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Abstract 
 

As the demand for processing artificial intelligence (AI), big data, and cognitive tasks 

increases, new devices and computing architectures that can reduce the cost of the memory 

bottleneck have gained significant interest. One of emerging device that can enable non-von 

Neumann architectures such as neuromorphic computing and in-memory computing, resistive 

random-access memory (RRAM), has been extensively studied due to its properties such as nano-

scale feature size, low power, and inherent functionalities that allow it to emulate biological 

synapses and stochastic events.  

In this thesis, I will discuss optimization and development of RRAM devices as well as the 

application of RRAM devices for machine learning tasks and combinatorial optimization problems. 

Experimental demonstration of feature extraction by using tantalum oxide-based analog RRAM 

devices will be first introduced. To achieve robust operation of RRAM crossbar array, tantalum 

oxide devices are optimized to reduce the forming voltage. The optimized RRAM array is 

successfully used to perform principal component analysis (PCA), an unsupervised learning 

algorithm for feature extraction and dimensionality reduction, of a breast cancer dataset. In the 

second project, an RRAM structure that offers very low power and large on/off ratio is developed 

using copper active electrode and atomic layer deposited Al2O3 layers for low-power in-memory 

computation and digital version of neuromorphic computing applications. Desirable device 

performance such as self-current limiting, forming-free resistive switching, ultra-low current, and 

improved uniformity have been obtained.   



xix 
 

Beyond device optimizations, I will present two projects that aim at demonstrating the 

applications of RRAM devices, implementing RRAM-based hardware acceleration of simulated 

annealing of the two-dimensional spin glass problem, and stochastic learning of deep neural 

networks. At the end of this thesis, a practical application of RRAM array for combinatorial 

optimization like travelling salesman problem is proposed as a future work. 
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Chapter 1. Introduction 
 

1.1 von Neumann Architecture and Memory Wall Problem 

Demand on cognitive computational tasks such as object and speech recognition using deep 

neural networks (DNNs) has been rapidly increasing in recent years.[1] These algorithms however 

require ever powerful hardware to implement. In particular, the data-intensive nature of DNNs is 

well known. For example, in the case of Alpha-Go, 48 CPUs and 8 GPUs were used to train the 

Go network.[2] In addition to machine learning, providers that support and analyze big data from 

web-based images, videos, and cloud system are suffering from the rising computational cost.[3] 

However, conventional computing hardware systems face fundamental limits originating from the 

nature of the von Neumann architecture, as shown in Figure 1-1.[4] Although the performance of 

processing units and the storage capacity of memory units have been continually improved by 

successive scaling according to the Moore’s Law, data communication between processor and 

memory becomes the limiting factor of the performance for data-intensive tasks.[5] The von 

Neumann Bottleneck, or the memory wall problem, only gets worse with scaling since the 

innovations of bus technology that connects the processing units and the memory units are not as 

fast as the exponential improvements in complementary metal-oxide-semiconductor (CMOS) or 

dynamic random-access memory (DRAM) technology. Although computer architectures have 

evolved and various technologies such as cache, instruction-level parallelism, multithreading, and 

distributed computing such as graphics processing units (GPUs) have been developed to address 

the memory wall problem,[6] the fundamental problem associated with separated memory and 
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logic remain unchanged. As a result, current computer architectures are still significantly less 

efficient compared to a brain, a biological computer that performs at orders of magnitude higher 

power and space efficiencies than digital computers.[7] 

 

 

Figure 1-1 Schematic of the von Neumann Architecture. Reproduced using data from Ref. [4]. The computer is 

composed of input devices, output devices, a memory unit, and a processing unit. The processing unit with 

control units and arithmetic units are connected to the memory unit through a system bus. 

 

1.2 Neuromorphic Computing using Resistive Switching Devices 

To solve the von-Neumann bottleneck problem, neuromorphic computing systems that can 

mimic the structure of biological nervous systems such as the human brain have gained broad 

interest.[7], [8] The basic idea is to build networks of electronic elements that can emulate the 

functions of biological synapse and neurons. For example, a neural network shown in Figure 1-2 

(a) can be mapped to the neuromorphic architecture shown in Figure 1-2 (b). In Figure 1-2 (a), 

each neuron in the input side (left) is connected to output neurons (right) through synaptic 
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connections with weights that govern the strength of the signal received by the output neuron. In 

this network, the input signal, or activation 𝑎𝑎𝑖𝑖  from neuron i, and the synaptic weights 𝑤𝑤𝑖𝑖𝑖𝑖  

associated with output neuron j are considered as vectors, and the output activation at neuron j is 

the function of the inner product 𝑓𝑓(𝛴𝛴𝑤𝑤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖). Therefore, each output neuron can be interpreted as 

an individual processing unit that calculates the vector inner product ∑𝑤𝑤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖  and activation 

function f. For a hardware version of neural network in Figure 1-2 (b), circuits that emulate the 

leaky-integrate-fire neuron, static random-access memory (SRAM)-based weight storage, and 

buses for inter-neuron communication are assembled to emulate training and inference in the 

biological network. 

 

 

Figure 1-2 Neural network and its elements. Reproduced using data from Ref. [9]. (b) Schematic diagram of a 

hardware neuromorphic system that corresponds to the neural network in (a). Beside each neuron circuit, synapse 

elements that store weights between the neuron and its neighbors are needed. The grey communication bus 

transfers weighted neuron signal data from input neurons to output neurons.   
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Even though significant progress has been made on CMOS-based neuromorphic 

computing systems, as demonstrated by IBM’s TrueNorth chip,[10] these approaches face 

significant challenges in terms of scaling and power consumption of CMOS devices in neuron 

circuits and SRAMs. Especially, synaptic circuits become a bottleneck since the number of 

synapses scales quadratically with the number of neurons (N2) and the size of SRAM is more than 

100 times of the minimum feature size (>100F2). For these reasons, the second wave of innovation 

in neuromorphic systems has been initiated by developing novel non-volatile memories such as 

resistive random-access memories (RRAMs), phase-change random-access memories (PCRAM), 

and spin-torque transfer magnetic random-access memories (STT-MRAM) that can effectively 

store the synaptic weights, or better yet, effectively implement the synaptic functions directly.[11] 

In particular, RRAMs, also known as memristors or memristive devices,[12], [13] have 

been successfully used to emulate biological synaptic behaviors such as long-term 

potentiation/depression (LTP/LTD) and spike-timing dependent plasticity (STDP), allowing 

energy-efficient, and cost-effective implementation of neuromorphic computing systems.[14] Key 

advantages of RRAMs for neuromorphic computing are their abilities to store analog weights and 

to perform vector-matrix operations directly through physics, i.e. Ohm’s law and Kirchhoff’s 

current law. Figure 1-3 (a) is an illustration of an RRAM device used as a synapse between a pre-

synaptic neuron and a post-synaptic neuron. The two-terminal structure of RRAM devices with a 

top electrode (TE) and bottom electrode (BE) allow them to directly map the network topology in 

a crossbar form, as shown in Figure 1-3 (b). For example, an input activation ai from the input 

neuron circuit i is converted to voltage level Vi and applied to the top electrode of a device with 

conductance Gij that represents synaptic weights wij via the row direction. The output current Ij 

collected at the j-th output neuron is determined by Kirchhoff’s current law and can be used to 
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produce activation function aj, 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖(𝐼𝐼𝑖𝑖) = 𝑎𝑎𝑖𝑖(𝛴𝛴𝐺𝐺𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖) = 𝑓𝑓𝑖𝑖(𝛴𝛴𝑤𝑤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖). By collecting current in 

all columns in the crossbar, the vector-matrix multiplication can thus be obtained in a single step. 

The ability of RRAM crossbar to obtain the desired output using physics and in parallel 

makes it far more efficient than conventional CMOS implementations for neuromorphic and other 

machine-learning applications. The idea of using RRAM array for neuromorphic computing has 

been realized with small size application for three digit recognition (~10 cells)[15] to large size 

application (>1000 cells) for MNIST dataset.[16] 

 

 

 

 

Figure 1-3  (a) An illustration of a memristor, or a RRAM device, as a synapse between neurons. The top and 

bottom electrode of the RRAM device is connected to the pre-synaptic neuron and post-synaptic neuron, 

respectively. (Reprinted from Ref. [14] with permission) (b) A crossbar structure made of input neurons, output 

neurons, and RRAM devices that act as synapses with weights wij represented by their conductance values. 

 



6 
 

1.3 Analog TaOx-Based Valence-Change Memory (VCM) Device 

Among the complex processes and functions in a synaptic junction, a few properties are 

essential to the implementation of the functions of neural networks, such as the ability to store the 

synaptic weights and synaptic plasticity effects. The synaptic weight is a continuous metric that 

represents the strength of the pre-synaptic neuron for the activation of post-synaptic neuron. The 

larger the synaptic weight of a synapse, the larger proportion of the signal in the weighted sum that 

determines the post-synaptic neuron activation. The weight in the synaptic device also needs to be 

updated. Empirical “rules” that describe the weight changes have been observed in biology. For 

example, spike-timing-dependent-plasticity (STDP) describes that the weight change depends on 

the relative timing of the pre-synaptic neuron activation and the post-synaptic neuron activation. 

STDP has been implemented in RRAM devices where temporal difference of bi-directional 

activation induces larger voltage than the threshold that can initiate resistance switching.[17] In 

general, synaptic devices should have the ability to modulate their conductance incrementally in 

both positive direction (termed potentiation) and negative direction (termed depression). Recently, 

tantalum oxide (TaOx)-based RRAMs have been studied as analog non-volatile memory devices 

that can satisfy the requirements for analog synaptic devices.[18] TaOx RRAMs are in a category 

of valence-change memory (VCM), driven by mobile oxygen vacancies (Vos) that form conductive 

filaments in the oxide film. In Figure 1-4 (a), the device structure of a TaOx RRAM is illustrated. 

The TaOx layer (x < 5
2� ) at the bottom supplies Vos to the highly resistive Ta2O5 layer. If the Vo 

concentration is high enough, the Ta2O5 layer can become conductive and result in a higher device 

conductance. In a typical operation, the top electrode is applied with negative voltage pulses (SET 

pulses) and the bottom electrode is grounded. The positively charged Vos are attracted to the top 

electrode and become accumulated and form a conductive filament made of high density of Vo. 
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Continued application of SET pulses can incrementally accumulate Vos to the filament and cause 

incremental increases in the device conductance. Similarly, positive voltage pulses (RESET pulses, 

or RST pulses) drive VOs away from the conductive filament and decreases the device conductance. 

 Figure 1.4(b) shows a measurement setup with 20 consecutive SET pulses and 20 

consecutive RST pulses, representing a test of the long-term potentiation/depression (LTP/LTD) 

phenomenon. The incremental conductance increases and conductance decreases can be clearly 

observed experimentally (bottom panel) and explained by simulation result using a physical device 

model. Moreover, learning rules such as STDP can be implemented as well (Figure 1-4 (d), further 

supporting the prospect of analog RRAMs for neuromorphic applications. 
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Figure 1-4 (Reprinted from Ref. [18] with permission) (a) Schematic of a TaOx-based bi-layer RRAM device. 

The TaOx layer is the oxygen-deficient layer that supplies oxygen-vacancies to the Ta2O5 switching layer. (b) 

Pulse test of TaOx devices showing LTP/LTD. The concept of the synaptic junction and STDP implementations 

are shown in (c) and (d), respectively. 
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1.4 Digital Cu-based Conductive Bridge Random-Access Memory (CBRAM) 

Beside VO based VCMs, resistive switching can also be obtained in devices based on metal 

ions such as copper or silver ions for conductive filament formation. These devices are also called 

conductive bridge random-access memory (CBRAM) devices, and have been considered as 

promising solutions for storage class memory since digital CBRAMs have shown better 

performance such as high on/off ratio, fast speed, high endurance, low power, and excellent 

scalability when compared with other approaches.[19], [20] The fundamental mechanism of a 

CBRAM device is the oxidation and reduction process of active metal atoms.[21] In the case of 

copper-based CBRAM, copper atoms at the active electrode can be oxidized and changed to copper 

cations, Cu+ or Cu2+, when the active electrode is applied with a positive voltage larger than the 

total overpotential, which is the threshold potential that initiates the electrochemical reaction. 

Afterwards, the ionized cations are driven towards the opposite inert electrode (the cathode) by the 

applied electric field. At the cathode or inside the dielectric, the copper cations can capture 

electrons and become reduced to copper atoms. A Cu filament can be formed through nucleation 

and accumulation of the Cu atoms within the solid electrolyte. When the filament bridges the two 

electrodes, a much lower conductance can then be obtained in the SET process. The reverse 

processes lead to the filament rupture and the recovery of the high resistance state. The filament 

formation/rupture processes have been observed directly in the work of Y. Yang et. al. as described 

in Figure 1-5.[22] 

Applications of CBRAM other than storage class memory have also been suggested as the 

device technology improves. The suggested applications include in-memory computing and binary 

coded neuromorphic computing. In-memory computing is a method to operate instructions within 

the memory to address the von Neumann bottleneck problem, as shown in Figure 1-6 (a).[23] 
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Moreover, neuromorphic computing by grouping a few binary CRAM devices (figure 1.6 (b)) to 

express analog weights in a neural network is another promising application since digital resistive 

switching processes are generally easier to control than analog switching processes.[24], [25] 

Therefore, the development and application of digital CBRAMs is also imperative to address the 

memory wall problem and the development of novel computing architectures. 

 

 

 

 

 

 

Figure 1-5 (Reprinted from Ref. [22] with permission) TEM images of (a) a complete conductive filament in a 

Ag/a-Si/Pt CBRAM device and (b) partially formed Ag filament. (c) schematic of charge transfer and ion 

migration processes during resistive switching of a CBRAM device.  
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Figure 1-6 Schematics of (a) in-memory computation aided with periphery circuit (Reprinted from Ref.[23] with 

permission) and (b) crossbar structure for binary coded neural network. (Reprinted from Ref. [24] with 

permission) 

 

1.5 Stochastic Switching Behavior of RRAM devices 

Since resistive switching in RRAM is based on thermally activated processes over high 

energy barriers (which may be the redox potential or the ion migration barrier, depending on the 

materials and bias conditions), the processes inherently follow probability distributions determined 

by statistical physics. As a result, digital RRAM devices show pronounced stochastic switching 

behavior when the applied voltage is lower than the deterministic SET/RST voltage.[26], [27] 

According to Jo et. al.,[26] formation of a conducting filament in a Ag/a-Si/Si device is a 

consequence of thermally activated hopping process of Ag particles in a-Si, following Eq. 1-1, 

where the hopping rate Γ is inversely proportional to the characteristic time 𝜏𝜏 of the switching 

process, 𝑘𝑘𝐵𝐵 is Boltzmann’s constant, T is the absolute temperature, and ν is the attempt frequency.  
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Γ = 1 𝜏𝜏� = 𝜐𝜐𝑒𝑒
−𝐸𝐸𝑎𝑎′(𝑉𝑉)

𝑘𝑘𝐵𝐵𝑇𝑇�   (Eq. 1-1) 

 

Because the activation energy (𝐸𝐸𝑎𝑎′ (𝑉𝑉) = 𝐸𝐸𝑎𝑎 − 𝛼𝛼𝑒𝑒𝑉𝑉) is dependent on the voltage applied to 

the device, the hopping rate Γ and waiting time 𝜏𝜏 of the first switching event can be controlled and 

show an exponential dependence on the applied voltage, as shown in Figure 1-7 (a-c).  

 

 

Figure 1-7 (Reprinted from Ref. [26] with permission) Bias-dependent stochastic switching behavior. (a-c) 

Histograms of the wait time for the first switching event at bias voltages of 2.6, 3.2, and 3.6 V, respectively, 

while the deterministic SET voltage is 6.0V. (d) schematic of the ion hopping processes. (e) Log plot of the wait 

time τ vs bias voltage V.  

 



13 
 

At low applied voltages below the deterministic SET voltage of 6.0V, the device switching 

shows clear stochastic behavior and can be described by a Poisson distribution. As the applied 

voltage increases from 2.6V to 3.6V, the characteristic time of the distribution decreases 

exponentially. The switching process also becomes more deterministic since the switching 

probability within a specific pulse width increases exponentially due to the barrier lowering 

mechanism depicted in Figure 1-7 (d). 

Even though the stochasticity of RRAM devices can be regarded as a probabilistic failure 

mechanism of resistive switching that should be eliminated for memory applications, it can be 

beneficial in other applications such as stochastic computing and stochastic neural networks. For 

example, S. Gaba et. al.[28] exploited the stochastic property of Ag/a-Si/poly-Si RRAM devices 

for experimental demonstration of stochastic computing for neuromorphic applications. A parallel 

array of the binary RRAMs succeeded to represent an input analog value with their time-space 

switching probability distribution. The proof-concept work ignited interests in utilizing the 

stochastic switching property of RRAMs for machine learning algorithms such as gradient descent 

optimization, k-means clustering, and winner-take-all networks.[29], [30] 

 

1.6 Organization of the Thesis 

In this thesis, research projects on analog VCM devices, digital CBRAM devices, 

stochastic binary devices, and their applications for non-von Neumann architectures including 

neuromorphic computing and in-memory computing systems are first introduced in Chapter 1. 

Chapter 2 discusses optimization of TaOx devices to achieve forming-free characteristics and 

improved analog switching behaviors for neuromorphic networks with unsupervised learning, and 

the demonstrations of functions such as feature extraction and dimensionality reduction to process 
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a breast cancer dataset. In Chapter 3, a novel design of Cu-based CBRAM devices with uniform, 

self-limited, forming-free, and robust switching is presented. Chapter 4 discusses studies on 

hardware acceleration of combinatorial optimization problems using both analog RRAM devices 

and stochastic RRAM devices. In particular, the two-dimensional spin glass problem, one famous 

NP-hard problem, was solved using the simulated annealing algorithm implemented in the RRAM 

system. A strategy for further acceleration of RRAM-based in-memory computing inspired by the 

quantum annealing process is also introduced. In Chapter 5, stochastic learning for convolutional 

neural networks with parallel stochastic binarization of analog weights is explained and its 

application of the MNSIT dataset is estimated. Finally, future works on general approaches for 

acceleration of difficult optimization problems using RRAM arrays is discussed in Chapter 6. 
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Chapter 2. Experimental Demonstration of Feature Extraction and 
Dimensionality Reduction using TaOx Analog RRAM devices 

 

2.1 Introduction 

The von Neumann architecture, broadly used in digital computing systems, now faces 

significant challenges for data-intensive tasks due to the inherent limitation of the data transfer rate 

between the memory and the central processing unit (CPU). Alternative approaches based on 

neuromorphic computing and machine learning approaches have been extensively studied to solve 

such “big data” problems.[31], [32] A common technique used to solve data-intensive problems is 

feature extraction, which has been widely used for making predictive models such as pattern 

recognition in data analysis.[33] Feature extraction aims to reduce the dimensionality of the data 

by mapping the original input data into a new space based on identified vectors (“features”). 

Particularly, principal component analysis (PCA) is widely used for linear dimensionality 

reduction and has been applied in applications ranging from machine learning to medical fields for 

tasks such as image processing, face-recognition, interpretation of genetic data, and disease 

diagnostic predictions and treatments.[34]–[39] However, identifying the features is compute-

intensive and traditionally relies on solving the covariance matrix, whose size grows quadratically 

as the input.[33] In this study, using an unsupervised, online learning rule, we show experimentally 

that simple memristor-based crossbar networks can learn the principal components from sensory 

data and effectively separate unlabeled data into clusters.[40] After data clustering, a conventional 

supervised learning process (logistic regression) can then be used to define a decision boundary 
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and classify the data with high precision, for example, successfully labeling tumors as malignant 

or benign with 97.1% success rate, comparable to results obtained from directly solving the 

covariance matrix. 

Memristors, nanoscale resistive switching devices that are often called resistive random-

access memory (RRAM) devices when used in memory applications, have attracted significant 

interest recently as a promising candidate for neuromorphic computing systems.[14], [41] 

Memristor crossbar arrays are particularly suitable for neural network implementations due to the 

following reasons. First, the crossbar array can directly implement vector-matrix multiplications 

(e.g., dot-product) in physics due to the nature of the two-terminal resistive device: the output 

current vector is a product of the input voltage vector multiplied by the conductance matrix of the 

memristor array. Second, the ability to incrementally change (and store) the resistance state is 

compatible with online learning where simple voltage pulses can be used to update the 

conductance (weight) matrix.[15], [42], [43] A typical memristor device consists of a transition 

metal oxide layer such as TiOx, HfOx, WOx, TaOx sandwiched by a pair of electrodes,[13], [44], 

[45] whereas excellent performance such as high density, low power consumption, long cycling 

endurance, and sub-nanosecond switching speed have already been reported.[46], [47] During 

weight update, the resistance of the memristor device can be adjusted incrementally by controlling 

the distribution of oxygen vacancies, which modulate the local conductivity and the overall 

conductance of the device.[18] 

 

2.2 Fabrication of Forming-Free Tantalum-Oxide RRAM Devices 

Crossbar arrays based on a forming-free, tantalum-oxide memristor structure were used in 

this study to experimentally implement PCA analysis. In general, RRAM devices require an initial 
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electroforming process, where a high voltage is used to create the ionic distributions necessary for 

subsequent resistive- switching processes.[48] In a passive memristor crossbar, the high forming 

voltage (typically ~5 V, whereas the set voltage is ~1.0 V for Ta2O5-based devices)[49] can cause 

damage to the half- selected devices that are already formed and share the same row as the target 

device, because a voltage of ~2.5 V will be applied to these half-selected devices in a standard 

protective voltage scheme. Therefore, devices that are forming-free or require only low-voltage 

forming are essential for the successful operation of passive crossbar systems, that is, systems 

without the access transistor in one-transistor one-resistor (1T1R) type implementations. To 

achieve reliable forming-free behavior, a thin tantalum pentoxide (Ta2O5) layer and Ta metal were 

used as the switching layer and the reactive top electrode, respectively. In detail, the memristor 

crossbar array was fabricated on a Si substrate with a 100nm thermal SiO2 layer. The bottom 

electrodes, consisting of 5 nm thick NiCr and 40 nm thick Pd, were patterned by photolithography 

and deposited by e-beam evaporation followed by a liftoff process. Next, the 10 nm Ta2O5 

switching layer was deposited by radio frequency (RF) sputtering for 200s at room temperature. 

The top electrodes, consisting of 40 nm thick Ta and 100 nm thick Pd, were fabricated by 

photolithography, e-beam evaporation and liftoff. After fabrication, the devices were annealed 

using rapid thermal annealing (RTP) at 300 °C in N2 gas for 15 min to create oxygen vacancies in 

the Ta2O5 switching layer after device fabrication in lieu of the forming process.  

Figure 2-1 (a) shows a scanning electron microscopy (SEM) image of an as-fabricated 

array consisting of 18 rows and 2 columns. A 9 × 2 subarray out of the as-fabricated array was 

used in the PCA analysis. Figure 2-1 (b) shows the direct current (dc) current−voltage (I−V) curves 

of a typical device starting from the virgin state, showing typical bipolar resistive switching 

characteristics. Additionally, the first sweep and the subsequent sweep show nearly identical set 
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and reset characteristics, confirming the form-free behavior. The optimization of annealing process 

is developed by observation of decreasing forming voltage as annealing time increases described 

as Figure 2-1 (c). Figure 2-1 (d) compares |VSET| and |Vforming| from different TaOx-based RRAM 

device structures to highlight the improvement of low forming properties in this study. 

 

Figure 2-1 (a) SEM image of TaOx array consisting of 18 rows and 2 columns. Inset is a schematic device 

structure of Ta/TaOx/Pd device (b) I-V sweep curve of resistive switching of a single TaOx device (c) Initial 

positive sweep for filament formation with different annealing time. Inset is relation diagram between the 

annealing time and forming voltage (Reprinted from Ref.[40] with permission) (d) Table of |VSET| and |Vforming| 

measured from different TaOx-based RRAM device structures (reproduced using data from Ref[40], [46], [50]–

[56]) 
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2.3 Analog Resistive Switching of TaOx Devices for Neuromorphic Application 

In memristor based neural networks, the weights are represented by the memristor 

conductance and implementation of online learning requires the weights to be incrementally 

updated. Figure 2-2 (a) shows the conductance updates of devices in the 9 × 2 subarray. A train of 

50 pulses (1.1 V, 3 μs duration) was used to increase the device conductance, followed by another 

train of 50 pulses (−1.4 V, 30 μs duration) to decrease the device conductance. The device 

conductance was monitored with a 0.3 V read pulse after each programming or reset pulse. As can 

be seen in Figure 2-2 (a), a positive pulse increases the memristor conductance incrementally while 

a negative pulse decreases the memristor conductance incrementally, demonstrating analog 

switching behavior in the device. The analog switching behavior can be attributed to the drift and 

diffusion of oxygen vacancies in the TaOx switching layer that incrementally changes the profile 

of the oxygen vacancy-rich conduction region.[18], [50] Figure 2-2 (b) plots the average 

conductance values measured from the 18 devices in the 9 × 2 subarray shown in Figure 2-2 (a), 

along with simulation results based on a dynamic memristor model, showing very good 

agreements between the experimental observations and the model.[57] Below are the physical 

model of the TaOx analog devices consisting of the I-V equation Eq 2-1 and the state variable 

dynamic equation Eq 2-2 where w is internal state variable and γ, δ, α, β are parameters related to 

material properties such as effective tunneling distance, tunneling barrier, the depletion width of 

the Schottky barrier region and barrier height. u(x) is the Heaviside step function, k, μ are positive 

parameters determined by material properties such as ion hopping distance and hopping barrier 

heights. 

I = ωγsinh(𝛿𝛿 × 𝑉𝑉) + (1− 𝜔𝜔)𝛼𝛼�1 − 𝑒𝑒−𝛽𝛽×𝑉𝑉�  (Eq. 2-1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝜔𝜔 − 1)2k(𝑒𝑒−𝜇𝜇1𝑉𝑉 − 𝑒𝑒𝜇𝜇2𝑉𝑉)𝑢𝑢(−𝑉𝑉) + 𝜔𝜔2k(𝑒𝑒−𝜇𝜇1𝑉𝑉 − 𝑒𝑒𝜇𝜇2𝑉𝑉)𝑢𝑢(𝑉𝑉) (Eq. 2-2) 
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Figure 2-2 (a) Distribution of the current response to 50 SET/ 50 RST pulse train of18 device and their average 

(b) Device model result and experimental average of pulse train. (Reprinted from Ref.[40] with permission) 

 

2.4 Generalized Hebbian Rule for Unsupervised Learning 

To obtain the principal components of the input data set through online learning, we 

implemented Sanger’s rule, also known as the generalized Hebbian algorithm in the memristor 

crossbar.[58], [59] Specifically, Sanger’s rule states that the desired weight change is determined 

by the current weight (g), the output response (y), and the input (x), following Eq. 2-3.  

 

Δ𝑔𝑔𝑖𝑖𝑖𝑖 = η𝐻𝐻𝑖𝑖(𝑥𝑥𝑖𝑖 − ∑ 𝑔𝑔𝑖𝑖𝑘𝑘𝐻𝐻𝑘𝑘𝑘𝑘 )  (Eq. 2-3) 

 

where η is the learning rate (0 < η ≪1), xi represents the input data at input (row) i (1 ≤ i ≤ 9 in 

this study), 𝑔𝑔𝑖𝑖𝑖𝑖  is the weight at row i and column j in the neural network, and j = 1 or 2 for the 

primary principal component or the secondary principal component. After training, the weight 

vectors in columns 1 and 2 determine the primary and secondary principal components of the input 
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data set, respectively. After learning the principal components, the trained artificial neural network 

was then used to perform dimensionality reduction and clustering analysis. 

 

 

 

 

2.5 Operation of Memristor Array for PCA Implementation  

 

Figure 2-3 (a) Schematic of the memristor network operation. The input voltage signals are applied to the rows 

and flow into the network, while the outputs are connected to the columns and are collected as current. (b) 

Optical image of the test board. The memristor array was wire-bonded and inserted in the board. (Reprinted from 

Ref.[40] with permission) 

 

Figure 2-3 (a) shows a schematic of the memristor-based neural network structure. The 

input channels are connected to the rows and the output channels are connected to the columns of 

the memristor crossbar. By using voltage pulses with different pulse widths as the input, the output 

vectors are determined by the vector−matrix dot-product of the input signal and the memristor 

weight matrix, while the network learns the principal components by adjusting the weights of the 
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memristor network during training.[57] To map the physical parameters obtained in the memristor 

network with the parameters used in PCA analysis and Sanger’s rule, a linear transformation from 

physical charge to output value is needed. Specifically, with the application of an input xi 

(represented by the width of the input voltage pulse), the amount of charge collected at the output 

in the memristor network can be calculated from Kirchhoff’s law as 

 

𝑄𝑄𝑖𝑖 = ∑ �𝑤𝑤𝑖𝑖𝑖𝑖𝐴𝐴 + �1 −𝑤𝑤𝑖𝑖𝑖𝑖�𝐵𝐵�𝑖𝑖 𝑥𝑥𝑖𝑖   (Eq. 2-4) 

where Q is the charge collected at the output, xi is input signal applied at input row i, wij is the state 

variable of the memristor device at row i and column j as discussed in Eq. 2-1 and Eq. 2-2, while 

the constants in Eq. 2-1 are lumped into prefactors A and B. The output yj used to perform the 

PCA analysis is then obtained from the charge Qj through Eq. S4: 

 

𝐻𝐻𝑖𝑖 = 2𝑄𝑄𝑗𝑗
𝐴𝐴−𝐵𝐵

− ∑ �𝐴𝐴+𝐵𝐵
𝐴𝐴−𝐵𝐵

𝑥𝑥𝑖𝑖�𝑖𝑖 =  ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1   (Eq. 2-5) 

 

where  gij =2wij – 1  (Eq. 2-6) 

 

where y and g obtained in Eq. 2-5 and Eq. 2-6 are used to perform the weight updates and PCA 

analysis following Sanger’s rule (Eq. 2-2). After training, the weights g in columns 1 and 2 form 

the (first and 2nd, respectively) principal components of the input data set.  

From the Sanger’s rule shown in Eq. 2-3, the desired weight update ∆𝑔𝑔𝑖𝑖𝑖𝑖  and 

corresponding pulse width │∆t│ can be calculated with Eq. 2-7. Programming voltage pulses are 

then applied to the inputs to modify the memristor weights. The training pulses are determined by 

the polarity and magnitude of ∆𝑔𝑔𝑖𝑖𝑖𝑖 , with potentiation (1.1 V) pulses for positive ∆𝑔𝑔𝑖𝑖𝑖𝑖  and 
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depression (-1.4 V) pulses for negative  ∆𝑔𝑔𝑖𝑖𝑖𝑖 , while the pulse widths are determined by the 

magnitude of │∆𝑔𝑔𝑖𝑖𝑖𝑖│ and 𝑔𝑔𝑖𝑖𝑖𝑖. Here, a simple approach is used to compensate for the non-linear 

response of the internal state variable w. Specifically, the pulse width │∆t│ is determined as Eq.2-

7. The training data set consisted of 100 randomly sequenced data points (50 data points from 

benign cells, 50 data points from malignant cells). After training, the network was used to analyze 

another 583 data points that were not included in the training data set. 

 

∆𝑡𝑡𝑖𝑖𝑖𝑖 = 2

𝑘𝑘�𝑒𝑒−𝜇𝜇1𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑒𝑒𝜇𝜇2𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
( −1
𝑔𝑔𝑝𝑝𝑗𝑗,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎−1

+ 1
𝑔𝑔𝑝𝑝𝑗𝑗,𝑏𝑏𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝−1

) 𝑢𝑢(∆g) 

+ 2

𝑘𝑘�𝑒𝑒−𝜇𝜇1𝑉𝑉𝑑𝑑𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝−𝑒𝑒𝜇𝜇2𝑉𝑉𝑑𝑑𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝�
( −1
𝑔𝑔𝑝𝑝𝑗𝑗,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎+1

+ 1
𝑔𝑔𝑝𝑝𝑗𝑗,𝑏𝑏𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝+1

) 𝑢𝑢(−∆g)  (Eq. 2-7) 

 

 

Figure 2-4 List of parameters used in this study. α,β, γ, δ, k,𝜇𝜇1, 𝜇𝜇2, and η are off-state leakage current, non-linear 

I-V scaling coefficient at off-state, on-state current coefficient, on-state non-linear I-V scaling coefficient, weight 

update coefficient, nonlinear voltage coefficient for set process, nonlinear voltage coefficient for reset process, 

and learning rate, respectively. (Reprinted from Ref.[40] with permission) 
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In this study, a standard breast cancer data set from the University of Wisconsin Hospital 

was used as the input.[60] The data set consists of breast cell mass properties measured in 9 

categories and each property is scored from 1 to 10. Each input to the memristor network is thus a 

nine-dimensional vector consisting of scores from the nine measurements. Transformation of the 

data is achieved in the memristor array through a simple “read” operation, where the input signals 

are applied to the memristor array as voltage pulses with fixed amplitude (0.3 V) and variable 

pulse widths (0 to 1000μs duration with 100μs unit pulse width) proportional to the values of the 

input data. The output charge collected at column j then corresponds to the dot-product of the input 

vector and the conductance vector stored in column j, allowing the mapping from the original nine-

dimensional space to a two- dimensional output space (for the case of considering two principal 

components). To learn the principal components, programming (+1.1 V) or erasing (−1.4 V) 

voltage pulses are applied to the memristor array with pulse widths calculated from the amount of 

the desired weight changes. All the parameters used for the equations about I-V characteristics, 

weight update, and Sanger’s rules are listed in Figure 2-4. 

 

2.6 Structure and Operation of the Test Board  

 

 The experiments were carried out using a custom-built test board where the memristor 

crossbar array was wire bonded to a chip carrier and connected to the periphery circuitry on the 

board, shown in Figure 2-3 (b). The circuitry on the board provides peripheral functions such as 

voltage signal generation, addressing signals to the proper row and column in the crossbar, and 

receiving current at the output of the array. Digital to analog converters (DACs) were used to 
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provide bias to the top electrodes (TEs) and bottom electrodes (BEs) of the memristor crossbar. 

An analog to digital converter (ADC) and an Op amp were used to measure the current during the 

read process. The board is connected to a microcontroller with a field-programmable gate array 

(FPGA) chip (Xilinx, Spartan 6). The command for execution is programmed by Python. 

A schematic of the test board is shown in Figure 2-5. There are 4 DACs on the test board 

to supply voltage pulses ranging from 0V to 5.0V on the selected bottom electrode (through DAC1), 

the unselected bottom electrodes (through DAC2), the selected top electrode (through DAC3), and 

the unselected top electrodes (through DAC4), respectively. Matrix switches (Switch1, Switch2) 

allocate each memristive device to the corresponding DAC. To measure current through a 

memristive device in the array, a multiplexer (MUX) is activated to flow the current into ADC. 

Due to the virtual ground of the op-amp, the voltage biased on a sensing resistor (1kΩ) is measured 

using ADC and converted to the current value. The arrows in the schematic indicate the current 

path through a selected memristive device for write, erase, and read processes. The bias voltage of 

each DAC for each process is specified in the legend of Figure 2-5. 
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Figure 2-5 Circuit schematic of the test board (Reprinted from Ref.[40] with permission) 

 

 

 

Figure 2-6 Flow chart of the PCA network operation (Reprinted from Ref.[40] with permission) 
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Figure 2-6 shows the flow chart of the test board to implement PCA analysis. The initial 

output is obtained with VREAD. With randomly sequenced training sets, the desired weight changes 

and applied pulse widths are calculated following Sanger’s rule. After adjusting the memristor 

weights, the updated outputs are obtained using another read process. This procedure is then 

repeated for the 100 training data points, over the desired training cycles. 

 

2.7 Experimental Result of Dimensionality Reduction Based on PCA 

Figure 2-7 (a) shows results of the 583 test data points before the learning process. Because 

the weights in the memristor crossbar are initially random, mapping of the input data to the 2D 

output leads to randomly distributed data points, and the output data from benign cells and data 

from malignant cells overlap each other. In other words, without training the network does not 

cluster the data set effectively. Results obtained from classical PCA analysis are shown in Figure 

2-7 (b). Here the principal components were obtained by directly calculating the eigenvectors of 

the covariance matrix, where the primary principal component was obtained in the direction of the 

largest variance, and subsequently the second orthogonal principal component from the second 

greatest variance, and so forth. Afterward, the data become clustered by transforming the input 

along the obtained principal components, as shown in Figure 2-7 (b). 

Instead of directly solving the eigenvectors from the covariance matrix, the principal 

components can also be obtained through neural networks through training, using Sanger’s rule 

(Eq. 2-3). To verify this, we first analyzed the memristor network operation through simulation. 

Figure 2-7 (c) shows simulation results obtained from a 9 × 2 memristor neural network using 

Sanger’s rule and the dynamic device model used in Figure 2-2 (b), demonstrating successful PCA 
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analysis with similar results as directly solving the eigenvectors in software (Figure 2-7(b)). 

Experimental implementation of PCA analysis was then carried out on the 9 × 2 memristor 

crossbar using the test board and Sanger’s rule. Figure 2-7 (d) shows PCA analysis results obtained 

after experimentally implementing online learning in the memristor array. Successful data 

clustering, which is similar to the result shown in Figure 2-7 (c), is obtained, verifying the potential 

of the memristor-based neural network for feature extraction tasks based on online unsupervised 

learning.  
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Figure 2-7 (a) Principal component analysis results. (a) Results obtained with untrained memristor network. The 

data are plotted based on the first (y1) and second (y2) output values. (b) Principal component analysis results 

after solving the traditional covariance matrix of the input data. The malignant and benign cells are largely 

separated into two clusters. (c) PCA results obtained from numerical simulation of the network, using the 

dynamic device model and Sanger’s learning rule. (d) Experimental PCA results obtained from the memristor 

network using Sanger’s learning rule after 35 cycles of training. The blue and magenta color labels in the plots 

represent the ground truth. Note the color labels are used only to highlight the effects of clustering in the plots 

but are not used in the network training or PCA analysis. (Reprinted from Ref.[40] with permission) 

 

The primary and secondary principal components, represented by the two nine-

dimensional weight vectors learned in the memristor network from the training process, are shown 

in Figure 2-8 (a) and (b), respectively. The black bars show the weight vector before training. The 

red bars and blue bars represent the weight vector after training, obtained from simulation and the 

experiment, respectively, by directly measuring the memristor conductance values after training. 

Comparing the simulation and the experimental results, obtained principal components look 

similar in both cases, although not identical. This can be understood from the fact that features 

obtained from neural networks are approximate solutions, both from the simulation and in the 

experiment. The specific approximate solution depends on the (random) initial condition and any 

device effects that are not fully captured in the model. The smaller percentage of variance 

represented by the second principal component (~10%) can also lead to larger differences between 

the simulation and experiment for the second principal component case. Nevertheless, similar 

clustering results can be obtained from these different approximate solutions. 

Another test to verify if the neural network has performed properly is by checking the 

Euclidean norm of the learned feature vectors as well as the orthogonality between the vectors. 
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Specifically, PCA requires the feature vectors to be normalized and orthogonal. This requirement 

is inherently satisfied by the application of Sanger’s rule, which automatically normalizes the 

feature vectors. Figure 2-8 (c-e) shows the measured Euclidean norm from the memristor array for 

the primary principal component and the secondary principal component, and their dot-product 

during the training process, respectively. As expected, as training continues the Euclidean norms 

of both vectors approach unity while the dot-product of the vectors converges to zero. These 

measurements verify that the learned vectors indeed become normalized during training and form 

orthogonal basis of the output space. 
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Figure 2-8 (a) Evolution of the principal component vectors. (a,b) The primary principal component (a) and the 

secondary principal component (b) before and after training. Black bars: memristor weights constituting the 

principal component vectors before the learning process. Red bars: simulated memristor weights after the 

learning process. Blue bars: Experimentally obtained weights after the learning process. (c,d) Evolution of the 

Euclidean norm of the primary principal component and the secondary principal component vectors, respectively, 

during training. (e) Evolution of the inner product of the primary principal component vector and the secondary 

principal component vector during training. (Reprinted from Ref.[40] with permission) 

 

 

 

The clustered data, obtained from the memristor network, can then be used to implement 

predictive models. In this case, a decision boundary needs to be developed to separate the two 

clusters and predict one set as benign and the other set as malignant. The decision boundary was 

drawn using supervised training (based on logistic regression[33]), using the labeled training data 

set as shown in Figure 2-9 (a). With the help of the learned decision boundary, replotted in Figure 

2-9 (b) along with the transformed data (Figure 2-7 (d)), prediction of the measurements can be 

accurately made. In summary, only 17 data points among the 583 test data points were 

misclassified, corresponding to 97.1% accuracy.  

On the other hand, in classical PCA analysis, the features of a dataset can be extracted by 

directly solving the eigenvalue problem of the covariance matrix. Using the PCA module in Python 

codes, an exact solution was obtained and used for the feature extraction of the breast cancer data 

to compare with the results obtained from the memristor network. After clustering of the data, a 

decision boundary for prediction of breast cancer was calculated by fitting the training data set 

with the logistic regression algorithm (Figure 2-10 (a)). In Figure 2-10 (b), the test data set was 
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used to validate the classification result and an accuracy of 97.6% based on the exact PCA 

solutions obtained in software. This result is very close to results obtained by directly solving the 

eigenvectors in software (97.6%), suggesting that data clustering from even a small memristor-

based network based on non-ideal devices can be reliably used for efficient and effective data 

classification based on unsupervised, online learning. 

 

 

 

 

 

 

 

 

Figure 2-9 Classification based on the trained memristor network. (a) Decision boundary (purple dotted line) 

obtained using a supervised training process. (b) Overlay of the decision boundary obtained from (a) and the test 

data from PCA analysis. A cell is classified to be malignant or benign based on whether it is located to the left 
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or right of the decision boundary. The classification accuracy is obtained by comparing the classification with 

the ground truth (shown as the color label of the test data). (Reprinted from Ref.[40] with permission) 

 

 

 

Figure 2-10 Classification results based on the exact solution of PCA. (a) Decision boundary (dotted line) 

obtained by fitting the training data set using logistic regression. (b) The decision boundary calculated from (a) 

overlaid with test data after PCA analysis. Prediction was made based on a data point’s location with respect to 

the decision boundary. The blue and magenta color labels represent the ground truth. (Reprinted from Ref.[40] 

with permission) 

 

2.8 Conclusion 

In this study, we show that memristor networks can implement PCA analysis, one of the 

most widely used feature extraction techniques, and successfully cluster data in a real- world 

environment. Through online, unsupervised learning that modulates the conductance values of the 

memristor devices, the memristor network identifies the desired feature vectors. Our experimental 

studies further verify that weight normalization and orthogonality can be assured during the 
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unsupervised learning process. With the help of a linear classifier, the clustered data can be further 

used to make reliable predictions and classifications. Along with continued device optimizations 

and memristor-based circuit developments, this study represents a significant step toward the 

implementation of efficient neuromorphic hardware framework for data-intensive computing 

applications. 
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Chapter 3. Self-Limited and Forming-Free CBRAMs With Double 
Al2O3 ALD Layers 

 

3.1 Introduction 

Digital conductive-bridge random access memory (CBRAM) devices have been 

considered as future non-volatile memory solutions for applications such as storage class 

memory.[19] These devices have shown superior performance such as fast speed, low power 

consumption, high density (4F2), high on/off ratio (>100) and CMOS-compatible fabrication that 

enable 3D integration process.[20] 

Recently, there have been further suggestions to expand the application of digital CBRAMs 

for novel computing architectures. For example, CBRAM memory cells can be used to both store 

data and process logical or arithmetic instructions.[23], [24] In an approach termed field 

programmable crossbar array (FPCA), a reconfigurable computing systems for different tasks can 

be efficiently implemented using RRAM crossbar arrays in a modular fashion. In the FPCA system, 

an RRAM crossbar array can be exploited for versatile operations such as multi-bit arithmetic 

operations, data manipulation, vector-matrix inner product, and neuromorphic computing. 

Instructions listed above can be directly performed in FPCA without fetching large size of data to 

a processing unit to avoid the memory-wall problem. However, to realize systems such as FPCA, 

development and fabrication of CBRAM crossbars with uniform and robust cells is critical, and 

several requirements have to be met. Firstly, forming-free CBRAM devices are essential for 

crossbar implementation because the forming process can cause severe damage to the unselected 
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cells and make device variations worse.[61] In addition, self-limited programming is a desirable 

property because the overshoot of programming current could break down devices and also 

aggravate the cycle-to-cycle and device-to-device variations.[62] To reduce the effect of the sneak-

current problem, low programming current and nonlinear I-V characteristics in the low resistance 

state (LRS) is also required.[63], [64] Although problems such as high forming voltage, over-

programming, and sneak-currents can be addressed by using the one transistor and one resistor 

scheme (1T-1R), the large size and complex control sequence of the 1T-1R structure make the 

crossbar array inefficient.[65], [66] Moreover, high endurance and long retention time are also 

important properties for non-volatile memory applications and need to be obtained simultaneously 

with the other performance metrics.[67] 

To meet all the requirements above, Cu-based CBRAM devices with a bilayer structure, 

Cu/CuOx/ Al2O3(switching) /Al2O3(barrier)/Pd, has been developed in this study.[68] In the device 

structure, the ALD barrier layer serves roles as both an ionic diffusion barrier and an electronic 

tunneling barrier that lead to robust, uniform, and self-limited switching behaviors. The suggested 

CBRAM with double ALD layers (D-ALD) achieved self-current limited programming(<100nA), 

forming-free switching (Vforming = VSET = 3V), large on/off ratio (~100), uniform cycle-to-cycle 

and device-to-device operation, reliable switching cycle ( >1000 times), ultra-low operation 

current (<100nA for programming and 100pA for reading) and nonlinear I-V characteristics, using 

a CMOS compatible process. Optimized programming pulse scheme has also been developed to 

improve the operations of the D-ALD crossbar structure. 
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3.2 Device Fabrication 

The Cu(bottom electrode)/CuOx/LT-ALD/HT-ALD/Pd(top electrode) cells were 

fabricated in a 2𝜇𝜇𝜇𝜇 × 2𝜇𝜇𝜇𝜇 two-terminal crossbar structure as shown in Figure 3-1(a). The bottom 

electrode (BE) was defined on top of a SiO2/Si substrate by photolithography, followed by e-beam 

evaporation of 5nm/50nm of NiCr/Cu. The Cu BE was then subjected to O2 plasma treatment for 

2 minutes at 150°C to form a copper oxide CuOx layer. 40 cycles (~45Å) of Al2O3 LT-ALD 

switching layer was then deposited in an Oxford ALD tool at 110°C using H2O recipe, using 

Al(CH3)3 and H2O as metal precursor and oxidizing agent, respectively. The ALD tool was then 

heated up to 250°C, and 6 cycles (~7Å) of Al2O3 HT-ALD layer was deposited with plasma recipe 

using O2 plasma as oxidizing agent. The Pd top electrode (TE) was formed by e-beam evaporation. 

The devices were measured by a Keithley 4200 semiconductor parameter analyzer. All switching 

characteristics were obtained without external current compliance (CC).  

In Figure 3-1(a), the D-ALD device with Cu/CuOx/LT-ALD/HT-ALD/Pd structure is 

illustrated. The CuOx layer was found to improve nucleation during growth of the LT-ALD 

switching layer. Additionally, the Cu ions in the CuOx layer facilitates the redox processes 

involved in conducting filament (CF) formation and thus reduces Vforming.[69], [70] The thin HT-

ALD layer is used as a barrier layer to limit CF growth and reduce the programming current. X-

ray reflectance measurements (XRR) show the HT-ALD film has higher density (3.7g/cm3) 

than the LT-ALD film (3.3g/cm3). Resistive switching in HT-ALD was found to be more difficult 

than in LT-ALD, possibly because of the denser film makes it harder for the inclusion of water 

molecules to mediate Cu redox processes.[71] As a result, the HT-ALD film can act as a good Cu 

diffusion barrier layer. 
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3.3 Self-Limited and Forming-Free Resistive Switching 

Figure 3-1(b) shows three consecutive resistive switching curves without CC, starting from 

the as-fabricated state, with voltage applied on the Cu BE and the TE grounded. Note the non-zero 

crossing during the negative sweep was caused by a small (~0.15pA) offset current, likely due to 

discharging from parasitic capacitances as the voltage is decreased. Smooth I-V curves and zero-

crossing can be obtained by removing this small current offset. The first I-V sweep from the as-

fabricated device leads to a switching to LRS at ~3V. This Vforming is the same as the switching 

voltage in subsequent sweeps, showing forming-free characteristics. The self-limited 

programming process can be observed from the reliable switching curves - the switching does not 

lead to uncontrollable ramp up of the current, even without any external CC or added series-

resistance to limit the applied voltage. Compared with previous studies on Al2O3-based CBRAM 

that require high Vforming ~2.3×VSET and external CC,[64] the forming-free and self-limited 

programming of D-ALD devices allow more reliable device operation and transistor-free 1S1R 

crossbar implementations, where low-forming voltage is necessary and external current 

compliance will be difficult to be applied. The I-V curves obtained from the resistive switching 

cycles are similar to each other, with consistent LRS and high-resistance state (HRS) values, 

showing good C-to-C uniformity without elaborate control circuitry. I-V nonlinearity NLread and 

NLSET of ~10 (defined as NLread=I(Vread)/I(1/2Vread) at Vread=1.0V and NLSET=I(VSET)/ I(1/2VSET) 

at VSET=3.0V) are also observed in the I-V curve in LRS. Due to the very low read current (0.1 

nA) and the high on-state device resistance (> 1GΩ), the ground scheme can be successfully 

applied to arrays during read, while the nonlinearity NLSET becomes attractive during write to help 

reduce the power consumption using the V/2 write scheme during array operation.[72], [73] 
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The desirable performance can be attributed to the role of the layers, CuOx, LT-ALD, and 

HT-ALD in the device. Figure 3-1(c) shows forward I-V sweeps obtained from three as-fabricated 

control devices with different structures until their breakdown. Cu(TE)/LT-ALD(50 cycles)/Pd 

(BE) devices without CuOx was used to investigate the role of the CuOx layer. It showed not only 

high Vforming ~3V, but also large D-to-D variations (gray curves) and low yield (5 out of 10 devices 

were initially shorted). This result can be attributed to poor nucleation of the LT-ALD layer on top 

of the copper BE that leads to high density of defects such as pin-holes and rough surface.[74] To 

address this issue, we note copper oxide has been used to improve nucleation of the Al2O3 layer 

during ALD growth since hydroxyl (OH) groups can be chemisorbed onto the CuO sites and react 

with the organometallic precursors during ALD.[75]–[77] Hence, Cu(BE)/CuOx/LT-ALD(50 

cycles)/Pd (TE) devices with the LT-ALD layer grown on top of CuOx were fabricated. The 

formation of CuOx was conducted by 2 minutes of exposure to O2 plasma. The LT-ALD devices 

grown on CuOx layer show a low Vforming close to 2.0V (red curves) with enhanced uniformity and 

high yield (all the pristine devices are initially insulating). Moreover, copper ions (Cu2+) can be 

more easily supplied from CuOx and diffuse into the Al2O3 layer compared to the Cu metal case, 

due to the lower Cu-O bond energy in CuO (~1.5eV) compared with that of Cu-Cu metallic bond 

(~2.0eV).[70], [77]–[79] Therefore, devices with CuOx as the ion source layer exhibit reduced 

Vforming. The low forming voltage of LT-ALD can also be attributed by the effects of H2O 

molecules in the LT-Al2O3 film, which has been shown to be more hydrophilic than SiO2.[80] The 

H2O molecules absorbed in the LT-ALD layer can facilitate the Cu redox processes, as has been 

observed in SiO2-based devices.[69] 

The HT-ALD control devices were fabricated in the same structure as the LT-ALD device, 

i.e. Cu(BE)/CuOx/ HT-ALD(50cycles)/Pd(TE), by simply replacing the ALD growth condition 
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from 110°C with H2O in the LT-ALD device to 250°C with O2 plasma in the HT-ALD device. 

Since the same number of ALD cycles (50 cycles) for both the HT-ALD device and the LT-ALD 

device were used, resulting in similar thickness of ~55 Å, the difference of I-V the characteristics 

between LT-ALD devices and HT-ALD devices are mainly due to the ALD film quality. The I-V 

curves of HT-ALD devices (blue lines) in Figure 3-1 (c) showed very low leakage current (~10-

14A) and eventually broke down at a high voltage, ~ 5.5V. These results verify that the HT-ALD 

layer can offer very low leakage current and support high electric field. The closely packed Al2O3 

in HT-ALD films makes it harder to contain water molecules, which have been shown to reduce 

the activation energy of copper ion migration.[71] These results suggest that HT-ALD can be used 

as an effective ion diffusion barrier to control the growth of the CF. The excellent insulating quality 

of the HT-ALD layer is also useful to limit the current and achieve self-compliance during the 

switching process, as have been verified in the D-ALD devices shown in Figure 3-1(b). 

The conduction mechanism can be further explained by fitting the I-V curves, as shown in 

Figure 3-1(d). The I-V curve in HRS was fitted to Frenkel-Poole model in the 1.2~2.0V range 

(where the current is clearly above the measurement resolution limit), which implies trap-related 

leakage mechanism in HRS, as shown in Figure 3-1(d).[81] The LRS regime can be fitted with 

direct tunneling, implying the existence of a barrier between the CF and the inert electrode.[82] 

From the fitting, the tunneling gap and diameter of the CF is estimated to be 10Å and 16 Å, 

respectively. The tunneling gap of 10Å is close to the thickness of the HT-ALD barrier, ~7 Å. This 

analysis supports that the vertical growth of the Cu CF is stopped by the HT-ALD layer, and 

conduction in the LRS is dominated by tunneling through the barrier layer.  
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Figure 3-1 (a) SEM image of Cu/CuOx/LT-ALD/HT-ALD/Pd crossbar devices. Inset: the schematic structure of 

D-ALD devices. (b) Successive I-V sweeps   including SET switching of as-fabricated device (red) (c) I-V curves 

of LT-ALD devices without CuOx (Vforming~3V), LT-ALD devices with CuOx (Vforming~2V), and HT-ALD 

devices (Vforming~5.5V). Results from three devices are shown for each structure. (d) Fitting of the D-ALD device 

I-V. The fitting was limited to below 2.0V where resistive switching occurred. (Reprinted from Ref.[68] with 

permission) 
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3.4 Role of HT-ALD barrier layer 

Additional evidence of reliability of the HT-ALD barrier can be observed in Figure 3-2(a). 

Here the applied voltage was continuously applied beyond the typical programming voltage range 

of 3V. At ~ 4V, Cu ion injection into the HT-ALD barrier layer occurs, leading to abruptly 

increased current. However, the device recovers the lower LRS current level at ~1.6V during 

reverse sweep without suffering from permanent damage, suggesting the partial filament in the 

HT-ALD layer is not stable and the HT-ALD film can restore its barrier property even if the device 

is accidentally exposed to high voltage. The instability of the Cu filament in the HT-ALD layer 

can be understood from the enhanced mechanical stress due to the high Young’s modulus in the 

HT-ALD layer.[83], [84] Enhanced mechanical stress reduces the activation energy for Cu cluster 

dissolution and makes the CF volatile in the HT-ALD layer. 

The resistive switching mechanism of the D-ALD device is illustrated in Figure 3-2(b). (1) 

In the as-fabricated device, Cu ions can be supplied from the CuOx layer and migrate into the LT-

ALD layer leading to resistive switching with forming-free behavior (2). The growth of the Cu CF 

in the LT-ALD layer increases the current level from ~10-12A to ~10-9A. The vertical growth is 

stopped by the HT-ALD layer. (3) Afterwards, lateral CF growth results in gradual increase in 

device current when the voltage is continuously applied. (4) If the device is accidentally subjected 

to high voltage, Cu ions may be injected into the HT-ALD layer. However, the injected Cu will 

not be stable and the HT-ALD layer can recover its barrier property. 
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Figure 3-2 (a) An I-V sweep with larger voltage range showing over-programming (red) and the subsequent 

restore to the original resistive switching curve (blue) (b) Schematic illustration of the switching mechanism of 

D-ALD device. (Reprinted from Ref.[68] with permission) 

 

3.5 Cycling Test Results 

Figure 3-3(a) shows the cycling test results. The D-ALD device achieved 1000 cycles of 

resistive switching without any observable degradation of on/off ratio (~100). The C-to-C 

cumulative distribution in Figure 3-3(b) and its inset show uniform on-current in the 100~300pA 

range (at 1V), without any help of CC. D-to-D uniformity was examined in Figure 3-3(c). Box 

plots measured from 10 different devices show similar distribution in current levels in both LRS 

and HRS for all devices. The improved uniformity of the devices can be attributed by the 

uniformity of the deposited ALD layers, including both the LT-ALD switching layer and the HT-

ALD barrier layer. In addition, retention over 104 seconds was obtained at 100°C (Figure 3-3(d)). 
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Figure 3-3 (a) Pulse cycling test (3.0V/5ms for SET pulse, -2.5V/5ms for RST pulse, and 1.0V for read pulse) 

(b) Cumulative probability of resistance in LRS and HRS. Inset: the box plot that summarize C-to-C variation. 

(c) Box plots of on/off current from 10 devices (d) retention test of LRS and HRS at T = 100°C. (Reprinted from 

Ref.[68] with permission) 

 

3.6 Optimization of Pulse Programming Method  

Finally, we examined the effects of the pulse programing algorithms on device operation. 

The standard pulse programming method is the cumulative fixed pulse (C-FP) mode, a commonly-

used write-verification method, consisting of 3.0V/5ms SET pulse followed by 1.0V read pulses 

for verification during SET, and -2.5V/5ms RESET (RST) pulses and subsequent read pulses 

during RESET. (Top panel of Figure 3-4(a)) To optimize device operation, the RESET sequence 
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was changed following.[85] When the device was not erased after an RST pulse, a positive voltage 

pulse (pre-SET pulse) (2.0V/5ms) was applied prior to the subsequent RST pulse (Bottom panel 

of Figure 3-4(a)). This programming method is called non-cumulative fixed pulse (NC-FP) 

mode.[85] Compared with C-FP mode, the application of the NC-FP mode lowered the switching 

failure rate, defined as the probability of resistive switching not being successful after a single SET 

or RST pulse, as shown in Figure 3-4(b) and improved the endurance from ~200 to >1000. It is 

believed that the pre-SET pulses help the Cu atoms escape from meta-stable trapped locations that 

may favor forward migration vs. backward migration. The reduction of the gap size due to the pre-

SET pulse also increases the field during the subsequent RESET pulse and facilitate the subsequent 

removal of the Cu atoms. This approach additionally improves SET reliability, likely due to 

reduction of residual Cu ions in the LT-ALD layer and the reduced stress from the reduced number 

of RST attempts. 
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Figure 3-4 (a) Schematic pulse sequence consisting of SET pulse train and RST pulse train with verification 

scheme, for the cumulative fixed pulse mode (C-FP) and the non-cumulative fixed pulse mode (NC-FP). (b) 

Switching probability of SET (upper) and RESET (lower) for attempts using C-FP (purple) and NC-FP (red). 

The conditions of SET, RST, pre-SET pulses are fixed at 3.0V/5ms, -2.5V/5ms, and 2.0V/5ms, respectively. 

(Reprinted from Ref.[68] with permission) 

 

3.7 Conclusion 

In this project, Cu-based CBRAM devices with double Al2O3 ALD layers have been 

developed. The D-ALD devices achieved self-limited current, forming free, high on/off ratio, good 

uniformity, nonlinear I-V at LRS, and robust pulse switching. The roles of CuOx and HT-ALD 

layers were investigated. The promising results from the D-ALD devices will help advance of the 

CBRAM crossbar arrays for storage and novel computing applications. 



47 
 

Chapter 4. Hardware Acceleration of Simulated Annealing of Spin 
Glass by RRAM Crossbar Array 

 

4.1 Introduction 

Combinational optimization problems (COPs) try to find globally optimal objects in a 

discrete space. Difficult COPs such as spin glass systems and the traveling salesmen problem are 

NP-hard, i.e. at least as hard as the hardest problems in NP (Non-deterministic polynomial time) 

problems. To solve these problems, simulated annealing (SA), a metaheuristic algorithm that 

effectively search global optima, has been developed and widely used.[86] However, the 

convergence of SA may be slow because it involves compute-intensive operations within a 

massively connected interaction network and stochastic search rules that require random number 

generation (RNG) with an exponentially decaying probability distribution. Recently, there have 

been significant progress in RRAM-based acceleration of numerical computation such as solving 

partial differential equations and neural network implementations based on vector-matrix 

multiplication,[87], [88] in-memory computing,[89] in-memory and stochastic computing using 

stochastic bit streams.[28], [29] Inspired by the ability of RRAM devices for numerical 

computation, in this work, we utilized vector-matrix multiplication functions of Ta2O5 RRAM 

crossbars and stochastic switching properties of Cu-based CBRAM devices to accelerate an SA 

algorithm that solves a spin glass problem effectively.[90] 
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4.2 Spin Glass Problem and Simulated Annealing 

Finding the ground state of a two-dimensional (2D) spin glass, from randomly mixed states 

as shown in Figure 4-1 (a), is a classical problem in COP. Although the interaction between two 

spins is simple such that the Hamiltonian is just a multiplication between neighboring spins 

weighted by the coupling strength, complex interactions between arbitrary spin pairs exist in the 

spin glass, as illustrated in Figure 4-1 (b) and make the problem difficult to solve in polynomial 

time.[91] Figure 4-2 (a) shows the flowchart of conventional SA that starts from initializing the 

spin configuration, followed by calculating the change of Hamiltonian ∆H due to flip of randomly 

selected yth single spin, 𝜎𝜎𝑦𝑦. The Hamiltonian of the spin glass is given as: 

 

H = −J∑ 𝑁𝑁𝑥𝑥𝑦𝑦𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦<𝑥𝑥,𝑦𝑦> = −1
2

J∑ 𝑁𝑁𝑥𝑥𝑦𝑦𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦𝑥𝑥,𝑦𝑦   (Eq. 4-1) 

 

where J is the amplitude of the coupling strength, 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the xth and yth spin in the spin glass. 

<x,y> in Eq. 4-1 indicates that the spin multiplication needs to be conducted only for neighboring 

spins. The introduction of Nxy, a coupling strength (CS) matrix, makes the expression more concise. 

Elements in Nxy are ‘1’ if 𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑦𝑦 are neighbors of each other, and ‘0’ for non-neighboring spins. 

If a spin flip decreases energy, e.g. inversion of 𝜎𝜎𝑦𝑦 leading to negative ∆𝐻𝐻𝑦𝑦 , SA accepts the change 

because it stabilizes the spin system. If ∆𝐻𝐻𝑦𝑦  is positive, on the other hand, the spin flip will happen 

with a probability proportional to the Boltzmann factor (p = exp �−∆𝐻𝐻𝑦𝑦 𝑘𝑘𝑘𝑘� �) where T is 

absolute temperature. After a fixed number of attempted spin flips, the temperature T is decreased 

following a cooling schedule, and the process is repeated at the new temperature. The stochastic 

hill climbing provided by the Boltzmann factor enables the spin glass to escape from local optima 
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as depicted in Figure 4-2 (b), and the escape probability decrease to zero as time increases and 

temperature cools down. 

 

 

Figure 4-1 A 2D spin glass and the spin interactions represented by (a) connections to neighboring spins and (b) 

circular graph showing the complex couplings. (Reprinted from Ref.[90] with permission) 

 

 

Figure 4-2 Flow chart of the SA algorithm. (b) Schematic showing finite spin flip probability even for positive 

∆H can help the system escape from local optima. (Reprinted from Ref.[90] with permission) 
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4.3 Simulated Annealing Accelerated By RRAM Array and Stochastic CBRAM 

During SA, calculations of the inner products in ∆𝐻𝐻𝑦𝑦  and the probability generated by the 

RNG function in the Boltzmann factor make the process compute-intensive. To reduce the 

computational cost and speed up SA, inner products between the spin vector σ��⃗  and neighboring 

spins, as determined by the CS matrix, can be directly obtained in an RRAM array storing the CS 

matrix N𝑥𝑥𝑦𝑦, as shown in Figure 4-3 (a), (b). For example, when the yth spin attempts to be flipped, 

all xth row (∀𝜎𝜎𝑥𝑥 ∈ �⃗�𝜎) in the RRAM array in Fig 4-3 (c) are applied with a Vx(=𝜎𝜎𝑥𝑥Vread) pulse, and 

the output current 𝐼𝐼𝑦𝑦 at the yth column is proportional to ∑ 𝑁𝑁𝑥𝑥𝑦𝑦𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦𝑥𝑥,𝑦𝑦 , producing the desired 

value of ∆𝐻𝐻𝑦𝑦 . As a result, the inner-products can be readily obtained from read operations through 

the RRAM array. 

 

 

Figure 4-3 (a) ∆𝐻𝐻𝑦𝑦  due to the change of 𝜎𝜎𝑦𝑦 surrounded by its neighbor spins. (b) CS matrix where the 5th column 

represents interaction between 5th spin and all the other spins (c) Schematic of inner product between the 5th 

CS column vector and spin vector �⃗�𝜎 conducted by RRAM array. (Reprinted from Ref.[90] with permission) 
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Since only nearest neighbor interactions are non-zero, the CS matrix can be very large but 

sparse. The large CS matrix can be effectively mapped into smaller RRAM arrays where only the 

non-zero portions are stored, as illustrated in Figure 4-4. Here a 9 × 9 2D spin glass was chosen 

as an example. The 81 × 81  CS matrix of the spin glass represents all-to-all connection and can 

be divided into three groups (top-edge row, mid rows, and bottom-edge row), representing the 

coupling strength of a spin in the top (middle, or bottom) row with its neighbors. The groups are 

9 column wide (corresponding to the 9 spins in each row) and can be further divided into sub-

groups of 3 spins (3 columns), for spins at the left-edge, middle columns, and right edge, producing 

the patterns shown in Figure 4-5. All the possible (non-zero) sub-matrix patterns can then be stored 

in a three column RRAM array (11 × 3), as shown in Figure 4-5 (d). Experimentally, the 11 × 3 

RRAM array was fabricated with a Pd/Ta/Ta2O5/Pd cell structure. The RRAM crossbar array is 

then wire-bonded and connected to a custom test board as shown in Figure 4-6.  

 

 

Figure 4-4 81×81CS matrix of a 9×9 2D spin array. The large but sparse CS matrix can be sliced to fit into a 

smaller RRAM array. (Reprinted from Ref.[90] with permission) 
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Figure 4-5 9 sub-patterns with three columns each from the 81×81 CS matrix, depending on the position of the 

spin in the 2D spin glass. (a) Top-Edge Row case, (b) Mid Row case, and (c) Bottom-Edge Row case. (d) All 

the non-zero and unique patterns in (a-c) can be stored in a single 11×3 RRAM array. (Reprinted from Ref.[90] 

with permission) 

 

 

Figure 4-6 (a) Schematic of the Ta2O5-based RRAM cell and array structure. SEM image of the RRAM crossbar 

array. (b) Test board comprised of FPGA, peripheral circuit, and the RRAM array chip for experimental 

implementation of simulated annealing. (Reprinted from Ref.[90] with permission) 
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Reliable switching characteristics and tight forming, set and reset voltage distribution can 

be obtained from all devices in the RRAM array (Figure 4-7 (a), (b)). The cell-to-cell current 

variations shown in Figure 4-7 (c) can be significantly improved to be lower than 1% using a write-

verify method, as shown in Figure 4-7 (d), enabling robust dot product operations to obtain 

∆𝐻𝐻𝑦𝑦 .[24] The hill climbing probability was also obtained through hardware by using stochastic 

switching effects in a Cu-based CBRAM, as shown in Figure 4-8. The CBRAM device shows 

stochastic switching behavior switching at probability low programming voltage, with a switching 

probability P(∆𝑡𝑡) = 1− exp(−∆𝑡𝑡/𝜏𝜏) for programming pulse width ∆𝑡𝑡, where 𝜏𝜏 is a time constant 

dependent on the voltage amplitude. A Cu/ALD Al2O3/Pd CBRAM structure is used in this 

experimental implementation, with 𝜏𝜏 = 24.9ms for transition from HRS to LRS. After applying a 

single SET pulse, the probability of the device staying at HRS then follows the exponential 

decaying function exp(−∆𝑡𝑡/𝜏𝜏) , which follows the Boltzmann factor required for SA, after 

converting ∆𝐻𝐻𝑦𝑦  to ∆𝑡𝑡 = τ �Δ𝐻𝐻𝑦𝑦/𝑘𝑘𝑘𝑘(𝑡𝑡)�.  
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Figure 4-7 (a) I-V curves showing the forming (red) and subsequent switching (blue) processes. (b) Distribution 

of VForming, VSET, VReset of the 33 cells in the RRAM array. (c-d) Variation of device current without (c) and with 

(d) write-verify pulse method. (Reprinted from Ref.[90] with permission) 
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Figure 4-8 (a) Structure and SEM image of Cu-based CBRAM devices. (b) Experimentally measured probability 

of HRS→LRS switching (blue). The Boltzmann factor (red) can be obtained by the probability of the device 

staying at HRS after applying a single SET pulse with pulse width ∆𝒕𝒕. (Reprinted from Ref.[90] with permission) 

 

4.4 Experimental Demonstration Of RRAM-Based Simulated Annealing 

The flow chart of implementing SA to simulate a spin glass column in the spin glass is 

randomly is shown in Figure 4-9. Starting from the initial spin configuration, a spin (ith row and jth 

selected for flip-trial. The spin vector is converted as input pulse vector based on its location and 

applied to the 11 × 3  Ta2O5 RRAM array. After the current measurement from the selected 

column Iy, the sign of Iy is compared with 𝜎𝜎𝑦𝑦. The flip-event of 𝜎𝜎𝑦𝑦 is accepted if the signs match 

(corresponding to negative Δ𝐻𝐻𝑦𝑦 . If the signs of Iy and 𝜎𝜎𝑦𝑦  do not match, the flip-event is only 

accepted if a single SET pulse on a the CBRAM does not change its original HRS state, following 

discussions above. The data flow is illustrated in Figure 4-10. 
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Figure 4-9 Flowchart of implementing the SA algorithm using RRAM array for the 2D spin glass problem. 

(Reprinted from Ref.[90] with permission) 

 

Figure 4-10 (a) Randomly initialized 15×15 spin array (with 225 spins). (b) The sparse 225×225 CS matrix. (c) 

Coupling strength patterns stored and measured from the RRAM array used in the experimental setup. (Reprinted 

from Ref.[90] with permission) 
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A 15 × 15  2D ferromagnetic spin glass was tested to prove the concept of RRAM-based 

SA process. Figure 4-11 shows one test case with a fixed spin edge condition, where all the edge 

spins are fixed at the ‘up’(+1) state and the rest of the spins are initialized to ‘down’(-1) state at t 

= 0. Because the edge spins are always fixed, the only possible ground state of this problem is ‘all-

up’ configuration. The SA parameters such as J, T(t), and NT for the experiment are 1.0, 5/√𝑡𝑡 + 13 , 

and 100, respectively. As time flows, the initially down-spins get affected by the edge spin states 

due to ferromagnetic interaction that favors spins with same orientations. Note some of the down-

spins surrounded by other down spins are also flipped to up-spin (e.g. at time=5), although this 

event increases the total energy E. This is an example of hill climbing phenomenon which can 

speed up the optimization process by escaping from the local optima, as discussed in SA. The 

ground state is achieved at time ~ 200. Other cases with multiple ground states, i.e. initially random 

configurations without any fixed edges, were also tested using the RRAM-based SA, as shown in 

Figure 4-12. Due to the existence of two possible ground states with ‘all-up’ and ‘all-down’ spin 

configurations, the same initial condition can evolve to opposite results, as verified by the 

experiments. Note that the two solutions also show similar proportions of majority spin during the 

evolutions (e.g. at time=150), since the SA strategy leads to similar dynamic progress towards the 

respective ground state. Comparison between the experimental RRAM-based SA results and 

software results verifies the E and magnetization (M) of both cases show similar dynamics that 

converge to global optima near time=200, further proving the successful experimental 

implementation of RRAM-based SA. 
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Figure 4-11 Evolution of the spin configuration at different time steps for the fixed spin-edge case. Data obtained 

experimentally from the RRAM array-based hardware system. (Reprinted from Ref.[90] with permission) 

 

 

Figure 4-12 Time-dependent evolution of the spin glass system solved by the RRAM hardware, for random 

initial states with no fixed spins. Two ground states with global energy minima, ‘all-up’ state and ‘all-down’ 

states, can be generated from the same initial state in different runs. (Reprinted from Ref.[90] with permission) 
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Figure 4-13 (a) Average energy and (b) magnetization as a function of cooling schedule. Conventional software 

version of SA (red) and experimental SA results obtained from the RRAM array (blue) are compared. (Reprinted 

from Ref.[90] with permission) 

 

4.4 Parallel Spin-flip Strategy Using Memristive Simulated Annealing 

To further accelerate the RRAM-based SA, it is possible to flip multiple non-neighboring 

spins together simultaneously to take advantage of the parallel vector-matrix multiplication (vs. 

vector-vector inner product) offered by RRAM arrays, as illustrated in Figure 4-14. The flipped 

spins must be non-neighboring to not affect the energy calculations compared with consecutive 

spin flips. The parallel spin-flip strategy was also implemented in the RRAM-based hardware. 

Comparisons of the experimental results obtained from the conventional single spin-flip and the 

parallel double spin-flip schemes are shown in Figure 4- 15, for the fixed edge test case. The E 

and M from double spin-flip scheme (red) show faster convergence than the single spin-flip 

scheme (blue). The single spin-flip scheme even fell into a local minimum near time=100 for a 

while before finally escaping, while the double spin-flip method already reached its ground state. 
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Since the double spin flip should be equivalent to two consecutive spin flips (at the same 

temperature), the results are compared with another experiment where 2 × iterations (i.e. 2NT=200) 

are attempted at each time step using the single spin flip scheme (black curves).  This approach 

indeed produced results like those obtained from the double spin-flip experiments, and suggested 

possibility of further acceleration of SA with an N spin-flip scheme that can be calculated 

simultaneously in RRAM-based array. 

 

 

Figure 4-14 Schematic illustration of multi-spin flip method that exploits parallel vector-matrix multiplications 

in RRAM crossbar array. (Reprinted from Ref.[90] with permission) 
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Figure 4-15 Comparison of (a) energy, (b) magnetization, and (c) spin configuration snap shots, for results 

obtained using the single-spin method with 100 iterations per time step (blue), single-spin method with 200 

iterations per time step (black), and double-spin method with 100 iterations per time step (red). All results are 

obtained from the RRAM hardware setup. (Reprinted from Ref.[90] with permission) 

 

4.5 Digital Annealing with RRAM crossbar array 

Although the parallel spin-flip strategy accelerates the simulated annealing by the number 

of parallel spins, this method can cause error if two flipping parallel spins are the nearest neighbors 

to each other. As a result, the number of parallel spins cannot be larger than 50% of the number of 

columns in the RRAM array. Therefore, the parallel spin-flip strategy is not able to fully exploit 

the parallelism of the RRAM array.  

Inspired by quantum annealing that examine all the possible quantum states at the same 

time and shrink to the ground states,[92] digital annealing with parallel pipeline using FPGA was 

suggested by S. Matsubara et. al..[93], [94] The key idea of digital annealing is to test all-to-all 

interaction to try all the possible spin flip at the same time and select the most optimal spin to 

accelerate the spin Ising model. To implement the idea of ‘parallel-trial’ in digital annealing 

platform, ability to calculate vector-matrix multiplication needs to be maximized. Because RRAM 
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crossbar structure is well known as a vector-matrix multiplier,[95] not just vector-vector or 

multiple vector-vector operations, the parallel trial strategy is going to be a good match with 

RRAM crossbar array. Figure 4-16 illustrates the difference between the parallel spin-flip strategy 

and the parallel trial method. In parallel spin-flip strategy in left panel, only two non-neighboring 

columns are activated and used for calculation of changed Hamiltonian. After the estimation of 

Hamiltonian, both spins are flipped. On the other hand, the parallel trial method exploits all the 

columns in the RRAM crossbar array to find the best choice. The advantage of the parallel trial 

method comes from that the array use its maximal parallelism to optimize the spin configuration.  

 

 

Figure 4-16 Comparison between multiple spin flip strategy and parallel trial strategy  (Reprinted from Ref.[90] 

with permission) 



63 
 

 

Figure 4-17 Acceleration of convergence with parallel spin trial method  (Reprinted from Ref.[90] with 

permission) 

 

As shown in the simulations result of spin glass optimization (Figure 4-17), the acceleration 

of optimization is approximately proportional to the number of parallel trial (or, number of 

columns of RRAM array). This tells that the parallel trial method, or digital annealing with RRAM 

array, has good scalability for large problem with large RRAM array.  
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4.6 Conclusion 

The spin glass system, one of the widely analyzed NP-complete COPs, was solved by using 

simulated annealing in a hardware system consisting of Ta2O5 RRAM crossbar arrays for dot-

product operations and Cu-based CBRAM devices for the emulation of stochastic events. The 

probability of spin flipping is first determined by vector-vector multiplications between spin 

vectors and the interaction vector. The event then emulated in the stochastic CBRAM by applying 

a programming pulse with pulse width proportional to the change of Hamiltonian. The process is 

repeated until the ground state is achieved. A parallel spin flip strategy and a parallel-trial method 

have also been developed to better utilize parallel operations in the RRAM crossbar array. 
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Chapter 5. Stochastic Learning of Deep Neural Network Using 
Stochastic RRAM Crossbar Array 

 

5.1 Introduction 

Recently, deep neural networks (DNNs) are widely used for various applications such as 

image processing, speech recognition, and natural language processing.[1], [96] Since the structure 

of a DNN is ‘deep’ which means that there are numerous hidden layers to represent the hierarchy 

of features for the task, training DNNs that offer high performance such as AlexNet,[97]  

GoogLeNet,[98] and ResNet-50[99] is expensive in terms of computational cost. For example, 

AlexNet and ResNet-50 have 61M and 25.5M parameters in the network, and require 724M and 

3.9G multiplication-and-accumulation (MAC) operations respectively, as shown in Figure 5-1. For 

even a single training epoch of the 1.2M training data in the ImageNet dataset, the number of MAC 

operations is as large as 1015, which will take more than a few weeks to compute with conventional 

CPUs. As researchers realized that larger, deeper, and wider models perform better, graphic 

processing units (GPUs) have been used for the acceleration of deep learning tasks, and even 

further hardware acceleration is required for more complex tasks such as dynamic video analysis 

for self-driving cars. The efforts to improve deep learning performance include not only enhanced 

computational throughput, but also to compress the scale of the network to reduce computation 

while not significantly sacrificing the network’s performance.[100]  

 



66 
 

 

Figure 5-1 Properties of deep neural networks for the ImageNet dataset, reproduced using data from Ref.[97]–

[99] As the number of the convolution layers increases the top-error rates reduce while the total number of 

parameters and the number of MAC operations for a single input increase. 

 

Weight quantization is one of the promising strategies to compress the network by reducing 

the bitwidth of the parameters.[101]–[105] According to Horowitz et. al.[106], reduced bitwidth 

and integer arithmetic operations are more efficient than high precision and floating-point numbers 

in conventional computing architectures, as shown in Figure 5-2. Especially, compared to 32bit 

floating point MAC operations, 8bit integer type MAC operations require 20 times cheaper energy 

cost and 37 times smaller area. To push the limit of the efficiency of low precision operation, M. 

Courbariaux et. al. proposed BinaryConnect to train a DNN with binarized weights.[105]  

In general, however, a neural network needs to maintain high precision information 

implement commonly used learning algorithms such as backpropagation, where small learning 

rates lead to infinitesimal weight updates that need to be accumulated to the original weights. If 

the bitwidth of the weights is too small, the updated weights will be rounded to their original values 

and learning will fail. This is the reason why attempts to directly train binary neural networks could 

not achieve competitive performances.[107], [108]  
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Figure 5-2 Rough energy cost and chip area for various operation and bit-width precisions in 45nm CMOS 

technology, Reproduced using data from Ref.[106]. As precision increases from 8bits to 32bits and the integers 

change to floating point numbers, the energy and area consumption increases accordingly. The last 2 rows are 

cost for data fetching from memory. 

 

To maintain the high precision weights and simultaneously exploit the benefits of 

quantized weights, BinaryConnect divides the commonly used back propagation algorithm into 

two steps, propagation step and update step.[105] In propagation step, the input 𝑥𝑥 propagates 

forward to obtain an estimate of the output activation o(𝑥𝑥), and the error δ(𝑥𝑥) in the output layer 

propagates backward to calculate all the gradients of the error with respect to weights dδ(𝑥𝑥)
d𝑤𝑤

.  This 

step can be implemented using the quantized weights to both reduce computation cost and help 

inject noise to the system. Then, in the update step, the calculated gradients are multiplied by the 
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(small) learning rate λ and added to the current weights 𝑤𝑤. This step still needs to be implemented 

using the high precision weights. 

In BinaryConnect described in Figure 5-3, these conditions are met by using two networks: one 

storing the original high precision weights, and the other storing the binarized weights obtained 

from the high-precision weights after weight updates. Specifically, the high precision weights 𝑤𝑤 ∈

𝑅𝑅 of a neural network (right panel of Figure 5-3) are first used to generate binarized weight 𝑤𝑤𝑏𝑏 ∈

{−1, +1}  through binarization process. The generated binary weights are then used for the 

propagations step (left panel of Figure 5-3) to estimate the output activation o𝑏𝑏(𝑥𝑥)  and the 

gradients dδ𝑏𝑏(𝑥𝑥)
d𝑤𝑤𝑏𝑏

. The desired weight update −λ dδ𝑏𝑏(𝑥𝑥)
d𝑤𝑤𝑏𝑏

 calculated from the binary network are then 

accumulated to the high precision weight w to yield the updated weight w’ (right panel of Figure 

5-3). This cycle is then repeated until the training of the neural network is completed. Despite of 

the noisy weight update due to binary weights, BinaryConnect demonstrated competitive 

classification results close to state-of-the-art deep learning techniques. The high performance of 

BinaryConnect is addressed by averaging out of the noisy steps from binarization process like the 

stochastic gradient descent method, because the average of binarized weights throughout the 

training process is likely close to the high precision weights. Finally, by dividing the 

backpropagation algorithm into the propagation step with binarized network and the update step 

with high precision network as the schematic in Figure 5-3, BinaryConnect can make the training 

process more cost effective due to the cheap 1-bit MAC operations. 
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Figure 5-3 Schematic of BinaryConnect (Reproduced using data from Ref.[105]). At the first stage of network 

training, a binarized network (left panel) is created from the high precision network (right panel). The binary 

network is used in the propagation step to obtain gradients with respect to weights, which are then fetched to the 

high precision network for weight update. 

 

 However, binarization process is a main bottleneck for BinaryConnect with high 

performance. Between two kinds of binarization process, deterministic binarization and stochastic 

binarization, stochastic binarization outperforms deterministic one. Deterministic binarization 

simply decides the binary weights as 𝑤𝑤𝑏𝑏 = +1 if  𝑤𝑤 ≥ 0 and 𝑤𝑤𝑏𝑏 = +1 if  𝑤𝑤 > 0. Otherwise, 

stochastic binarization first clips the weights to −1 ≤ 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 ≤ +1. The clipped weights are then 

linearly converted to binarization using probability listed in (Eq. 5-1) and (Eq. 5-2) so that 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 =

+1 has 100% probability to be 𝑤𝑤𝑏𝑏 = +1 (0% to be 𝑤𝑤𝑏𝑏 = −1) and 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 = −1 has 0% probability 

to be 𝑤𝑤𝑏𝑏 = +1 (100% to be 𝑤𝑤𝑏𝑏 = −1).  

 

𝑝𝑝+1(𝑤𝑤) = 𝑝𝑝+1�𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐� =
�1 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐�

2
�    (Eq. 5-1) 

𝑝𝑝−1(𝑤𝑤) = 𝑝𝑝−1�𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐� =
�1 − 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐�

2
�    (Eq. 5-2) 
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 The advantage of stochastic binarization is that the average of binarized network generated 

by stochastic binarization more precisely reproduce the high precision network than the average 

of binarized network generated by deterministic binarization.[105], [109], [110] However, even 

though stochastic binarization provides better accuracy compared to deterministic binarization 

(Error rate in CIFAR-10: 8.27% with stochastic binarization and 9.90% with deterministic 

binarization)[105], only deterministic binarization method has been used for hardware 

implementation of quantized neural network with inevitable sacrifice of classification 

performance.[111]–[113] The reason is that the stochastic binarization requires the expensive 

Monte Carlo method to generate binary numbers following the Bernoulli distribution with the 

desired binarization probability. 

 

 

Figure 5-4 Data flow of stochastic binarization process. Weights of the high precision network (stored in DRAM 

#1) are fetched to the CPU, the binarization probability is calculated, and compared to random numbers to 

determine the binary values. The generated binary numbers are then transferred to a different part of DRAM 

(DRAM#2) to store the weights of the binary network. 

 



71 
 

Data flow of stochastic binarization process in the von-Neumann architecture is described 

in Figure 5-4. For stochastic binarization process, the weights of the high precision network stored 

in DRAM need to be fetched and converted to a probability according to Eq. 5-1 and Eq. 5-2. Then, 

the probability is compared to random numbers ranging from 0.0 to 1.0 to decide the binary weight 

value. The obtained binary weights are then transferred to another DRAM block to store the 

weights for the binary network. Because data read from DRAM is 100 times more expensive than 

MAC operations, the von-Neumann bottleneck makes the stochastic binarization very inefficient.  

 In this study, we discuss the implementation of stochastic learning (BinaryConnect with 

stochastic binarization) using the native stochasticity of RRAM devices for deep neural networks. 

Stochastic binarization using RRAM array eliminates data transfer between the memory and the 

processing unit. The RRAM crossbar array also makes the stochastic binarization process parallel 

and energy-efficient. Effects of device non-idealities such as probability precision and device-to-

device variability will also be discussed by analyzing the convolutional stochastic learning for the 

MNIST dataset. 

 

5.2 Stochastic resistive switching with adjustable probability 

The basic mechanism of RRAM is the electrochemical reactions of oxygen vacancies or 

active metal atoms and ionic migration by overcoming the associated energy barriers. These 

reactions are inherently stochastic, and the stochastic nature can be clearly observed in resistive 

switching processes.[27], [28], [114] For example, Gaba. et. al. has reported this phenomenon in 

Figure 5-5 (a-b) and suggested applications for stochastic computing.[28] Stochastic computing 

aims to replace arithmetic operations with operations on bitstreams from different sources.[115] 

Similar observations have now been reported by other groups, and other applications have been 
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proposed, including stochastic computing using fast stochastic bitstreams,[29] physical unclonable 

functions (PUFs) for security device,[116] true random number generators (RNGs),[117] and 

neuromorphic applications.[30], [118]  

As discussed in Chapter. 3, we can reduce the SET voltage to improve the reliability of the 

Cu-based ALD CBRAM device using non-cumulative pulse scheme.[68] At low SET or RST 

voltages, the SET or RST resistive switching become stochastic. The probability of the device 

being SET or RESET during each SET or RST pulse can be described by an exponentially 

decaying distribution, also known as the Poisson distribution, as shown in Figure 5-5 (c-d). The 

switching probability can be modeled as P(∆𝑡𝑡) = 1 − exp(−∆𝑡𝑡/𝜏𝜏) for programming pulse width 

∆𝑡𝑡, where the time constant 𝜏𝜏𝑆𝑆𝐸𝐸𝑇𝑇  and the RST pulse time constant 𝜏𝜏𝑆𝑆𝐸𝐸𝑇𝑇  depend on the voltage 

amplitude.  One can then decide the pulse width to turn-on (HRS to LRS) or turn-off (LRS to HRS) 

the device with a specific switching probability according Eq. 5-3 

 

∆𝑡𝑡 = −𝜏𝜏log (1− 𝑃𝑃)   (Eq. 5-3) 

  

Therefore, the probability for stochastic binarization can be implemented by stochastic 

switching of RRAM devices with low SET or RST pulses (i.e., stochastic SET or RST pulses), 

where different binarization probability can be achieved by adjusting the pulse width ∆𝑡𝑡. For 

example, to achieve 50% SET switching (transition from LRS to HRS) of Cu-based ALD CBRAM 

studied in chapter 3, one only needs to apply a single SET pulse with 3V amplitude and 17.9ms 

pulse width. For 50% RST resistive switching (transition from HRS to LRS) of the device, a single 

2.5V/15.7ms RST pulse can be applied to the device. 
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In addition, since the energy barrier for the electrochemical reactions or ion migration is 

modulated by the applied voltage, the characteristic time τ can be readily adjusted. For example, 

the reaction rate equation (Eq. 5-4)[26], [119] implies that the characteristic time (Eq. 5-5) is 

exponentially dependent on the applied voltage through a conversion factor α. Therefore, the pulse 

width for 50% switching probability calculated above can be shortened or increased for faster or 

slower stochastic binarization processes.  

 

Γ = 1 𝜏𝜏� = 𝜐𝜐𝑒𝑒
−(𝐸𝐸𝑎𝑎−αeV)

𝑘𝑘𝐵𝐵𝑇𝑇�   (Eq. 5-4) 

 

𝜏𝜏 = 𝜏𝜏0𝑒𝑒−𝛽𝛽𝑉𝑉  (Eq. 5-5) 
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Figure 5-5  (a-b)Cumulative probability of the SET switching with (a) continuous pulse and (b) discrete pulses, 

obtained from Ref. [28]. (c-d) Stochastic switching observed in D-ALD CBRAM devices. Top panel (c) is a 

histogram of switching events for SET pulses (3.0V/10ms), and bottom panel (d) is a histogram of switching 

events for RST pulses (-2.5V/10ms). The histograms can be modeled with Poisson distributions [68] 
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5.3 Stochastic Binarization Mapping in RRAM Crossbar Array 

5.3.1 Deterministic Data Migration Strategy 

In addition to control the switching probability of a single stochastic device, a systematic 

method is required to map multi-bit values to stochastic binary values following the desired 

Bernoulli distribution. We note a RRAM crossbar array has the ability to implement in-situ data 

migration needed for in-memory computing.[24] As shown in Figure 5-6, a RRAM array with two 

columns with floated rows can migrate all the data in the data column from the left side (filled 

with data 1 or 0 represented by LRS or HRS, respectively) to the target column at the right side 

(initialized with HRS states) with a single programming pulse, by applying 0V on the right column 

and the SET pulse on the left column. Before data migration, cells in the target column are 

initialized to HRS. If a left-side device is in HRS, the SET voltage is divided between the data cell 

and the target cell and cannot change the state of the target cell, allowing it to remain at HRS. 

Otherwise, if the data cell is in LRS, essentially all the SET voltage will be dropped on the target 

cell to program it to LRS. Note that a single pulse on the left column will be applied to all the rows 

and enable parallel data migration between the two columns, without having to accessing external 

memory to temporarily store the data. This method can be extended to an RRAM array with 

multiple columns by using 1T1R structure to avoid sneak paths that can lead to incorrect data 

transfer. 

5.3.2 Single-Bit Stochastic Binarization Processes 

The next question is then what will happen if we modify the data migration strategy for a 

RRAM array with stochastic SET (or RST) pulse with 50% SET (or RST) probability for the target 

devices. The programming voltage of the stochastic SET or RST pulse is below the deterministic 

switching threshold of the target devices, and the pulse width is adjusted to make the SET or RST 
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switching probability 50%. To minimize the disturbance of the data column due to the stochastic 

pulse, the data column needs be comprised of RRAM devices with higher SET and RST voltages 

than the devices in the target column. Moreover, unlike the deterministic data migration strategy 

discussed in the last chapter, here the devices in the target column will also be reset with a pre-

determined probability (e.g. 50%). To reliably deliver both SET and RST stochastic pulse to the 

target column devices, the resistance of the data column devices in LRS need to be at least two-

orders lower than the resistance of the target column devices in LRS to minimize the voltage 

divider effect during RST when the target column device is already in LRS. A desired situation is 

Rdata,LRS ≪  Rtarget,LRS  ≪  Rdata,HRS  ≈  Rtarget,HRS . In this case, applying a stochastic SET 

pulse with 50% probability will cause the the LRS states (data ‘1’) stored in the data column to be 

copied to the target column with 50% probability, while no change will happen to the target column 

device if the data column device is at HRS state (data ‘0’) because of the voltage divider effect, as 

shown in Figure 5-7. Similarly, when the target column devices are already at LRS, applying a 

stochastic RST pulse with 50% probability will have a 50% chance to turn off the target column 

devices to HRS if the data column device is at LRS state (data ‘1’), while no change will happen 

to the target column device if the data column device is at HRS state (data ‘0’), as sown in Figure 

5-8. These two cases are termed as single-bit stochastic binarization processes, and they will be 

used as a building block for the multi-bit stochastic binarization process. 
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Figure 5-6 Schematic of in-situ data migration as suggested in Ref.[24]. Resistive states of an RRAM array is 

tracked during in-situ data migration process. 1 and 0 are represented by the LRS and the HRS of the RRAM 

devices. The left column of the array contains data devices, and the right column contains target devices. With 

this data migration setup, when the data device is at LRS essentially all VSET is delivered to the top electrode of 

the target device, while when the data device is at HRS only half of VSET is delivered to the top electrode of the 

target device, allowing 1 and 0 to transferred to the target device.  
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Figure 5-7 Schematic of single-bit stochastic binarization for stochastic SET pulse with 50% SET probability. 

A stochastic SET pulse with 50% switching probability is applied to the target column. The stochastic pulse is 

delivered to target devices only if the associated devices is in LRS. As a result, the data ‘1’ stored in the data 

column is copied to the target column by 50% probability. 

 

 

Figure 5-8 Schematic of single-bit stochastic binarization for stochastic RST pulse with 50% RST probability. 

The initialization condition of the target column is all LRS in this case. The 50% RST stochastic pulse is applied 

to target column devices and turn them off by 50% only if the associated data column devices are in LRS. 
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5.3.3 Multi-Bit Stochastic Binarization Process 

A strategy was then developed to perform stochastic binarization of multi-bit weights by 

combining a few single-bit stochastic binarization processes, as illustrated in Figure 5-9. The 

RRAM array consists of three different parts that are connected to shared rows (top electrodes) 

with 1T1R structure to avoid sneak path problem. The first and second parts are ‘weight array’ 

(left, red box) and ‘inversion array’ (center, blue box) that store the data of the high precision 

weights and their inverted values, respectively. The weight array is working as a storage of high 

precision network as well, and it will be used for inference task when the training of the network 

is completed as proposed in FPCA framework.[24] The third part is ‘binary column’ (right, orange 

box) that is made of RRAM devices with lower SET and RST voltage than the devices in the 

weight array and the inversion array. With the device conditions for SET/RST voltage range, the 

stochastic SET/RST pulses with 50% probability for the binary column devices hardly disturb the 

weight array and the inversion array. Moreover, unlike the data migration tasks shown in Figure 

5-6, during the stochastic binarization process the devices in the binary column can be at LRS after 

some steps, then needs to be RST with certain probability (instead of 100% as in the simple data 

migration case). To allow RST with the desired probability, the LRS resistance in the weight array 

and the inversion array need to be at least two orders of magnitude lower than the LRS resistance 

of the binary column. This effect can be obtained by limiting the programming current, e.g. by 

using high resistance bottom electrodes for the binary column. An ideal resistance configuration 

is Rweight,LRS ≈ Rinversion,LRS ≪  Rbinary,LRS  ≪  Rweight,HRS  ≈  Rinversion,HRS ≈ Rbinary,HRS , 

where “<<” represents 2 orders of magnitude difference. At these conditions, the voltage amplitude 

of the stochastic SET/RST pulses can be delivered to the binary column correctly within 1% from 

the desired value. With this RRAM array structure, stochastic binarization of high precision 
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weights can be implemented with the following steps, as shown in Figure 5-9 with a few example 

weights. In addition, the history of probability distribution of the binary column through the 

stochastic binarization process is summarized in Figure 5-10. 

 

(STEP.1) All the weight values are clipped by a clip function in Eq. 5-6 first. 

𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 = �
𝑤𝑤 𝑖𝑖𝑓𝑓 |𝑤𝑤| ≤ 1
+1 𝑖𝑖𝑓𝑓 𝑤𝑤 > 1
−1 𝑖𝑖𝑓𝑓 𝑤𝑤 < −1

  (Eq. 5-6) 

 A clipped multi-bit weight value 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐  (−1 ≤ 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 ≤ 1) is stored in the weight array as 

following. For positive weights, "1" is used to represent the positive sign at the most-

significant-bit (MSB) of the weight array, followed by the other bits representing the absolute 

weight value. For negative weights, "0" is used to represent the negative sign at the MSB, 

followed by the other bits representing the 2’s complement of the negative weight value. And, 

𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 = −1 is represented by all “0” bits. For instance, w1 = 0.75 and w2 = -0.75 with 3-bit 

precision are converted to 111 and 001, respectively. The converted binary values are stored 

in the left-most part of the system, which is called ‘weight array’.  

(STEP.2) The stored weight in the weight array is copied to the ‘inversion array’ which is adjacent 

of the weight array, after inversion of every binary value. For example, w1 = 0.75 and                 

w2 = -0.75 are converted to 000 and 110, respectively, and written into the inversion array.  

(STEP.3) Apply SET pulse with 50% programming probability (termed 50% SET pulse) between 

the least-significant-bit (LSB) column of the weight array and the ‘binary column’, which is 

located at the right side of the system.  
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(STEP. 4) Apply RST pulse with 50% programming probability (termed 50% RST pulse) between 

the LSB column of the inversion array and the ‘binary column’, which is located at the right 

side of the system. 

(STEP.5) Repeat steps 3-4 to transfer probability of the 2nd, 3rd, ... Nth LSB of the weight to the 

same binary column until binarization is completed.  

 

The stochastic binarization process using a RRAM array can be proved as below. In this 

proof, the RRAM array is assumed to have 2N+1 columns where N is the number of columns of 

both the weight array and the inversion array. The right-most single column is assigned as the 

binary column. In fact, the initialization method in STEP.1 first linearly stores the clipped weights 

𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝 (-1≤𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝≤1) into the weight array as a form of unsigned binarization probability values p (0≤ 

p ≤1).  If we consider that the values of the weight array are unsigned significand of unit interval 

[0,1) or unsigned fraction value with N-bit precision, a positive sign of 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝 converted as “1” and 

stored at MSB of the weight array ensures that the unsigned fraction value is larger than 0.5. 

Moreover, the absolute value of the positive weight written in the rest of the columns is an addition 

to 0.5, and the range of positive clipped weights (0≤𝑤𝑤pos,c𝑐𝑐𝑖𝑖𝑝𝑝≤1) are compressed to unsigned 

fraction value ranging from 0.5 to 1.0 in linear fashion. Otherwise, a negative sign of 𝑤𝑤𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝 stored 

as “0” at MSB of the weight array will confine the range of the fraction value from 0 to 0.5, and 

the 2’s complement inverts the order of the absolute value of the negative weights upside down. 

Thus, the negative clipped weights (-1≤𝑤𝑤neg,c𝑐𝑐𝑖𝑖𝑝𝑝<0) changed to unsigned fraction value within 

[0.0,0.5) Finally, the fraction values in the weight array can be interpreted as expected N-bit 

probability value because they follow the weight-probability conversion equations, Eq.5-1 and 
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Eq.5-2. In the example above, 111 and 001 converted from w1 = 0.75 and w2 = -0.75 by STEP.1 

can be interpreted as expected probability P of 0.875 and 0.125.  

After STEP.1 and STEP.2 for initialization of the weight array and the inversion array, we 

can use the N-bit probability number and its inversion for stochastic binarization. Assume that one 

already knows the stochastic binarization process of k-bit probability numbers (k<N). Then, the 

stochastic binarization process of a (k+1) bit probability number pk+1 can be conducted by first 

stochastic binarization of the k-bit probability number pk (p𝑘𝑘 = p𝑘𝑘+1 𝜇𝜇𝑚𝑚𝑚𝑚 0.5) representing the 

least-significant k-bits, followed by additional operations to adjust the LRS/HRS probability 

distribution in the binary column based on the most-significant bit (MSB) digit, as discussed below. 

Through the stochastic binarization of the k-bit binary, the binary column devices will be 

programmed to LRS with a pk probability Bernoulli distribution and HRS with a (1 - pk) probability 

Bernoulli distribution. Afterwards, one can calculate the final probability distribution for the two 

different cases (MSB = ‘1’ or ‘0’). The goal is to change the LRS probability distribution from pk 

to (0.5+ pk/2) for MSB = 1, and to (pk/2) for MSB = 0. In the cases shown in Figure 5-11 (a) and 

(b), if the MSB of the (k+1)-bit is ‘1’, pk+1 should be 0.5+ pk/2 that results to pk+1 =87.5% for pk 

=75% and pk+1 =50% for pk =0%,. The change of probability distribution in the binary column can 

be implemented by connecting the MSB column of the weight array with the grounded binary 

column using a 50% SET pulse. With k-bits, the device in the binary column has a probability 𝑝𝑝𝑘𝑘  

in LRS, and a probability (1 − 𝑝𝑝𝑘𝑘) in HRS. If the MSB of the weight is ‘1’ (LRS), then applying 

a 50% SET pulse will produce a 50% probability for the device in HRS in the binary column to 

switch to LRS. As a result, the probability of finding the device in LRS after the MSB operation 

is 𝑝𝑝𝑘𝑘 + (1 − 𝑝𝑝𝑘𝑘)/2. If the MSB of the weight is ‘0’ (HRS), a 50% RST pulse is applied so that the 

binary column device will have a 50% to be reset if it is already in LRS. As a result, the probability 
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of finding the device in LRS after the MSB operation is (pk/2). Examples of these operations are 

as shown in Figure 5-11 (a) and (c).  

 

 

Figure 5-9 Schematic of multi-bit stochastic binarization process using an RRAM array. The system includes a 

weight array, an inversion array, and a binary column. Initialization of the weight array and the inversion array 

are explained in STEP1 and STEP2. The grounded binary column is connected to the least-significant-bit (LSB) 

of the weight array with 50% SET pulse first in STEP3, then the LSB of the inversion array with 50% RST pulse 

in STEP4. The processes, STEP3 and STEP4 are repeated after moving to the next bit until binarization is 

complete. 
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Figure 5-10 The probability history of the binary column devices to be ‘1’ or LRS from initial state to end of the 

stochastic binarization step. The log starts from ‘initial’ column in the table. For each nth LSB, STEP3 and STEP4 

is conducted by connection of the grounded binary column to nth LSB in the weight array and the inversion array, 

respectively. The stochastic binarization proceed from the ‘initial’ column to the ‘Final Binary Probability’ 

column through the table. Weights from -1.0 to +0.75 are successfully transformed to binary states following 

expected probability distribution. 

 

Figure 5-11 The generalization of stochastic binarization of k-bit probability to (k+1)-bit probability. (a) For 

both ‘1’ MSB and ‘0’ MSB cases, the operations required for pk+1 obtained from pk is described in the upper red 

box and lower blue box, respectively. In the listed operation, (b) The k-bit probability (red solid line) should be 

converted by MSB = ‘1’ to red dashed line by changing the lowest probability from 0.0 to 0.5. (c) The k-bit 

probability (blue solid line) should be lowered by MSB = ‘0’ to blue dashed line by changing the highest 

probability from 1.0 to 0.5. 
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In this way, we can generate random binary numbers (stored in the binary column) with the 

Bernoulli distribution corresponding to weights in the high precision network (stored in the weight 

array). The major benefit of this approach is the elimination of data communication between 

memory and CPU needed to apply the Monte Carlo method. Unlike the von-Neumann architecture 

shown in Figure 5-6, all the operations in the proposed RRAM-based stochastic binarization 

happen in a RRAM array without having to read the data in and out of the array, as shown in Figure 

5-12. The proposed stochastic in-memory computing saves energy cost from data migration, 

calculation of probability from weight value, and random number generation. 

 

 

 

Figure 5-12 Schematic of the proposed in-memory computing approach for multi-bit stochastic binarization of 

a neural network. The binarization process is much more simplified compared with the von Neumann 

architecture implementation depicted in Figure 5-4. 
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Figure 5-13 shows Monte Carlo simulation results of the proposed RRAM-based stochastic 

binarization processes. By running the stochastic binarization process 1000 times, statistical 

distributions can be obtained from the binarized results in the binary column, for different weight 

precision cases (e.g. 2, 4, and 6 bit weights). These simulation results verify that using the proposed 

approach, the expected probability stored in the weight array can be reliably transferred to the 

probability of getting “1” in the binary column through the stochastic binarization process. 

 

 

Figure 5-13 Monte Carlo simulation results of stochastic binarization for 2 bit, 4 bit, and 6bit weights. Left panel 

of each case shows the weight array and the binary column. Red and blue colors in the weight array represent 

LRS and HRS, respectively. Color in the binary column representing the probability of having ‘1’ (LRS) from 

the 1000 tests, based on data in the weight array. The right panel plots the measured LRS probability in the 

binary column with respect to the weight array value. 
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For the stochastic binarization process, the required number of programming pulses is just 

twice the number of bits in weights, without requiring any memory read process. The absence of 

read process makes the process very attractive by eliminating the need of analog-to-digital 

converters and sense-amplifiers. Overall the parallel stochastic dataflow provides significant 

benefit compared to conventional architectures. For instance, in von Neumann architecture, 

converting a thousand 8bit weights would require a thousand cycles of DRAM access for input 

weights, random number generations, arithmetic operations, comparison operations, and writing-

back to the DRAM. In the proposed implementation, the conversion can theoretically be achieved 

in a RRAM crossbar array with a thousand rows, using only 16 cycles of stochastic binarization 

pulses, as illustrated in Figure 5-12, since all the weights are binarized in parallel.  

 

5.4 Stochastic Learning of Convolutional Neural Network  

To highlight the benefit of stochastic binarization using RRAM crossbar arrays, a 

convolutional neural network (CNN) for classification of handwritten digits (e.g. MNIST)[120] 

was tested by using a high precision network (baseline), BinaryConnect with deterministic 

binarization (deterministic binarization model), and BinaryConnect with stochastic binarization 

(stochastic binarization model).  

The architecture of the CNN is (16C3)-MP2-(32C3)-MP2-(64C3)-(300FC)-10SM, where 

C3 is a 3×3 convolution layer with ReLU activation functions, MP2 is a 2×2 max-pooling layer, 

FC is a fully connected layer, and SM is a softmax output layer. For the training and the inference 

of MNSIT dataset, 55k training examples and 10k test examples are used, respectively. Figure 5-

14 (a) and (b) shows the error rate and cost function of the softmax output layer from the three 

different training algorithms. At 30k iterations of minibatch training with batch size of 100 training 
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examples, the error rate of the baseline, the deterministic binarization model, and the stochastic 

binarization model is 0.85%, 1.94%, and 0.85%, respectively. Note that the error rate from the 

deterministic binarization model is larger than the twice of the error rate from the stochastic 

binarization. In Figure 5-14 (b), the trace of the cost function of the baseline model and the 

stochastic binarization model matches well, although the deterministic binarization model 

maintains one order higher cost than the stochastic binarization model. The high performance of 

the stochastic binarization model, despite of using binary information stored in the network, is due 

to the statistical cancellation of binarized weights (+1 or -1) through the whole training process to 

make the average effect of weights on output values to be same as the weights with high 

precision.[105] 

Moreover, stochastic binarization model has another advantage of regularization effect 

over deterministic binarization model.[105] Due to the large number of parameters, high 

complexity of the multi-layered structure, and nonlinear neurons, CNN is very good at learning 

the distribution of training data. However, if the learning is too precise then the network can even 

learn the noise in the training data, besides actual features. As a result, test results using samples 

not in the training set can be degraded, due to this “overfitting” problem. Various regularization 

methods such as L2 regularization, dataset augmentation, early-stopping, and drop-out to reduce 

effects from noisy information in training examples have been developed to minimize the 

overfitting problem.[121] Drop-out, one of the most widely used regularization method, drops 

random parts of the neurons along with their connections in the network to make the weights noisy 

and the network more general to unseen data.[122] During training step, dropout actually training 

a number of randomly “thinned” network by dropped units. At inference step, all the noisy 

predictions from randomly thinned networks are averaged by simply using a single unthinned 
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network. The benefit of drop-out is that the computational overhead from training the deep and 

wide neural network can be reduced and serious overfitting problem can be avoided, 

simultaneously. Likewise, theoretical analysis of stochastic binarization model show that it can 

offer similar regularization effects with reduced computation by averaging the binarized network 

(instead using thinned network in drop-out), which is a main motivation for us to develop the 

stochastic binarization systems.[105] 

Since the overfitting problem is more easily observed in small training datasets, 10k 

training examples randomly selected from the MNSIT dataset (so-called reduced-MNIST dataset, 

or RMNIST) are tested to check the regularization effect of stochastic binarization model, as 

shown in Figure 5-15. The left panel of Figure 5-15 is the error rate for the training data (blue solid 

line) and the test data (orange solid line), obtained from the high-precision network (baseline) 

trained with RMNIST dataset. The right panel is the result from stochastic binarized model. 

Although both networks succeeded to learn the RMNIST training dataset perfectly without any 

wrong prediction for training examples, the inference error of the test dataset from the baseline 

model is 15% higher than the stochastic binarization model. Although the inference error is almost 

the same (~0.85%) for both the baseline and the stochastic model when they are trained using the 

MNIST dataset with 55000 training examples, reduced training samples (1000 training examples) 

in the RMNIST cause apparent overfitting in the high-precision network, while the noise injected 

by the stochastic binarization can apparently mitigate the overfitting problem in this case. The 

better performance of stochastic learning implies that the stochastic learning not only improves 

computational efficiency, but also boosts deep learning performance by adding regularization 

effects. It is notable that dropout algorithms using the Monte Carlo method (to decide which 

weights are activated or inactivated), like stochastic binarization using the von Neumann 



90 
 

architecture, will also suffer from the memory bottleneck problem. On the other hand, by 

generating Bernoulli distribution in parallel, drop-out also can be accelerated by the proposed 

RRAM-based stochastic binarization method. In short, we expect stochastic binarization based on 

RRAM crossbar arrays can be generally compatible with regularization algorithms. 

 

 

Figure 5-14 Comparison of (a) error rate and (b) cost function of the softmax output layer among the baseline 

model (high precision network training), the deterministic binarization model, and the stochastic binarization 

model. 
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Figure 5-15 Reduced MNIST training results, using the baseline model (left panel) and the stochastic binarization 

model (right panel) 

5.5 Optimization and Nonideality of RRAM-based Stochastic Binarization 

Several other factors need to be considered for the implementation of RRAM-based 

stochastic binarization. As explained in section 5.3, RRAM-based stochastic binarization is 

composed of a weight array, an inversion array, and a binary column. The number of columns in 

the weight array and the inversion array is a critical factor for optimization of the stochastic 

binarization process, because the number of pulses needed for the binarization process is twice the 

weight length, which equals the number of columns in the weight array. In addition, the number 

of rows in the RRAM array determines the acceleration factor of the binarization process, which 

is in turn limited by device properties such as device-to-device variability. In this section, we 

discuss the effects of both weight precision and device-to-device variability on stochastic learning. 
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5.5.1 Effects of Weight Precision on Stochastic Binarization 

The weights used in the high precision network need to have sufficient bits to retain the 

accuracy during training to implement the gradient descent algorithm, although the change of 

weights determined by the propagation step can include some noise like those used in the stochastic 

gradient method. However, increasing the bit length lowers the energy-efficiency and the speed of 

stochastic binarization process due to the increased number of programming pulses that are 

required. Therefore, there is trade-off between energy-efficiency and precision in the weight array. 

To optimize the precision of weights, error rate of the baseline model and stochastic binarization 

model with different weight precisions (32-bit floating point weights (black), fixed point weights 

with 4(magenta)/3(orange)/2(green)/1(blue)-bits) are examined, as shown in Figure 5-16 (a). 

Surprisingly, 4-bit weights (magenta solid line) show comparable performance of error rate below 

1.0% to the baseline model and 32-bit FP weights, and 3-bit weights still have better performance 

than deterministic binarization. Therefore, in the weight array and the inversion array, 4 or 5 

columns will be optimal size for handwritten digit classification. Note that the training with 

stochastic binarization saves 75% of bitwidth in the final weights when compared to conventional 

training of CNN which requires more than 16 bit precision.[110]  
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Figure 5-16 Error rate for MNIST classification, for different weight precisions using stochastic binarization. 

 

5.5.2 Device-to-Device Variability Effect 

The nonideality of stochastic RRAM devices can affect the deep learning performance. 

Cycle-to-cycle variability of a single stochastic RRAM devices is not a severe problem because it 

is already included in the device’s stochastic behavior. However, device-to-device variability can 

degrade the network performance. For example, if each device has a different characteristic 

switching time, then the stochastic pulse applied for 50 % binarization probability can induce 

binary states that deviate from 50% for different devices. To test this effect, we analyzed various 

variability conditions (0.0% ~ 5.0% resistance variations) and tested these effects on MNIST 

dataset classification with CNN. The device-to-device variation is defined here by the range of 

differences of switching probability within RRAM devices in the binary column from 50%, when 

the devices is applied with stochastic SET/RST pulse designed for 50% switching probability. 

Specifically, device-to-device variability var is defined as the fluctuation range of the difference 

between the desired probability 𝑝𝑝𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑𝑒𝑒𝑑𝑑 and the actual binarization probability 𝑝𝑝𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅  of from the 

weights, i.e. 𝑝𝑝𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅 = (1 + 𝑣𝑣𝑎𝑎𝑣𝑣)𝑝𝑝𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑𝑒𝑒𝑑𝑑 . For example, a binary column with 1.0% device-to-

device variation have switching probability ranging from 49.0% to 51.0% for 50% stochastic 
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SET/RST pulses. As can be seen Figure 5-17 (a), the error rate increases as the variability increases, 

as expected. Interestingly, the error rate for high variability cases seems to have a common feature 

where the network learns fast at the early training stage, lose information at moderate iteration 

cycles, and then gets trained again as the training iteration further increases. In other words, the 

device variability causes the network to fall in some local minima during training, but with longer 

training the network can escape from the local minima slowly. If we use the error rate from 

deterministic binarization model (1.94%) as the threshold to gauge the performance of stochastic 

learning, then 3.0% of device variability (with 1.68% error rate) is acceptable for practical 

applications of RRAM-based stochastic binarization model. 

 

 

Figure 5-17 Effect of device-to-device variability on error rate of stochastic learning of CNN 

 

 

5.5. Conclusion 

In conclusion, we investigated exploiting the stochasticity of RRAM devices for deep 

learning. The stochastic binarization method using RRAM crossbar arrays developed in this study 

can generate Bernoulli distribution without any memory fetch, random number generation, CPU 
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arithmetic operations, and write-back processes. The benefit of better performance compared to 

deterministic binarization, regularization effect of stochastic learning and successful 4-bit weight 

precision training are verified. The effect of device-to-device variability was investigated and 

guidelines for practical implementations were developed. 
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Chapter 6. Future Work and Summary 

 

6.1 Solving general combinatorial optimization problems  

Despite the promise of combinatorial optimization problems (COPs), the time complexity 

of NP-complete or NP-hard problems, which exponentially increases as the size of the problem 

increases, makes many useful COPs unaffordable.[123] As a practical approach to solve difficult 

COPs, meta-heuristic algorithms like simulated annealing has been widely studied.[86] Chapter 4 

in this thesis proposed a specialized method to utilize RRAM arrays for simulated annealing of the 

two-dimensional spin glass problem.[90] Since the two-dimensional spin glass model in the Ising 

model formulation can be transformed to any other NP-complete/hard COPs according to 

Ref.[124], the usage of RRAM array designed in chapter 4 can theoretically be generalized to solve 

other difficult problems such as scheduling problem, satisfiability problem, clique cover, and 

travelling sales man problem (TSP).  

Among the difficult COPs, TSP is one of the most recognized. The goal is for a travelling 

salesman to find the shortest path to visit all the listed cities and return to his starting point making 

a Hamiltonian cycle. Although the problem is easy to understand, the salesman has to count all the 

possible number of Hamiltonian cycles which increases as exponentially as the number of cities 

increases. The Ising version of TSP (Eq. 6-1) is introduced in Ref.[124]. 
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H = A �∑ �1 − ∑ 𝑥𝑥𝑣𝑣,𝑖𝑖
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(𝑢𝑢𝑣𝑣)∉1 �   

+ B�∑ 𝑊𝑊𝑢𝑢𝑣𝑣(𝑢𝑢𝑣𝑣)∈𝐸𝐸 ∑ 𝑥𝑥𝑢𝑢,𝑖𝑖𝑥𝑥𝑣𝑣,𝑖𝑖+1
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The Hamiltonian that describes the TSP is made of two parts. The terms in the first 

parenthesis is used to ensure that the path will include each city once and return to the starting 

location. 𝑥𝑥𝑣𝑣,𝑖𝑖 is the binary spin vector of a travelling spin vector 𝑥𝑥𝑣𝑣,𝚥𝚥������⃑  that describes the travelling 

path. v and j represent the index of each city and its order in a prospective cycle, respectively. If 

the salesman visited city v among N cities at the j-th order in his travelling path, 𝑥𝑥𝑣𝑣,𝑖𝑖 is assigned to 

‘1’. Otherwise, 𝑥𝑥𝑣𝑣,𝑖𝑖 is ‘0’. Note that the dimension of the spin vector 𝑥𝑥𝑣𝑣,𝚥𝚥������⃑  is 𝑁𝑁2 for N cities and N 

possible visits. Because all the coefficients used in the first part are +1, -1, or 0, its computational 

cost from simple integer arithmetic operations (counting 1’s and accumulating its squared integer) 

is relatively cheap. On the other hand, 𝑊𝑊𝑢𝑢𝑣𝑣  in the second part represents the distance between city 

u and city v, which is an analog value. The need of floating-point operations to calculate the second 

part in the Hamiltonian dominates the computational cost. 

We note the Hamiltonian in Eq. 6-1 can be mapped to an RRAM crossbar system, as shown 

in Figure 6-1. Since the dimension of a travelling spin vector 𝑥𝑥𝑣𝑣,𝚥𝚥������⃑  is N2, the interaction coefficients 

between 𝑥𝑥𝑢𝑢,𝚥𝚥������⃑  and 𝑥𝑥𝑣𝑣,𝑘𝑘�������⃑  in the second part of the Hamiltonian can be represented by a 𝑁𝑁2 × 𝑁𝑁2 

matrix �𝑊𝑊(𝑢𝑢,𝑖𝑖)(𝑣𝑣,𝑘𝑘)�, where 𝑊𝑊(𝑢𝑢,𝑖𝑖)(𝑣𝑣,𝑘𝑘) = 𝑊𝑊𝑢𝑢𝑣𝑣𝛿𝛿𝑖𝑖,𝑘𝑘−1, and  [𝑊𝑊𝑢𝑢𝑣𝑣] is a 𝑁𝑁 × 𝑁𝑁 matrix comprised of the 

distance values between city u and city v and 𝛿𝛿 is the Kronecker Delta function of two indices 

which is 1 for same index values, and 0 for different index values. The �𝑊𝑊(𝑢𝑢,𝑖𝑖)(𝑣𝑣,𝑘𝑘)� matrix is thus 

very large but sparse. Its non-zero elements are formed by repeating patterns of [𝑊𝑊𝑢𝑢𝑣𝑣], which can 
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be mapped to a 𝑁𝑁 ×𝑁𝑁 RRAM crossbar array. As a result, computation of the 2nd term in the 

Hamiltonian can be performed through a 𝑁𝑁 × 𝑁𝑁 RRAM crossbar array, instead of mapping the 

full matrix which will requires a 𝑁𝑁2 × 𝑁𝑁2 array. 

As an extension of our work on hardware acceleration of simulated annealing, we expect 

the TSP problem can be efficiently solved using RRAM based architecture. A starting point may 

be using a 25 × 25 array to solve a TSP problem for 25 cities, which is finding the most optimal 

path among huge number of possible travelling paths, the factorial of 25. Such demonstrations will 

allow the RRAM crossbar based hardware to be expanded to solve general COPs, and bring this 

technology closer to practical applications. 

 

Figure 6-1   Schematic of implementing the travelling salesman problem (TSP). The nonzero elements of the 

�𝑊𝑊(𝑢𝑢,𝑖𝑖)(𝑣𝑣,𝑘𝑘)� matrix are formed by repeating patterns of the [𝑊𝑊𝑢𝑢𝑣𝑣] sub-array. 
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6.2 Summary 

In chapter 1, we first introduced the memory wall problem of the conventional von 

Neumann architecture for data-intensive tasks. To alleviate the memory wall problem, RRAM 

devices are used as synaptic devices for neuromorphic computing and in-memory computing. The 

main advantages of RRAMs are their abilities to store weights and to perform vector-matrix 

operations directly through physics. Moreover, the diverse switching behaviors such as analog, 

digital, and stochastic resistive switching were explained, along with an introduction of their 

optimization and applications for computing beyond von Neumann architecture.  

In chapter 2, we experimentally demonstrated that analog TaOx RRAM array can be used 

to perform principal component analysis for feature extraction and dimensionality reduction of the 

breast cancer dataset. To reliably initialize the TaOx RRAM crossbar array, we optimized the 

forming voltage from ~2.5V to ~1.1V. Using Sanger’s rule, the principal components were 

obtained as the RRAM device conductances in the network after training. During the training 

process, the RRAM crossbar array was controlled by periphery circuitry, FPGA, and computer. 

The network was then successfully used to analyze sensory data from a standard breast cancer 

screening database with a high classification success rate (97.1%).  

In chapter 3, we optimized the digital Cu-based CBRAM devices to achieve self-limiting 

current and low forming voltage for very low power computing applications. In this study, copper 

oxide layer and high-temperature Al2O3 layer were inserted as a copper ion supplier and diffusion 

barrier, respectively. The optimized device structure (Cu/CuOx/LT-ALD/HT-ALD/Pd) with 

double ALD (D-ALD) layer achieved low forming voltage (Vforming ~ VSET ~ 3.0V), self-limited 

resistive switching with very low programming current (~10 nA), high ON/OFF ratio (>100), and 

nonlinear I-V (NLread and NLSET ~ 10) at low resistance state. 
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In chapter 4 and chapter 5, we proposed utilization of stochastic resistive switching of 

digital RRAM devices for hardware acceleration of simulated annealing (SA) and stochastic deep 

learning, respectively.  For SA of the spin glass problem investigated in chapter 4, which is one of 

the typical NP-hard combinatorial optimization problems, we utilized vector-matrix multiplication 

functions in analog Ta2O5 RRAM crossbar array and stochastic switching properties in Cu-based 

CBRAM devices to accelerate an SA algorithm that solves a spin glass problem efficiently. In this 

RRAM-based SA accelerator, the change of Hamiltonian of the spin system and the probability of 

stochastic spin flipping event are calculated natively by Ohm’s law and the stochastic resistive 

switching property of the RRAM device with Boltzmann distribution. In chapter 5, digital RRAM 

array with stochastic resistive switching was utilized for stochastic binarization for binary neural 

networks. The stochastic binarization using RRAM array accelerated the generation of binary 

random numbers with specific probability corresponding to high precision weights. Specifically, 

the stochastic binarization can be achieved in parallel without having to read the data in and out of 

the array, thus eliminating data communication between memory and CPU needed to apply the 

Monte Carlo method. Finally, in chapter 6, solving travelling salesman problem with RRAM 

crossbar array was proposed as a future work, where the stochasticity in RRAMs can be used to 

make deep learning more accurate and affordable. 
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