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Abstract 
 

Methods for rapid assessment of intact protein sequence and structure are increasingly 

important to understanding biology and treating disease. Mass spectrometry and ion mobility 

have emerged as effective tools for assessing protein sequence and structure, but face significant 

technical challenges in evaluating intact proteins and converting data from gas-phase ions to 

solution-relevant information.  

Protein complexes preserved intact for analysis by mass spectrometry typically generate 

low quality fragmentation, in part due to their relatively low charge. In Chapter 2, we develop a 

chemical modification method that affixes stable, intrinsically-charged reagents to proteins and 

demonstrate improvements in sequence coverage for protein complexes. In Chapter 3, we use the 

reagents developed in Chapter 2 to alter the competition between fragmentation pathways of 

intact proteins and demonstrate the immense capacity of protein ions to accommodate excess 

charge through charge solvation. We show that fragmentation can be directed to the site of fixed 

charge, a novel observation for intact, multiply-charged protein ions, and that mobile proton-

mediated fragmentation can be restored by capping carboxylic acids, blocking the charge-remote 

pathway and resulting in improved sequence coverage.  

The conclusions reached in Chapters 2 and 3 depended on the development of software 

tools to analyze the complex data generated during fragmentation of intact proteins on an IM-MS 

platform. Ion mobility provides an additional dimension of separation when coupled to MS, 

enabling resolution of overlapping fragment ion signals that could not be resolved by MS alone. 



 xvi 

To utilize this additional information, we adapted tools being developed for bottom-up IM-MS 

proteomics, IMTBX and Grppr, to analyze intact protein fragmentation by IM-MS.  

 IM-MS also has the potential to provide structural insight into intact proteins and 

complexes, including through the use of collision-induced unfolding (CIU). Similar to analysis 

of protein fragmentation by IM-MS, CIU experiments generate complex datasets requiring 

informatics to recover useful information about protein structure. In Chapter 5, we develop a 

software suite to provide automated annotation of gas-phase stability shifts and statistical 

classification of CIU data to support the development of high-throughput screening methods 

using CIU. We also utilize Gaussian fitting to distinguish and remove chemical noise from 

protein signal in membrane protein CIU to enable stability shift and classification analyses in 

these challenging datasets.  

 In Chapter 6, we develop a framework to include all observed charge states in CIU 

analyses rather than a single charge state. Adducts associated with intact proteins can be lost as 

charged species, reducing the charge of the protein and contaminating nearby charge states 

through “charge stripping.” We characterize charge stripping of intact monoclonal antibodies and 

develop an algorithm to predict and remove the contaminating signals. The software tools for 

CIU data developed in Chapter 5 annotate only a single charge state of CIU data at a time. In 

Chapter 7, we expand the classification method of Chapter 5 to incorporate data from all charge 

states, or any other perturbation that alters the CIU pathway, into a single “multi-state” classifier. 

We are able to generate robust multi-state classifiers to distinguish kinase inhibitor binding 

modes and a highly similar innovator/biosimilar biotherapeutic pair, which had each proven 

challenging to differentiate using a single charge state.  



 xvii 

In total, the work presented in this thesis describes improved methods for analysis of 

protein complexes by IM-MS, including derivatization for improved sequence analysis and 

informatics for both sequencing and structural analyses. 
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Chapter 1 Introduction 
 

The cellular machinery responsible for the biological processes of life is composed primarily of 

noncovalently associated complexes of proteins.1,2 Identifying the proteins involved in these 

complexes and annotating their function has been a major research goal for fields spanning wide 

ranging topics in cellular biology and human disease over the past several decades.3 The 

sequencing of the human genome coupled with emerging technologies in mass spectrometry 

(MS) has enabled the rapid identification of proteins present in a sample,4 but fully 

characterizing their modifications, interactions, and three-dimensional structure remains a 

fundamental challenge. Developing technologies capable of rapidly generating and integrating 

these various levels of protein information is of great importance to transforming molecular 

medicine, in which the specific molecular mechanisms of disease are discovered and treated, to 

precision medicine, which adapts this paradigm to incorporate the specific genetic and proteomic 

status of an individual.  

1.1 Methods for Analysis of Protein Sequence and Modifications 

Proteins are composed of long chains of amino acids, with the sequence of amino acids encoded 

by DNA. If every protein-coding DNA sequence resulted in the synthesis of exactly one protein 

form, genetic information alone would be sufficient to determine much of biology. However, in 

the years following the sequencing of the human and other genomes, it has become clear this is 

not the case. A range of processes result in the formation of many different forms of proteins,5 

collectively referred to as “proteoforms.”6 Mutations and polymorphisms in DNA, alternative 
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RNA splicing,7–9 and errors in the translation process10 result in the generation of many 

additional amino acid sequences from a single canonical gene. Furthermore, the completed 

proteins are modified throughout their lifecycles with post-translational modifications (PTMs), 

which can result in thousands of potential proteoforms from a single amino acid sequence 

(Figure 1-1, adapted with permission from 5). PTMs provide crucial regulatory and feedback 

functions within the cell, making their characterization crucial to understanding protein function. 

Perhaps best example of this process currently known is the example of the ‘histone code,’11 in 

which post-translational modification of histone protein tails provides epigenetic regulation by 

remodeling chromatin to enable or disable access to DNA, altering the gene expression and 

ultimately the phenotype of an organism.  

 Direct assessment of both protein sequences and modifications is thus critical to 

understanding cellular machinery and its dysregulation in disease states. Following the advent of 

electrospray ionization (ESI)12 and improvements in mass spectrometer accuracy and instrument 

control in the 1990s, MS emerged as a powerful method to analyze protein sequence.13 While 

direct analysis of intact proteins to obtain sequence information is possible with MS, the many 

Figure 1-1 . Sources of proteoform diversity. A single gene (far left) can result in many different proteoforms due to a range of 
processes. Alternative splicing of RNA can result in different isoforms, which can be further modified with PTMs (including, 
for example, glycosylation and phosphorylation). Single nucleotide polymorphisms (SNPs) can also alter the protein sequence 
at specific sites. 
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challenges associated with separating intact proteins by liquid chromatography (LC) and their 

comprehensive analysis by MS led to non-optimal protein identification workflows early in the 

development of proteomics. Instead, an approach now termed “bottom-up” or shotgun 

proteomics emerged, in which proteins are first digested by proteolytic enzymes into peptides. 

Peptides can be readily separated by LC and analyzed by available MS instruments, which, when 

combined with bioinformatics tools that are able to match observed peptides against a database 

of protein sequences known from genome sequencing,14 resulted in a powerful method to 

identify proteins.4 Ultimately, complex mixtures of proteins, up to complete cell lysates 

containing over 10,000 proteins, can be digested, separated, analyzed, and identified, giving rise 

to “proteomic” analyses (i.e. of the entire proteome).15–18 Bottom-up proteomics has since been 

applied to a wide range of biological and clinical applications.19   

 Despite the technological success and widespread adoption of bottom-up proteomics, key 

constraints have limited its clinical relevance.20 Because proteins are digested into peptides prior 

to analysis, quantifying PTM states can be challenging, and it cannot be determined if PTMs 

detected on different peptides from the same protein were present together (for example, one 

protein with two modifications) or separately (two copies of the protein with one modification 

each), e.g. proteoforms.6 For example, histones utilize a combination of many PTMs as a means 

of influencing protein expression epigenetically, meaning that the translation of PTM 

information to biological relevance requires complete annotation of all PTMs and linking this 

information back to the relevant proteoforms. An alternative approach, termed “top-down” 

proteomics, has emerged in recent years in an attempt to address these limitations. Top-down 

proteomics analyzes intact proteins without digestion into peptides, in principle enabling 
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complete annotation of all PTMs present (Figure 1-2, adapted with permission from 21),22 but 

faces significant technical challenges in separation and MS-based analysis of intact proteins.   

 Improved separations 

utilizing MS-compatible 

electrophoresis methods 

for both denaturing23,24 

and native25 conditions 

have been employed to 

perform top-down 

proteomics on samples 

approaching the 

complexity of bottom-up 

analyses.26–28 These 

analyses have 

necessitated the use of 

alternative ion activation 

methods, including 

electron capture/transfer 

dissociation (ECD29,30, 

ETD31,32) and ultraviolet photodissociation (UVPD33–35), improved mass spectrometer design, 

and informatics to process the resulting data.36–39 Despite these advances, significant challenges 

remain in achieving complete fragmentation of proteins larger than 20-30 kDa.40 Incomplete 

fragmentation means PTMs may not be confidently localized to a single site, or even missed 

Figure 1-2 Top-down vs bottom-up proteomics. An example protein (represented by the 
solid black line) containing four PTMs is shown in the middle. Because the protein is 
digested into peptides prior to MS analysis in bottom-up proteomics (bottom), whether all 
four PTMs existed together on one protein or separately on different copies of the protein 
cannot be determined. The figure also highlights that missing peptides can preclude 
identification of some PTMs, though this is a challenge for top-down proteomics as well. 
Because top-down proteomics (top five lines) considers the entire protein sequence without 
digestion, a complete picture of PTMs can be determined, in this case showing that all four 
PTMs existed together on the same protein molecule. 
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entirely if sections of the protein are not observed in any fragment ions. While focused studies on 

individual purified proteins have been capable of identifying proteins much larger than this 

limit,41,42 achieving complete fragmentation of larger proteins to localize PTMs in large-scale 

studies has remained elusive. This deficiency is amplified by the fact that most proteins form 

multi-protein assemblies in order to accomplish their biological function.1,2 Detecting and 

analyzing these complexes requires the characterization of not just individual intact proteins, but 

the preservation and analysis of the non-covalent complexes they form in the cell (Figure 1-3, 

adapted with permission from 43). Both bottom-up and typical top-down proteomics canonically 

require denaturation and/or enzymatic digestion of proteins, often precluding any analysis of the 

structure and dynamics of these complex assemblies.  

 Direct characterization of intact protein assemblies using native MS44 offers a promising 

alternative for the characterization of functional multiprotein machines.45–47 Furthermore, native 

Figure 1-3 Representation of methods to characterize protein sequence and structure. Biological activity is typically 
accomplished by macromolecular complexes (top level) made up of many individual proteins with unique sequences, 
modifications, and three-dimensional structures. Directly characterizing these complexes is sometimes possible with atomic 
resolution structural characterization methods, but remains challenging and low-throughput. MS-based approaches have been 
developed to characterize protein sequence (bottom two levels) and interactions (second level from top) to attempt to build 
towards the goal of identifying and understanding the biology of proteins and complexes. 
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MS has the potential to provide protein sequence and structural information in the context of the 

same experiment, dramatically increasing the throughput of modern protein structure/function 

studies. However, sequencing technology coupled to native MS experiments lags far behind 

complementary bottom-up and top-down approaches targeting small, monomeric proteins. 

Incomplete fragmentation of proteins limits the ability of native MS to identify unknown 

proteins within complexes and prevents detailed analysis of the proteoforms incorporated within 

such assemblies. While collision induced dissociation (CID) is a widely available and effective 

technology for peptide sequencing, CID information extracted from  large proteins and protein 

complexes analyzed under native conditions is often limited.48 In many cases, sequence coverage 

is concentrated into a few labile regions, e.g. flexible or terminal loop areas.41 Achieving full 

sequence coverage for such large protein systems is one of the key challenges facing top-down 

proteomics, as well as the establishment of native MS workflows for wide-ranging structural 

proteomics. 

 

1.2 Methods for Determination of Protein Structure and Interactions 

The fundamental relationship between protein structure and function makes their study critical in 

ongoing efforts to understand fundamental elements of biochemistry and human disease.49 While 

efforts to predict protein three-dimensional structure from amino acid sequence50 have seen some 

success in small, well-ordered protein systems,51 systematic prediction of structure from 

sequence remains elusive.52,53 As a result, experimental assessment of protein structure is 

essential, in addition to genomic and proteomic assessment, to generate a complete 

understanding of biological machinery, including protein sequence, modifications, interactions, 

and three-dimensional structure.  



 7 

 Several techniques are capable of generating three-dimensional structures of proteins and 

protein complexes with atomic or nearly atomic resolution. X-ray diffraction54 of crystallized 

proteins has been the primary method for generating protein structures since the 1950s,55 and 

nearly 90% of known structures of biomolecules today have been determined by x-ray 

crystallography.56 Macromolecular assemblies as complex as the complete 80S ribosome of S. 

cerevisiae have been characterized at atomic resolution,57 enabling discoveries in cellular 

biology, drug discovery, and more. However, x-ray crystallography requires generation of high 

quality protein crystals, a process that requires large quantities of high-concentration, purified 

protein and time. The need to generate static protein crystals also precludes direct evaluation of 

protein dynamics, as well as assessment of proteins without stable, ordered structures. Nuclear 

magnetic resonance spectroscopy (NMR58) is also capable of generating atomic resolution 

structures, and can evaluate structural dynamics.59 However, NMR is generally limited to 

proteins smaller than ~50 kDa,60 and suffers from similar requirements for large amounts of 

concentrated, purified protein as x-ray crystallography. Finally, recent advances in cryo-electron 

microscopy (cryo-EM) have enabled generation of atomic resolution structures, particularly for 

large, symmetric molecular assemblies.61,62 Cryo-EM has the potential to provide structures with 

lower sample requirements than x-ray crystallography or NMR, but still requires significant 

sample preparation, restricting the possible throughput to near x-ray or NMR methods for now.  

 Atomic resolution structures remain the preferred method to determine the molecular 

mechanisms of protein machines, but the number of known structures (~150,000 in 2019)56 lags 

far behind the number of computationally predicted protein sequences (currently approaching 

150,000,000),63 which does not account for the unknown number of putative complexes 

assembled from these proteins to accomplish biological tasks.64 Dynamic interactions between 
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proteins and changes to structure from sequence permutations and PTMs are further 

complications that remain largely beyond the current capabilities of structural biology. 

Development of high speed, lower resolution methods to assess protein structure are thus in great 

demand. A number of biophysical techniques, such as circular dichroism (CD)65,66 and small 

angle x-ray scattering (SAXS)67 are used to determine protein secondary and low-resolution 

tertiary structure, providing relatively rapid measurements with lower sample requirements than 

atomic resolution techniques. However, the total information content provided by these 

techniques remains relatively limited.  

 In order to understand protein structure, its role in defining function, and any changes that 

may occur in disease states, it is essential to explore the parameters that link such elements of 

biophysics together.68 One such element is protein stability, often reported as a free energy of 

protein unfolding and represents one of the most widely utilized descriptors of protein 

structure.69  Calorimetry experiments, such as differential scanning calorimetry (DSC) and 

isothermal titration calorimetry (ITC) can measure global stability of proteins and 

thermodynamics of binding interactions, respectively, but require substantial amounts of purified 

protein and provide averaged measurements across ensembles of protein states.70 Given the 

significance of protein stability in the framework of understanding protein structure and function, 

new experimental techniques that can extract such values with improved figures of merit are 

needed. 

 

1.3 Mass Spectrometry-based Analysis of Protein Structure 

Mass spectrometry (MS) has recently experienced a proliferation of structural biology related 

research, focusing primarily on heterogeneous proteins, protein complexes, and protein-ligand 
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complexes due to its ability to access such mixtures with sensitivity, speed, and low limits of 

detection.71 While MS cannot measure structure directly, a variety of methods have been 

developed to encode structural information into a mass measurement to leverage the power of 

MS, and particularly of bottom-up proteomics, to structure determination. Chemical crosslinking 

mass spectrometry (XL-MS) uses bifunctional reagents to link pairs of residues within a protein 

together (Figure 1-4), followed by enzymatic digestion and bottom-up proteomics methods to 

identify the crosslinked peptides that result.72 The length of the crosslinking reagent determines a 

distance constraint, so any crosslinked residues are expected to be within that distance of each 

other in the 3D protein structure.73–75 Recent reports have utilized this basic workflow to restrain 

integrative modeling of protein structures,76,77 assess protein dynamics,78 and crosslink whole 

cell lysates to identify interactions between proteins.79 Hydrogen-deuterium exchange 

(HDX),80,81 oxidative footprinting (e.g. FPOP),82,83 and covalent labeling84 all probe the solvent 

accessibility of reactive sites on a protein by modifying reactive residues exposed to solvent 

(Figure 1-4), digesting the protein, and using bottom-up proteomics methods to identify the 

modified residues. The degree of modification can be used to map the exposed surface of the 

protein and assess structural dynamics, typically in conjunction with molecular modeling 

approaches by restraining generated structural models using the experimental data. The methods 

differ in the reactive groups they target: HDX probes amide hydrogens along the peptide 

backbone, which can be more or less protected by the secondary and tertiary structure 

surrounding them. All amino acids except proline contain an exchangeable backbone hydrogen, 

meaning that HDX can generate nearly individual amino acid-resolved information with 

appropriate data processing.85,86 The variable degree of protection from various secondary and 

tertiary structure elements also enables substantial structural insight, making HDX an 
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increasingly popular method for structural assessment.87  FPOP uses hydroxyl radicals to oxidize 

14 of the 20 naturally occurring amino acids, in principle yielding nearly the spatial resolution of 

HDX, but without the challenges associated with back-exchange of deuterium for hydrogen prior 

to measurement or H-D scrambling in the gas phase. 

 There are many covalent labeling approaches for assessing protein structure that follow 

the same general principle: modification of solvent-exposed amino acid residues of proteins 

Figure 1-4 Selected structural mass spectrometry approaches. H/D exchange (top) exchanges exposed hydrogen 
(H) atoms for deuterium (D). Covalent labeling and oxidative footprinting approaches (FPOP, for example) label 
solvent accessible regions of the protein using various reagents. Chemical crosslinking uses bifunctional reagents 
to link to reactive sites (most commonly lysine residues) together, enabling determination of protein-protein 
interactions and distance determination to constrain structural models. 
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under physiological conditions followed by bottom-up proteomics to identify the modified 

sites.84 Of particular interest to the work related in this thesis are methods to modify Lys, Asp, 

and Glu side chains, as these were the targets of the chemical modifications described in 

Chapters 2 and 3. Lysine remains perhaps the most often targeted amino acid for chemical 

modification due to the reactivity of its primary amine side chain and the high frequency with 

which it occurs in protein sequences and particularly in surface exposed regions.84 A range of 

reagents have been used to target Lys, including organic acid anhydrides and N-

hydroxysuccinimide derivatives, several of which are compatible with labeling under 

physiological conditions to examine native protein structures.84 The acidic side chains of Asp 

and Glu can be targeted using carbodiimide chemistry,88 however, this requires lowering pH to 

around 5 to proceed efficiently. Alternative reagents based on dihydrazides have been proposed 

to enable labeling to proceed under physiological conditions.89    

 

1.4 Ion mobility-mass spectrometry (IM-MS) for Protein Structure Analysis 

Ion mobility (IM), which separates ions based on their size to charge ratio and reports ion size in 

terms of an orientationally-averaged collision cross section (CCS), has also been widely 

deployed in combination with MS as a platform for structural biology.90 While orientational 

averaging and the resolution of modern IM spectrometers limits the structural information to 
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much lower resolution than XRD or NMR, the combination of speed, sensitivity, capability to 

handle complex mixtures has resulted in a growing field of IM-MS structural biology.  

The instrument used in the majority of work described in this thesis is a Synapt G2 

HDMS (Waters, Milford, MA) shown in Figure 1-5, with the exception of some data in Chapter 

6 that was generated on an Agilent 6560 (that system will be described in detail in Chapter 6). 

The Synapt instrument consists of a nanoelectrospray ionization (nESI) source, a quadrupole (Q) 

mass analyzer, a traveling wave ion mobility separator (TWIMS), and a time of flight (ToF) 

mass analyzer. The following sections provide specific details as to the operation of modern IM-

MS instrument platforms.  

 

Figure 1-5 A: Schematic diagram of the Synapt G2 quadrupole ion mobility-time of flight instrument, indicating the 
four main regions of the instrument. Ions are generated using a nanoESI source and transferred to the quadrupole after 
several differential pumping stages. The quadrupole has been modified to enable selection of ions up to m/z 32000 and 
can operate in selection or full transmission modes. The “tri-wave region” includes two collision cells before and after 
the traveling wave IMS, enabling mobility separation and collisional activation. Finally, the ToF mass analyzer 
determines the m/z ratio of ions with resolving power of approx. 10,000 in standard operating modes employed in this 
work. B: Detailed view of gas flows in the IMS region. The “trap” and “transfer” collision cells are pressurized with 
argon to pressures in the high 10-3 to low 10-2 mbar range. The helium (He) cell reduces ion activation in transit from 
the low pressure trap cell to the high pressure (approx. 3.4 mbar in this work) IMS cell, which is pressurized with 
nitrogen. 
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1.4.1 Protein Ion Generation 

To analyze a sample with IM-MS, the analyte(s) of interest must be ionized and transferred to 

the gas phase. To evaluate solution phase structure, proteins must be transferred from solution 

and ionized without (substantially) disrupting their structures, a challenging task. In ESI,12 a high 

voltage is applied between a very small orifice containing the solution to be ionized and the inlet 

of the mass spectrometer, forming a Taylor cone and jet of highly charged droplets (Figure 

1-6).91 The droplets evaporate (often assisted by heated gas flows in the source region) until the 

Coulombic repulsion of the charges in the droplet exceeds the surface tension holding the droplet 

together (a point termed the “Rayleigh limit”) and the droplet fissions into smaller droplets.92 

After many cycles of evaporation and fission, the final droplets approach the size of individual 

protein molecules, which are left behind in the gas phase as the final solvent molecules 

evaporate.92–94  

Figure 1-6 A depiction of positive mode nanoESI. The high voltage applied to the capillary generates a Taylor cone and droplets, 
which evaporate and fission to eventually leave charged analyte (e.g. protein) ions that are directed into the mass spectrometer. 
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The number of evaporation and fission cycles depends on the initial size of the droplet, with 

fewer cycles generally associated with improved transmission of ions into the instrument.95  

NanoESI (nESI) utilizes significantly smaller orifices and lower flow rates to generate 

smaller starting droplets, resulting in improved ionization efficiency and increased tolerance for 

salts and other ion-suppressive species.96–98 The extended evaporation and fission process 

ensures that the majority of the energy imparted during the ionization and transfer process is not 

deposited with the protein, enabling sufficiently gentle transfer to preserve “native-like” 

structure, including noncovalently associated protein complexes and protein-ligand interactions, 

into the gas phase.99 The exact degree to which the protein remains in its solution-phase 

conformation is a matter of considerable debate, but an extensive body of literature indicates that 

large scale structural changes can be minimized with appropriate instrument tuning.99–105  

 

1.4.2 Tandem MS 

Measuring the mass of a molecule is often insufficient to identify it, particularly for large 

biopolymers like proteins, which are composed of up to hundreds of amino acids arranged in a 

particular sequence. To identify molecules, tandem MS involves selecting a “precursor” ion with 

an initial (nondestructive) stage of MS, most often using a quadrupole or ion trap mass analyzer, 

then activating that precursor to break it apart into fragments (“product” ions) that are then 

measured by a second stage of MS. The combination of the precursor mass measured in the first 

stage of MS and all of the observed product masses can, in many cases, be sufficient to 

determine the identity of the molecule. For protein ions, many types of activation, including 

IRMPD,106 ECD,29,30 ETD,31 UVPD,33–35 and CID107 can be utilized to generate fragmentation 

along the peptide backbone, allowing reconstruction of the amino acid sequence by reading the 
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addition of amino acids from smaller to larger fragment ions. In CID, ions are accelerated into 

(or through) a region of inert gas. Collisions with the gas convert the ions’ kinetic energy into 

internal energy, which is rapidly redistributed throughout the molecule.108 This “slow heating” 

process continues until the internal energy of the ion becomes sufficient to break the weakest 

chemical bond, resulting in dissociation. For protonated peptides and proteins, the peptide bond 

is typically among the weakest molecular bonds (in the gas phase), resulting in dissociation in 

between amino acid residues, yielding sequence-informative product ions. On the Synapt G2, 

tandem MS can be performed using the high mass quadrupole to select precursor ions, followed 

by CID either before or after IM, in the trap and transfer collision cells, respectively (Figure 1-5). 

For the top-down experiments described, CID is always performed in the trap collision cell prior 

to IM to enable IM separation of the resulting fragment ions. 

 

1.4.3 IM Separation 

IM separates ions through the opposed forces of an electric field and momentum transfer from 

collisions with an inert, neutral gas. Ions with larger cross sections experience more collisions, 

resulting in greater opposition to the electric field and, for example, a longer time to transit a 

drift tube under the influence of a pushing electric field (Figure 1-7).109,110  

There are a variety of IMS platforms involving different configurations of electric field 

and gas. The simplest conceptually is a drift tube instrument, in which a linear electric field 

gradient is maintained to push ions through a “drift tube” filled with stationary gas. The Agilent 

6560 instrument discussed in Chapter 6 utilizes a drift tube IMS. The IMS device in the Synapt 
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instrument is a traveling wave IMS (TWIMS),111 in which ions are propelled through a tube 

filled with stationary gas by a series of low voltage “waves” that move through the device from 

beginning to end. Ions are briefly carried by the waves until collisions with the gas cause them to 

“roll over” the wave, so ions with larger cross sections experience more rollover events and thus 

take a longer time to transit the device.112,113 TWIMS devices typically require lower applied 

electric fields and shorter device lengths to achieve high resolution separations when compared 

to equivalent drift tube IM analyzers, but currently require calibration to convert from measured 

arrival time to collision cross section due to the complexity of ion motion resulting from the non-

linear electric field used to propel the ions.114  

 

1.5 Collision-induced Unfolding (CIU) 

The first commercial IM-MS system became available in the mid-2000s, sparking a period of 

rapid growth in the use of IM for protein structural analysis and other applications. Prior to this 

recent period of expansion, IM-MS was used to primarily assign the conformations of peptides115 

and small proteins116 in the gas phase. However, as the size and complexity of biomolecules 

Figure 1-7 Schematic diagram of basic ion mobility. The ions, represented by the large blue oval and smaller green 
circle, are accelerated towards the right of the device by an electric field. Collisions with the gas in the cell, 
represented by the very small yellow circles, slows the progress of the ions. The larger blue oval experiences more 
collisions than the green circle, and thus moves more slowly through the device, allowing the ions to be separated 
by their time to transit the entire device. 
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increases, IM-derived CCS values alone often yield insufficient information to define the 

structures of proteins in detail.116 Collisional activation has long been used to probe the structure 

and stability of protein ions in the gas phase.43,117 Collision induced unfolding (CIU) represents 

an extension of this earlier work, and is best viewed as a gas-phase analog of differential 

scanning calorimetry experiments often carried out in solution. In a typical CIU experiment, 

isolated biomolecular ions are activated through energetic collisions with a background gas (e.g. 

Argon) in order to increase their internal energy and cause them to change conformation (unfold) 

in the gas-phase, without providing sufficient energy to cause the significant dissociation of 

covalent bonds.118 The progress of this CIU process is followed through IM-MS, with the former 

stage providing direct measurement of protein unfolding through changes in ion CCS and the 

latter analyzing the composition of the isolated biomolecules and enabling any collision induced 

dissociation (CID) products to be excluded from the analysis.  Early examples of CIU include the 

observation of cytochrome c116 and apomyoglobin unfolding in the gas phase.119 Modern 

implementations of the technology have been extended well beyond these examples, to include 

detailed analyses of the CIU mechanism and applications to a range of therapeutically-relevant 

targets.  

The potential of CIU as an analytical fingerprinting technique to study the structures and 

stabilities of proteins, protein complexes, and protein-ligand complexes is now emerging. The 

collisional activation of protein assemblies often yields a multitude of partially folded 

intermediates stable on the millisecond time scale that can provide a range of diagnostic 

information related to the structures of the isolated protein complexes.120,121 In addition, CIU has 

been used to assay the stabilities of proteins and protein-ligand complexes in the gas phase. 

Although the stability measurements offered by CIU data for biomolecular ions are relative, and 
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allow for comparisons of protein states rather than determination of absolute thermodynamic 

properties, they also provide valuable insight into the structure and native binding interactions of 

proteins and their complexes.117,122–125 

 

1.5.1 Generation and Analysis of CIU Data 

Typical CIU experiments are performed by sequentially increasing an accelerating potential 

difference that serves to activate ions prior to ion mobility separation.  As such, IM arrival time 

distributions (ATDs) are acquired at each stepped potential (Figure 1-8 A), creating a multi-

dimensional dataset. The changes in measured ATD correspond to structural transitions of the 

protein ion in the gas phase which, while not directly assessing solution phase structures, can be 

used to generate unique fingerprints (Figure 1-8 B) that can reflect such native state structure 

information. Several methods to generate these fingerprints have been described,126–129 offering 

quantitative metrics for rapidly distinguishing subtle structural changes in proteins and protein 

complexes.  

To generate a CIU fingerprint, the arrival time distribution of the m/z corresponding to 

the analyte ion must be extracted from the raw data at each collision voltage applied to create a 

matrix for analysis. Manual generation of this matrix can be time-consuming, and recent CIU 

experiments have relied upon automated extraction tools capable of creating such file structures 

rapidly.126,129 Once generated, replicates can be used to assign statistical confidence to observed 

deviations between fingerprints representing different protein forms, e.g. between ligand-bound 

and unbound states. These quantitative comparisons can be leveraged to classify binding events 

and structural changes into biologically relevant categories, such as differentiating functional 
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from nonspecific lipids bound to membrane proteins,126 or determining the binding site of a 

ligand in systems with multiple known binding pockets.130 As these workflows become routine 

and advance towards automated and high-throughput analyses, continued development of 

automated extraction and processing tools will be essential to realizing the full potential of CIU 

experiments. 

Figure 1-8 A: Diagrams and cartoons depicting the CIU of proteins and common methods of analysis. As collision energy (eV) 
is increased, an isolated protein ion unfolds in the gas phase. B: CIU fingerprint with collision voltage on the x-axis, arrival time 
on y-axis, and intensity shown using a color scale. C: CIU comparison plot analysis depicting an unbound (apo) and a doubly 
bound protein-ligand complex (red and green oval) with collision voltage on x-axis, arrival time on y-axis, and color scheme 
representing the differential intensities of the apo (red) and ligand bound (blue) states. D: A scaled deviation score analysis 
depicting a comparison of two different ligand bound states with CIU data acquired for the apo protein A score is computed that 
statistically assess fingerprint similarity at each voltage, enabling a narrow the window of collision voltage to be defined that 
maximizes dissimilarity between analytes, as shown by green shaded area for the green ( ) ligand and red shaded area for the 
red ( ) ligand. 
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1.5.2 Probing Protein Structure and Stability using CIU 

Collisional activation followed by IM-MS has been used to probe the conformations of proteins 

in the gas phase for nearly two decades.118,119 For example, early CIU experiments  probed the 

activation energy barriers associated the gas-phase folding and unfolding of apomyoglobin 

following charge manipulation, revealing clear evidence of both Coulombic and structural 

components for the barriers detected between the gas-phase conformers.119 Tandem IM 

technology131,132 combined with collisional activation has been used to examine similar 

activation energy barriers in greater detail, revealing connectivity maps between the multitude of 

intermediate states populated during the CIU of small proteins.133 Overall, these early CIU 

experiments were aimed primarily at uncovering the biophysical rules governing gas-phase 

protein ions, and succeeded in significantly advancing our understanding of protein stability and 

structure in a solvent-free environment. 

Following on from this earlier work, CIU has been implemented to study the structure 

and dissociation behavior of protein complexes.134 For example, early work135 proposed an 

unfolding-based mechanism for protein complex CID, in which a single subunit unfolds and is 

ejected bearing a large portion of the total charge of the assembly, largely through collecting 

indirect evidence of protein CIU. The introduction of CIU enabled the direct observation of 

collisionally-activated protein assemblies, confirming that they populate partially folded 

intermediates that are stable on the millisecond timescale.43,102,120 Other structural 

rearrangements of protein complexes have been shown in the gas phase via collisional activation 

and IM-MS. For instance, many reports have shown evidence of compaction upon the activation 

of ring-like protein complexes that contain significant internal cavities.102,136 Moreover, 

computational chemistry has been used to probe protein complex CIU, reproducing many of the 
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general features of experimental data.137–139  Recent computational approaches in this area 

incorporate charge hopping within coarse-grained models and mobile protons within all-atom 

MD simulations.140 Despite these recent advances, however, a complete model capable of 

predicting the unfolding transitions of heated protein complexes in CIU remains elusive. 

Extending from these mechanistically-framed studies, CIU has been used to quantify 

shifts in protein complex stability upon binding large populations of both anions and cations. 

Early CIU work in this area indicated that buffer components of low volatility bound to intact 

protein complexes can act to stabilize protein complex in the gas phase.141 These initial results 

were expanded upon by screening a wider range of solution additives for their ability to stabilize 

gas-phase protein complexes.120,142–144 For example, CIU and CID studies incorporating a broad 

range anions and cations bound to significant number of protein complexes revealed that 

stabilizing anions act primarily through evaporative cooling, whereas stabilizing cations act to 

bind tightly to protein complexes and limit charge mobility.143,144 More direct efforts to stabilize 

protein complexes have been prosecuted through chemical cross-linking, where the CIU of intact 

protein complexes modified with charge-bearing chemical agents revealed significant increases 

in gas-phase stabilities.145 Overall, this work demonstrates the clear utility of CIU data in 

building next-generation IM-MS technologies aimed at measuring labile protein complexes and 

structures. 

More recent experiments have aimed provide a detailed mechanism for CIU in the 

context of monomeric proteins. For instance, a survey of proteins ranging from 8 to 78 kDa, and 
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containing between one and four domains, produced evidence of a strong correlation between 

native domain structure and the number of CIU transitions observed for low charge state protein 

ions (Figure 1-9 A).146 A follow-on study in this area used both domain-specific ligand binding 

Figure 1-9 A: A series of covalently linked poly-ubiquitin proteins (1-4 ubiquitins, gray spheres) is probed by 
CIU. Single domain ubiquitin results in a single CIU transition, from an initial native-like state (I) to a more 
extended state (II) upon collisional activation. Each additional domain added results in an additional CIU 
transition, indicating that the transitions are representative of the domain structure of the protein in solution. B: 
Bovine, human, and murine serum albumin proteins CIU fingerprints are compared. Despite high sequence 
homology and globally similar three-dimensional structures, CIU readily distinguishes each variant, 
demonstrating sensitivity towards subtle alterations in protein isoforms. C: Coefficient of variation (CV) across 
the bovine, human, and murine albumins represented in (B) for centroid voltage (blue), stability or horizontal 
length (red), and center drift time (green) for each feature. High CVs indicate significant differences between 
fingerprints.  D: Comparison of type I (Dasantinib, left) and type II (Imatinib, right) inhibitors bound to Abl 
kinase. CIU distinguishes the binding location of inhibitors to the kinase, enabling a screening assay based on 
the region of maximal difference in the CIU fingerprint (far right).  E: IgG subtypes 1-4 (left to right) are 
quantitatively distinguished by CIU. Each subtype exhibits different patterns of disulfide bonding in a broadly 
conserved overall structure, resulting in different CIU fingerprints. 
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and noncovalent constructs to build the first detailed CIU mechanism for a multi-domain 

protein.121 This same report highlighted both the similarities and differences in the CIU of iso-

CCS homologous protein variants, demonstrating both a strong correlation between quantified 

CIU similarity and sequence identity as well as identifying the stability of CIU features as the 

main element of variation in unfolding data acquired across sequence variants (Figure 1-9 B). 

Similarly, the structural differences of ubiquitin ions having similar ground state CCS values 

produced from cation-to-anion proton transfer reaction (CAPTR) experiments targeting a broad 

range of precursor ion charge states were detected by CIU.147 These studies, taken together, 

begin to paint a detailed picture of the CIU mechanism as well as point toward future 

applications in protein engineering, where the stability of individual protein domains within 

larger constructs can be measured without need of labelling or surface attachment. 

1.5.3 Applications of CIU 

Characterizing the binding of ligands to proteins and protein complexes is a rapidly growing 

application area for CIU measurements, as the information content of such experiments can be 

used to rapidly provide binding affinities, inform on the nature of ligand attachment, and 

elucidate the location of binding. Binding locations can be differentiated by CIU, as the binding 

of a ligand to different sites in a protein results in differential alterations to its unfolding 

pathway. By comparing against CIU fingerprints acquired for ligands with known binding sites, 

specific binding locations for uncharacterized ligands can be determined. Building on early work 

in this area,117 a number of reports now utilize CIU to probe allosteric and conformationally-

selective binding modes in the context of both inhibitor screening and analysis as well as probing 

membrane protein-lipid interactions.124,148 Because discrete ligand bound states can be resolved 

and analyzed separately in CIU, stability shifts detected and compared between binding states 
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can be used as evidence to support a cooperative stabilization mechanism. For example, such a 

mechanism was detected in the Concanavalin A tetramer upon polysaccharide binding.124 In 

another report, CIU indicated that a compact conformation of a ligand-bound protein was highly 

stabilized, suggesting a possible allosteric binding mode in the context of the protein system in 

question, which was confirmed by hydrogen-deuterium exchange.148  

CIU has been widely utilized to assess binding of inhibitors and drugs to 

enzymes.130,149,150 For example, the kinase domain of BCR-Abl, a target implicated in chronic 

myeloid leukemia, was screened against a small library of kinase inhibitors using CIU.130 

Inhibitors having known selectivities for the active or inactive states of the kinase produced 

significantly different CIU fingerprints (Figure 1-9 D), enabling the development of a 

classification system based on narrow regions of the acquired fingerprints where the two classes 

produced maximally different unfolding patterns. Another kinase, protein kinase A (PKA), was 

probed by CIU,149 similarly revealing significant differences in gas-phase unfolding upon 

binding different kinase inhibitor classes. CIU was also used to probe binding of HIV drugs to 

the membrane protein ZMPSTE24,150 demonstrating that shifts in gas-phase protein stability can 

be directly correlated to solution phase Kd values. 

CIU measurements are uniquely suited to analyze the role of lipids and other stabilizing 

molecules bound to heterogeneous membrane proteins. An early example of such work utilized 

CIU to classify a range of lipids interacting with membrane protein channels, where gas-phase 

unfolding data provided predictive information allowing the authors to identify functional lipids 

that bore structural and functional consequences when attached to the proteins studied.151 This 

type of CIU assessment is now part of an automated workflow,126 enabling the rapid quantitative 

analysis of membrane protein stabilization through lipid and ligand binding. Most CIU studies of 
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membrane protein lipid binding are carried out over the entire ensemble of binding 

stoichiometries detected, leading to uncertainty surrounding the role of individual lipid bound 

states in contributing to overall protein stability. However, recent work utilizing a heated 

electrospray ion source coupled to IM-MS demonstrates that most lipids dissociate from model 

membrane proteins in CIU experiments as neutral species, confirming the validity of such 

ensemble analysis and pointing the way toward improved IM-MS instrumentation tailored for the 

CIU analysis of membrane protein ligand binding.152 

As biotherapeutics have emerged as a multibillion dollar industry, their analytical 

characterization has received proportional interest. Characterization of monoclonal antibodies is 

highly challenging given their size and the dynamic nature of their post-translational 

modifications, the state of which directly influences their function and efficacy. Given their 

critical importance and complex nature, as well as the need for high-throughput analysis and 

quality control metrics, CIU is ideally poised to be a part of future biotherapeutic analysis 

workflows. Recently, CIU methods have been applied to the characterization of the NIST 

monoclonal antibody standard,153 comparative analyses of immunoglobulins,154 active innovator 

and biosimilar therapeutics,155,156 and antibody-drug conjugates (ADCs),157 indicating the rapid 

expansion of CIU applications in this area.  

CIU has been used to rapidly distinguish subtle differences in large antibodies, such as 

between IgG subclasses with different disulfide bonding patterns.154 The differences in disulfide 

bridging, despite identical sequences and other post-translational modifications, resulted in 

nearly identical mass and arrival time information, but could be quantitatively differentiated 

using CIU (Figure 1-9 E). Glycosylated and deglycosylated IgGs were also distinguished by 

CIU, indicating that CIU has broad applicability to rapidly distinguish subtle changes to large 
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proteins that are otherwise highly challenging to characterize. More recent work compares an 

innovator biotherapeutic, Remicade, with Remsima, the first FDA-approved antibody-based 

biosimilar.156 CIU was used as part of a multi-attribute monitoring (MAM) workflow, and 

provided a rapid assessment of therapeutic similarity, with the differences detected amongst 

biotherapeutic lots of Remsima linked to variations in antibody glycoforms using bottom-up 

proteomics. Other recent studies have extended CIU into the analysis of antibody-drug 

conjugates (ADCs), an area of intense pharmaceutical interest. Recent work has demonstrated 

drug conjugation serves to stabilize monoclonal antibodies in a manner readily detectable by 

CIU.157 As such, the rapid analysis of biotherapeutics is clearly a growth area for CIU methods, 

where the technique promises to provide key solutions to the growing challenges surrounding the 

quality control and similarity assessment of intact protein therapeutics. 

 

1.6 Summary 

This dissertation presents a series of methods aimed at improving efforts to determine the 

sequence and structure of intact proteins and protein complexes. The work presented is divided 

into two main approaches, the first focused on improving sequencing analyses for top-down 

proteomics and the second on improving structural analyses, specifically native IM-MS and CIU, 

with the combined goal of merging sequence and structural analysis of intact proteins using IM-

MS. Chapters 2 and 3 focus on chemical modification of proteins for improved fragmentation 

and sequencing, particularly in the context of native proteins and protein complexes, which are 

challenging targets for current sequencing methods. Chapter 2 introduces the use of trimethyl 

pyrylium to affix stable intrinsic charges to proteins, and demonstrates that the resulting products 

display enhanced and orthogonal fragmentation in comparison to the unmodified protein. This 
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work has been previously published as Polasky, D. A.; Lermyte, F.; Nshanian, M.; Sobott, F.; 

Andrews, P. C.; Loo, J. A.; Ruotolo, B. T. Fixed-Charge Trimethyl Pyrilium Modification 

for Enabling Enhanced Top-Down Mass Spectrometry Sequencing of Intact Protein 

Complexes. Anal. Chem. 2018, 90 (4), 2756–2764. Chapter 3 continues with chemical 

modification, elucidating the molecular mechanism for altered fragmentation following 

derivatization with fixed charges and generating a method to predict the fragmentation pathways 

of intact proteins based on their charge state and primary sequence. A novel fragmentation 

pathway is observed for an extensively modified small protein, and future directions for 

improving sequencing of proteins via chemical derivatization of acidic residues are discussed. 

Finally, substantial alterations to gas phase protein structure are observed with charged 

modifiers, ultimately defining the physical limitations of current sequencing techniques.  

 The work presented in Chapters 2 and 3 depended on the development of data analysis 

tools and methods for processing top-down ion mobility-mass spectrometry data. Chapter 4 

describes the design and implementation of software tools for peak detection and clustering (“de-

isotoping”) specifically for IM-MS data. Peak analysis using both the IM and MS dimensions of 

the data greatly improves the effective resolution and peak capacity of IM-MS, particularly for 

top-down proteomics data, in which complex isotopic distributions and large numbers of 

fragment ions complicate data analysis. This work was been previously published as 

Avtonomov, D. M.; Polasky, D. A.; Ruotolo, B. T.; Nesvizhskii, A. I. IMTBX and Grppr: 

Software for Top-Down Proteomics Utilizing Ion Mobility-Mass Spectrometry. Anal. 

Chem. 2018, 90 (3), 2369–2375.  

 Chapters 5, 6, and 7 focus on the development of methods and software tools to process 

IM-MS data from native mass spectrometry and collision-induced unfolding (CIU) experiments. 



 28 

Chapter 5 describes the development of CIUSuite 2, a software suite to process CIU data, 

particularly from challenging datasets. Using the analytical tools in the software, we demonstrate 

a 60-fold improvement in data acquisition speed over previously published work, and enable 

stability analysis of noisy data from membrane proteins that had proven refractory to previous 

analysis tools. A supervised classification workflow was also developed to enable screening of 

CIU data into defined classes with improved statistical analysis over existing methods. This work 

has been previous published as Polasky, D. A.; Dixit, S. M.; Fantin, S. M.; Ruotolo, B. T. 

CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding 

Data. Anal. Chem. 2019, 91 (4), 3147–3155. Chapter 6 describes a joint effort to implement 

CIU analysis on a new instrument, the Agilent 6560, including instrument modifications, 

characterization of adduct loss from precursor ions, and the development of data processing 

software to support data acquired on the new instrument and correction of adduct losses. The use 

of simultaneous CIU analysis of data from multiple charge states (“charge-multiplexed CIU”) 

was characterized and used to demonstrate improvements in information content and throughput 

for CIU experiments. This work in currently undergoing peer review as Vallejo, D. D.; Polasky, 

D. A.; Kurulugama, R. T.; Eschweiler, J. D.; Fjeldsted, J. C.; Ruotolo, B. T. A Modified 

Drift Tube Ion Mobility-Mass Spectrometer for Charge Multiplexed Collision Induced 

Unfolding. Anal. Chem. 2019. Finally, Chapter 7 describes extending the classification methods 

developed for high-throughput screening in Chapter 5 to include data from all charge states of a 

protein. This combines work from Chapter 5 with the new instrumentation from Chapter 6, in 

which data from all charge states are always collected due to the design of the instrument. 

Analyzing all charge states improves classification accuracy and can be used to reduce 

acquisition time required for analysis.  
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 Part of the content in this introduction was previously published as a review article 

(Dixit, S. M.; Polasky, D. A.; Ruotolo, B. T. Collision Induced Unfolding of Isolated 

Proteins in the Gas Phase: Past, Present, and Future. Curr. Opin. Chem. Biol. 2018, 42, 93–

100.) 
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Chapter 2 Fixed-Charge Trimethyl Pyrilium Modification for Enabling Enhanced Top-
Down Mass Spectrometry Sequencing of Intact Protein Complexes 

 
Adapted with permission from: Daniel A. Polasky, Frederik Lermyte; Michael Nshanian, Frank 
Sobott, Philip C. Andrews, Joseph A. Loo, and Brandon T. Ruotolo. Fixed-Charge Trimethyl 
Pyrilium Modification for Enabling Enhanced Top-Down Mass Spectrometry Sequencing of 

Intact Protein Complexes. Anal. Chem. 2018, 90 (4), 2756–2764. 
 

2.1 Abstract 

Mass spectrometry of intact proteins and protein complexes has the potential to provide a 

transformative level of information on biological systems, ranging from sequence and post-

translational modification analysis to the structures of whole protein assemblies. This ambitious 

goal requires the efficient fragmentation of both intact proteins and the macromolecular, multi-

component machines they collaborate to create through non-covalent interactions. Improving 

technologies in an effort to achieve such fragmentation remains perhaps the greatest challenge 

facing current efforts to comprehensively analyze cellular protein composition and is essential to 

realizing the full potential of proteomics. In this work, we describe the use of a trimethyl 

pyrylium (TMP) fixed-charge covalent labeling strategy aimed at enhancing fragmentation for 

challenging intact proteins and intact protein complexes. Combining analysis of TMP-modified 

and unmodified protein complexes results in a greater diversity of regions within the protein that 

give rise to fragments,  and results in an up  to 2.5-fold increase in sequence coverage when 

compared to unmodified protein alone, for protein complexes up to 148 kDa. TMP modification 

offers a simple and powerful platform to expand the capabilities of existing mass spectrometric 

instrumentation for the complete characterization of intact protein assemblies. 
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2.2 Introduction 

The rapid characterization of proteins by mass spectrometry (MS) has emerged as a 

powerful platform for understanding the details of biology and biochemistry at an unprecedented 

level of detail. Conventional ‘bottom-up’ proteomics workflows utilize enzymatic digestion prior 

to separation and MS to sequence the peptides excised from proteins within whole cell lysates1. 

This rapid characterization of exceptionally complex protein mixtures has enabled a revolution in 

biological analysis2, ranging from the elucidation of human disease processes to supporting the 

determination of three-dimensional structures for biochemically-central multi-protein complexes. 

Despite the advances described above, current ‘bottom-up’ proteomics approaches are 

typically unable to completely identify all the post-translational modifications and proteoforms 

that are crucially important for biological function3.  In response to such deficiencies, ‘top-down’ 

MS technologies have been developed that are capable of sequencing intact proteins without 

enzymatic digestion4–6. Such tools are typically capable of capturing a wide-ranging snapshot of 

proteoform composition, but typically only able to completely characterize relatively small 

proteins7,8.  This deficiency is amplified by the fact that most proteins form multi-protein 

assemblies in order to accomplish their biological function9,10. Detecting and analyzing these 

complexes requires the characterization of not just individual intact proteins, but the preservation 

and analysis of e non-covalent complexes they form in the cell. Both bottom-up and typical top-

down proteomics canonically require denaturation and/or enzymatic digestion of proteins, often 

precluding any analysis of the structure and dynamics of these complex assemblies.  

 Direct characterization of intact protein assemblies using native MS11 offers a 

promising alternative for the characterization of functional multiprotein machines12–14. 

Furthermore, native MS has the potential to provide protein sequence and structural information 
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in the context of the same experiment, dramatically increasing the throughput of modern protein 

structure/function studies. However, sequencing technology coupled to native MS experiments 

lags far behind complementary bottom-up and top-down approaches targeting small, monomeric 

proteins. Incomplete fragmentation of proteins limits the ability of native MS to identify 

unknown proteins within complexes and prevents detailed analysis of the proteoforms 

incorporated within such assemblies. While collision induced dissociation (CID) is a widely 

available and effective technology for peptide sequencing, CID information extracted from  large 

proteins and protein complexes analyzed under native conditions is often limited by the low 

charge density observed for analytes under such conditions15. In many cases, sequence coverage 

is concentrated into a few labile regions, e.g. flexible or terminal loop areas8. Achieving full 

sequence coverage for such large protein systems is one of the key challenges facing top-down 

proteomics, as well as the establishment of native MS workflows for wide-ranging structural 

proteomics.  

 Approaches to improve sequence coverage in top-down proteomics have focused 

largely on the development of ion activation paradigms other than CID. Electron transfer and 

capture dissociation (ETD16,17 and ECD18–21), infrared multiphoton dissociation (IRMPD22,23), 

electron ioniziation dissociation (EID24), and ultraviolet photodissociation (UVPD7,25) have 

demonstrated significant improvements in sequence coverage relative to and in combination with 

CID. Current state of the art protein ion fragmentation is typically achieved by employing 

several activation methods in concert, but often still provides only modest coverage for large 

proteins and protein complexes7,8. Implementing multiple activation techniques often requires 

instrument modification beyond the capability of many laboratories and is expensive, thus many 

promising new techniques remain limited to a small subset of available MS platforms. CID 
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remains the most widely available fragmentation technique, making further development of CID 

techniques an attractive target for improving protein sequencing technology.  

 Chemical modification of protein complexes offers the potential for a new set of 

complementary methods to expand intact protein characterization by MS. Derivatization of 

single peptides with reagents that bear intrinsic positive charge has previously been shown to 

alter the dissociation pathways accessed in CID, improving sequencing for bottom-up proteomics 

experiments26–29. Several reports have used fixed charge derivatization to alter the charge states 

of electrosprayed protein ions30,31, but expanding this concept to sequencing of large proteins and 

protein complexes has proven highly challenging due to the difficulty of maintaining a fixed 

charge at the energies required to cause backbone fragmentation in such systems32. In this report, 

we present the use of trimethyl pyrylium33,34 (TMP) to covalently tether a stable positive charge 

to protein lysine side chains, altering the energy of various dissociation pathways to enable 

improved sequencing for large protein complex ions. Fixed charge modification by TMP 

provides orthogonal sequence coverage to other forms of biomolecular activation in the gas 

phase, opening a new pathway for improved sequence coverage of challenging protein targets 

using a simple derivatization that relies upon a commercially available and inexpensive reagent. 

2.3 Experimental Methods 

2.3.1 Chemical Modification 

Avidin from chicken egg white, Alcohol dehydrogenase (ADH) from Saccharomyces 

cerevisiae, Ovalbumin from chicken (all from Sigma Aldrich, St. Louis, MO), were dissolved in 

100mM triethylammonium bicarbonate (TEAB, Sigma Aldrich), pH 8.5, to make solutions 

containing 25uM protein for chemical modification. 2,4,6-Trimethyl pyrylium (TMP) 

tetrafluoroborate (Alfa Aesar, Haverhill, MA) was dissolved in 100mM TEAB, pH 8.5, vortexed 
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for ten seconds to dissolve, and quickly added to protein solutions to 10- to 25-fold molar excess 

relative to the reactive Lysine residues present. Reaction solutions were briefly vortexed and 

allowed to react for 24 hours at room temperature. Following modification, proteins were buffer 

exchanged sequentially into 1M ammonium acetate, then 200mM ammonium acetate, both pH 

7.4 (Sigma Aldrich), with P6 (Avidin) or P30 (ADH, Ovalbumin) microspin columns (BioRad 

Laboratories, Hercules, CA) according to manufacturer instructions. Buffer exchanged samples 

were either analyzed immediately or flash frozen with liquid nitrogen and stored at -80C prior to 

analysis. 

2.3.2 Ion Mobility-Mass Spectrometry 

A quadrupole ion mobility-time of flight mass spectrometer (Synapt G2 HDMS, Waters, 

Milford, MA) was used for all ion mobility experiments. 5uL of buffer-exchanged protein 

solution (20uM) was transferred to a gold-coated borosilicate capillary (0.78mm i.d., Harvard 

Apparatus, Holliston, MA) for direct infusion. Instrumental settings were optimized to preserve 

intact protein complexes prior to activation: capillary voltage 1.5 kV, sample cone 40 V, 

extraction cone 0 V. Gas flows (mL/min): source: 50, trap: 6 (Avidin) or 8 (ADH, Ovalbumin), 

helium cell: 200, IM separation: 90. IMS traveling wave settings were the same for all proteins: 

wave velocity: 150 m/s, wave height: 20 V, IMS bias: 5 V. Backing pressure was set to 5.5 mbar 

(Avidin), or 8.0 mbar (ADH, Ovalbumin). A single charge state of each protein complex was 

selected and collisionally activated in the trap cell (trap collision voltage: Avidin, 140 V; 

Ovalbumin, 160 V; ADH, 200 V) prior to ion mobility separation. Trap (collision cell) pressures 

were 3.8 E-2 mbar (Avidin, Ovalbumin) or 4.4e-2 mbar (ADH). Time of flight pressure was 1.8 

E-6 mbar for all analyses. Scans were combined for 30 seconds (Avidin) or 10 minutes (Avidin, 

ADH, Ovalbumin) to obtain sufficient signal to noise ratios. 
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2.3.3 FT-ICR mass spectrometry 

After buffer exchange, protein solutions (diluted to 10 µM in 100 mM aqueous 

ammonium acetate) were transferred to a metal-coated borosilicate capillary (Au/Pd coated, 1 

µm i.d., Thermo Fisher Scientific, West Palm Beach, FL, USA) and mounted in the nanospray 

ion source. Mass spectrometry experiments were performed using a 15T SolariX FTICR 

instrument equipped with an infinity cell (Bruker Daltonics, Bremen, Germany). The following 

instrument settings were used: ESI voltage: 1.2 – 1.3 kV, dry gas temperature: 180 °C, flow rate: 

2.0 L/min, RF amplitude of ion funnels: 200 Vpp, Funnel 1 voltage: 200 V, Funnel 2 voltage: 6 

V, Skimmer 1 voltage: 60 – 180 V (longer for larger precursor masses; not enough to induce 

fragmentation), Skimmer 2 voltage: 5 V, multipole 1 RF: 2 MHz, quadrupole RF: 1.4 MHz, 

transfer hexapole RF: 2 MHz, time-of-flight: 1 – 2 ms (higher for larger proteins). CID 

experiments were performed at collision cell voltages from 30-100V at a collision cell gas flow 

of 35%. Ions were accumulated for 500 ms in the collision cell before entering the infinity ICR 

cell. Source, quadrupole, and UHF pressures were 2.5e0, 3.7e-6, and 1.8e-9 mbar, respectively. 

At least 200 scans were combined to obtain a sufficiently high signal-to-noise ratio. IRMPD was 

performed using a 30 W CO2 laser (Synrad, Mukilteo, WA, USA) interfaced to the back of the 

instrument. Laser power was held at 95% with an irradiation time of 1 s. 

2.3.4 Data Analysis 

For ion mobility-mass spectrometry data, slices of the 2D IM-MS data corresponding to 

peptide charge states were extracted from raw data to text format using TWIMExtract35, a data 

querying tool developed for processing Waters IM-MS data. Extracted data was smoothed 

(Savitsky-Golay, 0.2 m/z window size, 3 cycles), peak-picked, and de-isotoped (max charge 5, 

isotope mass tolerance 0.05 m/z, isotope intensity tolerance 100%) using mMass v5.5.036–38 to 
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generate peak lists. Peaks were identified using an in-house single protein search script written in 

java to allow for identification of fragments containing variable numbers of intrinsically charged 

TMP modifications given the starting protein sequence. a, b, and y-type ions and neutral losses 

of water and ammonia were considered for identification of peaks after examination of the data 

revealed little contribution from other fragmentation pathways. Only terminal fragments were 

considered, as statistically confident identification of internal fragments was not possible given 

available resolution and mass accuracy. Mass tolerance of 10 ppm was used as the cutoff for 

peak identification. At least three replicates were used for all fragmentation data presented 

(Avidin n=5, ADH n=3, Ovalbumin n=3). Fragments identified in fewer than the majority of 

replicates were excluded from analyses. Error bars for sequence coverage plots were presented as 

two times the standard deviation in the number of cleavage sites observed for each replicate. For 

FT-ICR data, Data Analysis 4.0 (Bruker Daltonics, Billerica, MA) was used to extract and 

process raw data into peak lists. Peak lists were then processed using the same in-house search 

program and parameters as ion mobility-mass spectrometry data. 

2.4 Results 

In CID experiments, a large number of collisions with inert gas molecules are required to 

impart sufficient energy for the production of sequence informative fragment ions. This slow 

heating, along with the relatively rapid rate of intramolecular redistribution of the imparted 

vibrational energy39, results in fragmentation of the most labile bonds in the protein. Charge 

mobility plays a key role in the CID process, as “mobile protons”40–42 move along the peptide 

backbone, triggering b- and y-ion formation across a range of sites. Protein complexes preserved 

through the electrospray ionization (ESI) process (i.e. using native mass spectrometry 

conditions) typically have a low charge–to–mass ratio, and are furthermore stabilized by 
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secondary, tertiary, and quaternary structural elements, making typical mobile-proton based CID 

an efficient process for only a small subset of the peptide bonds available. Fixing intrinsically-

charged moieties has been shown to alter the fragmentation of peptides from primarily b- and y-

type ions formed through mobile proton type fragmentation to primarily a-ions formed through 

charge-remote mechanisms26–29, but prior to this report, had not yet been extended to the CID of 

intact proteins and their assemblies. 

The compound 2,4,6-trimethyl pyrylium (TMP) reacts with primary amines to produce an 

intrinsically charged pyridinium salt at the nitrogen of the original primary amine33,34 (Figure 

2-1), resulting in the addition of C8H8
+ with a 

mass shift of 104.06205 Da (Figure 2-1, 

Figure I-1). Labeling under native conditions 

is typically not stoichiometric (Figure I-2, 

Figure I-3), resulting in a mixture of 

modification states. The TMP derivatization 

reaction proceeds under conditions that allow 

for native-like buffer conditions (see 

methods), resulting in labeling of intact 

protein complexes without significantly 

altering their structure (Figure I-4 - Figure 

I-7). IM profiles of the three protein 

complexes examined in this report before 

and after labeling, demonstrate the preservation of a single, compact conformation through the 

labeling procedure. The drift times of the modified proteins increase slightly (5-10%), which can 

Figure 2-1 Charge-fixing chemical modification scheme with 
TMP. At left, the cartoon structure of an example protein complex 
prior to modification with the structure of a lysine residue 
highlighted above. At right, the effect of TMP modification on 
primary amines present in the protein complex (lysine residues 
and the N-terminus). Reaction of the pyrylium with a primary 
amine results in a pyridinium derivative with a fixed positive 
charge on the nitrogen atom of the former amine. Plus signs 
indicate positive charges localized to lysine residues or N-termini 
throughout the protein complex 
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be attributed to the additional mass (up to ~10 kDa) added to the complexes by the reaction, 

which is consistent with previous data involving the native labeling of protein complexes43. 

Furthermore, collisional activation of TMP-modified Avidin tetramer results in an unfolding 

pathway that mirrors that of the unmodified tetramer (Figure I-7), indicating preservation of the 

existing overall structure.  

Following ESI, both TMP fixed charges and mobile protons can influence the CID 

behavior of the complex. Unlike most commonly used, intrinsically charged modifications, such 

as sulfonium-based reagents44,45 and quaternary amines32,46–48, gas-phase decomposition of TMP-

modified lysine is not energetically favorable under typical CID conditions for proteins and 

peptides, ensuring that the charges remain fixed throughout the process. This enables TMP-based 

fixed charges to alter the potential energy landscape associated with protein fragmentation and 

thus enhance the formation of sequence-informative product ions by CID. 

2.4.1 Fixed-charge modification enhances sequence coverage in a model protein complex 

Avidin, a 64 kDa homo-tetramer, has been studied extensively as a CID model for 

noncovalent protein assemblies in native MS49,50. It exhibits some of the strongest noncovalent 

interactions between subunits of known protein complexes, making the tetramer a challenging 

target for top-down sequencing. TMP-modified Avidin tetramer was compared to unmodified 

Avidin using top-down IM-MS to determine the benefits of chemical modification for extracting 

protein sequence information directly from protein complex ions (Figure 2-2). The ion mobility 

separation, specifically, was used to separate peptides of different charge states51, enhancing the 

ability of the time-of-flight mass analyzer to characterize the ion populations resulting from 

fragmentation of the complexes examined. 
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Top-down analyses often require 

significant signal accumulation times, as 

extensively fragmenting a single precursor 

results in many low intensity fragment ions52. 

The impact of TMP modification was 

examined on timescales that both mimic 

those utilized in the context of on-line 

separations coupled to MS detection (30 

seconds total accumulation time) and an in-

depth full coverage experiment, typically 

associated with separation tools coupled off-

line to top-down MS (10 minutes total 

accumulation time). While significant 

accumulation times offer the most 

information on TMP product ion 

populations, the majority of applied top-

down proteomics is typically done on the 

timescale of chromatographic separations, 

where elution of a species typically occurs on 

a timescale of seconds to tens of seconds. As 

such, the 30 second accumulation time data 

shown in Figure 2-2, where we observe the 

greatest enhancements to the number of product ion populations and their orthogonality to those 

Figure 2-2 Enhanced sequencing of the Avidin tetramer following 
TMP modification. (A) Mass spectrum of fragments from CID of 
TMP-modified Avidin compared to (B), mass spectrum of 
fragments from unmodified Avidin presented on the same 
intensity axis. Sequencing information obtained from intact 
Avidin tetramer for thirty-second (C) and ten-minute (D) 
accumulation times (N=3). Cleavage sites unique to TMP-
modified Avidin are highlighted in green, those unique to 
unmodified Avidin in blue, and common to both states in black. 
(E) Total sequence coverage obtained from thirty-second 
fragment accumulation, or (F) ten-minute fragment accumulation, 
for unmodified (blue), TMP-modified (green), and both datasets 
combined (black). 
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produced from unmodified protein ions, represents the most practical assessment of the ability of 

TMP to serve as part of current top-down sequencing workflows.  

The low mass region of the mass spectra acquired for unmodified and TMP-modified 

Avidin tetramers over the ten-minute time frame discussed above (Figure 2-2 A-B) exhibit a 

more even distribution of intensity amongst many fragment peaks when compared to equivalent 

spectra acquired for the  unmodified protein. For example, CID of unmodified Avidin typically 

generates approximately five main fragment peaks that exceed 20% relative intensity (Figure 2-2 

B), which is typical of the CID of proteins having low, native-like charge states. The spectrum 

from TMP-modified Avidin, in contrast, shows intensity more evenly distributed across dozens 

of peaks (Figure 2-2 A). This fragment ion intensity distribution enables, in part, the substantial 

improvement in sequencing observed in our thirty-second accumulation runs, where TMP-

modified Avidin generates nearly double the sequence coverage (17 cleavage sites vs 9) when 

compared to equivalent data for the unmodified protein tetramer (Figure 2-2 C, E).  

Most cleavage sites observed are associated with numerous fragment ions (multiple 

charge states, neutral losses, and modification numbers), thus producing both a rich fragment 

spectra as well as lower total numbers of cleavage sites. Modified Lysine residues are not 

explicitly labeled in Figure 2-2 as the exact location of modification cannot be determined in all 

cases. Over the course of a full ten-minute accumulation, many peaks that are generated in very 

low abundance in the unmodified Avidin accumulate sufficient signal to be resolved and 

identified, reducing the difference in total coverage between modified and unmodified Avidin 

(Figure 2-2 D, F). The combined datasets, however, maintain a significant improvement in 

sequence coverage relative to any individual sequencing dataset due largely to the orthogonality 

of regions we observe to be covered within the Avidin sequence when using modified and 
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unmodified precursor ions. We note that Avidin contains a highly heterogeneous glycosylation 

site at reside ASN-1753,54. Top-down fragmentation datasets from neither control nor TMP-

modified Avidin reveal any evidence of this modification, despite extensive coverage of the n-

terminus of the protein in our TMP-related data up to SER-15. 

TMP modification acts to diversify the structural elements of the Avidin assembly from 

which sequence information can be obtained in addition to improving the total number of 

fragments observed. Figure 2-3 A shows the X-ray structure of Avidin55 (PDB code: 1AVD), 

where highlighted residues indicate a detected fragmentation event for unmodified (Figure 2-3 B, 

E) and TMP-modified (Figure 2-3 C, F) tetramer. We use this representation in order to visualize 

the locations of fragmentation events across the protein surface, taking into account the monomer 

and dimer substructures of the Avidin complex, which are shown in Figure 2-3 in place of the 

tetramer for simplicity. Fragmentation in the 

unmodified Avidin is confined to two main 

regions of the surface map with very little 

coverage of the total protein surface. In 

contrast, the regions of coverage in TMP-

modified Avidin cover more of the protein 

surface and access regions left undetected in 

our datasets from unmodified Avidin, 

particularly at the n-terminus of the protein. 

The orthogonality of coverage is clearly 

demonstrated by projecting a combined 

fragmentation map of the Avidin complex (Figure 2-3 D, G), where a few small regions are 

Figure 2-3 Mapping locations of peptide bond cleavage on 
Avidin. (A) Depiction of the monomer surface map used for 
comparison of cleavage locations, generated from Avidin crystal 
structure (PDB code: 1AVD). Monomer and dimer surfaces from 
the complex were used for ease of view. (B-D) Cleavage site map 
of fragments from thirty-second accumulation for unmodified, 
TMP-modified, and both combined, respectively. (E-G) Cleavage 
site maps from (B-D) presented on dimer surfaces to highlight 
interface locations in the complete Avidin tetrameric complex. In 
the combined views (D, G), blue coloring indicates cleavage sites 
unique to unmodified Avidin, green coloring indicates those 
unique to TMP-modified Avidin, and black coloring indicates 
sites common to both. 
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found in both modified and unmodified Avidin, but much of the observed coverage is unique to 

one experimental condition or the other.  

2.4.2 Modification extends proteomic sequencing to large protein complexes 

Many proteins of critical biological importance assemble into complexes with masses 

that extend to hundreds of kilodaltons and beyond56,57. Such assemblies are exceptionally 

challenging targets for current top-down sequencing technologies, leaving important post-

translational modifications located deep within these sequences inaccessible. In order to 

investigate the ability of TMP derivatization to bridge this technology gap, we modified two 

large protein complexes and carried out top-down sequencing experiments in a mode similar to 

those described above. Alcohol dehydrogenase (ADH) from yeast, a 148 kDa tetramer 

containing several phosphorylation sites, and Ovalbumin from chicken, a 170 kDa tetramer, were 

modified with TMP and subjected to CID for sequencing (Figure 2-4). 

Sequencing data obtained for unmodified ADH results in relatively few fragment ions 

that originate primarily (>90%) from the n-terminal region of the protein. Such results are 

common for typical top-down sequencing efforts involving ADH, in which fragmentation rarely 

penetrates past reside 30 of the protein sequence17,21, though concentrated efforts with multiple 

activation methods have achieved additional coverage23. In contrast, TMP modification of ADH 

yielded a dramatic improvement in CID sequence coverage compared to unmodified ADH, with 

more than twice as many sequence-informative fragments detected for the TMP-modified protein 

(Figure 2-4 A, C). Furthermore, while TMP-modification led to enhanced coverage at the ADH 

n-terminus, on par with previous ETD17 and ECD21 datasets, it also unlocked significant 

fragmentation from the c-terminus, including 12 new c-terminal fragment sites that cover an 

additional 57 residues not typically accessed in unmodified ADH by CID, ECD, or ETD data.  
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Similar to Avidin, TMP modification resulted in orthogonal coverage information and the 

combined analysis of both modified and unmodified data resulted in the most total coverage, 

with nearly two and a half times the coverage of the unmodified ADH alone. Our TMP-modified 

sequencing data also covers a phosphorylation site at SER-31658–60, which was previously shown 

to be up-regulated in the presence of a mating pheromone58. Phosphorylation at this site was not 

detected in our dataset, likely indicating the ADH standard used is not phosphorylated at this 

site, although we cannot rule out loss of the attached phosphate during CID.   

Figure 2-4 Enhanced sequencing of large protein complexes ADH and Ovalbumin. (A, D) Total sequence coverage (number of 
unique peptide bond cleavage sites) obtained from modified and unmodified ADH (a) and Ovalbumin (d) (N=3). (B, E) Sequence 
map of cleavage sites obtained from ADH (B) and Ovalbumin (E). Black dots indicate the middle 150 (b) or 200 (e) residues of 
the protein sequence, from which no coverage was obtained for any condition. (C, F) Cleavage location maps for ADH (C) and 
Ovalbumin (F). As in Figure 2-3, only a monomer is shown of the tetrameric structure to allow view of all sides. Coverage 
unique to unmodified protein is colored blue, TMP-modified protein is colored green, and sites common to both states are 
colored black 
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Unlike ADH and Avidin, both n- and c-termini of unmodified Ovalbumin exhibited 

significant sequence coverage values in our experiments. The compact, low-charge monomer of 

Ovalbumin was analyzed, rather than the intact tetramer due to low amounts of tetramer in both 

unmodified and modified spectra. Despite the significant coverage already present in unmodified 

Ovalbumin, TMP modification still resulted in a substantial improvement in coverage (Figure 

2-4 B, D), with an average over three replicates of nearly 50% more fragmentation sites than 

unmodified Ovalbumin. Like ADH and Avidin, combining the modified and unmodified data 

resulted in the best overall sequence coverage for Ovalbumin, with an 80% improvement over 

unmodified Ovalbumin alone, on average (n=3). Ovalbumin contains several PTM sites; 

however, coverage of these regions of the protein sequence was not significantly extended 

through TMP modification. As might be expected given the similarity of the coverage maps in 

Figure 2-4 D, a superposition of fragmentation data with Ovalbumin monomer structure shows 

an incremental, yet significant, improvement in the diversity of regions of the protein surface 

covered through CID fragmentation of the TMP modified protein (Figure 2-4 F).  

Modification of ADH and Ovalbumin demonstrates the potential of fixed charge 

derivatization with TMP to expand the capabilities of intact sequencing for large proteins and 

protein complexes. The dramatic improvement in sequencing of the ADH tetramer, and 

particularly the generation of fragments from the previously intractable c-terminal region 

represent the potential of TMP modification for enabling sequencing of previously inaccessible 

regions of large protein complexes. TMP modification compares favorably to state of the art 

fragmentation methods such as ECD and ETD without the advanced instrumentation 

requirements of those techniques, and provides complementary coverage in many cases. 

Furthermore, modification by TMP enabled coverage of a PTM site near the c-terminus of ADH 
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that has not been previously accessed before by any top-down analysis to our knowledge. In the 

case of Ovalbumin, where essentially the same regions of the protein are fragmented in both the 

modified and unmodified cases, the improvement to total sequence coverage remains substantial. 

2.4.3 High resolution MS analysis of large complexes 

IM-MS analysis of ADH and Ovalbumin revealed significant portions of the protein 

sequences, despite being generally unable to isotopically resolve large (mass greater than approx. 

8000 Da), highly charged (z > 5) fragment ions. To resolve these large fragments and further 

confirm the sequencing improvements offered by TMP, high resolution FT-ICR tandem MS 

analysis was performed on modified and unmodified ADH and Ovalbumin. 

A comparison of CID fragmentation spectra acquired from the same ADH samples on 

both the FT-ICR and IM-MS platforms reveals clear trade-offs between the two instruments for 

top-down sequencing experiments. On the IM-MS platform, high energy CID and control of 

pressure and gas flow enabled extensive fragmentation of the large protein complex, but the 

mass resolution of the time of flight mass 

analyzer is insufficient to resolve isotopes for 

the largest fragments. The FT-ICR platform, 

in contrast, readily resolves any fragments 

generated, but did not bring about the degree 

of fragmentation observed on the IM-MS 

instrument used (Figure 2-5 D). Fragments 

identified for CID of modified and 

unmodified Ovalbumin precursors were 

nearly identical between the two platforms, 

Figure 2-5 FT-ICR MS sequencing of large protein complexes 
with chemical modification. (A) Comparison of fragment mass 
spectra from IRMPD of intact ADH tetramer unmodified (top) 
and TMP-modified (bottom). (B) Unique cleavage sites obtained 
from IRMPD of ADH unmodified (blue) and TMP-modified 
(green). (C) FT-ICR sequencing of Ovalbumin using both CID 
(left) and IRMPD (right) for unmodified (blue), TMP-modified 
(green), and combined (black) analyses. (D) Comparison of 
sequence information obtained for CID of Ovalbumin on FT-ICR 
(gray), IM-MS (beige), and common to both instruments (brown). 
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with the exception of several high mass fragments identified on the FT-ICR platform that could 

not be isotopically resolved on the IM-MS instrument.  

Infrared multiphoton photodissociation (IRMPD) was performed in addition to CID for 

both ADH and Ovalbumin on the FT-ICR platform. As is the case with our CID datasets 

discussed above, TMP modified ADH and Ovalbumin exhibited dramatic increases in 

fragmentation when compared to unmodified proteins. In the case of ADH, only a single 

fragment could be observed at low intensity in the IRMPD spectrum of the unmodified complex, 

while the TMP-modified complex had nearly a dozen peaks corresponding to five sequence 

informative cleavage sites (Figure 2-5 A, B). Analysis of IRMPD data acquired for TMP-

modified Ovalbumin revealed a similar trend, with activation of the protein producing 18 sites of 

coverage compared to just three for the unmodified Ovalbumin (Figure 2-5 C). 

Like CID, IRMPD requires step-wise heating of the protein in order to deposit sufficient 

energy to elicit sequence-informative fragmentation61. TMP modification results in improved 

sequence coverage for both the CID and IRMPD experiments, presumably due to the fact that 

both methods typically cleave the weakest bonds present in the protein sequence, and that this 

landscape of bond energies is significantly altered in TMP-bound protein ions. Modification by 

TMP thus represents a strategy for enhancing sequence coverage of intact proteins and protein 

complexes across slow-heating fragmentation techniques available on a great many MS 

instrument platforms. Large protein complexes often require many activation techniques 

operating together to achieve sufficient sequence coverage for post-translational modification 

(PTM) analysis and identification purposes, and it is clear from the data reported here that TMP 

modification, or similar strategies based on the principles discussed here, have the potential to 

enable an increased role for CID/IRMPD tools within such workflows. 
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2.5 Conclusions 

Top-down and native MS have emerged as valuable techniques for the analysis of intact 

proteins and protein complexes, but have been limited by incomplete sequence coverage, 

particularly for large proteins and complexes. Chemical modification using intrinsically-charged 

moieties such as TMP provides a simple and effective method to substantially enhance sequence 

coverage of intact proteins and protein complexes. Using this approach, we demonstrate 

enhancements in sequence coverage of three challenging model systems of 50-150% over 

analysis of the unmodified protein complexes by CID alone. We show that TMP modification 

provides these benefits across multiple instrument platforms that utilize multiple activation 

techniques, with enhancements to coverage in both CID and IRMPD datasets. TMP-enhanced 

CID compares favorably with standard top-down activation techniques like ECD, demonstrating 

both comparable coverage in ECD-accessible regions and providing coverage of previously 

intractable regions of the ADH tetramer. 

Despite fixing many positive charges to our model proteins through TMP modification, 

the fragmentation we observe remains dominated by the b- and y-type ions characteristic of 

mobile proton-induced fragmentation, as is typical for CID of unmodified proteins. The absence 

of a shift to primarily a-type ions, contrasting to experiments with charge-derivatized peptides, is 

a novel and somewhat surprising result that demonstrates the persistence of mobile-proton 

behavior for high mass ions capable of intramolecular charge pairing. Clearly, however, the 

fragmentation pattern of intact proteins can be altered by fixed charges, likely through changing 

the relative ordering of bond strengths throughout the molecule as a result of the new locations of 

fixed charges imparted by TMP. We cannot rule out that some of the observed alterations to 

fragmentation are due to pathways associated with charge remote fragmentation events, which 
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was the ultimate aim of the TMP modification chemistry described here. Further data collection 

will be necessary to verify and quantify such channels within TMP modified proteins.  

Modification with TMP is a simple, single-step procedure that can be easily incorporated 

into an existing experimental workflow. Improving sequencing of intact proteins and complexes 

without the need for extensive instrument modifications has the potential to expand the 

capabilities of many laboratories to analyze intact proteins and complexes within top-down 

workflows. A comprehensive protein complex analysis workflow, utilizing TMP modification in 

conjunction with one or several activation techniques, holds the potential to provide both state-

of-the-art sequencing and PTM information as well as structural and stoichiometric details for 

protein assemblies, enabling next generation experiments in structural proteomics. 
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Chapter 3 Chemical Derivatization Illuminates the Links between Controlled Sequence 
Informative Fragmentation Chemistry and Gas-phase Protein Ion Structure 

 

Daniel A. Polasky, Sugyan M. Dixit, Michael Keating, Varun V. Gadkari, Philip C. Andrews, 
and Brandon T. Ruotolo. 

 

3.1 Introduction 

Sequence analysis of intact proteins by tandem mass spectrometry (MS), also known as top-

down proteomics, offers great promise in characterizing the proteoforms1 involved in human 

disease.2–4 This growing field remains limited by the myriad challenges associated with 

achieving complete fragmentation of intact proteins, which is required to accurately localize all 

potential post-translational modification (PTM) sites within a given biopolymer. Such a high bar 

for sequence coverage remains difficult to achieve, rarely accomplished for proteins weighing 

more than 30 kDa,5 and especially challenging to produce when precursor ions are multi-protein 

assemblies, which represent a rapidly expanding group of top-down sequencing targets that 

promise to revolutionize our understanding of functional protein states.5 The tandem MS tools 

used to develop such sequence information rely upon ion activation technologies designed to 

increase the internal energy of isolated protein ions to the point of covalent bond dissociation, 

and despite significant developments in electron and photon-mediated activation techniques, 

activation through collisions with inert, neutral gas remains one of the most utilized methods for 

top-down proteomics due to its ease of implementation and high fragmentation efficiency. As 

ever larger proteins are analyzed, the prediction of protein fragmentation patterns, as is common 

in bottom-up proteomics methods,6–8 is critical to generating high-confidence results. Previous 
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work has indicated that the overall mobility of charges along the protein backbone plays a central 

role in determining its fragmentation, but gaps in fundamental knowledge of gas-phase protein 

structure, salt bridging, and charge solvation mean accurately predicting the charge mobility and 

fragmentation pathways for intact proteins remains a key challenge for the field. 

Extensive study has identified the major fragmentation pathways of small peptides9–16 

and enabled the use of simple fragmentation models in associated sequencing analyses, most 

commonly applied to tryptic peptides generated during bottom-up proteomics experiments. 

Peptide fragmentation is generally divided into two major mechanistic classes: “charge-

directed,” in which a mobile proton12 mediates fragmentation and “charge-remote,” in which 

charging protons are not involved in the fragmentation observed.9 In charge-directed, or mobile 

proton, fragmentation, charging protons can occupy many sites along the peptide backbone and 

fragmentation occurs at the site occupied by a proton following activation.12 In most cases, this 

results in stochastic fragmentation and high sequence coverage for peptide ions. Fragmentation 

on the C-terminal side of proline residues can also be strongly enhanced under these conditions 

due to the high proton affinity of the backbone amide of proline.16 When charging protons are 

not mobile, e.g. when they are sequestered by a side chain with significant gas-phase basicity, 

charge-remote pathways can become lower energy than mobile proton pathways.17,18 The most 

common charge remote pathway in protonated peptides results in the “Asp-Xxx” cleavage 

involving the carboxylic acid group of an aspartic (or glutamic) acid residue.19 The exact 

mechanism for this process is debated, involving either salt bridged19,20 or charge solvated10,21,22 

structures at the acidic site resulting in strongly preferential cleavage at these sites when no 

mobile protons are present.23  
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 In intact protein ions, the competition between mobile proton and charge remote 

fragmentation pathways as a function of proton mobility bears a general similarity to the case 

described above for peptides. Intact proteins can contain many basic residues and carry large 

numbers of charging protons, allowing for a much wider range of proton mobility conditions 

than in peptides. The overall propensities for fragmentation at various amino acids for a large 

number of proteins in both denaturing (high charge state) and native (lower charge states) top-

down MS experiments indicate that precursor ions of the later class result in a greater amount of 

fragment ions produced through charge remote channels.24 Recent studies have demonstrated 

that various mechanisms unique to intact protein ions can be observed at different proton 

mobility conditions.25,26 As a specific example, fragmentation of disulfide bonds, which typically 

preclude sequencing the regions they enclose, has been shown to be competitive with charge 

remote pathways under low charge mobility conditions.27 The relative contributions of these 

processes, are highly challenging to predict a priori for a protein sequence, and represent a 

significant challenge for both experimental design and informatics in top-down proteomics.  

 Chemical derivatization offers a method to affect charge mobility and has a long history 

of use in peptides both for elucidation of fragmentation pathways and as a means to enhance 

fragmentation.28 Early work described fixing charge to peptide termini as means to simplify the 

resulting mass spectra by driving fragmentation into charge remote channels,18,29 and provided 

some of the initial evidence for the role of charge mobility in what would become the mobile 

proton model of peptide fragmentation.17 In intact proteins, several groups have attempted to 

enhance fragmentation via the use of chemical derivatization. Few efforts have involved the use 

of fixed charges as in peptides, due to the instability of most fixed charge derivatives during 

precursor ion activation.30 Instead, indirect modulation of charge mobility through altering the 
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charge states of electrosprayed protein ions, using both charged31 and uncharged derivatives,32–34 

demonstrated that it can be highly challenging to alter protein charge state distributions (CSDs) 

via derivatization. Only by attaching fixed charges to formerly acidic or neutral side chains could 

charge state be increased, and it was found that appending fixed charges reduces the number of 

charging protons acquired during electrospray.31  

  We have previously demonstrated that protein derivatization with trimethyl pyrylium 

(TMP) produces sufficiently stable fixed charges to remain fixed through collision-induced 

dissociation (CID), and that TMP-derivatized protein fragmentation can be enhanced in some 

cases.35 Here, we use the charge fixing capability of TMP, in conjunction with derivatization of 

carboxylic acids, to provide new insight into the role of charge mobility in fragmentation of 

native-like protein and protein complex ions. The addition of fixed charges reduces charge 

mobility, driving fragmentation to charge remote pathways, including Asp-Xxx cleavages and, 

with sufficient fixed charges, directs fragmentation to the site of the fixed charge. Alternatively, 

converting carboxyl groups to amides blocks charge remote fragmentation via the Asp-Xxx 

pathway and restores mobile proton-mediated fragmentation even under conditions of extremely 

low charge mobility. Together, these derivatization strategies enable unprecedented control over 

the fragmentation chemistry of intact proteins, allowing access to charge remote or charge 

directed pathways across a wide range of charge states and primary sequences. Our experiments 

with charge-fixed proteins and complexes also reveal that protein ions have a significant capacity 

to solvate excess positive charge and that canonical salt bridging interactions are not required to 

do so. Molecular dynamics simulations of a model protein including fixed-charge labels reveals a 

strong propensity to form helices that engender strong macrodipoles. TMP-modified lysine 

residues are shown to interact with the helix dipoles, solvating the intrinsic positive charge of the 
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modification. These studies reveal the extent to which intact protein ions are capable of solvating 

charge in the gas-phase, including through substantial rearrangements of secondary structure, 

providing the most complete indication to date of the extent of physical forces opposing 

sequencing technologies for intact proteins.  

3.2 Experimental Methods 

3.2.1 Chemical modification of primary amines 

Proteins were purchased purified (Sigma Aldrich, St. Louis, MO) and diluted to 25uM in 100 

mM triethylammonium bicarbonate (TEAB, Sigma-Aldrich), pH 8.5. 2,4,6-Trimethyl pyrylium 

(TMP) tetrafluoroborate (Alfa Aesar, Haverhill, MA) was dissolved in 100 mM TEAB, pH 8.5, 

vortexed for ten seconds to dissolve, and quickly added to protein solutions at 100-fold excess 

(proteins less than 50kDa) or 1000-fold excess (proteins weighing more than 50kDa) relative to 

protein concentration. For Small EDRK Rich Factor (SERF), 100uM protein was mixed with 25, 

100, 250, or 1000-fold molar excess of TMP to generate varying degrees of modification. All 

reaction solutions were vortexed for ten seconds and allowed to react for 24 hours at room 

temperature. Reactions were quenched by addition of ammonium acetate (Sigma-Aldrich), pH 

7.8, at slight molar excess (1-3) relative to TMP concentration. Quenched reactions were 

subsequently buffer exchanged into 100 mM ammonium acetate, pH 7.8, with P6 microspin 

columns (BioRad Laboratories, Hercules, CA) according to manufacturer instructions. Buffer 

exchanged sample were either analyzed immediately or flash frozen with liquid nitrogen and 

stored at -80 °C prior to analysis. 

3.2.2 Chemical modification of carboxyl groups 

Small EDRK Rich Factor (SERF) was dissolved in 50 mM 2-(N-morpholino)ethanesulfonic acid 

(MES, Sigma-Aldrich), pH 4.5, to make solutions containing 100 µM protein for chemical 
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modification. Glycinamide-HCl (Sigma-Aldrich) was dissolved in water, vortexed for ten 

seconds to dissolve, and added to protein solutions to achieve 10000-fold molar excess relative 

to protein concentration. The reaction mixture was vortexed for one minute. 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide-HCl (EDC, Sigma-Aldrich) was dissolved in water, vortexed 

for ten seconds to dissolve, and added to reaction mixtures to achieve 500 molar excess relative 

to protein concentration. Reaction solutions were allowed to react for 2 hours at room 

temperature. Reactions were quenched by addition of ammonium acetate, pH 7.8, at slight molar 

excess (1-3) relative to EDC concentration. Quenched reactions were subsequently buffer 

exchanged into 100 mM ammonium acetate, pH 7.8, with P6 microspin columns, as in primary 

amine modification procedure. 

3.2.3 Successive modification of primary amines and carboxyl groups 

SERF modified with 1000-fold excess of TMP according to procedure above was buffer 

exchanged into 50mM MES, pH 4.5. Carboxyl group modification was the performed according 

to the procedure above. Following modification, reaction solutions were desalted and buffer 

exchanged into 100mM ammonium acetate by size exclusion chromatography using an S-75 

Increase 3.2/300, 2.4 mL column (GE Healthcare, Chicago, IL) on an Akta Purifier (GE 

Healthcare, Chicago, IL) SEC system. 100 µL of protein solution was injected and buffer 

exchanged into 100 mM ammonium acetate at a flow rate of 0.05 mL/min for 2 column volumes. 

0.1 mL fractions were collected. Fractions containing modified protein were combined and 

concentrated using Vivaspin 500 3 kDa MWCO filters (Sartorius Stedium Lab Ltd, Stonehouse, 

UK) prior to analysis. 
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3.2.4 Ion mobility-mass spectrometry (IM-MS) 

A quadrupole ion mobility time-of-flight mass spectrometer (Synapt G2 HDMS, Waters, 

Milford, MA) was used for all top-down mass spectrometry experiments. 5 μL of buffer-

exchanged protein solution was transferred to a gold-coated borosilicate capillary (0.78 mm i.d., 

Harvard Apparatus, Holliston, MA) for direct infusion. Instrumental settings were optimized to 

preserve intact protein complexes prior to activation: capillary voltage, 1.5 kV; sample cone, 40 

V; extraction cone, 0 V. Gas flows were as follows (mL/min): source, 50; trap, 2 (proteins below 

50 kDa) or 8 (proteins above 50 kDa); helium cell, 200; IM separation, 90. IMS traveling wave 

settings were the same for all proteins: wave velocity, 150 m/s; wave height, 20 V; IMS bias, 5 

V. Backing pressure was set to 2.7 mbar (proteins below 50 kDa) or 8.0 mbar (proteins above 50 

kDa). A single charge state of each protein complex was selected and collisionally activated in 

the trap cell at voltages optimized to dissociate 50-75% of the selected precursor prior to ion 

mobility separation. Time-of-flight pressure was 1.8 × 10−6 mbar for all analyses. Scans were 

combined for 10 minutes to improve fragment ion signal-to-noise ratios. 

3.2.5 High resolution mass spectrometry 

SERF protein with both primary amines and carboxylic acids modified was analyzed on an 

Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Waltham, MA). 5 μL of 

buffer-exchanged protein solution was transferred to a gold-coated borosilicate capillary (0.78 

mm i.d., Harvard Apparatus, Holliston, MA) for direct infusion using a Nanospray Flex ion 

source (Thermo Scientific, Waltham, MA). Capillary voltage was 1.6 kV, transfer capillary 

temperature was 275C. Intact mass analysis was conducted in the Orbitrap analyzer with a 

resolution of 240,000 at m/z 400 with an AGC target of 1e6 and 5 microscans and data was 

accumulated for several minutes to ensure sufficient signal-to-noise ratio for deconvolution. Data 
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was analyzed using Thermo XCalibur Qual Browser and BioPharmaFinder v3.0 software. Intact 

mass deconvolution using BioPharmaFinder was performed in “average over selected retention 

time” mode with a mass range of 3000-25000. All other parameters were left at default values. 

Output from intact mass deconvolution was manually matched to mass of SERF and varying 

numbers of modifications. 

3.2.6 Data analysis 

Top down IM-MS data was processed to a list of monoisotopic peaks using IMTBX36 via the 

IMTBX+Grppr GUI interface with the following parameters: filter size: 4 4 (m/z) 2 2 (drift time) 

0 0 (retention time), hyper values: 1 1 1, intensity cutoff: 20, minimum signal-to-noise: 2 (peak) 

and 3 (most intense peak in isotopic cluster), minimum peak points: 9, noise filtering enabled 

with window 4 8, minimum peaks in isotopic cluster: 3, averagine isotopic model with cluster 

matching tolerance of 100 ppm. Peak lists were annotated to protein sequence using a home-built 

pipeline written in Python. Peak lists were searched using a multipass search strategy, in which 

the first pass searched for only b- and y-ions with no neutral losses and the second pass allowed 

a-ions and neutral losses. Chemical modifications were treated as variable additions to all 

residues capable of modification (lysine and the N-terminus for primary amine modification, 

aspartic and glutamic acids and the C-terminus for carboxylic acid modification). Data was 

calibrated during search using the median error of all hits within 100 ppm of the theoretical 

mass. Final match tolerance was 10 ppm. Fragment intensity plots by sequence position and 

amino acid were generated from matched data normalized by relative fragment ion abundance. 

Charge state distributions and ion mobility profiles were extracted from raw data using 

TWIMExtract.37 Data was aggregated and comparisons performed using custom scripts written 

in Python.  
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Collision cross section (CCS) values were calibrated using Gaussian fitted peak centroids 

in ion mobility arrival time distributions using the Gaussian fitting module of CIUSuite 238 in 

signal-only mode with peak width of 1 ± 0.6 ms and a maximum of 6 peaks. CCS for modified 

SERF was calibrated using D, L polyalanine ions (30 – 32 alanines, 3+ ), ubiquitin 5+, β-

lactoglobulin 8+ and 9+, and β-lactoglobulin dimer 12+ and 13+ ions at a wave height of 20 V, 

wave velocity of 200 m/s, and pressure of 3.4 mbar. CCS calibration for unmodified SERF was 

done using ubiquitin 5+, β-lactoglobulin 7+ – 9+, cytochrome c 6+ and 7+, insulin monomer 3+ and 

4+, and denatured ubiquitin 9+ – 13+ ions at wave height of 30 V, wave velocity of 600 m/s, and 

pressure of 3.4 mbar. He CCS values were used to construct the calibration function. Six 

replicate measurements were taken in order to obtain uncertainty values in our prediction using 

the following equation: 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 =  �𝝈𝝈𝟐𝟐 + 𝒄𝒄𝒄𝒄𝒄𝒄_𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝟐𝟐 + 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 where σ is 

standard deviation of replicate measurement values, cal_rmse is the calibration CCS root mean 

square error (RMSE), and database_error is the uncertainty in the database values39.  

3.2.7 Molecular dynamics simulations 

Molecular dynamics (MD) simulations were performed with CHARMM on a workstation with 

an Intel Xeon processor with eight CPU cores at 2.50 GHz. The CHARMM36 force field was 

employed with CMAP correction for improved treatment of peptide backbones to achieve 

accurate peptide conformations.40 Residue topology file and parameter file for TMP-derivatized 

lysine was generated by combining the lysine topology file from the protein force field and TMP 

topology file from general force field parameters using ParamChem41–43 (Text II-1). Topology 

files for EDC capped aspartic acid and glutamic acid residues were created by combining the 

topology information from unmodified residues, amidated c-terminus, n-methylamide c-

terminus, and glycine residue (Text II-1). Fully extended SERF structure was created both 
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without modification and with TMP and EDC modification. The models were energy minimized 

using steepest descent for 100 steps. The models were then equilibrated at 300 K for 200 ps, then 

subjected to a replica exchange (REX) MD simulation.44–47 Briefly, multiple copies (replicas) of 

the system are simulated at different temperatures independently and simultaneously. Replicas 

are exchanged during the simulation periodically according to a Metropolis-type algorithm. In 

this work, we used 20 replicas covering a temperature range of 300 K to 800 K with 

temperatures distributed exponentially in the specified range. SHAKE was applied to fix the 

lengths of all bonds with hydrogen atoms. Langevin dynamics with a friction coefficient of 5 ps-1 

and a time-step of 2 fs were used. REX simulations lasted 20 ns with exchanges attempted every 

2 ps. The pairwise exchange ratio was greater than 30 % for each run. The coordinates were 

saved every 1 ps. The energy in simulations converged starting at 10 ns. Conformations sampled 

at the lowest temperature (300 K) during the last 10 ns were clustered to provide the final 

models. Details on further analysis are provided in Text II-1. 

3.3 Results and Discussion 

Studies of peptide and protein fragmentation accomplished through CID have determined that 

charge mobility plays a key role in partitioning fragmentation between charged directed and 

charge remote pathways.9–15 When charge mobility is low (e.g. for low charge states of intact 

protein ions), fragmentation is typically dominated by charge remote pathways, often by Asp-

Xxx cleavages. To modulate the degree of charge mobility in intact proteins and complexes 

under native conditions, we utilized trimethyl pyrylium (TMP), a reagent that affixes an 

intrinsically charged pyridinium moiety to primary amines (Figure 3-1 A).29,48 TMP has been 
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shown previously to alter protein 

fragmentation and enable improved 

sequencing for some protein complex 

precursor ions, while remaining stable 

throughout the CID process.35 Each fixed 

charge provided by a TMP modification can 

replace the charge provided by a potentially 

mobile proton, thus reducing the overall 

mobility of charge on the protein.  

To investigate these effects in detail, 

we modified several proteins with varying 

amounts of TMP to generate a range of 

modification states, then selected and 

fragmented each state individually to assess 

the impact of TMP on fragmentation. 

Fragmentation data from equine cytochrome 

C, a 12 kDa heme-containing protein, is 

shown in Figure 3-1 B for unmodified and 

Figure 3-1 C for TMP-modified protein. The 

location of the fragmentation observed, 

displayed as a relative intensity at each 

possible fragmentation site (amino acid 

position) from the N-terminus, shows only 

Figure 3-1 Charge fixing chemical modification drives charge 
remote fragmentation in intact proteins. A) Trimethyl pyrylium 
(TMP) derivatization of lysine residues yields an intrinsically 
charged trimethyl pyridinium group. B) Sequence coverage of 
unmodified equine cytochrome C, shown as relative intensity of 
all fragment ions resulting from a given sequence position from 
N-terminus (position 0) to C-terminus. C) Sequence coverage 
plot of cytochrome C with 8 TMP modifications showing both 
similarity and difference with unmodified protein. D) 
Fragmentation propensity at each amino acid, shown as a ratio of 
the intensity of fragmentation at each amino acid (N-terminal to 
the cleavage site) to the frequency of that amino acid occurring 
in the protein sequence for unmodified protein (D) and 8 times 
TMP modified protein (E). Acidic residues are highlighted in 
red. F) Percentage of all fragmentation occurring N-terminal to 
acidic residues as a function of the number of TMP 
modifications present. G) “TMP effect,” or the increase in 
fragmentation at acidic sites following TMP modification, 
plotted against an approximation of charge mobility, determined 
by subtracting the number of arginines in the protein from the 
observed charge (number of protons). Proteins fall along a trend 
with increasing effect from TMP modification occurring for 
proteins beginning with higher charge mobility. 
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minor differences in the TMP-modified sample compared to unmodified protein. However, when 

sorted by the amino acid at which fragmentation occurred (Figure 3-1 D, E) substantial 

differences become clear. Fragmentation is shown as the relative abundance of all fragmentation 

events occurring N-terminal to each amino acid type, normalized against the frequency of that 

amino acid in the sequence. For example, if all residues fragmented with equal likelihood, the 

fragmentation propensity plots in Figure 3-1 D and 1E would have a uniform magnitude of 1 for 

all amino acids. In the TMP-modified protein, cleavage at acidic residues (Asp and Glu) has 

become the dominant fragmentation pathway, representing nearly 60% of all fragment ion 

intensity with an enhancement factor of ~7-fold, as opposed to the 11% of fragment ion intensity 

in the unmodified protein observed with no significant enhancement over other amino acids. The 

relative intensity of fragment ions from acidic residues is very strongly correlated with the 

degree of TMP modification (Figure 3-1 F). Thus, as TMP is added to the protein, charge 

mobility is reduced, increasing the energy of mobile proton fragmentation pathways and 

resulting in charge remote fragmentation at acidic sites.  

 We extended this analysis to native proteins and complexes covering a wide range of 

molecular weights and expected charge mobilities. Proton mobility has been shown to be 

strongly influenced by arginine residues, which have a relatively high proton affinity in the gas 

phase and can effectively sequester a proton, preventing it from moving along the peptide 

backbone.9,12–14 Other basic residues, such as lysine and histidine, can also reduce proton 

mobility, but generally to a lesser extent.12,13 Proteins and protein complexes with 2-60 arginines 

were analyzed with and without TMP modification and the difference in the amount of 

fragmentation in charge remote (acidic residue) channels was plotted against a charge mobility 

score, which we defined as the observed charge of the protein minus the number of arginine 
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residues, resulting in a strong correlation (Figure 3-1 G, Figure II-1). Proteins and complexes 

with more protons than proton-sequestering arginine residues, and thus a high degree of charge 

mobility, e.g. cytochrome C and carbonic anhydrase, experienced dramatic changes in 

fragmentation following TMP modification. In contrast, aldolase tetramers and serum amyloid P-

component (SAP) pentamers, which contain more arginines than protons and thus exhibit very 

low charge mobility, experienced almost no effect from TMP modification as charge-remote 

fragmentation pathways were already likely lower energy than mobile proton pathways prior to 

TMP modification in these systems. Fixed-charge modification by TMP thus provides a method 

to modulate protein fragmentation as a function of charge mobility, enabling high charge 

mobility proteins, e.g. highly charged proteins electrosprayed from denaturing solvents, to be 

fragmented under low charge mobility conditions, accessing charge remote pathways.  

 In all proteins probed in Figure 3-1, charge remote fragmentation occurring at acidic 

residues was the primary pathway in competition with mobile proton fragmentation. To probe 

the limits of the acidic charge remote pathway, we investigated the Small EDRK-Rich Factor 

(SERF) protein from s. cerevisiae. SERF is an intrinsically disordered protein49 and contains 

many acidic and basic residues (Figure 3-2 A). Charge states from 5+ to 15+ were observed 

following electrospray ionization, resulting in a range of charge mobility conditions. Because of 

its small size (68 amino acids) and large proportion of TMP-modifiable residues (14 lysines), 

SERF presented a unique opportunity to study the extreme limits of low charge mobility 

following extensive TMP modification under native conditions. As expected for a highly basic 

protein, the 8+ charge state of unmodified SERF fragmented almost exclusively (>80% of total 

fragment intensity, approx. 10-fold enhancement relative to aspartic acid frequency) via charge 

remote fragmentation at acidic residues. Unlike the proteins surveyed in Figure 3-1, however, the 
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addition of up to 14 TMPs to SERF resulted 

in decreased fragmentation at acidic residues 

(Figure 3-2 D). This corresponded with a 

reduction in fragmentation on the C- 

terminal side of proline residues, as would 

be expected when reducing the availability 

of mobile protons, indicating that the 

reduction in acidic fragmentation was not 

due to an increase in mobile proton-mediated 

fragmentation (Figure 2E). Further 

investigation revealed that fragmentation 

was shifting specifically to the TMP-

modified lysine residues (Figure 3-2 C) 

containing the fixed charges. Indeed, the 

intensity of fragmentation at lysine residues 

within modified SERF tracks in an inverse 

manner with the fragmentation at acidic and 

proline residues (Figure 3-2 F), and almost no 

fragmentation (less than 20% of all fragment 

intensity in all cases) is found N-terminal to 

residues other than Asp, Glu, or Lys. To our knowledge, cleavage of the peptide bond to form b- 

and y-ions at the site of a side chain containing a fixed charge has not previously been observed 

on the scale of an intact, multiply charged protein. This result indicates that directing CID to the 

Figure 3-2 TMP modification of SERF protein reveals 
fragmentation at fixed charge sites. A) Sequence of yeast SERF 
protein with Lys, Arg, Asp, and Glu residues highlighted. B) 
Fragmentation propensity ratio (intensity of fragmentation at a 
given amino acid over frequency of that amino acid in the protein 
sequence) maps for 8+ SERF without (B) and with (C) TMP 
modification. D) Percentage of all fragment intensity occurring 
N-terminal to acidic residues for 8+ Serf as a function of the 
number of TMP modifications present. 50% acidic fragmentation 
line is highlighted for reference. E) Percentage of fragmentation 
occurring C-terminal to proline for 8+ SERF. F) Percentage of 
fragmentation occurring N-terminal to lysine for 8+ SERF. G) 
Number of TMP modifications required to pass below 50% 
acidic fragmentation as a function of SERF charge state.  
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site(s) of introduced charges is indeed possible in intact proteins provided charge mobility can be 

reduced sufficiently, e.g. by using fixed charge reagents targeting multiple side chain chemistries 

in proteins with fewer basic residues than SERF.  

 Somewhat surprisingly, the transition from charge remote fragmentation at acidic 

residues to fragmentation at fixed charge sites was dependent on the SERF charge state probed. 

For higher charge states, more TMP modifications were required to reduce the resulting 

fragmentation at acidic residues to < 50%, shifting the remaining fragment ion current to 

charged-fixed lysines (Figure 3-2 G). Asp-Xxx fragmentation at acidic residues is thought to 

proceed in the absence of mobile protons, so the relatively increased amount of this pathway we 

observed in high-charge state TMP-modified SERF, where charge mobility would be increased, 

must be explained by other processes. We speculate that the charge solvated structures involved 

in Asp-Xxx cleavage may be more energetically favorable under higher charge conditions, 

lowering the barrier for this process relative to the direct fragmentation at fixed charges at high 

charge states.   

While charge fixing modifications like TMP can reduce charge mobility and direct 

fragmentation to charge remote channels, the specificity of these channels presents challenges in 

many sequencing analyses for which the more evenly distributed fragmentation provided by 

mobile proton pathways is superior. We investigated the use of carbodiimide chemistry to 

modify acidic sites (aspartic and glutamic acids and the C-terminus) to amides50–52 (Figure 3-3 

A) as a method to block charge remote fragmentation at acidic residues. Modification of SERF 

by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), with glycinamide added in excess 

as a nucleophile, resulted in capping of carboxylic acid groups with the glycinamide (Figure 3-3 

B, Table II-1). Compared to unmodified SERF (Figure 3-3 C), EDC modification of SERF 
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resulted in a dramatic improvement in sequence coverage, with ~20 sites exhibiting more than 

10% relative intensity of fragments (Figure 3-3 D), as opposed to just 2 sites in unmodified 

SERF. As noted above, in unmodified SERF, the large number of arginines (9) and lysines (14) 

results in very low charge mobility even at high charge states (e.g. 13+), and fragmentation at 

acidic residues dominates, with >60% of fragment intensity resulting from cleavage at aspartic 

acid alone, an enhancement of nearly 10-fold compared to the frequency of aspartic acid in 

Figure 3-3 Effect of blocking acidic residues with amides on protein fragmentation. A) Modification of carboxylic acids with 
EDC in the presence of excess glycinamide converts them to amides. B) Mass spectrum of EDC-modified SERF (6+) shows near 
complete derivatization of the 12 available carboxylic acids with minor contributions from crosslinks. C) Sequence coverage 
(shown by fragment relative intensity) as a function of position from the N-terminus (position 0) to C-terminus (position 68) for 
unmodified (C), EDC-modified (D), and TMP + EDC-modified (H) SERF. EDC-modified SERF exhibits the greatest sequence 
coverage. E) Fragmentation propensity ratio maps for unmodified (E) and EDC-modified (F) SERF. Inset of (F) shows the 
number of each amino acid present in SERF, which is similar to the distribution of fragment intensity following EDC 
modification. G) Mass spectrum of SERF (10+) modified with both TMP and EDC, producing a series of 10-15 TMP (“Txx”, 
where “xx” is the number of TMPs) modifications for each of 6 major EDC modification types (color coded in legend). H) 
Sequence coverage map of TMP + EDC modified SERF. I) Fragmentation propensity ratios of TMP + EDC-modified SERF.  
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SERF (Figure 3-3 E). When acidic residues are converted to amides by EDC, the charge remote 

Asp-Xxx fragmentation pathway is effectively blocked, and fragmentation occurs more evenly 

across the amino acids present in SERF (Figure 3-3 F). No single residue experiences more than 

a 1.6-fold enhancement in fragmentation relative to its frequency, and many residues are 

clustered around a ratio of 1, indicating a remarkably stochastic distribution of fragmentation 

(Figure 3-3 F). This distribution of fragment ions across many types of amino acids is 

characteristic of mobile proton fragmentation and indicates that by blocking the charge remote 

pathway, the protein returns to primarily mobile proton-mediated fragmentation, even under 

conditions of very low charge mobility. Additional energy is required to cause fragmentation 

following EDC modification (Figure II-2), confirming that the mobile proton pathway is less 

favorable than charge remote fragmentation of the unmodified SERF protein under the low 

charge mobility conditions analyzed here. Other charge states of EDC-modified SERF show 

similarly distributed fragmentation across many amino acids (Figure II-3). Additionally, TMP-

modified SERF was subsequently modified using EDC to investigate the fragmentation 

pathways with charge remote channels blocked under conditions of low charge mobility. The 

combination of modifications results in a complex mass spectrum (Figure 3-3 G) that 

corresponds to each of the major peaks in the SERF + EDC spectrum (Figure 3-3 B, Table II-2) 

with a range of 9-15 TMPs. Similar to the EDC-modified SERF, SERF with both capped acidic 

residues (EDC) and fixed charges from TMP exhibited relatively stochastic fragmentation, 

without clear evidence of any residue-specific charge remote fragmentation channels (Figure 3-3 

H, I). Due to the large number of modification states present, signal dilution resulted in 

significantly lower yields of detectable fragment ions, and the minor differences observed 
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between the EDC and EDC + TMP fragmentation results are largely attributed to the resulting 

differences in data quality.  

 As charge mobility is the primary factor influencing the relative favorability of charge 

remote vs mobile proton fragmentation pathways, predicting charge mobility (e.g. from protein 

sequence and observed charge, as in Figure 3-1) would provide a method to predict the expected 

fragmentation pathways of a protein. In Figure 3-1, it was assumed that an added fixed charge 

would replace a charging proton; however, observations from several TMP-modified proteins 

indicate this is not always the case. For SERF in particular, more intrinsically charged TMP 

modifications were observed than the charge of the protein in many cases. For example, up to 14 

TMPs are observed on the 8+ charge state of SERF (Figure II-4 A) without adduction of anionic 

charge carriers (e.g. acetate or other anions). Thus, up to six charges on this 8+ SERF are being 

neutralized, presumably via intramolecular salt bridges or charge solvation. Salt bridges within 

positively charged protein ions can result from the pairing of acidic and basic residues or positive 

charge, resulting in a neutral net charge. Capping acidic residues with EDC prevents this 

common form of salt bridge from occurring, as no carboxylic acids are available following 

modification. Comparing the charge states of TMP-modified SERF (Figure II-4 B) to 

TMP+EDC-modified SERF (Figure II-4 C), minimal differences in charge states are observed, 

with distributions centered around 10-11+ and extending from 7+ to 15+ in both cases.  

We performed molecular dynamics simulations of modified and unmodified SERF 

protein to investigate the neutralization of these charges in the absence of canonical salt bridging 

sites. REX simulations provided models for unmodified and TMP and EDC derivatized SERF 

molecules (Figure II-5, Figure II-6) with CCS values in excellent agreement with values 

observed from experiment. Unmodified SERF exhibits a large range of charge states and CCS 
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values, ranging from 5+ to 15+ and 8.9 nm2 

to 19.6 nm2, respectively (Figure 3-4 A, 

Table II-3). There is a general trend of 

increasing CCS as a function of increasing 

charge states for SERF species, as is 

common for disordered proteins. SERF 

cluster models from 300 K replica of REX 

simulations have mean CCS values 

ranging from 10.3 nm2 to 11.3 nm2 (Figure 

3-4 A, Table II-4). These values are within 

3 % of CCS values for SERF 5+, 6+, and 

the most compact 7+ conformers. Like 

unmodified SERF, SERF modified with 

TMP and EDC exhibits a range of charge 

states (8+ to 15+) and conformations, as 

evidenced by large distribution of CCS 

values, with mean value ranging from 11.5 

nm2 to 21.8 nm2 (Figure 3-4 A, Table II-4). 

However, CCS values recorded for 

modified SERF does not increase near-

linearly as a function of protein charge 

state as in the case of unmodified SERF. 

The 8+ species of modified SERF presents a highly heterogeneous CCS distribution, with mean 

Figure 3-4 A) Plot of CCS vs. all charge states observed for 
unmodified and modified SERF. The shaded region in cyan and 
orange shows theoretical CCS calculated using IMPACT11 and 
IMoS12,13 (See Supporting Info) for unmodified and modified SERF. 
The most dominant cluster of unmodified and modified SERF 
structures are shown in B) and C), respectively. The structures are 
color coded according to the secondary structure element. D) Plot of 
fraction of helix observed in all clusters for unmodified and modified 
SERF. E), F), G), and H) shows electrostatic interactions between 
lysine modified with TMP to carbonyl oxygen atoms on the peptide 
backbone. 
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CCS values spanning 11.5 nm2 to 19.1 nm2, accounting for almost 88% of CCS observed across 

all charge states (Table II-4). Modified SERF cluster models also exhibit a large CCS 

distribution with values ranging from 15.1 nm2 to 17.8 nm2, as shown in Figure 3-4 A (Table 

II-4). These values encapsulate many structural populations observed experimentally across 

different charge states. We further evaluated our SERF models in order to examine the structures 

in detail, leveraging the excellent CCS agreement achieved between theory and experiment. The 

most dominant cluster observed (Cluster 0) for both unmodified and modified versions of SERF 

are shown in Figure 3-4 B and C, respectively. Unmodified SERF adopts a mostly unstructured 

form in the gas phase, consisting primarily of loops, with a total helical content of < 10% (Figure 

3-4 B, Table II-5, Figure II-8). However, when labeled with TMP and EDC, SERF gains 

substantial helical content over the unmodified version (Figure 3-4 C, 4D, Table II-6, Figure 

II-9). We observed regions of both α-helix and π-helix53 in most of our output structures for 

modified SERF (Figure 3-4 C, Table II-6, Figure II-9). As shown in Figure 3-4 D, modified 

SERF clusters exhibit helical content in the range of 21-61%.  

Our inspection of SERF model structures produced by REX simulations led us to 

speculate that the helicies generated upon TMP/EDC modification may provide the protein an 

alternative means of charge solvation, thus rationalizing both the relatively invariant SERF 

charge state distributions and fragmentation chemistry observed in our experiments. By 

evaluating z-scores computed in order to track interactions between the positively charge 

nitrogen atom in TMP-modified lysine and carbonyl oxygen atoms in the peptide backbone 

within a distance of 5 Å, we observe that lysines are involved in many electrostatic interactions 

in both unmodified and modified SERF (Figure II-12, Figure II-13). The highly compact 

structures modeled for unmodified SERF show many of these electrostatic interactions with 
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carbonyl oxygen atoms. As these structures match the experimental CCS for very low charge 

states of SERF, the number of these interactions observed indicates a highly compacted structure 

supported by a high degree of charge solvation. In fully modified SERF, we observe electrostatic 

interactions specifically involved in the helical regions of the protein (Figure 3-4 E, F, G, H, and 

Figure II-13). For example, the fixed positive charge on derivatized lysine 60 interacts with the 

c-terminal end of the α-helix shown in Figure 3-4 E, stabilizing the helix macrodipole. We also 

observe the fixed positive charge on lysine 19 in the loop region interacting with two carbonyl 

oxygen atoms in the helix region (Figure 3-4 F), instances where a fixed positive charge within 

an α-helix region interacts with a loop region (Figure 3-4 G), and interactions in π-helix regions, 

for example, where the fixed positive charge on lysine 62 interacting with the carbonyl oxygen in 

alanine 55 (Figure 3-4 H). Our models also suggest that there are many longer range interactions 

(Figure II-10 - 13) within 10 Å with similar distribution to the interactions observed within a 5 Å 

distance threshold we used to analyze the modified SERF clusters (Figure II-13), indicating that 

both short and long range interactions could be involved in charge solvation. The prevalence of 

such electrostatic interactions in our models for both modified and unmodified SERF suggest 

that such forces play an important role in the gas phase structures of biomolecular ions and 

represent a potentially significant barrier to top-down sequencing methods for intact proteins, 

especially those captured in native-like conformations. 

3.4 Conclusions 

We present a wide-ranging data, using multiple chemical derivatization methods to control the 

CID fragmentation pathways of intact proteins. By affixing stable, intrinsically charged moieties 

with TMP, we direct fragmentation to charge remote channels by replacing mobile protons with 

fixed charges and show that the effects of this derivatization are predictable given the number of 
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arginines present in protein sequence and the charge state observed following electrospray. 

Following extensive labeling under conditions of very low charge mobility, we also demonstrate 

fragmentation of an intact protein specifically at the site of introduced charged labels, a 

foundation with the potential to provide a unique degree of control over protein dissociation via 

CID. Alternatively, by blocking acidic functional groups with EDC, we can prevent charge 

remote fragmentation and return to mobile proton-mediated dissociation regardless of the level 

of charge mobility in the protein. Combining these labeling techniques results in a paradigm in 

which any protein can be fragmented under charge remote or charge directed conditions 

regardless of the initial charge mobility of the system, provided that sufficient reactive residues 

are available for the derivatization in question. Further development of stable, intrinsically 

charged labels targeting other amino acids offers a path to ensure sufficient charge can be affixed 

to any protein system of interest.  

Finally, experiments with intrinsically charged labels on protein ions reveal the immense 

capacity of these ions to accommodate excess charge. Through capping of acidic residues and 

molecular dynamics simulations, we find evidence for widespread solvation of charges in gas-

phase protein ions, including to the point of substantially altering the secondary structure in 

charge-derivatized SERF. We found this result especially surprising, as proteins routinely 

undergo denaturation in order to accommodate excess charge, yet our data suggests that proteins 

possess a previous unappreciated capacity to absorb excess charge and remain compact, even 

when canonical salt-bridging within the structure is blocked. The observations indicate charge 

solvation plays a critical role in the structures of gas-phase protein ions and represents a key 

challenge to overcome for further development of top-down sequencing technologies. 
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Chapter 4 IMTBX and Grppr: Software for Top-Down Proteomics Utilizing Ion Mobility-
Mass Spectrometry 

 
Adapted with permission from: Dmitry M. Avtonomov*, Daniel A. Polasky*, Brandon T. 

Ruotolo, and Alexey I. Nesvizhskii. IMTBX and Grppr: Software for Top-Down Proteomics 
Utilizing Ion Mobility-Mass Spectrometry. Anal. Chem. 2018, 90 (3), 2369–2375. 

(*equal contribution) 
 

4.1 Abstract 

Top-down proteomics has emerged as a transformative method for the analysis of protein 

sequence and post- translational modifications (PTMs). Top-down experiments have historically 

been performed primarily on ultrahigh resolution mass spectrometers due to the complexity of 

spectra resulting from fragmentation of intact proteins, but recent advances in coupling ion 

mobility separations to faster, lower resolution mass analyzers now offer a viable alternative. 

However, software capable of interpreting the highly complex two-dimensional spectra that 

result from coupling ion mobility separation to top- down experiments is currently lacking. In 

this manuscript we present a software suite consisting of two programs, IMTBX (“IM Toolbox”) 

and Grppr (“Grouper”), that enable fully automated processing of such data. We demonstrate the 

capabilities of this software suite by examining a series of intact proteins on a Waters Synapt G2 

ion-mobility equipped mass spectrometer and compare the results to the manual and 

semiautomated data analysis procedures we have used previously. 

4.2 Introduction 

Rapid assessment of protein sequence by mass spectrometry (MS) has enabled a 

revolution in the analysis of biological and biochemical samples,1 powering the rapidly 
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expanding field of proteomics. Typical proteomic workflows involve the enzymatic digestion of 

proteins into peptides, which can be separated by chromatography to enable rapid analysis by 

MS.2,3 Despite the advances made with these techniques, the requirement for enzymatic digestion 

in these “bottom-up” approaches often complicates identification and complete analysis of the 

post-translational modifications (PTMs) and proteoforms that are critical to biological function 

of proteins.4,5 In response, “top-down” MS techniques have been developed to sequence intact 

proteins without enzymatic digestion.6–8  

Top-down MS holds great promise but remains less common than bottom-up approaches 

due to a number of technical challenges associated with achieving efficient separation and 

fragmentation of intact proteins. One of the major challenges associated with top-down 

techniques is the low signal-to-noise ratio (SNR) of sequence-informative fragment ions.9 

Fragmentation of intact proteins typically results in a population of ions distributed among 

charge states ranging from 1+ to 5+ or higher, with masses extending from 100 to over 10000 

Da. For larger proteins in particular, the need to generate hundreds of fragments from a single 

precursor in order to achieve sufficient sequence coverage often results in poor SNR for 

fragment ions, as well as many instances of overlapping isotopic distributions. To resolve these 

overlapping distributions, most top-down MS workflows utilize Fourier transform (FT) 

instruments (both ion cyclotron resonance (ICR) and Orbitrap) that possess extremely high MS 

resolving power. While capable of producing exceptionally narrow line widths for MS measure- 

ments, such equipment also requires significant acquisition times per spectrum to achieve high 

performance results, creating a situation that gives rise to low instrument duty cycles and 

difficulties in coupling to chromatographic separations. Slow acquisitions compound the 

challenge of low SNR for fragment ions, as fewer spectra can be acquired to average and 
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improve spectral quality. Significant efforts have been made to mitigate these challenges,10–12 but 

they remain a barrier to widespread adoption of top-down approaches.  

Ion mobility-mass spectrometry (IM-MS) offers a promising alternate path to alleviate 

several of the challenges detailed above by providing additional separation of the product ions 

created during top-down sequencing experiments. IM separates ions based on their migration 

time through a chamber pressurized with inert neutrals under the influence of a relatively weak 

electric field. Ions of different orientationally averaged sizes (collision cross sections, CCSs and 

charges take different amounts of time to travel through the IM device, offering significant 

improvements to the peak capacity of a given mass analyzer for a complex fragment ion 

population.13 The improvements offered by IM have seen adoption for bottom-up proteomics,14–

16 and initial proof-of-concept demonstrations for top-down protein sequencing have been 

reported,17,18 but the routine use of IM-MS for top-down proteomics remains rare. This trend 

runs counter to a dramatic increase in the use of IM-MS in many other MS-based fields, such as 

native and structural MS,19 metabolomics,20 and drug discovery,21 which have appeared since the 

introduction of commercial IM-MS instruments.  

Perhaps the most significant reason for the lack of adoption of IM-MS for top-down 

proteomics is the general lack of software for processing IM-MS data containing the complex 

fragment ion populations inherent in top-down analyses. It has been well established for MS data 

that top-down data requires specialized analysis tools that differ from those used for bottom- up 

data,22,23 and the same need for specialized tools is clearly required for top-down IM-MS data. 

While many software tools have been developed for automated handling of top-down MS data 

without IM, they are generally incapable of handling IM- MS data, due both to differences in the 

spectral characteristics of the raw data and a general inability to read raw IM-MS data from any 
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format in which it is natively generated. Indeed, all reports of IM-MS top-down to date, to our 

knowledge, rely largely or entirely on manual interpretation of spectra. The complexity of 

fragment ion populations generated in top-down experiments makes this a massively time-

consuming process, as hundreds to thousands of peaks must be identified in each data set, 

severely limiting the scope and speed of viable experiments. Here, we describe a software suite 

capable of processing top- down IM-MS data in a rapid and automated fashion to enable routine 

top-down IM-MS analyses. The suite consists of two tools, IMTBX (“IM Toolbox”) and Grppr 

(“Grouper”), which together can completely process complex top-down fragmenta- tion data into 

an accurate monoisotopic peak list in seconds. The list can be annotated in a sequencing program 

of choice. A plotting module enables flexible visualization of IM-MS data and detected peaks to 

evaluate the impact of peak detection parameters. The suite is modular, with a robust scripting 

interface to enable extension into any IM-MS data processing workflow. Both Grppr and 

IMTBX can be downloaded from github repositories: https://github.com/chhh/Grppr and 

https://github.com/chhh/IMTBX (the latter includes a combined package with both tools) 

4.3 Methods 

4.3.1 Experimental Section 

Ubiquitin (bovine), Myoglobin (bovine), Carbonic Anhydrase (bovine), Transthyretin 

(human), β-lactoglobulin (bovine), Avidin (chicken), Aldolase (rabbit), and ammonium acetate 

were purchased from Sigma- Aldrich(St.Louis, MO).Serum amyloidp-component (human) 

protein was purchased from EMD Millipore (Billerica, MA). Proteins were buffer exchanged 

into 100 mM ammonium acetate using Micro Biospin 6 spin columns (BioRad, Hercules, CA) 

prior to analysis by IM-MS. All data was collected using a Synapt G2 HDMS IM-Q-ToF mass 

spectrometer (Waters, Milford, MA). Intact protein ions were generated using a direct infusion 
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nESI source in positive mode. Applied capillary voltage was 1.5 kV, and the sample cone and 

extraction cones were operated at 40 and 0 V, respectively. Instrument settings were optimized to 

preserve native-like protein ions and noncovalent complexes prior to CID, as described 

previously.24 A single charge state protein ion was selected in the quadrupole and collisionally 

activated in the trap traveling-wave ion guide (voltage applied depending on protein molecular 

weight, from 75 V for Ubiquitin to 200 V for Aldolase), which was pressurized to 2−4 × 10−2 

mbar with argon gas. Ion mobility separation was performed at a pressure of 3 mbar with 20 V 

wave height and 150m/s wave velocity. The ToF mass analyzer was operated over the range of 

100−6000 m/z for Ubiquitin and Myoglobin, and 100−8000 m/z for all other proteins, at a 

pressure of 1.5 × 10−6 mbar 

4.3.2 Data Processing 

Data was analyzed with IMBTX and Grppr and a “semi-automated” workflow comprised of 

several software packages. For IMTBX analysis, IMTBX version 2.9.1 and Grppr version 0.3.6 

were used. Parameters used can be found in Supporting Information, Table 1. A wrapper script 

written in Python 3.5 was used to operate both IMTBX and Grppr in a batch processing mode 

prior to the development of a user interface. Isotopic cluster output from Grppr was annotated 

using ProSight Lite25 or a custom peak annotation program in Python 3.5 for batch processing. 

For the semiautomated processing comparison workflow, regions of two-dimensional IM-MS 

data space corresponding to fragment charge states were extracted using TWIMExtract.15 

Extracted data were smoothed (Savitsky-Golay, 0.2 m/z window size, 3 cycles), peak-picked 

(Intensity threshold 500, picking height 90%), and deisotoped (max charge 5, isotope mass 

tolerance 0.05 m/z, isotope intensity tolerance 100%) in mMass v5.5.0.26–28 Final output was 

annotated with the same custom annotation script as IMTBX data. Charge state comparisons 
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were generated by comparing the annotated charge state against the m/z and drift time of each 

detected cluster. ProSight Lite, TWIMExtract, and mMass are all publicly available free software 

packages.  

Processing raw data is a two-stage process: peak picking and isotopic cluster detection. 

First single 2D peaks (m/z, ion mobility drift time) in raw data are detected and written to a file, 

followed by grouping these peaks into isotopic clusters. Two in-house built software tools 

perform these steps: IMTBX (Ion Mobility Toolbox), which does raw peak picking, and Grppr 

(Grouper), which performs isotopic grouping. 

4.3.3 Raw Feature Detection (IMTBX) 

IMTBX is written in C# (.NET 4.5.1), it can currently read data from Waters IM-MS or 

SONAR enabled instruments, such as Synapt G2-Si or Xevo systems. It can also handle regular 

LC-MS data without IM. An API to support custom data format adapters is under development. 

For assistance with unsupported data formats, please contact the authors. IMTBX can operate in 

two modes: scan summation/averaging followed by 2D peak detection in a single combined scan, 

the mode that is used throughout this manuscript, or 3D peak detection for LC-MS data where 

retention time is added to the model. If the data contains a lock-mass channel (that is Waters 

specific), it can be processed as well - time dependent mass calibration correction can be 

calculated and applied to spectra as they are being processed.  

Each IM scan in Waters data is represented as a sparse matrix of N rows and M columns, 

where N is the number of IM drift bins (typically 200), and M is the number of bins for m/z axis 

(varies, typically 100000−300000 bins). Data from other instruments that can be represented in 

such a simple format can be accommodated for IMTBX analysis. IMTBX data processing steps 

are schematically shown in the left part of Figure 4-1. For top-down applications, all ion mobility 
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scans are added together or averaged (IMTBX has options for both), then a 2D filter of user-

selected size and shape (typically Gaussian) is applied for smoothing. Optionally, a step of 

removing “lone” data points can be applied, i.e. nonzero intensity data points that do not have 

many neighboring nonzero points. The exact meaning of “having many neighbors” is, again, user 

selectable, with the default settings optimized for data observed in this and similar studies. After 

that, local maxima in the scan are found and used as seed points for fitting the data with 2D 

Gaussians. Even though the peaks are actually not ideal 2D Gaussians, especially in the IM 

dimension, variations from this 

expectation do not negatively 

influence the data analysis 

described here to a significant 

extent. In addition, the actual 

maxima locations are also 

reported for each detected 2D 

peak, not only the means in m/z 

and IM dimensions. Several stages 

of data filtration are shown in 

Figure 4-1.  
Figure 4-1 Top left: Raw unprocessed data from a single IM scan for 3+ and 4+ 
Ubiquitin ions from a Waters Synapt-G2 platform. A slice of data for m/z 
1295−1298, drift 30−55 containing two differently charged ions is shown. 
Horizontal axis is m/z, vertical axis is IM drift time. Top right: Same data slice 
after Gaussian filtering with default parameters. Bottom left: 580 filtered scans 
added together, bilinear interpolation applied. Bottom right: Same as “bottom 
left” with intensities square rooted. Detected single 2D Gaussian peaks are 
marked with ovals, semiaxes corresponding to two standard deviations. 
Horizontal lines mark the locations and span of two detected isotopic clusters: 
charge 3+ at the top and 4+ at the bottom. 
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As top-down 

proteomics data often 

contains low SNR features 

that possess many local 

maxima even after filtration, 

our fitting procedure may 

result in multiple peaks in 

the proximity of the true 

peak apex location. Thus, 

the resulting list of detected 

peaks is further filtered to 

remove such spurious 

signals. For each peak, 

multiple values are reported including: m/z, m/z standard deviation, drift time, drift time standard 

deviation, intensity at apex, total intensity (the sum of intensities over all data points assigned to 

the identified peak), and area (the number of data points used to define the peak). Several output 

text formats are available. For each peak, SNR is established using root-mean-square (RMS) 

noise estimation. Depending on user-defined parameters, peak lists that result from the above 

procedure may contain peaks that result from noise rather than analyte signals. In such cases, our 

isotopic grouping program, Grppr (described below), uses 2D isotopic clustering as a stringent 

filter, ignoring peaks for which other isotopologues are not reliably detected. Most of these 

processing steps can be visualized in the software GUI (graphical user interface) that can display 

1D and 2D spectra both before and after signal processing, with options to enable or disable 

Figure 4-2 Graphical interface for viewing raw IM-MS data, processing stages and ion 
detection results. The software displays 1D spectra, 2D spectra, and the mass axis bin 
scaling. The various controls shown at the bottom allow to turn on/off and customize 
individual processing steps available in IMTBX. Shown in the figure is a 2D map view 
of a portion of an ion mobility scan (ion mobility drift time vs m/z, intensity as color) 
processed by IMTBX with default parameters with an overlay of isotopic clustering 
results by Grppr as series of purple arrows. 
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individual steps. The GUI for our software can overlay detected peaks and isotopic clusters over 

raw data as shown in Figure 4-2. 

 

4.3.4 Isotopic Clustering (Grppr) 

Grppr is a general purpose 2D deisotoping algorithm implemented in Java 8, which is not 

tied to any particular input data format. 

While these two dimensions refer 

primarily to the IM and MS, as discussed 

above, Grppr can also be used for LC-MS 

data sets, where 2D features appear in m/z 

and retention time space. As input, Grppr 

requires a set of 2D peaks containing peak 

intensities as well as locations and widths 

in both dimensions (m/z and drift time for 

IM-MS data). Grppr has a simple 

application programming interface (API) 

facilitating adaptation of any input peak 

list format for Grppr analysis.  

Grppr provides two algorithms for 

isotopic cluster detection: “Convex” and 

“Averagine”. The “Convex” 

implementation searches for intensity-wise convex sets of neighboring peaks, that is, groups of 

peaks that are spaced in the m/z dimension in a manner consistent with a single charge state 

Figure 4-3 Schematic Overview of the Data Processing Steps Taken 
by IMTBX and Grppr for Top-down IM-MS Data Processing 
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assignment for all peaks and with intensities that consecutively decrease when moving starting 

from the highest peak of the set. While this approach works reasonably well for LC-MS bottom-

up proteomic data, analyses of training data sets revealed systematic errors in this approach for 

top-down protein sequencing data sets. For example, after summation of hundreds of individual 

IM-MS spectra contained within a typical top-down protein sequencing data set, chemical noise 

from low abundance fragments results in small peaks at virtually each unit mass, which leads to 

incorrect isotope cluster assignments. In contrast to “Convex” isotope cluster detection, 

“Averagine” clustering implementation is based on the Averagine29 model amino acid. For each 

input peak Grppr receives, a theoretical isotopic distribution is calculated and compared to the 

data. The advantage of this algorithm is that it can infer the correct mass of the monoisotope in 

low SNR data sets containing significant noise backgrounds, even when the monoisotopic peak 

is not detectable. For top-down proteomics data, we have found that the “Averagine” 

implementation is superior to the “Convex” approach described above. A high- level overview of 

the Averagine based deisotoping algorithm used in Grppr is presented in the right half of Figure 

4-3, while a more detailed description with pseudocode can be found in Figure III-1. 

4.4 Results and Discussion 

Typical top-down proteomics workflows involve the separation and subsequent 

fragmentation of individual intact proteins in a mass spectrometer. IM offers substantial 

advantages for these experiments by providing a gas-phase separation technique that can separate 

the peptide product ions, analogous to the separation of tryptic peptides in bottom-up proteomics. 

Separation of such fragments using IM allows for accurate peak detection and isotopic clustering 

in highly complex data sets. Figure 4-4 demonstrates the utility of IM separation of fragments for 

a particular region of a plot of drift time versus m/z containing eight isotopic clusters derived 
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from the top- down collision induced dissociation (CID) of Ubiquitin. When all IM drift time 

spectra are combined together, two clear isotopic clusters are observed (Figure 4-4 B), along 

with an overlapped set of peaks that cannot be readily resolved into individual clusters. The two-

dimensional IM-MS plot, 

however, clearly shows the 

presence of eight distinct 

clusters having significant 

relative abundance values 

(plotted on a square root 

intensity scale) due to the 

separation of these ions in the 

IM dimension (Figure 4-4 A). 

Individual mass spectra can be 

plotted by averaging spectra 

from IM bins close to drift 

apexes of the various species 

(Figure 4-4 C−E), showing 

accurate determi- nation of the isotopic clusters by Grppr. By processing the data natively in two 

dimensions, IMTBX and Grppr are able to analyze more peaks, corresponding to more fragment 

ions of interest, in a given m/z range than the corresponding analysis performed with MS alone. 

While the examples shown here were acquired using an IM device coupled to a time-of-flight 

(ToF) mass analyzer, the multi- dimensional peak detection and isotopic clustering performed by 

these tools can be applied to IM-MS instruments of any configuration and resolution. IM-MS 

Figure 4-4 Isotopic clusters that cannot be resolved without IM separation. Two-
dimensional representation of IM-MS data shows the presence of multiple isotopic 
clusters (A). The composite mass spectrum summed across all drift times, that is, the 
spectrum without IM separation, is shown at the top (B). Only the two most intense 
clusters at 1413 and 1415 can be identified, as the shape of the group at m/z 1419 is 
distorted due to interference from overlapping clusters. All 8 clusters can be 
identified utilizing IM separation with charge states ranging from 2+ to 5+, as shown 
in the mass spectra at 3 different drift times displayed on the right (C−E). Vertical 
red and green lines denote the most intense and monoisotopic peaks of a cluster 
correspondingly as reported by Grppr. Notice that fragment y635+ (far right ion in 
spectrum D) has drift time between that of 3+ and 2+ ions, following the observed 
trend for 5+ ions (see Figure 4). 
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currently lacks a suitable open data format, so IMTBX is capable of reading Waters file format. 

Despite this, the algorithms described here can in principle be applied to any IM-MS input files, 

and Grppr in particular can be applied to any two-dimensional MS-based peak list.  

To assess the benefits of IMTBX and Grppr for top-down IM-MS, we benchmarked our 

new software using top-down data acquired for a range of model proteins. Furthermore, these 

benchmarking results were compared to a semiautomated workflow that involves manual 

extraction of IM-MS regions corresponding to fragment charge state trends for analysis by 

existing MS data processing tools. IM and MS are only partially orthogonal, as IM drift time is a 

function of collision cross section (size and shape) and charge of an analyte, and mass and size 

tend to be generally correlated for analytes with similar overall shapes (e.g., protein fragments in 

top-down analyses). This results 

in well-defined trend lines within 

IM-MS data, largely defined by 

ion charge states13,18 (Figure 4-5 

A, cyan dashed lines). 

Interestingly, multiple trends were 

observed for fragment ions of 

large masses and charges (Figure 

4-5, inset), likely due to the 

prevalence of multiple gas-phase 

conformations for longer amino 

acid sequences. Extracting each 

trend line separately allows for 

Figure 4-5 Left: Distribution of fragment ions from Ubiquitin in IM-MS space. 
Fragments are observed in “trend lines” due to the correlation between size and 
mass. Purple markers denote detected isotopic clusters. For Ubiquitin (6+ 
precursor) fragments, trends are observed for singly, doubly, triply, and 
quadruply charged fragments. However, several distinct trends can be observed 
for some charge state families, including 2+, 4+ and 5+, indicating the presence 
of multiple gas-phase conformations for these large fragments. The inset shows 
a zoom-in of a small IM-MS region, where yellow numbers indicate the charge 
state of an isotopic cluster detected at a particular location. Right: Charge 
assignment accuracy comparison. Charge state assignments were assessed by 
comparing the location of the fragment in IM-MS space and its assigned charge 
against the observed trend lines. For charge states 2+, 4+, and 5+, where 
multiple trends were observed, positioning of the signal within any of the 
observed trends were allowed. IMTBX + Grppr had an accuracy of 99% in 
assigning correct charge states vs 68% for the semiautomated data processing 
workflow 
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MS analysis using existing tools while preserving some of the enhanced peak capacity provided 

by IM. For our semiautomated analysis, an open-source MS data viewer and peak processor, 

mMass,26–28 was used to accomplish signal-to- noise thresholding, peak picking, and isotopic 

clustering for each charge trend subset of the data. IMTBX and Grppr allow for the analysis of 

the complete IM-MS data set natively, by processing the raw data in two dimensions, enabling 

detection of off-trend peaks that are missed by the semimanual workflow, as well as greatly 

improving the quality of isotopic cluster detection for large fragments.  

In the absence of a data set with known monoisotopic peaks for each feature, evaluating 

the accuracy of assignments from any computational or manual workflow is challenging. We 

have thus compared Grrpr and the alternative workflow with respect to their relative accuracies 

in assigning charge states to isotopic clusters using the observed trend lines (Figure 4-5 A) as an 

objective comparison metric. For all isotopic clusters detected in eight analyses of Ubiquitin 

monomer and Avidin tetramer fragmentation data, using both IMTBX/Grppr and the 

semiautomated workflow, the charge state determined by the analysis was compared to the 

position (in m/z and drift time) of the fragment relative to the observed trend lines in order to 

evaluate its correctness (Figure 4-5). For higher molecular weight fragments, where multiple 

trends were observed, positioning of the signal within all observed trends was allowed. Grppr 

had an average charge state assignment accuracy of 99.0 ± 0.6% across approximately 50 data 

sets processed (24158 assignments) versus 68 ± 12% for the semimanual workflow (8 data sets, 

4292 assignments). The natively 2D analysis of IMTBX and Grppr results in high and 

reproducible accuracy, allowing for unsupervised and fully automated analysis of top-down 

fragmentation data sets.  
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To demonstrate the capabilities of IMTBX and Grppr for top-down IM-MS analysis, a 

series of proteins and protein complex standards, ranging from 8.5 to 158 kDa, were fragmented 

to generate data sets for top-down analysis, collecting 300−600 IM-MS scans for each. Each data 

set was processed with IMTBX (requiring approximately 10−30 s for each analysis) and Grppr 

(requiring less than 5 s per analysis), and the resulting peak lists were exported into ProSight Lite 

for annotation to their respective protein sequences (Figure 4-6). IMTBX detected an average of 

just over 9000 peaks per data set (Figure 4-6 A), which were clustered into several hundred 

isotopic clusters. It is normal for many peaks not to get matched to isotopic clusters, as the peak 

list includes precursors and fragments at high m/z for which isotopic peaks cannot be easily 

resolved. Two sequence fragmentation maps are shown for reference (Figure 4-6 B): Ubiquitin, 

demonstrating that the annotated clusters result in excellent sequence coverage for a small 

protein, and Carbonic Anhydrase, showing coverage for a much larger protein, along with 

Figure 4-6 IMTBX and Grppr processing of 8 protein standards analyzed by top-down IM-MS. (A) The number of raw 
single peaks (2D features) detected by IMTBX for each protein (blue), the total number of isotopic clusters detected by 
Grppr (green), and the number of clusters matched to a fragment ion to annotate the protein sequence (yellow). 
Aldolase - tetramer (158 kDa), SAP = Serum Amyloid protein pentamer (125 kDa), Avidin - tetramer (64 kDa), TTR = 
transthyretin tetramer (56 kDa), Carb. Anh. = Carbonic Anhydrase monomer (29 kDa), B-lac. = β-lactoglobulin 
monomer (18 kDa), Myo. = myoglobin monomer (17 kDa), Ubq. = ubiquitin monomer (8.5 kDa). An average of 9040 
features were detected for each raw data set. An average of 490 isotopic clusters were found and an average of 112 
were annotated to the protein sequence. (B) Sequence maps showing sites of fragmentation for Ubiquitin (top) and 
Carbonic Anhydrase (bottom). The red box at the n-terminal serine of Carbonic Anhydrase indicates an acetylated 
serine, with the masses of all fragments containing that residue adjusted accordingly. 
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identification of the post- translationally acetylated serine at the n-terminus (red box). Processing 

even this relatively small data set manually would have required days to weeks of analysis time 

(Supporting Information, Table 2), given the need to manually assign thousands of peaks into 

hundreds of isotopic clusters to generate a peak list for annotation. IMTBX and Grppr allow 

rapid (seconds to minutes), unsupervised, and accurate handling of this data to enable a wide 

range of top-down experiments on IM-MS instrumentation.  

4.5 Conclusion 

The potential benefits of IM separation for top-down proteomics have been demonstrated 

previously.14,18 Perhaps the largest obstacle preventing the realization of this potential has been a 

lack of software capable of automating even the initial step of translating two-dimensional IM-

MS data into a list of monoisotopic peaks, which can be fed into an annotation program of choice 

(e.g., ProSight Lite). Fragmentation of intact proteins typically generates hundreds to thousands 

of fragment ions, each consisting of multiple isotopic peaks (as many as 20 for high molecular 

weight fragments), resulting in spectra that can contain many thousands of features. Manually 

annotating data of this complexity is extremely time-consuming, and the lack of automated 

processing tools severely limits the scope of experiments that can be performed on IM-MS 

platforms. With rapid and accurate determination of isotopic clusters, analysis of complex top-

down fragmentation data collected on IM-MS instrumentation can be fully automated using 

IMTBX and Grppr. The same software suite without modifications can also be applied to 

bottom-up proteomics LC-IM-MS data (not described in this manuscript). This enables 

experiments that require processing of hundreds or thousands of fragmentation spectra to be 

realistically performed on these instruments, including characterization of fragmentation 

mechanisms and typical top-down proteomics analyses with coupled intact protein separations. 
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Both Grppr and IMTBX can be down- loaded from github repositories: https://github.com/chhh/ 

Grppr and https://github.com/chhh/IMTBX (the latter includes a combined package with both 

tools). There is also a supporting Web site with examples and documentation at 

https://chhh.github.io/IMTBX (capitalization of IMTBX is important for the link to work 

properly). 
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Chapter 5 CIUSuite 2: Next-Generation Software for the Analysis of Gas-phase Protein 
Unfolding Data 

 
Adapted with permission from: Daniel A. Polasky, Sugyan M. Dixit, Sarah M. Fantin, and 
Brandon T. Ruotolo. CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase 

Protein Unfolding Data. Anal. Chem. 2019, 91 (4), 3147–3155. 
 

5.1 Abstract 

Ion mobility-mass spectrometry (IM-MS) has become an important addition to the 

structural biology toolbox, but separating closely related protein conformations remain 

challenging. Collision induced unfolding (CIU) has emerged as a valuable technique for 

distinguishing iso-crossectional protein and protein complex ions through their distinct unfolding 

pathways in the gas phase. The speed and sensitivity of CIU analyses, coupled with their 

information-rich datasets, have resulted in the rapid growth of CIU for applications, ranging 

from the structural assessment of protein complexes to the characterization of biotherapeutics. 

This growth has occurred despite a lag in the capabilities of informatics tools available to process 

the complex datasets generated by CIU experiments, resulting in laborious manual analysis 

remaining commonplace. Here, we present CIUSuite 2, a software suite designed to enable 

robust, automated analysis of CIU data across the complete range of current CIU applications 

and to support the implementation of CIU as a true high-throughput technique. CIUSuite 2 uses 

statistical fitting and modeling methods to reliably quantify features of interest within CIU 

datasets, particularly in data with poor signal quality that cannot be interpreted with existing 

analysis tools. By reducing the signal-to-noise requirements for handling CIU data, we are able 

to demonstrate reductions in acquisition time of up to two orders of magnitude over current 
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workflows. CIUSuite 2 also provides the first automated system for classifying CIU fingerprints, 

enabling the next generation of ligand screening and structural analysis experiments to be 

accomplished in a high-throughput fashion. 

5.2 Introduction 

Native mass spectrometry (MS) has become a widespread technique in structural biology 

due to its ability to preserve noncovalently associated protein-protein and protein-ligand contacts 

and determine the stoichiometry and connectivity of these interactions.1–3 The coupling of ion 

mobility to mass spectrometry (IM-MS) provides molecular shape information in addition to ion 

mass and charge, which has proven invaluable in interrogating complex biomolecular 

structures.4,5 Native IM-MS has seen dramatic growth in recent years, with applications in 

biotherapeutic characterization6 and drug discovery,7 joining more traditional analyses of protein 

complex structure and stoichiometry. A significant challenge in IM-MS is the separation of 

closely related protein conformations, as biologically relevant conformational variations often 

occur beyond the resolution limits of modern IM instrumentation. However, gas-phase activation 

provides a powerful approach to probe these subtle structural differences by assessing the 

resulting pattern of intermediate structural families produced from collisionally heating gas-

phase protein ions. Early collision induced unfolding (CIU) experiments utilized this approach to 

differentiate charge-driven and disulfide bonding variations in small proteins.8 Subsequent CIU 

work uncovered different ligand-based stabilization mechanism in mutant TTR forms not 

detectable by IM-MS alone by introducing fingerprint plots that have now become a widespread 

analysis framework for such data.9 

Since these early reports, CIU has seen rapid growth as such data have provided valuable 

approaches for a wide range of applications across the biological and pharmaceutical sciences. 
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The characterization of protein structure and dynamics, one of the original driving forces behind 

the development of CIU, remains a highly active area. Several groups have used comparative 

CIU of protein variants to determine the importance of specific residues, domains, and post-

translational modifications on the structure and function of biomolecules.10–14 CIU has been used 

to rapidly probe the details of protein structure in response to solution and gas-phase stimuli.15–20 

CIU experiments have also been used to determine the orientation of ubiquitin non-covalent 

dimers through comparisons with various covalently linked dimers21,22 as well as assess the 

domain-specific unfolding of gas-phase serum albumins.23 Many reports have described using 

CIU to assess ligand binding to a variety of protein targets9,24 in an effort to build information-

rich small molecule screening platforms. CIU can be used as an analogue to stability shift assays 

commonly carried out in solution, as differences in gas-phase stabilities can offer similar 

information for unpurified samples at lower concentrations and potentially resolve intermediate 

transitions that may be missed in low resolution binding assays.25–27 Others have leveraged the 

detailed information provided by CIU to characterize the cooperativity,28 binding location,29 and  

the allostery of ligand binding events within proteins.30,31 CIU has also been developed into a 

versatile tool for the characterization of biotherapeutic antibodies.32  For example, CIU has 

proven to be highly sensitive to the presence of immunoglobulin isoforms,33 differences in 

glycosylation and disulfide bonding patterns,34 antibody-drug conjugation patterns,35 and 

different binding epitopes.36 Its relative sensitivity and speed when compared to other 

biophysical probes has led to the deployment of CIU in broad comparisons of biosimilar 

therapeutics.37–39 Finally, CIU shows  promise in the context of  membrane proteins,40–43 where 

such data has already proven critical in revealing some of the structural consequences of off-

target drug binding.44 
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Many of the CIU studies discussed above utilized manual analysis for all or part of their 

CIU data processing. A number of software packages are available to perform specific analytical 

tasks related to CIU data processing42,45–48, and while they provide valuable capabilities, 

widespread adoption and use of software for processing of CIU data is still emerging. With 

CIUSuite 2, we combine additional capabilities for data processing not currently available in any 

software package, such as noise removal via Gaussian fitting and advanced classification of CIU 

data, with the integration of many capabilities into a single platform with a high degree of 

automation.  

One of the most common outputs of CIU experiments is the accelerating voltage 

necessary to convert fifty percent of a compact protein form into an energetically adjacent 

extended state, sometimes termed a “CIU50” value. CIU50s have been used extensively to assess 

protein-ligand binding25–28 and the stability of domains within larger protein 

constructs.11,12,14,15,18,34 The Pulsar software package uses feature models to fit CIU50 values,42 

but requires manual annotation of the features prior to analysis. Other packages, including the 

original CIUSuite45 and Benthesikyme,47 annotate CIU features but lack an automated method to 

fit CIU50s. Another common output involves the root mean squared deviation (RMSD) analysis 

of CIU data, which is currently supported by several software packages45,48 and has proven a 

useful approach to detect quantitative differences in CIU fingerprints. RMSD analysis of CIU 

data is highly sensitive to chemical noise and to overall fluctuations in signal intensity because 

all differences between datasets are included in quantification. RMSD is effectively an ensemble 

measurement of all differences between fingerprints, which can obscure the contributions of 

individual changes in complex datasets. In practice, extensive signal averaging is often used to 
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overcome some of the noise-related limitations in RMSD analyses of CIU data, but this 

substantially limits the throughput of such experiments. 

To address these challenges, we have developed CIUSuite 2, a software package that 

utilizes established fitting and statistical methods to enable the robust quantitation of CIU data 

across a broad range of CIU applications and analysis types, especially for enabling the analysis 

of low intensity CIU datasets. CIUSuite 2 extracts CIU50 values through a combination of 

improved feature detection and fits to logistic (sigmoid) curves that describe CIU transitions, 

enabling the fully automated and robust analysis of protein stabilities. By directly fitting features 

of interest, the signal-to-noise (S/N) ratios required for reliable analyses are reduced 

dramatically. These improved capabilities have, for example, enabled us to generate nearly 

identical output values from CIU data collected in 60-fold less time than previously published 

results. CIUSuite 2 significantly improves CIU fingerprint classification using linear 

discriminant analysis and support vector machines to enable next-generation high-throughput 

screening experiments. Finally, by modeling CIU data as mixtures of Gaussian functions, we are 

able to remove chemical noise and enable advanced feature detection within CIU datasets, 

producing robust analysis workflows for challenging CIU datasets. We have developed these 

algorithms with input from ongoing CIU projects that involve the assessment of biotherapeutic 

antibodies, membrane protein lipid binding events, protein-ligand interactions, and multiprotein 

complexes in an effort to provide a valuable set of quantitative tools for the broadest possible 

range of CIU applications. These capabilities are packaged into a user-friendly graphical 

interface that supports automated, high-throughput processing of large numbers of CIU datasets. 

CIUSuite 2 supports data collected on any IM-MS platform, and automated converters from 

vendor-specific data formats to the text file input needed for CIUSuite 2 are available. Finally, 
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CIUSuite 2 is a fully open-source software package and designed to be modular and readily 

extensible for researchers wishing to modify its capabilities for any CIU application. 

5.3 Methods 

5.3.1 Experimental Section 

Translocator Protein (TSPO) was purified and expressed using established protocols.49 

All lipids purchased from Avanti Polar Lipids (Alabaster, AL). Ammonium acetate and Octyl β-

D-glucopyranoside (OG) were purchased from Sigma Aldrich (St. Louis, MO). All CIU data was 

collected using a Synapt G2 HDMS IM-Q-ToF mass spectrometer (Waters, Milford, MA). Intact 

protein ions were generated using a direct infusion nESI source in positive mode. Glycosylated 

antibody data were collected as described previously.34 Briefly, enzymes were used to cleave at 

specific glycan residues from an antibody standard (SILuLite SigmaMAb Universal Antibody 

Standard human (product number: MSQC4), Sigma Aldrich, St. Louis, MO) to leave glycans of 

known molecular weight attached to the antibody, which was then buffer exchanged (Micro 

Biospin6 spin columns (BioRad, Hercules, CA)) into 100 mM ammonium acetate and analyzed 

by IM-MS. TSPO was buffer and detergent exchanged simultaneously from 5 mM Tris, 150 mM 

NaCl , 0.20% DM, pH 8.0 to 40 mM OG , 200 mM ammonium acetate, pH 8.0 using 100kDa 

Amicon Ultra-0.5 Centrifugal Filter Units (MilliporeSigma, Burlington, MA). Lipid binding 

studies were performed following established protocols.50 Instrument settings were tuned to 

completely remove the micelle prior to IM separator, including source temperature (40° C), 

helium cell gas flow (100 mL/min), and sampling cone (120 V). All CIU analyses were 

performed by increasing the trap collision voltage in a stepwise manner from 5 – 200 V 

(antibodies) or 50 – 150 V (membrane proteins) in 5 V increments. 
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5.3.2 Raw Data Extraction 

Raw data was converted from Waters .raw format to a text-based format (“_raw.csv”, as 

described previously)45 using TWIMExtract.51 Briefly, data from the m/z range corresponding to 

a single protein charge state was summed across the m/z and IM drift time dimensions to 

generate a series of collision voltage resolved  IM datasets. For those analyses that compared 

different instrument acquisition times, data was summed across an indicated subset of the total 

acquisition time at each collision voltage. Extracted profiles are concatenated by TWIMExtract 

into a single _raw.csv file that serves as the input to CIUSuite 2. Raw data conversion is in 

development for the Agilent .d IM-MS data format. Similar converters for any additional formats 

(for example, an open IM-MS data format if one is developed) can be added as needed. 

5.3.3 CIUSuite 2 Overview 

CIUSuite 2 was developed in Python 3.5 utilizing the SciPy ecosystem52,53, including 

NumPy,54 Matplotlib,55 and Scikit-learn.56 The graphical user interface was developed using the 

Pygubu GUI builder (https://github.com/alejandroautalan/pygubu). Analysis of CIU data begins 

by importing any number of _raw.csv (text) format files. Each file (CIU dataset) undergoes 

smoothing and normalization. A 2D Savitzky-Golay filter of user-specified size is the default 

recommended setting; however, users may also select a 1D Savitzky-Golay filter of variable size 

or no smoothing as options. Additional pre-processing options are available in CIUSuite 2, 

including cropping, interpolating (resampling) data along one or both axes, and averaging 

multiple datasets. Once this pre-processing is complete, a “.ciu” file (a serialized file created 

with Python’s pickle module to store the CIU data and the results of any processing) is created 

(Figure 5-1 A). An RMSD comparison module, similar to the one provided in the original 

CIUSuite, is included in CIUSuite 2, offering the ability to compare individual files or groups of 
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files to generate pairwise RMSD values. All other analysis functions described below are unique 

to CIUSuite 2. 

5.3.4 Stability Shift (“CIU50”) Analysis 

To determine quantitative stability values from CIU datasets, a series of processing and 

modeling steps is performed (Figure 5-1 B). First, features in the dataset are detected by 

grouping observed drift time peaks that are present across multiple collision voltages (Figure 5-1 

B, ii). The tolerances from median drift 

times, as well as the number of stable 

collision voltages required to define a 

feature, can be user-adjusted. Following 

feature detection, the transition region 

between features is modeled as a logistic 

(generalized sigmoid) function (Figure 5-1 

B, iii). The logistic function parameters 

describe the lower and upper asymptotes 

(centroid drift times of the features before 

and after the transition), the steepness of the 

transition, and its midpoint voltage, which 

we term the “CIU50” value. Specifically, we 

define the CIU50 as the voltage at which 

50% of a relatively compact state of the 

protein transitions to a more extended one, 

making it the effective midpoint between two 

Figure 5-1 CIUSuite 2 overview. (A) Import of raw data from text 
(.csv) format and data preprocessing. (B) Stability analysis 
(“CIU50”) workflow: i) loading of preprocessed CIU datasets, ii) 
detection of features, iii) logistic function fitting to determine 
CIU50 value(s), and iv) comparison of CIU50 values among 
multiple datasets. (C) Classification workflow: i) Assignment of 
CIU training data into classes, ii) Selection of voltages most 
capable of differentiating classes, iii) Cross validation for model 
selection, and iv) Use of the selected model to perform LDA and 
build a SVM for classification.  The capabilities illustrated here 
are not intended to provide a comprehensive walkthrough of 
CIUSuite 2 capabilities. 
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adjacent features on a CIU fingerprint. An arbitrary number of CIU datasets can be fit in a single 

CIUSuite 2 analysis, enabling high-throughput analyses and comparisons of stability values for 

all transitions detected across many CIU fingerprints (Figure 5-1 B, iv).  

5.3.5 Classification 

In an effort to further improve our ability to differentiate CIU fingerprint data, we 

developed a new classification workflow capable of sorting CIU datasets into groups using 

robust statistical methods. Briefly, a classification scheme is built based on training datasets from 

each group. First, our workflow implements a univariate feature selection (UFS) method based 

on an analysis of variance (ANOVA) F-test57 to assess the significance of activation energies 

capable of differentiating CIU fingerprints (Figure IV-1). We iterate over all possible 

combinations of a training dataset in order to obtain the mean and standard deviation of –log10(p 

value) which serves as the score for each collision voltage (Figure 5-1 C, ii). Second, we employ 

a “leave one out” cross-validation scheme58 that examines the accuracy of classification, which is 

comprised of a linear discriminant analysis59 (LDA) step followed by support vector machine60 

(SVM) classification of the linear discriminants, using subsets of CIU data from collision 

voltages in decreasing order relative to the score assigned during UFS analysis (Figure IV-2). 

This enables optimal selection of collision voltages to use for the resulting model and can be 

used to detect under- or over-fitting in the final model selected (Figure 5-1 C, iii). Finally, 

classification is performed on the model dataset with the optimized set of collision voltages, 

dividing the linear discriminant space into “decision regions” corresponding to the provided 

groups (Figure 5-1 C, iv). The resulting classification scheme can then be used to evaluate 

“unknown” CIU datasets (not used in training) to predict the class and probability for each 

unknown. We have also included a ‘manual’ classification mode, where users can select any 
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number of specific collision voltages to build a classification model. This is particularly helpful 

in scenarios where the accuracy observed in the cross-validation step is unacceptably low. 

5.3.6 Gaussian Fitting and Automated De-noising 

An optional Gaussian-fitting module enables modeling of the observed IM arrival time 

distribution at each collision voltage as a sum of Gaussian functions in order to provide a method 

for automated noise removal in complex datasets. An initial curve fitting52 is performed to 

generate high quality initial values prior to a primary analysis run by fitting a single peak to the 

arrival time distribution and adding peaks until the fit to the observed data (R2) exceeds 0.99. 

Fitting can be performed in both “no denoising” and “denoising” modes to model a noise-free 

arrival time distribution or remove chemical noise, respectively. In each mode, the primary 

fitting run samples a range of Gaussian components (peaks) and scores each by its goodness of 

fit (R2), peak width, and degree of overlap amongst its protein components. To perform a fit, 

Gaussian peak models for each component are assembled and fit to the arrival time data using 

LMFit.61 In denoising mode, the IM peak width of each Gaussian feature is used to distinguish 

between protein and non-protein components (Text IV-3). The highest scoring fit at each 

collision voltage is then taken for further evaluation, such as feature detection, CIU50 analysis, 

and classification workflows. The denoising workflow allows for the removal of chemical noise 

or other variability from CIU data prior to analysis, improving quantitative results (see below). 

Gaussian fit data can also be uploaded in a text format, enabling the use of other Gaussian fitting 

programs for CIU data as an alternative data input into CIUSuite 2. Data imported in this way 

can be analyzed using all of the tools described above. 
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5.4 Results 

5.4.1 CIU Stability Shift Analysis 

Assessing a shift in the gas-phase stability of a protein or protein complex in response to 

some stimulus is one of the most common 

applications of CIU, but current methods lack 

the ability to return robust quantitative values 

for complex or low-intensity datasets. 

Previous work from our laboratory has 

utilized RMSD analysis to detect a strong 

correlation between CIU fingerprint data and 

single-sugar changes in the glycans attached 

to intact monoclonal antibodies (mAbs), as 

generated through enzymatic reactions 

(Figure 5-2 A).34 While the capability to 

detect such subtle differences in glycan 

structure within a 150 kDa protein is 

potentially enabling for mAb development, 

the length of time required to generate the 

data necessary to accurately quantify the 

above-described trends may make the 

adoption CIU technology for mAb 

assessments where rapidity is a requirement 

challenging. For example, in order to collect 

Figure 5-2 CIU50 analysis mAb glycoforms using CIUSuite 2. 
(A) Enzymatic reactions were used to produce glycans of varying 
size (cleavage site indicated by arrows), as described 
previously.34 (B) CIU transition region shown for intact and fully 
deglycosylated mAbs. Larger glycans stabilize the transition 
between CIU features. (C) CIU50 values fit for each mAb 
glycoform plotted as a function of signal collection time for 
individual collision voltage values. Minimal variation is observed 
across the collection time axis, indicating that faster data 
acquisition is possible without affecting CIU50 values. (D) Plot 
of either  CIU50 values from 1 s of data (blue) or previously 
published34 RMSD  using 60 s of data (red), against masses of 
mAb-attached glycans for each sample analyzed. 
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our previously reported glycoform-resolved mAb CIU dataset,34 60 seconds of data was summed 

at each of 40 collision voltages probed (5 – 200 V) across 6 glycoforms in triplicate, for both 

intact mAbs and Fc fragments, resulting in a total acquisition time of approximately 24 hours. 

Because the quantitative comparison of each glycoform relied on a total RMSD analysis of each 

CIU fingerprint collected, minor fluctuations in signal intensity and chemical noise can 

dramatically influence the values extracted. In our previous report,34 we elected to employ 

extended signal averaging in order to reduce the impact of such variations, at the cost of 

acquisition speed.  

CIUSuite 2 directly models the transitions between features of CIU fingerprints, enabling 

the direct assessment of stability shifts without interference from other sources of variability or 

noise. Since our previously-reported RMSD differences largely arise from a shift in the stability 

of the second feature in the CIU fingerprints recorded,34 we fit this transition using CIUSuite 2 in 

order to generate a CIU50 value for each glycoform we studied previously (Figure 5-2 B). 

Critically, because only the transition between the two features is used to extract correlations 

between sugar structures and CIU responses, the S/N ratios required for the precise assessments 

of such correlations are far lower than with our previous RMSD method. To demonstrate the 

speed improvement this affords, we extracted sub-sections of the original raw data corresponding 

to 1 second (a single scan collected by the instrument), 5 seconds, 15 seconds, 30 seconds, and 

the full 60 seconds of ion signal used in the original analysis. The S/N ratio observed in the 1-

second data is approximately 60-fold lower than the full 60 seconds as expected, but the fit for 

the resulting logistic function that defines the CIU50 values extracted remains high quality, as 

shown in Figure 5-2 B. Plotting the observed CIU50 value for each glycoform as a function of 

signal collection time demonstrates that there is essentially no difference (less than 0.5 V) 
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between the results obtained using any amount of signal averaging probed here (Figure 5-2 C). 

As such, we can reconstruct our previous correlation between CIU response and glycan mass 

using only 1 second of our original data (Figure 5-2 D). The curves have similar slopes, 

indicating a similar glycoform sensitivity, though some variation as fundamentally different 

quantities different quantities are extracted from the data in the two approaches compared. 

Importantly, since our CIUSuite 2 method requires only 1 second of signal averaging at each 

collision voltage, we can reduce our total data collection time by 60-fold, resulting in a total of 

24 minutes needed to quantify the same trend with equivalent precision as described in our 

previous report.34 

Furthermore, we estimate that the S/N ratio of the 1-second data is still far greater (on the 

order of 104) than is required for accurate fitting, indicating that greater reductions in acquisition 

time are possible with shorter (sub-second) instrument scans. By directly modeling the relevant 

parts of a fingerprint, CIUSuite 2 is thus able to dramatically improve the speed of CIU analyses, 

vastly enhancing the throughput of CIU analyses. 

5.4.2 Classification of CIU data 

The unfolding pathway of gas-phase protein ions has been observed to be sensitive to 

changes in protein structure that remain too subtle to detect using IM-MS alone.23,45 As such, 

CIU fingerprints have been deployed as means to classify protein structural states that result 

from changes in post-translational modifications, sequence variation, and ligand binding.31,45 For 

example, recent reports have demonstrated robust CIU classification schemes capable of 

differentiating allosteric and active site competitive kinase inhibitors,31 as well as binding event 

across two remote sites associated with transcriptional regulation.62 However, a lack statistical 

methods capable of sorting of unknown CIU data against known categories or of sorting between 
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more than two separate categories has proven to be an impediment in advancing such 

experiments beyond proof-of-concept demonstrations. In CIUSuite 2, we have implemented a 

classification workflow that uses rigorous statistical methods to generate classifying schema 

from known fingerprints that allows for facile evaluation of unknown samples against these 

schema for rapid sorting.  

Data shown in Figure 5-3 displays an example implementation of our classification 

workflow, utilizing CIU data for 

immunoglobulin G (IgG) standards acquired 

across IgG1, IgG2, IgG3, and IgG4 

subclasses. Each of our IgG CIU datasets 

contained four replicates, which we 

subdivided evenly into both training and test 

data in order to evaluate our approach. Of the 

forty collision voltages acquired for each 

CIU dataset, only a few were found to be 

highly differentiating between classes by 

UFS, with 85 V having the maximum score 

(Figure IV-3 E). This voltage is near the 

value required for the first CIU transition for 

each IgG subclass (Figure IV-3 A – D). 

Cross-validation of UFS results revealed a 

classification accuracy 92.2% using only the 

CIU data isolated at 85 V, and decreases as 

Figure 5-3 Classification of different IgG standards. (A) LDs for 
both training (filled circle) and test (filled pentagon) datasets 
corresponding to IgG1 (red), IgG2 (green), IgG3 (blue), and IgG4 
(magenta) subclasses are well separated into clusters in three-
dimensional space, defined by LD1, LD2, and LD3 axes. (B) 
Probabilities associated with each replicate (labeled as 1 and 2) in 
terms of categorizing the CIU data into different IgG groups. Each 
dataset is correctly assigned to its respective IgG subclass. 
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additional CIU data is added (Figure IV-3 F). Thus, our algorithm selected CIU data acquired at 

85 V automatically in order to build a classification scheme. Figure 5-3 A shows the three-

dimensional plot of linear discriminants (LDs) constructed using this data, which groups IgG 

CIU data into well-separated clusters. Furthermore, test data clustered correctly in all cases using 

this classification scheme (pentagons, Figure 5-3 A). We further used CIUSuite to compute the 

probability of each test dataset clustering into each IgG subclass (Figure 5-3 B), finding that each 

dataset was classified correctly with probability values ranging from 0.52 – 0.73 (Table IV-1). In 

general, our CIU classification workflow is generalizable, rapidly processing data in an 

automated fashion and accommodating any grouping scheme. 

5.4.3 Classifying Noisy, Low Intensity CIU Data 

While many existing tools are capable of analyzing high S/N data, low intensity CIU data 

containing significant amounts of chemical noise is exceptionally challenging to extract 

quantitative data from using current analysis paradigms. Membrane protein CIU data presents 

many of these challenges, as it frequently contains low-intensity protein ion signals, overlapped 

with intense chemical noise derived from detergents or other solubilizing agents, and is collected 

in a mode that thwarts typical tandem MS based CIU workflows.50,63 The feature detection and 

CIU50 functions of CIUSuite 2 were designed to extract reliable quantitative values from such 

datasets. Figure 5-4 illustrates the capabilities of CIUSuite 2 for such applications using data 

acquired for TSPO, a 36 kDa mitochondrial transmembrane protein dimer associated with 

benzodiazepine binding and cholesterol transport. Our feature detection workflow in CIUSuite 2 

considers only the most intense IM peaks observed, and thus acts as an amplitude filter, 

removing such detergent and lipid based chemical noise signals from subsequent analysis steps. 

CIU50 values can then be fit to the observed transitions between features without interference 
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(Figure 5-4 A), so long as protein signals comprise the most intense peaks in the IM data 

analyzed. If this is not the case, automated noise removal can be employed prior to fitting (see 

below). 

CIU has been used to characterize lipid binding to membrane proteins in order to assess 

stability shifts in the resulting complexes.42–44 Such data have been further used to distinguish 

between biologically relevant and nonspecifically associated lipids in membrane proteins.41 

Counterintuitively, such assessments are often more straightforward to perform for larger 

proteins and complexes, as they appear at m/z 

and IM drift times that are frequently less 

contaminated by chemical noise. Since TSPO 

is a relatively small membrane protein 

complex, it is an exceptionally difficult target 

for CIU analysis. Preliminary screening of 

TSPO-lipid complexes revealed certain 

lipids, such as phosphatidylglycerol (PG), 

that significantly stabilize the protein so that 

CIU transitions appear distorted relative to 

apo protein data, making the extraction of 

CIU50 values even more challenging.64 We used the CIU50 module within CIUSuite 2 to fit 

these highly stabilized TSPO-PG transitions, allowing us to quantify stability imparted by lipid 

binding (Figure 5-4 A, lower panel). While this analysis provides high quality stability shift 

values, high-throughput CIU protocols require the rapid classification of ligands based on 

fingerprint data. To that end, we classified PG-bound and apo TSPO CIU signatures using 

Figure 5-4 CIU50 analysis and classification TSPO-lipid 
complexes. (A) Feature fitting ignores low abundance chemical 
noise and CIU50 analysis reveals a stability shift associated with 
PG-bound TSPO. (B) Three voltages (120 V, 125 V, and 140 V) 
are used to construct a classification scheme from apo and PG-
bound TSPO training sets, the inset shows a cross-validation plot 
indicating a high accuracy classification. (C) Additional test data 
sets are correctly assigned to apo (pink) or PG-bound (blue) 
TSPO. 
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CIUSuite 2. By using three replicates each of apo and lipid bound data to build the classification 

scheme, we identified 120 V, 125 V, and 140 V as the most differentiating collision voltage 

values in our dataset (Figure 5-4 B). For validation of our classification scheme, four data sets 

that were not part of the training dataset were input as unknowns, and all were correctly 

classified (Figure 5-4 C). While it is clear that mass analysis alone could be used to identify PG 

bound and apo TSPO, these results illustrate a classification outcome that is exceptionally 

challenging to achieve using current CIU analysis tools. 

5.4.4 Gaussian Fitting and Automated Denoising 

The feature detection and CIU50 analyses presented in Figure 5-4 A enable the 

examination of CIU data containing a modest amount of chemical noise by employing a simple 

high-pass amplitude data filter and relying upon the presence of high-intensity protein signal. In 

many cases, however, protein signals are overlapped with chemical noise at intensity comparable 

to or exceeding that of the protein, rending a high-pass filter approach ineffective. In such cases, 

quantified values extracted from CIU data exhibit reduced accuracy, reproducibility, and in some 

cases may be entirely unrecoverable. For example, the TSPO CIU data shown in Figure 5-5 A 

contains chemical noise that achieves greater intensity values than the detected protein ion signal 

at collision energies above 120 V, effectively preventing CIU50 analysis from recognizing the 

second protein CIU transition, which appears at 130 V. In order to surmount such signal 

processing difficulties, have developed a Gaussian peak-fitting module within CIUSuite 2 that 

provides automated noise removal from CIU fingerprints. Other CIU analysis packages have 

performed Gaussian fits of CIU data for feature detection,47 however, this approach has not been 

previously applied to removal of noise components from CIU data. IM peaks corresponding to 

protein ions exhibit a range of peak widths produced primarily by ion diffusion and 
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conformational heterogeneity effects65–67 Thus, the likely range of IM peak widths for protein 

signals can be utilized as a noise filter for CIU analysis, where Gaussian fits corresponding to 

features that exceed such a width tolerance 

are identified as noise and subtracted from 

the final fingerprint. Fitting is performed 

using two different types of components: 

protein components (e.g. the blue traces in 

Figure 5-5 B), which are Gaussian functions 

constrained to a narrow distribution of peak 

widths, and non-protein components (e.g. the 

red dashed lines in Figure 5-5 B), which are 

allowed to have any width substantially 

larger than the upper width limit allowed for 

protein components. This approach 

intrinsically filters resulting fit results, 

allowing noise components to be removed 

after the fitting is complete.  

Figure 5-5 C shows the results of this 

automated fitting approach for 

phosphatidylcholine bound-TSPO CIU data 

displayed in Figure 5-5 A by plotting the 

peak centers determined for each protein 

component in blue and those determined for 

Figure 5-5 Automated de-noising of membrane protein CIU data 
using Gaussian fitting. (A) TSPO CIU fingerprint with chemical 
noise preventing analysis of the final CIU transition observed 
(collision voltage >120 V). (B) Example mixed-model Gaussian 
fit produced from selected data from A. Protein components 
(blue) exhibit widths within pre-defined tolerances while non-
protein components (red) are broader. (C) Plot protein (blue) and 
non-protein (red) Gaussian fit centroids from fingerprint shown in 
(A). Horizontal arrays of blue dots indicate stable protein 
conformations (features). The region corresponding data 
displayed in panel B is marked. (D) Removal of non-protein 
components after denoising results in a centroid plot absent of the 
identified noise features. (E) CIU50 fitting result prior to 
Gaussian denoising. The second protein CIU transition is missed 
due to chemical noise. (F) CIU50 fitting of the same dataset as 
shown in E after denoising, illustrating robust recovery of both 
CIU transitions. (G) Histogram of CIU50 values extracted from 3 
replicate datasets prior to denoising, illustrating inconsistent 
results. (H) Histogram of CIU50 values extracted from the same 
dataset as shown in panel G following denoising are highly 
reproducible. 



 124 

each non-protein component in red. Three clear features, or sets of protein peak centers that 

appear at consistent arrival times, can be observed in the protein data, resembling a typical TSPO 

CIU fingerprint when the broader features are subtracted from the dataset (Figure 5-5 D). This 

denoised data can then be analyzed with any of the workflows available in CIUSuite 2, including 

the CIU50 determination and classification modules. CIU50 analysis of the denoised dataset 

allows for the recovery of the second TSPO CIU transition following the removal abundant 

chemical noise (Figure 5-5 F). Removing chemical noise can greatly improve the accuracy and 

reproducibility of CIU analyses, as in the replicate CIU50 analyses shown in Figure 5-5 G, H. 

Analysis of the raw TSPO CIU data results in adequate fits the second CIU transition in only one 

out of three datasets, missing the transition in the second replicate (pictured in Figure 5-5 E) and 

fitting a “negative” transition (an apparent shift from longer to shorter IM drift times) to the 

chemical noise observed, (Figure 5-5 G). In contrast, all three replicates can be reproducibly fit 

following Gaussian denoising, producing CIU50 values that vary by less than 0.4 V across all 

three replicates (Figure 5-5 H). 

The automated removal of chemical noise or other interfering signals from CIU data thus 

enables the analysis CIU datasets that would be challenging to accomplish using current tools, 

while requiring minimal user intervention. Protein and noise components can be distinguished 

based on their differential peak widths, allowing such noise to be directly subtracted from CIU 

fingerprints. Combined with CIU50 analysis and classification workflows, Gaussian denoising 

represents a substantial enhancement to the CIU signal processing toolbox. 

5.5 Conclusions 

CIU experiments generate complex datasets containing rich protein structure information. 

CIUSuite 2 provides a framework, built upon established statistical methods, for extracting key 
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information from CIU data in a robust, automated fashion. Furthermore, CIUSuite 2 is designed 

to support a broad range of existing CIU applications, including the analysis of noise-

contaminated membrane proteins and high-throughput screening. Our improvements to the 

automation CIU signal processing and acquisition speed point towards the next generation of 

CIU workflows, where full CIU fingerprints are collected in seconds and on-the-fly data 

reduction enables the rapid generation of classification schema. With support from autosampling 

devices, the potential exists to generate and analyze orders of magnitude more CIU data per unit 

time than currently possible. The ability to generate such large datasets would likely aide in 

answering fundamental questions regarding the relationship between solution and gas-phase 

stabilities and structures, while simultaneously providing a platform for rapid structural 

assessments of biotherapeutics and pharmaceutically relevant protein complexes. CIUSuite 2 is 

available for download at https://sites.lsa.umich.edu/ruotolo/software/ciusuite-2/, and its source 

code can be found at https://github.com/RuotoloLab/CIUSuite2. 

5.6 Acknowledgements 

TSPO protein was expressed and purified by the Ferguson-Miller group at Michigan 

State University. The authors thank M. W. Haskell for helpful discussions regarding Gaussian 

fitting and modeling, and the members of the Ruotolo lab for extensive feedback and beta 

testing. CIUSuite 2 development is supported by the National Science Foundation Division of 

Chemistry under Grants 1808541 and 1253384 (with co-funding from the Division of Molecular 

and Cellular Biosciences). Additional support for this project was provided by the Agilent 

Technologies Thought Leader Award and University Relations grant programs. 

5.7 References 

(1)  Leney, A. C.; Heck, A. J. R. Native Mass Spectrometry: What Is in the Name? J. Am. Soc. 



 126 

Mass Spectrom. 2017, 28 (1), 5–13. 
(2)  Lössl, P.; van de Waterbeemd, M.; Heck, A. J. The Diverse and Expanding Role of Mass 

Spectrometry in Structural and Molecular Biology. EMBO J. 2016, 35 (24), 2634–2657. 
(3)  Mehmood, S.; Allison, T. M.; Robinson, C. V. Mass Spectrometry of Protein Complexes: 

From Origins to Applications. Annu. Rev. Phys. Chem. 2015, 66 (1), 453–474. 
(4)  Zhong, Y.; Hyung, S.-J.; Ruotolo, B. T. Ion Mobility–mass Spectrometry for Structural 

Proteomics. Expert Rev. Proteomics 2012, 9 (1), 47–58. 
(5)  Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The Power of Ion Mobility-Mass 

Spectrometry for Structural Characterization and the Study of Conformational Dynamics. 
Nat. Chem. 2014, 6 (4), 281–294. 

(6)  Terral, G.; Beck, A.; Cianférani, S. Insights from Native Mass Spectrometry and Ion 
Mobility-Mass Spectrometry for Antibody and Antibody-Based Product Characterization. 
J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1032, 79–90. 

(7)  Bleiholder, C.; Bowers, M. T. The Solution Assembly of Biological Molecules Using Ion 
Mobility Methods: From Amino Acids to Amyloid β-Protein. Annu. Rev. Anal. Chem 
2017, 10 (1), 365–386. 

(8)  Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure in 
Vacuo: Gas-Phase Conformations of BPTI and Cytochrome C. J. Am. Chem. Soc. 1997, 
119 (9), 2240–2248. 

(9)  Hyung, S. J.; Robinson, C. V.; Ruotolo, B. T. Gas-Phase Unfolding and Disassembly 
Reveals Stability Differences in Ligand-Bound Multiprotein Complexes. Chem. Biol. 
2009, 16 (4), 382–390. 

(10)  Zhang, H.; Liu, H.; Lu, Y.; Wolf, N. R.; Gross, M. L.; Blankenship, R. E. Native Mass 
Spectrometry and Ion Mobility Characterize the Orange Carotenoid Protein Functional 
Domains. Biochim. Biophys. Acta - Bioenerg. 2016, 1857 (6), 734–739. 

(11)  Zhao, Y.; Singh, A.; Xu, Y.; Zong, C.; Zhang, F.; Boons, G. J.; Liu, J.; Linhardt, R. J.; 
Woods, R. J.; Amster, I. J. Gas-Phase Analysis of the Complex of Fibroblast 
GrowthFactor 1 with Heparan Sulfate: A Traveling Wave Ion Mobility Spectrometry 
(TWIMS) and Molecular Modeling Study. J. Am. Soc. Mass Spectrom. 2017, 28 (1), 96–
109. 

(12)  Chorev, D. S.; Volberg, T.; Livne, A.; Eisenstein, M.; Martins, B.; Kam, Z.; Jockusch, B. 
M.; Medalia, O.; Sharon, M.; Geiger, B. Conformational States during Vinculin 
Unlocking Differentially Regulate Focal Adhesion Properties. Sci. Rep. 2018, 8 (1), 2693. 

(13)  Byrne, D. P.; Vonderach, M.; Ferries, S.; Brownridge, P. J.; Eyers, C. E.; Eyers, P. A. 
CAMP-Dependent Protein Kinase (PKA) Complexes Probed by Complementary 
Differential Scanning Fluorimetry and Ion Mobility-Mass Spectrometry. Biochem. J. 
2016, 473 (19), 3159–3175. 

(14)  Jovcevski, B.; Kelly, M. A.; Aquilina, J. A.; Benesch, J. L. P.; Ecroyd, H. Evaluating the 
Effect of Phosphorylation on the Structure and Dynamics of Hsp27 Dimers by Means of 
Ion Mobility Mass Spectrometry. Anal. Chem. 2017, 89 (24), 13275–13282. 

(15)  Chan, D. S. H.; Kavanagh, M. E.; McLean, K. J.; Munro, A. W.; Matak-Vinković, D.; 
Coyne, A. G.; Abell, C. Effect of DMSO on Protein Structure and Interactions Assessed 
by Collision-Induced Dissociation and Unfolding. Anal. Chem. 2017, 89 (18), 9976–9983. 

(16)  Laszlo, K. J.; Munger, E. B.; Bush, M. F. Folding of Protein Ions in the Gas Phase after 
Cation-to-Anion Proton-Transfer Reactions. J. Am. Chem. Soc. 2016, 138 (30), 9581–
9588. 



 127 

(17)  Beynon, R. J.; Armstrong, S. D.; Claydon, A. J.; Davidson, A. J.; Eyers, C. E.; Langridge, 
J. I.; Gómez-Baena, G.; Harman, V. M.; Hurst, J. L.; Lee, V.; et al. Mass Spectrometry for 
Structural Analysis and Quantification of the Major Urinary Proteins of the House Mouse. 
Int. J. Mass Spectrom. 2015, 391, 146–156. 

(18)  Han, L.; Hyung, S. J.; Mayers, J. J. S.; Ruotolo, B. T. Bound Anions Differentially 
Stabilize Multiprotein Complexes in the Absence of Bulk Solvent. J. Am. Chem. Soc. 
2011, 133 (29), 11358–11367. 

(19)  Zhong, Y.; Han, L.; Ruotolo, B. T. Collisional and Coulombic Unfolding of Gas-Phase 
Proteins: High Correlation to Their Domain Structures in Solution. Angew. Chemie - Int. 
Ed. 2014, 53 (35), 9209–9212. 

(20)  Samulak, B. M.; Niu, S.; Andrews, P. C.; Ruotolo, B. T. Ion Mobility-Mass Spectrometry 
Analysis of Cross-Linked Intact Multiprotein Complexes: Enhanced Gas-Phase Stabilities 
and Altered Dissociation Pathways. Anal. Chem. 2016, 88 (10), 5290–5298. 

(21)  Wagner, N. D.; Russell, D. H. Defining Noncovalent Ubiquitin Homodimer Interfacial 
Interactions through Comparisons with Covalently Linked Diubiquitin. J. Am. Chem. Soc. 
2016, 138 (51), 16588–16591. 

(22)  Wagner, N. D.; Clemmer, D. E.; Russell, D. H. ESI-IM-MS and Collision-Induced 
Unfolding That Provide Insight into the Linkage-Dependent Interfacial Interactions of 
Covalently Linked Diubiquitin. Anal. Chem. 2017, 89 (18), 10094–10103. 

(23)  Eschweiler, J. D.; Martini, R. M.; Ruotolo, B. T. Chemical Probes and Engineered 
Constructs Reveal a Detailed Unfolding Mechanism for a Solvent-Free Multidomain 
Protein. J. Am. Chem. Soc. 2017, 139 (1), 534–540. 

(24)  Hopper, J. T. S.; Oldham, N. J. Collision Induced Unfolding of Protein Ions in the Gas 
Phase Studied by Ion Mobility-Mass Spectrometry: The Effect of Ligand Binding on 
Conformational Stability. J. Am. Soc. Mass Spectrom. 2009, 20 (10), 1851–1858. 

(25)  Zhao, Y.; Singh, A.; Li, L.; Linhardt, R. J.; Xu, Y.; Liu, J.; Woods, R. J.; Amster, I. J. 
Investigating Changes in the Gas-Phase Conformation of Antithrombin III upon Binding 
of Arixtra Using Traveling Wave Ion Mobility Spectrometry (TWIMS). Analyst 2015, 140 
(20), 6980–6989. 

(26)  Nyon, M. P.; Prentice, T.; Day, J.; Kirkpatrick, J.; Sivalingam, G. N.; Levy, G.; Haq, I.; 
Irving, J. A.; Lomas, D. A.; Christodoulou, J.; et al. An Integrative Approach Combining 
Ion Mobility Mass Spectrometry, X-Ray Crystallography, and Nuclear Magnetic 
Resonance Spectroscopy to Study the Conformational Dynamics of Α1-Antitrypsin upon 
Ligand Binding. Protein Sci. 2015, 24 (8), 1301–1312. 

(27)  Zhao, B.; Zhuang, X.; Pi, Z.; Liu, S.; Liu, Z.; Song, F. Determining the Effect of 
Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry 
Combined with Optical Spectroscopy. J. Am. Soc. Mass Spectrom. 2018, 29 (4), 734–741. 

(28)  Niu, S.; Ruotolo, B. T. Collisional Unfolding of Multiprotein Complexes Reveals 
Cooperative Stabilization upon Ligand Binding. Protein Sci. 2015, 24 (8), 1272–1281. 

(29)  Rabuck, J. N.; Hyung, S. J.; Ko, K. S.; Fox, C. C.; Soellner, M. B.; Ruotolo, B. T. 
Activation State-Selective Kinase Inhibitor Assay Based on Ion Mobility-Mass 
Spectrometry. Anal. Chem. 2013, 85 (15), 6995–7002. 

(30)  Beveridge, R.; Migas, L. G.; Payne, K. A. P.; Scrutton, N. S.; Leys, D.; Barran, P. E. Mass 
Spectrometry Locates Local and Allosteric Conformational Changes That Occur on 
Cofactor Binding. Nat. Commun. 2016, 7, 12163. 

(31)  Rabuck-Gibbons, J. N.; Keating, J. E.; Ruotolo, B. T. Collision Induced Unfolding and 



 128 

Dissociation Differentiates ATP-Competitive from Allosteric Protein Tyrosine Kinase 
Inhibitors. Int. J. Mass Spectrom. 2018, 427, 151–156. 

(32)  Tian, Y.; Ruotolo, B. T. The Growing Role of Structural Mass Spectrometry in the 
Discovery and Development of Therapeutic Antibodies. Analyst 2018, 143 (11), 2459–
2468. 

(33)  Tian, Y.; Han, L.; Buckner, A. C.; Ruotolo, B. T. Collision Induced Unfolding of Intact 
Antibodies: Rapid Characterization of Disulfide Bonding Patterns, Glycosylation, and 
Structures. Anal. Chem. 2015, 87 (22), 11509–11515. 

(34)  Tian, Y.; Ruotolo, B. T. Collision Induced Unfolding Detects Subtle Differences in Intact 
Antibody Glycoforms and Associated Fragments. Int. J. Mass Spectrom. 2018, 425, 1–9. 

(35)  Botzanowski, T.; Erb, S.; Hernandez-Alba, O.; Ehkirch, A.; Colas, O.; Wagner-Rousset, 
E.; Rabuka, D.; Beck, A.; Drake, P. M.; Cianférani, S. Insights from Native Mass 
Spectrometry Approaches for Top- and Middle- Level Characterization of Site-Specific 
Antibody-Drug Conjugates. MAbs 2017, 9 (5), 801–811. 

(36)  Huang, Y.; Salinas, N. D.; Chen, E.; Tolia, N. H.; Gross, M. L. Native Mass 
Spectrometry, Ion Mobility, and Collision-Induced Unfolding Categorize Malaria 
Antigen/Antibody Binding. J. Am. Soc. Mass Spectrom. 2017, 28 (11), 2515–2518. 

(37)  Campuzano, I. D. G.; Larriba, C.; Bagal, D.; Schnier, P. D. Ion Mobility and Mass 
Spectrometry Measurements of the Humanized IgGk NIST Monoclonal Antibody. ACS 
Symp. Ser. 2015, 1202, 75–112. 

(38)  Pisupati, K.; Tian, Y.; Okbazghi, S.; Benet, A.; Ackermann, R.; Ford, M.; Saveliev, S.; 
Hosfield, C. M.; Urh, M.; Carlson, E.; et al. A Multidimensional Analytical Comparison 
of Remicade and the Biosimilar Remsima. Anal. Chem. 2017, 89 (9), 4838–4846. 

(39)  Ferguson, C. N.; Gucinski-Ruth, A. C. Evaluation of Ion Mobility-Mass Spectrometry for 
Comparative Analysis of Monoclonal Antibodies. J. Am. Soc. Mass Spectrom. 2016, 27 
(5), 822–833. 

(40)  Reading, E.; Liko, I.; Allison, T. M.; Benesch, J. L. P.; Laganowsky, A.; Robinson, C. V. 
The Role of the Detergent Micelle in Preserving the Structure of Membrane Proteins in 
the Gas Phase. Angew. Chemie - Int. Ed. 2015, 54 (15), 4577–4581. 

(41)  Laganowsky, A.; Reading, E.; Allison, T. M.; Ulmschneider, M. B.; Degiacomi, M. T.; 
Baldwin, A. J.; Robinson, C. V. Membrane Proteins Bind Lipids Selectively to Modulate 
Their Structure and Function. Nature 2014, 510 (7503), 172–175. 

(42)  Allison, T. M.; Reading, E.; Liko, I.; Baldwin, A. J.; Laganowsky, A.; Robinson, C. V. 
Quantifying the Stabilizing Effects of Protein-Ligand Interactions in the Gas Phase. Nat. 
Commun. 2015, 6, 8551. 

(43)  Liu, Y.; Cong, X.; Liu, W.; Laganowsky, A. Characterization of Membrane Protein–Lipid 
Interactions by Mass Spectrometry Ion Mobility Mass Spectrometry. J. Am. Soc. Mass 
Spectrom. 2017, 28 (4), 579–586. 

(44)  Mehmood, S.; Marcoux, J.; Gault, J.; Quigley, A.; Michaelis, S.; Young, S. G.; Carpenter, 
E. P.; Robinson, C. V. Mass Spectrometry Captures Off-Target Drug Binding and 
Provides Mechanistic Insights into the Human Metalloprotease ZMPSTE24. Nat. Chem. 
2016, 8 (12), 1152–1158. 

(45)  Eschweiler, J. D.; Rabuck-Gibbons, J. N.; Tian, Y.; Ruotolo, B. T. CIUSuite: A 
Quantitative Analysis Package for Collision Induced Unfolding Measurements of Gas-
Phase Protein Ions. Anal. Chem. 2015, 87 (22), 11516–11522. 

(46)  Sivalingam, G. N.; Yan, J.; Sahota, H.; Thalassinos, K. Amphitrite: A Program for 



 129 

Processing Travelling Wave Ion Mobility Mass Spectrometry Data. Int. J. Mass Spectrom. 
2013, 345–347, 54–62. 

(47)  Sivalingam, G. N.; Cryar, A.; Williams, M. A.; Gooptu, B.; Thalassinos, K. 
Deconvolution of Ion Mobility Mass Spectrometry Arrival Time Distributions Using a 
Genetic Algorithm Approach: Application to Α1-Antitrypsin Peptide Binding. Int. J. Mass 
Spectrom. 2018, 426, 29–37. 

(48)  Migas, L. G.; France, A. P.; Bellina, B.; Barran, P. E. ORIGAMI: A Software Suite for 
Activated Ion Mobility Mass Spectrometry (AIM-MS) Applied to Multimeric Protein 
Assemblies. Int. J. Mass Spectrom. 2018, 427, 20–28. 

(49)  Li, F.; Xia, Y.; Meiler, J.; Ferguson-Miller, S. Characterization and Modeling of the 
Oligomeric State and Ligand Binding Behavior of Purified Translocator Protein 18 KDa 
from Rhodobacter Sphaeroides. Biochemistry 2013, 52 (34), 5884–5899. 

(50)  Laganowsky, A.; Reading, E.; Hopper, J. T. S.; Robinson, C. V. Mass Spectrometry of 
Intact Membrane Protein Complexes. Nat. Protoc. 2013, 8 (4), 639–651. 

(51)  Haynes, S. E.; Polasky, D. A.; Dixit, S. M.; Majmudar, J. D.; Neeson, K.; Ruotolo, B. T.; 
Martin, B. R. Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak 
Capacity for Data-Independent Acquisition Proteomics. Anal. Chem. 2017, 89 (11), 5669–
5672. 

(52)  Millman, K. J.; Aivazis, M. Python for Scientists and Engineers. Comput. Sci. Eng. 2011, 
13 (2), 9–12. 

(53)  Oliphant, T. E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9 (3), 10–20. 
(54)  Dubois, P. F.; Hinsen, K.; Hugunin, J. Numerical Python. Comput. Phys. 1996, 10 (3), 

262. 
(55)  Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9 (3), 99–

104. 
(56)  Pedregosa, F.; Varoquax, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O. Scikit-

Learn: Machine Learning in Python. J Mach Learn Res 2011, 12 (Oct), 2825–2830. 
(57)  Dowdy, S. M.; Wearden, S.; Chilko, D. M. Statistics for Research, 3rd ed.; Wiley-

Interscience: Hoboken, N.J., 2004. 
(58)  Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection. Stat. 

Surv. 2009, 4 (0), 40–79. 
(59)  Xanthopoulos, P.; Pardalos, P. M.; Trafalis, T. B. Linear Discriminant Analysis; Springer, 

New York, NY, 2013; pp 27–33. 
(60)  Mammone, A.; Turchi, M.; Cristianini, N. Support Vector Machines. In Advanced Review; 

Springer, New York, NY, 2009; Vol. 1, pp 283–289. 
(61)  Newville, M.; Ingargiola, A.; Stensitzki, T.; Allen, D. B. LMFIT: Non-Linear Least-

Square Minimization and Curve-Fitting for Python. Zenodo 2014. 
(62)  Rabuck-Gibbons, J. N.; Lodge, J.; Mapp, A.; Ruotolo, B. T. In Press. J Am Soc Mass 

Spectrom. 
(63)  Campuzano, I. D. G.; Li, H.; Bagal, D.; Lippens, J. L.; Svitel, J.; Kurzeja, R. J. M.; Xu, 

H.; Schnier, P. D.; Loo, J. A. Native MS Analysis of Bacteriorhodopsin and an Empty 
Nanodisc by Orthogonal Acceleration Time-of-Flight, Orbitrap and Ion Cyclotron 
Resonance. Anal. Chem. 2016, 88 (24), 12427–12436. 

(64)  Fantin, S. M.; Parson, K. F.; Niu, S.; Liu, J.; Ferguson-Miller, S. M.; Ruotolo, B. T. CIU 
Classifies Ligand Binding Behavior of Integral Membrane Translocator Protein TSPO. 
Press. 



 130 

(65)  Allen, S. J.; Giles, K.; Gilbert, T.; Bush, M. F. Ion Mobility Mass Spectrometry of 
Peptide, Protein, and Protein Complex Ions Using a Radio-Frequency Confining Drift 
Cell. Analyst 2016, 141 (3), 884–891. 

(66)  Zhou, M.; Politis, A.; Davies, R. B.; Liko, I.; Wu, K.-J.; Stewart, A. G.; Stock, D.; 
Robinson, C. V. Ion Mobility–mass Spectrometry of a Rotary ATPase Reveals ATP-
Induced Reduction in Conformational Flexibility. Nat. Chem. 2014, 6 (3), 208–215. 

(67)  May, J. C.; McLean, J. A. Ion Mobility-Mass Spectrometry: Time-Dispersive 
Instrumentation. Anal. Chem. 2015, 87 (3), 1422–1436. 

 

 



 131 

Chapter 6 A Modified Drift Tube Ion Mobility-Mass Spectrometer for Charge Multiplexed 
Collision Induced Unfolding 

 

Daniel D. Vallejo‡, Daniel A. Polasky‡, Ruwan T. Kurulugama‡, Joseph D. Eschweiler, John C. 
Fjeldsted, and Brandon T. Ruotolo. Anal. Chem. 2019, submitted. 

(‡ contributed equally) 
 

6.1 Abstract 

Collision induced unfolding (CIU) of protein ions and their non-covalent complexes offers 

relatively rapid access to a rich portfolio of biophysical information, without the need to tag or 

purify proteins prior to analysis. Such assays have been characterized extensively for a range of 

therapeutic proteins, proving exquisitely sensitive to alterations in protein sequence, structure, 

and post-translational modification state. Despite advantages over traditional probes of protein 

stability, improving the throughput and information content of gas-phase protein unfolding 

assays remains a challenge for current instrument platforms.  In this report, we describe 

modifications to an Agilent 6560 drift tube ion mobility-mass spectrometer in order to perform 

robust, simultaneous CIU across all precursor ions detected. This approach dramatically 

increases the speed associated with typical CIU assays, which typically involve mass selection of 

narrow m/z regions prior to collisional activation, and thus their development requires a 

comprehensive assessment of charge-stripping reactions that can unintentionally pollute CIU 

data with chemical noise when more than one precursor ion is allowed to undergo simultaneous 

activation.  By studying the unfolding and dissociation of intact antibody ions, a key analyte 

class associated with biotherapeutics, we reveal a predictive relationship between the precursor 
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charge state, the amount of buffer components bound to the ions of interest, and the amount of 

charge stripping detected.  We then utilize our knowledge of antibody charge stripping to rapidly 

capture CIU data for a range of antibody subclasses and subtypes across all charge states 

simultaneously, demonstrating a strong charge state dependence on the information content of 

CIU.  Finally, we demonstrate that CIU data collection times can be further reduced by scanning 

fewer voltage steps, enabling us to optimize the throughput of our improved CIU methods and 

confidently differentiate antibody variant ions using ~12.5% of the data typically collected 

during CIU.  Taken together, our results characterize a new instrument platform for 

biotherapeutic stability measurements with dramatically improved throughput and information 

content. 

 

6.2 Introduction 

Stability is a key biophysical property of folded proteins that impacts their biological function 

and the ability to engineer new functions and construct effective therapeutics from existing 

polypeptide frameworks.1,2 In a practical context, biotherapeutic monoclonal antibodies (mAbs), 

which serve as treatments for a variety of diseases, are often screened and engineered with 

respect to their stabilities.3–5 Such engineering often takes on additional dimensions, as mAbs 

can be tailored into a number of modalities including fusion proteins,6–8 bispecifics,9,10 and 

antibody drug conjugates (ADCs),11–14 that seek to improve upon the potencies of existing 

biotherapeutic scaffolds. The patents for many active therapeutic mAbs are due to expire,15 

resulting in the rise of generic biotherapeutics, also known as biosimilars, which includes a 

catalog of nearly 400 protein therapeutics development.16 
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A range of analytical technologies, including chromatography, electrophoresis, 

spectroscopy, and mass spectrometry, are routinely employed to characterize therapeutic 

mAbs.17–20 These techniques are often employed in the context of a multiple attribute monitoring 

(MAM) methodology, aimed at providing a thorough analysis of a mAb throughout its 

development.21 Many well-validated tools are currently in place to measure the stabilities of 

therapeutic proteins, including differential scanning calorimetry (DSC), hydrogen-deuterium 

exchange (HDX), and immunoassays. Despite their robust, validated history in the 

pharmaceutical industry, such approaches typically require large amounts of purified protein, 

lengthy analysis times, and homogeneous protein populations.22–26  Furthermore, stability 

assessments such as differential scanning fluorimetry (DSF) or  N-glycosylation analysis  require 

labelling chemistries that may significantly alter the protein structures they seek to measure.25,27  

Ion mobility-mass spectrometry (IM-MS) is becoming established as a useful technology for 

protein structure and stability analysis. IM separates ions based on their orientationally averaged 

collision cross sections (CCSs).28 When coupled to MS, IM drift times can be correlated with ion 

composition in order to reveal the influence of sequence,29,30 small molecule conjugation,31 or 

post-translational modification on antibody structure and stability.32,33 Activating protein ions in 

the gas phase and assessing the resulting changes in protein ion conformation during a collision 

induced unfolding (CIU) experiment has emerged as a useful method for rapidly assessing 

protein stability.34 CIU can capture stability shifts associated with protein domain structure,35 

anion and cation adduction,36,37  kinase inhibitor binding,38 as well as the disulfide and 

glycosylation patterns in intact mAbs.39,40  

Despite the advances in IM-MS and CIU technologies for structural biology, limitations 

associated with the throughput of typical CIU experiments constrain its utility for routine 
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antibody characterization.  Most CIU workflows rely upon the MS-based isolation of single 

protein ion charge states prior to CIU analysis in order to prevent chemical noise related to the 

loss of charged adducts from protein ions having n+1 charges. This “charge stripping” chemical 

noise can pollute CIU data for adjacent signals, in extreme cases accounting for up to 50% of the 

observed signal intensities, preventing accurate CIU analyses. Many workflows require the 

collection of CIU data across several charge states in order to search for those ions that provide 

maximally differentiating data, but doing so serially requires long acquisition times that are 

incompatible with high-throughput workflows. Thus, CIU approaches that do not require such 

ion pre-selection would offer significant advantages in terms of analysis speed and information 

content.  

In this report, we describe modifications to an Agilent 6560 IM-MS platform that allow 

for significantly increased levels of ion activation prior to IM separation.  We make a series of 

quantitative IM-MS measurements of mAb charge stripping chemical noise under native-like and 

supercharged buffer conditions over a range of activation voltages. The charge stripping we 

observe in these experiments is used to develop a correction algorithm for CIU data acquired 

without prior mass selection. We then use this optimized workflow to evaluate a series of charge 

multiplexed CIU datasets aimed at differentiating IgG subtypes and mAb light chain variants, 

comparing each with previously reported, mass-selected datasets for single charge states. 

 

6.3 Experimental Methods 

6.3.1 Sample Preparation 

SiLuTmLite SigmaMab Universal antibody standard, IgG1κ, IgG1λ, IgG2κ, IgG2λ, and IgG4κ 

from human myeloma were purchased from Sigma-Aldrich and supplied as lyophilized powder 
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(St. Louis, MO). All samples were reconstituted using Milli-Q water (Millipore) to a 

concentration of 2 mg/mL unless specified otherwise. IgG1 samples were buffer exchanged into 

200 mM ammonium acetate buffer using Micro Bio-spin 30 columns (Bio-Rad, Hercules, CA). 

Buffer exchanged samples were then diluted to a working concentration of 1 mg/mL (~6.7 µM).  

Where noted, antibody samples were supercharged with 2-nitrobenzyl alcohol (m-NBA) using 1-

2% (V/V %) on the Synapt G2, or using sulfolane at 5% (V/V %) on the Agilent 6560 platform, 

with both reagents purchased from Sigma-Aldrich (St. Louis, MO). 

6.3.2 Protein Charge Stripping Analysis 

Antibody standards were initially analyzed using a quadrupole-ion mobility-time-of-flight mass 

spectrometer (Q-IM-ToF MS) instrument (Synapt G2 HDMS, Waters, Milford, MA). Sample 

was transferred to a gold coated borosilicate capillary needle (prepared in-house), and ions were 

generated by direct infusion using a nano-electrospray ionization (nESI) source in positive mode. 

The electrospray capillary was operated at voltages of 1.5-1.7 kV with the sampling cone 

operated at 52 V. The backing pressure was set to ~7.9-8.1 mbar. The helium cell flow was 

operated at 200 mL/min and pressurize to 1.40x10-3
 mbar. The trap traveling-wave ion guide was 

pressurized to 3.0 × 10−2 mbar of argon gas. The traveling- wave IM separator was operated at a 

pressure of ∼2.6 mbar. IM separation was achieved with a travelling wave operated at 40 V 

wave height traveling at 600 m/s. The ToF-MS was operated over the m/z range of 1000−10,000 

at a pressure of 1.5 × 10−6 mbar. 

Antibody ions were subjected to collisions in the travelling-wave ion trap prior to the IM 

separation to perform antibody CIU. Tandem-MS (quadrupole selection) was used to select 

charge states, 20-25+ in native antibody samples, and 26+ or greater in supercharged antibody 

samples. The collision voltage was ramped from 5 to 200 V in 5 V increments to construct the 
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CIU fingerprint data. The dwell time for each 5 V step was 30 seconds. Charge stripping data 

were extracted after CIU was performed using the raw data for each charge state collected at 

each collision voltage step. 

6.3.3 A Modified Agilent 6560 for Collision Induced Unfolding Experiments 

IgG1κ, IgG1λ IgG2κ, IgG2λ, and IgG4κ antibody samples were analyzed using a modified 

Agilent 6560 IM-Q-TOF platform (Agilent Technologies, Santa Clara, CA). The instrument 

configuration for the unmodified 6560 IM-Q-TOF instrument has been described previously41,42. 

Briefly, the ion optics design changes to the modified instrument included an additional ion lens 

(called fragmentor lens) at the exit of the ion transfer capillary. The DC potential on this lens can 

be independently controlled to adjust the ion acceleration electric field between the capillary exit 

and the fragmentor lens. The ambient pressure in the ion activation region is about 4.5 Torr. To 

increase the gas discharge potential and to improve the collision activation efficiency, we have 

used sulfur hexafluoride gas in the source region. SF6 gas was added to the nitrogen drying gas 

line at a 10% v/v ratio and this gas mixture is carried through the ion transfer capillary to the ion 

activation region at the exit of the capillary. The absolute voltage difference between the 

capillary exit and the fragmentor lens is denoted as collision voltage hereafter. 

Antibody samples were electrosprayed using a micronebulizer attached to an Agilent jet 

stream ion source. An external syringe pump was used to deliver the sample at 4 µL/min flow 

rate. The source and drying gas temperatures were maintained at 150 oC. The mass analyzer was 

operated in extended mass range (10000 m/z) and ion mobility enabled mode. In ion mobility 

mode, maximum drift time was set to 65 ms, trap fill time was set to 50 ms and trap release time 

was set to 1 ms. The drift tube was operated under 3.95 Torr nitrogen gas and the electric field 

was set to 18.5 V/cm (drift tube entrance voltage = 1700 V and drift tube exit voltage = 250 V). 
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In MassHunter data acquisition software, time segment mode is used to ramp the collision 

voltage in 22 steps (for the full CIU scan) and the dwell time for each step was 1 min. For full 

CIU curve experiments, collision voltage was ramped from 220 to 500 V in 20 V steps and from 

500 to 560 V in 10 V steps. 

Antibody CIU data were collected across 24-29+ ions observed in native mAb samples 

and over 30-42+ in supercharged antibody samples. 5-voltage step fingerprints were generated 

using the collision voltages that were associated with both stable mAb features, and feature 

transitions observed in complete CIU fingerprints. The collision voltages used for such CIU 

experiments were 240 V, 340 V, 380 V, 420 V, and 550 V. IM data were recorded for each 

selected mAb ion at each collision voltage, and compiled to generate CIU fingerprints. The CIU 

fingerprints were recorded as CCS versus collision voltage plots. The instrument measured drift 

time data were converted to CCS values using the single-field CCS calculation method 43. 

Antibody samples were collected in replicates (n=3 or higher) to generate averaged CIU 

fingerprints. These averaged fingerprints were compared to replicate data to determine the root-

mean-square deviation (RMSD) baseline for each sample. The IgG1κ averaged CIU fingerprints 

for each corresponding charge state were used to compare to the replicates of all mAb samples 

acquired using an identical CIU workflow, and to generate the RMSD based heat maps shown in 

this report. These extracted drift time data were analyzed using CIUSuite 2 to generate CIU 

fingerprints, CIU comparisons, and perform RMSD calculations44. 

6.3.4 Mass Spectrometry Data Analysis 

Molecular masses of intact SigmaMab Universal Antibody standard and supercharged samples 

were calculated via the maximum entropy deconvolution method.45–47 Drift time data for 
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precursor and charge stripped ions were extracted at each collision voltage using TWIM 

Extract,48 and manually using Driftscope for selected supercharged data (Waters, Milford, MA).  

Agilent MS data were viewed with MassHunter IM-MS Browser software (Agilent, Santa Clara, 

CA). Drift time data for each charge state for native and supercharged IgG1, IgG2, and IgG4 

mAbs were extracted at each fragmentor voltage using a custom data extraction tool developed 

in C# that utilizes the MIDAC API for IM-MS data from Agilent (Agilent Technologies, Santa 

Clara, CA). The data extraction tool is available with CIUSuite 2.49   

Charge stripping data were similarly extracted for both precursor and charge-stripped ions at 

each collision voltage using TWIMExtract, as well as custom scripts written in Python. In order 

to quantify charge stripping, we measured the total intensity for each ion for each collision 

voltage step. The relative intensity of charge stripping was calculated as the ratio of the total ion 

intensity of the charge stripped product ions to the total ion intensities of the product ions and the 

precursor ion as in Equation 1. 

(1) 𝐶𝐶𝐶𝐶 =  𝑀𝑀(𝑧𝑧−1)+

∑(𝑀𝑀𝑧𝑧++𝑀𝑀(𝑧𝑧−1)++⋯+𝑀𝑀(𝑧𝑧−𝑥𝑥)+)
 

CS is the relative intensity of charge stripping, M(z-1)+ is the charge stripped ion of interest, Mz+ is 

the precursor ion, and M(n-x)+ is the lowest observable charge stripped ion.  For accurate 

comparisons of the relative charge stripping observed between each charge state, collision 

voltages were converted to laboratory frame energies (eV).50 The charge stripping plots were 

initially fit with a logistic function using a custom python script before processing using 

OriginPro 2017 (Academic). The charge stripping data were mean smoothed once using a 10 

point window, and a multi-data set fit mode was used such that each charge state was 

independently fit with a logistic function with 400 iterations. The inflection and bounds of these 

fitted logistic functions were used to determine the lab frame energy where charge stripping 
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reaches 50% of its maximum value for each charge state, which we used to estimate the initial 

and maximum charge stripping propensities for each mAb charge state. 

The all charge state CIU analysis is represented as a heat plot generated in OriginPro 

2017, in which the relative factor difference in RMSD values obtained for each charge state of 

IgG1κ, or IgG2κ in the case of light chain variants, are compared to determine the RMSD 

baseline (blue, bottom) and compared against the IgG1κ, IgG1λ IgG2κ, IgG2λ, or IgG4κ 

fingerprints of the same charge state. Relative difference in RMSD values are shown with a 

colorimetric scale, with dark blue, blue, light blue, green, yellow, and red indicating increasing 

levels of difference to the IgG1κ or IgG2κ reference relative to the highest RMSD value. 

6.4 Results and Discussion 

Figure 6-1 shows the modified Agilent 6560 platform and the CIU workflow used in this report. 

The drift tube within the 6560 typically generates higher IM resolving powers (R~60)41 than the 

traveling wave IM separators typically used for CIU (R~40), thus producing corrlated 

advantages for CIU data analysis.51 The modifications to the 6560 ion optics shown, along with 

the introduction of SF6 gas into the source region, provides higher center-of-mass frame collision 

energies for initiating CIU prior to IM separation (Figure 6-1 A). We found these modifications 

to be necessary in order to provide sufficient activation energy to completely unfold mAb ions 

(Figure 6-1 B). CIU was performed on the 6560 by increasing the potential of the capillary exit 

and fragmentor lens and collecting the IM drift time plots at each collision voltage step for all 

charge states. The IM drift time data was extracted for each charge state using custom software 
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built using the MIDAC API for IM-MS data from Agilent (Figure 6-1 C). The extracted drift 

times were plotted against the collision voltage (Figure 6-1 D) and used to generate a CIU 

fingerprint contour with drift time (ms) or CCS (nm2) on the y-axis, collision voltage (V) on the 

x-axis, and the colorimetric scale formed by the relative ion intensity (Figure 6-1 E).  

An all charge state CIU approach, in principle, leads to significant improvements in the 

information content acquired per unit of time and sample. Despite these advantages, current CIU  

workflows39,52 typically isolate individual analyte charge states prior to collisional heating in 

order to generate CIU fingerprints in an effort to avoid contamination from the chemical noise 

associated with charge stripping events. Such events typically involve the ejection of charged 

small molecules, or bound buffer adducts, from the precursor ions upon collision activation, 

often requiring low activation voltages to initiate the reaction. In order to measure mAb ion 

Figure 6-1 A diagram of the modified Agilent 6560 IM-MS instrument (A) with an associated maximum activation 
potential by instrument region (B). The blue trace indicates the potentials applied to the modified instrument, which is 
capable of accelerating ions into the trapping funnel at 2680 V, compared the 2200 V possible on the unmodified platform. 
(C) An illustration of the collision induced unfolding workflow pursued in this work for intact antibody ions without 
precursor selection. For CIU analysis, signals associated with individual charge states are extracted across all collision 
voltages. (D) Increases in IM drift times are observed and tracked at each collision voltage (E) to generate a CIU 
“fingerprint”. 
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charge stripping, we isolated intact mAb 

charge states with the quadrupole mass 

analyzer under both native and supercharged 

conditions on a Synapt G2 IM-MS platform. 

Native MS data acquired for mAb standards 

reveal signals corresponding to the 20-25+ 

charge states of the intact antibody (Figure 

6-2 A). When we then selected an m/z region 

corresponding to the mAb 23+ charge state, 

and applied a collision voltage of 50 V, we 

observed a small signal corresponding to 22+ 

charge-stripped mAb product ions, at a 

relative intensity of 3% when compared to 

the 23+ precursor (Figure 6-2 C).  

To evaluate the effect of charge state 

and buffer adduct identity on the propensity 

of mAb ions to undergo charge stripping, we 

used the nESI super-charging reagent m-

NBA to acquire CIU data for charge states 

26-32+ (Figure 6-2 B).53,54 Such super-

charged mAb ions exhibited a greater 

propensity to undergo charge stripping than 

those prepared in pure ammonium acetate 

Figure 6-2 Native MS data for (A) an intact mAb standard and 
(C) quad-selected 23+ ion. The low intensity signal annotated as 
22+ mAb ions is the result of charge stripping. Native MS data 
for (B) a m-NBA supercharged intact mAb standard and (D) 
quad-selected 29+ mAb ions, exhibiting increased evidence of ion 
charge stripping (28+). (E) A plot of total charge stripping 
observed as a function of laboratory frame collision energy for 
mAb charge states 21-31+ (acquired across both native, blue 
circle, and supercharging, red triangle, conditions). The amount of 
charge stripping observed under native MS conditions reaches a 
maximum of 4-6% of the total ion current, and 8-40% for 
supercharged mAbs. Charge stripping data were fitted with a 
generalized logistic function (F), and midpoint values for the fits 
plotted as a function of mAb charge state exhibit a strong linear 
correlation (R2 value shown). The difference in average charge 
stripping observed relative to control data are plotted as a function 
of the difference in average intact mass measured at low and high 
activation energies, exhibiting a similarly strong linear correlation 
(G). 
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buffer. For example, isolated 29+ mAb ions activated at 50V converts ~18% of the precursor into 

a charge-stripped 28+ ion population (Figure 6-2 D). As charge stripping is due to a loss of 

positively charged adducts,55,56 it follows that the amount of charge stripping observed is likely 

dependent on the population of low volatility buffer components bound to the mAb, their 

ionizability, and any instrument settings that may lead to ion activation. In order to quantify 

charge stripping in mAb ions, we began by tracking the relative amount of charge stripping 

detected in our mass selected data as a function of the applied laboratory frame collision energies 

used for activation (Figure 6-2 E). Antibody ions generated under native conditions produce 

similar, low levels of charge stripping (2 – 5% relative abundance), and we observe this to 

increase at higher collision energies. Charge amplified antibody ions follow similar trends, but 

produce dramatically increased amounts of charge stripping at all activation energies, with 

higher charge states displaying lower onset energy for the charge stripping reaction. The charge 

stripping data shown in Figure 6-2 E was fit to logistic functions to determine the amount of 

charge stripping detected at the inflection point of each sigmoid, as well as the total difference in 

charge stripping observed for each charge state.  

Ultimately, we sought to build a corrective algorithm using our mass-selected data, 

capable of normalizing CIU data acquired without prior mass filtering to account for any charge 

stripping signals present. Our data revealed a strong linear correlation between the laboratory-

frame activation energy required to reach the inflection points in the charge stripping reaction 

and charge state analyzed (Figure 6-2 F), indicating that mAb ions of increased charge undergo 

more facile charge stripping in a highly predictable manner. We then computed the average 

difference in total charge stripping across all laboratory-frame activation energies probed using 

our fitted data from Figure 6-2 E, and plotted these values against the average total difference in 
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observed mAb ion mass collected at low and high activation conditions (Figure V-1), 5-10 V and 

100-150 V respectively (Figure 6-2 G). Again, we observe a strong linear correlation, allowing 

us to quantitatively relate the observed mass of adducts bound to mAb ions with the amount of 

charge stripped product ions produced.  Taken together, the trends observed in Figure 6-2 E and 

G create a means to calculate the amount of charge stripping expected across a wide range of 

mAb ion masses, energies, and charge states in CIU assays where pre-IM mass filtering is either 

not available or not desirable. 

In order to test our charge multiplexed CIU approach, we began by analyzing IgG 

subclasses using our modified 6560 IM-MS platform that were previously differentiated using 

CIU in a mass-selected mode.39 For example, we observe three CIU features for 26+ ions across 

data acquired for the IgG1, IgG2 and IgG4 subclasses studied here (Figure 6-3), similar to our 

previous analyses of mass-selected mAb CIU data.39  The first structural state we detect centers 

on ~80 nm2  (Table V-1), a value significantly greater than previous mAb CCS 

measurements.30,57 Given that mAb ions have previously been observed to adopt a wide range of 

gas-phase structures,58 we interpret these increased CCS values as evidence that such ions 

undergo a lesser degree of structural compaction within our modified drift tube IM-MS platform 

than observed previously. This initial feature transitions to occupy a range of CCS values 

spanning ~86 nm2 to 95 nm2 from 400-450 V, producing a final stable set of conformers centered 

on ~100 nm2 (Figure 6-3 A-C). CIU difference plots reveal low RMSD baseline values and a 

general ability to confidently differentiate IgG subclasses. The baseline RMSD is a measure of 

the difference between CIU replicates, and can be used to evaluate reproducibility, providing a 

control for downstream comparisons between samples. Specifically, we compute the CIU RMSD 

baseline for IgG1κ 26+ to be 1.0±0.2 (Figure 6-3 D), a factor of ~3 lower than was achieved with 
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these samples on our traveling-wave IM-MS 

platform (Figure V-2 D), resulting in a 

concomitant improvement in our ability to 

differentiate IgG subclasses.  Difference plots 

comparing IgG1κ to both IgG2κ and IgG4κ 

reveal RMSD values of 11.9±0.2 and 

21.8±0.9%, respectively (Figure 6-3 E-F), with 

comparison values of 23±2% and 19±2% 

produced using our traveling-wave IM-MS 

instrument (Figure V-2 E-F). We attribute the 

improvement noted above in the baseline 

RMSD values obtained for these samples to the 

modifications we implemented on the 6560 IM-

MS platform. The tunable optics for ion 

activation prevent variation in adduction mass 

resulting in average predicted charge stripping 

values of 2-3%. This homogenous ion 

population improves IM and MS resolution, leading to the enhanced differentiating capabilities 

we observe in CIU fingerprints on the modified 6560. Specifically, we previously achieved 

factor increases in CIU RMSD analyses for IgG subclasses ranging between 6 and 8,39 whereas 

CIU data acquired on our modified 6560 IM-MS platform produces CIU RMSD factor increases 

of 12 and 22 for differentiating the same IgG subclasses.  

Figure 6-3 CIU fingerprints of (A-C) IgG1κ, IgG2κ, and 
IgG4κ, respectively. (D) To determine the reproducibility and 
sensitivity of our CIU RMSD baselines on our modified drift 
tube platform, IgG1 CIU data were averaged (n=3), and a 
difference analysis conducted, yielding an RMSD baseline 
value of 2.93%. CIU comparison plots of IgG1 versus (E) 
IgG2 and (F) IgG4 were generated and produced RMSD 
values comparable to previous reports. Comprehensive charge 
state heat maps for (G) native and (H) supercharged mAbs 
enable a rapid assessment of optimal charge states for CIU-
base differentiation. 



 145 

The results discussed above leverage CIU data extracted from only a single charge state 

to differentiate IgG subclasses. Charge multiplexed CIU, however, enables us to rapidly identify 

those charge states that maximally differentiate analytes of interest (Figure 6-3 G). We chose to 

analyze such charge multiplexed CIU data as a heat map, in which CIU RMSD values (Table 

V-3 and Table V-4) are compared between IgG1κ, IgG2κ and IgG4κ datasets across all the mAb 

charge states observed in our experiments. By comparing CIU data in this way, we readily 

identify optimal charge states for differentiating IgG subclasses. Specifically, our data indicates 

that 26+ ions provide maximal differentiation for IgG1κ and IgG2κ samples, and either 26+ or 

27+ charge states appear optimal for similarly-structured IgG4κ comparisons. Supercharged IgG 

CIU data also reveals RMSD variations when comparisons are made between IgG1κ and IgG4κ 

samples (Figure 6-3 H). Our heat map analysis indicates that 35+ (25.5±0.5%) provides CIU data 

that maximizes our ability to differentiates these IgG subclasses.  Additionally, the 33+, 34+, 36+, 

and 37+ provide CIU that is highly differentiating (20-25%).  Taken together, Figure 6-3 G and H 

demonstrate the potential utility of a charge multiplexed CIU data analysis, where a group of 

optimal charge states can be selected for comparisons in order to maximize the detection of 

structural differences within mAb ion populations. 

We analyzed light chain variants of IgG1 and IgG2 antibodies. These light chain variants 

are distinguished by only subtle differences in sequence and epitope binding, but are responsible 

for a broad range of phenotypic differences such as conformational flexibility, mAb half-life, and 

alterations in antibody specificity.2 Several methods have been developed to determine the light 
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chain type and ratios from cell lines in mAbs 

and in serum, but the resulting alterations in 

mAb higher order structure and stability have 

remained largely unexplored.2 As such, we 

sought to test the ability of our charge 

multiplexed CIU approach to differentiate such 

IgG variants. As above, we began by comparing 

average CIU fingerprint data for the 26+ charge 

state of IgG1κ (Figure 6-4 A), IgG1λ (Figure 

6-4 C), IgG2κ (Figure 6-4 B), and IgG2λ 

(Figure 6-4 D). Notably, the fingerprints 

recorded for κ-containing IgG1 and IgG2 mAbs 

possess intermediate CIU features of enhanced 

stability when compared to equivalent λ-

containing mAb data.  CIU difference plots for 

IgG1 (Figure 6-4 E) and IgG2 (Figure 6-4 F) 

reveal RMSD values of 15.4±0.2% and 

25.9±0.1%, respectively, driven by CCS 

differences observed at both high and low collision voltage values. In addition, λ-containing 

mAbs produce a broader range of CCS values during CIU when compared to equivalent κ-

containing constructs. The subtle differentiation of these fingerprints indicates the sensitivity of 

all charge state CIU to detect higher order differences between light chain variants of 

monoclonal antibodies. RMSD heat maps were generated for the light chain variants using the 

Figure 6-4 CIU fingerprints of A) IgG1κ, B) IgG1λ, C) IgG2κ, 
and D) IgG2λ. Subtle differences in (E) IgG1 and (F) IgG2 
light chain variant unfolding patterns can be observed, with 
the greatest differences being observed in the beginning of the 
CIU process, and minor differences observed in later 
conditions. RMSD heatmap comparison of (G) IgG1 and (H) 
IgG2 light chain variants. These heatmaps provide a 
comprehensive charge state assessment that allows for 
increased discriminatory capabilities when compared to single 
charge state CIU, while providing diagnostic information on 
which charge states can provide the greatest difference in 
future analysis. 
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RMSD values obtained from replicates (Table V-5 and Table V-6), and similarly identifies the 

26+ charge state as optimally differentiating for both the IgG light chain variants probed here 

(Figure 6-4 G and H).  

 The charge multiplexed CIU approach demonstrated in Figure 6-3 and Figure 6-4 results 

in an increase in throughput over mass-selective CIU modes of operation, while maintaining the 

same information content.  In order to further increase the throughput of such CIU methods, we 

probed the ability of our modified drift tube IM-MS platform to generate CIU data using a 

significantly fewer number of voltage steps, strategically chosen to retain key information (i.e. 

transitions between features) from the complete CIU fingerprint.  

To demonstrate our CIU methodology 

utilizing a reduced number of voltage steps, we 

generated RMSD comparisons for mAb CIU 

fingerprints consisting of only 5 collision 

voltage steps in a charge multiplexed mode, 

where the voltage values were selected to 

provide maximum coverage of known IgG 

transitions in “snapshot” CIU fingerprints. Bar 

graphs of relative RMSD difference values 

(Table V-7 and Table V-8) produced for IgG4κ 

“snapshots” (Orange) and “full” (Blue) CIU fingerprints on the 6560 for native (Figure 6-5 A), 

and supercharged conditions (Figure 6-5 B). For IgG1κ, the RMSD baselines computed for both 

conditions are comparable, despite a 4.4-fold (22 minutes to 5 minutes) reduction in acquisition 

time for the snapshot CIU. In general, our 5-step data often produced increased standard 

Figure 6-5 (A) Native and (B) supercharged mAb samples 
demonstrate that RMSD based CIU data generated by 
“snapshot” CIU (orange) enable faster analysis time with 
minimal loss to differentiating capabilities afforded by “full” 
CIU datasets (blue). 5-step RMSD heat maps of (C) Native 
and (D) supercharged IgG1 and IgG4 antibodies.  
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deviations, which we associate with an increased sensitivity to noise inherent in using fewer 

datasets to construct fingerprints.   

A CIU RMSD heat map analysis of our charge multiplexed 5-step fingerprints (Figure 

6-5 C and D) reveals strong similarities to equivalent analyses performed for CIU data comprised 

of a larger number of voltage steps, as shown in Figure 6-3. For example, 5-step CIU data 

identifies the 26+ as maximally differentiating for IgG1/IgG4 comparisons, similar to the S/N 

corrected data from Figure 6-3. In addition, supercharged 5-step mAb CIU data identifies 35-38+ 

ions as maximally differentiating for IgG1/IgG4 comparisons, and a similar group as is 

highlighted in Figure 6-3. Despite minor shifts in the distribution of RMSD values, the overall 

difference magnitudes observed in our analyses remain similar between the snapshot and full 

scan CIU data. As such, the data shown in Figure 6-5 strongly indicates that a 5-step CIU 

protocol retains the ability to confidently differentiate IgG sub-classes, while delivering a 4.4-

fold improvement in throughput over the CIU workflows discussed in Figure 6-3 and Figure 6-4.  

6.5 Conclusions 

Here, we describe modifications to a drift tube IM-MS platform that enables high quality, charge 

multiplexed CIU and characterize this new platform in terms of its capacity to sensitively 

differentiate mAb structural variants. In order to create a high-quality charge multiplexed CIU 

workflow, we carefully analyzed mAb ion charge stripping reactions, evaluated their potential to 

contaminate CIU data for neighboring charge states, and generated a correction algorithm 

capable of normalizing CIU data containing significant amounts of such chemical noise.  Our 

findings illustrate that higher charge states, particularly those formed under supercharging 

conditions, produce increased charge stripping. We observe improved CIU variability for our 

drift tube IM-MS data when compared to previous results and attribute this improved 
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performance to our modified ion source, which serves to more completely remove adduct 

populations from protein ions prior to CIU. 

Furthermore, we demonstrate the capabilities of charge multiplexed CIU in the context of 

IgG sub-class differentiation, compare our results to previous IM-MS literature, and move 

forward to sensitively differentiate between mAb light chain variants using CIU for the first 

time. Charge multiplexed CIU offers a significant reduction in data collection time along while 

maintaining information content, allowing for the rapid identification of charge states optimally 

suited for mAb differentiation. It is important to note that the charge stripping trends reported 

here are likely only valid for mAbs or proteins with similar properties prepared under the two 

general buffer conditions explored here. Finally, we test a CIU workflow that utilizes ~4-fold 

fewer voltage steps than typical CIU assays but retains most of the expected differentiating 

capabilities expected for mAb variants.  We envision that a detailed understanding of mAb 

charge stripping, combined with the modified drift tube IM-MS instrument described here, and 

the charge multiplexed assay structures tested in this study, will drive the development of CIU 

toward a high-throughput, validated assay for future biotherapeutic development. 
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Chapter 7 An Algorithm for Building Multi-State Classifiers Based on Collision Induced 
Unfolding Data 

 

Daniel A. Polasky, Sugyan M. Dixit, Daniel D. Vallejo, Kathryn D. Kulju, and Brandon T. 
Ruotolo. 

 

7.1 Introduction 

Native mass spectrometry (MS) and ion mobility-mass spectrometry (IM-MS) have been 

increasingly adopted techniques for the determination of protein-protein and protein-ligand 

contacts, stoichiometry, and shape.1–3 Native IM-MS has seen rapid growth in the 

characterization of proteins4,5 protein-ligand complexes,6,7 and multi-protein complexes.8 A 

significant challenge in these analyses remains the relatively low resolution of IM in the context 

of protein structure, limiting the ability of IM-MS to distinguish subtle, but biologically relevant, 

conformational variations that occur below the resolution limits of modern instrumentation. The 

activation of protein ions in the gas phase prior to IM separation in an effort to follow the their 

subsequent structural transitions represents a useful method to distinguish such structural 

differences. This approach, termed collision-induced unfolding (CIU) when the ion activation is 

accomplished using collisions with an inert gas, has a rich history in the IM-MS analysis of 

protein structure9–11 and has seen rapid growth for drug discovery12–14 and biotherapeutic 

characterization.15–20 The relative speed of CIU, combined with detailed comparative structure 

information, make it a promising technique for the development of structure-sensitive screening 

methods at medium to high throughput.  
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 A number of reports have demonstrated proof-of-principle methods using CIU to 

distinguish ligand binding sites for kinases inhibitors,13,14,21 quantifying cooperative binding of 

ligands within a protein complex,22 and detecting protein allostery upon ligand attachment.23 

Screening approaches sensitive to these structural parameters are in great demand for a wide 

range of applications associated with protein biophysics. The relative comparison of CIU 

fingerprints under different conditions, for example following ligand binding to a target protein 

or after applying heat stress to a biotherapeutic, enables the determination of useful information 

about the structure of a protein and its response to perturbations.  

Converting the complex datasets generated in CIU experiments into this structural 

information requires robust statistical methods. Several recent reports have developed 

quantitative methods to compare CIU fingerprints in support of these analyses.24–29 For screening 

workflows in particular, supervised learning approaches show great promise. In these methods, 

“training” CIU data is acquired using known standards and used to generate a classifier that can 

then distinguish unknown CIU data. We recently developed CIUSuite 2, a software package that 

includes an automated workflow to construct classifiers for CIU data.26 This approach was used 

to differentiate ligand and lipid binding modes in a membrane protein system30 and shows 

promise for high-throughput screening and characterization of biotherapeutics.  

Despite these successes, the current method is limited to the comparison of a single 

charge state of CIU data and relatively small quantities of training data. Native IM-MS 

experiments typically generate multiple charge states, each with a unique CIU fingerprint. 

Recent work has demonstrated the benefits of including CIU information from multiple charge 

states in distinguishing the structures of monoclonal antibodies.31 The incorporation of all 

information available from multiple charge states provides, in principle, great potential for 
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improving CIU classification and screening methods without increasing data acquisition time. In 

this report, we describe the creation of a supervised classification algorithm that can 

accommodate CIU data from multiple  protein ‘states,’ improve processing speed to enable 

processing of large datasets, and expand the scope of the classification workflow to include 

comparative analyses that move beyond the concept of using a single group of charge states 

alone. We demonstrate the utility of these approaches to characterize ligand binding modes in a 

protein-inhibitor context and in distinguishing a highly similar innovator/biosimilar pair of 

biotherapeutic monoclonal antibodies.  

7.2 Methods 

7.2.1 Sample Preparation 

SiLuLite SigmaMab Universal antibody standard, IgG1λ, and IgG4λ from human 

myeloma were purchased from Sigma-Aldrich and supplied as lyophilized powder (St. Louis, 

MO). Samples were reconstituted using Milli-Q water (Millipore) to a concentration of 2 mg/mL 

unless specified otherwise. Avastin® (Genentech, 25 mg/mL) and Avegra® (Biocad, 25 mg/mL) 

were purchased and supplied in solution formulation (158.6 mM Trehalose dehydrate, 40.9mM 

Sodium Phosphate, 0.16% Polysorbate 80, pH 6.2). Biotherapeutic samples were diluted to 

1mg/mL using 0.9% bacteriostatic sodium chloride injection, USP. (Pfizer Inc. New York City, 

NY). Stressed samples were incubated at 40 ºC with 250 RPM orbital shaking for 4 weeks. All 

antibody samples were buffer exchanged into 200 mM ammonium acetate buffer using Micro 

Bio-spin 30 columns (Bio-Rad, Hercules, CA). Buffer exchanged samples were then diluted to a 

working concentration of 1 mg/mL (~6.7 µM).  

Src kinase domain DNA was synthesized by GeneArt (Life Technologies, Grand Island, 

NY) using E. coli modified codons and subcloned into pET28a with a modified TEV-protease 
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cleavable N-terminal 6x-His tag. The plasmid was transformed by electroporation into BL21 

DE3 electrochemically competent cells with a YopH in pCDFDuet-1. Cell growth, protein 

expression, and purification were adapted from protocols previously developed for the c-Src 

kinase domain32 without cleavage of the His-tag. Dasatinib, staurosporine, foretinib, and 

ponatinib were purchased from LC Laboratories (Woburn, MA). Protein was reconstituted and 

buffer exchanged into 200 mM ammonium acetate (Sigma-Aldrich, St. Louis, MO) at pH 7.0 

using Micro Bio-Spin 6 columns (BioRad, Hercules, CA) to a final concentration of 10 μM. 

Samples were incubated at a ratio of 3:1 inhibitor:protein, on ice for 15 minutes prior to analysis 

by IM-MS. 

7.2.2 CIU Acquisition 

All CIU data were acquired using a Synapt G2 quadrupole-ion mobility-time-of-flight mass 

spectrometer (Q-IM-ToF MS) instrument (Waters, Milford, MA). Sample was transferred to a 

gold-coated borosilicate capillary needle (prepared in-house), and ions were generated by direct 

infusion using a nano-electrospray ionization (nESI) in positive mode. The electrospray capillary 

was operated at voltages of 1.5-1.7 kV with the sampling cone at 40 V. The backing pressure 

was set to 7.9-8.1 mbar for antibody samples or 5.0 mbar for kinase samples. The trap collision 

cell was pressurized to 4-5 × 10−2 mbar of argon gas, helium cell flow to 1.4x103
 mbar, traveling-

wave IM separator to 3.4 mbar, and ToF MS to 1.5 × 10−6 mbar. CIU experiments were 

performed by ramping the collision voltage in the trap cell from 5 to 200 V (antibodies) or 10 to 

125 V (Src kinase) in 5 V increments with a dwell time of 6 s at each collision voltage. 

7.2.3 Classification 

IM arrival time data was extracted from raw data for each charge state using TWIMExtract33 and 

smoothed with CIUSuite 226 (Savitzky-Golay 2D smoothing, window 5, 2 iterations). An 
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updated version of the CIUSuite 2 classification interface that recognizes the labels across 

multiple states(e.g. charge states) was used to assemble the training data for each classifier. 

Classifiers were generated in ‘all_data’ mode with cross validation test sizes of 6, 1, and 3 for 

data presented in Figure 7-1, Figure 7-2, and Figure 7-3, respectively. Input data for Figure 7-1, 

Figure 7-2 was normalized but not standardized; input data for Figure 7-3 was both normalized 

and standardized. The classification algorithm presented here is based on the original CIUSuite 2 

algorithm, utilizing the scikit-learn Python library,34 with the following key differences: support 

for division of the input data into subclasses throughout the classification, addition of data 

standardization to improve classifier performance, and implementation of random sampling cross 

validation to allow large input training datasets to be used without prohibitive memory and 

computation costs. Input training data is standardized within each subclass and collision voltage 

by scaling to zero mean and unit variance. For input Gaussian data, each attribute of each 

Gaussian peak is considered separately so that centroids are only standardized with centroids, 

widths with widths, and so forth. Standardized and labeled training data for each subclass is 

assessed separately by the univariate feature selection (UFS) method in CIUSuite 2, which uses 

ANOVA F-value to assess the variation within and between classes at each collision voltage. 

The highest scoring collision voltages are then chosen from amongst all subclasses for cross 

validation and final classifier construction, meaning that a classifier can contain data from 

multiple subclasses.  

Cross validation is performed by holding back a portion of the training data (of 

configurable size), constructing a classifier with the remaining training data, then testing the 

withheld data (the “test” data) to see if it is classified correctly. As in CIUSuite 2, cross 

validation involves adding “features” in decreasing order of UFS score to determine the number 
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of features that results in the most accurate classifier. In the workflow describe here, the features 

represent a single collision voltage from one of the subclasses, so a particular voltage can be 

included multiple times if it scores highly in multiple subclasses. The original CIUSuite 2 cross 

validation method tested all possible permutations of training and test data from an input dataset, 

which resulted in exponential time and memory cost with increasing dataset size and proved 

prohibitive for the larger datasets evaluated in this work. Random sampling from the possible 

input permutations was implemented to reduce this to a linear increase in performance cost by 

sampling only a user-specified number of the possible permutations, chosen at random. 

Following determination of the optimal number of features to include, final classifiers are 

generated as in CIUSuite 2. 

7.3 Results and Discussion 

Each charge state observed in a native IM-MS experiment undergoes a substantially different 

unfolding trajectory during CIU, providing potentially complementary information for a multi-

state CIU-based classifier. To evaluate the utility of combining data from multiple charge states 

for CIU classification, we compared monoclonal antibodies IgG1 and IgG4, which differ only 

slightly in disulfide bonding pattern (Figure 7-1 A). The native mass spectrum of IgG1 shows 

charge states from 22-26+, with 24+ being the most abundant (Figure 7-1 B). The CIU 

fingerprints of IgG1 and IgG4 at the 24+ charge state are quite similar, aside from minor 

differences in the second CIU feature in the 60-80 V activation range (Figure 7-1 A, bottom). 

Performing a single charge state comparison using the 24+ charge state only, as would be done in 

the original CIUSuite 2 workflow, results in a feature selection plot showing minor differences in 

the 60-80 V region as expected, with minimal difference outside that region (Figure 7-1 C). The 

classifier that can be trained from this data is of relatively low quality, achieving a maximum 
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cross validation accuracy of 85% 

when using two features (70 and 75 

V) (Figure 7-1 E). Assessing all 

charge states with the classification 

workflow, however, reveals that the 

24+ charge state, despite being the 

highest signal in the mass spectrum, is 

not the optimal CIU data to 

differentiate these two antibodies. To 

examine all charge states, we perform 

feature selection sequentially for 

each, meaning that the 22+ charge 

state of IgG1 is compared to the 22+ 

of IgG4, the 23+ to 23+, and so on. 

This results in five feature selection 

plots, which can be overlaid to 

evaluate each charge state (Figure 7-1 

D). The 22+ charge state has the two 

highest scoring individual voltages 

(black, 85 and 90 V), followed by 80 

V in the 23+ charge state (blue), then 75 and 70 V in the 24+ charge state (green) (Figure 7-1 F). 

As in our standard single charge state classification mode, cross validation is performed by 

incorporating the data into classifiers in decreasing order of feature selection score; but in 

Figure 7-1 Multiple charge state classification of IgGs. A) IgG1 and IgG4 
subtypes differ primarily in disulfide bond linkage, resulting in slightly 
different CIU fingerprints. B) Native mass spectrum of IgG1 with 22-26+ 
charge states. C) UFS score plot distinguishing IgG1 and IgG4 at the 24+ 
charge state only. D) UFS plot for all charge states of IgG1 and IgG4. E) 
Cross validation accuracies for 1-10 features from the 24+ charge state 
alone and F) for all charge states incorporated into one classifier. G) 
Optimal cross validation accuracy from each individual charge state and all 
charge states combined. 
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classifiers derived from multiple charge states, the input data can originate in any of the charge 

states included in the analysis. The cross validation indicates that the optimal classifier in this 

case uses four collision voltages, two from the 22+ charge state and one each from the 23+ and 

24+ charge states, to achieve an accuracy of 95%, significantly improved over the 85% accuracy 

achieved by the classifier using just the 24+ charge state.  

To complete the comparison, we generated single charge state classifiers for all five 

charge states and compared the cross validation accuracy at the optimal number of collision 

voltages for each classifier (Figure 7-1 G). Given the pair of very high scores from the 22+ 

charge state in the feature selection, it is not surprising that it results in the best single charge 

state classifier, and indeed achieves nearly identical accuracy to the combined classifier that 

considered all charge states (95%). The 23-26+ charge states each individually achieve accuracies 

in the 85-90% range, lower than the 22+ or combined classifiers. In this case, because one charge 

state is substantially better at differentiating the classes than the other charge states, its data 

drives the performance of the combined classifier, resulting in very similar output accuracies. 

Performing the classification with all charge states is, in this case, primarily a means to rapidly 

identify the optimal charge state and ensure it is incorporated into the final classifier. Indeed, the 

22+ ions are the lowest intensity signals included in the analysis, and would not be an obvious 

choice if using only IM-MS precursor data. In cases where several charge states achieve similar 

feature selection scores, however, combining data from multiple charge states can generate a 

superior classifier to any individual charge state.  

 We applied our multi-state classification workflow to a number of challenging proteins 

and complexes that had previously confounded CIU classification efforts using data from a 

single charge state. Src, a non-receptor protein tyrosine kinase, plays a key role in several cell 
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signaling processes35,36 and has 

been observed to be overexpressed 

in certain carcinomas and 

glioblastomas.37 Several classes of 

inhibitors to kinases like Src are 

known to target different 

conformations of the kinase. Type 

I inhibitors like Dasatinib and 

Staurosporine bind to the active 

state, in which the DFG loop is in 

the “in” conformation, wrapping 

around the helices (green loop, 

Figure 7-2 A, left). Type II 

inhibitors like Foretinib and 

Ponatinib bind the protein in the 

inactive conformation, in which 

the DFG loop is in the “out” conformation (green loop, Figure 7-2 A, right). While single charge 

state classifiers and analogous methods have been successful in differentiating such tertiary 

structures within Abl,13,25 a related kinase, differentiating these binding modes within Src using 

our  previous single charge state classification method has proven challenging. Using the multi-

state workflow developed here, we observe similar feature scores that distinguish Type I from 

Type II kinase inhibitors for both the 9+ and 10+ charge states (Figure 7-2 B). As a result, the 

optimal classifier uses a single collision voltage each from 9+ and 10+, resulting in a cross 

Figure 7-2 Multiple charge state classification of Src kinase. A) Type I and II 
kinase inhibitors target the active (left) or inactive (right) conformations of the 
kinase. B) UFS plot comparing Src CIU fingerprints with bound Type I 
(Dasatinib and Staurosporine) against Type II (Foretinib and Ponatinib) 
inhibitors at all charge states. C) Cross validation accuracy as a function of 
number of features included in the classifier for the combined classifier. D) 
Optimal cross validation accuracy for individual charge state and combined 
classifiers. 
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validation accuracy of 98% (Figure 7-2 C). The optimal classifiers for the 9+ and 10+ charge 

states individually utilized only the highest scoring single voltage in each case, but achieved 

accuracies of only 92-93% (Figure 7-2 D). The large error bars for the individual charge state 

classifier accuracies also indicate substantial uncertainty in their performance, with lower 

accuracy possible for external validation. Thus, the combined classifier using multiple charge 

states is superior in this case to any of the individual charge state classifiers, and enabled robust 

classification of ligand binding modes in a system that had proven challenging to classify with a 

single charge state alone.  

 Finally, we examined a biotherapeutic innovator/biosimilar pair, Avastin and Avegra, 

incorporating both multiple 

charge states and stress 

conditions into a multi-state 

classifier. Assessing a 

biosimilar, or generic form of 

an innovator protein 

therapeutic, presents significant 

analytical challenges due to the 

typical size and complexity of 

monoclonal antibodies. 

Comparing higher order 

structure (HOS) information is 

particularly challenging without 

resorting to low-throughput, 

Figure 7-3 Stress subclasses distinguish Avastin and Avegra. A) Stressed antibodies 
can undergo structural transitions that increase their propensity to aggregate, 
potentially resulting in differences that can be identified using CIU. B) UFS plot for 
all charge states of unstressed Avastin and Avegra showing minimal differences. C) 
Cross validation of unstressed Avastin and Avegra. D) Cross validation from a 
combined classifier using stressed and unstressed Avastin and Avegra. E) Best 
cross validation accuracy for unstressed alone and both conditions (stressed and 
unstressed) Avastin and Avegra.  



 164 

high-resolution structural biology techniques. As biosimilars, Avastin and Avegra are highly 

similar, and classification using CIU data across all charge states of the antibodies resulted in a 

low degree of differentiation. The feature selection scores were low (Figure 7-3 B), and despite 

some minor regions of difference, the optimal classifier achieved accuracy of only 87% (Figure 

7-3 C). Charge states are not the only states that can be examined using our multi-state CIU data 

analysis algorithm. Our approach considers data acquired across any state that results in a 

different CIU pathway, so long as it can be applied equally across the classes being compared. A 

key attribute monitored in biotherapeutics is the propensity to aggregate during transport and 

storage, which can be challenging to assess in the laboratory. Early warning methods for 

aggregation that detect structural changes following various types of stress (for example, heat or 

oxidation) are thus highly useful (Figure 7-3 A). Avastin and Avegra were stressed by heating to 

40 ºC and applying orbital shaking at 250 RPM for 4 weeks. CIU data from the stressed samples 

was incorporated into a multi-state classifier, along with all the observed charge states, for a total 

of 10 states (5 charge states each from stressed and unstressed conditions). The combined 

classifier achieved cross validation accuracy above 99% (Figure 7-3 D), indicating very robust 

differentiation between Avastin and Avegra, significantly outperforming the classifier that used 

data from all charge states but only compared the unstressed antibodies (Figure 7-3 E). Our 

analysis indicates that Avastin and Avegra have different structural responses to the stress 

employed in this study, which can be utilized to develop a classifier capable of robustly 

distinguishing between them using our multi-state classification method. 
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7.4 Conclusions 

CIU experiments generate rich datasets that have proven capable of distinguishing subtle 

differences in protein structures. Applying our multi-state classification workflow presented here 

to analyze all charge states observed within in a CIU experiment maximizes the detection of 

these subtle differences by incorporating more of the experimental data into the statistical 

framework for classification. Improvements to the core algorithm have increased the accuracy of 

the classifiers developed through data standardization and have dramatically reduced the 

computational requirements for large datasets, enabling the extension of these algorithms to 

much larger training sets than analyzed previously. Finally, we demonstrate incorporating states 

other than protein charge states by generating a robust classifier to distinguish Avastin from its 

biosimilar Avegra. This work indicates the potential of the multi-state classification workflow to 

be used with a wide range of conditions or perturbations, as any change that causes differences in 

CIU for an analyte of interest can be incorporated into a classifier using this method. 

Incorporating differential responses to stimulus into CIU classification has the potential to make 

CIU sensitive to even more subtle structural differences and provide a rapid and informative 

workflow for evaluating protein structures.  
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Chapter 8 Conclusions and Future Directions 
 

8.1 Conclusions 

Full characterization of proteins and the macromolecular complexes into which they associate 

remains a lofty goal, requiring knowledge of amino acid sequence, post-translational 

modifications, three-dimensional structure, and interactions and associations into complexes. In 

the push for increasingly individualized treatments for disease, all of these levels of information 

will be critical for understanding disease with increased precision and developing new 

treatments. Mass spectrometry and IM-MS are already utilized at each level of protein 

information, but many technological gaps remain, particularly in detecting and localizing PTMs 

and rapidly obtaining high-resolution structures. This thesis develops methods aimed at 

improving both sequencing and structural characterization experiments using IM-MS.  

In Chapters 2 and 3, we evaluate the impact of chemical modification on the 

fragmentation pathways of intact proteins. Intact proteins fragment through several pathways 

with sufficiently similar energetics for factors like protein charge state and side chain chemistry 

to influence which pathway is dominant.1,2 In Chapter 2, we show that altering the side chain 

chemistry by fixing stable, intrinsic charges can improve the degree of fragmentation obtained 

from protein complexes.3 Despite the utility of this approach, it did not work for all proteins 

surveyed; in part due to imperfect modification chemistry resulting in splitting a single starting 

protein peak into many differentially modified states, diluting the useful signal obtained from 

fragmentation. In some cases, however, it was clear that signal dilution was not the primary 
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cause of reduced fragmentation following chemical modification. This prompted the work in 

Chapter 3, in which detailed studies with two different modification reagents demonstrated the 

factors influencing which fragmentation pathways would be favored. Proteins with low charge 

mobility (from having more basic residues, particularly Arg, and fewer charging protons) 

predominately fragment at acidic sites through charge-remote pathways, while proteins with 

higher charge mobility fragment through charge directed “mobile proton” pathways. Using our 

chemical modifications to either replace protons with fixed charges or block fragmentation at 

acidic sites, we were able to push proteins to fragment via either pathway with appropriately 

tuned chemistry. In addition to predicting and altering the fragmentation pathways of proteins, 

we found evidence for extensive charge solvation of positive charges in gas-phase protein ions, a 

finding with implications for gas-phase structural assessments and an indication of the physical 

limitations facing further improvements top-down sequencing.  

 A major limitation of IM-MS methods for both sequence and structural analyses is a lack 

of tools and methods to process the complex data acquired in these methods. A sequencing 

experiment on a single, purified protein can generate more than 10,000 unique signals in a 

combined IM-MS spectrum, resulting in prohibitively lengthy data processing times. In Chapter 

4, we developed software to process top-down IM-MS data in collaboration with the Nesvizhskii 

lab.4 The ability to process complex top-down IM-MS datasets in seconds was fundamental to 

the work performed in Chapters 2 and 3, and is now available for other researchers to use in their 

own IM-MS work.  

 Data processing capabilities also limited structural analyses with CIU. Development of a 

suite of software tools to analyze CIU data is discussed in Chapter 5. This software, CIUSuite 2, 

aimed to address several key limitations in existing analysis methods, including low acquisition 
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speed from signal averaging required to prevent noise from impacting the analysis, inability to 

handle datasets contaminated by chemical noise (for example, in membrane protein analyses), 

and a need for additional automation of stability shift and screening methods.5 Data pre-

processing methods, including two-dimensional smoothing and interpolation, combined with the 

stability shift tools to reduce the acquisition time needed for reproducible analysis of 

glycosylation state of biotherapeutic proteins by a factor of 60, reducing data acquisition time 

from hours to minutes. Gaussian fitting and noise removal enabled stability shift and 

classification analyses of membrane protein data that had proven extremely difficult to analyze 

with previous tools.  

 Chapters 6 and 7 investigate improvements to CIU by incorporating data from multiple 

charge states and hardware and software developments required to implement that capability. 

Typical CIU experiments select only a single charge state of a protein ion for analysis, as 

simultaneous analysis of multiple charge states can result in data contaminated by charge 

stripping, in which a protein ion at one charge state loses a charged adduct during the 

experiment, altering its charge state and contaminating the data for the new state it has become. 

In Chapter 6, we investigate this phenomenon in detail and develop a predictive algorithm that 

uses the degree of adduct loss and propensity for adducts to leave as a charged group to estimate 

the expected amount of charge stripping and potentially correct for it. This enables simultaneous 

collection of CIU data for all observed charge states, increasing the amount of data collected per 

unit time. These methods were then employed on a modified Agilent 6560 IM-MS instrument 

and used to characterize monoclonal antibody samples by CIU. Chapter 7 explores improved 

data processing methods to take advantage of the ability to acquire data from multiple charge 

states for enhanced classification and screening methods. By combining data from multiple 
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charge states, we generated classifiers with substantially improved accuracy over data from a 

single charge state, without increasing the time required to acquire or process the data.  

8.2 Future Directions 

8.2.1 Charge manipulation for optimized fragmentation of intact proteins 

The chemical modification methods developed in Chapters 2 and 3 make it clear that the charge 

mobility (the ratio of charging protons to charge-sequestering groups) is the primary factor in 

determining the fragmentation pathway of proteins in slow heating activation methods. Moving 

fragmentation away from charge remote pathways, which tend to fragment the protein 

specifically at a few residues, can result in significant improvements in sequence coverage. 

There appears to be an optimum level of charge mobility, as too little results in fragmentation 

primarily at acidic residues, while too much can result in fragmentation primarily at Proline.2,6 

Using the charge mobility approximations developed in Chapter 3, it could be possible to predict 

optimal charge states for fragmentation of given protein sequences and use charge manipulation 

to achieve those states. Chemical modification offers one pathway to altering charge mobility, 

for example, by affixing stable charges to groups that are typically not charged in solution (i.e. 

acidic or neutral residues).7 Development of stable, intrinsically-charged reagents targeting 

acidic or neutral residues may prove challenging, in which case, solution modifiers for charge 

manipulation may prove more effective.  

Protein charge states have been manipulated with a range of solution modifiers,8–10 as 

well as gas-phase ion-ion and ion-neutral reactions.11–13 Solution modifiers would require the 

starting and desired charge states of a protein to be known in advance, making that approach 

suitable for targeted analyses only. However, gas-phase charge manipulation could be used 

online with sufficiently advanced instrument control software. An initial sequencing event under 
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default conditions could yield the protein sequence and charge state, determining the optimal 

charge manipulation for a rapid follow-up sequencing experiment and then using gas phase ion 

chemistry to achieve the desired charge state. Current approaches to maximize sequence 

coverage typically employ multiple activation methods and/or energies to generate 

complementary fragmentation; adding a varying charge manipulation step could improve the 

contribution of collisional activation methods in these experiments and help increase overall 

sequence coverage for top-down proteomics.  

Ultimately, the future of intact protein sequencing is likely to require multiple stages of 

activation, first breaking large proteins or protein complexes into medium sized fragments, then 

performing a second stage of fragmentation on those ions to generate comprehensive sequence 

coverage. Intact protein fragmentation can generate immensely complex product ion spectra, 

which could prevent a subsequent fragmentation step from being effective, due to dilution of 

signal into too many product ion channels. Utilizing low charge state CID as the first stage of 

fragmentation, in which proteins fragment relatively specifically at acidic residues, could be a 

strategy analogous to enzymatic cleavage with trypsin in bottom-up proteomics, essentially 

performing a middle-down experiment entirely within the instrument. Intelligent strategies for 

choosing the initial fragment ions for secondary sequencing will likely still be critical to coupling 

such an approach to separations methods, potentially requiring online annotation of the initial 

fragments to protein sequence to determine the regions requiring additional coverage and/or 

containing PTMs to be localized.    
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8.2.2 Development of top-down sequence annotation software for PTM localization 

Analysis of top-down proteomics data involves two primary steps: “pre-processing,” or 

converting raw MS data into a list of isotopic clusters (a peak list), and sequence annotation, or 

matching the detected peaks to fragments of the amino acid sequence of a protein. The software 

developed in Chapter 4 provides pre-processing for IM-MS data but not sequence annotation, 

since existing software packages14–20 were capable of annotating peak lists generated after IM-

MS analysis, just not generating a peak list from IM-MS data directly. However, to our 

knowledge, existing software tools for top-down sequence annotation focus on protein and PTM 

identification, leaving PTM localization primarily to manual analysis and post-processing. 

Identifying the protein(s), sequence variant(s), and PTM(s) present in a sample is crucial for any 

proteomics analysis, but can generally be accomplished using bottom-up proteomics for protein 

sequence and variants, or high resolution intact mass analysis for PTM presence. The key 

information that top-down proteomics provides in comparison to bottom-up proteomics and 

high-resolution intact mass is proteoform identification, through the location of PTMs along the 

amino acid sequence, but this capability is currently underserved by existing software.  

 To annotate the sequences of chemically modified proteins, I developed a custom 

software package, which was used to annotate the data presented in Chapters 2 and 3. Because 

chemical modification sites occur throughout the protein sequence, and their presence or absence 

was a key factor in assessing fragmentation, the software package was developed with location 

of PTMs in mind. To generalize the current capabilities to any PTM, a localization algorithm 

could be developed that uses the presence or absence of a modification from fragment ions along 

a region of protein sequence to generate a location score for the modification. As technology for 

top-down proteomics continues to improve, generation of sufficient fragment density to 
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accurately localize PTMs (and chemical modifications) is likely to become increasingly 

common, creating a need for software to accurately assign modifications to specific sites in a 

protein sequence automatically.  

 

8.2.3 Advanced CIU software: width analysis and direct incorporation of mass information 

The Gaussian fitting and noise removal modules discussed in Chapter 5 have proven highly 

useful in cleaning up membrane protein data for analysis, but have the potential to provide 

additional information about CIU data that is currently not explored. Previous work has used 

deviations from the expected width of peaks in the mobility dimension in IM-MS experiments 

(based on the resolution of the device) can be related to conformational dynamics on the 

timescale of the mobility separation.21 Protein structural dynamics are often crucial to 

understanding function, but remain understudied due, in part, to a lack of tools capable of 

assessing dynamics, particularly in a rapid fashion. Gaussian fitting of CIU data provides an 

estimated peak width for all components detected, which is used in Chapter 5 to filter chemical 

noise from protein signal of interest. These peak widths could be combined with the width to 

dynamics relationship developed previously21 to build a conformational dynamics analysis 

module in CIUSuite 2. The inclusion of peak width in CIU analysis could provide additional 

detail on protein stability and structural changes in response to perturbations, showing, for 

example, increased dynamics as a protein structure begins to be disrupted by heat stress.  

 Improvements to the Gaussian fitting algorithm are also possible through improved 

statistics for estimating the correct number of components to fit, or through the inclusion of the 

m/z information collected in CIU data, which is currently ignored in data analysis by CIUSuite 2. 

Determining the optimal number of Gaussian components to fit to a given arrival time 
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distribution is a challenging task accomplished in the current software using an empirically-

derived penalty function for overlapping peaks. This may not be sufficient for all data, as 

differences in peak characteristics (e.g. from data collected with different IM resolution) may 

result in poor estimation. Bayesian or Akaike information criteria are a common approach to 

estimating the optimal number of parameters for model fitting, and could be employed for 

improved component number estimation. In some cases, chemical noise can be filtered by peak 

width alone, but this is not always sufficient, particularly when the chemical “noise” is a 

contaminant protein possessing similar width characteristics to the analyte of interest. This has 

proven particularly problematic in the analysis of membrane proteins encapsulated in protein 

nanodiscs, as the scaffolding proteins cannot be filtered by width alone when they overlap in m/z 

with the membrane protein of interest. Performing the Gaussian fit on the raw data in 2D 

(including both IM and MS information, as opposed to IM alone in the current software) could 

provide greatly increased capability to distinguish peaks of interest from contaminants and 

improve the effectiveness of noise removal. Fitting peaks in the m/z dimension would also 

provide automated peak detection, removing the need for manual peak selection and extraction 

of mobility spectra from the raw data prior to CIU analysis. Manual selection of peaks is one of 

the few remaining manual steps in current CIU analyses, and introduces significant challenges in 

complex datasets where adduct loss can result in a changing mass across collision voltages.  

Finally, including the mass dimension in CIU analyses would enable tracking of dissociation 

products (for example, of a ligand in ligand-bound CIU experiments) automatically, a common 

data analysis method that is currently performed manually.  
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8.2.4 High-throughput CIU with microfluidics for rapid sample introduction and 

automated acquisition 

Improvements in CIU data processing discussed in Chapter 5 have made very rapid acquisition 

of CIU data feasible. For the glycosylated monoclonal antibody data examined in Chapter 5, for 

example, one second of data acquisition resulted in an S/N ratio in excess of 10,000, indicating 

that sub-second acquisitions should still generate data of sufficient quality for robust analysis. 

Each mobility separation takes on the order of 20-30 ms, meaning that 30-50 mobility 

separations are summed in a 1 s acquisition. Reducing acquisition time at each collision voltage 

by an order of magnitude, to 3-5 mobility separations and 0.1 s total scan time, would result in 

complete CIU fingerprints in less than 5 s. At these speeds, our current sample introduction 

method (samples manually loaded into capillary tips for static infusion) would be the limiting 

factor in throughput, as it can take up to a minute to switch to a new sample following 

completion of a fingerprint. Automating the instrument acquisition method would also be 

essential, as it would not be possible for a human operator to change voltage settings every 0.1 s.  

 Recent work in collaboration with the Kennedy lab (UM Chemistry) has explored the 

idea of coupling a segmented flow microfluidic sample introduction method with CIU for high-

throughput analyses. In segmented flow, aqueous droplets containing a sample are separated by a 

chemically inert oil phase, typically using perfluorinated oils. Droplet trains can be rapidly 

generated from well plates by covering the plate in the oil and aspirating the contents of each 

well in succession with an oil layer in between. When coupled to an ESI source, the aqueous 

droplets ionize while the oil phase does not, carrying only the samples into the mass 

spectrometer. Each droplet is typically only analyzed for a few seconds, so using droplets for 

CIU sample introduction would require the extremely rapid CIU enabled by the new data 
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processing methods. To acquire CIU data at this speed, we updated the “method editor” script 

used to generate methods for CIU data collection to enable sub-second acquisition times and 

with a variable delay to account for the oil phase between segmented droplets.  

 With automated sample introduction via segmented flow and automated instrument 

control through the method editor, true high-throughput CIU analyzing up to 10 samples per 

minute appears achievable. Combined with the consideration of all charge states explored in 

Chapters 6 and 7, sensitive screening methods could be developed to operate on this timescale. 

Classification methods, in which training CIU data is used to determine a few key voltages that 

most distinguish the analytes of interest, are particularly suited to this high-throughput format, as 

individual samples could be screened using a reduced voltage set in less than a second each. The 

ultimate limit on the speed of CIU experiments is the time required to perform the IM separation, 

which is on the order of 10-100 ms with current IM methods. Using a single IM separation for 

each step of a fingerprint could enable full CIU acquisitions to be accomplished at a rate of 1-2 

per second, or reduced datasets for input to a classifier at up to 10 per second. This level of 

throughput could make CIU competitive with classical high-throughput screening techniques 

while providing increased information content and the capability to evaluate polydisperse 

samples.   
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Appendices  
 

I. Chapter 2 Supporting Information 

 

Figure I-1 TMP modification of Substance P peptide (RPKPQQFFGLM-amide). Modification was performed under the same 
conditions as for proteins (see experimental), with TMP to Lysine molar ratio adjusted accordingly. The majority of the 
Substance P is modified at Lysine (red highlighted, center), but a significant minority remains unmodified after 24 hours. No 
evidence of modification at the n-terminal Arginine is observed, despite the availability of a primary amine at the terminus. No 
evidence of any other side reactions is observed. 
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Figure I-2 A) Mass spectrum of a monomer of unmodified avidin, displaying the heterogeneity of its glycosylation. This 
heterogeneity, combined with some variation in the number of TMP modifications observed on various monomers results in the 
spectrum shown in B. B) Modeled (calculated, green) and experimentally observed (blue) mass spectra for TMP-modified avidin 
monomer. The model was obtained by sequentially adding the m/z of a TMP modification to the spectrum of an unmodified 
avidin monomer to generated predicted spectra for each possible number of TMP modifications considered (0 to 15). A linear 
system of equations representing each possible modification state was solved for the optimal distribution of intensity (i.e. how 
much intensity in each modification state best recapitulates the observed mass spectrum) using the partial conjugate gradient 
method, resulting in the bar graph in Figure I-3 and the calculated spectrum above. The major peaks in the observed spectrum are 
well represented in the calculated spectrum, though there is some discrepancy in the intensities. This is likely due to differences 
in peak width due to increased adduction in the TMP-modified data, a distinction which is not of great importance for this simple 
estimation of modification efficiency. 
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Figure I-3 Number of TMP modifications to a single avidin monomer from model analysis described in Figure I-2. There are 10 
canonical sites (primary amines) available for modification in the form of nine lysine residues and the N-terminus, as well as at 
least one site on the glycosylated side chain of Asn-17 available for TMP modification. Data indicates generally good 
incorporation of the TMP tag with some variability in the final number of modifications. Achieving complete incorporation of 
tags is highly challenging in native, folded protein complexes as not all reaction sites are exposed to solvent, likely the primary 
cause of the distribution of modification states observed here. Aside from the glycan, no side reactions are observed with any 
non-Lysine amino acid residues. 
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Figure I-4 Ion mobility arrival time distributions of replicate analyses of the 17+ charge state of A) the 
unmodified (green lines, m/z 3750) and B) TMP-modified (blue lines, m/z 3960) avidin tetramer with no excess 
collisional activation energy. Both unmodified and TMP-modified distributions display a single peak, generally 
indicating the presence of a single, native-like global structure. The measured mass of unmodified Avidin 
tetramer was 63.9 kDa, while the measured mass of the TMP-modified Avidin was 67.5 kDa, with variation of 
approx. ±0.5 kDa between labeling reactions. The average centroid drift time for unmodified Avidin was 6.2 ms 
and the average for TMP-modified Avidin was 6.7 ms. The resulting 7% increase in drift time is in line with 
expectations from previous work in which Avidin was crosslinked with various reagents, resulting in 5-10% 
increases in CCS without perturbing structure1. We attribute the slight variations in drift time in TMP-modified 
Avidin to differences in final mass as a result of differences in labeling efficiency across several reaction trials. 
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Figure I-5 Ion mobility arrival time distributions of replicate analyses of the 26+ charge state of the A) unmodified (green 
lines, m/z 5675) and B) TMP-modified (blue lines, m/z 6100) ADH tetramer with no collisional activation energy applied. 
Both unmodified and TMP-modified distributions display a single peak, generally indicating the presence of a single, 
native-like global structure. The measured mass of unmodified ADH tetramer was 147.8 kDa, while the measured mass of 
the TMP-modified ADH was 158.3 kDa, with variation of approx. ±1 kDa between labeling reactions. The average 
centroid drift time for unmodified ADH was 9.2 ms and the average for TMP-modified ADH was 10.3 ms. The resulting 
11% increase in drift time is in line with expectations from previous work in which several globular proteins were 
crosslinked with various reagents, resulting in 5-10% increases in CCS without perturbing structure1. We attribute the 
slight variations in centroid drift time and increased peak broadness in TMP-modified ADH to differences in final mass as 
a result of differences in labeling efficiency. 
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Figure I-6 Ion mobility arrival time distributions of replicate analyses of the A) unmodified 12+ (green lines, m/z 3720) 
and B) TMP-modified 13+ (blue lines, m/z 3780) Ovalbumin monomer with no collisional activation energy applied. 
Note that different charge states were used for this analysis as the modified and unmodified charge state distributions 
were very narrow and did not share any high abundance peaks. Both unmodified and TMP-modified distributions display 
a single peak, generally indicating the presence of a single, native-like global structure. The measured mass of 
unmodified Ovalbumin monomer was 44.7 kDa, while the measured mass of the TMP-modified Ovalbumin monomer 
was 49.0 kDa, with variation of approx. ±0.5 kDa between labeling reactions. The average centroid drift time for 
unmodified Ovalbumin was 6.9 ms and the average for TMP-modified Ovalbumin was 6.9 ms. As the TMP-modified 
Ovalbumin here is at a higher charge state than the unmodified, it will have a larger collision cross section value despite 
the similarity in drift time, but, as in the case of ADH and Avidin, the increase in cross section is on par with the 5-10% 
observed following labeling of protein complexes in previous work1. 
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Figure I-7 Collision induced unfolding (CIU) profiles of the same charge state of unmodified (left) and TMP-modified 
(right) avidin tetramer. The profiles show the increases in drift time (unfolding) as a function of applied collisional 
energy (trap collision voltage, x-axis). Notably, both modified and unmodified profiles show the same five features, 
albeit at slightly different intensities and onset voltages. This broad similarity is indicative of similar global structure 
(with slight changes possible to local structure), as we would expect following chemical modification with TMP. The 
similarity of the CIU profiles observed, combined with the same initial drift times (Figure I-4 - Figure I-6), indicates that 
TMP modification does not cause measureable structural changes in the protein complexes analyzed in this work. 
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II. Chapter 3 Supporting Information 

 

 

Figure II-1 Linear trend fit (alternative fit to Figure 3-1G). As in Figure 3-1G, the increase in fragmentation at acidic residues 
following derivatization by TMP is shown as a function of a crude charge mobility “score,” derived by subtracting the number of 
arginine residues present from the observed charge of the protein. Proteins with extremely low charge mobility scores (SAP, -21 
and aldolase, -35) are excluded from this analysis, as the linear trend fitted would place them well below 0%. 
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Figure II-2 CID-50 values for EDC-modified SERF vs unmodified SERF. Precursor abundance (height of precursor peak vs 
height of base peak) as a function of collision voltage for unmodified (A) and EDC-modified (B) SERF. The 8+ charge state is 
used in both cases. EDC-modified SERF requires substantially higher activating voltage to cause dissociation, with a 50% 
dissociation point for the intact protein precursor (CID-50) occurring at 71V, as opposed to 58V for the unmodified protein. 
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Figure II-3 Fragmentation propensity maps by amino acid summed across all charge states of chemically modified SERF. A) 
Summed fragmentation propensity for SERF with acidic residues capped by glycinamide coupled with EDC. B) Summed 
fragmentation propensity across all charge states of SERF with both acidic residues capped by glycinamide/EDC and lysine 
residues derivatized with TMP. 
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Table II-1 Mass assignments for EDC-modified 6+ SERF (Figure 3-3B). Mass assignments and error for all peaks annotated in 
Figure 3B. Masses are calculated as average rather than monoisotopic masses, as peaks are not fully isotopically resolved. Mass 
errors are thus significantly higher than would be expected for monoisotopic peak assignments. Theoretical m/z values are 
calculated from the mass of SERF and the added glycinamides, crosslinks, and/or adducts present as detailed in the table. 

Observed 
m/z 

Theoretical 
m/z (average 

mass) 

Mass 
Error 
(Da) 

Number of 
Glycinames 

added 

Number 
of 

crosslinks 

Adducts/other 
modifications 

present 
1403.8 1403.965 0.17 7 2   
1406.7 1406.968 0.27 8 1   
1413.3 1413.310 0.01 8 2   
1416.2 1416.312 0.11 9 1   
1419.0 1419.315 0.32 10 0   
1425.7 1425.657 0.01 10 1   
1428.5 1428.659 0.13 11 0   
1431.3 1431.326 0.05 11 0 Oxidation 
1432.6 1432.491 -0.11 11 0 Sodium adduct 
1435.3 1435.001 -0.26 11 1   
1438.0 1438.004 0.01 12 0   
1440.7 1440.670 0.01 12 0 Oxidation 
1442.0 1441.836 -0.16 12 0 Sodium adduct 

1445.0 1445.667 0.67 12 0 
2 Sodium 
adducts 
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Table II-2 Mass assignments for TMP + EDC-modified SERF (Figure 3-3G). Unlike Table II-1 Mass assignments for EDC-
modified 6+ SERF (Figure 3-3B). Mass assignments and error for all peaks annotated in Figure 3B. Masses are calculated as 
average rather than monoisotopic masses, as peaks are not fully isotopically resolved. Mass errors are thus significantly higher 
than would be expected for monoisotopic peak assignments. Theoretical m/z values are calculated from the mass of SERF and 
the added glycinamides, crosslinks, and/or adducts present as detailed in the table., data presented in this table were collected on 
an Orbitrap Fusion Lumos instrument at high resolution, enabling monoisotopic peak assignments. Intact mass assignments were 
determined from monoisotopic peaks chosen by deconvolution in BioPharmaFinder 3.0 (see methods for details). In some cases, 
incorrect monoisotopic peaks were chosen and correct manually, as indicated in the final column of the table. Following 
correction, all mass assignments are within 5 ppm of each other. 

Observed 
m/z 

Theoretical 
m/z 

(monoisotopic 
mass) 

Mass 
Error 
(Da) 

Number 
of TMPs 
added 

Number of 
Glycinames 

added 
Number of 
crosslinks 

Isotope 
off by X 

corrected 
872.2469 872.2206 -0.026 10 10 1   
874.9774 874.9492 -0.028 11 8 2   
879.1615 879.1341 -0.027 10 12 0 2 
881.7096 881.6808 -0.029 11 10 1   
883.2545 883.2272 -0.027 11 11 0 -1 
884.4385 884.4094 -0.029 12 8 2   
885.9842 885.9558 -0.028 12 9 1 -1 
888.4412 888.4124 -0.029 11 12 0   
891.1715 891.1410 -0.031 12 10 1   
892.7155 892.6874 -0.028 12 11 0 -1 
893.9000 893.8695 -0.030 13 8 2   
895.4452 895.4160 -0.029 13 9 1 -1 
897.9029 897.8726 -0.030 12 12 0   
899.2655 899.2366 -0.029 13 9 2 3 
900.6326 900.6012 -0.031 13 10 1   
902.1765 902.1476 -0.029 13 11 0 -1 
903.3603 903.3297 -0.031 14 8 2   
904.9056 904.8761 -0.029 14 9 1 -1 
907.3638 907.3328 -0.031 13 12 0   
908.2707 908.2422 -0.029 14 9 2 -2 
910.0929 910.0614 -0.032 14 10 1   
911.6373 911.6078 -0.029 14 11 0 -1 
913.3645 913.3365 -0.028 14 10 2 -2 
916.2755 916.2464 -0.029 15 10 0 3 
916.8236 916.7930 -0.031 14 12 0   
918.0027 917.9751 -0.028 15 9 2 1 
919.5500 919.5216 -0.028 15 10 1   
921.0955 921.0680 -0.027 15 11 0 -1 
922.8257 922.7967 -0.029 15 10 2 -2 
926.3718 926.3441 -0.028 15 12 0 1 
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Figure II-4 Fixed charge modification reveals extensive charge solvation by intact protein ions. A) Composite mass spectrum 
from three reaction conditions of SERF with TMP (25, 100, and 250:1 ratios of TMP to lysine residues), demonstrating up to 14 
intrinsically-charged TMP modifications on 8+ SERF. B) Charge state distribution for SERF with 8-14 TMP modifications and 
SERF modified with EDC and 8-14 TMP modifications. 
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Text II-1. Supporting Methods for Model Structure Analysis 

Topology and Parameter files 

Residue topology and parameter file of lysine modified with TMP, and EDC capped aspartic 

acid and glutamic acid residues are provided as separate files. Part of residue topology file and 

parameter file of lysine modified with TMP was made using ParamChem2–4. The penalties for 

charges, bond lengths, and bond angles were less than 50 in most cases. Set of dihedral angles 

connecting lysine to TMP moiety had penalties above 50. However, that is most likely due to 

absence of such angles in the training set3,4. Since our models agree well with the experimental 

data, we believe that the parameters generated using ParamChem do not deviate from true 

values.  

Hierarchical Clustering 

Hierarchical clustering method5,6 from scipy7,8 was used to classify structural families 

extracted from the simulations. 2000 structures were selected at regular intervals in the last 10 ns 

for 300 K replica. Pairwise RMSD values were calculated for all combinations of structures. 

Pairwise Euclidean distance matrix was generated using RMSD matrix. The resulting distance 

matrix was then used for hierarchical clustering using average method. The number of clusters 

was set by performing an F test and analyzing the pairwise RMSD distribution histogram. 

Secondary Structure Assignment 

Secondary structure assignment was performed using dssp program9,10. Fraction of 

secondary structure for each model was calculated as 

𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  ∑ 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁
𝑖𝑖

𝑁𝑁
    (1) 

where secstruct is the secondary structure assignment as α helix, π helix, 310 helix, beta 

bridge, beta buldge, turns, curve, and other types of loop, isecstruct is the residue assigned to the 
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secstruct, and N is the total number of residue. In addition, the following was used to calculate 

fraction helix, beta strand, and loop 

𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
∑ 𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎_ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝑖𝑖𝑝𝑝𝑝𝑝_ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝑖𝑖310_ℎ𝑒𝑒𝑒𝑒𝑖𝑖𝑥𝑥
𝑁𝑁
𝑖𝑖

𝑁𝑁
  (2) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
∑ 𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑁𝑁
𝑖𝑖

𝑁𝑁
  (3) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  
∑ 𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑖𝑖𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁
𝑖𝑖

𝑁𝑁
   (4) 

Fraction of a residue in a specific secondary structure in a cluster was calculated as 

𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 =  ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑐𝑐
𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑐𝑐
    (5) 

where res is the residue and Nc is the total number of structures in the cluster. 

 

Investigating interactions between fixed charge in lysine to all backbone carbonyl oxygen 

atoms 

 For all the structures in a cluster Euclidean distance between the positively charged 

nitrogen atom in Lysine with or without TMP modification and peptide backbone carbonyl 

oxygen atoms was calculated. Distance matrix was created with Lys residues against all other 

residues in the structure. Contact matrix with distance (d) > 5 Å  and 10 Å < d < 5 Å was created 

using the distance matrix. Z-score was calculated on the summed contact matrix in a cluster to 

assess the pairwise interactions. 

Theoretical CCS Calculations 

IMPACT11 and IMOS12,13 were used for CCS calculation for model structures. IMPACT 

was used for CCS calculations on all structures resulting from MD simulations. The IMOS 

diffusive trajectory method (TM), which accounts for diffuse scattering in momentum transfer 

calculation, was used with He gas at 300 K with 50,000 total gas molecules. CHARMM non-
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integer partial charges were included in the IMOS calculation. Overall, IMOS TM calculations 

were employed on a random subset of 80 structures from each SERF model. Linear regression 

between IMPACT TM and IMOS TM was used to convert the IMPACT TM values to IMOS 

TM values. Error in the final CCS values were calculated using: 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 =  √𝝈𝝈𝟐𝟐 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝟐𝟐 where 

σ is standard deviation of CCS values and rmse is root mean square error from the linear 

regression between IMPACT and IMOS TM CCS values. 
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Table II-3 . Experimental CCS of unmodified SERF ions. Conf shows different CCS distribution seen in a charge state. CCS 
calibration RMSE was 1.23 % and database error was set as 3 %. 
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Table II-4 Experimental CCS of modified SERF ions. Conf shows different CCS distribution seen in a charge state. CCS 
calibration RMSE was 0.54 % and database error was set as 3 %. 
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Figure II-5 Numbered cluster structures for unmodified SERF. 

 

 

Figure II-6 Numbered cluster structures for modified SERF. 
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Figure II-7 Plot of TM CCS values determined via IMPACT against IMoS. Separate linear regression models are required to fit 
the data for unmodified (Linear Regression 1) and modified (Linear Regression 2) SERF. The equation provided for each model 
is used to convert the IMPACT TM CCS values to IMoS TM CCS values. RMSE is used in the computation of total error.  
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Table II-5 Theoretical CCS of models from each cluster in the unmodified version of SERF. μ and σ are the mean and standard 
deviation of CCS values, respectively. 

 

Table II-6 Theoretical CCS of models from each cluster in the modified version of SERF. μ and σ are the mean and standard 
deviation of CCS values, respectively. 

 

 

Table II-7 Table of average and standard deviation of fraction of secondary structure elements in each cluster for unmodified 
SERF. 
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Table II-8 Table of average and standard deviation of fraction of secondary structure elements in each cluster for unmodified 
SERF. 

 

 

 

Figure II-8 Plots of fraction of secondary structure vs. residue number for unmodified SERF clusters 0, 1, 2, 3, 4, 5, 6, 7, in A), 
B), C), D), E), F), G), and H), respectively. 
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Figure II-9 Plots of fraction of secondary structure vs. residue number for modified SERF clusters 0, 1, 2, 3, 4, 5, 6, 7, in A), B), 
C), D), E), F), G), and H), respectively. 
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Figure II-10 Contour plots of mean (μ) distance between the positive charge carrying nitrogen atom in lysine and all the carbonyl 
oxygen atoms in unmodified SERF for clusters 0, 1, 2, 3, 4, 5, 6, 7 in A), C), E), G), I), K), M), and O), respectively. Contour 
plots of standard deviation (σ) of distance between the positive charge carrying nitrogen atom in lysine and all the carbonyl 
oxygen atoms in unmodified SERF for clusters 0, 1, 2, 3, 4, 5, 6, 7 in B), D), F), H), J), L), N), and P), respectively.  
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Figure II-11 Contour plots of mean (μ) distance between the positive charge carrying nitrogen atom in lysine and all the carbonyl 
oxygen atoms in modified SERF for clusters 0, 1, 2, 3, 4, 5, 6, 7 in A), C), E), G), I), K), M), and O), respectively. Contour plots 
of standard deviation (σ) of distance between the positive charge carrying nitrogen atom in lysine and all the carbonyl oxygen 
atoms in unmodified SERF for clusters 0, 1, 2, 3, 4, 5, 6, 7 in B), D), F), H), J), L), N), and P), respectively. 
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Figure II-12 Contour plots of z-score of pairwise contact matrix for distance (d) < 5 Å between positive charge carrying nitrogen 
atom in lysine residues versus peptide backbone carbonyl oxygen atoms in all residues for unmodified SERF clusters 0, 1, 2, 3, 4, 
5, 6, and 7 in A), B), C), D), E), F), G), and H), respectively. Similar plots for 10 Å < d < 5 Å for clusters 0, 1, 2, 3, 4, 5, 6, and 7 
in I), J), K), L), M), N), O), and P), respectively. Z-score values greater than 2 are considered in all contour plots, except for 
clusters 2 and 7 in 10 Å < d < 5 Å. Since there were no values greater than 2 for those clusters, values greater than 1 are plotted in 
the contour plots.  
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Figure II-13 Contour plots of z-score of pairwise contact matrix for distance (d) < 5 Å between positive charge carrying nitrogen 
atom in lysine residues versus peptide backbone carbonyl oxygen atoms in all residues for modified SERF clusters 0, 1, 2, 3, 4, 5, 
6, and 7 in A), B), C), D), E), F), G), and H), respectively. Similar plots for 10 Å < d < 5 Å for clusters 0, 1, 2, 3, 4, 5, 6, and 7 in 
I), J), K), L), M), N), O), and P), respectively. Z-score values greater than 2 are considered in all contour plots.  
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III. Chapter 4 Supporting Information 

Text III-1. Averagine based isotopic grouping algorithm used in Grppr 

Briefly, the list of input peaks is first sorted by intensity in descending order. The first peak is 

removed from the list and its possible isotopic neighbors are searched for within +1 m/z. For 

each possible determined charge state, the potential neutral mass is computed and a “template” is 

generated based on it. A template is a set of peaks with intensities normalized to unity and inter-

peak mass differences defined; as such, it represents an isotopic envelope through mass 

differences to neighboring peaks rather than the exact S1 absolute mass of each peak. To 

generate a template for a seed peak with an m/z value of MZs, IM drift time of IMs and a 

potential charge state zs, the neutral mass Ms is calculated as Ms = zs(MZs - MH), where MH is the 

mass of a proton, and the corresponding elemental composition according to the Averagine 

model is computed. For this study we have used the standard definition of Averagine as an 

amino acid of mass 111.1254 Da, having an elemental composition of C4.93H7.75N1.35O1.47S0.04. 

We have found that the exact mass and composition values are not critical in identifying isotopic 

envelopes, as slight changes in those values introduce only minor variations to the resulting 

shape of the isotopic envelope. The most intense peak within the template is aligned to the seed 

peak, i.e. its m/z and IM drift time are set to MZs and IMs respectively. The template’s peaks are 

then traversed, calculating theoretical m/z value for each and searching for possible matching 

peaks in the input peak list. If multiple candidates are found in the proximity of a theoretical 

peak, the one with intensity closest to that of the template peak is retained. To account for 

potential errors in peak intensity measurements that might lead to the most intense peak being 

identified incorrectly, the template is further varied in m/z direction, shifting it by one peak 

position left and right. Kullback-Leibler divergence (KLD) is used as a goodness-of-fit value to 
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select the best matching location for the template. All the peaks assigned to an isotopic cluster 

are then blacklisted, disallowing them to serve as seed points for other clusters. For a typical top-

down sequencing experiment we also set a threshold on the minimum number of peaks required 

to call an isotopic cluster to at least 3-4 peaks, which is a user-defined parameter. This clustering 

workflow is summarized in pseudo-code in Algorithm 1.  
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Figure III-1 Algorithm 1 
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Table III-1 User-definable parameters used for IMTBX processing. 

Parameters for WatersIMSPeakDetector     
Parameter name Flag Value 
Analysis mode N/A peaks 

Smoothing/filtering --filter 
4 4 2 2 0 

0 
Absolute intensity cutoff --cut 30 
Scan combination mode --mode Sum 
Minimum number of points for a peak --npts 16 
Valley depth between peaks in IM dimension --drop 0.1 
m/z bounds on data to consider --bounds_mz 100 5000 

RMS noise estimation moving window size 
--noise --

noiseWnd 4 8 
Minimum S/N ratio for a peak to be detected --snr 2 
**all other parameters left at default values**     

 

Table III-2 User-definable parameters used for Grppr processing. 

Parameters for Isotopic Clustering tool     
Parameter name Flag Value 
Function and Min number of peaks in a cluster --deisotope 1 4 
Grouping in retention time (for LC-coupled analyses) true/false --group false 
Minimum S/N for most abundant and all other peaks in isotopic 
cluster --dsnr 3 2.5 
Min charge to consider --zLo 1 
Max charge to consider --zHi 6 
Isotopic grouping scoring algorithm --isoAlg AVERAGINE 
Mass error tolerated when searching for members of a cluster --isoMzV 100 
Units for mass error when searching for members of a cluster --IsoMzT PPM 
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Table III-3 Estimated processing time for top-down data by manual, semi-automated, and IMTBX+Grppr workflows. 

A 

Estimated total 
processing time 
(minutes)     

Number of analyses 
Manual 
annotation 

Semi-automated 
(TWIMExtract + 
mMass) 

IMTBX + 
Grppr 

1 225 7.5 0.81 
10 2250 48 3.6 

100 22500 453 31.5 

B 

Estimated total 
user ("active") 
time (minutes)     

Number of analyses 
Manual 
annotation 

Semi-automated 
(TWIMExtract + 
mMass) 

IMTBX + 
Grppr 

1 225 7.5 0.5 
10 2250 48 0.5 

100 22500 453 0.5 
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IV. Chapter 5 Supporting Information 

Text IV-1 Univariate Feature Selection (UFS) for Classification 

 

Figure IV-1 Depiction of querying each possible combination of input data between classes. The variation within and between 
classes for each combination of input data is used to perform feature selection across the input dataset.  

Univariate feature selection, comprised of performing F-test statistics14 to evaluate the 

significance of each collision voltage in differentiating the training data classes, is performed as 

the first step in classification workflow. Scheme S1 shows UFS for two groups A and B, with F 

statistics calculated for each data set in each group, as shown by the dotted lines. F ratio is 

calculated as described below, and 𝐹𝐹 ratio is then converted to p-value using the F-distribution.  

𝐹𝐹 =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �𝑛𝑛𝑖𝑖

𝐾𝐾

𝑖𝑖=1

(𝑌𝑌𝚤𝚤� − 𝑌𝑌�)2/(𝐾𝐾 − 1) 

where 𝐾𝐾 is the number of groups, 𝑛𝑛𝑖𝑖 and 𝑌𝑌𝚤𝚤�  are the number of observations and the mean of the i-

th group, respectively, and 𝑌𝑌� is the overall mean of the data.  

𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  ���𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑌𝑌�𝑖𝑖�
2

/(𝑁𝑁 − 𝐾𝐾)
𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝐾𝐾

𝑖𝑖=1

 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the j-th observation in the i-th group and 𝑁𝑁 is the overall sample size.  
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Figure IV-2 Cross-validation workflow. A “leave one out” cross-validation15 is performed by implementing the classification 
workflow, which consists of linear discriminant analysis (LDA)16 followed by construction of a support vector machine (SVM)17, 
across a range of sub-sections of CIU datasets corresponding to sequential addition of arrival time distributions from individual 
collision voltages in decreasing order of UFS score. Classification accuracy of training and test data sets are then plotted as a 
function of the number of collision voltages to determine the optimal model selection. A) Scheme showing “Leave one out” cross 
validation approach where a single CIU dataset is treated as test data in each group and the remaining datasets are used as 
training data. All possible combinations of training and test data set are created. The training set is used to build the classification 
model and the test data is used to validate the accuracy of the classification model. B) Accuracy of training and test data sets are 
plotted as a function of a range of CIU datasets that has sequential addition of collision voltages. The number of collision 
voltages resulting in greatest validation accuracy is used as the final classification scheme.  
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Figure IV-3 Feature selection and cross-validation for IgG1, IgG2, IgG3, and IgG4 classification from primary text Figure 3. A, 
B, C, and D are representative CIU fingerprints of IgG1, IgG2, IgG3 and IgG4, respectively. E) UFS results. Plot of –log10(p-
value) against collision voltage assessing the significance of each collision voltage in differentiating the groups. 85 V, which has 
the highest score, is highlighted in grey and is also show in CIU fingerprints (A, B, C, and D). F) Cross-validation plot showing 
classification accuracy for training (blue) and test (green) data set with accuracy on y-axis and number of collision voltages on x-
axis. The shaded region indicates the standard deviation from all the combinations of training and test datasets created. In this 
example, a single collision voltage (85V, circle marker) had the highest validation accuracy and was chosen as the final 
classification scheme to generate the data in primary text Figure 5-3. 
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Table IV-1 Test data probability values for classification of IgG subclasses. Each subclass has higher probability values when it 
is classified into its respective type, as highlighted in green.  
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Table IV-2 Benchmarks for Gaussian fitting and Classification analysis time. All testing data was generated on a Dell Optiplex 
990 workstation with an Intel Intel Core i7-2600 CPU (4 cores, hyperthreaded) at 3.40 GHz and 16 GB of RAM. For Gaussian 
fitting, two datasets were tested: the “complex” set, including both several protein and several noise signals and a “simple” set 
containing only high abundance protein signals. For “complex” data, 5 signal components and 7 noise components were allowed, 
while for “simple” data, 4 signal components and 0 noise components were allowed. Both analyses were performed using 
multithreading with 8 cores. Times to complete analysis are presented both as average time per individual collision voltage (top) 
and across a complete CIU dataset with 20 collision voltages. Average and standard deviation are from 10 separate runs on 
different datasets. For classification, default parameters were used to classify between two classes from CIU datasets containing 
40 collision voltages. Classifying schemes were generated from 3, 6, and 10 replicates per class with the resulting times to 
complete the entire classification procedure. 

Gaussian Fitting 
Dataset Complex Simple 

  
Per individual 

collision voltage (CV) 
Avg (s) 1.69 0.16 

Std Dev (s) 0.27 0.02 

  
Per Complete Dataset 

(20 CVs) 
Avg (s) 33.80 3.20 

Std Dev (s) 5.31 0.48 
Classification 

    
2-way, 40 
features 

3 replicates Time (s) 2.2 
6 replicates Time (s) 16.3 

10 replicates Time (s) 68.0 
 

Text IV-2: Additional details regarding fitting stability shift (CIU50) values 

Stability shift (“CIU50”) analysis fits a generalized logistic function, of the form below, 

to the observed data in one of several modes specified by the user. In the default (and generally 

recommended) mode, the arrival time distribution at each collision voltage is centroided by 

simply taking the location (drift time) of the most intense signal. This is called “max” mode by 

the software. The resulting dataset is a centroid drift time at each collision voltage. To perform 

the logistic fitting, a transition region is set up by considering a pair of consecutive features from 

feature detection. The transition region is defined by any space between the two features 

(collision voltages not included in either feature but present between the max collision voltage of 
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the first feature and before the min collision voltage of the second feature) plus a “padding” 

amount (adjustable by the user) that includes a small amount of each feature in the transition 

region. The remaining portions of the features outside the transition region are set to the median 

centroid value of each feature to provide a floor and ceiling (min and max) for the logistic 

function. A least-squares minimization is performed (using optimize.curve_fit in Scipy8) 

between the logistic function and transition data to determine the optimal fit.  

Logistic function: 𝑦𝑦 =  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚− 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
1+𝑒𝑒−𝑘𝑘(𝑥𝑥−𝑥𝑥𝑐𝑐) 

ymin is the minimum function value (corresponding to the median drift time of the first feature) 

ymax is the maximum function value (corresponding to the median drift time of the second 

feature) 

k is a steepness factor (how quickly the transition occurs across collision voltages) 

xc is the center of the transition, also called the CIU50 value.  

 

In some cases, particularly if features coexist at similar intensities across a range of collision 

voltages, it can be detrimental to centroid to the maximum intensity without considering other 

features. In these cases, spectral average and median modes are available that centroid the arrival 

time distribution by average and median, respectively. However, average and median centroided 

data do not always resemble a sigmoid function, and can result in poor fitting. In addition, any 

chemical or other noise or additional features beyond the two being considered can influence the 

fits, making these modes much less robust than the max mode centroiding.  

 

  



 218 

Text IV-3: Additional details regarding Gaussian fitting and scoring 

Gaussian fitting is performed using a least-squares minimization, implemented in the 

LMFit18 library in Python, of a sum of Gaussian functions (see below) to the observed arrival 

time distribution at each collision voltage. Expected width (full width at half max, FWHM) 

values and a maximum number of components (individual Gaussian functions) are provided by 

the user. Automated peak width prediction is not done as it requires detailed knowledge of both 

the analyte in question and the instrument settings (IM pressures, fields, etc.) used to collect the 

data, making it challenging to generalize in this context. 

Gaussian function: 𝑦𝑦 = 𝐴𝐴 ∗ 𝑒𝑒−
(𝑥𝑥 − 𝑐𝑐)2

2𝜎𝜎2  

A = amplitude (peak height), c = peak center, σ = standard deviation (peak width) 

Given a maximum number of components, CIUSuite 2 performs a least-squares 

minimization for each possible number of components, then scores the resulting fit to determine 

the best result. For example, if no chemical noise components are considered and the user allows 

a maximum of 4 components, fits utilizing 1, 2, 3, and 4 Gaussian functions are performed and 

the highest scoring fit is saved as the best result. If chemical noise components are considered, 

all combinations of signal and noise peaks are modeled. For example, if 3 signal components and 

3 noise components are allowed by the user, a total of 9 fits are performed corresponding to 1 

signal + 1 noise, 1 signal + 2 noise, … , 3 signal + 3 noise. Each component is constrained to 

sample only width values with the ranges specified by the user.  

 To evaluate the results of each fitting procedure, a scoring function is employed. The 

score for a given fit is the r2 value of the fit to the observed data minus any penalties incurred. 

Thus, the maximum score is 1, corresponding to a perfect correlation with the observed data and 

no penalties. Fits are penalized in 3 ways. First, a width penalty is assessed on any peaks that 
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deviate from the allowed ranges specified by the user. This penalty is computed as the difference 

between the observed width and the edge of the allowed window with no adjustment, and is 

rarely used as the fitted widths are constrained to be within these boundaries. Second, a peak 

overlap penalty is computed for signal components to prevent highly overlapping components 

from being considered. This penalty is computed according to the formulas below, allowing the 

user to specify strict penalizing of overlaps (>50% overlap is penalized), relaxed penalizing 

(>75% overlap penalized) or no penalty for overlap. These options allow prevention of 

component over-fitting into a single observed peak, particularly when a broad range of peak 

widths are allowed.  

[Strict penalty] Shared area penalty = (1.25 ∗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 0.25)4 

[Relaxed penalty] Shared area penalty = (𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 0.40)4 

“Shared area ratio” is computed as the area under a given Gaussian component that is also under 

another Gaussian component in the fit result divided by the total area of the Gaussian component 

in question. Thus, if a peak is almost entirely underneath another peak, the shared area ratio will 

approach 1 and the penalty will approach 1 in strict mode or 0.13 in relaxed mode. Finally, in fits 

considering both signal and chemical noise components, a fit is penalized if there are no signal 

components above a user-defined intensity threshold (default: 20% relative intensity). The 

penalty is computed as the difference between the threshold (e.g. 20%, or 0.20) and the 

amplitude of the most intense signal component (so a fit with a most intense signal component of 

0.15 relative intensity would incur a penalty of 0.20 – 0.15 = 0.05) to be subtracted from the r2 

along with any other penalties.  
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V. Chapter 6 Supporting Information 

 

Figure V-1 Activation of supercharged 30+ mAb ion at (A) 5 V and (B) 100 V. We observe the selected 30+ ion peak shifting to 
lower m/z as adducts dissociate upon activation. (C) The intact mass plotted versus activation energy. The average mass at low 
and high activation energies is taken, and the difference is used to determine the Δ mass value used in Figure 6-2 G. 
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Figure V-2 CIU fingerprints of (A-C) IgG1k, IgG2k, and IgG4k, respectively on the Synapt G2 system 
generated using CIUSuite 2. (D) To determine the reproducibility and sensitivity of the RMSD baseline on 
the IgG1 standard fingerprints were average (n=3), and the average fingerprint was compared to all of the 
replicates producing an RMSD baseline value of nominally 3%. Comparison plots of IgG1 versus (E) IgG2 
and (F) IgG4 were generated and produced RMSD of 22.5% and 18.8%, and a difference factor of 8 and 6, 
respectively.   
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Table V-1 CCS measurements extracted from IgG subclass CIU. 

Charge 

State 

IgG1 CCS 

(Å2) 

IgG2 CCS 

(Å2) 

IgG4 CCS 

(Å2) 

24+ 7870±50 8090±25 7750±43 

25+ 8070±45 8170±26 7800±45 

26+ 8260±27 8250±27 7980±27 

27+ 8340±28 8330±28 8030±28 

28+ 8470±29 8460±29 8210±58 

29+ 8640±30 8650±30 8500±30 

 

Table V-2 Calculated charge stripping for select charge states in 6560 mass spectra. The low and high collision energies for m/z 
values were obtained at 220 V and 500 V, respectively. The equation from figure 2G was: Charge Stripping = = 0.000075*( Δ  
Adduct Mass) + 0.006675 

Condition Sample Low 
m/z 

High 
m/z 

Δm/z z Δ mass 
(Da) 

CS CS % 

Native IgG1_1 5302 5298 4 28 112 0.015 1.5 

Native IgG1_2 5316 5295 21 28 588 0.051 5.1 

Native IgG1_3 5300 5295 5 28 140 0.017 1.7 

Native IgG2_1 5309 5306 3 28 84 0.013 1.3 

Native IgG2_2 5313 5304 9 28 252 0.026 2.6 

Native IgG2_3 5310 5303 7 28 196 0.021 2.1 

Native IgG4_1 5334 5328 6 28 168 0.019 1.9 

Native IgG4_2 5336 5330 6 28 168 0.019 1.9 

Native IgG4_3 5331 5326 5 28 140 0.017 1.7 
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Supercharged IgG1_1 3618 3607 11 40 440 0.040 4.0 

Supercharged IgG1_2 3617 3611 6 40 240 0.025 2.5 

Supercharged IgG1_3 3622 3615 7 40 280 0.028 2.8 

Supercharged IgG1_1 4612 4606 6 35 210 0.022 2.2 

Supercharged IgG1_2 4117 4112 5 35 175 0.020 2.0 

Supercharged IgG1_3 4014 4010 4 35 140 0.017 1.7 

Supercharged IgG1_1 4805 4791 14 30 420 0.038 3.8 

Supercharged IgG1_2 4806 4792 14 30 420 0.038 3.8 

Supercharged IgG1_3 4809 4792 17 30 510 0.045 4.5 

Supercharged IgG4_1 3679 3671 8 40 320 0.031 3.1 

Supercharged IgG4_2 3684 3678 6 40 240 0.025 2.5 

Supercharged IgG4_3 3688 3678 10 40 400 0.037 3.7 

Supercharged IgG4_1 4072 4068 4 35 140 0.017 1.7 

Supercharged IgG4_2 4075 4070 5 35 175 0.020 2.0 

Supercharged IgG4_3 4080 4070 10 35 350 0.033 3.3 

Supercharged IgG4_1 4847 4843 4 30 120 0.016 1.6 

Supercharged IgG4_2 4851 4842 9 30 270 0.027 2.7 

Supercharged IgG4_3 4859 4844 15 30 450 0.040 4.0 
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Table V-3 RMSD values for Figure 6-3 G 

Antibody IgG1 IgG2 IgG4 

Replicate 1 2 3 1 2 3 1 2 3 

29+ 2.1 1.6 1.2 10.7 10.1 9.6 16.8 16.4 16.0 

28+ 1.8 1.3 0.9 10.0 9.5 8.9 16.8 16.5 16.3 

27+ 1.6 1.2 0.8 10.6 10.5 10.2 20.1 19.1 19.0 

26+ 1.3 1.0 0.8 11.5 11.9 12.1 23.1 21.3 21.2 

25+ 1.7 1.5 1.0 14.6 14.8 14.9 20.5 20.2 19.7 

24+ 2.2 2.0 2.0 19.3 19.3 19.0 19.2 18.8 18.1 
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Table V-4 RMSD values for Figure 6-3 H 

Antibody IgG1 IgG4 

Replicate 1 2 3 1 2 3 

42+ 2.00 1.98 1.86 10.0 10.8 11.6 

41+ 1.1 1.3 1.6 12.3 13.4 14.3 

40+ 0.95 0.86 1.03 12.8 13.7 14.0 

39+ 0.96 0.90 0.98 12.3 13.1 13.5 

38+ 0.81 0.70 0.83 12.2 13.3 13.6 

37+ 0.76 0.60 0.73 11.9 12.6 12.8 

36+ 0.66 0.57 0.63 12.1 12.3 12.5 

35+ 0.56 0.51 0.64 12.7 13.0 13.4 

34+ 0.74 0.62 0.74 13.8 14.0 14.4 

33+ 0.76 0.60 0.69 14.2 14.5 14.6 

32+ 0.90 0.88 0.98 14.6 14.7 14.7 

31+ 1.01 0.90 1.08 15.0 15.1 15.5 

30+ 1.01 0.88 1.08 15.7 16.0 16.2 
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Table V-5 RMSD values for Figure 6-4 G 

Antibody Kappa Lambda 

Replicate 1 2 3 1 2 3 

29+ 2.1 1.6 1.2 10.7 10.2 10.1 

28+ 1.8 1.3 0.9 8.2 7.9 8.0 

27+ 1.6 1.2 0.8 11.0 10.3 10.4 

26+ 1.3 1.0 0.8 11.9 11.5 11.6 

25+ 1.7 1.5 1.0 12.2 12.3 12.4 

 

Table V-6 RMSD values for Figure 6-4 H 

Antibody Kappa Lambda 

Replicate 1 2 3 1 2 3 

29+ 2.1 1.1 1.6 14.3 15.3 15.4 

28+ 1.6 0.8 1.6 14.7 15.2 14.7 

27+ 1.4 1.1 1.3 20.2 20.3 19.9 

26+ 1.3 1.0 1.2 26.1 25.9 25.8 

25+ 1.4 1.8 1.9 24.9 26.0 25.9 
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Table V-7 RMSD values for Figure 6-5 C 

Antibody IgG1 IgG4 

Replicate 1 2 3 1 2 3 

29+ 1.0 1.50 1.1 11.3 11.8 12.0 

28+ 1.0 0.9 1.2 11.5 11.3 12.0 

27+ 0.85 0.68 0.73 13.5 13.4 13.1 

26+ 0.93 0.94 1.11 17.9 18.4 18.4 

25+ 1.5 1.4 1.8 16.8 16.7 16.6 

24+ 2.5 2.3 1.7 13.2 13.4 13.2 
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Table V-8 RMSD values for Figure 6-5 D 

Antibody IgG1 IgG4 

Replicate 1 2 3 1 2 3 

42+ 2.7 4.1 4.4 8.9 9.4 8.4 

41+ 3.8 3.7 5.7 16.0 15.1 15.6 

40+ 2.4 3.0 3.7 10.1 9.2 11.2 

39+ 1.6 1.9 2.9 12.0 12.2 12.9 

38+ 1.3 2.2 2.5 11.9 11.7 14.2 

37+ 1.4 1.6 2.2 12.4 12.4 14.9 

36+ 1.2 1.5 2.0 12.5 12.0 14.4 

35+ 1.1 1.0 1.6 11.6 11.7 14.2 

34+ 0.9 0.8 1.4 13.0 13.0 14.7 

33+ 0.8 1.1 1.5 14.5 14.5 15.9 

32+ 0.9 1.4 1.9 15.4 15.9 16.2 

31+ 1.7 1.2 2.4 16.0 15.9 16.0 

30+ 1.5 1.0 1.5 12.6 13.0 12.9 
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VI. Compounds Synthesized for Optimizing Intrinsically-charged Labeling of Proteins 

VI-I. Overview 

The effectiveness of the trimethyl pyrylium (TMP) reagent used for fixed-charge labeling of 

proteins in Chapters 2 and 3 for improved sequencing is limited by the low solubility and 

reactivity of the compound. The modification procedure employed in Chapters 2 and 3 employs 

a 24 hour reaction at room temperature, pH 9, at a molar excess of reagent to lysine residues 

ranging from 50-200:1. Increasing the ratio of reagent proved problematic, particularly for large 

proteins containing many lysine residues, due to the limited aqueous solubility of the reagent. In 

collaboration with the Andrews lab (Michigan Biological Chemistry) and Dr. Hollis Showalter 

and Susan Hagen (Vahlteich Medicinal Chemistry Core, Michigan Medicinal Chemistry), we 

attempted to develop reagents based on TMP with improved aqueous solubility and reactivity 

towards protein lysine residues under near-physiological pH conditions.  

VI-II. Methods 

Synthesized compounds from the Medicinal Chemistry Core group were reacted with a test 

substrate, Substance P, to provide a comparative basis for reactivity in a system with a single 

lysine residue available. Aqueous solubility at the necessary concentrations for the modification 

reactions in proteins was evaluated by observing if a precipitate formed during upon 

resuspension to the desired concentration. A 200:1 ratio of reagent was mixed with 50uM 

Substance P at pH 9 in 100mM triethylammonium bicarbonate (TEAB) buffer for 1 hour. 

Reactions were quenched by addition of 1M ammonium acetate solution before cleanup. Excess 

reagent removal and buffer exchange were accomplished using C18 spin columns (Pierce 

#89870) according to manufacturer’s instructions, with 4 aqueous washes employed instead of 2. 

Substance P was eluted in 50% acetonitrile with 0.1% formic acid for analysis by MS. Samples 
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were analyzed by nanoESI-IM-MS on the Synapt G1 or G2 and the height of characteristic peaks 

for unmodified and modified forms of substance P were used to evaluate reaction completion. 

Activation of modified peptides in the trap region was used to evaluate the gas-phase stability of 

the modification.  

VI-III. Results 

All compounds tested are compared in the table below. Many of the reagents exhibited an 

undesired side reaction product, labeled “B”.  

Table VI-1 Synthesized compounds tested and results of testing. “A” is the desired product of a pyrylium-like reaction, while “B” 
is an undesired side reaction introduced by -oxy substituents at the para position to the oxonium.  

Name Structure 
% A 

forme
d 

% B 
forme

d 
Comments 

2,4,6-trimethylpyrylium, 
BF4 salt 

 

C8H11O+ 
 

75 0 

Original 
compound - 
commerciall
y available. 
Single 
reaction 
pathway. 
Limited 
reactivity 
and 
solubility 

4-methoxy-2,6-
dimethylpyrylium, triflate 

 

C8H11O2
+ 

 

75 25 

Much 
improved 
solubility 
and 
reactivity 
over initial 
compound, 
but also 
formed 
alternate 
product 

O

O

4-methoxy-2,6-dimethylpyrylium

O
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4-isopropoxy-2,6-
dimethylpyrylium, triflate 

 

C10H15O2
+ 

 

75 10 

Most 
selective of 
compounds 
tested. 
Required pH 
10 OR 24 
hours at pH 
9 to get 
significant 
yield. Small 
yield of 
alternate 
product still 
caused 
problems for 
protein 
modification
.  

2,6-diphenylpyrylium, BF4 
salt 

 

C17H13O+ 
 

0 0 

Nearly 
completely 
insoluble in 
water. No 
reaction 
observed in 
water, 
DMSO, or 
mixed 
water/DMS
O solutions 

2,6-dimethyl-4-
(neopentyloxy)pyrylium, 
triflate 

 

C12H19O2+ 
 

33 66 

Soluble and 
highly 
reactive, 
very similar 
to the 4-
methoxy 
dimethyl 
pyrylium. 
Increasing 
pH to 10 
improved 
selectivity, 
but still 
favored the 
alternate 
over 
primary 
product 

O

O

O

O

O
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4-(cyclohexyloxy)-2,6-
dimethylpyrylium, triflate 

 

C13H19O2
+ 

 

20 60 

Less 
reactive and 
less 
selective (or 
more 
selective for 
the alternate 
product 
rather than 
the primary) 

4-methoxy-2,3,5,6-
tetramethylpyrylium, 
triflate 

 

C10H15O2
+ 

 

20 30 

**Mix of 
compound 
and starting 
material, so 
reactivity 
analysis not 
perfect**. 
Challenging 
to analyze, 
but appears 
to be less 
reactive than 
most and 
generally 
favor the 
alternate 
product  

4-(dimethylamino)-2,6-
dimethylpyrylium 

 

C9H14NO+ 
 

0 0 

No Reaction 

O

O

O

O

O

NMe2
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4-
(methoxy(methyl)amino)-
2,6-dimethylpyrylium 

 

C9H14NO2
+ 

 

20 0 

Selective for 
the correct 
form, but 
limited 
reactivity. 
Also shown 
to be readily 
cleavable in 
CID 

1,2,4,6-tetramethylpyridin-
1-ium, triflate 

 

C9H14N+ 
 

0 0 

No Reaction 

4-methoxy-1,2,6-
trimethylpyridin-1-ium, 
triflate 

 

C9H14NO+ 
 

0 0 

No Reaction 

N

O

N

O

N(Me)OMe
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4-(dimethylamino)-2,6-
dimethylpyrylium 

 

C9H14NO+ 
 

0 0 

No Reaction 

4-methoxy(methyl)amino-
2,6-dimethylpyrylium 

 

C9H14NO2
+ 

 

25 0 

Low 
reactivity, 
but with 
desired 
selectivity. 
*NOTE: 
loss of 
HOCH3 can 
occur under 
CID 
conditions, 
but wasn't a 
major 
dissociation 
path for 
modified 
peptide* 

Unsuccessful Syntheses 

Structure 

    

  

O

N

4-(dimethylamino)-2,6-dimethylpyrylium

O

N
O

4-(methoxy(methyl)amino)-2,6-
dimethylpyrylium
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4-methoxy-1-methyl-2,6-
bis(trifluoromethyl)pyridin
-1-ium, triflate 

 

C9H8F6NO+ 
 

    

Precursor 4-
OMe 
pyridine 
made.  CF3 
groups make 
pyridine 
nitrogen 
extremely 
electron 
deficient, 
thus not 
reactive to 
further 
alkylating 
agents, such 
as methyl 
triflate even 
at high 
temp.  Any 
product that 
forms likely 
unstable, 
reverting to 
starting 
material. 
Not enough 
e- density in 
the ring to 
do the 
chemistry 
required to 
form these 
compounds 

4-methoxy-2,6-
bis(trifluoromethyl)pyryliu
m, triflate 

 

C8H5F6O2
+ 

 

    

Methyl 
triflate at 
120 deg 
gives no 
reaction.  
Also no 
reaction by 
triflic 
anhydride 
procedure.  
Difficult to 
make due to 
deactivating 
effect of 
CF3 groups;  
O-Me bond 
likely quite 
weak so if 

N CF3F3C

OMe

Me

O CF3F3C

OMe
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formed 
would 
readily 
revert to 
starting 
ketone 

2,6-
bis(trifluoromethyl)pyryliu
m, BF4 or perchlorate salt 

 

C7H3F6O+ 
 

    

Several 
attemps 
made using 
literature 
procedures 
analogous to 
those for the 
2,6-diphenyl 
congeners.  
Saw no 
product 
formation 
by TLC 

4,4'-oxybis(2,6-
dimethylpyrylium), bis 
triflate 

 

C14H16O3
2+ 

 

    

Made 
according to 
literature 
procedure.  
Very 
hygroscopic 
and limited 
stability 

O CF3F3C

O

O

O

Me Me

Me

Me
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4-(tert-butoxy)-2,6-
dimethylpyrylium, triflate 

 

C11H17O2
+ 

 

    

No reaction 
using the 
triflic 
anhydride 
procedure 

2,6-dimethyl-4-(2,2,2-
trifluoroethoxy)pyrylium, 
triflate 

 

C9H10F3O2
+ 

 

    

Triflic 
anhydride 
procedure.  
Likely 
product 
formation, 
but appears 
to revert to 
methyl ether 
upon 
purification 
eluting with 
3% MeOH 
in DCM 

4-isobutoxy-2,6-
dimethylpyrylium, triflate 

 

C11H17O2
+ 

 

    

Triflic 
anhydride 
procedure.  
Likely 
product 
formation, 
but appears 
to revert to 
methyl ether 
upon 
purification 
eluting with 
3% MeOH 
in DCM 

O

O

O

O CF3

O

O
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4-((1,3-difluoropropan-2-
yl)oxy)-2,6-
dimethylpyrylium, triflate 

 

C10H13F2O2
+ 

 

    

Triflic 
anhydride 
procedure.  
Likely 
product 
formation, 
but reverts 
to 4:1:1 
mixture of 
product, 4-
pyrone, and 
4-i-Pr ether 
upon 
purification 
eluting with 
4% IPA in 
DCM 

4-methoxypyrylium, 
triflate 

 

C6H7O2
+ 

 

    

Attempted 
to make by 
both methyl 
triflate and 
triflic 
anhydride 
procedures.  
Both 
appeared to 
give 1:1 
misture of 
sm:pdt by 
TLC.  But 
HPLC (sm 
only) and 
NMR (1:1 
sm:prd) 
show 
product is 
unstable 

O

O

F

F

O

O
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4-isopropoxypyrylium, 
triflate 

 

C8H11O2
+ 

 

    
Similar 
results to 
Me ether.  
Crude 
product by 
NMR 
appears to 
revert to 
pyrone upon 
purification 

 

VI-IV. Summary 

Despite trying many new compounds, we were unable to find any that provided improved 

reactivity and solubility without either also introducing competing, off-target pathways or 

becoming CID-cleavable. Reactivity of the initial TMP reagent is much improved in small and/or 

unstructured systems than globular proteins and protein complexes, indicating that some of the 

reactivity challenges may be a result of surface inaccessibility of lysine residues. The most 

promising reagent was 4-methoxy-2,6-dimethylpyrylium, which improved reactivity and 

solubility dramatically, but introduced a competing reaction pathway at the methoxy group. 

Introduction of other electron-withdrawing substituents at the 4-position that cannot provide a 

competing pathway could provide a path to the desired improvements in a reagent.  

  

O

O
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VII. Protamine Analysis Procedure 

VII-I. Overview 

Protamines have traditionally been considered inert nuclear proteins serving as passive structural 

elements that condense the paternal genome. However, emerging evidence calls for a need to 

revisit protamine protein’s presumed biological function.19 A mass spectrometry analysis 

revealed that mouse protamines bear a number of post-translational modifications (PTMs),20 

indicating that these modifications may bear a “protamine code” analogous to the “histone code.” 

So far, however, none of these novel modifications have been explored, nor have the 

corresponding human protamine proteins. In collaboration with Dr. Sue Hammoud and Dr. 

Samantha Schon (Michigan Medicine), as well as Dr. Philip Andrews (Michigan Biological 

Chemistry), we developed a protocol to evaluate the proteoforms of human protamine samples 

using top-down mass spectrometry.  

VII-II. Methods 

Protamine proteins were obtained by Dr. Samantha Schon from discarded semen samples from 

men undergoing routine semen analysis and the University of Michigan Center for Reproductive 

Medicine using an acid extraction protocol. Extracted samples were dialyzed for 24-48 hours at 

4C in a 2 kDa MWCO cassette against 200mM ammonium acetate, pH 7. Note that dialysis 

against lower concentrations of ammonium acetate resulted in adduction of substantial amounts 

of phosphoric acid during MS analysis, likely to do the highly basic nature of the protamine 

proteins. 5 μL of dialyzed protein solution was transferred to a gold-coated borosilicate capillary 

(0.78 mm i.d., Harvard Apparatus, Holliston, MA) for direct infusion using a Nanospray Flex ion 

source (Thermo Scientific, Waltham, MA). Capillary voltage was 1.6 kV, transfer capillary 

temperature was 275C. Intact mass analysis was conducted in the Orbitrap analyzer with a 
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resolution of 120,000 at m/z 400 with an AGC target of 1e6 and 5 microscans and data was 

accumulated for several minutes to ensure sufficient signal-to-noise ratio for deconvolution. Data 

was analyzed using BioPharmaFinder v3.0 software. Intact mass deconvolution using 

BioPharmaFinder was performed in “average over selected retention time” mode with a mass 

range of 3000-20000. 

VII-III. Results 

Protamine exhibits several isoforms and the potential for several PTMs, including 

phosphorylation. The isoforms present in Uniprot and associated abbreviations are displayed in 

Figure 1. MS analysis of the intact masses of protamine peaks indicates the abundances shown in 

Figure 2 following deconvolution. The most abundant isoform is protamine 2 sperm histone 

HP3, followed by protamine 1, then protamine 2 sperm histone HP4. A small amount of single 

Figure VII-1 Naming scheme used to describe protamine isoforms. There are two known protamine sequences: protamine 1 
(PRM1), which has only one isoform, and protamine 2 (PRM2), which has the 7 isoforms listed in this figure.   
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and double phosphorylation was consistently observed on protamine 1, but no PTMs were 

detected on protamine 2.  

 

  

Figure VII-2 Intact masses of protamine proteoforms observed from pooled samples. A number of unlabeled peaks correspond to 
adducts of phosphoric acid or mass shifts with unknown annotation. The peak at m/z 5749 is observed in some samples, but has 
not been annotated to a protamine (or other) sequence.   
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