.2)

2This result is rigorously true only when the second Dundurs parameter [25], β̄, is zero. The complications
of analyzing a system when β̄ 6= 0 will be considered in Chapter 5.
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(a)

(b)

Figure 1.1: Prototypical (uncoupled) traction-separation laws for (a) mode-I (normal)
and (b) mode-II (in-plane shear). The total area under the mode-I/-II curves is the
normal/shear toughness ΓI/ΓII , while the area swept out from the curve, WI/WII , is
normal/shear work done against the tractions, respectively. The laws are assumed to
be uncoupled: the normal stress depends only on normal displacements while the shear
stress depends only on the shear displacements. Tractions/stresses resist the interface’s
removal from equilibrium. In mixed-mode loading, failure occurs when a failure crite-
rion, such as Equation (1.1), is satisfied. Please note that no energy dissipation occurs
along the interface until the failure criterion is met.
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Therefore, for pure mode-I loading (KII,◦ = 0) ψ◦ = 0◦, and for pure mode-II loading (KI,◦ =

0) ψ◦ = 90◦. When using the cohesive-zone model, the phase angle can be defined [3, 20] in

a similar manner

ψ = tan−1

(√
WII

WI

)
, (1.3)

although the advantage of CZM allows the phase angle to be defined along the entire interface

and not just at the crack-tip. While other definitions will use displacements or stresses to

define a “phase angle”, Equation (1.3) has been shown to approach the LEFM values in the

appropriate limit [26, 27].

1.3 Cohesive-length scale

The cohesive-zone model has been shown [26] to bridge the gap between the energy-based

(i.e. LEFM) and strength-based approaches. Whether energy or stress is the primary driving

force behind fracture is determined by normalizing the cohesive-length, ξ, by a characteristic

length, l,

ξ̄ =
ξ

l
. (1.4)

The cohesive-length may be defined for mode-I, -II, or -III; however, as mentioned above

this dissertation only considers planar geometries, and therefore analyses will be restricted

to mode-I and mode-II fracture. When the mode-I cohesive-length scale ξ̄I and mode-II

cohesive-length scale ξ̄II are the same, the cohesive-length scale will be specified as ξ̄. A

subscript will be used to specify which fracture mode is being considered when the two

cohesive-length scales may not be the same. The normal cohesive-length [28] is defined as

ξI =
Ēδ2

I,◦

WI,◦
(1.5)

while the shear cohesive-length is

ξII =
Ēδ2

II,◦

WII,◦
(1.6)

where Ē is the elastic modulus, δi,◦ is the normal (i = I) or shear (i = II) displacement

at the crack-tip, and Wi,◦ is the normal (i = I) or shear (i = II) work done against the

tractions at the crack-tip (energy-release rate). In the case of mixed-mode loading, one can

use the previous definitions to define the composite (average) cohesive-length, ξ∗, as

ξ∗ =
WI,◦ ξI +WII,◦ ξII
WI,◦ +WII,◦

=
Ē(δ2

I,◦ + δ2
II,◦)

WI,◦ +WII,◦
. (1.7)
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In general, a cohesive-length scale may be defined for singularities other than a sharp crack,

and this is considered in Chapter 3.

1.4 Introduction to digital image correlation

The experiments run in this dissertation were analyzed using the experimental measure-

ment technique known as digital image correlation (DIC). DIC is a non-contact method for

measuring full-field surface displacements [29, 30] that has become commonplace in the last

couple of decades [31, 32, 33, 34, 35, 36]. The method uses a speckle pattern to track the mo-

tion of an objects surface. Although natural speckle patterns may be used, many materials

do not possess the semi-random, uniform pattern necessary for good correlation. Therefore,

speckle patterns often need to be applied to the surface, with two commonly used materials

being paint [35] and nanoparticles [37]. Once the speckle pattern has been applied to the

sample, an imaging source (for this work, grayscale cameras) captures surface deformations.

The grayscale pixels are converted into a smooth surface (cubic-splines are a common in-

terpolation method), and the subsequent pixel motion is tracked for each deformed image.

DIC’s current theoretical displacement limits are around 0.01 pixel [38]; however, most mea-

surements will have uncertainties larger than this due to other experimental uncertainties

(e.g. setup vibration, poor speckle quality, saturated pixels, etc.). For additional information

on using DIC, the interested reader is referred to Refs. [39, 40, 41].
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CHAPTER 2

Analysis of the Double-Cantilever Beam Geometry

2.1 Overview

As mentioned in the introduction, the cohesive-zone model has become a powerful tool

for analyzing fracture. Many groups [2, 23, 42, 43, 44] have spent time extracting traction-

separation laws, but often the focus of these works has been to only match/predict load-

displacement curves. This work distinguishes itself from others in that it captures the defor-

mation of the cohesive-zone ahead of the crack-tip and looks to predict adhesive deformation

using the independently-measured traction-separation law.

The double-cantilever beam (DCB) was first used to extract fracture properties in 1930

by Obriemoff [45] to analyze mica. When loaded by pure bending moments, the analysis

is simplified because the energy-release rate is valid for all cohesive (traction-separation)

laws. The downside to the moment-loaded geometry is that one must use special loading rig

[46, 47], and this has yet to become standard laboratory testing equipment.

The more common variant of the DCB is where the specimen is loaded via a pin joint at

the crack mouth [48, 49, 50]. While these specimens may be easier to manufacture, they are

more difficult to analyze because the geometry is loaded by an applied shear load in addition

to the bending moment [51, 52, 53]. While many approaches [54, 51, 52, 55, 53, 56, 57, 58,

59, 60] have been used to account for the shear load, Thouless [61] recently unified these

analyses.

When one uses a pin-joint to apply a shear load to the DCB, there are various ways one

can extract the energy-release rate [62, 63, 64] that do not require a measured crack-length.

As will be shown here, the most convenient method to determining this is via the J-integral

[65], whereby one takes a contour along the outside of the DCB specimen and needs only to

measure the load/width P∞ and the rotation Θ at the points of loading [66, 67, 68] to give

Jext = P∞Θ. (2.1)
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If one measures the crack-tip opening displacements, δ◦, at the same time as Jext for a sym-

metric specimen, one can differentiate the curve to generate the mode-I traction-separation

law [69], or

σ(δ◦) =
dJext
dδ◦

. (2.2)

This approach is used for the work in this chapter, and has been used by others before

[70, 71, 43, 44]. Other than this direct method, another approach that has been used by

groups is an inverse method [72, 73, 74] whereby measured displacement fields (strains could

also be used) are used to back out the traction-separation law from subsequent numerical

calculations.

As will be shown in this chapter, the benefit of using the direct method when using DIC is

that it allows one to run a separate numerical calculation and compare deformation ahead of

the crack-tip with the experimental measurements. Furthermore, the full-field displacements

allow one to measure rotations, shear strain [61], an evolving cohesive-length scale [27, 28],

and the need for compression in a cohesive law [26]. With full-field measurement techniques

now commonplace in labs, the method below provides a guide for those wanting to care-

fully analyze beam-like geometries and compare extracted cohesive laws with experimental

measurements.

2.2 Experimental methods

The geometry used for the work in this chapter is found in Figure 2.1. The beams were

made from 4.8 mm thick sheets of 4130 steel, which had a yield strength of 340 MPa [75].

The arms were cut to length of 152 mm, at which point they were milled to a thickness of

21.4 mm. Bonding surfaces were prepared using 100-grit sandpaper, after which a layer of a

two-part epoxy (Dow Betamate® 73326M/73327M) was applied onto the surface of one of

the beams. 250 micron diameter glass spheres were sprinkled on top of the adhesive layer to

ensure a uniform thickness. The second beam, which included Teflon® tape that was used

as a starter-crack, was then placed on top of the first beam. After alignment, the sample

was clamped using binder clips for two days. The clips were then removed, and the adhesive

continued to cure at room temperature for another week. After curing, excess adhesive was

ground off and optical observations noted the adhesive thickness was 275± 25 microns.

The tabs were made from 3 mm thick, L-shaped, low carbon steel. They were bonded to

the system using the same two-part epoxy used for the adhesive layer. The DCB was loaded

via pin joints in the tabs, and a lubricant was sprayed on to reduce any friction effects. After

polishing the sides of the DCB with 100-grit sandpaper and then 600-grit sandpaper, a black

8



Figure 2.1: Above is an engineering diagram of the double-cantilever beam geometry
used in this analysis. The adherends are made of a 4130 steel and are bonded by a two
part, structural epoxy (Dow Betamate® 73326M/73327M).

speckle pattern was applied on top of a white basecoat using an IwataTM CM-B airbrush.

Testing was run within 24 hours of the application of the speckle pattern using a servo-

hydraulic test machine (MTS 858 MiniBionix IITM), which had a cross-head displacement

rate of approximately 1.15 mm/min. The original crack length, a◦, measured from the

crack-tip to the center of the loading tabs, was 42 mm. For DIC analysis, two 5-megapixel

GrasshopperTM cameras were used to provide synchronized viewing of two separate views:

one larger field of view to see beam deformation at the crack-mouth, and a closer field of view

to view crack-tip deformation. The commercial software Vic-2DTM was used for (local) DIC

analysis. For this analysis, step and subset sizes of 3 and 35 pixels were used, respectively.

Blindly using DIC as a black-box results in excessive noise and differentiation artifacts,

particularly when one differentiates the displacement data to acquire strains and/or rota-

tions. In Euler-Bernoulli beam theory, one assumes that plane sections remain plane and

this was used for an analog approach for data analysis. Along the length of the beam, verti-

cal lines (“planes”) of data were fit with affine approximations and the resulting strains or

rotations were calculated. The reader will see in the following sections this allows users to

analyze data appropriately in addition to disregarding numerical artifacts.
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2.3 Experimental results

2.3.1 Traction-separation law extraction

As noted above, the raw displacement data was used for all calculations rather than

relying on the commercial software’s numerical output of strains or rotations. Figure 2.2a

shows a colormap depicting the vertical displacement of the top beam at load point D (see

Figure 2.3 for this definition). Over 4000 data points are shown on this colormap, and yet

when the data is plotted as the vertical displacement as a function of the horizontal position

along the beam, the results collapse onto a single line. This is displayed in Figure 2.2b for

loads A-E (as defined in Figure 2.3). By differeniating the slope of these lines, one finds

the rotation of the beam at the point of loading1. The same analysis was used for the

bottom beam, and the difference in rotations between the two beams, Θ, could be measured

and plotted against the applied load, as shown in Figure 2.3. In particular, load points

“A” through “E” will be considered in more detail throughout this chapter2. Looking at

the load-rotation curve, the results may appear to be linear between points “A” and “D”.

However, it will be shown below true linearity is only valid at loads before point “A” at

values smaller than about 1 N/mm.

Strictly speaking, the bonded tabs extended over a finite length of 14 mm, and this may

have impacted the measurement of the rotations and, therefore, the validity of Equation (2.1)

for the J-integral. This can be verified by changing the location of where the rotations are

measured. By changing the location, however, the beam is acted upon by both an applied

shear load P∞ and bending moment P∞l, where l is the distance from the applied shear load

to the point where the rotation is measured. This changes the J-integral to

Jext = P∞Θ +
12(P∞l)

2

Ēh3
. (2.3)

Through comparison of the two results, it was determined for this case the correction was

negligible.

Using the small field of view images, one can visually identify the location of the crack-

tip. This point was also confirmed as the point at which image correlation was lost [76].

Of course, while the vertical location of the crack-tip was known, its position within the

adhesive layer was not. Furthermore, though thickness of the adhesive layer is known, the

speckle pattern covered up its precise location. To solve this issue, the vertical displacement,

v, was plotted as a function of the vertical location, y, at the crack-tip (Figure 2.4a). These

1It was determined that the shear effects were negligible.
2It should be noted that load points “A” through “E” are distinct from those load points defined in

Chapter 4.
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(a)

(b)

Figure 2.2: From the results above one sees there exists uniform rotation at the load
points. The image in (a) shows a color map containing vertical displacement data for
one beam, which includes over 4000 data points. Five particular load points (A-E are
defined in Figure 2.3) are shown in (b), and it is seen that in each case the results
collapse onto a single line. Therefore, one sees the beams are in a state of uniform
rotation at the load point. It should be noted that there is no bridging of the adhesive
across the interface at the crack-mouth. The white material seen inside the crack-mouth
is the Teflon® tape used for the pre-crack.
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Figure 2.3: By taking the difference of the top and bottom beam rotations at each load
point, one can plot the relative rotation against the applied load.

results for five different load points can be found in Figure 2.4b, where one sees a sharp

change in the normal strain εyy = dv/dy in the steel adherend and epoxy adhesive. This

allows one to measure the opening displacement.

Taking a close look at Figure 2.4b, it is worth noting that the measured normal strain

εyy is incorrect. As mentioned above, before the addition of the speckle pattern the adhesive

layer was observed to be between 250 - 300 microns. However, here one sees a transition

(the “interface region”) about 0.6 mm wide. As a consequence of local, subset-based DIC,

the displacements are smoothed out beyond the true adhesive/adherend interfaces. The

extent of this smoothing is dependent upon the subset size, and the experimentalist needs

to balance the increased noise of a small subset size and the larger transition region3.

While DIC cannot be used to calculate the adhesive layer thickness, one can still measure

the opening displacements across an interface by taking measurements just outside of the

transition region since the strain in the steel is small4. If one were testing a system with

adherends that were more compliant than steel, one may need to extrapolate the displace-

3Higher camera resolution, a finer speckle pattern, and smaller subset size may also help decrease this
smoothing.

4In comparison with the manufacturer’s datasheet, the adhesive is quoted [77] to have an elastic modulus
two orders of magnitude smaller than the steel.
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(a)

(b)

Figure 2.4: Calculation of the crack-tip opening. (a) shows a deformed image with
the identified crack tip, with the coordinate system inscribed. The vertical axis has
been shifted to coincide with the crack-tip. (b) shows a plot of the relative vertical
displacement as a function of the vertical location. The dotted lines mark the interface
region (where the displacements were measured), which one will notice to be much
larger than the adhesive thickness that was between 250-300 microns.
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ment data to the assumed interface locations. Additionally, due to the use of subset-based

DIC, one would incorrectly measure the opening displacements if one directly measured the

displacements over only the 275 ± 25 microns of the known adhesive layer. The problems

associated with interfacial smoothing might be fixed by using extended digital image cor-

relation (X-DIC), which can handle displacement discontinuities [78, 79]. However, it was

beyond the scope of this work to consider this extension.

The crack-tip opening displacement calculations were done for all images acquired during

the test. Minor rigid-body rotation corrections were done to correct for any rigid-body

rotations that might impact the results. In this case, the coordinate system used had the

x-axis lying along the interface and the y-axis perpendicular and pointing toward the surface.

Therefore, the crack-tip opening displacement across the interface was computed as:

δ◦ = ∆v′cos(θ)−∆u′sin(θ) + t (1− cos(θ)) (2.4)

where ∆v′ and ∆u′ are the measured displacement differences along the y-axis and x-axis

(respectively), t is the thickness of the interface region (not the adhesive layer), and θ is the

rigid-body rotation about the z-axis. In this instance, the rigid-body rotation correction was

smaller than the experimental uncertainty.

Using the load and (relative) rotation data from Figure 2.3, the far-field J-integral was

calculated using Equation (2.1). These data were then plotted against the crack-tip opening

displacement, and the resulting curve can be seen in Figure 2.5. One should note that Jext

is equal to the work done against the tractions at the crack-tip, W◦. This crack-tip work,

W◦, can then be combined with the elastic modulus of the steel (217 GPa)5 and the crack-

tip opening displacement, along with the beam thickness h as the characteristic geometric

length, to compute the (instantaneous) cohesive-length scale during loading. Points “A”

through “E” have been identified on Figure 2.5, and the corresponding cohesive-length scale

has also been included. As one can see, even at load “A”, the smallest identified load, LEFM

would no longer be considered a useful approximation.

In Figure 2.5, one notes that the crack began propagating before Jext began to level off.

This indicated the crack front was not uniformally propagating within the adhesive layer. At

the end of the test, it was observed a thin (< 0.5 mm) layer of adhesive failed via adhesive

failure (along the steel-adhesive interface) while the rest of the system failed via cohesive

failure (within the adhesive layer). This highlights one drawback of DIC: surface deformation

says nothing about what is occuring underneath. In order to continue the analysis, it was

assumed the measured surface displacements was a reasonable approximation to the through-

5This elastic modulus of 217 GPa is determined in Section 2.3.3 using the experimentally-measured crack-
mouth displacements.
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Figure 2.5: The J-integral was calculated using Equation (2.1), from the product of
the load and relative rotation at loading points (Figure 2.3). This figure presents
J plotted against the corresponding crack-tip opening displacement (obtained from
data such as those shown in Figure 2.4). The instantaneous cohesive-length scales
were calculated for the reference points using the appropriate values of the J-integral,
opening displacement, and an elastic modulus taken to be 217 GPa (as calculated from
the data shown in Figure 2.8). It should be noted that the surface crack began to
propagate at a load between D and E. The J-integral was still rising at this point and
observations following the test indicated on a surface-crack was propagating. Therefore,
the appropriate value of the opening displacement is ambiguous after this point, but it
was assumed the measured displacements were a reasonable measure of the deformation
through the thickness of the specimen.
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thickness displacements.

Calculation of the mode-I traction-separation law just involves differentiating the data

in Figure 2.5, as specified in Equation (2.2). This differentiation was done using a custom

piecewise polynomial, C1-continuous, least squares fitting scheme (Appendix B) to fit large

sections of data. This differentiated curve is given in Figure 2.6. While one might be able

to use a ruler to fit a broad peak around 25 microns with a constant stress of around 13

MPa6 between points “C” and “D”, no digital differentiation scheme was able to reproduce

this analog approach. The dashed line in Figure 2.6 stipulates the results following the

surface-crack propagation to emphasize its uncertainty.

While multiple samples were tested, the results for only one specimen are included in

this chapter. Results across the samples were consistent with steady-state toughness and

strengths, with about 10% variation in the parameters. All analyses in this chapter refer to

a single sample.

2.3.2 Root rotation

Because of the specimen geometry, the DCB beams at the crack-tip are subjected to both

shear and rotation [51]. The shear is the result of the applied load via a pin joint, while the

rotation is due to the fact that the arms are elastic and not rigidly clamped at the crack-tip.

From these phenomena, there exists a relative rotation between the centroidal axes of the

beams at the crack-tip, which is termed the root rotation. This root rotation increases with

the cohesive-length scale (Figure 2.11), along with a case for perfect bonding when ξ̄◦ = 0

[61].

The root rotation is measured using the full-field measurement capabilities of DIC. Us-

ing the same vertical line from which the crack-tip opening displacements were determined

(Figure 2.4), one now measures the relative horizontal displacement as a function vertical

position along this line. This data is shown in Figure 2.7a. Note that this is the raw data

which has not been corrected for any rigid-body rotation. The root rotation can then be

found as the relative rotation between the two arms. Outside of the interface region (where

the adhesive layer undergoes relatively large deformation), it is obvious the assumption of

uniform rotation is appropriate. If one looks closely, one can see some of the fine structure

that is a result of the DIC analysis. This is an example of a numerical artifact one must be

careful not to propagate by blindly differentiating DIC displacement data.

6When uniform tension experiments were run using the same adhesive/steel system, the maximum stress
determined in these experiments was about half the cohesive strength in Figure 2.6. However, DIC showed
that this “uniform” tension experiment was not actually uniform, and therefore this lower experimentally-
measured value is consistent with the DCB results.
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Figure 2.6: Traction-separation law obtained by differentiation of a curve fit to the data
in Figure 2.5.
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(a)

(b)

Figure 2.7: Calculation of root rotation. (a) Shows plots of relative horizontal dis-
placement as a function of vertical location at the crack-tip region for the specific loads
identified in Figure 2.3, using the same coordinate system specified in Figure 2.4a.
Some fine structure in the data may also be observed, which are likely due to the inter-
polation functions of DIC. (b) Shows how the root rotation, defined as the difference
in the values of du/dy for both arms, varies with increasing load. The small-scale root
rotation is also inscribed on this plot, calculated for the DCB geometry of this paper
and an elastic modulus of 217 GPa (see Figure 2.8).
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The root rotation θ◦ is plotted as a function of load in Figure 2.7b. Please note that

the root rotation is defined as the relative difference of du/dy between the top arm and

the bottom arm (using the same coordinate system from before), and therefore any effects

from the shear load are included. As shown in Ref. [61], this allows one to describe the

compliance of a DCB using an Euler-Bernoulli beam and a root rotation (this is expanded

upon in Section 2.3.3). The predicted small-scale root rotation from LEFM (θ◦ = P∞(5.44+

16.2a◦/h)/(Ēh)) is inscribed on Figure 2.7b7.

The only time when the small-scale root rotation accurately replicates the experimentally-

measured root rotation is before point “A”. This is consistent with the cohesive-length scale

results from Figure 2.5 that noted point the CLS at “A” was too large for LEFM to be

considered a useful approximation. Therefore, one does not expect the root rotation results

after point “A” to coincide with linear-elasticity.

2.3.3 Elastic modulus

As shown in Ref. [61], one can include shear effects at the crack-tip into a root rotation.

The compliance of the DCB can then be described by Euler-Bernoulli beam theory, provided

one includes the root rotation and displacement8 as a boundary condition. The crack-mouth

opening displacement was evaluated away from the tabs to remove any effects the bonded

tabs had on the opening displacement. Therefore, as noted in the engineering diagram

(Figure 2.1), the crack-mouth opening displacement was evaluated a = 28.3 mm behind the

crack-tip. As noted before, when not evaluated at the loading point, the beam is subjected

to both an applied shear load, P∞, and bending moment, P∞(a◦ − a), which results in an

opening displacement of [61]

∆ = 8
P∞a

3

Ēh3
+ 12

P∞(a◦ − a)a2

Ēh3
+ θ◦a+ δ◦. (2.5)

The elastic modulus was determined by fitting the theoretical displacements along the

entire range of experimentally measured crack-mouth opening displacements, with the best

fit plotted in Figure 2.8a. The fitting was sensitive to within 2 GPa for the elastic modulus;

however, the modulus was determined to be 217±9 GPa when taking into account the exper-

imental uncertainties. There exists good agreement between the experimental measurements

and theory along the entire range of data. As a comparison, a tensile test was run with the

7As noted in Section 2.3.3, the elastic modulus is taken to be Ē = 217 GPa.
8The root displacement is technically defined as the displacement separation between the centroidal

axes at the crack-tip [61]. Here, the difference between the crack-tip opening displacement and the root
displacement was negligible, and so δ◦ was used for all calculations. This is consistent with the previous
observation that the steel adherends were about two orders of magnitude stiffer than the adhesive layer.
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same steel and it was determined to have an elastic modulus of 204± 8 GPa and Poisson’s

ratio of 0.32± 0.07. Therefore, these results suggest the bending modulus falls between the

plane stress and plane strain assumptions.

Inscribed on Figure 2.8a is the opening displacement predicted for a perfectly-bonded,

linear-elastic system. This is calculated from the linear-elastic DCB given in Ref. [61]:

∆ =
P∞
Ē

(
8
a3

h3
+ 12

(a◦ − a)a2

h3
+ 16.2

a◦a

h2
+ 5.44

a◦ + a

h
+ 3.66

)
. (2.6)

As seen in Figure 2.7 with the root rotation calculation, the linear-elasticity solution fails

to describe the measured displacements around point “A”, which coincides with the point

where the cohesive-length scale is too large for LEFM to be a realistic approximation of

the experiment. As seen here, there would be significant error in determining the elastic

modulus if one blindly assumed elastic compliance for this system.

More can still be done with the full-field measurement capabilities of DIC. At this point in

the crack-mouth opening displacement analysis, only one point behind the crack-tip has been

compared with the theoretical calulcations. In Figure 2.8b, the entire opening displacement

(calculated from the centroidal axes of the top and bottom beams) behind the crack-tip is

compared with theoretical calculations at load point “D”. The theory involves an Euler-

Bernoulli beam with the experimentally-measured root rotation and crack-tip displacement

for the crack-tip boundary conditions. As in Figure 2.8a, it was assumed the combined

shear load and bending moment acted a = 28.3 mm behind the crack-tip and the elastic

modulus was 217 GPa. The good agreement seen here provides experimental support that

one can describe the deformation of a DCB by Euler-Bernoulli beam theory if one includes

the appropriate root rotation and displacement as the crack-tip boundary condition [61].

2.3.4 Cohesive-zone measurements

If one is just interested in extracting the mode-I traction-separation law, the crack-tip

opening displacement is all that is required. However, as observed above, DIC’s full-field

measurement capabilities allow much more data to be generated. Instead of limiting the

analysis to only crack-tip data, it is now time to consider deformation ahead of the crack-

tip. Using the same method as described for the crack-tip opening displacements, 6 vertical

lines of data, spaced approximately 4 mm apart, are highlighted in Figure 2.9a. The raw

displacement data for these vertical lines, without correction for rigid-body rotation, are

then plotted in Figure 2.9b for load point “D”. Rigid-body rotation corrections were made

for subsequent figures.

Data like those shown in Figure 2.9b were analyzed along the entire interface, which allows
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(a)

(b)

Figure 2.8: (a) The calculated and experimental opening displacements are compared,
showing that the effective modulus is 217 ± 9 GPa. These calculations are done as-
suming an Euler beam acted upon by the appropriate load and moment calculated at
a distance approximately 28 mm behind the crack tip, and assuming the root rotation
given in Figure 2.7. (b) One sees this agreement is found not only at a single point,
but rather in both fields of view provided by two separate cameras. The data is taken
at load point “D”.
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(a)

(b)

Figure 2.9: Determination of normal displacements ahead of the crack-tip. (a) Ex-
ample lines along which normal displacements are measured as a function of vertical
distance, along with the origin and crack-tip location. (b) The corresponding relative
displacements for the six lines shown in (a). No rigid-body rotation corrections have
been made for these data.
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Figure 2.10: Plot of normal displacement ahead of the crack tip calculated in the same
manner as Figure 2.4. The four lines correspond to loads A-D from Figure 2.3.

one to see the opening displacement profile ahead of the crack-tip, as plotted in Figure 2.10.

As shown on the figure, the measurement uncertainty is approximately 1 micron, which

means the opening displacement at point “A” is near the noise floor. In spite of this, one

still sees the evolution of the cohesive-zone as the load increases.

Full-field measurement capabilities allows one to measure the length of the cohesive-zone,

and measure it as a function of load. This is significant as it does not appear anyone else has

done this before. It is worth noting, however, that one should be specific as to the definition

of the measured length of the cohesive-zone, d, here defined as the point where the normal

displacements first cross from tension to compression. This is necessary because of the large

region of compression that may be ahead of the crack-tip.

In Figure 2.11, the normalized cohesive-zone length, d/h, is plotted against the (crack-

tip) cohesive-length scale. This result can be found using the model of a beam on an elastic

foundation [52, 61]. For a crack-tip loaded by a shear load, V◦ and bending moment M◦, the
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tractions become compressive at a distance [80]

z◦ =
1

β
tan−1

(
V◦h

hβM◦
+ 1

)
, (2.7)

where β = 4
√

6k/Ēh3, and k is the stiffness of the traction-separation law. For this geometry,

V◦ = P∞ and M◦ = P∞a◦, giving

z◦ =
1

β
tan−1

(
1

8.75hβ
+ 1

)
. (2.8)

Recalling that ξ̄ = kĒ/kh for a linear traction-separation law, one can rearrange the ex-

pressions such that ξ̄ = 12/(βh)4, and gives the cohesive-zone length for this geometry as

z̄◦ = z◦/h = 0.537ξ̄◦
1/4 tan−1

(
1 + 0.0614ξ̄1/4

◦
)
. (2.9)

This analytical expression for a linear traction-separation law (Equation (2.9)) is inscribed

on Figure 2.11a.

The root rotation has been been re-plotted as a function of the cohesive-length scale in

Figure 2.11b. For a DCB loaded via a shear load V◦ and bending moment M◦, the root

rotation is given by [61]

θ◦ = 2 ∗ 61/2

(
Ē

hk

)1/2
V◦
Ēh

+ 4 ∗ 63/4

(
Ē

hk

)1/4
M◦
Ēh2

. (2.10)

Since the root rotation corresponding to k∗ = 0.811Ē/h is equal to the LEFM value, one

can consider a spring constant, k, to arise from two springs in series in order to separate

the linear elasticy and cohesive-law stiffnesses: k∗ and kb , where kb is the stiffness of the

cohesive-law. Then, it can be shown that the crack-tip cohesive-length scale is related to k

by

ξ̄◦ =
2Ē

kbh
=

2Ē

kh
− 2.466. (2.11)

Therefore, for the DCB considered here has the root rotation given as

Ēhθ◦
P∞

= 2 ∗ 61/2(0.5ξ̄◦ + 1.233)1/2 + 4 ∗ 63/4(0.5 ∗ ξ̄◦ + 1.233)1/4a◦
h
, (2.12)

where (as before) the shear load is given by V◦ = P∞ and bending moment by M◦ = P∞a◦.

This expression is inscribed on Figure 2.11b, noting that a◦/h = 8.75. The surprisingly

good agreement between the results suggests the cohesive-length scale may be able to pro-
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vide information concerning the adhesive layer’s compliance and cohesive-zone development,

independent of the precise shape of the traction-separation law.

2.3.5 Rotation and shear around the crack-tip

As has been done above, the full-field measurements of DIC allowed one to expand

from measuring the crack-tip displacements to measuring the displacements of the entire

cohesive-zone. Now, the root rotation will be expanded to consider those rotations around

the crack-tip. Whereas the root rotation measurement of Figure 2.7 defined the rotation as

relative difference of du/dy for the top and bottom beams, now the rotations are separated

into average rotation and shear components. The average rotation for each beam (plotted in

Figure 2.12a) is defined as (dv/dx− du/dy)/2 while the shear strain for each beam (plotted

in Figure 2.12b) is defined as (dv/dx + du/dy)/2. These definitions are the same as above,

where the y-axis is pointing away from the interface.

One notes that in Figure 2.12a, the average rotations decay to zero much more slowly

than the normal displacements, which puts the adhesive layer in a state of in-plane tension.

Taking the data at “D” as an example, beam rotation would cause the adhesive to extend

about 12 microns over about 15 mm, which would correspond to an tensile strain of about

0.0008. This estimate is consistent with the strain measured within the adhesive layer via

DIC and the FEM results presented below.

The average shear strain is much smaller than the average rotations, and the largest

measured values are larger than the experimental uncertainty (as noted by the errorbar).

While it may surprise the reader to see the shear strain increase as one moves ahead of the

crack-tip, these results are consistent with FEM results computed for the numerical com-

parisons in Section 2.4, and in those calculations the average shear strains always returned

to zero further ahead of the crack-tip (although outside of the experimental field of view).

2.4 Numerical comparison

Full-field measurement techniques have previously been used to extract traction-separation

laws, whether via a direct method [71] or an inverse method [72, 74]. However, what sets

this work apart from others is that the traction-separation law (using a direct approach) has

been measured independently from the cohesive-zone’s opening profile using DIC. One can

now compare the experimental measurements and see if they can be replicated numerically

using the extracted traction-separation law.

Numerical calculations were performed using the commerical software Abaqus 6.14 [1].

The cohesive-zone model was implemented through the use of a user-defined element that can
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(a)

(b)

Figure 2.11: (a) A comparison between the “length” of the cohesive zone, defined as
the distance from the cohesive-crack tip to the point at which the stresses become
compressive, and the cohesive-length scale. (b) A plot of how the root rotation varies
with cohesive-length scale. Inscribed on these plots are comparisons to the results for
a linear cohesive law.
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(a)

(b)

Figure 2.12: Plots of (a) average rotation, (dv/dx − du/dy)/2, and (b) shear strain,
(dv/dx+ du/dy)/2, around the crack tip for each beam.
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be found in Appendix A. The adherend’s elastic modulus was set to 217 GPa, in accordance

with the findings of Section 2.3.3 for the steel beams’ deflections. The initial slope of the

mode-I traction-separation law was approximately the elastic compliance of a 275 micron

thick adhesive layer with a quoted elastic modulus of 870 MPa [77]. The “yield” for the

traction-separation law occurred around 4 MPa at a little more than 1 micron; these values

correspond to the lowest measure normal stress in Figure 2.6 and the experimental noise

floor.

The importance of the compressive portion of the traction-separation law was not obvious

until after the experiments were complete. Ref. [26] showed that the cohesive-zone model

with a finite-thickness interface could accommodate compression ahead of the crack-tip. As

one sees in Figure 2.10, there is a significant portion of the normal displacement profile that

is in compression.

As experimental testing was complete, the numerical experiments were run where the

compressive stiffness was varied in the finite-element calculations. It was found that all of

the normal displacement data (that is, both opening displacements and closing displace-

ments) could not be replicated unless the appropriate compressive law was included. It was

determined the appropriate compressive law was anti-symmetric with respect to the tensile

law (with “yield” at -4 MPa). This “yield” in the compressive portion was required to obtain

good agreement with the experimental results, for a purely elastic compressive law was not

the best fit.

Having determined the shape of the compressive portion of the traction-separation law,

Figure 2.13a compares the experimental results with the findings from CZM. As one can

see, the agreement is rather good along the entire view. However, when comparing the CZM

and experimental results, one notices CZM tends to consistently overpredict the opening

displacements. Recall from before that the beam bending places the adhesive into a state

of in-plane tension. The cohesive-zone model works by replacing the opening and shear

by springs; it is not a continuum and therefore no in-plane tension can build up due to

the bending adherends. A subsequent finite-element calculation was run by converting the

traction-separation law into a uniaxial-tension stress-strain relation (assuming J2-flow the-

ory), and implementing this relation into the adhesive layer with the aforemtioned elastic

modulus of 870 MPa and a thickness of 275 microns. These findings can be found in Fig-

ure 2.13b, and one notes even better agreement with the experimental results. This suggests

the small discrepancy in the CZM calculation is from neglecting the build-up of an in-plane

tensile stress (estimated to be ∼ 0.5 MPa from the strain value quoted above).
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(a)

(b)

Figure 2.13: Comparison between the experimentally-measured normal displacements
with numerical predictions based on (a) a cohesive-zone model where the compressive
tractions are of equal magnitudes to the corresponding tensile tractions, and (b) a
continuum model of the adhesive, assuming J2-flow theory and a constitutive law based
on the traction-separation law used for (a). One notices a slightly better agreement for
the continuum model.
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2.5 Summary

Digitial image correlation is a powerful tool that has steadily grown in popularity over

the last couple decades, and it is becoming commonplace in mechanical testing labs. When

analyzing beam-like geometries, it was found that measurement noise was reduced when

vertical lines of displacement data were fit to linear functions before differentiation. This

was the method used to extract the J-integral by analyzing the displacement data at the

load points.

DIC’s full-field measurement capabilities allowed one to measure rotations, shear strain,

beam deflections, and the opening profile in the cohesive-zone. The fact that the cohesive-

length scale could be measured during loading allowed one to see how the cohesive-zone and

root rotation evolved. The smallest observable measurements of the root rotation and crack-

mouth opening displacement agreed with LEFM predictions, and the experimental results

diverged once the cohesive-length scale was too large for LEFM to be applicable.

As noted throughout this chapter, other groups have performed similar work and ex-

tracted traction-separation laws. This work is set apart from others because it separately

measured the traction-separation law and then compared the numerical predictions with the

measured cohesive-zone to find good agreement (with a small error due to neglecting the

in-plane tensile stress from CZM). It was found that the compressive portion of the traction-

separation law was important for matching both the tensile and compressive portions of the

normal displacements ahead of the crack-tip. Finally, a straightforward method (perhaps

upon which a new standard could be based off of) is provided for the extraction of the mode-I

traction-separation law.
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CHAPTER 3

On Varying Fillet Angles and Cohesive-Length Scales

3.1 Overview

From the results of Suo and Hutchinson [24], the energy-release rates of beam-like ge-

ometries were calculated for general combinations of axial loads and bending moments. The

single lap-shear joint is one geometry to which this analysis could be applied [20], and many

theoretical analyses [81, 82, 83, 84, 85, 86, 87] have been done on the geometry to show the

stress variation across the bonded interface. In spite of this known stress variation, stan-

dards [88, 89] have been written to use the single lap-shear joint to (qualitatively) compare

shear strengths of adhesives. If one is only considering the average shear stress, then the

geometry ought to be used only for qualitative comparisons because it has been shown [20]

the measured shear strength of the bonded ligament is a function of joint geometry.

Fernlund et. al. [90] tested some single lap-shear joints with and without cracks, and

determined there was no significant difference between the results. The lap-shear stan-

dards [88, 89] also make no mention of the necessity of placing a sharp crack in specimens

when comparing average shear strengths. These observations cause one to wonder if a crack

is necessary. Indeed, this is one benefit of the cohesive-zone model, which has demon-

strated [3, 20, 91] a sharp crack is not necessary to predict crack growth. While Mohammed

and Liechti [91] looked at the effect of fillet angle1 for a bi-material interface, the geometry

considered was loaded under four-point bending. The work presented below is distinct and

does not look to demonstrate the ability of CZM to predict crack-propagation at non-crack

singularities.

The following chapter shows when the strict requirement for a sharp crack may be ne-

glected, and when it must be present. This will be accomplished by analyzing a single

lap-shear joint and varying the fillet angle (from a crack at 180◦, through a corner at 90◦,

1It should be noted that Ref. [91] uses a different definition for the fillet angle than the one used here.
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and to even shallower singularities) and the cohesive-length scale. By using such a wide range

of fillet angles, this will give a more general theoretical explanation to the aforementioned

experimental observations and show that the corner singularity is not unique. These calcula-

tions show that at small cohesive-length scales (when LEFM is expected to be valid) the fine

aspects of the singularity are important and determine the deformations of the cohesive-zone

ahead of the crack-tip. However, at large cohesive-length scales the deformation ahead of the

singularity looks the same regardless of the shape of the singularity. The author suggests this

is a result of the large cohesive-length overshadowing the singularity, and making different

singularities appear the same.

3.2 Analytical foundations

From elasticity [5], the energy-release rate G is defined as

G = −dΠ

da
, (3.1)

where Π is the energy available for crack growth, and a is the crack-length (assuming a planar

problem). Crack propagation occurs when G ≥ Γ, where Γ is the material’s toughness, or

resistance to fracture. From the very definition of G, elasticity suggests one must always

have a sharp crack. However, from experience one knows this need not the case from a

macroscopic perspective, and this is not necessarily the case even in laboratory testing. This

is one reason the cohesive-zone model has become such a common tool in studying fracture

mechanics: it is well-known that failure does not always initiate at a crack, and CZM allows

one to work around LEFM’s limitations.

The single lap-shear joint with a crack is a special case of a wedge with an angle α = 180◦,

as defined in Figure 3.1. For the isotropic lap-shear joint with a crack (Figure 3.2 with

α = 180◦), the energy-release rate (i.e. work done at the crack-tip) has an analytical solution

when loaded via axial loads and bending moments [20]:

G =
P 2

2Ēh
+

6M2

Ēh
−
(
P 2

4Ēh
− 12(M − 0.5Ph)2

16Ēh3

)
, (3.2)

where P and M are defined are the reactionary axial load and bending moment in response

to a horizontal displacement u, as shown in Figure 3.2.

An additional finding from Ref. [20] was that there were two limits for the (normalized)

energy-release rate of the single lap-shear joint: a low load (undeformed) limit of 1.75 and

a large load (deformed) limit of 0.25. In Figure 3.3, a similar energy-release rate vs. load
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Figure 3.1: A wedge problem is typically defined by the half-angle of the wedge and
rotation from the horizontal. However, here the single lap-shear joint is the only ge-
ometry considered, and therefore the top half of the wedge is required to be 180◦ while
the fillet angle α is allowed to vary.

cohesive elements

Figure 3.2: For all calculations, identical boundary conditions were used for all lap-shear
geometries. The only difference between calculations is the fillet angle. Because the
ligament length l may change the value of the J-integral, all comparisons are made to
the (elastic) crack-tip calculation for a given load P (with a compensating moment M).
The ligament length l was typically chosen to be either 8h or approximately 20 times
the cohesive-length ξ, whichever was longer, to ensure the geometry was long enough
so that any displacements across the interface were negligible. In all CZM calcuations
performed here, the lap-shear interface had a single line of cohesive elements along the
entire length of the ligament, with the beams being much thicker than the cohesive
elements. The singularity work values were taken as the sum of the mode-I/-II work
determined from the closest element to the singularity, as determined from the boundary
conditions and choice of traction-separation law(s). The arm length is held constant at
L/h = 20 for all calculations.

33



plot is reproduced for elastic lap-shear joints of four different ligament lengths. For these

(and all subsequent) elastic calculations, the finite element software Abaqus 6.14 [1] was

used, with the J-integral calculated via the software’s internal capabilities. One observes

that the short ligament (e.g. l/h = 8) geometries require a much larger load to reach the

deformed-geometry limit compared to the long ligament (e.g. l/h = 640) geometries. This

is a useful result if one wants an estimate of the energy-release rate and has only limited

information of an elastic lap-shear joint.

The cohesive-zone model was implemented using the user-defined element (UEL) found

in Appendix A implemented in Abaqus 6.14 [1] for all calculations. Since CZM is being

used, the entire lap-shear ligament (interface) was made of cohesive elements and the loca-

tions specified in the close-up of Figure 3.2. Linear traction-separation laws are typically

used to ensure a constant cohesive-length scale in mode-I and mode-II throughout loading.

Displacement boundary conditions were specified, and the resulting interfacial displacements

followed from the numerical calculation as the solution to the boundary-value problem. For

a given singularity, the singularity work W◦ is defined as the sum of WI and WII at the edge

of the fillet angle. The term “crack-tip work” will only be used when α = 180◦.

From a practical perspective, it is numerically impossible to calculate the work done at

the crack-tip for a geometry with an infinite crack. Therefore, single lap-shear joints calcu-

lations were run with longer and longer cracks until the crack-tip work began to asymptote.

Figure 3.4 compares the crack-tip work using CZM (where ξ̄ = 0.01142) with a separate,

elastic J-integral calculation for a long crack of a/h = 16 to give J◦. As the reader can

see, the normalized crack-tip work begins to approach the J-integral value around a/h = 1.

Exploratory calculations outside the load range listed gave similar results to those shown

in Figure 3.4. Therefore, it was assumed that a crack length of a/h = 2 was a sufficient

approximation for an infinite crack for the numerical experiments in the following section. A

similar set of calculations were performed for the elastic J-integral calculations, and it was

determined an elastic crack length of a/h = 2 was also a sufficient approximation to an infi-

nite crack. In all current and subsequent CZM calculations, it was verified that cohesive-zone

displacements were negligible along the entire length of the interface.

2Provided the cohesive-length scale was small enough such that LEFM was expected to be valid, choosing
a different ξ̄ did not change the trend found in Figure 3.4.
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Figure 3.3: Normalized energy-release rate (calculated using the J-integral) for four
elastic lap-shear joints with different ligament lengths at varying loads. The results
presented here reproduce the trend observed in Ref. [20] where there exist two asymp-
totic limits for the energy-release rate. The additional calculations show that these
two limits may be separated by a relatively large load, depending on the length of the
ligament. A crack length of a/h = 2 and arm length of L/h = 20 were used for these
calculations.
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Figure 3.4: CZM crack-tip work W◦ compared to a long elastic crack (a/h = 16)
J-integral calculation. To ensure a long enough crack was used for subsequent calcu-
lations, elastic FEM calculations with a sharp crack were run with increasing crack
length until an asymptote was reached. These results were then compared to similar
calculations using crack lengths at a small cohesive-length scale (here, ξ̄ = 0.0114),
and it was found that around a/h ∼ 1 the crack-tip work started to plateau. Ex-
ploratory calculations were run outside the range listed, which gave results similar to
those above. Therefore, it was assumed that a crack-length of a/h = 2 would be an ad-
equate approximation of an infinite crack at all loads. The crack-lengths of the elastic
calculations were varied in a similar manner, and it was found a/h = 2 was a sufficient
approximation for an infinite crack as well.
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3.3 Numerical experiments

3.3.1 Work done at the singularity

For the numerical experiments, the beam thickness was kept much larger than the CZM

interface (h/tcz = 250003 at the smallest CLS values and h/tcz = 1000 at the largest values).

In the interest of computational efficiency, the mesh density was gradually decreased as

one moved away from the singularity. The loads were applied via a uniform horizontal

displacement at the left-hand side of the top beam, although the left edge was allowed to

move vertically to ensure a shear load was not applied. It was verified that any applied shear

load that might be required for numerical stability was negligible. Each separate calculation

was compared back to an elastic lap-shear calculations with a crack (with a/h = 2), which

allows one to compare the effect of varying fillet angles to a separate, fully-elastic J-integral

calculation. The ligaments were kept long enough (usually l/h = 8 or l/ξ = 20, whichever

was larger) to ensure the only geometric effects considered during these calculations were

from changes in the fillet angle.

As shown in previous work [27, 92], different mesh densities may be required for observing

different crack-propagation phenomena. Ref. [27] demonstrated LEFM phase angles could

be reproduced when the mesh density was approximately 1% of the cohesive-length for a

crack, and this result was reproduced here. However, this estimate only holds true for a

crack, and other fillet angles considered here required mesh densities of ξ/tcz ∼ 1000 or even

ξ/tcz ∼ 10000 before a phase angle plateau was observed. It was observed in mesh-sensitivity

calculations that the coarser-mesh results always converged to the results presented here,

regardless of whether or not a plateau was present.

It is worth noting the mesh sensitivity required for a phase angle plateau is independent

of that for the work done at the singularity. At the smallest cohesive-length scales, the work

values did not plateau to a constant value as one approached the singularity4. However, by

running multiple calculations at varying mesh densities, one noted that the singularity work

values began to plateau for a fine enough mesh. The mesh density at which the singularity

work plateaued was determined to be ξ/tcz ∼ 300, regardless of fillet angle. Therefore, this

mesh density set the mesh size at the smallest cohesive-length considered here.

Dimensional arguments may be used to show the singularity work is a general function

W◦
J◦

= d

(
l

h
,
L

h
,
P

Ēh
, α, ξ̄

)
, (3.3)

3tcz is the width of the smallest cohesive element at the singularity.
4Numerical limitations restricted the mesh density to ξ/tcz ∼ 300 for the smallest cohesive-length scale.

This may explain why no plateau was found for the singularity work at the smallest cohesive-length scales.
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where all geometry parameters have been defined in Figure 3.2. The load P is the reactionary

force resulting from a horizontal displacement u and Ē is the elastic modulus of the beams.

The variation of Equation (3.3) with respect to the load will be the first aspect considered.

In Figure 3.5, two different geometries at two different cohesive-length scales are considered

at three different loads: low, mid-range, and high. The low and high loads are to consider

the singularity work near the asymptotic limits of crack-tip work, and the mid-range value is

somewhere in between. It is also clear from Figure 3.5 that Equation (3.3) is (in general) a

non-linear function of the fillet angle. The CZM crack-tip work vs. load curves for l/h = 24

and l/h = 640 are nearly identical to those found in Figure 3.3, and therefore they are not

plotted here.

Systems with small cohesive-length scales will now be considered, where LEFM is ex-

pected to be a useful approximation. Figure 3.6a gives the crack-tip work vs. load range

for three different lap-shear joint calculations. One notices the work-load curves are sim-

ilar to those from the elastic calculations in Figure 3.3. One also observes in Figure 3.6b

that an increase in cohesive-length scale results in a general increase in the singularity work

function (this will become more obvious at larger cohesive-length scales). Even though the

cohesive-length scale is small enough one would expect LEFM to be a useful approximation,

it appears as though there is still some geometry dependence in the singularity work.

One notices a distinct drop in the singularity work as the fillet angles get smaller and

smaller for these small cohesive-length scale results. Although there exists geometry depen-

dence, consider the calculations for ξ̄ = 0.114. If one only measured the singularity work

(with no other information), one might be able to explain away the small discrepancy from

the J-integral as manufacturing variation and might cause one to suspect there is something

special about the corner singularity. However, when one fits the data from all the fillet angles

(whether that be through cubic splines or polynomial fits), one notices there is a systematic

shift in Equation (3.3) for all the fillet angles, and not just the 90◦ fillet angle (corner).

Therefore, there does not appear to be anything special about the corner singularity.

If one were to take the limit of ξ̄ → 0, one could imagine where only the 180◦ fillet angle

would have a singularity work value of unity and W◦/J◦ would drop to zero for all non-crack

fillet angles. This would agree with the energy-release rate definition in Equation (3.1), where

a sharp crack must be present for the definition to make sense. As for the significance of

the local maximum and minimum observed in the singularity work at small cohesive-length

scales, that explanation is left as an exercise to the reader.

At larger cohesive-length scales, similar geometry dependence may be observed for Equa-

tion (3.3). Figure 3.7a gives the normalized crack-tip work vs. load curves for two different

ligament lengths: l/h = 24 and l/h = 640. As with the small cohesive-length scale results,
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(a)

(b)

Figure 3.5: Normalized singularity work for (a) ξ̄ = 0.114 with l/h = 64 and L/h =
20 and (b) ξ̄ = 1.14 with l/h = 640 and L/h = 20 at three different loads. The
CZM results produce crack-tip work vs. load curves nearly identical to those found in
Figure 3.3, and therefore they are not reproduced here. In the results above, one sees
how the singularity work varies for low, mid-range, and high loads. As one can see, the
load variation is not the same for different geometries/cohesive-length scales. These
results reinforce the dependence of Equation (3.3) on the load, P/Ēh. It was verified
that interface displacements were negligle along the entire length of the ligament.
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(a)

(b)

Figure 3.6: (a) The crack-tip work for small cohesive-length scales: ξ̄ = 0.0114 and
ξ̄ = 0.114. For ξ̄ = 0.114, two ligament lengths are considered: l/h = 8 and l/h = 64.
As one can see in comparison to the elastic calculations in Figure 3.3, the CZM crack-
tip work results fall in line with the elastic results. As before, a crack length of a/h = 2
and arm length of L/h = 20 were used for these calculations. (b) The normalized
singularity work at P/Ēh = 0.00044 for those results plotted in (a). The results
from l/h = 64 with ξ̄ = 0.114 were interpolated from the closest data points. When
comparing the singularity work functions between cohesive-length scales, it is observed
there is a systematic increase inW◦/J◦. For the same cohesive-length scale, one observes
there is a small, but noticeable, difference in the singularity work functions for two
different ligament lengths.
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the work-load curves are similar to the elastic calculations found in Figure 3.3. In Fig-

ure 3.7b, one sees how the normalized work changes as a function of fillet angle for ξ̄ = 1.14.

One sees significant difference in the two curves for l/h = 24 and l/h = 640.

Still larger cohesive-length scales may also be tested, although one must continue to in-

crease the ligament length to ensure negligible displacements across the interface. Figure 3.8a

gives the crack-tip work vs. load plots for the large cohesive-length scale calculations. As

the reader can see, all three geometries are approaching the deformed geometry limit at load

P/Ēh = 0.001. The singularity-work for these larger cohesive-length scales are plotted in

Figure 3.8b for this load. Here, one continues to see the general trend of Equation (3.3)

increasing towards unity for all fillet angles for large cohesive-length scales. From the results

from Figures 3.6, 3.7, and 3.8, one expects W◦/J◦ → 1 as ξ̄ →∞ for all fillet angles.

3.3.2 Mode-mixity at varying fillet angles

A fundamental aspect of LEFM is the singular stress (and displacement) field as one

approaches a crack-tip. Specifically, the singular field of r−1/2 is expected for a crack, and

the cohesive-zone model matches part of this field at small enough cohesive-length scales

regardless of the shape of the traction-separation law [26, 27, 28]. Elastic stress fields for a

generic wedge [93] may be used to generalize the singular field, of the form

σij
Ē

= fij

(
l

h
,
L

h
,
P

Ēh
, α,

r

h

)
, (3.4)

where r is the distance from the singularity. The dominant singularity, n, for each wedge of

angle α can be found in Figure 3.9. This work only deals with planar geometries, with the

normal stress fields are of the form5

σ = KI r
n, (3.5)

and shear stress fields

τ = KII r
n, (3.6)

with the fillet angle α determining the strength of the singular field. This results in the

stress-intensity factors of the form

KI = gI

(
l

h
,
P

Ēh

)
Ēhn, (3.7)

5As shown in Figure 3.9, the exponent n is defined as a negative value.
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(a)

(b)

Figure 3.7: (a) The crack-tip work values for ξ̄ = 1.14 for two different ligament lengths:
l/h = 24 and l/h = 640. As one can see in comparison to the elastic calculations in
Figure 3.3, the CZM crack-tip work results fall in line with the elastic results. As
mentioned before, a crack length of a/h = 2 and arm length of L/h = 20 were used
for these calculations. (b) The normalized singularity work at P/Ēh = 0.00059 for
those results plotted in (a), where the results from l/h = 640 were interpolated from
the closest data points. While a similar observation could be made in Figure 3.6, these
results demonstrate a clear dependence of Equation (3.3) on the ligament length, l/h.
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(a)

(b)

Figure 3.8: (a) The crack-tip work values for larger cohesive-length scales ξ̄ = 11.4,
ξ̄ = 114, and ξ̄ = 1140 at different loads. One sees for the results considered, the loads
are near the asymptotic limit for the deformed geometry. A crack length of a/h = 2
and arm length of L/h = 20 were used for these calculations. (b) The normalized
singularity work for these larger cohesive-length scales, interpolated from the results
closest to P/Ēh = 0.001. At the largest cohesive-length scales, the singularity work
function continues to be pushed towards unity for all fillet angles.
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Figure 3.9: The strength of the symmetric singularity that increases with fillet an-
gle [93]. Note that the exponent n as defined is negative.

and

KII = gII

(
l

h
,
P

Ēh

)
Ēhn, (3.8)

because L/h is held constant for all calculations. Any constant due to L/h and the usual

factor of
√

2π have been absorbed by the gI and gII here because of the use of generalized

stress-intensity factors [94].

The stress fields, with the appropriate linear elasticity singularities inscribed on the plots,

for a couple wedges (α = 90◦ and 180◦) are found in Figure 3.10. The length over which

the cohesive-zone’s stress field matches linear elasticity varies with the fillet angle. Similar

observations were made for the other fillet angles considered here.

On each plot, the (normalized) stress-intensity factors are inscribed, and using these

values one may determine the phase angle. However, with the exception of the crack-tip sin-

gularity, no other fillet angle has an analytical solution from LEFM. For the 180◦ fillet angle,
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the measured stress-intensity factors are KI/Ē
√
h = 0.00030 and KII/Ē

√
h = 0.00037,

which matched the elastic calculation. With an measurement uncertainty of about 0.000025,

the measured phase angle is 51 ± 4 degrees, which is in good agreement with the LEFM

value of 49.1◦6.

Mesh sensitivity calculations were run to verify the stresses converged. However, despite

this convergence the 90◦ fillet angle calculation does not reproduce the stress-intensity factor

ratio KI/KII = 0.543 one would expect from Ref. [94]. The theoretical singularity value for

KI as a dotted line while the measured KII value, which agreed with the elastic calculation,

is plotted as a dashed line. This suggests that non-crack singularities require a finer mesh

to measure the singular field compared to a crack.

While LEFM may not have an analytical result for phase angles of non-crack singularities,

the stress fields determined by the cohesive-zone model can still be used to back out a plot

of the phase angle as a function of distance ahead of the crack-tip. At the smallest length

scales, only the crack-tip singularity has an asymptote, as shown in Figure 3.11a. Here,

one sees that the phase angle appropriately asymptotes to the LEFM, low-load phase angle

limit of −49.1◦7. As the cohesive-length scale increases, additional singularities begin to

asymptote, as shown in Figure 3.11b.

Since the calculations were run across cohesive-length scales, one can compare all the

phase angle plateaus at the LEFM condition, and Figure 3.12 displays these phase angle

plateaus as a function of fillet angle. It has been shown [27] that a sharp crack will always

asymptote to the LEFM phase angle provided the cohesive-length scales are small enough.

One can see this result is replicated here, as all the data points lie around the LEFM phase

angle value of -49.1◦. The other fillet angles do not share this same property, as one sees

that the values can change even when LEFM is expected to be an adequate approximation

at all of them.

Having considered the LEFM results, it is now time to move to large cohesive-length

scales. In Figure 3.8, it was shown that the normalized singularity work for all fillet angles

began to approach unity at large cohesive-length scales. A comparable result is found in

Figure 3.13 when one plots the phase angle for different fillet angles. In Figure 3.13a, the

crack and orner singularities span around 5◦ for ξ̄ = 11.4. As a comparison, one can see

that these same fillet angles would have spanned almost 20◦ for phase angle plateaus for

ξ̄ = 0.114, as shown in Figure 3.11b. This phase angle difference continues to decrease

6The stiff adherend, low-load phase angle limit is 49.1◦ while the compliant adherend, large load LEFM
phase angle limit for the single lap-shear joint is 63.1◦, as derived in Ref. [20].

7Shear displacements are defined as positive for the top interface moving to the right of the bottom
interface; therefore, the phase angle is negative here because the shear displacements at the singularities are
negative.
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(a)

(b)

Figure 3.10: Absolute value of stress fields for (a) 90◦ and (b) 180◦ fillet angles. The
stress fields are normalized by the elastic modulus, and inscribed on each plot is the
corresponding singularity from Figure 3.9. In Ref. [27], it was shown for a crack that,
provided the cohesive-length scale was small enough, a inverse square root singular
field could be seen. Here it is observed, for a small enough cohesive-length scale, a
portion of the CZM stress field may be fit to the LEFM singular stress field for non-
crack singularities, although the length over which the CZM stress field is singular
may be small. It is worth noting for (b), with an uncertainty of about 0.000025 on
the (normalized) stress-intensity factors, the measured phase angle is 51 ± 4 degrees,
which is in good agreement with the LEFM value of 49.1◦. The stress-intensity factors
also matched the elastic calculation. Mesh sensitivity calculations were run on the
calculations to verify the stresses converged. The results are slightly different for a
corner. The shear stress matched the elastic calculation, but the normal stresses did not.
If one matches the mode-II stress-intesity factor (SIF), can then calculate the expected
mode-I SIF predicted from Ref. [94], where KI/KII = 0.543. As one sees in (a), the
mode-I SIF is not reproduced (the theoretical value is inscribed above as a dotted line,
as is the theoretical value for KI). This suggests that non-crack singularities require a
finer mesh to reproduce the predicted singular field. L/h = 20 for all calculations.
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(a)

(b)

Figure 3.11: Phase angle plateaus of small cohesive-length scale calculations compared
with the LEFM crack-tip phase angle for stiff adherends. (a) At the smallest cohesive-
length scales, only the 180◦ fillet angle (crack) asymptotes; no other fillet angles show
plateaus. (b) When the cohesive-length scale is increased near the edge of LEFM
applicability, one begins to see other fillet angles begin to plateau as well. A sensitivity
analysis showed that the results were mesh-insensitive. L/h = 20 for all calculations.
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Figure 3.12: Phase angle plateaus as a function of cohesive-length scale and fillet angle.
For a given ligament and load, one can see how the phase angle evolves. Please note
that the dashed line corresponds to the LEFM crack-tip phase angle (−49.1◦) for a
lap-shear joint with stiff adherends loaded via an axial load and bending moment at
small load values. L/h = 20 for all calculations.
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as the cohesive-length scale increases, and the phase angles can hardly be distinguished in

Figure 3.13b, when ξ̄ = 114.

In comparing the phase angles at large cohesive-length scales, it would be better to

consider the relative changes in the phase angles rather than the specific values. Geometric

contraints force the ligament length to increase as the cohesive-length scale increases, and

these changes could obfuscate the findings and lead to unwarranted conclusions. To that

end, the relative phase angle differences are plotted compared to the crack-tip phase angle

value in Figure 3.14. The full results are plotted in Figure 3.14a, while some of the results

are removed in Figure 3.14b to allow the reader to see the overall trend more easily.

At large cohesive-length scales, the fillet angles’ phase angle plateaus converge to the

crack-tip value. Above, it was suggested that if the large cohesive-length was large enough,

the fine aspects are irrelevant. It is one thing to note, as done in Figure 3.8, that the

work done at the singularity is independent of fillet angle at large cohesive-length scales.

However, the phase angle information gives additional information: at large cohesive-length

scales, fillet angles all have the same work done and the deformation occurs in the same

manner. With a large enough cohesive-length, the deformation along an interface ahead of

a singularity is indistinguishable for different fillet angles.

This ought be held in contrast to data at smaller cohesive-length scales. One should

note that for the corner singularity at ξ̄ = 0.114, one can see that an experimentalist would

probably not be able to ascertain the difference between a corner and crack by only consid-

ering the measured singularity work. This is most easily seen in Figure 3.6, where it can be

observed that the work done at the corner singularity can be within a few percent of the

elastic calculation’s crack-tip value. The difference is small enough that any (experimen-

tally measured) differences between samples would be dwarfed by manufacturing variability.

However, if one had full-field measurement capabilities or another method of separating the

mode-I and mode-II work at a singularity, then one might be able to see the differences in

mixed-mode loading: the corner singularity is slightly mode-I dominant with a phase angle

at almost -30◦, while the crack-tip singularity barely has a mode-II preference with a phase

angle around -50◦.

3.3.3 Traction-separation law shape dependence

As observed in Figure 3.12, non-crack fillet angles change their phase angle plateaus

at small cohesive-length scales when LEFM is expected to be valid. This is distinct from

the response at a crack-tip [27], which was shown to asymptote to a single value if LEFM

conditions were satisfied. As the corner is the typical non-crack singularity, example cal-

culations were run at small cohesive-length scales with small variations in the mode-I/-II
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(a)

(b)

Figure 3.13: Phase angle plateaus at large cohesive-length scales at (a) ξ̄ = 11.4 and
(b) ξ̄ = 114, with the LEFM phase angle inscribed on each plot as a dashed line. At
larger cohesive-length scales, the phase angle plateaus begin to collapse onto a single
curve for all fillet angles, one corresponding to the crack-tip. Perhaps surprisingly,
the phase angles appear to collapse to a single value around the LEFM phase angle.
L/h = 20 for all calculations.
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(a)

(b)

Figure 3.14: The phase angle convergence seen in Figure 3.13 is clearer when one
compares the phase angle asymptotes relative to the crack-tip phase angle. Here, all
phase angles are relative to the crack-tip value for all geometries. One notices that at
small cohesive-length scales there is large variation from the crack-tip value. However,
as the cohesve-length scale increases, all phase angle plateaus begin to collapse onto
a single value. These results corroborate the findings in Figure 3.8: at large cohesive-
length scales the precise nature of the singularity is irrelevant and a crack cannot be
distinguished from different singularities. For ξ̄ ≤ 0.114, l/h = 8 and P/Ēh = 0.00006−
0.00044; for ξ̄ = 1.14, l/h = 24 and P/Ēh = 0.00007− 0.00059; for ξ̄ = 11.4, l/h = 228
and P/Ēh = 0.00054−0.00282; for ξ̄ = 114, l/h = 2280 and P/Ēh = 0.00058−0.00287;
and for ξ̄ = 1140, l/h = 22800 and P/Ēh = 0.00042 − 0.00119. L/h = 20 for all
calculations.
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traction-separation laws. When different traction-separation laws are used, ξ̄I and ξ̄II are

independent from each other. This requires that a composite (average) cohesive-length scale,

ξ̄∗ =
WI ξ̄I +WII ξ̄II
WI +WII

=
Ē(δ2

I,◦ + δ2
II,◦)

(WI,◦ +WII,◦)h
(3.9)

be introduced. In the case where identical linear traction-separation laws are used, ξ̄∗ =

ξ̄I = ξ̄II = ξ̄.

Figure 3.15 shows five different combinations of linear traction-separation laws, with the

composite cohesive-length scale centered around the value ξ̄∗ = 0.06. Taking into account the

numerical uncertainty, the five calculations had equal values of work done at the singularity.

Yet, the calculations partitioned this work differently because the phase angles are distinct.

This finding was observed for other fillet angles as well.

Looking closely at the data in Figure 3.15, one might notice a systematic trend in the

change in phase angle. If one plots the phase angle asymptote versus the composite cohesive-

length scale one can find an affine fit. In the other fillet angles analyzed but not shown here,

this was also found to be the case. The slope of the phase angle asymptote versus composite

CLS affine fits tend to decrease with increasing fillet angle. This seems reasonable, as once

the fillet angle reaches 180◦, in the LEFM regime it is expected to asymptote to a single

value for a fine enough mesh. No significance of this relationship could be determined by

the author, other than the observation that in the LEFM regime one would expect small

changes in initial conditions would result in small changes in the outcome. It was beyond

the scope of this work to pursue this observation further.

Having looked at changes in constant cohesive-length scales, one should consider how

the shape of the traction-separation law affects the phase angle. The use of the Dugdale

law (a sharp initial vertical slope on the traction-separation law followed by a constant

stress) allows quick accumulation of different composite cohesive-length scales. Due to the

changing cohesive-length scales, the Dugdale law calculations were run first to determine

the mode-I/-II cohesive-length scales. Then, the geometry, loads, and cohesive-length scales

were matched to original calculation to ensure the only difference between the calculations

was the shape of the traction-separation law.

The results of these separate sets of calculations can be found in Figure 3.16, with the

Dugdale law results plotted in (a) and mixed-linear law results in (b). When qualitatively

comparing the plateaus in Figure 3.16a and Figure 3.16b, one sees the shape of the traction-

separation laws play a role in the phase angle plateaus for the corner singularity. This

expands on the findings from Ref. [27] where the shape of the traction-separation law was

shown to change how the phase angle behaved ahead of the crack-tip. For any fillet angle,
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Figure 3.15: Using the 90◦ fillet as the prototypical example, the composite cohesive-
length scale is kept at an approximately constant value of ξ̄∗ = 0.06±0.01. In doing so,
one observes a shift in the phase angle as the ξ̄I , ξ̄II combination changes, even with only
small variations. Shifts in the phase angle asymptote were seen with other fillet angles
as well, with the exception of the crack (Ref. [27] showed for a crack that all traction-
separation laws approached the LEFM phase angle, provided the cohesive-length scales
were small enough). The other non-dimensional groups for these calculations: l/h = 8,
L/h = 20, P/Ēh = 0.00044, and α = 90◦.
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the shape of the cohesive laws will play a role in how the phase angle behaves ahead of a

singularity.

Above it was shown for non-crack singularities that the phase angle asymptote changes

with the cohesive-length scale, even when LEFM is expected to be a useful approximation.

Here, it is demonstrated that the shape of the traction-separation law also changes the phase

angle asymptote, even when the load and composite cohesive-length scale is held constant.

This is exemplified in Figure 3.16a, where the mixed-linear law asymptotes from Figure 3.16b

have been inscribed. Again, the only difference between the two sets of calculations are

the shapes of the cohesive laws: Dugdale laws in Figure 3.16a and mixed-linear laws in

Figure 3.16b. It is worth noting that simply using the individually-indentified cohesive-

length scales (i.e. ξ̄I ≡ Ē δ2
I,◦/WI,◦ h and ξ̄II ≡ Ē δ2

II,◦/WII,◦ h) does not necessarliy imply

the same composite cohesive-length scale ξ̄∗8 due to the work partitioning at the singularity.

There exists a negligible difference between the singularity work for the separate different

traction-separation laws, but the work is partitioned slightly differently at the corner for

different traction-separation laws.

3.4 Summary

Many groups previously observed, whether qualitatively or quantitatively, that sharp

cracks and corners could be interchanged in single lap-shear joints without effect on failure,

even though linear-elastic fracture mechanics requires a crack theoretically. It was shown

that at relatively small cohesive-length scales (when LEFM is still a useful approximation),

the work done at the corner is experimentally indistinguishable from that at the crack-tip.

This might have led some to conclude there was something special about the 90◦ fillet angle

singularity. However, looking at the broader context one realizes there is nothing special

about the 90◦ fillet angle and similar results would be found for the 85◦ or 95◦ fillet angles.

The corner singularity stands out because it is easiest non-crack singularity to manufacture.

These findings also suggest it might be more appropriate to move away from the term

“energy-release rate” when using the cohesive-zone model and instead use “singularity work”

or “crack-tip work” to distinguish between linear-elastic fracture mechanics and the cohesive-

zone model, as there is still work done against the tractions at the singularity.

As one increases the cohesive-length, the fine aspects of the singularity are swamped

and the singular field disappears. Furthermore, at a large enough cohesive-length, all the

8A few of the calculations required a brute-force attempt to reach agreement between the composite
cohesive-length scale values, and the data plotted differ by less than 1%. However, it should be noted that
the phase angle data plotted in Figure 3.16b was negligibly different than the original calculations which
used the individually-indentified cohesive-length scales: ξ̄I ≡ Ē δ2I,◦/WI,◦ h and ξ̄II ≡ Ē δ2II,◦/WII,◦ h.
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(a)

(b)

Figure 3.16: Effect of different traction-separation laws on the phase angle plateau for
non-crack fillet angles. (a) These plateaus are generated using Dugdale laws, where
four instances were chosen with different composite cohesive-length scales. These same
composite cohesive-length scale values were then implemented using mixed-linear laws
in (b). For comparison, the dotted lines in (a) correspond to the mixed-linear law
asymptotes from (b). These findings suggest that the asymptotic phase angle of a fillet
angle depends on the shape of the traction-separation laws for non-crack fillet angles,
as the only difference between the two calculations was the choice of the cohesive laws.
The paired calculations had equivalent values of work done at the singularity to within
numerical uncertainty. L/h = 20 for all calculations.
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work done at the singularity (for all fillet angles) approaches the crack-tip work value, and

the phase angles converge to the crack-tip value. Therefore, when the cohesive-length is

large enough, the deformation ahead of the singularity gives no indication of the singularity

present in the lap-shear joint.

Unlike the crack-tip singularity, it was observed that non-crack singularities have cohesive-

length scale phase angle plateau dependence. Furthermore, the phase angle plateau is de-

termined by both the cohesive-length scale and the shape of the traction-separation law.

Although only these conclusions were made using the single lap-shear joint, one expects

these findings to be applicable to other specimen geometries as well.
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CHAPTER 4

Implications of Shear Loading and Geometric

Constraints on the Single Lap-Shear Joint

4.1 Overview

Having laid groundwork in Chapter 3, one may now consider additional aspects of the

single lap-shear joint. In the previous chapter, geometry considerations were neglected with

the exception of the fillet angle, and the lap-shear joint was loaded only via an axial-load and

bending moment. Now it is time to relax some of the geometric assumptions and include a

reactionary shear load to provide a more complete description of the single lap-shear joint.

Goland and Reissner [95] were the first to consider the effect of an applied shear load

on the lap-shear joint; however, the significance of this shear load appears to be missed by

many [81, 82, 96, 85, 97]. One consequence of neglecting the applied shear load is that

the compensating bending moment required for moment balance may be incorrect unless

measured separately. These unknown/incorrect loads would then result in an incorrect mea-

surement of the crack-tip work if only the axial load is measured.

ASTM standards [88, 89] provide a qualitative method for comparing shear strength’s

of lap-shear joints for one set of geometry parameters, but they are not able to provide

quantitative information because it has been shown the joint’s geometry affects the average

shear strength [20]. A number of groups [90, 20, 98, 99, 100] have considered geometric

effects when analysing the lap-shear joint. None of these analyses, however, considered

how a varying cohesive-length scale changed the specimen’s response and how geometry

constraints may change delamination.

This chapter is divided into four main thrusts. The first will introduce some of the

complications that arise in the single lap-shear joint due to an unknown shear load that

must occur in the general loading (i.e. when it is clamped) and why it should not be ignored.

Next, some initial findings will be presented concerning the effect of a constrained ligament
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size with an increasing cohesive-length scale. A virtual experiment will then be used to

introduce two methods one can use to analyze a single lap-shear joint with an unknown

shear load: the use of the large-deformation J-integral and a numerical partial-model. The

chapter concludes with the experimental validation of the numerical partial-model method.

4.2 Complication due to shear

As shown in the previous chapter, there are benefits to loading the lap-shear joint via

axial loads and bending moments, but this loading configuration is often not achieved dur-

ing testing. The necessity of the applied shear load can be determined through careful

consideration of the free-body diagram. In Figure 4.1a, one sees how the lap-shear joint is

commonly drawn, with an axial load N acting at each end of the specimen. However, when

the geometry is loaded in an experiment and the ends of the lap-shear joint (with or without

tabs) are clamped, the vertical motion is restricted. The case of wedge grips is considered

in Figure 4.1b, where the two tabs are clamped. Due to specimen geometry, if only an axial

load were applied in Figure 4.1a, the two tab regions at either end would move away from

one another (and probably rotate). Restricting this vertical motion implies a reactionary

shear force must be applied, and a compensating bending moment is required for moment

balance and to restict any rotation in the tabs, as shown in Figure 4.1c.

The unknown shear load complicates the analysis of the lap-shear joint. Ref. [55] used

FEM to calculate the increase in the energy-release rate due to an applied shear load, and

notes the effect of shear depends on the details of the crack-tip deformation. Recall from

Ref. [20] that geometry variations changed the failure load of the single lap-shear joint. One

finds the same challenge when dealing with the unknown shear load. Therefore, not only

does the size of the shear load depend on the geometry, but the effect that the shear load

has on the crack-tip work is also dependent on the geometry.

The shear load may be determined anywhere along the beam-like geometry using a full-

field measurement technique like digital image correlation. Unfortunately, DIC often requires

users to balance the amount of the geometry one wishes to measure with the measurement

resolution; therefore, one may not be able to capture displacements along the entire specimen.

Such a constrained view is considered in Figure 4.1d. Assuming one measures the axial load

via a load cell, one has three unknown values: an unknown shear load1 V and two unknown

bending moments, M1 and M2. The number of unknowns can be reduced using the moment

1The author advises against using the measured shear strain results from DIC to compute the shear load,
as the rotations are expected to be the larger derivative value instead of the strains. Therefore, the author
suggests using the beams’ curvatures to extract the moments, and then using moment balance to extract the
shear load. If one has high enough strain resolution, the measured strains could be used as a sanity check.
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(a)

(b)

(c)

(d)

Figure 4.1: (a) Free-body diagram of the lap-shear joint how it is often drawn. (b) By
testing the lap-shear joint using wedge grips (or another method that clamps the ends),
the vertical displacement of the two ends are restricted. (c) By restricting the vertical
motion, an unknown shear load and bending moment is required for the tabs not to move
vertically nor rotate within the grips. (d) When considering the general loading of the
single lap-shear joint with a constrained field of view, one must measure the axial load,
shear load, and two bending moments. The axial load is typically measured via a load
cell in an experiment. However, the shear load and bending moments are (generally)
unknown. Using full-field measurement techniques, one can extract the curvatures at
two points and use moment balance to determine the unknown shear load. Note that
in an anti-symmetric lap-shear joint, the bending moment in the middle of the joint
must be zero, and in this case only one of the bending moments would need to be
determined. However, in general one may not assume the second bending moment is
known.
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balance equation, which requires

N(
h

2
+ δn)− V (d− δs)−M1 +M2 = 0 (4.1)

for an lap-shear joint with a neglible interface thickness and beam arms of thickness h, where

δn and δs are the relative normal and shear displacements from where the loads are taken.

In the case of an anti-symmetric system, one also knows the bending moment in the middle

of the lap-shear joint must equal zero.

Starting with the displacement data, one may differentiate the results by treating the

data as a continuous, analog function of position. After extracting the beam rotations,

(dv/dx − du/dy)/2, one may then differentiate the rotation data along the length of the

beams to extract the curvature. Using beam theory, one can determine the bending moment

from the curvature κ using

M = Ē IĒ κ, (4.2)

where Ē is the elastic modulus and IĒ is second moment of area. With the bending moments

now able to be determined, the shear load is the only unknown in the moment balance,

Equation (4.1). With the capabilities of full-field measurements, one can extract the shear

load at multiple locations along the beams since the curvature can be extracted along the

entire length. This was done in a numerical example in Section 4.4.

To see the extent to which the reactionary shear load may vary, a selection of numerical

calculations were run. The commercial finite-element software Abaqus 6.14 [1] was used for

the calculations used here and below, and the cohesive-zone model was implemented using

a FORTRAN subroutine (Appendix A) as a user-defined element. The ligament and arm

lengths were chosen to span commonly-used sizes from the literature [88, 89, 20, 98, 99, 85,

86, 3]. In Figure 4.2a, one sees the relative shear load increases significantly for lap-shear

joints with short ligaments and stubby arms. Furthermore, one sees that as the arm length

becomes significantly greater than the ligament length the relative shear load tends toward

zero.

While it is good to know the unknown shear load changes with geometry, this is partic-

ularly important because the shear load impacts the crack-tip work, and, therefore, when a

crack will propagate along the interface. Figure 4.2b shows the difference in the normalized

crack-tip work when one assumes only an axial load is acting at the crack-tip versus when the

reactionary shear load is present. It was initially surprising to the author that the clamped

calculation had a smaller crack-tip work. This can be reconciled when one looks at the free

body diagram and realizes the bending moment acting at the crack-tip is smaller because

the shear load portion is acting opposite to the axial load.
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(a)

(b)

Figure 4.2: The effect of the reactionary shear load. (a) Shear load variation compared
to the normalized arm length for four different ligament lengths. In the plot above,
one sees how changing the arm length or ligament length will change the reaction shear
load at the gripped tabs. (b) This unknown shear load can change the crack-tip work.
One sees that neglecting the unknown shear load can overpredict the crack-tip work.
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When the arm lengths are long enough, the difference between the two crack-tip work

values becomes negligible, as shown in Figure 4.3a. For the ligament lengths considered here,

the difference between the crack-tip work becomes negligible depends on the length of the

bonded ligament. For the ligament lengths considered here, that can be between 2h and 50h.

Similar differences may be seen between the two loading assumptions for the crack-tip phase

angle. However, in this instance the differences of crack-tip work partitioning (i.e. phase

angle) are negligible at even smaller smaller arm lengths that can be 1h or less, as seen in

Figure 4.3b.

In all cases considered here, the systems with the stubby-armed lap-shear joints were

most affected by the shear load. While one solution might be to simply increase the length

of the arms, there are unintended consequences with this approach. For thick enough arms

that remain elastic, this will lead to additional stored energy in the beams that may cause

catastrophic failure once a crack begins propagating. If the beams are thin enough and loads

high enough, one then needs to worry about plasticity effects [20], which might change the

traction-separation law behavior of the bonded adhesive. Two experimental methods to deal

with the effect of shear are presented in Section 4.4.

4.3 Geometric constraints

While some of the geometry effects have been explored in the previous section, all the work

thus far has been at small cohesive-length scales where LEFM has been applicable. Geometric

constraints are generally not a concern when dealing with brittle materials, because the

(crack-tip) singular stresses decay quickly, and the opening and shear displacements drop

off quickly as well. However, as shown in Refs. [26, 28, 92], the stress and displacement

fields take longer to decay at large cohesive-length scales. Recall from Chapter 3 that when

the total bonded ligament length was twenty times the cohesive-length, the stresses and

displacements had become small enough as to be neglected. From Chapter 2, one sees an

instance experimentally of an adhesive with a (mode-I) cohesive-length on the order of a

meter during the course of loading. Such systems would be experimentally impractical if all

testing required bonded joints to have ligaments twenty times (or even ten times) such a

large cohesive-length.

When the cohesive-length is not significantly smaller than all other geometric feature, the

stress field has been shown to become more uniform [26, 28]. This phenonmenon is observed

in Figure 4.4. In both cases (and those not included here), the increase in cohesive-length

scale for a constrained geometry pushes the phase angle toward pure shear. This finding is

similar to the findings of Ref. [26] where a mode-I preferred geometry was pushed towards
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(a)

(b)

Figure 4.3: The effect of the reactionary shear load at the crack-tip. (a) One see the
crack-tip work can be significantly overpredicted if the shear load is not taken into
account, particularly at small larm/llig ratios. (b) With different loads assumed for the
two different calculations, it is not surprising the crack-tip phase angles are different.
The phase angles converge at much smaller larm/llig ratios than the crack-tip work.
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pure opening at large cohesive-length scales.

The findings from Chapter 3 demonstrate how the choice of fillet angle can slightly

change these overall trends. Recall from Figures 3.11b and 3.15 that at small cohesive-length

scales the corner singularity is slightly mode-I dominant, and from Figure 3.14 that at large

cohesive-length scales the two singularities behave the same way because the fine aspects

are swamped. Had a corner singularity been used instead of a crack, this results in a switch

in the phase angle from a mode-I to mode-II preference with an increasing cohesive-length

scale, although these results are not included here.

Apart from changing the type of loading across the interface, a large cohesive-length scale

can also change the magnitude of the reactionary shear load in a constrained geometry. In

Figure 4.5, one sees how the relative shear load can change as one changes the cohesive-

length scale. Furthermore, the calculations are normalized by the horizontal displacement

because the axial load is also changed by the cohesive-length scale. Therefore, the reaction

forces are dependent on not only the geometric features of the specimen, but also the shape

of the traction-separation laws.

From a practical perspective, loading large cohesive-length adhesive joints in this manner

may cause catastrophic failure in constrained geometries. Therefore, while large cohesive-

lengths are beneficial in that it makes joints flaw-insensitive, this may cause sudden, unex-

pected failure in an engineering application and an appropriate safety factor should be used

in design. Furthermore, the results from Chapter 3 extends this result for arbitrary fillet

angles and not just cracks. Experimental support of this claim is provided below.

4.4 Numerical example

Despite the complications of the applied shear load, there are methods of accounting

for its effects. The two that will be considered here involve using the J-integral and a

partial-model. The J-integral method requires a small enough cohesive-length such that the

displacements are negligible across the interface for a valid contour integral. The partial-

model method, on the other hand, allows for non-zero displacements across an interface. Both

require the use of full-field measurement techniques as displacements need to be extracted,

and possibly rotations and curvatures as well.

It should be noted that Ruybalid et. al. [101, 73] developed a similar method for ana-

lyzing geometries in a constrained field-of-view. The method detailed below was developed

independently, and is based off one of the findings in Chapter 2: when dealing with beam-

like geometries, it is best to treat displacements along vertical lines as a combination of a

rotation and extension. The partial model idea works in a manner similar to when one takes
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(a)

(b)

Figure 4.4: Crack-tip phase angle asymptotes for two different ligament lengths as a
function of cohesive-length scale. In (a), the bonded ligament is llig/h = 4 while in (b)
the bonded ligament is llig/h = 40. One observes that the increase in cohesive-length
scale always increases the phase angle in a lap-shear joint with a constrained ligament
length, regardless of that length.
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Figure 4.5: In a constrained geometry the cohesive-length scale, and therefore the shape
of the traction-separation law, can also change the unknown shear load in the single
lap-shear joint. The horizontal displacement is normalized instead of the axial load,
because the magnitude of the axial load is also affected by the cohesive-length scale.
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a “cut” in a free-body diagram: when one cuts away a portion of the specimen, the appro-

priate axial load, shear load, and bending moment (for planar calculations) must be added

to ensure force and moment balance. From variational mechanics, one typyically uses either

Neumann (e.g. load, moment) or Dirichlet (e.g. displacement, rotation) boundary conditions.

The author suggests the use of displacement over load boundary conditions, as displacement

data are the direct output from 2-D (i.e. surface) full-field measurements. Although not

considered here, this same method could be expanded for use in 3-D imaging techniques like

digital volume correlation.

Both methods will be used to analyze a numerical example below. An engineering di-

agram may be found at the top of Figure 4.7, and the lap-shear joint has the following

geometric specifications: a/h = 3, larm/h = 16, llig/h = 8, and ltab/h = 4. Linear traction-

separation laws are used so that the cohesive-length scales remain constant.

4.4.1 Large-deformation J-integral

Fernlund et. al. [90] derived a large-deformation J-integral that takes into account an

applied shear load. For the single lap-shear joint with loads defined in Figure 4.1d and

negligible interface thickness, their expression reduces to:

J =
N2

4Ēh
+
M2

1

Ēh3

(
6− 3M2

2

4M2
1

)
+
N

2
(θ2

1 − θ2
2) + V (−θ1 + θ2), (4.3)

where θ1 and θ2 defined as the beam rotation where the loads are applied along the centroidal

axes of the beam sections. Note that the bending moments are those values at the crack-tip,

and therefore any motion of the beams that would change the moment-arm of the axial load

or shear load needs to be taken into account.

Now, one just needs to accurately measure the different components of the general load-

ing. Assuming the axial load is known from a load cell, above it was mentioned that one

could extract the two bending moments by using full-field measurement data to determine

the curvature of the beams, and then the bending moments. From there, one simply needs to

use moment balance to extract the shear load as a function along the free arm, an example

of which is shown in Figure 4.6a. Assuming one finds a constant shear load, one may be

relatively confident the value is correct.

These load values can then be plugged into the J-integral, Equation (4.3), and a similar

plot of J along the free arm can be plotted. The significance of the data in Figure 4.6b

suggests that one could perhaps extract useful displacement, rotation, and curvature data

for the J-integral about 1h away from discontinuities. Therefore, if a geometry behaves like

a beam, this analysis is worthwhile. Curiously, these findings suggest slightly less stringent
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requirements than St. Venant’s principle [102].

It should be emphasized that if one chooses this approach, one should have a sharp

crack present in the lap-shear joint. The presence of a sharp crack is merely practical: DIC

(or other full-field imaging techniques) correlate with greater confidence at sharp cracks

rather than corners because one is far from an edge. Therefore, while one may be able to

extrapolate the corner displacements from the interface results, the most accurate method

would involve using a crack with a large enough length such that the displacements may be

properly correlated.

The benefit to using this J-integral approach is that it allows one to extract the mode-II

traction-separation law directly, similar to the way the mode-I law was extracted from the

symmetric double-cantilever beam in Chapter 2. For the lap-shear joint, one must assume

mixed-mode loading at a crack-tip in general, and therefore

J = JI + JII , (4.4)

where JI and JII are the mode-I and mode-II components of J , respectively. From there, if

one knows the mode-I law, then one can subtract off the mode-I component and be left with

the mode-II component, JII . Then, one can differentiate the mode-II crack-tip work by the

shear displacements at the crack-tip, δII,◦,

τ(δII,◦) =
JII
δII,◦

, (4.5)

to get the initial portion of the mode-II traction-separation law, τ . Only the intial portion

of the law will be known due to mixed-mode failure, and the mode-II toughness, ΓII , will

need to be estimated using a failure criterion. However, this is a direct method of extracting

the mode-II traction-separation law.

4.4.2 Partial model

Unfortunately, not all systems are brittle enough to allow the use of the J-integral.

If the displacements do not approach zero along an interface (both the normal and shear

displacements for planar problems), then there is no guarantee the J-integral will give the

crack-tip work. Therefore, one must turn to a different method to extract the mode-II

traction-separation law. If one still intends to analyze the lap-shear joint, the author suggests

using the partial-model approach. The same model is used as in the previous section, but

this time the slope of the traction-separation laws is decreased such that ξ̄ = 10, which

results in non-zero shear displacements along the full length of the interface.
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(a)

(b)

Figure 4.6: Measurement of the reactionary shear load V and crack-tip work W◦
using full-field data and axial load from a “load cell”. As mentioned before, treat-
ing the digital data as analog allows one to remove obvious numerical artifacts.
As such, the results above suggest one may use this method to extract the un-
known shear load and J-integral within about h of any edge, such as a crack or
a clamped boundary. The data presented above are for four different load values:
N/Ēh = 0.000148, 0.000299, 0.000529, and 0.000762.
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After the full calculation was complete, displacement data is exported (the same as one

would do for an experiment using DIC). One can then take two vertical planes of displace-

ments (one to the left of a crack-tip and the other to the right of a crack-tip), and implement

these displacement boundary conditions in a separate (partial) lap-shear calculation, as

shown in Figure 4.7. In comparing the calculations in Figure 4.8, it was found the average

difference between the two calculations for the displacment results was less than 1% for the

shear displacement and less than 2% for the normal displacements. It should be noted that

the average percent error in the normal displacements is significantly increased if there is a

change from tension to compression (as is the case here).

When implementing the displacement boundary conditions, it is important to “tie” the

edge displacement conditions so that the beam deforms as one would expect from beam

theory (“plane sections remain plane”). In Refs. [101] and [73], displacements were prescibed

at multiple points along the center of the beams were enforced to provide “DIC” boundary

conditions. In the calculations performed here, two points on a vertical plane were given

prescribed displacements, and then ties were used to ensure the entire plane moved/rotated

as one unit. As seen in Figure 4.8, this was found to be satisfactory. Although not included

in the comparison above, the reaction forces between the full-model and partial-model in

this instance differed by less than 0.6%.

Experimentally, one must balance the desired displacement resolution with the ability to

observe as much of the specimen as possible. Therefore, if one is trying to measure/predict

the cohesive-zone displacements, the field-of-view should be no larger than what allows for

an acceptable displacement resolution. Of course, the closer the partial model is to the

full model, the closer the stress distributions along the arms should be, and the better the

agreement will be between the two partial model and the full model. This was observed in

other numerical examples which are not included here.

If one is simply trying to validate previously-determined traction-separation laws, and

the new geometry of choice is the lap-shear joint, the method is rather straightforward.

One must measure the constitutive properties of the adherends, and then use a full-field

measurement techinque to implement the displacement and rotation boundary conditions,

along with the appropriate measure of uncertainty. An additional benefit is that one need

not worry about extracting the beam rotations and curvatures to extract the shear load.

The task is more challenging if one is trying to extract the mode-II traction-separation law,

but one method of accomplishing this is presented in the next section.
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Figure 4.7: Method for using displacement boundary conditions. Using DIC (or any
other full-field measurement technique), one can extract displacements along two verti-
cal lines of data from the analysis. One can make a partial model of the specimen, and
then implement those displacements as boundary conditions in the numerical model.
Provided one knows the constitutive properties of the adherends, the applied axial load,
shear load, and bending moment will be applied. However, the identical stress distri-
bution will not be implemented, and therefore one should implement the displacement
boundary conditions as far from the edges as possible to minimize these effects. For
the displacements given above, the load is N/Ēh = 0.00074.
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(a)

(b)

Figure 4.8: Comparison of the displacement output of the original full-model lap-shear
joint calculation and the subsequent partial-model lap-shear joint where displacement
boundary conditions were extracted from the full model. Therefore, provided one knows
the constitutive properties, boundary conditions, and traction-separation laws, the two
results are nearly indistinguishable.
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Figure 4.9: Example mode-I traction-separation laws with a characteristic range of
strength and toughness values for the adhesive used in this study. The same adhesive
(Dow Betamate® 73326M/73327M) from Chapter 2 was used, and this spread of values
was determined using the method presented there.

4.5 Experimental validation

Having laid the appropriate groundwork above, one may now proceed to experimental

validation. The adhesive considered is Dow Betamate® 73326M/73327M, the same one

tested in Chapter 2. While the specifics of only one test were considered there, multiple

samples were run on the symmetric steel DCB system. From that testing, a characteristic

range of mode-I traction-separation laws determined from these previous tests can be found

in Figure 4.9.

It should be noted that in post-mortem analysis, there were some small patches of darker

adhesive that may have been unmixed portions of one of the components or due to voids.

These small portions may have resulted in increased variability in the adhesive properties
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Figure 4.10: Engineering diagram of the composite-steel lap-shear joint analyzed in this
chapter. All dimensions are in millimeters. The fibers in the composite are aligned in
the 1 and 3 (out of the page) directions.

(approximately 10-15% variation in the peak strength and toughness). Furthermore, no

residual stress analysis was performed. These shortcomings might have increased the vari-

ability in the adhesive. However, because the testing was performed at approximately the

same curing time (∼ 10 days after mixing) and clamping method (binder clips), any residual

stress effects were expected to be similar. As explained below, the same adhesive mixing

and curing methodology was performed in the following testing.

From the analysis done in Chapter 2 for this system, one knows that the adhesive has

a large (mode-I) cohesive-length. This suggests the large-deformation J-integral approach

will not be valid because the cohesive-zone displacements do not go to zero, and this will be

shown to be the case below. Therefore, the numerical partial-model method will be used to

extract the mode-II traction-separation law.

4.5.1 Experimental methods

The validation of the single lap-shear joint partial model will take place on a composite-

steel joint, and the engineering diagram of the specimen is given in Figure 4.10. The compli-

cations due to fracture along a dissimilar-material interface will be considered in Chapter 5.

For now, the focus will be on how one analyzes the single lap-shear geometry using full-field

measurement techinques.

When one uses numerical models, one needs to make sure the material constitutive prop-

erties are accurate. As mentioned in Chapter 2, a tensile test was run on the 4130 steel

used had an elastic modulus of 204± 8 GPa and Poisson’s ratio of ν = 0.32± 0.07, and had

a yeild strength of 340 MPa [75]. The G-10 Garolite composite’s material properties were

measured to be: E11 = E33 = 24.5 ± 2.0 GPa, E22 = 11.8 ± 0.9 GPa, ν12 = 0.44 ± 0.21,

ν13 = 0.15± 0.11, ν23 = 0.23± 0.10, G12 = G23 = 3.7± 0.6 GPa, and G13 = 4.8± 0.2 GPa.

Post-mortem inspection of the specimen showed no inelastic deformation on the composite,

and therefore only the elastic constants were determined. A plane-stress assumption was

used for all calculations [3, 16]. The fibers in the composite are in the horizontal direction
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and through the thickness.

The composite beams were measured to have a thickness of 3.37 ± 0.02 mm, while the

steel beams had a thickness of 3.15 ± 0.01 mm thickness. Beams of each material were

cut to a length of approximately 53 mm, and then milled to a width of 25.9 mm. The

bonding surfaces of each beam were polished to a level of 100 grit, after which a layer of

the two-part epoxy (Dow Betamate® 73326M/73327M) was applied to the surface of the

composite beam. Glass spheres of 250 micron diamter were sprinkled onto the adhesive layer

to ensure uniform thickness. The steel beam was then placed on top and then aligned. The

specimen was clamped using binder clips for two days. Afterwards, the clips were removed

and the adhesive was allowed to cure for another week. The excess, extruded adhesive was

removed, and optical observations determined the adhesive thickness to be 260±20 microns.

Complementary beam sections of each adherend were bonded to the lap-shear joint (as shown

in Figure 4.10) to ensure there was no rotation of the lap-shear joint within the wedge grips

used for testing.

The side of the lap-shear joint was polished using 100-grit sandpaper followed by 600-grit

sandpaper. A white basecoat was then applied, followed by a black speckle pattern using

an IwataTM CM-B airbrush. Testing was performed within one day of applying the speckle

pattern. Mechanical testing was performed using a servo-hydraulic test machine (MTS 858

MiniBionix IITM), and the nominal cross-head displacement rate was 0.17 mm/min. For

DIC analysis, a single 5-megapixel GrasshopperTM camera was used to record images at a

frame rate of 2 Hz. In the images, a pixel had a width of approximately 17 microns. The

commercial software Vic-2DTM was used for local, subset-based DIC analysis. A subset-size

of 27 and step-size of 3 were used for the analysis. As mentioned in Chapter 2 when analyzing

the double-cantilever beam specimen, the single lap-shear joint is a bonded geometry made

up of two beams. As such, deformation along the beams will be treated as in an Euler-

Bernoulli beam where plane sections remain plane. This approach once again proved to be

useful in removing numerical artifacts.

For a nice geometry like the symmetric double-cantilever beam under elastic deformation,

there exist multiple ways to extract the mode-I traction-separation law [70, 71, 43, 44, 72,

73, 74]. In geometries that are not as analytically robust, such as the T-peel or edge-notched

flexure specimens, comparisons are often made to load-displacement curves to determine

or validate traction-separation laws [2, 23, 103, 21, 42, 104, 16]. Therefore, the mode-II

traction-separation law will be determined by using the appropriate numerical-partial models

and fitting the results from the numerical load versus centroidal-axis displacement data to

the experimental results. The comparison of full-field measurements (e.g. normal and shear

cohesive-zone displacements) with the numerical predictions was made only after the mode-
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II traction-separation law was found by fitting numerical results to the load-displacement

curve.

Figure 4.11 shows the load versus centroidal-axis displacement curve, where the centroidal-

axis displacement is defined as the extension of the line between two points located 31.5 mm

apart and specified in Figure 4.10. Load points “A” through “E”2 will be considered in

more detail during the analysis of this geometry. The extension of this line-segment was

used in order to ignore the effects of rigid-body rotation, which will later be shown to be im-

portant for the agreement between the experimentally-measured and numerically-predicted

cohesive-zone displacements. Inscribed on the plot are five points that will be considered

more-fully throughout the analysis, along with the estimated mode-II cohesive-length scale

ξ̄II at each point.3 The lap-shear joint failed catastrophically instead of through stable

crack-propagation.

An image of the specimen is shown in Figure 4.12. The two locations of the boundary

conditions are shown, which will be necessary for the implementation of the numerical partial-

model. The five lines along the interface that will be considered when analyzing the interface

displacements.

Before comparing the experimental results with the numerical calculations, one first needs

to accurately extract the boundary conditions. From Figure 4.12, boundary conditions

along the two specified lines are extracted during the entire loading. Example horizontal

displacment boundary conditions are shown in Figure 4.13 for the five points specified in

Figure 4.11. Close observation of the extracted displacements show a fine structure, which

is likely the result of the DIC interpolation functions. It should be noted that if one simply

used standard DIC rotation output from the commercial software, it might appear that there

exist non-uniform rotations within the beams. This ought to be avoided, however, because

one can see that the beam really is deforming in a uniform fashion (as one would expect

from beam theory) if one looks at the data as a whole instead of only at discrete points.

Boundary conditions are implemented in the partial-models by specifying displacement

pairs at two points on each edge, and then forcing the entire edge to move in a uniform fashion

(using a “tie” constraint in Abaqus). Affine fits (shown in Figure 4.13), are used to determine

the displacements implemented in the numerical calculations (including a reasonable amount

of experimental uncertainty). The points at which the displacement boundary conditions are

2These load points are independent from load points “A” through “E” defined in Chapter 2.
3The composite elastic modulus [27], Ē∗ = 43.7 GPa, was determined using the fiber-direction elastic

modulus E11 = 24.5 GPa and the steel elastic modulus of 204 GPa. The left-hand side corner displacement,
as defined in Figure 4.10, was the largest (shear) displacement and was used to determine the (mode-II)
work done at the singularity using the traction-separation law in Figure 4.14b. The characteristic length
was taken to be the smaller beam thickness of 3.15 mm. This value is an estimate, however, because DIC
correlation limitations did not allow displacements to be taken precisely at the corner.
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Figure 4.11: Load vs. centroidal-axis displacement plot of the composite-steel lap-shear
joint analyzed here. The centroidal-axis displacement is defined as the extension of the
line connecting the two dots in the engineering diagram, which has been inscribed on
the plot for convenience. The estimated mode-II cohesive-length scales inscribed on
the plot are generated using the left-hand side corner displacement, the work generated
using the mode-II traction-separation law in Figure 4.14b, and the reduced modulus
Ē∗ = 43.7 GPa [27], assuming the composite’s elastic modulus is 24.5 GPa and steel’s
elastic modulus is 204 GPa. As the steel beam was slightly thinner than the composite
beam, the smaller thickness was taken to be the characteristic length.
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Figure 4.12: Image of the composite-steel lap-shear joint with the origin used for all
analyses. Inscribed on the image are the locations of the two points where boundary
conditions are measured in order to be implemented in the numerical model; note that
the boundary condition lines are located at the two points from which the centroidal-
axis displacement is measured, as noted in Figure 4.10. Five characteristic lines along
the interface are also specified when analyzing the cohesive-zone displacements.

applied are located at the top and bottom of the vertical lines of data shown, approximately

0.3 mm from the top or bottom edge of each beam.

Having all the necessary components, it is now time to use the different parts in order

to back out the mode-II traction-separation law. As explained in Section 4.4.2, a numerical

partial-model was made matching the lap-shear specimen’s dimensions, including the loca-

tions of the applied boundary conditions. The entire adhesive layer was replaced by cohesive

elements, with a range of mode-I traction-separation laws characterized by Figure 4.9. It was

assumed that the compressive mode-I law from Chapter 2 adequately described the adhesive

layer, and the reader will see below this appears to be valid. Many numerical calculations

were run along the full length of the experimental curve in Figure 4.14a. Note that only

the mode-II traction-separation law was varied in the numerical calculations. The numerical

predictions are presented by the hatched data, and one sees good agreement between the nu-

merical results and the experimental data. The experimental-numerical agreement appeared

only to be limited by how well one can approximate a curve by a 6-part piecewise-linear

function. The extracted mode-II law is in Figure 4.14b. The peak strength was found to be

7.4 MPa and the mode-II toughness was 1800± 50 J/m2. The uncertainty in the toughness

is due to the range of mode-I traction-separation laws.
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(a)

(b)

Figure 4.13: The relative horizontal displacements applied at the (a) composite and
(b) steel beam boundary conditions for the five data points specified in Figure 4.11.
Similar plots could be generated for the vertical displacements. The locations of where
the displacement boundary conditions are extracted is shown in Figure 4.12. The affine
fits for each line allow the reader to observe the fine structure in displacements which
appear to be from the interpolation functions used by DIC.
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(a)

(b)

Figure 4.14: Using the load vs. centroidal-axis displacement plot in (a), one can modify
(b) the mode-II traction-separation law to get optimal numerical-experimental agree-
ment. Only the mode-II cohesive law was varied to determine this agreement. One
sees the piecewise-linear law adequately reproduces the experimental results, although
near the end there exists a large uncertainty. This uncertainty is due to the mode-I
traction-separation laws.

80



4.5.2 Quantitative replication

Having extracted the mode-II traction-separation law from the macroscopic deformation,

it is now time to validate the law. Previously, one would be forced to measure the mode-I/-II

laws separately, and then consider a separate system to validate the measured laws. One

would also need to run enough tests so the range of values is statistically valid. However,

the use of full-field deformation techniques allows one to separately measure and validate a

traction-separation law on the same specimen, as was done in Chapter 2 for the DCB.

The first validation to be done is the comparison of the beam rotations. Simplistically,

each numerical calculation is a boundary-value problem, and if the beam rotations do not

match one would not expect the cohesive-zone displacements to match either. One can see

in Figure 4.15 there is good agreement between the numerical predictions and experimental

results. In both the composite and steel beams, the numerical predictions reproduce the

shape of rotation curves.

While it is necessary to find good beam rotation agreement, the comparison of interest

using the cohesive-zone model is the interface displacements. In Figure 4.12, five lines were

marked, and the horizontal displacements for those lines at load-point “D” are found in

Figure 4.16. These data are the raw displacement data from the DIC output and have not

been corrected for rigid-body rotation.

Just like in the DCB results, one sees two slope discontinuities in each line corresponding

to the transition between adherend and adhesive and adhesive to adherend. There was also

a slight misalignment (less than 1◦) between the camera and specimen, and this needed to be

accounted for as well when calculating the cohesive-zone displacements. The use of subset-

based DIC means that the sharp transition between adhesive and adherend is smoothed out:

the adhesive layer was optically determined to be 260±20 microns, while the interface region

is larger than 600 microns. This requires that the displacements be measured within the

adherends just outside of the data smoothing.

As with the symmetric DCB specimen, the adherends are substantially stiffer than the

adhesive4 and so the deformation is concentrated within the adhesive layer rather than the

two adherends. It is therefore assumed that the deformation occurring within the adherends

is negligible compared to the adhesive layer.

While the rigid-body rotation corrections were negligle for the normal displacements in

the symmetric DCB, here they cannot be ignored because the beam rotations are larger

and one needs to worry about the interfacial shear displacements. Therefore, the rotation-

4The adhesive is quoted [77] to have an elastic modulus of 870 MPa. The G-10 Garolite is over 20 times
stiffer than that in the fiber direction, and the steel is two orders of magnitude stiffer.
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(a)

(b)

Figure 4.15: The beam rotation agreement along the (a) composite and (b) steel
beams for the five data points specified in Figure 4.11, with the experimental results
displayed as dashed lines and numerical predictions in the hatched regions. One sees
the numerical calculations satisfactorily reproduce the experimental data, including the
shape of the different curves for the composite and steel beams.
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Figure 4.16: Five characteristic lines along the interface, specified in Figure 4.12, have
their (relative) horizontal displacements plotted against their vertical location for load
point “D”. Note that no correction for rigid-body rotations have been applied to this
data, only a shift in the horizontal displacements. The transition between the adherends
and adhesive layer, the “interface region”, is smoothed out due to the use of local,
subset-based DIC. This requires displacements be taken outside of the adhesive layer
in the adherends, which undergo much less deformation. The rotation of the adherends
can be seen in the data, and this must be corrected when calculating the cohesive-zone
displacements.
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corrected shear displacements are

δII = ∆u′cos(θ) + ∆v′sin(θ) + t sin(θ), (4.6)

and the rotation-corrected normal displacements are

δI = −∆u′sin(θ) + ∆v′cos(θ) + t (1− cos(θ)), (4.7)

where ∆v′ and ∆u′ are the uncorrected normal and shear displacements across the inter-

face, and t is the thickness of the “interface region” (the distance over which the interface

displacements are measured and not the adhesive layer). θ is the average rotation of the top

and bottom beams where the normal/shear displacements are being corrected.

The use of the average rotation of the two beams is nuanced, so additional discussion

is warranted. In the lap-shear joint, whether the one analyzed here or other systems, the

top and bottom beams will not necessarily have the same beam rotation, even if they are

made of the same material. This is especially true when considering large cohesive-lengths.

Due to this difference in beam rotation, it does matter what rotation value is used because

it depends on where one measures the (uncorrected) cohesive-zone displacements. If the

top reference point for the cohesive-zone displacements is farther into the adherend than

the bottom reference point, then the measurement is more biased towards the top beam’s

rotation. Therefore, one needs to be aware of this rotation bias when measuring the cohesive-

zone displacements.

It is worth noting that the commercial software used will not automatically correct for

rigid-body rotations. Furthermore, even if rotations were exported from the DIC software

and those were used to make rigid-body rotation corrects, there is no guarantee the rotations

would be correct. Recall that it has already been observed standard DIC software differen-

tiates data at discrete points, and this may result in increased noise. Rigid-body rotation

correction would also be required for correct strain computation, but that is not a focus of

this work.

The DIC software used here has a uniform subset across the entire region of interest.

Therefore, the displacement smoothing should be uniform across the specimen and not be

biased towards the top or bottom beams. Furthermore, the epoxy is compliant enough such

that nearly all the deformation that occurs happens in the adhesive layer rather than in the

adherends. Therefore, the displacement smoothing should occur an equal distance within

each adherend. Because the cohesive-zone displacements were taken at regions just outside

of the displacement smoothing without any bias towards one adherend or the other, the

author used the average rotation from the beams.
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Having discussed the nuance of the rigid-body rotation correction, one can see the com-

parison of the experimentally-measured cohesive-zone displacements with the numerical pre-

dictions from the cohesive-zone model. Overall, one sees good agreement between the nu-

merical predictions/experimental results in both the normal (Figure 4.17a) and shear (Fig-

ure 4.17b) displacements. The numerical predictions do a fair job of reproducing the shape of

the experimental curves. The five experimental data points from Figure 4.16 are reproduced

on Figure 4.17b, after correcting for rigid-body rotations. Due to the satisfactory agree-

ment found between the numerical predictions and experimentally-measured cohesive-zone

displacements, the extracted mode-II cohesive law is considered validated.

Using the traction-separation law from Figure 4.14b, one can use this law along with the

accompanying mode-I laws to determine a phase angle. These experimental results are shown

in Figure 4.18, with phase angle asymptotes shown from both the LHS and RHS corners,

as defined in the engineering diagram (Figure 4.10). The phase angles are predominantly

mode-II, which one would expect from the numerical results in Figure 4.4. There is perhaps

a bit of a surprise that the phase angle at both corners becomes more mixed-mode with

increased loading, instead of shifting towards pure shear. However, one recognizes from the

numerical results at the end of Chapter 3 that the phase angle asymptote is dependent on the

shape of the traction-separation law. Even though DIC challenges limit correlation as one

approaches the corner, this appears to be the first experimental results showing the phase

angle plateau at a singularity.

The findings of Ref. [27] demonstrate that the phase angle changes during failure for non-

linear traction-separation laws, and this is experimentally observed here. Ref. [27] showed, at

small cohesive-length scales, the second Dundurs parameter5 β̄ = −0.2 shifted the crack-tip

phase angle about 10◦. Both corner singularities are far from the stiff, low-load LEFM phase

angle value of −49.1◦. This comparison is skewed, however, because the cohesive-length

scales (Figure 4.11) are much larger than when LEFM is usefully valid.

Another difference between the two is the use of a corner instead of crack for the singu-

larity in comparing the phase angles. Comparison of results from Figure 3.11 suggest that

the small-CLS phase angle plateaus are smaller (mode-I preference) for the corner, which

would result in an even larger phase angle shift between the two results. The observation of

two different phase angle plateaus is not unexpected due to specimen asymmetry.

Overall, the numerical/experimental agreement throughout the entire numerical partial-

model analysis in the load-displacement curve, beam rotations, and cohesive-zone displace-

ments was satisfactory. The numerical partial-model approach is therefore considered ex-

5For the measured composite properties, using Ē1 ≡ E11 and ν1 ≡ ν12, the two Dundurs parameters have
the values ᾱ = −0.79 and β̄ = −0.21.
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(a)

(b)

Figure 4.17: The (a) normal and (b) shear displacements along the adhesive interface
for the five data points specified in Figure 4.11, with the experimental results displayed
as dashed lines and numerical predictions in the hatched regions. As with the beam
rotations in Figure 4.15, the numerical replication of the interface displacements is
satisfactory. Less data was plotted in (a) because the normal displacements are so
close together.
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(a)

(b)

Figure 4.18: The phase angle measured from the (a) left corner and (b) right corner.
The phase angles were calculated using the range of mode-I traction-separation laws,
Figure 4.9, and the mode-II law extracted in Figure 4.14b. The two different phase angle
asymptotes are not unexpected, as the two different adherends cause the anti-symmetry
of the system to be lost. This appears to be the first experimental results showing the
phase angle plateau at a singularity. h2 is the thickness of the steel adherend.
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perimentally validated. Additional experimental analyses could be run to extract a range of

mode-II traction-separation laws, but that has yet to be accomplished.

A final word should be stated concerning the use of a continuum model. In Chapter 2,

the CZM results were good but the elastic-plastic continuum results were found to be better,

as it was able to account for the in-plane tension experienced by the adhesive during loading.

Unfortunately, this was only the case in the case of nominally pure mode-I loading. In this

case, when one deals with mixed-mode loading the mode-I or mode-II laws cannot simply

be converted to a uniaxial-tension stress-strain relation with a von Mises yield criterion as-

suming J2-flow theory. The load-displacement curves do not match, nor do the interface

displacements. Even when the numerical load-displacement curve was fit to the experimen-

tal results, the interface displacements did not match. A continuum model might work if

one combined the displacements into a cohesive-zone model formulation where an effective

displacement was used [14, 43], but it was beyond the scope of this work to consider that

extension.

4.6 Summary

The single lap-shear joint under general loading has been experimentally and numerically

explored in this chapter. It was demonstrated that the neglect of the reactionary shear load

resulting from “clamped” boundary conditions can result in incorrect crack-tip work values,

particularly for stubby-armed lap-shear joints. Furthermore, the relative shear load was

shown to be dependent on the geometry. Increasing the cohesive-length scale in a constrained

lap-shear joint was shown to push delamination towards pure shear deformation, and can

also change the relative shear load for a given geometry.

Two methods were provided for analyzing the single lap-shear joint with an applied shear

load: the large-deformation J-integral method and the numerical partial-model method. The

former is useful in that one can experimentally measure the JII versus crack-tip shear dis-

placement curve and back out the initial portion of the mode-II law by direct differentiation.

However, this method is limited because it requires a small enough cohesive-length such that

the interface displacements to go to zero to ensure a valid J-integral. The numerical partial-

model approach has no such limitation, but may require a brute-force method to extract the

initial portion of the mode-II traction-separation law. Because the single lap-shear joint typ-

ically has mixed-mode loading, the downside to both methods is that only the initial portion

of the mode-II traction-separation law can be determined and the latter portion (including

the shape of the law and the mode-II toughness) must be estimated.

The numerical partial-model approach was experimentally verified. It was shown one

88



could extract the appropriate boundary conditions from DIC, and these could be imple-

mented in numerical calculations for satisfactory predictions of both the beam rotations and

cohesive-zone displacements. To the best of the author’s knowledge, this is the first instance

of someone using experimentally-determined traction-separation laws to predict cohesive-

zone displacements in the lap-shear joint and the first experimental observation of a phase

angle plateau at a singularity.
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CHAPTER 5

On the Deconvolution of Mixed-Mode Fracture

5.1 Overview

At the end of Chapter 4, the numerical partial-model method was validated on a composite-

steel lap-shear joint. Up until now, failure has only been considered along a bonded-interface

with the same material on each side. Now, it is time to relax that constraint and consider the

effects of fracture along a dissimilar-material interface. This is particularly relevant because

adhesives are often chosen for their ability to bond two different materials, and therefore it

is important one can accurately predict their failure.

The first analytical work on fracture along a dissimilar-material interface was Williams [105],

where he found an oscillatory stress field bounded by a previous elasticity solution [106].

One method around this was the use of an interface with uniform or varying elastic mod-

ulus between the bulk adherends to remove this oscillatory field [107]. As another possible

fix, Comninou [108, 109] provided some solutions to the problem by allowing crack closing

(i.e. contact) at crack-tips. Dunders [25] observed that one could reduce the non-dimensional

parameters from three to two along a dissimilar-material interface for two isotropic materials.

For such a system, as defined in Figure 5.1, the first Dundurs parameter is

ᾱ =
Ē1 − Ē2

Ē1 + Ē2

, (5.1)

and the second is

β̄ =
Ē1(1− ν2)− Ē2(1− ν1)

2(Ē1 + Ē2)
=

1

4
(ν1 − ν2 − ᾱ(−2 + ν1 + ν2)), (5.2)

where Ē = E in plane stress and Ē = E/(1 − ν) in plane strain, where ν is Poisson’s

ratio. For the composite-steel system used to validate the numerical partial-model method

in Section 4.5, recall that the experimentally-measured G-10 Garolite composite’s material
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Ē1, ν1

Ē2, ν2

Figure 5.1: A generic bi-material interface made of two isotropic materials with elastic
constants Ē1 and ν1 for the top half, and Ē2 and ν2 for the bottom half.

properties were E11 = E33 = 24.5 ± 2.0 GPa, E22 = 11.8 ± 0.9 GPa, ν12 = 0.44 ± 0.21,

ν13 = 0.15± 0.11, ν23 = 0.23± 0.10, G12 = G23 = 3.7± 0.6 GPa, and G13 = 4.8± 0.2 GPa,

while the 4130 steel was Ē = 204 ± 8 GPa and ν = 0.32 ± 0.07. Letting Ē1 ≡ E11 and

ν1 ≡ ν12, the Dundurs parameters for this system are ᾱ = −0.79 and β̄ = −0.21.

In practice, there is some finite thickness of a transition from one adherend to the other,

whether it be an adhesive layer [2, 3] or a weld [21]. This is a reason one uses the cohesive-

zone model, and is similar to the elastic solution method presented in Ref. [107]: cohesive

failure of an adhesive where the crack travels through an isotropic material, or a material

of varying moduli when a crack propagates through a weld. It is within this framework

that one sees an additional benefit of CZM: the traction-separation laws govern the interface

separation and the oscillitory stress and displacement fields are removed [27]. It was shown

in Ref. [27] that a nonzero β̄ shifted the phase angle from the homogenous-material LEFM
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prediction. Their findings also showed that the shape of the traction-separation law can

impact the phase angle asymptote as loading evolves, which was experimentally observed in

Chapter 4.

Although the cohesive-zone model does not have to worry about oscillatory singular fields,

it has its own challenges. In private communication, under the assumption of potential-

based [110] traction-separation laws Thouless [111] demonstrated for mixed-mode loading

that, generally, one can only measure the mode-I (mode-II) law if the mode-II (mode-I) law

is known. Using the J-integral, this leads to1

σ(δ∗I , δ
∗
II) =

dJ

dδI,◦
|δI,◦=δ∗I ;δII,◦=δ∗II

− τ(δ∗I , δ
∗
II)
dδII,◦
dδI,◦

|δI,◦=δ∗I ;δII,◦=δ∗II
, (5.3)

and

τ(δ∗I , δ
∗
II) =

dJ

dδII,◦
|δI,◦=δ∗I ;δII,◦=δ∗II

− σ(δ∗I , δ
∗
II)

dδI,◦
dδII,◦

|δI,◦=δ∗I ;δII,◦=δ∗II
, (5.4)

Where δ∗I and δ∗II are the particular normal and shear crack-tip displacements of interest,

respectively. Equations 5.3 and 5.4 can be reformulated into the matrix-vector system of the

form Ax = b, and by dropping where the values are evaluated this becomes:(
1 δII,◦/δI,◦

δI,◦/δII,◦ 1

)(
σ

τ

)
=

(
dJ/dδI,◦

dJ/dδII,◦

)
. (5.5)

Note that for a given experimental system, it is not unreasonable to assume one is able to

measure J and the normal/shear crack-tip displacements. Without loss of generality, one

can define y ≡ δII,◦/δI,◦ and see from(
1 y

1/y 1

)(
σ

τ

)
=

(
dJ/dδI,◦

dJ/dδII,◦

)
(5.6)

that A is singular; therefore, one is dealing with a system with infinitely many solutions.

When dealing with a crack in a homogenous system (or an adhesive layer surrounded by

homogenous adherends), there is an easy way around this cohesive-law coupling: one simply

chooses specimen geometries that are nominally pure mode-I [2, 42] and pure mode-II [23, 16]

such that the normal and shear cohesive laws can be separately determined. However, the

particular challenge for cracks along a dissimilar-material interface (with β̄ 6= 0), is that

the fracture is inherently mixed-mode and there is no mathematical way to separate them.

1While these results are derived from the assumption where the normal and shear stresses each depend
on both the normal and shear displacements, one sees that removing this dependence doesn’t change the
convolution.
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Knowing that each interface must be individually characterized, one runs into the conundrum

that one cannot know one cohesive law without the other, and yet the fracture is inherently

mixed-mode.

Wu et. al. [43, 112] developed methods of extracting mixed-mode traction-separation

laws. In Ref. [43], a single geometry is used (the end-loaded split specimen) is used for

mode extraction and the phase angle is varied through changing the adhesive thickness.

The Abaqus implementation of the cohesive-zone model was used, which uses an effective

displacement and stress, and has (in some versions) been shown [110] to be path dependent.

In Ref. [112], the deconvolution is limited to those systems loaded using the edge-notched

flexure (ENF) or end-loaded split (ELS) specimens2 where one assumes a clamped geometry

at the end away from the crack. This may or may not happen in practice, particularly for

the ENF geometry which is often loaded using a three-point bend jig [23, 16]. In the present

work, no such geometric assumptions are made, and the findings may be expanded to any

geometry using a measured load-displacement curve, including the edge-notched flexure and

end-loaded split geometries.

It should be noted that during the write-up of this manuscript, after the experiments and

analyses were complete, it was observed that Pinto et. al. [114] extracted traction-separation

laws using different adherends/methods: for mode-I, using bulk adhesive properties and a

toughness from a DCB with steel adherends; for mode-II, a fitting procedure of the mode-

II cohesive-law using a block-shear test with polyethylene adherends. This cohesive-law

combination was then used to predict failure of single lap-shear joints with the similar and

different adherends. For some combinations of adherends, aspects of specimen failure were

able to be adequately reproduced. The authors’ did not appear to realize the significance of

their observation that there was no guarantee the approach would be valid/applicable.

5.2 Experimental deconvolution

A brief review of Section 4.5 is given below. The way around this inherent mixed-mode

challenge was to assume the range of mode-I traction-separation laws extracted from the sym-

metric steel system adequately described the mode-I cohesive-failure along the composite-

steel interface because both systems had crack propagation within the adhesive layer. Bound-

ary conditions for the numerical partial-models were extracted from the geometry using

DIC, with an appropriate measure of experimental uncertainty. With the mode-I cohe-

2Ref. [112] also varied one of the adherends throughout the testing in order to obtain wider range of
(nominal) phase angle, and one wonders if some of the experimental scatter in the measurements might be
due to varying the second adherend as opposed just the manufacturing variability of the adhesive. One also
wonders how their choice of length scale affected the range of phase angles [113].
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sive laws “known”, the mode-II traction-separation law was manipulated until satisfactory

agreement was found between the numerical predictions and experimental results in the

load-displacement data. As an intital check, the experimental beam rotations were found to

be in good agreement with the numerical predictions. The normal and shear cohesive-zone

displacements were extracted using a method similar to that in Chapter 2, whereby the

cohesive-zone displacements were measured just outside of the “interface region” caused by

subset-based DIC. It was necessary to correct these displacements for rigid-body rotation for

an accurate comparison to the numerical results, noting that the rotation correction needed

to be done locally along the interface because the two beams did not rotate in unison. Fol-

lowing the rotation correction, the cohesive-zone displacements were found to have adequate

agreement with the numerical predictions, and the traction-separation law was considered

validated. The resulting traction-separation laws also allowed one to experimentally measure

the phase angle along the interface.

5.3 Limitations and possible extensions

One method of extracting the mode-II traction-separation law has been presented above

that is independent of the choice of geometry. It was observed during the experiments

of the symmetric steel DCB experiments, the composite-steel lap-shear joint, and other

geometries that are not presented here that the two-part structural epoxy (Dow Betamate®

73326M/73327M) nearly always failed via cohesive-failure (i.e. failure within the adhesive

layer) regardless of the specimen geometry. Had the failure along the adhesive interface

switched between cohesive-failure and adhesive-failure (failure between the adhesive layer

and adherend), one could not assume the failure modes have similar fracture properties [2, 3].

Additionally, even though cohesive-failure occurred in both the symmetric steel system and

the composite-steel system, there was no guarantee the mode-I traction-separation laws were

equal as the adherend choice might have affected the adhesive’s failure properties.

Unfortunately, the deconvolution method presented here does not address every issue.

There may exist instances where the adhesive is bonded to different adherends and results

in the case where the adhesive-failure (or cohesive-failure) is different than was previously

characterized. In this instance, one is returned to the original problem: linear elasticity

demonstrates that the normal/shear components are inherently coupled, and the cohesive-

zone model requires knowledge of one traction-separation law to measure the other in a

mixed-mode scenario.

If such a situation arises, one must consider a more general approach. It has been shown

previously that load-displacement curves can be used to adequately determine traction-
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separation laws [2, 23, 103, 21, 42, 104, 16]. Therefore, for a more general approach, perhaps

two (or more) geometries need to be tested, using at least one mode-I dominant and mode-II

dominant geometries: perhaps the double-cantilever beam and the lap-shear joint or edge-

notched flexure specimens3. By running multiple trials of each geometry, one can then run

numerical calculations (partial models or full models) and begin fitting the numerical load-

displacement curves from different mode-I and mode-II laws to the experimental results.

Upon finding the range of acceptable traction-separation laws that fit the (far-field) experi-

mental results, one could then consider data fitting to individual specimens and comparing

the cohesive-zone displacements.

One challenge in Section 4.5 was the fitting of a piecewise-linear function to a smooth

curve. One solution to this might be to increase the number of segments so the lines do a

better job approximating a curve. The downside to this improvement is that the numeri-

cal/experiment matching would become more tedious and time-consuming, and an optimiza-

tion algorithm may need to be implemented to speed up the process [116, 117].

5.4 Summary

The constrained field-of-view/numerical partial-model method was validated using a

composite-steel lap-shear joint in Chapter 4; however, the significance of this traction-

separation law extraction is more than just the validation of analyzing the single lap-shear

joint. This result provided an initial method demonstrating how one may deconvolute the

inherently mixed-mode fracture along a dissimilar-material interface. Furthermore, this is a

general method that is not constrained to only a particular geometry. A general method is

proposed as to how one would tackle the problem of mixed-mode deconvolution in general,

and this is a potential future project.

3Theoretically, the ENF specimen experiences pure shear at the crack-tip for arms of equal width and
the same isotropic material [115]. The specimen also might be better for dealing with adhesives with a large
cohesive-length because only one crack is present in the geometry, as opposed to two cracks/singularities in
the single lap-shear joint.
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CHAPTER 6

Conclusions

6.1 Summary

The analysis of the double-cantilever beam in Chapter 2 set the stage for more quanti-

tative experimental analysis using digital image correlation. Numerous journal articles have

been written about the DCB, yet none of the considered using full-field measurement ca-

pabilities to independently measure the mode-I traction-separation law and then compare

the experimentally-measured cohesive-zone to numerical predictions. The standard beam

theory assumption that “plane sections remain plane” when considering the deformation of

beam-like geometries calls for the analog treatment of digital data, and this allows one to

readily remove numerical artifacts. Such analyses allowed for the determination of the root

rotation and elastic modulus, in addition to measuring the beam rotations and shear strain.

The next geometry to be considered was the single lap-shear joint in Chapter 3, with a

varying fillet angle to determine the effect of different singularities. The subsequent numerical

calculations and analyses gave a theoretical reason to the experimental observation that

failure in lap-shear joints is (usually) independent of the presence or absence of a crack:

as one increases the cohesive-length scale, the work done at the singularity approaches the

value for that of a sharp crack. In the case of a corner, it just so happens that the work

done at the singularity is close enough to the crack-tip value (at cohesive-length scale values

where LEFM is a reasonable approximation) that any differences could be explained away

as manufacturing variability. The agreement only gets better as one increases the cohesive-

length scale. It was also found for non-crack singularities that both the cohesive-length scale

and the shape of the cohesive laws determined the phase angle plateau.

Chapter 4 also analyzed the single lap-shear joint, but this time accounted for the un-

known reactionary shear load required for clamped geometries and looked at geometric con-

straints. The shear load was found to be dependent on the cohesive laws and specimen

geometry. Increasing the cohesive-length of the interface in a specimen pushed deformation
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towards pure shear along the entire interface. Two methods for analyzing the lap-shear joint

were demonstrated on a numerical model: the large-deformation J-integral and the numeri-

cal partial-model. The latter method was experimentally validated using the same adhesive

from Chapter 2.

The experimental validation of the lap-shear geometry employed many of the same tech-

niques that were used in Chapter 2: enforcing “plane sections remain plane” and the ana-

log treatment of digital data. In exploratory numerical analyses, it was observed that the

lap-shear joint was sensitive to boundary conditions, and therefore it is necessary to use

a full-field measurement technique like DIC to extract them. Unlike the symmetric DCB,

the lap-shear joint underwent mixed-mode loading and the rigid-body rotation correction

was vital for the appropriate measurement of cohesive-zone displacements. With satisfac-

tory agreement between the numerical predictions and experimental results of the beam

rotations and cohesive-zone displacements, the numerical partial-model approach was con-

sidered validated.

The challenges of fracture along a dissimilar-material interface were considered in Chap-

ter 5, along with the significance of the mixed-mode deconvolution that took place in Chap-

ter 4. For a dissimilar-material interface the fracture is inherently mixed-mode, and in

mixed-mode loading one must know one traction-separation law in order to extract the

other. It was determined that the range of mode-I laws found in the symmetric steel DCB

from Chapter 2 was an adequate measure of the mode-I cohesive laws for the composite-steel

interface. This information was then used to successfully extract the mode-II cohesive-law by

fitting the numerical results of the load-displacement curve to the experimental data. With

the satisfactory agreement between the experimental beam rotations and cohesive-zone dis-

placements and the numerical predictions, this mixed-mode deconvolution was considered a

success.

In the experimental analysis of beam-like geometries, one expects that “plane sections

remain plane” from standard beam theory. Put in the broader context of the DIC com-

munity, one could consider the experimental approach within this work to be similar to

integrated-DIC (I-DIC) [118, 36] where particular shape functions are used to analyze the

expected deformation of the system. This leads to increased measurement accuracy allowing

for additional uses for I-DIC [119, 120, 121]. Instead of using specialized DIC software, a

commerical software package is used with generic shape-functions, but the post-processing

of the displacement data forced beams to deform according to beam theory. The addi-

tional thought taken during the analysis, whether during the image correlation or later in

post-processing, allows for more accurate experimental measurements.

97



6.2 Future work

One of the author’s long-term research interests lie in the field of dynamic fracture me-

chanics. The experimental work accomplished in Chapters 2 and 4 demonstrates a path

forward to additional quantitative replication of cohesive-zone displacements in quasi-static

experiments. Further work can and should be done on different geometries, but the methods

developed here will provide a starting point for quantitative replication in dynamic fracture

experiments. This thrust will help save resources long-term, with engineers knowing that the

appropriate numerical calculations can accurately predict experimental results, minimzing

the required physical testing of materials for design purposes.

Concerning quasi-static fracture, the edge-notched flexture (ENF) specimen is another

system one could readily use full-field measurements to analyze. The symmetric double-

cantilever beam provided a prototypical system for considering nominally pure mode-I frac-

ture, and the symmetric ENF is nominally pure mode-II specimen [122, 123]. The ENF is

typically loaded via a three-point bend jig, and has an analytical expression for the crack-tip

work [115], though perhaps a J-integral formulation could be derived using Ref. [90]. As-

suming a state of pure shear exists at the crack-tip, a direct differentiation approach could

be used and the law could be numerically implemented in an FEM calculation to compare

with the experimentally-measured displacements along the interface.

Ref. [124] considered the effect of wear on a corner with Coulomb friction and a limiting

interfacial strength. In elastic contact, just like linear-elastic fracture mechanics, the nuanced

details at the edge of the contact region determine the pressure distribution within the

contacting region [124, 125]. By increasing the “slip” length scale (i.e. cohesive-length scale

in fracture), the differences between the different fillet angle or smooth edge began to matter

less [124].

The single lap-shear geometry worked was ideal for considering the effect of a fillet angle

because one arm behind the singularity is free from loading, which is not the case for the

DCB or ENF geometries. If one relaxes the requirement in Chapter 3 that the fillet angle

must be a geometrical feature (i.e. the fillet angle must be the same value along the entire

beam thickness) and consider the effect of microstructural features (as done in Ref. [124]),

one would be able to analyze the DCB or ENF geometries. The findings from Ref. [124] and

Chapter 3 suggest that at large enough cohesive-length scales any nuanced change at the

singularity would be irrelevant, but at small cohesive-length scales these minute differences

change in the interface deformation.

The work contained within this dissertation was originally motivated by the challenge

of the deconvolution of the inherently mixed-mode fracture along a dissimilar-material in-
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terface. The path to such success was not straightforward, but a solution was found. The

numerical predictions of experimental results of the composite-steel lap-shear joint in Chap-

ter 4 suggests one method for mixed-mode deconvolution now exists that is not dependent on

using a particular specimen. Unfortunately, a general method of mixed-mode deconvolution

of a dissimilar-material interface has not been determined, and therefore more work remains

to be done.

As discussed in Section 5.3, one potential path forward on the general mixed-mode de-

convolution problem is to simultaneously use multiple specimens with an experimental range

of load-displacement curves, and use numerical models to match the macroscopic results of

the experiments, with a range of acceptable uncertainty. Afterwards, one would then verify

the extracted traction-separation laws adequately reproduce the experimental cohesive-zone

displacements. If the results do not match, one may need to consider if the choice of traction-

separation law (coupled versus uncoupled, effective displacement versus treating normal and

shear displacements independently, etc.) is appropriate. To improve the matching capabil-

ities, the number of segments in the piecewise-linear traction-separation laws may need to

be increased. This increased complexity may end up requiring an optimization algorithm to

match the far-field numerical-experimental comparison.

The challenge to both the validated method in Chapter 4 and the improvements suggested

here is that they are inverse methods. Inverse methods are typically ill-posed [126], and

in nonlinear problems there is no guarantee of a unique solution. The difficulty here is

that the numerical partial-model method is reminiscent of finite element method updating

(FEMU) [127, 128], an inverse method used to solve for constitutive properties of materials.

FEMU works by comparing FEM results with experimental results, and trying to minimize

some measure of error. In constitutive property identification, the other primary method

is the virtual fields method (VFM) [129, 130, 131]. While FEMU requires numerous FEM

calculations to converge to a solution, VFM allows material properties to be determined by

analyzing experimental data alone. In this respect, Refs. [74, 101, 73] have accomplished the

equivalent of this in extracting traction-separation laws directly from image deformation.

That being said, the author still suggests fitting the experimental data to load-displacement

curves followed by comparison of the cohesive-zone displacements. This provides a secondary

check on the experimental results, which was one of the main points of the experimental por-

tions of Chapters 2 and 4: measure the traction-separation law using the far-field data, and

validate the measured law using the close field-of-view data. If the displacement differences

are large enough than what might be explained from experimental uncertainties or speci-

men variation/imperfections, the physics of the interface may be different. As an example,

if one is able to match the loads well but not the cohesive-zone displacements, initially-
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assumed uncoupled traction-separation laws may require coupled traction-separation laws.

Using multiple samples with varying phase angles may also help determine whether or not

the cohesive laws are coupled or uncoupled.

The work presented here has assumed planar geometries which can readily be measured

by full-field measurement techniques such as digital image correlation. In practice, one

knows that a full treatment requires three-dimensional specimens. The disadvantage of

surface displacements was observed in Chapter 2 with the advent of a surface crack but no

crack-propagation through the thickness. While 3-D displacement measurement has become

more commonplace (e.g. digital volume correlation [132, 133, 134, 135]), fracture mechanics

methods will likely move from planar analysis to 3-D analysis only in special cases (e.g. soft

materials) where 3-D imaging is readily available. A more immediate improvement to the

current work would be to use stereo-DIC, which uses multiple cameras in order to track out-

of-plane motion [39]. Stereo DIC also allows for better planar displacement measurements.

The methods developed here will be immediately applicable to analyzing planar geometries

using Stereo-DIC, while similar methods could be used in the special case where one has

internal three-dimensional displacement data of fracture.

100



APPENDIX A

Fortran-based user-defined element subroutine

The FORTRAN code below was implemented into Abaqus 6.14 as as user-defined ele-

ment. It consists of 6-part, piecewise-linear traction-separation laws and a bi-linear traction-

separation law for compression. It could be improved by expanding the code from a 2-D

element to a 3-D element to include all three fracture modes: normal, in-plane shear, and

out-of-plane shear.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C UEL.f CCZM C

C

C This subroutine will implement a mixed-mode six-part, piecewise-linear

C traction-separation law (with a two-part normal compression option)

C CZM model to a user-defined element for use by Abaqus.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,

1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,

2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF,

3 LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD)

INCLUDE 'ABA_PARAM.INC'

DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*),

1 SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL),

2 DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*),
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3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD),DDLMAG(MDLOAD,*),

4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*)

DIMENSION C_COOR(2,4), R_COOR(2,4), R_F(8), R_MATRX(8,8),

1 UY(2),UX(2),UY_P(2),UX_P(2),CI(2),C(2),PHI(2,2),

2 STRN(2),STRT(2),SKNN(2),SKTT(2),SKNT(2),SKTN(2),FN(2),FT(2),

3 STFN(2,2),STFT(2,2),SYMBOL(2),F_CRT(2),G_I(2),G_II(2),THIK(2)

! updated specifying variables...

DOUBLE PRECISION LAMBDAN1, LAMBDAN2, LAMBDAN3, LAMBDAN4,

1 LAMBDAN5

DOUBLE PRECISION LAMBDAT1, LAMBDAT2, LAMBDAT3, LAMBDAT4,

1 LAMBDAT5

C DOUBLE PRECISION SNC1, SNC2, DLTNC1, DLTNC2

C READ THE PROPERTIES OF CZM MODEL

C These values are for the mode-I tension law

SN1 = PROPS(1) !PEAK NORMAL STRESS 1

SN2 = PROPS(2) !PEAK NORMAL STRESS 2

SN3 = PROPS(3) !PEAK NORMAL STRESS 3

SN4 = PROPS(4) !PEAK NORMAL STRESS 4

SN5 = PROPS(5) !PEAK NORMAL STRESS 5

LAMBDAN1 = PROPS(6) !SHAPE PARAMETER LAMBDA1

LAMBDAN2 = PROPS(7) !SHAPE PARAMETER LAMBDA2

LAMBDAN3 = PROPS(8) !SHAPE PARAMETER LAMBDA3

LAMBDAN4 = PROPS(9) !SHAPE PARAMETER LAMBDA4

LAMBDAN5 = PROPS(10) !SHAPE PARAMETER LAMBDA5

DLTNC = PROPS(11) !CRITICAL NORMAL DISPLACEMENT

DLTN1 = LAMBDAN1

DLTN2 = LAMBDAN2

DLTN3 = LAMBDAN3

DLTN4 = LAMBDAN4

DLTN5 = LAMBDAN5

G_I0 = 0.5D0*(SN1*DLTN2-SN2*DLTN1+SN2*DLTN3-SN3*DLTN2

1 +SN3*DLTN4-SN4*DLTN3+SN4*DLTN5-SN5*DLTN4+SN5*DLTNC)
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C These values are for the mode-II law

ST1 = PROPS(12) !PEAK SHEAR STRESS 1

ST2 = PROPS(13) !PEAK SHEAR STRESS 2

ST3 = PROPS(14) !PEAK SHEAR STRESS 3

ST4 = PROPS(15) !PEAK SHEAR STRESS 4

ST5 = PROPS(16) !PEAK SHEAR STRESS 5

LAMBDAT1 = PROPS(17) !SHAPE PARAMETER LAMBDA1

LAMBDAT2 = PROPS(18) !SHAPE PARAMETER LAMBDA2

LAMBDAT3 = PROPS(19) !SHAPE PARAMETER LAMBDA3

LAMBDAT4 = PROPS(20) !SHAPE PARAMETER LAMBDA4

LAMBDAT5 = PROPS(21) !SHAPE PARAMETER LAMBDA5

DLTTC = PROPS(22) !CRITICAL SHEAR DISPLACEMENT

DLTT1 = LAMBDAT1

DLTT2 = LAMBDAT2

DLTT3 = LAMBDAT3

DLTT4 = LAMBDAT4

DLTT5 = LAMBDAT5

G_II0 = 0.5D0*(ST1*DLTT2-ST2*DLTT1+ST2*DLTT3-ST3*DLTT2

1 +ST3*DLTT4-ST4*DLTT3+ST4*DLTT5-ST5*DLTT4+ST5*DLTTC)

C These values generate the mode-I bi-linear compression law

SNC1 = PROPS(25) !Compressive normal stress 1;

SNC2 = PROPS(26) !Compressive normal stress 2;

DLTNC1 = PROPS(27) !Compressive normal displacement 1

DLTNC2 = PROPS(28) !Compressive normal displacement 2

C This check sees if the user wants to use the bi-linear law

C ...generated, that is, if they input values equal to zero or are

C ... greater than zero, then they don't get to choose their bi-

C ...linear compression law.

IF(DLTNC1 .GE. 0.0D0) THEN

SNC1 = -1.0D0*SN1

SNC2 = -1.0D0*SN2

DLTNC1 = -1.0D0*DLTN1
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DLTNC2 = -1.0D0*DLTN2

ENDIF

IF(DLTNC2 .GE. 0.0D0) THEN

SNC1 = -1.0D0*SN1

SNC2 = -1.0D0*SN2

DLTNC1 = -1.0D0*DLTN1

DLTNC2 = -1.0D0*DLTN2

ENDIF

IF(SNC1 .GE. 0.0D0) THEN

SNC1 = -1.0D0*SN1

SNC2 = -1.0D0*SN2

DLTNC1 = -1.0D0*DLTN1

DLTNC2 = -1.0D0*DLTN2

ENDIF

IF(SNC2 .GE. 0.0D0) THEN

SNC1 = -1.0D0*SN1

SNC2 = -1.0D0*SN2

DLTNC1 = -1.0D0*DLTN1

DLTNC2 = -1.0D0*DLTN2

ENDIF

SK = SN1/DLTN1 ! COMPRESSIVE STIFFNESS

FC = 0.0D0 ! FRICTION COEFFICIENT

AA=SVARS(1)

DT=SVARS(3)

AK=SVARS(5)

AG1=SVARS(6)

AG2=SVARS(7)

DT2=TIME(2)

X1=COORDS(1,1)

X2=COORDS(1,2)

BB1=SVARS(10)
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KBB2=SVARS(11)

BB4=SVARS(13)

IF (BB1.GT.10.0D0) THEN

BB3=SVARS(12)

BB5=SVARS(14)

BB6=SVARS(15)

BB7=SVARS(16)

BB8=SVARS(17)

WRITE(*,2000) KBB2,BB3,BB4,BB5,BB6,BB7,BB8

2000 Format(I3," ",F10.6," ",F6.2," ",F6.3," ",F6.3," ",F6.3," ",

1 F6.3)

END IF

DO 100 K1=1,NDOFEL

R_F(K1)=0.0D0

DO 110 KRHS=1,NRHS

RHS(K1,KRHS)=0.0D0

110 CONTINUE

DO 120 K2=1,NDOFEL

AMATRX(K2,K1)=0.0D0

R_MATRX(K2,K1)=0.0D0

120 CONTINUE

100 CONTINUE

C READ THE STATE VARIABLES

C SYMBOL(1)>=1.0 ==> 1ST LUMPED POINT HAS BEEN "SEPARATED"

C SYMBOL(2)>=1.0 ==> 2ND LUMPED POINT HAS BEEN "SEPARATED"

SYMBOL(1)=SVARS(1)

SYMBOL(2)=SVARS(2)

105



C CURRENT COORDINATES FOR THE FOUR POINTS OF AN ELEMENT

C_COOR(1,1)=COORDS(1,1)+U(1)

C_COOR(2,1)=COORDS(2,1)+U(2)

C_COOR(1,2)=COORDS(1,2)+U(3)

C_COOR(2,2)=COORDS(2,2)+U(4)

C_COOR(1,3)=COORDS(1,3)+U(5)

C_COOR(2,3)=COORDS(2,3)+U(6)

C_COOR(1,4)=COORDS(1,4)+U(7)

C_COOR(2,4)=COORDS(2,4)+U(8)

THIK1_0=SQRT((COORDS(1,1)-COORDS(1,4))**2

1 +(COORDS(2,1)-COORDS(2,4))**2.0)

THIK2_0=SQRT((COORDS(1,2)-COORDS(1,3))**2

1 +(COORDS(2,2)-COORDS(2,3))**2.0)

THIK(1) = THIK1_0

THIK(2) = THIK2_0

C COMPUTE THE ROTATION ANGLE

P1_X=(C_COOR(1,1)+C_COOR(1,4))/2.0D0

P1_Y=(C_COOR(2,1)+C_COOR(2,4))/2.0D0

P2_X=(C_COOR(1,2)+C_COOR(1,3))/2.0D0

P2_Y=(C_COOR(2,2)+C_COOR(2,3))/2.0D0

ALEN=SQRT((P1_X-P2_X)**2.0D0 + (P1_Y-P2_Y)**2.0D0) !LENGTH OF ELEMENT

IF((P2_Y-P1_Y).GE. 0.0D0) THEN

THETA= ACOS((P2_X - P1_X)/ALEN)
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ELSE

THETA=-ACOS((P2_X - P1_X)/ALEN)

ENDIF

COS_PI = COS(THETA)

SIN_PI = SIN(THETA)

C COORDINATES TRANSFORMATION

R_COOR(1,1)= C_COOR(1,1)*COS_PI+C_COOR(2,1)*SIN_PI

R_COOR(2,1)=-C_COOR(1,1)*SIN_PI+C_COOR(2,1)*COS_PI

R_COOR(1,2)= C_COOR(1,2)*COS_PI+C_COOR(2,2)*SIN_PI

R_COOR(2,2)=-C_COOR(1,2)*SIN_PI+C_COOR(2,2)*COS_PI

R_COOR(1,3)= C_COOR(1,3)*COS_PI+C_COOR(2,3)*SIN_PI

R_COOR(2,3)=-C_COOR(1,3)*SIN_PI+C_COOR(2,3)*COS_PI

R_COOR(1,4)= C_COOR(1,4)*COS_PI+C_COOR(2,4)*SIN_PI

R_COOR(2,4)=-C_COOR(1,4)*SIN_PI+C_COOR(2,4)*COS_PI

C COMPUTE THE RELATIVE DISPLACEMENTS IN LOCAL COORDINATE SYSTEM

UX(1) = R_COOR(1,4) - R_COOR(1,1) !U(7)-U(1)

UX(2) = R_COOR(1,3) - R_COOR(1,2) !U(5)-U(3)

UY(1) = R_COOR(2,4) - R_COOR(2,1) - THIK1_0 !U(8)-U(2)

UY(2) = R_COOR(2,3) - R_COOR(2,2) - THIK2_0 !U(6)-U(4)

C THE NODE FORCES AND STIFF MATRIX IS INTEGRATED USING 2 POINT LUMPED

C QUADRATURE SCHEME

CI(1) =-1.0D0 !LUMPED INTEGRATION POINT1

CI(2) = 1.0D0 !LUMPED INTEGRATION POINT2

C(1) =-1.0D0
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C(2) = 1.0D0

DO 200 I=1, 2

UY_P(I) = 0.0D0

UX_P(I) = 0.0D0

DO 210 J=1, 2

!Jth INTERPOLATION FUNCTION EVALUATED IN Ith LUMPED POINT

PHI(J,I)= (1.0D0+C(J)*CI(I))/2.0D0

!RELATIVE DISPLACEMENT EVALUATED IN Ith LUMPED POINT

UY_P(I) = UY_P(I) + PHI(J,I)*UY(J)

UX_P(I) = UX_P(I) + PHI(J,I)*UX(J)

210 CONTINUE

C CALCULATE THE NORMAL COHESIVE STRESS, SLOPE AND ENERGY RELEASE

C RATE IN Ith LUMPED POINT

CALL NOR(SN1,SN2,SN3,SN4,SN5,DLTN1,DLTN2,DLTN3,DLTN4,DLTN5,

1 DLTNC,SNC1,SNC2,DLTNC1,DLTNC2,UY_P(I),STRN(I),SKNN(I),G_I(I))

C UY_P(I),STRN(I),SKNN(I),G_I(I))!

C CALCULATE THE SHEAR COHESIVE STRESS, SLOPE AND ENERGY RELEASE

C RATE IN Ith LUMPED POINT

CALL SHR(ST1,ST2,ST3,ST4,ST5,DLTT1,DLTT2,DLTT3,DLTT4,DLTT5,

1 DLTTC,UX_P(I),STRT(I),SKTT(I),G_II(I))

C FAILURE CRITERION IN Ith LUMPED POINT

F_CRT(I)=G_I(I)/G_I0 + G_II(I)/G_II0
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C Ith LUMPED POINT HAVE BEEN "SEPARATED"

C PREVENT "BROKEN" ELEMENTS FROM BEING INVOLVED AGAIN

IF((SYMBOL(I) .LE. 1.0D0)) THEN

SYMBOL(I)=F_CRT(I)

END IF

200 CONTINUE

DO 300 I=1,2

C IF ONE OF THE LUMPED POINT IS BROKEN

IF(SYMBOL(I) .GE. 1.0D0) THEN

STRT(I) = 0.0D0

STRN(I) = 0.0D0

SKTT(I) = 0.0D0

SKNN(I) = 0.0D0

C AVOID INTERPENETRATION IN LUMPED POINT

IF( UY_P(I) .LE. -1.0D-6) THEN

!NODES I HAVE BEEN "INTERPENETRATED"

STRN(I) = SK*UY_P(I)

SKNN(I) = SK

SYMBOL(I)= 10.0D0

END IF

END IF

300 CONTINUE

DO 400 I=1,2
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FN(I) = 0.0D0

FT(I) = 0.0D0

DO 410 J=1,2

FN(I) = FN(I)+PHI(I,J)*STRN(J)*ALEN/2.0D0

FT(I) = FT(I)+PHI(I,J)*STRT(J)*ALEN/2.0D0

STFN(I,J) = 0.0D0

STFT(I,J) = 0.0D0

DO 420 K=1,2

STFN(I,J) = STFN(I,J)+PHI(I,K)*PHI(J,K)*SKNN(K)*

1 ALEN/2.0D0

STFT(I,J) = STFT(I,J)+PHI(I,K)*PHI(J,K)*SKTT(K)*

1 ALEN/2.0D0

420 CONTINUE

410 CONTINUE

C MODIFIED TANGENTIAL STIFFNESS

IF (STFN(I,I) .LT. 0.0D0) THEN

STFN(I,I) = 0.0D0

END IF

IF (STFT(I,I) .LT. 0.0D0) THEN

STFT(I,I) = 0.0D0

END IF

400 CONTINUE

C LOCAL STIFFNESS MATRIX AND RESIDUE FORCE VECTOR

DO 500 I = 1, 2

DO 510 J = 1, 2

C LOCAL STIFFNESS MATRIX
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R_MATRX(2*(I-1)+1, 2*(J-1)+1) = STFT(I,J)

R_MATRX(2*(I-1)+2, 2*(J-1)+2) = STFN(I,J)

R_MATRX(2*(4-I)+1, 2*(J-1)+1) =-STFT(I,J)

R_MATRX(2*(4-I)+2, 2*(J-1)+2) =-STFN(I,J)

R_MATRX(2*(I-1)+1, 2*(4-J)+1) =-STFT(I,J)

R_MATRX(2*(I-1)+2, 2*(4-J)+2) =-STFN(I,J)

R_MATRX(2*(4-I)+1, 2*(4-J)+1) = STFT(I,J)

R_MATRX(2*(4-I)+2, 2*(4-J)+2) = STFN(I,J)

510 CONTINUE

C LOCAL RESIDUE FORCE VECTOR

R_F(2*(I-1)+1) = FT(I)

R_F(2*(4-I)+1) =-FT(I)

R_F(2*(I-1)+2) = FN(I)

R_F(2*(4-I)+2) =-FN(I)

C UPDATE INTERNAL VARIABLES

SVARS(I) =SYMBOL(I)

500 CONTINUE

C CCZM: factors

DK=THIK(1)/ALEN

ADK=-UX_P(1)/ALEN

ADK2=-UX_P(2)/ALEN

C IF ONE OF THE LUMPED POINT IS BROKEN

IF((SYMBOL(1) .GE. 1.0D0).OR.(SYMBOL(2) .GE. 1.0D0)) THEN

DK = 0.0D0

ADK = 0.0D0
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ADK2 = 0.0D0

IF( UY_P(I) .LE. -1.0D-6) THEN

ADK=-UX_P(1)/ALEN

ADK2=-UX_P(2)/ALEN

END IF

END IF

C CCZM: BALANCING THE MOMENT EFFECTS

R_MATRX(2,1)=DK*SKTT(1)*ALEN/2.0D0

R_MATRX(2,7)=-DK*SKTT(1)*ALEN/2.0D0

R_MATRX(4,1)=-DK*SKTT(1)*ALEN/2.0D0

R_MATRX(4,7)=DK*SKTT(1)*ALEN/2.0D0

R_MATRX(8,3)=DK*SKTT(2)*ALEN/2.0D0

R_MATRX(8,5)=-DK*SKTT(2)*ALEN/2.0D0

R_MATRX(6,3)=-DK*SKTT(2)*ALEN/2.0D0

R_MATRX(6,5)=DK*SKTT(2)*ALEN/2.0D0

R_F(2)=R_F(2)+DK*FT(1)

R_F(4)=R_F(4)-DK*FT(1)

R_F(6)=R_F(6)-DK*FT(2)

R_F(8)=R_F(8)+DK*FT(2)

R_MATRX(2,2)=R_MATRX(2,2)+ADK*SKNN(1)*ALEN/2.0D0

R_MATRX(2,8)=R_MATRX(2,8)-ADK*SKNN(1)*ALEN/2.0D0

R_MATRX(4,2)=R_MATRX(4,2)-ADK*SKNN(1)*ALEN/2.0D0

R_MATRX(4,8)=R_MATRX(4,8)+ADK*SKNN(1)*ALEN/2.0D0

R_MATRX(8,4)=R_MATRX(8,4)+ADK2*SKNN(2)*ALEN/2.0D0

R_MATRX(8,6)=R_MATRX(8,6)-ADK2*SKNN(2)*ALEN/2.0D0

R_MATRX(6,4)=R_MATRX(6,4)-ADK2*SKNN(2)*ALEN/2.0D0

R_MATRX(6,6)=R_MATRX(6,6)+ADK2*SKNN(2)*ALEN/2.0D0

R_F(2)=R_F(2)+ADK*FN(1)
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R_F(4)=R_F(4)-ADK2*FN(1)

R_F(6)=R_F(6)-ADK2*FN(2)

R_F(8)=R_F(8)+ADK*FN(2)

C OUTPUT THE CRACK LENGTH AS THE CZ ELEMENT IS BROKEN

SVARS(3)=DT2

SVARS(6)=G_I(1)

SVARS(7)=G_II(1)

SVARS(21)=STRN(1)

SVARS(22)=STRT(1)

SVARS(5)=KINC

C Phase angle calculation...

C This was updated such that phase angles could include the full

C range from -180->180 degrees.

C when we have tensile opening displacements...

IF (G_I(1).GE. 0.0D0) THEN !A

C ...and positive shear

IF (UX(1) .GE. 0.0D0) THEN !B

SVARS(16)=ATAN2(SQRT(G_II(1)),SQRT(G_I(1)))*180.0D0/3.14D0

C ...and negative shear

ELSE !B

SVARS(16)=ATAN2(-1.D0*SQRT(G_II(1)),SQRT(G_I(1)))*180.0D0/3.14D0

END IF !B

C when we have compressive opening displacements...

ELSE !A

C ...and positive shear

IF (UX(1) .GE. 0.0D0) THEN !C

SVARS(16)=ATAN2(SQRT(G_II(1)),-1.0D0*SQRT(ABS(G_I(1))))

1 *180.0D0/3.14D0

C ...and negative shear

ELSE !C

SVARS(16)=ATAN2(-1.0D0*SQRT(G_II(1)),-1.0D0*SQRT(ABS(G_I(1))))
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1 *180.0D0/3.14D0

END IF !C

END IF !A

IF ((AA.LT.1.0D0).AND.(SYMBOL(1).GE.1.0D0)) THEN

AC=100.0

SVARS(11)=AK

SVARS(12)=DT

SVARS(13)=X1

SVARS(14)=AG1

SVARS(15)=AG2

ELSE

AC=1.0

END IF

C IF ELEMENT HAS FAILED, ASSIGN A 0 TO SDV(17)

IF (F_CRT(1).GE.1.0D0) THEN

SVARS(17)=F_CRT(1)

ELSE

SVARS(17)=F_CRT(1)

END IF

SVARS(10)=AC

SVARS(18)=STRT(1)

SVARS(19)=UY_P(1)

SVARS(20)=UX_P(1)
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C FORM THE GLOBAL STIFFNESS MATRIX AND RESIDUAL FORCE

DO 600 I=1,7,2

DO 610 J=1,7,2

AMATRX( I, J) = R_MATRX( I, J)*COS_PI**2.0D0

1 +R_MATRX(I+1,J+1)*SIN_PI**2.0D0

2 -R_MATRX( I,J+1)*SIN_PI*COS_PI

3 -R_MATRX(I+1, J)*SIN_PI*COS_PI

AMATRX(I+1, J) = R_MATRX( I, J)*SIN_PI*COS_PI-

1 R_MATRX(I+1,J+1)*SIN_PI*COS_PI-

2 R_MATRX( I,J+1)*SIN_PI**2.0D0+

3 R_MATRX(I+1, J)*COS_PI**2.0D0

AMATRX( I,J+1) = R_MATRX( I, J)*SIN_PI*COS_PI-

1 R_MATRX(I+1,J+1)*SIN_PI*COS_PI+

2 R_MATRX( I,J+1)*COS_PI**2.0D0-

3 R_MATRX(I+1, J)*SIN_PI**2.0D0

AMATRX(I+1,J+1) = R_MATRX( I, J)*SIN_PI**2.0D0+

1 R_MATRX(I+1,J+1)*COS_PI**2.0D0+

2 R_MATRX( I,J+1)*SIN_PI*COS_PI+

3 R_MATRX(I+1, J)*SIN_PI*COS_PI

610 CONTINUE

RHS(I ,1)= R_F(I)*COS_PI - R_F(I+1)*SIN_PI

RHS(I+1,1)= R_F(I)*SIN_PI + R_F(I+1)*COS_PI

600 CONTINUE

RETURN

END

C CALCULATE THE NORMAL COHESIVE STRESS, SLOPE AND ENERGY RELEASE

C RATE IN Ith LUMPED POINT
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SUBROUTINE NOR(SN1,SN2,SN3,SN4,SN5,DLTN1,DLTN2,DLTN3,DLTN4,

1 DLTN5,DLTNC,SNC1,SNC2,DLTNC1,DLTNC2,UY,STRN,SKN,G_I)

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

SN0 = 0.0D0

SN6 = 0.0D0 !modified

DLTN0= 0.0D0

C for the regions in tension...

SKN1 = (SN1-SN0)/(DLTN1-DLTN0)

SKN2 = (SN2-SN1)/(DLTN2-DLTN1)

SKN3 = (SN3-SN2)/(DLTN3-DLTN2)

SKN4 = (SN4-SN3)/(DLTN4-DLTN3)

SKN5 = (SN5-SN4)/(DLTN5-DLTN4)

SKN6 = (SN6-SN5)/(DLTNC-DLTN5)

C for the regions in compression...

SKNC1 = (SN0-SNC1)/(DLTN0-DLTNC1)

SKNC2 = (SNC1-SNC2)/(DLTNC1-DLTNC2)

STRN = 0.0D0

SKN = 0.0D0

G_I = 0.0D0

C0 = 0.0D0

C Here, we consider whether or not to allow a two-part compression law.

C This selection allows one to have a two-part compression.

IF(UY .LE. DLTNC1) THEN ! IF UY is less than the bi-linear kink

IF(SKNC2 .GE. 0.0D0) THEN !IF SKNC2 is positive -- done

STRN = -1.0D0*(ABS(SNC1)+ABS(SKNC2)*(ABS(UY)-ABS(DLTN1)))

SKN = SKNC2

G_I = -1.0D0*(0.5D0*(SN0+SNC1)*(DLTNC1-DLTN0)+

1 0.5D0*(SNC1+STRN)*(UY -DLTNC1))

C However, if the slope of the second line (from point 1 to point 2) is

C ...negative, then there is only a one-part compression law. This is a
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C ...safety check, because if the second line's slope is negative, then

C ...one might eventually get a positive normal displacement for

C ...compression, which is not physical.

ELSE IF(SKNC2 .LT. 0.0D0) THEN !IF SKNC2 is negative -- done

STRN = UY*SKNC1

SKN = SKNC1

G_I = -0.5D0*SKNC1*UY*UY

ENDIF! ENDIF SKNC2 is negative

ENDIF!ENDIF UY is less than the bi-linear kink

IF((UY .GT. DLTNC1) .AND. (UY .LE. C0)) THEN

STRN = UY*SKNC1

SKN = SKNC1

G_I = -0.5D0*SKNC1*UY*UY

ENDIF

IF((UY .GT. C0) .AND. (UY .LE. DLTN1)) THEN

STRN = UY*SKN1

SKN = SKN1

G_I = 0.5D0*SKN1*UY*UY

ENDIF

IF((UY .GT. DLTN1).AND.(UY .LE. DLTN2)) THEN

STRN = SN1+SKN2*(UY-DLTN1)

SKN = SKN2

G_I = 0.5D0*(SN0+SN1)*(DLTN1-DLTN0)+

1 0.5D0*(SN1+STRN)*(UY -DLTN1)

ENDIF

IF((UY .GT. DLTN2).AND.(UY .LE. DLTN3)) THEN

STRN = SN2+SKN3*(UY-DLTN2)

SKN = SKN3

G_I = 0.5D0*(SN0+SN1)*(DLTN1-DLTN0)+

1 0.5D0*(SN1+SN2)*(DLTN2-DLTN1)+
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2 0.5D0*(SN2+STRN)*(UY -DLTN2)

ENDIF

IF((UY .GT. DLTN3).AND.(UY .LE. DLTN4)) THEN

STRN = SN3+SKN4*(UY-DLTN3)

SKN = SKN4

G_I = 0.5D0*(SN0+SN1)*(DLTN1-DLTN0)+

1 0.5D0*(SN1+SN2)*(DLTN2-DLTN1)+

2 0.5D0*(SN2+SN3)*(DLTN3-DLTN2)+

3 0.5D0*(SN3+STRN)*(UY -DLTN3)

ENDIF

IF((UY .GT. DLTN4).AND.(UY .LE. DLTN5)) THEN

STRN = SN4+SKN5*(UY-DLTN4)

SKN = SKN5

G_I = 0.5D0*(SN0+SN1)*(DLTN1-DLTN0)+

1 0.5D0*(SN1+SN2)*(DLTN2-DLTN1)+

2 0.5D0*(SN2+SN3)*(DLTN3-DLTN2)+

3 0.5D0*(SN3+SN4)*(DLTN4-DLTN3)+

4 0.5D0*(SN4+STRN)*(UY -DLTN4)

ENDIF

IF((UY .GT. DLTN5).AND.(UY .LE. DLTNC)) THEN

STRN = SN5+SKN6*(UY-DLTN5)

SKN = SKN6

G_I = 0.5D0*(SN0+SN1)*(DLTN1-DLTN0)+

1 0.5D0*(SN1+SN2)*(DLTN2-DLTN1)+

2 0.5D0*(SN2+SN3)*(DLTN3-DLTN2)+

3 0.5D0*(SN3+SN4)*(DLTN4-DLTN3)+

4 0.5D0*(SN4+SN5)*(DLTN5-DLTN4)+

5 0.5D0*(SN5+STRN)*(UY -DLTN5)

ENDIF

C IF BROKEN WRT MODE I, SET G_I TO G_I0
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IF(UY .GT. DLTNC) THEN

STRN = 0.0D0

SKN = 0.0D0

G_I = 0.5D0*(SN1*DLTN2-SN2*DLTN1+SN2*DLTN3-SN3*DLTN2

1 +SN3*DLTN4-SN4*DLTN3+SN4*DLTN5-SN5*DLTN4+SN5*DLTNC)

ENDIF

RETURN

END

C CALCULATE THE SHEAR COHESIVE STRESS, SLOPE AND ENERGY RELEASE

C RATE IN Ith LUMPED POINT

SUBROUTINE SHR(ST1,ST2,ST3,ST4,ST5,DLTT1,DLTT2,DLTT3,DLTT4,

1 DLTT5,DLTTC,UX,STRT,SKT,G_II)

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

ST0 = 0.0D0

ST6 = 0.0D0

DLTT0= 0.0D0

SKT1 = (ST1-ST0)/(DLTT1-DLTT0)

SKT2 = (ST2-ST1)/(DLTT2-DLTT1)

SKT3 = (ST3-ST2)/(DLTT3-DLTT2)

SKT4 = (ST4-ST3)/(DLTT4-DLTT3)

SKT5 = (ST5-ST4)/(DLTT5-DLTT4)

SKT6 = (ST6-ST5)/(DLTTC-DLTT5)

STRT = 0.0D0

SKT = 0.0D0

IF(ABS(UX) .LE. DLTT1) THEN

STRT = UX*SKT1
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SKT = SKT1

G_II = 0.5D0*SKT1*ABS(UX)*ABS(UX)

ENDIF

IF((ABS(UX) .GT. DLTT1).AND.(ABS(UX) .LE. DLTT2)) THEN

STRT =(ST1+SKT2*(ABS(UX)-DLTT1))*ABS(UX)/UX

SKT = SKT2

G_II = 0.5D0*(ABS(ST0)+ABS(ST1))*(DLTT1 -DLTT0)+

1 0.5D0*(ABS(ST1)+ABS(STRT))*(ABS(UX)-DLTT1)

ENDIF

IF((ABS(UX) .GT. DLTT2).AND.(ABS(UX) .LE. DLTT3)) THEN

STRT =(ST2+SKT3*(ABS(UX)-DLTT2))*ABS(UX)/UX

SKT = SKT3

G_II = 0.5D0*(ABS(ST0)+ABS(ST1))*(DLTT1 -DLTT0)+

1 0.5D0*(ABS(ST1)+ABS(ST2))*(DLTT2 -DLTT1)+

2 0.5D0*(ABS(ST2)+ABS(STRT))*(ABS(UX)-DLTT2)

ENDIF

IF((ABS(UX) .GT. DLTT3).AND.(ABS(UX) .LE. DLTT4)) THEN

STRT =(ST3+SKT4*(ABS(UX)-DLTT3))*ABS(UX)/UX

SKT = SKT4

G_II = 0.5D0*(ABS(ST0)+ABS(ST1))*(DLTT1 -DLTT0)+

1 0.5D0*(ABS(ST1)+ABS(ST2))*(DLTT2 -DLTT1)+

2 0.5D0*(ABS(ST2)+ABS(ST3))*(DLTT3 -DLTT2)+

3 0.5D0*(ABS(ST3)+ABS(STRT))*(ABS(UX)-DLTT3)

ENDIF

IF((ABS(UX) .GT. DLTT4).AND.(ABS(UX) .LE. DLTT5)) THEN

STRT =(ST4+SKT5*(ABS(UX)-DLTT4))*ABS(UX)/UX

SKT = SKT5

G_II = 0.5D0*(ABS(ST0)+ABS(ST1))*(DLTT1 -DLTT0)+
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1 0.5D0*(ABS(ST1)+ABS(ST2))*(DLTT2 -DLTT1)+

2 0.5D0*(ABS(ST2)+ABS(ST3))*(DLTT3 -DLTT2)+

3 0.5D0*(ABS(ST3)+ABS(ST4))*(DLTT4 -DLTT3)+

4 0.5D0*(ABS(ST4)+ABS(STRT))*(ABS(UX)-DLTT4)

ENDIF

IF((ABS(UX) .GT. DLTT5).AND.(ABS(UX) .LE. DLTTC)) THEN

STRT =(ST5+SKT6*(ABS(UX)-DLTT5))*ABS(UX)/UX

SKT = SKT6

G_II = 0.5D0*(ABS(ST0)+ABS(ST1))*(DLTT1 -DLTT0)+

1 0.5D0*(ABS(ST1)+ABS(ST2))*(DLTT2 -DLTT1)+

2 0.5D0*(ABS(ST2)+ABS(ST3))*(DLTT3 -DLTT2)+

3 0.5D0*(ABS(ST3)+ABS(ST4))*(DLTT4 -DLTT3)+

4 0.5D0*(ABS(ST4)+ABS(ST5))*(DLTT5 -DLTT4)+

5 0.5D0*(ABS(ST5)+ABS(STRT))*(ABS(UX)-DLTT5)

ENDIF

C IF BROKEN WRT MODE II, SET G_II TO G_II0

IF(ABS(UX) .GT. DLTTC) THEN

STRT = 0.0D0

SKT = 0.0D0

G_II = 0.5D0*(ST1*DLTT2-ST2*DLTT1+ST2*DLTT3-ST3*DLTT2

1 +ST3*DLTT4-ST4*DLTT3+ST4*DLTT5-ST5*DLTT4+ST5*DLTTC)

ENDIF

RETURN

END
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APPENDIX B

Python-based piecewise polynomial, C1-continuous,

least squares fitting scheme

The code below works for Python 2.7. Unfortunately, due to the use of the Vandermonde

matrix, it is ill-conditioned. It could be improved by using LU factorization, QR factoriza-

tion, or singular value decomposition (SVD) to solve the constrained least-squares problem.

The use of the SVD is not expected to noticeably slow down the fitting script as the number

of data points one typically fits is “small”.

import csv #used to write output file(s)

import numpy as np #math/array manipulation module

import scipy as sp #scientific computing module

from scipy import optimize #optimization module

import matplotlib.pyplot as plt #plotting library

from matplotlib import rc #nicer plot fonts

rc('font',**{'family':'serif','serif':['Computer Modern']})

rc('text', usetex=True)

text_size=18

#used to have rotate through line colors when plotting fits

color_line = ['b-', 'r-', 'g-', 'c-', 'm-', 'y-', 'k-']

#Ax=b ---- standard least squares minimization

def objective(x_vec, b_vec, A_mat):
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return np.sum(np.power((b_vec - np.dot(A_mat, x_vec)), 2.))

#A_1 x_1 = b_1, A_2 x_2 = b_2----combined least squares minimization of two

#...separate sections: here, the two sections are cubic and affine (linear)

def objective2(x_vec, short_dat, lhs_bdry, rhs_bdry):

global x_column, y_column

short_dat_cub = np.delete(data, np.where(np.logical_or(data[:,x_column]<\

lhs_bdry, data[:,x_column] > x_vec[4])), axis=0)

short_dat_aff = np.delete(data, np.where(np.logical_or(data[:,x_column]<\

x_vec[4], data[:,x_column] > rhs_bdry)), axis=0)

for j in range(0, len(short_dat_cub[:,x_column])):

if j==0:

a_mat3 = [[np.power(short_dat_cub[j,x_column], 3.), \

np.power(short_dat_cub[j,x_column], 2.), short_dat_cub[j,x_column] \

, 1.]]

b_vec3 = [short_dat_cub[j,y_column]]

else:

a_mat3.append([np.power(short_dat_cub[j,x_column], 3.), \

np.power(short_dat_cub[j,x_column], 2.), short_dat_cub[j,x_column] \

, 1.])

b_vec3.append(short_dat_cub[j,y_column])

for j in range(0, len(short_dat_aff[:,x_column])):

if j==0:

a_mat1 = [[short_dat_aff[j,x_column], 1.]]

b_vec1 = [short_dat_aff[j,y_column]]

else:

a_mat1.append([short_dat_aff[j,x_column], 1.])

b_vec1.append(short_dat_aff[j,y_column])

least_squares_val = np.sum(np.power((b_vec3 - np.dot(a_mat3, [x_vec[0],\

x_vec[1], x_vec[2], x_vec[3]])), 2.)) + np.sum(np.power((b_vec1 - \

np.dot(a_mat1, [3.*x_vec[0]*x_vec[4]*x_vec[4]+2.*x_vec[1]*x_vec[4] + \

x_vec[2], -2.*x_vec[0]*x_vec[4]*x_vec[4]*x_vec[4] - \

x_vec[1]*x_vec[4]*x_vec[4]+x_vec[3]])), 2.))

return least_squares_val
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def on_key(event):

global count,lhs_bdry,rhs_bdry,steady_state_x_value,x_column,y_column

#letter (capital and lowercase) on the keyboard...

if event.key=='e':

raise SystemExit

#===========================================================================

if event.key=='q':

plt.close()

#===========================================================================

if event.key=='w':

#intermediary location least-squares affine fit

#use a cubic spline to enforce continuity...

if aff_guess1 > aff_guess2:

temp_lhs_bdry = aff_guess2; temp_rhs_bdry = aff_guess1;

else:

temp_lhs_bdry = aff_guess1; temp_rhs_bdry = aff_guess2;

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column] < \

temp_lhs_bdry, data[:,x_column] > temp_rhs_bdry)), axis=0)

for j in range(0, len(short_dat[:,x_column])):

if j==0:

a_mat = [[short_dat[j,x_column], 1.]]

b_vec = [short_dat[j,y_column]]

else:

a_mat.append([short_dat[j,x_column], 1.])

b_vec.append(short_dat[j,y_column])

#solve system

a_mat_trans = np.transpose(a_mat)

a_tr_a_mat = np.dot(a_mat_trans, a_mat)

a_tr_b_vec = np.dot(a_mat_trans, b_vec)

x_vec = np.linalg.solve(a_tr_a_mat, a_tr_b_vec)

print x_vec[0]

#plot affine fit for guessing

plt.plot(data[:,x_column], x_vec[0]*data[:,x_column] + x_vec[1], 'r:')

plt.show()

#===========================================================================
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elif event.key=='c':

#cubic spline fit

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column] < \

lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

c_l = raw_input('LHS section number: '); c_l = int(c_l)

c_r = raw_input('RHS section number: '); c_r = int(c_r)

#specify constants

output_dat = np.genfromtxt(export_file,delimiter=',', skip_header=1)

x_l = short_dat[0,x_column];

y_l = output_dat[c_l,4]*x_l*x_l*x_l + output_dat[c_l,5]*x_l*x_l + \

output_dat[c_l,6]*x_l + output_dat[c_l,7];

k_l = 3.*output_dat[c_l,4]*x_l*x_l + 2.*output_dat[c_l,5]*x_l + \

output_dat[c_l,6]

x_r = short_dat[-1,x_column];

y_r = output_dat[c_r,4]*x_r*x_r*x_r + output_dat[c_r,5]*x_r*x_r + \

output_dat[c_r,6]*x_r + output_dat[c_r,7];

k_r = 3.*output_dat[c_r,4]*x_r*x_r + 2.*output_dat[c_r,5]*x_r + \

output_dat[c_r,6]

#solve cubic spline

x3_c = 1./np.power(x_l-x_r,3.)*((k_l+k_r)*(x_l-x_r)-2.*y_l+2.*y_r)

x2_c = 1./np.power(x_l-x_r,3.)*(-1.*k_l*(x_l-x_r)*(x_l+\

2.*x_r)+k_r*(-2.*x_l*x_l+x_l*x_r+x_r*x_r)+3.*(x_l+x_r)*(y_l-y_r))

x1_c = 1./np.power(x_l-x_r,3.)*(k_r*x_l*(x_l-x_r)*(x_l+2.*x_r)-\

x_r*(k_l*(-2.*x_l*x_l+x_l*x_r+x_r*x_r)+6.*x_l*(y_l-y_r)))

x0_c = 1./np.power(x_l-x_r,3.)*(x_r*(x_l*(-1.*x_l+x_r)*(k_r*x_l+\

k_l*x_r)-x_r*(-3.*x_l+x_r)*y_l)+x_l*x_l*(x_l-3.*x_r)*y_r)

#output data

output.append([count, 3.01, short_dat[0,x_column], \

short_dat[-1,x_column], x3_c, x2_c, x1_c, x0_c])

#increase count...

count=count+1.

#export data

with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)
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#plot cubic spline

spline_dat = np.linspace(x_l, x_r, 100)

plt.plot(spline_dat, np.multiply(x3_c,np.power(spline_dat,3.)) + \

np.multiply(x2_c,np.power(spline_dat,2.)) + np.multiply(x1_c,\

np.power(spline_dat,1.)) + np.multiply(x0_c,np.power(spline_dat,0.)), \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

#===========================================================================

elif event.key=='0':

#steady state value... no data is recorded here...

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column] < \

lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

steady_state_y_value = np.mean(short_dat[:,y_column])

steady_val = np.full(len(short_dat[:,x_column]), steady_state_y_value)

steady_state_x_value = np.amin(short_dat[:,x_column])

print('mean value: '+str(steady_state_y_value))

plt.plot(short_dat[:,x_column], steady_val, 'k:')

#===========================================================================

elif event.key=='1':

if count==0.:

#initial section least squares affine fit

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

for j in range(0, len(short_dat[:,x_column])):

if j==0:

a_mat = [[short_dat[j,x_column], 1.]]

b_vec = [short_dat[j,y_column]]

else:

a_mat.append([short_dat[j,x_column], 1.])

b_vec.append(short_dat[j,y_column])

#solve system

a_mat_trans = np.transpose(a_mat)

a_tr_a_mat = np.dot(a_mat_trans, a_mat)

a_tr_b_vec = np.dot(a_mat_trans, b_vec)

x_vec = np.linalg.solve(a_tr_a_mat, a_tr_b_vec)

#output data
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output.append([count, 1., np.amin(short_dat[:,x_column]), \

np.amax(short_dat[:,x_column]), 0., 0., x_vec[0], x_vec[1]])

#increase count...

count=count+1.

#export data

with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot affine fit

plt.plot(short_dat[:,x_column], x_vec[0]*short_dat[:,x_column] + \

x_vec[1], color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

else:

#intermediary location least-squares affine fit

#use a cubic spline to enforce continuity...

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

for j in range(0, len(short_dat[:,x_column])):

if j==0:

a_mat = [[short_dat[j,x_column], 1.]]

b_vec = [short_dat[j,y_column]]

else:

a_mat.append([short_dat[j,x_column], 1.])

b_vec.append(short_dat[j,y_column])

#solve system

a_mat_trans = np.transpose(a_mat)

a_tr_a_mat = np.dot(a_mat_trans, a_mat)

a_tr_b_vec = np.dot(a_mat_trans, b_vec)

x_vec = np.linalg.solve(a_tr_a_mat, a_tr_b_vec)

#output data

output.append([count, 1., np.amin(short_dat[:,x_column]), \

np.amax(short_dat[:,x_column]), 0., 0., x_vec[0], x_vec[1]])

#increase count...

count=count+1.
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#export data

with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot affine fit

plt.plot(short_dat[:,x_column], x_vec[0]*short_dat[:,x_column] + \

x_vec[1], color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

#===========================================================================

elif event.key=='2':

if count==0.:

#standard least-squares quadratic fit

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

for j in range(0, len(short_dat[:,x_column])):

if j==0:

a_mat = [[np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.]]

b_vec = [short_dat[j,y_column]]

else:

a_mat.append([np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.])

b_vec.append(short_dat[j,y_column])

#solve system

a_mat_trans = np.transpose(a_mat)

a_tr_a_mat = np.dot(a_mat_trans, a_mat)

a_tr_b_vec = np.dot(a_mat_trans, b_vec)

x_vec = np.linalg.solve(a_tr_a_mat, a_tr_b_vec)

#output data

output.append([count, 2., np.amin(short_dat[:,x_column]), \

np.amax(short_dat[:,x_column]), 0., x_vec[0], x_vec[1], x_vec[2]])

#increase count...

count=count+1.

#export data
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with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot quadratic fit

plt.plot(short_dat[:,x_column], \

x_vec[0]*np.power(short_dat[:,x_column],2.) + \

x_vec[1]*short_dat[:,x_column] + x_vec[2], \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

else:

#constrained least-squares quadratic fit

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

for j in range(0, len(short_dat[:,x_column])):

if j==0:

a_mat = [[np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.]]

b_vec = [short_dat[j,y_column]]

else:

a_mat.append([np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.])

b_vec.append(short_dat[j,y_column])

#specify initial point and slope...

short_dat2 = np.delete(data, np.where(data[:,x_column] < \

lhs_bdry), axis=0)

lhs_fit_bdry = np.amin(short_dat2[:,x_column])

x_0 = lhs_fit_bdry;

y_0 = output[-1][4]*x_0*x_0*x_0 + output[-1][5]*x_0*x_0 + \

output[-1][6]*x_0 + output[-1][7];

slope = 3.*output[-1][4]*x_0*x_0 + 2.*output[-1][5]*x_0 + \

output[-1][6];

#initial guess and constraints for optimization

guess = np.polyfit(short_dat[:,x_column], short_dat[:,y_column], 2)

cons = ({'type': 'eq', 'fun': lambda guess: 2.*guess[0]*x_0 + \
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guess[1] - slope},

{'type': 'eq', 'fun': lambda guess: guess[0]*np.power(x_0, 2.) + \

guess[1]*x_0 + guess[2] - y_0})

#solve optimization

#x_vec is the optimized solution of the 'guess' array values...

res = sp.optimize.minimize(objective, guess, args=(b_vec, a_mat), \

method='SLSQP', constraints=cons)

x_vec = res.x

#output data

output.append([count, 2., np.amin(short_dat[:,x_column]), \

np.amax(short_dat[:,x_column]), 0.0, x_vec[0], x_vec[1], x_vec[2]])

#increase count...

count=count+1.

#export data

with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot quadratic fit

plt.plot(short_dat[:,x_column], \

x_vec[0]*np.power(short_dat[:,x_column],2.) + \

x_vec[1]*short_dat[:,x_column] + x_vec[2], \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

#===========================================================================

elif event.key=='3':

if count==0.:

#standard least-squares cubic fit

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

for j in range(0, len(short_dat[:,x_column])):

if j==0:

a_mat = [[np.power(short_dat[j,x_column], 3.), \

np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.]]
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b_vec = [short_dat[j,y_column]]

else:

a_mat.append([np.power(short_dat[j,x_column], 3.), \

np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.])

b_vec.append(short_dat[j,y_column])

#solve system...

a_mat_trans = np.transpose(a_mat)

a_tr_a_mat = np.dot(a_mat_trans, a_mat)

a_tr_b_vec = np.dot(a_mat_trans, b_vec)

x_vec = np.linalg.solve(a_tr_a_mat, a_tr_b_vec)

#output data

output.append([count, 3., np.amin(short_dat[:,x_column]), \

np.amax(short_dat[:,x_column]), x_vec[0], x_vec[1], x_vec[2], \

x_vec[3]])

#increase count...

count=count+1.

#export data

with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot cubic fit

plt.plot(short_dat[:,x_column], \

x_vec[0]*np.power(short_dat[:,x_column],3.) + \

x_vec[1]*np.power(short_dat[:,x_column],2.) + \

x_vec[2]*short_dat[:,x_column] + x_vec[3], \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

else:

#constrained least-squares cubic fit

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

for j in range(0, len(short_dat[:,x_column])):

if j==0:
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a_mat = [[np.power(short_dat[j,x_column], 3.), \

np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.]]

b_vec = [short_dat[j,y_column]]

else:

a_mat.append([np.power(short_dat[j,x_column], 3.), \

np.power(short_dat[j,x_column], 2.), \

short_dat[j,x_column], 1.])

b_vec.append(short_dat[j,y_column])

#specify initial point and slope...

short_dat2 = np.delete(data, np.where(data[:,x_column] < lhs_bdry),\

axis=0)

lhs_fit_bdry = np.amin(short_dat2[:,x_column])

x_0 = lhs_fit_bdry;

y_0 = output[-1][4]*x_0*x_0*x_0 + output[-1][5]*x_0*x_0 + \

output[-1][6]*x_0 + output[-1][7];

slope = 3.*output[-1][4]*x_0*x_0 + 2.*output[-1][5]*x_0 + \

output[-1][6];

#initial guess and constraints for optimization

guess = np.polyfit(short_dat[:,x_column], short_dat[:,y_column], 3)

cons = ({'type': 'eq', 'fun': lambda guess: 3.*guess[0]*x_0*x_0 + \

2.*guess[1]*x_0 + guess[2] - slope},

{'type': 'eq', 'fun': lambda guess: guess[0]*x_0*x_0*x_0 + \

guess[1]*x_0*x_0 + guess[2]*x_0 + guess[3] - y_0})

#solve optimization

#x_vec is the optimized solution of the 'guess' array values...

res = sp.optimize.minimize(objective, guess, args=(b_vec, a_mat), \

method='SLSQP', constraints=cons)

x_vec = res.x

#output data

output.append([count, 3., np.amin(short_dat[:,x_column]), \

np.amax(short_dat[:,x_column]), x_vec[0], x_vec[1], x_vec[2], \

x_vec[3]])

#increase count

count=count+1.

#export data
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with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot cubic fit

plt.plot(short_dat[:,x_column], \

x_vec[0]*np.power(short_dat[:,x_column],3.) + \

x_vec[1]*np.power(short_dat[:,x_column],2.) + \

x_vec[2]*short_dat[:,x_column] + x_vec[3], \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

#==========================================================================

elif event.key=='4':

if count==0.:

#coupled cubic and linear fit...

short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

#initial guess and constraints for optimization

#guess[0]-guess[3] are the a-d constants of the polynomial

#guess[4] is the point where the cubic fit transitions to an affine fit

guess_pre=np.polyfit(short_dat[:,x_column],short_dat[:,y_column],3)

guess = [guess_pre[0], guess_pre[1], guess_pre[2], guess_pre[3], \

0.5*(np.amin(short_dat[:,x_column])+np.amax(short_dat[:,x_column]))]

cons = ({'type': 'eq', 'fun': lambda guess: \

(3.*guess[0]*guess[4]*guess[4] + 2.*guess[1]*guess[4] + guess[2]) -\

(3.*guess[0]*guess[4]*guess[4]+2.*guess[1]*guess[4]+guess[2])},

#^^^derivative continuity...

{'type': 'eq', 'fun': lambda guess: \

(guess[0]*guess[4]*guess[4]*guess[4] +guess[1]*guess[4]*guess[4] + \

guess[2]*guess[4] + guess[3]) - ((3.*guess[0]*guess[4]*guess[4]+ \

2.*guess[1]*guess[4]+guess[2])*guess[4] + \

-2.*guess[0]*guess[4]*guess[4]*guess[4]-guess[1]*guess[4]*guess[4]+\

guess[3])}) #function continuity...

#solve optimization
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#x_vec is the optimized solution of the 'guess' array values...

res = sp.optimize.minimize(objective2, guess, args=(short_dat, \

lhs_bdry, rhs_bdry), method='SLSQP', constraints=cons, \

options={'disp':True,'ftol': 1e4})

x_vec = res.x

#output data

output.append([count, 3., np.amin(short_dat[:,x_column]), x_vec[4],\

x_vec[0], x_vec[1], x_vec[2], x_vec[3]])

output.append([count, 1., x_vec[4], np.amax(short_dat[:,x_column]),\

0.,0.,3.*x_vec[0]*x_vec[4]*x_vec[4]+2.*x_vec[1]*x_vec[4]+x_vec[2],\

-2.*x_vec[0]*x_vec[4]*x_vec[4]*x_vec[4]-x_vec[1]*x_vec[4]*x_vec[4]+\

x_vec[3]])

#increase count...

count=count+1.

#export data

with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot cubic and affine fits

cubic_fit = np.linspace(np.amin(short_dat[:,x_column]), x_vec[4], \

100);

affine_fit = np.linspace(x_vec[4], np.amax(short_dat[:,x_column]), \

100);

plt.plot(cubic_fit, x_vec[0]*np.power(cubic_fit,3.) + \

x_vec[1]*np.power(cubic_fit,2.) +x_vec[2]*cubic_fit + x_vec[3], \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.plot(affine_fit, (3.*x_vec[0]*x_vec[4]*x_vec[4]+\

2.*x_vec[1]*x_vec[4]+x_vec[2])*affine_fit + \

(-2.*x_vec[0]*x_vec[4]*x_vec[4]*x_vec[4]-\

x_vec[1]*x_vec[4]*x_vec[4]+x_vec[3]), \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

else:

#additionally-constrainsed, coupled cubic and linear fit...
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short_dat = np.delete(data, np.where(np.logical_or(data[:,x_column]\

< lhs_bdry, data[:,x_column] > rhs_bdry)), axis=0)

#specify initial point and slope...

short_dat2 = np.delete(data, np.where(data[:,x_column] < lhs_bdry),\

axis=0)

lhs_fit_bdry = np.amin(short_dat2[:,x_column])

x_0 = lhs_fit_bdry;

y_0 = output[-1][4]*x_0*x_0*x_0 + output[-1][5]*x_0*x_0 + \

output[-1][6]*x_0 + output[-1][7];

slope = 3.*output[-1][4]*x_0*x_0 + 2.*output[-1][5]*x_0 + \

output[-1][6];

#initial guess and constraints for optimization

#guess[0]-guess[3] are the a-d constants of the polynomial

#guess[4] is the point where the cubic fit transitions to an affine fit

guess_pre=np.polyfit(short_dat[:,x_column],short_dat[:,y_column],3)

guess = [guess_pre[0], guess_pre[1], guess_pre[2], guess_pre[3], \

0.5*(np.amin(short_dat[:,x_column])+np.amax(short_dat[:,x_column]))]

cons = ({'type': 'eq', 'fun': lambda guess: 3.*guess[0]*x_0*x_0 + \

2.*guess[1]*x_0 + guess[2] - slope}, #function continuity

#...(from section b/f)

{'type': 'eq', 'fun': lambda guess: guess[0]*x_0*x_0*x_0 + \

guess[1]*x_0*x_0 + guess[2]*x_0 + guess[3] - y_0}, #derivative

#...continuity (from section b/f)

{'type': 'eq', 'fun': lambda guess: (3.*guess[0]*guess[4]*guess[4]+\

2.*guess[1]*guess[4] + guess[2]) - (3.*guess[0]*guess[4]*guess[4]+\

2.*guess[1]*guess[4]+guess[2])}, #derivative continuity...

{'type': 'eq', 'fun': lambda guess: \

(guess[0]*guess[4]*guess[4]*guess[4] +guess[1]*guess[4]*guess[4] + \

guess[2]*guess[4] + guess[3]) - ((3.*guess[0]*guess[4]*guess[4]+\

2.*guess[1]*guess[4]+guess[2])*guess[4] + \

-2.*guess[0]*guess[4]*guess[4]*guess[4]-guess[1]*guess[4]*guess[4]+\

guess[3])}) #function continuity...

#solve optimization

#x_vec is the optimized solution of the 'guess' array values...

res = sp.optimize.minimize(objective2, guess, args=(short_dat, \

lhs_bdry, rhs_bdry), method='SLSQP', constraints=cons, \
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options={'disp':True,'ftol': 1e4})

x_vec = res.x

#output data

output.append([count, 3., np.amin(short_dat[:,x_column]), x_vec[4],\

x_vec[0], x_vec[1], x_vec[2], x_vec[3]])

output.append([count, 1., x_vec[4], np.amax(short_dat[:,x_column]),\

0.,0.,3.*x_vec[0]*x_vec[4]*x_vec[4]+2.*x_vec[1]*x_vec[4]+x_vec[2],\

-2.*x_vec[0]*x_vec[4]*x_vec[4]*x_vec[4]-x_vec[1]*x_vec[4]*x_vec[4]+\

x_vec[3]])

#increase count

count=count+1.

#export data

with open(export_file, 'wb') as f:

writer = csv.writer(f)

for row in output:

writer.writerow(row)

#plot cubic and affine fits

cubic_fit=np.linspace(np.amin(short_dat[:,x_column]), x_vec[4],100);

affine_fit=np.linspace(x_vec[4],np.amax(short_dat[:,x_column]),100);

plt.plot(cubic_fit, x_vec[0]*np.power(cubic_fit,3.) + \

x_vec[1]*np.power(cubic_fit,2.) +x_vec[2]*cubic_fit + x_vec[3], \

color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.plot(affine_fit, (3.*x_vec[0]*x_vec[4]*x_vec[4]+\

2.*x_vec[1]*x_vec[4]+x_vec[2])*affine_fit + \

(-2.*x_vec[0]*x_vec[4]*x_vec[4]*x_vec[4]-x_vec[1]*x_vec[4]*x_vec[4]\

+x_vec[3]), color_line[int(np.mod(count,1.*len(color_line))-1)])

plt.show()

#==========================================================================

fig.canvas.draw()

#end of on_key event...

def on_click(event):

#event.button gives the button number

#event.x gives the x pixel of the plot

#event.y gives the y pixel of the plot
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#event.xdata gives the x data point value of the plot

#event.ydata gives the y data point value of the plot

#print 'button=%d,x=%d,y=%d,xdata=%f ydata=%f'%(event.button, event.x,\

#...event.y, event.xdata, event.ydata)

global lhs_bdry, rhs_bdry, aff_guess1, aff_guess2

button=event.button

x=event.xdata

y=event.ydata

if button==1: #left mouse button click is 1

plt.plot(x,y,'b|')

lhs_bdry = event.xdata

elif button==3: #right mouse button click is 3

plt.plot(x,y,'m|')

rhs_bdry = event.xdata

else: #center mouse button click is 2

aff_guess2 = aff_guess1;

aff_guess1 = event.xdata

plt.plot(x,y,'ro')

print('(x,y): ('+str(np.round(x,6))+','+str(np.round(y,6))+')')

#==========================================================================

fig.canvas.draw()

#end of on_click event...

#columns of data file used for curve fitting

x_column = 0

y_column = 1

data = np.genfromtxt('example_fitting_data.csv',delimiter=',',skip_header=1)

count=0.; #used to specify section number

#specify the region where you will fit data

lhs_bdry = np.amin(data[:,x_column]); rhs_bdry = np.amax(data[:,x_column]);
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#specify region where you want to plot and affine fit--note, no data\

#...will be saved from fit...

aff_guess1=np.amin(data[:,x_column]); aff_guess2=np.amax(data[:,x_column])

#plot the average value of a specified section

steady_state_x_value = 0.

export_file = 'fitting_data_export.csv'

output=[['sect.','polynomial order','x_left','x_right','x^3','x^2','x','1']]

#sort data to ensure increasing x

data = data[data[:,x_column].argsort()]

fig = plt.figure(0)

plt.plot(data[:,x_column], data[:,y_column], 'k.')

plt.xlabel('x-axis label (-)', size=text_size)

plt.ylabel('y-axis label (-)', size=text_size)

fig.canvas.mpl_connect('button_press_event', on_click)

fig.canvas.mpl_connect('key_press_event', on_key)

plt.show()
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