
Coordination Strategies and Individual Behavior
in Complex Engineered Systems Design

by

Arianne Xaviera Collopy

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Design Science)

in the University of Michigan
2019

Doctoral Committee:

Associate Professor Eytan Adar, Co-Chair
Professor Panos Y. Papalambros, Co-Chair
Professor Bogdan I. Epureanu
Professor Richard Gonzalez

Arianne X. Collopy

acollopy@umich.edu

ORCID iD: 0000-0001-9343-6310

© Arianne Xaviera Collopy 2019

To my family

past and present

ii

ACKNOWLEDGMENTS

I want to thank the many people that made sure I would be successful and that

provided support, mentorship, and advice throughout my graduate career. I am grateful

for the opportunities to learn from my mistakes and learn to look fearlessly to the

future, and I am proud of who I have become in the last four years.

This work was completed thanks to financial support from the Rackham Graduate

School, the Division of Integrative Systems and Design, the NASA Systems Engineer-

ing Consortium at the University of Alabama Huntsville, and the Automotive Research

Center. I am grateful for the support and the opportunities afforded from each, includ-

ing teaching, community engagement, and industry partnership.

To my advisors: thank you for your mentorship and patience. Panos, for helping

me see the big picture and become confident in my place in it. Eytan, for helping me

learn to focus on the details and enjoy the process. I have learned so much from you

both and I am glad to have had the opportunity to learn from each of you what it means

to be a designer, scientist, researcher, teacher, and mentor.

Thanks also to my committee members: Bogdan, for being a role model of how

to work efficiently and always at a high standard, and for the experience working with

the Automotive Research Center. Rich, for suggesting new angles to my work and for

being a cornerstone of the Design Science program.

To my ODE family, especially Melissa, Emrah, Alex, Yanxin, Namwoo, Vignesh,

Tianyi, Vanessa, Rugved, and Sanjana, thank you for your willingness to collaborate,

learn together, and have fun. Thanks also to all of the ODE alumni I have met and will

continue to meet who are sources of inspiration.

iii

I owe a significant amount of my success to the Design Science program and ISD

for being a welcoming and supportive community. It is too easy to become adrift

during graduate school, and the strength of our community is beyond what I imagined.

Thanks especially to Diann Brei, Colleen Seifert, Matt Reed, Gail Carr, and Elena

Chesney for making sure our program is successful. Design Science would not be

what it is without the students, and I thank especially my colleagues and friends Meira,

John, Clover, Matt V., Raíssa, Koray, Ilka, Marianna, Matt N., Sean, Shannon, Xinhui,

Maya, Gerardo, and Vincent. Thank you for the conversations, walks, parties, and

optimism.

I would not be where I am without my experiences in graduate school prior to

Michigan: thank you to the faculty and mentors who supported me at the University

of Maryland and the University of Alabama Huntsville. Particular thanks are due to

Mary Bowden, Alison Flatau, Bryan Mesmer, and Dale Thomas for being excellent

role models.

Last, but not at all least, thank you to my family for your love and support. Wesley,

you have been an outstanding supporter of my journey through the best and worst times

and I can’t thank you enough. Alejandra, you have always set a great example and I’m

so proud of you. Mom and Dad, you gave me every opportunity I have and taught me

to take advantage of them with sincerity. Thank you for the constant reminder that life

is what you make of it.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . viii

List of Tables . ix

List of Appendices . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Research Questions . 2
1.2 Approach . 3

1.2.1 Methodology . 4
1.2.2 Discipline background . 4

1.3 Summary of Findings . 5
1.4 Contributions . 7
1.5 Dissertation Outline . 8

2 Background and Terminology . 9

2.1 System Representations . 9
2.1.1 Matrix-based Representations 10
2.1.2 Graph-based Representations 11
2.1.3 Partitioning and Coordination 12

2.2 Review of Literature: Coordination . 13
2.2.1 Design Optimization . 14

2.2.1.1 Coordination Methods in MDO 15
2.2.2 Organization Science . 16

2.2.2.1 Coordination Methods in Organization Science 17
2.2.2.2 Comparing Organizational Coordination to MDO 18

2.2.3 Software and Engineering Design 19
2.2.3.1 Coordination in Software and Engineering Design 20

2.2.4 Systems Engineering . 22

v

2.2.5 Measuring Coordination . 24
2.2.5.1 Conway’s Law . 24
2.2.5.2 Mirroring . 25
2.2.5.3 Socio-Technical Congruence 25
2.2.5.4 Challenges in Measuring Coordination 25

2.3 Summary . 27

3 Coordination in Industry Practice . 29

3.1 Introduction . 29
3.2 Literature: Coordination Methods . 30
3.3 Methodology . 31
3.4 Thematic Analysis . 34

3.4.1 Data Preparation . 34
3.4.2 Deductive Coding . 34
3.4.3 Inductive Coding . 35
3.4.4 Theme Identification . 39

3.4.4.1 Authority . 42
3.4.4.2 Management . 44
3.4.4.3 Empathetic Leadership 46
3.4.4.4 Facilitation of Coordination 48
3.4.4.5 Themes . 52

3.4.5 Reflection . 55
3.5 Discussion . 56

3.5.1 Active Facilitation of Coordination 56
3.5.2 Relationship between Active and Passive Themes 58

3.6 Summary . 60

4 Coordination in Design Teams . 63

4.1 Introduction . 63
4.2 Study Design: Data Collection and Analysis Approach 64

4.2.1 Data Collection . 64
4.2.2 Analysis Approach . 66

4.2.2.1 Keyword Identification and Analysis Method 67
4.2.2.2 Network Representations and Measures 70
4.2.2.3 Clustering Analysis . 73

4.3 Characterization of Data . 74
4.3.1 Characterization of Keyword Data 74
4.3.2 Characterization of Network Data 77

4.4 Clustering Results and Interpretation . 82
4.4.1 Clusters as Described by Keywords 82
4.4.2 Clusters as Described by Network Measures 85

4.5 Discussion . 87
4.5.1 Coordination Roles . 87
4.5.2 Correlation to Interview Data 89

4.6 Summary . 90

vi

5 Using Agents to Model Coordination . 92

5.1 Introduction . 92
5.2 Model Description . 95

5.2.1 Objectives . 95
5.2.2 Network Structure . 95
5.2.3 Decision-Making Task . 98

5.2.3.1 Data Partitioning . 100
5.2.3.2 Distributed Classification 102

5.2.4 Coordination Problem . 107
5.2.5 Agent Behavior and Interaction 108

5.2.5.1 Interaction Probability 108
5.2.5.2 Information Exchange 110
5.2.5.3 Agent Distribution . 111

5.2.6 Summary: Model Parameters 112
5.2.7 Model Process . 113
5.2.8 Model Outputs: Performance and Costs 116

5.2.8.1 Performance . 116
5.2.8.2 Cost . 117

5.3 Hypotheses . 117
5.4 Model Behavior . 118

5.4.1 Direct Solution . 118
5.4.2 Performance . 120

5.4.2.1 Local Classification Accuracy 120
5.4.2.2 Global Classification Accuracy 125

5.4.3 Active vs. Passive Agent Accuracy 129
5.4.4 Cost . 129

5.5 Parametric Analysis: Agent Concentration 130
5.6 Discussion . 134
5.7 Validation plan . 136
5.8 Summary . 138

6 Conclusions . 140

6.1 Review of Dissertation . 140
6.2 Dissertation Contributions . 142
6.3 Future Work and Extensions . 142

6.3.1 Limitations . 143
6.3.2 Extensions . 144

Appendices . 145

Bibliography . 207

vii

LIST OF FIGURES

Figure

1 Illustrations of Conway’s Law, Mirroring, and Sociotechnical Congruence . . . 24
2 Illustration of the concept of misalignments 27

3 Map of interrelations between inductive codes 39
4 Selected subcodes highlighted in theme analysis discussion. 41
5 Map of subcodes related to Authority . 42
6 Map of subcodes related to Management . 45
7 Map of subcodes related to Empathetic Leadership 46
8 Map of subcodes related to Facilitation of Coordination 49
9 Illustration of Themes . 52
10 Full map of all subcodes . 53

11 Photo of cooperative game played with Robotic Machine Players (RMPs) . . . 65
12 Category distribution of keywords used in clustering analysis 75
13 Degree distributions calculated from generated networks and survey data . . . 80
14 Distributions of centrality and clustering coefficient calculated from generated

networks and survey data . 81
15 Top 20 keywords in each cluster . 84
16 Cluster descriptions based on network measures 86

17 Two networks generated using the LFR algorithm 97
18 Confusion matrix of all 20,000 items in Letter Recognition Data Set 100
19 Illustration of how classification data is partitioned 101
20 Illustration of agents’ distributed classification task 103
21 Illustration of threshold calculation . 106
22 Flowchart of agent model process . 115
23 Initial T=0 accuracy for agents on local and global classification tasks 120
24 Example local task accuracy, without threshold applied 121
25 Example local task accuracy, with threshold applied 121
26 Example of challenging local classification task 124
27 Example global task accuracy, with threshold applied 126

viii

LIST OF TABLES

Table

1 Summary of interviewee demographics . 33
2 Deductive codes and definitions used for second step of thematic analysis,

divided by topic . 36
3 Inductive codes, definitions, and selected subcodes, divided by topic 38

4 Categories of keywords identified from survey responses, with examples 69
5 Description of five network representations of thresholded survey data 71
6 Top 50 keywords identified from text analysis 75
7 Descriptive statistics for network measures from survey data 77
8 Kullback-Leibler Divergence calculated for Degree measures 80
9 Kullback-Leibler Divergence calculated for centrality and clustering coeffi-

cient measures . 81
10 Category distribution of top keywords in each cluster 84

11 Parameters used as input for generated LFR networks 96
12 Example of threshold application and calculation of thresholded accuracy. . . . 104
13 Local, community, and global parameters that govern agent model 112
14 K-NN classification results with varied training data size 119
15 Local classification results . 123
16 Global classification results . 128
17 Global classification task (aggregate) accuracy, reported for varied combina-

tions of Passive and Active agents . 131
18 Average number of interactions across all agents, reported for varied combi-

nations of Passive and Active agents. 132

ix

LIST OF APPENDICES

Appendix

A Interview Protocol . 145

B Team Coordination Survey Protocol . 149

C Agent Model Code . 152

x

ABSTRACT

Coordination – ensuring interfacing groups are working with consistent data, in-

terpretations of that data, and consistent goals – becomes necessary when design work

is distributed or partitioned among different individuals or teams. System design op-

timization algorithms are well-established for the coordination of analytical design

problems. However, in actual system design, individuals are unlikely to coordinate by

following algorithmic procedures. In a design organization, distributed tasks must be

first partitioned so that they can be worked in parallel, and then coordinated so that the

results can be joined together to effect the overall project goal. In this organizational

context, coordination is primarily a communicative process focused on information

sharing among parallel tasks. This research focuses on these individual communica-

tion behaviors and demonstrates their impact on system-level coordination.

This dissertation addresses two research questions. First, what approaches and be-

haviors do individuals use to facilitate system-level coordination of distributed design

work? This is answered with a pair of exploratory studies. A qualitative study based

on interviews of industry experts found that proactive, empathetic leadership-based be-

haviors and more passive, authority-based behaviors are complementary approaches to

facilitating coordination. A quantitative study based on a survey of novice designers

resulted in identification of coordination roles within teams. Text analysis and net-

work analysis of survey data identified five roles: some are more communicative and

focused on integrative tasks and leadership, whereas others are less communicative

and focused on documentation and detailed engineering tasks. The findings suggest a

parallel to the active and passive behaviors identified in the qualitative study.

xi

The second research question asks what is the quantitative impact of these behav-

iors on system-level performance. A descriptive agent-based model was developed

that simulates the impact of individual behaviors on the system-level performance of

a distributed design task requiring coordination. Results from this model indicate a

correlation between more active agent behaviors and higher performance, but at the

cost of increased peer-to-peer interactions.

This dissertation illustrates the importance of a balance between proactive,

empathetic-leadership-based and more passive, authority-based processes and behav-

iors for the effective coordination of decomposition-based design work. There are

three primary contributions of this work. This dissertation highlights that coordination

is a central task of systems engineering personnel in engineering design organizations.

This work uniquely shows how theory pertaining to coordination applies to and de-

scribes systems engineering activities, particularly in relation to engineering design.

The second contribution of this work is the development of quantitative approaches

to describe and evaluate coordination practice in decomposition-based system design.

This is shown through an agent-based simulation model to assess the impact of com-

municative and information-seeking behavior on coordination and design task out-

comes. This model also serves as a platform that allows extensive parametric analysis,

permitting exploration of a variety of design tasks, organizational structures, and agent

behaviors. Finally, this work illustrates the importance of coordinator roles in effective

distributed design tasks. Frequently, managerial and integrative roles are not included

in measures of coordination effectiveness, which we argue is not representative of

true systems engineering practice. This dissertation is a step towards the inclusion of

systems engineering and management roles in models of coordination effectiveness.

xii

CHAPTER 1

Introduction

This dissertation is about the role that individuals play in the system-level coordination of

large-scale and complex engineered systems (LSCES). Coordination – ensuring interfacing

groups are working with consistent data, interpretations of that data, and consistent goals –

becomes necessary when design work is distributed among different individuals or teams.

This is generally the case in the design of aircraft, rockets, automobiles, and other LSCES.

These projects involve thousands of people in multiple locations, and often multiple com-

panies, who need to make internally consistent decisions on millions of design variables in

order to produce a single artifact.

A widely-used approach to the design of LSCES is decomposition-based design. De-

composition or partitioning of a system into subsystems creates internal interfaces between

subsystems. Coordination requires working across those internal interfaces. Central to this

coordination task is communication and information exchange among engineers and de-

signers. These stakeholders must develop a clear understanding of how subsystems relate

to each other and affect overall system performance. The goal of coordination is successful

system integration.

Successful system integration refers to the assurance that the design of the recomposed

system is equivalent to the original system design that would have been achieved without

partitioning (Papalambros and Wilde, 2017; Blanchard and Fabrycky, 2011). The final sys-

tem’s capability should include all desired technical functions, and all interfaces should be

1

well defined (Sage and Lynch, 1998). System integration is technical in nature. Yet, the co-

ordination required for system integration is also a management activity. Within the design

organization, integration and coordination requires different disciplines to work together

effectively (Sage and Lynch, 1998) and to share information between the tasks of analysis,

design, and test (Johnson, 1997; Blanchard and Fabrycky, 2011). Integration is challeng-

ing due to the many interdependent functions required of LSCES and the heterogeneous

expertise required of the design organization (Madni and Sievers, 2014).

Coordination and integration are particularly challenging in the design of LSCES. Com-

plexity in natural and engineered systems is described as unpredictable behavior during

design or operation (Bloebaum and McGowan, 2012; Pennock and Rouse, 2016). Un-

predictable behavior at the system level indicates that there is no direct mapping between

subsystem behavior and system behavior (Bloebaum and McGowan, 2012). This can be

due to dynamic behavior of subsystems, incomplete understanding of natural phenomena

or novel technology, or the process of learning about the design during development (Gao,

Barzel, and Barabási, 2016; Pennock and Rouse, 2016; Bloebaum and McGowan, 2012;

Page, 2015).

Errors in systems integration and interface definition have been attributed to the “fuzzy”

nature of complex engineered systems or errors in the flow-down (target cascading) of

requirements during early conceptual design (Madni and Sievers, 2014). When problems

arise at interfaces during the system integration phase of design, long after early conceptual

design is complete, one possible outcome is that the system as designed cannot function as

intended. Failure of verification or validation requires costly redesign efforts.

1.1 Research Questions

This research identifies and characterizes how individuals contribute to coordination in

LSCES design work. Understanding how individual actions impact coordination outcomes

2

is a first step toward improved system design practices and more successful system inte-

gration in the future. The focus of this dissertation is on the strategies – sets of actions and

behaviors – individuals use to facilitate coordination during LSCES design work.

Much of the literature on coordination methods and best practices uses a top-down

perspective: methods tend to be prescriptive and implemented from the top of the orga-

nization. This is consistent across literature in organizational and management science,

design optimization, systems engineering, and software engineering.

We challenge this perspective by acknowledging that the work to accomplish coordi-

nation is done by people. We argue that an improved understanding of how coordination

is accomplished comes from studying individuals’ actions and behaviors and their connec-

tion to system-level coordination efforts. This bottom-up perspective complements existing

literature on coordination in decomposition-based design by considering the role of indi-

vidual actors’ behaviors in successful coordination.

This dissertation addresses the following research questions:

1. What approaches and behaviors do individuals use to facilitate effective system-level

coordination of distributed design work?

2. What impact do individuals’ behaviors to facilitate coordination have on system-level

coordination?

1.2 Approach

This research is informed by ideas from multidisciplinary design optimization, organization

theory, and social network theory. These perspectives together allow a holistic qualitative

and quantitative analysis of coordination in complex engineered systems design.

3

1.2.1 Methodology

The research was conducted in two stages: the first stage was exploratory, aiming to define

and refine the research questions. This was accomplished through qualitative and quantita-

tive data collection and analysis. The second stage was descriptive, developing a simulation

model to explore the likely practical impacts of exploratory findings.

This dissertation presents three studies that cover the two stages mentioned. The first is

qualitative, based on semi-structured interviews of industry experts. Thematic analysis of

the interview responses helped shape the research questions and our understanding of what

individual behaviors are used during design.

The second study is quantitative and is based on surveys of novice designers. We an-

alyzed survey responses using text analysis and network analysis to discover what roles,

or combinations of tasks and communication, are adopted to support coordination in small

design projects. This study also contributes to our understanding of individual behaviors

used in support of coordinating distributed design work.

The third study is based on a descriptive agent-based model that simulates the impact of

individual behaviors on the system-level performance of a distributed design task requiring

coordination. The model itself serves as a platform for parametric analysis and exploration

of what behaviors are more and less impactful on system outcomes. Results from this

model contribute a quantitative analysis of individuals’ coordination-facilitation behaviors.

1.2.2 Discipline background

The research conducted is inherently interdisciplinary and integrative. The research meth-

ods selected draw from social science, information science, and engineering. Thematic

analysis is a typical stage of grounded theory development, common in social science re-

search (Braun and Clarke, 2006; Nowell et al., 2017). We use it as a standalone method,

suitable for our purpose of exploring and refining research questions. Text analysis is

a common tool in information retrieval, frequently used in products and services such

4

as search engines and automated document analysis (Manning, Raghavan, and Schütze,

2008).

Network analysis is used in physics and mathematics-based study of natural and com-

plex engineered systems, ecological and epidemiological modeling, and sociological mod-

eling of people, groups, and organizations (Newman, 2018; Wasserman and Faust, 1994;

de Weck, Roos, and Magee, 2011). We use social network analysis, employed by social

scientists to study the connection between individual and aggregate behavior. Social net-

work analysis is used to develop theories of how communities behave, and to inform the

development of tools to leverage and support those communities (Easley and Kleinberg,

2010; Tichy, Tushman, and Fombrun, 1979; Borgatti and Foster, 2003; Temdee and Korba,

2001; Ogata et al., 2001).

Finally we use agent-based simulation modeling to model organizational processes.

Simulation modeling is common in engineering research as a way to test a wide range of

parameters with carefully controlled environments. It is difficult to study organizations as

part of a controlled experiment, thus we adopt simulation. Agent modeling is the study of

how simple rules adopted by individuals can cause aggregate or emergent behaviors. It is

used often in the study of complex systems, including ecological models (Railsback and

Grimm, 2012; Wilensky and Rand, 2015) and social systems (Epstein and Axtell, 1996;

Miller and Page, 2007; Gero, 2002).

1.3 Summary of Findings

The two exploratory studies presented in this dissertation identified individual actions and

behaviors used to support the coordination of distributed design tasks. We found that in-

dustry practitioners use a combination of authority-based actions (setting rules, plans, and

structures for work) and what we call empathetic leadership-based actions (asking ques-

tions, using and encouraging empathy, and tailoring interactions) to support coordination.

5

We found that student designers adopt roles within their teams that are more and less proac-

tively communicative (initiators and non-initiators), as well as focused on more general or

more specific tasks. Teams also had a combination of initiators and non-initiators, and typ-

ically had a combination of generalists and specialists. Teams with a single initiator appear

to be more hierarchical team organizations and teams with multiple initiators appear to be

more non-hierarchical team organizations. These exploratory studies indicated that multi-

ple communication approaches are used in support of coordination work, and specifically,

that a combination of different coordination strategies may be most beneficial.

The exploratory studies together identified complementary strategies of more active

communication, based on empathetic leadership and including proactive communication

and engagement with peers, and more passive communication, based on authority and in-

cluding formalized or standardized interaction with peers. These strategies we call Active

and Passive, terms which we define and describe first in Chapter 3 and revisit in Chap-

ter 5. We developed computational agents that embody simple versions of these Active

and Passive behavioral archetypes. Agents were tasked with completion of a distributed

computational design task, a multiclass classification problem. We found that Active and

Passive agents achieve similar individual performance on partitioned tasks by following

their prescribed coordination strategies. The aggregate performance, however, is typically

improved with the addition of Active agents. We identified several input parameters to

the model as impactful. These include the network structure agents interact along, what

fraction of each type of agent is included, and where each agent type is located within the

network. We also include a plan for model validation. Limitations and directions for future

work are presented throughout.

6

1.4 Contributions

The intended audience for this work is the systems engineering and design community,

including both researchers and practitioners. The first contribution of this dissertation is to

the development of systems engineering theory and principles underlying effective systems

engineering practice. We do this by highlighting that coordination is a central task of

systems engineering personnel in engineering design organizations, and pointing out the

theory relevant to coordination in multiple disciplines. This work uniquely shows how

this theory applies to and describes systems engineering activities, particularly in relation

to engineering design. This includes coordination as described in the literature, as well

as theory related to behaviors identified through this research as supporting system-level

coordination.

The second contribution of this work is the development of quantitative approaches to

describe and evaluate coordination practice in decomposition-based system design. We

do this by demonstrating a novel method to identify coordination roles, or the commu-

nicative behaviors and tasks individuals are engaged in during design work. We also use

an agent-based simulation model to assess the impact of communicative and information-

seeking behavior on design task performance. This model also serves as a platform that

allows extensive parametric analysis, permitting exploration of a variety of design tasks,

organizational structures, and coordination behaviors.

Finally, this work illustrates the importance of coordinator roles in effective distributed

design tasks. Frequently, managerial and integrative roles are not included in measures of

coordination effectiveness, which we argue is not representative of true systems engineer-

ing practice. This dissertation is a step towards the inclusion of systems engineering and

management roles in such models of coordination effectiveness.

7

1.5 Dissertation Outline

Chapter 1 discussed the challenge of large-scale and complex engineered system design,

and particularly the challenge of coordinating diverse distributed tasks. Chapter 2 presents

terminology relevant to the discussion of decomposition-based design and a review of lit-

erature on coordination practices. Chapters 3-5 present each of the three studies contained

in this dissertation. Chapter 3 describes our process of semi-structured interviews and the-

matic analysis, as well as a discussion of where our findings are consistent and inconsistent

with existing literature. Chapter 4 describes the process of surveys, text analysis, and net-

work analysis we used to identify coordination behaviors adopted by novice designers.

Chapter 5 describes the agent-based simulation model that is based on results of the first

two studies in Chapters 3 and 4. We describe the model and results from it, as well as next

steps, including a comprehensive validation plan. Chapter 6 summarizes conclusions and

discusses several avenues for future work.

8

CHAPTER 2

Background and Terminology

In Chapter 1, we introduced decomposition-based design, which proceeds through parti-

tioning of work and coordination of its completion. In this chapter, we introduce termi-

nology relevant to the discussion of partitioning and coordinating design work. First, we

review different system representations. Through this we introduce partitioning terminol-

ogy. Then we review how coordination is described in several disciplines. We introduce

literature in Multidisciplinary Design Optimization (MDO), Organization Science, Soft-

ware Engineering, Engineering Design, and Systems Engineering. Then we summarize

how the coordination of partitioned tasks in decomposition-based design is accomplished

according to the literature.

2.1 System Representations

A system can be represented by its physical components or by its functions. The former

focuses on the system’s embodiment, whereas the latter focuses on the system’s purpose.

If you consider the design of an airplane, the component-based view yields a composition

of wings, fuselage, and engines, joined by mechanical bolts, material welds, and electrical

wiring. This part-based decomposition is also referred to as Object Decomposition. The

function-based view may depict a vehicle that carries cargo, produces thrust, and provides

lift. These functions interact through the design variables that enable those functions, for

example the curvature of the wing, the size of the engine, and the diameter of the fuselage.

9

Function-based or discipline-based decomposition is also referred to as Aspect Decompo-

sition. These representations complement each other by shedding light on different aspects

of the same system.

In this dissertation, a system’s subsystem refers generically to a subset of the system,

which could be either a function or a physical component. To depict these subsystems, both

matrix-based and graph-based representations of systems can be used. Each has advantages

and disadvantages, which will be discussed in the following sections. In addition, as in

this simple example, the method of representing system elements also dictates how the

interactions and interfaces between those elements are represented.

2.1.1 Matrix-based Representations

The information of the system elements and their relations can be displayed as a matrix.

The functional dependency table, or FDT, is a function-based representation of the system

that shows the system functions and the variables on which those functions depend (Wagner

and Papalambros, 1993). This representation therefore requires some knowledge of the

mathematical equation that relates variables that describe the system and the function that

describe its behavior. A second matrix-based representation is the design structure matrix,

or DSM. The design structure matrix can be thought of as an adjacency matrix, meaning

that the rows and columns of the DSM are the same system elements. The binary values

within the matrix therefore indicate relationships between elements. Due to its versatility,

the elements included in the DSM can be functions, components, or process steps.

The DSM was originally conceived as a planning tool for the design of complex sys-

tems, where the system elements represented are the design process steps, or design deci-

sions, needed to complete the system (Steward, 1981). In this format, the marks within the

DSM indicate whether the row element depends on the column element, meaning that if

the matrix cell i j is marked, then decision j must be made before decision i can be made. If

decision i precedes decision j, then the process is clearly cyclical, and may require several

10

iterations to converge to a final design. The value of the DSM as a visualization tool is

that these cycles can easily be identified – these out of step decisions sit above the diagonal

– and further may be eliminated via basic row and column transformations on the matrix.

However, the utility of this tool depends on the accurate determination of precedence, i.e.

which decisions impact other decisions (Steward, 1981).

The initial conceptualization of the design structure matrix was as a tool to refine the

design process; it has since been used for system architecture design and organizational

design (Browning, 2001; Sosa, 2007; McCord and Eppinger, 1993; Pimmler and Eppinger,

1994). The system elements included in the DSM may be functions, technical components,

or social components, therefore marks in the DSM indicate some connectivity or depen-

dency between those elements. As a design tool, the architecture or organization DSMs are

used to group rows and columns of system elements to minimize the interactions between

other elements, in effect modularizing the system (McCord and Eppinger, 1993; Pimmler

and Eppinger, 1994).

2.1.2 Graph-based Representations

The information in a functional dependency table or a design structure matrix can also eas-

ily be translated into a graph or network representation. For a technical system, the vertices

or nodes of the corresponding graph are technical elements, and the edges between them

represent the shared variables or interfaces. For a social system, the vertices are people

or groups of people, and the edges between them represent social relationships. Networks

are used to model structures of systems, behaviors resulting from those structures, and the

mechanisms by which edges facilitate transfer of resources, information, and knowledge

between nodes of the network (Newman, 2003). Graph or network representations are also

useful for performing clustering or partitioning operations to identify structures within the

system (Newman, 2006). This can be particularly useful as a complement to a matrix-based

representation of a system. For example, one method for partitioning a FDT is to perform

11

graph partitioning on the equivalent representation (Wagner and Papalambros, 1993; Kr-

ishnamachari, 1996).

Network representations of systems have the potential to provide insight into the mech-

anisms by which networks are formed as well as the behavior that emerges from particular

structures or dynamic entities within the network (Newman, 2003; Wasserman and Faust,

1994; Strogatz, 2001). In design research, network representations are valuable to study

design processes, organizational behavior, and more (Chen et al., 2018; Parraguez and

Maier, 2016; Mosleh, Ludlow, and Heydari, 2016). Several heuristics have been developed

as a result of these studies, including the concepts of transitivity and bridges. Transitivity

describes the tendency for triadic groups to close, i.e. the tendency of your friend’s friend

to be your friend as well (Newman, 2003; Granovetter, 1973). Bridges are nodes within

networks that span disjoint groups and therefore have access to diverse information, filling

what are known as structural holes (Burt, 1992; Granovetter, 1973). Both of these proper-

ties are of interest in the study of coordination across interfaces in the design of LSCES.

For example, it is the role of systems engineers and integrators to facilitate triadic closure

across design groups, i.e. to ensure that critical interfaces are addressed. Their ability to

do so may depend on their ability to identify structural holes within the organization and

bridge them effectively. Identifying a link between a system’s structure and its behavior

is of particular interest in the study of LSCES (de Weck, Roos, and Magee, 2011), which

may be accomplished through the use of complex networks as representations of both the

design organization and the technical system.

2.1.3 Partitioning and Coordination

Matrices and graphs or networks show how a system is partitioned into subsystems. Parti-

tioning and coordination strategies are not independent: the selection of a partitioning strat-

egy is connected to coordination requirements, and the selection of a coordination strategy

is connected to required partitioning (Allison, 2008). This research will focus primarily

12

on coordination activity, but with the awareness that this activity is not free of the context

provided by partitioning.

2.2 Review of Literature: Coordination

Coordination is defined in the dictionary as “the organization of the different elements of

a complex body or activity so as to enable them to work together effectively” (Stevenson

and Lindberg, 2011). Literature on coordination spans several disciplines. We focus here

on four in particular: multidisciplinary design optimization (MDO), organization science,

engineering design, and software and systems engineering. This selection of disciplines

considers respectively, the analytical formulation and solution of system design problems,

the structure and nature of organizations that may be engaged in system design work, and

the design and development of systems alongside methods and tools to support that design.

McGowan (2014) distinguishes between four types of interactions that occur across

organizational and technical interfaces during system design: Connecting is akin to the as-

sembly of parts. Connected items work together, but are designed and developed separately.

Collaboration is a process of bringing together heterogeneous parts to form an integrated

system. Ownership of the parts remains distinct, but individuals and the artifacts they de-

sign are tailored to facilitate integration. Collective design is even more collaborative; the

result is a fully homogeneous and co-created artifact that results from shared and integrated

expertise. Finally, Coordination is described as a process of ensuring diverse system ele-

ments remain integrable as they evolve, ensuring that the system-level needs can be met

as the component parts are defined. Coordination is described as negotiation or orchestra-

tion among constituent parts and people (McGowan, 2014; Ryschkewitsch, Schaible, and

Larson, 2009).

We mention these distinctions between coordination, collaboration, connecting, and

collective work because these terms are often used interchangeably in literature. The pro-

13

cesses as described by McGowan are similar, and even complementary, but are ultimately

distinct. Here we focus on coordination, which is differentiated by the focus on an overall

system objective, or intent.

2.2.1 Design Optimization

Multidisciplinary Design Optimization or MDO arose from the need to analyze systems

whose constituent elements are modeled with various discipline-based analysis tools

(Sobieszczanski-Sobieski, 1995). The analysis models integrated under MDO use differ-

ent equations, assumptions, and variables. However these subproblems cannot be solved

on their own: maximizing individual subproblems without regard to how the solutions

need to fit together will generally not yield a feasible system-level solution, or one that

is most desired (optimal) (Allison, 2008). Thus the solution of subproblems requires co-

ordination: “the task of guiding subproblem solutions toward an optimal system design”

(Allison, 2008).

If all interfaces between analysis models are identified, they can be combined. It is

only then that the system behavior can be modeled, and further, optimized. An optimized

system model yields not only optimal values for subsystem and system parameters, but also

consistent values of variables used as inputs to or outputs from multiple models.

The organization of discipline-specific models under an optimization scheme in order

to coordinate the search for an optimal system solution is called the MDO architecture.

A review of common MDO architectures is given in (Martins and Lambe, 2013), where

architectures can be divided generally into monolithic or distributed formulations. Some

of the distinguishing features of MDO architectures are the location and purview of the

decision maker(s), and the approach to coordinating the partitioned analysis models. As an

example, the all-at-once (AAO), analytical target cascading (ATC), and collaborative opti-

mization (CO) strategies are compared. The AAO problem statement includes all linking

variables and discipline constraints into a single problem statement, requiring no parti-

14

tioning or coordination (Cramer et al., 1994). ATC and CO both make use of a hierarchical

partitioning strategy, dividing the optimization problem into subproblems, and a centralized

coordination strategy (Kim et al., 2003; Kroo and Manning, 2000). In ATC a target value

is selected for the overall system which is distributed to each subproblem according to the

partitioning strategy. Each subproblem is individually optimized, coordinated through the

use of this target value. This process iterates until the targets and responses are consistent.

Collaborative optimization also distributes optimization across discipline subproblems, but

does so by creating local copies of all shared variables along with consistency constraints

for each subproblem. Coordination is accomplished through iterative updates of targets and

responses or consistency constraints among subproblems.

2.2.1.1 Coordination Methods in MDO

The selection of MDO architecture is dependent on the physical system’s architecture and

the couplings that exist between discipline models (Martins and Lambe, 2013). Coordina-

tion methods in MDO have been developed to take advantage of unique problem properties,

particularly the existence and strength of coupling between subproblems. Examples include

the combination of ATC and CO to coordinate across two different partitioning strategies

(Allison et al., 2005), the use of global sensitivity equations and modified GSEs to calculate

coupling strength (Hajela, Bloebaum, and Sobieszczanski-Sobieski, 1990; Alyaqout et al.,

2011), improved computational efficiency through suspension of weakly coupled subprob-

lems or reformulation of subproblem optimizers (Alyaqout et al., 2011; Alexandrov and

Lewis, 2002), and the inclusion of uncertainty (Yao et al., 2011). However, MDO remains

unable to fully account for the impacts of humans on the design process (Simpson and

Martins, 2011; Bloebaum, Collopy, and Hazelrigg, 2012).

A solution to a MDO problem yields a set of fully consistent coupling variables between

modeled systems and insight into system behavior. What is difficult to model includes

factors such as incomplete information, unknown or emergent couplings, and the role of

15

humans as designers that sometimes make mistakes. For example, a central decision maker

in an optimization routine is capable of simultaneous processing of information and simul-

taneous delivery to connected analysis functions. This ideal decision maker also has full

information about the system. Neither the ability to simultaneously process multiple in-

puts nor the assumption of complete information is reasonable for a human decision-maker

(Simon, 1955).

Coordination in MDO is a deterministic method (McGowan, 2014); the choice of

method coupled with the choice of partitioning (Allison, 2008). Coordination is a pre-

meditated strategy to transfer information between concurrent problem solving processes,

selected based on existing information about how a problem is divided into smaller parts.

The end goal is subproblem solutions that together comprise an optimal system design

solution.

2.2.2 Organization Science

Coordination activity during design is contextualized by organization, which dictates roles,

lines of communication, trust, authority, and accountability (Galbraith, 1974; Simon, 1973;

Gulati and Singh, 1998). Scott and Davis describe three perspectives of organizations:

rational systems where all actors work in concert to achieve a common objective, natural

systems where actors have diverse goals but use the organization as a common source of

information and knowledge, and open systems where actors selectively join and separate

to achieve their goals (Scott and Davis, 2006).

Most of the foundational literature on coordination in organizations builds on the ra-

tional system model of organizations. In the rational system model of organizations, every

organization has a central goal (March and Simon, 1958; Blau, 1974; Scott and Davis,

2006). A defining feature of a formal organization is “the existence of procedures for mo-

bilizing and coordinating the effects of various, usually specialized subgroups in the pursuit

of joint objectives” (Blau, 1974). Similar to distributed optimization, individual expertise

16

is partitioned into groups and teams. Their work is then coordinated through the develop-

ment of rules, plans, and channels for rapid feedback (March and Simon, 1958; Thompson,

1967; Van De Ven, Delbecq, and Koenig, 1976).

2.2.2.1 Coordination Methods in Organization Science

Another foundational theory in organization science is Contingency Theory. Contingency

Theory states that the best approach to organizational design, or coordination strategy, is

dependent on an organization’s goals and environment (Thompson, 1967; Lawrence and

Lorsch, 1967; Pugh and Hickson, 2007). Contingency theories of coordination have fo-

cused on the appropriate coordination methods given the degree of task uncertainty or non-

routineness and the interdependence between those tasks. Empirical studies have found that

the combination of task uncertainty and task interdependence, or complexity, is correlated

with the use of more coordination methods. Methods are added roughly additively (Van

De Ven, Delbecq, and Koenig, 1976) with increasing task complexity. Setting standard

rules and procedures (including formalizing team roles) is the most basic method, followed

by the addition of planning to pace the timing of simultaneous work, followed by feedback

or mutual adjustments between teams to continuously update work (Thompson, 1967; Van

De Ven, Delbecq, and Koenig, 1976). A central component of the uncertainty and interde-

pendence of tasks is the information processing required of individuals and teams in order

to actually complete a task (March and Simon, 1958; Galbraith, 1974; Tushman, 1979;

Malone, 1987).

In addition to known coordination needs, unknown but anticipated coordination needs

have been discussed in the context of organizational alliances and the design of visualiza-

tion tools (Gulati and Singh, 1998; Dossick and Neff, 2010). This work indicates that the

frequency of anticipated coordination work and trust between parties are significant fac-

tors in determining how that coordination is carried out. New technologies may improve

awareness of how system elements are related, however trust in the technology as an accu-

17

rate representation of those interactions is key to its adoption. In addition, the identification

of coordination needs does not necessarily translate to realized coordination if the organi-

zation structure makes developing those communication channels expensive (Dossick and

Neff, 2010). Coordination across groups is typically reserved for specific coordination roles

within the organization (Cataldo and Herbsleb, 2008). Anticipated coordination may also

drive the creation of new organizational channels for information transfer in a new alliance

(Gulati and Singh, 1998), but unplanned or unexpected coordination needs are more diffi-

cult to address. These works reinforce the impact of organization structure on coordination

activity, both in identifying dependencies and in coordinating across those dependencies.

Other approaches to understanding coordination between individuals specifically in the

context of LSCES design include economic theory (Mosleh, Ludlow, and Heydari, 2016),

game theory (Vermillion and Malak, 2015), and exploration of the cognitive processes of

systems engineers (Greene, Papalambros, and McGowan, 2016; McGowan, 2014).

Coordination in organizations is about managing interdependencies between groups of

people (Malone and Crowston, 1994). Methods for coordination are prescribed top-down

through the structure and partitioning of the organization into divisions, teams, and indi-

vidual roles on teams, as well as the characteristics of the tasks those divisions, teams,

and individuals are asked to complete. The more complex the tasks undertaken by the

organization, the more rules, plans, and channels for feedback are incorporated into for-

mal organization design. Practically, these rules, plans, and feedback channels may be

interpreted respectively as design and manufacturing processes, project management and

schedules, and office layouts and meetings designed to bring interfacing groups together.

2.2.2.2 Comparing Organizational Coordination to MDO

One approach to interpreting coordination mechanisms among designers is to compare ob-

served activity to established MDO architectures. Past research has illustrated that some

decision makers within organizations use a process that is similar to a hierarchical MDO al-

18

gorithm termed a ‘hybrid MDO–game theoretic’ model (Austin-Breneman, Yu, and Yang,

2015; Honda et al., 2015). While information sharing among individuals in the organiza-

tion was found to follow a pattern similar to an algorithm, it was not guaranteed to con-

verge due to the incomplete information shared between subsystems (Austin-Breneman,

Yu, and Yang, 2015). This work illustrates the importance of both the information sharing

architecture as well as the quality of that information in understanding the effectiveness of

coordination activity within organizations.

2.2.3 Software and Engineering Design

The disciplines of software engineering and engineering design consider the design work

an organization undertakes. While MDO is an approach to systems design that focuses on

coordination of partitioned elements, another approach is to start from the process of parti-

tioning to effect desired coordination. Several best practices for the design of products and

systems come from modularization or partitioning of work, primarily to reduce the need for

coordination (Parnas, 1972; Souza et al., 2004; Maier and Rechtin, 2009; Panchal, 2010).

In addition, the need for frequent inter-group communication is considered one of the pri-

mary challenges of highly integrative design work (Pimmler and Eppinger, 1994; Cataldo

et al., 2006), and is one driver for developing a more modular design process (Bosch and

Bosch-Sijtsema, 2010). Another set of objectives might be based on life-cycle properties

of the product or system, suggesting partitioning strategies based on maintenance require-

ments, changeable technologies, or product differentiation (Bayrak et al., 2018; Dahmus,

Gonzalez-Zugasti, and Otto, 2001; Asikoglu and Simpson, 2012).

Module identification or design is often accomplished using a DSM- or FDT-based

approach, where the goal is to rearrange the matrix of interactions to reduce interactions

across some set of modules. One key step in this process is the identification of linking

variables, which are those that bridge system elements as coupling or shared variables.

In a complex system, many variables will be linking variables, but to cleanly divide a

19

system into elements, some of the most-connected variables will need to be set aside as

integrating elements. The selection of this set of linking variables or functions to treat as

an integrative element by the introduction of design rules (Baldwin and Clark, 2000) or

graph partitioning (Wagner and Papalambros, 1993; Krishnamachari, 1996) defines the set

of remaining variables or functions to divide into modules. The selection of integrating or

coordinating elements within the system therefore can have a large impact on the resulting

architecture: few linking variables may result in a small number of larger modules, and

many linking variables may result in a large number of smaller modules.

Once a partitioning objective has been selected, modules can be identified by matrix

transformations on the DSM or FDT. This is typically done by clustering based on inter-

action type. Modifications and improvements to this approach include clustering based on

multiple interaction types simultaneously (Pimmler and Eppinger, 1994), weighting values

based on likelihood of technology change (Asikoglu and Simpson, 2012), using an opti-

mizer to select module groupings based on system-level performance measures (Bayrak

et al., 2018), and the combination of DSM coupling measures with functional similarity

measures (Borjesson and Hölttä-Otto, 2013). Other approaches focus specifically on as-

sembling elements into new products, which include graph or design grammars (Schmidt

and Cagan, 1998), functional modeling (Dahmus, Gonzalez-Zugasti, and Otto, 2001), and

the use of a component-function catalog to assemble novel products (Bryant et al., 2005).

2.2.3.1 Coordination in Software and Engineering Design

Design via modularization illustrates a focus on ensuring that the subsystem interfaces are

simple connections between complex elements. Modular design is considered good prac-

tice both in systems architecting (Maier and Rechtin, 2009) and software design (Parnas,

1972); however it presents challenges as systems become more complex. The implementa-

tion of simple interfaces between technical interfaces also promotes the practice of hiding

the complex nature of a technical element behind an interface (Parnas, 1972). In practice,

20

this is often accomplished in software by the use of application-program interfaces (APIs),

which have been shown to cause coordination challenges due to the increasing complexity

of both APIs and the modules behind them (Souza et al., 2004). Communication tends to

follow organizational boundaries (Kleinbaum, Stuart, and Tushman, 2008), and interfaces

across those boundaries are often sources of inter-team communication lapses (Sosa, Ep-

pinger, and Rowles, 2003; Sosa, Eppinger, and Rowles, 2004; Dossick and Neff, 2010;

Kraut and Streeter, 1995; Galvin, a and Šmite, 2012). Geographically distributed teams

face further challenges due to communication delays and differing norms (Herbsleb and

Mockus, 2003; Olson and Olson, 2000).

A study of inter-team collaboration at a software development company found that in-

dividuals with more experience or those with management roles are more likely to identify

interdependencies that require coordination; however, individuals of different roles focus

on different kinds of interdependencies (Grubb and Begel, 2012). This is consistent with

the observation that communication within an organization tends to fall along organization

lines (Kleinbaum, Stuart, and Tushman, 2008). While this work investigates known depen-

dencies, it does not address the question of the motivations or mechanisms for coordination

work. One explanation is that coordination tends to be reactive rather than ongoing, and is

seen more often after an identified failure (Panjer, Damian, and Storey, 2008). Another ex-

planation is that coordination across groups is typically reserved for specific coordination

roles within the organization (Cataldo and Herbsleb, 2008).

External mechanisms also have an effect on coordination. Research on coordination

activity during the design of software systems has focused on the impact of geographic

dispersion. One perspective is that informal communication is critical for issue resolution,

and dispersion within and between design teams is problematic because it disrupts this

informal communication (Herbsleb and Grinter, 1999; Herbsleb and Mockus, 2003). Two

mechanisms are proposed for this disruption. The first is lack of context or ‘teamness’,

which includes understanding of who is responsible for what work and use of compatible

21

processes for accomplishing work (Herbsleb, 2007; Herbsleb and Mockus, 2003). The

second mechanism is the sheer number of people involved in a project, supported by the

observation that more people tend to be involved in distributed work than in co-located

work, and therefore resolution of issues takes longer (Herbsleb and Mockus, 2003). The

observation that fully connected teams require more time to resolve issues is supported by

the finding that highly connected groups or cliques are particularly vulnerable to defects in

social systems (Piccolo, Lehmann, and Maier, 2018) and technical systems (Zimmermann

and Nagappan, 2008). This suggests that some similar mechanisms may be at play in

technical and social networks.

2.2.4 Systems Engineering

Systems engineering is a process to enable the design of a system, with a focus on manag-

ing the complexity inherent in the design of LSCES (Maier and Rechtin, 2009; Blanchard

and Fabrycky, 2011; Hazelrigg, 1996; de Weck, Roos, and Magee, 2011; Johnson, 2002).

Most systems engineering process standards include some variant of requirements defini-

tion, detailed design, test and integration, verification and validation, and operation and

maintenance (Johnson, 2002; United States Department of Defense, 2017; National Aero-

nautical and Space Administration, 2007; International Council on Systems Engineering

(INCOSE), 2004; Doran, 2006). These processes formalize partitioning and coordination

through technical control processes including requirements management, interface man-

agement, and configuration management (Johnson, 2002; National Aeronautical and Space

Administration, 2007; Blanchard and Fabrycky, 2011). This documentation supplies the

information needed to make coordinated, or internally consistent, decisions at every step

of design. However documentation alone does not ensure coordination: the documentation

must be written, stored, accessed, and understood the same way by others. If systems en-

gineering is to manage complexity from both technical and social sources, it must be more

than good documentation (Ryschkewitsch, Schaible, and Larson, 2009; Griffin, 2010; Tri-

22

antis and Collopy, 2014; Bloebaum and McGowan, 2012).

These tasks reiterate the notion that systems engineers have a managerial role, with

responsibility to ensure successful system integration throughout the life-cycle (Sage and

Lynch, 1998). Focusing on the design aspect of systems engineering, systems engineers can

be considered as decision-makers whose task is to select the design that is most preferred

based on evaluation of available options under risk and uncertainty (Hazelrigg, 1996) or as

enablers of elegant design (Griffin, 2010).

As described above, systems engineering requires continual integration of technical el-

ements via design and management activities. However, there is little consensus as to the

actions systems engineers and coordinators ought to undertake to achieve an integrated, op-

timal, design (Bloebaum and McGowan, 2012; Bloebaum, Collopy, and Hazelrigg, 2012).

The existence of a social component to systems engineering has been recognized in multi-

ple systems engineering competency models (Hutchison, Henry, and Pyster, 2016; Metzger

and Bender, 2007; Woodcock, 2010; Williams and Derro, 2008; Frank, 2012; Pietrzyk and

Handley, 2016). These competency models have identified skills and behaviors exemplified

by effective systems engineers in defense and commercial industry. Skills include basic en-

gineering know-how, holistic thinking, familiarity with systems engineering lifecycle and

process, management and leadership abilities, and the ability to collaborate and commu-

nicate across diverse groups (Hutchison, Henry, and Pyster, 2016; Metzger and Bender,

2007; Woodcock, 2010; Williams and Derro, 2008; Frank, 2012; Pietrzyk and Handley,

2016). What is not directly included in these competency models is an illustration of how

the interpersonal skills identified are used to support system-level coordination of design

work.

23

2.2.5 Measuring Coordination

2.2.5.1 Conway’s Law

Finally, there is another body of literature that asks what coordinated work processes should

look like. One of the first treatises on the relationships between the technical system and the

organization that designs it is Conway’s law, which states that “organizations which design

systems are constrained to produce designs which are copies of the communication struc-

tures of these organizations” (Conway, 1968). The implicit assumption made here is that

there exists a mapping between elements of the organization and elements of the technical

system, as shown in Figure 2.1(a). The hypothesis presented by Conway is illustrated in

Figure 2.1(b). Conway’s argument is that the process of partitioning a design organization

into teams implicitly constrains the set of design alternatives that organization is capable of

creating. The implication is that for a static organization, tasks will be delegated along the

organizational boundaries that exist, therefore creating a system design that has interfaces

along those same lines. Further, Conway argues that degradation of inter-organizational

communication likewise directly leads to breakdown across technical interfaces, resulting

in cases of integration failure.

(a) Assumption (b) Conway’s Law (c) Socio-technical
Congruence

Figure 1: Illustrations of a) assumption of one-to-one mapping between organizational
groups (social) and subsystem elements (technical); b) hypothesis given by Conway’s Law;
c) expected mapping between organization and technical system given socio-technical con-
gruence

24

2.2.5.2 Mirroring

Conway’s law makes explicit the hypothesis of a directional mechanism between organiza-

tional structure and product structure. Other research has suggested the reverse mechanism

may also be at play: that the design organization’s structure is constructed to match the pro-

posed system architecture (MacCormack, Baldwin, and Rusnak, 2012; Pugh and Hickson,

2007). This has been in turn called the Mirroring hypothesis (Colfer and Baldwin, 2016)

and is supported by empirical evidence of matching structures (MacCormack, Baldwin,

and Rusnak, 2012; Le and Panchal, 2012) and that matched structures correlate to higher

project success (Vrolijk and Szajnfarber, 2015). This work provides evidence in support of

the hypothesis that there is a relationship between organizational and product architectures.

2.2.5.3 Socio-Technical Congruence

Building on the assumption that there is a relationship between groups in the design orga-

nization and elements in the technical system, several approaches have been taken to try

to characterize these technical and social interfaces in some way. Socio-technical congru-

ence is a measure meant to illustrate the degree of similarity between the task dependency

present in a technical system and the communications that occur within the design orga-

nization (Cataldo et al., 2006). Congruence is calculated by creating a DSM of element

interdependencies within the technical system, and comparing it to a DSM constructed of

social interactions within the organization. Perfect congruence is achieved when the matri-

ces are identical, yielding the interpretation shown in Figure 2.1(c).

2.2.5.4 Challenges in Measuring Coordination

The measure of socio-technical congruence however has several limitations. The first is

that there is no consistent method for weighting the interface types of the technical or orga-

nizational system. Unweighted interactions, weighted interactions according to frequency,

and weighted interactions due to work on a shared element result in structural congruence

25

values ranging from 25 to nearly 75 percent for projects considered successful (Cataldo,

Herbsleb, and Carley, 2008; Ehrlich et al., 2008; Kwan, Schroter, and Damian, 2011).

The second limitation regards the type of interfaces considered: in many implementations

of STC, only functional dependencies within software are considered, which focuses only

on implementation decisions within software and neglects any partitioning or architecture

decisions made prior. In addition, directional interfaces are not considered in the original

formulation (Cataldo et al., 2006), but are considered in other formulations (Valetto et al.,

2007; Ehrlich et al., 2008). Finally, socio-technical congruence is a static measure which

has been shown to decrease with time (Le and Panchal, 2012), suggesting that the mea-

sure could be improved by a distinction between resolved design dependencies that do not

require coordination activity and yet to be resolved design dependencies that do require

coordination.

Given the observation that not every successful system design has 100% congruence,

some research has been directed at identifying the cause of incongruence as defined (Sosa,

Eppinger, and Rowles, 2004; Ehrlich et al., 2008). Sosa, Eppinger, and Rowles (2004)

proposed the use of design structure matrices for the organization and the technical sys-

tem to identify unaddressed interfaces, examples of which is illustrated in Figures 2.2(a)

and 2.2(b). A similar question was posed by Ehrlich et al. (2008), asking what is the source

of ‘gaps’ in the organizational network. In this research, a gap is identified as the lack of

inter-team or intra-team interactions predicted by technical interfaces. Sosa et al.’s case

study suggests that technical interfaces that span disciplines tend to be those that are not

addressed in the organizational DSM.

Some of those missed interactions may exist as indirect communications, e.g. as shown

in Figures 2.2(b) and 2.2(d) (Sosa, Eppinger, and Rowles, 2004). These indirect interac-

tions that are not directly matched may exist on the technical or social side, as illustrated

in Figure 2. These findings suggest that avenues to improve this work is to examine the

methods of social communication and coordinated work, as well as explicitly account for

26

(a) Unmatched social inter-
face, missed technical inter-
face

(b) Unmatched technical
interface, missed social inter-
face

(c) Possible explanation for
missed technical interface

(d) Possible explanation for
missed social interface

Figure 2: Illustrations of the concept of misalignments as in Sosa, Eppinger, and Rowles
(2004), with examples of a) an unmatched social interface; b) an unmatched technical
interface; c) an unmatched social interface due to indirect technical interactions; d) an
unmatched technical interface due to indirect communications

the role of indirect integrator-type roles within the organization. These integrator roles may

have a large impact on measures of socio-technical congruence (Collopy et al., 2017).

2.3 Summary

Coordination is described as a preconceived strategy or set of rules that addresses the uncer-

tainty and interdependence between diverse tasks completed in support of a common goal.

Coordination is often defined through top-down prescriptions of work procedures, devel-

opment of schedules and plans, and provisions for divisions and teams to interact through

their work environments and meetings. Our interest is the design of large-scale and com-

plex engineered systems, which are by nature of their size and use of novel technologies,

27

very complex (Bloebaum and McGowan, 2012; de Weck, Roos, and Magee, 2011). An-

other prominent source of complexity is the social system engaged in system design and

development work (Grogan and de Weck, 2016; de Weck, Roos, and Magee, 2011; Bloe-

baum and McGowan, 2012; Sheard et al., 2015; McGowan, 2014). Distributed knowledge

(McGowan, 2014; Cumming, 2002), inconsistent preferences (Kannan, Mesmer, and Bloe-

baum, 2017; Bhatia, Mesmer, and Weger, 2018), and multiple incentives (Grogan et al.,

2018; Vermillion and Malak, 2015; Meluso and Austin-Breneman, 2018) all contribute to

complexity, and hence challenges for coordination.

The reviewed literature has shown the existence of coordination modes, work processes

and plans instituted by the organization; a systems engineering process is an example.

However, as expressed in the literature, the facilitation of coordination is through top-down

prescription of rules and procedures for the organization as a whole. The inclusion of

individual behaviors and skills adds a new dimension to the discussion of coordination

that shifts from a rational closed-system view of organization to a more natural system,

in which individuals are acknowledged as having diverse goals (Scott and Davis, 2006).

This research seeks to contribute to this conversation by exploring the connection between

individuals’ coordination-facilitation behaviors and performance on a design task requiring

coordination.

28

CHAPTER 3

Coordination in Industry Practice

3.1 Introduction

In this study, we identified strategies used by systems engineering and management per-

sonnel to support the coordination of distributed design work in LSCES design projects.

We interviewed professionals with expertise in systems engineering, project management,

and technical leadership at two large aerospace design organizations. Through qualitative

thematic analysis, we identified two strategies used to facilitate coordination. The first is

enabled by technical know-how and the use of authority, and the second is enabled by in-

terpersonal skills, leadership traits, and empathy, which comprise a concept we term empa-

thetic leadership. These strategies emerged from analysis as complementary sets of actions

and behaviors used by individuals to facilitate system-level coordination of design work.

These findings connect existing models of systems engineering and project management

skill sets to actions and behaviors used in practice to accomplish systems design work.

The contribution in this chapter is the identification of coordination strategies, namely,

actions and behaviors reported by individuals as useful to support coordination activity in

LSCES design work. We find that skills identified in competency models enable these co-

ordination strategies, which in turn support the organizational tasks of management and co-

ordination of interdependent work. While literature suggests coordination is accomplished

through prescriptive processes and plans, this study focuses on the contribution of individ-

29

uals’ behaviors to facilitation of system-level coordination. This contributes a new picture

of how coordination is accomplished in LSCES design work, and the role that systems

engineering and management personnel play in facilitating that coordination.

3.2 Literature: Coordination Methods

Coordination is described in the literature of several disciplines as a programmatic or pre-

scriptive process; its purpose to address the information and communication challenges

of working on interdependent tasks simultaneously. In classic organization science liter-

ature, ensuring coordination is considered a large part of organizational design, including

defining group structure, lines of hierarchy, and schedules and plans (Blau, 1974; March

and Simon, 1958; Thompson, 1967; Van De Ven, Delbecq, and Koenig, 1976). In the

multidisciplinary design optimization literature, coordination serves the same purpose for

solving interdependent analytical problems, with the addition of ensuring a global objec-

tive is found (Papalambros and Wilde, 2017). Similar to defining aspects of organization

structure, coordination is accomplished in MDO through the definition of linking variables

between problems, and iteration through a programmatic routine that shares information

between problems at regular intervals. In engineering design, systems engineering, and

software engineering, coordination is discussed in terms of work process and project man-

agement approaches. Coordination is improved through the development and use of tools

to support cooperative work (Cataldo et al., 2006), and the architecting of products and

schedules to minimize required interactions (Baldwin and Clark, 2000; Steward, 1981).

The underlying needs and causes of coordination challenges include large distances be-

tween distributed teams and different work styles (Herbsleb and Mockus, 2003), misunder-

standings of shared product or software interfaces (Souza et al., 2004), and challenges of

working across the organization where there are no formal paths to do so (Sosa, Eppinger,

and Rowles, 2004). In sum, coordination is accomplished in the literature primarily using a

30

prescriptive process or tools. We expand this perspective to include the role of individuals’

behaviors in facilitating coordination.

3.3 Methodology

To address the question of how coordination in LSCES design is carried out in practice,

we developed a semi-structured interview protocol. Semi-structured interviews consist of

a priori questions to guide the general discussion, but are open-ended to allow for fluid

conversation and exploration of unexpected topics that may arise (Given, 2008). Our in-

terview protocol was designed to elicit individuals’ skills and behaviors used as part of

LSCES design work. Our focus on the individual led us to narrow our questioning to look

at communicative and cognitive skills and behaviors. Questions in the protocol progress

from general to specific, setting a basic understanding of an individual’s job and typical

functions before discussing how they complete those functions. Of particular focus were

job functions that pertain to partitioning and coordination processes during system design.

Examples include determining work breakdowns, delegation, as well as the need to re-

combine and make sense of distributed information. Our questions centered on strategies

for partitioning and coordination tasks that are both communicative (e.g., How would you

characterize interactions between groups you work with regularly? What are typical com-

munication methods used within the organization and what works best for you?) and cog-

nitive (e.g., Was there any stage during the system design process in which you found it

difficult to process and integrate the information available?). The full interview protocol is

included in Appendix A.

We interviewed twenty professional engineers, managers, and systems engineers at two

large aerospace design and manufacturing organizations as part of this study. Interviewees

were selected by their organizations as representative of expertise in a range of positions

within the organization. The gender diversity of interviewees is roughly consistent with

31

national trends: three of twenty interviewees (15%) were women, slightly higher than the

9-10% typical of mechanical and aerospace engineering workforce in the United States

in 2015 (National Science Board, 2018). Our sample is biased, however, as 19 of 20

interviewees were in management positions. This does not reflect the typical depth of

engineering organizations. Interviewees were also selected as representative of exemplar

systems engineering practice within the organization, meaning that their approaches to

coordination are not necessarily shared by all members of the organization. This study

examines what are considered best practices.

All twenty interviews were analyzed together due to the generality of our questions as

well as the similarity between the two organizations studied. Both companies are matrix-

organized, design and manufacture large aerospace systems, and have a systems engineer-

ing process in place. These organizations partition their system design work both by aspect

into disciplines and by object into subsystems. This dual partitioning is realized as a matrix

organization structure, with management and leadership roles overseeing both the disci-

pline analysis work (aspect partitions) and the technical subsystem design work (object

partitions). We refer to the design and manufacturing work to develop and produce a single

system as a project.

We grouped the actual titles of our interviewees into six general titles to preserve

anonymity: Engineer, Discipline Lead, Chief Engineer, Project Manager, Systems Engi-

neer, and Senior Management. Engineer reflects a non-management position that supports

a single discipline or subsystem within a single project. Discipline Lead and Project Man-

ager titles refer to management and leadership positions for a single project, overseeing

a single aspect or object partition, respectively. Chief Engineer and Systems Engineer ti-

tles are also positions for a single project, overseeing both dimensions of partitioning for

a subsystem or system. Those with Systems Engineer titles tended to be responsible for

interfaces between system partitions throughout project work, while those with Chief En-

gineer titles tended to be responsible for the success of the project overall. The Senior

32

Manager title refers to management and leadership positions whose scope extends to mul-

tiple projects. Table 1 presents a summary of interviewee demographics including current

titles and years of industry experience. This summary gives an idea of the types of people

we interviewed, noting that the exact function expected of an individual with any given title

may vary, and may differ between organizations.

Table 1: Summary of interviewee demographics based on title and years
of industry experience

Years of Experience
10-19 20-29 30+ Total

Po
si

tio
n

Engineer 1 1
Discipline Lead 2 2 4
Project Manager 2 2 1 5
Chief Engineer 1 1 2
Systems Engineer 2 1 2 5
Senior Manager 1 2 3
Total 6 5 9

Our main goal of analysis was to identify and describe coordination methods used in

practice which can then inform future hypotheses. Our sample size is small, and is therefore

appropriate for an exploratory study but not necessarily the development of generalizable

theory. Thematic analysis is well suited for this exploration. Thematic analysis focuses

on the identification of emergent concepts or themes from the aggregate analysis of data

(Patton, 2015). Our thematic analysis approach follows the methodology outlined by Braun

and Clarke in (Braun and Clarke, 2006). Our implementation consists of five steps:

1. Prepare data for analysis by transcription of audio recordings.

2. Deductive coding based on initial broad categories of interest derived from original

research question.

3. Inductive coding of the segments coded in step 2 to organize emergent ideas.

4. Identification of themes from review of inductive codes and their interrelationships.

33

5. Reflection and review of themes to ensure they are characteristic of entire interview

corpus.

Our methodology as stated differs from that given by Braun and Clarke (2006) in that

we separate our initial coding process into two steps, and our search, review, and naming

of themes are combined within our theme identification step. The findings at each step of

our analysis are presented in the following section.

3.4 Thematic Analysis

3.4.1 Data Preparation

To prepare interview data for analysis, we created verbatim transcripts of raw audio files.

Our transcription focused foremost on recording words accurately. We then also added

punctuation according to pauses and emphasis in interviewees’ speech. Following tran-

scription, the raw transcripts were anonymized by replacing or redacting any names men-

tioned throughout. Qualitative coding assistants prepared for analysis by reviewing the or-

ganizations’ structures, the products they design and manufacture, their design processes,

and notes from interviews regarding general impressions of the work environment. This

served to provide the coders – who did not participate in interviews – with context for their

review of interview data.

3.4.2 Deductive Coding

Our first stage of analysis was deductive coding, meaning to structure qualitative data with

existing categories in mind (Patton, 2015, p. 64). We started with four initial categories

based on the initial research question: personal and organizational description, language

and information usage, process description, and technical design context. Two coders in-

dependently coded three interviews based on these categories. Afterward, the categories

34

were reviewed and collaboratively refined into fifteen deductive codes to focus on specific

aspects of each category. The final set of deductive codes grouped into four new topics

of personal, interpersonal, design process, and technical. The main change made in this

refinement was to divide the original category of personal and organizational description

into two topics. Both topics focused on personal preferences for doing work; the first topic

centered on individual tasks and the second on interacting with others. Table 2 shows defi-

nitions of each topic and the deductive codes within each topic. The same two coders then

used the final deductive codes to independently code (or re-code) all interviews by tagging

each sentence or paragraph with the deductive code or codes they felt most appropriate.

Coders used NVivo (NVivo for Mac Version 11), a Computer Assisted Qualitative Data

Analysis Software (CAQDAS) tool.

The resulting deductively coded segments were analyzed using Cohen’s Kappa as a

measure of inter-rater reliability. Cohen’s Kappa is increased when two independent coders

code the same text segments the same way, but is decreased according to the calculated

likelihood that coders code the same way by chance (Salkind, 2010). While our deductive

codes were developed and defined collaboratively, the Kappa values were below 50% for

all codes. The low values are consistent with observed difference in coding styles (e.g.,

coding entire paragraphs at once compared to portions of sentences), as well as different

interpretations of the codes that became apparent through discussion. This meant the coders

were each picking up on different nuances of the same code, despite agreeing on the overall

code definition. These discrepancies indicated that the definitions for each deductive code

were not sufficiently capturing the nuances of interviewees’ responses.

3.4.3 Inductive Coding

Together, both coders identified a total of 2,388 deductive codes. The coded segments were

aggregated and used as a basis for the next step of analysis. We used inductive analysis

to identify the multiple concepts within each of our deductive codes. Whereas deductive

35

Table 2: Deductive codes and definitions used for second step of
thematic analysis, divided by topic

Code Definition
Personal Attributes of person, innate or imposed by organization

Role, Function
Role or function within organization, formal or
informal

Personality Personality traits

Training, expertise
Experience or training that impacts how a person ap-
proaches their job

Personal style, work
process

Preferences for approach to own work, including
organization of information

Interpersonal
Attributes of people’s interactions with others, innate or
imposed by organization

Relationships Relationships between people, formal or informal

Emotional and social
awareness

Approach to interactions with others, including
empathy

Communication
methods and modes

Method, medium, or context of
communication described

Communication
purpose

Purpose and motives for communication, including
whose purpose and motives

Communication style Preferences regarding communication

Design Process Attributes of design process

Information
What information is shared by communication and what
form it takes

Meetings How meetings are formed and their purpose

decision-making
decision-making processes, what information informs
decisions and risk analysis

Iteration
Feedback during design, including formal and informal
iteration

Technical Descriptions of technical design work
Discipline identity How discipline identity is characterized

Level of abstraction
At what level of detail design work is approached, ad-
dressed, or understood

36

coding is a process of fitting qualitative data to a structure, inductive coding is a process

of fitting a structure to the data (Patton, 2015, p. 64). This is an iterative process, where

potential codes are created, merged, and potentially discarded as the concepts in the data

are organized.

Our process included two iterations: the first to identify potential or initial codes out of

deductively coded segments, and the second to refine and organize those codes into final

inductive codes. We collaboratively reviewed each deductive code one at a time, tagging

the segments with initial codes and subcodes. The initial codes represent common threads

that emerged from review of the deductively coded segments, and subcodes are specific

examples of those common threads. An example is an initial code we called ‘Formally

Structured Information’ which included subcodes of presentations, reports, technical doc-

umentation, database, schedule, budget, and deliverables.

Throughout analysis, codes and subcodes were added and combined as necessary. After

reviewing all the deductively coded segments, the initial codes and subcodes were laid out

on cards and overlaps and connections between them considered. Rearranging cards, we

grouped initial codes and their respective subcodes into final inductive codes. Continuing

the above example, the subcodes within the initial code of ‘Formally Structured Informa-

tion’ were reorganized into final inductive codes of ‘Information Usage’ and ‘SE Process’.

A map of the interrelations we observed between inductive codes is shown in Figure 3,

with inductive codes grouped into four topics: Precursors, Methods, Purpose, and Context.

The general flow of this map is that precursors inform the choice of methods used to ac-

complish a purpose, all within the context of a design process. While the deductive codes

are organized by type of task, the inductive codes and topics are instead organized along a

temporal axis separating actions and outcomes. The final inductive codes, their definitions,

and some example subcodes are given in Table 3.

37

Table 3: Inductive codes, definitions, and selected subcodes, divided
by topic

Code Definition

Precursors
Innate attributes of person that impact how they approach
their job functions

Personality and
Leadership

Personality and behavioral traits, e.g., extroversion, curios-
ity, system awareness, leadership

Values, Ideology
Attitude towards work and valued traits in others, e.g., fa-
vors simplicity or efficiency, problem or solution orienta-
tion, value technical curiosity, lifecycle experience

Experience Education, on-the-job training, or mentorship

Skills
Skills learned through experience, e.g., discipline exper-
tise, technical analysis, work with people, workflow

Methods Preferences and approaches to completing job functions

Communication
preferences

Preferred way of interacting with people, e.g., build and
maintain relationships, use empathy, keep people in-
formed, use authority

Communication
modes, setting

Choice of setting for communication, e.g., face-to-face,
email, meetings, one-to-one or group

Job methods, ap-
proach, style

Actions used to accomplish job functions, e.g., estab-
lish norms and process, delegate, ask questions, facilitate
brainstorming, engage with experts

Purpose Job functions, goals of communication

Role/Function
Job functions, e.g., integration, coordination, facilitation,
enablement, negotiation

Decision-making
Aspects of decision-making process, e.g., responsibility,
oversight, set objectives, create trust and buy-in

Context Systems Design Context

Information Usage
Information created by or used to make a decision, e.g.,
technical data, formal documents, plans, updates and feed-
back, lessons learned, homegrown tools

SE Process
Elements of systems engineering process, e.g., formal re-
views, formal documentation, change management, re-
quirements, verification and validation plans

Complexity
Sources of complexity, e.g., lots of parts, lots of disci-
plines, new approaches, change of scope, culture clash

38

Personality,
Leadership

Values, Ideology

Experience

Skills

Communication
preferences

Job methods,
approach, style

Role, Function

Information

Communication
modes, setting

SE Process

Complexity

Decision-making

used to
convey

used in

to
accomplish

creates informs,
creates guides

begets, manages

guides
format of

inform

inform

inform

dictate

yields

used in

A B D

C

engages in

Figure 3: Map of interrelations between inductive codes. Codes are marked in
blue, and organized into topics of (A) Precursors, (B) Methods, (C) Purpose, and
(D) Context. Arrow labels are general characterizations of the relationship be-
tween inductive codes. Inductive codes are defined in Table 3.

3.4.4 Theme Identification

Inductive codes describe the content of the interviews, but do not necessarily give insight

into the meaning behind the content. Our next step of analysis was to look in more detail at

the relationships between inductive codes as shown in Figure 3. For example, which com-

munication preferences dictate which job methods or approaches will be used? What job

functions create what kind of information? To address the research question of how coordi-

nation is accomplished in practice, we focused on one specific question: what job methods,

approaches, and styles are used to accomplish specific roles and functions? In other words,

we looked at the connections between inductive codes ‘Communication preferences’, ‘Job

methods, approach, and style’, and ‘Role, Function’ (which includes facilitation of coordi-

nation).

We looked for evidence of relationships between subcodes by reviewing text segments

within each inductive code. For every subcode, we reviewed again the coded segments

and identified other subcodes that were overlaid or connected through the interviewee’s

language. Subcodes that tended to appear together coalesced into four concepts which

39

became focal points of our analysis: Authority, Empathetic Leadership, Management, and

Facilitation of Coordination. Authority and Empathetic Leadership are names we gave

to groups of subcodes under the ‘Communication preferences’ code. Management and

Facilitation of Coordination are two subcodes under the ‘Role/Function’ code. Our analysis

identified which subcodes under the ‘Job methods, approach, and style’ code connect these

concepts; i.e., the link between communication preferences and job functions. Inductive

codes and subcodes that appear in the following analysis are highlighted in Figure 4.

Our analysis focused on codes within the three topics of Precursors, Methods, and

Purpose. While Context, the fourth topic, is not explicitly present in the analysis, it is

pervasive throughout. An example is the use of a systems engineering process as a tool to

organize what, how, and when work is done: this appears as ‘establish norms and process’

under the ‘Job methods, approach, and style’ code. Under the ‘SE Process’ code, not

included in this analysis, are the specific kinds of documentation and reviews that comprise

the process itself.

We discuss the central concepts of Authority, Management, Empathetic Leadership,

and Facilitation of Coordination in turn. For each, we highlight the subcodes relevant to

each, drawn from the inductive codes indicated in red in Figure 4. Our analysis focuses

on identifying connections between subcodes according to our interviewees’ responses.

An example we walk through below in Section 3.4.4.3 is how Personality and leadership

traits (extroversion and integrity) impact Communication preferences (use of empathy and

knowing people; or Empathetic Leadership), which in turn dictate actions such as asking

questions and translation as strategies for Facilitation of Coordination and Management.

Final themes emerge from the composition of these analyses, which show a dichotomy

between authority-driven and empathetic leadership-driven strategies for facilitation of co-

ordination.

40

Personality, Leadership
• Extroversion; proactivity
• Reliable; has integrity

Experience
• Job responsibility, job

training

Skills
• Technical understanding

Communication Preferences
• Use authority
• Build and maintain relationships
• Have empathy
• Humanize relationships
• Know people as people
• Listen

Job Methods, Approach, Style
• Establish norms, process
• Delegation
• Action-tracking
• Planning
• Set deliverables
• Call standing meetings
• Co-locate groups
• Use standard process
• Translation; sensemaking; create

common language
• Ask questions
• Work across personalities;

encourage empathy

Role, Function
• Coordination, Facilitation
• Technical Management
• Resource Management
• Technical Leadership

Selected subcodes:

Personality,
Leadership

Values, Ideology

Experience

Skills

Communication
preferences

Job methods,
approach, style

Role, Function

Information

Communication
modes, setting

SE Process

Complexity

Decision-making

used to
convey

used in

to
accomplish

creates informs,
creates guides

begets, manages

guides
format of

inform

inform

inform

dictate

yields

used in

A B D

C

engages in

Figure 4: Selected subcodes included in theme analysis discussion. Many subcodes are
common to the examples given in Table 3. Colored boxes around each topic of codes are
consistent with those in subcode maps in the following sections: Precursors are yellow
(left), Methods are green (middle), and Purpose codes are purple (bottom right).

41

3.4.4.1 Authority

Authority is defined as the ability to give orders and make decisions (Stevenson and Lind-

berg, 2011). Authority, its enablers, and the tasks it is used for as identified from our

interviews are shown in Figure 5. Each block in this map represents a subcode. Arrows

between subcodes indicate that the attribute or action described by one subcode enables

another. Squared boxes in this map indicate specific instantiations of each subcode: for

example, instantiations of Authority identified through analysis include technical author-

ity based on recognized technical expertise and positional authority, based on delegated

responsibility.

Figure 5: Map of subcodes related to Authority subcodes, with specific instantiations of
‘Authority’ and ‘Set norms, process, scope, and objectives’ subcodes shown in squared
boxes. Subcode colors refer to the topic its parent inductive code belongs to (see Figure 4).

Technical Expertise

Authority comes from assigned responsibility for decision-making, which in turn is

supported by experience and technical understanding. As pointed out by one of our inter-

viewees, technical understanding is essential to effective decision-making: “I don’t under-

stand how you can be accountable for the decisions you’re making if you don’t understand

the thing you’re building, and how it works, and what the trades are.” The benefit of techni-

cal knowledge was mentioned by all interviewees, but its importance was emphasized for

situations with high technical or programmatic uncertainty. Decision-making under uncer-

tainty requires a risk assessment, based on experience: “If things feel like [they are] low

risk, I don’t spend a lot of time looking at them. If they’re new, or novel, or something we

42

haven’t done in a while, then I’ll pay special attention to that.” In addition to experience,

one interviewee pointed out that “it helps to have some ... level of domain knowledge” to

estimate technical and programmatic risk.

Positional Authority

Technical authority to make decisions can be delegated to any member of the organiza-

tion where experience and technical understanding assists that decision-making. However

we mostly spoke with those in management and leadership roles, whose positional author-

ity enables directing the work and decision-making of others. Direction includes setting the

scope and objectives of work (what work is done) as well as norms and processes for doing

and reporting work (how work is done). Specific instantiations of norms, process, objec-

tives, and scope are shown in Figure 5, and include delegation, action tracking, planning,

setting deliverables, calling standing meetings, co-locating groups, and using a standard

design process.

Set Norms, Process, Scope, and Objectives

Methods such as action tracking and deliverables are used to structure the vast amount

of information that our interviewees have coming to them daily, regardless of their role.

One interviewee explained how structured deliverables help them stay on top of their

group’s work: “I need to get this information from everybody so I can understand it so

I can make sure it’s all coming together, and I need them to provide it to me in some kind

of consistent format, otherwise it takes me too long to digest all of it.” For some, this con-

sistent format is a bulleted list, others, documents posted to SharePoint, and still others use

a custom action-tracking document to centralize information about who is working on what

tasks and each task’s status.

Planning and establishing a formal design process supports management tasks by en-

abling tracking how closely actual work adheres to those plans. Plans also support co-

ordination by scheduling concurrent design work. As one interviewee explains, “I think

43

just having that process in place that everybody’s bought into and everybody kind of under-

stands and follows, it helps ensure that everybody’s communicating and they’re on the same

page.” At the organizations we visited, these design processes – including implementations

of systems engineering, lean manufacturing, and design review schedules – are an integral

part of organizational culture and shape how work is done. While a design process applies

to the project as a whole, an individual’s authority allows them to enforce how the pro-

cess is followed. An example is using standing meetings and co-location to support design

work: “There are situations where ... somebody [has] the experience [needed to resolve

an issue] , but it may not be communicated. So what we do to foster that communication

is essentially have open-ended discussions, weekly meetings [and] we also try to co-locate

teams.”

Authority enables the setting of formal structures of work and standards for accomplish-

ing that work. The management and coordination-facilitation tasks these authority-based

actions support are discussed further in Section 3.4.4.2 and Section 3.4.4.4 below.

3.4.4.2 Management

Management in the design of LSCES can be both technical, ensuring the right work is done

to meet technical requirements, and resource-based, ensuring constraints of time and bud-

get are met. A map of the subcodes related to Management functions is shown in Figure 6.

Again, the various instantiations of subcodes are shown in squared boxes. Management is

supported by the use of authority to set norms, process, objectives, and scope of work, in-

stantiations of which are discussed in Section 3.4.4.1. Management tasks are also supported

by one’s knowledge of others.

Knowing People

An approach to delegation mentioned by interviewees relies on knowing people well

enough that they can delegate tasks knowing how that person will respond to situations. As

one interviewee explained: “I’ll split my work across ten people. ... I know where my work

44

Figure 6: Map of subcodes related to Management subcodes, with specific instantiations
of ‘Set norms, process, scope, and objectives’, ‘Tailor interactions’, and ‘Management’
subcodes shown in squared boxes. Subcode colors refer to the topic its parent inductive
code belongs to (see Figure 4.)

is delegated to, and I basically self-replicate my principles to them.” Another frequently

mentioned approach to ensuring that the correct work is done is asking questions. One

interviewee described one of their roles as an ‘interrogator’, “[asking] you as many hard

questions as I can to make sure that you are [doing the right work].” Asking questions of

multiple people is also a tactic used to reduce uncertainty: “It’s not uncommon for me to

ask the same question three times either in different ways, or [of] different people, just to

check consistency.” The actions of asking questions and relying on knowledge and trust

in people to ensure work is being done stand in contrast to using authority to set up-front

rules and procedures for doing work. Both strategies are used widely by our interviewees

to support technical management tasks.

Technical Leadership

We also found that management tasks support technical leadership. While technical

management as we define it here is about ensuring the technically correct work is done to

meet requirements, technical leadership is the complementary guiding vision that defines

what the resulting system should be. This leadership concept is also about maintaining

focus on the end designed system: “[E]verybody has to as much as possible consistently

implement leadership’s intent. Because everybody can’t be going different directions.”

45

When designing large hardware systems, the final physical artifact is out of sight for much

of the design process, and perhaps the entirety for designers in remote locations. Maintain-

ing this forward “solutions-oriented” focus was cited as an important part of their job for

several of our interviewees: “You have to be able to share a vision. ... Being optimistic and

solution oriented is so critical. Without that, then the team basically loses confidence.”

3.4.4.3 Empathetic Leadership

We use the term empathetic leadership to describe the tailored, individualized approach to

working with and leading or managing people described by several interviewees. A map of

the subcodes related to empathetic leadership is shown in Figure 7. These subcodes include

personality traits, social skills, and the ability to work with people effectively.

Tailor
interactions

Extroverted
and proactive

Reliable; has
integrity

Empathetic
Leadership

Influence

Encourage others to have empathy
Translation, sensemaking
Ask questions for others’ understanding
Ask questions for own understanding

Build, maintain relationships
Have empathy
Humanize relationships
Get to know people
Listen

Figure 7: Map of subcodes related to Empathetic Leadership subcode, with specific in-
stantiations of ‘Empathetic Leadership, Social Capital’ and ’Tailor interactions’ subcodes
shown in squared boxes. Subcode colors refer to the topic its parent inductive code belongs
to (see Figure 4).

Building Relationships

One instantiation of empathetic leadership is an emphasis on getting to know people.

This way of working with people was described by one interviewee: “I spend time knowing

people, talking to people, I know what they do outside of work, I know what their interests

are, I get to know them, like if they have families and what they’re doing, and taking that

time – there’s a lot of engineers that will tell you that you don’t need to do that, that’s not

46

part of your job. — and I strongly disagree. ... I don’t see how you can lead a group of

people without seeing that whole human side.” Acknowledging that people have different

needs and different perspectives helps these interviewees to get the most out of their teams

and build trust within the team.

Influence

Building individual relationships with people is also helpful for working outside one’s

team. As one interviewee expressed, “When we say please and thank you and treat each

other with respect in that way and we do relationship building, [when] the next project

or the next thing comes along, people have a more positive understanding.” Several inter-

viewees mentioned that many technical challenges benefit from knowing the people who

are involved: “[U]sually it’s not that we don’t know how to do something technically,

it’s usually a conflict that’s more at a personal level or it’s an opinion or something like

that. ... [Y]ou need to steer toward understanding how individuals operate or their per-

spectives.” Maintaining connections and building trust in those relationships also helps to

support technical leadership through the development and use of influence. According to

our interviewees, influence can support or supplant authority to guide decision-making:

“[y]our ability to influence the final design is much more dependent upon your personal

influence and your personal integrity than it does on your position of authority.”

Empathetic Leadership

Our synthesis of all interviews suggested an underlying concept that is supported by

these actions of building and maintaining connections with others, using empathy to get to

know people, building trust in relationships with others, and personality traits and values of

extroversion, reliability, and integrity – all shown on the left side of Figure 7. We call this

concept empathetic leadership as explained above. We also note this description evokes the

concept of social capital. Social capital is the resource afforded to an individual based on

their connections and their ability to navigate those connections (Adler and Kwon, 2002;

47

Burt, 1992). This connection to social capital is discussed further in Section 3.5.

On the right side of Figure 7 are several actions and behaviors that emerged as supported

by empathetic leadership. These actions, such as encouraging others to have empathy, ask-

ing questions so that others gain understanding of situations, and translating or engaging

in sensemaking to help others navigate discipline or cultural boundaries, are all supported

by the ability and willingness to humanize and tailor reactions with others. These proac-

tive behaviors are valuable for supporting management tasks and delegation as discussed

previously, but also support the facilitation of coordination by helping others work together

productively. Facilitation of coordination and the strategies used to accomplish coordina-

tion are discussed more in Section 3.4.4.4.

3.4.4.4 Facilitation of Coordination

According to our interviewees, facilitation of coordination is about “[getting] the right in-

formation to the right people at the right time so that they can be enabled to [do] what

needs to be done.” We heard from our interviewees several actions they use to facilitate

coordination in their daily work. The majority of interviewees mentioned one of their top

responsibilities in their position was communication, and in many cases followed closely by

ensuring others are communicating. In the design of large and complex systems, commu-

nication across disciplines is key due to the inherent interdependencies between parts that

are designed by different people and groups, often in different locations and sometimes

in different organizations. We found that both setting norms, process, scope, and objec-

tives for work (through use of authority) and tailored interactions (through use of empa-

thetic leadership) are used to facilitate coordination. These authority-based and empathetic

leadership-based strategies, actions that comprise each strategy, and example instantiations

of each are shown in Figure 8.

We found that the authority-based actions of calling standing meetings, co-locating

teams, and the use of a standardized process are complementary to the actions based on

48

Figure 8: Map of subcodes related to Facilitation of Coordination subcode, with specific
instantiations of ‘Set norms, process, scope, and objectives’ and ’Tailor interactions’ sub-
codes shown in squared boxes. Subcode colors refer to the topic its parent inductive code
belongs to (see Figure 4).

empathetic leadership: encouraging others to have empathy, translation and sensemaking,

and asking questions for others’ understanding. We discuss each pair in turn.

Meetings

One oft-used mechanism for ensuring discourse across groups and disciplines is meet-

ings. For some, meetings are where their work gets done: “[W]e have so many different

design [groups], we’ve got to get them to talk to each other. ... [T]here are some days I have

a half hour that I’m not in the meetings throughout the day. But really that’s how work gets

done.” Meetings can take several forms, but two main functions were apparent from our

interviews. One typical purpose of a meeting is to provide awareness of team member’s

current status and issues. A second common meeting function is bringing together multiple

teams whose work is impacted by a design change to make and agree to that change. In

both cases the meeting is a forum for disseminating information to many parties at once,

ensuring all parties receive the same information.

Encouraging Empathy and Asking Questions

The success of meetings and their utility depends on what the individuals bring to the

table: what makes these meetings go well centers around having the “right people” there.

This means people with the right experience and information to contribute to decisionmak-

ing, as well as a clear sense of purpose of what they want to get out of being at a meeting.

49

The effective transfer of information at a meeting, central to coordination, then depends on

both having regular meetings and the awareness to make use of the meeting time. Coordina-

tion is in part facilitated through asking questions of people to ensure they understand why

their meeting participation is important and encouraging them to have some empathy and

awareness of how their work impacts others; “helping them try and connect the dots”. Em-

pathetic leadership, specifically having empathy and knowing people’s individual strengths

and weaknesses, supports these two actions of asking questions and encouraging the use of

empathy.

Co-Location

Another approach used to facilitate coordination is to co-locate people who have related

or interdependent work. One interviewee expressed their goal of co-locating a multidisci-

plinary team is to help them “self-integrate, because [then they’re] just the people that nat-

urally communicate with each other on a day-to-day basis.” Another interviewee expressed

a similar sentiment, that co-location for their team ensures that problems can be solved by

walking to a nearby desk: “[Y]ou can go to your neighbor or you would go to a guy that

you see almost every day who is ... the expert in that discipline or methodology. Or [say]

hey, I think that I’ve seen on [someone’s] screen [something] that I’m trying to solve.”

Proactivity and Translation

In highly interdependent design work, people are likely to have multiple interdependen-

cies across both aspect (discipline) and object (subsystem) partitions. Co-location partitions

a group of people based on one kind of dependency. In turn, that group likely has additional

dependencies with other individuals who are farther away. Proactively seeking out those

more remote interdependencies was identified by our interviewees as important to effective

facilitation of coordination: “You can’t sit in your office, you’ve got to go [and] interact

with all of these design disciplines. You’ve got to communicate.” Being able to communi-

cate across discipline and cultural divides, or “translate”, is essential. As one interviewee

50

explained, the lack of consistent terminology and language across disciplines can cause

miscommunication and ultimately problems that take extra time to resolve. Translating

discipline-specific language to something more universally understood is key to ensuring

groups work well together. “I end up being the translator. I end up being the kid that says

hey wait a minute, I think this is what you just said. Is that right? ... I specifically re-

ally try and push enough of a plain language that all of the groups can understand it. ...

It’s a hard thing, but that actually is really, really critical.” Again, empathetic leadership

includes building relationships across the organization and knowing individuals and their

styles. Proactively seeking out others and translation to develop a common language are

central to the coordination strategy based on empathetic leadership.

Standard Process

Finally, the complexity introduced by the multitude of parts and people involved in

large-scale and complex engineered systems design is often managed through a formal

systems engineering or design process. Simply having a process and a standard way of

documenting work is not always considered sufficient or the most efficient way to sup-

port coordination in all cases, though: “[I]t may not be as effective sometimes to just look

through a bunch of documentation, and sometimes knowing the right person to ask the in-

formal route [is more effective].” As mentioned by several interviewees, the “real work”

happens prior to documentation being written and approved, and that prior work is where

coordination is needed. “[I]t takes a lot of communication, because there has to be a level of

day to day communication that gets the message across of what’s about to occur, not stacks

and stacks of documents and review, but it’s about having that right level of cognizance in

that discipline and say, hey we have a design issue that we’re having, a challenge meet-

ing our requirements, it looks like we’re making a change over here, it’s probably going

to affect discipline X and Y, we need to bring them in.” An individual’s authority gives

them the ability to set a design process in place and mandate certain kinds of documenta-

tion. However, the actions and behaviors of proactive interaction with peers, developing a

51

shared understanding of the technical system, and knowing the right people to help iden-

tify and resolve design problems are part of the empathetic leadership concept introduced

in Section 3.4.4.3.

3.4.4.5 Themes

As we explored these interrelationships we found two clear themes emerged: authority-

based and empathetic leadership-based strategies for job functions, particularly the facili-

tation of coordination work. This dichotomy is illustrated on the composite subcode map

shown in Figure 9. A full subcode map including all previously discussed instantiations is

shown in Figure 10.

Management

Facilitation of
Coordination

Set norms,
process, scope,
and objectives

Tailor
interactions

Extroverted
and proactive

Reliable; has
integrity

Delegated
responsibility

Technical
understanding

Authority

Empathetic
Leadership

Technical
Leadership

Influence

Figure 9: Illustration of themes overlaid on full subcode map, illustrating empathetic lead-
ership and social capital as complementary strategies used for facilitation of coordination
and management. Subcode colors refer to the topic its parent inductive code belongs to
(see Figure 4).

The authority based strategy is comprised of actions to set norms, processes, scope, and

objectives for technical work, and behavior that relies on the use of authority to get things

done. As mentioned in previous sections, these actions are used in support of both man-

agement (ensuring the right work is done within organizational constraints) and facilitation

of coordination (ensuring that distributed work is being done towards the same goals).

Authority supports actions and behaviors including delegation, planning, co-location of

52

M
an

ag
em

en
t

Fa
ci

lit
at

io
n

of

C
oo

rd
in

at
io

n

S
et

 n
or

m
s,

pr

oc
es

s,
 s

co
pe

,
an

d
ob

je
ct

iv
es

Ta
ilo

r
in

te
ra

ct
io

ns

E
xt

ro
ve

rte
d

an
d

pr
oa

ct
iv

e

R
el

ia
bl

e;
 h

as

in
te

gr
ity

D
el

eg
at

ed

re
sp

on
si

bi
lit

y

Te
ch

ni
ca

l
un

de
rs

ta
nd

in
g

A
ut

ho
rit

y

Em
pa

th
et

ic

Le
ad

er
sh

ip

Te
ch

ni
ca

l
Le

ad
er

sh
ip

In
flu

en
ce

Bu
ild

, m
ai

nt
ai

n
re

la
tio

ns
hi

ps
H

av
e

em
pa

th
y

H
um

an
iz

e
re

la
tio

ns
hi

ps
G

et
 to

 k
no

w
pe

op
le

Li
st

en

Te
ch

ni
ca

l M
an

ag
em

en
t

R
es

ou
rc

e
M

an
ag

em
en

t

D
el

eg
at

io
n

Ac
tio

n-
tra

ck
in

g
Pl

an
ni

ng
D

el
iv

er
ab

le
s

C
al

l s
ta

nd
in

g
m

ee
tin

gs
C

o-
lo

ca
te

 g
ro

up
s

U
se

 s
ta

nd
ar

d
pr

oc
es

s
Te

ch
ni

ca
l a

ut
ho

rit
y

Po
si

tio
na

l a
ut

ho
rit

y

En
co

ur
ag

e
ot

he
rs

 to
 h

av
e

em
pa

th
y

Tr
an

sl
at

io
n,

 s
en

se
m

ak
in

g
As

k
qu

es
tio

ns
 fo

r o
th

er
s’

 u
nd

er
st

an
di

ng
As

k
qu

es
tio

ns
 fo

r o
w

n
un

de
rs

ta
nd

in
g

Fi
gu

re
10

:F
ul

lm
ap

of
al

lh
ig

hl
ig

he
d

su
bc

od
es

,i
nc

lu
di

ng
al

ls
pe

ci
fic

in
st

an
tia

tio
ns

m
en

tio
ne

d
in

pr
ev

io
us

se
ct

io
ns

.S
ub

co
de

co
lo

rs
re

fe
r

to
th

e
to

pi
c

its
pa

re
nt

in
du

ct
iv

e
co

de
be

lo
ng

s
to

(s
ee

Fi
gu

re
4)

.

53

groups, and setting and enforcing a standard process. They are enacted through the exercise

of authority, and shape the system of how work is done within the organization. These

authority-based actions bear strong similarity to how coordination is presently described in

multiple disciplines: a process prescribed at the outset of work to ensure that information

can be communicated across the organization to those working on complementary parts of

a larger design problem.

In turn, empathetic leadership enables a strategy that includes actions and behaviors

to tailor interactions with others. These actions include building and maintaining a social

network of information resources, tailoring interactions with others, encouraging others to

have empathy in interactions, and asking questions to support a common understanding

of what work is being done and how it fits together. These actions and behaviors help to

ensure information is shared and meaningfully translated between disciplines and assist

sensemaking (Weick, Sutcliffe, and Obstfeld, 2005) in order to facilitate the coordination

of diverse work. Again, as mentioned in previous sections, these actions are used by our

interviewees in support of both management and facilitation of coordination tasks.

The two themes that emerged from our analysis comprise what appear as complemen-

tary strategies for the facilitation of coordination work. These strategies differ in terms

of their enabling preferences (use of authority or use of empathetic leadership), or the re-

sultant actions and behaviors (centered on plans and procedures, or centered on tailored

one-on-one interactions). While multiple terms could be used to describe each strategy, we

choose to call these strategies Passive and Active. The first strategy for facilitation of coor-

dination we call Passive due to its top-down implementation through the use of authority.

The second strategy we call Active, distinguished by the proactive behavior interviewees

mentioned repeatedly as helpful. Knowing when to “jump in” and get involved and taking

the time to tailor interactions with each person they talk to both require going above and

beyond the minimum required for a given task. The denotation of the authority-based ac-

tions and behaviors as Passive is not meant to belittle the work that goes into these tasks,

54

but rather serve as contrast to the extra proactivity requisite for the Active strategy.

3.4.5 Reflection

The previous conclusions are drawn from the analysis of inductive codes in turn drawn

from a subset of the original data. As a final step in our thematic analysis, we reviewed the

entire interview corpus to draw out a description of each theme reflective of the full dataset.

Our thematic analysis suggests the existence of two archetypical strategies, or sets of

behaviors, based on the use of authority or empathetic leadership to accomplish manage-

ment and the facilitation of coordination tasks in LSCES design work. Referring to Fig-

ures 9 and 10, the Passive archetype describes individuals who use their authority to dictate

what tasks are to be done (e.g., delegation), standards for task reporting (e.g., documenta-

tion standards), plans for work completion (e.g., through project management), the process

by which work is completed (e.g., a design process), and the environment in which work is

done (e.g., location of teams).

The Active archetype describes individuals who are extroverted, proactive, and reliable,

which allows them to build and maintain a robust social network and use it to access infor-

mation. By using empathy in interactions with others, these individuals tailor their interac-

tions to support coordination. This includes encouraging the use of empathy and systems

awareness (e.g., through mentorship and coaching), translating information to bridge disci-

pline and cultural boundaries, creating a positive and collaborative work environment, and

asking questions to ensure a common understanding of work and its purpose.

Archetypes are stereotypes of behavior, and thus purely active and purely passive be-

havioral archetypes are not likely to match the behavior of any one individual all the time.

Most of our interviewees are best described by a combination of both archetypes, using

both Active and Passive strategies, or a combination, as they believe the situation merits.

55

3.5 Discussion

Our qualitative analysis identified two different sets of actions and behaviors used to fa-

cilitating coordination, which we call Passive and Active. We focus on two main findings

from our analysis: the concept of empathetic leadership and related concepts in literature,

as well as the juxtaposition of Passive and Active coordination strategies.

3.5.1 Active Facilitation of Coordination

The literature on coordination emphasizes the use of standards for documentation and work

processes, clearly partitioned work assignments and lines of communication, schedules,

and meetings for the effective coordination of complex tasks (March and Simon, 1958;

Thompson, 1967; Van De Ven, Delbecq, and Koenig, 1976; Tushman, 1979; Souza et al.,

2004; Sosa, Eppinger, and Rowles, 2003; Herbsleb and Mockus, 2003; Cataldo, Herbsleb,

and Carley, 2008; Malone and Crowston, 1994). This emphasis is fairly consistent across

disciplines, and aligns clearly with the Passive strategy for facilitation of coordination we

found in our analysis. Our analysis suggests that other processes are also used to facilitate

coordination throughout a complex design project, supported by concepts of empathetic

leadership and social capital. These concepts are not new in the literature, but have not

been closely connected to coordination.

Informal processes, referring to personal values and individuals’ interactions within a

formal organization, have long been recognized as important in organizations (Blau, 1974;

Barnard, 1964). It is natural that the findings from our questioning, focused on individuals’

cognitive and communicative actions and behaviors, might correspond to informal pro-

cesses studied in organizations. The concepts of ‘soft’ systems methodology emphasizing

systems thinking (Checkland, 2000), social capital emphasizing development and leverage

of social networks (Adler and Kwon, 2002; Esser, 2008; Van Deth, 2008; Agneessens and

Wittek, 2012), brokerage emphasizing bridging communities or ‘structural holes’ (Burt,

56

1992; Obstfeld, Borgatti, and Davis, 2014; Burt and Merluzzi, 2014), and positive leader-

ship emphasizing empathy and optimism (Baker, Cross, and Wooten, 2003; Terrasi, 2015)

are well known informal organizational processes but are generally not connected to co-

ordination of technical tasks, typical of LSCES design. One of few exceptions is Larsson

(Larsson, 2007) who illustrates how social capital is important for effective collaboration.

These concepts resonate with the Active theme identified in our analysis, including empa-

thetic leadership, how it is developed, and how it is used to facilitate coordination.

There is also some overlap between the Active theme we identified and the skills iden-

tified in systems engineering and project management competency models. Extroversion

or proactive communication, leadership abilities, and the ability to collaborate and com-

municate across diverse groups are included in several competency and behavioral models

of systems engineering practice (Hutchison, Henry, and Pyster, 2016; Williams and Derro,

2008). These skills and behaviors are reflected in the Precursors topic of our inductive

code; those that we found to support empathetic leadership. Ou analysis connects these

skills and empathetic leadership to the facilitation of coordination through proactive and

tailored communication. We thus show a link between skills and behaviors identified of

successful systems engineers and tasks they may be engaged in, particularly the facilitation

of coordination.

The overlap between concepts of systems thinking, social capital, brokerage, and pos-

itive leadership in sociology and organizational literature, skills like empathy, leadership,

and communication in existing competency models, and the actions that comprise our iden-

tified Active coordination strategy suggests three things. The first is that empathetic lead-

ership may serve as an encompassing term to bring these various ideas together to describe

the informal processes happening in large organizations in support of coordination. Sec-

ond, as coordination is one major task for which these skills are used in practice, we may

consider in turn coordination to be a central component of systems engineering practice,

and one that not only those with the title ‘systems engineer’ are engaged in. Finally, the

57

connection between the concept of empathetic leadership and facilitation of coordination

is important to recognize that there are existing theories and concepts that help to describe

coordination in technical organizations engaged in large-scale and complex design work.

These concepts may contribute to a growing set of theories about the nature of systems

engineering and what goes into effective systems engineering practice.

3.5.2 Relationship between Active and Passive Themes

Through our analysis, we identify both Active and Passive strategies used to facilitate the

coordination of LSCES design work. The discussion above suggests that the ‘active’ ac-

tions and behaviors we identified are similar to informal organizational processes, whereas

the ‘passive’ actions and behaviors we identified are similar to formal organizational pro-

cesses. This dichotomy suggests that the two sets of coordination methods are related, in

the sense that ‘passive’ or ‘formal’ approaches establish a structure or culture of work, and

‘active’ or ‘informal’ approaches are used to work within and across that structure. Paral-

lels may also be drawn to a handful of other dualities: strategies to set long-term goals and

tactics to accomplish near-term objectives, design of an artifact and control to determine

its behavior, and partitioning to divide a problem and coordination to solve it. The nature

of each of these pairs is that they are intricately linked parts of the same problem. This has

been illustrated for partitioning and coordination decisions (Allison, 2008), design and con-

trol decisions (Reyer and Papalambros, 2002), formal and informal organization (McEvily,

Soda, and Tortoriello, 2014), and strategy and tactics selection (Mackay and Zundel, 2017),

to name a few. Generally, making decisions about one without consideration of the other

leads to a poorly performing or, at worst, infeasible system design. What this suggests

for our findings is that the Passive and Active coordination strategies should be considered

together when making decisions about how to best facilitate the coordination of distributed

work.

Some ideas for how to consider Active and Passive coordination strategies together

58

come from studies focused on unexpected challenges in collaborative work. Modulariza-

tion relies on clearly defined tasks in order to partition work cleanly and reduce the need

for coordination. However, this focus on clean partitions can result in challenges putting

the results of those tasks back together. Even if tasks are defined so that the results should

be easy to integrate, the awareness of how the parts combine to operate as a whole can be

lost (Souza et al., 2004; Grubb and Begel, 2012). Similarly, the use of a standard process

or set of rules is better able to support coordination if the individuals whose work is to be

coordinated are bought into the efficacy and purpose of the process (Espinosa, Armour,

and Boh, 2010). Recommended resolutions to these apparent challenges with the Passive

strategy for facilitating coordination focus on increasing communication and awareness of

parallel work (Herbsleb and Mockus, 2003; Espinosa, Armour, and Boh, 2010).

There are also evident challenges in executing the Active strategy. In highly interde-

pendent system development, the logic that all pairs of individuals with interdependent

tasks should be communicating regularly becomes infeasible (Brooks, 1995). In an orga-

nization of several thousand or more individuals, it is difficult to develop a robust social

network that spans a significant portion of those individuals. Relying on individuals to

coordinate their own work faces challenges from the difficulty of communicating across

divisional boundaries (Sosa, Eppinger, and Rowles, 2003; Dossick and Neff, 2010) and

identifying and accessing relevant information out of a large possible set (Salzberg and

Watkins, 2016). To address these challenges, defining formal coordinator roles are often

recommended (Parraguez, Eppinger, and Maier, 2016; Strode et al., 2012; Poleacovschi

and Javernick-Will, 2016). Formal roles come with authority, thus enabling the Passive

coordination-facilitation strategy.

Active and Passive strategies for facilitating coordination both have benefits and draw-

backs. The review of literature presented here suggests drawbacks from one set of actions

may be mitigated by use of the other set of actions. Following from this, we hypothesize

that a balance between Active and Passive actions and behaviors for the facilitation of co-

59

ordination is needed in large-scale and complex engineered systems design. These projects

require many individuals with high technical skill in order to design and develop a system.

The large organization benefits from Passive coordination strategies to unify standards of

doing work, while also benefiting from empathetic leaders who use Active coordination

strategies to leverage extensive networks across the organization. An individual may use

either strategy, or a combination. In our study, technical managers, project managers, and

systems engineers all made use of some combination of these strategies in order to facilitate

coordination.

3.6 Summary

We presented in this chapter the results of an exploratory qualitative study, identifying two

strategies – sets of actions and behaviors – used in practice to facilitate the coordination

of distributed design work. Through thematic analysis, we found evidence of both Passive

and Active strategies for the facilitation of coordination. Passive actions and behaviors are

supported by the use of authority to enforce what work is done and how it is done through

formal delegation, setting standardized documentation and deliverables, a common design

process, developing plans and project management, and co-locating groups with interde-

pendent tasks. These actions provide common norms of how work is to be done with the

expectation that this environment enhances coordination. Active actions and behaviors are

supported by a concept we call empathetic leadership, a proactive approach to developing

and maintaining a diverse social network across the organization. The ability to develop

these connections is used to tailor communications to successfully share technical infor-

mation across discipline and cultural boundaries, ask deep questions to help oneself and

others develop a common understanding of work to be done and how it fits together, and

encourage others to use empathy in their own interactions to facilitate effective collabora-

tion. Identification of these two strategies presents a new way to look at coordination in

60

LSCES design. Our findings suggest that implementing and enforcing a systems engineer-

ing process (a Passive action) is complemented by the actions and behaviors of systems

engineers and managers above and beyond that process (Active actions), both in support of

successful coordination.

The Passive strategy we identified is consistent with existing literature on coordination

in multidisciplinary design optimization, organization science, and software and engineer-

ing design. This literature tends to describe coordination as a preconceived set of processes

meant to address the uncertainty and interdependence between diverse tasks that support a

common goal. Empathetic leadership and the actions and behavior that comprise the Ac-

tive coordination strategy we identified are similar to concepts in organizational sociology.

Related concepts include the use of social capital, brokerage, systems thinking, and pos-

itive leadership. The precursors we identified as associated with the active facilitation of

coordination, including extroversion and leadership traits, are consistent with skills and be-

haviors found in systems engineering competency models. Together these findings suggest

that coordination is a central task of systems engineers and systems engineering, and con-

cepts in social science such as brokerage, social capital, and positive leadership are likely

to contribute to the further development of systems engineering theory and best practice.

This work has limitations in that this study purposely focused on experts in systems

engineering, management, and leadership roles. Followup interviews or surveys are rec-

ommended to ensure the validity of findings across all levels of the organization. Our

findings are in addition limited to large aerospace design organizations, and extension to

other sectors that engage in large-scale design requires additional study.

In this study, we do not aim to develop a full theory of coordination, instead we seek

to develop hypotheses for further exploration. Our findings here are supported by exist-

ing literature in a variety of domains, thus suggesting that Active and Passive strategies

for facilitating coordination are representative of important organizational processes. We

hypothesize that Active and Passive actions and behaviors used to facilitate coordination

61

are interrelated and that there exists a balance between them in practice. We explore this

idea further in Chapter 4 by looking at the coordination approaches adopted by novice de-

signers. This is in contrast to the experts studied here. Chapter 5 follows the exploratory

studies with a simulation model that quantifies design outcomes from simplified versions

of Active and Passive behaviors.

In each of the three studies presented in Chapters 3-5, there is evidence of a bal-

ance point between Passive and Active coordination-facilitation strategies. As discussed

in Chapter 6, future work should aim to identify this balance point and explore what en-

vironmental parameters (e.g., group size and degree of interconnectedness between teams

as in Tushman (1979), and design activity as in Strode et al. (2012)) and behaviors (e.g.,

Active and Passive) impact the balance point and the performance outcome of the designed

system.

62

CHAPTER 4

Coordination in Design Teams

4.1 Introduction

Decomposition-based design of engineered systems is achieved by partitioning into sub-

systems, assignment to individual engineers, and coordination. The goal of coordination

is overall system compatibility when all subsystems are integrated. System design opti-

mization algorithms (also referred to as multidisciplinary design optimization) are well-

established for performing portions of this process. Algorithms for decomposition and

coordination of system design problems are given in Papalambros and Wilde (2017) and

Martins and Lambe (2013).

However, in actual system design, individuals are not likely to coordinate their work

following algorithmic procedures. In a design organization, distributed tasks must be first

partitioned so that they can be worked in parallel, and then coordinated so that the results

can be joined together to effect the overall project goal. In this organizational context,

coordination is primarily a communicative process focused on information sharing among

parallel tasks. Critically, the roles of individual participants influence this coordination

process.

To better understand these roles, we analyze coordination in the controlled environment

of student design projects (159 students in 32 teams). In the previous chapter, we identified

some approaches used by industry experts use to facilitate the coordination of design work.

63

Here, our goal is to identify how these novice designers coordinate their design work in

a design task requiring partitioning. We used self-report surveys and communication as

a proxy for coordination. Using network representations of the survey data, we identify

structures and patterns in team communication. By looking at the correlation between

network structures and self-reported team roles, responsibilities, and teamwork, we are able

to identify what we term coordination roles comprising responsibilities and communication

behaviors found in these design teams.

Numerous sets of team roles have been identified in the literature, focused on team

member behaviors (Aritzeta, Swailes, and Senior, 2007), personality (Stewart, Fulmer, and

Barrick, 2005), and cognitive styles (Kress and Shar, 2012). Roles pertaining to coordi-

nation between groups have been identified (Sonnenwald, 1996; Sheard, 1996), but do not

necessarily translate to coordination activity within groups or teams.

The structure of this chapter is as follows: We describe the study design, including our

data collection, processing, and analysis approaches, in Section 4.2. A brief analysis of the

survey data after post-processing into text keywords and networks is in Section 4.3. Finally

the results of clustering analysis and description of each cluster are given in Section 4.4

and discussed in Section 4.5.

4.2 Study Design: Data Collection and Analysis Approach

4.2.1 Data Collection

Study participants were second year undergraduates at the University of Michigan enrolled

in the course Design and Manufacturing I in Winter 2017. As part of the course, students

work in teams of five to design and build Robotic Machine Players (RMPs). In each class

section, four teams design and build their own RMPs, which collaboratively compete as a

squad. The squad’s RMPs are remotely piloted by students with a goal of scoring the most

points. An overhead view of an in-progress game is shown in Figure 11.

64

Figure 11: Overhead photo of game showing four-zone board, each with its own remotely-
piloted RMP. Each zone requires navigation of different obstacles: clockwise from top left
obstacles are a maze, ball pit, pyramidal ramp, and heavy blocks. (photo taken April, 2017)

RMPs are built from a standard kit though additional parts can be added or substituted.

Typical features of an RMP include chassis, wheels, drivetrain, and a shovel or scoop to

collect small cubes and move them to scoring zones. This course is an ideal situation to

study coordination. Each team must coordinate its actions to design and manufacture an

RMP and simultaneously coordinate with the other teams in their squad to implement a

winning strategy. The course and typical project is described in more detail in Papalam-

65

bros (2015). In this study, the focus is on the coordination required within each team to

design and manufacture an RMP rather than the coordination within the squad to design

complementary RMPs.

We administered paper-form self-report surveys at the conclusion of the semester. The

survey asked students to: reflect on the semester’s project work; report their self-determined

roles; identify tasks they were responsible for; describe the roles and responsibilities of

their teammates; and recount the frequency and usefulness of task-focused communica-

tions. Existing survey instruments designed to conduct social network analysis within or-

ganizations (Cross, Borgatti, and Parker, 2002; Krebs, 2000) were adapted to create the

survey instrument. The survey was voluntary but we received at least partial responses for

140 students in the course (88% of 159). In this study, our goal is to characterize the dif-

ferent approaches taken to coordinate distributed design work, rather than to evaluate those

approaches. Accordingly, we did not correlate responses to grades or game results.

4.2.2 Analysis Approach

Our survey asked each respondent to share both their own, and their teammate’s, main roles

and responsibilities. These questions were open-response to avoid artificially limiting the

scope of described responsibilities offered by the students. The survey then asked two sets

of questions about inter-team communication, both focused on frequency and usefulness of

communication with other team members. However, the questions differed in their focus

on communication content. Self Questions asked about communication pertaining to the

respondent’s own work and Peer Questions about communication pertaining to their peers’

work. Respondents were asked to indicate frequency of communication on a five-point

scale (“4+ days per week”, “2-3 times per week”, “<2 times per week”, “Monthly”, and

“Never”), and usefulness of communication on a four-point scale (“N/A”, “Not Needed”,

“Helpful”, and “Essential”). Because each team member was asked for this information,

each pairwise interaction is described by up to two responses. In the case where one team

66

member did not respond, there are still responses from their peers to at least partially rep-

resent their participation on the team. Responses were collected without names using al-

phanumeric labels for team members within each squad, then aggregated across all squads

by assigning a single unique number to each respondent.

We processed the survey data using two different analyses, each applied to different data

subsets. The first used text analysis (described fully in Section 4.2.2.1) to identify common

keywords representative of the roles and responsibilities respondents reported within their

team. This allowed us to use participant language and terminology to describe types of

tasks each undertook. We included in text analysis all individuals that gave responses to

questions about the role and/or responsibilities of themselves or their peers. This gave us

data from 140 individuals across all 32 teams (with 19 non-respondents). However, because

surveys also reflect peer roles and communications, we could infer roles and responsibilities

for 154 individuals.

Our second analysis focused on the communication network within the teams (detailed

in Section 4.2.2.2). We model each team member as a node, and edges connecting two

nodes represent communication between those individuals reported in the survey. We ex-

cluded individuals with no responses (n = 19) or partial responses for the communication

questions (n = 11). Entire teams were thus excluded if there were missing responses from

two or more members out of five (n = 10 teams). The resultant networks used for further

analysis include 109 individuals from 22 teams (21 teams of five, and one team of four).

4.2.2.1 Keyword Identification and Analysis Method

Keywords were identified from responses using the Term Frequency and Inverse Document

Frequency (TF-IDF) weights (Salton and McGill, 1986). TF-IDF measures relevance and

importance of words or terms found in a specific document. In our case, each student’s

response to a question is treated as a document. We use the TfidfVectorizer module (De-

velopers, 2018) implemented in the open source scikit-learn package to calculate TF-IDF

67

scores. The term frequency, t f , calculated for a word or phrase w in a given survey response

r, is the raw count of that term in the given response. The inverse document frequency, id f ,

is calculated as a function of the total response count (N) and the number of those responses

r that contain a word w. The variant of IDF we used is given in Equation 4.1:

id f (w) = log
(

1+N
1+

∑
r w

)
+1 (4.1)

TF favors frequent words within each document, while the IDF favors rare words across

all documents. The final TF-IDF score is a product of these frequencies, in turn favoring

words that have relatively high scores for both frequencies. The TF-IDF weighting identi-

fies common jargon in our survey responses as well as specific terms that may only be used

within one or two teams. Technical jargon common across all teams is used to describe

specific tasks; these terms receive high term frequency scores since they are identified by

many respondents but low inverse document frequency scores since the terms are common.

Language used frequently within a single team to describe each others’ tasks receives a

high inverse document frequency score due to its localization to a single team and a high

term frequency score within those members’ responses due to its commonality within the

team. We first calculated the TF-IDF scores of all words in the raw survey responses to

identify and rank top words used in descriptions of team roles, responsibilities, and project

tasks.

We then reviewed the data iteratively to identify overlapping keywords such as ‘man-

ufacturing’, a verb, and ‘manufacturing plan’, a noun, which we separated into distinct

keywords. We also identified dissimilar terms that can be interchanged with little loss of

meaning such as ‘initial design’ and ‘preliminary concept’ or ’team member’ and ’team-

mate’, which were combined under a single label for consistency. We manually consoli-

dated terms into distinct keywords based on these two rules, in effect transforming the open

response data into closed form representations of respondent language.

68

Table 4 gives examples from the final keyword set, categorized into six dimensions

that reflect approaches to problem partitioning (aspect and object), approaches to project

organization and coordination (team roles, management tasks, and reflection on how work

was coordinated, e.g., split or shared), and deliverables or documentation (documents).

Table 4: Categories of keywords identified from survey responses, with examples

Aspect Object Documents
Team
Role

Management Coordination

CAD,
design, man-
ufacturing,
assembly,
brainstorm,
analysis

Part, lift,
system,
scoop,
chassis,
drivetrain,
axle

Report,
manufac-
turing plan,
sketch,
video,
assignment

Leader,
member,
general
engineer,
specialist

Manage,
organize,
make sure,
ensure/verify,
on track

Split work
equally,
everybody
did every-
thing, work
together

The new set of transformed data used 471 distinct words across all responses. We re-

calculated TF-IDF scores using the transformed data. For this we used as a single response

unit all survey responses about an individual, whether from that individual or their peers.

This resulted in a vector of TF-IDF scores of length 471 for each individual. Each vector of

length 471 was then normalized by its Euclidean norm. A value of 0 at any position in this

vector indicates the term was unused in describing that individual’s role. Individuals with

the highest normalized TF-IDF scores for a word were those whose teammates described

their role or responsibilities the same way, and for whom few other words were used to

describe their role and responsibility.

However, high TF-IDF scores can also come from frequently used words, such as

prepositions, conjunctions, and indefinite pronouns. We removed such stop words, exam-

ples of which are ‘and’, ‘all’, ‘of’, and ‘did’, according to the word’s part of speech. The

words remaining were nouns, verbs, and some adjectives. We retained for further analysis

the top 50 remaining words as ranked by the average normalized TF-IDF scores across all

individuals. These top 50 words are given in Table 6. The result was a vector of length

50 with weighted values representing the dominance of a word in the responses about an

69

individual’s work.

4.2.2.2 Network Representations and Measures

To model the responses to communication questions, we represented the data as networks.

Our survey data is on a scale, which we transform to a binary edge indicator using a fixed

threshold. A given threshold – or combination of frequency and usefulness levels – means

we included data that meets any combination of levels defined in the threshold. We com-

pared several potential thresholds and ultimately selected a threshold of 4+ days per week

under frequency, and ‘helpful’ or ‘essential’ under usefulness. This threshold yielded a

dataset that includes 221 of 426 reported edges from the Self Questions, and 190 of 430 re-

ported edges from the Peer Questions. This threshold was chosen over others as it presents

connected team structures while preserving distinctive features. A lower threshold, in-

cluding less frequent communication, forms team networks that are nearly all identical. A

higher threshold, including only communication reported as essential, did not give con-

nected teams in most cases. We also chose to separate the more objective frequency levels

as opposed to the more subjective usefulness levels, including only ‘4+ days/week’ fre-

quency and both ‘essential’ and ‘helpful’ usefulness in our chosen threshold. Under this

threshold, only survey responses from respondent A about communication with peer B

which follow the pattern below were counted as an edge:

• Self: A reports talking to B about A’s work 4+ days per week and it is essential or

helpful to A.

• Peer: A reports talking to B about B’s work 4+ days per week and it is essential or

helpful to A.

The Self and Peer network data cannot be directly superimposed as the edges in each

network refer to communication about different things. To avoid oversimplification of our

data, we created five networks, each telling us something different about the data. The Self

70

Network and Peer Network were created directly from the survey responses to each com-

munication question, the former about communication with peers about the respondent’s

own work and the latter about communication with peers about their peer’s work. We then

combined the results of these two questions in three different ways. The first is a Purpose-

directed Network, where there is an edge from A to B if either respondent A or B reports

talking to the other about B’s work. The second is an Initiator Network, where there is an

edge from A to B if respondent A reports talking to peer B about both A’s own work as well

as B’s work. Finally, in an Agreement Network, there is an edge from A to B if both A and

B respond that they talked to the other about B’s work; in other words, the responses from

both members agree. In each network, an edge is defined by the direction and content of

communication, given that the edge reported meets the selected threshold of frequency and

usefulness. The network definitions are summarized in Table 5.

Table 5: Description of five network representations of thresholded survey data

Network Edge from A→ B in this network if:
Self A reports talking to B about A’s work
Peer A reports talking to B about B’s work
Purpose-directed A reports talking to B about B’s work OR

B reports talking to A about B’s work
Initiator A reports talking to B about A’s work AND

A reports talking to B about B’s work
Agreement A reports talking to B about B’s work AND

B reports talking to A about B’s work

In the Self, Peer, and Initiator Networks, a node’s out-edges represent their communi-

cation with someone else. In contrast, in the Purpose-directed and Agreement Networks,

a node’s out-edges can be interpreted as that person having information about what their

peers at the other end of those edges are working on – the direction of the edge indicating

the topic of conversation. We characterize the data by calculating several measures from

each network. These measures look at common features of social networks: degree, cen-

trality, and clustering coefficient (Newman, 2018). We used node-level measures rather

than network-level measures as this analysis focused on communication behaviors of indi-

71

viduals rather than of the team as a whole.

Degree is a count of the number of edges inbound to or outbound from a node. Out-

degree is the number of people a respondent is communicating with or whose work they

are receiving information about. In-degree is the number of people a respondent is on

the receiving end of communication from. In the Initiator Network, out-degree carries a

special meaning we call initiator-ness: the behavior of communicating with others about

both one’s own work and their peers. Those with maximum initiator out-degree we call top

initiators. We find that most teams have one top initiator and rarely have more than two.

Overlaying the edges in the Agreement Network with the Purpose-directed Network, we

can also calculate what percentage of directed edges are reported by both respondents.

Centrality measures of nodes in a network quantify the importance of a node. Between-

ness centrality is a measure of how many shortest paths between pairs of nodes a certain

node lies on. Path length is the number of edges in the network traversed to get from one

node to another. In a directed network, the paths are also directed. In networks where

edges indicate information flow, a person with high betweenness centrality indicates they

are receiving a lot of information and are also serving as a bridge or source from which

others might be able to access that information. Closeness centrality measures how closely

connected a node is to all others in the network. Harmonic closeness centrality is the ratio

of the number of peer nodes in a network to the minimum path length required to reach

all nodes. The highest value of harmonic closeness centrality is achieved for a person who

reported initiating communication with all other members of their team.

Finally, the clustering coefficient measures the tendency of nodes to be closely linked,

or clustered (Watts and Strogatz, 1998). Here we used the local clustering coefficient mea-

sure defined for the ego-network of a node: a person and their immediate connections. The

local clustering coefficient is the ratio of links that exist within a node’s ego-network to

the number of links that could exist. In small teams, a node’s local clustering coefficient is

strongly correlated to overall team density.

72

Summary statistics of the node-level measures calculated from our data are given and

discussed in Section 4.3.2. We used these measures as inputs for clustering analysis to

identify groups of similar nodes based on the structural features of their team networks.

Some detail on how we conducted our clustering analysis is provided in Section 4.2.2.3

and the results of the analysis are in Section 4.4.

4.2.2.3 Clustering Analysis

The text and network-based analyses result in a numeric vector that represents every in-

dividual in the analysis. We concatenate the weighted the TF-IDF scores for each of the

top-50 keywords and the 17 network measures calculated for each individual. This results

in a vector of 67 numbers representing task responsibilities and communication behaviors

for each of 109 individuals in 22 teams as reported by themselves and their peers. We use

these vectors as inputs to clustering analysis.

Since this clustering is exploratory, we selected an unsupervised clustering algorithm.

We used hierarchical clustering based on the Euclidean distance calculated between each

pair of vectors. In hierarchical clustering, each individual starts out in her own cluster. Then

clusters are joined one at a time to their most similar neighbor based on the contents of their

vector representation. Once each cluster has more than one individual, new calculations are

measured relative to the cluster centroid. This proceeds until all individuals are joined into

one final cluster. Recording the within-cluster similarity at each step allows the creation of

a plot of similarity versus number of clusters. A sharp drop in within-cluster similarity as

the number of clusters decreases suggests a good stopping point for clustering; continuing

to join dissimilar clusters yields less interpretable and less meaningful results (Thorndike,

1953). We used the “knee” or “elbow” found from hierarchical clustering as an input

for k-means clustering. In k-means clustering, clusters are calculated the same way as

in hierarchical clustering except individuals can be moved from one cluster to another as

clustering proceeds until each individual is closer to its cluster centroid than any others.

73

The results were obtained from clustering with k = 5 clusters. We describe the network

measures and keyword statistics for each cluster in Section 4.4.

4.3 Characterization of Data

4.3.1 Characterization of Keyword Data

The TF-IDF measure is calculated for each word and each respondent, based on their roles

and responsibilities as described by themselves and their peers. To form an aggregate score

for each word, we average TF-IDF scores across all individuals. The top 50 keywords we

use in clustering analysis are listed in Table 6, along with the number of documents the

word appeared in (nonzero contributions to the average), as well as the inverse document

frequency (IDF) of each keyword and the average term frequency (TF) across all responses.

Note that the IDF and TF as reported in this table are unnormalized values, as the TF-IDF

measure is normalized after the two components are multiplied together. Therefore TF∗IDF

does not equal the TF-IDF value.

The top 50 terms represent each of the six categories we identified previously in Ta-

ble 4, though they are not evenly distributed. Figure 12 shows the distribution of these top

50 keywords among the six categories. The Aspect and Object partitioning terms are the

two categories with the most terms; there are 14 Object partitioning terms and 10 Aspect

partitioning terms. That these categories are dominant reflects the variety of tasks individ-

uals engaged in and parts those tasks applied to during the design process. The categories

with the next most terms are Team roles and Coordination terms, each with 8 terms or 16

percent of this set. Seven Documentation terms make up 14 percent of the total, and three

Management keywords make up the last 6 percent of the total. We present these results to

describe the data collected about the roles and responsibilities of n = 154 individuals. All

50 keywords are used as input to clustering analysis. though only for a subset of individuals

(n = 109) for whom both network and keyword data is available.

74

category keyword mean	/-idfno.	docs category keyword mean	/-idf no.	docs category keyword mean	/-idf no.	docs
A Manufacturing 0.153 122 O part 0.083 84 D	 manuf	plans 0.055 45

A	 CAD 0.144 97 O	 RMP 0.033 42 D	 eng.	drawings 0.053 47

A Design 0.119 112 O	 Scoop 0.032 19 D	 assignments 0.044 34

A	 assembly 0.062 56 O	 Drivetrain 0.029 20 D	 report 0.033 30

A	 analysis 0.062 56 O	 chassis 0.027 24 D	 wriJng 0.028 31

A	 machining 0.061 58 O	 supports 0.026 22 D	 milestones 0.024 26

A	 mill 0.058 46 O	 Axle 0.023 22 D	 video 0.023 12

A	 lathe 0.053 40 O	 liL 0.021 17

A work 0.047 53 O	 Arm 0.017 10

A	 create 0.047 57 O tasks 0.016 18

A complete 0.03 31

A	 brainstorming 0.026 26

A	 build 0.017 20

A	 iniJal	design 0.016 18

category keyword mean	/-idfno.	docs category keyword mean	/-idf no.	docs category keyword mean	/-idf no.	docs
T team	member 0.104 83 M	 organize 0.052 37 C	 shared	responsibiliJes0.068 77

T	 team	leader 0.087 46 M	 manage 0.02 13 C	 everything 0.066 59

T	 no	specific	role 0.034 19 M	 ensure/verify 0.019 18 C	 Help 0.063 71

T	 team 0.026 27 C	 split	the	work 0.044 35

T	 specialist 0.024 24 C	 work	together 0.038 38

T lead 0.018 23 C	 everybody	did	everything0.022 14

T	 engineer 0.018 9 C	 no	overlap 0.02 16

T none 0.016 11 C	 Everyone 0.017 21

Count	in	top	50	by	TF-IDFTerms average	TF-IDF average	

28% Aspect 14 0.064 57

20% Object 10 0.031 28

14% Documents 7 0.00 0.037 32

16% Team 8 0.041 30

6% Management 3 0.030 23

16% Coordinate 8 0.00 0.042 41

0.00 50

manual	pie	chart…
100.8

72 172.8

50.4 223.2

57.6 280.8

21.6 302.4

57.6 360

Percent of Top 50 Keywords in each Category

Coordination
16%

Management
6%

Team
16%

Documents
14%

Object
20%

Aspect
28% Aspect

Object
Documents
Team
Management
Coordination

�1

Figure 12: Percent of top 50 Keywords used in clustering analysis that are in each of six
categories: Aspect, Object, Documents, Team, Management, and Coordination.

Table 6: Top 50 keywords identified from text analysis, ranked by their average TF-IDF
score across all responses. Also shown are the number of documents each keyword ap-
peared in, average TF score across all responses, and the IDF score for each keyword.
These data represent the roles and responsibilities of n = 154 individuals.

Keyword Mean TF-IDF † No. Docs Mean TF ‡ IDF ‡

1. Manufacturing 0.153 122 1.830 1.103
2. CAD 0.144 97 1.654 1.202
3. Design 0.119 112 1.409 1.140
4. Team member 0.104 83 1.038 1.269
5. Team leader 0.087 46 0.742 1.521
6. Part 0.083 84 1.006 1.264
7. Shared responsibilities 0.068 77 0.704 1.301
8. Everything 0.066 59 0.597 1.415
9. Help 0.063 71 0.654 1.336
10. Assembly 0.062 56 0.604 1.437
11. Machining 0.061 58 0.623 1.422
12. Mill 0.058 46 0.472 1.521
13. Manufacturing plans 0.055 45 0.547 1.530
14. Lathe 0.053 40 0.453 1.580
15. Engineering drawings 0.053 47 0.491 1.512

Continued on next page

75

Table 6 – Continued from previous page
Keyword Mean TF-IDF † No. Docs Mean TF ‡ IDF ‡

16. Organize 0.052 37 0.434 1.613
17. Create 0.047 57 0.528 1.430
18. Work 0.047 53 0.453 1.461
19. Split the work 0.044 35 0.390 1.637
20. Assignments 0.044 34 0.415 1.649
21. Work together 0.038 38 0.340 1.602
22. Analysis 0.034 25 0.252 1.778
23. No specific role 0.034 19 0.239 1.892
24. Report 0.033 30 0.233 1.702
25. RMP 0.033 42 0.327 1.560
26. Scoop 0.032 19 0.258 1.892
27. Complete 0.030 31 0.252 1.688
28. Drivetrain 0.029 20 0.245 1.871
29. Writing 0.028 31 0.252 1.688
30. Chassis 0.027 24 0.245 1.795
31. Brainstorming 0.026 26 0.214 1.762
32. Team 0.026 27 0.239 1.746
33. Supports 0.026 22 0.176 1.831
34. Specialist 0.024 24 0.182 1.795
35. Milestones 0.024 26 0.208 1.762
36. Axle 0.023 22 0.164 1.831
37. Video 0.023 12 0.157 2.079
38. Everybody did everything 0.022 14 0.145 2.017
39. Lift 0.021 17 0.151 1.938
40. Manage 0.020 13 0.107 2.047
41. No overlap 0.020 16 0.126 1.963
42. Ensure/Verify 0.019 18 0.151 1.914
43. Lead 0.018 23 0.164 1.813
44. Engineer 0.018 9 0.017 2.193
45. Arm 0.017 10 0.113 2.152
46. Everyone 0.017 21 0.132 1.851
47. Build 0.017 20 0.138 1.871
48. Initial design 0.016 18 0.119 1.914
49. None (no role) 0.016 11 0.088 2.114
50. Tasks 0.016 18 0.113 1.914
† Values normalized before average
‡ Values unnormalized

76

4.3.2 Characterization of Network Data

Summary statistics of the measures calculated from network representations of survey data

are given in Table 7. These measures were calculated for every node out of 109 included

in this representation. First we note that most of the measures calculated span the range

of possible values for a five-node network. Notable exceptions are the values of between-

ness centrality calculated from the Self and Peer networks, which have maximums of 5

and 3, respectively. The maximum betweenness centrality possible, 12, is seen only in the

Purpose-Directed network. Lower values of betweenness centrality indicate that each team

member has connections with multiple peers, which results in reduced betweenness cen-

trality for all nodes in the group. High values of betweenness centrality are typical of team

networks that have a single focal hub who communicates with all other team members.

Table 7: Descriptive statistics for network measures calculated from survey data. These
data represent the communication patterns of n = 109 individuals.

Measure (n = 109) Min. value Max. value Mean (stdev)
Self Network
In-degree 0 4 2.03 (1.00)
Out-degree 0 4 2.03 (1.89)
Betweenness centrality 0 5 0.17 (0.69)
Harmonic closeness centrality 0 1 0.56 (0.48)
Peer Network
In-degree 0 4 1.74 (0.99)
Out-degree 0 4 1.74 (1.93)
Betweenness centrality 0 3 0.08 (0.45)
Harmonic closeness centrality 0 1 0.47 (0.49)
Initiator Network
Out-degree (initator-ness) 0 4 1.53 (1.87)
Out-degree = max. possible? (binary) 0 1 0.36 (0.48)
Purpose-directed Network
In-degree 0 4 2.90 (1.27)
Out-degree 0 4 2.90 (1.22)
Total degree 0 8 5.80 (2.30)
Pct. agreement edges out of total degree 0 0.75 0.24 (0.24)
Betweenness centrality 0 12 0.81 (1.91)
Harmonic closeness centrality 0 1 0.84 (0.24)
Local clustering coefficient 0 1 0.77 (0.31)

77

We also used the same network measures to compare our data to that expected of ran-

dom 5-node networks. For larger networks we may opt to generate a selection of networks

representative of the networks possible; our 5-node networks are small and therefore we

can easily enumerate all possible networks. We generated the 2n2−n or 1,048,576 directed

networks possible, and calculated degree and centrality measures for each. The resulting

distribution of measures we call the random network distribution. We then use the random

network distribution as reference distribution Q and our collected data as distribution P

to calculate the Kullback-Leibler Divergence, a measure of difference between two distri-

butions of data (Kullback and Leibler, 1951). The K-L Divergence is calculated for two

distributions P and Q as in Equation 4.2:

D(P||Q) = −
∑

x
P(x) log

Q(x)
P(x)

(4.2)

The measure is based on Shannon’s measure of entropy, and represents the information

gained by describing data using distribution P as compared to distribution Q. K-L Diver-

gence is measured in units of information entropy, or nats. If there is little difference, the

reference distribution, here the random network distribution, is a reasonable description of

the data collected. If values of the divergence are high, the collected data is demonstrably

different from random networks.

We calculate the K-L Divergence for each of the measures listed in Table 7, excepting

the percent of edges in the Purpose-directed network that were in agreement, i.e., reported

by both individuals. Percent agreement is a derivative measure and cannot be calculated

directly from the network itself. The remaining seven measures are: in-degree, out-degree,

total degree, maximum degree (binary), betweenness centrality, harmonic closeness cen-

trality, and local clustering coefficient. The cumulative distributions for each of these mea-

sures as calculated from our data and the generated networks (random network distribu-

tion) are plotted in Figures 13 and 14. The K-L Divergence calculated for each network

78

and measure combination is tabulated in Tables 8 and 9.

We briefly review some insights gained from this analysis, focused on where our data

differs or is quite similar to the generated networks. We start with the plots of degree

distribution in these networks. The distribution of in-degree found in our data follows

closely the distribution of in-degree found in random networks, shown in Figure 4.13(a).

The exception is for the Purpose-Directed network, where the majority of nodes in our data

have an in-degree of four out of four. While the in-degree calculated for for the Self and

Peer networks is similar to that of the random networks, the out-degree differs substantially.

This is shown in Figure 4.13(b). The Self and Peer networks are equally likely to have an

out-degree of zero or four out of four possible out-edges in our data, where the typical

out-degree is two for nodes in random networks of size five. In the case of out-degree,

the Purpose-Directed network and Initiator network more closely resemble the distribution

from random networks.

Next, we look at total degree and maximum degree in Figures 4.13(c) and 4.13(d). In

the purpose-directed network, a total degree of 8 is over-represented as compared to the

random networks. This is consistent with the over-representation of both out-degree and

in-degree of 4 in this network as compared to the random networks. Maximum degree is

calculated in our data only for the Initiator network, and we see in Figure 4.13(d) that top

initiators are over-represented compared to what we see from random networks. This may

be an artifact from the way this network was constructed; it is a layering of pairs of edges

from the in-degree and out-degree networks. However, this result is consistent with the

high fraction of nodes with out-degree of four in the Self network.

The centrality measures shown in Figures 4.14(a) and 4.14(b) show that nodes with

centrality values of 0 are much more common in our data than in random networks. This

indicates many of the teams in our analysis are well-connected, more so than is typical

of random five-node networks. This makes sense as some amount of connectedness is

expected of individuals working together on a project, whereas the generated networks

79

Table 8: Values of Kullback-Leibler Divergence calculated for In-Degree, Out-Degree,
Total Degree, and Maximum Degree network measures.

Measure Network K-L Divergence (nats)
In-Degree Self Network 0.008
In-Degree Peer Network 0.042
In-Degree Purpose-Directed Network 0.656
Out-Degree Self Network 1.396
Out-Degree Peer Network 1.697
Out-Degree Purpose-Directed Network 0.621
Out-Degree Initiator Network 0.621
Total Degree Purpose-Directed Network 1.668
Maximum Degree? (binary) Initiator Network 0.381

0 1 2 3 4

Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
t
o
f
O

b
s
e
rv

a
ti
o
n
s

CDF of In Degree Values

Generated Networks

Self Networks

Peer Networks

Purpose-Directed Networks

(a) In-Degree

0 1 2 3 4

Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
t
o
f
O

b
s
e
rv

a
ti
o
n
s

CDF of Out Degree Values

Generated Networks

Self Networks

Peer Networks

Purpose-Directed Networks

Initiator Networks

(b) Out-Degree

0 1 2 3 4 5 6 7 8

Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
t
o
f
O

b
s
e
rv

a
ti
o
n
s

CDF of Total Degree Values

Generated Networks

Purpose-Directed Networks

(c) Total Degree

0 1

Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
t
o
f
O

b
s
e
rv

a
ti
o
n
s

CDF of Degree = Maximum? (binary) Values

Generated Networks

Initiator Networks

(d) Maximum Degree

Figure 13: Distributions of In-Degree, Out-Degree, Total Degree, and Maximum Degree
measures calculated from generated networks and network representations of survey data.

80

Table 9: Values of Kullback-Leibler Divergence calculated for Betweenness Centrality,
Harmonic Closeness Centrality, and Local Clustering Coefficient network measures.

Measure Network K-L Divergence (nats)
Betweenness Centrality Self Network 0.899
Betweenness Centrality Peer Network 1.083
Betweenness Centrality Purpose-Directed Network 0.834
Harmonic Closeness Centrality Self Network 1.710
Harmonic Closeness Centrality Peer Network 1.994
Harmonic Closeness Centrality Purpose-Directed Network 0.953
Local Clustering Coefficient Purpose-Directed Network 1.305

0 2 4 6 8 10 12

Value

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
t
o
f
O

b
s
e
rv

a
ti
o
n
s

CDF of Betweenness Centrality Values

Generated Networks

Self Networks

Peer Networks

Purpose-Directed Networks

(a) Betweenness Centrality

0 0.2 0.4 0.6 0.8 1

Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
t
o
f
O

b
s
e
rv

a
ti
o
n
s

CDF of Harmonic Closeness Centrality Values

Generated Networks

Self Networks

Peer Networks

Purpose-Directed Networks

(b) Harmonic Closeness Centrality

0 0.2 0.4 0.6 0.8 1

Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
t
o
f
O

b
s
e
rv

a
ti
o
n
s

CDF of Local Clustering Coefficient Values

Generated Networks

Purpose-Directed Networks

(c) Local Clustering Coefficient

Figure 14: Distributions of Betweenness Centrality, Harmonic Closeness Centrality, and
Local Clustering Coefficient measures calculated from generated networks and network
representations of survey data.

81

include all possible configurations of five members.

Finally we consider the local clustering coefficient as shown in Figure 4.14(c). We

see that a local clustering coefficient value of 1 in the Purpose-Directed network is highly

represented relative to random networks. Values of 0 and 0.5 are more common in random

networks. Similar to low centrality, high local clustering coefficient values are an indicator

of well-connected networks for small networks, which we see again are more common in

our data than random networks.

4.4 Clustering Results and Interpretation

Clustering individuals based on both network measures and keywords appears to give a bal-

ance between clusterings obtained individually. We present here the results of this compos-

ite clustering based on the representative keywords and typical values of network measures

in each cluster. Section 4.5 discusses further the composite cluster characteristics.

4.4.1 Clusters as Described by Keywords

The top 20 keywords in each cluster are given in Figure 15. Several keywords are highly

ranked in all clusters: CAD, manufacturing, design, machining, manufacturing plans, team

leader, and shared responsibilities. This finding highlights core aspects of coursework.

Project work involves designing parts in CAD, putting together documentation for those

parts, and manufacturing or machining them. It therefore makes sense that these terms

would be widely used. Team leaders also were not performing just dedicated roles but

were also engaged in many other tasks. It is then also reasonable that those serving as team

lead may be grouped in various clusters with others serving different primary functions

on the team. Finally, shared work is common, likely due to the inclusion in analysis of

the responses to a survey question specifically asking respondents to indicate which of a

peer’s roles overlap with their own. In most cases, the students reported working together

82

or having shared responsibilities. Common to four of the five clusters is the keyword “split

the work”. Combined with “shared responsibilities” appearing in every cluster, this may

suggest a variety of working patterns within each cluster.

Figure 15 illustrates the top twenty keywords, sorted by average TF-IDF score of the

terms across all cluster members. The darker the text color, the lower the average TF-IDF

score, indicating less frequent appearance in describing the individuals in each cluster. We

also present the distribution of keyword categories within each cluster in Table 10. This

is calculated as a percentage of terms out of the top twenty that belong to each of six

categories, introduced in Table 4: terms regarding Aspect decomposition, Object decom-

position , Documentation, Team roles, Management and organization, and Coordination.

The percentages are shown in Figure 10 alongside the distribution of all keywords used as

clustering input and all keywords that appear in the top 20 of any cluster.

We briefly discuss each cluster in turn.

• Leaders: Six of the seven individuals in this group had responsibilities described as

a combination of being team lead, managing work, organizing tasks or schedules, or

leading subsystem design work. Note also the high proportion of management terms

relative to peer clusters shown in Table 10. While only three members of this group

were described using the term “team lead”, those three were given this title by their

teammates often enough to give an average TF-IDF score in the group of 0.16.

• Supporters: This group is small (3 members). While in other clusters it is more com-

mon for individuals to refer to themselves simply as a “team member”, in this group it

is more common for individuals to refer to themselves as “general engineers”. “En-

gineer” receives an average TF-IDF score of 0.21 in this group. They emphasized

working together, evenly splitting work, and sharing responsibilities. Also empha-

sized are initial design and brainstorming, typically a collaborative task in teams.

83

Figure 15: Top 20 keywords in each cluster in order of decreasing average TF-IDF score
within cluster. TF-IDF scores are indicated by color.

Table 10: Percent of the top 20 keywords in each cluster in each keyword category, shown
alongside the category distribution of the top 50 keywords overall used as clustering input
and the 38 unique words in the top 20 keywords of any cluster.

Keyword Group Percent of Keywords in each Category
Cluster Name Terms Aspect Object Document Team Manage Coordinate

All input 50 28% 20% 14% 16% 6% 16%
Top 20 of any
cluster

38 34% 13% 16% 16% 5% 16%

Leaders 20 40% 5% 15% 15% 10% 15%

Supporters 20 45% 10% 20% 10% 0% 15%

Generalists 20 40% 10% 10% 15% 5% 20%

Makers 20 45% 5% 5% 15% 0% 30%

Documenters 20 45% 5% 15% 15% 0% 20%

84

• Makers: Almost everyone in this group was described as working on manufacturing,

design, CAD, and generic parts. Specific subsystems were separately labelled in the

keyword analysis. Chassis is emphasized for six members of this group, enough to

bring it into the top 20 keywords in this group with an average TF-IDF score of 0.06.

• Documenters: As with other groups, making parts is emphasized. We call them

documenters, however, due to the frequent mention that they were working on doc-

umentation such as manufacturing plans, engineering drawings, and writing reports.

These terms apply to 19 members (70 percent) of this cluster.

• Generalists: The top keywords in this group are the same as for the Makers, but there

are more diverse keywords in the top 20 of this group. Some individuals are also

team leaders and organizers, others are working on documentation such as engineer-

ing drawings and manufacturing plans, and several specifically mentioned working

on supports to integrate subsystems. 18 members (55 percent) of this group were

perceived as working on “everything” by themselves or their peers.

4.4.2 Clusters as Described by Network Measures

We identify typical network measures within each cluster. Select measures calculated from

within each cluster along with a representative network diagram are shown in Figure 16.

Although these clusters are the same as discussed in the previous section, we describe them

here in terms of their local network characteristics. We discuss the labels in combination

in Section 4.5.

There are 39 top initiators out of 43 individuals in the groups Connectors, Hubs, and

Low-density Hubs due to their maximum out-degree in the Initiator network. The remain-

ing four individuals have high Initiator out-degree. The three clusters are divided by their

purpose-directed betweenness centrality values, reflecting the number of other commu-

nication edges in the team network. The remaining two clusters of Communicators and

85

Figure 16: Individual cluster descriptions with selected network measures and example
team network from purpose-directed network with representative node highlighted

Receivers are not initiators, typically having zero out-degree in the Initiator network.

A summary of each cluster is below.

• Connectors: These individuals are top initiators in medium to high density teams as

indicated by their low purpose-directed betweenness centrality values of 0-3. They

tend to be one of multiple connectors on their team.

• Hubs: They are top initiators but in contrast to the Connectors, they have low in-

degree in the Self and Peer networks. This means that their teammates are commu-

nicating with them less often, making Hubs more central to their team.

• Low-density Hubs: This group is particularly identified by high purpose-directed be-

tweenness centrality values, ranging from 9-12. They are top initiators in the sparsest

of the 22 teams we looked at and consequently they are the main source of commu-

86

nication in the team at the frequency and usefulness threshold we defined.

• Communicators: They are particularly defined by their total degree in the Purpose-

Directed network. The average degree of 5.9 indicates that they are well-connected to

most of their teammates. Their Self and Peer network in-degree measures are similar

to the group of Connectors and their out-degree in these networks is similar to the

group of Receivers. This combination suggests these individuals are situationally

engaged in discussion with their teammates about either their own work or their

peers’ work, and rarely both.

• Receivers: They are always on the receiving end of communication from their peers,

with zero out-degree and typically non-zero in-degree in both Self and Peer net-

works. Several in this group were completely independent of the rest of their team,

meaning no communication with their peers that met our frequency and usefulness

threshold for analysis. All measures we calculated were consequently zero for these

individuals.

4.5 Discussion

4.5.1 Coordination Roles

Our analysis identified five clusters of individuals, each representing a different combina-

tion of project tasks and communication behaviors. Thus far we have considered these

roles on their own. Since coordination is a system-level outcome, it is also important to

examine how these roles are distributed within teams. Again we seek to characterize what

combinations exist rather than evaluate them. Connectors-Generalists tend to be on teams

with Communicators-Makers: 59% of the teams in this analysis are comprised of only

these two roles. The other 41% of teams have at least one Receiver-Documenter. These

individuals did not report frequent and useful communication with their peers, and are

87

typically in teams with a Hub-Leader or Hub-Supporter. The tasks these Hub roles en-

gaged in are different, but they serve a similar communicative role of keeping the team

connected. Their presence alongside Receiver-Documenter roles (and never alongside

Communicators-Makers) suggests that team roles are in part a reflection of the team com-

position. This is consistent with past observations that individuals take on different roles

as the situation demands (Senior, 1997; Stewart, Fulmer, and Barrick, 2005; Adams et al.,

2009).

The dichotomy between teams that include Communicators-Makers and Connectors-

Generalists and those that are some combination of all roles except Connectors-Generalists

may also be an indication of how work was partitioned among the team members. The

central Hub role, either Supporter or Leader, is in teams with Communicators-Makers

and/or Documenters-Receivers. This may indicate highly partitioned work, where the

Communicators-Makers and Documenters-Receivers were all working on their own parts.

In a hierarchical partitioning strategy, subsystems are divided and their coordination is left

to a central overseer, in this case, a Hub role. This is consistent with the observed low

communication reported from the remaining team members. In contrast, the teams with

Communicators-Makers and Connectors-Generalists tended to form highly connected team

networks with frequent communication among all members. This is consistent with non-

hierarchical partitioning, where there is no central coordinator and all parties are managing

their own interactions.

We also note that while we have a group we call ‘Leaders’, all clusters included a few

team leaders. According to Ehrlich and Cataldo (2014), teams with technical leaders that

have high centrality in their team and high communication relative to others in the team are

more likely to deliver a higher quality product. Again, we did not evaluate the performance

of the teams’ output, but our Hubs-Leaders group fits the profile of high-centrality leaders.

Shared leadership is also common in student project teams (Novoselich and Knight, 2018),

which may look like a relative lack of centrality for those doing leadership tasks (Ehrlich

88

and Cataldo, 2014). Team leaders not in ‘Hub’ clusters may be an example of instances

where leadership tasks were shared by multiple team members. In addition, different lead-

ership styles have different associated communication styles (de Vries, Bakker-Pieper, and

Oostenveld, 2010). Therefore, on the whole, these teams may exhibit varied leadership

styles including shared leadership among members.

4.5.2 Correlation to Interview Data

We found in Chapter 3 a dichotomy between authority-based or Passive approaches to

coordination and empathetic leadership-based or Active approaches to coordination. One

distinguishing factor between these methods is the amount of communication each engages

in: the Active methods of coordination-facilitation emphasize regular communication with

peers to ensure everyone has a common understanding of shared work.

In the results of the survey presented in this chapter, we also see a dichotomy. Of the

respondents for whom we had enough data to include in the clustering analysis, about half

were “top Initiators”: regularly engaged in communication with all teammates regarding

each others’ work. The other half were not top initiators, or were “Non-Initiators”, and

instead tended to have higher in-degree than out-degree. This means they were more likely

to have teammates initiate communication with them than vice versa. This dichotomy be-

tween Initiators and Non-Initiators may be a parallel to the Active and Passive dichotomy

shown in Chapter 3. Our finding that Initiators tended to be in teams with Non-Initiators

suggests we may expect individuals with Active and Passive coordination-facilitation be-

haviors to be in equal balance. We explore further the balance between these two behavioral

archetypes in Chapter 5.

89

4.6 Summary

This study is an early step in understanding how coordination is practiced in actual system

design. We used a combination of network analysis and text analysis to identify five coordi-

nation roles adopted in distributed project work. We see some indication that teams seemed

to adopt hierarchical or non-hierarchical partitioning strategies based on the combination

of roles within each team, as well as a possible indication of balanced Active and Passive

coordination-facilitation behaviors in each team.

Future work could look into additional factors impacting successful teamwork such

as those identified by Maier et al. (2008) and Crabtree, Fox, and Baid (1997) to more

fully characterize coordination roles. There is also an opportunity to explore correlation

between the identified coordination roles and the result of other personality inventories

or team role assessments. This includes personality and attitude inventories, such as the

Myers-Briggs Type Indicator (Myers and Myers, 1980), Big Five (Goldberg, 1990), Clifton

Strengthsfinder (Asplund et al., 2007), and the Belbin Team Inventory (Aritzeta, Swailes,

and Senior, 2007). These instruments alone and in combination have been used for team

formation and to predict team success (Varvel et al., 2004; Gardner and Martinko, 1996;

Mount, Barrick, and Stewart, 1998; Clinebell and Stecher, 2003; Kosti, Feldt, and Angelis,

2014; Acuña and Juristo, 2004). The focus of these instruments is on individual personality

and preferences, which may or may not correlate to the roles identified here which focus

on coordination behavior within the team. Other instruments that measure attitudes toward

engineering and design work such as Greene, Gonzalez, and Papalambros (2019) may also

be useful to explore correlation between team roles based on coordination behavior and

attitudes toward the tasks and communication that comprise coordination work.

In addition, we acknowledge several limitations that should be addressed in future iter-

ations of this study. The first is that novice designers are not necessarily the best proxy for

understanding of organizational processes. Novice and expert designers approach problem-

solving differently (Cross, 2004; Smith and Leong, 1998). Novice designers also tend to

90

focus on subsystem level optimization rather than system optimization (Austin-Breneman,

Honda, and Yang, 2012). This suggests professionals may have different coordination ap-

proaches than the student teams recruited for this study, indicating validation from industry

practice is warranted.

We also acknowledge that self-report surveys suffer from recency bias and reporting

bias. Deploying our survey at the end of the design project means end-of-term activities are

likely overrepresented in reported project responsibilities. Questions about communication

frequency and usefulness may be inaccurate, and tasks reported for each team member

may be incomplete. Further, we do not know from our survey data the rationale behind

team interactions – why certain individuals reached out frequently and others did not. In

subsequent studies, these limitations could be mitigated by additional data sources, such as

more frequent surveys, review of documentation, or communication observed via project

management software.

91

CHAPTER 5

Using Agents to Model Coordination

5.1 Introduction

The previous studies presented in Chapters 3 and 4 identified behaviors associated with co-

ordination activity during distributed design work. In Chapter 3, we identified actions and

behaviors enabled by authority that emphasize reliance on organizationally-defined lines

of communication, common schedules, and common design processes among group mem-

bers. We also identified actions and behaviors enabled by empathetic leadership or social

capital, which emphasize developing and maintaining connections within the organization

that go beyond those established via hierarchy and authority. Many of the individuals we

interviewed also mentioned that they could use either strategy to facilitate coordination –

authority-driven or empathetic leadership-driven – but sometimes preferred one over an-

other. This led us to hypothesize that the two strategies are complementary.

In Chapter 4, we observed that teams of novice designers tended to have a mix of more

talkative individuals who engaged with their peers regularly about each others’ tasks and

quieter individuals who interacted less and worked on their own tasks. This is a similar

dichotomy as that between the authority-based actions and empathetic leadership-based

actions we identified in Chapter 3.

Combined, these two studies show that individuals have different behaviors they use

or prefer when engaging in coordination of distributed work. This finding motivates the

92

following research question:

How do the identified coordination-facilitation behaviors impact coordination

effectiveness in terms of a group’s performance on a distributed design task and

the interaction costs associated with the coordination strategy used to complete

that task?

The objective of the study in this chapter is to address this research question through

the development of an agent-based simulation model. In agent-based modeling, individual

agents are given simple logic to govern their behaviors, and global or aggregate behavior

often emerges through the interaction of agents (Wilensky and Rand, 2015; Railsback and

Grimm, 2012). Agent models have been developed to model natural systems, engineered

systems, and social systems (Wilensky and Rand, 2015; Railsback and Grimm, 2012; Ep-

stein and Axtell, 1996; Miller and Page, 2007).

Agent models typically focus on a single type of interaction between agents. These are

therefore simple models, but illustrate how simple behaviors can propagate throughout an

organization to create more complicated outcomes. Agent models have been used to study a

number of phenomena, including organizational processes and design processes. Examples

include advice-seeking behavior (Levine and Prietula, 2011; Tóth et al., 2018), communi-

cation and decision-making (Meluso and Austin-Breneman, 2018; Vermillion and Malak,

2015; Farooqui and Niazi, 2016), cognition (McComb, Cagan, and Kotovsky, 2015; Gero,

2002), and teamwork, collaboration, and design (Soria Zurita et al., 2017; Levitt, 2012;

Fernandes et al., 2017; Panchal, 2010). These models have been able to test the impact of

observed behaviors on designed outcomes through simple assumptions of how agents in-

teract. Agent modeling is particularly valuable in the context of engineered systems design

where agents are heterogeneous and systems are highly networked, making interdependen-

cies difficult to quantify (Heydari and Pennock, 2018).

Agent modeling was selected for this study because of the method’s emphasis on con-

necting individual behavior to global outcomes. This emphasis aligns well with our re-

93

search question: connecting individuals’ actions and behaviors to system-level coordina-

tion outcomes. However, for the results of agent models to be interpretable, agent behavior

must be simple. Thus the nuances and multiple facets of behavior identified in prior chap-

ters’ studies must be pared back. In this third study, we imbue agents with simple versions

of the coordination-facilitation behaviors previously identified. This model includes two

behavioral preferences. The first is an individuals’ preference to proactively initiate com-

munication with peers versus generate new knowledge on their own. The second is a pref-

erence to adhere to organizationally defined communication channels versus additionally

leveraging a network of local peers. These two behaviors focus especially on the aspects of

Active and Passive coordination-facilitation strategies that align with formal and informal

organizational behavior.

To study coordination, the agents are tasked with completing a distributed design prob-

lem. We prescribe a single design task which is partitioned among all agents. Each agent

contributes to the overall task by working on their own local partition. This mimics di-

vision of labor within an organization. To quantify the impacts of different coordination-

facilitation behaviors, we use the model to evaluate two performance measures: agent’s

task performance on their local partition, as well as the collective performance on the global

task, i.e., the result achieved through coordination of individual tasks. We perform para-

metric analysis on global variables such as how agents are connected, how the design task

is partitioned, i.e., which agents start with what task, and how agent behavior profiles are

distributed among the set of agents. We also have the ability to vary the parameters that

govern individual agent behaviors. A detailed description of the model follows in Sec-

tion 5.2. Results from the model and parametric analysis follow in Sections 5.4 and 5.5.

The intervening Section 5.3 states the hypotheses motivating the particular exercises of the

model.

94

5.2 Model Description

In this section we describe the design and structure of the agent model. We loosely follow

the ODD Protocol developed by Grimm et al. (Grimm et al., 2006), which specifies what

elements of agent models should be described aiming for reproducability. The basic ele-

ments of the ODD protocol are Overview, Design, and Details, each increasingly detailed.

We describe in the following subsections the model objectives, environment, procedural

structure, agent behavior, parameters, and model outputs.

5.2.1 Objectives

The purpose of the model is to quantify the impact of agent coordination-facilitation behav-

iors on organizational and technical performance measures of a distributed design task. For

a quantitative assessment, we look at the performance impacts of varied relative concen-

tration of individuals with one of two archetypical behaviors within an organization. We

also compare results to a direct solution to the same design task given to the agents. The

organization’s collective task is to complete a distributed classification task. The agents’

aggregate classification accuracy is used as a technical performance measure and the num-

ber of peer-to-peer interactions agents engage in is used as an organizational performance

measure.

5.2.2 Network Structure

Agents in the model are connected by a network which represents the structure of an or-

ganization. Nodes in the network represent individuals and edges represent formal ties

between individuals. The network structure is generated using the LFR benchmark model,

named after its original authors Lancichinetti, Fortunato, and Radicchi (2008). Their gen-

erative model produces networks with inherent community structure. Community structure

within networks is akin to modularization: a community is a group of nodes that show many

95

links within the community and few links outside (Newman, 2006). Here, the community

structure within the network represents teams within an organization. The LFR genera-

tive algorithm was designed to create test cases for community-detection algorithms, with

non-uniform distributions of both node degree and community size adding realism (Lan-

cichinetti, Fortunato, and Radicchi, 2008). The degree distribution and community size

distribution are fit to power law distributions, but in smaller networks like ours (100 nodes

and typically less than 20 communities), the observed distributions do not follow the power

law exactly.

Table 11: Parameters used as input for generated LFR networks

Parameter Symbol Value
User-defined Parameters
Number nodes N 100
Average links per node k 5
Maximum node degree maxk 10
Average node mixing parameter µ 0.2
Automatically Calculated Parameters
Community size range [3, 10]
Default Parameters
Degree distribution exponent λ1 2
Community size distribution exponent λ2 1

Table 11 gives the parameters used as inputs to the generative network model and the

values selected for our use. Several parameters, such as the average degree and average

mixing parameter, are average values for the nodes in the network. Therefore a single set

of parameters can yield multiple different networks. Two such networks with the same

parameters are shown in Figure 17. The selected parameters result in a network of 100

agents, each with an average of five linked neighbors and a maximum of ten. Each agent is

assigned membership to a single community; community sizes range from three members

to ten. The mixing parameter µ is the proportion of any agent’s connections that are outside

their own community. It is specified at the network level as an average of the mixing

parameter for all individual nodes. A value of µ = 0 means that, on average, agents have

96

(a) Network 1

Degree distribution

3 4 5 6 7 8 9 10
Node Degree

0

0.2

0.4

Fr
ac

tio
n

of
 N

od
es

Community Size distribution

3 7 8 9 10
Community Size

0

0.1

0.2

0.3

Fr
ac

tio
n

of
 C

om
m

un
iti

es

Mixing Parameter distribution

0 0.1 0.2 0.3 0.4 0.5
Node Mixing Parameter

0

0.2

0.4

0.6

Fr
ac

tio
n

of
 N

od
es

(b) Distribution of Measures for Net-
work 1

(c) Network 2

Degree distribution

3 4 5 6 7 8 9 10
Node Degree

0

0.2

0.4

Fr
ac

tio
n

of
 N

od
es

Community Size distribution

3 5 6 7 8 9 10
Community Size

0

0.1

0.2

0.3

Fr
ac

tio
n

of
 C

om
m

un
iti

es

Mixing Parameter distribution

0 0.1 0.2 0.3 0.4 0.5
Node Mixing Parameter

0

0.2

0.4

0.6

Fr
ac

tio
n

of
 N

od
es

(d) Distribution of Measures for Net-
work 2

Figure 17: Two networks generated using the LFR algorithm using the same parameters.
Panels (a) and (c) depict the network structure for each network, where nodes are numbered
in order by community and colored according to community membership. Panels (b) and
(d) depict distributions of node degree, community size, and node mixing parameter within
the respective networks.

97

no connections outside their own community. The result is a disconnected network where

each community is isolated. A value of µ = 1 means that, on average, all of an agent’s

connections are with agents outside their own group; the result is a dense network with no

obvious community structure. The degree distribution and community size distribution are

fit to the form given in Equations 5.1 and 5.2:

P(k) ∼ k−λ1 = k−2 where k is node degree (5.1)

P(s) ∼ s−λ2 = s−1 where s is community size (5.2)

The power law degree distribution means that few nodes have high degree and many

nodes have low degree. Networks with this property are considered scale-free, and are

common in natural and social systems (Barabási, 2016). With an average mixing parameter

of µ = 0.2, most edges in the generated networks are within-community links, rather than

between-community links. Generated networks with communities labeled by color are

shown in Figure 17. Multiple networks generated from the same input parameters as given

in Table 11 differ primarily in their community size distribution. In addition, numerical

community labels are randomly assigned. Both the number of agents in each community

and the community label impact how data is partitioned, described more in the following

section. However, as we know partitioning and coordination are related, we expect the

network structure to be a significant factor impacting results. Therefore we look at multiple

different networks, or cases, in our analysis and draw conclusions from across all cases.

5.2.3 Decision-Making Task

In this model, agents complete a distributed classification task. Distributed classificaiton

was selected because it represents a distributed decision-making problem: each agent works

independently and becomes an independent classifier. Individual agent classification results

are aggregated to give the global classification result. This task was selected firstly because

98

performance for both individual agents and their aggregate is easy to calculate: classifi-

cation results are either right or wrong. We are also able to leverage an inherent feature

of classification: in general, accuracy improves with more data. A distributed classifica-

tion task means each agent has less data to work with, and coordination through efficient

collection of data is therefore necessary to improve performance.

In a classification problem, the objective is to correctly categorize or label unknown

data given a prior set of known data and correct labels for that data. Unknown data is

referred to as test data, whereas prior known data is referred to as training data. Data is

a composition of variables which describe the data and labels which indicate the correct

categorization. A classifier’s accuracy is determined by comparing the classifier’s guess at

the correct labels for test data with the true labels for test data.

Agents in our model are tasked with the correct classification of data representing letters

of the English alphabet. The dataset we use was originally developed by Frey and Slate

(Frey and Slate, 1991). They generated 20,000 unique letters of the alphabet based on

existing fonts, including all letters from A to Z. Each data item consists of 16 measurements

(variable values) of each letter image paired with the letter label. The full dataset therefore

consists of 20,000 items: each a matched pair of 16 variables and one alphabetical label.

The dataset is available from the UCI Machine Learning Repository as “Letter Recognition

Data Set” (Dua and Graff, 2017).

The Letter Recognition dataset includes between 734 and 813 instances of each letter in

the alphabet. A confusion matrix of the dataset is given in Figure 18, showing for each letter

in the dataset, what is the most similar item out of all other (19,999) items. The label of

the most similar item is the predicted label. All letters are classified correctly over 90% of

the time, when all possible training data is available. When misclassified, there are several

pairs of commonly confused letters. Examples include (I, J), (F, P), (H, K), (K, X), (T, Y),

(O, Q), (B, R), and (B, V). Others are asymmetrical: for example, O is often misclassified

as D, but not vice versa. This characterization of our data shows that there are more and

99

less challenging classification tasks given different partitioning, i.e., combinations of letters

in test and training data. For example, an agent seeking to distinguish I’s and J’s or O’s and

Q’s in their test and training data is more likely to make incorrect classifications than an

agent with A’s and B’s. The natural variation of difficulty is akin to the real scenario of

different design groups having more and less difficult tasks.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z count
A 786 1 1 1 789
B 717 3 4 1 1 6 1 1 1 12 4 14 1 766
C 717 6 6 1 2 1 1 2 736
D 1 779 1 1 8 2 5 6 2 805
E 1 4 728 1 10 1 6 3 1 1 2 1 4 5 768
F 1 726 1 2 2 26 1 1 1 10 2 1 1 775
G 2 7 5 7 740 2 1 3 1 1 2 2 773
H 8 1 13 1 1 3 662 1 19 1 2 1 5 2 10 1 2 1 734
I 1 731 21 1 1 755
J 1 1 2 1 23 714 1 2 2 747
K 2 7 1 23 679 11 16 739
L 3 2 1 2 2 748 1 2 761
M 3 1 777 1 1 1 5 3 792
N 1 1 4 2 1 2 757 3 9 2 1 783
O 3 10 1 731 7 1 753
P 3 2 30 1 2 1 759 2 1 1 1 803
Q 2 3 10 4 759 1 1 3 783
R 17 1 1 10 10 1 8 1 708 1 758
S 6 3 1 3 732 1 1 1 748
T 1 1 4 1 1 1 1 1 773 2 10 796
U 1 1 6 2 1 800 1 1 813
V 11 1 1 1 2 2 1 1 739 1 4 764
W 1 2 1 3 1 2 3 739 752
X 2 2 5 16 1 1 1 2 756 1 787
Y 1 1 10 2 3 1 1 767 786
Z 1 7 1 725 734

count 790 777 737 823 768 765 771 724 757 743 737 758 787 777 764 795 781 765 745 798 810 774 750 783 785 736

Ac
tu

al
 La

be
l

Predicted Label

Figure 18: Confusion matrix of all 20,000 items in Letter Recognition Data Set (Dua and
Graff, 2017).

5.2.3.1 Data Partitioning

To set up the distributed classification task, we allocate the 20,000 items from the Let-

ter Recognition Data Set into test and train data at the local (agent) and global levels. A

diagram depicting this multi-level partitioning process is shown in Figure 19. First, we

set aside the first 200 (1%) items as global test data. This dataset includes both the vari-

ables describing each letter and the character labels themselves. Then the remaining 19,800

items are divided among communities of agents. Each community receives training data

100

Figure 19: Illustration of how classification data is partitioned into global test, local test,
local ask, and local training data. Letters shown in each community partition are examples.
Global data is used by all agents, while local data is accessible to agents within a single
community.

proportional to the number of agents in the community. Data can be partitioned to each

community randomly, sorted alphabetically, or reverse alphabetically. In the random as-

signment, each community’s partition contains information about most or all 26 letters.

Alphabetical partitioning assigns data to each community in order according to the data

label: e.g., Community 1 receives A, B, and C; Community 2 receives D and E; and so on.

Reverse-alphabetical partitioning follows the same procedure, but assigns data in reverse

order from Z to A. The number of letters each community receives depends on the group

size, and adjacent groups may share some training data for the same letter.

A community’s data is then divided into test, training, and what we call ask data pools.

The local training and test data allows agents to develop local classifier models prior to

applying their models to the global classification task. The ask pools are a reserved set of

data, which agents can draw from to mimic the creation of new data. Each community’s

data is divided by default as follows: 10% local test data, 5% local ask data, and 85% local

101

train data. The local test and ask data is shared by all community members, and the local

train data is then divided equally among all agents in the community.

5.2.3.2 Distributed Classification

The model aims to simulate coordination behavior used while solving a distributed de-

sign problem. Agents begin with distinct training data and access to their own within-

community test data. The letters represented in the community test data reflect the letters

agents in the community have in their training data, as described above. Ultimately, each

agent will be tested on the same set of global test data, and will be asked to contribute a vote

as to what they believe to be the correct classification of those 200 items. Agents only know

data in their individual training set, but should also be able to determine whether a letter

they are attempting to classify does not look like any of the letters they know. Therefore

agents, acting as independent classifiers, should be able to report:

• Whether a test item is one of their items (Does this look like an item I have in my

training dataset?)

• If the test item is one of their items, which item is it? (Which item of mine does this

look most like?)

Classification

The general structure of the distributed classification task is illustrated in Figure 20.

Agents complete this classification task using a k-nearest neighbors or KNN classification

algorithm. This algorithm provides a classification label for unknown test data by identi-

fying the points in the agent’s training dataset that are closest in variable-space to the test

data. The KNN algorithm uses the nearest k of these points in the agent’s training dataset,

and takes the majority label corresponding to those k points as the classification guess for

unknown test data. For the selected letter recognition task, we find that k = 1 provides the

best results over other choices of k with any amount of training data. This is consistent with

102

Figure 20: Diagram illustrating distributed classification task as performed by agents. Each
box represents a community, and letters in each box represent unique items in the commu-
nity’s initial test dataset. Letters shown are examples; community test data varies with the
community size.

others’ findings in literature (Fogarty, 1992). Therefore all agents use k = 1 for their KNN

classifier. This classification algorithm allows agents to answer the second question above:

given an unknown test item, what item is it?

Confidence Threshold

To answer the first question above, whether an unknown item in their expertise area,

agents apply their learned knowledge of classification successes and failures. Agents use a

confidence threshold that indicates whether the agent trusts the result of their classification.

The threshold is based on the Euclidean distance between a test item and an agents’ closest

training datapoint, i.e., the result of KNN classification. We observed that there is often a

distinct separation between the typical distance between test and train data for correct and

incorrect classifications.

The threshold value is calculated from the distribution of distances between test and

train items for an agent’s correct and incorrect classifications. The separation between

the means and medians of these distributions are distinct, but the distributions themselves

overlap. Three thresholds are defined within the model:

• Most incorrect matches above: the 25th percentile of the distribution of distances

between test and train data for incorrect matches is used as a threshold

103

• Average of medians: the average of the medians of the two distributions for incorrect

matches and correct matches is used as a threshold

• Most correct matches below: the 75th percentile of the distribution of distances be-

tween test and train data for correct matches is used as a threshold

The thresholds act as low-pass filters on the classification result. Items above the thresh-

old are considered untrusted: if the test item is very far away from any of an agent’s known

training data, the agent negates the result of that classification. Matches at or below the

threshold distance are considered trusted: the classification result is taken as is. The result

is a binary filter.

The thresholded accuracy combines the raw classification result and the application of

the binary threshold filter. The correct matches below the threshold (close) and the many in-

correct matches above the threshold (far) are positive identifications and count towards the

thresholded accuracy. Incorrect matches below the threshold (close) and correct matches

above the threshold (far) are negative identifications and count against the thresholded ac-

curacy. The thresholded accuracy is higher than the accuracy without a threshold in most

cases. An example of the thresholding process and thresholded accuracy determination is

given in Table 12.

Table 12: Example of threshold application and calculation of thresholded accuracy. This
agent is tasked with the correct identification of the letter ‘A’.

Classification result ‘A’ ‘A’ ‘B’ ‘B’
Threshold result Near Far Near Far
Combined result ‘A’ ‘not A’ ‘B’ ‘not B’
Thresholded accuracy Correct Incorrect Incorrect Correct

Each threshold is a balance between maximizing the number of correct classification

results and minimizing the number of incorrect classification results. Because the distri-

butions of distance between test and train data for correct and incorrect matches overlap,

no threshold guarantees 100% accuracy. There are both correct matches that happen to be

104

far apart, and incorrect matches that happen to be very close. This is due in part to the

representation of letters using the sixteen dimensions chosen by the creators of the dataset,

and the fact that different letters may have similar representations in these dimensions. The

agents also use an unweighted Euclidean distance between items as the distance measure

in their KNN classifier. It is possible that other distance metrics or weightings may have

more favorable results for comparison between letters. It is these inherent features of the

classification data and classifier itself, however, that make this a challenging and interesting

classification task when a limited amount of training data is available.

Example

The three different thresholds are illustrated for a single agent in Figure 21. First, we

look at general trends over the course of twenty model iterations. Each iteration of the

model, agents collect new training data to build their classifier. More training data means

agents are more likely to have a correct match to the data in the community test pool.

Agents also add a portion of newly received data to the common test pool, growing the

expertise of the entire community. Thus agents test their classifiers on an increasingly

large set of local community test data.

The median distance between test items and training items for correct matches stays

roughly constant at around 3, suggesting correct matches stay correct. The median dis-

tance between test and train items falls from about 7.5 to 5.5 over the course of 20 model

iterations for incorrect matches. This is evidence that agents gain new training data is that

is closer to all test items. However, there continue to be incorrect matches.

Next, we step through the classification results for the example agent shown in Fig-

ure 21. This agent begins at T = 0 with a training dataset consisting of multiple examples

of a single letter, A. Their community test dataset has two letters, A and B. Without a

threshold, this agent will classify every letter in the test dataset as an A, since that is all

they know. This is illustrated in Figure 5.21(a). As the model progresses through 20 itera-

tions this example agent gathers information about seven different letters. The community

105

0 2 4 6 8 10 12
Euclidean distance between Test item and nearest Train item

0

20

40

60

80

C
ou

nt
 o

f p
ai

rs

Distribution of Distance between Test and Train items
for Correct and Incorrect Matches
Single Agent, T = 1, 158 Test items

Correct Matches
Incorrect Matches
Threshold: Most incorrect matches above
Threshold: Average of medians
Threshold: Most correct matches below
Median of each distribution

(a) T = 1

0 2 4 6 8 10 12
Euclidean distance between Test item and nearest Train item

0

20

40

60

80

C
ou

nt
 o

f p
ai

rs

Distribution of Distance between Test and Train items
for Correct and Incorrect Matches
Single Agent, T = 5, 177 Test items

Correct Matches
Incorrect Matches
Threshold: Most incorrect matches above
Threshold: Average of medians
Threshold: Most correct matches below
Median of each distribution

(b) T = 5

0 2 4 6 8 10 12
Euclidean distance between Test item and nearest Train item

0

20

40

60

80

C
ou

nt
 o

f p
ai

rs

Distribution of Distance between Test and Train items
for Correct and Incorrect Matches

Single Agent, T = 10, 188 Test items

Correct Matches
Incorrect Matches
Threshold: Most incorrect matches above
Threshold: Average of medians
Threshold: Most correct matches below
Median of each distribution

(c) T = 10

0 2 4 6 8 10 12
Euclidean distance between Test item and nearest Train item

0

20

40

60

80

C
ou

nt
 o

f p
ai

rs

Distribution of Distance between Test and Train items
for Correct and Incorrect Matches

Single Agent, T = 20, 194 Test items

Correct Matches
Incorrect Matches
Threshold: Most incorrect matches above
Threshold: Average of medians
Threshold: Most correct matches below
Median of each distribution

(d) T = 20

Figure 21: Illustration of overlapping distributions of the distance between test and train
items when the test and train items match (correct classification), and when they are differ-
ent (incorrect classification).

test dataset contains 13 unique items after 20 iterations, so this agent will always make

some incorrect classifications: they can still only guess one of the seven labels that are in

their own training set. Even so, this agent achieves an accuracy of 83% on their local com-

munity test without a threshold applied. With the most incorrect matches above threshold

(green line in Figure 21) applied, their local task accuracy improves to 92%.

106

More on how the community test dataset evolves and how agents gain new training data

is in the following subsections.

5.2.4 Coordination Problem

In each iteration of the model, agents develop a classification model using their current

training data and evaluate it on their local community test data. Additional training data

improves the likelihood of having a correct match to a test item. This improvement is in

both the classification task accuracy as well as defining an effective confidence threshold.

The agents’ final objective is accurate contribution to the global classification task through

these two tasks: distinguishing whether an item is one they know (have in their training

dataset), and correctly distinguishing among labels they have in their dataset. Agents do

not receive feedback on their global classification task performance, but they develop their

approach through refining their performance on the local classification task.

To improve their classification accuracy on both tasks, agents collect information at

each iteration of the model from either a peer or the community ask pool. The act of col-

lecting data therefore serves as coordination: its aim is to improve the agent’s contribution

to common global task performance. The result of effective data collection is agreement

among agents on a correct classification, through positive identification and lack of neg-

ative identification. How agents collect data, or their coordination-facilitation behavior,

differs by the type of agent, discussed more in the following section.

If each node had all 19,800 training items in their own training dataset, they would

have achieved approximately 95% accuracy on the global test. This result is again con-

sistent with other results from the literature using the entire dataset as training data for

classification (Fogarty, 1992). However, each agent starts out with just 168 items, 0.8%

of the overall dataset. With this small training set, agents aim to collect data efficiently in

order to improve their classification task ability.

107

5.2.5 Agent Behavior and Interaction

Two different types of agents are built into the model, each modeled after the Active and

Passive archetypes identified in the studies presented in previous chapters. The agent types

behave largely the same way, but have two points of difference governed by different initial

parameters: peer agent set definition and probability to interact with peers. A peer is an

agent considered as a source of information. Passive agents embody elements of the Passive

strategy for facilitating coordination identified in Chapter 3. These agents define their peers

they can contact as those with whom they have formally-defined ties. In this model, these

formal ties are indicated by links in the network structure that connect agents. Passive

agents also have a lower probability to interact with peers in order to seek new information,

instead preferring to gather new information from the community’s ask pool. Receiving

data from the ask pool represents independently coming up with new information, rather

than seeking similar information from peers.

Active agents in turn embody elements of the Active strategy for facilitating coordi-

nation we identified previously. Active agents define their peers as both those they are

formally connected to (network links) and “informal" connections: all other members of

their community, regardless of whether there is a network link to those members. This

difference means Active agents have more choices of peer agents to seek data from as com-

pared to Passive agents. This difference means there is more information readily accessible

to Active agents, increasing their ability to act as a source of information for their neighbor-

ing agents. Active agents also have a preference for seeking new information from peers

rather than generating new data alone, i.e., seeking data from the local community ask pool.

5.2.5.1 Interaction Probability

The choice of data source is governed by a probability called pinteract: the probability an

agent chooses to interact with a peer. The probability of instead selecting data from the

ask pool is pask = 1− pinteract. The initial values of pinteract vary by agent type as given in

108

Equations 5.3 and 5.4.

Active: pinteract = 1 (5.3)

Passive: pinteract = 0 (5.4)

The initial interaction probabilities represent our depiction of archetypical behavior.

With the interaction probabilities set to 1 and 0 respectively, an Active agent will initially

have the preference to always interact with peers, and a Passive agent will initially prefer

to never interact with peers. The interaction probabilities can change, however, as agents

engage in successful and unsuccessful interactions. This learning process is described more

below.

If an agent chooses to interact with a peer agent in a given iteration of the model, they

must also choose which peer to interact with. The choice is governed by the connection

strength. The connection strength is a directed relationship between two agents, which we

denote sel f and peer. The strength itself represents the value of a given peer as a source

of information for the sel f agent.

A single agent has multiple peers, as described previously: an agent’s peer set include

all other agents connected by a network edge. Active agents also include their community

members within their set of peers. A sel f agent determines the probability of selecting each

of their peers by comparing the connection strength values for each (sel f , peer) combina-

tion. The raw connection strength values from each pair of agents are normalized across

all of the sel f agent’s peers: the normalized connection strength values sum to one. The

normalized connection strength for a pair of agents is then used as the probability the sel f

agent interacts with a given peer agent. If all (raw or normalized) connection strength

values are equal, the sel f agent is equally likely to interact with any of their peers.

The raw connection strength values start at 1, and are updated after each interaction with

a peer agent. A successful interaction, determined by improved classifier accuracy with

109

the received information, increases the raw connection strength (self,peer) by a parameter

pchange, initially set to 0.5. The raw connection strength values are restricted to be non-

negative so that probabilities can be calculated, so if an entry falls below zero through this

process it is reset to zero.

The same updating logic also applies to the value of pinteract: if classification accuracy

is reduced as a result of receiving data from any source, then the probability to choose

that same source again is decreased by the same amount pchange. If an agent chooses to

interact with a peer rather than the ask pool, and it was successful, they are then more

likely by an increment of pchange to seek a peer again rather than the ask pool at the next

model iteration. Similarly, if an agent chooses to select data from the ask pool and it

was successful, the value of pinteract is decreased by an increment pchange. This increases

the likelihood of selecting from the ask pool again. Updating interaction probabilities as

the model progresses represents agents’ learning about the value of different information

sources, and adapting future behavior accordingly.

5.2.5.2 Information Exchange

After an agent has selected an information source, they then receive information from that

source in a one-way exchange. Two parameters, interact_add and ask_add, govern how

much data an agent receives from a peer or their community’s local ask pool, respectively.

Initially, interact_add = 10 items and ask_add = 2 items. A difference between these

values can be interpreted as the relative effort required to get information from each source.

The given values indicate that asking a peer is five times more efficient to receive new

information than working on one’s own to come up with new information. Using other

ratios are also plausible scenarios. There is a practical threshold for the ask_add value,

however, constrained by the finite amount of data available in the ask pool. The utility of

the ask pool as a resource is diminished if agents receive all data available there in one or

two iterations. The interact_add value is constrained only by the amount of data in each

110

agent’s training set, initially 168 items.

Agents copy data from their chosen source (peer agent or ask pool) randomly with-

out replacement. When selecting from the ask pool, agents track which items they have

taken so they can select (randomly) from the remaining set. However, when selecting

interact_add items from a peer’s current training dataset, there is no guarantee that the

items selected are not duplicates. Agents may also receive duplicate entries if data is trans-

mitted among multiple paths to the same recipient agent. There are also 1,315 (6.6%)

duplicate entries in the 19,800 items partitioned to agents’ training data, community ask

pools, and community test datasets. These are artifacts from compressing character images

into sixteen measurements. Whether receiving a new data item that happens to be a dupli-

cate entry or receiving the same item twice on separate occasions, agents discard duplicate

information.

If any of an agent’s newly collected items are new to the community (not in the commu-

nity test pool), the agent will transfer some of their newly acquired data to the community

test pool. The effect for the community is a growth of expertise, or test data labels they

use to refine their classifiers and thresholds. With new test data, community members able

to evaluate their ability to correctly classify the new letter(s). This requires the new label

be both in the agent’s training data (known to the agent) and in the community test data

(unknown to the agent). The mechanisms of exchange and sharing new labels data with

the community mean that both the community test data and each agent’s training data grow

over subsequent model iterations.

5.2.5.3 Agent Distribution

Finally, two major parameters that govern the model are the proportion of each type of agent

(Passive or Active) included in the model and where those agents are located within the

organizational network. Varying these parameters allow us to answer our primary research

question by comparing the performance of different fractions of agent types. We look at

111

proportions of Active and Passive agents that range from all Active agents to all Passive

agents, and 25% increments between. In this study, agents are randomly located throughout

the network. For each network, results are given for the typical behavior of agents in a

single network location.

5.2.6 Summary: Model Parameters

There are three levels of hierarchy in this model: the agents themselves, the communities

of agents, and the global set of all agents. Table 13 summarizes all parameters that impact

the model at all three levels. All parameters listed are described in previous sections; the

corresponding sections are indicated in the table.

Table 13: Local, community, and global parameters that govern agent model

Parameter Level Values: Default value listed first
Network Parameters Global As given in Table 11, Section 5.2.2
Data Partitioning: Section 5.2.3.1
Size of Global test Global 1% (200 items)

Partitioning Order Global
Alphabetical by Node, Reverse
Alphabetical by Node, Random

Community test partition
size

Community 10% (60-200 items per community)

Community ask partition size Community 5% (30-100 items per community)
Agent training data
partition size

Community 85% (168 items per node)

Agent Distribution: Section 5.2.5.3
Ratio of number Active to
number Passive agents

Global 0.5, 0, 0.25, 0.75, 1

Location of Active/Passive
agents

Global
Random, Highest or lowest centrality
network positions

Passive Agent Properties: Section 5.2.5
Peer definition Agent Network links only
Probability to interact with
peer over ask, pinteract

Agent 0, 0.25, 0.3, 0.5

Continued on next page

112

Table 13 – Continued from previous page
Parameter Level Values: Default value listed first
Active Agent Properties: Section 5.2.5

Peer definition Agent
Network links and community
members

Probability to interact with
peer over ask, pinteract

Agent 1, 0.75, 0.7, 0.5

Interaction and Classification Properties: Sections 5.2.5.1, 5.2.3.2
Items received from peer,
interact_add

Global 10

Items received from ask
pool, ask_add

Global 2

Number neighbors in KNN
classifier

Agent 1

Confidence threshold defini-
tion

Agent
Most incorrect above, Most correct
below, Average

5.2.7 Model Process

We have alluded to various steps of the model; here we describe the full model execution

process. A single run of the model includes multiple iterations. Each iteration, agents

collect new data and refine their classifiers. The structure of each iteration is fixed, but how

each agent navigates the structure depends on their individual behavioral parameters. A

flowchart depicting the structure of each iteration is shown in Figure 22. At every iteration

of the model, each agent proceeds through the steps below in sequential order. We divide

the process into seven distinct steps:

1. Interaction: Select a peer agent or choose to gather data from the community’s ask

pool. This selection is governed by the probability pinteract.

2. Receive data: Obtain data from selected source. If data (label) is new to the commu-

nity, half of the new data is added to the community’s test dataset. The remaining

data is added to the agent’s own training dataset, excluding any duplicate data.

113

3. Build a classifier model and test it on the local community test data: Agents use their

basic KNN classifier model with k = 1 to classify the community test data.

4. Calculate confidence threshold: Agents evaluate their own classification performance

on their local community test data, and use the typical distances between test and

train data items to develop a confidence threshold.

5. Apply threshold: The confidence threshold is applied to the local community test

results, giving a binary classification output. The result for a given item is either a

vote of confidence in the classifier output, or a vote of no confidence, which reports

‘not’ the classifier output.

6. Adaptation: Agents evaluate their classifier performance relative to the previous

model iteration. If classifier accuracy increased, then the probability to choose the

same source of information again is increased; if the results decreased, then the prob-

ability to choose the same source of information again is decreased. Both pinteract and

the connection strength used to select a peer (if applicable) are adjusted by a fixed

probability pchange.

7. Aggregation: After all agents have developed their classification model and calcu-

lated a confidence threshold, they apply their training data to attempt classification

of the global dataset. Each agent gets a vote, and votes are counted as the sum of

votes for a given letter plus the number of votes not against a given letter. For exam-

ple, say, the letter ‘T’ is the true global test item, and the letters ‘B’, ‘L’, and ‘T’ are

offered by the agents as votes with high confidence. The votes for each of ‘B’, ‘L’,

and ‘T’ are counted as well as all of the votes of low confidence for other letters. If

a vote of low confidence is ‘not B’, it would count towards a vote for ‘L’ and for ‘T’,

but not towards a vote for ‘B’. The majority vote is selected as the aggregate vote. In

the case of ties, the tiebreaker is the number of votes for a letter classification (i.e., a

vote with high confidence), and if still tied a winner is picked at random.

114

Fi
gu

re
22

:F
lo

w
ch

ar
to

fa
ge

nt
m

od
el

pr
oc

es
s

de
pi

ct
in

g
de

ci
si

on
s

an
d

ac
tio

ns
ea

ch
ag

en
tm

ak
es

ea
ch

ite
ra

tio
n

of
m

od
el

115

Most of the steps in this process are deterministic. The choices that agents make in

steps 1 and 2 (Interaction and Receive data), however, are stochastic. The probabilities that

govern the stochasticity are updated based on each agent’s actions and the results of those

actions. These probabilistic choices serve to represent an agent’s behavioral tendencies,

and the updating of probabilities serves to represent the agents’ learning from experience.

Adaptation modifies agents’ behavioral tendencies.

5.2.8 Model Outputs: Performance and Costs

5.2.8.1 Performance

We measured accuracy of agents’ classifier performance after each iteration of the model,

on both their local community test as well as the common global test. Agents do not adapt

based on the results of the global test; only their results on the local community test are vis-

ible to them. This is analogous to actual design tasks, where we can estimate but not always

see the projected system-level design. Our model calculates this intermediate performance

to visualize the progress of the agents’ actions. We calculate from agents’ accuracy the av-

erage performance within communities, as well as the aggregate performance on the global

test through the procedure outlined in Section 3.3 above. For a given set of parameters, the

model runs for 20 iterations; one simulation run. Repeated runs with the same parameters

shows the typical performance for agents in a given network position, where results are due

to the combination of global parameters such as network structure, data partitioning, and

agent interaction probabilities.

The global classification task results are aggregated for each iteration of the model, so

the results we show are typical trends of the system as a whole across 20 iterations, or

from T = 0 to T = 20. The local classification task results are reported for every agent,

but we show results as average performance within a community as community members

share the same local classification task. All results presented are the result of Monte Carlo

simulation, meaning results are averaged across 100 simulation runs of 20 iterations each.

116

5.2.8.2 Cost

In addition to looking at the agents’ classification accuracy, we also quantified the differ-

ences between Active and Passive agents to achieve that performance. At each iteration,

each agent in the model has an opportunity to interact with a peer to collect data, or to col-

lect data from their local community ask pool. In the model, the cost of accessing data from

each source is implicit through the parameters that govern how much data is received from

each source in a single interaction. Any social cost to maintain connections with peers, for

example, does not influence agent behavior in this model. However, we recognize that the

actions to seek information from a peer and develop one’s own information (e.g., collect

data from the ask pool) are different. Therefore we report on two measures: the typical

number of interactions agents engage in over one 20-iteration simulation, and the typical

number of different peers agents interacted with over one 20-iteration simulation. As with

the performance measures above, results are given as the result of Monte Carlo simulation:

averages across 100 simulation runs of 20 iterations each.

5.3 Hypotheses

We used this agent model to explore two hypotheses. The first is based on the differ-

ent information-seeking behavior encoded into Active and Passive agent types. Because

Passive agents focus on building up information about the data types (letters) initially par-

titioned to each community, we expect them to outperform Active agents on the local com-

munity test. Similarly, because Active agents focus on collecting information from peers,

some of whom are external to their own community, they are more likely to gain infor-

mation about letters outside their community’s initially partitioned dataset. Therefore we

expect Active agents to outperform Passive agents on the global test. We also expect to

see that results depend on the relative concentration of agent types. Specifically, we ex-

pect to see a tradeoff between the measures of performance and cost that depends on the

117

concentration of Passive and Active agents within the network.

To summarize, our hypotheses are:

1. Active agents contribute higher accuracy to the global test than the local test.

2. Passive agents contribute higher accuracy to the local test than the global test.

3. Classification accuracy (performance) and typical number of interactions (cost) of all

agents vary with the distribution of agent types within the system.

5.4 Model Behavior

5.4.1 Direct Solution

Before discussing the agents’ results on the distributed classification task, we present the

all-at-once, or non-distributed (Cramer et al., 1994), results. This test is on uses the same

global test data that the agents use: the first 200 items taken from the list of 20,000 test

items. Table 14 shows the results of KNN classification using the remaining 19,800 items

as training data. A single 1-NN classifier using all 19,800 training items to classify 200

test items achieves 96% accuracy. We also compare this result to the typical accuracy

of multiple KNN classifiers. Each individual classifier uses a distinct, randomly selected

fraction of the 19,800 items as training data to classify the same 200 test items.

The number of partitions in this test of KNN classifier accuracy represent the number of

agents. We chose to use 100 agents in our model, meaning each agent has up to 198 items,

or 1 percent of the available training data. With one percent of (randomly allocated) training

data, we expect a typical agent to achieve 50% accuracy on the global test. Because the

community ask and test data is set aside out of this 198 item allocation, each agent actually

starts with 168 training items. We therefore expect performance slightly below 50% for

each agent on the global test dataset according to this result. If each agent had all 19,800

training items available, we would expect them to achieve 96% accuracy on the global test.

118

Table 14: K-NN classification results using fixed set of 200 test items, varying the training
data partition size and the value of k nearest neighbors used to determine classification.

partitions part size pct. of total 1-NN 2-NN 5-NN 10-NN
1 19,800 100% 0.96 0.93 0.95 0.93
2 9,900 50% 0.95 0.90 0.92 0.90
6 3,300 16.7% 0.87 0.84 0.84 0.81

10 1,980 10% 0.84 0.76 0.78 0.74
20 990 5 % 0.76 0.68 0.67 0.62
60 330 1.7% 0.59 0.50 0.47 0.42

100 198 1% 0.50 0.42 0.38 0.34
200 99 0.5% 0.38 0.32 0.27 0.23
600 33 0.2% 0.23 0.18 0.14 0.11

The classification accuracy for partitions of intermediate sizes follow a roughly linear trend.

It is important to note that the directly calculated KNN results shown in Table 14 are the

result of random partitions, meaning partitions of any size are likely to include more letters

than is achieved from the default alphabetical by node partitioning used in our model.

We compare the initial classification accuracy of model agents with different partition-

ing schemes in Figure 23. The initial classification results depend only on the partitioning

scheme: agents have not yet interacted. Using random partitioning, agents have a typical

initial accuracy on the global classification task of 47%, with a standard deviation of 3%.

This accuracy is consistent with that predicted above. With the alphabetical or reverse al-

phabetical partitioning schemes, agents’ initial classification accuracy drops to 5%, with

a comparable standard deviation of 2%. The initial classification results for the agents in

our model are shown in Figure 23 for both the global classification task and the within-

community local classification task. While the alphabetical by node partitioning strategies

yield low performance on the global test – as expected due to agents’ few distinct letters –

the average performance of these nodes on the local classification task is equal to that of

agents that receive randomly partitioned data. As agents interact and refine their classifiers,

their accuracy improves: these results are described in the following sections.

119

Initial accuracy on Local Test

0 0.2 0.4 0.6 0.8 1
Accuracy at T = 0

0

20

40

60

80

100

C
ou

nt
 o

f A
ge

nt
s

Initial accuracy on Global Test

0 0.2 0.4 0.6 0.8 1
Accuracy at T = 0

0

20

40

60

80

100

C
ou

nt
 o

f A
ge

nt
s

(a) Random partitioning

Initial accuracy on Local Test

0 0.2 0.4 0.6 0.8 1
Accuracy at T = 0

0

20

40

60

80

100

C
ou

nt
 o

f A
ge

nt
s

Initial accuracy on Global Test

0 0.2 0.4 0.6 0.8 1
Accuracy at T = 0

0

20

40

60

80

100

C
ou

nt
 o

f A
ge

nt
s

(b) Alphabetical by node parti-
tioning

Initial accuracy on Local Test

0 0.2 0.4 0.6 0.8 1
Accuracy at T = 0

0

20

40

60

80

100

C
ou

nt
 o

f A
ge

nt
s

Initial accuracy on Global Test

0 0.2 0.4 0.6 0.8 1
Accuracy at T = 0

0

20

40

60

80

100

C
ou

nt
 o

f A
ge

nt
s

(c) Reverse alphabetical by node
partitioning

Figure 23: Initial T=0 accuracy results for agents on local community classification task
and global classification task. Three training data partitionings are shown: random parti-
tioning, alphabetical by node partitioning, and reverse alphabetical by node partitioning.

5.4.2 Performance

5.4.2.1 Local Classification Accuracy

First, we look at agents’ performance on the local classification task. Training data was

partitioned to agents alphabetically by node. We look at results across 20 unique net-

works, each generated with the same parameters. Each network creates a different problem

through unique community structure and partitioning. Each community has a different local

classification task defined by the data in the community test pool. Despite the differences,

we are able to draw some conclusions from the trends across all cases.

We illustrate the typical local classification result using a single network as example.

The network has fourteen communities, which are populated with either all Passive agents,

or all Active agents. The results of agents’ behavior (average result from 100 Monte Carlo

simulations), both with and without threshold application, are shown in Figures 24 and

25. The plots show the average percent accuracy within each community on the local

120

classification task. Accuracy is evaluated after each of twenty model iterations. These

results are depicted for a single network, but are illustrative of the typical model results for

all twenty networks tested. A summary of results for all twenty networks is in Table 15;

this example network is Network 3 in the table.

0 5 10 15 20
Model Iterations (Time)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 o
n

Lo
ca

l T
es

t (
%

)

0

10

20

30

40

50

60

70

80

90

100

Performance on Local Community Test, Average within Community
all Passive nodes, partitioning alpha by node

Community 1 average
Community 2 average
Community 3 average
Community 4 average
Community 5 average

Community 6 average
Community 7 average
Community 8 average
Community 9 average
Community 10 average

Community 11 average
Community 12 average
Community 13 average
Community 14 average

Spread between Max and Min: 20%

(a) Network of all Passive agents, without threshold

0 5 10 15 20
Model Iterations (Time)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 o
n

Lo
ca

l T
es

t (
%

)

0

10

20

30

40

50

60

70

80

90

100

Performance on Local Community Test, Average within Community
all Active nodes, partitioning alpha by node

Community 1 average
Community 2 average
Community 3 average
Community 4 average
Community 5 average

Community 6 average
Community 7 average
Community 8 average
Community 9 average
Community 10 average

Community 11 average
Community 12 average
Community 13 average
Community 14 average

Spread between Max and Min: 11%

(b) Network of all Active agents, without threshold

Figure 24: Example local task accuracy, without threshold applied. Results are show for a
single network (Network 3 in Table 15), comparing all Passive agents and all Active agents.

0 5 10 15 20
Model Iterations (Time)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 o
n

Lo
ca

l T
es

t (
%

)

0

10

20

30

40

50

60

70

80

90

100

Performance on Local Community Test, Average within Community
all Passive nodes, partitioning alpha by node, with threshold

Community 1 average
Community 2 average
Community 3 average
Community 4 average
Community 5 average

Community 6 average
Community 7 average
Community 8 average
Community 9 average
Community 10 average

Community 11 average
Community 12 average
Community 13 average
Community 14 average

Spread between Max and Min: 20%

(a) Network of all Passive agents, with threshold

0 5 10 15 20
Model Iterations (Time)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 o
n

Lo
ca

l T
es

t (
%

)

0

10

20

30

40

50

60

70

80

90

100

Performance on Local Community Test, Average within Community
all Active nodes, partitioning alpha by node, with threshold

Community 1 average
Community 2 average
Community 3 average
Community 4 average
Community 5 average

Community 6 average
Community 7 average
Community 8 average
Community 9 average
Community 10 average

Community 11 average
Community 12 average
Community 13 average
Community 14 average

Spread between Max and Min: 14%

(b) Network of all Active agents, with threshold

Figure 25: Example local task accuracy, with threshold applied. Results are show for a
single network (Network 3 in Table 15), comparing all Passive agents and all Active agents.

121

First, we compare results without a threshold applied for communities of all Passive

and all Active agents, shown in Figure 24. Comparing the two plots, the communities of

Passive agents have a slower rate of increase in performance compared to communities of

Active agents. The differences are likely due to two factors: The first is that interactions

with peers and interactions with the community ask pool yield different amounts of data.

The second is that data from the community ask pool is guaranteed to be consistent with

the community initial expertise area (partitioned letters), whereas data from peers could

be sourced from any peer, including those outside the community. Thus Passive agents,

typically querying the ask pool rather than peers, receive less data but it is focused to their

classification task. Passive agents, typically querying peers rather than the ask pool, receive

more data but its content is higher variance. These results suggest that both quantity and

specificity of data lead to improvement. Rapid improvement is gained from quantity, but

both data collection strategies yield 80% - 100% accuracy after 20 model iterations.

With the threshold applied, as in Figure 25, all agents are able to apply the threshold

to their advantage early on. With the threshold, applied after the first model iteration, the

typical classification accuracy in each community jumps up significantly and holds steady

for the remaining iterations. With a threshold applied, networks of all Passive agents and

all Active agents show approximately equal performance on local classification tasks. The

partitioning scheme used here is alphabetical by node, so most agents have only one letter

in their initial training dataset. Without a threshold, these agents have no choice but to

incorrectly identify any other letters that are in their test dataset. The threshold allows

agents to correctly identify that some of their incorrect matches are incorrect, which results

in an increased accuracy.

Key characteristics of the plots in Figures 24 and 24 include the highest accuracy

achieved by any community, the lowest accuracy achieved by any community, and the

spread between highest and lowest performing communities. These three values are tabu-

lated for each of 20 unique networks, with threshold applied, in Table 15. For each network

122

and corresponding community structure, results are compared for a case where all agents

are Passive, and all agents are Active. Our hypothesis is that Passive agents outperform Ac-

tive agents on the local task due to Passive agents’ relative specialization and Active agents’

relative generalization. Therefore differences calculated in the table give the accuracy gain

or loss for networks of all Passive agents compared to networks of all Active agents.

The trends for thresholded accuracy in Figures 5.25(a) and 5.25(b) appear similar. The

values in Table 15 show that neither set of agents consistently outperforms the other:

Table 15: Local classification results for networks of all Passive and all Active agents.
Maximum and minimium refer to the highest and lowest within-community average classi-
fication accuracy, with threshold applied. Spread refers to the accuracy difference between
highest and lowest community average. All values are percentages.

Network
all Passive agents all Active agents Difference (Passive - Active)

Max Min Spread Max Min Spread Max Min Spread
1 95.1 62.1 32.9 99.3 76.7 22.6 -4.2 -14.6 10.3
2 93.3 78.2 15.2 98.2 85.4 12.8 -4.9 -7.2 2.4
3 98.1 78.0 20.1 98.7 84.6 14.2 -0.6 -6.6 5.9
4 100 77.7 22.3 95.1 78.4 16.7 4.9 -0.7 5.6
5 95.8 76.2 19.6 96.2 81.2 15.0 -0.4 -5.0 4.6
6 93.8 76.5 17.3 96.2 82.1 14.1 -2.4 -5.6 3.2
7 93.7 63.2 30.6 97.7 78.5 19.1 -4.0 -15.3 11.4
8 100 76.2 23.8 96.1 81.5 14.6 3.9 -5.3 9.2
9 93.7 75.8 17.9 98.2 82.6 15.6 -4.5 -6.8 2.3

10 100 67.7 32.3 93.3 78.4 14.9 6.7 -10.7 17.4
11 100 74.2 25.8 98.7 80.1 18.6 1.3 -5.9 7.2
12 100 76.5 23.5 99.3 77.4 22 0.7 -0.9 1.5
13 100 74.5 25.4 97.1 75.7 21.3 2.9 -1.2 4.1
14 100 71.9 28.1 99.9 77.2 22.7 0.1 -5.3 5.4
15 95.4 71.0 24.4 95.4 78.0 17.4 0.0 -7.0 7.0
16 100 75.4 24.6 98.3 81.5 16.8 1.7 -6.1 7.8
17 95.9 78.4 17.5 96.6 83.1 13.6 -0.7 -4.7 3.9
18 100 74.9 25.1 84.8 82.7 12.1 5.2 -7.8 13.0
19 100 70.7 29.3 98.0 76.2 21.8 2.0 -5.5 7.5
20 94.3 77.8 16.5 96.5 82.1 14.4 -2.2 -4.3 2.1

123

the difference in maximum community accuracy is sometimes positive (Passive agents

outperform Active) and sometimes negative (Active agents outperform Passive). How-

ever, the lowest-performing community of Passive agents is always worse than the lowest-

performing community of Active agents. The spread between highest and lowest perform-

ing community is also always greater for networks of Passive agents in these 20 cases. Thus

networks of all Active agents show more consistent local task performance across all com-

munities. These results do not support our first hypothesis: we are not able to conclusively

say that Passive agents outperform Active agents on the local classification task. In terms

of highest performance, Passive agents often outperform Active agents. It is also Passive

agents that offer some of the lowest local classification accuracies.

Communities across networks differ in terms of their size, members’ interconnections

and connections to other communities, and the set of letters contained in their respective

test datasets. Some communities show particularly divergent results due to the expertise

area assigned through partitioning, creating a difficult classification task. In these cases,

a community’s classification performance decreases each iteration, even with a threshold

0 5 10 15 20

Model Iterations (Time)

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 o

n
 L

o
c
a
l
T

e
s
t
(%

)

0

10

20

30

40

50

60

70

80

90

100

Performance on Local Community Test, Average within Community

all Passive nodes, partitioning alpha by node, with threshold

Community 1 average

Community 2 average

Community 3 average

Community 4 average

Community 5 average

Community 6 average

Community 7 average

Community 8 average

Community 9 average

Community 10 average

Community 11 average

Community 12 average

Community 13 average

Community 14 average

Spread between Max and Min: 33%

(a) All Passive agents, with threshold

0 5 10 15 20

Model Iterations (Time)

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 o

n
 L

o
c
a
l
T

e
s
t
(%

)

0

10

20

30

40

50

60

70

80

90

100

Performance on Local Community Test, Average within Community

all Active nodes, partitioning alpha by node, with threshold

Community 1 average

Community 2 average

Community 3 average

Community 4 average

Community 5 average

Community 6 average

Community 7 average

Community 8 average

Community 9 average

Community 10 average

Community 11 average

Community 12 average

Community 13 average

Community 14 average

Spread between Max and Min: 23%

(b) All Active agents, with threshold

Figure 26: Example of challenging local classification task, highlighting Community 10’s
(solid red line) atypical performance below all peer communities. Results are shown with a
threshold, for all Passive and all Active agents on a single network (Network 1 in Table 15).

124

applied. When observed, this is particularly for Passive agents. An example is Community

10, shown in red in Figure 26.

Community 10 illustrates a case of an inherently challenging design task. This group

of eight agents is tasked with distinguishing the letters ‘O’, ‘P’, and ’Q’. For these agents,

collecting more data about any of these letters, as Passive agents do by selecting from their

local ask pool, increases the frequency of misclassification within their own data. We see

this through the Passive agents’ decreasing classification accuracy. This includes both ’O’

misclassified as ’Q’ and vice versa. Because the letters are similar, these misclassifications

are not caught by the thresholding. In this case, the agents’ preference to pull data from

the shared ask pool means all agents end up with similarly confusing training data in their

training data that hampers ability to correctly classify their shared test data. The network

of all Active agents begins to improve slowly through collection of data directly from other

peers’ training data, both within and without their community. Community 10 illustrates

one example of natural variance we see in our model: some groups of agents, due to their

size and location within the network, may receive particularly challenging tasks compared

to their peers.

5.4.2.2 Global Classification Accuracy

Next we look at the agents’ aggregate accuracy on the global classification task. When

tested against the global data, each agent’s classifier returns (including thresholding) a vote

for a letter, or a vote against a letter. All agents’ votes are aggregated according to majority

vote: the sum of all votes for each letter plus the number of votes not against that letter. The

global accuracy is the percentage of true global test labels that match the majority vote.

The threshold is an important element of aggregation. As with the local classification

task, a threshold applied to the global task allows agents to contribute a vote towards a

letter not in their training dataset. This is akin to the agent acknowledging the test item is

something they do not know enough about in order to make a good judgment, and applying

125

that uncertainty in the outcome to moderate their classifier’s output. Without the threshold,

agents are forced to always contribute a vote for a letter in their training dataset. In aggre-

gation, this means many different letters will receive votes, and a majority may be driven

by a larger community’s incorrect classifications rather than a smaller community’s correct

classifications. The application of a threshold helps address this inconsistency: agents have

some awareness of their expertise areas.

As with the local classification task, we compare the global classification task results

for networks of all Passive and all Active agents. An example result for a single network is

shown in Figure 27. This is the same network used as example previously, network 3 out

of the 20 cases included in analysis.

0 5 10 15 20
Model Iterations (Time)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 o
n

G
lo

ba
l T

es
t (

%
)

0

10

20

30

40

50

60

70

80

90

100

Performance on Global Task for all Active and all Passive Agents
all Active nodes, partitioning alpha by node

Global Task Accuracy, all Active Agents
Global Task Accuracy, all Passive Agents

Figure 27: Example global task accuracy, with threshold applied. Results are shown for a
single network (Network 3 in Table 16), comparing all Passive agents (lower line) and all
Active agents (upper line).

From comparing the results of Passive and Active agents on this network, we observe

that the results of all Active and all Passive agents follow a similar trend over the course

of twenty model iterations. However, the network of all Active agents (blue; top line) has

a higher initial global task accuracy after the first iteration. The Active agents then remain

consistently above the Passive agents (green; lower line) given the same task.

126

The accuracy of all Passive agents and all Active agents increase rapidly at first, and

begins to level off after about 3 model iterations. The trend in aggregate accuracy is similar

to the local task accuracy, suggesting that as agents improve on their local test, they also

improve on the global test. A group’s expertise is determined by the letters they have in

their community test dataset; the size of the expertise area is proportional to the group size.

The local task results indicate agents quickly become proficient in their group’s expertise

area.

The observed flat curve may be result of the aggregation procedure. aggregating votes

for multiple letters that each have similar numbers of votes. As agents improve their clas-

sifiers, there may be some fluctuation in support for the competing choices. This may not

translate to significant increases in accuracy overall.

The leveling-off of the aggregate result may also be a result of the thresholding process

and unequal community sizes. A test item that is in the expertise of a group should be

identified correctly with high confidence by these group members. Thresholding helps

keep larger groups with incorrect answers from swamping smaller groups. However, a test

item could still be similar enough to an element of a larger group’s training data that the

threshold does not exclude their mistaken classifications. The large community would then

still drown out the correct signal coming from small groups. This is one potential downside

of the deterministic thresholding process implemented in the model, rather than one that

may take into account specific areas of weakness.

The trend of the global classification accuracy curve with respect to increasing model

iterations is similar for all networks tested. The final global classification task accuracy is

compared for all twenty networks in Table 16. Our second hypothesis is that Active agents

outperform Passive agents on the global task. This is expected due to Active agents’ in-

teraction actions giving them access to a wider variety of information than Passive agents,

thus making them generalists. We expect generalists to contribute more correct classifica-

tions to the global task, which includes letters from the entire alphabet. Table 16 shows that

127

networks of Active agents achieve roughly 60-75% accuracy on the global task. Passive

agents are also expected to do well on this task, since the threshold allows correct contri-

butions to the global aggregation even with a narrow specialization. Networks of Passive

agents achieve roughly 50-65% accuracy after 20 model iterations. The ranges of accuracy

overlap for Active and Passive agents, however we see that the difference between the two

results ranges from nearly zero to just over 18 percentage points. In all but the near-zero

case, the delta is in favor of the Active agents, lending support for our second hypothesis.

Table 16: Global classification results for networks of all Active and all Passive agents.
Results are the aggregate global accuracy after twenty model iterations, with threshold
applied. All values are percentages.

Network all Active all Passive
Difference

(Active - Passive)
1 67.5 65.8 1.7
2 63.2 63.3 -0.1
3 72.2 61.1 11.1
4 69.2 55.1 14.1
5 69.6 59.1 10.5
6 72.5 66.7 5.8
7 68.3 61.0 7.3
8 75.9 57.7 18.2
9 68.7 64.7 4.0

10 74.9 59.3 15.6
11 68.9 54.4 14.5
12 59.8 52.4 7.4
13 67.1 55.9 11.2
14 61.0 48.0 13.0
15 73.1 65.3 7.8
16 70.4 57.4 13.0
17 67.1 60.1 7.0
18 70.5 55.9 14.6
19 68.7 53.5 15.2
20 63.8 58.0 5.8

128

5.4.3 Active vs. Passive Agent Accuracy

From the above results, we see some evidence for the hypothesis that Active and Passive

agents contribute differently to local and global classification accuracy. The local classifi-

cation results indicate that communities of all Passive and all Active agents can achieve the

same performance on their task, and neither agent type outperforms the other consistently.

The lowest performing Passive communities are always worse than the lowest performing

Active communities, indicating that there is more variance among communities of Passive

agents. We also saw that Passive agents are particularly negatively affected by challenging

classification tasks (i.e., distinguishing very similar letters). There are differences in how

Active and Passive agents contribute to the local classification task; mostly in the variance

among communities in a given network. However, this does not support our hypothesis

that Passive agents outperform Active agents on the local task.

The global classification results do show evidence that Active agents outperform Pas-

sive agents. In all twenty networks we compared, the final aggregate accuracy of Active

agents reached a global task accuracy between 0 and 20 percent greater than Passive agents.

This lends support for the hypothesis that Active agents outperform Passive agents on the

global task.

Finally, we saw that thresholding typically improves classification accuracy. Thresh-

olding may also contribute to the appearance that agents cannot improve the global clas-

sification result further after the first few model iterations. This indicates examining the

result of thresholding by Active and Passive agents is worth exploring further.

5.4.4 Cost

Having seen how the different combinations of agents perform, we also compare the costs

we introduced in Section 5.2.8. The typical number of interactions each agent engages in

throughout 20 model iterations differs significantly between networks of all Passive and

all Active agents. Agents have a different likelihood to interact with peers, but this can

129

be updated if agents find that information received decreases their classification accuracy.

Across the twenty networks considered, Active agents interact with peers 18 times out

of 20 iterations on average. Passive agents on average interact with peers 0 times out of

20. While agents can update their interaction probability, it is not updated enough to shift

behavior of the agents from the initial probabilities. Agents look for any improvement in

results to continue selecting data from the same source (peer or ask pool), which means that

both sources of data are valuable for improving classification accuracy on the local task.

We see that Active agents can achieve a similar local task accuracy as Passive agents,

though they expend more resources (interactions) to do so. From the global task results, we

see that the additional interactions yield higher accuracy. We explore further this tradeoff

between classification accuracy and number of agent interactions in the following section

through parametric analysis.

5.5 Parametric Analysis: Agent Concentration

The focus of parametric analysis is varying the relative concentration of each agent type.

Whereas in the previous section results were presented for networks of agents all the same

type, here we look at networks of mixed agent types. We look at the intermediate ratios of

Passive to Active agents of 25/75, 50/50, and 75/25 to complement the all Passive and all

Active cases presented above.

We varied the relative proportion of each Agent type within each of the twenty networks

we have been working with to this point. Agent types are randomly distributed throughout

the network; this distribution is held constant through Monte Carlo simulations. Results

for each network are therefore the result of an agent’s typical behavior in a fixed network

location.

The local task accuracy for each combination is interpolates between trend seen for all

Passive and all Active agents. The slope of local task accuracy with respect to model it-

130

erations is steeper the higher concentration of Active agents within the network. The final

accuracy after 20 iterations also interpolates between the two extremes of agent composi-

tion. While the maximum within-community average accuracy remains roughly constant,

the minimum within-community average increases with the concentration of Active agents.

For the global classification task, both performance and costs are reported for each

combination of agents. The global classification accuracy for each combination of Passive

and Active agents is given in Table 17. The average number of interactions across all agents

in the network is given in Table 18.

Table 17: Global classification task (aggregate) accuracy, reported for varied combinations
of Passive and Active agents. All values are percentages.

Network
all

Passive
75% P
25% A

50% P
50% A

25% P
75% A

all
Active

Maximum
value at:

Minimum
value at:

1 65.8 68.0 69.5 67.5 67.5 50P/50A all Passive
2 63.3 65.4 64.9 63.7 63.2 75P/25A all Active
3 61.1 66.5 66.8 68.7 72.2 all Active all Passive
4 55.1 60.7 62.6 62.2 69.2 all Active all Passive
5 59.1 63.2 62.5 64.1 69.6 all Active all Passive
6 66.7 69.0 71.3 70.8 72.5 all Active all Passive
7 61.0 59.1 61.2 58.2 68.3 all Active 25P/75A
8 57.7 72.0 67.7 73.6 75.9 all Active all Passive
9 64.7 67.3 70.2 71.2 68.7 25P/75A all Passive

10 59.3 62.4 70.4 68.9 74.9 all Active all Passive
11 54.4 58.9 60.6 67.7 68.9 all Active all Passive
12 52.4 61.0 60.0 65.6 59.9 25P/75A all Passive
13 55.9 61.0 66.7 73.1 67.1 25P/75A all Passive
14 48.0 55.5 57.4 62.6 61.0 25P/75A all Passive
15 65.3 67.0 71.1 71.1 73.1 all Active all Passive
16 57.4 65.0 65.2 69.6 70.4 all Active all Passive
17 60.1 63.0 62.4 63.9 67.1 all Active all Passive
18 55.9 61.1 60.5 68.2 70.5 25P/75A all Passive
19 53.5 57.4 65.2 67.4 68.7 all Active all Passive
20 58.0 59.1 59.0 60.0 63.8 all Active all Passive

131

Table 18: Average number of interactions across all agents, reported for varied combina-
tions of Passive and Active agents.

Network
all

Passive
75% P
25% A

50% P
50% A

25% P
75% A

all
Active

1 0.0 5.1 10.1 14.7 18.6
2 0.2 6.2 9.7 13.1 17.9
3 0.3 5.2 10.1 13.5 18.3
4 0.0 5.8 9.9 14.0 17.9
5 0.0 5.4 9.7 14.3 17.1
6 0.2 5.8 9.4 13.9 18.3
7 0.0 5.1 9.2 14.2 18.3
8 0.2 5.2 9.6 13.8 17.7
9 0.4 5.3 10.0 13.7 17.9

10 0.5 5.7 10.0 13.7 18.2
11 0.2 5.4 9.4 13.3 17.7
12 0.3 6.5 9.7 14.4 16.8
13 0.1 5.6 10.4 13.7 16.5
14 0.2 6.3 9.5 13.5 17.4
15 0.3 5.3 10.4 13.8 18.6
16 0.2 5.8 9.0 14.4 17.3
17 0.0 5.0 9.8 14.6 18.0
18 0.0 6.0 10.3 14.1 17.8
19 0.0 5.2 9.3 14.4 18.4
20 0.1 5.8 10.2 15.1 17.0

First, the typical number of agent interactions increases linearly with the fraction of

Active agents within the network. In a network of all Active agents, the average agent in-

teracts with peers 18 iterations out of 20. With 75% Active agents throughout the network,

the typical interactions drop to 14 iterations out of 20. Half Passive and half Active yields

10 interactions per agent on average, and 75% Passive agents yield 6 interactions per agent

on average. A network of all Passive agents gives on average no interactions throughout the

twenty model iterations. The results are consistent with Passive and Active agent behavior

remaining constant regardless of the agent type concentration within the network: Active

agents interact nearly every model iteration, and Passive agents interact nearly none. This

132

means that the majority of interaction costs attributed to the entire network can be attributed

to Active agents alone.

Next we consider the global task performance. There is not one combination of Passive

and Active agents that consistently achieves the highest performance across all networks.

In thirteen of the 20 networks studied, the combination of all Active agents achieves the

highest global task accuracy. In the remaining networks, the highest-performing combina-

tion is an intermediate mix of Passive and Active agents.

A network of all Passive agents typically does not outperform other combinations of

agents for any network. Rather, Passive agents achieve the lowest global task accuracy

across all agent combinations 18 times out of 20. For the remaining two networks, all

Active agents and 75% Active agents are the lowest-performing agent combinations.

Taking the interactions costs and global task performance together, we can ask how the

two objectives trade off. Thus far, results suggest that more Active agents increases both

global task performance and the interaction costs for the network. This simple linear trend

is observed for 13 (65%) of networks. A linear trend indicates that higher performance is

simply the result of more interaction among peers.

The remaining seven networks (35%) show a quadratic trend, with a maximum for one

of the intermediate combinations of Passive and Active agents. A concave-down trend

gives a different interpretation: that more interactions have diminishing returns, and do not

always yield higher performance. From the networks sampled, we do not have enough

information to say which trend is correct. However, we can say that a trend exists, giving

evidence in support of our third hypothesis.

Though the two trends observed give different insights, there is a consistent finding: in

all twenty cases there is an indication that Active agent behavior is beneficial. A combina-

tion of Active and Passive agents, or all Active agents, always outperforms a network of all

Passive agents.

133

5.6 Discussion

The agent model is based on studies in previous chapters. We hypothesized from Studies

1 and 2 that Active and Passive coordination strategies are complementary. The Passive

strategy is enabled by the use of authority, and actions and behaviors map to formal organi-

zational processes. Passive agent behaviors include agents’ peer set definition restricted to

network links only, and a preference to work independently. The Active strategy is enabled

by the use of empathetic leadership, and actions and behaviors map to informal organi-

zational processes. In particular the Active strategy emphasizes proactive communication

with peers. Active agent behaviors include a peer set definition of all network links and

all community members, and a preference to seek information from peers rather than work

independently.

In the previous sections, we explored the results from the model including simple vari-

ation of one parameter. The results from this parametric study are partially conclusive. We

found that Active and Passive agents achieve similar accuracy on local classification tasks.

Active agents also typically outperform Passive agents by a clear margin on the global clas-

sification task. We find that the application of a threshold increases task accuracy for all

agents, though it may benefit Passive agents more by moderating the drawbacks of slower

information acquisition. Finally, we see evidence of a trend between the costs expended

by Active agents over Passive agents, i.e., the number of peer interactions Active agents

typically engage in, and the accuracy of the collection of agents on the global classification

task. Passive agents engage in the fewest interactions, therefore minimize the interaction

costs. However, a mix of Active and Passive agents or a set of all Active agents always

outperforms a set of all Passive agents on the global classification task.

Our analysis identified both a linear trend, which suggests more interactions always

yield higher performance, and a quadratic trend, which indicates that interactions have a

diminishing return. Either trend offered by our analysis suggests that some number of Ac-

tive agents is better than none for improved performance. Whether an intermediate number

134

of Active agents (balanced by a corresponding number of Passive agents) is better or worse

than a set of all Active agents is however unclear. Two major factors that likely influence

this result are the network structure, which we have seen can have a significant impact on

task accuracy, and the location of agent types within the network. The classification prob-

lem agents are tasked with is a result of partitioning. How the solution is reached and the

solution quality are impacted by each agent’s behavior and the mix of agent types within

each community.

We have seen in our results that specific combinations of network structure, community

size, and partitioning order can negatively impact classification ability. The example we

highlighted previously is a community that is tasked with classifying the similarly-shaped

letters of ’O’, ’P’, and ’Q’ – and the fact that this is the community’s task is an artifact

of the network structure and the size of communities in that network. Thus the findings

presented here would be augmented by testing additional networks, and networks with dif-

ferent structures. The LFR generative model used in this study creates scale-free networks

(at large scale) like those common in natural systems. Scale-free networks tend to have

large hubs, or nodes of high degree. High degree has been found to correlate with in-

creased failures (Zimmermann and Nagappan, 2008). While there is currently no penalty

for agents engaging in multiple interactions, errors are a practical consideration for such

hub agents. Network structures that follow non-power law degree distributions have been

found to be particularly robust to defects: one example is a bimodal degree distribution

(Mirzakhalili et al., 2017). This is just one example of alternative network structures worth

testing in this model.

The results presented here are intended to be a proof of concept. We demonstrated

the utility of this agent-based model platorm by quantifying the performance outcomes

of agents’ coordination behaviors. We have shown here just one parametric test that is

possible to perform: the agent type distribution. Beyond the network structure, the location

of different agent types is another parameter that may be particularly impactful, especially

135

in combination with the network structure and resultant problem partitioning. For example,

agents in network positions of high centrality have access to more diverse information, and

thus may particularly influence their community result. This centrality effect should benefit

both Passive and Active agents, though perhaps Active agents are better able to reap the

benefits of such a position. Similarly, Passive agents may be at a disadvantage in positions

of low centrality. A next test for this model is to quantify the impacts of placing Passive and

Active agents in positions of high and low network centrality. Beyond network structure,

agent type, and agent position, each of the parameters in Table 13 would also be suitable for

additional analysis. The number of parameters is a limitation of the model, and the value of

future parametric analysis is to discern effects of individual parameters on the agent model

outcomes.

Finally, while the structure and inputs for the model we present here are based on our

previous results given in Chapters 3 and 4, we acknowledge that the output of the model

is not validated. We provide a description of the data to be collected to conduct such a

validation study in the following section.

5.7 Validation plan

We describe in this section the data we believe necessary to plan a model validation study.

One of the major parameters of this model’s operation is the network structure, which

dictates community size, an agent’s connections within their team and with other teams,

and the size of the initial problem the team receives. The network as we define it is based

on formal organizational links between individuals. This is obtainable from an organiza-

tional chart. While our network appears to be flat, we intend that its structure can include

individuals from multiple levels of hierarchy, and we believe it is important to include both

management and engineering or design personnel in such a network structure. This is sim-

ilar in approach to other studies that have examined the structure of collaboration networks

136

within organizations, including a variety of different positions within the same network

(Parraguez, Eppinger, and Maier, 2016).

Next, we define our agents as Active or Passive, distinguished by their likelihood to seek

information from peers versus finding it themselves, as well as who of their connections

they would consider as a source of information. These are extreme archetypes. It is possible

however to conduct a survey of individuals to assess whether their behaviors are more in

line with one archetype or the other. Questions might include asking who they are likely

to seek information from within their organization, and their preferences for asking for

help from peers versus working problems out on their own. Similar approaches have been

used to build information networks of organizations (Levine and Prietula, 2011), models

of social exchange (Agneessens and Wittek, 2012), and models of inter-office behavior

(Langevin, Wen, and Gurian, 2015).

Finally we suggest ways to measure task performance and costs. Counting interactions

between individuals is not an easy task as there are multiple ways to count interactions:

physical movement, individuals working on a common file, and common meeting atten-

dance are examples. Examples of methods to collect interaction data are those used to

calculate socio-technical congruence, as by Cataldo et al. (2006).

Overall system performance is not usually measurable as a project progresses. Not only

is it difficult to enumerate all interactions between subsystems, the design itself evolves

throughout the design process (Bloebaum and McGowan, 2012). However, estimates of

individual or group performance as well as their expected contribution to a system aggre-

gate may be obtainable from project management personnel. The type of performance we

measure is simple task performance, and our system performance is a relatively simple ag-

gregation of individual performance on a common task. Validation data obtained from an

organization should be commensurate with the type of work the organization is engaged in.

137

5.8 Summary

In this chapter, we described and demonstrated an agent-based model that simulates the

completion of a distributed design task. We showed the utility of this model as a plat-

form for conducting a contingency analysis of coordination-facilitation behaviors, where

results are a function of network structure, agent behaviors, and the distribution of agents

with differing behaviors throughout the network. We demonstrated that there is a correla-

tion between the aggregate performance of agents and the behaviors those agents embody.

However we noted there are limitations to this study, particularly the limited parametric

analysis and the lack of deeper model validation. We have provided recommendations for

these tasks.

There are several next steps to extend this work. First is to consider more realistic agent

behavior: this includes less than perfect execution of coordination behaviors or custom

strategies that incorporate elements of both Active and Passive strategies. Another area is

to focus on the interaction exchanges as transactions. The model presented here includes

only one-way exchanges, where the agent seeking information is always able to request

and receive something from their selected source. This is not necessarily realistic: often

transactions also include information flowing the other direction, creating reciprocity. This

could be a basis for developing the concept of social capital within the model. Another

aspect is that agents always receive exact information, though it may be duplicate or not

useful to them. Miscommunication is possible, which includes uncertainty or ambiguity in

an agent’s interpretation of received data, as well as the errors transmitted by the source

agent (Meluso and Austin-Breneman, 2018). Third, the agent model developed as part of

Study 3 is based primarily on a network-based system of exchange. Other models exist,

including markets (based on incentives and rewards) and hierarchies (based on authority

and control) (Powell, 1990; Jung and Lake, 2011). The structures are complementary; in-

centives and rewards can influence behavior and for this model, shape perceptions of what

information is more and less valuable. Authority is central to the Passive coordination strat-

138

egy we identified, and explicit mechanisms of hierarchy would be a logical next inclusion

to improve the realism of the model. Finally, the distributed classification given to agents

in this model is just one example problem, and similar models may be created around other

problem types. Different tasks also permit exploring the impact of problem size on results.

This agent model complements the exploratory studies presented in the previous chap-

ters. We are able to translate the qualitative and quantitative findings from study of man-

agers, engineers, and designers working on distributed design tasks into the development

of an agent-based model. This model has yielded interesting preliminary results and is a

promising platform for extensive parametric analysis.

139

CHAPTER 6

Conclusions

6.1 Review of Dissertation

In this dissertation, we introduced the problem of coordinating distributed design work

effectively to achieve a desired system-level outcome. While the literature on coordina-

tion and effective approaches to facilitate coordination emphasizes top-down standardized

approaches, in this dissertation we emphasized the importance of considering individual

actions and behaviors as impacting coordination.

In Chapter 3 we presented a qualitative study of engineering and management person-

nel, experts in their respective roles and all with extensive experience working on large-

scale decomposition-based design work. We interviewed twenty individuals, and thematic

analysis of their responses yielded our understanding of coordination strategies and be-

haviors used in industry practice. We identified two strategies, based on either author-

ity, permitting top-down enforcement of procedures and plans, or empathetic leadership,

used to develop tailored interactions with peers throughout the organization and facilitate

a common understanding of everyone’s contribution to the overall goal. We named these

archetypical strategies respectively Passive and Active, referring to the relative proactivity

required – not the amount of work required – for either strategy.

In Chapter 4 we presented a quantitative study of novice designers working on small but

complex distributed design task. This study used self-report surveys to identify coordina-

140

tion patterns through communication and task assignment within teams of five. The survey

responses were analyzed using text analysis, network analysis, and clustering analysis. The

result was identification of coordination roles adopted by members of the teams. Each role

is a combination of typical tasks as well as typical communication patterns. We found

some evidence of both nonhierarchical and hierarchical team coordination approaches, as

well as a mix of more communicative and less communicative team members within each

team. Drawing a parallel to our finding of Active (more communicative) and Passive (less

communicative) coordination methods from Chapter 3, these results suggest teams include

a balance of each archetype.

In Chapter 5, we presented an agent-based model built on the findings from previous

chapters. This model allowed us to explore the balance of Active and Passive coordination-

facilitation actions and behaviors within an organization. Organization structure is repre-

sented by a network, nodes representing individuals and edges formal links between in-

dividuals. The networks we used as input were randomly generated and feature inherent

community or team structure. We learned from our analysis of the simulation’s output that

while Active and Passive agents perform similarly on local, team-level tasks, there is a

difference in their contribution to a common system-level task. Although we were able to

show that there is a dependence on global task performance with respect to the distribution

of Active and Passive agent behaviors, we have not conclusively found whether a mix of

Active and Passive behaviors (requiring fewer peer interactions per agent) performs bet-

ter than solely agents with Active behaviors (requiring the maximum peer interactions per

agent). Further analysis on additional network structures is needed to determine which mix

of behaviors yields a desireable balance between task performance and interaction costs.

141

6.2 Dissertation Contributions

We found evidence from each of our studies that some mix of Active and Passive behaviors

is beneficial for system-level coordination of design tasks. This is an important finding as it

shifts the discussion of effective coordination methods from looking only at top-down pre-

scriptive methods to studying the bottom-up effects of different individual human behaviors

in communication and interaction during the system design process. These findings also

emphasize the importance of individuals who embody elements of the Active archetype,

methods of coordination facilitation that are based on empathetic leadership. Empathy is

recognized as important by practitioners, but there is little literature to support the concept

and a quantitative understanding of its value in systems design practice.

In summary, as noted in Chapter 1, the main contributions of this dissertation are:

1. Contribution to the development of systems engineering theory and best practice by

identifying theory relevant to coordination practice in multiple disciplines.

2. Development of quantitative approaches to describe and evaluate coordination prac-

tice, including identification of coordination roles within teams and a simulation

model to evaluate the impact of communication behavior on design task performance.

3. Inclusion of coordinator and systems engineering roles and behavior in models of co-

ordination effectiveness, offering a new representation of organizational coordination

processes.

In conclusion, this dissertation illustrates the existence and importance of a balance be-

tween proactive, empathetic-leadership-based and more passive, authority-based processes

and behaviors for the effective coordination of decomposition-based design work.

6.3 Future Work and Extensions

This work has several limitations and future extensions.

142

6.3.1 Limitations

The first two studies are limited by the scope of data collection: qualitative results would

be further validated with rigorous observations of organizational processes to complement

interviewee responses.

Our survey methodology in Chapter 4 is not robust to reporting bias and hindsight bias,

which a future study should seek to mitigate with additional longitudinal and observational

data collection. This is difficult in a classroom setting as it involves additional overhead for

students focused on their coursework. For example, project management software could be

used to collect information about who is working on and communicating about what tasks,

and when. However the value of the software as a reporting tool relies on students actively

using the tool as they work. One way to do this is require use of the software as part of

coursework. A carefully designed study using such project management tools could be

worked into a similar project to minimize the potential burden for study participants while

allowing collection of representative data.

Finally, the agent model presented in Chapter 5 is not fully validated, and collection of

data to support selection of both inputs and compare outputs is needed for a complete proof

of concept. An outline for a validation plan is included in Chapter 5, as are recommenda-

tions for additional parametric analysis to refine the conclusions offered from the model.

Of particular interest for parametric analysis are the input network structure, problem par-

titioning strategy, and agent type location throughout the network. Additional parameters

that likely impact results are the initial probabilities to interact, and the amount of data that

is received through each interaction. The initial interaction probabilities are set to extremes

in this study. Exploring other initial values would give an idea of the stability of behavior

throughout multiple model iterations.

143

6.3.2 Extensions

There are three areas where we see this work could have impacts. First, systems engineer-

ing as a discipline and practice benefits from rigorous research into best practices. Systems

engineering is a nascent area of research and will benefit from the identification of con-

cepts in other disciplines such as positive leadership, empathy, and social capital that may

be leveraged to advance systems engineering theory. The research presented in this disser-

tation suggests such a link is beneficial to understanding best practice. Future studies in

this area may focus on mapping social capital within an organization or testing the impact

of positive leadership training on organizational and technical outcomes.

Second, modular systems design was mentioned briefly in our review of related liter-

ature in Chapter 2. The coordination question in system design is often to identify the

best partitioning strategy based on assumed coordination costs for certain architectures.

While there is merit in the existing approaches, the research presented here could be used

to augment those approaches with an improved understanding of how people in fact work

across disciplines. Thus partitioning approaches could be tailored to an organization and

the working behaviors preferred by those individuals. An organization too may be able to

seek out specific individual behaviors to promote effective design of a system.

Finally we mention a connection to our study of novice designers. This study may

present new ways to teach students about project management and coordination approaches

that go beyond setting team roles, schedules, and design processes. This research empha-

sizes the importance of interpersonal communication and the willingness to be both proac-

tive and empathetic in those interactions, which are skills that could be introduced into

engineering design curriculum. This research does not have evidence to support that any of

the coordination approaches adopted by student teams in our study are better or worse than

the others. However, the teams we observed adopted similar compositions of more and less

communicative members, suggesting a mix is valuable.

144

APPENDIX A

Interview Protocol

The interview protocol used to conduct interviews described and analyzed in Chapter 3 is

reproduced here.

Please consider your first-hand experiences with designing and maintaining a large-

scale, complex engineered system.

1. Please describe a specific project in which you participated in the design and man-

agement of a complex system. Can you sketch the technical system? Using this

sketch, can you tell me which groups work on which parts of the technical system?

How many engineers were involved in the project? How many engineers were in

each group you drew in the sketch? Where was each group physically located?

2. Where do you work? What is your formal title? How many years of work experience

do you have? For this project, can you describe your typical work day? In a typical

week, what are the top 3-5 tasks you spend/spent the most time on? What would you

say has contributed most to your ability to do these tasks effectively? Formal edu-

cation, on the job experience, mentoring, or something else? Could you elaborate?

(Who is your mentor? When do you switch?)

3. What was your role in the project? Did your responsibilities change throughout the

design of this system? Can you indicate which subsystem(s) you worked on, and

their relationship to the other systems in the project? How would you characterize

145

your work on these subsystems (design, interface management, analysis, something

else)? Which of the groups you indicated did you feel you “belonged” to?

4. How did you arrive at this partitioning (in the sketch)? Is there a typical partitioning

common to your organization, or is each project broken down differently? Can you

describe it? Is this partitioning reflected in the structure of your organization? Who

(what title) is responsible for deciding how the work gets done/what the subsystems

are? Can you describe how these decisions are made? How are the design teams

selected? Are you directly involved in making these decisions?

a. (If participant makes partitioning decisions): Generally speaking, what heuris-

tics or processes did you use to decide how to distribute the technical work for

this project? At what stage did you finalize this breakdown? Is this consistent

with the original work breakdown structure for the project? What information

did you have available to you at the time you were making decisions about how

to distribute the technical work for this project? (Within groups and within or-

ganization?) Did you use all of the information available to you when making

decisions about how best to distribute the work?

b. (If participant does not make partitioning decisions): How was this work break-

down structure presented or communicated to you? Who delivered it to you?

Is this consistent with the original work breakdown structure for the project?

Do you feel that this was the best way to break down the project/distribute the

work? To communicate the project structure? Why or why not? Would you

have broken things down differently? How? Why? Would you have communi-

cated this information differently?

5. Going back to your sketch, which groups you indicated often found your work rele-

vant to theirs? Which groups in the sketches rarely found your work relevant? How

did you know? Did you work with these groups frequently (e.g., several times per

146

week)? Infrequently (e.g., a few times per month)? How would you characterize

your interactions with these groups, e.g. requesting information, or providing infor-

mation? Would you characterize these interactions as primarily formal or informal?

Did you routinely anticipate any requests for information from other groups or the

need to provide information to other groups? How do you work this into your per-

sonal process?

6. What methods of communication does your organization use (email, meetings/face-

to-face/documents/coffee breaks/other)? What roles do each of these communication

methods have? Can you compare them? How could these communication channels

be improved? Is there a common technology or software that you use to keep track

of documentation or host meetings? Do you feel that this technology or software is

useful/ effective? Why/why not? Is there something you would do differently, or

another tool that you would use?

7. How do/did subsystems interface throughout the design process (early conceptual

stages through to final design)? Was this different during different stages of design?

In what way? Is there a single person or group with which all subsystems regularly

communicated? What is the role of direct communication between groups as com-

pared to communication with this central individual/group? Do these interactions

tend to be through scheduled meetings or informal conversation? Something else?

8. At what stage in the design process do systems engineers attempt to coordinate the

design of the subsystems? Can you describe how this was done in this project?

Who was involved? Did the coordination change over time? What information was

available to the systems engineer in each of these cases? How was this information

presented to the systems engineer? Was this information presented to design groups?

9. At any stage in system design or subsystem coordination, were you uncertain about

either the reliability or the relevance of the information that you had available? Can

147

you elaborate? At any stage, were you uncertain about the appropriateness of the

decisions you made based on this information? How did you handle this situation?

10. Was there any stage during the system design process in which you found it difficult

to process and integrate the information available? Describe precisely the nature of

the situation.

11. Were you reminded of similar experiences/projects at any point during your work

on this project? Were you at any point reminded of different experiences/projects?

Were you at any point reminded of a project that succeeded? Were you at any point

reminded of a project that failed? Did these experiences affect the decisions you

made or actions that you took? How? Who refers relevant lessons learned?

12. Do you think that you could develop a rule, based on your experience, which could

assist another person to make the same design decisions successfully? Why/why not?

What advice would you give to someone new to the role you had on this project?

13. Is there anything we might have missed? Do you have any other thoughts about

systems design that you’d like to share?

148

APPENDIX B

Team Coordination Survey Protocol

The survey used to collect data for the analysis presented in Chapter 4 is reproduced here.

The formatting is modified slightly from the original but the text is unchanged.

Please complete this survey on your own without discussion with your team or squad.

1. Please provide your survey ID from the attached page so that we can identify your

responses:

2. Describe in one or two sentences your RMP’s strategy and its features.

3. What were your role(s)?

Within your team?:

Within your squad?:

4. What were your responsibilities regarding the design of your RMP? Include part-

specific tasks.

a.

b.

c.

149

5. Describe the roles and responsibilities of your teammates:

Please continue on reverse

The following questions will ask you more about the roles and responsibilities you men-

tioned on the previous page. Focus on interactions among your team that pertain to the

responsibilities you identified above.

6. How often did you communicate with other members of your team where the topic

was your design responsibilities? Include communications in class, out of class, in

person, and virtual (e.g., email).

150

7. How often did you communicate with other members of your team where the topic

was their design responsibilities? Include communications in class, out of class, in

person, and virtual (e.g., email).

Please continue on the following page

8. How often did you communicate with other members of your squad where the topic

was your design responsibilities?

9. Anything else?

Thank you for your participation in this survey!

151

APPENDIX C

Agent Model Code

The MATLAB code for the agent model described in Chapter 5 is reproduced here.

%% Distributed classification by agents to test

% coordination methods

% Written by: Arianne Collopy

%

% MATLAB Version: 9.4.0.949201 (R2018a)

% Update 6

% Requires MATLAB statistics and machine

% learning toolbox

%% GLOBAL PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% number of model iterations:

T = 20;

% initialize random seed:

rng(1)

% threshold options:

% threshold defined to exclude most incorrect results

152

thresh_option = 'incorrectabove';

% threshold defined to include most correct results

% thresh_option = 'correctbelow';

% threshold average of medians of incorrect & correct dist.

% thresh_option = 'avgthresh';

%% INTERACTION PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%

interact_add = 10;

ask_add = 2;

fprintf('interaction parameters:

interact_add = %d, ask_add = %d\n', ...

interact_add, ask_add)

%% PARTITIONING SELECTION %%%%%%%%%%%%%%%%%%%%%%%%

% uniform distribution, random:

% partitioning = 'random';

% group in alphabetically-ordered bins by node,

% agents' data assigned in order by community:

partitioning = 'alphabynode';

% reverse alpha order, assignment in node order by comm.:

% partitioning = 'revalphabynode';

%% NETWORK STRUCTURE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global num_nodes net GroupMembers

num_nodes = 100;

153

% index of generated network structure, algorithm provided

% by [189]. load edge list and community members list

neti = 1;

EndNodes = table2array(readtable(sprintf(

'./networks/communitynetwork%d_edgetable.csv',neti)));

EdgeTable = table(EndNodes);

GroupMembers = table2array(readtable(sprintf(

'./networks/communitynetwork%d_membership.csv', neti)));

% calculate community sizes:

commsize = zeros(max(GroupMembers(:,2)),1);

for ki = 1:max(GroupMembers(:,2))

commsize(ki) = sum(GroupMembers(:,2) == ki);

end

net = graph(table(EndNodes));

%% AGENT DISTRIBUTION %%%%%%%%%%%%%%%%%%

% agent mix, or assign percentages

num_active = 0.5*num_nodes; % type 1

num_passive = 0.5*num_nodes; % type 2

if num_active == num_nodes

agent_type_rpt = 'all active';

154

elseif num_passive == num_nodes

agent_type_rpt = 'all passive';

else

agent_type_rpt = 'mixed';

end

% ensure total is correct

if num_active + num_passive ~= num_nodes

fprintf('error: check number of agents \n')

end

% assign agent types, random assignment based on above

global typeassign

types = [ones(num_active, 1); repmat(2, num_passive, 1)];

agentdist = [randperm(length(types))', types];

typeassign = sortrows(agentdist,1);

typeassign = typeassign(:,2);

% connection matrix: start at ones for all peers

global connectstrength

connectstrength = ones(num_nodes) - eye(num_nodes);

%% AGENT BEHAVIOR PARAMETERS %%%%%%%%%%%%%%%%%%%%%

% initial probability to interact:

% random value below this threshold means interact,

% above means no interact (ask)

active.p_interact = 1;

155

passive.p_interact = 0;

% change p_interact based on performance increase/decrease

pchange = 0.5;

p_interact = zeros(num_nodes, T);

for k = 1:num_nodes

if typeassign(k) == 1 % active

p_interact(k, 1) = active.p_interact;

elseif typeassign(k) == 2 % passive

p_interact(k, 1) = passive.p_interact;

end

end

%% INITIALIZE CLASSIFICATION PROBLEM %%%%%%%%%%%%%

% load classification data, obtained from

% UCI Machine Learning Repository [191]

data = readtable('character-data.txt');

datavars = table2array(data(:,2:end));

datalabels = table2cell(data(:,1));

% set aside global test data:

holdoutsize = 200;

testvars = datavars(1:holdoutsize,:);

testlabels = datalabels(1:holdoutsize,:);

156

% remaining training data to distribute:

trainvars = datavars(holdoutsize+1:end,:);

alltrainlabels = datalabels(holdoutsize+1:end, :);

% possible reference letters:

alphabet = unique(alltrainlabels);

partitionlabels = cell(max(GroupMembers(:,2)), 5);

% identify duplicates in initial data:

[uniques, uidx] = unique(table(trainvars(:,:),

alltrainlabels), 'rows');

nonuniques = setdiff(1:length(trainvars), uidx);

sortrows(table(trainvars(nonuniques,:),

alltrainlabels(nonuniques)), 2);

%% INITIALIZE MULTIPLE RUNS %%%%%%%%%%%%%%%%%%%%%%

runnumber = 100;

% individual performance by node on local task, global task

store_indperf_local_multi = zeros(num_nodes, T, runnumber);

store_indperf_local_binary = zeros(num_nodes, T, runnumber);

% global accuracy, 3 ways

store_aggregateaccuracy = zeros(T, runnumber);

store_aggregateaccuracy_binary = zeros(T, runnumber);

store_aggregateaccuracy_binary_bycomm = zeros(T, runnumber);

157

% global test predictions by node

store_currentglobalprediction_multi = cell(runnumber);

store_currentglobalprediction_binary = cell(runnumber);

% connectionstrength matrix and history of interactions

store_connectstrength =

zeros(num_nodes, num_nodes, runnumber);

store_eventlog = cell(runnumber);

% start iteration

for run = 1:runnumber

%% PARTITION DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% partition data so that each agent gets approximately

% equal size portion

% percent of each community for test and ask

comm_testpct = 0.1;

comm_askpct = 0.05;

% for weighted allocation to community by number nodes

fullpartsize = floor(size(trainvars,1)./num_nodes);

% training data size for each agent

partsize = floor(0.85*fullpartsize); %round down

% contribution from each agent's max possible allocation to

158

% community ask and test

a_asksize = ceil(comm_askpct*fullpartsize); % round up.

a_commtestsize = ceil(comm_testpct*fullpartsize); %round up.

if partsize + a_asksize + a_commtestsize ~= fullpartsize

fprintf('rounding error\n')

end

% alert if partitioning uneven among agents

if mod(length(trainvars),num_nodes) ~= 0

fprintf('agents have unequal partitions\n')

end

% storage vectors

trainsamples =

zeros(partsize, size(trainvars,2), num_nodes);

trainlabels = cell(partsize, 1, num_nodes);

max_asksize = a_asksize*max(commsize);

max_commtestsize = a_commtestsize*max(commsize);

communityaskvars =

zeros(max_asksize, size(trainvars,2),

max(GroupMembers(:,2)));

communityasklabels =

cell(max_asksize, 1, max(GroupMembers(:,2)));

communitytestvars =

159

zeros(max_commtestsize, size(trainvars,2),

max(GroupMembers(:,2)));

communitytestlabels =

cell(max_commtestsize, 1, max(GroupMembers(:,2)));

% RANDOM PARTITIONS

if strcmp(partitioning, 'random')

fprintf('partitioning using random order of data\n')

% randomization index:

index = randperm(size(trainvars,1))';

% add random index to data and sort

sortvars = sortrows([index, trainvars],1);

sortlabels = sortrows(table(index, alltrainlabels));

% extract from table; remove column of indices

sortvars = sortvars(:,2:end);

sortlabel = table2cell(sortlabels(:,2));

% assign data to each ask and internal train datasets;

% remainder to nodes within community

nodeidx = 1;

for ki = 1:max(GroupMembers(:,2))

loc_alldatasize = commsize(ki) *fullpartsize;

loc_asksize = commsize(ki) * a_asksize;

loc_testsize = commsize(ki) * a_commtestsize;

160

% indices of held-out data

heldoutindices = randsample(loc_alldatasize,

loc_asksize + loc_testsize);

% flag 1 for held-out, 0 for included in agents'

% training data.

indices = [1:loc_alldatasize]';

holdout = ismember(indices,heldoutindices);

% community data

communityvars =

sortvars((nodeidx-1)*fullpartsize + 1 :

(nodeidx + commsize(ki) - 1)*fullpartsize, :);

communitylabels =

sortlabel((nodeidx-1)*fullpartsize + 1 :

(nodeidx + commsize(ki) - 1)*fullpartsize, :);

partitionlabels(ki, 1:length(

unique(communitylabels))) =

unique(communitylabels)';

% sort community data by holdout vs not;

% held out set at bottom

communitytable =

sortrows(table(communityvars,

communitylabels, holdout), 3);

161

% iterate over community members and

% assign training data

for k = 1:commsize(ki)

trainsamples(:,:,nodeidx) =

communitytable{(k-1)*partsize + 1 :

k*partsize, 1};

trainlabels(:,:,nodeidx) =

communitytable{(k-1)*partsize + 1 :

k*partsize, 2};

% increment counter: count through members

nodeidx = nodeidx + 1;

end

% assign leftover data to internal test and ask data

communityaskvars(1 : loc_asksize,

1:size(trainvars,2), ki) =

communitytable{ commsize(ki)*partsize+1 :

commsize(ki)*partsize + loc_asksize, 1};

communityasklabels(1 : loc_asksize, 1, ki) =

communitytable{ commsize(ki)*partsize+1 :

commsize(ki)*partsize + loc_asksize, end-1};

communitytestvars(1 : loc_testsize,

1 : size(trainvars, 2), ki) =

communitytable{commsize(ki)*partsize +

loc_asksize + 1 : commsize(ki)*partsize +

loc_asksize + loc_testsize, 1};

162

communitytestlabels(1 : loc_testsize, 1, ki) =

communitytable{commsize(ki)*partsize +

loc_asksize + 1 : commsize(ki)*partsize +

loc_asksize + loc_testsize, end-1};

end

% ALPHA by NODE

elseif strcmp(partitioning, 'alphabynode')

fprintf('partitioning using alphabetical sort

by node\n')

% sort paired data by data label

tempalphasort =

sortrows(table(trainvars, alltrainlabels), 2);

% extract from table

sortvars = tempalphasort{:, 1 : end-1};

sortlabel = tempalphasort{:, end};

% assign data to each ask and internal train datasets;

% remainder to nodes within community

nodeidx = 1;

% iterate over groups

for ki = 1:max(GroupMembers(:,2))

loc_alldatasize = commsize(ki) *fullpartsize;

loc_asksize = commsize(ki) * a_asksize;

loc_testsize = commsize(ki) * a_commtestsize;

163

% indices of held-out data: allocate ask and test

heldoutindices =

randsample(loc_alldatasize, loc_asksize +

loc_testsize);

% flag 1 for held-out, 0 for included in agents'

% training data.

indices = [1:loc_alldatasize]';

holdout = ismember(indices,heldoutindices);

% community data

communityvars =

sortvars((nodeidx-1)*fullpartsize + 1 :

(nodeidx + commsize(ki) - 1)*fullpartsize, :);

communitylabels =

sortlabel((nodeidx-1)*fullpartsize + 1 :

(nodeidx + commsize(ki) - 1)*fullpartsize, :);

partitionlabels(ki,

1:length(unique(communitylabels))) =

unique(communitylabels)';

% sort community data by holdout vs not;

% held out set at bottom

communitytable =

sortrows(table(communityvars, communitylabels,

oldout), 3);

164

% iterate over community members and assign

% training data

for k = 1:commsize(ki)

trainsamples(:,:,nodeidx) =

communitytable{(k-1)*partsize + 1 :

k*partsize, 1};

trainlabels(:,:,nodeidx) =

communitytable{(k-1)*partsize + 1 :

k*partsize, 2};

% increment counter: count through members

nodeidx = nodeidx + 1;

end

% leftover data is internal ask and test data

asktesttable =

communitytable(commsize(ki)*partsize+1:end, :);

% randomize within ask and test

rerandidx = randperm(loc_asksize + loc_testsize);

asktesttable2 =

sortrows(addvars(asktesttable, rerandidx',

'before', 'communityvars'), 1);

% assign leftover data (set aside earlier) to

% internal test and ask data

165

communityaskvars(1:loc_asksize,

1:size(trainvars,2), ki) =

asktesttable2{1 : loc_asksize, 2};

communityasklabels(1:loc_asksize, 1, ki) =

asktesttable2{1: loc_asksize, end-1};

communitytestvars(1:loc_testsize,

1:size(trainvars,2), ki) =

asktesttable2{loc_asksize + 1 :

loc_asksize + loc_testsize, 2};

communitytestlabels(1:loc_testsize, 1, ki) =

asktesttable2{loc_asksize + 1 :

loc_asksize + loc_testsize, end-1};

end

% REVERSE ALPHA by NODE

elseif strcmp(partitioning, 'revalphabynode')

fprintf('partitioning using reverse alphabetical

sort by node\n')

% sort labels in reverse order

tempalphasort =

sortrows(table(trainvars, alltrainlabels), 2,

'descend');

% extract from table

sortvars = tempalphasort{:,1:end-1};

166

sortlabel = tempalphasort{:,end};

% assign data to each ask and internal train datasets;

% remainder to nodes within community

nodeidx = 1;

% iterate over communities

for ki = 1:max(GroupMembers(:,2))

loc_alldatasize = commsize(ki) *fullpartsize;

loc_asksize = commsize(ki) * a_asksize;

loc_testsize = commsize(ki) * a_commtestsize;

% indices of held-out data: ask and test

heldoutindices =

randsample(loc_alldatasize, loc_asksize +

loc_testsize);

% flag 1 for held-out, 0 for included in agents'

% training data.

indices = [1:loc_alldatasize]';

holdout = ismember(indices,heldoutindices);

% community data

communityvars =

sortvars((nodeidx-1)*fullpartsize + 1 :

(nodeidx + commsize(ki) - 1)*fullpartsize, :);

communitylabels =

167

sortlabel((nodeidx-1)*fullpartsize + 1 :

(nodeidx + commsize(ki) - 1)*fullpartsize, :);

partitionlabels(ki,

1:length(unique(communitylabels))) =

unique(communitylabels)';

% sort community data by holdout vs not;

% held out set at bottom

communitytable =

sortrows(table(communityvars, communitylabels,

holdout), 3);

for k = 1:commsize(ki)

trainsamples(:,:,nodeidx) =

communitytable{(k-1)*partsize + 1 :

k*partsize, 1};

trainlabels(:,:,nodeidx) =

communitytable{(k-1)*partsize + 1 :

k*partsize, 2};

% increment counter: iterate through members

nodeidx = nodeidx + 1;

end

% leftover data is internal ask and test data

asktesttable =

communitytable(commsize(ki)*partsize+1:end, :);

168

% randomize within ask and test

rerandidx = randperm(loc_asksize + loc_testsize);

asktesttable2 =

sortrows(addvars(asktesttable, rerandidx',

'before', 'communityvars'), 1);

% assign leftover data (set aside earlier) to

% internal test and ask data

communityaskvars(1:loc_asksize,

1:size(trainvars,2), ki) =

asktesttable2{1 : loc_asksize, 2};

communityasklabels(1:loc_asksize, 1, ki) =

asktesttable2{1: loc_asksize, end-1};

communitytestvars(1:loc_testsize,

1:size(trainvars,2), ki) =

asktesttable2{loc_asksize + 1 :

loc_asksize + loc_testsize, 2};

communitytestlabels(1:loc_testsize, 1, ki) =

asktesttable2{loc_asksize + 1 :

loc_asksize + loc_testsize, end-1};

end

end

% common to all partitioning schemes:

% create storage matrix (of max size equal to total training

% dataset size) for current working set each agent's

169

% classifier is built from

mytraindata =

zeros(size(trainvars,1), size(trainvars,2), num_nodes);

mytrainlabels =

cell(size(trainlabels,1), size(trainlabels, 2),

num_nodes);

for k = 1:num_nodes

mytraindata(1:partsize,:,k) = trainsamples(:,:,k);

mytrainlabels(1:partsize,:,k) = trainlabels(:,:,k);

end

%% INITIALIZE MODEL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% k-nn model parameter

nneighbors = ones(num_nodes,1);

% log agents' action each tick:

eventlog = cell(num_nodes,1,T);

choice_weights_history =

zeros(num_nodes, max(degree(net)), T);

% compare model results to global test; local

% initialized later

compare_g = zeros(length(testvars),1);

% accuracy on global and local test data from each agent:

% multiclass (w/o thresh)

global_accuracy_multi = zeros(num_nodes, T);

170

local_accuracy_multi = zeros(num_nodes, T);

% store distance and y/n accuracy of global and local test

distaccuracy_g = zeros(length(testvars), 2, num_nodes, T);

% may have empty rows:

distaccuracy_l = zeros(max_commtestsize, 2, num_nodes, T);

% store threshold calculations from each agent at each T

% 3rd quartile correct

thresh_corrbelow = zeros(num_nodes, T);

% 1st quartile incorrect

thresh_incorrabove = zeros(num_nodes, T);

% average of above two measures

thresh_avg = zeros(num_nodes, T);

% average of medians of correct/incorr dist

thresh_med = zeros(num_nodes, T);

% accuracy on global and local test data from each agent:

% binary (w/thresh);

% after aggregation from votes for/against:

global_accuracy_binary = zeros(num_nodes,T);

local_accuracy_binary = zeros(num_nodes,T);

% actual vote, test, vote, correct/incorrect for local

% and global test

localvote_binary = cell(max_commtestsize, 4, num_nodes, T);

globalvote_binary = cell(length(testvars), 4, num_nodes, T);

171

% log of each agent's prediction at each timestep,

% multiclass and binary

currentglobalprediction_multi =

cell(length(testvars), num_nodes, T);

currentglobalprediction_binary =

cell(length(testvars), num_nodes, T);

% store comparison of each model to test: logical value

storedcompare = zeros(length(testvars), num_nodes, T);

storedcompare_l = zeros(max_commtestsize, num_nodes, T);

% aggregate of agents' prediction at each step --

% currently calculated as mode of all agents' guesses

aggregateprediction = cell(length(testvars),1,T);

% compare aggregate result to test labels

% global test, aggregation by node without threshold

aggregatecompare = zeros(length(testvars), T);

aggregateaccuracy = zeros(T,1);

% global test, aggregation by node with threshold

aggregatecompare_binary = zeros(length(testvars), T);

aggregateaccuracy_binary = zeros(T, 1);

% global test, aggregation by community with threshold

commvotefor = cell(length(testvars),

172

max(GroupMembers(:,2)), T);

commvoteagainst = cell(length(testvars),

max(GroupMembers(:,2)), T);

aggregatecommvote = cell(length(testvars), T);

incomm_aggcompare_binary = zeros(T, 1);

aggregateaccuracy_binary_bycomm = zeros(T, 1);

% track items added from ask pool

askselected = zeros(num_nodes, ask_add, T);

%% CALCULATE T = 0 ACCURACY %%%%%%%%%%%%%%%%%%%%%%

initaccuracy_g = zeros(num_nodes, 1);

initaccuracy_l = zeros(num_nodes, 1);

% initial agent performance on global dataset

for k = 1:num_nodes

self = k;

mycomm = GroupMembers(self, 2);

commtestsize = a_commtestsize * commsize(mycomm);

% create classifier from own data

train =

mytraindata(any(mytraindata(:, :, self), 2),

:, self);

label = mytrainlabels(1:size(train,1), :, self);

knnfit = fitcknn(train, label, 'NumNeighbors',

173

nneighbors(self));

knnpred_g = predict(knnfit, testvars);

knnpred_l = predict(knnfit,

communitytestvars(1:commtestsize, :, mycomm));

% compare results to global test data

for j = 1:length(knnpred_g)

compare_g(j) = strcmp(knnpred_g(j), testlabels(j));

end

% compare model to community test data

compare_l = zeros(

size(communitytestlabels(1:commtestsize,:,mycomm)));

for j = 1:length(knnpred_l)

compare_l(j) = strcmp(knnpred_l (j),

communitytestlabels(j, :, mycomm));

end

% store initial accuracy as percent correct

initaccuracy_g(self) =

sum(compare_g)/length(testlabels);

initaccuracy_l(self) = sum(compare_l)/commtestsize;

end

%% BEGIN MODEL ITERATIONS %%%%%%%%%%%%%%%%%%%%%%%%

for tick = 1:T

174

% output log:

if mod(tick,10) == 0

fprintf('tick %d, run %d\n', tick, run)

end

% iterate over agents

for k = 1:num_nodes

self = k;

mycomm = GroupMembers(self, 2);

mycommasksize = sum(any(communityaskvars(:,:,mycomm),2));

% cases for each agent type

r = rand();

if r < p_interact(self,tick)

interact = 'peer'; % interact

else

interact = 'ask'; % don't interact

end

if strcmp(interact, 'peer')

%% CHOOSE PEER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% choose peer to interact

[peer,w] = choose_peer(self);

choice_weights_history(

self, 1:length(w), tick) = w';

eventlog{k,1,tick} = ...

175

sprintf('interact with node %d,

exchange %d item(s)',

peer, interact_add);

%% EXCHANGE DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% peer data available

peerdatasize = sum(any(mytraindata(:,:,peer),2));

sample = randsample(peerdatasize, interact_add);

datatransf = mytraindata(sample,:,peer);

labeltransf = mytrainlabels(sample,:,peer);

% current size of agent's own training data:

currentsize =

sum(any(mytraindata(:, :, self), 2));

currenttest =

sum(any(communitytestvars(:,:,mycomm), 2));

% characterize new categories:

% any new to community?

[incommtest, ~, loc_test] =

unique(communitytestlabels(

any(communitytestvars(:,:,mycomm),2),:,mycomm));

[inask, ~, loc_ask] = unique(labeltransf);

% in received data, but not in community test:

if ~isempty(setdiff(inask, incommtest))

176

% how many labels are new? cell array, uniques

new = setdiff(inask, incommtest);

% count instances, accounting for more than one

% new data type

countnew = 0;

newtotest = ;

for newlett = 1:length(new)

% find indices of new category data

newtotest = [newtotest; find(

strcmp(labeltransf, new{newlett}))];

% count number of indices

countnew = countnew + length(find(

strcmp(labeltransf, new{newlett})));

end

% index of items to add: add 50% of new labels

% to community test and remainder to own train

addtotest =

newtotest(randsample(length(newtotest),

ceil(countnew/2)));

addtotrain = setdiff([1:length(labeltransf)]',

addtotest);

% add if new. check for duplicates

dupecheck = zeros(length(addtotrain),1);

for idx = 1:length(addtotrain)

177

if ismember(datatransf(addtotrain(idx),:),

mytraindata(

1:currentsize,:,self), 'rows')

&& ismember(

labeltransf(addtotrain(idx)),

mytrainlabels(1:currentsize,:,self))

dupecheck(idx) = 0; % don't keep

else

dupecheck(idx) = 1; % keep

end

end

% store as logical value

dupecheck = logical(dupecheck);

% add non-dupes to current train data

if sum(dupecheck) > 0

mytraindata(currentsize+1 :

currentsize+sum(dupecheck),:,self) =

datatransf(addtotrain(dupecheck),:);

mytrainlabels(currentsize+1 :

currentsize+sum(dupecheck),:,self) =

labeltransf(addtotrain(dupecheck));

end

% add data to test

communitytestvars(currenttest+1 :

178

currenttest+length(addtotest),:,mycomm) =

datatransf(addtotest,:);

communitytestlabels(currenttest+1 :

currenttest+length(addtotest), :, mycomm) =

labeltransf(addtotest);

else % labels not new to community test

% add if new. check for duplicates

dupecheck = zeros(length(labeltransf),1);

for idx = 1:length(labeltransf)

if ismember(datatransf(idx,:),

mytraindata(

1:currentsize,:,self), 'rows')

&& ismember(labeltransf(idx),

mytrainlabels(1:currentsize,:,self))

dupecheck(idx) = 0; % don't keep

else

dupecheck(idx) = 1; % keep

end

end

% store as logical

dupecheck = logical(dupecheck);

if sum(dupecheck) > 0

mytraindata(currentsize+1 :

179

currentsize+sum(dupecheck),:,self) =

datatransf(dupecheck,:);

mytrainlabels(currentsize+1 :

currentsize+sum(dupecheck),:,self) =

labeltransf(dupecheck);

end

end

else

%% DRAW from ASK %%%%%%%%%%%%%%%%%%%%%%%%%%%%

% agents draw ask_add items from in-community `ask' pool

% ask pool data available

sample = 1:mycommasksize;

% retain only previously unselected options

sample =

sample(~ismember(sample,askselected(self,:,:)));

if any(sample) % any choices left

% choose ask_add number of datapoints to add

askselected(self, :, tick) =

randsample(sample, ask_add);

% find corresponding data in community ask pool

datatransf = communityaskvars(

askselected(self, :, tick), :, mycomm);

labeltransf = communityasklabels(

askselected(self, :, tick), :, mycomm);

180

% current size of agent's own training data:

currentsize =

sum(any(mytraindata(:, :, self), 2));

currenttest =

sum(any(communitytestvars(:,:,mycomm), 2));

% characterize new categories: any new to community?

[incommtest, ~, loc_test] =

unique(communitytestlabels(

any(communitytestvars(:,:,mycomm), 2),

:, mycomm));

[inask, ~, loc_ask] = unique(labeltransf);

% in ask, but not in commtest

if ~isempty(setdiff(inask, incommtest))

% how many labels are new? cell array, uniques

new = setdiff(inask, incommtest);

% count instances, accounting for more than one

% new data type

countnew = 0;

newtotest = ;

for newlett = 1:length(new)

% find indices of new category data

newtotest = [newtotest;

find(strcmp(

181

labeltransf, new{newlett}))];

% count number of indices

countnew = countnew + length(

find(strcmp(

labeltransf, new{newlett})));

end

% index of items to add: add 50% of

% new labels to community test

addtotest =

newtotest(randsample(length(newtotest),

ceil(countnew/2)));

addtotrain =

setdiff(1:length(labeltransf), addtotest);

% add if new. check for duplicates

dupecheck = zeros(length(addtotrain),1);

for idx = 1:length(addtotrain)

if ismember(datatransf(addtotrain(idx),:),

mytraindata(

1:currentsize,:,self), 'rows')

&& ismember(

labeltransf(addtotrain(idx)),

mytrainlabels(

1:currentsize,:,self))

dupecheck(idx) = 0; % don't keep

182

else

dupecheck(idx) = 1; % keep

end

end

% store as logical

dupecheck = logical(dupecheck);

% add non-dupes to train

if sum(dupecheck) > 0

mytraindata(currentsize+1 :

currentsize+sum(dupecheck),:,self) =

datatransf(addtotrain(dupecheck),:);

mytrainlabels(currentsize+1 :

currentsize+sum(dupecheck),:,self) =

labeltransf(addtotrain(dupecheck));

end

% add data to test

communitytestvars(currenttest+1 :

currenttest+length(addtotest),:,mycomm) =

datatransf(addtotest,:);

communitytestlabels(currenttest+1 :

currenttest+length(addtotest), :, mycomm) =

labeltransf(addtotest);

eventlog{self,1,tick} = ...

183

sprintf('queried ask pool; added new data

to train and comm. test');

else % labels not new to community test

% add if new. check for duplicates

dupecheck = zeros(length(labeltransf),1);

for idx = 1:length(labeltransf)

if ismember(datatransf(idx,:),

mytraindata(

1:currentsize,:,self), 'rows')

&& ismember(labeltransf(idx),

mytrainlabels(

1:currentsize,:,self))

dupecheck(idx) = 0; % don't keep

else

dupecheck(idx) = 1; % keep

end

end

% store as logical value

dupecheck = logical(dupecheck);

if sum(dupecheck) > 0

mytraindata(currentsize+1 :

currentsize+sum(dupecheck),:,self) =

datatransf(dupecheck,:);

184

mytrainlabels(currentsize+1 :

currentsize+sum(dupecheck),:,self) =

labeltransf(dupecheck);

end

eventlog{self,1,tick} = ...

sprintf('queried ask pool; added new data

to train');

end

else

eventlog{self,1,tick} =

sprintf('queried ask pool; no data available');

end

end

%% CREATE AND EVALUATE MODEL %%%%%%%%%%%%%%%%%%%%%

% use just nonzero rows of mytraindata to train model

train =

mytraindata(any(mytraindata(:,:,self),2),:,self);

label =

mytrainlabels(1:size(train,1),:,self);

%% MULTICLASS CLASSIFIER %%%%%%%%%%%%%%%%%%%%%%%%%

currenttest =

sum(any(communitytestvars(:,:,mycomm), 2));

185

[idx_g, dist_g] = knnsearch(train, testvars);

knnpred_g = label(idx_g);

[idx_l, dist_l] = knnsearch(train, communitytestvars(

1:currenttest, :, mycomm));

knnpred_l = label(idx_l);

% compare results to test data

for j = 1:length(knnpred_g)

compare_g(j) = strcmp(knnpred_g(j), testlabels(j));

storedcompare(j,self,tick) = strcmp(

knnpred_g(j), testlabels(j));

end

% compare model to community test data

compare_l = zeros(size(communitytestlabels(

1:currenttest,:,mycomm)));

for j = 1:length(knnpred_l)

compare_l(j) = strcmp(knnpred_l (j),

communitytestlabels(j, :, mycomm));

storedcompare_l(j,self,tick) = strcmp(

knnpred_l(j),

communitytestlabels(j, :, mycomm));

end

% log distance to match and correct or no

distaccuracy_g(:, :, self, tick) = [dist_g, compare_g];

186

distaccuracy_l(1:currenttest, :, self, tick) =

[dist_l, compare_l];

% results = table(knnpred_g, testlabels, compare);

% store multiclass model results

global_multi_results =

table(knnpred_g, testlabels, compare_g);

global_accuracy_multi(self,tick) =

sum(compare_g)/length(testlabels);

local_accuracy_multi(self,tick) =

sum(compare_l)/currenttest;

currentglobalprediction_multi(:,self,tick) = knnpred_g;

%% THRESHOLDS FROM LOCAL TEST RESULTS %%%%%%%%%%%%

% find indices for correct and incorrect results:

dtemp = [dist_l, compare_l];

findia = find(dtemp(:, 2) == 0);

finda = find(dtemp(:, 2) == 1);

if any(finda)

dist_correct = dtemp(finda, 1);

else

dist_correct = NaN;

end

if any(findia)

187

dist_incorrect = dtemp(findia, 1);

else

dist_incorrect = NaN;

end

% correct below:

% find third quartile of correct matches

thresh_corrbelow(self, tick) =

quantile(dist_correct, 0.75);

% incorrect above:

% find first quartile for incorrect matches

thresh_incorrabove(self, tick) =

quantile(dist_incorrect, 0.25);

% average of two thresholds

thresh_avg(self, tick) = nanmean(

[thresh_corrbelow(self,tick),

thresh_incorrabove(self,tick)]);

% average of medians

thresh_med(self, tick) = nanmean(

[median(dist_correct), median(dist_incorrect)]);

%% BINARY CLASSIFIER WITH THRESHOLD %%%%%%%%%%%%%%

% labels assigned to community, according to what agent

% received in initial partition

initlabels = unique(partitionlabels(mycomm, find(

~cellfun('isempty', partitionlabels(mycomm,:)))));

188

% any new labels agent may have acquired through

% interaction with peers + initial labels

newlabels = unique(communitytestlabels(any(

communitytestvars(:,:,mycomm),2), 1, mycomm));

% sort out only new labels

newlabels = setdiff(newlabels, initlabels);

% translate multiclass results (knnpred_l) to binary

% result: flip if above threshold, keep same if below

if strcmp(thresh_option, 'correctbelow')

thresh = thresh_corrbelow;

elseif strcmp(thresh_option, 'incorrectabove')

thresh = thresh_incorrabove;

elseif strcmp(thresh_option, 'avgthresh')

thresh = thresh_med;

end

% use threshold to flag untrusted results, and compare

% to test data:

% 1 if not flipped (keep), 0 is flip (disregard):

binaryflip = zeros(length(knnpred_l), 1);

% 1 if correct, 0 if incorrect:

compare_bin = zeros(length(knnpred_l), 1);

for j=1:length(knnpred_l)

% temporary storage: as char

189

truetest = communitytestlabels{j, :, mycomm};

guess = knnpred_l{j};

% determine confidence from threshold

if dist_l(j) >= thresh(self, tick)

binaryflip(j) = 0;

% check for disagreement

if truetest ~= guess

compare_bin(j) = 1; % correct

else

compare_bin(j) = 0; % incorrect

end

else

binaryflip(j) = 1;

% enter value as is and evaluate as is:

% check for agreement

if truetest == guess

compare_bin(j) = 1; % correct

else

compare_bin(j) = 0; % incorrect

end

end

end

% store results

binresulttable = table(communitytestlabels(1 :

190

length(knnpred_l), :, mycomm),

knnpred_l, binaryflip, compare_bin);

localvote_binary(1:length(knnpred_l),:,self,tick) =

table2cell(binresulttable);

% calculate accuracy

local_accuracy_binary(self, tick) =

sum(compare_bin)./length(compare_bin);

%% BINARY TEST - GLOBAL TEST %%%%%%%%%%%%%%%%%%%%%

% store flip: 1 if not flipped (keep),

% 0 if flipped (disregard)

binaryflip_g = zeros(length(knnpred_g), 1);

% store result: 1 if correct, 0 if incorrect

compare_bin_g = zeros(length(knnpred_g), 1);

for j=1:length(knnpred_g)

truetest = testlabels{j, :}; % char

guess = knnpred_g{j}; % char

% determine confidence from threshold

if dist_g(j) >= thresh(self, tick)

binaryflip_g(j) = 0;

% check for disagreement

if truetest ~= guess

compare_bin_g(j) = 1; % correct

else

191

compare_bin_g(j) = 0; % incorrect

end

else

binaryflip_g(j) = 1;

% enter value as is and evaluate as is:

% check for agreement

if truetest == guess

compare_bin_g(j) = 1; % correct

else

compare_bin_g(j) = 0; % incorrect

end

end

end

% store results

binresulttable_g = table(

testlabels, knnpred_g, binaryflip_g, compare_bin_g);

globalvote_binary(:,:,self,tick) =

table2cell(binresulttable_g);

% calculate accuracy: agent's score on all test items

global_accuracy_binary(self, tick) =

sum(compare_bin_g)./length(compare_bin_g);

currentglobalprediction_binary(:,self,tick) = knnpred_g;

192

%% UPDATE LINK STRENGTH %%%%%%%%%%%%%%%%%%%%%%%%%

% update p(choice) given increase or decrease in

% accuracy from last iteration

% ensure interaction probability at least constant from

% this iteration to the next:

if tick < T

p_interact(self, tick+1) = p_interact(self, tick);

end

if tick > 1 && tick < 20

% adjust probability based on observed increase or

% decrease in accuracy

if local_accuracy_multi(self, tick) >

local_accuracy_multi(self, tick-1)

|| local_accuracy_binary(self, tick) >

local_accuracy_binary(self, tick-1)

if strcmp(interact, 'peer')

% increase p(interact)

p_interact(self, tick+1) =

p_interact(self, tick+1) + pchange;

% increase peer connection strength

connectstrength(self,peer) =

connectstrength(self, peer) + pchange;

193

elseif strcmp(interact, 'ask')

% if drew from ask? increase p(ask) by

% decreasing p_interact

p_interact(self, tick+1) =

p_interact(self, tick+1)-pchange;

end

elseif local_accuracy_multi(self, tick) <

local_accuracy_multi(self, tick-1)

|| local_accuracy_binary(self, tick) <

local_accuracy_binary(self, tick-1)

if strcmp(interact, 'peer')

% decrease p(interact)

p_interact(self, tick+1) =

p_interact(self, tick+1)-pchange;

% increase peer connection strength

connectstrength(self,peer) =

connectstrength(self, peer)-pchange;

% preserve caps at 0%, 100%

if p_interact(self, tick+1) > 1

p_interact(self, tick+1) = 1;

end

if p_interact(self, tick+1) < 0

194

p_interact(self, tick+1) = 0;

end

if connectstrength(self, peer) < 0

connectstrength(self, peer) = 0;

end

elseif strcmp(interact, 'ask')

% if drew from ask? decrease p(ask) by

% increasing p_interact

p_interact(self, tick+1) =

p_interact(self, tick+1)+pchange;

% preserve caps at 0%, 100%

if p_interact(self, tick+1) > 1

p_interact(self, tick+1) = 1;

end

if p_interact(self, tick+1) < 0

p_interact(self, tick+1) = 0;

end

end

end

end

end

%% calculate aggregate performance from multi-

% classifier result

195

for item = 1:length(testvars)

% initialize counter:

aggregatecount = zeros(length(alphabet), 1);

% iterate through alphabet, count each instance

for iy = 1:length(alphabet)

aggregatecount(iy) =

length(find(strcmp(alphabet{iy},

currentglobalprediction_multi(item,:,tick))));

end

% find first mode across all agents;

% what most agents voted for given same test item

[~, itemp] = max(aggregatecount);

% flag tied majority vote

if length(itemp) > 2

sprintf(

'more options: tick %d, letters %c',

tick, itemp)

end

% store result:

aggregateprediction{item, :, tick} =

alphabet{itemp};

% compare to true label:

196

aggregatecompare(:,tick) = strcmp(

aggregateprediction(:,:,tick), testlabels(:));

end

aggregateaccuracy(tick) =

sum(aggregatecompare(:,tick))/length(testlabels);

%% calculate aggregate performance from binary

% classifier result

for item = 1:length(testvars)

% each agent has stored: test data, vote, flip

% (confidence vote), and accuracy at end in

% globalvote_binary. Want to count yeses and nos

% separately: only collide if yes and no for the

% same letter.

globaltrue = testlabels{item}; % char

% find votes and confidence

confvote_temp = squeeze(cell2mat(

globalvote_binary(item, 3, :, tick)));

vote_temp = char(squeeze(

globalvote_binary(item, 2, :, tick))); % char

% votes with confidence 1 (noflip)

votesforidx = find(confvote_temp == 1);

votesagainstidx = find(confvote_temp == 0);

197

votesfor = vote_temp(votesforidx);

votesagainst = vote_temp(votesagainstidx);

% find unique votes for

uniquefor = unique(votesfor);

votes = zeros(length(uniquefor),1);

for uniquevote = 1:length(uniquefor)

% number votes for + votes not against

votes(uniquevote) =

length(find(votesfor ==

uniquefor(uniquevote))) +

(length(votesagainst) -

length(find(votesagainst ==

uniquefor(uniquevote))));

end

maxvote = find(votes == max(votes));

finalvote = uniquefor(maxvote);

% how to deal with ties?

if finalvote == globaltrue

aggregatecompare_binary(item, tick) = 1;

else

aggregatecompare_binary(item, tick) = 0;

end

198

end

aggregateaccuracy_binary(tick) = sum(

aggregatecompare_binary(:, tick)) /

length(testlabels);

%% calculate aggregate accuracy - aggregate by

% community from binary (thresholded) test

for comm = 1:max(GroupMembers(:,2))

members = find(GroupMembers(:,2) == comm);

for item = 1:length(testvars)

% each agent has stored: test data, vote, flip

% (confidence vote), and accuracy at end in

% globalvote_binary. Count yeses and nos

% separately: only collide if yes and no for the

% same letter.

globaltrue = testlabels{item}; % char

% find votes and confidence: pull out of cell

vote_temp = char(squeeze(

globalvote_binary(item, 2, members, tick)));

confvote_temp = squeeze(cell2mat(

globalvote_binary(item, 3, members, tick)));

% votes with confidence 1 (noflip)

199

votesforidx = find(confvote_temp == 1);

votesagainstidx = find(confvote_temp == 0);

votesfor = vote_temp(votesforidx);

votesagainst = vote_temp(votesagainstidx);

% find unique votes for

uniquefor = unique(votesfor);

votes = zeros(length(uniquefor),1);

uniqueagainst = unique(votesagainst);

votesag = zeros(length(uniqueagainst), 1);

if ~isempty(uniquefor)

for uniquevote = 1:length(uniquefor)

% number votes for + votes not against

votes(uniquevote) =

length(find(votesfor ==

uniquefor(uniquevote))) +

(length(votesagainst) -

length(find(votesagainst ==

uniquefor(uniquevote))));

end

% find item with most votes within community

maxcommvote = find(votes == max(votes));

if length(maxcommvote) > 1

% tiebreak = char with more entries in

200

% votesfor

tiebreak = zeros(length(maxcommvote),1);

for tied = 1:length(maxcommvote)

tiebreak(tied) = length(find(

votesfor == uniquefor(

maxcommvote(tied))));

end

tiebreakidx = find(max(tiebreak));

commvotefor{item, comm, tick} =

uniquefor(maxcommvote(tiebreakidx));

else

commvotefor{item, comm, tick} =

uniquefor(maxcommvote);

end

else

% what if no votes for?

for uniquevoteag = 1:length(uniqueagainst)

% number votes against each item

votesag(uniquevoteag) =

length(find(votesagainst ==

uniqueagainst(uniquevoteag)));

end

maxcommanti = find(votesag == max(votesag));

% can have multiples in this list:

commvoteagainst{item, comm, tick} =

uniqueagainst(maxcommanti);

end

201

end

end

% aggregate: iterate over items

for item = 1:length(testvars)

globaltrue = testlabels{item};

% choose max vote from commvotes

communityvotes = [commvotefor{item, :, tick}];

% nobody voted for an item?

if ~isempty(communityvotes)

uniquecommvotes = unique(communityvotes);

aggregatevotes = zeros(

length(uniquecommvotes), 1);

for commvoteidx = 1:length(uniquecommvotes)

aggregatevotes(commvoteidx) =

length(find(communityvotes ==

uniquecommvotes(commvoteidx)));

end

maxaggcommvote = find(

aggregatevotes == max(aggregatevotes));

if length(maxaggcommvote) > 1

% random tiebreak

tiebreak = randi(length(

maxaggcommvote));

202

aggregatecommvote{item, tick} =

uniquecommvotes(maxaggcommvote(

tiebreak));

else

aggregatecommvote{item, tick} =

uniquecommvotes(maxaggcommvote);

end

if aggregatecommvote{item,tick} == globaltrue

incomm_aggcompare_binary(item, tick) = 1;

else

incomm_aggcompare_binary(item, tick) = 0;

end

else

aggregatecommvote{item, tick} = '0';

incomm_aggcompare_binary(item, tick) = 0;

end

end

% store binary (thresholded) accuracy as pct

aggregateaccuracy_binary_bycomm(tick) =

sum(incomm_aggcompare_binary(:, tick)) /

length(testlabels);

end

%% STORE DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

203

% individual performance by node on local task, 2 ways

store_indperf_local_multi(:,:,run) =

local_accuracy_multi(:,:);

store_indperf_local_binary(:,:,run) =

local_accuracy_binary(:,:);

% global accuracy, 3 ways

store_aggregateaccuracy(:,run) = aggregateaccuracy;

store_aggregateaccuracy_binary(:,run) =

aggregateaccuracy_binary;

store_aggregateaccuracy_binary_bycomm(:,run) =

aggregateaccuracy_binary_bycomm;

% global test votes

store_currentglobalprediction_multi{run} =

currentglobalprediction_multi;

store_currentglobalprediction_binary{run} =

currentglobalprediction_binary;

% connectionstrength matrix and history of interactions

store_connectstrength(:,:,run) = connectstrength;

store_eventlog{run} = eventlog;

end

%% SAVE RESULTS TO FILE %%%%%%%%%%%%%%%%%%%%%%%%%

save(sprintf('LFR%d_allpassive_indperf', neti),

204

'store_indperf_local_multi',

'store_indperf_local_binary');

save(sprintf('LFR%d_allpassive_globperf', neti),

'store_aggregateaccuracy',

'store_aggregateaccuracy_binary',

'store_aggregateaccuracy_binary_bycomm');

save(sprintf('LFR%d_allpassive_eventlog', neti),

'store_eventlog');

save(sprintf('LFR%d_allpassive_connectstrength', neti),

'store_connectstrength');

save(sprintf('LFR%d_allpassive_typeassign', neti),

'typeassign');

% FUNCTION: CHOOSE PEER %%%%%%%%%%%%%%%%%%%%%%%%%

function[chosenpeer, weights] = choose_peer(agent_no)

global connectstrength net GroupMembers typeassign

% identify immediate neighbors in network

[~,n] = outedges(net, agent_no);

% identify community members

selfcomm = GroupMembers(agent_no,2);

n2 = find(GroupMembers(:,2) == selfcomm);

% combined set of neighbors, except self

comb = setdiff(union(n, n2), agent_no);

% if active, assign larger set as neighbors

if typeassign(agent_no) == 1

205

n = comb;

end

% calculate weights based on connection matrix

weights = zeros(length(n),1);

for k = 1:length(n)

weights(k) = connectstrength(agent_no, n(k));

end

% check if peer sources exhausted (connectstrength = 0

% for all): replace zeros with ones to calculate weights.

% note this does not update connectstrength values,

% just weights to choose peer.

if ~any(weights)

weights = ones(length(n),1);

end

% normalize weights

weights = weights./sum(weights);

% select index based on weights

choiceidx = randsample(length(n),1,true,weights);

chosenpeer = n(choiceidx);

end

206

BIBLIOGRAPHY

Acuña, S. T. and N. Juristo (2004). “Assigning people to roles in software projects”. In:
Software: Practice and Experience 34.7, pp. 675–696. DOI: 10.1002/spe.586.

Adams, R. et al. (2009). “Exploring the Boundaries: Language, Roles, and Structures in
Cross-Disciplinary Design Teams”. In: About: Designing - Analysing Design Meetings.
Ed. by J. McDonnell and P. Lloyd. London, UK: CRC Press, pp. 339–358.

Adler, P. S. and S.-W. Kwon (2002). “Social Capital: Prospects for a New Concept”. In:
The Academy of Management Review 27.1, p. 17. DOI: 10.2307/4134367.

Agneessens, F. and R. Wittek (2012). “Where do intra-organizational advice relations come
from? The role of informal status and social capital in social exchange”. In: Social
Networks. Dynamics of Social Networks (2) 34.3, pp. 333–345. DOI: 10.1016/j.
socnet.2011.04.002.

Alexandrov, N. M. and R. M. Lewis (2002). “Analytical and Computational Aspects of Col-
laborative Optimization for Multidisciplinary Design”. In: AIAA Journal 40.2, pp. 301–
309. DOI: 10.2514/2.1646.

Allison, J. T. (2008). “Optimal Partitioning and Coordination Decisions in Decomposition-
based Design Optimization”. Ph.D. Dissertation. Ann Arbor, MI: University of Michi-
gan.

Allison, J. et al. (2005). “On the use of analytical target cascading and collaborative opti-
mization for complex system design”. In: Proceedings of 6th World Congress on Struc-
tural and Multidisciplinary Optimization.

Alyaqout, S. F. et al. (2011). “Generalized Coupling Management in Complex Engineering
Systems Optimization”. In: Journal of Mechanical Design 133.9, pp. 091005–091005.
DOI: 10.1115/1.4004541.

Aritzeta, A., S. Swailes, and B. Senior (2007). “Belbin’s Team Role Model: Development,
Validity and Applications for Team Building*”. In: Journal of Management Studies
44.1, pp. 96–118. DOI: 10.1111/j.1467-6486.2007.00666.x.

207

https://doi.org/10.1002/spe.586
https://doi.org/10.2307/4134367
https://doi.org/10.1016/j.socnet.2011.04.002
https://doi.org/10.1016/j.socnet.2011.04.002
https://doi.org/10.2514/2.1646
https://doi.org/10.1115/1.4004541
https://doi.org/10.1111/j.1467-6486.2007.00666.x

Asikoglu, O. and T. Simpson (2012). “A New Method for Evaluating Design Dependen-
cies in Product Architectures”. In: 12th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. American Institute of Aeronautics and Astronautics.

Asplund, J. et al. (2007). The Clifton StrengthsFinder® 2.0 Technical Report: Development
and Validation. Tech. rep. Princeton, NJ: The Gallup Organization.

Austin-Breneman, J., T. Honda, and M. C. Yang (2012). “A Study of Student Design Team
Behaviors in Complex System Design”. In: Journal of Mechanical Design 134.12,
p. 124504. DOI: 10.1115/1.4007840.

Austin-Breneman, J., B. Y. Yu, and M. C. Yang (2015). “Biased Information Passing Be-
tween Subsystems Over Time in Complex System Design”. In: Journal of Mechanical
Design 138.1, pp. 011101–011101. DOI: 10.1115/1.4031745.

Baker, W. E., R. Cross, and M. Wooten (2003). “Positive Organizational Network Analysis
and Energizing Relationships”. In: Positive Organizational Scholarship: Foundations of
a New Discipline. Ed. by K. S. Cameron, J. E. Dutton, and R. E. Quinn. San Francisco,
CA, USA: Barrett-Koehler Publishers, Inc., pp. 328–342.

Baldwin, C. and K. B. Clark (2000). Design Rules: the Power of Modularity. Vol. 1. Cam-
bridge, MA: MIT Press.

Barabási, A.-L. (2016). Network Science. Cambridge, UK: Cambridge University Press.

Barnard, C. I. (1964). The Functions of the Executive. Cambridge, MA: Harvard University
Press.

Bayrak, A. E. et al. (2018). “Multiobjective optimization of modular design concepts for
a collection of interacting systems”. In: Structural and Multidisciplinary Optimization
57.1, pp. 83–94. DOI: 10.1007/s00158-017-1872-4.

Bhatia, G., B. Mesmer, and K. Weger (2018). “Mathematical Representation of Stakeholder
Preferences for the SPORT Small Satellite Project”. In: 2018 AIAA Aerospace Sciences
Meeting. Kissimmee, Florida: American Institute of Aeronautics and Astronautics. DOI:
10.2514/6.2018-0708.

Blanchard, B. S. and W. J. Fabrycky (2011). Systems Engineering and Analysis. 5th. Upper
Saddle River, NJ: Pearson.

Blau, P. (1974). On the Nature of Organizations. New York, NY: Wiley.

Bloebaum, C. L. and A. R. McGowan (2012). “The Design of Large-Scale Complex En-
gineered Systems: Present Challenges and Future Promise”. In: 12th AIAA Aviation

208

https://doi.org/10.1115/1.4007840
https://doi.org/10.1115/1.4031745
https://doi.org/10.1007/s00158-017-1872-4
https://doi.org/10.2514/6.2018-0708

Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. Indianapolis, IN: American
Institute of Aeronautics and Astronautics.

Bloebaum, C., P. Collopy, and G. Hazelrigg (2012). “NSF/NASA Workshop on the Design
of Large-Scale Complex Engineered Systems - From Research to Product Realization”.
In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and
14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American
Institute of Aeronautics and Astronautics.

Borgatti, S. P. and P. C. Foster (2003). “The Network Paradigm in Organizational Research:
A Review and Typology”. In: Journal of Management 29.6, pp. 991–1013. DOI: 10.
1016/S0149-2063(03)00087-4.

Borjesson, F. and K. Hölttä-Otto (2013). “A module generation algorithm for product ar-
chitecture based on component interactions and strategic drivers”. In: Research in En-
gineering Design 25.1, pp. 31–51. DOI: 10.1007/s00163-013-0164-2.

Bosch, J. and P. Bosch-Sijtsema (2010). “From integration to composition: On the impact
of software product lines, global development and ecosystems”. In: Journal of Systems
and Software 83.1, pp. 67–76. DOI: 10.1016/j.jss.2009.06.051.

Braun, V. and V. Clarke (2006). “Using thematic analysis in psychology”. In: Qualitative
Research in Psychology 3.2, pp. 77–101.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering. 2nd.
Addison-Wesley.

Browning, T. R. (2001). “Applying the design structure matrix to system decomposition
and integration problems: a review and new directions”. In: IEEE Transactions on En-
gineering management 48.3, pp. 292–306.

Bryant, C. R. et al. (2005). “A Computational Technique for Concept Generation”. In:
pp. 267–276. DOI: 10.1115/DETC2005-85323.

Burt, R. S. (1992). Structural Holes: The Social Structure of Competition. United States:
First Harvard University Press.

Burt, R. S. and J. Merluzzi (2014). “Embedded Brokerage: Hubs Versus Locals”. In: Re-
search in the Sociology of Organizations. Ed. by D. J. Brass et al. Vol. 40. Emerald
Group Publishing Limited, pp. 161–177. DOI: 10.1108/S0733-558X(2014)
0000040008.

Cataldo, M. and J. D. Herbsleb (2008). “Communication Patterns in Geographically Dis-
tributed Software Development and Engineers’ Contributions to the Development Ef-

209

https://doi.org/10.1016/S0149-2063(03)00087-4
https://doi.org/10.1016/S0149-2063(03)00087-4
https://doi.org/10.1007/s00163-013-0164-2
https://doi.org/10.1016/j.jss.2009.06.051
https://doi.org/10.1115/DETC2005-85323
https://doi.org/10.1108/S0733-558X(2014)0000040008
https://doi.org/10.1108/S0733-558X(2014)0000040008

fort”. In: Proceedings of the 2008 International Workshop on Cooperative and Human
Aspects of Software Engineering. CHASE ’08. New York, NY, USA: ACM, pp. 25–28.
DOI: 10.1145/1370114.1370121.

Cataldo, M., J. D. Herbsleb, and K. M. Carley (2008). “Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies on software
development productivity”. In: Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement. ACM, pp. 2–11.

Cataldo, M. et al. (2006). “Identification of Coordination Requirements: Implications for
the Design of Collaboration and Awareness Tools”. In: Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work. CSCW ’06. New
York, NY, USA: ACM, pp. 353–362. DOI: 10.1145/1180875.1180929.

Checkland, P. (2000). “Soft systems methodology: a thirty year retrospective”. In: Syst.
Res. P. 48.

Chen, W. et al. (2018). “Network-based Modeling and Analysis in Design”. In: Design
Science 4. DOI: 10.1017/dsj.2018.8.

Clinebell, S. and M. Stecher (2003). “Teaching Teams to be Teams: An Exercise Using the
Myers-Briggs® Type Indicator and the Five-Factor Personality Traits”. In: Journal of
Management Education 27.3, pp. 362–383.

Colfer, L. J. and C. Y. Baldwin (2016). “The mirroring hypothesis: theory, evidence, and
exceptions”. In: Industrial and Corporate Change, dtw027. DOI: 10.1093/icc/
dtw027.

Collopy, A. X. et al. (2017). “Estimating the Impact of Systems Engineers on Systems
Design Processes”. In: Proceedings of the 21st International Conference on Engineer-
ing Design, ICED17. Vol. Vol. 3: Product, Services and Systems Design. Vancouver,
Canada.

Conway, M. E. (1968). “How do Committees Invent?” In: Datamation 14.

Crabtree, R. A., M. S. Fox, and N. K. Baid (1997). “Case studies of coordination activities
and problems in collaborative design”. In: Research in Engineering Design 9.2, pp. 70–
84. DOI: 10.1007/BF01596483.

Cramer, E. J. et al. (1994). “Problem formulation for multidisciplinary optimization”. In:
SIAM Journal on Optimization 4.4, pp. 754–776.

Cross, N. (2004). “Expertise in design: an overview”. In: Design Studies. Expertise in De-
sign 25.5, pp. 427–441. DOI: 10.1016/j.destud.2004.06.002.

210

https://doi.org/10.1145/1370114.1370121
https://doi.org/10.1145/1180875.1180929
https://doi.org/10.1017/dsj.2018.8
https://doi.org/10.1093/icc/dtw027
https://doi.org/10.1093/icc/dtw027
https://doi.org/10.1007/BF01596483
https://doi.org/10.1016/j.destud.2004.06.002

Cross, R., S. P. Borgatti, and A. Parker (2002). “Making Invisible Work Visible: Using So-
cial Network Analysis to Support Strategic Collaboration”. In: California Management
Review 44.2, pp. 25–46. DOI: 10.2307/41166121.

Cumming, M. (2002). “Flexible and distributed coordination models for collaborative de-
sign”. In: Connecting the Real and the Virtual - design e-ducation: 20th eCAADe Con-
ference Proceedings. Warsaw, Poland.

Dahmus, J. B., J. P. Gonzalez-Zugasti, and K. N. Otto (2001). “Modular product architec-
ture”. In: Design Studies 22.5, pp. 409–424. DOI: 10.1016/S0142-694X(01)
00004-7.

de Vries, R. E., A. Bakker-Pieper, and W. Oostenveld (2010). “Leadership = Communica-
tion? The Relations of Leaders’ Communication Styles with Leadership Styles, Knowl-
edge Sharing and Leadership Outcomes”. In: Journal of Business and Psychology 25.3,
pp. 367–380. DOI: 10.1007/s10869-009-9140-2.

de Weck, O. L., D. Roos, and C. L. Magee (2011). Engineering Systems. Cambridge, MA:
MIT Press.

Developers, S.-L. (2018). Feature Extraction. URL: https://scikit-learn.org/
stable/modules/feature_extraction.html (visited on 04/18/2018).

Doran, T. (2006). “IEEE 1220: for practical systems engineering”. In: Computer 39.5,
pp. 92–94. DOI: 10.1109/MC.2006.164.

Dossick, C. S. and G. Neff (2010). “Organizational Divisions in BIM-Enabled Commer-
cial Construction”. In: Journal of Construction Engineering and Management 136.4,
pp. 459–467. DOI: 10.1061/(ASCE)CO.1943-7862.0000109.

Dua, D. and C. Graff (2017). UCI Machine Learning Repository. URL: http : / /
archive.ics.uci.edu/ml (visited on 01/26/2019).

Easley, D. and J. M. Kleinberg (2010). Networks, Crowds, and Markets: Reasoning about
a Highly Connected World. Cambridge, UK: Cambridge University Press.

Ehrlich, K. and M. Cataldo (2014). “The Communication Patterns of Technical Leaders:
Impact on Product Development Team Performance”. In: Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work & Social Computing. CSCW
’14. New York, NY, USA: ACM, pp. 733–744. DOI: 10.1145/2531602.2531671.

Ehrlich, K. et al. (2008). An Analysis of Congruence Gaps and Their Effect on Distributed
Software Development.

211

https://doi.org/10.2307/41166121
https://doi.org/10.1016/S0142-694X(01)00004-7
https://doi.org/10.1016/S0142-694X(01)00004-7
https://doi.org/10.1007/s10869-009-9140-2
https://scikit-learn.org/stable/modules/feature_extraction.html
https://scikit-learn.org/stable/modules/feature_extraction.html
https://doi.org/10.1109/MC.2006.164
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000109
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2531602.2531671

Epstein, J. M. and R. Axtell (1996). Growing Artificial Societies: Social Science from the
Bottom Up. Washington, D.C.: Brookings Institution Press and the MIT Press.

Espinosa, J. A., F. Armour, and W. F. Boh (2010). “Coordination in Enterprise Architect-
ing: An Interview Study”. In: 2010 43rd Hawaii International Conference on System
Sciences, pp. 1–10. DOI: 10.1109/HICSS.2010.450.

Esser, H. (2008). “The Two Meanings of Social Capital”. In: The Handbook of Social Capi-
tal. Ed. by D. Castiglione, J. W. Van Deth, and G. Wolleb. New York, NY, USA: Oxford
University Press, pp. 22–49.

Farooqui, A. D. and M. A. Niazi (2016). “Game theory models for communication be-
tween agents: a review”. In: Complex Adaptive Systems Modeling 4.1. DOI: 10.1186/
s40294-016-0026-7.

Fernandes, J. V. et al. (2017). “Modelling the dynamics of complex early design processes:
an agent-based approach”. In: Design Science 3. DOI: 10.1017/dsj.2017.17.

Fogarty, T. C. (1992). “First nearest neighbor classification on Frey and Slate’s letter
recognition problem”. In: Machine Learning 9.4, pp. 387–388. DOI: 10 . 1007 /
BF00994113.

Frank, M. (2012). “Engineering Systems Thinking: Cognitive Competencies of Successful
Systems Engineers”. In: Procedia Computer Science 8, pp. 273–278. DOI: 10.1016/
j.procs.2012.01.057.

Frey, P. W. and D. J. Slate (1991). “Letter recognition using Holland-style adaptive classi-
fiers”. In: Machine Learning 6.2, pp. 161–182. DOI: 10.1007/BF00114162.

Galbraith, J. R. (1974). “Organization design: An information processing view”. In: Inter-
faces 4.3, pp. 28–36.

Galvin, a, Z. and D. Šmite (2012). “Low Degree of Separation Does Not Guarantee Easy
Coordination”. In: 2012 38th Euromicro Conference on Software Engineering and Ad-
vanced Applications. Cesme, Izmir, Turkey: IEEE, pp. 345–348. DOI: 10.1109/
SEAA.2012.79.

Gao, J., B. Barzel, and A.-L. Barabási (2016). “Universal resilience patterns in complex
networks”. In: Nature 530.7590, pp. 307–312. DOI: 10.1038/nature16948.

Gardner, W. L. and M. J. Martinko (1996). “Using the Myers-Briggs Type Indicator to
Study Managers: A Literature Review and Research Agenda”. In: Journal of Manage-
ment 22.1, pp. 45–83.

212

https://doi.org/10.1109/HICSS.2010.450
https://doi.org/10.1186/s40294-016-0026-7
https://doi.org/10.1186/s40294-016-0026-7
https://doi.org/10.1017/dsj.2017.17
https://doi.org/10.1007/BF00994113
https://doi.org/10.1007/BF00994113
https://doi.org/10.1016/j.procs.2012.01.057
https://doi.org/10.1016/j.procs.2012.01.057
https://doi.org/10.1007/BF00114162
https://doi.org/10.1109/SEAA.2012.79
https://doi.org/10.1109/SEAA.2012.79
https://doi.org/10.1038/nature16948

Gero, J. S. (2002). “Computational models of creative designing based on situated cogni-
tion”. In: Proceedings of the fourth conference on Creativity & cognition - C&C ’02.
Loughborough, UK: ACM Press, pp. 3–10. DOI: 10.1145/581710.581712.

Given, L., ed. (2008). The SAGE Encyclopedia of Qualitative Research Methods. Thousand
Oaks, California, United States: SAGE Publications, Inc.

Goldberg, L. R. (1990). “An Alternative "Description of Personality": The Big-Five Factor
Structure”. In: Journal of Personality and Social Psychology 59.6, pp. 1216–1229.

Granovetter, M. S. (1973). “The Strength of Weak Ties”. In: American Journal of Sociology
78.6, pp. 1360–1380.

Greene, M. T., R. Gonzalez, and P. Y. Papalambros (2019). “Measuring Systems Engineer-
ing and Design Thinking Attitudes”. In: Proceedings of the 22nd International Con-
ference on Engineering Design (ICED). Delft, the Netherlands: Cambridge University
Press.

Greene, M. T., P. Y. Papalambros, and A.-M. R. McGowan (2016). “Position Paper: Design-
ing Complex Systems to Support Interdisciplinary Cognitive Work”. In: Proceedings of
the DESIGN 2016 14th International Design Conference. Dubrovnik, Croatia.

Griffin, M. D. (2010). “How do we fix system engineering?” In: 61st Annual International
Congress, Prague, Czech Republic. Vol. 27.

Grimm, V. et al. (2006). “A standard protocol for describing individual-based and agent-
based models”. In: Ecological Modelling 198.1, pp. 115–126. DOI: 10.1016/j.
ecolmodel.2006.04.023.

Grogan, P. T. et al. (2018). “Multi-Actor Value Modeling for Federated Systems”. In: IEEE
Systems Journal 12.2, pp. 1193–1202. DOI: 10.1109/JSYST.2016.2626981.

Grogan, P. T. and O. L. de Weck (2016). “Collaboration and complexity: an experiment
on the effect of multi-actor coupled design”. In: Research in Engineering Design 27.3,
pp. 221–235. DOI: 10.1007/s00163-016-0214-7.

Grubb, A. M. and A. Begel (2012). “On the perceived interdependence and information
sharing inhibitions of enterprise software engineers”. In: Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work. ACM, pp. 1337–1346.

Gulati, R. and H. Singh (1998). “The Architecture of Cooperation: Managing Coordination
Costs and Appropriation Concerns in Strategic Alliances”. In: Administrative Science
Quarterly 43.4, p. 781. DOI: 10.2307/2393616.

213

https://doi.org/10.1145/581710.581712
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1109/JSYST.2016.2626981
https://doi.org/10.1007/s00163-016-0214-7
https://doi.org/10.2307/2393616

Hajela, P., C. L. Bloebaum, and J. Sobieszczanski-Sobieski (1990). “Application of global
sensitivity equations in multidisciplinary aircraft synthesis”. In: Journal of Aircraft
27.12, pp. 1002–1010. DOI: 10.2514/3.45974.

Hazelrigg, G. A. (1996). Systems Engineering: An Approach to Information-Based Design.
Upper Saddle River, NJ: Prentice-Hall.

Herbsleb, J. D. and R. E. Grinter (1999). “Architectures, coordination, and distance: Con-
way’s law and beyond”. In: IEEE Software 16.5.

Herbsleb, J. D. and A. Mockus (2003). “An empirical study of speed and communication
in globally distributed software development”. In: IEEE Transactions on Software En-
gineering 29.6, pp. 481–494. DOI: 10.1109/TSE.2003.1205177.

Herbsleb, J. D. (2007). “Global software engineering: The future of socio-technical coor-
dination”. In: 2007 Future of Software Engineering. IEEE Computer Society, pp. 188–
198.

Heydari, B. and M. J. Pennock (2018). “Guiding the behavior of sociotechnical systems:
The role of agent-based modeling”. In: Systems Engineering 21.3, pp. 210–226. DOI:
10.1002/sys.21435.

Honda, T. et al. (2015). “Comparison of Information Passing Strategies in System-Level
Modeling”. In: AIAA Journal 53.5, pp. 1121–1133. DOI: 10.2514/1.J052568.

Hutchison, N., D. Henry, and A. Pyster (2016). “Atlas : Understanding What Makes Sys-
tems Engineers Effective in the U.S. Defense Community”. In: Systems Engineering
19.6, pp. 510–521. DOI: 10.1002/sys.21372.

International Council on Systems Engineering (INCOSE) (2004). Systems Engineering
Handbook.

Johnson, S. B. (1997). “Three Approaches to Big Technology: Operations Research,
Systems Engineering, and Project Management”. In: Technology and Culture 38.4,
pp. 891–919. DOI: 10.2307/3106953.

— (2002). The United States Air Force and the Culture of Innovation, 1945-1965. Wash-
ington, DC, USA: Air Force History and Museums Center.

Jung, D. F. and D. A. Lake (2011). “Markets, Hierarchies, and Networks: An Agent-Based
Organizational Ecology: Markets, Hierarchies, and Networks”. In: American Journal
of Political Science 55.4, pp. 972–990. DOI: 10.1111/j.1540-5907.2011.
00536.x.

214

https://doi.org/10.2514/3.45974
https://doi.org/10.1109/TSE.2003.1205177
https://doi.org/10.1002/sys.21435
https://doi.org/10.2514/1.J052568
https://doi.org/10.1002/sys.21372
https://doi.org/10.2307/3106953
https://doi.org/10.1111/j.1540-5907.2011.00536.x
https://doi.org/10.1111/j.1540-5907.2011.00536.x

Kannan, H., B. L. Mesmer, and C. L. Bloebaum (2017). “Increased System Consistency
through Incorporation of Coupling in Value-Based Systems Engineering”. In: Systems
Engineering 20.1, pp. 21–44. DOI: 10.1002/sys.21377.

Kim, H. M. et al. (2003). “Target Cascading in Optimal System Design”. In: Journal of
Mechanical Design 125.3, p. 474. DOI: 10.1115/1.1582501.

Kleinbaum, A. M., T. Stuart, and M. Tushman (2008). Communication (and coordination?)
in a modern, complex organization.

Kosti, M. V., R. Feldt, and L. Angelis (2014). “Personality, emotional intelligence and work
preferences in software engineering: An empirical study”. In: Information and Software
Technology 56.8, pp. 973–990. DOI: 10.1016/j.infsof.2014.03.004.

Kraut, R. E. and L. A. Streeter (1995). “Coordination in Software Development”. In: Com-
mun. ACM 38.3, pp. 69–81. DOI: 10.1145/203330.203345.

Krebs, V. (2000). InFlow Survey. URL: http://web-beta.archive.org/web/
20070418102219/http://www.orgnet.com/INSNA/survey.html
(visited on 04/04/2017).

Kress, G. L. and M. Shar (2012). “Teamology - The Art and Science of Design Team
Formation”. In: Design Thinking Research: Studying Co-Creation in Practice. Ed. by
H. Plattner, C. Meinel, and L. Leifer. Understanding Innovation. Springer, pp. 189–209.

Krishnamachari, R. (1996). “A decomposition synthesis methodology for optimal systems
design”. Ph.D. Dissertation. Ann Arbor, MI: University of Michigan.

Kroo, I. and V. Manning (2000). “Collaborative optimization: status and directions”. In:
Presented at the 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization. Vol. 6, p. 8.

Kullback, S. and R. A. Leibler (1951). “On Information and Sufficiency”. In: The Annals
of Mathematical Statistics 22.1, pp. 79–86. DOI: 10.1214/aoms/1177729694.

Kwan, I., A. Schroter, and D. Damian (2011). “Does Socio-Technical Congruence Have
an Effect on Software Build Success? A Study of Coordination in a Software Project”.
In: IEEE Transactions on Software Engineering 37.3, pp. 307–324. DOI: 10.1109/
TSE.2011.29.

Lancichinetti, A., S. Fortunato, and F. Radicchi (2008). “Benchmark graphs for testing
community detection algorithms”. In: Physical Review E 78.4. DOI: 10 . 1103 /
PhysRevE.78.046110.

215

https://doi.org/10.1002/sys.21377
https://doi.org/10.1115/1.1582501
https://doi.org/10.1016/j.infsof.2014.03.004
https://doi.org/10.1145/203330.203345
http://web-beta.archive.org/web/20070418102219/http://www.orgnet.com/INSNA/survey.html
http://web-beta.archive.org/web/20070418102219/http://www.orgnet.com/INSNA/survey.html
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/TSE.2011.29
https://doi.org/10.1109/TSE.2011.29
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110

Langevin, J., J. Wen, and P. L. Gurian (2015). “Simulating the human-building interaction:
Development and validation of an agent-based model of office occupant behaviors”. In:
Building and Environment 88, pp. 27–45. DOI: 10.1016/j.buildenv.2014.
11.037.

Larsson, A. (2007). “Banking on social capital: towards social connectedness in distributed
engineering design teams”. In: Design Studies 28, pp. 605–622.

Lawrence, P. R. and J. W. Lorsch (1967). Organization and Environment: Managing Dif-
ferentiation and Integration. Homewood, Illinois: Richard D. Irwin, Inc.

Le, Q. and J. H. Panchal (2012). “Analysis of the interdependent co-evolution of prod-
uct structures and community structures using dependency modelling techniques”. In:
Journal of Engineering Design 23.10-11, pp. 807–828. DOI: 10.1080/09544828.
2012.695014.

Levine, S. S. and M. J. Prietula (2011). “How Knowledge Transfer Impacts Performance: A
Multilevel Model of Benefits and Liabilities”. In: Organization Science 23.6, pp. 1748–
1766. DOI: 10.1287/orsc.1110.0697.

Levitt, R. E. (2012). “The Virtual Design Team: Designing Project Organizations as En-
gineers Design Bridges”. In: Journal of Organization Design 1.2, pp. 14–41. DOI:
10.7146/jod.6345.

MacCormack, A., C. Baldwin, and J. Rusnak (2012). “Exploring the duality between prod-
uct and organizational architectures: A test of the “mirroring" hypothesis”. In: Research
Policy 41.8, pp. 1309–1324. DOI: 10.1016/j.respol.2012.04.011.

Mackay, D. and M. Zundel (2017). “Recovering the Divide: A Review of Strategy and Tac-
tics in Business and Management”. In: International Journal of Management Reviews
19.2, pp. 175–194. DOI: 10.1111/ijmr.12091.

Madni, A. M. and M. Sievers (2014). “Systems Integration: Key Perspectives, Experiences,
and Challenges”. In: Systems Engineering 17.1, pp. 37–51. DOI: 10.1002/sys.
21249.

Maier, A. M. et al. (2008). “Exploration of Correlations between Factors Influencing
Communication in Complex Product Development”. In: Concurrent Engineering 16.1,
pp. 37–59. DOI: 10.1177/1063293X07084638.

Maier, M. W. and E. Rechtin (2009). The Art of System Architecting. 3rd ed. Boca Raton,
FL: CRC Press.

Malone, T. W. (1987). “Modeling Coordination in Organizations and Markets”. In: Man-
agement Science 33.10, pp. 1317–1332. DOI: 10.1287/mnsc.33.10.1317.

216

https://doi.org/10.1016/j.buildenv.2014.11.037
https://doi.org/10.1016/j.buildenv.2014.11.037
https://doi.org/10.1080/09544828.2012.695014
https://doi.org/10.1080/09544828.2012.695014
https://doi.org/10.1287/orsc.1110.0697
https://doi.org/10.7146/jod.6345
https://doi.org/10.1016/j.respol.2012.04.011
https://doi.org/10.1111/ijmr.12091
https://doi.org/10.1002/sys.21249
https://doi.org/10.1002/sys.21249
https://doi.org/10.1177/1063293X07084638
https://doi.org/10.1287/mnsc.33.10.1317

Malone, T. W. and K. Crowston (1994). “The interdisciplinary study of coordination”. In:
ACM Computing Surveys 26.1, pp. 87–119. DOI: 10.1145/174666.174668.

Manning, C. D., P. Raghavan, and H. Schütze (2008). Introduction to Information Retrieval.
New York, NY, USA: Cambridge University Press.

March, J. G. and H. A. Simon (1958). Organizations. United States: John Wiley & Sons,
Inc.

Martins, J. R. R. A. and A. B. Lambe (2013). “Multidisciplinary Design Optimization: A
Survey of Architectures”. In: AIAA Journal 51.9, pp. 2049–2075. DOI: 10.2514/1.
J051895.

McComb, C., J. Cagan, and K. Kotovsky (2015). “Lifting the Veil: Drawing insights about
design teams from a cognitively-inspired computational model”. In: Design Studies 40,
pp. 119–142. DOI: 10.1016/j.destud.2015.06.005.

McCord, K. R. and S. Eppinger (1993). “Managing the integration problem in concurrent
engineering”. WP# 3594-93-MSA.

McEvily, B., G. Soda, and M. Tortoriello (2014). “More Formally: Rediscovering the
Missing Link between Formal Organization and Informal Social Structure”. In: The
Academy of Management Annals 8.1, pp. 299–345. DOI: 10.1080/19416520.
2014.885252.

McGowan, A.-M. R. (2014). “Interdisciplinary Interactions During R&D and Early Design
of Large Engineered Systems”. PhD thesis. Ann Arbor, MI: University of Michigan.

Meluso, J. and J. Austin-Breneman (2018). “Gaming the System: An Agent-Based Model
of Estimation Strategies and their Effects on System Performance”. In: Journal of Me-
chanical Design 140.12, p. 9. DOI: 10.1115/1.4039494.

Metzger, L. S. and L. R. Bender (2007). MITRE Systems Engineering (SE) Competency
Model. Tech. rep. The MITRE Corporation.

Miller, J. H. and S. E. Page (2007). Complex Adaptive Systems: An Introduction to Compu-
tational Models of Social Life. Princeton Studies in Complexity. Princeton, NJ: Prince-
ton University Press.

Mirzakhalili, E. et al. (2017). “Synaptic Impairment and Robustness of Excitatory Neuronal
Networks with Different Topologies”. In: Frontiers in Neural Circuits 11, p. 38. DOI:
10.3389/fncir.2017.00038.

Mosleh, M., P. Ludlow, and B. Heydari (2016). “Resource allocation through network ar-
chitecture in systems of systems: A complex networks framework”. In: 2016 Annual

217

https://doi.org/10.1145/174666.174668
https://doi.org/10.2514/1.J051895
https://doi.org/10.2514/1.J051895
https://doi.org/10.1016/j.destud.2015.06.005
https://doi.org/10.1080/19416520.2014.885252
https://doi.org/10.1080/19416520.2014.885252
https://doi.org/10.1115/1.4039494
https://doi.org/10.3389/fncir.2017.00038

IEEE Systems Conference (SysCon), pp. 1–5. DOI: 10.1109/SYSCON.2016.
7490629.

Mount, M. K., M. R. Barrick, and G. L. Stewart (1998). “Five-Factor Model of personality
and Performance in Jobs Involving Interpersonal Interactions”. In: Human Performance
11.2-3, pp. 145–165. DOI: 10.1080/08959285.1998.9668029.

Myers, I. B. and P. B. Myers (1980). Gifts Differing: Understanding Personality Type. 1st.
Mountain View, CA: Davies-Black Publishing.

National Aeronautical and Space Administration (2007). NASA Systems Engineering
Handbook.

National Science Board (2018). Science and Engineering Indicators 2018. Tech. rep. NSB-
2018-1. Alexandria, VA: National Science Foundation.

Newman, M. (2003). “The Structure and Function of Complex Networks”. In: SIAM Re-
view 45.2, pp. 167–256. DOI: 10.1137/S003614450342480.

Newman, M. E. J. (2006). “Modularity and community structure in networks”. In: Proceed-
ings of the National Academy of Sciences 103.23, pp. 8577–8582. DOI: 10.1073/
pnas.0601602103.

Newman, M. E. J. (2018). Networks: An Introduction. 2nd. New York, NY: Oxford Uni-
versity Press.

Novoselich, B. J. and D. B. Knight (2018). “Shared Leadership in Capstone Design Teams:
Social Network Analysis”. In: Journal of Professional Issues in Engineering Education
and Practice 144.4, p. 04018006. DOI: 10.1061/(ASCE)EI.1943- 5541.
0000376.

Nowell, L. S. et al. (2017). “Thematic Analysis: Striving to Meet the Trustworthiness Cri-
teria”. In: International Journal of Qualitative Methods 16.1, p. 1609406917733847.
DOI: 10.1177/1609406917733847.

Obstfeld, D., S. P. Borgatti, and J. Davis (2014). “Brokerage as a Process: Decoupling
Third Party Action from Social Network Structure”. In: Research in the Sociology of
Organizations. Ed. by D. J. Brass et al. Vol. 40. Emerald Group Publishing Limited,
pp. 135–159. DOI: 10.1108/S0733-558X(2014)0000040007.

Ogata, H. et al. (2001). “Computer Supported Social Networking For Augmenting Coop-
eration”. In: Computer Supported Cooperative Work (CSCW) 10.2, pp. 189–209. DOI:
10.1023/A:1011216431296.

218

https://doi.org/10.1109/SYSCON.2016.7490629
https://doi.org/10.1109/SYSCON.2016.7490629
https://doi.org/10.1080/08959285.1998.9668029
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000376
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000376
https://doi.org/10.1177/1609406917733847
https://doi.org/10.1108/S0733-558X(2014)0000040007
https://doi.org/10.1023/A:1011216431296

Olson, G. M. and J. S. Olson (2000). “Distance matters”. In: Human-computer interaction
15.2, pp. 139–178.

Page, S. E. (2015). “What Sociologists Should Know About Complexity”. In: Annual Re-
view of Sociology 41.1, pp. 21–41. DOI: 10.1146/annurev- soc- 073014-
112230.

Panchal, J. H. (2010). “Coordination in Collective Product Innovation”. In: pp. 333–346.
DOI: 10.1115/IMECE2010-37116.

Panjer, L. D., D. Damian, and M.-A. Storey (2008). “Cooperation and Coordination Con-
cerns in a Distributed Software Development Project”. In: Proceedings of the 2008
International Workshop on Cooperative and Human Aspects of Software Engineering.
CHASE ’08. New York, NY, USA: ACM, pp. 77–80. DOI: 10.1145/1370114.
1370134.

Papalambros, P. Y. and D. J. Wilde (2017). Principles of Optimal Design: Modeling and
Computation. 3rd ed. Cambridge University Press.

Papalambros, P. Y. (2015). “Design Science in Design Education”. In: XI Mudd Design
Workshop on Design Thinking in Design Education. Claremont, CA, pp. 28–30.

Parnas, D. L. (1972). “On the criteria to be used in decomposing systems into modules”.
In: Communications of the ACM 15.12, pp. 1053–1058.

Parraguez, P., S. Eppinger, and A. Maier (2016). “Characterizing Design Process Interfaces
as Organization Networks: Insights for Engineering Systems Management”. In: Systems
Engineering 19.2, pp. 158–173. DOI: 10.1002/sys.21345.

Parraguez, P. and A. Maier (2016). “Using Network Science to Support Design Research:
From Counting to Connecting”. In: Experimental Design Research. Ed. by P. Cash, T.
Stanković, and M. Štorga. Springer International Publishing, pp. 153–172. DOI: 10.
1007/978-3-319-33781-4_9.

Patton, M. Q. (2015). Qualitative Research and Evaluation Methods. 4th edition. United
States: Sage Publications, Inc.

Pennock, M. J. and W. B. Rouse (2016). “The Epistemology of Enterprises”. In: Systems
Engineering. DOI: 10.1002/sys.21335.

Piccolo, S. A., S. Lehmann, and A. Maier (2018). “Design process robustness: a bipartite
network analysis reveals the central importance of people”. In: Design Science 4. DOI:
10.1017/dsj.2017.32.

219

https://doi.org/10.1146/annurev-soc-073014-112230
https://doi.org/10.1146/annurev-soc-073014-112230
https://doi.org/10.1115/IMECE2010-37116
https://doi.org/10.1145/1370114.1370134
https://doi.org/10.1145/1370114.1370134
https://doi.org/10.1002/sys.21345
https://doi.org/10.1007/978-3-319-33781-4_9
https://doi.org/10.1007/978-3-319-33781-4_9
https://doi.org/10.1002/sys.21335
https://doi.org/10.1017/dsj.2017.32

Pietrzyk, V. J. and H. A. H. Handley (2016). “Outcome-based competency model for
systems engineering training”. In: 2016 IEEE International Symposium on Systems
Engineering (ISSE). Edinburgh, United Kingdom: IEEE, pp. 1–7. DOI: 10.1109/
SysEng.2016.7753168.

Pimmler, T. U. and S. D. Eppinger (1994). “Integration Analysis of Product Decomposi-
tions”. In: Minneapolis, MN: ASME.

Poleacovschi, C. and A. Javernick-Will (2016). “Spanning Information and Knowledge
across Subgroups and Its Effects on Individual Performance”. In: Journal of Man-
agement in Engineering 32.4, p. 04016006. DOI: 10.1061/(ASCE)ME.1943-
5479.0000423.

Powell, W. W. (1990). “Neither Market nor Hierarchy: Network Forms of Organization”.
In: Research in Organizational Behavior 12, pp. 295–336.

Pugh, D. S. and D. J. Hickson (2007). “The Organization in Its Environment”. In: Writers
on Organizations. 6th. London: Sage, p. 55.

Railsback, S. F. and V. Grimm (2012). Agent-based and Individual-based Modeling: A
Practical Introduction. 1st. Princeton, NJ: Princeton University Press.

Reyer, J. A. and P. Y. Papalambros (2002). “Combined Optimal Design and Control With
Application to an Electric DC Motor”. In: Journal of Mechanical Design 124.2, p. 183.
DOI: 10.1115/1.1460904.

Ryschkewitsch, M., D. Schaible, and W. Larson (2009). “The art and science of systems
engineering”. In: Systems Research Forum 3.2, pp. 81–100.

Sage, A. P. and C. L. Lynch (1998). “Systems integration and architecting: An overview of
principles, practices, and perspectives”. In: Systems Engineering 1.3, pp. 176–227. DOI:
10.1002/(SICI)1520-6858(1998)1:3<176::AID-SYS3>3.0.CO;2-L.

“Cohen’s Kappa” (2010). In: Encyclopedia of Research Design. Ed. by N. Salkind. Thou-
sand Oaks, California, United States: SAGE Publications, Inc.

Salton, G. and M. J. McGill (1986). Introduction to Modern Information Retrieval. New
York, NY, USA: McGraw-Hill, Inc.

Salzberg, S. and M. Watkins (2016). “Managing information for concurrent engineering:
Challenges and barriers”. In: Research in Engineering Design 2.1, pp. 35–52. DOI:
10.1007/BF02029820.

220

https://doi.org/10.1109/SysEng.2016.7753168
https://doi.org/10.1109/SysEng.2016.7753168
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000423
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000423
https://doi.org/10.1115/1.1460904
https://doi.org/10.1002/(SICI)1520-6858(1998)1:3<176::AID-SYS3>3.0.CO;2-L
https://doi.org/10.1007/BF02029820

Schmidt, L. C. and J. Cagan (1998). “Optimal Configuration Design: An Integrated Ap-
proach Using Grammars”. In: Journal of Mechanical Design 120.1, p. 2. DOI: 10.
1115/1.2826672.

Scott, W. R. and G. F. Davis (2006). Organizations and Organizing: Rational, Natural and
Open Systems Perspectives. 1 edition. Upper Saddle River, N.J: Routledge.

Senior, B. (1997). “Team roles and team performance: Is there ‘really’ a link?” In: Journal
of Occupational and Organizational Psychology 70.3, pp. 241–258. DOI: 10.1111/
j.2044-8325.1997.tb00646.x.

Sheard, S. A. (1996). “Twelve systems engineering roles”. In: INCOSE International Sym-
posium. Vol. 6. Wiley Online Library, pp. 478–485.

Sheard, S. et al. (2015). A Complexity Primer for Systems Engineers.

Simon, H. A. (1955). “A Behavioral Model of Rational Choice”. In: The Quarterly Journal
of Economics 69.1, pp. 99–118. DOI: 10.2307/1884852.

— (1973). “Applying Information Technology to Organization Design”. In: Public Admin-
istration Review 33.3, p. 268. DOI: 10.2307/974804.

Simpson, T. W. and J. R. Martins (2011). “Multidisciplinary design optimization for com-
plex engineered systems: report from a national science foundation workshop”. In:
Journal of Mechanical Design 133.10, p. 101002.

Smith, R. P. and A. Leong (1998). “An Observational Study of Design Team Process: A
Comparison of Student and Professional Engineers”. In: Journal of Mechanical Design
120.4, p. 636. DOI: 10.1115/1.2829326.

Sobieszczanski-Sobieski, J. (1995). “Multidisciplinary design optimization: an emerg-
ing new engineering discipline”. In: Advances in Structural Optimization. Springer,
pp. 483–496.

Sonnenwald, D. H. (1996). “Communication roles that support collaboration during the
design process”. In: Design Studies 17.3, pp. 277–301. DOI: 10 . 1016 / 0142 -
694X(96)00002-6.

Soria Zurita, N. F. et al. (2017). “Design of Complex Engineered Systems Using Multi-
Agent Coordination”. In: Journal of Computing and Information Science in Engineer-
ing 18.1, pp. 011003–011003–13. DOI: 10.1115/1.4038158.

Sosa, M. (2007). “Aligning process, product, and organizational architectures in software
development”. In: International Conference on Engineering Design, ICED. Vol. 7,
pp. 28–31.

221

https://doi.org/10.1115/1.2826672
https://doi.org/10.1115/1.2826672
https://doi.org/10.1111/j.2044-8325.1997.tb00646.x
https://doi.org/10.1111/j.2044-8325.1997.tb00646.x
https://doi.org/10.2307/1884852
https://doi.org/10.2307/974804
https://doi.org/10.1115/1.2829326
https://doi.org/10.1016/0142-694X(96)00002-6
https://doi.org/10.1016/0142-694X(96)00002-6
https://doi.org/10.1115/1.4038158

Sosa, M. E., S. D. Eppinger, and C. M. Rowles (2003). “Identifying Modular and Integra-
tive Systems and Their Impact on Design Team Interactions”. In: Journal of Mechanical
Design 125.2, pp. 240–252. DOI: 10.1115/1.1564074.

— (2004). “The Misalignment of Product Architecture and Organizational Structure in
Complex Product Development”. In: Management Science 50.12, pp. 1674–1689. DOI:
10.1287/mnsc.1040.0289.

Souza, C. R. de et al. (2004). “How a good software practice thwarts collaboration: the mul-
tiple roles of APIs in software development”. In: ACM SIGSOFT Software Engineering
Notes 29.6, pp. 221–230.

Stevenson, A. and C. A. Lindberg, eds. (2011). New Oxford American Dictionary. 3rd.
Oxford University Press.

Steward, D. V. (1981). “The design structure system: A method for managing the design
of complex systems”. In: IEEE Transactions on Engineering Management EM-28.3,
pp. 71–74. DOI: 10.1109/TEM.1981.6448589.

Stewart, G. L., I. S. Fulmer, and M. R. Barrick (2005). “An Exploration of Member Roles
as a Multilevel Linking Mechanism for Individual Traits and Team Outcomes”. In:
Personnel Psychology 58.2, pp. 343–365. DOI: 10.1111/j.1744-6570.2005.
00480.x.

Strode, D. E. et al. (2012). “Coordination in co-located agile software development
projects”. In: Journal of Systems and Software. Special Issue: Agile Development
85.6, pp. 1222–1238. DOI: 10.1016/j.jss.2012.02.017.

Strogatz, S. H. (2001). “Exploring complex networks”. In: Nature 410.6825, pp. 268–276.
DOI: 10.1038/35065725.

Temdee, P. and L. Korba (2001). “Of networks, interactions and agents: an approach for so-
cial network analysis”. In: Proceedings of the Sixth International Conference on Com-
puter Supported Cooperative Work in Design (IEEE Cat. No.01EX472). London, Ont.,
Canada: NRC Res. Press, pp. 324–329. DOI: 10.1109/CSCWD.2001.942280.

Terrasi, E. M. (2015). “Leaders who care: Exploring empathy as an essential trait in 21st
century corporate leadership”. MA thesis. Ypsilanti, MI: Eastern Michigan University.

Thompson, J. D. (1967). Organizations in Action: Social Science Bases of Administrative
Theory. New York, NY, USA: McGraw-Hill, Inc.

Thorndike, R. L. (1953). “Who belongs in the family?” In: Psychometrika 18.4, pp. 267–
276. DOI: 10.1007/BF02289263.

222

https://doi.org/10.1115/1.1564074
https://doi.org/10.1287/mnsc.1040.0289
https://doi.org/10.1109/TEM.1981.6448589
https://doi.org/10.1111/j.1744-6570.2005.00480.x
https://doi.org/10.1111/j.1744-6570.2005.00480.x
https://doi.org/10.1016/j.jss.2012.02.017
https://doi.org/10.1038/35065725
https://doi.org/10.1109/CSCWD.2001.942280
https://doi.org/10.1007/BF02289263

Tichy, N. M., M. L. Tushman, and C. Fombrun (1979). “Social Network Analysis for Or-
ganizations”. In: Academy of Management Review 4.4. DOI: https://doi.org/
10.5465/amr.1979.4498309.

Tóth, B. J. et al. (2018). “Emergence of Leader-Follower Hierarchy Among Players in an
On-Line Experiment”. In: 2018 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pp. 1184–1190. DOI: 10.1109/
ASONAM.2018.8508278.

Triantis, K. P. and P. D. Collopy (2014). “A comprehensive basis for systems engineering
theory”. In: 2014 IEEE International Systems Conference Proceedings, pp. 97–102.
DOI: 10.1109/SysCon.2014.6819242.

Tushman, M. L. (1979). “Work Characteristics and Subunit Communication Structure: A
Contingency Analysis”. In: Administrative Science Quarterly 24.1, p. 82. DOI: 10.
2307/2989877.

United States Department of Defense (2017). “Systems Engineering”. In: Defense Acqui-
sition Guidebook. Washington, DC: US Department of Defense.

Valetto, G. et al. (2007). “Using Software Repositories to Investigate Socio-technical Con-
gruence in Development Projects”. In: Proceedings of the Fourth International Work-
shop on Mining Software Repositories. MSR ’07. Washington, DC, USA: IEEE Com-
puter Society, p. 25. DOI: 10.1109/MSR.2007.33.

Van De Ven, A. H., A. L. Delbecq, and R. Koenig (1976). “Determinants of Coordination
Modes within Organizations”. In: American Sociological Review 41.2, p. 322. DOI:
10.2307/2094477.

Van Deth, J. W. (2008). “Measuring Social Capital”. In: The Handbook of Social Capital.
Ed. by D. Castiglione, J. W. Van Deth, and G. Wolleb. New York, NY, USA: Oxford
University Press, pp. 150–176.

Varvel, T. et al. (2004). “Team Effectiveness and Individual Myers-Briggs Personality Di-
mensions”. In: Journal of Management in Engineering 20.4, pp. 141–146. DOI: 10.
1061/(ASCE)0742-597X(2004)20:4(141).

Vermillion, S. D. and R. J. Malak (2015). “Using a Principal-Agent Model to Investigate
Delegation in Systems Engineering”. In: ASME 2015 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, V01BT02A046–V01BT02A046.

Vrolijk, A. and Z. Szajnfarber (2015). “When Policy Structures Technology: Balancing
upfront decomposition and in-process coordination in Europe’s decentralized space

223

https://doi.org/https://doi.org/10.5465/amr.1979.4498309
https://doi.org/https://doi.org/10.5465/amr.1979.4498309
https://doi.org/10.1109/ASONAM.2018.8508278
https://doi.org/10.1109/ASONAM.2018.8508278
https://doi.org/10.1109/SysCon.2014.6819242
https://doi.org/10.2307/2989877
https://doi.org/10.2307/2989877
https://doi.org/10.1109/MSR.2007.33
https://doi.org/10.2307/2094477
https://doi.org/10.1061/(ASCE)0742-597X(2004)20:4(141)
https://doi.org/10.1061/(ASCE)0742-597X(2004)20:4(141)

technology ecosystem”. In: Acta Astronautica 106, pp. 33–46. DOI: 10.1016/j.
actaastro.2014.10.017.

Wagner, T. and P. Papalambros (1993). “A general framework for decomposition analysis
in optimal design”. In: Advances in Design Automation. Vol. DE 65-2. Albuquerque,
NM: American Society of Mechanical Engineers.

Wasserman, S. and K. Faust (1994). Social Network Analysis: Methods and Applications.
Cambridge ; New York: Cambridge University Press.

Watts, D. J. and S. H. Strogatz (1998). “Collective dynamics of ‘small-world’ networks”.
In: Nature 393, pp. 440–442.

Weick, K. E., K. M. Sutcliffe, and D. Obstfeld (2005). “Organizing and the Process
of Sensemaking”. In: Organization Science 16.4, pp. 409–421. DOI: 10 . 4337 /
9781849807630.00024.

Wilensky, U. and W. Rand (2015). An Introduction to Agent-Based Modeling: Modeling
Natural, Social, and Engineered Complex Systems with NetLogo. United States: MIT
Press.

Williams, C. and M.-E. Derro (2008). NASA Systems Engineering Behavior Study. Tech.
rep. National Aeronautics and Space Administration.

Woodcock, H., ed. (2010). Systems Engineering Competency Framework. INCOSE UK.

Yao, W. et al. (2011). “Review of uncertainty-based multidisciplinary design optimization
methods for aerospace vehicles”. In: Progress in Aerospace Sciences 47.6, pp. 450–
479. DOI: 10.1016/j.paerosci.2011.05.001.

Zimmermann, T. and N. Nagappan (2008). “Predicting defects using network analysis on
dependency graphs”. In: Proceedings of the 30th international conference on Software
Engineering. ACM, pp. 531–540.

224

https://doi.org/10.1016/j.actaastro.2014.10.017
https://doi.org/10.1016/j.actaastro.2014.10.017
https://doi.org/10.4337/9781849807630.00024
https://doi.org/10.4337/9781849807630.00024
https://doi.org/10.1016/j.paerosci.2011.05.001

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Research Questions
	Approach
	Methodology
	Discipline background

	Summary of Findings
	Contributions
	Dissertation Outline

	Background and Terminology
	System Representations
	Matrix-based Representations
	Graph-based Representations
	Partitioning and Coordination

	Review of Literature: Coordination
	Design Optimization
	Coordination Methods in MDO

	Organization Science
	Coordination Methods in Organization Science
	Comparing Organizational Coordination to MDO

	Software and Engineering Design
	Coordination in Software and Engineering Design

	Systems Engineering
	Measuring Coordination
	Conway's Law
	Mirroring
	Socio-Technical Congruence
	Challenges in Measuring Coordination

	Summary

	Coordination in Industry Practice
	Introduction
	Literature: Coordination Methods
	Methodology
	Thematic Analysis
	Data Preparation
	Deductive Coding
	Inductive Coding
	Theme Identification
	Authority
	Management
	Empathetic Leadership
	Facilitation of Coordination
	Themes

	Reflection

	Discussion
	Active Facilitation of Coordination
	Relationship between Active and Passive Themes

	Summary

	Coordination in Design Teams
	Introduction
	Study Design: Data Collection and Analysis Approach
	Data Collection
	Analysis Approach
	Keyword Identification and Analysis Method
	Network Representations and Measures
	Clustering Analysis

	Characterization of Data
	Characterization of Keyword Data
	Characterization of Network Data

	Clustering Results and Interpretation
	Clusters as Described by Keywords
	Clusters as Described by Network Measures

	Discussion
	Coordination Roles
	Correlation to Interview Data

	Summary

	Using Agents to Model Coordination
	Introduction
	Model Description
	Objectives
	Network Structure
	Decision-Making Task
	Data Partitioning
	Distributed Classification

	Coordination Problem
	Agent Behavior and Interaction
	Interaction Probability
	Information Exchange
	Agent Distribution

	Summary: Model Parameters
	Model Process
	Model Outputs: Performance and Costs
	Performance
	Cost

	Hypotheses
	Model Behavior
	Direct Solution
	Performance
	Local Classification Accuracy
	Global Classification Accuracy

	Active vs. Passive Agent Accuracy
	Cost

	Parametric Analysis: Agent Concentration
	Discussion
	Validation plan
	Summary

	Conclusions
	Review of Dissertation
	Dissertation Contributions
	Future Work and Extensions
	Limitations
	Extensions

	Appendices
	Interview Protocol
	Team Coordination Survey Protocol
	Agent Model Code
	Bibliography

