
Resistive Switching Devices and Their Applications for
Computing Beyond von Neumann Architecture

by

Jong Hoon Shin

A dissertation submitted in partial fulfillment
 of the requirements for the degree of

Doctorate of Philosophy
(Electrical Engineering)

in the University of Michigan
2019

Doctoral Committee:

Professor Wei D. Lu, Chair
Professor L. Jay Guo
Professor Cagliyan Kurdak
Assistant Professor Becky Peterson

Jong Hoon Shin

jhoons@umich.edu

ORCID iD: 0000-0002-5120-2716

© Jong Hoon Shin 2019

ii

Dedication

To the almighty God, my wife Eunice, my family, and friends

iii

Acknowledgements

I gratefully acknowledge all the support I have been given during my course of study at the

University of Michigan. I would like to express special thanks to my mentor, Prof. Wei D. Lu,

who has always guided me with his insightful advices and inspiring comments. All the research I

have explored and studied during my Ph. D course would not be possible without his pioneering

spirit, passionate attitude, and thoughtful conversation. Besides my advisor, I would like to thank

the rest of my committee members, Dr. Cagliyan Kurdak, Dr. L. Jay Guo, and Dr. Becky Peterson,

for their great support and invaluable advice.

I also would like to thank my parents, family, and friends for supporting me through my

challenging journey. A special thanks goes to my wife Eunice Y. Shin for providing me with

unwavering love, support, and encouragement. I would like to express my gratitude to past and

present members of the laboratory. Thank you to Dr. Shinhyun Choi, Dr. Ugo Otuonye, Dr. Patrick

Sheridan, Dr. Jihang Lee, Dr. Wen Ma, Dr. Jiantao Zhou, Dr. Fuxi Cai, Dr. Chao Du, Dr. Yeonjoo

Jeong, Dr. Mohammed Zidan, Dr. Xiaojian Zhu, Seung Hwan Lee, John Moon, Fan-Hsuan Meng,

Qiwen Wang, Xinxin Wang for friendship, support, assistance and encouragement. In addition, I

would like to extend my thanks to friends and colleagues in the Electrical Engineering and

Computer Science who have provided me with assistance, support, and advice as well.

iv

Table of Contents

Dedication .. ii

Acknowledgements ... iii

List of Figures .. vii

Abstract .. xviii

Chapter 1. Introduction ...1

1.1 von Neumann Architecture and Memory Wall Problem ..1

1.2 Neuromorphic Computing using Resistive Switching Devices2

1.3 Analog TaOx-Based Valence-Change Memory (VCM) Device6

1.4 Digital Cu-based Conductive Bridge Random-Access Memory (CBRAM).............9

1.5 Stochastic Switching Behavior of RRAM devices .. 11

1.6 Organization of the Thesis .. 13

Chapter 2. Experimental Demonstration of Feature Extraction and Dimensionality Reduction

using TaOx Analog RRAM devices .. 15

2.1 Introduction .. 15

2.2 Fabrication of Forming-Free Tantalum-Oxide RRAM Devices 16

2.3 Analog Resistive Switching of TaOx Devices for Neuromorphic Application....... 19

2.4 Generalized Hebbian Rule for Unsupervised Learning ... 20

2.5 Operation of Memristor Array for PCA Implementation 21

2.6 Structure and Operation of the Test Board .. 24

2.7 Experimental Result of Dimensionality Reduction Based on PCA 27

2.8 Conclusion ... 33

v

Chapter 3. Self-Limited and Forming-Free CBRAMs With Double Al2O3 ALD Layers 35

3.1 Introduction .. 35

3.2 Device Fabrication ... 37

3.3 Self-Limited and Forming-Free Resistive Switching... 38

3.4 Role of HT-ALD barrier layer .. 42

3.5 Cycling Test Results... 43

3.6 Optimization of Pulse Programming Method .. 44

3.7 Conclusion ... 46

Chapter 4. Hardware Acceleration of Simulated Annealing of Spin Glass by RRAM Crossbar

Array .. 47

4.1 Introduction .. 47

4.2 Spin Glass Problem and Simulated Annealing .. 48

4.3 Simulated Annealing Accelerated By RRAM Array and Stochastic CBRAM 50

4.4 Experimental Demonstration Of RRAM-Based Simulated Annealing................... 55

4.4 Parallel Spin-flip Strategy Using Memristive Simulated Annealing 59

4.5 Digital Annealing with RRAM crossbar array .. 61

4.6 Conclusion ... 64

Chapter 5. Stochastic Learning of Deep Neural Network Using Stochastic RRAM Crossbar

Array .. 65

5.1 Introduction .. 65

5.2 Stochastic resistive switching with adjustable probability 71

5.3 Stochastic Binarization Mapping in RRAM Crossbar Array 75

5.3.1 Deterministic Data Migration Strategy ... 75

5.3.2 Single-Bit Stochastic Binarization Processes .. 75

5.3.3 Multi-Bit Stochastic Binarization Process .. 79

5.4 Stochastic Learning of Convolutional Neural Network ... 87

vi

5.5 Optimization and Nonideality of RRAM-based Stochastic Binarization 91

5.5.1 Effects of Weight Precision on Stochastic Binarization 92

5.5.2 Device-to-Device Variability Effect ... 93

5.5. Conclusion .. 94

Chapter 6. Future Work and Summary .. 96

6.1 Solving general combinatorial optimization problems .. 96

6.2 Summary .. 99

Bibliography ... 101

vii

List of Figures

Figure 1-1 Schematic of the von Neumann Architecture. Reproduced using data from Ref. [4]. The

computer is composed of input devices, output devices, a memory unit, and a processing

unit. The processing unit with control units and arithmetic units are connected to the

memory unit through a system bus. ..2

Figure 1-2 Neural network and its elements. Reproduced using data from Ref. [9]. (b) Schematic

diagram of a hardware neuromorphic system that corresponds to the neural network in (a).

Beside each neuron circuit, synapse elements that store weights between the neuron and its

neighbors are needed. The grey communication bus transfers weighted neuron signal data

from input neurons to output neurons. ..3

Figure 1-3 (a) An illustration of a memristor, or a RRAM device, as a synapse between neurons.

The top and bottom electrode of the RRAM device is connected to the pre-synaptic neuron

and post-synaptic neuron, respectively. (Reprinted from Ref. [14] with permission) (b) A

crossbar structure made of input neurons, output neurons, and RRAM devices that act as

synapses with weights wij represented by their conductance values.5

Figure 1-4 (Reprinted from Ref. [18] with permission) (a) Schematic of a TaOx-based bi-layer

RRAM device. The TaOx layer is the oxygen-deficient layer that supplies oxygen-

vacancies to the Ta2O5 switching layer. (b) Pulse test of TaOx devices showing LTP/LTD.

The concept of the synaptic junction and STDP implementations are shown in (c) and (d),

respectively. ..8

viii

Figure 1-5 (Reprinted from Ref. [22] with permission) TEM images of (a) a complete conductive

filament in a Ag/a-Si/Pt CBRAM device and (b) partially formed Ag filament. (c)

schematic of charge transfer and ion migration processes during resistive switching of a

CBRAM device. .. 10

Figure 1-6 Schematics of (a) in-memory computation aided with periphery circuit (Reprinted from

Ref.[23] with permission) and (b) crossbar structure for binary coded neural network.

(Reprinted from Ref. [24] with permission) ... 11

Figure 1-7 (Reprinted from Ref. [26] with permission) Bias-dependent stochastic switching

behavior. (a-c) Histograms of the wait time for the first switching event at bias voltages of

2.6, 3.2, and 3.6 V, respectively, while the deterministic SET voltage is 6.0V. (d) schematic

of the ion hopping processes. (e) Log plot of the wait time τ vs bias voltage V. 12

Figure 2-1 (a) SEM image of TaOx array consisting of 18 rows and 2 columns. Inset is a schematic

device structure of Ta/TaOx/Pd device (b) I-V sweep curve of resistive switching of a

single TaOx device (c) Initial positive sweep for filament formation with different

annealing time. Inset is relation diagram between the annealing time and forming voltage

(Reprinted from Ref.[40] with permission) (d) Table of |VSET| and |Vforming| measured from

different TaOx-based RRAM device structures (reproduced using data from Ref[40], [46],

[50]–[56]) .. 18

Figure 2-2 (a) Distribution of the current response to 50 SET/ 50 RST pulse train of18 device and

their average (b) Device model result and experimental average of pulse train. (Reprinted

from Ref.[40] with permission) .. 20

Figure 2-3 (a) Schematic of the memristor network operation. The input voltage signals are applied

to the rows and flow into the network, while the outputs are connected to the columns and

ix

are collected as current. (b) Optical image of the test board. The memristor array was wire-

bonded and inserted in the board. (Reprinted from Ref.[40] with permission) 21

Figure 2-4 List of parameters used in this study. α,β, γ, δ, k,𝜇𝜇1, 𝜇𝜇2, and η are off-state leakage

current, non-linear I-V scaling coefficient at off-state, on-state current coefficient, on-state

non-linear I-V scaling coefficient, weight update coefficient, nonlinear voltage coefficient

for set process, nonlinear voltage coefficient for reset process, and learning rate,

respectively. (Reprinted from Ref.[40] with permission) .. 23

Figure 2-5 Circuit schematic of the test board (Reprinted from Ref.[40] with permission) 26

Figure 2-6 Flow chart of the PCA network operation (Reprinted from Ref.[40] with permission)

 .. 26

Figure 2-7 (a) Principal component analysis results. (a) Results obtained with untrained memristor

network. The data are plotted based on the first (y1) and second (y2) output values. (b)

Principal component analysis results after solving the traditional covariance matrix of the

input data. The malignant and benign cells are largely separated into two clusters. (c) PCA

results obtained from numerical simulation of the network, using the dynamic device model

and Sanger’s learning rule. (d) Experimental PCA results obtained from the memristor

network using Sanger’s learning rule after 35 cycles of training. The blue and magenta

color labels in the plots represent the ground truth. Note the color labels are used only to

highlight the effects of clustering in the plots but are not used in the network training or

PCA analysis. (Reprinted from Ref.[40] with permission).. 29

Figure 2-8 (a) Evolution of the principal component vectors. (a,b) The primary principal

component (a) and the secondary principal component (b) before and after training. Black

bars: memristor weights constituting the principal component vectors before the learning

x

process. Red bars: simulated memristor weights after the learning process. Blue bars:

Experimentally obtained weights after the learning process. (c,d) Evolution of the

Euclidean norm of the primary principal component and the secondary principal

component vectors, respectively, during training. (e) Evolution of the inner product of the

primary principal component vector and the secondary principal component vector during

training. (Reprinted from Ref.[40] with permission) .. 31

Figure 2-9 Classification based on the trained memristor network. (a) Decision boundary (purple

dotted line) obtained using a supervised training process. (b) Overlay of the decision

boundary obtained from (a) and the test data from PCA analysis. A cell is classified to be

malignant or benign based on whether it is located to the left or right of the decision

boundary. The classification accuracy is obtained by comparing the classification with the

ground truth (shown as the color label of the test data). (Reprinted from Ref.[40] with

permission) .. 32

Figure 2-10 Classification results based on the exact solution of PCA. (a) Decision boundary

(dotted line) obtained by fitting the training data set using logistic regression. (b) The

decision boundary calculated from (a) overlaid with test data after PCA analysis. Prediction

was made based on a data point’s location with respect to the decision boundary. The blue

and magenta color labels represent the ground truth. (Reprinted from Ref.[40] with

permission) .. 33

Figure 3-1 (a) SEM image of Cu/CuOx/LT-ALD/HT-ALD/Pd crossbar devices. Inset: the

schematic structure of D-ALD devices. (b) Successive I-V sweeps including SET

switching of as-fabricated device (red) (c) I-V curves of LT-ALD devices without CuOx

(Vforming~3V), LT-ALD devices with CuOx (Vforming~2V), and HT-ALD devices

xi

(Vforming~5.5V). Results from three devices are shown for each structure. (d) Fitting of the

D-ALD device I-V. The fitting was limited to below 2.0V where resistive switching

occurred. (Reprinted from Ref.[68] with permission) ... 41

Figure 3-2 (a) An I-V sweep with larger voltage range showing over-programming (red) and the

subsequent restore to the original resistive switching curve (blue) (b) Schematic illustration

of the switching mechanism of D-ALD device. (Reprinted from Ref.[68] with permission)

 .. 43

Figure 3-3 (a) Pulse cycling test (3.0V/5ms for SET pulse, -2.5V/5ms for RST pulse, and 1.0V for

read pulse) (b) Cumulative probability of resistance in LRS and HRS. Inset: the box plot

that summarize C-to-C variation. (c) Box plots of on/off current from 10 devices (d)

retention test of LRS and HRS at T = 100°C. (Reprinted from Ref.[68] with permission)

 .. 44

Figure 3-4 (a) Schematic pulse sequence consisting of SET pulse train and RST pulse train with

verification scheme, for the cumulative fixed pulse mode (C-FP) and the non-cumulative

fixed pulse mode (NC-FP). (b) Switching probability of SET (upper) and RESET (lower)

for attempts using C-FP (purple) and NC-FP (red). The conditions of SET, RST, pre-SET

pulses are fixed at 3.0V/5ms, -2.5V/5ms, and 2.0V/5ms, respectively. (Reprinted from

Ref.[68] with permission) .. 46

Figure 4-1 A 2D spin glass and the spin interactions represented by (a) connections to neighboring

spins and (b) circular graph showing the complex couplings. (Reprinted from Ref.[90] with

permission) .. 49

xii

Figure 4-2 Flow chart of the SA algorithm. (b) Schematic showing finite spin flip probability even

for positive ∆H can help the system escape from local optima. (Reprinted from Ref.[90]

with permission) .. 49

Figure 4-3 (a) ∆𝐻𝐻𝐻𝐻 due to the change of 𝜎𝜎𝜎𝜎 surrounded by its neighbor spins. (b) CS matrix where

the 5th column represents interaction between 5th spin and all the other spins (c) Schematic

of inner product between the 5th CS column vector and spin vector 𝜎𝜎 conducted by RRAM

array. (Reprinted from Ref.[90] with permission) .. 50

Figure 4-4 81×81CS matrix of a 9×9 2D spin array. The large but sparse CS matrix can be sliced

to fit into a smaller RRAM array. (Reprinted from Ref.[90] with permission) 51

Figure 4-5 9 sub-patterns with three columns each from the 81×81 CS matrix, depending on the

position of the spin in the 2D spin glass. (a) Top-Edge Row case, (b) Mid Row case, and

(c) Bottom-Edge Row case. (d) All the non-zero and unique patterns in (a-c) can be stored

in a single 11×3 RRAM array. (Reprinted from Ref.[90] with permission) 52

Figure 4-6 (a) Schematic of the Ta2O5-based RRAM cell and array structure. SEM image of the

RRAM crossbar array. (b) Test board comprised of FPGA, peripheral circuit, and the

RRAM array chip for experimental implementation of simulated annealing. (Reprinted

from Ref.[90] with permission) .. 52

Figure 4-7 (a) I-V curves showing the forming (red) and subsequent switching (blue) processes.

(b) Distribution of VForming, VSET, VReset of the 33 cells in the RRAM array. (c-d) Variation

of device current without (c) and with (d) write-verify pulse method. (Reprinted from

Ref.[90] with permission) .. 54

Figure 4-8 (a) Structure and SEM image of Cu-based CBRAM devices. (b) Experimentally

measured probability of HRS→LRS switching (blue). The Boltzmann factor (red) can be

xiii

obtained by the probability of the device staying at HRS after applying a single SET pulse

with pulse width ∆𝒕𝒕. (Reprinted from Ref.[90] with permission) 55

Figure 4-9 Flowchart of implementing the SA algorithm using RRAM array for the 2D spin glass

problem. (Reprinted from Ref.[90] with permission) ... 56

Figure 4-10 (a) Randomly initialized 15×15 spin array (with 225 spins). (b) The sparse 225×225

CS matrix. (c) Coupling strength patterns stored and measured from the RRAM array used

in the experimental setup. (Reprinted from Ref.[90] with permission)............................ 56

Figure 4-11 Evolution of the spin configuration at different time steps for the fixed spin-edge case.

Data obtained experimentally from the RRAM array-based hardware system. (Reprinted

from Ref.[90] with permission) .. 58

Figure 4-12 Time-dependent evolution of the spin glass system solved by the RRAM hardware,

for random initial states with no fixed spins. Two ground states with global energy minima,

‘all-up’ state and ‘all-down’ states, can be generated from the same initial state in different

runs. (Reprinted from Ref.[90] with permission) .. 58

Figure 4-13 (a) Average energy and (b) magnetization as a function of cooling schedule.

Conventional software version of SA (red) and experimental SA results obtained from the

RRAM array (blue) are compared. (Reprinted from Ref.[90] with permission) 59

Figure 4-14 Schematic illustration of multi-spin flip method that exploits parallel vector-matrix

multiplications in RRAM crossbar array. (Reprinted from Ref.[90] with permission) 60

Figure 4-15 Comparison of (a) energy, (b) magnetization, and (c) spin configuration snap shots,

for results obtained using the single-spin method with 100 iterations per time step (blue),

single-spin method with 200 iterations per time step (black), and double-spin method with

xiv

100 iterations per time step (red). All results are obtained from the RRAM hardware setup.

(Reprinted from Ref.[90] with permission) .. 61

Figure 4-16 Comparison between multiple spin flip strategy and parallel trial strategy (Reprinted

from Ref.[90] with permission) .. 62

Figure 4-17 Acceleration of convergence with parallel spin trial method (Reprinted from Ref.[90]

with permission) .. 63

Figure 5-1 Properties of deep neural networks for the ImageNet dataset, reproduced using data

from Ref.[97]–[99] As the number of the convolution layers increases the top-error rates

reduce while the total number of parameters and the number of MAC operations for a single

input increase. ... 66

Figure 5-2 Rough energy cost and chip area for various operation and bit-width precisions in 45nm

CMOS technology, Reproduced using data from Ref.[106]. As precision increases from

8bits to 32bits and the integers change to floating point numbers, the energy and area

consumption increases accordingly. The last 2 rows are cost for data fetching from memory.

 .. 67

Figure 5-3 Schematic of BinaryConnect (Reproduced using data from Ref.[105]). At the first stage

of network training, a binarized network (left panel) is created from the high precision

network (right panel). The binary network is used in the propagation step to obtain

gradients with respect to weights, which are then fetched to the high precision network for

weight update. ... 69

Figure 5-4 Data flow of stochastic binarization process. Weights of the high precision network

(stored in DRAM #1) are fetched to the CPU, the binarization probability is calculated, and

compared to random numbers to determine the binary values. The generated binary

xv

numbers are then transferred to a different part of DRAM (DRAM#2) to store the weights

of the binary network. .. 70

Figure 5-5 (a-b)Cumulative probability of the SET switching with (a) continuous pulse and (b)

discrete pulses, obtained from Ref. [28]. (c-d) Stochastic switching observed in D-ALD

CBRAM devices. Top panel (c) is a histogram of switching events for SET pulses

(3.0V/10ms), and bottom panel (d) is a histogram of switching events for RST pulses (-

2.5V/10ms). The histograms can be modeled with Poisson distributions [68]................. 74

Figure 5-6 Schematic of in-situ data migration as suggested in Ref.[24]. Resistive states of an

RRAM array is tracked during in-situ data migration process. 1 and 0 are represented by

the LRS and the HRS of the RRAM devices. The left column of the array contains data

devices, and the right column contains target devices. With this data migration setup, when

the data device is at LRS essentially all VSET is delivered to the top electrode of the target

device, while when the data device is at HRS only half of VSET is delivered to the top

electrode of the target device, allowing 1 and 0 to transferred to the target device. 77

Figure 5-7 Schematic of single-bit stochastic binarization for stochastic SET pulse with 50% SET

probability. A stochastic SET pulse with 50% switching probability is applied to the target

column. The stochastic pulse is delivered to target devices only if the associated devices is

in LRS. As a result, the data ‘1’ stored in the data column is copied to the target column by

50% probability. .. 78

Figure 5-8 Schematic of single-bit stochastic binarization for stochastic RST pulse with 50% RST

probability. The initialization condition of the target column is all LRS in this case. The

50% RST stochastic pulse is applied to target column devices and turn them off by 50%

only if the associated data column devices are in LRS. .. 78

xvi

Figure 5-9 Schematic of multi-bit stochastic binarization process using an RRAM array. The

system includes a weight array, an inversion array, and a binary column. Initialization of

the weight array and the inversion array are explained in STEP1 and STEP2. The grounded

binary column is connected to the least-significant-bit (LSB) of the weight array with 50%

SET pulse first in STEP3, then the LSB of the inversion array with 50% RST pulse in

STEP4. The processes, STEP3 and STEP4 are repeated after moving to the next bit until

binarization is complete. .. 83

Figure 5-10 The probability history of the binary column devices to be ‘1’ or LRS from initial state

to end of the stochastic binarization step. The log starts from ‘initial’ column in the table.

For each nth LSB, STEP3 and STEP4 is conducted by connection of the grounded binary

column to nth LSB in the weight array and the inversion array, respectively. The stochastic

binarization proceed from the ‘initial’ column to the ‘Final Binary Probability’ column

through the table. Weights from -1.0 to +0.75 are successfully transformed to binary states

following expected probability distribution. ... 84

Figure 5-11 The generalization of stochastic binarization of k-bit probability to (k+1)-bit

probability. (a) For both ‘1’ MSB and ‘0’ MSB cases, the operations required for pk+1

obtained from pk is described in the upper red box and lower blue box, respectively. In the

listed operation, (b) The k-bit probability (red solid line) should be converted by MSB =

‘1’ to red dashed line by changing the lowest probability from 0.0 to 0.5. (c) The k-bit

probability (blue solid line) should be lowered by MSB = ‘0’ to blue dashed line by

changing the highest probability from 1.0 to 0.5. ... 84

xvii

Figure 5-12 Schematic of the proposed in-memory computing approach for multi-bit stochastic

binarization of a neural network. The binarization process is much more simplified

compared with the von Neumann architecture implementation depicted in Figure 5-4. .. 85

Figure 5-13 Monte Carlo simulation results of stochastic binarization for 2 bit, 4 bit, and 6bit

weights. Left panel of each case shows the weight array and the binary column. Red and

blue colors in the weight array represent LRS and HRS, respectively. Color in the binary

column representing the probability of having ‘1’ (LRS) from the 1000 tests, based on data

in the weight array. The right panel plots the measured LRS probability in the binary

column with respect to the weight array value. ... 86

Figure 5-14 Comparison of (a) error rate and (b) cost function of the softmax output layer among

the baseline model (high precision network training), the deterministic binarization model,

and the stochastic binarization model. .. 90

Figure 5-15 Reduced MNIST training results, using the baseline model (left panel) and the

stochastic binarization model (right panel) ... 91

Figure 5-16 Error rate for MNIST classification, for different weight precisions using stochastic

binarization. ... 93

Figure 5-17 Effect of device-to-device variability on error rate of stochastic learning of CNN... 94

Figure 6-1 Schematic of implementing the travelling salesman problem (TSP). The nonzero

elements of the 𝑊𝑊(𝑢𝑢, 𝑗𝑗)(𝑣𝑣,𝑘𝑘) matrix are formed by repeating patterns of the 𝑊𝑊𝑊𝑊𝑊𝑊 sub-

array. ... 98

xviii

Abstract

As the demand for processing artificial intelligence (AI), big data, and cognitive tasks

increases, new devices and computing architectures that can reduce the cost of the memory

bottleneck have gained significant interest. One of emerging device that can enable non-von

Neumann architectures such as neuromorphic computing and in-memory computing, resistive

random-access memory (RRAM), has been extensively studied due to its properties such as nano-

scale feature size, low power, and inherent functionalities that allow it to emulate biological

synapses and stochastic events.

In this thesis, I will discuss optimization and development of RRAM devices as well as the

application of RRAM devices for machine learning tasks and combinatorial optimization problems.

Experimental demonstration of feature extraction by using tantalum oxide-based analog RRAM

devices will be first introduced. To achieve robust operation of RRAM crossbar array, tantalum

oxide devices are optimized to reduce the forming voltage. The optimized RRAM array is

successfully used to perform principal component analysis (PCA), an unsupervised learning

algorithm for feature extraction and dimensionality reduction, of a breast cancer dataset. In the

second project, an RRAM structure that offers very low power and large on/off ratio is developed

using copper active electrode and atomic layer deposited Al2O3 layers for low-power in-memory

computation and digital version of neuromorphic computing applications. Desirable device

performance such as self-current limiting, forming-free resistive switching, ultra-low current, and

improved uniformity have been obtained.

xix

Beyond device optimizations, I will present two projects that aim at demonstrating the

applications of RRAM devices, implementing RRAM-based hardware acceleration of simulated

annealing of the two-dimensional spin glass problem, and stochastic learning of deep neural

networks. At the end of this thesis, a practical application of RRAM array for combinatorial

optimization like travelling salesman problem is proposed as a future work.

1

Chapter 1. Introduction

1.1 von Neumann Architecture and Memory Wall Problem

Demand on cognitive computational tasks such as object and speech recognition using deep

neural networks (DNNs) has been rapidly increasing in recent years.[1] These algorithms however

require ever powerful hardware to implement. In particular, the data-intensive nature of DNNs is

well known. For example, in the case of Alpha-Go, 48 CPUs and 8 GPUs were used to train the

Go network.[2] In addition to machine learning, providers that support and analyze big data from

web-based images, videos, and cloud system are suffering from the rising computational cost.[3]

However, conventional computing hardware systems face fundamental limits originating from the

nature of the von Neumann architecture, as shown in Figure 1-1.[4] Although the performance of

processing units and the storage capacity of memory units have been continually improved by

successive scaling according to the Moore’s Law, data communication between processor and

memory becomes the limiting factor of the performance for data-intensive tasks.[5] The von

Neumann Bottleneck, or the memory wall problem, only gets worse with scaling since the

innovations of bus technology that connects the processing units and the memory units are not as

fast as the exponential improvements in complementary metal-oxide-semiconductor (CMOS) or

dynamic random-access memory (DRAM) technology. Although computer architectures have

evolved and various technologies such as cache, instruction-level parallelism, multithreading, and

distributed computing such as graphics processing units (GPUs) have been developed to address

the memory wall problem,[6] the fundamental problem associated with separated memory and

2

logic remain unchanged. As a result, current computer architectures are still significantly less

efficient compared to a brain, a biological computer that performs at orders of magnitude higher

power and space efficiencies than digital computers.[7]

Figure 1-1 Schematic of the von Neumann Architecture. Reproduced using data from Ref. [4]. The computer is

composed of input devices, output devices, a memory unit, and a processing unit. The processing unit with

control units and arithmetic units are connected to the memory unit through a system bus.

1.2 Neuromorphic Computing using Resistive Switching Devices

To solve the von-Neumann bottleneck problem, neuromorphic computing systems that can

mimic the structure of biological nervous systems such as the human brain have gained broad

interest.[7], [8] The basic idea is to build networks of electronic elements that can emulate the

functions of biological synapse and neurons. For example, a neural network shown in Figure 1-2

(a) can be mapped to the neuromorphic architecture shown in Figure 1-2 (b). In Figure 1-2 (a),

each neuron in the input side (left) is connected to output neurons (right) through synaptic

3

connections with weights that govern the strength of the signal received by the output neuron. In

this network, the input signal, or activation 𝑎𝑎𝑖𝑖 from neuron i, and the synaptic weights 𝑤𝑤𝑖𝑖𝑖𝑖

associated with output neuron j are considered as vectors, and the output activation at neuron j is

the function of the inner product 𝑓𝑓(𝛴𝛴𝑤𝑤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖). Therefore, each output neuron can be interpreted as

an individual processing unit that calculates the vector inner product ∑𝑤𝑤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 and activation

function f. For a hardware version of neural network in Figure 1-2 (b), circuits that emulate the

leaky-integrate-fire neuron, static random-access memory (SRAM)-based weight storage, and

buses for inter-neuron communication are assembled to emulate training and inference in the

biological network.

Figure 1-2 Neural network and its elements. Reproduced using data from Ref. [9]. (b) Schematic diagram of a

hardware neuromorphic system that corresponds to the neural network in (a). Beside each neuron circuit, synapse

elements that store weights between the neuron and its neighbors are needed. The grey communication bus

transfers weighted neuron signal data from input neurons to output neurons.

4

Even though significant progress has been made on CMOS-based neuromorphic

computing systems, as demonstrated by IBM’s TrueNorth chip,[10] these approaches face

significant challenges in terms of scaling and power consumption of CMOS devices in neuron

circuits and SRAMs. Especially, synaptic circuits become a bottleneck since the number of

synapses scales quadratically with the number of neurons (N2) and the size of SRAM is more than

100 times of the minimum feature size (>100F2). For these reasons, the second wave of innovation

in neuromorphic systems has been initiated by developing novel non-volatile memories such as

resistive random-access memories (RRAMs), phase-change random-access memories (PCRAM),

and spin-torque transfer magnetic random-access memories (STT-MRAM) that can effectively

store the synaptic weights, or better yet, effectively implement the synaptic functions directly.[11]

In particular, RRAMs, also known as memristors or memristive devices,[12], [13] have

been successfully used to emulate biological synaptic behaviors such as long-term

potentiation/depression (LTP/LTD) and spike-timing dependent plasticity (STDP), allowing

energy-efficient, and cost-effective implementation of neuromorphic computing systems.[14] Key

advantages of RRAMs for neuromorphic computing are their abilities to store analog weights and

to perform vector-matrix operations directly through physics, i.e. Ohm’s law and Kirchhoff’s

current law. Figure 1-3 (a) is an illustration of an RRAM device used as a synapse between a pre-

synaptic neuron and a post-synaptic neuron. The two-terminal structure of RRAM devices with a

top electrode (TE) and bottom electrode (BE) allow them to directly map the network topology in

a crossbar form, as shown in Figure 1-3 (b). For example, an input activation ai from the input

neuron circuit i is converted to voltage level Vi and applied to the top electrode of a device with

conductance Gij that represents synaptic weights wij via the row direction. The output current Ij

collected at the j-th output neuron is determined by Kirchhoff’s current law and can be used to

5

produce activation function aj, 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑗𝑗(𝐼𝐼𝑗𝑗) = 𝑎𝑎𝑗𝑗(𝛴𝛴𝐺𝐺𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖) = 𝑓𝑓𝑗𝑗(𝛴𝛴𝑤𝑤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖). By collecting current in

all columns in the crossbar, the vector-matrix multiplication can thus be obtained in a single step.

The ability of RRAM crossbar to obtain the desired output using physics and in parallel

makes it far more efficient than conventional CMOS implementations for neuromorphic and other

machine-learning applications. The idea of using RRAM array for neuromorphic computing has

been realized with small size application for three digit recognition (~10 cells)[15] to large size

application (>1000 cells) for MNIST dataset.[16]

Figure 1-3 (a) An illustration of a memristor, or a RRAM device, as a synapse between neurons. The top and

bottom electrode of the RRAM device is connected to the pre-synaptic neuron and post-synaptic neuron,

respectively. (Reprinted from Ref. [14] with permission) (b) A crossbar structure made of input neurons, output

neurons, and RRAM devices that act as synapses with weights wij represented by their conductance values.

6

1.3 Analog TaOx-Based Valence-Change Memory (VCM) Device

Among the complex processes and functions in a synaptic junction, a few properties are

essential to the implementation of the functions of neural networks, such as the ability to store the

synaptic weights and synaptic plasticity effects. The synaptic weight is a continuous metric that

represents the strength of the pre-synaptic neuron for the activation of post-synaptic neuron. The

larger the synaptic weight of a synapse, the larger proportion of the signal in the weighted sum that

determines the post-synaptic neuron activation. The weight in the synaptic device also needs to be

updated. Empirical “rules” that describe the weight changes have been observed in biology. For

example, spike-timing-dependent-plasticity (STDP) describes that the weight change depends on

the relative timing of the pre-synaptic neuron activation and the post-synaptic neuron activation.

STDP has been implemented in RRAM devices where temporal difference of bi-directional

activation induces larger voltage than the threshold that can initiate resistance switching.[17] In

general, synaptic devices should have the ability to modulate their conductance incrementally in

both positive direction (termed potentiation) and negative direction (termed depression). Recently,

tantalum oxide (TaOx)-based RRAMs have been studied as analog non-volatile memory devices

that can satisfy the requirements for analog synaptic devices.[18] TaOx RRAMs are in a category

of valence-change memory (VCM), driven by mobile oxygen vacancies (Vos) that form conductive

filaments in the oxide film. In Figure 1-4 (a), the device structure of a TaOx RRAM is illustrated.

The TaOx layer (x < 5
2�) at the bottom supplies Vos to the highly resistive Ta2O5 layer. If the Vo

concentration is high enough, the Ta2O5 layer can become conductive and result in a higher device

conductance. In a typical operation, the top electrode is applied with negative voltage pulses (SET

pulses) and the bottom electrode is grounded. The positively charged Vos are attracted to the top

electrode and become accumulated and form a conductive filament made of high density of Vo.

7

Continued application of SET pulses can incrementally accumulate Vos to the filament and cause

incremental increases in the device conductance. Similarly, positive voltage pulses (RESET pulses,

or RST pulses) drive VOs away from the conductive filament and decreases the device conductance.

 Figure 1.4(b) shows a measurement setup with 20 consecutive SET pulses and 20

consecutive RST pulses, representing a test of the long-term potentiation/depression (LTP/LTD)

phenomenon. The incremental conductance increases and conductance decreases can be clearly

observed experimentally (bottom panel) and explained by simulation result using a physical device

model. Moreover, learning rules such as STDP can be implemented as well (Figure 1-4 (d), further

supporting the prospect of analog RRAMs for neuromorphic applications.

8

Figure 1-4 (Reprinted from Ref. [18] with permission) (a) Schematic of a TaOx-based bi-layer RRAM device.

The TaOx layer is the oxygen-deficient layer that supplies oxygen-vacancies to the Ta2O5 switching layer. (b)

Pulse test of TaOx devices showing LTP/LTD. The concept of the synaptic junction and STDP implementations

are shown in (c) and (d), respectively.

9

1.4 Digital Cu-based Conductive Bridge Random-Access Memory (CBRAM)

Beside VO based VCMs, resistive switching can also be obtained in devices based on metal

ions such as copper or silver ions for conductive filament formation. These devices are also called

conductive bridge random-access memory (CBRAM) devices, and have been considered as

promising solutions for storage class memory since digital CBRAMs have shown better

performance such as high on/off ratio, fast speed, high endurance, low power, and excellent

scalability when compared with other approaches.[19], [20] The fundamental mechanism of a

CBRAM device is the oxidation and reduction process of active metal atoms.[21] In the case of

copper-based CBRAM, copper atoms at the active electrode can be oxidized and changed to copper

cations, Cu+ or Cu2+, when the active electrode is applied with a positive voltage larger than the

total overpotential, which is the threshold potential that initiates the electrochemical reaction.

Afterwards, the ionized cations are driven towards the opposite inert electrode (the cathode) by the

applied electric field. At the cathode or inside the dielectric, the copper cations can capture

electrons and become reduced to copper atoms. A Cu filament can be formed through nucleation

and accumulation of the Cu atoms within the solid electrolyte. When the filament bridges the two

electrodes, a much lower conductance can then be obtained in the SET process. The reverse

processes lead to the filament rupture and the recovery of the high resistance state. The filament

formation/rupture processes have been observed directly in the work of Y. Yang et. al. as described

in Figure 1-5.[22]

Applications of CBRAM other than storage class memory have also been suggested as the

device technology improves. The suggested applications include in-memory computing and binary

coded neuromorphic computing. In-memory computing is a method to operate instructions within

the memory to address the von Neumann bottleneck problem, as shown in Figure 1-6 (a).[23]

10

Moreover, neuromorphic computing by grouping a few binary CRAM devices (figure 1.6 (b)) to

express analog weights in a neural network is another promising application since digital resistive

switching processes are generally easier to control than analog switching processes.[24], [25]

Therefore, the development and application of digital CBRAMs is also imperative to address the

memory wall problem and the development of novel computing architectures.

Figure 1-5 (Reprinted from Ref. [22] with permission) TEM images of (a) a complete conductive filament in a

Ag/a-Si/Pt CBRAM device and (b) partially formed Ag filament. (c) schematic of charge transfer and ion

migration processes during resistive switching of a CBRAM device.

11

Figure 1-6 Schematics of (a) in-memory computation aided with periphery circuit (Reprinted from Ref.[23] with

permission) and (b) crossbar structure for binary coded neural network. (Reprinted from Ref. [24] with

permission)

1.5 Stochastic Switching Behavior of RRAM devices

Since resistive switching in RRAM is based on thermally activated processes over high

energy barriers (which may be the redox potential or the ion migration barrier, depending on the

materials and bias conditions), the processes inherently follow probability distributions determined

by statistical physics. As a result, digital RRAM devices show pronounced stochastic switching

behavior when the applied voltage is lower than the deterministic SET/RST voltage.[26], [27]

According to Jo et. al.,[26] formation of a conducting filament in a Ag/a-Si/Si device is a

consequence of thermally activated hopping process of Ag particles in a-Si, following Eq. 1-1,

where the hopping rate Γ is inversely proportional to the characteristic time 𝜏𝜏 of the switching

process, 𝑘𝑘𝐵𝐵 is Boltzmann’s constant, T is the absolute temperature, and ν is the attempt frequency.

12

Γ = 1 𝜏𝜏� = 𝜐𝜐𝑒𝑒
−𝐸𝐸𝑎𝑎′(𝑉𝑉)

𝑘𝑘𝐵𝐵𝑇𝑇� (Eq. 1-1)

Because the activation energy (𝐸𝐸𝑎𝑎′ (𝑉𝑉) = 𝐸𝐸𝑎𝑎 − 𝛼𝛼𝛼𝛼𝛼𝛼) is dependent on the voltage applied to

the device, the hopping rate Γ and waiting time 𝜏𝜏 of the first switching event can be controlled and

show an exponential dependence on the applied voltage, as shown in Figure 1-7 (a-c).

Figure 1-7 (Reprinted from Ref. [26] with permission) Bias-dependent stochastic switching behavior. (a-c)

Histograms of the wait time for the first switching event at bias voltages of 2.6, 3.2, and 3.6 V, respectively,

while the deterministic SET voltage is 6.0V. (d) schematic of the ion hopping processes. (e) Log plot of the wait

time τ vs bias voltage V.

13

At low applied voltages below the deterministic SET voltage of 6.0V, the device switching

shows clear stochastic behavior and can be described by a Poisson distribution. As the applied

voltage increases from 2.6V to 3.6V, the characteristic time of the distribution decreases

exponentially. The switching process also becomes more deterministic since the switching

probability within a specific pulse width increases exponentially due to the barrier lowering

mechanism depicted in Figure 1-7 (d).

Even though the stochasticity of RRAM devices can be regarded as a probabilistic failure

mechanism of resistive switching that should be eliminated for memory applications, it can be

beneficial in other applications such as stochastic computing and stochastic neural networks. For

example, S. Gaba et. al.[28] exploited the stochastic property of Ag/a-Si/poly-Si RRAM devices

for experimental demonstration of stochastic computing for neuromorphic applications. A parallel

array of the binary RRAMs succeeded to represent an input analog value with their time-space

switching probability distribution. The proof-concept work ignited interests in utilizing the

stochastic switching property of RRAMs for machine learning algorithms such as gradient descent

optimization, k-means clustering, and winner-take-all networks.[29], [30]

1.6 Organization of the Thesis

In this thesis, research projects on analog VCM devices, digital CBRAM devices,

stochastic binary devices, and their applications for non-von Neumann architectures including

neuromorphic computing and in-memory computing systems are first introduced in Chapter 1.

Chapter 2 discusses optimization of TaOx devices to achieve forming-free characteristics and

improved analog switching behaviors for neuromorphic networks with unsupervised learning, and

the demonstrations of functions such as feature extraction and dimensionality reduction to process

14

a breast cancer dataset. In Chapter 3, a novel design of Cu-based CBRAM devices with uniform,

self-limited, forming-free, and robust switching is presented. Chapter 4 discusses studies on

hardware acceleration of combinatorial optimization problems using both analog RRAM devices

and stochastic RRAM devices. In particular, the two-dimensional spin glass problem, one famous

NP-hard problem, was solved using the simulated annealing algorithm implemented in the RRAM

system. A strategy for further acceleration of RRAM-based in-memory computing inspired by the

quantum annealing process is also introduced. In Chapter 5, stochastic learning for convolutional

neural networks with parallel stochastic binarization of analog weights is explained and its

application of the MNSIT dataset is estimated. Finally, future works on general approaches for

acceleration of difficult optimization problems using RRAM arrays is discussed in Chapter 6.

15

Chapter 2. Experimental Demonstration of Feature Extraction and
Dimensionality Reduction using TaOx Analog RRAM devices

2.1 Introduction

The von Neumann architecture, broadly used in digital computing systems, now faces

significant challenges for data-intensive tasks due to the inherent limitation of the data transfer rate

between the memory and the central processing unit (CPU). Alternative approaches based on

neuromorphic computing and machine learning approaches have been extensively studied to solve

such “big data” problems.[31], [32] A common technique used to solve data-intensive problems is

feature extraction, which has been widely used for making predictive models such as pattern

recognition in data analysis.[33] Feature extraction aims to reduce the dimensionality of the data

by mapping the original input data into a new space based on identified vectors (“features”).

Particularly, principal component analysis (PCA) is widely used for linear dimensionality

reduction and has been applied in applications ranging from machine learning to medical fields for

tasks such as image processing, face-recognition, interpretation of genetic data, and disease

diagnostic predictions and treatments.[34]–[39] However, identifying the features is compute-

intensive and traditionally relies on solving the covariance matrix, whose size grows quadratically

as the input.[33] In this study, using an unsupervised, online learning rule, we show experimentally

that simple memristor-based crossbar networks can learn the principal components from sensory

data and effectively separate unlabeled data into clusters.[40] After data clustering, a conventional

supervised learning process (logistic regression) can then be used to define a decision boundary

16

and classify the data with high precision, for example, successfully labeling tumors as malignant

or benign with 97.1% success rate, comparable to results obtained from directly solving the

covariance matrix.

Memristors, nanoscale resistive switching devices that are often called resistive random-

access memory (RRAM) devices when used in memory applications, have attracted significant

interest recently as a promising candidate for neuromorphic computing systems.[14], [41]

Memristor crossbar arrays are particularly suitable for neural network implementations due to the

following reasons. First, the crossbar array can directly implement vector-matrix multiplications

(e.g., dot-product) in physics due to the nature of the two-terminal resistive device: the output

current vector is a product of the input voltage vector multiplied by the conductance matrix of the

memristor array. Second, the ability to incrementally change (and store) the resistance state is

compatible with online learning where simple voltage pulses can be used to update the

conductance (weight) matrix.[15], [42], [43] A typical memristor device consists of a transition

metal oxide layer such as TiOx, HfOx, WOx, TaOx sandwiched by a pair of electrodes,[13], [44],

[45] whereas excellent performance such as high density, low power consumption, long cycling

endurance, and sub-nanosecond switching speed have already been reported.[46], [47] During

weight update, the resistance of the memristor device can be adjusted incrementally by controlling

the distribution of oxygen vacancies, which modulate the local conductivity and the overall

conductance of the device.[18]

2.2 Fabrication of Forming-Free Tantalum-Oxide RRAM Devices

Crossbar arrays based on a forming-free, tantalum-oxide memristor structure were used in

this study to experimentally implement PCA analysis. In general, RRAM devices require an initial

17

electroforming process, where a high voltage is used to create the ionic distributions necessary for

subsequent resistive- switching processes.[48] In a passive memristor crossbar, the high forming

voltage (typically ~5 V, whereas the set voltage is ~1.0 V for Ta2O5-based devices)[49] can cause

damage to the half- selected devices that are already formed and share the same row as the target

device, because a voltage of ~2.5 V will be applied to these half-selected devices in a standard

protective voltage scheme. Therefore, devices that are forming-free or require only low-voltage

forming are essential for the successful operation of passive crossbar systems, that is, systems

without the access transistor in one-transistor one-resistor (1T1R) type implementations. To

achieve reliable forming-free behavior, a thin tantalum pentoxide (Ta2O5) layer and Ta metal were

used as the switching layer and the reactive top electrode, respectively. In detail, the memristor

crossbar array was fabricated on a Si substrate with a 100nm thermal SiO2 layer. The bottom

electrodes, consisting of 5 nm thick NiCr and 40 nm thick Pd, were patterned by photolithography

and deposited by e-beam evaporation followed by a liftoff process. Next, the 10 nm Ta2O5

switching layer was deposited by radio frequency (RF) sputtering for 200s at room temperature.

The top electrodes, consisting of 40 nm thick Ta and 100 nm thick Pd, were fabricated by

photolithography, e-beam evaporation and liftoff. After fabrication, the devices were annealed

using rapid thermal annealing (RTP) at 300 °C in N2 gas for 15 min to create oxygen vacancies in

the Ta2O5 switching layer after device fabrication in lieu of the forming process.

Figure 2-1 (a) shows a scanning electron microscopy (SEM) image of an as-fabricated

array consisting of 18 rows and 2 columns. A 9 × 2 subarray out of the as-fabricated array was

used in the PCA analysis. Figure 2-1 (b) shows the direct current (dc) current−voltage (I−V) curves

of a typical device starting from the virgin state, showing typical bipolar resistive switching

characteristics. Additionally, the first sweep and the subsequent sweep show nearly identical set

18

and reset characteristics, confirming the form-free behavior. The optimization of annealing process

is developed by observation of decreasing forming voltage as annealing time increases described

as Figure 2-1 (c). Figure 2-1 (d) compares |VSET| and |Vforming| from different TaOx-based RRAM

device structures to highlight the improvement of low forming properties in this study.

Figure 2-1 (a) SEM image of TaOx array consisting of 18 rows and 2 columns. Inset is a schematic device

structure of Ta/TaOx/Pd device (b) I-V sweep curve of resistive switching of a single TaOx device (c) Initial

positive sweep for filament formation with different annealing time. Inset is relation diagram between the

annealing time and forming voltage (Reprinted from Ref.[40] with permission) (d) Table of |VSET| and |Vforming|

measured from different TaOx-based RRAM device structures (reproduced using data from Ref[40], [46], [50]–

[56])

19

2.3 Analog Resistive Switching of TaOx Devices for Neuromorphic Application

In memristor based neural networks, the weights are represented by the memristor

conductance and implementation of online learning requires the weights to be incrementally

updated. Figure 2-2 (a) shows the conductance updates of devices in the 9 × 2 subarray. A train of

50 pulses (1.1 V, 3 μs duration) was used to increase the device conductance, followed by another

train of 50 pulses (−1.4 V, 30 μs duration) to decrease the device conductance. The device

conductance was monitored with a 0.3 V read pulse after each programming or reset pulse. As can

be seen in Figure 2-2 (a), a positive pulse increases the memristor conductance incrementally while

a negative pulse decreases the memristor conductance incrementally, demonstrating analog

switching behavior in the device. The analog switching behavior can be attributed to the drift and

diffusion of oxygen vacancies in the TaOx switching layer that incrementally changes the profile

of the oxygen vacancy-rich conduction region.[18], [50] Figure 2-2 (b) plots the average

conductance values measured from the 18 devices in the 9 × 2 subarray shown in Figure 2-2 (a),

along with simulation results based on a dynamic memristor model, showing very good

agreements between the experimental observations and the model.[57] Below are the physical

model of the TaOx analog devices consisting of the I-V equation Eq 2-1 and the state variable

dynamic equation Eq 2-2 where w is internal state variable and γ, δ, α, β are parameters related to

material properties such as effective tunneling distance, tunneling barrier, the depletion width of

the Schottky barrier region and barrier height. u(x) is the Heaviside step function, k, μ are positive

parameters determined by material properties such as ion hopping distance and hopping barrier

heights.

I = ωγsinh(𝛿𝛿 × 𝑉𝑉) + (1− 𝜔𝜔)𝛼𝛼�1 − 𝑒𝑒−𝛽𝛽×𝑉𝑉� (Eq. 2-1)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝜔𝜔 − 1)2k(𝑒𝑒−𝜇𝜇1𝑉𝑉 − 𝑒𝑒𝜇𝜇2𝑉𝑉)𝑢𝑢(−𝑉𝑉) + 𝜔𝜔2k(𝑒𝑒−𝜇𝜇1𝑉𝑉 − 𝑒𝑒𝜇𝜇2𝑉𝑉)𝑢𝑢(𝑉𝑉) (Eq. 2-2)

20

Figure 2-2 (a) Distribution of the current response to 50 SET/ 50 RST pulse train of18 device and their average

(b) Device model result and experimental average of pulse train. (Reprinted from Ref.[40] with permission)

2.4 Generalized Hebbian Rule for Unsupervised Learning

To obtain the principal components of the input data set through online learning, we

implemented Sanger’s rule, also known as the generalized Hebbian algorithm in the memristor

crossbar.[58], [59] Specifically, Sanger’s rule states that the desired weight change is determined

by the current weight (g), the output response (y), and the input (x), following Eq. 2-3.

Δ𝑔𝑔𝑖𝑖𝑖𝑖 = η𝑦𝑦𝑗𝑗(𝑥𝑥𝑖𝑖 − ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑦𝑦𝑘𝑘𝑘𝑘) (Eq. 2-3)

where η is the learning rate (0 < η ≪1), xi represents the input data at input (row) i (1 ≤ i ≤ 9 in

this study), 𝑔𝑔𝑖𝑖𝑖𝑖 is the weight at row i and column j in the neural network, and j = 1 or 2 for the

primary principal component or the secondary principal component. After training, the weight

vectors in columns 1 and 2 determine the primary and secondary principal components of the input

21

data set, respectively. After learning the principal components, the trained artificial neural network

was then used to perform dimensionality reduction and clustering analysis.

2.5 Operation of Memristor Array for PCA Implementation

Figure 2-3 (a) Schematic of the memristor network operation. The input voltage signals are applied to the rows

and flow into the network, while the outputs are connected to the columns and are collected as current. (b)

Optical image of the test board. The memristor array was wire-bonded and inserted in the board. (Reprinted from

Ref.[40] with permission)

Figure 2-3 (a) shows a schematic of the memristor-based neural network structure. The

input channels are connected to the rows and the output channels are connected to the columns of

the memristor crossbar. By using voltage pulses with different pulse widths as the input, the output

vectors are determined by the vector−matrix dot-product of the input signal and the memristor

weight matrix, while the network learns the principal components by adjusting the weights of the

22

memristor network during training.[57] To map the physical parameters obtained in the memristor

network with the parameters used in PCA analysis and Sanger’s rule, a linear transformation from

physical charge to output value is needed. Specifically, with the application of an input xi

(represented by the width of the input voltage pulse), the amount of charge collected at the output

in the memristor network can be calculated from Kirchhoff’s law as

𝑄𝑄𝑗𝑗 = ∑ �𝑤𝑤𝑖𝑖𝑖𝑖𝐴𝐴 + �1 −𝑤𝑤𝑖𝑖𝑖𝑖�𝐵𝐵�𝑖𝑖 𝑥𝑥𝑖𝑖 (Eq. 2-4)

where Q is the charge collected at the output, xi is input signal applied at input row i, wij is the state

variable of the memristor device at row i and column j as discussed in Eq. 2-1 and Eq. 2-2, while

the constants in Eq. 2-1 are lumped into prefactors A and B. The output yj used to perform the

PCA analysis is then obtained from the charge Qj through Eq. S4:

𝑦𝑦𝑗𝑗 = 2𝑄𝑄𝑗𝑗
𝐴𝐴−𝐵𝐵

− ∑ �𝐴𝐴+𝐵𝐵
𝐴𝐴−𝐵𝐵

𝑥𝑥𝑖𝑖�𝑖𝑖 = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 (Eq. 2-5)

where gij =2wij – 1 (Eq. 2-6)

where y and g obtained in Eq. 2-5 and Eq. 2-6 are used to perform the weight updates and PCA

analysis following Sanger’s rule (Eq. 2-2). After training, the weights g in columns 1 and 2 form

the (first and 2nd, respectively) principal components of the input data set.

From the Sanger’s rule shown in Eq. 2-3, the desired weight update ∆𝑔𝑔𝑖𝑖𝑖𝑖 and

corresponding pulse width │∆t│ can be calculated with Eq. 2-7. Programming voltage pulses are

then applied to the inputs to modify the memristor weights. The training pulses are determined by

the polarity and magnitude of ∆𝑔𝑔𝑖𝑖𝑖𝑖 , with potentiation (1.1 V) pulses for positive ∆𝑔𝑔𝑖𝑖𝑖𝑖 and

23

depression (-1.4 V) pulses for negative ∆𝑔𝑔𝑖𝑖𝑖𝑖 , while the pulse widths are determined by the

magnitude of │∆𝑔𝑔𝑖𝑖𝑖𝑖│ and 𝑔𝑔𝑖𝑖𝑖𝑖. Here, a simple approach is used to compensate for the non-linear

response of the internal state variable w. Specifically, the pulse width │∆t│ is determined as Eq.2-

7. The training data set consisted of 100 randomly sequenced data points (50 data points from

benign cells, 50 data points from malignant cells). After training, the network was used to analyze

another 583 data points that were not included in the training data set.

∆𝑡𝑡𝑖𝑖𝑖𝑖 = 2

𝑘𝑘�𝑒𝑒−𝜇𝜇1𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑒𝑒𝜇𝜇2𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
(−1
𝑔𝑔𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−1

+ 1
𝑔𝑔𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−1

) 𝑢𝑢(∆g)

+ 2

𝑘𝑘�𝑒𝑒−𝜇𝜇1𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑒𝑒𝜇𝜇2𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
(−1
𝑔𝑔𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+1

+ 1
𝑔𝑔𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+1

) 𝑢𝑢(−∆g) (Eq. 2-7)

Figure 2-4 List of parameters used in this study. α,β, γ, δ, k,𝜇𝜇1, 𝜇𝜇2, and η are off-state leakage current, non-linear

I-V scaling coefficient at off-state, on-state current coefficient, on-state non-linear I-V scaling coefficient, weight

update coefficient, nonlinear voltage coefficient for set process, nonlinear voltage coefficient for reset process,

and learning rate, respectively. (Reprinted from Ref.[40] with permission)

24

In this study, a standard breast cancer data set from the University of Wisconsin Hospital

was used as the input.[60] The data set consists of breast cell mass properties measured in 9

categories and each property is scored from 1 to 10. Each input to the memristor network is thus a

nine-dimensional vector consisting of scores from the nine measurements. Transformation of the

data is achieved in the memristor array through a simple “read” operation, where the input signals

are applied to the memristor array as voltage pulses with fixed amplitude (0.3 V) and variable

pulse widths (0 to 1000μs duration with 100μs unit pulse width) proportional to the values of the

input data. The output charge collected at column j then corresponds to the dot-product of the input

vector and the conductance vector stored in column j, allowing the mapping from the original nine-

dimensional space to a two- dimensional output space (for the case of considering two principal

components). To learn the principal components, programming (+1.1 V) or erasing (−1.4 V)

voltage pulses are applied to the memristor array with pulse widths calculated from the amount of

the desired weight changes. All the parameters used for the equations about I-V characteristics,

weight update, and Sanger’s rules are listed in Figure 2-4.

2.6 Structure and Operation of the Test Board

 The experiments were carried out using a custom-built test board where the memristor

crossbar array was wire bonded to a chip carrier and connected to the periphery circuitry on the

board, shown in Figure 2-3 (b). The circuitry on the board provides peripheral functions such as

voltage signal generation, addressing signals to the proper row and column in the crossbar, and

receiving current at the output of the array. Digital to analog converters (DACs) were used to

25

provide bias to the top electrodes (TEs) and bottom electrodes (BEs) of the memristor crossbar.

An analog to digital converter (ADC) and an Op amp were used to measure the current during the

read process. The board is connected to a microcontroller with a field-programmable gate array

(FPGA) chip (Xilinx, Spartan 6). The command for execution is programmed by Python.

A schematic of the test board is shown in Figure 2-5. There are 4 DACs on the test board

to supply voltage pulses ranging from 0V to 5.0V on the selected bottom electrode (through DAC1),

the unselected bottom electrodes (through DAC2), the selected top electrode (through DAC3), and

the unselected top electrodes (through DAC4), respectively. Matrix switches (Switch1, Switch2)

allocate each memristive device to the corresponding DAC. To measure current through a

memristive device in the array, a multiplexer (MUX) is activated to flow the current into ADC.

Due to the virtual ground of the op-amp, the voltage biased on a sensing resistor (1kΩ) is measured

using ADC and converted to the current value. The arrows in the schematic indicate the current

path through a selected memristive device for write, erase, and read processes. The bias voltage of

each DAC for each process is specified in the legend of Figure 2-5.

26

Figure 2-5 Circuit schematic of the test board (Reprinted from Ref.[40] with permission)

Figure 2-6 Flow chart of the PCA network operation (Reprinted from Ref.[40] with permission)

27

Figure 2-6 shows the flow chart of the test board to implement PCA analysis. The initial

output is obtained with VREAD. With randomly sequenced training sets, the desired weight changes

and applied pulse widths are calculated following Sanger’s rule. After adjusting the memristor

weights, the updated outputs are obtained using another read process. This procedure is then

repeated for the 100 training data points, over the desired training cycles.

2.7 Experimental Result of Dimensionality Reduction Based on PCA

Figure 2-7 (a) shows results of the 583 test data points before the learning process. Because

the weights in the memristor crossbar are initially random, mapping of the input data to the 2D

output leads to randomly distributed data points, and the output data from benign cells and data

from malignant cells overlap each other. In other words, without training the network does not

cluster the data set effectively. Results obtained from classical PCA analysis are shown in Figure

2-7 (b). Here the principal components were obtained by directly calculating the eigenvectors of

the covariance matrix, where the primary principal component was obtained in the direction of the

largest variance, and subsequently the second orthogonal principal component from the second

greatest variance, and so forth. Afterward, the data become clustered by transforming the input

along the obtained principal components, as shown in Figure 2-7 (b).

Instead of directly solving the eigenvectors from the covariance matrix, the principal

components can also be obtained through neural networks through training, using Sanger’s rule

(Eq. 2-3). To verify this, we first analyzed the memristor network operation through simulation.

Figure 2-7 (c) shows simulation results obtained from a 9 × 2 memristor neural network using

Sanger’s rule and the dynamic device model used in Figure 2-2 (b), demonstrating successful PCA

28

analysis with similar results as directly solving the eigenvectors in software (Figure 2-7(b)).

Experimental implementation of PCA analysis was then carried out on the 9 × 2 memristor

crossbar using the test board and Sanger’s rule. Figure 2-7 (d) shows PCA analysis results obtained

after experimentally implementing online learning in the memristor array. Successful data

clustering, which is similar to the result shown in Figure 2-7 (c), is obtained, verifying the potential

of the memristor-based neural network for feature extraction tasks based on online unsupervised

learning.

29

Figure 2-7 (a) Principal component analysis results. (a) Results obtained with untrained memristor network. The

data are plotted based on the first (y1) and second (y2) output values. (b) Principal component analysis results

after solving the traditional covariance matrix of the input data. The malignant and benign cells are largely

separated into two clusters. (c) PCA results obtained from numerical simulation of the network, using the

dynamic device model and Sanger’s learning rule. (d) Experimental PCA results obtained from the memristor

network using Sanger’s learning rule after 35 cycles of training. The blue and magenta color labels in the plots

represent the ground truth. Note the color labels are used only to highlight the effects of clustering in the plots

but are not used in the network training or PCA analysis. (Reprinted from Ref.[40] with permission)

The primary and secondary principal components, represented by the two nine-

dimensional weight vectors learned in the memristor network from the training process, are shown

in Figure 2-8 (a) and (b), respectively. The black bars show the weight vector before training. The

red bars and blue bars represent the weight vector after training, obtained from simulation and the

experiment, respectively, by directly measuring the memristor conductance values after training.

Comparing the simulation and the experimental results, obtained principal components look

similar in both cases, although not identical. This can be understood from the fact that features

obtained from neural networks are approximate solutions, both from the simulation and in the

experiment. The specific approximate solution depends on the (random) initial condition and any

device effects that are not fully captured in the model. The smaller percentage of variance

represented by the second principal component (~10%) can also lead to larger differences between

the simulation and experiment for the second principal component case. Nevertheless, similar

clustering results can be obtained from these different approximate solutions.

Another test to verify if the neural network has performed properly is by checking the

Euclidean norm of the learned feature vectors as well as the orthogonality between the vectors.

30

Specifically, PCA requires the feature vectors to be normalized and orthogonal. This requirement

is inherently satisfied by the application of Sanger’s rule, which automatically normalizes the

feature vectors. Figure 2-8 (c-e) shows the measured Euclidean norm from the memristor array for

the primary principal component and the secondary principal component, and their dot-product

during the training process, respectively. As expected, as training continues the Euclidean norms

of both vectors approach unity while the dot-product of the vectors converges to zero. These

measurements verify that the learned vectors indeed become normalized during training and form

orthogonal basis of the output space.

31

Figure 2-8 (a) Evolution of the principal component vectors. (a,b) The primary principal component (a) and the

secondary principal component (b) before and after training. Black bars: memristor weights constituting the

principal component vectors before the learning process. Red bars: simulated memristor weights after the

learning process. Blue bars: Experimentally obtained weights after the learning process. (c,d) Evolution of the

Euclidean norm of the primary principal component and the secondary principal component vectors, respectively,

during training. (e) Evolution of the inner product of the primary principal component vector and the secondary

principal component vector during training. (Reprinted from Ref.[40] with permission)

The clustered data, obtained from the memristor network, can then be used to implement

predictive models. In this case, a decision boundary needs to be developed to separate the two

clusters and predict one set as benign and the other set as malignant. The decision boundary was

drawn using supervised training (based on logistic regression[33]), using the labeled training data

set as shown in Figure 2-9 (a). With the help of the learned decision boundary, replotted in Figure

2-9 (b) along with the transformed data (Figure 2-7 (d)), prediction of the measurements can be

accurately made. In summary, only 17 data points among the 583 test data points were

misclassified, corresponding to 97.1% accuracy.

On the other hand, in classical PCA analysis, the features of a dataset can be extracted by

directly solving the eigenvalue problem of the covariance matrix. Using the PCA module in Python

codes, an exact solution was obtained and used for the feature extraction of the breast cancer data

to compare with the results obtained from the memristor network. After clustering of the data, a

decision boundary for prediction of breast cancer was calculated by fitting the training data set

with the logistic regression algorithm (Figure 2-10 (a)). In Figure 2-10 (b), the test data set was

32

used to validate the classification result and an accuracy of 97.6% based on the exact PCA

solutions obtained in software. This result is very close to results obtained by directly solving the

eigenvectors in software (97.6%), suggesting that data clustering from even a small memristor-

based network based on non-ideal devices can be reliably used for efficient and effective data

classification based on unsupervised, online learning.

Figure 2-9 Classification based on the trained memristor network. (a) Decision boundary (purple dotted line)

obtained using a supervised training process. (b) Overlay of the decision boundary obtained from (a) and the test

data from PCA analysis. A cell is classified to be malignant or benign based on whether it is located to the left

33

or right of the decision boundary. The classification accuracy is obtained by comparing the classification with

the ground truth (shown as the color label of the test data). (Reprinted from Ref.[40] with permission)

Figure 2-10 Classification results based on the exact solution of PCA. (a) Decision boundary (dotted line)

obtained by fitting the training data set using logistic regression. (b) The decision boundary calculated from (a)

overlaid with test data after PCA analysis. Prediction was made based on a data point’s location with respect to

the decision boundary. The blue and magenta color labels represent the ground truth. (Reprinted from Ref.[40]

with permission)

2.8 Conclusion

In this study, we show that memristor networks can implement PCA analysis, one of the

most widely used feature extraction techniques, and successfully cluster data in a real- world

environment. Through online, unsupervised learning that modulates the conductance values of the

memristor devices, the memristor network identifies the desired feature vectors. Our experimental

studies further verify that weight normalization and orthogonality can be assured during the

34

unsupervised learning process. With the help of a linear classifier, the clustered data can be further

used to make reliable predictions and classifications. Along with continued device optimizations

and memristor-based circuit developments, this study represents a significant step toward the

implementation of efficient neuromorphic hardware framework for data-intensive computing

applications.

35

Chapter 3. Self-Limited and Forming-Free CBRAMs With Double
Al2O3 ALD Layers

3.1 Introduction

Digital conductive-bridge random access memory (CBRAM) devices have been

considered as future non-volatile memory solutions for applications such as storage class

memory.[19] These devices have shown superior performance such as fast speed, low power

consumption, high density (4F2), high on/off ratio (>100) and CMOS-compatible fabrication that

enable 3D integration process.[20]

Recently, there have been further suggestions to expand the application of digital CBRAMs

for novel computing architectures. For example, CBRAM memory cells can be used to both store

data and process logical or arithmetic instructions.[23], [24] In an approach termed field

programmable crossbar array (FPCA), a reconfigurable computing systems for different tasks can

be efficiently implemented using RRAM crossbar arrays in a modular fashion. In the FPCA system,

an RRAM crossbar array can be exploited for versatile operations such as multi-bit arithmetic

operations, data manipulation, vector-matrix inner product, and neuromorphic computing.

Instructions listed above can be directly performed in FPCA without fetching large size of data to

a processing unit to avoid the memory-wall problem. However, to realize systems such as FPCA,

development and fabrication of CBRAM crossbars with uniform and robust cells is critical, and

several requirements have to be met. Firstly, forming-free CBRAM devices are essential for

crossbar implementation because the forming process can cause severe damage to the unselected

36

cells and make device variations worse.[61] In addition, self-limited programming is a desirable

property because the overshoot of programming current could break down devices and also

aggravate the cycle-to-cycle and device-to-device variations.[62] To reduce the effect of the sneak-

current problem, low programming current and nonlinear I-V characteristics in the low resistance

state (LRS) is also required.[63], [64] Although problems such as high forming voltage, over-

programming, and sneak-currents can be addressed by using the one transistor and one resistor

scheme (1T-1R), the large size and complex control sequence of the 1T-1R structure make the

crossbar array inefficient.[65], [66] Moreover, high endurance and long retention time are also

important properties for non-volatile memory applications and need to be obtained simultaneously

with the other performance metrics.[67]

To meet all the requirements above, Cu-based CBRAM devices with a bilayer structure,

Cu/CuOx/ Al2O3(switching) /Al2O3(barrier)/Pd, has been developed in this study.[68] In the device

structure, the ALD barrier layer serves roles as both an ionic diffusion barrier and an electronic

tunneling barrier that lead to robust, uniform, and self-limited switching behaviors. The suggested

CBRAM with double ALD layers (D-ALD) achieved self-current limited programming(<100nA),

forming-free switching (Vforming = VSET = 3V), large on/off ratio (~100), uniform cycle-to-cycle

and device-to-device operation, reliable switching cycle (>1000 times), ultra-low operation

current (<100nA for programming and 100pA for reading) and nonlinear I-V characteristics, using

a CMOS compatible process. Optimized programming pulse scheme has also been developed to

improve the operations of the D-ALD crossbar structure.

37

3.2 Device Fabrication

The Cu(bottom electrode)/CuOx/LT-ALD/HT-ALD/Pd(top electrode) cells were

fabricated in a 2𝜇𝜇𝜇𝜇 × 2𝜇𝜇𝜇𝜇 two-terminal crossbar structure as shown in Figure 3-1(a). The bottom

electrode (BE) was defined on top of a SiO2/Si substrate by photolithography, followed by e-beam

evaporation of 5nm/50nm of NiCr/Cu. The Cu BE was then subjected to O2 plasma treatment for

2 minutes at 150°C to form a copper oxide CuOx layer. 40 cycles (~45Å) of Al2O3 LT-ALD

switching layer was then deposited in an Oxford ALD tool at 110°C using H2O recipe, using

Al(CH3)3 and H2O as metal precursor and oxidizing agent, respectively. The ALD tool was then

heated up to 250°C, and 6 cycles (~7Å) of Al2O3 HT-ALD layer was deposited with plasma recipe

using O2 plasma as oxidizing agent. The Pd top electrode (TE) was formed by e-beam evaporation.

The devices were measured by a Keithley 4200 semiconductor parameter analyzer. All switching

characteristics were obtained without external current compliance (CC).

In Figure 3-1(a), the D-ALD device with Cu/CuOx/LT-ALD/HT-ALD/Pd structure is

illustrated. The CuOx layer was found to improve nucleation during growth of the LT-ALD

switching layer. Additionally, the Cu ions in the CuOx layer facilitates the redox processes

involved in conducting filament (CF) formation and thus reduces Vforming.[69], [70] The thin HT-

ALD layer is used as a barrier layer to limit CF growth and reduce the programming current. X-

ray reflectance measurements (XRR) show the HT-ALD film has higher density (3.7g/cm3)

than the LT-ALD film (3.3g/cm3). Resistive switching in HT-ALD was found to be more difficult

than in LT-ALD, possibly because of the denser film makes it harder for the inclusion of water

molecules to mediate Cu redox processes.[71] As a result, the HT-ALD film can act as a good Cu

diffusion barrier layer.

38

3.3 Self-Limited and Forming-Free Resistive Switching

Figure 3-1(b) shows three consecutive resistive switching curves without CC, starting from

the as-fabricated state, with voltage applied on the Cu BE and the TE grounded. Note the non-zero

crossing during the negative sweep was caused by a small (~0.15pA) offset current, likely due to

discharging from parasitic capacitances as the voltage is decreased. Smooth I-V curves and zero-

crossing can be obtained by removing this small current offset. The first I-V sweep from the as-

fabricated device leads to a switching to LRS at ~3V. This Vforming is the same as the switching

voltage in subsequent sweeps, showing forming-free characteristics. The self-limited

programming process can be observed from the reliable switching curves - the switching does not

lead to uncontrollable ramp up of the current, even without any external CC or added series-

resistance to limit the applied voltage. Compared with previous studies on Al2O3-based CBRAM

that require high Vforming ~2.3×VSET and external CC,[64] the forming-free and self-limited

programming of D-ALD devices allow more reliable device operation and transistor-free 1S1R

crossbar implementations, where low-forming voltage is necessary and external current

compliance will be difficult to be applied. The I-V curves obtained from the resistive switching

cycles are similar to each other, with consistent LRS and high-resistance state (HRS) values,

showing good C-to-C uniformity without elaborate control circuitry. I-V nonlinearity NLread and

NLSET of ~10 (defined as NLread=I(Vread)/I(1/2Vread) at Vread=1.0V and NLSET=I(VSET)/ I(1/2VSET)

at VSET=3.0V) are also observed in the I-V curve in LRS. Due to the very low read current (0.1

nA) and the high on-state device resistance (> 1GΩ), the ground scheme can be successfully

applied to arrays during read, while the nonlinearity NLSET becomes attractive during write to help

reduce the power consumption using the V/2 write scheme during array operation.[72], [73]

39

The desirable performance can be attributed to the role of the layers, CuOx, LT-ALD, and

HT-ALD in the device. Figure 3-1(c) shows forward I-V sweeps obtained from three as-fabricated

control devices with different structures until their breakdown. Cu(TE)/LT-ALD(50 cycles)/Pd

(BE) devices without CuOx was used to investigate the role of the CuOx layer. It showed not only

high Vforming ~3V, but also large D-to-D variations (gray curves) and low yield (5 out of 10 devices

were initially shorted). This result can be attributed to poor nucleation of the LT-ALD layer on top

of the copper BE that leads to high density of defects such as pin-holes and rough surface.[74] To

address this issue, we note copper oxide has been used to improve nucleation of the Al2O3 layer

during ALD growth since hydroxyl (OH) groups can be chemisorbed onto the CuO sites and react

with the organometallic precursors during ALD.[75]–[77] Hence, Cu(BE)/CuOx/LT-ALD(50

cycles)/Pd (TE) devices with the LT-ALD layer grown on top of CuOx were fabricated. The

formation of CuOx was conducted by 2 minutes of exposure to O2 plasma. The LT-ALD devices

grown on CuOx layer show a low Vforming close to 2.0V (red curves) with enhanced uniformity and

high yield (all the pristine devices are initially insulating). Moreover, copper ions (Cu2+) can be

more easily supplied from CuOx and diffuse into the Al2O3 layer compared to the Cu metal case,

due to the lower Cu-O bond energy in CuO (~1.5eV) compared with that of Cu-Cu metallic bond

(~2.0eV).[70], [77]–[79] Therefore, devices with CuOx as the ion source layer exhibit reduced

Vforming. The low forming voltage of LT-ALD can also be attributed by the effects of H2O

molecules in the LT-Al2O3 film, which has been shown to be more hydrophilic than SiO2.[80] The

H2O molecules absorbed in the LT-ALD layer can facilitate the Cu redox processes, as has been

observed in SiO2-based devices.[69]

The HT-ALD control devices were fabricated in the same structure as the LT-ALD device,

i.e. Cu(BE)/CuOx/ HT-ALD(50cycles)/Pd(TE), by simply replacing the ALD growth condition

40

from 110°C with H2O in the LT-ALD device to 250°C with O2 plasma in the HT-ALD device.

Since the same number of ALD cycles (50 cycles) for both the HT-ALD device and the LT-ALD

device were used, resulting in similar thickness of ~55 Å, the difference of I-V the characteristics

between LT-ALD devices and HT-ALD devices are mainly due to the ALD film quality. The I-V

curves of HT-ALD devices (blue lines) in Figure 3-1 (c) showed very low leakage current (~10-

14A) and eventually broke down at a high voltage, ~ 5.5V. These results verify that the HT-ALD

layer can offer very low leakage current and support high electric field. The closely packed Al2O3

in HT-ALD films makes it harder to contain water molecules, which have been shown to reduce

the activation energy of copper ion migration.[71] These results suggest that HT-ALD can be used

as an effective ion diffusion barrier to control the growth of the CF. The excellent insulating quality

of the HT-ALD layer is also useful to limit the current and achieve self-compliance during the

switching process, as have been verified in the D-ALD devices shown in Figure 3-1(b).

The conduction mechanism can be further explained by fitting the I-V curves, as shown in

Figure 3-1(d). The I-V curve in HRS was fitted to Frenkel-Poole model in the 1.2~2.0V range

(where the current is clearly above the measurement resolution limit), which implies trap-related

leakage mechanism in HRS, as shown in Figure 3-1(d).[81] The LRS regime can be fitted with

direct tunneling, implying the existence of a barrier between the CF and the inert electrode.[82]

From the fitting, the tunneling gap and diameter of the CF is estimated to be 10Å and 16 Å,

respectively. The tunneling gap of 10Å is close to the thickness of the HT-ALD barrier, ~7 Å. This

analysis supports that the vertical growth of the Cu CF is stopped by the HT-ALD layer, and

conduction in the LRS is dominated by tunneling through the barrier layer.

41

Figure 3-1 (a) SEM image of Cu/CuOx/LT-ALD/HT-ALD/Pd crossbar devices. Inset: the schematic structure of

D-ALD devices. (b) Successive I-V sweeps including SET switching of as-fabricated device (red) (c) I-V curves

of LT-ALD devices without CuOx (Vforming~3V), LT-ALD devices with CuOx (Vforming~2V), and HT-ALD

devices (Vforming~5.5V). Results from three devices are shown for each structure. (d) Fitting of the D-ALD device

I-V. The fitting was limited to below 2.0V where resistive switching occurred. (Reprinted from Ref.[68] with

permission)

42

3.4 Role of HT-ALD barrier layer

Additional evidence of reliability of the HT-ALD barrier can be observed in Figure 3-2(a).

Here the applied voltage was continuously applied beyond the typical programming voltage range

of 3V. At ~ 4V, Cu ion injection into the HT-ALD barrier layer occurs, leading to abruptly

increased current. However, the device recovers the lower LRS current level at ~1.6V during

reverse sweep without suffering from permanent damage, suggesting the partial filament in the

HT-ALD layer is not stable and the HT-ALD film can restore its barrier property even if the device

is accidentally exposed to high voltage. The instability of the Cu filament in the HT-ALD layer

can be understood from the enhanced mechanical stress due to the high Young’s modulus in the

HT-ALD layer.[83], [84] Enhanced mechanical stress reduces the activation energy for Cu cluster

dissolution and makes the CF volatile in the HT-ALD layer.

The resistive switching mechanism of the D-ALD device is illustrated in Figure 3-2(b). (1)

In the as-fabricated device, Cu ions can be supplied from the CuOx layer and migrate into the LT-

ALD layer leading to resistive switching with forming-free behavior (2). The growth of the Cu CF

in the LT-ALD layer increases the current level from ~10-12A to ~10-9A. The vertical growth is

stopped by the HT-ALD layer. (3) Afterwards, lateral CF growth results in gradual increase in

device current when the voltage is continuously applied. (4) If the device is accidentally subjected

to high voltage, Cu ions may be injected into the HT-ALD layer. However, the injected Cu will

not be stable and the HT-ALD layer can recover its barrier property.

43

Figure 3-2 (a) An I-V sweep with larger voltage range showing over-programming (red) and the subsequent

restore to the original resistive switching curve (blue) (b) Schematic illustration of the switching mechanism of

D-ALD device. (Reprinted from Ref.[68] with permission)

3.5 Cycling Test Results

Figure 3-3(a) shows the cycling test results. The D-ALD device achieved 1000 cycles of

resistive switching without any observable degradation of on/off ratio (~100). The C-to-C

cumulative distribution in Figure 3-3(b) and its inset show uniform on-current in the 100~300pA

range (at 1V), without any help of CC. D-to-D uniformity was examined in Figure 3-3(c). Box

plots measured from 10 different devices show similar distribution in current levels in both LRS

and HRS for all devices. The improved uniformity of the devices can be attributed by the

uniformity of the deposited ALD layers, including both the LT-ALD switching layer and the HT-

ALD barrier layer. In addition, retention over 104 seconds was obtained at 100°C (Figure 3-3(d)).

44

Figure 3-3 (a) Pulse cycling test (3.0V/5ms for SET pulse, -2.5V/5ms for RST pulse, and 1.0V for read pulse)

(b) Cumulative probability of resistance in LRS and HRS. Inset: the box plot that summarize C-to-C variation.

(c) Box plots of on/off current from 10 devices (d) retention test of LRS and HRS at T = 100°C. (Reprinted from

Ref.[68] with permission)

3.6 Optimization of Pulse Programming Method

Finally, we examined the effects of the pulse programing algorithms on device operation.

The standard pulse programming method is the cumulative fixed pulse (C-FP) mode, a commonly-

used write-verification method, consisting of 3.0V/5ms SET pulse followed by 1.0V read pulses

for verification during SET, and -2.5V/5ms RESET (RST) pulses and subsequent read pulses

during RESET. (Top panel of Figure 3-4(a)) To optimize device operation, the RESET sequence

45

was changed following.[85] When the device was not erased after an RST pulse, a positive voltage

pulse (pre-SET pulse) (2.0V/5ms) was applied prior to the subsequent RST pulse (Bottom panel

of Figure 3-4(a)). This programming method is called non-cumulative fixed pulse (NC-FP)

mode.[85] Compared with C-FP mode, the application of the NC-FP mode lowered the switching

failure rate, defined as the probability of resistive switching not being successful after a single SET

or RST pulse, as shown in Figure 3-4(b) and improved the endurance from ~200 to >1000. It is

believed that the pre-SET pulses help the Cu atoms escape from meta-stable trapped locations that

may favor forward migration vs. backward migration. The reduction of the gap size due to the pre-

SET pulse also increases the field during the subsequent RESET pulse and facilitate the subsequent

removal of the Cu atoms. This approach additionally improves SET reliability, likely due to

reduction of residual Cu ions in the LT-ALD layer and the reduced stress from the reduced number

of RST attempts.

46

Figure 3-4 (a) Schematic pulse sequence consisting of SET pulse train and RST pulse train with verification

scheme, for the cumulative fixed pulse mode (C-FP) and the non-cumulative fixed pulse mode (NC-FP). (b)

Switching probability of SET (upper) and RESET (lower) for attempts using C-FP (purple) and NC-FP (red).

The conditions of SET, RST, pre-SET pulses are fixed at 3.0V/5ms, -2.5V/5ms, and 2.0V/5ms, respectively.

(Reprinted from Ref.[68] with permission)

3.7 Conclusion

In this project, Cu-based CBRAM devices with double Al2O3 ALD layers have been

developed. The D-ALD devices achieved self-limited current, forming free, high on/off ratio, good

uniformity, nonlinear I-V at LRS, and robust pulse switching. The roles of CuOx and HT-ALD

layers were investigated. The promising results from the D-ALD devices will help advance of the

CBRAM crossbar arrays for storage and novel computing applications.

47

Chapter 4. Hardware Acceleration of Simulated Annealing of Spin
Glass by RRAM Crossbar Array

4.1 Introduction

Combinational optimization problems (COPs) try to find globally optimal objects in a

discrete space. Difficult COPs such as spin glass systems and the traveling salesmen problem are

NP-hard, i.e. at least as hard as the hardest problems in NP (Non-deterministic polynomial time)

problems. To solve these problems, simulated annealing (SA), a metaheuristic algorithm that

effectively search global optima, has been developed and widely used.[86] However, the

convergence of SA may be slow because it involves compute-intensive operations within a

massively connected interaction network and stochastic search rules that require random number

generation (RNG) with an exponentially decaying probability distribution. Recently, there have

been significant progress in RRAM-based acceleration of numerical computation such as solving

partial differential equations and neural network implementations based on vector-matrix

multiplication,[87], [88] in-memory computing,[89] in-memory and stochastic computing using

stochastic bit streams.[28], [29] Inspired by the ability of RRAM devices for numerical

computation, in this work, we utilized vector-matrix multiplication functions of Ta2O5 RRAM

crossbars and stochastic switching properties of Cu-based CBRAM devices to accelerate an SA

algorithm that solves a spin glass problem effectively.[90]

48

4.2 Spin Glass Problem and Simulated Annealing

Finding the ground state of a two-dimensional (2D) spin glass, from randomly mixed states

as shown in Figure 4-1 (a), is a classical problem in COP. Although the interaction between two

spins is simple such that the Hamiltonian is just a multiplication between neighboring spins

weighted by the coupling strength, complex interactions between arbitrary spin pairs exist in the

spin glass, as illustrated in Figure 4-1 (b) and make the problem difficult to solve in polynomial

time.[91] Figure 4-2 (a) shows the flowchart of conventional SA that starts from initializing the

spin configuration, followed by calculating the change of Hamiltonian ∆H due to flip of randomly

selected yth single spin, 𝜎𝜎𝑦𝑦. The Hamiltonian of the spin glass is given as:

H = −J∑ 𝑁𝑁𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦<𝑥𝑥,𝑦𝑦> = −1
2

J∑ 𝑁𝑁𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦𝑥𝑥,𝑦𝑦 (Eq. 4-1)

where J is the amplitude of the coupling strength, 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the xth and yth spin in the spin glass.

<x,y> in Eq. 4-1 indicates that the spin multiplication needs to be conducted only for neighboring

spins. The introduction of Nxy, a coupling strength (CS) matrix, makes the expression more concise.

Elements in Nxy are ‘1’ if 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are neighbors of each other, and ‘0’ for non-neighboring spins.

If a spin flip decreases energy, e.g. inversion of 𝜎𝜎𝑦𝑦 leading to negative ∆𝐻𝐻𝑦𝑦 , SA accepts the change

because it stabilizes the spin system. If ∆𝐻𝐻𝑦𝑦 is positive, on the other hand, the spin flip will happen

with a probability proportional to the Boltzmann factor (p = exp �−∆𝐻𝐻𝑦𝑦 𝑘𝑘𝑘𝑘� �) where T is

absolute temperature. After a fixed number of attempted spin flips, the temperature T is decreased

following a cooling schedule, and the process is repeated at the new temperature. The stochastic

hill climbing provided by the Boltzmann factor enables the spin glass to escape from local optima

49

as depicted in Figure 4-2 (b), and the escape probability decrease to zero as time increases and

temperature cools down.

Figure 4-1 A 2D spin glass and the spin interactions represented by (a) connections to neighboring spins and (b)

circular graph showing the complex couplings. (Reprinted from Ref.[90] with permission)

Figure 4-2 Flow chart of the SA algorithm. (b) Schematic showing finite spin flip probability even for positive

∆H can help the system escape from local optima. (Reprinted from Ref.[90] with permission)

50

4.3 Simulated Annealing Accelerated By RRAM Array and Stochastic CBRAM

During SA, calculations of the inner products in ∆𝐻𝐻𝑦𝑦 and the probability generated by the

RNG function in the Boltzmann factor make the process compute-intensive. To reduce the

computational cost and speed up SA, inner products between the spin vector σ��⃗ and neighboring

spins, as determined by the CS matrix, can be directly obtained in an RRAM array storing the CS

matrix N𝑥𝑥𝑥𝑥, as shown in Figure 4-3 (a), (b). For example, when the yth spin attempts to be flipped,

all xth row (∀𝜎𝜎𝑥𝑥 ∈ 𝜎⃗𝜎) in the RRAM array in Fig 4-3 (c) are applied with a Vx(=𝜎𝜎𝑥𝑥Vread) pulse, and

the output current 𝐼𝐼𝑦𝑦 at the yth column is proportional to ∑ 𝑁𝑁𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦𝑥𝑥,𝑦𝑦 , producing the desired

value of ∆𝐻𝐻𝑦𝑦 . As a result, the inner-products can be readily obtained from read operations through

the RRAM array.

Figure 4-3 (a) ∆𝐻𝐻𝑦𝑦 due to the change of 𝜎𝜎𝑦𝑦 surrounded by its neighbor spins. (b) CS matrix where the 5th column

represents interaction between 5th spin and all the other spins (c) Schematic of inner product between the 5th

CS column vector and spin vector 𝜎⃗𝜎 conducted by RRAM array. (Reprinted from Ref.[90] with permission)

51

Since only nearest neighbor interactions are non-zero, the CS matrix can be very large but

sparse. The large CS matrix can be effectively mapped into smaller RRAM arrays where only the

non-zero portions are stored, as illustrated in Figure 4-4. Here a 9 × 9 2D spin glass was chosen

as an example. The 81 × 81 CS matrix of the spin glass represents all-to-all connection and can

be divided into three groups (top-edge row, mid rows, and bottom-edge row), representing the

coupling strength of a spin in the top (middle, or bottom) row with its neighbors. The groups are

9 column wide (corresponding to the 9 spins in each row) and can be further divided into sub-

groups of 3 spins (3 columns), for spins at the left-edge, middle columns, and right edge, producing

the patterns shown in Figure 4-5. All the possible (non-zero) sub-matrix patterns can then be stored

in a three column RRAM array (11 × 3), as shown in Figure 4-5 (d). Experimentally, the 11 × 3

RRAM array was fabricated with a Pd/Ta/Ta2O5/Pd cell structure. The RRAM crossbar array is

then wire-bonded and connected to a custom test board as shown in Figure 4-6.

Figure 4-4 81×81CS matrix of a 9×9 2D spin array. The large but sparse CS matrix can be sliced to fit into a

smaller RRAM array. (Reprinted from Ref.[90] with permission)

52

Figure 4-5 9 sub-patterns with three columns each from the 81×81 CS matrix, depending on the position of the

spin in the 2D spin glass. (a) Top-Edge Row case, (b) Mid Row case, and (c) Bottom-Edge Row case. (d) All

the non-zero and unique patterns in (a-c) can be stored in a single 11×3 RRAM array. (Reprinted from Ref.[90]

with permission)

Figure 4-6 (a) Schematic of the Ta2O5-based RRAM cell and array structure. SEM image of the RRAM crossbar

array. (b) Test board comprised of FPGA, peripheral circuit, and the RRAM array chip for experimental

implementation of simulated annealing. (Reprinted from Ref.[90] with permission)

53

Reliable switching characteristics and tight forming, set and reset voltage distribution can

be obtained from all devices in the RRAM array (Figure 4-7 (a), (b)). The cell-to-cell current

variations shown in Figure 4-7 (c) can be significantly improved to be lower than 1% using a write-

verify method, as shown in Figure 4-7 (d), enabling robust dot product operations to obtain

∆𝐻𝐻𝑦𝑦 .[24] The hill climbing probability was also obtained through hardware by using stochastic

switching effects in a Cu-based CBRAM, as shown in Figure 4-8. The CBRAM device shows

stochastic switching behavior switching at probability low programming voltage, with a switching

probability P(∆𝑡𝑡) = 1− exp(−∆𝑡𝑡/𝜏𝜏) for programming pulse width ∆𝑡𝑡, where 𝜏𝜏 is a time constant

dependent on the voltage amplitude. A Cu/ALD Al2O3/Pd CBRAM structure is used in this

experimental implementation, with 𝜏𝜏 = 24.9ms for transition from HRS to LRS. After applying a

single SET pulse, the probability of the device staying at HRS then follows the exponential

decaying function exp(−∆𝑡𝑡/𝜏𝜏) , which follows the Boltzmann factor required for SA, after

converting ∆𝐻𝐻𝑦𝑦 to ∆𝑡𝑡 = τ �Δ𝐻𝐻𝑦𝑦/𝑘𝑘𝑘𝑘(𝑡𝑡)�.

54

Figure 4-7 (a) I-V curves showing the forming (red) and subsequent switching (blue) processes. (b) Distribution

of VForming, VSET, VReset of the 33 cells in the RRAM array. (c-d) Variation of device current without (c) and with

(d) write-verify pulse method. (Reprinted from Ref.[90] with permission)

55

Figure 4-8 (a) Structure and SEM image of Cu-based CBRAM devices. (b) Experimentally measured probability

of HRS→LRS switching (blue). The Boltzmann factor (red) can be obtained by the probability of the device

staying at HRS after applying a single SET pulse with pulse width ∆𝒕𝒕. (Reprinted from Ref.[90] with permission)

4.4 Experimental Demonstration Of RRAM-Based Simulated Annealing

The flow chart of implementing SA to simulate a spin glass column in the spin glass is

randomly is shown in Figure 4-9. Starting from the initial spin configuration, a spin (ith row and jth

selected for flip-trial. The spin vector is converted as input pulse vector based on its location and

applied to the 11 × 3 Ta2O5 RRAM array. After the current measurement from the selected

column Iy, the sign of Iy is compared with 𝜎𝜎𝑦𝑦. The flip-event of 𝜎𝜎𝑦𝑦 is accepted if the signs match

(corresponding to negative Δ𝐻𝐻𝑦𝑦 . If the signs of Iy and 𝜎𝜎𝑦𝑦 do not match, the flip-event is only

accepted if a single SET pulse on a the CBRAM does not change its original HRS state, following

discussions above. The data flow is illustrated in Figure 4-10.

56

Figure 4-9 Flowchart of implementing the SA algorithm using RRAM array for the 2D spin glass problem.

(Reprinted from Ref.[90] with permission)

Figure 4-10 (a) Randomly initialized 15×15 spin array (with 225 spins). (b) The sparse 225×225 CS matrix. (c)

Coupling strength patterns stored and measured from the RRAM array used in the experimental setup. (Reprinted

from Ref.[90] with permission)

57

A 15 × 15 2D ferromagnetic spin glass was tested to prove the concept of RRAM-based

SA process. Figure 4-11 shows one test case with a fixed spin edge condition, where all the edge

spins are fixed at the ‘up’(+1) state and the rest of the spins are initialized to ‘down’(-1) state at t

= 0. Because the edge spins are always fixed, the only possible ground state of this problem is ‘all-

up’ configuration. The SA parameters such as J, T(t), and NT for the experiment are 1.0, 5/√𝑡𝑡 + 13 ,

and 100, respectively. As time flows, the initially down-spins get affected by the edge spin states

due to ferromagnetic interaction that favors spins with same orientations. Note some of the down-

spins surrounded by other down spins are also flipped to up-spin (e.g. at time=5), although this

event increases the total energy E. This is an example of hill climbing phenomenon which can

speed up the optimization process by escaping from the local optima, as discussed in SA. The

ground state is achieved at time ~ 200. Other cases with multiple ground states, i.e. initially random

configurations without any fixed edges, were also tested using the RRAM-based SA, as shown in

Figure 4-12. Due to the existence of two possible ground states with ‘all-up’ and ‘all-down’ spin

configurations, the same initial condition can evolve to opposite results, as verified by the

experiments. Note that the two solutions also show similar proportions of majority spin during the

evolutions (e.g. at time=150), since the SA strategy leads to similar dynamic progress towards the

respective ground state. Comparison between the experimental RRAM-based SA results and

software results verifies the E and magnetization (M) of both cases show similar dynamics that

converge to global optima near time=200, further proving the successful experimental

implementation of RRAM-based SA.

58

Figure 4-11 Evolution of the spin configuration at different time steps for the fixed spin-edge case. Data obtained

experimentally from the RRAM array-based hardware system. (Reprinted from Ref.[90] with permission)

Figure 4-12 Time-dependent evolution of the spin glass system solved by the RRAM hardware, for random

initial states with no fixed spins. Two ground states with global energy minima, ‘all-up’ state and ‘all-down’

states, can be generated from the same initial state in different runs. (Reprinted from Ref.[90] with permission)

59

Figure 4-13 (a) Average energy and (b) magnetization as a function of cooling schedule. Conventional software

version of SA (red) and experimental SA results obtained from the RRAM array (blue) are compared. (Reprinted

from Ref.[90] with permission)

4.4 Parallel Spin-flip Strategy Using Memristive Simulated Annealing

To further accelerate the RRAM-based SA, it is possible to flip multiple non-neighboring

spins together simultaneously to take advantage of the parallel vector-matrix multiplication (vs.

vector-vector inner product) offered by RRAM arrays, as illustrated in Figure 4-14. The flipped

spins must be non-neighboring to not affect the energy calculations compared with consecutive

spin flips. The parallel spin-flip strategy was also implemented in the RRAM-based hardware.

Comparisons of the experimental results obtained from the conventional single spin-flip and the

parallel double spin-flip schemes are shown in Figure 4- 15, for the fixed edge test case. The E

and M from double spin-flip scheme (red) show faster convergence than the single spin-flip

scheme (blue). The single spin-flip scheme even fell into a local minimum near time=100 for a

while before finally escaping, while the double spin-flip method already reached its ground state.

60

Since the double spin flip should be equivalent to two consecutive spin flips (at the same

temperature), the results are compared with another experiment where 2 × iterations (i.e. 2NT=200)

are attempted at each time step using the single spin flip scheme (black curves). This approach

indeed produced results like those obtained from the double spin-flip experiments, and suggested

possibility of further acceleration of SA with an N spin-flip scheme that can be calculated

simultaneously in RRAM-based array.

Figure 4-14 Schematic illustration of multi-spin flip method that exploits parallel vector-matrix multiplications

in RRAM crossbar array. (Reprinted from Ref.[90] with permission)

61

Figure 4-15 Comparison of (a) energy, (b) magnetization, and (c) spin configuration snap shots, for results

obtained using the single-spin method with 100 iterations per time step (blue), single-spin method with 200

iterations per time step (black), and double-spin method with 100 iterations per time step (red). All results are

obtained from the RRAM hardware setup. (Reprinted from Ref.[90] with permission)

4.5 Digital Annealing with RRAM crossbar array

Although the parallel spin-flip strategy accelerates the simulated annealing by the number

of parallel spins, this method can cause error if two flipping parallel spins are the nearest neighbors

to each other. As a result, the number of parallel spins cannot be larger than 50% of the number of

columns in the RRAM array. Therefore, the parallel spin-flip strategy is not able to fully exploit

the parallelism of the RRAM array.

Inspired by quantum annealing that examine all the possible quantum states at the same

time and shrink to the ground states,[92] digital annealing with parallel pipeline using FPGA was

suggested by S. Matsubara et. al..[93], [94] The key idea of digital annealing is to test all-to-all

interaction to try all the possible spin flip at the same time and select the most optimal spin to

accelerate the spin Ising model. To implement the idea of ‘parallel-trial’ in digital annealing

platform, ability to calculate vector-matrix multiplication needs to be maximized. Because RRAM

62

crossbar structure is well known as a vector-matrix multiplier,[95] not just vector-vector or

multiple vector-vector operations, the parallel trial strategy is going to be a good match with

RRAM crossbar array. Figure 4-16 illustrates the difference between the parallel spin-flip strategy

and the parallel trial method. In parallel spin-flip strategy in left panel, only two non-neighboring

columns are activated and used for calculation of changed Hamiltonian. After the estimation of

Hamiltonian, both spins are flipped. On the other hand, the parallel trial method exploits all the

columns in the RRAM crossbar array to find the best choice. The advantage of the parallel trial

method comes from that the array use its maximal parallelism to optimize the spin configuration.

Figure 4-16 Comparison between multiple spin flip strategy and parallel trial strategy (Reprinted from Ref.[90]

with permission)

63

Figure 4-17 Acceleration of convergence with parallel spin trial method (Reprinted from Ref.[90] with

permission)

As shown in the simulations result of spin glass optimization (Figure 4-17), the acceleration

of optimization is approximately proportional to the number of parallel trial (or, number of

columns of RRAM array). This tells that the parallel trial method, or digital annealing with RRAM

array, has good scalability for large problem with large RRAM array.

64

4.6 Conclusion

The spin glass system, one of the widely analyzed NP-complete COPs, was solved by using

simulated annealing in a hardware system consisting of Ta2O5 RRAM crossbar arrays for dot-

product operations and Cu-based CBRAM devices for the emulation of stochastic events. The

probability of spin flipping is first determined by vector-vector multiplications between spin

vectors and the interaction vector. The event then emulated in the stochastic CBRAM by applying

a programming pulse with pulse width proportional to the change of Hamiltonian. The process is

repeated until the ground state is achieved. A parallel spin flip strategy and a parallel-trial method

have also been developed to better utilize parallel operations in the RRAM crossbar array.

65

Chapter 5. Stochastic Learning of Deep Neural Network Using
Stochastic RRAM Crossbar Array

5.1 Introduction

Recently, deep neural networks (DNNs) are widely used for various applications such as

image processing, speech recognition, and natural language processing.[1], [96] Since the structure

of a DNN is ‘deep’ which means that there are numerous hidden layers to represent the hierarchy

of features for the task, training DNNs that offer high performance such as AlexNet,[97]

GoogLeNet,[98] and ResNet-50[99] is expensive in terms of computational cost. For example,

AlexNet and ResNet-50 have 61M and 25.5M parameters in the network, and require 724M and

3.9G multiplication-and-accumulation (MAC) operations respectively, as shown in Figure 5-1. For

even a single training epoch of the 1.2M training data in the ImageNet dataset, the number of MAC

operations is as large as 1015, which will take more than a few weeks to compute with conventional

CPUs. As researchers realized that larger, deeper, and wider models perform better, graphic

processing units (GPUs) have been used for the acceleration of deep learning tasks, and even

further hardware acceleration is required for more complex tasks such as dynamic video analysis

for self-driving cars. The efforts to improve deep learning performance include not only enhanced

computational throughput, but also to compress the scale of the network to reduce computation

while not significantly sacrificing the network’s performance.[100]

66

Figure 5-1 Properties of deep neural networks for the ImageNet dataset, reproduced using data from Ref.[97]–

[99] As the number of the convolution layers increases the top-error rates reduce while the total number of

parameters and the number of MAC operations for a single input increase.

Weight quantization is one of the promising strategies to compress the network by reducing

the bitwidth of the parameters.[101]–[105] According to Horowitz et. al.[106], reduced bitwidth

and integer arithmetic operations are more efficient than high precision and floating-point numbers

in conventional computing architectures, as shown in Figure 5-2. Especially, compared to 32bit

floating point MAC operations, 8bit integer type MAC operations require 20 times cheaper energy

cost and 37 times smaller area. To push the limit of the efficiency of low precision operation, M.

Courbariaux et. al. proposed BinaryConnect to train a DNN with binarized weights.[105]

In general, however, a neural network needs to maintain high precision information

implement commonly used learning algorithms such as backpropagation, where small learning

rates lead to infinitesimal weight updates that need to be accumulated to the original weights. If

the bitwidth of the weights is too small, the updated weights will be rounded to their original values

and learning will fail. This is the reason why attempts to directly train binary neural networks could

not achieve competitive performances.[107], [108]

67

Figure 5-2 Rough energy cost and chip area for various operation and bit-width precisions in 45nm CMOS

technology, Reproduced using data from Ref.[106]. As precision increases from 8bits to 32bits and the integers

change to floating point numbers, the energy and area consumption increases accordingly. The last 2 rows are

cost for data fetching from memory.

To maintain the high precision weights and simultaneously exploit the benefits of

quantized weights, BinaryConnect divides the commonly used back propagation algorithm into

two steps, propagation step and update step.[105] In propagation step, the input 𝑥𝑥 propagates

forward to obtain an estimate of the output activation o(𝑥𝑥), and the error δ(𝑥𝑥) in the output layer

propagates backward to calculate all the gradients of the error with respect to weights dδ(𝑥𝑥)
d𝑤𝑤

. This

step can be implemented using the quantized weights to both reduce computation cost and help

inject noise to the system. Then, in the update step, the calculated gradients are multiplied by the

68

(small) learning rate λ and added to the current weights 𝑤𝑤. This step still needs to be implemented

using the high precision weights.

In BinaryConnect described in Figure 5-3, these conditions are met by using two networks: one

storing the original high precision weights, and the other storing the binarized weights obtained

from the high-precision weights after weight updates. Specifically, the high precision weights 𝑤𝑤 ∈

𝑅𝑅 of a neural network (right panel of Figure 5-3) are first used to generate binarized weight 𝑤𝑤𝑏𝑏 ∈

{−1, +1} through binarization process. The generated binary weights are then used for the

propagations step (left panel of Figure 5-3) to estimate the output activation o𝑏𝑏(𝑥𝑥) and the

gradients dδ𝑏𝑏(𝑥𝑥)
d𝑤𝑤𝑏𝑏

. The desired weight update −λ dδ𝑏𝑏(𝑥𝑥)
d𝑤𝑤𝑏𝑏

 calculated from the binary network are then

accumulated to the high precision weight w to yield the updated weight w’ (right panel of Figure

5-3). This cycle is then repeated until the training of the neural network is completed. Despite of

the noisy weight update due to binary weights, BinaryConnect demonstrated competitive

classification results close to state-of-the-art deep learning techniques. The high performance of

BinaryConnect is addressed by averaging out of the noisy steps from binarization process like the

stochastic gradient descent method, because the average of binarized weights throughout the

training process is likely close to the high precision weights. Finally, by dividing the

backpropagation algorithm into the propagation step with binarized network and the update step

with high precision network as the schematic in Figure 5-3, BinaryConnect can make the training

process more cost effective due to the cheap 1-bit MAC operations.

69

Figure 5-3 Schematic of BinaryConnect (Reproduced using data from Ref.[105]). At the first stage of network

training, a binarized network (left panel) is created from the high precision network (right panel). The binary

network is used in the propagation step to obtain gradients with respect to weights, which are then fetched to the

high precision network for weight update.

 However, binarization process is a main bottleneck for BinaryConnect with high

performance. Between two kinds of binarization process, deterministic binarization and stochastic

binarization, stochastic binarization outperforms deterministic one. Deterministic binarization

simply decides the binary weights as 𝑤𝑤𝑏𝑏 = +1 if 𝑤𝑤 ≥ 0 and 𝑤𝑤𝑏𝑏 = +1 if 𝑤𝑤 > 0. Otherwise,

stochastic binarization first clips the weights to −1 ≤ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ +1. The clipped weights are then

linearly converted to binarization using probability listed in (Eq. 5-1) and (Eq. 5-2) so that 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

+1 has 100% probability to be 𝑤𝑤𝑏𝑏 = +1 (0% to be 𝑤𝑤𝑏𝑏 = −1) and 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −1 has 0% probability

to be 𝑤𝑤𝑏𝑏 = +1 (100% to be 𝑤𝑤𝑏𝑏 = −1).

𝑝𝑝+1(𝑤𝑤) = 𝑝𝑝+1�𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� =
�1 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

2
� (Eq. 5-1)

𝑝𝑝−1(𝑤𝑤) = 𝑝𝑝−1�𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� =
�1 − 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

2
� (Eq. 5-2)

70

 The advantage of stochastic binarization is that the average of binarized network generated

by stochastic binarization more precisely reproduce the high precision network than the average

of binarized network generated by deterministic binarization.[105], [109], [110] However, even

though stochastic binarization provides better accuracy compared to deterministic binarization

(Error rate in CIFAR-10: 8.27% with stochastic binarization and 9.90% with deterministic

binarization)[105], only deterministic binarization method has been used for hardware

implementation of quantized neural network with inevitable sacrifice of classification

performance.[111]–[113] The reason is that the stochastic binarization requires the expensive

Monte Carlo method to generate binary numbers following the Bernoulli distribution with the

desired binarization probability.

Figure 5-4 Data flow of stochastic binarization process. Weights of the high precision network (stored in DRAM

#1) are fetched to the CPU, the binarization probability is calculated, and compared to random numbers to

determine the binary values. The generated binary numbers are then transferred to a different part of DRAM

(DRAM#2) to store the weights of the binary network.

71

Data flow of stochastic binarization process in the von-Neumann architecture is described

in Figure 5-4. For stochastic binarization process, the weights of the high precision network stored

in DRAM need to be fetched and converted to a probability according to Eq. 5-1 and Eq. 5-2. Then,

the probability is compared to random numbers ranging from 0.0 to 1.0 to decide the binary weight

value. The obtained binary weights are then transferred to another DRAM block to store the

weights for the binary network. Because data read from DRAM is 100 times more expensive than

MAC operations, the von-Neumann bottleneck makes the stochastic binarization very inefficient.

 In this study, we discuss the implementation of stochastic learning (BinaryConnect with

stochastic binarization) using the native stochasticity of RRAM devices for deep neural networks.

Stochastic binarization using RRAM array eliminates data transfer between the memory and the

processing unit. The RRAM crossbar array also makes the stochastic binarization process parallel

and energy-efficient. Effects of device non-idealities such as probability precision and device-to-

device variability will also be discussed by analyzing the convolutional stochastic learning for the

MNIST dataset.

5.2 Stochastic resistive switching with adjustable probability

The basic mechanism of RRAM is the electrochemical reactions of oxygen vacancies or

active metal atoms and ionic migration by overcoming the associated energy barriers. These

reactions are inherently stochastic, and the stochastic nature can be clearly observed in resistive

switching processes.[27], [28], [114] For example, Gaba. et. al. has reported this phenomenon in

Figure 5-5 (a-b) and suggested applications for stochastic computing.[28] Stochastic computing

aims to replace arithmetic operations with operations on bitstreams from different sources.[115]

Similar observations have now been reported by other groups, and other applications have been

72

proposed, including stochastic computing using fast stochastic bitstreams,[29] physical unclonable

functions (PUFs) for security device,[116] true random number generators (RNGs),[117] and

neuromorphic applications.[30], [118]

As discussed in Chapter. 3, we can reduce the SET voltage to improve the reliability of the

Cu-based ALD CBRAM device using non-cumulative pulse scheme.[68] At low SET or RST

voltages, the SET or RST resistive switching become stochastic. The probability of the device

being SET or RESET during each SET or RST pulse can be described by an exponentially

decaying distribution, also known as the Poisson distribution, as shown in Figure 5-5 (c-d). The

switching probability can be modeled as P(∆𝑡𝑡) = 1 − exp(−∆𝑡𝑡/𝜏𝜏) for programming pulse width

∆𝑡𝑡, where the time constant 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆 and the RST pulse time constant 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆 depend on the voltage

amplitude. One can then decide the pulse width to turn-on (HRS to LRS) or turn-off (LRS to HRS)

the device with a specific switching probability according Eq. 5-3

∆𝑡𝑡 = −𝜏𝜏log (1− 𝑃𝑃) (Eq. 5-3)

Therefore, the probability for stochastic binarization can be implemented by stochastic

switching of RRAM devices with low SET or RST pulses (i.e., stochastic SET or RST pulses),

where different binarization probability can be achieved by adjusting the pulse width ∆𝑡𝑡. For

example, to achieve 50% SET switching (transition from LRS to HRS) of Cu-based ALD CBRAM

studied in chapter 3, one only needs to apply a single SET pulse with 3V amplitude and 17.9ms

pulse width. For 50% RST resistive switching (transition from HRS to LRS) of the device, a single

2.5V/15.7ms RST pulse can be applied to the device.

73

In addition, since the energy barrier for the electrochemical reactions or ion migration is

modulated by the applied voltage, the characteristic time τ can be readily adjusted. For example,

the reaction rate equation (Eq. 5-4)[26], [119] implies that the characteristic time (Eq. 5-5) is

exponentially dependent on the applied voltage through a conversion factor α. Therefore, the pulse

width for 50% switching probability calculated above can be shortened or increased for faster or

slower stochastic binarization processes.

Γ = 1 𝜏𝜏� = 𝜐𝜐𝑒𝑒
−(𝐸𝐸𝑎𝑎−αeV)

𝑘𝑘𝐵𝐵𝑇𝑇� (Eq. 5-4)

𝜏𝜏 = 𝜏𝜏0𝑒𝑒−𝛽𝛽𝛽𝛽 (Eq. 5-5)

74

Figure 5-5 (a-b)Cumulative probability of the SET switching with (a) continuous pulse and (b) discrete pulses,

obtained from Ref. [28]. (c-d) Stochastic switching observed in D-ALD CBRAM devices. Top panel (c) is a

histogram of switching events for SET pulses (3.0V/10ms), and bottom panel (d) is a histogram of switching

events for RST pulses (-2.5V/10ms). The histograms can be modeled with Poisson distributions [68]

75

5.3 Stochastic Binarization Mapping in RRAM Crossbar Array

5.3.1 Deterministic Data Migration Strategy

In addition to control the switching probability of a single stochastic device, a systematic

method is required to map multi-bit values to stochastic binary values following the desired

Bernoulli distribution. We note a RRAM crossbar array has the ability to implement in-situ data

migration needed for in-memory computing.[24] As shown in Figure 5-6, a RRAM array with two

columns with floated rows can migrate all the data in the data column from the left side (filled

with data 1 or 0 represented by LRS or HRS, respectively) to the target column at the right side

(initialized with HRS states) with a single programming pulse, by applying 0V on the right column

and the SET pulse on the left column. Before data migration, cells in the target column are

initialized to HRS. If a left-side device is in HRS, the SET voltage is divided between the data cell

and the target cell and cannot change the state of the target cell, allowing it to remain at HRS.

Otherwise, if the data cell is in LRS, essentially all the SET voltage will be dropped on the target

cell to program it to LRS. Note that a single pulse on the left column will be applied to all the rows

and enable parallel data migration between the two columns, without having to accessing external

memory to temporarily store the data. This method can be extended to an RRAM array with

multiple columns by using 1T1R structure to avoid sneak paths that can lead to incorrect data

transfer.

5.3.2 Single-Bit Stochastic Binarization Processes

The next question is then what will happen if we modify the data migration strategy for a

RRAM array with stochastic SET (or RST) pulse with 50% SET (or RST) probability for the target

devices. The programming voltage of the stochastic SET or RST pulse is below the deterministic

switching threshold of the target devices, and the pulse width is adjusted to make the SET or RST

76

switching probability 50%. To minimize the disturbance of the data column due to the stochastic

pulse, the data column needs be comprised of RRAM devices with higher SET and RST voltages

than the devices in the target column. Moreover, unlike the deterministic data migration strategy

discussed in the last chapter, here the devices in the target column will also be reset with a pre-

determined probability (e.g. 50%). To reliably deliver both SET and RST stochastic pulse to the

target column devices, the resistance of the data column devices in LRS need to be at least two-

orders lower than the resistance of the target column devices in LRS to minimize the voltage

divider effect during RST when the target column device is already in LRS. A desired situation is

Rdata,LRS ≪ Rtarget,LRS ≪ Rdata,HRS ≈ Rtarget,HRS . In this case, applying a stochastic SET

pulse with 50% probability will cause the the LRS states (data ‘1’) stored in the data column to be

copied to the target column with 50% probability, while no change will happen to the target column

device if the data column device is at HRS state (data ‘0’) because of the voltage divider effect, as

shown in Figure 5-7. Similarly, when the target column devices are already at LRS, applying a

stochastic RST pulse with 50% probability will have a 50% chance to turn off the target column

devices to HRS if the data column device is at LRS state (data ‘1’), while no change will happen

to the target column device if the data column device is at HRS state (data ‘0’), as sown in Figure

5-8. These two cases are termed as single-bit stochastic binarization processes, and they will be

used as a building block for the multi-bit stochastic binarization process.

77

Figure 5-6 Schematic of in-situ data migration as suggested in Ref.[24]. Resistive states of an RRAM array is

tracked during in-situ data migration process. 1 and 0 are represented by the LRS and the HRS of the RRAM

devices. The left column of the array contains data devices, and the right column contains target devices. With

this data migration setup, when the data device is at LRS essentially all VSET is delivered to the top electrode of

the target device, while when the data device is at HRS only half of VSET is delivered to the top electrode of the

target device, allowing 1 and 0 to transferred to the target device.

78

Figure 5-7 Schematic of single-bit stochastic binarization for stochastic SET pulse with 50% SET probability.

A stochastic SET pulse with 50% switching probability is applied to the target column. The stochastic pulse is

delivered to target devices only if the associated devices is in LRS. As a result, the data ‘1’ stored in the data

column is copied to the target column by 50% probability.

Figure 5-8 Schematic of single-bit stochastic binarization for stochastic RST pulse with 50% RST probability.

The initialization condition of the target column is all LRS in this case. The 50% RST stochastic pulse is applied

to target column devices and turn them off by 50% only if the associated data column devices are in LRS.

79

5.3.3 Multi-Bit Stochastic Binarization Process

A strategy was then developed to perform stochastic binarization of multi-bit weights by

combining a few single-bit stochastic binarization processes, as illustrated in Figure 5-9. The

RRAM array consists of three different parts that are connected to shared rows (top electrodes)

with 1T1R structure to avoid sneak path problem. The first and second parts are ‘weight array’

(left, red box) and ‘inversion array’ (center, blue box) that store the data of the high precision

weights and their inverted values, respectively. The weight array is working as a storage of high

precision network as well, and it will be used for inference task when the training of the network

is completed as proposed in FPCA framework.[24] The third part is ‘binary column’ (right, orange

box) that is made of RRAM devices with lower SET and RST voltage than the devices in the

weight array and the inversion array. With the device conditions for SET/RST voltage range, the

stochastic SET/RST pulses with 50% probability for the binary column devices hardly disturb the

weight array and the inversion array. Moreover, unlike the data migration tasks shown in Figure

5-6, during the stochastic binarization process the devices in the binary column can be at LRS after

some steps, then needs to be RST with certain probability (instead of 100% as in the simple data

migration case). To allow RST with the desired probability, the LRS resistance in the weight array

and the inversion array need to be at least two orders of magnitude lower than the LRS resistance

of the binary column. This effect can be obtained by limiting the programming current, e.g. by

using high resistance bottom electrodes for the binary column. An ideal resistance configuration

is Rweight,LRS ≈ Rinversion,LRS ≪ Rbinary,LRS ≪ Rweight,HRS ≈ Rinversion,HRS ≈ Rbinary,HRS ,

where “<<” represents 2 orders of magnitude difference. At these conditions, the voltage amplitude

of the stochastic SET/RST pulses can be delivered to the binary column correctly within 1% from

the desired value. With this RRAM array structure, stochastic binarization of high precision

80

weights can be implemented with the following steps, as shown in Figure 5-9 with a few example

weights. In addition, the history of probability distribution of the binary column through the

stochastic binarization process is summarized in Figure 5-10.

(STEP.1) All the weight values are clipped by a clip function in Eq. 5-6 first.

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �
𝑤𝑤 𝑖𝑖𝑖𝑖 |𝑤𝑤| ≤ 1
+1 𝑖𝑖𝑖𝑖 𝑤𝑤 > 1
−1 𝑖𝑖𝑖𝑖 𝑤𝑤 < −1

 (Eq. 5-6)

 A clipped multi-bit weight value 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (−1 ≤ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 1) is stored in the weight array as

following. For positive weights, "1" is used to represent the positive sign at the most-

significant-bit (MSB) of the weight array, followed by the other bits representing the absolute

weight value. For negative weights, "0" is used to represent the negative sign at the MSB,

followed by the other bits representing the 2’s complement of the negative weight value. And,

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −1 is represented by all “0” bits. For instance, w1 = 0.75 and w2 = -0.75 with 3-bit

precision are converted to 111 and 001, respectively. The converted binary values are stored

in the left-most part of the system, which is called ‘weight array’.

(STEP.2) The stored weight in the weight array is copied to the ‘inversion array’ which is adjacent

of the weight array, after inversion of every binary value. For example, w1 = 0.75 and

w2 = -0.75 are converted to 000 and 110, respectively, and written into the inversion array.

(STEP.3) Apply SET pulse with 50% programming probability (termed 50% SET pulse) between

the least-significant-bit (LSB) column of the weight array and the ‘binary column’, which is

located at the right side of the system.

81

(STEP. 4) Apply RST pulse with 50% programming probability (termed 50% RST pulse) between

the LSB column of the inversion array and the ‘binary column’, which is located at the right

side of the system.

(STEP.5) Repeat steps 3-4 to transfer probability of the 2nd, 3rd, ... Nth LSB of the weight to the

same binary column until binarization is completed.

The stochastic binarization process using a RRAM array can be proved as below. In this

proof, the RRAM array is assumed to have 2N+1 columns where N is the number of columns of

both the weight array and the inversion array. The right-most single column is assigned as the

binary column. In fact, the initialization method in STEP.1 first linearly stores the clipped weights

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (-1≤𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝≤1) into the weight array as a form of unsigned binarization probability values p (0≤

p ≤1). If we consider that the values of the weight array are unsigned significand of unit interval

[0,1) or unsigned fraction value with N-bit precision, a positive sign of 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 converted as “1” and

stored at MSB of the weight array ensures that the unsigned fraction value is larger than 0.5.

Moreover, the absolute value of the positive weight written in the rest of the columns is an addition

to 0.5, and the range of positive clipped weights (0≤𝑤𝑤pos,c𝑙𝑙𝑙𝑙𝑙𝑙≤1) are compressed to unsigned

fraction value ranging from 0.5 to 1.0 in linear fashion. Otherwise, a negative sign of 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 stored

as “0” at MSB of the weight array will confine the range of the fraction value from 0 to 0.5, and

the 2’s complement inverts the order of the absolute value of the negative weights upside down.

Thus, the negative clipped weights (-1≤𝑤𝑤neg,c𝑙𝑙𝑙𝑙𝑙𝑙<0) changed to unsigned fraction value within

[0.0,0.5) Finally, the fraction values in the weight array can be interpreted as expected N-bit

probability value because they follow the weight-probability conversion equations, Eq.5-1 and

82

Eq.5-2. In the example above, 111 and 001 converted from w1 = 0.75 and w2 = -0.75 by STEP.1

can be interpreted as expected probability P of 0.875 and 0.125.

After STEP.1 and STEP.2 for initialization of the weight array and the inversion array, we

can use the N-bit probability number and its inversion for stochastic binarization. Assume that one

already knows the stochastic binarization process of k-bit probability numbers (k<N). Then, the

stochastic binarization process of a (k+1) bit probability number pk+1 can be conducted by first

stochastic binarization of the k-bit probability number pk (p𝑘𝑘 = p𝑘𝑘+1 𝑚𝑚𝑚𝑚𝑚𝑚 0.5) representing the

least-significant k-bits, followed by additional operations to adjust the LRS/HRS probability

distribution in the binary column based on the most-significant bit (MSB) digit, as discussed below.

Through the stochastic binarization of the k-bit binary, the binary column devices will be

programmed to LRS with a pk probability Bernoulli distribution and HRS with a (1 - pk) probability

Bernoulli distribution. Afterwards, one can calculate the final probability distribution for the two

different cases (MSB = ‘1’ or ‘0’). The goal is to change the LRS probability distribution from pk

to (0.5+ pk/2) for MSB = 1, and to (pk/2) for MSB = 0. In the cases shown in Figure 5-11 (a) and

(b), if the MSB of the (k+1)-bit is ‘1’, pk+1 should be 0.5+ pk/2 that results to pk+1 =87.5% for pk

=75% and pk+1 =50% for pk =0%,. The change of probability distribution in the binary column can

be implemented by connecting the MSB column of the weight array with the grounded binary

column using a 50% SET pulse. With k-bits, the device in the binary column has a probability 𝑝𝑝𝑘𝑘

in LRS, and a probability (1 − 𝑝𝑝𝑘𝑘) in HRS. If the MSB of the weight is ‘1’ (LRS), then applying

a 50% SET pulse will produce a 50% probability for the device in HRS in the binary column to

switch to LRS. As a result, the probability of finding the device in LRS after the MSB operation

is 𝑝𝑝𝑘𝑘 + (1 − 𝑝𝑝𝑘𝑘)/2. If the MSB of the weight is ‘0’ (HRS), a 50% RST pulse is applied so that the

binary column device will have a 50% to be reset if it is already in LRS. As a result, the probability

83

of finding the device in LRS after the MSB operation is (pk/2). Examples of these operations are

as shown in Figure 5-11 (a) and (c).

Figure 5-9 Schematic of multi-bit stochastic binarization process using an RRAM array. The system includes a

weight array, an inversion array, and a binary column. Initialization of the weight array and the inversion array

are explained in STEP1 and STEP2. The grounded binary column is connected to the least-significant-bit (LSB)

of the weight array with 50% SET pulse first in STEP3, then the LSB of the inversion array with 50% RST pulse

in STEP4. The processes, STEP3 and STEP4 are repeated after moving to the next bit until binarization is

complete.

84

Figure 5-10 The probability history of the binary column devices to be ‘1’ or LRS from initial state to end of the

stochastic binarization step. The log starts from ‘initial’ column in the table. For each nth LSB, STEP3 and STEP4

is conducted by connection of the grounded binary column to nth LSB in the weight array and the inversion array,

respectively. The stochastic binarization proceed from the ‘initial’ column to the ‘Final Binary Probability’

column through the table. Weights from -1.0 to +0.75 are successfully transformed to binary states following

expected probability distribution.

Figure 5-11 The generalization of stochastic binarization of k-bit probability to (k+1)-bit probability. (a) For

both ‘1’ MSB and ‘0’ MSB cases, the operations required for pk+1 obtained from pk is described in the upper red

box and lower blue box, respectively. In the listed operation, (b) The k-bit probability (red solid line) should be

converted by MSB = ‘1’ to red dashed line by changing the lowest probability from 0.0 to 0.5. (c) The k-bit

probability (blue solid line) should be lowered by MSB = ‘0’ to blue dashed line by changing the highest

probability from 1.0 to 0.5.

85

In this way, we can generate random binary numbers (stored in the binary column) with the

Bernoulli distribution corresponding to weights in the high precision network (stored in the weight

array). The major benefit of this approach is the elimination of data communication between

memory and CPU needed to apply the Monte Carlo method. Unlike the von-Neumann architecture

shown in Figure 5-6, all the operations in the proposed RRAM-based stochastic binarization

happen in a RRAM array without having to read the data in and out of the array, as shown in Figure

5-12. The proposed stochastic in-memory computing saves energy cost from data migration,

calculation of probability from weight value, and random number generation.

Figure 5-12 Schematic of the proposed in-memory computing approach for multi-bit stochastic binarization of

a neural network. The binarization process is much more simplified compared with the von Neumann

architecture implementation depicted in Figure 5-4.

86

Figure 5-13 shows Monte Carlo simulation results of the proposed RRAM-based stochastic

binarization processes. By running the stochastic binarization process 1000 times, statistical

distributions can be obtained from the binarized results in the binary column, for different weight

precision cases (e.g. 2, 4, and 6 bit weights). These simulation results verify that using the proposed

approach, the expected probability stored in the weight array can be reliably transferred to the

probability of getting “1” in the binary column through the stochastic binarization process.

Figure 5-13 Monte Carlo simulation results of stochastic binarization for 2 bit, 4 bit, and 6bit weights. Left panel

of each case shows the weight array and the binary column. Red and blue colors in the weight array represent

LRS and HRS, respectively. Color in the binary column representing the probability of having ‘1’ (LRS) from

the 1000 tests, based on data in the weight array. The right panel plots the measured LRS probability in the

binary column with respect to the weight array value.

87

For the stochastic binarization process, the required number of programming pulses is just

twice the number of bits in weights, without requiring any memory read process. The absence of

read process makes the process very attractive by eliminating the need of analog-to-digital

converters and sense-amplifiers. Overall the parallel stochastic dataflow provides significant

benefit compared to conventional architectures. For instance, in von Neumann architecture,

converting a thousand 8bit weights would require a thousand cycles of DRAM access for input

weights, random number generations, arithmetic operations, comparison operations, and writing-

back to the DRAM. In the proposed implementation, the conversion can theoretically be achieved

in a RRAM crossbar array with a thousand rows, using only 16 cycles of stochastic binarization

pulses, as illustrated in Figure 5-12, since all the weights are binarized in parallel.

5.4 Stochastic Learning of Convolutional Neural Network

To highlight the benefit of stochastic binarization using RRAM crossbar arrays, a

convolutional neural network (CNN) for classification of handwritten digits (e.g. MNIST)[120]

was tested by using a high precision network (baseline), BinaryConnect with deterministic

binarization (deterministic binarization model), and BinaryConnect with stochastic binarization

(stochastic binarization model).

The architecture of the CNN is (16C3)-MP2-(32C3)-MP2-(64C3)-(300FC)-10SM, where

C3 is a 3×3 convolution layer with ReLU activation functions, MP2 is a 2×2 max-pooling layer,

FC is a fully connected layer, and SM is a softmax output layer. For the training and the inference

of MNSIT dataset, 55k training examples and 10k test examples are used, respectively. Figure 5-

14 (a) and (b) shows the error rate and cost function of the softmax output layer from the three

different training algorithms. At 30k iterations of minibatch training with batch size of 100 training

88

examples, the error rate of the baseline, the deterministic binarization model, and the stochastic

binarization model is 0.85%, 1.94%, and 0.85%, respectively. Note that the error rate from the

deterministic binarization model is larger than the twice of the error rate from the stochastic

binarization. In Figure 5-14 (b), the trace of the cost function of the baseline model and the

stochastic binarization model matches well, although the deterministic binarization model

maintains one order higher cost than the stochastic binarization model. The high performance of

the stochastic binarization model, despite of using binary information stored in the network, is due

to the statistical cancellation of binarized weights (+1 or -1) through the whole training process to

make the average effect of weights on output values to be same as the weights with high

precision.[105]

Moreover, stochastic binarization model has another advantage of regularization effect

over deterministic binarization model.[105] Due to the large number of parameters, high

complexity of the multi-layered structure, and nonlinear neurons, CNN is very good at learning

the distribution of training data. However, if the learning is too precise then the network can even

learn the noise in the training data, besides actual features. As a result, test results using samples

not in the training set can be degraded, due to this “overfitting” problem. Various regularization

methods such as L2 regularization, dataset augmentation, early-stopping, and drop-out to reduce

effects from noisy information in training examples have been developed to minimize the

overfitting problem.[121] Drop-out, one of the most widely used regularization method, drops

random parts of the neurons along with their connections in the network to make the weights noisy

and the network more general to unseen data.[122] During training step, dropout actually training

a number of randomly “thinned” network by dropped units. At inference step, all the noisy

predictions from randomly thinned networks are averaged by simply using a single unthinned

89

network. The benefit of drop-out is that the computational overhead from training the deep and

wide neural network can be reduced and serious overfitting problem can be avoided,

simultaneously. Likewise, theoretical analysis of stochastic binarization model show that it can

offer similar regularization effects with reduced computation by averaging the binarized network

(instead using thinned network in drop-out), which is a main motivation for us to develop the

stochastic binarization systems.[105]

Since the overfitting problem is more easily observed in small training datasets, 10k

training examples randomly selected from the MNSIT dataset (so-called reduced-MNIST dataset,

or RMNIST) are tested to check the regularization effect of stochastic binarization model, as

shown in Figure 5-15. The left panel of Figure 5-15 is the error rate for the training data (blue solid

line) and the test data (orange solid line), obtained from the high-precision network (baseline)

trained with RMNIST dataset. The right panel is the result from stochastic binarized model.

Although both networks succeeded to learn the RMNIST training dataset perfectly without any

wrong prediction for training examples, the inference error of the test dataset from the baseline

model is 15% higher than the stochastic binarization model. Although the inference error is almost

the same (~0.85%) for both the baseline and the stochastic model when they are trained using the

MNIST dataset with 55000 training examples, reduced training samples (1000 training examples)

in the RMNIST cause apparent overfitting in the high-precision network, while the noise injected

by the stochastic binarization can apparently mitigate the overfitting problem in this case. The

better performance of stochastic learning implies that the stochastic learning not only improves

computational efficiency, but also boosts deep learning performance by adding regularization

effects. It is notable that dropout algorithms using the Monte Carlo method (to decide which

weights are activated or inactivated), like stochastic binarization using the von Neumann

90

architecture, will also suffer from the memory bottleneck problem. On the other hand, by

generating Bernoulli distribution in parallel, drop-out also can be accelerated by the proposed

RRAM-based stochastic binarization method. In short, we expect stochastic binarization based on

RRAM crossbar arrays can be generally compatible with regularization algorithms.

Figure 5-14 Comparison of (a) error rate and (b) cost function of the softmax output layer among the baseline

model (high precision network training), the deterministic binarization model, and the stochastic binarization

model.

91

Figure 5-15 Reduced MNIST training results, using the baseline model (left panel) and the stochastic binarization

model (right panel)

5.5 Optimization and Nonideality of RRAM-based Stochastic Binarization

Several other factors need to be considered for the implementation of RRAM-based

stochastic binarization. As explained in section 5.3, RRAM-based stochastic binarization is

composed of a weight array, an inversion array, and a binary column. The number of columns in

the weight array and the inversion array is a critical factor for optimization of the stochastic

binarization process, because the number of pulses needed for the binarization process is twice the

weight length, which equals the number of columns in the weight array. In addition, the number

of rows in the RRAM array determines the acceleration factor of the binarization process, which

is in turn limited by device properties such as device-to-device variability. In this section, we

discuss the effects of both weight precision and device-to-device variability on stochastic learning.

92

5.5.1 Effects of Weight Precision on Stochastic Binarization

The weights used in the high precision network need to have sufficient bits to retain the

accuracy during training to implement the gradient descent algorithm, although the change of

weights determined by the propagation step can include some noise like those used in the stochastic

gradient method. However, increasing the bit length lowers the energy-efficiency and the speed of

stochastic binarization process due to the increased number of programming pulses that are

required. Therefore, there is trade-off between energy-efficiency and precision in the weight array.

To optimize the precision of weights, error rate of the baseline model and stochastic binarization

model with different weight precisions (32-bit floating point weights (black), fixed point weights

with 4(magenta)/3(orange)/2(green)/1(blue)-bits) are examined, as shown in Figure 5-16 (a).

Surprisingly, 4-bit weights (magenta solid line) show comparable performance of error rate below

1.0% to the baseline model and 32-bit FP weights, and 3-bit weights still have better performance

than deterministic binarization. Therefore, in the weight array and the inversion array, 4 or 5

columns will be optimal size for handwritten digit classification. Note that the training with

stochastic binarization saves 75% of bitwidth in the final weights when compared to conventional

training of CNN which requires more than 16 bit precision.[110]

93

Figure 5-16 Error rate for MNIST classification, for different weight precisions using stochastic binarization.

5.5.2 Device-to-Device Variability Effect

The nonideality of stochastic RRAM devices can affect the deep learning performance.

Cycle-to-cycle variability of a single stochastic RRAM devices is not a severe problem because it

is already included in the device’s stochastic behavior. However, device-to-device variability can

degrade the network performance. For example, if each device has a different characteristic

switching time, then the stochastic pulse applied for 50 % binarization probability can induce

binary states that deviate from 50% for different devices. To test this effect, we analyzed various

variability conditions (0.0% ~ 5.0% resistance variations) and tested these effects on MNIST

dataset classification with CNN. The device-to-device variation is defined here by the range of

differences of switching probability within RRAM devices in the binary column from 50%, when

the devices is applied with stochastic SET/RST pulse designed for 50% switching probability.

Specifically, device-to-device variability var is defined as the fluctuation range of the difference

between the desired probability 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and the actual binarization probability 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of from the

weights, i.e. 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (1 + 𝑣𝑣𝑣𝑣𝑣𝑣)𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . For example, a binary column with 1.0% device-to-

device variation have switching probability ranging from 49.0% to 51.0% for 50% stochastic

94

SET/RST pulses. As can be seen Figure 5-17 (a), the error rate increases as the variability increases,

as expected. Interestingly, the error rate for high variability cases seems to have a common feature

where the network learns fast at the early training stage, lose information at moderate iteration

cycles, and then gets trained again as the training iteration further increases. In other words, the

device variability causes the network to fall in some local minima during training, but with longer

training the network can escape from the local minima slowly. If we use the error rate from

deterministic binarization model (1.94%) as the threshold to gauge the performance of stochastic

learning, then 3.0% of device variability (with 1.68% error rate) is acceptable for practical

applications of RRAM-based stochastic binarization model.

Figure 5-17 Effect of device-to-device variability on error rate of stochastic learning of CNN

5.5. Conclusion

In conclusion, we investigated exploiting the stochasticity of RRAM devices for deep

learning. The stochastic binarization method using RRAM crossbar arrays developed in this study

can generate Bernoulli distribution without any memory fetch, random number generation, CPU

95

arithmetic operations, and write-back processes. The benefit of better performance compared to

deterministic binarization, regularization effect of stochastic learning and successful 4-bit weight

precision training are verified. The effect of device-to-device variability was investigated and

guidelines for practical implementations were developed.

96

Chapter 6. Future Work and Summary

6.1 Solving general combinatorial optimization problems

Despite the promise of combinatorial optimization problems (COPs), the time complexity

of NP-complete or NP-hard problems, which exponentially increases as the size of the problem

increases, makes many useful COPs unaffordable.[123] As a practical approach to solve difficult

COPs, meta-heuristic algorithms like simulated annealing has been widely studied.[86] Chapter 4

in this thesis proposed a specialized method to utilize RRAM arrays for simulated annealing of the

two-dimensional spin glass problem.[90] Since the two-dimensional spin glass model in the Ising

model formulation can be transformed to any other NP-complete/hard COPs according to

Ref.[124], the usage of RRAM array designed in chapter 4 can theoretically be generalized to solve

other difficult problems such as scheduling problem, satisfiability problem, clique cover, and

travelling sales man problem (TSP).

Among the difficult COPs, TSP is one of the most recognized. The goal is for a travelling

salesman to find the shortest path to visit all the listed cities and return to his starting point making

a Hamiltonian cycle. Although the problem is easy to understand, the salesman has to count all the

possible number of Hamiltonian cycles which increases as exponentially as the number of cities

increases. The Ising version of TSP (Eq. 6-1) is introduced in Ref.[124].

97

H = A �∑ �1 − ∑ 𝑥𝑥𝑣𝑣,𝑗𝑗
𝑁𝑁
𝑗𝑗=1 �2𝑛𝑛

𝑣𝑣=1 + ∑ �1 − ∑ 𝑥𝑥𝑣𝑣,𝑗𝑗
𝑁𝑁
𝑣𝑣=1 �2𝑛𝑛

𝑗𝑗=1 + ∑ ∑ 𝑥𝑥𝑢𝑢,𝑗𝑗𝑥𝑥𝑣𝑣,𝑗𝑗+1
𝑁𝑁
𝑣𝑣=1

𝑛𝑛
(𝑢𝑢𝑣𝑣)∉1 �

+ B�∑ 𝑊𝑊𝑢𝑢𝑢𝑢(𝑢𝑢𝑢𝑢)∈𝐸𝐸 ∑ 𝑥𝑥𝑢𝑢,𝑗𝑗𝑥𝑥𝑣𝑣,𝑗𝑗+1
𝑁𝑁
𝑗𝑗=1 � (Eq.6-1)

The Hamiltonian that describes the TSP is made of two parts. The terms in the first

parenthesis is used to ensure that the path will include each city once and return to the starting

location. 𝑥𝑥𝑣𝑣,𝑗𝑗 is the binary spin vector of a travelling spin vector 𝑥𝑥𝑣𝑣,𝚥𝚥������⃑ that describes the travelling

path. v and j represent the index of each city and its order in a prospective cycle, respectively. If

the salesman visited city v among N cities at the j-th order in his travelling path, 𝑥𝑥𝑣𝑣,𝑗𝑗 is assigned to

‘1’. Otherwise, 𝑥𝑥𝑣𝑣,𝑗𝑗 is ‘0’. Note that the dimension of the spin vector 𝑥𝑥𝑣𝑣,𝚥𝚥������⃑ is 𝑁𝑁2 for N cities and N

possible visits. Because all the coefficients used in the first part are +1, -1, or 0, its computational

cost from simple integer arithmetic operations (counting 1’s and accumulating its squared integer)

is relatively cheap. On the other hand, 𝑊𝑊𝑢𝑢𝑢𝑢 in the second part represents the distance between city

u and city v, which is an analog value. The need of floating-point operations to calculate the second

part in the Hamiltonian dominates the computational cost.

We note the Hamiltonian in Eq. 6-1 can be mapped to an RRAM crossbar system, as shown

in Figure 6-1. Since the dimension of a travelling spin vector 𝑥𝑥𝑣𝑣,𝚥𝚥������⃑ is N2, the interaction coefficients

between 𝑥𝑥𝑢𝑢,𝚥𝚥������⃑ and 𝑥𝑥𝑣𝑣,𝑘𝑘�������⃑ in the second part of the Hamiltonian can be represented by a 𝑁𝑁2 × 𝑁𝑁2

matrix �𝑊𝑊(𝑢𝑢,𝑗𝑗)(𝑣𝑣,𝑘𝑘)�, where 𝑊𝑊(𝑢𝑢,𝑗𝑗)(𝑣𝑣,𝑘𝑘) = 𝑊𝑊𝑢𝑢𝑢𝑢𝛿𝛿𝑗𝑗,𝑘𝑘−1, and [𝑊𝑊𝑢𝑢𝑢𝑢] is a 𝑁𝑁 × 𝑁𝑁 matrix comprised of the

distance values between city u and city v and 𝛿𝛿 is the Kronecker Delta function of two indices

which is 1 for same index values, and 0 for different index values. The �𝑊𝑊(𝑢𝑢,𝑗𝑗)(𝑣𝑣,𝑘𝑘)� matrix is thus

very large but sparse. Its non-zero elements are formed by repeating patterns of [𝑊𝑊𝑢𝑢𝑢𝑢], which can

98

be mapped to a 𝑁𝑁 ×𝑁𝑁 RRAM crossbar array. As a result, computation of the 2nd term in the

Hamiltonian can be performed through a 𝑁𝑁 × 𝑁𝑁 RRAM crossbar array, instead of mapping the

full matrix which will requires a 𝑁𝑁2 × 𝑁𝑁2 array.

As an extension of our work on hardware acceleration of simulated annealing, we expect

the TSP problem can be efficiently solved using RRAM based architecture. A starting point may

be using a 25 × 25 array to solve a TSP problem for 25 cities, which is finding the most optimal

path among huge number of possible travelling paths, the factorial of 25. Such demonstrations will

allow the RRAM crossbar based hardware to be expanded to solve general COPs, and bring this

technology closer to practical applications.

Figure 6-1 Schematic of implementing the travelling salesman problem (TSP). The nonzero elements of the

�𝑊𝑊(𝑢𝑢,𝑗𝑗)(𝑣𝑣,𝑘𝑘)� matrix are formed by repeating patterns of the [𝑊𝑊𝑢𝑢𝑢𝑢] sub-array.

99

6.2 Summary

In chapter 1, we first introduced the memory wall problem of the conventional von

Neumann architecture for data-intensive tasks. To alleviate the memory wall problem, RRAM

devices are used as synaptic devices for neuromorphic computing and in-memory computing. The

main advantages of RRAMs are their abilities to store weights and to perform vector-matrix

operations directly through physics. Moreover, the diverse switching behaviors such as analog,

digital, and stochastic resistive switching were explained, along with an introduction of their

optimization and applications for computing beyond von Neumann architecture.

In chapter 2, we experimentally demonstrated that analog TaOx RRAM array can be used

to perform principal component analysis for feature extraction and dimensionality reduction of the

breast cancer dataset. To reliably initialize the TaOx RRAM crossbar array, we optimized the

forming voltage from ~2.5V to ~1.1V. Using Sanger’s rule, the principal components were

obtained as the RRAM device conductances in the network after training. During the training

process, the RRAM crossbar array was controlled by periphery circuitry, FPGA, and computer.

The network was then successfully used to analyze sensory data from a standard breast cancer

screening database with a high classification success rate (97.1%).

In chapter 3, we optimized the digital Cu-based CBRAM devices to achieve self-limiting

current and low forming voltage for very low power computing applications. In this study, copper

oxide layer and high-temperature Al2O3 layer were inserted as a copper ion supplier and diffusion

barrier, respectively. The optimized device structure (Cu/CuOx/LT-ALD/HT-ALD/Pd) with

double ALD (D-ALD) layer achieved low forming voltage (Vforming ~ VSET ~ 3.0V), self-limited

resistive switching with very low programming current (~10 nA), high ON/OFF ratio (>100), and

nonlinear I-V (NLread and NLSET ~ 10) at low resistance state.

100

In chapter 4 and chapter 5, we proposed utilization of stochastic resistive switching of

digital RRAM devices for hardware acceleration of simulated annealing (SA) and stochastic deep

learning, respectively. For SA of the spin glass problem investigated in chapter 4, which is one of

the typical NP-hard combinatorial optimization problems, we utilized vector-matrix multiplication

functions in analog Ta2O5 RRAM crossbar array and stochastic switching properties in Cu-based

CBRAM devices to accelerate an SA algorithm that solves a spin glass problem efficiently. In this

RRAM-based SA accelerator, the change of Hamiltonian of the spin system and the probability of

stochastic spin flipping event are calculated natively by Ohm’s law and the stochastic resistive

switching property of the RRAM device with Boltzmann distribution. In chapter 5, digital RRAM

array with stochastic resistive switching was utilized for stochastic binarization for binary neural

networks. The stochastic binarization using RRAM array accelerated the generation of binary

random numbers with specific probability corresponding to high precision weights. Specifically,

the stochastic binarization can be achieved in parallel without having to read the data in and out of

the array, thus eliminating data communication between memory and CPU needed to apply the

Monte Carlo method. Finally, in chapter 6, solving travelling salesman problem with RRAM

crossbar array was proposed as a future work, where the stochasticity in RRAMs can be used to

make deep learning more accurate and affordable.

101

Bibliography

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, May 2015.

[2] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[3] D. A. Reed and J. Dongarra, “Exascale Computing and Big Data,” Commun ACM, vol. 58,
no. 7, pp. 56–68, Jun. 2015.

[4] J. von Neumann, “First draft of a report on the EDVAC,” IEEE Ann. Hist. Comput., vol. 15,
no. 4, pp. 27–75, 1993.

[5] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the first conference on
computing frontiers on Computing frontiers - CF’04, Ischia, Italy, 2004, p. 162.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.
Elsevier, 2011.

[7] C.-S. Poon and K. Zhou, “Neuromorphic Silicon Neurons and Large-Scale Neural Networks:
Challenges and Opportunities,” Front. Neurosci., vol. 5, 2011.

[8] G. Indiveri et al., “Neuromorphic Silicon Neuron Circuits,” Front. Neurosci., vol. 5, 2011.
[9] S. Yu, Ed., Neuro-inspired Computing Using Resistive Synaptic Devices. Cham: Springer

International Publishing, 2017.
[10] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a scalable

communication network and interface,” Science, vol. 345, no. 6197, p. 668, Aug. 2014.
[11] C.-H. Kim et al., “Emerging memory technologies for neuromorphic computing,”

Nanotechnology, vol. 30, no. 3, p. 032001, Jan. 2019.
[12] L. Chua, “Memristor-The missing circuit element,” IEEE Trans. Circuit Theory, vol. 18, no.

5, pp. 507–519, 1971.
[13] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor

found,” Nature, vol. 453, no. 7191, pp. 80–83, May 2008.
[14] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale

Memristor Device as Synapse in Neuromorphic Systems,” Nano Lett., vol. 10, no. 4, pp.
1297–1301, Apr. 2010.

[15] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B.
Strukov, “Training and operation of an integrated neuromorphic network based on metal-
oxide memristors,” Nature, vol. 521, no. 7550, pp. 61–64, May 2015.

[16] C. Li et al., “Efficient and self-adaptive in-situ learning in multilayer memristor neural
networks,” Nat. Commun., vol. 9, no. 1, Dec. 2018.

[17] G. Bi and M. Poo, “Synaptic Modifications in Cultured Hippocampal Neurons: Dependence
on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type,” J. Neurosci., vol. 18, no.
24, pp. 10464–10472, Dec. 1998.

[18] S. Kim, S. Choi, and W. Lu, “Comprehensive Physical Model of Dynamic Resistive
Switching in an Oxide Memristor,” ACS Nano, vol. 8, no. 3, pp. 2369–2376, Mar. 2014.

102

[19] J. R. Jameson et al., “(Invited) Conductive Bridging RAM (CBRAM): Then, Now, and
Tomorrow,” ECS Trans., vol. 75, no. 5, pp. 41–54, Sep. 2016.

[20] R. Fackenthal et al., “19.7 A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm
technology,” in 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), San Francisco, CA, USA, 2014, pp. 338–339.

[21] Y. Yang and W. Lu, “Nanoscale resistive switching devices: mechanisms and modeling,”
Nanoscale, vol. 5, no. 21, p. 10076, 2013.

[22] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of conducting
filament growth in nanoscale resistive memories,” Nat. Commun., vol. 3, no. 1, Jan. 2012.

[23] B. Chen, F. Cai, J. Zhou, W. Ma, P. Sheridan, and W. D. Lu, “Efficient in-memory
computing architecture based on crossbar arrays,” in 2015 IEEE International Electron
Devices Meeting (IEDM), Washington, DC, USA, 2015, pp. 17.5.1-17.5.4.

[24] M. A. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu, “Field-Programmable
Crossbar Array (FPCA) for Reconfigurable Computing,” IEEE Trans. Multi-Scale Comput.
Syst., vol. 4, no. 4, pp. 698–710, Oct. 2018.

[25] S. Yu et al., “Binary neural network with 16 Mb RRAM macro chip for classification and
online training,” in 2016 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, 2016, pp. 16.2.1-16.2.4.

[26] S. H. Jo, K.-H. Kim, and W. Lu, “Programmable Resistance Switching in Nanoscale Two-
Terminal Devices,” Nano Lett., vol. 9, no. 1, pp. 496–500, Jan. 2009.

[27] S. Yu, Ximeng Guan, and H.-S. P. Wong, “On the stochastic nature of resistive switching
in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental
characterization,” in 2011 International Electron Devices Meeting, Washington, DC, USA,
2011, pp. 17.3.1-17.3.4.

[28] S. Gaba, P. Sheridan, J. Zhou, S. Choi, and W. Lu, “Stochastic memristive devices for
computing and neuromorphic applications,” Nanoscale, vol. 5, no. 13, p. 5872, 2013.

[29] P. Knag, W. Lu, and Z. Zhang, “A Native Stochastic Computing Architecture Enabled by
Memristors,” IEEE Trans. Nanotechnol., vol. 13, no. 2, pp. 283–293, Mar. 2014.

[30] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “Stochastic learning in oxide
binary synaptic device for neuromorphic computing,” Front. Neurosci., vol. 7, 2013.

[31] Ö. Türel, J. H. Lee, X. Ma, and K. K. Likharev, “Neuromorphic architectures for
nanoelectronic circuits,” Int. J. Circuit Theory Appl., vol. 32, no. 5, pp. 277–302, Sep. 2004.

[32] G. Indiveri and S.-C. Liu, “Memory and Information Processing in Neuromorphic Systems,”
Proc. IEEE, vol. 103, no. 8, pp. 1379–1397, Aug. 2015.

[33] C. M. Bishop, Pattern recognition and machine learning. New York: Springer, 2006.
[34] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision, Fourth

edition. Stamford, CT, USA: Cengage Learning, 2015.
[35] H. Moon and P. J. Phillips, “Computational and Performance Aspects of PCA-Based Face-

Recognition Algorithms,” Perception, vol. 30, no. 3, pp. 303–321, Mar. 2001.
[36] M. Ringnér, “What is principal component analysis?,” Nat. Biotechnol., vol. 26, no. 3, pp.

303–304, Mar. 2008.
[37] D. Reich, A. L. Price, and N. Patterson, “Principal component analysis of genetic data,” Nat.

Genet., vol. 40, no. 5, pp. 491–492, May 2008.
[38] J. Khan et al., “Classification and diagnostic prediction of cancers using gene expression

profiling and artificial neural networks,” Nat. Med., vol. 7, no. 6, pp. 673–679, Jun. 2001.

103

[39] J. de Haes, F. van Knippenberg, and J. Neijt, “Measuring psychological and physical distress
in cancer patients: structure and application of the Rotterdam Symptom Checklist,” Br. J.
Cancer, vol. 62, no. 6, pp. 1034–1038, Dec. 1990.

[40] S. Choi, J. H. Shin, J. Lee, P. Sheridan, and W. D. Lu, “Experimental Demonstration of
Feature Extraction and Dimensionality Reduction Using Memristor Networks,” Nano Lett.,
vol. 17, no. 5, pp. 3113–3118, May 2017.

[41] A. Adamatzky and L. O. Chua, Eds., Memristor networks. Cham ; New York: Springer,
2014.

[42] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse coding with
memristor networks,” Nat. Nanotechnol., vol. 12, no. 8, pp. 784–789, Aug. 2017.

[43] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by memristive
crossbar circuits using ex situ and in situ training,” Nat. Commun., vol. 4, no. 1, p. 2072,
Dec. 2013.

[44] S. Yu, X. Guan, and H.-S. P. Wong, “Conduction mechanism of TiN/HfO x /Pt resistive
switching memory: A trap-assisted-tunneling model,” Appl. Phys. Lett., vol. 99, no. 6, p.
063507, Aug. 2011.

[45] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, “Synaptic behaviors and
modeling of a metal oxide memristive device,” Appl. Phys. A, vol. 102, no. 4, pp. 857–863,
Mar. 2011.

[46] M.-J. Lee et al., “A fast, high-endurance and scalable non-volatile memory device made
from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nat. Mater., vol. 10, no. 8, pp. 625–
630, Aug. 2011.

[47] Y. Yang, P. Sheridan, and W. Lu, “Complementary resistive switching in tantalum oxide-
based resistive memory devices,” Appl. Phys. Lett., vol. 100, no. 20, p. 203112, May 2012.

[48] D. S. Jeong, B. J. Choi, and C. S. Hwang, “Electroforming Processes in Metal Oxide
Resistive-Switching Cells,” in Resistive Switching, D. Ielmini and R. Waser, Eds. Weinheim,
Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 289–316.

[49] S. Choi, J. Lee, S. Kim, and W. D. Lu, “Retention failure analysis of metal-oxide based
resistive memory,” Appl. Phys. Lett., vol. 105, no. 11, p. 113510, Sep. 2014.

[50] S. Kim, S. Choi, J. Lee, and W. D. Lu, “Tuning Resistive Switching Characteristics of
Tantalum Oxide Memristors through Si Doping,” ACS Nano, vol. 8, no. 10, pp. 10262–
10269, Oct. 2014.

[51] S. Kim et al., “Physical electro-thermal model of resistive switching in bi-layered
resistance-change memory,” Sci. Rep., vol. 3, no. 1, p. 1680, Dec. 2013.

[52] A. Prakash et al., “Improvement of Uniformity of Resistive Switching Parameters by
Selecting the Electroformation Polarity in IrOx/TaOx/WOx/W Structure,” Jpn. J. Appl.
Phys., vol. 51, pp. 4-6, Apr. 2012.

[53] M. Azzaz et al., “Endurance/Retention Trade Off in HfOx and TaOx Based RRAM,” in
2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 2016, pp. 1–4.

[54] W. Kim et al., “Nonlinearity analysis of TaOx redox-based RRAM,” Microelectron. Eng.,
vol. 154, pp. 38–41, Mar. 2016.

[55] J. T. Qiu, S. Samanta, M. Dutta, S. Ginnaram, and S. Maikap, “Controlling Resistive
Switching by Using an Optimized MoS 2 Interfacial Layer and the Role of Top Electrodes
on Ascorbic Acid Sensing in TaO x -Based RRAM,” Langmuir, vol. 35, no. 11, pp. 3897–
3906, Mar. 2019.

104

[56] Y. Pan et al., “Microscopic origin of read current noise in TaOx-based resistive switching
memory by ultra-low temperature measurement,” Appl. Phys. Lett., vol. 108, no. 15, p.
153504, Apr. 2016.

[57] S. Choi, P. Sheridan, and W. D. Lu, “Data Clustering using Memristor Networks,” Sci. Rep.,
vol. 5, no. 1, Sep. 2015.

[58] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural
network,” Neural Netw., vol. 2, no. 6, pp. 459–473, Jan. 1989.

[59] E. Oja, “Simplified neuron model as a principal component analyzer,” J. Math. Biol., vol.
15, no. 3, pp. 267–273, Nov. 1982.

[60] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern separation for
medical diagnosis applied to breast cytology.,” Proc. Natl. Acad. Sci., vol. 87, no. 23, pp.
9193–9196, Dec. 1990.

[61] J. Guy et al., “Experimental and theoretical understanding of Forming, SET and RESET
operations in Conductive Bridge RAM (CBRAM) for memory stack optimization,” in 2014
IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014, pp. 6.5.1-
6.5.4.

[62] D. Ielmini, “Filamentary-switching model in RRAM for time, energy and scaling
projections,” in 2011 International Electron Devices Meeting, Washington, DC, USA, 2011,
pp. 17.2.1-17.2.4.

[63] S. Gaba, F. Cai, J. Zhou, and W. D. Lu, “Ultralow Sub-1-nA Operating Current Resistive
Memory With Intrinsic Non-Linear Characteristics,” IEEE Electron Device Lett., vol. 35,
no. 12, pp. 1239–1241, Dec. 2014.

[64] J. Zhou, F. Cai, Q. Wang, B. Chen, S. Gaba, and W. D. Lu, “Very Low-Programming-
Current RRAM With Self-Rectifying Characteristics,” IEEE Electron Device Lett., vol. 37,
no. 4, pp. 404–407, Apr. 2016.

[65] H. D. Lee et al., “Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on
transition metal oxides for high density memory applications,” in 2012 Symposium on VLSI
Technology (VLSIT), Honolulu, HI, USA, 2012, pp. 151–152.

[66] C. Xu et al., “Overcoming the challenges of crossbar resistive memory architectures,” in
2015 IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), Burlingame, CA, USA, 2015, pp. 476–488.

[67] Y. Y. Chen et al., “Endurance/Retention Trade-off on HfO2/Metal Cap 1T1R Bipolar
RRAM,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1114–1121, Mar. 2013.

[68] J. H. Shin, Q. Wang, and W. D. Lu, “Self-Limited and Forming-Free CBRAM Device With
Double Al 2 O 3 ALD Layers,” IEEE Electron Device Lett., vol. 39, no. 10, pp. 1512–1515,
Oct. 2018.

[69] T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, and M. Aono, “Effects of
Moisture on the Switching Characteristics of Oxide-Based, Gapless-Type Atomic Switches,”
Adv. Funct. Mater., vol. 22, no. 1, pp. 70–77, Jan. 2012.

[70] B. G. Willis and D. V. Lang, “Oxidation mechanism of ionic transport of copper in SiO2
dielectrics,” Thin Solid Films, vol. 467, no. 1–2, pp. 284–293, Nov. 2004.

[71] T. Tsuruoka et al., “Redox Reactions at Cu,Ag/Ta 2 O 5 Interfaces and the Effects of Ta 2 O
5 Film Density on the Forming Process in Atomic Switch Structures,” Adv. Funct. Mater.,
vol. 25, no. 40, pp. 6374–6381, Oct. 2015.

105

[72] Jiantao Zhou, Kuk-Hwan Kim, and Wei Lu, “Crossbar RRAM Arrays: Selector Device
Requirements During Read Operation,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp.
1369–1376, May 2014.

[73] Sungho Kim, Jiantao Zhou, and W. D. Lu, “Crossbar RRAM Arrays: Selector Device
Requirements During Write Operation,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp.
2820–2826, Aug. 2014.

[74] Y. Zhang, J. A. Bertrand, R. Yang, S. M. George, and Y. C. Lee, “Electroplating to visualize
defects in Al2O3 thin films grown using atomic layer deposition,” Thin Solid Films, vol.
517, no. 11, pp. 3269–3272, Apr. 2009.

[75] S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, no. 1, pp.
111–131, Jan. 2010.

[76] Youqin. Xie and C. O. Huber, “Electrocatalysis and amperometric detection using an
electrode made of copper oxide and carbon paste,” Anal. Chem., vol. 63, no. 17, pp. 1714–
1719, Sep. 1991.

[77] H. B. Lv et al., “Improvement of Endurance and Switching Stability of Forming-Free CuxO
RRAM,” in 2008 Joint Non-Volatile Semiconductor Memory Workshop and International
Conference on Memory Technology and Design, Opio, France, 2008, pp. 52–53.

[78] H. Häkkinen, M. Moseler, and U. Landman, “Bonding in Cu, Ag, and Au Clusters:
Relativistic Effects, Trends, and Surprises,” Phys. Rev. Lett., vol. 89, no. 3, p. 033401, Jun.
2002.

[79] D.-Y. Cho, S. Tappertzhofen, R. Waser, and I. Valov, “Bond nature of active metal ions in
SiO2-based electrochemical metallization memory cells,” Nanoscale, vol. 5, no. 5, p. 1781,
2013.

[80] M. Takeuchi, G. Martra, S. Coluccia, and M. Anpo, “Evaluation of the Adsorption States of
H 2 O on Oxide Surfaces by Vibrational Absorption: Near- and Mid-Infrared Spectroscopy,”
J. Infrared Spectrosc., vol. 17, no. 6, pp. 373–384, Dec. 2009.

[81] M. Specht, M. Städele, S. Jakschik, and U. Schröder, “Transport mechanisms in atomic-
layer-deposited Al2O3 dielectrics,” Appl. Phys. Lett., vol. 84, no. 16, pp. 3076–3078, Apr.
2004.

[82] R. Stratton, “Volt-current characteristics for tunneling through insulating films,” J. Phys.
Chem. Solids, vol. 23, no. 9, pp. 1177–1190, Sep. 1962.

[83] S. Ambrogio, S. Balatti, S. Choi, and D. Ielmini, “Impact of the Mechanical Stress on
Switching Characteristics of Electrochemical Resistive Memory,” Adv. Mater., vol. 26, no.
23, pp. 3885–3892, Jun. 2014.

[84] P. Auerkari, “Mechanical and physical properties of engineering alumina ceramics,” VTT
Manuf. Technol. Res. Notes, Tech. Res. Center Finland, Espoo, Finland, 2016, vol. 1792.

[85] A. Belmonte, A. Fantini, A. Redolfi, M. Houssa, M. Jurczak, and L. Goux, “Optimization
of the write algorithm at low-current in Cu/Al2O3-based conductive-bridge RAM,” in 2015
45th European Solid State Device Research Conference (ESSDERC), Graz, Austria, 2015,
pp. 114–117.

[86] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[87] M. A. Zidan et al., “A general memristor-based partial differential equation solver,” Nat.
Electron., vol. 1, no. 7, pp. 411–420, Jul. 2018.

106

[88] C.-C. Chang et al., “Challenges and opportunities toward online training acceleration using
RRAM-based hardware neural network,” in 2017 IEEE International Electron Devices
Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 11.6.1-11.6.4.

[89] W.-H. Chen et al., “A 16Mb dual-mode ReRAM macro with sub-14ns computing-in-
memory and memory functions enabled by self-write termination scheme,” in 2017 IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 28.2.1-
28.2.4.

[90] J. H. Shin, Y. J. Jeong, M. A. Zidan, Q. Wang, and W. D. Lu, “Hardware Acceleration of
Simulated Annealing of Spin Glass by RRAM Crossbar Array,” in 2018 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, 2018, pp. 3.3.1-3.3.4.

[91] F. Barahona, “On the computational complexity of Ising spin glass models,” J. Phys. Math.
Gen., vol. 15, no. 10, pp. 3241–3253, Oct. 1982.

[92] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys.
Rev. E, vol. 58, no. 5, pp. 5355–5363, Nov. 1998.

[93] S. Matsubara et al., “Ising-Model Optimizer with Parallel-Trial Bit-Sieve Engine,” in
Complex, Intelligent, and Software Intensive Systems, vol. 611, L. Barolli and O. Terzo, Eds.
Cham: Springer International Publishing, 2018, pp. 432–438.

[94] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber,
“Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital
Annealer,” Front. Phys., vol. 7, p. 48, Apr. 2019.

[95] M. Hu et al., “Dot-product engine for neuromorphic computing: programming 1T1M
crossbar to accelerate matrix-vector multiplication,” in Proceedings of the 53rd Annual
Design Automation Conference on - DAC ’16, Austin, Texas, 2016, pp. 1–6.

[96] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Netw., vol. 61,
pp. 85–117, Jan. 2015.

[97] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing Systems
25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates,
Inc., 2012, pp. 1097–1105.

[98] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1–9.

[99] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 2016, pp. 770–778.

[100] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of Deep Neural
Networks: A Tutorial and Survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.

[101] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding,” ArXiv151000149 Cs, Oct. 2015.

[102] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and Connections for
Efficient Neural Network,” in Advances in Neural Information Processing Systems 28, C.
Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates,
Inc., 2015, pp. 1135–1143.

[103] Q. He et al., “Effective Quantization Methods for Recurrent Neural Networks,”
ArXiv161110176 Cs, Nov. 2016.

[104] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized Neural
Networks: Training Neural Networks with Low Precision Weights and Activations,” p. 30.

107

[105] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep Neural
Networks with binary weights during propagations,” in Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
Eds. Curran Associates, Inc., 2015, pp. 3123–3131.

[106] M. Horowitz, “1.1 Computing’s energy problem (and what we can do about it),” in 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014, pp. 10–14.

[107] N. Brunel, F. Carusi, and S. Fusi, “Slow stochastic Hebbian learning of classes of stimuli in
a recurrent neural network,” Netw. Comput. Neural Syst., vol. 9, no. 1, pp. 123–152, Jan.
1998.

[108] W. Senn and S. Fusi, “Convergence of stochastic learning in perceptrons with binary
synapses,” Phys. Rev. E, vol. 71, no. 6, p. 061907, Jun. 2005.

[109] M. Höhfeld and S. E. Fahlman, “Probabilistic rounding in neural network learning with
limited precision,” Neurocomputing, vol. 4, no. 6, pp. 291–299, Dec. 1992.

[110] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning with Limited
Numerical Precision,” Proceedings of the 32nd International Conference on Machine
Learning, in PMLR 37:1737-1746, 2015

[111] X. Sun, S. Yin, X. Peng, R. Liu, J. Seo, and S. Yu, “XNOR-RRAM: A scalable and parallel
resistive synaptic architecture for binary neural networks,” in 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), 2018, pp. 1423–1428.

[112] Z. Dong et al., “Convolutional Neural Networks Based on RRAM Devices for Image
Recognition and Online Learning Tasks,” IEEE Trans. Electron Devices, vol. 66, no. 1, pp.
793–801, Jan. 2019.

[113] Y. Zhou, S. Redkar, and X. Huang, “Deep learning binary neural network on an FPGA,” in
2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),
2017, pp. 281–284.

[114] S. Menzel, P. Kaupmann, and R. Waser, “Understanding filamentary growth in
electrochemical metallization memory cells using kinetic Monte Carlo simulations,”
Nanoscale, vol. 7, no. 29, pp. 12673–12681, 2015.

[115] J. P. Hayes, “Introduction to stochastic computing and its challenges,” in Proceedings of the
52nd Annual Design Automation Conference on - DAC ’15, San Francisco, California, 2015,
pp. 1–3.

[116] A. Chen, “Utilizing the Variability of Resistive Random Access Memory to Implement
Reconfigurable Physical Unclonable Functions,” IEEE Electron Device Lett., vol. 36, no. 2,
pp. 138–140, Feb. 2015.

[117] H. Jiang et al., “A novel true random number generator based on a stochastic diffusive
memristor,” Nat. Commun., vol. 8, no. 1, Dec. 2017.

[118] G. Pedretti et al., “Stochastic Learning in Neuromorphic Hardware via Spike Timing
Dependent Plasticity With RRAM Synapses,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol.
8, no. 1, pp. 77–85, Mar. 2018.

[119] R. Naous, M. Al-Shedivat, and K. N. Salama, “Stochasticity Modeling in Memristors,”
IEEE Trans. Nanotechnol., vol. 15, no. 1, pp. 15–28, Jan. 2016.

[120] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[121] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, Massachusetts: The
MIT Press, 2016.

108

[122] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
Simple Way to Prevent Neural Networks from Overfitting,” p. 30.

[123] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-
completeness, 27. print. New York [u.a]: Freeman, 2009.

[124] A. Lucas, “Ising formulations of many NP problems,” Front. Phys., vol. 2, 2014.

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Abstract
	Chapter 1. Introduction
	1.1 von Neumann Architecture and Memory Wall Problem
	1.2 Neuromorphic Computing using Resistive Switching Devices
	1.3 Analog TaOx-Based Valence-Change Memory (VCM) Device
	1.4 Digital Cu-based Conductive Bridge Random-Access Memory (CBRAM)
	1.5 Stochastic Switching Behavior of RRAM devices
	1.6 Organization of the Thesis

	Chapter 2. Experimental Demonstration of Feature Extraction and Dimensionality Reduction using TaOx Analog RRAM devices
	2.1 Introduction
	2.2 Fabrication of Forming-Free Tantalum-Oxide RRAM Devices
	2.3 Analog Resistive Switching of TaOx Devices for Neuromorphic Application
	2.4 Generalized Hebbian Rule for Unsupervised Learning
	2.5 Operation of Memristor Array for PCA Implementation
	2.6 Structure and Operation of the Test Board
	2.7 Experimental Result of Dimensionality Reduction Based on PCA
	2.8 Conclusion

	Chapter 3. Self-Limited and Forming-Free CBRAMs With Double Al2O3 ALD Layers
	3.1 Introduction
	3.2 Device Fabrication
	3.3 Self-Limited and Forming-Free Resistive Switching
	3.4 Role of HT-ALD barrier layer
	3.5 Cycling Test Results
	3.6 Optimization of Pulse Programming Method
	3.7 Conclusion

	Chapter 4. Hardware Acceleration of Simulated Annealing of Spin Glass by RRAM Crossbar Array
	4.1 Introduction
	4.2 Spin Glass Problem and Simulated Annealing
	4.3 Simulated Annealing Accelerated By RRAM Array and Stochastic CBRAM
	4.4 Experimental Demonstration Of RRAM-Based Simulated Annealing
	4.4 Parallel Spin-flip Strategy Using Memristive Simulated Annealing
	4.5 Digital Annealing with RRAM crossbar array
	4.6 Conclusion

	Chapter 5. Stochastic Learning of Deep Neural Network Using Stochastic RRAM Crossbar Array
	5.1 Introduction
	5.2 Stochastic resistive switching with adjustable probability
	5.3 Stochastic Binarization Mapping in RRAM Crossbar Array
	5.3.1 Deterministic Data Migration Strategy
	5.3.2 Single-Bit Stochastic Binarization Processes
	5.3.3 Multi-Bit Stochastic Binarization Process

	5.4 Stochastic Learning of Convolutional Neural Network
	5.5 Optimization and Nonideality of RRAM-based Stochastic Binarization
	5.5.1 Effects of Weight Precision on Stochastic Binarization
	5.5.2 Device-to-Device Variability Effect

	5.5. Conclusion

	Chapter 6. Future Work and Summary
	6.1 Solving general combinatorial optimization problems
	6.2 Summary

	Bibliography

