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ABSTRACT

Quantifying the uncertainty of estimated parameters in high dimensional sparse

models gives critical insights and valuable information in analyzing various types of

big data. Yet it possesses some unique difficulties and has been drawing numerous

research attention over the past years. The goal of high dimensional inference is to

provide accurate point estimators of the unknown parameters with tractable limit-

ing distributions, which leads to confidence intervals, significance testing, and other

uncertainty measures. In this dissertation, we propose a novel estimation procedure,

along with a nonparametric variance estimator, which is adaptive to a wide range of

regression models and outcome types to draw reliable inferences for the model pa-

rameters. Comparisons are made with several existing methods, and advantages of

our procedure are shown both in simulation studies and real data applications. Our

method is successfully applied to multiple genomic data sets with continuous, binary,

and survival outcomes.

xii



CHAPTER I

Introduction

Quantifying the uncertainty of estimated parameters in high dimensional sparse

models gives critical insights and valuable information in analyzing various types of

big data. Yet it possesses some unique difficulties and has been drawing numerous

research attention over the past years. The goal of high dimensional inference is to

provide accurate point estimators of the unknown parameters with tractable limit-

ing distributions, which leads to confidence intervals, significance testing, and other

uncertainty measures. In this dissertation, we propose a novel estimation procedure,

along with a nonparametric model-free variance estimator, which is adaptive to a

wide range of regression models and outcome types to draw reliable inferences for the

model parameters.

In Chapter II, we started with high dimensional linear models and derived a

smoothed estimator of the whole coefficient vector whose components were asymp-

totically unbiased and normal. Our procedure was based on multi-sample splitting

and selection assisted partial regression so that the estimator enjoyed both low di-

mensional least square properties and variance reduction from the effect of bagging.

Our numerical studies provided finite sample performances of the proposed procedure

including consistency and coverage probabilities, as well as the advantages when com-

paring with the de-biased type of estimators. In an application to multiple myeloma

1



patients data, we identified 2 significant gene probes out of 789 potential predictors

in association with the disease severity.

In Chapter III, we extended our method to generalized linear models while im-

proving the procedure in several aspects. We generalized the re-sampling scheme to

simple data splitting and studied the effect of different split proportions. We derived

the consistent variance estimation and corrected for its bias due to finite number of

re-samples. We explored the different selection methods to be applied in the pro-

cedure and showed the consistency in estimation and inference regardless of using

LASSO, SCAD, MCP, or others. By fitting a high dimensional logistic regression

with the proposed procedure, we found 9 significant gene-environment interactions

among 13, 663 covariates that differentiate lung cancer patients versus controls.

In Chapter IV, we used the censored quantile regression framework to model

survival outcomes with unknown censoring. Censored quantile regressions, an alter-

native to Cox proportional hazards model, were powerful in detecting the covariate

effects at extreme tails, and thus provided complete information of the outcome dis-

tribution. In the context of high dimensional censored quantile regressions, our work

pioneered in simultaneous estimation and inference for all model parameters, which

was of significant importance in survival analysis with big data. We solved the theo-

retical challenges when extending the method to high dimensional censored quantile

regressions. We successfully applied our method to analyze the survival of lung can-

cer patients with large number of potential predictors, and detected more significant

SNP effects than other models.
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CHAPTER II

Drawing Inferences for High Dimensional Linear

Models: A Selection-assisted Partial Regression

and Smoothing Approach

2.1 Introduction

Consider the classical linear model:

Y = Xβ0 + ε (2.1)

where Y = (y1, y2, ..., yn)T is the n-vector of the response variable;X = (X1, X2, ..., Xp)

is the n × p design matrix that consists of p covariate vectors Xj’s; X can also be

written as X = (xT
1 ,x

T
2 , ..,x

T
n )T, where xi = (xi1, ..., xip) represents the p-vector of

covariates for the ith individual; β0 = (β0
1 , ..., β

0
p)

T is the true parameter vector of

interest; ε = (ε1, ε2, ..., εn)T is the random noise vector and E(ε) = 0n.

In the traditional low-dimensional setting when n > p, it is well known that

least squares estimator β̂LS = (XTX)−1XTY converges to a normal distribution

centered at β0, which provides exact estimation and inferences through explicitly

computable p-values and confidence intervals. On the other hand, when n < p,

the least squares estimation would fail because the sample covariance matrix Σ̂ =

3



XTX/n is singular. However the n < p problem has become increasingly relevant

over the past two decades with the common availability of high-throughput data. The

goal is often to find a parsimonious model to explain the response in the presence of

massive covariates. A number of selection and estimation methods including LASSO

(Tibshirani , 1996), Adaptive LASSO (Zou, 2006), SCAD (Fan and Li , 2001), ISIS

(Fan and Lv , 2008), among others, are available.

More recently, interest in the statistical community has shifted to making reli-

able inferences in high-dimensional models. Researchers have been trying to tackle

the problem from different angles. One direction is to make inferences based on the

selected model, i.e. the one that is chosen by a given variable selection procedure.

Wasserman and Roeder (2009) proposes a multi-stage procedure that is based on data

splitting to separate selection and inference; Berk et al. (2013) provides conservative

confidence intervals for the selected variables by defining a set of candidate models;

Lee and Taylor (2014); Lee et al. (2016) develops the conditional symptomatic of

the coefficient estimates, given the selected model. The second direction is to esti-

mate and make inferences of the low-dimensional parameters in the high dimensional

models. Belloni et al. (2013, 2014) propose a double selection procedure instead of

a single selection step to estimate and construct confidence regions for a regression

parameter of primary interest. Some other works propose estimators and inferences

based on penalized estimation. A typical example is the bias correction method based

on LASSO (Zhang and Zhang , 2014; Van de Geer et al., 2014; Javanmard and Mon-

tanari , 2014), which provides point estimation and confidence intervals for the model

parameters. There is also work by Ning and Liu (2017) that proposes hypothesis tests

and confidence regions based on the de-correlated score function and test statistic.

These approaches have their merits and demerits. While Wasserman and Roeder

(2009); Lee and Taylor (2014); Lee et al. (2016) aim at exact inference for post-

selection estimates, it is confined to the selected model from the “first step.” Thus,

4



flaws in the initial model-selection step, cannot be rectified in subsequent steps. The

limitation of requiring perfect model selection is improved in Belloni et al. (2014),

meanwhile, Wasserman and Roeder (2009); Meinshausen et al. (2009) recommend not

performing selection and estimation on the same data set. On the other hand, the

performance of the original de-biased LASSO estimator relies heavily on the accuracy

of estimating the precision matrix, i.e. Σ−1, which plays an unduly crucial role in

the estimation and inference subsequently. In Javanmard and Montanari (2014),

they relaxed the required accuracy of estimating Σ−1 (the matrix M in their paper),

instead they set M as to minimize the error term and the variance of the target

Gaussian limit.

In this chapter we propose a novel approach to consistently estimate β0, provide

p-values for all covariates, and compute confidence intervals for any fixed subset of pa-

rameters in high-dimensional linear models. The approach, coined Selection-assisted

Partial Regression and Smoothing (SPARES), possesses asymptotic unbiasedness and

asymptotic normality. Our idea takes advantage of the multisample-splitting method

in Meinshausen et al. (2009), which defines a p-value for each predictor from each

sample-splitting and then aggregates these p-values to declare a single p-value per

feature. One possible criticism of this approach is that the p-values and the aggre-

gation have a certain arbitrary angle to them: for example, features not selected in

each sample-split subsample are all assigned a p-value 1. In contrast, our SPARES

estimator utilizes partial regression to estimate β0 in each sample-split followed by

a natural smoothing step. In each data split, our procedure provides an estimate

of β0
j , j = 1, 2, .., p regardless of whether it was chosen by the selection procedure.

Such idea of attaching variable j to the selected variables is also used in Belloni et al.

(2014). Then we average over the variation of the selection and sample-split to ob-

tain a smoothed estimator. For these reasons, SPARES is not a post model-selection

method. Furthermore, our approach avoids the need to estimate the high-dimensional

5



precision matrix.

Our approach stands out from the majority of related works (Wasserman and

Roeder , 2009; Zhang and Zhang , 2014; Van de Geer et al., 2014; Javanmard and

Montanari , 2014; Belloni et al., 2014; Ning and Liu, 2017) in that it is neither re-

stricted to a fixed realization of the selected model nor limited to a certain selection

procedure. The smoothing accomplished through multisample-splitting ensures that

the β̂j’s are asymptotically normal with negligible bias while the standard errors can

be readily estimated via a nonparametric delta method (Efron, 2014). Consequently,

inferences can be made for each and every β0
j , j = 1, 2, .., p without having to confront

the curse of dimensionality. As shown in the data applications, our method is ad-

vantageous in giving uncertainty measures (such as p-values) to all high dimensional

coefficients at once.

The rest of this chapter is organized as follows. Section 2.2 describes the SPARES

estimator and Section 2.3 develops its theoretical properties. Section 2.4 shows how

to draw inferences through SPARES, including confidence intervals and significance

tests. Section 2.5 discusses the extension to a subvector of β0 with a fixed dimension.

In Section 2.6 we conduct simulations to examine the performance of SPARES and

present comparisons to de-biased LASSO methods. Section 2.7 comprises two real

data applications and Section 2.8 summarizes the merit of this work and pinpoints

future research.

2.2 Proposed Method

Let [p] = {1, 2, .., p} denote the set of integers for any positive p. For a vector V

of length p, denote the entry corresponding to subscript j ∈ [p] by Vj or (V )j; for

a square matrix Σ = Σp×p, denote the entry corresponding to subscripts j, k ∈ [p]

by Σjk or (Σ)jk for clarity if necessary; for a subset S ⊂ [p], denote the sub-design

matrix XS = (Xj)j∈S and the sub-covariance matrix ΣS = (Σjk)j,k∈S. The projection

6



matrix of XS is denoted as HS = XS(XT
SXS)−1XT

S . The active set of β0 is S0,n =

{j ∈ [p] : β0
j 6= 0}.

One-time SPARE: We first introduce the estimation of β0 through Selection-

assisted Partial Regression (SPARE) on a single data-split. Given data Dn = (X,Y )

as in model (2.1) and a generic selection procedure Sλ with parameter λ, we first split

Dn into two halves D1 and D2, with |D1| = bn/2c, |D2| = dn/2e, the floor and ceiling

of it. Denote the subset of variables selected by Sλ on D2 as S = Sλ(D2). Next on

D1 = (X1,Y 1), the partial regression estimator for β0
j , j ∈ [p] is

β̃j =
{

(X1
S∪j

T
X1

S∪j)
−1X1

S∪j
T
Y 1
}
j
, (2.2)

which is the coefficient estimate corresponding to X1
j from the least squares re-

gression of Y 1 on X1
S∪j. Moreover, (2.2) can be written as β̃j =

{
X1

j
T

(In/2 −

H1
S\j)X

1
j

}−1
X1

j
T

(In/2 −H1
S\j)Y

1 in the partial regression formulation.

Let SC = [p] \ S, we can write the one-time SPARE estimator compactly as

β̃(D1, S) =

 β̃S

β̃SC

 =

 (X1
S

T
X1

S)−1X1
S

T
Y 1[

diag
{
X1

SC

T
(In/2 −H1

S)X1
SC

}]−1

X1
SC

T
(In/2 −H1

S)Y 1

 .

(2.3)

The rationale for SPARE to work is that given a subset of important predictors

S ⊂ [p] that is close to the active set S0,n, the partial regression estimator (2.2) would

be a fine estimator that is close to the truth β0
j , for all j ∈ [p]. In fact, as long as

S ⊃ S0,n, (2.2) would be an unbiased estimator for β0
j , regardless of j ∈ S or not.

However, given the large number of predictors, the one-time SPARE estimator is

highly variable, and heavily depends on the selected S and the specific split of data.

SPARES: To overcome this difficulty, we introduce its smoothed version, the

SPARES estimator, which is derived from multisample-splitting and repeated appli-

cations of SPARE. For a large enough B and each b = 1, 2, .., B, we first draw a

7



sample of size n/2, with replacement, from the full data and denote it as Db
1. When

n is odd, we interpret n/2 as bn/2c. Let I1 = {i1, i2, ..., in/2}, 1 ≤ ik ≤ n be the col-

lection of indices of the observations in Db
1. Next, we collect the observations that are

not drawn in Db
1 as Db

2 with index set I2 = [n]\ I1. Thus I1∪ I2 = [n] and I1∩ I2 = ∅.

Now the application of SPARE by (2.3) is β̂b = β̃(Db
1, S

b), where Sb = Sλ(Db
2); the

final step is to average over all β̂b’s,

β̂SPARES =
1

B

B∑
b=1

β̂b. (2.4)

In terms of the computational cost, each of the one-time SPARE has the same time

complexity as one run of LASSO (O(np2)), and the cost of the SPARES procedure

is B times that. But with the help of parallel computing, we could largely reduce

the computation time by any desired factor K depending on the computing tool.

Thus the time complexity of SPARES is O(Bnp2/K), a multiple of one-time LASSO

proportional to the number of re-samples. Empirically the total time cost of the

SPARES procedure is linear in p log n.

In the rest of the chapter, we will always use β̃ for the one-time SPARE estimator

and β̂ for the SPARES estimator. Both the one-time SPARE and the SPARES possess

the asymptotic unbiasedness and normality, but SPARES is much more stable due

to the smoothing effect from multisample-splitting, which we will explore in depth

throughout the rest of this chapter.

2.3 Theoretical Results

2.3.1 One-time SPARE

We first establish the asymptotic property of the one-time SPARE estimator under

the following assumptions.
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(A1) Randomness of Data: In model (2.1), εi ⊥ xi; εi’s are i.i.d. random errors

with mean zero, finite variance σ2 and finite third absolute moment E|εi|3 ≤ ρ0;

X = (xT
1 , ...,x

T
n )T, xi’s are i.i.d. mean zero sub-Gaussian random vectors in Rp

with covariance matrix Σp×p, whose eigenvalues are bounded,

0 < cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ cmax <∞.

xi’s also have finite component-wise third absolute moments ∀j, E|xij|3 ≤ ρ1.

(A2) Order of Model Parameters: There exist constants 0 < c1 ≤ 1, cβ > 0 such that

s0 = |S0,n| = O(nc1), maxj |β0
j | ≤ cβ.

(A3) Sure Screening Property: There exists a sequence {λn}n≥1 and constants 0 <

η < 1, c2 > 2c1 such that |Ŝn,λn|/n ≤ η, and

P (Ŝn,λn ⊃ S0,n) ≥ 1− o(n−c2−1) as n→∞.

Here Ŝn,λn denotes the selected set of variables with sample size n and tuning

parameter λn.

Remark II.1. The sure screening property is met in Fan and Lv (2008); Fan and Song

(2010), and is guaranteed with the right order of tuning parameter λ using LASSO

(Bach, 2008). More specifically, by Fan and Lv (2008); Fan and Song (2010), in

addition to assumptions (A1) and (A2), the following conditions are required for the

sure screening property to hold:

• Var(Y ) = O(1), and for some κ ≥ 0 and c0, c3 > 0, minj∈S0 |β0
j | ≥ c0/n

κ and

min
βj 6=0

∣∣cov
(
β−1
j Y ,Xj

)∣∣ ≥ c3;

• log p = O(nξ) for some 0 < ξ < 1− 2κ.
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When κ ≥ 1/3, the sparsity requirement implied by Fan and Lv (2008), s0 = o(nθ) for

some 0 < θ < 1−2κ, is stronger than that in Javanmard and Montanari (2018), which

is s0 = o(n/(log p)2). When κ < 1/3, the comparison between the two conditions are

inconclusive. See conditions 1-4 in Fan and Lv (2008) for more details.

In (A1), only a moment condition is required on the error terms and a sub-

Gaussian distribution for the covariates. For comparisons, while the asymptotic nor-

mality of the whole p−dimensional de-biased estimator is not guaranteed for non-

Gaussian errors, a central limit theorem argument can be used to obtain approximate

Gaussianity of components of fixed dimension (Bühlmann et al., 2014). Thus the in-

ference for any fixed low-dimensional parameter is still valid for these types of methods

under sub-Gaussian errors with finite moment conditions. In (A2), there is no direct

assumption on the order of p, however, it is implied through (A3), a condition made

directly on the selection method. One reason for such an assumption, instead of

more basic ones like the order of p or the covariance structure of the predictors, is

that selection only plays an assistive role in our method; the estimation part is in

fact low-dimensional and therefore does not directly require typical high-dimensional

conditions.

Theorem II.2. Given model (2.1) and assumptions (A1)-(A3), consider the one-

time SPARE estimator β̃ = (β̃1, β̃2, .., β̃p)
T as defined in (2.3). Denote m = bn/2c,

σ̃2
j = σ2

(
X1

S∪j
T
X1
S∪j/m

)−1

jj
. Then ∀j ∈ [p], as m→∞,

√
m(β̃j − β0

j )/σ̃j → N(0, 1). (2.5)

Remark II.3. Note that we could always let the quantity of interest in (6) to be zero

whenever S0 6⊂ S, whose probability goes to zero by (A3). Thus we only need to show

the convergence when the event S0 ⊂ Ŝ holds.

The proof is presented in Appendix A.
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2.3.2 SPARES

Given the high volume of predictors in the model (2.1), the one-time estimator is

expected to be noisy and unstable, especially for all the j /∈ S0,n that are the majority

of the p−vector β0. In contrast, the SPARES estimator is more stable as it smooths

over both estimation and selection. As the SPARES introduces extra dependency

between the selections Sb’s and the partial regression estimates, the following condi-

tion, which is stronger than “sure screening”, is required for the desired theoretical

property.

(B3). Selection Consistency: There exists a sequence {λn}n≥1 and constants 0 < η <

1, c2 > 2c1 such that |Ŝn,λn|/n ≤ η, and

P(Ŝn,λn = S0,n) ≥ 1− o(n−c2−1) as n→∞.

The selection consistency is often met under certain sparsity conditions depending on

the selection method (Zhao and Yu, 2006; Zhang , 2010). Take LASSO for example,

the selection consistency property is guaranteed under s0 = O(nc1) and s0 log p =

o(nc3) for some 0 < c1 < c3 < 1, along with irrepresentable condition and others.

Theorem II.4. Given model (2.1) and assumptions (A1,A2,B3), consider the SPARES

estimator β̂SPARES = (β̂1, ..., β̂p)
T as defined in (2.4). For each j, there exist random

variables Z0
j ,∆j, such that as n,B →∞,

√
n(β̂j − β0

j ) = Z0
j + ∆j, Z0

j /σj → N(0, 1), ∆j = op(1),

where σ2
j = σ2

(
Σ−1
S0,n∪j

)
jj

is bounded.

The proof is presented in Appendix A along with some useful lemmas. The diffi-

culties in deriving the theoretical properties of the SPARES estimator arise primarily
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from the randomness of Sb’s, the selected subsets of variables from subsamples of the

original data. It is unclear whether a standard bootstrap theorem can be applied

to such random sets since the uniform control that one obtains under Donsker-type

conditions in empirical process theory is absent. Consequently, assumptions weaker

than selection consistency are not effective in controlling the randomness of the Sb’s.

Meanwhile our simulations suggest the validity of SPARES when only (A3) holds

instead of (B3). Under assumption (B3), the asymptotic variance of ours converges

to the best variance of an unbiased estimator of β0
j under the reduced model

Y = XS0∪jβ
0
S0∪j + ε.

Such bound is smaller than the semi-parametric information bound that involves all

p covariates (Belloni et al., 2014; Van de Geer et al., 2014). Nevertheless the sets of

conditions for the mentioned works and ours are quite different that they might not

be directly comparable.

2.4 Inference by SPARES

2.4.1 Estimator of Standard Errors

As shown in Theorem (II.4), β̂j converges to a normal distribution whose variance

depends on the unknown active set S0,n. We propose an implementable approach to

estimating the standard error of β̂j using Theorem 1 of Efron (2014), see also Wager

et al. (2014) and Theorem 9 of Wager and Athey (2018). We denote the estimator as

ŝeBj . For the bth bootstrap data, Db
1, we re-write the index set as Ib1 = (ib1, ib2, ..., in/2).

For i = 1, 2, ..., n define Ibi = #{ibk = i}, the number of times that the ith obser-

vation appears in the bth re-sample. The vector Ib = (Ib1, Ib2, ..., Ibn) then follows a

multinomial distribution with n/2 draws on n outcomes each having probability 1/n,

whose mean vector and covariance matrix are
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Ib ∼
(

1

2
1n,

1

2
In −

1

2n
1T
n1n

)
where 1n the (column) vector of n 1’s and In the n × n identity matrix. The non-

parametric delta method estimator of the standard error is then given by:

ŝeBj =

(
n∑
i=1

ĉov2
ij

)1/2

, (2.6)

where

ĉovij =
B∑
b=1

(Ibi − I·i)(β̂bj − β̂j)/B

is the bootstrap covariance between Ibi and β̂bj , and I·i =
∑B

b=1 Ibi/B.

As emphasized in Efron (2014), the merit of smoothing the SPARE estimator is

to convert a “jumpy” selection-based estimator β̂b into a smooth version of β̂. It is

pointed out in Wager et al. (2014) that the nonparametric delta method standard

error estimator tends to be biased upwards when the number of bootstraps is small.

They proposed an alternative bias-corrected version of (2.6):

ŝeBU =

{
(ŝeB)2 − n

2B2

B∑
b=1

(β̂b − β̂)2

}1/2

(2.7)

Note that (2.7) converges to (2.6) as B →∞. The original version (2.6) would require

B = O(n1.5) to reduce Monte Carlo noise down to the level of sampling noise, while

(2.7) only requires B = O(n). Moreover, our experience shows that the unbiased

version does converge to the empirical standard error faster than the original one.
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2.4.2 Confidence Intervals and P-values

Following previous discussion, the asymptotic 1 − α confidence interval for each

β0
j is given by

(
β̂j − Φ−1(1− α/2)ŝeBj , β̂j + Φ−1(1− α/2)ŝeBj

)
,

where Φ−1 is the inverse CDF of the standard normal distribution. The p-value of

testing H0 : βj = 0 is

pj = 2×
{

1− Φ
(
|β̂j|/ŝeBj

)}
. (2.8)

2.5 Extension of SPARES to a Subvector β(1) with a Fixed

Dimension

It is natural to extend our procedure to a subvector β(1) of β0 with a fixed dimen-

sion p1 ≥ 2. Without loss of generality, assume that β(1) = β0
S(1) = (β0

1 , β
0
2 , .., β

0
p1

)T

with |S(1)| = p1. Accordingly, we modify the SPARE estimator in (2.2) to be

β̂bS(1) =
{

(Xb
Sb∪S(1)

T
Xb

Sb∪S(1))
−1Xb

Sb∪S(1)

T
Y b
}
S(1)

,

which gives a corresponding SPARES estimator for β(1):

β̂(1) =
1

B

B∑
b=1

β̂bS(1) . (2.9)

The corresponding extension of Theorem II.4 is stated below.

Theorem II.5. Consider model (2.1) under assumptions (A1,A2,B3), and a fixed

finite subset S(1) ⊂ {1, 2, .., p} with |S(1)| = p1. Let β̂(1) be the SPARES estimator for

β(1) = β0
S(1) as defined in (2.9). There exist random vectors Z(1),∆(1), such that as

14



n,B →∞,

√
n(β̂(1) − β(1)) = Z(1) + ∆(1), Σ(1)−1/2

Z(1) → N(0, Ip1), ∆(1) = op(1p1),

and Σ(1) = σ2
(
Σ−1
S0,n∪S(1)

)
S(1)

is positive definite.

Remark II.6. There is also a direct extension of the one-dimensional nonparametric

delta method for estimating the variance-covariance matrix of β̂(1), Σ̂(1) = ĈOV
T

(1)ĈOV(1),

where

ĈOV(1) =
(

ĉov
(1)
1 , ĉov

(1)
2 , .., ĉov(1)

n

)T

ĉov
(1)
i =

B∑
b=1

(Ibi − I·i)(β̂bS(1) − β̂(1))/B.

The extension to a subvector β(1) with a fixed dimension allows us to derive

confidence regions for a subset of variables of interest and test for contrasts of certain

predictors.

2.6 Simulation Studies

We designed all simulation scenarios based on the linear model (2.1) with X =

(X1, ...Xp) = (xT
1 , ...,x

T
n )T, ε = (ε1, ..., εn)T, assuming xi’s i.i.d. ∼ N(0p,Σp×p) and

εi’s i.i.d. ∼ N(0, 1). A total of 200 simulated datasets were generated for each simu-

lation configuration.

We first illustrate the advantage of using SPARES over one-time SPARE. We set

sample size n = 200, number of predictors p = 300, and s0 = 3 nonzero signals

with Σp×p being the identity matrix. As shown in Table (A.1), over 200 replications,

the biases of both approaches are negligible on average, but the standard errors of

SPARES are much smaller than those of one-time SPARE, which results in higher

power and more accurate inferences. Thus we recommend SPARES in practice.
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In subsection 6.1, we explore the performance of SPARES under various settings,

including different correlation structures of X, strong and weak signals strength, and

stress tests with ultrahigh dimensionality. In subsection 6.2, we compare SPARES

with two de-biased LASSO estimators, LASSO-Pro from Van de Geer et al. (2014)

and SSLASSO from Javanmard and Montanari (2014).

2.6.1 Performance of SPARES under Various Settings

We will go over three examples, all of which assume the linear model (2.1) as

truth, but with different parameters.

Example 1. Let sample size n = 150, number of predictors p = 300, number of

nonzero signals s0 = 5, and a fixed realization of β0 where S0,n = {66, 97, 145, 166, 173}

was a fixed realization of s0 draws without replacement from [p] and

β0
S0,n

= (1, 0.6,−1,−0.6, 1). We examined three commonly used correlation struc-

tures: identity; first-order autoregressive (AR(1)) with ρ = 0.5; compound symmetry

(CS) with ρ = 0.5. LASSO was used as the selection procedure Sλ, while λ was

chosen by cross-validation. As summarized in Table (2.1), for both nonzero signals

and noise variables, the bias of SPARES estimator was well controlled while the SE

estimates were very close to the empirical ones. Consequently, the coverage proba-

bilities of the 95% confidence intervals were at the nominal level. In addition, the

variable selection frequency based on p-values of SPARES was higher for true signals

and much lower for noise variables compared to selection by LASSO. Notice that for

identity and AR(1) correlation structures, the selection frequencies of the true signals

were uniformly close to 1, suggesting “sure screening” condition was met and thus

the better coverage probabilities. Therefore the simulation result validates our claim

that SPARES works under “sure screening” assumption.

Example 2. Let n = 150, p = 500, and

• Example 2.1: s0 = 15, Σp×p = diag(Σ1, ...,Σ10), where each Σk was 50 × 50
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with an AR(1) correlation structure, (Σk)ij = (0.1k − 0.1)|i−j|, k = 1, 2, .., 10.

The active set S0,n was a fixed realization of s0 draws without replacement from

[p], and β0
S0,n

was a fixed realization of s0 i.i.d. Uniform U [0, 2] variables;

• Example 2.2: s0 = 20, Σp×p = diag(Σ1, ...,Σ10), where each Σk : (Σk)ij =

(0.3)|i−j|. The non-zero signals are assigned effect sizes β0
50k−45 = 0.2k, β0

50k−15 =

−0.2k for k = 1, 2, ..., 10.

We applied SPARES with LASSO (10-fold cross validation to choose λ) as the

model selection procedure, and reported the simulation averages of β̂SPARES, along

with confidence intervals, mean biases, coverage probabilities, and type I errors for

testing H0 : β0
j = 0. The results are summarized in Figures (A.1) and (A.2). For the

true signals j ∈ S0,n, the proposed method worked well regardless of the correlation,

with negligible biases and close-to-nominal coverage probabilities. On the other hand,

the biases for the estimates of noise variables were enlarged when they were highly

correlated with non-zero signals. The estimated coverage probabilities and type I

errors deviated more from the nominal level consequently. The type I error became

negligible when the effect size was over 1. Coupled with an observation that the bias

was larger for the noise variables that were correlated with moderate non-zero signals,

our takeaway was that the magnitude of bias was a combination of selection errors

as well as correlations with true signals.

Example 3 serves as a “stress test” to illustrate how SPARES handle large

datasets with a number of “weak signals”. We let n = 500, p = 1000, 5000 and 10000,

and s0 = 205. Within the 205 non-zero signals, 5 are of sizes 0.2, 0.4, 0.6, 0.8, 1, and the

rest 200 are fixed random realizations from the uniform distribution U [(−0.2,−0.1)∪

(0.1, 0.2)]. The multivariate normal distribution with mean zero and the AR(1) cor-

relation structure with ρ = 0.5 is applied to generate X’s. As summarized in Table

(2.2), the SPARES estimator remains nearly unbiased for both strong and weak sig-

nals. The coverage probabilities of strong signals are close to the nominal level 0.95,
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while those for weak and zero signals are above 0.9 on average. This demonstrates

that SPARES is rather reliable and robust even for large datasets with a number of

weak signals.

2.6.2 Comparisons with De-biased LASSO Estimators

We compared SPARES with different versions of de-biased LASSO estimators in

Example 4, where the active set S0,n ⊂ {1, 2, .., p} was a fixed random realization

with size |S0,n| = 5, and β0
S0,n

was a fixed realization of 5 i.i.d. random variables from

uniform U [0.5, 2]. The size of the active set is reduced to 5 for clearer comparison and

display of the result. Three correlation structures are considered for completeness:

• Example 4.1: Identity Σp×p = Ip×p;

• Example 4.2: AR(1) Σp×p : (Σ)jk = (0.8)|j−k|;

• Example 4.3: Compound symmetry Σp×p : (Σ)jk = 0.5.

The estimated biases and coverage probabilities were shown in Table (2.3) and Figure

(A.3), where LASSO-Pro was proposed in Van de Geer et al. (2014) and SSLASSO

was from Javanmard and Montanari (2014).

Across the board, SPARES gave less biased point estimates for the true signals,

and provided reliable confidence intervals around the nominal level for both true

signals and noise variables. In contrast, both LASSO-Pro and SSLASSO had visible

discrepancies between the true signals and noise variables. While LASSO-Pro had

lower-than-nominal level coverages for the true signals, it performed even worse in

Example 4.1, probably due to the fact that the node-wise LASSO was not ideal

when estimating the precision matrix when Σp×p was an identity matrix. As far

as SSLASSO was concerned, the confidence intervals for the noise variables were too

conservative, while the coverages for the true signals in Example 4.2 were considerably

low.
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In summary, the performance of SPARES aligned well with the theoretical ex-

pectations, especially for the active set S0,n. We did observe, however, some false-

positives when the noise variables were highly correlated with those in the active set.

Nevertheless, compared with the de-biased LASSO methods, SPARES showed sub-

stantial improvement by providing less biased estimates with more accurate coverage

probabilities close to the nominal level.

2.7 Data Examples

2.7.1 Riboflavin Production Data

We applied our method to analyze a dataset on riboflavin (vitamin B2) produc-

tion by bacillus subtilis, made public by Bühlmann et al. (2014) and analyzed by

Meinshausen et al. (2009), Bühlmann et al. (2014), Van de Geer et al. (2014) and

Javanmard and Montanari (2014). The data contained n = 71 samples and p = 4088

covariates, measuring the logarithm of the expression levels of 4088 genes. The re-

sponse variable was the logarithm of the riboflavin production rate.

We related the response to the gene expressions using the linear model (2.1). We

checked the collinearity among the genes, and their pairwise correlations are plotted

on the left panel of Figure (A.4). We further normalized the genes so that their effect

sizes are comparable. The LASSO was used as the variable selection method, and

we let B = 1000 be the number of re-samples. Assisted by the LASSO selection, we

derive the SPARES estimator β̂, the standard error estimates as in (2.6), and the p-

values as in (2.8). With a standard Bonferroni correction to adjust FWER to the 5%

significance level, we identified four genes that were significantly associated with the

response, namely YCKE at, XHLA at, YXLD at, and YDAR at. If the FWER were

set at 10%, one more gene, YCGN at, would be included. The confidence intervals

for the top 5 genes are displayed on the right panel of Figure (A.5), with the point
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estimates shown in Table (2.4). By contrast, the results from other methods were

less informative. For example, with a 5% FWER, the multisample-splitting method

proposed in Meinshausen et al. (2009) identified YXLD at, Van de Geer et al. (2014)

claimed none, and Javanmard and Montanari (2014) only detected YXLD at and

YXLE at, which are highly correlated themselves.

Our results had biological interpretations that are confirmed by the literature. It

was reported that XHLA at was involved in cell lysis upon induction of PbsX (Kunst

et al., 1997), increasing the capability to produce recombinant extracellular diges-

tive enzymes that results in riboflavin production (7.04 in Mander and Liu (2010)).

YCKE at, formally named as bglC, was also responsible for the production of certain

enzyme, Aryl-phospho-beta-D-glucosidase, and had extracellular protein secretory

functions (Schallmey et al., 2004). YXLD at, together with YXLE at, was important

for negative regulation of sigma Y activity (Tojo et al., 2003).

2.7.2 Multiple Myeloma Genomic Data

We analyzed a cancer genomic data with n = 163 multiple myeloma patients. Our

interest lay in detecting the association between the β-2 microglobulin (B2M) and

gene expressions. B2M is a small membrane protein produced by malignant myeloma

cells, indicating the severity of disease. Identifying genes that are related to B2M is

clinically important as it helps construct molecular prognostic tools for early diagnosis

of disease.

We first used KEGG (Carlson, 2015) to identify gene pathways that are related

to cancer development and progression, as well as some identified upstream genes

that may regulate B2M. In total, there were p = 789 unique probes belonging to

these pathways. We took the logarithm transformation for both the B2M test value

and the gene expressions as our response and predictors for model (2.1). We applied

SPARES with LASSO as the selection method, and B = 500 re-samples were drawn
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for smoothing.

Our method offers additional biological insight compared to the other methods.

As shown in Table (2.5) and Figure (A.6), it identified two significant probes at 5%

FWER after the Bonferroni correction, namely 204171 at (RPS6KB1) and 202076 at

(BIRC2). In contrast, the two de-biased LASSO estimators identified no signifi-

cant probes. Both detected genes are highly associated with malignant tumor cells:

RPS6KB1, member of the ribosomal protein S6 kinase (RPS6K) family, alterca-

tion/mutation has been related to numerous types of cancer including breast cancer,

colon cancer, non-small-cell lung cancer, and prostate cancer (Sinclair et al., 2003;

Van der Hage et al., 2004; Slattery et al., 2011; Zhang et al., 2013; Cai et al., 2015);

BIRC2, whose encoded protein is a member of inhibitors of apoptotic proteins (IAPs)

that inhibits apoptosis by binding to tumor necrosis factor receptor-associated fac-

tors TRAF1 and TRAF2 (Saleem et al., 2013), has been related to lung cancer and

lymphoma (Wang et al., 2010; Rahal et al., 2014).

2.8 Conclusion

We have proposed a new framework of estimation and inference for the high-

dimensional linear models (2.1), and shown the proposed SPARES estimator is asymp-

totically unbiased and normal, giving accurate and reliable component-wise infer-

ences. The key improvement, compared to the existing works, lies in these aspects.

SPARES converts the high-dimensional problem of estimating the p-vector β0 to the

low dimensional case by Selection-assisted Partial Regression. Thus we avoid the

curse of dimensionality on estimation and inference. SPARES is applicable to general

selection methods including LASSO, SCAD, screening, boosting, and etc., as long as

they possess the desired selection consistency property, which is likely to be loosened

to sure screening property in practice as suggested in the extensive simulation study.

SPARES is not sensitive to the tuning parameter λ in Sλ, since it is not directly used
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for estimation, but only involved in the selection. Hence, our method has minimal re-

quirements on extra model parameters and is almost robust toward selection of tuning

parameters. This framework can be naturally extended to other non-linear regression

models, such as generalized linear model and Cox model, through two general steps.

First, we perform data-splitting on the original data, and then do selection on one

half of the data followed by fitting low-dimensional model on the other half of the

data using partial regression; Second, we repeat the first step many times and average

over all estimates to form a smoothed estimate. We will report this work elsewhere.

Supporting Information

Additional supporting information can be found in Appendix A, including Proofs,

Tables, and Figures referenced in Sections 2.2-2.7.

Software R implementation of SPARES is available on-line at https://github.

com/feizhe/SPARES, along with the simulation examples.
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Table 2.1: Performance of SPARES under simulation Example 1 with three corre-
lation structures: Identity, AR(1) and Compound Symmetry (CS). The
last column “-” represents the averages for all noise variables. Freq Sλ
is the selection frequency by LASSO; Freq SPARES is the selection fre-
quency by p values of SPARES with 0.1 FDR control; Empirical SE is
the empirical standard error.

Index j 66 97 145 166 173 -
β0
j 1 0.6 -1 -0.6 1 0

Identity Bias (×10−3) 16 -1 -2 2 7 -1

Average ŝeBj 0.110 0.111 0.109 0.111 0.110 0.111
Empirical SE 0.117 0.109 0.104 0.113 0.124 0.109
Cov Prob (%) 91.5 94.0 95.0 96.0 91.5 94.8
Freq Sλ 1 0.956 1 0.965 1 0.059
Freq SPARES 1 0.97 1 0.99 1 0.003

AR(1) Bias (×10−3) -6 2 7 10 -1 0

Average ŝeBj 0.115 0.116 0.114 0.115 0.116 0.115
Empirical SE 0.125 0.108 0.114 0.120 0.108 0.114
Cov Prob (%) 93.5 96.0 95.0 92.5 96.5 94.5
Freq Sλ 0.998 0.938 1.000 0.929 1.000 0.046
Freq SPARES 1 0.925 1 0.905 1 0.001

CS Bias (×10−3) -12 -30 6 7 -14 -7

Average ŝeBj 0.151 0.149 0.152 0.150 0.150 0.154
Empirical SE 0.165 0.161 0.168 0.162 0.163 0.154
Cov Prob (%) 92.5 91.5 89.4 92.0 92.0 94.5
Freq Sλ 0.986 0.742 0.958 0.651 0.988 0.045
Freq SPARES 1 0.775 1 0.795 1 0.005
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Table 2.2: Performance of SPARES under simulation Example 3. Tables from top to
bottom correspond to p = 1000, 5000 and 10000. Last two columns are
averages over small and zero signals.

Index 36 272 376 568 915 Small 0’s
β0 0.200 0.400 0.600 0.800 1.000 0.000

p = 1000
Bias 0.013 -0.006 0.014 -0.002 -0.014 0.005 0.004

Avg SE 0.093 0.093 0.093 0.093 0.093 0.093 0.093
Emp SE 0.099 0.098 0.098 0.093 0.097 0.094 0.094

Cov Prob 0.960 0.920 0.930 0.930 0.940 0.907 0.908
Sel freq 0.045 0.418 0.930 1.000 1.000 0.021 0.002

p = 5000
Bias -0.005 0.009 0.010 0.003 0.004 0.004 0.000

Avg SE 0.093 0.093 0.095 0.094 0.094 0.094 0.094
Emp SE 0.092 0.096 0.098 0.099 0.112 0.095 0.096

Cov Prob 0.960 0.930 0.960 0.910 0.920 0.905 0.935
Sel freq 0.022 0.390 0.906 0.999 1.000 0.015 0.001

p = 10000
Bias -0.003 0.003 0.006 0.008 -0.025 0.005 0.000

Avg SE 0.094 0.094 0.094 0.095 0.094 0.095 0.095
Emp SE 0.094 0.096 0.101 0.103 0.093 0.096 0.097

Cov Prob 0.950 0.940 0.930 0.930 0.950 0.902 0.939
Sel freq 0.015 0.313 0.860 0.996 1.000 0.012 0.000

Table 2.3: Comparisons of SPARES with LASSO-Pro and SSLASSO under Example
4. The rows consist of 5 true signals and the average of zero signals. In
each cell, top number is for SPARES; middle number is for LASSO-Pro;
lower number is for SSLASSO.

Example 4.1 Example 4.2 Example 4.3

Index β0
j Bias (×10−3) Cov Prob (%) Bias (×10−3) Cov Prob (%) Bias (×10−3) Cov Prob (%)

78 1.07

-1.77
-81.78
-79.33

90.5
70.5
90.5

10.43
-44.09

-101.95

92.5
86

84.5

-0.35
-38.43

-113.72

96.5
92.5
92.5

102 1.04

-1.04
-80.28
-77.72

96.5
76

93.5

9.70
-44.54
-99.66

92
87
82

2.44
-32.42

-105.60

95
89
92

242 1.19

-1.62
-89.43
-88.69

94
71.5
87.5

15.58
-47.57

-104.25

93.5
88.5

84

-4.67
-40.39

-115.51

96.5
91.5

92

359 1.43

-0.14
-75.87
-80.91

94
81
94

2.98
-41.40
-98.14

96.5
88
85

2.01
-30.61
-107.5

95
91
89

380 0.62

-3.57
-84.86
-85.73

95.5
75

89.5

0.54
-60.80

-111.11

93
88

81.5

5.88
-24.20
-99.26

91.5
86.5
90.5

- 0

-0.46
-0.40
-0.27

95
97

99.5

0.65
3.16
4.15

94.82
96.46
99.69

3.26
5.24

26.88

95.16
96.34
99.94
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Table 2.4: Analysis of the riboflavin genomic data. β̂ is the SPARES estimator; p-
values are adjusted by Bonferroni correction (multiplied by p). The top
10 and bottom 10 most/least significant genes are tabulated.

Gene β̂ SE Adjusted p-value

YCKE at 0.37 0.06 < 0.001
XHLA at 0.48 0.09 < 0.001
YXLD at -0.53 0.11 0.01
YDAR at -0.28 0.06 0.01
YCGN at -0.31 0.07 0.09
RPLJ at -0.26 0.06 0.10
YQIZ at -0.25 0.06 0.13
YCDH at -0.27 0.07 0.15
SPOIISA at 0.25 0.06 0.35
YRPE at -0.25 0.07 0.63
...
YXAL at −2× 10−4 0.09 1
XPT at −1.6× 10−4 0.07 1
YOZG at −2.9× 10−4 0.14 1
YOJB at 1.7× 10−4 0.10 1
YBCL at −1.8× 10−4 0.11 1
YJAX at 1.3× 10−4 0.09 1
YOSE at 1.1× 10−4 0.11 1
YUNA at 4.9× 10−5 0.07 1
YISO at 1.7× 10−5 0.08 1

Table 2.5: Analysis of the Multiple Myeloma genomic data. The top 6 and bottom 6
most/least significant genes are tabulated.

Gene β̂ SE Adjusted p
204171 at (RPS6KB1) -0.20 0.042 0.002
202076 at (BIRC2) -0.17 0.041 0.037
220414 at -0.20 0.05 0.14
220394 at -0.18 0.05 0.59
206493 at -0.19 0.06 0.63
209878 s at -0.17 0.05 0.69
...
207924 x at 5× 10−4 0.07 1
205289 at −4.4× 10−4 0.06 1
203591 s at 4.7× 10−4 0.07 1
224229 s at 2.4× 10−4 0.06 1
217576 x at 2.5× 10−4 0.07 1
201656 at 2.5× 10−4 0.08 1
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CHAPTER III

Estimation and Inference for High Dimensional

Generalized Linear Models: A Split and

Smoothing Approach

3.1 Introduction

Lung cancer is the leading cause of cancer-related deaths in the United States,

among both men and women (US Department of Health and Human Services , 2004;

Parkin et al., 2005). Understanding the molecular mechanisms of lung cancer is a

focus of current basic and translational research. The Boston Lung Cancer Study

Cohort (BLCSC) (Christiani , 2017) is a cancer epidemiology cohort of over 11,000

lung cancer cases enrolled at Massachusetts General Hospital and the Dana-Farber

Cancer Institute from 1992 to present. In addition, controls are recruited at the hos-

pital from healthy friends and nonblood-related family members (usually spouses) of

the patients. This is the first and most comprehensive lung cancer survivor cohort

with a long follow-up period, which has been growing with more patients recruited

every year. For both groups, large scale data of various types, including gene expres-

sion, methylation, SNP, and CT imaging, have been measured and recorded. The

rich data generated from the BLCSC cohort allow powerful translational research

and exploration of potential predictors for lung cancer.
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Using a target gene approach, this chapter analyzes high dimensional SNP data

from 708 lung cancer patients and 751 controls, with more than 6, 800 SNPs from

15 cancer related genes, along with important demographic variables, such as age,

gender, race, education level, and smoking status. Our goal is to model the binary

lung cancer indicator as the outcome and to estimate and test the effects of the

potential predictors that could explain the differences between the cases and controls.

Since smoking plays a vital role in lung cancer, we are especially interested in the

interaction terms between SNPs and the smoking status in addition to their main

effects.

It has been challenging to construct confidence intervals, perform statistical tests

and assign uncertainty measures in sparse high dimensional models (Dezeure et al.,

2015). The high dimensionality impedes accurate estimation of all the potential pre-

dictors, and evaluation of the uncertainty of the estimators. The high dimensionality

considered in this chapter includes but is not limited to the usual case of “p > n,”

such as n = 500 samples with p = 1000 covariates. Even in a “p < n” setting such as

n = 1000 samples with p = 500 covariates, direct applications of the GLM framework

would lead to ambiguous and meaningless estimations and inferences. Alternatively,

penalized regressions have been widely used to deal with high dimensionality (Fried-

man et al., 2010; Van de Geer , 2008; Candès and Tao, 2007; Lv and Fan, 2009;

Huang et al., 2008; Zou and Hastie, 2005).The estimators from penalized regressions

are shrunk and thus “irregular” as their asymptotics become difficult to track. There

has been considerable success in drawing inferences based on penalized regressions,

mostly for linear models (Zhang and Zhang , 2014; Javanmard and Montanari , 2014;

Bühlmann et al., 2014; Dezeure et al., 2015). Meanwhile, there are limited works in

the GLM settings. In sparse high dimensional GLMs, Bühlmann et al. (2014) offered

the generalization of de-sparsified LASSO, while Ning and Liu (2017) proposed the

decorrelated score tests for penalized M-estimators. In the presence of high dimen-
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sional controls, Belloni et al. (2014, 2016) proposed a post double selection procedure

for estimation and inference; Lee et al. (2016) characterized the distribution of a post-

LASSO-selection estimator conditioned on the selected variables, but only for linear

regressions. The performance of most of these methods depends heavily on multiple

tuning parameters, and their optimal choices are often not apparent in practice. As

we will see in the data analysis, the application of existing works is also limited to

the scale of data due to computation burdens.

We propose a novel approach of simultaneous estimation and inference for high

dimensional generalized linear models that aims to resolve the aforementioned limita-

tions. We first introduce a one-time estimator by splitting the data into two halves,

using one half to select a subset of important variables as the “candidates.” On the

other half, we fit a low dimensional GLM with the union of the parameter of inter-

est (or a low dimensional subset of the coefficient vector) and the candidate set of

variables (Belloni et al., 2016). The one-time estimator for the parameter of interest

is then from the fitted low dimensional GLM. While the one-time estimator is un-

biased and asymptotically normal under mild conditions, it is highly variable, and

heavily dependents on the specific one-time selection. Therefore, we further propose

the smoothed estimator by repeating the previous procedure a large number of times

and averaging the resulting estimators. The smoothed estimator is proved to pos-

sess the same desired theoretical properties with improved efficiency and practical

performance. Our approach is shortened as SSGLM, where “SS” stands for “split-

ting and smoothing.” Thus, our idea takes advantage of the multi sample-splitting

method in Meinshausen et al. (2009), and the bagging idea (Bühlmann and Yu, 2002;

Friedman and Hall , 2007; Efron, 2014), and is therefore fundamentally different from

penalized regressions. In this way, we reduce the high dimensional inference problem

into low dimensional estimations that are free of penalization/regularization. As vari-

able/model selection only plays an assistive role, our procedure is not sensitive to the
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tuning parameters, which is a major drawback of the existing methods (Bühlmann

et al., 2014; Ning and Liu, 2017). Furthermore, we derive the variance estimator using

the non-parametric delta method adapted to the splitting and smoothing procedure

(Efron, 2014; Wager and Athey , 2018), which is free of the parametric model (GLM in

this case) and achieves variance reduction from the effect of bagging (Bühlmann and

Yu, 2002). Our framework also facilitates hypothesis testing or drawing inferences on

predetermined contrasts in the presence of high dimensional nuisance parameters.

The rest of the chapter is organized as follows. Section 3.2 describes the SS-

GLM and Section 3.3 introduces the theoretical properties. Section 3.4 provides the

inferential procedure and Section 3.5 extends it to accommodate any subvectors of

parameters of interest. Section 3.6 provides simulations and comparisons with the

existing methods. Section 3.7 reports the results of the analysis of the BLCSC SNP

data. We conclude the chapter with a brief discussion.

3.2 Method

3.2.1 Notation

We denote the observations as (Yi,xi) for i = 1, 2, .., n, where xi = (xi1, xi2, .., xip)

is the 1 × p covariate vector and the outcome distribution belongs to a linear expo-

nential family, which includes Normal, Bernoulli, Poisson, and other distributions,

f(Yi|θi) = exp {Yiθi − A(θi) + c(Yi)} , (3.1)

where θi is the parameter relating to the mean. In this chapter, we consider the

canonical link with θi = xiβ, where xi = (1,xi) and β = (β0, β1, .., βp)
T includes an

intercept term. Specifically,

E (Yi) = µi = A′(θi) = g−1
(
xiβ
)
, (3.2)
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and V(Yi) = A′′(θi) = ν(µi), where µi’s are the mean of the responses Yi’s and g is

the link function. The collection of all n observations is denoted as (Y,X), where

Y = (Y1, .., Yn)T and X = (xT1 , ..,x
T
n )T . In addition, we write X = (X1, .., Xp) with p

column vectors and X = (1, X) to include the 1× n column vector 1.

In the BLCSC SNP data, the outcome of interest is the binary lung cancer indica-

tor, and the covariate vector xi includes the demographic variables, the SNP variables,

and the interactions between the SNPs and smoking. The parameterization of the

assumed logistic regression is

g(µi) = logit(µi) = log

(
µi

1− µi

)
, with A(θi) = log

(
1 + eθi

)
.

We write the full log-likelihood of model (3.1) and (3.2) as

`(β) = `(β;Y,X) =
1

n

n∑
i=1

{Yiθi − A(θi)} =
1

n

n∑
i=1

{Yi(xiβ)− A(xiβ)} .

The score and the observed information are

U(β) =
1

n
X
T {

Y − A′(Xβ)
}

; Î = Î(β) =
1

n
X
T
V X,

where V = diag{ν(µ1), .., ν(µn)}, and whenever a univariate function such as A(·) is

applied to a vector, it denotes the vector of values of the function applied to each

entry of the argument.

As our method involves low-dimensional estimation based on subsets of the covari-

ates, we introduce some notation with respect to an index set S ⊂ [p] = {1, 2, .., p}.

We write the subvectors xiS = (xij)j∈S and xiS = (1,xiS), and submatrices XS =

(Xj)j∈S and XS = (1, XS). Given a set S ⊂ [p] and an index j ∈ [p], we define

S+j = {j}∪S and S−j = S \{j}. In addition, we let S+0 = S−0 = S when concerning

the intercept. Furthermore, we write βS = (β0, βj)j∈S, which always includes the
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intercept and thus is of length 1 + |S|.

The working log-likelihood with respect to (Y,XS) and βS is

`S(βS) = `(βS;Y,XS) =
1

n

n∑
i=1

{Yi(xiSβS)− A(xiSβS)} .

Similarly, US(βS) = 1
n
XS

T
(Y − A′(XSβS)); ÎS = ÎS(βS) = 1

n
XS

T
VSXS, where

VS = diag{A′′(xiSβS), .., A′′(xiSβS)}. Now we write out the expected information

with respect to β as I = E β (∇2`(β)), and the sub-information IS is the submatrix

of I with rows and columns corresponding to S. Note IS can also be written as ISS

so that the subscripts reflect both rows and columns. The truth of β is denoted as

β∗ = (β∗0 , β
∗
1 , .., β

∗
p), I

∗ = E β∗ (∇2`(β∗)), and I∗S is the submatrix of I∗ analog to IS.

Lastly, we define the partial information for j ∈ [p] and given S ⊂ [p] as

Ij|S = Ijj − IjS−jI−1
S−jS−j

IS−jj, (3.3)

where Ijj, IjS−j , and IS−jS−j are the entry, subvector, and submatrix of I with respect

to the respective subscripts.

3.2.2 Proposed SSGLM Estimator

Assume the data (Y,X) follows the generalized linear model (3.1) and (3.2) with

the true parameter vector β = β∗. We first define the one-time SSGLM estimator

β̃ = (β̃j)j=0,1,..,p based on a single data split (Algorithm 3.1). We split the data

into two halves D1 and D2, with sample sizes |D1| = n1, |D2| = n2, n1 + n2 = n.

For example, n1 = n2 = n/2. Next on D2, we select a subset of important covariates

S ⊂ [p], s = |S| < n1 − 1 via a selection scheme Sλ, where λ is the regularization

parameter. The selected set S is used as the candidate set of covariates for performing

low dimensional estimation on D1. On D1 = (Y 1, X1), and for each j ∈ [p], we fit

a low dimensional GLM by regressing Y 1 on X1
S+j

, where the set S+j = {j} ∪ S is
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as defined before. Denoting the Maximum Likelihood Estimator (MLE) of the fitted

model as β̃1, we define the one-time estimator as β̃j =
(
β̃1
)
j
, which is the entry of β̃1

corresponding to covariate Xj. Meanwhile, we denote β̃0 as the intercept estimator

from the MLE of Y 1 ∼ X1
S. With some abuse of notation that S+0 = {0} ∪ S = S,

the one-time SSGLM estimator is

β̃1 = argmin `S+j
(βS+j

) = argmin `(βS+j
;Y 1, X1

S+j
); (3.4)

β̃j =
(
β̃1
)
j
; β̃ = (β̃0, β̃1, .., β̃p). (3.5)

If the outcome is linear (Fei et al., 2018), (3.4) and (3.5) have an explicit form

β̃j =
{

(X1
S+j

T
X1
S+j

)−1X1
S+j

T
Y 1
}
j
.

The SSGLM estimator is defined by repeating the previous procedure B times and

averaging over the B estimates from (3.4,3.5) (Algorithm 3.2). More specifically, for

each b = 1, 2, .., B, we randomly split the data into two halves Db
1 and Db

2, with fixed

sample sizes |Db
1| = n1 and |Db

2| = n2. In other words, the data splitting proportion

q = n1/n, 0 < q < 1 is a fixed constant. Denote the selected candidate set of variables

by Sλ on Db
2 as Sb, and the one-time estimator by (3.4-3.5) as β̃b = (β̃b0, β̃

b
1, .., β̃

b
p).

The smoothed estimator is

β̂ = (β̂0, β̂1, .., β̂p), where β̂j =
1

B

B∑
b=1

β̃bj . (3.6)

3.3 Theoretical Results

3.3.1 One-time Estimator

We first establish the asymptotic property of the one-time estimator under the

following assumptions.
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Algorithm 3.1 One-time SSGLM Estimator

Require: A GLM regression model, a selection procedure Sλ
Input: Data (Y,X), split proportion q ∈ (0, 1)

Output: Coefficient estimator β̃
1: Split the data into two halves D1 and D2, with sample sizes |D1| = qn, |D2| =

(1− q)n
2: Apply Sλ on D2 to select a subset of important covariates S ⊂ [p]
3: for j = 0, 1, .., p do
4: Define S+j = {j} ∪ S, and fit the GLM of Y 1 regressing on X1

S+j
, where

D1 = (Y 1, X1)

5: Denote the coefficient estimator in previous step as β̃1

6: Define β̃j =
(
β̃1
)
j
, which is the coefficient for covariate Xj (β̃0 represents the

intercept)
7: end for
8: Define β̃ = (β̃0, β̃1, .., β̃p)

Algorithm 3.2 SSGLM Estimator

Require: A GLM regression model, a selection procedure Sλ
Input: Data (Y,X), split proportion q ∈ (0, 1), number of re-samples B

Output: Coefficient estimator β̂
1: for b = 1, 2, .., B do
2: Run Algorithm 3.1 with random data split
3: Denote the output estimator as β̃b = (β̃b0, β̃

b
1, .., β̃

b
p)

4: end for
5: Define β̂ = (β̂0, β̂1, .., β̂p), where β̂j = 1

B

∑B
b=1 β̃

b
j

33



(A1). The eigenvalues of the expected information matrix at β∗ are bounded:

0 < cmin ≤ λmin(I∗) ≤ λmax(I∗) ≤ cmax <∞.

In addition, for any i ∈ [n], j ∈ [p], |xij| ≤ ρ0, E |Yi|3 ≤ ρ1.

(A2). Order of Model Parameters: There exist constants 0 < c1 ≤ 1, cβ > 0 such that

s0 = |S0| = O(nc1), maxj |β∗j | ≤ cβ.

(A3). Sure Screening Property: There exist a sequence {λn}n≥1 and constants 0 <

η < 1, c2 > 2c1 such that |Ŝn,λn|/n ≤ η, and

P (Ŝn,λn ⊃ S0) ≥ 1− o(n−c2−1) as n→∞.

Here Ŝn,λn denotes the selected set of variables with sample size n and tuning

parameter λn.

Remark III.1. The sure screening property for GLMs has been established in Fan

et al. (2009); Fan and Song (2010). In addition to (A1) and (A2), the following

conditions are sufficient for the sure screening property by Theorem 4 in Fan and

Song (2010):

• The second derivative of A(θ) is continuous and positive;

• There exists c0, κ > 0, such that for j ∈ S0, |cov (A′(θ), Xj)| ≥ c0n
−κ;

It is worth pointing out that the aforementioned conditions imply that the order

of p can be as large as log p = o(n1−2κ), while providing a stronger tail probability

(exponentially small in n) than what is required in assumption (A3).

Assumption (A1) is a standard condition on the eigenvalues and norms of the

observed data. Assumption (A2) specifies the order of the sparsity and the effect
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sizes. While there is no direct assumption on the order of p, it is implied through

Assumption (A3) as stated in Remark III.1.

Theorem III.2. Given model (3.1,3.2) and assumptions (A1)-(A3), consider the

one-time estimator β̃ = (β̃0, β̃1, .., β̃p)
T as defined in (3.4-3.5). For any j ∈ {0} ∪ [p],

denote σ̃2
j =

{
Î−1
S+j

}
jj

, as n1, n→∞,

√
n1(β̃j − β∗j )/σ̃j → N(0, 1).

3.3.2 SSGLM Estimator

In practice, the one-time estimator is highly variable as p increases, making it

difficult to separate signals from noise variables in the inferential step. In contrast,

the smoothed estimator is much more consistent as it averages over both estimation

and selection. However, it introduces dependency among the selected Sb’s. The

following condition, which is stronger than “sure screening,” is required for the desired

theoretical property.

(B3). Selection Consistency: There exists a sequence {λn}n≥1 and constants 0 < η <

1, c2 > 2c1 such that |Ŝn,λn|/n ≤ η, and

P(Ŝn,λn = S0) ≥ 1− o(n−c2−1) as n→∞.

Theorem III.3. Given model (3.1,3.2) and assumptions (A1,A2,B3), consider the

smoothed estimator β̂ = (β̂0, β̂1, ..., β̂p)
T as defined in (3.6). For each j, as n,B →∞,

√
n(β̂j − β∗j )/

√
I∗j|S0

→ N(0, 1),

where I∗j|S0
is defined as in (3.3) with the truth β∗, which is bounded away from both

zero and infinity.
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The proofs of Theorems III.2 and III.3 are provided in Appendix B, along with

some useful lemmas.

3.4 Inference by SSGLM

As shown in Theorem (III.3), β̂j converges to a normal distribution with the

variance depending on the unknown active set S0. We can accurately estimate the

variance using the infinitesimal jackknife developed by Efron (2014); Wager et al.

(2014); Wager and Athey (2018). For i = 1, 2, ..., n and b = 1, 2, .., B, let Jbi ∈ {0, 1}

denote whether the ith observation appears in the bth sub-sample Db
1, and J·i =(∑B

b=1 Jbi

)
/B is the average. Then the variance estimator for β̂j is

V̂j =
n− 1

n

(
n

n− n1

)2 n∑
i=1

ĉov2
ij, (3.7)

where

ĉovij =
1

B

B∑
b=1

(Jbi − J·i)
(
β̃bj − β̂j

)
.

The term n(n− 1)/(n−n1)2 is a finite-sample correction regarding the sub-sampling

scheme (Wager and Athey , 2018). They have shown that the variance estimator is

consistent as B →∞, in the sense that V̂j/V
(
β̂j

)
p−→ 1.

Moreover, with a finite B, we propose a bias correction version of the variance

estimator:

V̂ B
j = V̂j −

n

B2

n1

n− n1

B∑
b=1

(β̃bj − β̂j)2. (3.8)

The derivation is analogous to that in Section 4.1 of Wager et al. (2014). The ad-

vantage of using (3.8) instead of (3.7) is that (3.7) requires B = O(n1.5) to reduce

the Monte Carlo noise down to the sampling noise level, while (3.8) only requires

B = O(n) (Wager et al., 2014).
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Thus the asymptotic 100(1− α)% confidence interval for each β∗j is given by

(
β̂j − Φ−1(1− α/2)

√
V̂ B
j , β̂j + Φ−1(1− α/2)

√
V̂ B
j

)
,

where Φ is the CDF of the standard normal distribution. The p-value of testing

H0 : β∗j = 0 is

2×
{

1− Φ

(
|β̂j|/

√
V̂ B
j

)}
.

3.5 Extension to a Subvector of Coefficients with a Fixed

Dimension

An extension of SSGLM to estimating a subvector β(1) of β∗ with a fixed dimension

allows us to derive confidence regions for a subset of covariates and to test for contrasts

of interest. Denote β(1) = β∗
S(1) with |S(1)| = p1 ≥ 2, which is finite and does not

increase with n and p. Accordingly, the SSGLM estimator for β(1) is presented in

Algorithm 3.3, and the extension of Theorem III.3 is stated below.

Theorem III.4. Given model (3.1,3.2) under assumptions (A1,A2,B3), and a fixed

finite subset S(1) ⊂ {1, 2, .., p} with |S(1)| = p1. Let β̂(1) be the smoothed estimator for

β(1) = β∗
S(1) as defined in (3.3). Then as n,B →∞,

√
n
{
I∗S(1)|S0

}−1/2 (
β̂(1) − β(1)

)
→ N(0, Ip1),

where I∗
S(1)|S0

= I∗
S(1)S(1) − I∗S(1)S01

{
I∗S01S01

}−1
I∗
S01S(1) , S01 = S0 \ S(1).

There is a direct extension of the one-dimensional nonparametric delta method
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for estimating the variance-covariance matrix of β̂(1), Σ̂(1) = ĈOV
T

(1)ĈOV(1), where

ĈOV(1) =
(

ĉov
(1)
1 , ĉov

(1)
2 , .., ĉov(1)

n

)T

, with

ĉov
(1)
i =

B∑
b=1

(Jbi − J·i)(β̂bS(1) − β̂(1))/B.

Therefore, we are equipped to test the following hypothesis, where Q is a q × p1

matrix and r is a q × 1 vector, H0 : Qβ(1) = r. The Wald type test statistic is

T =
(
Qβ̂(1) − r

)T [
QΣ̂(1)QT

]−1 (
Qβ̂(1) − r

)
, (3.9)

which follows the Chi-square distribution with degree of freedom q under the null.

We would reject H0 if T is larger than the critical value.

Algorithm 3.3 SSGLM for Subvector β(1)

Require: A GLM regression model, a selection procedure Sλ
Input: Data (Y,X), split proportion q ∈ (0, 1), number of re-samples B, subvector

β(1) with support S(1)

Output: Coefficient estimator β̂(1)

1: for b = 1, 2, .., B do Split the data into two halves D1 and D2, with sample sizes
|D1| = qn, |D2| = (1− q)n

2: Apply Sλ on D2 to select a subset of important covariates S ⊂ [p]
3: Fit the GLM of Y 1 regressing on X1

S(1)∪S, where D1 = (Y 1, X1)

4: Denote the coefficient estimator in previous step as β̃(1)

5: Define β̃b
S(1) =

(
β̃(1)
)
S(1)

, which is the part estimating β(1)

6: end for
7: Define β̂(1) =

(∑B
b=1 β̃

b
S(1)

)
/B

3.6 Simulations

We have conducted numerical studies to investigate the performance of the pro-

posed SSGLM procedure under various settings, and to compare with two existing

methods, the de-biased LASSO for GLMs (Van de Geer et al., 2014; Dezeure et al.,
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2015) and the decorrelated score test (Ning and Liu, 2017). We investigated the

role of q = n1/n, the split proportion, in fitting SSGLM; we explored various se-

lection methods used in SSGLM and their effects on the estimation and inference;

we implemented SSGLM for both logistic and Poisson regressions; and we assessed

its performance through calculating the power and type I errors. Some of the most

challenging simulation settings (Bühlmann et al., 2014) were examined, as both the

indexes in the active set and the non-zero effect sizes were randomized, and different

covariance structures were used.

Example 1 investigates the performance of SSGLM while tuning the split pro-

portion in the procedure. We make data splitting with n1 = qn, q = 0.1, 0.2, ..., 0.9.

We set n = 500, p = 1000, s0 = 10 with the identity covariance matrix. The indexes

in the active set S0 are randomly pick from [p], and the non-zero effects β∗j , j ∈ S0

are generated from Unif[(−1.5,−0.5) ∪ (0.5, 1.5)]. For each q, the objective function

is defined by the mean squared errors (MSE), denote β̂
(k)
j as the smoothed estimator

for βj from k-th simulation, k = 1, 2, .., K,

MSEj =
1

K

K∑
k=1

(β̂
(k)
j − β∗j )2, MSEavg =

1

p

p∑
j=1

MSEj.

From Figure (3.1),, the minimum MSE is achieved around q = 0.5, recommending

half-sample in practice.

Example 2 implements a number of selection methods in SSGLM and their

impacts on the estimation and inference. There are five procedures being compared:

LASSO, SCAD, MCP, Elastic net, and Bayesian LASSO. Five-fold cross-validation is

used for the parameter tuning in each selection procedure. We assume a Poisson model

with n = 300, p = 400, and s0 = 5. The results are summarized in Table (3.1). By

comparing the bias, the coverage probability, and the mean squared error, we conclude

that while the average selected set sizes might differ among the selection methods,
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there is little impact on the smoothed estimators and the resulting inferences.

Example 3 assumes the following Poisson model for count data, for i = 1, 2, .., n:

log
(
E (Yi|xi)

)
= β0 + xiβ.

We set n = 400, p = 500, s0 = 6, with non-zero coefficients between 0.5 and 1, and

three different correlation structures: Identity; AR(1) with Σij = ρ|i−j|, ρ = 0.5; Com-

pound Symmetry with Σij = ρI(i 6=j), ρ = 0.5. The results are summarized in Table

(3.2), as SSGLM provides nearly unbiased component-wise estimation and accurate

standard errors, which leads to coverage probabilities that are close to the nominal

level. Meanwhile, the non-zero signals are selected with a very high probability in

the procedure, suggesting our assumptions (A3) or (B3) are well met in this case.

Example 4 assumes the following logistic regression for binary outcomes, with

n = 400, p = 500, and s0 = 4.

logit
(
P(Yi = 1|xi)

)
= β0 + xiβ. (3.10)

We show the performance of SSGLM when estimating and drawing inferences for the

subvector β(1) = βS0 , as a whole. The results are summarized in Tables (3.3,3.4).

Our method gives nearly unbiased estimates under different correlation structures

and reliable testing power of the low-dimensional contrasts.

Example 5 compares our method with the de-biased LASSO estimator (Van de

Geer et al., 2014) and the decorrelated score test (Ning and Liu, 2017) through

the testing power and the type I error. We again assume the logistic model (3.10)

with n = 200, p = 300, s0 = 3, β∗S0
= (2,−2, 2) with AR(1) correlation structures.

From Table (3.5), our method gives the highest testing power while maintaining the

type I error around the nominal 0.05 level, while the de-biased LASSO estimators

outperform the decorrelated score tests to some extent.
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In summary, we have provided numerical evidence that SSGLM performs well

when using half sample split, and is robust to various selection methods. We have

illustrated its performance under both Poisson and Logistic regressions, and for ei-

ther single βj’s or a subvector β(1). More importantly, the comparison with existing

methods shows the clear advantage of our method in terms of the power and the type

I error.

3.7 Data Example

A number of studies have aimed to understand the molecular causes of the lung

cancer heterogeneity. Identifying the genes and pathways involved, determining how

they relate to the biologic behavior of lung cancer and their utility as diagnostic

and therapeutic targets are important basic and translational research issues (Larsen

and Minna, 2011). Recent studies have revealed extensive genetic diversity both

between and within tumors. This heterogeneity affects key cancer pathways, driving

phenotypic variation, and poses a significant challenge to personalized cancer medicine

(Burrell et al., 2013; Fisher et al., 2013).

A subset of the Boston Lung Cancer Study Cohort (Christiani (2017)) contains

of n = 1, 459 individuals, among which 708 are lung cancer patients and 751 are

controls. The cleaned data consists of 6, 829 SNPs, along with important demographic

variables including age, gender, race, education level, and smoking status (Table 3.6).

Since smoking plays a vital role in lung cancer, we are particularly interested in the

interactions between the SNPs and smoking status, in addition to the main effects.

We assumed a high-dimensional logistic model with the binary lung cancer in-

dicator as the outcome; the demographic variables, the SNPs and the interactions

between all SNPs and the smoking status give a total of p = 13, 663 covariates. The

SSGLM is fitted with B = 1, 000 re-samples. The partial result is shown in Table

(3.7), as we list the top coefficients sorted by their p-values. The SNP names starting
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with “AX,” and the prefix “SAX” indicates the covariate is the interaction between

the SNP “AX.xxx” and the smoking status. We identified 9 significant coefficients

after Bonferroni correction, all of which are interaction terms (Table (3.7)). This

result provides strong evidence of the gene-environmental interactions in addition to

the main SNP effects among the lung cancer patients that has rarely been reported

before. These nine SNPs come from three genes, TUBB, ERBB2, and TYMS. The

presence of TUBB mutations has been associated with both poor treatment response

to paclitaxel-containing chemotherapy and shortened overall survival in patients with

advanced non-small-cell lung cancer (NSCLC) (Monzó et al., 1999; Kelley et al., 2001).

Rosell et al. (2001) has proposed using the presence of TUBB mutations as a basis

for selecting initial chemotherapy for patients with advanced NSCLC. In contrast,

intragenic ERBB2 kinase mutations occur more often in the adenocarcinoma subtype

of lung cancer (Stephens et al., 2004; Beer et al., 2002). Finally, advanced NSCLC

patients with low/negative thymidylate synthase (TYMS) have better response to

Pemetrexed–Based Chemotherapy and longer progression free survival (Wang et al.,

2013).

For comparisons, we applied the de-sparsified estimator for GLM (Bühlmann

et al., 2014). Direct applications of the “lasso.proj” function in the “hdi” R pack-

age (Dezeure et al., 2015) were not feasible given the size of the data. Instead, we

used a shorter sequence of the candidate λ values and 5-fold instead of 10-fold cross

validation for the node-wise LASSO in the procedure, which still cost about one day

of CPU time. After correcting for multiple testing, there were two significant coeffi-

cients, both of which were interaction terms corresponding to SNPs AX.35719413 C

and AX.83477746 A. Both SNPs were from the TUBB gene and the first SNP was

also identified by our method.

To validate our findings, we applied the prediction accuracy measures for nonlinear

models proposed in Li and Wang (2018). We calculated the R2, the proportion of
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variation in Y explained, for the models we chose to compare. The five models chosen

and their respective R2’s were: Model 1. (R2 = 0.0938) the baseline model including

only the demographic variables; Model 2. (R2 = 0.1168) the baseline model plus

the significant interactions after Bonferroni correction as the top ones from Table

(3.7); Model 3. (R2 = 0.1181) the baseline model plus the iterations in Model 2

and their corresponding main effects; Model 4. (R2 = 0.1018) the baseline model

plus the significant interactions from the de-sparsified LASSO method; Model 5.

(R2 = 0.1076) Model 4 plus the corresponding main effects. In summary, Model 2

based on our method would explain 25% more variation in Y (from 0.0938 to 0.1168),

while Model 4 based on the de-sparsified LASSO method only explains 8.5% more

variation (from 0.0938 to 0.1018). We also plotted the ROC curves of models 1, 2,

and 4 (Figure 3.2) and their AUCs were 0.645, 0.69, 0.668, respectively.

Our method also provides estimation and uncertainty measures for any pre-specified

subvectors of parameters. Past literature has identified several SNPs as potential risk

factors for lung cancer. We studied a controversial SNP, rs3117582 from the TUBB

gene on chromosome 6. This SNP was identified in association with lung cancer risk

in a case/control study by Wang et al. (2008), while on the other hand, Wang et al.

(2009) found no evidence of association between the SNP and risk of lung cancer

among never-smokers. Our goal was to test this SNP and its interaction with smok-

ing together with all the other covariates under the high dimensional logistic model.

Without loss of generality, we denoted the coefficients corresponding to rs3117582

and its interaction term as β(1) = (β1, β2). To test the overall effect of rs3117582, the

null hypothesis was H0 : β1 = β2 = 0. From the proposed method, we got

(β̂1, β̂2) = (−0.067, 0.005), ĈOV (β1, β2) =

0.44, −0.43

−0.43, 0.50

 .

While the main effect of the SNP rs3117582 was small, the interaction with smoking

43



was even more negligible. The test statistic of the overall effect was T = 0.062 ∼ χ2(2)

by (3.9), and the p-value is 0.97. We conclude that rs3117582 is not significantly

associated with lung cancer regardless of smoking status in this dataset.

3.8 Conclusion

We have proposed a novel procedure for estimation and inference in high dimen-

sional generalized linear models. We have shown the SSGLM estimator is asymptoti-

cally unbiased and normal, which leads to reliable inferences for any low dimensional

parameters. Our method utilizes the partial regression idea, which estimates the

parameter of interest together with a subset of important covariates, to avoid the

common disadvantages caused by penalized regression approaches. Furthermore, our

estimator is based on multi-sample splitting and smoothing so that it is robust to

the selection variability and enjoys the variance reduction from the bagging effect.

Unlike the existing methods (Belloni et al. (2014); Van de Geer et al. (2014); Javan-

mard and Montanari (2014); Ning and Liu (2017)) that require certain conditions on

more than one tuning parameters, our method is not sensitive to the λ used for the

selection. Hence, our method has minimal requirements on extra model parameters.

For the same reason, we have shown that our method is adaptive to a wide range of

model selection procedures that gives robust estimation and inferential results. The

variance of the proposed estimator is derived from the non-parametric delta method

applied to the re-samples, which is free of the regression model and is consistent both

theoretically and in simulations. The assumptions on the selection may limit our

approach to sparse models and certain data structures. Weakening such conditions

has great potential to broaden the applications and is our future work.

44



Figure 3.1: Average MSEs of all covariates at split proportions q’s from 0.1 to 0.9.

Figure 3.2: ROC curves of the three selected models.
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Table 3.1: Comparisons of different selection procedures to implement our proposed
method. First column is the indexes of the non-zero signals. Last row for
the selection frequency is the average number of covariates being selected
by each procedure. Last row for the coverage probability is the average
coverage probability of all covariates.

Bias β∗ LASSO SCAD MCP EN Bayesian
12 0.4 0.003 0.003 0.003 0.003 0.001
71 0.6 0.007 0.008 0.008 0.008 -0.010

351 0.8 -0.001 0.001 0 0 0.001
377 1.0 -0.005 -0.005 -0.006 -0.005 0.001
386 1.2 0.002 0.001 0.001 0.001 0.004

Selection frequency LASSO SCAD MCP EN Bayesian
12 0.59 0.55 0.49 0.60 0.60
71 0.93 0.92 0.90 0.95 0.94

351 0.99 0.99 0.99 1.00 1.00
377 1.00 1.00 1.00 1.00 1.00
386 1.00 1.00 1.00 1.00 1.00

Average # 23.12 13.15 10.89 10.31 7.98
Coverage Prob LASSO SCAD MCP EN Bayesian

12 0.90 0.90 0.91 0.91 0.95
71 0.94 0.94 0.95 0.94 0.94

351 0.95 0.95 0.95 0.94 0.95
377 0.94 0.93 0.93 0.94 0.92
386 0.94 0.95 0.95 0.95 0.94

Average 0.93 0.94 0.94 0.94 0.94
MSE LASSO SCAD MCP EN Bayesian

12 0.111 0.110 0.110 0.109 0.106
71 0.104 0.103 0.102 0.102 0.101

351 0.103 0.103 0.103 0.103 0.100
377 0.101 0.100 0.100 0.100 0.109
386 0.097 0.096 0.096 0.096 0.102

Average 0.105 0.104 0.103 0.103 0.102
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Table 3.2: SSGLM under Poisson regression and three correlation structures. The
last column summarizes the average of all noise variables.

Index Int 74 109 347 358 379 438 -
β∗ 1.000 0.810 0.595 0.545 0.560 0.665 0.985 0

Identity Bias -0.010 0 0 0.001 0.005 0.005 0.006 0
Avg SE 0.050 0.035 0.034 0.035 0.035 0.034 0.035 0.034

Emp SE 0.064 0.036 0.038 0.031 0.033 0.038 0.036 0.036
Cov prob 0.870 0.920 0.900 0.960 0.990 0.910 0.950 0.936

Sel freq 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.015
AR(1) Bias 0.006 0.003 -0.002 -0.001 -0.001 -0.005 0.003 0

Avg SE 0.052 0.035 0.035 0.035 0.035 0.035 0.035 0.035
Emp SE 0.056 0.031 0.041 0.035 0.037 0.037 0.037 0.036

Cov prob 0.930 0.970 0.890 0.960 0.950 0.930 0.960 0.937
Sel freq 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.015

CS Bias -0.003 -0.005 0.004 -0.002 0.005 -0.004 -0.001 0.001
Avg SE 0.033 0.043 0.043 0.042 0.043 0.043 0.044 0.042

Emp SE 0.038 0.046 0.044 0.052 0.040 0.047 0.043 0.044
Cov prob 0.960 0.900 0.930 0.900 0.970 0.910 0.950 0.934

Sel freq 1.000 1.000 0.999 0.997 0.998 0.999 1.000 0.016

Table 3.3: SSGLM under Logistic regression, with estimation and inference for the
subvector β(1) = βS0 . The oracle estimator is from the low dimensional
GLM knowing the true set S0. The empirical covariance matrix is with
respect to the simulation replications.

Index 218 242 269 517 Index 218 242 269 517
Truth -2 -1 1 2 Truth -2 -1 1 2

Identity

β̂(1) -2.048 -1.043 0.999 2.096 Oracle -1.995 -1.026 0.973 2.043

Σ̂(1) 0.146 0.010 -0.009 -0.020 Empirical 0.155 0.006 -0.009 -0.027
0.010 0.134 -0.004 -0.011 0.006 0.129 -0.011 -0.015

-0.009 -0.004 0.134 0.009 -0.009 -0.011 0.152 0.010
-0.020 -0.011 0.009 0.143 -0.027 -0.015 0.010 0.134

AR(1)

β̂(1) -2.073 -1.014 1.002 2.110 Oracle -2.024 -0.991 0.977 2.062

Σ̂(1) 0.145 0.012 -0.011 -0.023 Empirical 0.141 0.012 -0.016 -0.028
0.012 0.137 -0.006 -0.011 0.012 0.112 -0.006 0

-0.011 -0.006 0.135 0.010 -0.016 -0.006 0.129 0.009
-0.023 -0.011 0.010 0.147 -0.028 0 0.009 0.136

CS

β̂(1) -2.095 -1.033 1.070 2.102 Oracle -2.037 -1.024 1.027 2.028

Σ̂(1) 0.223 -0.026 -0.048 -0.063 Empirical 0.192 -0.030 -0.044 -0.045
-0.026 0.208 -0.043 -0.047 -0.030 0.187 -0.037 -0.044
-0.048 -0.043 0.207 -0.028 -0.044 -0.037 0.165 -0.011
-0.063 -0.047 -0.028 0.224 -0.045 -0.044 -0.011 0.179
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Table 3.4: SSGLM under Logistic regression, with rejection rates of testing the con-
trasts.

H0 Truth Identity AR(1) CS
β∗218 + β∗517 = 0 0 0.05 0.04 0.03
β∗242 + β∗269 = 0 0 0.06 0.04 0.025
β∗218 + β∗269 = 0 −1 0.56 0.57 0.42
β∗242 + β∗517 = 0 1 0.55 0.58 0.48

β∗242 = 0 −1 0.83 0.80 0.61
β∗269 = 0 1 0.74 0.81 0.70
β∗218 = 0 −2 1 1 1
β∗517 = 0 2 1 1 1

Table 3.5: Comparisons of SSGLM, Lasso-pro, and Decorrelated score in power and
Type I error. AR(1) correlation structure with different ρ’s are examined.

Power Type I error
Index 10 20 30 0’s

ρ = 0.25 Proposed 0.920 0.930 0.950 0.049
Lasso-pro 0.900 0.930 0.900 0.042

Dscore 0.790 0.880 0.890 0.177
ρ = 0.4 Proposed 0.940 0.960 0.965 0.049

Lasso-pro 0.920 0.910 0.920 0.043
Dscore 0.770 0.905 0.840 0.175

ρ = 0.6 Proposed 0.940 0.950 0.880 0.054
Lasso-pro 0.850 0.750 0.850 0.045

Dscore 0.711 0.881 0.647 0.268
ρ = 0.75 Proposed 0.863 0.847 0.923 0.060

Lasso-pro 0.690 0.670 0.650 0.053
Dscore 0.438 0.843 0.530 0.400
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Table 3.6: Demographic characteristics of the BLCSC SNP data.
Case 0 1
Race

White 726 668
Black 5 22
Other 20 18

Education
<High school 64 97

High school 211 181
>High school 476 430

Age
Mean(sd) 59.7(10.6) 60(10.8)

Gender
Female 460 437

Male 291 271
Pack years
Mean(sd) 18.8(25.1) 46.1(38.4)
Smoking

Ever 498 643
Never 253 65

Table 3.7: SSGLM fitted to the BLCSC SNP data. SNP variables start with “AX”;
interaction terms start with “SAX”; “Smoke” is the binary smoking status
indicator. Rows are sorted by p-values.

Variable β̂ SE T P-value Adjusted P Sel freq
SAX.88887606 T 0.33 0.02 17.47 < 10−3 < 0.01 0.08
SAX.11279606 T 0.53 0.06 8.23 < 10−3 < 0.01 0.00
SAX.88887607 T 0.29 0.04 6.97 < 10−3 < 0.01 0.01
SAX.15352688 C 0.56 0.08 6.90 < 10−3 < 0.01 0.01
SAX.88900908 T 0.54 0.09 5.95 < 10−3 < 0.01 0.02
SAX.88900909 T 0.51 0.09 5.69 < 10−3 < 0.01 0.02
SAX.32543135 C 0.78 0.14 5.49 < 10−3 < 0.01 0.25
SAX.11422900 A 0.32 0.06 5.24 < 10−3 < 0.01 0.09
SAX.35719413 C 0.47 0.10 4.63 < 10−3 0.049 0.00
SAX.88894133 C 0.43 0.10 4.53 < 10−3 0.08 0.00
SAX.11321564 T 0.47 0.11 4.44 < 10−3 0.12 0.00

...
AX.88900908 T 0.40 0.11 3.84 < 10−3 1.00 0.00

Smoke 0.89 0.23 3.82 < 10−3 1.00 -
...
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CHAPTER IV

Simultaneous Estimation and Inference for High

Dimensional Censored Quantile Regression Via

Fused Multi-sample Splitting

4.1 Introduction

Lung cancer is the most common cancer-related cause of death worldwide. Un-

derstanding the molecular mechanisms on lung cancer survival is a focus of current

translational research. The Boston Lung Cancer Study Cohort (BLCSC) (Chris-

tiani , 2017) is a cancer epidemiology cohort of over 11,000 lung cancer cases enrolled

at Massachusetts General Hospital and the Dana-Farber Cancer Institute from 1992

to present. This is the first and most comprehensive lung cancer survivor cohort

with a long follow-up period, which has been growing with more patients recruited

every year. On a subset of the cohort, the SNP information have been measured and

recorded.

Using a target gene approach, we identified a high dimensional SNP data set

of 674 lung cancer patients, with measurements of over 2, 000 SNPs from 14 well-

known cancer related genes, along with important demographic variables, such as

age, gender, race, education level, and smoking status. Our goal is to model the

survival times with censoring as the outcome and to estimate and test the effects of

50



potential predictors on lung cancer survival.

Quantile regression (Koenker and Bassett Jr , 1978) has emerged as an efficient way

of linking the whole outcome distribution to the covariates, and a useful alternative

regression strategy for survival analysis. Quantile regression is especially powerful

in detecting the covariate effect at extreme tails, and thus provides more complete

information of the outcome distribution. Censored quantile regression (CQR) for

randomly censored survival data has been well studied in the finite p case, where p

is the number of covariates (Portnoy (2003); Peng and Huang (2008) among others).

High dimensional censored quantile regression (HDCQR), on the other hand, is still

an area with growing research interests. The complexity of simultaneous estimation

and inference based on HDCQR arises from censoring, extreme quantiles, and other

high dimensional inference challenges. Wang et al. (2012) deals with variable selection

for quantile regressions with ultra-high dimension. He et al. (2013) provides variable

screening for HDCQR that can handle censoring. Zheng et al. (2018) proposes to

model the HDCQR with sequential estimation and penalization based on a stochastic

integral based estimating equation. They consider two types of penalties, a Lasso

type L1 penalty for sparse estimation and an Adaptive Lasso type penalty to reduce

the bias. Their method aims to select a sparse subset of covariates based on the

penalized coefficient estimators, but the inferences remain unsolved. Although there

have been considerable success in high dimensional inferences for linear and non-linear

models (Zhang and Zhang (2014); Bühlmann et al. (2014); Javanmard and Montanari

(2014); Belloni et al. (2014); Ning and Liu (2017); Fei et al. (2018) among others),

the counterpart to properly handle survival outcomes has been lacking. Belloni et al.

(2018) provides valid post-selection inference in high dimensional quantile regression

models for fixed quantiles, but could not handle censoring and survival outcomes.

Shows et al. (2010) provides sparse estimation and inference for censored median

regression, but with fixed number of predictors.

51



The goal of this paper is to provide simultaneous estimation and inference based

on high dimensional sparse censored quantile regression models, thus to properly ana-

lyze the survival outcomes with censoring and when the number of covariates is much

larger than the sample size. This is, to our knowledge, the first work that achieves

these goals within the given context. Our proposed method uses multi-sample split-

ting and smoothing techniques to convert the challenging high dimensional estimation

problem to a series of low dimensional estimations (Fei et al., 2018). Splitting the

original data into two equal halves, we first apply some variable selection procedure

to choose a subset of important covariates on one half of data. Next on the other

half of data, we fit low dimensional CQRs only using the union of selected subset

and each covariate of interest as regressors. If the selected subset is an superset of

the sparse active set, then the resulting coefficient estimator of the covariate of in-

terest is unbiased, whether the true effect is non-zero or not. The estimator based

on a single split is highly variable, due to the variation in selection, the random data

split, and the reduced sample size comparing to the large number of parameters to be

estimated. Thus we perform multi-sample splitting and average the resulting estima-

tors. The split and aggregation procedure, named as Fused-HDCQR, gives unbiased

estimation of the whole coefficient vector over an interval of quantile values. Each

coefficient estimator is shown to converge weakly to a mean zero Gaussian process

in the quantile interval. We further derive a model-free variance estimator based on

the functional delta method and the multi-sampling splitting properties (Efron, 2014;

Wager and Athey , 2018). The variance estimator is asymptotically consistent, and

possesses satisfying empirical performance.

As our fused estimator takes into account the variation in the model selection, it

is not post model selection inference (Belloni et al., 2018). Our procedure aims to

recover the sparse model that associates the survival outcome with the predictors.

By combining low-dimensional selection-assisted estimation and multiple re-samples
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and aggregation, our procedure offers both unbiased point estimators and accurate

uncertainty measures.

Section 4.2 introduces our method, and Section 4.3 details the asymptotic prop-

erties of the proposed estimator. Section 4.4 derives the non-parametric variance

estimation procedure and the inferential procedure; Sections 4.5 conducts simulation

studies, and Section 4.6 applies the proposed method to analyze the BLCSC SNP

data.

4.2 Method

Let T denote a survival outcome and C a right censoring time. We assume C

is independent of T given Z̃, a (p − 1) × 1 covariate vector (p > 1). Let X =

min{T,C},∆ = I(T ≤ C), and Z = (1, Z̃T)T. The observed data is n i.i.d. copies of

(X,∆,Z), denoted as {(Xi,∆i,Zi), i = 1, 2, .., n}.

Define the τ -th conditional quantile of Y = log T given Z as QY (τ |Z) = inf{t :

P(Y ≤ t|Z) ≥ τ}, which is often modeled by a linear quantile regression as:

QY (τ |Z) = ZTβ∗(τ), τ ∈ (0, τU ], (4.1)

where β∗(τ) is a p-dimensional vector of unknown coefficients at each τ , and 0 <

τU < 1. β∗(τ) is believed to be sparse, that is q =
∣∣∪τ∈(0,τU ]Sτ

∣∣ = o(n), where

Sτ = {j ∈ [p] : β∗j (τ) 6= 0}. Detailed assumptions on the sparsity will be explored

later. The goal of this paper is to accurately estimate β∗j (τ) for τ ∈ (0, τU ] and for

each j = 1, 2, .., p, and their standard errors.

Let N(t) = I(logX ≤ t,∆ = 1), ΛT (t|Z) = − log(1 − P(log T ≤ t|Z)), and

H(u) = − log(1 − u). M(t) = N(t) − ΛT (t ∧ logX|Z) is a martingale process, and

hence E (M(t)|Z) = 0. Let Ni(t) and Mi(t) be sample analogs of N(t) and M(t),

i = 1, 2, .., n.
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Unlike the locally concerned quantile regression, in which only some fixed quantile

values are of interest, we would like to adopt the globally concerned CQR framework

(Zheng et al., 2015) in this paper. By specifying a quantile interval [τL, τU ], the

globally concerned framework provides more comprehensive estimation and inference

to the assumed model (4.1). In detail, we define a grid of quantile values that covers

the interval, Γm = {τ0, τ1, .., τm}, where τ0 = ν > 0 and τm = τU . By allowing

m to increase with n, Γm becomes a fine grid that well approximates β∗(τ) on the

interval [τL, τU ]. In addition, we restrict τ0 = ν, instead of τ0 = 0, to circumvent

the singularity problem with censored quantile regression at τ = 0, as detailed in

assumption (A1). In practice, ν should be chosen such that only a small proportion

of the Xi’s below the fitted ν-th quantiles are censored. On the other hand, τU < 1

is away from 1 to avoid the identifiability issue at upper quantiles due to censoring.

The theoretical constraints and the practical selection of τU is discussed in Peng

and Huang (2008). Equally spaced grid Γm with small grid size is assumed, as our

procedure relies on the sequential selection and estimation on the grid points to

derive the desired theoretical properties. Therefore a functional form of β∗(τ) over

the interval [τL, τU ] can be obtained by extending our estimator to a right-continuous

piecewise-constant function that only jumps at the grid points.

4.2.1 Preliminaries

Low dimensional CQR It has been a well-studied problem for censored quan-

tile regressions with finite p, which can be dated back to Powell (1986). There are

two popular approaches, Portnoy (2003) and Peng and Huang (2008), where the for-

mer developed a recursively re-weighted estimation procedure with follow-up works

in Neocleous et al. (2006); Portnoy and Lin (2010). Peng and Huang (2008) intro-

duced estimating equations for β∗(τ) in model (4.1) for fixed p and conditionally

independent censoring. Their procedure uses empirical process and stochastic inte-
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gral techniques to derive the asymptotic properties including uniform consistency and

weak convergence. Their estimating equation takes the form

n1/2Un(β, τ) = 0, (4.2)

where

Un(β, τ) = n−1

n∑
i=1

Zi

(
Ni (θi(τ))−

∫ τ

0

I[logXi ≥ θi(u)]dH(u)

)
;

θi(τ) = ZT
i β(τ).

Let u(β, τ) = E {Un(β, τ)}, the martingale property gives u(β∗, τ) = 0, ∀τ ∈ Γm.

Furthermore, (4.2) is solved sequentially for β(τk), τk ∈ Γm through the following

monotone estimating equation:

n−1/2

n∑
i=1

Zi

(
Ni (θi(τk))−

k−1∑
r=0

∫ τr+1

τr

I[logXi ≥ θ̌i(τr)]dH(u)

)
= 0,

where β̌(τk), θ̌i(τk) denote the estimators from Peng and Huang (2008). Due to the

monotonicity of θi(τ) in τ , β̌(τ) can be solved efficiently via L1-minimization and

is shown to be uniformly consistent and converges weakly to a mean zero Gaussian

process for τ ∈ [τL, τU ].

Variable selection in high dimensional censored quantile regression There

have been several works for variable selection in high dimensional quantile regressions

that have seen relative success. Zheng et al. (2013) proposed an adaptive penalized

quantile regression estimator that could select the true sparse model with probability

converging to 1. Fan et al. (2014) studied the penalized quantile regression with a

weighted L1-penalty in the ultra-high dimensional setting. However, neither work

dealt with censoring and thus was not applicable to survival outcomes. On the other
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hand, He et al. (2013) proposed quantile-adaptive variable screening for high dimen-

sional data with censoring, which was designed for a few fixed quantiles and achieved

sure screening property.

Recently, Zheng et al. (2018) proposed estimation and variable selection for high

dimensional CQR using penalization and sequential estimation. They considered

two types of penalties, Lasso type L1 penalty, and Adaptive Lasso type penalty to

reduce the bias by the L1 penalty. Their first estimator (L-HDCQR) incorporated

the L1 penalty into the stochastic integral based estimating equation, which stemmed

from Peng and Huang (2008) for low dimensional CQR. The L-HDCQR estimator

had a uniform convergence rate of
√
q log(p ∧ n)/n, and resulted in “sure screening”

variable selection with high probability. Furthermore, the second estimator based

on Adaptive Lasso penalties (AL-HDCQR) had the estimation bias reduced to the

order
√
q log(n)/n, and achieved “selection consistency” with proper order of tuning

parameters.

4.2.2 Proposed Fused-HDCQR

We use Peng and Huang (2008)’s procedure to fit low dimensional CQRs, which

yields simultaneous estimation of the fine grid Γm while only requiring conditionally

independent censoring. The proposed fused estimator is derived from multi-sample

splitting, which separates selection and estimation, and achieves variance reduction

through the effect of bagging. More importantly, its asymptotic variance can be

consistently estimated in a non-parametric way, as will be shown in Section 4.4.

Given data D = {(Xi,∆i,Zi), i = 1, 2, .., n}, a grid of τ values, Γm = {τ0, τ1, .., τm}

with τ0 = ν, τm = τU , and a variable selection procedure for HDCQR with extra

parameter λ denoted by Sλ:

1. Choose a fixed tuning parameter λn (not necessarily optimal): on the full data

D, apply Sλ with K-fold cross-validation, and let λn = λmin, which gives the

56



minimum cross validation error.

2. Let B be a large positive number, and for each b = 1, 2, .., B, repeat the following

steps;

(i) Randomly split the data into two equal halves, D1 and D2

(ii) On D2, apply Sλ with the chosen λn on the τ -grid Γm, to select a subset

of important covariates, denoted as Ŝbλn , or Ŝb for short.

(iii) On D1, for each j = 1, 2, .., p, fit the following low dimensional CQR with

respect to the subset of covariates Ŝb+j = {j}∪Ŝb, and denote the estimator

as β̃Ŝb+j
(τ).

QY (τ |ZŜb+j
) = ZT

Ŝb+j
βŜb+j

(τ).

(iv) Define the b-th estimator of β∗j (τ) as the entry in β̃Ŝb+j
(τ) that is the coef-

ficient for variable Zj, β̃
b
j(τ) =

(
β̃Ŝb+j

(τ)
)
j
.

3. Smoothing: the final estimator of β∗j (τ), j = 1, 2, .., p is

β̂j(τk) =
1

B

B∑
b=1

β̃bj(τk), τk ∈ Γm; β̂j(τ) = β̂j(τk), τk−1 ≤ τ < τk, k = 1, 2, ..,m.

(4.3)

Remark IV.1. Since the intercept term is always included in CQR models, its corre-

sponding index 1 ∈ Ŝ for all selections, and Ŝ+1 = Ŝ. Thus the intercept estimator

β̃1(τ) is defined as the component in β̃Ŝ(τ) for any Ŝ.

Remark IV.2. Several procedures can be used as Sλ: the screening method in He et al.

(2013) for fast computation; the L-HDCQR for detecting any non-zero effects in the

interval [τL, τU ]; the AL-HDCQR for most accurate selections, among others. Take

L-HDCQR for example, the selected sets are defined as {j : maxk |γ̂j(τk)| > a0, τk ∈
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Γm}, where γ̂j(τk)’s are the L-HDCQR estimates, and a0 > 0 is a predetermined

threshold.

In Section (4.3), we show the asymptotic properties of the Fused-HDCQR esti-

mator. Next, in Section (4.4), we present the non-parametric variance estimator for

Fused-HDCQR and on how to make inferences accordingly.

4.3 Theoretical Properties

4.3.1 Notation and regularity conditions

For any vector δ ∈ Rp and a subset S ∈ [p], SC is the complementary set, and

define ‖δ‖r,S = ‖δS‖r, the lr-norm of the sub-vector δS. We assume the following

regularity conditions:

(A1) There exists a quantile ν and some constant c such that

n−1

n∑
i=1

I
(
logCi ≤ ZT

i β
∗(ν)

)
(1−∆i) ≤ cn−1/2

holds for sufficiently large n.

(A2) (Bounded covariates) ‖Z‖∞ ≤ C0, for some constant C0.

(A3) (Bounded densities) Let FT (t|Z) = P (log T ≤ t|Z), ΛT (t|Z) = − log (1− FT (t|Z)),

F (t|Z) = P (logX ≤ t|Z), and G(t|Z) = P (logX ≤ t,∆ = 1|Z). Also, define

f(t|Z) = dF (t|Z)/dt, and g(t|Z) = dG(t|Z)/dt.

(a) There exist constants f , f , g and g such that

f ≤ inf
z,τ∈[τL,τU ]

f(zTβ∗(τ)|z) ≤ sup
z,τ∈[τL,τU ]

f(zTβ∗(τ)|z) ≤ f,

g ≤ inf
z,τ∈[τL,τU ]

g(zTβ∗(τ)|z) ≤ sup
z,τ∈[τL,τU ]

g(zTβ∗(τ)|z) ≤ g.
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(b) There exist constant κ > 0 and A such that ∀|t| ≤ κ,

sup
z,τ∈[τL,τU ]

∣∣f(zTβ∗(τ) + t|z)− f(zTβ∗(τ)|z)
∣∣ ≤ A|t|,

sup
z,τ∈[τL,τU ]

∣∣g(zTβ∗(τ) + t|z)− g(zTβ∗(τ)|z)
∣∣ ≤ A|t|.

(A4) (Sparsity and dimensionality) Let Sτ = {j ∈ [p] : β∗j (τ) 6= 0}, S∗ =
⋃

τ∈[τL,τU ]

Sτ ={
j : sup

τ∈[τL,τU ]

|β∗j (τ)| > 0

}
. We assume n/p = o(1), log p = o(n1/2), and q =

|S∗| = o(n).

(A5) There exists a sequence {λn}n→∞ and constants 0 ≤ c1 < 1/2, 0 < K1 ≤ 1, K2 >

0 such that the selections Ŝb’s by Sλn with sample size n satisfy |Ŝb| ≤ K1n
c1 ,

and

P
(
Ŝb = S∗

)
≥ 1−K2(p ∨ n)−1.

(A6) Let µ̃(τ) = E I
(
logX > ZTβ∗(τ)

)
, then there exists a positive constant L,

such that |β∗j (τ1)− β∗j (τ2)| ≤ L|τ1 − τ2| and |µ̃(τ1)− µ̃(τ2)| ≤ L|τ1 − τ2|, for all

τ1, τ2 ∈ (ν, τU ] and 1 ≤ j ≤ p.

(A7) (Restricted eigenvalue condition) Let Aτ denote the restricted set

{δ ∈ Rp : ‖δ‖1,Scτ ≤ ((c0 + 1)/(c0 − 1))‖δ‖1,Sτ , ‖δ‖0,Scτ ≤ n},

and AS denote

{δ ∈ Rp : ‖δ‖1,Sc ≤ ((c0 + 1)/(c0 − 1))‖δ‖1,S, ‖δ‖0,Sc ≤ n},

for some constant c0 > 1. We can see that Aτ ⊂ AS, for all τ ∈ (0, τU ]. Then

0 < λmin ≤ infδ∈AS ,δ 6=0 δ
TE [ZiZ

T
i ]δ/‖δ‖2.
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(A8) Let εn = τk − τk−1, τk ∈ Γm, k = 1, 2, ..,m. The grid size satisfies
√
nεn = o(1).

Assumption (A1) requires that the number of censored observations below the

ν-th quantile does not exceed cn1/2. Since ZTβ∗(0) = −∞ under model (4.1), which

corresponds to the 0-th quantile of the survival time, (A1) is satisfied if the lower

bound of the censoring time C’s support is greater than 0, which is common and rea-

sonable in real world applications. As recommended in Zheng et al. (2018), ν is chosen

such that only a small proportion of the observed survival times below the fitted ν-th

quantile are censored. (A2) assumes the covariates are uniformly bounded. (A3) is

a condition on the data distribution that assures the positiveness of f(t|Z) between

ZTβ∗(τL) and ZTβ∗(τU), which is essential for the identifiability of β∗(τ) for τ < τU .

(A4) restricts the sparsity of β∗(τ), as well as the order of data dimensions. The

sparsity is also implied through (A5) that q ≤ K1n
c1 . (A5) characterizes the selection

properties by Sλ, in which the limiting probability going to 1 is an asymptotic prop-

erty that does not take into account the possibly high variation of a single selection

with finite sample. Thus even with the so-called asymptotic “selection consistency”

property, it is still crucial to take into account the variation in selection, which yields

more efficient estimators. See the simulation in Fei et al. (2018) that illustrates the

difference in efficiency. Meanwhile, for example the selection consistency is guaran-

teed by the AL-HDCQR procedure in Zheng et al. (2018) with beta-min condition,

restriction on sparsity, and some other conditions. (A6) characterizes the smoothness

of β∗(τ). (A7) is a typical assumption in high dimensional statistics literature (Bel-

loni and Chernozhukov , 2011; Bickel et al., 2009; Fan et al., 2014). (A8) details the

fineness of the grid Γm, which is needed for the weak convergence of Fused-HDCQR

estimator and is also required in Theorem 2 of Peng and Huang (2008).
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4.3.2 Fused-HDCQR Estimator

Theorem IV.3. Consider the Fused-HDCQR estimator (4.3). Under assumptions

(A1)-(A8), for any j ∈ [p],
√
n
(
β̂j(τ)− β∗j (τ)

)
converges weakly to a mean zero Gaussian process for τ ∈ [τL, τU ].

The proof and a couple of lemmas are presented in Appendix (C).

4.4 Inferences Based on Fused-HDCQR

The results from previous section indicate that deriving the analytical form of

the variance of Fused-HDCQR estimator is difficult, as the covariance function of

the limiting Gaussian process involves unknown active set S∗ and conditional density

functions f(t|Z) and g(t|Z). Alternatively, we propose a model-free variance estimator

based on functional delta method and multi-sampling splitting properties (Efron,

2014; Fei et al., 2018).

First, we let Jbi ∈ {0, 1} be the indicator of whether the ith observation appears

in the bth sub-sample Db
1, and J·i =

(∑B
b=1 Jbi

)
/B is the average. Next, we define

the re-sampling covariances between Jbi and β̃bj(τk) at τk ∈ Γm for b = 1, 2, .., B as

ĉovij(τk) =
1

B

B∑
b=1

(Jbi − J·i)
(
β̃bj(τk)− β̂j(τk)

)
;

Ĉovj(τk) = (ĉov1j(τk), ĉov2j(τk), .., ĉovnj(τk))
T .

Let n1 = |Db
1|, the asymptotic covariance estimator between β̂j(τk) and β̂j(τ`) is

Ĉovj(τk, τ`) =
n− 1

n

(
n

n− n1

)2 n∑
i=1

ĉovij(τk)ĉovij(τ`) =
n(n− 1)

(n− n1)2
Ĉov

T

j (τk)Ĉovj(τ`),

where the multiplier n(n − 1)/(n − n1)2 is a finite-sample correction for the sub-
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sampling Db
1’s. Thus the asymptotic variance estimator for β̂j(τk) is

V̂j(τk) =
n(n− 1)

(n− n1)2

n∑
i=1

ĉov2
ij(τk). (4.4)

It is shown in Wager and Athey (2018) that the variance estimator is consistent as

n,B → ∞, in the sense that V̂j(τk)/Var
(
β̂j(τk)

)
p−→ 1. Furthermore, we propose a

finite B bias correction to the above variance (4.4) as below,

V̂ B
j (τk) = V̂j(τk)−

n

B2

n1

n− n1

B∑
b=1

(
β̃bj(τk)− β̂j(τk)

)2

, τk ∈ Γm (4.5)

where the correction term is a multiplier of the re-sampling variance of β̃bj(τk)’s.

While the two variance estimators (4.4) and (4.5) are equivalent as B → ∞, and

both are asymptotically unbiased to the truth, the former requires B = O(n1.5) to

reduce the Monte Carlo noise down to the sampling noise, and the latter only requires

B = O(n) (Wager et al., 2014). By assumption (A6) and the Lipschitz continuity of

the covariance function, we can extend the variance estimator from the grid points

τk ∈ Γm to the interval τ ∈ [τL, τU ] by defining V̂ B
j (τ) = V̂ B

j (τk−1), for τk−1 ≤ τ < τk.

To make inferences of the estimated parameters in model (4.1), by Theorem IV.3,

β̂j(τ) converges weakly to some Gaussian process on [τL, τU ]. Thus we define the

asymptotic 100(1− α)% confidence interval for β∗j (τ) at any τ ∈ [τL, τU ] as

(
β̂j(τ)− Φ−1(1− α/2)

√
V̂ B
j (τ) , β̂j(τ) + Φ−1(1− α/2)

√
V̂ B
j (τ)

)
,

where V̂ B
j (τ) is the variance estimator in (4.5), and Φ is the CDF of the standard

normal distribution. The p-values of testing H0 : β∗j (τ) = 0 for each τ ∈ Γm are

2×
{

1− Φ

(
|β̂j(τ)|/

√
V̂ B
j (τ)

)}
.
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4.5 Simulations

The simulation studies aim to assess the finite sample performance of the proposed

Fused-HDCQR method. We first consider examples with true β∗(τ) invariant in τ ,

then explore the examples with some β∗j (τ)’s changing with τ .

Example 1. With sample size n = 300 and the number of covariates p = 500,

the event times are generated following

log Ti = Z̃T
i b + εi, i = 1, 2, .., n,

where the coefficient vector b are sparse with b20 = 0.25,b40 = 0.5,b60 = 0.75,b80 =

1,b100 = 1.25, bj = 0 for all other j’s, and εi ∼ N(0, 1). Therefore, the truth is

β∗(τ) = (Qε(τ),bT)T for all τ ∈ (0, 1), where Qε(τ), τ -th quantile of the distribution

of ε, is the intercept. The censoring time is generated independently as logCi =

N(0, 16) + N(−5, 1) + N(8, 0.25), which gives a censoring rate around 33%. Two

covariate distributions are examined, i) Z̃j,i’s are i.i.d. Unif(−1, 1) for j = 1, 2, .., p;

ii) Z̃i’s follow multivariate normal distribution Np(0,Σ), with Σ = (σk`)p×p, σk` =

0.5|k−`| the AR(1) correlation structure.

Example 2. With n = 200, p = 300, the event times follow

log Ti = Z̃T
i b + 1.5Z̃3,iεi, (4.6)

where b20 = 1,b40 = 1.5,b60 = 1,b80 = 1.5 and bj = 0 for all other j’s, and

εi ∼ N(0, 1). We first generate Źi ∼ Np(0,Σ) as in Example 1 case ii), and then

let Z̃i = Źi, except for the third covariate Z̃3,i = |Ź3,i| + 0.5. Therefore β∗1(τ) =

0, β∗4(τ) = 1.5Qε(τ), and β∗j (τ) = bj+1, for all other j’s. The censoring time is

generated following the same distribution as in Example 1.
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Example 3. With n = 300, p = 400, the event times follow

log Ti = Z̃T
i b + φ1(ξi)Z̃1,i + φ4(ξi)Z̃4,i,

where b8 = 2,b15 = 1.5,b25 = 1.5 and bj = 0 for all other j’s, ξi ∼ N(0, 1), and φ1, φ4

are monotone functions shown in Figure (4.1). We first generate Źi ∼ Np(0,Σ) as in

Example 1 case ii), and then let Z̃i = Źi, except Z̃1,i = |Ź1,i|+0.5 and Z̃4,i = |Ź4,i|+0.5.

Therefore β∗1(τ) = 0, β∗2(τ) = φ1(τ), β∗5(τ) = φ4(τ), and β∗j (τ) = bj+1, for all other

j’s. The censoring time is generated following the same distribution as in Example 1.

Table (4.1) summarizes the result from Example 1, where the coefficient estimates

are unbiased and the standard errors agree with the empirical standard deviations.

It leads to proper coverage probabilities and good testing power when the effect size

is large enough. Moreover, the estimation and inference from our proposed method

are reliable for small signals even when their selection frequencies are low.

Under the setting of Example 2, we first compare the performance of two proposed

variance estimations, (4.4) and (4.5). As shown in Figure (4.2), both estimators con-

verge to the empirical truth as B increases, while the bias corrected version (4.5)

converges much faster than the original version (4.4) and becomes stable for B less

than 200. Table (4.2) summarizes the result by Fused-HDCQR comparing to the or-

acle estimation, which is based on low dimensional CQR knowing the true active set,

and the standard errors are estimated via bootstrap (Peng and Huang , 2008). While

the performance on invariant coefficients remains accurate, the estimation and infer-

ence for β4(τ) is reliable as well in terms of little bias and proper coverage probabilities

at different τ values.

Table (4.5) summarizes the estimation and inference by Fused-HDCQR compar-

ing to the oracle results in Example 3. Even with two varying coefficients β∗2(τ) =

φ1(τ), β∗5(τ) = φ4(τ), our proposed procedure still provides accurate point estimations
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and reliable inferences and testing powers at different τ values. The Fused estimator

and confidence intervals for β∗2(·) and β∗5(·) are shown in Figure (4.1).

4.6 Data Application

Finding significant genetic variants that are associated with patients’ survival has

been one of the main themes in modern translational cancer studies. The BLCSC

provides a rich data set measuring over 40, 000 SNP variations among n = 674 lung

cancer patients. We are specifically interested in modeling the effects of those SNP

that belong to certain high risk cancer-related genes, and have extracted 2, 002 SNPs

located on 14 previously documented genes. In addition, we take into account the

demographic variables, including age, gender, race, education level and smoking status

(Table (4.8)). The longest survival time is over 23 years (8584 days) while the shortest

event time is only 13 days. The censoring rate is 0.23, which is assumed to be

independent of T .

We chose [τL, τU ] = [0.2, 0.7] so that only 2.4% of observations were censored below

the τL-th quantile and there were sufficient data to estimate the survival distribution

at τU -th quantile, with εn = 1/80 to form the τ -grid

Γm = {τ1 = 0.2, τ2 = 0.2125, .., τm = 0.7}

of length m = 41. We used L-HDCQR for variable selection and B = 700 as the

number of re-samples, which was sufficiently large compared to the sample size. First

step was to fit the initial HDCQR at τ = τL with 5-fold cross validation to choose a

fixed λn. Next, we ran Fused-HDCQR with the chosen λn on Γm.

For the sake of conciseness, we summarized and reported the result at 6 equally

spaced τ values {0.2, 0.3, .., 0.7} instead of the whole grid Γm. As we were especially

interested in the risk factors for the high risk patients group (small τ), in Table
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(4.9), we ranked the SNPs based on their p-values at τ = 0.2. After adjusting

for multiple testing using Bonferroni correction, there were still 87 significant SNP

effects at level 0.05 and τ = 0.2. Thus we only reported the top 10 significant

SNPs, as well as the bottom 3 least significant ones to illustrate that our approach

was comprehensive in estimating and drawing inferences for all potential predictors.

From Table (4.9), the effect of smoking was around −0.4 across different quantiles,

with decreased significance level for larger quantiles. This suggested that while the

effect of smoking was constant, there were less data to support its significance. On

the other hand, both the point estimation and the significance level of some top SNPs

varied for different τ values. For examples, for τ from 0.2 to 0.7, the effect of SNP

AX.83072863 A dropped from 2.58 to 0.28 and the standard errors increased from 0.23

to 0.39; the effect of SNP AX.83265037 A dropped from 2.33 to −0.11 with standard

errors from 0.24 to 0.31. This suggested strong evidence of heterogeneous SNP effects

for different risk groups. Therefore, if other quantiles were of interest, investigators

could rank the SNPs based on their respective p-values. Furthermore, we mapped

the 87 significant SNPs at τ = 0.2 to their corresponding genes and ranked them

by their respective numbers of significant SNPs in the parenthesis over total number

of SNPs for the gene. They were TP53 (18/321), ALK (9/163), BRCA1 (9/114),

ERCC1 (9/167), RRM1 (8/174), ROS1 (7/294), ERBB2 (6/167), EGFR (5/261),

BRAF (4/49), RET (4/38), and 4 others with numbers of SNPs less than 4. While

there were overwhelming evidence that these genes are associated with lung cancer

(Toyooka et al., 2003; Takeuchi et al., 2012; Rosell et al., 2011; Lord et al., 2002;

Zheng et al., 2007; Sasaki et al., 2006; Brose et al., 2002), our analysis provided more

detailed information as to which SNPs and locations of the genes were associated

with the lung cancer survival, as well as the effect sizes and their significance levels.
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4.7 Conclusion

Motivated by analyzing survival data with censoring and a large number of po-

tential predictors, we have proposed a framework based on high dimensional censored

quantile regressions for simultaneous estimation and inference of the model parame-

ters. Using censored quantile regressions for survival analysis is advantageous in sev-

eral aspects comparing to Cox proportional hazards model, as it models the extreme

quantiles of the outcome distribution and is more powerful in detecting significant

heterogeneous effects at different quantiles. The Fused-HDCQR procedure consists

of two components, point estimator and variance estimator of the model coefficients.

The fused coefficient estimator is the average of a large number of estimators that

are derived from multiple random sample splits. The model-free variance estimator is

derived using functional delta method and the multi-sample splitting properties, and

is corrected for the bias caused by the finite number of re-samples B. By defining

a fine grid of quantile values on an interval of interest, we are able to provide com-

prehensive understanding of the conditional quantiles, as well as precise inferences

for each predictor and quantile. Our procedure is straightforward to implement, and

computationally efficient, especially when implemented with parallel computing for

the multiple re-samples. We conclude that our procedure could be extended to other

types of censoring, for example left truncation, as well as modeling time-dependent

covariates or time-varying effects.
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Figure 4.1: Two heterogeneous effects and their estimation and confidence intervals.
β∗2(·) (Left), and β∗5(·) (Right).

Figure 4.2: Two SE estimators with varying B, versus the empirical standard devia-
tion in Example 2.
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Table 4.2: Oracle estimation for Example 2, with n = 200, p = 300.
Truth Est Boot SE Emp sd

Index τ = 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Int 0 0 0 0 -0.02 -0.02 0.00 0.02 0.47 0.42 0.42 0.50 0.46 0.38 0.39 0.45

3 -1.26 -0.38 0.38 1.26 -1.18 -0.30 0.43 1.31 0.45 0.40 0.41 0.48 0.47 0.38 0.39 0.45
20 1 1 1 1 1.00 0.99 0.99 0.99 0.19 0.17 0.17 0.20 0.16 0.15 0.16 0.19
40 1.5 1.5 1.5 1.5 1.51 1.49 1.49 1.51 0.20 0.17 0.17 0.21 0.17 0.15 0.15 0.18
60 1 1 1 1 1.00 1.01 1.00 1.00 0.19 0.17 0.17 0.20 0.17 0.15 0.15 0.18
80 1.5 1.5 1.5 1.5 1.48 1.50 1.51 1.49 0.19 0.17 0.17 0.21 0.17 0.15 0.16 0.20

Table 4.3: Estimation and inference for β4(τ).
Truth Est SE Emp sd Cov Prob Power

0.2 -1.26 -1.11 0.38 0.37 0.93 0.82
0.4 -0.38 -0.37 0.34 0.37 0.92 0.23
0.6 0.38 0.31 0.35 0.40 0.92 0.20
0.8 1.26 1.07 0.40 0.43 0.89 0.69

Table 4.4: All other covariates, the truth is displayed in the table for oracle estima-
tion.

Est SE Emp sd
Index τ = 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Sel freq

Int -0.14 0.02 0.13 0.33 0.40 0.35 0.36 0.42 0.39 0.38 0.40 0.44 0
20 1.00 1.01 1.01 1.00 0.16 0.14 0.15 0.18 0.16 0.15 0.14 0.15 0.94
40 1.49 1.49 1.49 1.50 0.16 0.14 0.15 0.18 0.16 0.15 0.16 0.20 1.00
60 1.02 1.01 1.01 1.01 0.16 0.15 0.15 0.17 0.16 0.14 0.14 0.16 0.95
80 1.48 1.49 1.50 1.51 0.15 0.14 0.15 0.17 0.16 0.15 0.15 0.18 1.00
0’s 0.00 0.00 0.00 0.00 0.16 0.15 0.15 0.17 0.15 0.14 0.15 0.17 0.02

Cov prob Power
τ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Int 0.91 0.92 0.93 0.86 0.09 0.08 0.07 0.14
20 0.94 0.91 0.96 0.96 1.00 1.00 1.00 1.00
40 0.92 0.92 0.95 0.94 1.00 1.00 1.00 1.00
60 0.96 0.96 0.95 0.95 1.00 1.00 1.00 1.00
80 0.92 0.93 0.94 0.95 1.00 1.00 1.00 1.00
0’s 0.93 0.94 0.93 0.93 0.07 0.06 0.07 0.07
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Table 4.5: Oracle estimation for Example 3, with n = 300, p = 400.
Truth Est Boot SE Emp sd

τ 0.24 0.39 0.54 0.69 0.24 0.39 0.54 0.69 0.24 0.39 0.54 0.69 0.24 0.39 0.54 0.69
Int 0 0 0 0 -0.08 0.05 0.02 0.16 1.09 1.10 1.16 1.11 1.01 0.93 0.99 1.04

1 0 0 0.60 1.88 0.01 0.04 0.73 1.83 0.56 0.62 0.77 0.83 0.49 0.50 0.71 0.77
4 -2.57 -1.14 -0.01 0 -2.43 -1.10 -0.19 0.01 0.79 0.75 0.70 0.59 0.84 0.73 0.63 0.49
8 2 2 2 2 1.99 1.98 1.98 2.02 0.33 0.34 0.37 0.35 0.30 0.33 0.35 0.33

15 1.5 1.5 1.5 1.5 1.51 1.49 1.49 1.51 0.33 0.34 0.37 0.35 0.30 0.30 0.36 0.30
25 1.5 1.5 1.5 1.5 1.51 1.52 1.51 1.52 0.33 0.34 0.36 0.35 0.30 0.31 0.35 0.32

Table 4.6: Estimation by Fused-HDCQR.
Est SE Emp sd

τ 0.24 0.39 0.54 0.69 0.24 0.39 0.54 0.69 0.24 0.39 0.54 0.69 Sel freq
Int -0.12 0.13 0.27 0.56 0.88 0.91 0.89 0.85 0.92 0.96 1.00 1.09 0.00

1 0.11 0.29 0.89 1.86 0.50 0.56 0.64 0.72 0.55 0.60 0.71 0.83 0.90
4 -2.42 -1.26 -0.50 -0.16 0.71 0.67 0.58 0.51 0.68 0.66 0.60 0.51 1.00
8 2.00 2.00 2.01 2.02 0.27 0.28 0.30 0.30 0.27 0.29 0.30 0.32 1.00

15 1.54 1.53 1.51 1.50 0.29 0.29 0.30 0.30 0.29 0.29 0.29 0.29 0.90
25 1.47 1.46 1.45 1.46 0.29 0.29 0.30 0.30 0.29 0.31 0.33 0.33 0.88
0’s 0.00 -0.00 -0.00 -0.00 0.28 0.29 0.29 0.30 0.28 0.28 0.29 0.29 0.02

Table 4.7: Inference by Fused-HDCQR.
Cov prob Power

τ 0.24 0.39 0.54 0.69 0.24 0.39 0.54 0.69
Int 0.89 0.92 0.89 0.77 0.11 0.08 0.11 0.23

1 0.94 0.91 0.87 0.90 0.06 0.09 0.27 0.72
4 0.92 0.92 0.87 0.91 0.94 0.46 0.14 0.09
8 0.95 0.94 0.94 0.91 1.00 1.00 1.00 1.00

15 0.96 0.95 0.92 0.90 1.00 1.00 1.00 1.00
25 0.93 0.93 0.92 0.92 1.00 1.00 1.00 0.99
0’s 0.93 0.93 0.93 0.93 0.07 0.07 0.07 0.07

Table 4.8: Demographic table of the lung cancer SNP data.
Variable Mean SD Count (%)

Age 60 10.8 -
Female (vs. male) - - 259 (38.4)

White (vs. non-white) - - 635 (94.2)
Education level
< High school - - 93 (13.8)

High school - - 171 (25.4)
> High school - - 410 (60.8)

Smoking
Never - - 64 (9.5)

Past - - 354 (52.5)
Current - - 256 (38)
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APPENDIX A

Chapter II Supplementary Material

Lemmas and Proofs

Proof of Theorem II.2. Our estimator for β0
j by the one-time SPARE is

β̃j =
{

(X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
Y 1
}
j
.

Here D1 = (X1, Y 1) with sample size bn/2c, for notational simplicity, we denote

m = bn/2c within this proof.

By (A3), with probability at least 1 − o(m−c2−1), the selection S ⊃ S0,n. Since

the two halves of data D1 and D2 are mutually exclusive, (X1, Y 1) ⊥ S. Thus given

S ⊃ S0,n and X1, the OLS estimator β̃1 = (X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
Y 1 is unbiased,

E
(
β̃1
∣∣∣S,X1

)
=E

(
(X1

S∪j
T
X1
S∪j)

−1X1
S∪j

T
X1β0

∣∣∣S,X1
)

+ E
(

(X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
X1ε1

∣∣∣S,X1
)

=E
(

(X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
X1
S∪jβ

0
S∪j

∣∣∣S,X1
)

+ E
(
ε1
∣∣S,X1

)
=β0

S∪j.

75



In addition, Var
(
β̃1
∣∣∣S,X1

)
= σ2Σ−1

S∪j/m, which is bounded by assumption (A1).

Thus,
√
m(β̃1 − β0

S∪j)
∣∣∣S,X1 d−→ N(0, σ2Σ−1

S∪j).

Furthermore,
√
m(β̃j − β0

j )
∣∣∣S,X1 d−→ N(0, σ̃2

j ),

where σ̃2
j = σ2

(
Σ−1
S∪j

)
jj

.

Next we show the uniform convergence of
√
m(β̃j − β0

j )/σ̃j with respect to j, S

and X1. From the partial regression formulation of β̃j, if S ⊃ S0,n,

β̃j − β0
j =

X1
j

T
(Im −H1

S\j)ε
1

X1
j

T
(Im −H1

S\j)X
1
j

=
m

X1
j

T
(Im −H1

S\j)X
1
j

X1
j

T
(Im −H1

S\j)ε
1

m
. (A.1)

By Lemma (A.1),

m

X1
j

T
(Im −H1

S\j)X
1
j

=
(

Σ̂−1
S∪j

)
jj
→
(

Σ−1
S∪j

)
jj
,

and ∀j, S,

∣∣∣∣ m

X1
j
T

(Im−H1
S\j)X

1
j

∣∣∣∣ ≤ 2/cmin. Moreover, the second term of the right hand

side in (A.1) is the mean of i.i.d. x̃1
ijε

1
i ’s, where (x̃1

ij)i=1,..,m = X1
j (Im −H1

S\j). Since

E|εi|3 ≤ ρ0 and X1
j (Im −H1

S\j) is the projection vector of X1
j ,

E|X1
j (Im −H1

S\j)|3∞ ≤ E|X1
j |3∞ ≤ ρ1.

By the Berry-Esseen Theorem, ∀j, X and S ⊃ S0,n,

|Fn(x)− Φ(x)| ≤
(

2

cmin

)3
Cρ0ρ1

σ̃3
j

√
m
≤ 8c

3/2
maxCρ0ρ1

c3
minσ

3
√
m
,

where Fn(x) is the CDF of
√
m(β̃j−β0

j )/σ̃j and Φ(x) is the CDF of standard normal.
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Thus as m→∞, with probability at least 1− o(m−c2−1),

√
m(β̃j − β0

j )/σ̃j → N(0, 1).

Proof of Theorem II.4. We first introduce the oracle SPARE estimators of β0
j ’s, i.e.

the ones we would compute if we knew the true active set S0,n,

β̂0
j =

{
(XS0,n∪j

TXS0,n∪j)
−1XS0,n∪j

TY
}
j

β̂bj,S0,n
=
{

(Xb
S0,n∪j

T
Xb
S0,n∪j)

−1Xb
S0,n∪j

T
Y b
}
j
,

which are estimations on the original data (X, Y ) and the bootstrap half data Db
1,

respectively. Since β̂0
j is the least square corresponding to Xj when regressing Y on

XS0,n∪j, we have for each j

W 0
j =
√
n(β̂0

j − β0
j )/σj

d−→ N(0, 1) as n→∞, (A.2)

where σ2
j = σ2

(
Σ−1
S0,n∪j

)
jj

that corresponds to subscript j. By Cauchy’s interlacing

theorem (Proposition A.3), σ2/cmax ≤ σ2
j ≤ σ2/cmin, and thus it is bounded away

from zero and infinity.

Now we consider the behavior of the selections Sb’s from Db
2’s. For each b =

1, 2, ..., B, the subsample Db
2 consists of mb ≥ n/2 distinct observations from the

original data that are not drawn in the bootstrap half dataset Db
1. In other words, Db

2

can be regarded as a sample of mb i.i.d. observations from the population distribution.

In addition, since mb is independent of the observations, with a conditional argument
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on mb, the following holds for each b by (B3),

P(Sb = S0,n)

=

∫
P(Sb = S0,n|mb = m)dP(m)

≥
∫ {

1− o(m−c2−1)
}

dP(m)

≥1− o{(n/2)−c2−1}

=1− o(n−c2−1).

Next, we decompose β̂j into two parts:

β̂j =
1

B

B∑
b=1

β̂bj

=
1

B

B∑
b=1

β̂bj,S0,n
+

1

B

∑
b:Sb 6=S0,n

(
β̂bj − β̂bj,S0,n

)
,

(A.3)

and equivalently

√
n(β̂j − β0

j )

=
√
n
( 1

B

B∑
b=1

β̂bj,S0,n
− β0

j

)
+

√
n

B

∑
b:Sb 6=S0,n

(
β̂bj − β̂bj,S0,n

)
.
=Z0

j + ∆j.

(A.4)

To show ∆j = op(1), we write

∆j =
1

B

B∑
b=1

1(Sb 6= S0,n)
√
n
(
β̂bj − β̂bj,S0,n

)
;

∆j =
1

B

B∑
b=1

δb; δb
.
= 1(Sb 6= S0,n)

√
n
(
β̂bj − β̂bj,S0,n

)
.
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By Corollary (A.2),

Eδb =P(Sb 6= S0,n)E
√
n
(
β̂bj − β̂bj,S0,n

)
=o
(
n−c2−12Cβn

c1+ 1
2

)
=o
(
n−c2+c1− 1

2

)
→0 as n→∞.

Similarly,

Varδb =P(Sb 6= S0,n)En
(
β̂bj − β̂bj,S0,n

)2

=o
(
n−c2−14C2

βn
2c1+1

)
=o(n−c2+2c1)

→0 as n→∞.

Thus δb = op(1) for all b ∈ [B]. Furthermore, since E∆j = Eδb and Var∆j ≤ Varδb,

we have ∆j = op(1).

Next, we show the convergence of Z0
j . Notice that

Z0
j /σj = W 0

j +
√
n
( 1

B

B∑
b=1

β̂bj,S0,n
− β̂0

j

)
/σj

.
= W 0

j + TBn /σj.

By (A.2), we are only left to show TBn = op(1). Define tn,b =
√
n
(
β̂bj,S0,n

− β̂0
j

)
, then

TBn =
√
n( 1

B

∑B
b=1 β̂

b
j,S0,n

− β̂0
j ) = 1

B

∑B
b=1 tn,b. Recall that β̂bj,S0,n

is the bootstrap

statistic of β̂0
j , so its conditional mean is β̂0

j and conditional variance is

σ̂2
{

(XT
S0,n∪jXS0,n∪j)

−1
}
jj

= σ̂2
(

Σ̂−1
S0,n∪j

)
jj
/n

.
= σ̂2

j/n,

where σ̂2 = ‖(In − HS0,n)Y ‖2
2/n (Freedman et al. (1981)). Thus, conditional on the
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data, {tn,b}b=1,2,..,B are i.i.d. with

E
(
tn,b|(X(n), Y (n))

)
= 0, Var

(
tn,b|(X(n), Y (n))

)
= σ̂2

j = σ̂2
(

Σ̂−1
S0,n∪j

)
jj
.

We now argue that with probability going to 1, σ̂2
j ’s, j = 1, 2, .., p, are bounded.

First, P(σ̂2 < 2σ2)→ 1 as n→∞. Then,

(
Σ̂−1
S0,n∪j

)
jj
≤ λmax(Σ̂−1

S0,n∪j) = 1/λmin(Σ̂S0,n∪j), (A.5)

whenever λmin(Σ̂S0,n∪j) > 0. Assumption (B3) implies |S0,n|/n ≤ η. By Lemma (A.4)

from Vershynin (2010) and Lemma (A.7), letting ε = cmin/2 and t2 = c2
minη/C for

some constant C only depending on the sub-Gaussian norm ‖xi‖ψ2 , we have that with

probability at least 1− 2 exp(−c2
minηn

γ0/C)

λmin(Σ̂S0,n∪j) ≥ λmin(ΣS0,n∪j)− cmin/2 ≥ λmin(Σ)− cmin/2 ≥ cmin/2, (A.6)

where the second inequality follows the interlacing property of the eigenvalues. Com-

bining (A.5) and (A.6),
(

Σ̂−1
S0,n∪j

)
jj
≤ 2/cmin with probability going to 1 exponentially

fast in n, and consequently σ̂2
j < 4σ2/cmin. Now define

Ωn = {(X(n), Y (n)) = (xi, yi)i=1,2,..,n : σ̂2
j < 4σ2/cmin,∀j = 1, 2, ..., p}.

Since p = O(nγ1) for some γ1 > 1, P{(X(n), Y (n)) ∈ Ωn} → 1 as n → ∞. Thus

∀(X(n), Y (n)) ∈ Ωn, Var
{
tn,b|(X(n), Y (n))

}
≤ 4σ2/cmin. Furthermore,

Var
{
TBn |(X(n), Y (n))

}
=

1

B2

B∑
b=1

Var
{
tn,b|(X(n), Y (n))

}
≤ 4σ2

Bcmin
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Thus, ∀δ, ζ > 0, ∃N0, B0 > 0 such that ∀n > N0, B > B0,

P(|TBn | ≥ δ)

≤
∫

Ωn

P
{
|TBn | ≥ δ

∣∣(X(n), Y (n))
}

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤
∫

Ωn

Var
{
TBn |(X(n), Y (n))

}
δ2

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤ 4σ2

B0δ2cmin

∫
Ωn

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤ζ/2 + ζ/2

≤ζ.

Finally, combining this with (A.2), we have

Z0
j /σj = W 0

j + TBn /σj
d−→ N(0, 1) as B, n→∞.

Proof of Theorem II.5. Follow the previous proof, we replace the arguments in j with

those in S(1). The oracle estimators are

β̂0
S(1) =

(
(XS0,n∪S(1)

TXS0,n∪S(1))−1XS0,n∪S(1)
TY
)
S(1)

β̂bS(1),S0,n
=
(

(Xb
S0,n∪S(1)

T
Xb
S0,n∪S(1))

−1Xb
S0,n∪S(1)

T
Y b
)
S(1)

.

Notice that |S(1)| = p1 = O(1), as n → ∞, |S0,n ∪ S(1)| = O
(
|S0,n|

)
= o(n), so that

the above quantities are well-defined. Next

W (1) =
√
n{Σ(1)}−1(β̂0

S(1) − β0
S(1))

d−→ N(0, Ip1) as n→∞,

where Σ(1) = σ2
(

Σ−1
S0,n∪S(1)

)
S(1)

. Similar to (A.4), we decompose
√
n(β̂S(1) − β0

S(1))
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into three parts:
√
n(β̂S(1) − β0

S(1))

.
=Z(1) + ∆

(1)
0 + ∆

(1)
1 .

For the sake of space, we prefer not to write out these quantities, but it is straight-

forward analog that ∆
(1)
0 = ∆

(1)
1 = op(1p1) and Σ(1)−1

Z(1) −W (1) = op(1p1) as well,

which completes the proof.

Technical details on useful definitions, lemmas and related proofs.

Lemma A.1. Assume X = (X1, ..., Xp) = (xT
1 , ..., x

T
n )T where xi’s are i.i.d. copies

of a sub-Gaussian random vector in Rp with covariance matrix Σp×p, with

0 < cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ cmax <∞.

For any subset S ⊂ {1, 2, .., p} with |S| ≤ ηn, 0 < η < 1, and ∀j ∈ S, with probability

at least 1− 2 exp(− ε2η
CK
n),

cmin

2
≤ 1

n
XT
j (In −HS\j)Xj ≤ cmax +

1 + cmin

2

where ε = min(1
2
, cmin

2
) and CK is the constant depends only on the sub-Gaussian

norm K = ‖xi‖ψ2.

Corollary A.2. Given model (1) and assumptions (A1,A2), consider the partial

regression estimator on (X, Y ) given subset S. If |S| ≤ ηn, 0 < η < 1, then with

probability at least 1− 2 exp(− ε2η
CK
n),

β̂j ≤ Cβn
c1 ,

where Cβ depends on cmin, cmax, cβ.
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Proposition A.3 (Cauchy interlacing theorem). Let A be a symmetric n×n matrix.

The m ×m matrix B, where m ≤ n, is called a compression of A if there exists an

orthogonal projection P onto a subspace of dimension m such that PTAP = B. The

Cauchy interlacing theorem states:

if the eigenvalues of A are λ1 ≤ ... ≤ λn, and those of B are ν1 ≤ ... ≤ νm, then for

all j < m+ 1,

λj ≤ νj ≤ λn−m+j

Proposition A.4 (Corollary 5.50 in Vershynin (2010)). Consider a n × q matrix

X whose rows xi’s are i.i.d. samples from a sub-Gaussian distribution in Rq with

covariance matrix Σ, and let ε ∈ (0, 1), t ≥ 1. Denote the sample covariance matrix

as Σ̂n = XTX/n Then with probability at least 1− 2 exp(−t2q) one has

If n ≥ C(t/ε)2q then ‖Σ̂n − Σ‖ ≤ ε.

Here C = CK depends only on the sub-Gaussian norm K = ‖xi‖ψ2 of a random vector

taken from this distribution.

Definition A.5. The sub-Gaussian norm of a random variable V is defined as

‖V ‖ψ2 = sup
k≥1

k−1/2(E|V |k)1/k

then the sub-Gaussian norm of a random vector V in Rq is defined as

‖V ‖ψ2 = sup
x∈Sq−1

‖V Tx‖ψ2

Remark A.6. Assume V0 = (v1, v2, ..., vq) is a sub-Gaussian random vector in Rq, and

V1 = (v1, v2, ..., vr), r < q is the sub-vector of V0. By taking x = (x1, .., xr, 0, .., 0) ∈

Sq−1, we have ‖V1‖ψ2 ≤ ‖V0‖ψ2 .
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Corollary A.7. For two n×n positive definite matrices Σ1 and Σ2, if ‖Σ1−Σ2‖ ≤ ε,

then

λmin(Σ2) ≥ λmin(Σ1)− ε

λmax(Σ2) ≤ λmax(Σ1) + ε.

Proof. On one hand, ∀n−vector X with ‖X‖2 = 1,

ε ≥‖Σ1 − Σ2‖

≥‖(Σ1 − Σ2)X‖2

≥‖Σ1X‖2 − ‖Σ2X‖2

then take X to be the eigenvector for λmin(Σ2), we have

λmin(Σ2) =‖Σ2X‖2

≥‖Σ1X‖2 − ε

≥λmin(Σ1)− ε.

On the other hand,

λmax(Σ2) =‖Σ2‖

≤‖Σ1‖+ ‖Σ2 − Σ1‖

≤‖Σ1‖+ ε

=λmax(Σ1) + ε

Proof of lemma (A.1). Note that

n

XT
j (In −HS\j)Xj

is the (j, j)th entry of Σ̂−1
S , where Σ̂S = (XT

SXS)/n is the sample covariance matrix
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corresponds to subset S. Therefore

1

λmax(Σ̂S)
≤ n

XT
j (In −HS\j)Xj

≤ 1

λmin(Σ̂S)
.

Refer to Corollary 5.50 in Vershynin (2010) and choose ε = min(1
2
, cmin

2
). Then with

probability at least 1− 2 exp(− ε2η
CK
n),

‖Σ̂S − ΣS‖ ≤ ε.

By Corollary (A.7) and Cauchy interlacing theorem,

λmin(Σ̂S) ≥ λmin(ΣS)− ε ≥ λmin(Σ)− ε ≥ cmin/2,

and

λmax(Σ̂S) ≤ λmax(ΣS) + ε ≤ λmax(Σ) + ε ≤ cmax + (1 + cmin)/2.

Thus, with high probability,

cmin

2
≤ 1

n
XT
j (In −HS\j)Xj ≤ cmax +

1 + cmin

2

Proof of Corollary (A.2). From Lemma (A.1), we can bound β̂j as below:

β̂j =
XT
j (I −HS\j)Y

XT
j (I −HS\j)Xj

=
n

XT
j (I −HS\j)Xj

XT
j (I −HS\j)XS0,nβ

0
S0,n

n

≤ 2

cmin

cβ
∑

k∈S0,n
|XT

j (I −HS\j)Xk|
n

≤ 2

cmin

cβ
(
cmax +

1 + cmin

2

)
nc1 .
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Let Cβ =
2cβ
cmin

(
cmax + 1+cmin

2

)
, we complete the proof.

Additional Simulation Results
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Table A.1: Comparisons of SPARES and one-time SPARE based on 200 replications.
Bias (SE) is displayed in each cell. LSE refers to least square estimation
as if S0,n were known.
Index β0

j SPARES One-time SPARE LSE

199 1.00 0.03(0.16) -0.02(0.26) 0.03(0.16)
243 -1.00 -0.02(0.16) 0.03(0.26) -0.02(0.16)
256 1.00 -0.002(0.16) -0.007(0.26) -0.002(0.16)
0’s 0.00 0.000(0.16) -0.001(0.26)

Figure A.1: Performance of SPARES under simulation Example 2.1. X-axis is the
variable index. Topleft: Average estimates and average CIs V.S. true
signals. Topright: Bias of SPARES estimates for each j, red dots are
non-zero signals, dashed lines indicate blocks of the predictors. Bot-
tomleft: Coverage probability of β0 for each j w.r.t. 0.95 norminal level.
Bottomright: Empirical probability of not rejecting H0 : β0

j = 0.
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Figure A.2: Performance of SPARES under simulation Example 2.2.
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Figure A.3: Comparisons of SPARES with LASSO-Pro and SSLASSO under simula-
tion Example 4. Left panels: Mean estimates from each method and the
true signals. Right panels: Coverage probabilities for each j ∈ S0,n and
20 representatives of j /∈ S0,n.
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Figure A.4: Correlation among predictors: left panel - riboflavin data; right panel -
multiple myeloma data.
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Figure A.5: Results of the riboflavin genomic data analysis. Left panel: selection
frequency of each gene; Right panel: confidence intervals of the top five
most significant genes.

Figure A.6: Results of the Multiple Myeloma genomic data analysis. Left panel:
selection frequency of each gene; Right panel: confidence intervals of the
top two most significant genes.
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APPENDIX B

Chapter III Supplementary Material

Proofs

Proof of Theorem III.2. From the data split, D1 and D2 are mutually exclusive, thus

S, from D2, is independent of D1 = (Y 1, X1). Given X1 and for S ⊃ S0 under

assumption (A3), the MLE β̃1 in (3.4) follows the classic low dimensional convergence.

So does its scalar component β̃j. Thus the key is to show the asymptotic normality

is uniform with respect to S, X1 and j. We reiterate that

β̃1 = argmin `S+j
(βS+j

) = argmin `(βS+j
;Y 1, X1

S+j
);

β̃j =
(
β̃1
)
j
; β̃ = (β̃0, β̃1, .., β̃p).

When S ⊃ S0, β̃1 satisfies
√
n1Î

1/2
S+j

(
β̃1 − β∗S+j

)
| S,X1 → N(0, I), where ÎS+j

=

XS+j

T
VS+j

XS+j
/n1, with VS = diag{A′′(xiSβS), .., A′′(xiSβS)}. Thus its component

β̃j follows
√
n1

(
β̃j − β∗j

)
/σ̃j | S,X1 → N(0, 1), where σ̃2

j =
{
Î−1
S+j

}
jj

.

To derive the uniform convergence in j and S, we refer to Theorem 5 of Niemiro

(1992), which gives a precise approximation of the convergence of M-estimators.
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Treating β̃1 as the M-estimator, with our notations, there exists 0 ≤ t < 1,

√
n1

(
β̃1 − β∗S+j

)
=− {I∗S+j

}−1√n1US+j
(β∗S+j

) +O
(
n
−(1+t)/4
1 (log n1)1/2(log log n1)(1+t)/4

)
.

(B.1)

Furthermore, in the GLM case, t can approach 1, meaning the remainder term can

be of order close to O(n
−1/2
1 ). More importantly, the order of this remainder term

only depends on the sample size n1, but not on j or S.

Now we write

√
n1

(
β̃j − β∗j

)
/σ̃j = φn1 + ξn1 ,

where φn1 corresponds to the first term on the right hand side in (B.1) and ξn1 is the

remainder term. When S ⊃ S0, by assumption (A1) and Lemma (B.1), σ̃j is bounded

away from zero and infinity with probability going to 1 uniformly in j and S.

By the Berry-Esseen Theorem, under assumptions (A1) and (A2), |Fn1(x) −

Φ(x)| ≤ C√
n1
, where Fn1(x) is the CDF of φn1 , Φ(x) is the CDF of the stand nor-

mal, and C only depends on cmin, cmax, ρ0, and ρ1. Together with ξn1 = O(n−t
′

1 ) for

some t′ < 1/2, t′ → 1/2, we have

√
n1

(
β̃j − β∗j

)
/σ̃j → N(0, 1).

Proof of Theorem III.3. We define the oracle estimators of β∗j on the full data (Y,X)

and the b-th subsample Db
1 respectively, where the candidate set is the true set S0:

βoS0+j
= argmin `S0+j

(βS0+j
) = argmin `S0+j

(βS0+j
;Y,XS0+j

), βoj = {βoS0+j
}j;

βbS0+j
= argmin `bS0+j

(βS0+j
) = argmin `S0+j

(βS0+j
;Y 1(b), X

1(b)
S0+j

), βbj = {βbS0+j
}j.
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For each j ∈ [p],

W ∗
j =
√
n(βoj − β∗j )/

√
I∗j|S0

d−→ N(0, 1) as n→∞, (B.2)

where I∗j|S0
is defined as in (3.3). By Cauchy’s interlacing theorem, cmin ≤ I∗j|S0

≤ cmax,

and thus it is bounded away from zero and infinity.

With the oracle estimates βbj ’s, we have the following decomposition:

√
n(β̂j − β∗j ) =

1

B

B∑
b=1

√
n(β̃bj − β∗j )

=
1

B

B∑
b=1

√
n(βbj − β∗j ) +

1

B

∑
b:Sb 6=S0

√
n(β̃bj − βbj)

.
= Z∗j + ∆j.

(B.3)

First we show ∆j = op(1) by writing ∆j = 1
B

∑B
b=1 δb; δb

.
= 1(Sb 6= S0)

√
n
(
β̃bj−βbj

)
.

By Corollary (B.2), E δb = P(Sb 6= S0)E
√
n
(
β̃bj − βbj

)
= o

(
n−c2−12Cβn

c1+ 1
2

)
=

o
(
n−c2+c1− 1

2

)
→ 0 as n → ∞. Similarly, Vδb = P(Sb 6= S0)En

(
β̃bj − βbj

)2

=

o
(
n−c2−14C2

βn
2c1+1

)
= o(n−c2+2c1) → 0 as n → ∞. Thus δb = op(1) for all b ∈ [B].

Furthermore, since E ∆j = E δb and V∆j ≤ Vδb, we have ∆j = op(1).

Next, we show the convergence of Z∗j . Notice that

Z∗j /
√
I∗j|S0

= W ∗
j +
√
n
( 1

B

B∑
b=1

βbj − βoj
)
/
√
I∗j|S0

.
= W ∗

j + TBn /
√
I∗j|S0

. (B.4)

By (B.2) and that I∗j|S0
is bounded, we are only left to show TBn = op(1). Define

tn,b =
√
n
(
βbj − βoj

)
, then TBn =

(∑B
b=1 tn,b

)
/B. Since βbj is estimated on the random

subsample Db
1, its conditional mean is βoj and conditional variance is Î−1

j|S0
/n1. Thus,

conditional on the data (Y,X) = (X(n), Y (n)), {tn,b}b=1,2,..,B are i.i.d. with

E
(
tn,b|(X(n), Y (n))

)
= 0, V

(
tn,b|(X(n), Y (n))

)
=

n

n1

Î−1
j|S0

= Î−1
j|S0

/q.
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By Lemma (B.1), with probability at least 1 − 2 exp(−ε2ηn/CK) for some constant

CK and ε = min(1
2
, cmin

2
), cmin/2 ≤ Îj|S0 ≤ cmax + (1 + cmin) /2.

Therefore, Î−1
j|S0
≤ 2/cmin with probability going to 1 exponentially fast in n. Now

define

Ωn = {(X(n), Y (n)) = (xi, yi)i=1,2,..,n : Î−1
j|S0
≤ 2/cmin,∀j ∈ [p]}.

Since p = O(nγ1) for some γ1 > 1, P{(X(n), Y (n)) ∈ Ωn} → 1 as n → ∞. Thus

∀(X(n), Y (n)) ∈ Ωn, V
{
tn,b|(X(n), Y (n))

}
. 2/cmin. Furthermore,

V
{
TBn |(X(n), Y (n))

}
=

1

B2

B∑
b=1

V
{
tn,b|(X(n), Y (n))

}
≤ 2

Bqcmin

.

Thus, ∀δ, ζ > 0, ∃N0, B0 > 0 such that ∀n > N0, B > B0,

P(|TBn | ≥ δ)

≤
∫

Ωn

P
{
|TBn | ≥ δ

∣∣(X(n), Y (n))
}

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤
∫

Ωn

V
{
TBn |(X(n), Y (n))

}
δ2

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤ 2

B0δ2qcmin

∫
Ωn

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤ζ/2 + ζ/2

≤ζ.

Finally, combining this with (B.2), we have

Z∗j /
√
I∗j|S0

= W ∗
j + TBn /

√
I∗j|S0

d−→ N(0, 1) as B, n→∞.

Proof of Theorem III.4. Follow the previous proof, we replace the arguments in j
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with those in S(1). The oracle estimators are

βoS(1)∪S0
= argmin `S(1)∪S0

(βS(1)∪S0
;Y,XS(1)∪S0

), βoS(1) = {βoS(1)∪S0
}S(1) ;

βbS(1)∪S0
= argmin `S(1)∪S0

(βS(1)∪S0
;Y 1(b), X

1(b)

S(1)∪S0
), βbS(1) = {βbS(1)∪S0

}S(1) .

Notice that |S(1)| = p1 = O(1), as n → ∞, |S0 ∪ S(1)| = O
(
|S0|
)

= o(n), so that the

above quantities are well-defined. The oracle estimator satisfies

W (1) =
√
n
{
I∗S(1)|S0

}−1/2 (
βoS(1) − β∗S(1)

) d−→ N(0, Ip1) as n→∞,

Similar to (B.3,B.4), we decompose
√
n(β̂S(1) − β∗

S(1)) into three parts:

√
n(β̂S(1) − β∗S(1))

.
= W (1) + ∆

(1)
0 + ∆

(1)
1 .

For the interest of space, we do not spell out these quantities and the derivations,

but it is straightforward to show that |∆(1)
0 |1 = |∆(1)

1 |1 = op(1), which completes the

pro

Lemmas

Lemma B.1. Given model (3.1,3.2), and the corresponding information matrix at the

truth β∗, I∗ = E β∗ (∇2`(β∗)). Assume 0 < cmin ≤ λmin(I∗) ≤ λmax(I∗) ≤ cmax < ∞.

For any subset S ⊂ {1, 2, .., p} with |S| ≤ ηn, 0 < η < 1, and ∀j ∈ S, define the

partial information as Ij|S = Ijj−IjSjI−1
SjSj

ISjj, where Sj = S\j. Denote its empirical

estimator as Îj|S. Then with probability at least 1− 2 exp(− ε2η
CK
n),

cmin

2
≤ Îj|S ≤ cmax +

1 + cmin

2

where ε = min(1
2
, cmin

2
).
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Corollary B.2. Given model (3.1,3.2) and assumptions (A1,A2), consider the one-

time estimator as defined in (3.4,3.5). If |S| ≤ ηn, 0 < η < 1, then with probability

at least 1− 2 exp(− ε2η
CK
n),

β̃j ≤ Cβn
c1 ,

where Cβ depends on cmin, cmax, cβ.
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APPENDIX C

Chapter IV Supplementary Material

Lemmas and Proofs

We first introduce two useful lemmas, before proving the main theorem.

Lemma C.1. Assuming the quantile regression model (4.1) with true parameter vec-

tor β∗(τ), τ ∈ (0, τU ], and observed data D = {(Xi,∆i,Zi), i = 1, 2, .., n}, where

X = min{T,C},∆ = I(T ≤ C) and C is conditionally independent given Z. For a

fixed subset S satisfying S∗ ⊂ S ⊂ [p], and |S| ≤ K1n
c1 for some 0 ≤ c1 < 1/2 and

K1 ≤ 1, denote the partial data D(S) = {(Xi,∆i,ZS,i), i = 1, 2, .., n} that includes

only covariates j ∈ S. Let β́S(τ), τ ∈ [τL, τU ] be the estimator from Peng and Huang

(2008) of fitting the censored quantile regression on D(S) with the τ grid Γm. Under

assumptions (A1)-(A4),(A6),(A7),(A8), then for any j ∈ S,

√
n
(
β́j(τ)− β∗j (τ)

)
, τ ∈ [τL, τU ]

converges weakly to a mean zero Gaussian process.
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Proof. The estimator β́j(τ) is the entry in β́S(τ) for variable Zj, which is fitted from

QY (τ |ZS) = ZT
SβS(τ).

Denote θiS(τ) = ZT
iSβS(τ) and θ∗iS(τ) = ZT

iSβ
∗
S(τ) for subject i in D(S) and the fixed

set S satisfying conditions in the lemma, then β́S(τ) is the solution to the following

estimating equation as in Peng and Huang (2008),

n1/2Un(βS, τ) = 0,

where

Un(βS, τ) = n−1

n∑
i=1

Zi

(
Ni (θiS(τ))−

∫ τ

0

I[logXi ≥ θiS(u)]dH(u)

)
.

Let u(βS, τ) = E {Un(βS, τ)}, the martingale property gives u(β∗S, τ) = 0, τ ∈ Γm.

We further define µS(b) = E [ZSN(ZT
Sb)], BS(b) = E [Z⊗2

S × g{ZT
Sb|ZS}(ZT

Sb)],

and JS(b) = E [Z⊗2
S × f{ZT

Sb|ZS}(ZT
Sb)] for vector b of length |S|. By Theorem 2

of Peng and Huang (2008), −n−1/2Un(β∗S, τ) converges weakly to a tight Gaussian

process, GS(τ), with mean 0 and covariance ΣS(s, t) for τ ∈ [τL, τU ], where ΣS(s, t) =

E {ıiS(s)ıiS(t)T} with

ıiS(τ) = ZiS

(
Ni (θ

∗
iS(τ))−

∫ τ

0

I[logXi ≥ θ∗iS(τ)]du

)
.

Because given S ⊃ S∗, θ∗iS(τ) = θ∗iS∗(τ), ΣS(s, t) depends on the set S only through

ZS as in the expression of ıiS(τ). The restricted eigenvalue condition implies that

[BS{β∗S(τ)}]−1 is bounded uniformly for τ ∈ [τL, τU ]. By the Taylor expansion tech-

nique and the continuous mapping theorem, for τ ∈ [τL, τU ],
√
n
(
β́S(τ)− β∗S(τ)

)
converges weakly to BS{β∗S(τ)}−1φ{GS(τ)}, which is also Gaussian, where φ is de-
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fined in Peng and Huang (2008) and we reiterate here that φ is a map from F to F

such that for g ∈ F ,

φ(g)(τ) =

∫ τ

0

I(s, τ)dg(s),

with I(s, t) = Πu∈[s,t][Ip + J{β∗(u)}B{β∗(u)}−1dH(u)] and

F = {g : [0, τU ]→ Rp,g is left-continuous with right limit, g(0) = 0}.

Consequently, β́j(τ), as the component of β́S(τ), satisfies that
√
n
(
β́j(τ)− β∗j (τ)

)
converges weakly to eT

j BS{β∗S(τ)}−1φ{GS(τ)}, with ej = (0, .., 1, .., 0)T the basis

vector for variable Zj, which is still mean 0 Gaussian.

Lemma C.2. Bound of coefficient estimates Given data D = {(Xi,∆i,Zi), i =

1, 2, .., n}, and a subset S ⊂ [p] with |S| ≤ K1n
c1 for some 0 ≤ c1 < 1/2 and

K1 ≤ 1, denote the partial data D(S) = {(Xi,∆i,ZS,i), i = 1, 2, .., n} that includes

only covariates j ∈ S as predictors. Let β́S(τ), τ ∈ [τL, τU ] be the estimator from

Peng and Huang (2008) of fitting model (4.1) on D(S). Under assumptions (A1)-

(A3),(A6),(A7),(A8), there exists constant M0 > 0, such that supj∈S,τ∈[τL,τU ] |β́j(τ)| <

M0.

Proof. From Peng and Huang (2008), β́S(τ) is sequentially estimated for τk ∈ Γm,

k = 0, 1, ..,m by solving the following minimization problem of an L1-type convex

objective function for h at k,

Lk(h) =
n∑
i=1

∆i

∣∣logXi − hTZi

∣∣+

∣∣∣∣∣M∗ − hT

n∑
i=1

(−∆iZi)

∣∣∣∣∣
+

∣∣∣∣∣M∗ − hT

n∑
i=1

2Zi

(
k−1∑
r=0

∫ τr+1

τr

I[logXi ≥ ZT
i β́j(τr)]dH(u) + τ0

)∣∣∣∣∣ ,
where M∗ is a large positive number. Since β́S(τ) is defined as a right-continuous
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function on the grid Γm, to show the boundedness of β́j(τ)’s, we only need to argue

at the grid points τk’s. We first show Lk(h) is a coercive function in h, that is

Lk(h) → ∞ whenever ‖h‖ → ∞. Since Lk(h) ≥
∑n

i=1 ∆i

∣∣logXi − hTZi

∣∣, which

does not depend on τ or k, it is sufficient to show L(h) =
∑n

i=1 ∆i

∣∣logXi − hTZi

∣∣ is

coercive. By Proposition 12.3.1 in Lange (2004), a sufficient and necessary condition

is that L(h) is coercive along all nontrivial rays {h : h = tv, t ≥ 0}. The condition

is met because ∀v ∈ R|S|, L(tv) =
∑n

i=1 ∆i

∣∣logXi − tvTZi

∣∣ is an absolute value

function in t, and thus goes to infinity as t → ∞. Now let L0 = Lk(0), which does

not depend on k and is bounded, then the set {h : Lk(h) ≤ L0} is compact and

contains the minimizer β́S(τk). Thus there exists a uniform bound M0 > 0 depending

on L0, such that supj∈S,τ∈[τL,τU ] |β́j(τ)| < M0.

Now we are equipped to prove Theorem IV.3.

Proof of Theorem IV.3. We first introduce the oracle estimators of β∗j (τ)’s assuming

the true active set S∗ is known. Let β̌S∗+j(τ) be the oracle estimator by fitting the

following CQR on the full data,

QY (τ |ZS∗+j
) = ZT

S∗+j
βS∗+j(τ),

where S∗+j = {j}∪S∗. Then the oracle estimator β̌j(τ) =
(
β̌S∗+j(τ)

)
j

is the entry that

is the coefficient for variable Zj. Analogically, let β̌bj(τ) denote the oracle estimator

fitted on the b-th sub-sample Db
1 in the Fused-HDCQR procedure.
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The objective can be decomposed as below,

√
n
(
β̂j(τ)− β∗j (τ)

)
=
√
n
(
β̌j(τ)− β∗j (τ)

)
+
√
n
(
β̂j(τ)− β̌j(τ)

)
=
√
n
(
β̌j(τ)− β∗j (τ)

)
+
√
n

(
1

B

B∑
b=1

β̃bj(τ)− β̌j(τ)

)

=
√
n
(
β̌j(τ)− β∗j (τ)

)︸ ︷︷ ︸
I

+
√
n

(
1

B

B∑
b=1

β̌bj(τ)− β̌j(τ)

)
︸ ︷︷ ︸

II

+
√
n

(
1

B

B∑
b=1

{
β̃bj(τ)− β̌bj(τ)

})
︸ ︷︷ ︸

III

.

We will argue the asymptotic behavior of the three terms separately, as the first two

terms do not involve the selections Ŝb’s, instead deal with the oracle estimators and

the true active set S∗.

• I =
√
n
(
β̌j(τ)− β∗j (τ)

)
converges weakly to a mean zero Gaussian process;

• II =
√
n
(

1
B

∑B
b=1 β̌

b
j(τ)− β̌j(τ)

)
= op(1), uniformly in τ ∈ [τL, τU ];

• III =
√
n
(

1
B

∑B
b=1

{
β̃bj(τ)− β̌bj(τ)

})
= op(1), uniformly in τ ∈ [τL, τU ].

By Slutsky’s theorem for random processes (Theorem 18.10 in Van der Vaart (2000)),

if the above statements all hold, we would conclude that
√
n
(
β̂j(τ)− β∗j (τ)

)
, τ ∈

[τL, τU ] converges weakly to a mean zero Gaussian process.

a) Let S = S∗+j for each j ∈ [p], and by Lemma (C.1), I =
√
n
(
β̌j(τ)− β∗j (τ)

)
, τ ∈

[τL, τU ] converges weakly to a mean zero Gaussian process eT
j BS{β∗S(τ)}−1φ{GS(τ)},

with ej = (0, .., 1, .., 0)T ∈ R|S| the basis vector for variable Zj, and BS(·),φ(·),GS(·)

defined in the proof of Lemma (C.1). Denote its covariance as σ∗j (s, t), which is

uniformly bounded for s, t ∈ [τL, τU ].

b) To show II = op(1), we first denote ξb,n(τ) =
√
n
(
β̌bj(τ)− β̌j(τ)

)
, then II =(∑B

b=1 ξb,n(τ)
)
/B. Since Db

1’s are random sub-samples, ξb,n(τ)’s are i.i.d. conditional

on data. By Appendix C of Peng and Huang (2008), the conditional distribution
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of
√
n
(
β̌bj(τ)− β̌j(τ)

)
given the observed data is asymptotically the same as the

unconditional distribution of I =
√
n
(
β̌j(τ)− β∗j (τ)

)
, which is mean zero Gaussian

from part a). Thus E (ξb,n(τ)|D) → E (I) → 0 and Var (ξb,n(τ)|D) → σ∗j (τ, τ)
.
=

σ2
j (τ), as n→∞. Denote σ2

j = supτ∈[τL,τU ] σ
2
j (τ) <∞, then E (II|D)→ 0 uniform in

τ ∈ [τL, τU ], and for n large enough,

Var (II|D) =
1

B2

B∑
b=1

Var (ξb,n|D) ≤
2σ2

j (τ)

B
≤

2σ2
j

B
, τ ∈ [τL, τU ].

Now ∀δ, ζ > 0, ∃N0, B0 > 0 such that ∀τ ∈ [τL, τU ], n > N0, B > B0,

P(|II| ≥ δ)

≤
∫
D∈Ωn

P (|II| ≥ δ |D) dP(D)

≤
∫

Ωn

P (|II− E (II)| ≥ δ/2 |D) dP(D)

≤
∫

Ωn

Var (II |D)

δ2/4
dP(D)

≤
2σ2

j

B0δ2/4

∫
Ωn

dP(D)

≤ζ.

Thus, II = op(1) uniformly in τ ∈ [τL, τU ].

c) Each subsample Db
2 can be regarded as a random sample of dn/2e i.i.d. ob-

servations from the population distribution for which assumption (A5) hold, that is

|Ŝb| ≤ K1n
c1 and P

(
Ŝb = S∗

)
≥ 1−K2(p ∨ n)−1.

Notice that whenever Ŝb = S∗, the estimators based on the respective selections

are equivalent, β̃bj(τ) = β̌bj(τ),∀τ . Define ηb(τ) = I(Ŝb 6= S∗)
√
n
{
β̃bj(τ)− β̌bj(τ)

}
,

while omitting subscripts j for simplicity, then III =
(∑B

b=1 ηb(τ)
)
/B.

By Lemma (C.2), there exists M0 > 0 such that supτ∈[τL,τU ]

∣∣∣β̃bj(τ)− β̌bj(τ)
∣∣∣ ≤ 2M0
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for any Ŝb with |Ŝb| ≤ K1n
c1 . Therefore, by (A4) that n/p = o(1),

E (ηb(τ)) ≤ P
(
Ŝb 6= S∗

)√
n sup
b∈[B],τ∈[τL,τU ]

∣∣∣β̃bj(τ)− β̌bj(τ)
∣∣∣ ≤ 2M0

√
nK2(p ∨ n)−1 → 0;

Var (ηb(τ)) ≤ P
(
Ŝb 6= S∗

)
n sup
b∈[B],τ∈[τL,τU ]

∣∣∣β̃bj(τ)− β̌bj(τ)
∣∣∣2 ≤ 4M2

0nK2(p ∨ n)−1 → 0.

Although ηb(τ)’s are dependent, we further have

E (III) = E

{(
B∑
b=1

ηb(τ)

)
/B

}
≤ 2M0

√
nK2(p ∨ n)−1 → 0;

Var (III) =
1

B2

B∑
b=1

B∑
b′=1

Cov (ηb(τ), ηb′(τ)) ≤ 4M2
0nK2(p ∨ n)−1 → 0.

Thus III = op(1) uniformly in τ ∈ [τL, τU ] by definition, as ∀δ, ζ > 0, ∃N0 > 0 such

that ∀τ ∈ [τL, τU ], n > N0,

P(|III| ≥ δ)

≤P (|III− E (III)| ≥ δ/2)

≤Var (III)

δ2/4

≤16M2
0K2n

δ2p

≤ζ.
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Bühlmann, P., and B. Yu (2002), Analyzing bagging, The Annals of Statistics, 30 (4),
927–961.

106
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Van de Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure (2014), On asymptotically
optimal confidence regions and tests for high-dimensional models, The Annals of
Statistics, 42 (3), 1166–1202.

Van de Geer, S. A. (2008), High-dimensional generalized linear models and the lasso,
The Annals of Statistics, 36 (2), 614–645.

Van der Hage, J., L. van den Broek, C. Legrand, P. Clahsen, C. Bosch, E. Robanus-
Maandag, C. van de Velde, and M. Van de Vijver (2004), Overexpression of p70 s6
kinase protein is associated with increased risk of locoregional recurrence in node-
negative premenopausal early breast cancer patients, British Journal of Cancer,
90 (8), 1543–1550.

Van der Vaart, A. W. (2000), Asymptotic statistics, vol. 3, Cambridge university
press.

Vershynin, R. (2010), Introduction to the non-asymptotic analysis of random matri-
ces, arXiv preprint arXiv:1011.3027.

Wager, S., and S. Athey (2017), Estimation and inference of heterogeneous treat-
ment effects using random forests, Journal of the American Statistical Association,
113 (523), 1228–1242.

Wager, S., and S. Athey (2018), Estimation and inference of heterogeneous treat-
ment effects using random forests, Journal of the American Statistical Association,
113 (523), 1228–1242.

Wager, S., T. Hastie, and B. Efron (2014), Confidence intervals for random forests:
The jackknife and the infinitesimal jackknife, Journal of Machine Learning Re-
search, 15 (1), 1625–1651.

Wang, L., Y. Wu, and R. Li (2012), Quantile regression for analyzing heterogeneity
in ultra-high dimension, Journal of the American Statistical Association, 107 (497),
214–222.

Wang, T., C. C. Pan, J. R. Yu, Y. Long, X. H. Cai, X. De Yin, et al. (2013), Associ-
ation between tyms expression and efficacy of pemetrexed–based chemotherapy in
advanced non-small cell lung cancer: A meta-analysis, PLoS One, 8 (9), e74,284.

Wang, Y., P. Broderick, E. Webb, X. Wu, J. Vijayakrishnan, A. Matakidou, et al.
(2008), Common 5p15. 33 and 6p21. 33 variants influence lung cancer risk, Nature
Genetics, 40 (12), 1407–1409.

Wang, Y., P. Broderick, A. Matakidou, T. Eisen, and R. S. Houlston (2009), Role of
5p15. 33 (TERT-CLPTM1L), 6p21. 33 and 15q25. 1 (CHRNA5-CHRNA3) varia-
tion and lung cancer risk in never-smokers, Carcinogenesis, 31 (2), 234–238.

111



Wang, Y., Q. Dong, Q. Zhang, Z. Li, E. Wang, and X. Qiu (2010), Overexpression of
yes-associated protein contributes to progression and poor prognosis of non-small-
cell lung cancer, Cancer Science, 101 (5), 1279–1285.

Wasserman, L., and K. Roeder (2009), High dimensional variable selection, The An-
nals of Statistics, 37 (5A), 2178–2201.

Zhang, C.-H. (2010), Nearly unbiased variable selection under minimax concave
penalty, The Annals of Statistics, 38 (2), 894–942.

Zhang, C.-H., and S. S. Zhang (2014), Confidence intervals for low dimensional pa-
rameters in high dimensional linear models, Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 76 (1), 217–242.

Zhang, Y., H.-J. Ni, and D.-Y. Cheng (2013), Prognostic value of phosphorylated
mtor/rps6kb1 in non-small cell lung cancer, Asian Pacific Journal of Cancer Pre-
vention, 14 (6), 3725–3728.

Zhao, P., and B. Yu (2006), On model selection consistency of lasso, Journal of
Machine Learning Research, 7, 2541–2563.

Zheng, Q., C. Gallagher, and K. Kulasekera (2013), Adaptive penalized quantile
regression for high dimensional data, Journal of Statistical Planning and Inference,
143 (6), 1029–1038.

Zheng, Q., L. Peng, and X. He (2015), Globally adaptive quantile regression with
ultra-high dimensional data, Annals of statistics, 43 (5), 2225.

Zheng, Q., L. Peng, and X. He (2018), High dimensional censored quantile regression,
The Annals of Statistics, 46 (1), 308–343.

Zheng, Z., T. Chen, X. Li, E. Haura, A. Sharma, and G. Bepler (2007), DNA syn-
thesis and repair genes RRM1 and ERCC1 in lung cancer, New England Journal
of Medicine, 356 (8), 800–808.

Zou, H. (2006), The adaptive lasso and its oracle properties, Journal of the American
Statistical Association, 101 (476), 1418–1429.

Zou, H., and T. Hastie (2005), Regularization and variable selection via the elastic
net, Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67 (2), 301–320.

112


