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between ĒD to ĒD̄ and ED to ED̄. . . . . . . . . . . . . . . . . . 25

ix



2.2 All DAGs and corresponding CMs used in our obesity paradox sim-
ulation study. DAGs (left column) and corresponding CMs (right
column) for each model. By row: 1. Preston et al. [2] DAG; 2.
adding in age-varying mortality rates; 3. reverse causation and
4. combined model. Mortality rates are denoted by dotted lines.
Rates with no labels (including mortality rates) may all be distinct.
Where ‘BMI’ is the exposure and ‘Mortality’ is the outcome. ‘Age’
and ‘Smoking’ confound the relation between ‘BMI’ and ‘Mortality’
The box around ‘Diabetes’ indicates that the study population is
conditioned on individuals with diabetes. Cachexia is represent by
‘U’, and COPD is chronic obstructive pulmonary disease. With re-
spect to the longitudinal DAGs, ‘History’ denotes status before the
study, ‘0’ denotes baseline, and ‘1’ represents the end of the study
i.e., one year follow up. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Results from all model runs. Each plot represents the MRR com-
paring normal weight to obese for never-smokers against the MRR
for ever-smokers for each of the 10,000 LH-sampled parameter sets
with each point representing a single simulated study. The obesity
paradox occurs when obese never-smoking diabetics have higher
rates of mortality than normal weight never-smoking diabetics and
obese ever-smoking diabetics have lower rates of mortality than nor-
mal weight ever-smoking diabetics. By row: 1. Preston et al. [2] 2.
adding in age-varying mortality rates; 3. reverse causation and 4.
combined model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Age-weighting and relative mortality among Model 2 runs. The
proportion of obese diabetic ever-smokers (ODS) who are old
(left) and young (right) at the beginning of the simulation is dis-
played on the x-axis i.e., if equal to 0.5, half of the individuals
in ODS are in the older age group and half are in the younger
age group. The relative mortality of normal diabetic ever-smokers
(NWDS) to ODS is displayed on the y-axis i.e., if equal to 0.5, the
NWDS mortality rate would be half of the ODS mortality rate. Pa-
rameter sets that resulted in the obesity paradox are in red (coded
as ‘1’) and sets that did not result in the obesity are in blue (coded
as ‘0’). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

x



2.5 Age-weighting and relative mortality among Model 3 runs. The
proportion of normal weight individuals (ODS) who are unhealthy
(left) and healthy (right) at the beginning of the simulation is dis-
played on the x-axis. The relative mortality of unhealthy individ-
uals to ODS is displayed on the y-axis i.e., if equal to 0.5, the U
mortality rate would be half of the ODS mortality rate. Parameter
sets that resulted in the obesity paradox are in red (coded as ‘1’)
and sets that did not result in the obesity are in blue (coded as ‘0’). 41

3.1 Schematic of Network Structure: All individuals are fully connected
within their households. Individuals form community contacts
based on a Gaussian (normally distributed) Connectivity Kernel
[3]. Networks consist of 100,000 individuals divided evenly into
20,000 households. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Schematic of TB Transmission Model. Where S is susceptible; EL
is early latent; LL is late latent; I is active TB; R is recovered; T
is treatment; IPTS is susceptible individuals who are given preven-
tive therapy and IPTL are all other individuals given preventive
therapy (i.e., those who originate in EL, LL or R. Individuals tran-
sitioning to treatment states are represented by dot-dashed lines.
The rate at which individuals transition to the IPT states depends
on the screening scenario and number of contacts. Vital dynamics
are represented by dotted lines. . . . . . . . . . . . . . . . . . . . . 53

3.3 Timeline of interventions for each simulation run. Passive surveil-
lance was run until the model reached steady state (burn-in 1),
and then active screening interventions were implemented and the
model was run until it reached steady state again (burn-in 2). . . . 59

3.4 Annual number of TB infections attributed community vs. house-
hold transmission (y-axis) transmission and incidence levels at the
end of burn-in 1 (x-axis). . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Network parameters (i.e., average degree, average connection ra-
dius) and transmission rates colored by incidence levels. Average
degree (left column) and average connection radius (right column)
for each model. By row: 1. network parameters vs. community
transmission rates 2. network parameters vs. household transmis-
sion rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



3.6 Fitted splines representing relationship between the unscaled com-
munity transmission rate (βuC) and RR (among RRs within the 2.5th

to 97.5th percentiles). Passive surveillance only is the reference
group. Dots represent individual model runs colored by screening
scenario and lines are the splines (with 95% confidence intervals in
shaded regions) which were calculated using the loess method in R
[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Fitted splines representing relationship between the unscaled com-
munity transmission rate (βuC) and RR (among RRs within the 2.5th

to 97.5th percentiles). Passive surveillance only is the reference
group. Dots represent individual model runs colored by screening
scenario and lines are the splines (with 95% confidence intervals in
shaded regions) which were calculated using the loess method in R
[4]. ‘Control4’ and ‘Control8’ are community non-targeted screen-
ing of 4 and 8 individuals, respectively. . . . . . . . . . . . . . . . . 69

4.1 Model schematic for a single venue. Our model is an extension of
[5]. All compartments involved in the force of infection (Equation
4.1) are in light gray. The full force of infection equation is also
shown in the figure above. Susceptible individuals (S) may be in-
fected and pass through a latent period (E1 to E3) before becoming
symptomatically (I) or asymptomatically infectious (A1 to A3). So-
cial distancing or individual exclusion is represented by (X). Dur-
ing infection, individuals may shed pathogens onto environmental
fomites (F1). As pathogens on the fomites decay, they move to (F2),
which represents biphasic decay. Additionally, individuals become
immune (R) following infection, and may have innate resistance
(R) or acquired immunity and be partially immune (P ) at the start
of the outbreak. All parameter values are shown in Table 4.1. . . . 80

4.2 ARs (left column) and durations (right column) for each model
compared with NORS data. Each plot corresponds to a different
model structure (indicated on the y-axis label). . . . . . . . . . . . 87

4.3 Attack rates vs. duration results from resampled parameter and
initial conditions for the NORS daycare data. NORS data is shown
in the top left. Points correspond to parameter sets and are colored
by the amount of times they were resampled. . . . . . . . . . . . . 88

A.1 The sources of association between variables become evident on a
DAG. E is the exposure, D is the outcome or disease, and C is the
covariate (1) cause and effect, (2) common causes or confounding,
and (3) common effect or collider bias e.g. selection bias. . . . . . 100

xii



A.2 (left) DAG representing the obesity paradox from Preston et al.
[2] (right) CM: Schematic of the single age group compartmental
model diagram corresponding to the DAG. NW represents normal
weight individuals; O represents obesity; D represents diabetes,
and S represents smoking. Individuals in any given compartment
can die. Each arrow represents flows between states and rates that
are equal to each other have the parameter. For instance, diabetes
status does not affect the rate at which an individual transitions
from obese to normal weight, therefore OD to NWD and O to
NW have the same rate. We specify where transition rates are the
same between compartments by labeling the model schematic ac-
cordingly and using the same parameter to represent equal rates in
the equations. Mortality rates are denoted by dotted lines. Rates
with no labels (including mortality rates) may all be distinct. . . . 103

B.1 Average Connection Radius: We generated a wide array of net-
works average connection radius (from 0.5 to 5) to examine vari-
ation in community contact e.g. long range connections vs. short
range clustered connections. These plots demonstrate the param-
eters we used to specify the networks and the actual calculated
metrics on the generated networks. For instance, specifying a high
average degree with low average connection radius results in a net-
work with a average connection radius. . . . . . . . . . . . . . . . . 120

B.2 Network Average Degree: We generated a wide array of networks
varying average degree (from 50 to 450) to examine variation in
community contact e.g. many community contacts vs. few com-
munity contacts. These plots demonstrate the parameters we used
to specify the networks and the actual calculated metrics on the
generated networks. For instance, specifying a high average degree
with low average connection radius results in a network with a low
average degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.3 Distribution of incidence levels across all model runs. . . . . . . . . 122

B.4 Fitted splines representing relationship between the unscaled com-
munity transmission rate (βuC) and RR (among RRs within the 2.5th

to 97.5th percentiles). Passive surveillance only is the reference
group. Dots represent individual model runs colored by screening
scenario and lines are the splines (with 95% confidence intervals in
shaded regions) which were calculated using the loess method in R
[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii



B.5 Fitted splines representing relationship between the unscaled com-
munity transmission rate (βuC) and RR (among RRs within the 2.5th

to 97.5th percentiles). Passive surveillance only is the reference
group. Dots represent individual model runs colored by screening
scenario and lines are the splines (with 95% confidence intervals in
shaded regions) which were calculated using the loess method in R
[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.1 NORS data: Attack rates vs. outbreak duration stratified by ex-
posed population size. . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.2 Daycare Model Runs: Attack rates vs. population sizes results from
resampled parameter and initial conditions. NORS data is in the
top left. Points correspond to parameter sets and are colored by the
amount of times they were resampled. . . . . . . . . . . . . . . . . 138

C.3 Daycare Model Runs: Population sizes vs. outbreak durations re-
sults from resampled parameter and initial conditions. NORS data
is in the top left. Points correspond to parameter sets and are col-
ored by the amount of times they were resampled. . . . . . . . . . 139

C.4 School Model Runs: Attack rates vs. duration results from resam-
pled parameter and initial conditions. NORS data is in the top left.
Points correspond to parameter sets and are colored by the amount
of times they were resampled. . . . . . . . . . . . . . . . . . . . . . 140

C.5 School Model Runs: Attack rates vs. population sizes results from
resampled parameter and initial conditions. NORS data is in the
top left. Points correspond to parameter sets and are colored by the
amount of times they were resampled. . . . . . . . . . . . . . . . . 141

C.6 School Model Runs: Population sizes vs. outbreak durations results
from resampled parameter and initial conditions. NORS data is in
the top left. Points correspond to parameter sets and are colored by
the amount of times they were resampled. . . . . . . . . . . . . . . 142

xiv



LIST OF TABLES

Table

2.1 LHS Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Results from All Analyses . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 TB Parameter Values and Uncertainty Ranges . . . . . . . . . . . . 51

3.2 RRs of Screening Interventions–Passive Surveillance as Reference Group . 67

3.3 RERIs of Combined Screening Interventions–Passive Surveillance
as Reference Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Transmission Model Parameter Values and Uncertainty Ranges . . . 82

4.2 Kullback Leibler (KL) divergence for each model compared with
the NORS data kernel density estimated distribution. Smaller KL
divergence indicates a more similar distribution to NORS (i.e. less
information difference between the NORS and the model distribu-
tion). The combined model is shown in bold. The sensitivity analy-
ses include varying the environmental contamination at the start of
the outbreak (‘Seeding: Varying Pathogens in Environment’), and
seeding with a single diseased individual (‘Seeding: Diseased Indi-
vidual’). Results for the deterministic models calibration are shown
in the Appendix Table C.10. . . . . . . . . . . . . . . . . . . . . . . 90

A.1 DAGs vs. CMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2 Example Simulated Dataset Among Never-Smokers . . . . . . . . . 118

B.1 RRs of Screening Interventions–Control Intervention as Reference
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xv



B.2 RERIs of Combined Screening Interventions–Control Intervention
as Reference Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.1 Initial Condition Values and Uncertainty Ranges . . . . . . . . . . . 134

C.2 Calibration Ranges from NORS Data . . . . . . . . . . . . . . . . . 135

C.3 Venue-specific Attack Rates for All Models: Median (95% CI) [Mean]137

C.4 Venue-specific Outbreak Durations for All Models: Median (95%
CI) [Mean] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.5 Venue-specific Attack Rates for Sensitivity Analyses: Median (95%
CI) [Mean] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.6 Venue-specific Outbreak Durations for Sensitivity Analyses: Median
(95% CI) [Mean] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.7 Kullback Leibler (KL) divergence for each model compared with
the NORS data kernel density estimated distribution. Smaller KL
divergence indicates a more similar distribution to NORS (i.e. less
information difference between the NORS and the model distribu-
tion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.8 Venue-specific Attack Rates for All Models: Median (95% CI) [Mean]144

C.9 Venue-specific Outbreak Durations for All Models: Median (95%
CI) [Mean] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.10 Venue-specific Attack Rates for Students and Staff Model: Median
(95% CI) [Mean] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.11 Venue-specific Outbreak Durations for Students and Staff Model:
Median (95% CI) [Mean] . . . . . . . . . . . . . . . . . . . . . . . 149

xvi



LIST OF APPENDICES

Appendix

A. Appendix for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B. Appendix for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C. Appendix for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xvii



ABSTRACT

Analyzing epidemiological data (e.g., from observational studies or surveillance)

can reveal results contrary to what might be expected given a priori knowledge

about the study question. In these cases, a clear mechanistic understanding of why

counterintuitive results are observed is critical to minimize bias in study designs

and implement effective interventions targeting diseases. Mathematical modeling

approaches provide a flexible way to connect mechanisms with real-world data. In

this dissertation, we describe the use of mathematical models to explore 3 cases in

which seemingly counterintuitive results have been observed. First, we examined

the obesity paradox or the apparent protective effect of obesity on mortality among

certain high-risk groups, e.g. diabetic ever-smokers. Second, we examined how to

leverage spatial and contact heterogeneity to optimize tuberculosis screening inter-

ventions in a variety of settings including those with high incidence-levels where

household-based interventions have unexpectedly limited population-level effects.

Finally, we examined why norovirus outbreaks are explosive in nature, but result in

relatively low attack rates (the percentage of individuals who become diseased) in

school and daycare settings.

In Aim 1, we developed a method to simulate epidemiological studies using com-

partmental models (CMs) derived from directed acyclic graphs (DAGs). We illus-

trated our approach using the obesity paradox as a case study. Specifically, we ex-

amined how altering underlying causal mechanisms (i.e. CM structure), can cause

spurious associations in the data. We found that incorporating study design bias
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(e.g., including covariates in the causal mechanism and not adjusting for them),

can lead to the obesity paradox. Overall, we showed how mathematical model-

ing of DAGs can be used to inform analyses, and explore underlying biases which

may be helpful for designing sound observational studies and obtaining accurate

measures of effect.

In Aim 2, we explored how variation in community contact and endemic incidence

levels can affect the impact of household or community-targeted screening inter-

ventions using an individually-based network model. Overall, we found that the

community drives transmission in high incidence settings. In general, more protec-

tion was conferred by targeted interventions and in lower incidence settings within

networks that had fewer numbers of contacts, or shorter distance between con-

tacts. Ultimately, these results may help identify the settings in which household or

community targeted screening interventions will be effective.

In Aim 3, we explored mechanisms that underlie norovirus outbreak dynamics us-

ing a disease transmission model. We compared different scenarios, including a

partially immune population, stochastic extinction, and individual exclusion, and

calibrated our model to daycare and school outbreaks from surveillance data. We

found that incorporating both a partially immune population and individual exclu-

sion was sufficient to recreate explosive norovirus dynamics, more realistic outbreak

durations (compared with immunity alone), and relatively low attack rates in school

and daycare venues.

Ultimately, epidemiological findings only appear counterintuitive when there is a

lack of understanding about the underlying mechanisms leading to what is ob-

served in data. This dissertation highlights the importance of resolving this lack

of understanding, and the use of models as a tool in this process. We used mathe-

xix



matical models as in silico laboratories to compare competing causal mechanisms,

understand transmission patterns across different settings, and reveal key features

of the natural history of disease. Gaining insight into causal mechanisms underly-

ing seemingly counterintuitive data is critical to be able to minimize bias in study

designs and implement effective disease targeting interventions.
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CHAPTER I

Introduction

Analyses of epidemiological data may reveal findings that are contrary to what

one would expect given a priori knowledge about risk factors for disease. In these

cases, a mechanistic understanding of why counterintuitive results are observed is

necessary to minimize bias in study designs and implement effective interventions

targeting the disease. Mathematical modeling approaches can provide a flexible

framework that can be used to link mechanism with data. An example of coun-

terintuitive study results often discussed in the chronic disease literature are sur-

vival paradoxes (or so-called ‘reverse-epidemiology’) wherein individuals in what

are usually considered higher risk groups actually have lower mortality rates com-

pared with exchangeable (with respect to other covariates) [6] individuals in lower

risk groups [7]. For instance, the ‘obesity paradox’ was observed in a study con-

ducted among a diabetic study population in which obese ever-smokers were found

to have a lower risk of mortality than normal weight ever-smokers [2]. Given what

is known about the relationship between obesity and mortality, it would be ex-

pected that obese individuals would always have higher mortality rates than their

normal-weight counterparts [7].

It is generally thought that survival paradoxes arise due to biases in study design.
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These may be mechanistic in origin, for instance, a statistical analysis plan may be

poorly designed due to incomplete understanding of the underlying disease pro-

cess. In this example of the obesity paradox, potential explanations to the observed

protective effect of obesity include selection bias due to the study being conducted

only among diseased (diabetic) individuals, and reverse causation due to factors

like smoking related comorbidities [2]. Overall, an explicit mechanistic understand-

ing of how these (and other) study design biases might interact to cause the obesity

paradox could help minimize bias in the design of future studies on the topic (Aim

1).

In the infectious disease literature, multiple modes of transmission for a given dis-

ease can interact [8] and lead to findings that are difficult to interpret. For instance,

despite the fact that the screening of household contacts (household contact trac-

ing) for tuberculosis (TB) has been widely adapted and is considered effective in

the low-burden settings [9, 10], results from high-burden settings have been mixed

[11–14]. In high burden settings, the majority of transmission occurs outside the

household and between not known contacts [15, 16]. However, sharing a house-

hold with an individual who has active TB is still a risk factor for infection [17, 18].

The spatially heterogeneous distribution of TB [19, 20] further complicates the

design of effective interventions, because different settings might benefit from dif-

ferent types of screening programs (e.g. household contact tracing compared with

neighborhood tracing). In light of these complicated multilevel transmission pat-

terns, design of screening interventions should be carefully considered in a mecha-

nistic manner and in the context of a spatially explicit setting (Aim 2).

Finally, yet another unexpected finding from surveillance data is the low norovirus

attack rates in school and daycare settings. Norovirus outbreaks are considered

explosive in nature [21] due to a rapid onset of cases and dramatic symptomol-
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ogy among diseased individuals [22]. Additionally, children have the highest inci-

dence rates [23–25] and are thought to be drivers of transmission in the community

[5]. These rapid outbreak growth rates and the role that children play in commu-

nity transmission, would lead one to expect that outbreaks in schools and daycares

would have high attack rates and exhaustion of susceptibles. However, attack rates

are relatively low in these settings (∼15% and ∼20% in daycares and schools, re-

spectively – data from the National Outbreak Reporting System (NORS) [26]). In

general, a clear mechanistic understanding of why explosive norovirus outbreaks in

daycares and schools do not lead to the majority of children becoming infected can

provide insight into the biological and epidemiological drivers of these transmission

patterns and ultimately, inform the design of effective interventions (Aim 3).

Overall, mathematical models are a useful tool which can enable a greater under-

standing of counterintuitive findings in epidemiology. Specifically, formulating a

model requires that causal mechanisms are explicitly defined. Next, simulating the

model enables the researcher to gain insight into what factors (or combination of

factors) can explain the patterns seen in the data e.g., two modes of transmission

might counteract each other. Furthermore, models can integrate risk factors on

multiple levels contributing to the mechanism in question e.g., endogenous factors

like immunity along with population level factors like contact rates. Models may

therefore be used as in silico laboratories to explicitly encode alternative causal

mechanisms and to ask counterfactual questions. Ultimately, epidemiological find-

ings only appear counterintuitive when there is a lack of understanding or clarity

about the underlying mechanisms which lead to what is observed in the data. This

dissertation uses models to resolve this lack of understanding and to gain insight

into the transmission patterns and natural history of diseases.
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1.1 Aim 1: Mathematical modeling of directed acyclic graphs to

explore competing causal mechanisms underlying epidemi-

ological study data

1.1.1 Directed Acyclic Graphs

Directed Acyclic Graphs (DAGs) are networks which in epidemiology are used

to graphically depict causal relationships among variables of interest in a study

(framed as Bayes nets in this setting [27]). DAGs encode conditional dependencies

and are used to identify which variables should be measured and adjusted for (i.e.,

conditioned upon) to obtain an unbiased effect estimate of an exposure on a disease

[28].

In general, apparent statistical associations may arise through any of the following

[29]:

• Chance due to random variation

• Causal effect e.g. ‘a’ causes ‘b’ or ‘b’ causes ‘a’

• ‘a’ and ‘b’ share a common cause that was not conditioned on (i.e., confound-

ing bias)

• ‘a’ and ‘b’ share a common effect that was conditioned on (i.e., collider bias

or selection bias)

DAGs can be used to identify all of the above associations except for random varia-

tion. Variables on a DAG include the exposure, outcome, and covariates, connected

by directed edges which indicate causal effects. The absence of an edge between
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variables implies a lack of a causal relationship between those variables [29]. A

variable ‘a’ is a direct cause of ‘b’ if there is an arrow from ‘a’ to ‘b’. On the other

hand, ‘a’ is an indirect cause of ‘b’ if there is only one connection between ‘a’ and ‘b’,

and that connection is mediated by another variable [29]. Any sequence of arrows

connecting two variables on a DAG (regardless of direction) is a ‘path’. A sequence

following the direction of arrows is a ‘directed path’ while a path which starts with

an arrow pointing into the exposure and ends with an arrow pointing to the out-

come is a ‘backdoor path’ [30]. A DAG is acyclic in that no directed path forms a

closed (feedback) loop. To be considered ‘causal’, all common causes of any pair of

variables must also be included on the DAG [31].

In general, the direction of arrows and relationships between variables on DAGs

can be used to identify study design biases in a straightforward manner. First in

general, confounding bias occurs when a pair of variables share a common cause

that is not adjusted for in the analysis (the common cause may be direct or indirect).

Second in general, collider bias (i.e., selection bias) occurs when two variables

share a common effect upon which itself or its descendants are adjusted for in the

analysis. After a DAG is drawn, d-separation criteria are used to define statistical

dependencies between variables. These criteria depend on three key assumptions

[29]:

• The Causal Markov Assumption: Any variable ‘a’ is independent of ‘b’ condi-

tional on the direct causes of ‘a’ unless ‘b’ is an effect of ‘a’.

• Faithfulness: If ‘a’ effects ‘b’ through two pathways (one negative and one

positive), the pathways must not completely cancel each other out. Faithless-

ness leads to statistical independence between variables even when the causal

structure of a DAG implies dependence.
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• No Random Error: Large enough sample size such that statistical associations

are not due to random chance

On a DAG, two variables that are not causally related (i.e., no directed path be-

tween them) are statistically independent (i.e., no association between them) if

every backdoor path between them is blocked. Typically to obtain an unbiased ef-

fect estimate, the goal is to adjust for the minimally sufficient set of covariates that

blocks all backdoor paths and controls for confounding [30]. The workflow for de-

termining the set of covariates that must be conditioned upon to achieve statistical

independence and adjust for confounding is described elsewhere [30]. In general, a

path is blocked when there is either (1) a collider (and its descendants) in the path

between the two variables that is not conditioned upon, or (2) a non-collider in the

path between the two variables that is conditioned upon. Again, once all backdoor

paths between exposure and outcome are blocked, an unbiased effect estimate can

be calculated.

Because DAGs require that assumptions of the causal relationships between key

variables are made explicit in addition to identifying sources of bias, they may also

reveal variables that need to be measured or ambiguous relationships between vari-

ables that should be investigated further. Ideally, DAGs are constructed before a

study to aid in identifying which variables must be measured and adjusted for in

the analysis and to help design an appropriate analysis plan.

Overall, although DAGs summarize the complete set of known relationships be-

tween variables relevant to a given study question [28, 30, 32], they are not

well suited for comparing competing causal mechanisms because they are non-

parameterized, require that ambiguous variable relationships are simplified and are

reductionist in that they typically only examine a single causal link (i.e., between
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exposure and outcome) within a chain of events. Various sensitivity analyses can

be conducted (e.g., to see the effects of unmeasured confounders), but exploring

multiple effects at once can be difficult to interpret. Thus, DAGs are useful tools

for minimizing bias and measuring associations, but do not synthesize an entire

mechanistic chain of events.

1.1.2 Compartmental Models

Compartmental models (CMs) are parametric causal frameworks which are typi-

cally formulated as ordinary differential equations (ODEs) and used to simulate

flows between states on the population level over time [32, 33]. There is a long his-

tory of using compartmental models to simulate disease transmission and progres-

sion in infectious diseases [34] and disease progression in chronic diseases [35].

For a detailed example of a CM representing infectious disease transmission with

ODEs written out, see Aim 3 Section 1.3.1. Once a model is defined, it can be fit to

epidemiological data (e.g. surveillance data, weekly incidence counts, or serology

data) using a likelihood to match the model results with the data. Identifiability

analysis may be used to determine which parameter values can be estimated based

on the data and structure of the model. Finally, the fitted model can be used to

obtain values or distributions for unmeasured parameters (assuming they are iden-

tifiable), and to examine counterfactual scenarios like the effects of interventions on

the incidence or progression of the disease. Furthermore, sensitivity analyses can

be conducted to see how results change when exploring uncertainty in the model

(i.e., by varying parameter values), and to examine competing causal mechanisms

(i.e., by changing the model structure).

Contrary to DAGs, mathematical models are not meant to simulate all causes un-
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derlying a given mechanism. Rather, only the key mechanism(s) directly related to

the study question should be incorporated. In this way, CMs seek to balance par-

simony [36] with realism. Furthermore, by operationalizing a sequence of events,

mathematical models can synthesize a priori knowledge to directly simulate an en-

tire chain of events (as opposed to DAGs which tend to focus on a single cause and

effect). For instance, infectious models typically simulate individuals the natural

history of disease e.g., progressing from susceptible to infectious to immune (see

Section 1.3.1) whereas a DAG is only meant to provide insight into a single associ-

ation like maternal smoking and infant mortality (see Figure 1.1). The parameter

estimation process and resulting model fit can be informed by many different types

of data (e.g., meta-analyses, laboratory studies). Additionally, other scenarios can

be explicitly encoded into the model when data collection is untenable due to eth-

ical constraints, limited resources, or is logistically impossible (e.g. counterfactual

scenarios). Limitations of compartmental models should be considered during the

model development stage and when interpreting model results. For instance, com-

partmental models typically assume homogeneous (mass action) mixing which may

not be realistic and can affect the disease dynamics [37, 38]. This can be addressed

by adding different demographic groups mixing at different rates (i.e., by incorpo-

rating different compartments), but can quickly lead to a combinatorial explosion of

equations. Alternatively, a network model can be used to explicitly simulate contact

heterogeneity [38] (see Section 1.2.1 for more details). Another limitation is the

fact that parameterizing models requires assumptions about the values of transition

rates that are often times not known empirically e.g., the duration of the period

from exposure to the disease to actually presenting symptoms [39]. However to

account for this uncertainty, large scale sensitivity analyses can be conducted to un-

derstand how the model results change in response to changing parameter values

(e.g., by conducting Latin hypercube sampling (LHS)) [40]. Another limitation is
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that deterministic models assume large population sizes which is not realistic in

certain settings e.g. daycare center [37]. To address this, a stochastic version of

the CM can be created to simulate small populations (see Section 1.3.2 for more

details). Another limitation is exponentially distributed transition rates which can

result in some proportion of the population transitioning to a subsequent state im-

mediately upon entering a new state. This is not realistic, but on the population

level, the model simulates the accurate average transition time. Additionally, sub-

states can be added to approximate a more realistic distributions of transition times

e.g., a gamma distribution.

Ultimately, CMs are a flexible tool which can be used synthesize various types of

data and simulate an entire causal mechanism. Detailed counterfactual questions

can be explicitly coded into the model and examined. Importantly, assumptions of

the model including what is and is not being simulated should be carefully consid-

ered while designing the model and interpreting its results.

1.1.3 Survival Paradoxes in Epidemiology

Study design biases that are not properly adjusted for and lack of understanding

about predominant causal mechanisms can lead to counterintuitive results in epi-

demiological studies. For instance, the low birth-weight (LBW) paradox has shown

that LBW children have a lower infant mortality rate if they are born to smoking

mothers compared to those born to non-smoking mothers [41]. One would expect

that those born to smoking mothers would have worse health outcomes given the

risks associated with maternal smoking [42]. Although survival paradoxes are re-

ferred to as ‘paradoxical’, it does not mean that we lack understanding about what

their causes are. Rather, the explanations underlying them might be complex and
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multifaceted. Furthermore, different explanations might be equally valid in differ-

ent study settings.

Although it has been proposed that this and similar paradoxes (see below) are

physiologically true [43, 44], the general consensus in the literature tends to be

that smoking always leads to worse health outcomes and therefore, studies typi-

cally explain the paradox by revealing biases in their design (potentially resulting

from incomplete understanding of the mechanisms/causal processes at play). DAGs

can provide a useful framework for explaining how underlying bias in study design

can cause the paradoxical findings of LBW paradox. For instance, conditioning on

LBW (a mediator in the pathway between maternal smoking and infant mortality)

can cause collider bias if there is an unmeasured confounder (e.g. birth defects)

between LBW and infant mortality. This would change the direction of the asso-

ciation between maternal smoking and infant mortality because LBW is a collider

due to the unmeasured confounder [1, 41] and conditioning on a collider creates

a spurious negative association between its causes (i.e., between maternal smoking

and infant mortality). See Figure 1.1 for an illustration using a DAG.

Figure 1.1: From [1], the exposure, ‘Maternal smoking’ does not have a causal as-
sociation with the outcome, ‘Infant mortality’. However, the existence
of an unmeasured risk factor ‘U’, turns ‘low birth weight’ into a collider
therefore creating a spurious negative association between ‘low birth
weight’ and ‘mortality’ and therefore between ‘Maternal smoking’ and
‘Infant mortality’

In addition to the LBW paradox, numerous other epidemiological paradoxes exist,

such as the obesity paradox, i.e. the finding that obese ever-smokers with certain
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diseases such as diabetes have lower mortality rates than their normal weight coun-

terparts [2]. One would expect that obese individuals would have worse outcomes

than normal weight individuals [7]. Ultimately, a wide range of physiological and

statistical explanations exist for these survival paradoxes and statistical methods are

limited in their ability to flexibly assess and compare different theories. DAGs are

qualitative and even if they show the presence of a certain bias, they do not provide

any information on its quantitative effects. Although the magnitude and direction

of potential biases can be explored in sensitivity analyses, examining multiple biases

at the same time in a rigorous manner can become complex and intractable.

1.1.4 Aim 1: Overview

In Aim 1 we developed a workflow to use a previously published mapping between

CMs and DAGs [32] to simulate epidemiological studies. We applied used this work-

flow to evaluate how different unmeasured biological mechanisms can potentially

generate bias leading to the obesity paradox.

1.2 Aim 2: Exploring the impact of variation in spatial patterns

of community contact on the effectiveness of household- vs.

community-based screening interventions for Tuberculosis

1.2.1 Network Models in Epidemiology

In spite of the flexibility and relative simplicity of using CMs to incorporate different

causal mechanisms, simplifying assumptions can limit their accuracy. For example,

in many settings, homogeneous mixing is not a sufficient representation of reality
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and can alter the course of the dynamics of disease transmission substantially [38].

An individual’s contact network tends to be determined by factors like age, sex,

race, social structure, spatial structure, and behavior [38, 45]. Homophily or the

tendency for people to be attracted to individuals similar to themselves is thought

to be the primary driving force behind social networks [45]. Therefore, for dis-

eases that are transmitted more homogeneously across the population (e.g. a local

measles outbreak), the homogeneous mixing assumption might be reasonable. On

the other hand for diseases where social contact heterogeneity or community struc-

tures are more critical (e.g. HIV), incorporating more complex mixing patterns

might be important to accurately represent dynamics [38]. One potential solution

for relaxing the assumption of homogeneous mixing is to add additional structure

into a CM to account for different contact rates between groups (e.g., a set of com-

partments for high mixing groups and a set of compartments for low mixing groups)

however, this can quickly lead to a combinatorial explosion of compartments if there

are multiple groups. An alternative solution that is more scalable is to use a network

model to explicitly define person-to-person contact patterns. Homogeneous mixing

in a CM is equivalent to a fully connected network (i.e., where each individual is

connected to all other individuals) [46]. Modeling disease spread over networks

dates back to the 1980s with the first paper simulating acquired immune deficiency

syndrome transmission [47].

Network models are made up of nodes (e.g. individuals) and edges which are the

connections between nodes [48]. The average number of contacts per individual

(i.e., average (expected) degree), the average connection length, and the average

path length between 2 randomly selected nodes are important parameters which

are typically used to characterize networks. There are numerous different types of

networks on which infectious disease transmission has been modeled. For example,
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random networks(also called Erdös-Rényi networks) are distinct from many other

kinds in that spatial position does not affect the probability of forming connections

[49]. Additionally, lattices are networks in which adjacent individuals placed on

a grid are connected. Lattices have high clustering (local connections) and long

path lengths [50]. Small world networks are characterized by high clustering and

short path lengths [51]. Scale-free or power law scaling networks incorporate het-

erogeneity in average degrees (e.g. to represent super-spreaders) [48, 52, 53].

Additionally, exponential random graphs models are networks in which the prob-

ability of a connection between nodes is independent of any other connection on

the network [54]. Finally, spatial networks [55] are a broad class of networks in

which nodes are distributed in a defined area and connections are drawn based on

spatial structure, e.g. using an explicitly drawn by a connectivity kernel. The pa-

rameters that inform the connectivity kernel typically include the distance between

nodes, the average degree, and the the spatial distance or standard deviation which

defines the average connection length between contacts [3, 55]. These parameters

can be tuned to create different network characteristics e.g., primarily long range

connections vs. primarily short range connections.

Overall, network models are more computationally expensive than standard CMs,

but if the spatial distribution or contact patterns of a population is of interest, they

are a useful tool for simulating disease transmission.

1.2.2 Transmission of TB

On the population-level incident cases of TB tends to cluster in high burden hotspots

indicating that transmission occurs in a spatially heterogeneous manner e.g., [20].

TB is transmitted through close and causal contact in a variety of contexts. Specifi-
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cally, close contacts are those that are frequent and prolonged, e.g within house-

holds, while casual contacts are shorter and likely to occur with more people,

e.g. gatherings among community members. Both contribute to the spread of TB

[17, 18, 56]. Close contacts can concentrate infection within a tightly clustered

unit, and casual contacts seed transmission in other clusters. Unexpectedly, numer-

ous studies have found that in high incidence regions, most TB transmission occurs

outside the household and between not-known social contacts e.g., [15, 16, 57].

However, sharing a house is still a risk factor for TB transmission [17, 18].

1.2.3 Latent TB

Individuals who become infected with TB initially enter a period of latency (latent

TB infection (LTBI)) in which they are asymptomatic. It has traditionally been es-

timated that up to one-third of the global population has LTBI [58]. However, a

recent analysis modeled the trends of the annual risk of TB infection on the coun-

try level and estimated the human LTBI reservoir to be closer to one-quarter of the

global population with wide age and regional variation [59]. Individuals who have

LTBI may progress to TB months, years or even decades [60] after the initial infec-

tion, but the vast majority ∼ 90% of immuno-competent individuals never progress

to TB [61]. A recent review examining studies before and after the introduction

of chemotherapy found that the majority of LTBI cases that progress to TB do so

within 2 years of infection [62].

Among those with LTBI who do not progress to TB, some individuals may clear the

infection without any treatment (though studies are sparse) [59]. Alternatively, if

detected e.g. through contact tracing (see below) individuals with LTBI may be

treated with isoniazid preventative therapy (IPT) which inhibits the synthesis of
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mycolic acids essential for the cell wall of mycobacterium tuberculosis [63]. Impor-

tantly, impacts of trials that have administered IPT to individuals at high risk for TB

have shown limited long term population-level impacts [11, 13].

Overall, the large human reservoir of LTBI is asymptomatic and therefore not easily

detected without active case finding programs (see below). To accelerate reductions

in TB transmission by preventing new cases of TB, it is essential to find cost-effective

ways to target and treat these individuals.

1.2.4 TB Screening Methods

The standard approach to case ascertainment and treatment for individuals with ac-

tive TB since the 1990s has been direct observed treatment – short course (DOTS)

which involves passive surveillance, followed by chemotherapy administered under

direct observation [64]. Although these current measures have been successful in

reducing global TB incidence by ∼ 2% annually, it has been suggested that more

aggressive case ascertainment measures are needed to find recently infected indi-

viduals and including those who have LTBI and are asymptomatic.

When an individual is found to have active TB through passive surveillance (i.e.,

they go to clinic with symptoms and get diagnosed), their household and com-

munity contacts may be subsequently screened for TB (contact tracing). This sys-

tematic investigation of contacts can help rapidly find new cases of TB or LTBI. In

addition, contact tracing can identify targets for IPT which can in turn prevent a

first episode of TB or LTBI reactivation [65–67]. Although contact tracing has been

conducted in high-income, low-incidence countries for decades [9, 10], resource

poor settings have traditionally relied on DOTS. In recent years, there has been in-

creasing support for a contact tracing based approach in low- and middle-income
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settings. In fact, the World Health Organization recommends that contact tracing

of household and close contacts be conducted in low- and middle-income countries

for individuals with smear positive pulmonary TB, multi-drug or extensively drug

resistant TB, HIV and for children < 5 [65]. However, lack of resources prevents

countries from widespread adoption of contact tracing [68].

One meta-analysis found that in low- and middle-income settings, the majority of

TB transmission occurs between contacts in the first year after the index case be-

comes exposed [69]. A randomized control trial conducted in Zambia and South

Africa used household contact tracing (HHCT) i.e. screened the household con-

tacts of index cases, in an effort to reduce the prevalence of TB in HIV-endemic

communities among 1.2 million individuals. Although a reduction in both TB inci-

dence and prevalence did occur, the results were not statistically significant [11].

Another randomized control trial conducted in Vietnam conducted HHCT among

10,964 individuals with pulmonary TB and found that household contact tracing

plus the standard passive case finding was significantly more effective than passive

case finding alone [12]. Other trials have yielded no significant population-level

effects of contact tracing interventions [13, 14]. Finally, a mathematical model-

ing analysis showed that HHCT with the provision of IPT had a modest effect on

population-level TB risk [70].

Overall, if sufficient resources are available, contact tracing shows promise as a

method for rapidly finding new cases of TB or LTBI, but the exact interventions and

protocols need to be clearly considered and defined to be cost-effective.
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1.2.5 Aim 2: Overview

In Aim 2, we developed an individually-based network model with household and

community contacts to examine how variation in spatial and contact heterogeneity

impacts the effectiveness of different household and community targeted screening

programs.

1.3 Aim 3: Examining the discrepancy between explosive

norovirus outbreaks and relatively low attack rates in day-

care and school settings

1.3.1 Infectious Disease Transmission Model

CMs are commonly used to simulate infectious disease transmission and progres-

sion. A particular infectious disease transmission model that has gained popular-

ity in recent years is the susceptible-infectious-water-recovered (SIWR) model (an

extension of the classical susceptible-infectious-recovered (SIR) model [34], and a

variation on the Environmental Infection Transmission System modeling framework

[71]), which is used to simulate disease transmission on the population level in the

context of its surrounding environment. Numerous other adaptions of SIR mod-

els exist such as the susceptible-infectious-susceptible (SIS), susceptible-exposed-

infectious-recovered (SEIR), and maternal derived immunity-susceptible-infectious-

recovered (MSIR) models [72].

The SIWR model is used to simulate disease transmission both directly from person-

to-person and indirectly through environmentally-mediated pathways [73]. A
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Figure 1.2: The SIWR model of environmentally transmitted disease. The propor-
tion of the population that is susceptible, infectious, and recovered are
in the S, I, and R compartments, respectively. The pathogen concentra-
tion in the water is tracked in the W compartment. The dotted line indi-
cate shedding of pathogen. Finally λ, the force of infection is calculated
based on the person-to-person (βI) and the water-to-person (βW ) trans-
mission rates and the number of infectious individuals and the amount
of contamination in the water.

schematic of the model is shown in Figure 1.2. ODEs corresponding to the SIWR

model are as follows:

SIWR Model Equations

Ṡ = −βWWS − βISI,

İ = βWWS + βISI − γI,

Ẇ = αI − ξW,

Ṙ = γI,

(1.1)

where the proportion of the population that is susceptible, infectious, and recovered

are in the S, I, and R compartments, respectively. The pathogen concentration in

the water is tracked in the W compartment. Next, βW and βI are the water-to-

person and person-to-person transmission rates, γ is the recovery rate for infectious

individuals, α is the shedding rate of pathogen from infectious individuals into the

water, and finally ξ is the pathogen decay rate in the water. The water compartment

can be used to track other sources of environmental contamination such as numbers
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of pathogens on fomites.

Overall, the SIWR framework provides an example of how mathematical models

can be used to represent causal mechanisms across multiple levels that drive under-

lying disease transmission.

1.3.2 Stochastic Formulation

In general, small populations are more likely to become extinct due to lack of ge-

netic diversity (which leads to more vulnerability) with the mean time to extinction

increasing exponentially with population size [74, 75]. Analogously, infectious dis-

ease outbreaks occurring in small populations have a lower mean time to extinction

than outbreaks occurring in larger populations [74]. As mentioned previously, CMs

rely on the assumption that the model population size is large (see section 1.1.2),

therefore to model outbreaks in small populations a stochastic formulation of the

model can be implemented to account for the effect of small population size on dy-

namics. There are numerous ways to implement stochasticity into a disease trans-

mission model including stochastic differential equations which contain a random

noise variable [76], exact continuous-time Markov chain model with the Gillespie

algorithm [77], and a more computationally efficient approximation of the Gillespie

algorithm using τ -leaping [78]. The τ -leaping formation is an Euler approximation

which performs all reactions over a fixed (user-defined) time interval (τ) before

updating the population distribution across disease states.

Overall, stochastic extinction and variation are important to account for when sim-

ulating disease outbreaks in settings with small populations, e.g. daycare centers.

19



1.3.3 Epidemiology of Outbreaks

Norovirus is the leading cause of diarrhea requiring medical care in the United

States (US) [79]. Among children < 5, the incidence of norovirus is approximately

3 times higher compared with other age groups in the community with adults > 65

having the second highest incidence rates [23, 80]. Overall, the highest risk pop-

ulations for severe norovirus are children, elderly and the immuno-compromised

with children often being identified as the primary drivers of transmission [22, 81].

A systematic review examined published norovirus outbreaks between 1993 and

2011, and found that outbreaks occurring in food service settings were the most

common (35%) while those occurring in school and daycare settings were unex-

pectedly the least common (10%) [82].

Norovirus outbreaks originate from a variety of sources including food [83], water

[84], and fomites [85], with person-to-person transmission propagating the disease

across settings and age-groups [39, 86]. Outbreaks are typically described as being

explosive in nature with rapid onset of cases due to high infectivity of norovirus

virions [87], dramatic symptomology [22],long periods of post-symptomatic shed-

ding [88], limited immunity conferred by natural infection (see below) [89, 90],

and extended environmental persistence [91].

Despite the explosive nature of norovirus, and the fact that children drive trans-

mission, attack rates in school and daycare settings are low (∼15% and ∼20% in

daycares and schools, respectively – data from NORS [26]). Overall, understanding

why attack rates are low in these settings, requires an understand of the mecha-

nisms driving transmission.
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1.3.4 Molecular Biology and Immunity

Noroviruses are a genetically diverse group of single stranded RNA viruses with 29

different genotypes (strains) able to infect humans [92, 93]. This extensive diver-

sity makes it difficult to develop broadly protective immunity either through natu-

ral infection or vaccination [94]. The most dominant strain is GII.4 which rapidly

evolves to create novel viruses every 2-4 years. This genetic drift is analogous to

influenza viruses [95] and has been successful in evading immunity within humans

[96]. After natural infection there is limited cross-strain protection and a short-

lived duration of immunity [79, 97]. Empirical research from human challenge

studies has generally shown that immunity can last up to 2 years [98]. Although

sero-prevalence studies have found high percentages of the children with norovirus

antibody titers [99, 100], there is no established correlate of protection to deter-

mine norovirus immunity.

Individuals can have innate resistance to norovirus depending on their genetics.

A functional FUT2 gene confers greater susceptibility to certain viruses (e.g. HIV,

Rhinovirus, and Influenza) including noroviruses [95, 101, 101, 102]. The FUT2

gene enables the synthesis of certain types of histo-blood group antigens on the

gut epithelium which are receptors for noroviruses and contribute to resistance to

certain strains [95, 101, 101]. Additionally, individuals with A or O blood groups

are also thought to be more susceptible to norovirus (compared with AB or B) due

to better binding of norovirus to the saliva of those individuals, but this varies by

strain as well [103–105].
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1.3.5 Aim 3: Overview

In Aim 3, We developed an transmission model and calibrated it to CDC surveillance

data from NORS. We incorporated different model features including population

immunity, stochasticity, and exclusion of diseased individuals to understand what

mechanisms can effectively recreate explosive outbreaks with low attack rates in

daycare and school settings.
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CHAPTER II

Mathematical modeling of directed acyclic graphs to

explore competing causal mechanisms underlying

epidemiological study data

2.1 Abstract

Directed acyclic graphs (DAGs) are used in epidemiological studies to understand

causal processes and determine appropriate analytical approaches for a given ex-

posure and outcome. Compartmental models (CMs) depict flows between disease

states on the population level and can also be used to represent different causal

mechanisms. In this chapter, we use and extend a mapping between DAGs and CMs

to show how DAG–derived CMs can be used to compare competing causal mecha-

nisms by simulating epidemiological studies. Specifically, by restructuring our DAG

and corresponding CM to represent competing hypotheses, we can see how ro-

bust our simulated epidemiological study results are to different biases in study

design and underlying causal mechanisms. As a case study, we simulated the obe-

sity paradox: the apparent protective effect of obesity on mortality among diabetic

ever-smokers, but not among diabetic never-smokers. Given that we would expect

obesity to confer poor health outcomes among all groups, especially those at higher
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risk of mortality (e.g., ever-smokers), this paradox has been studied extensively in

the chronic disease literature. Here, we used a CM derived from a published DAG

to simulate a longitudinal cohort study and examined how changing the underly-

ing causal mechanisms (i.e. CM structure) can lead to the obesity paradox. We

found that incorporating study design bias (i.e., not adjusting for age-varying mor-

tality rates or reverse causation), can lead to the obesity paradox. Ultimately, we

show how mathematical modeling of DAGs can be used to simulate epidemiological

studies, inform analyses, and explore underlying biases that may be important for

understanding epidemiological study data.

2.2 Introduction

Designing analyses to accurately estimate the effect of an exposure on outcome re-

quires understanding how variables relevant to a study question are causally related

to each other. Directed acyclic graphs (DAGs) are diagrams used to graphically map

causes and effects to separate associations due to causality versus those due to bias.

Compartmental model (CMs) depict parameterized flows between disease states

over time [32, 33] and can be used to explicitly represent mechanisms underlying

disease progression or transmission [34, 35]. Given the causal nature of both DAGs

and CMs, a question arises of whether these two approaches may be linked. In-

deed, Ackley et al. provided a formal mapping from the basic building blocks of

DAGs (e.g. causality, confounding and selection bias) to CMs [32]. See Figure 2.1

for an example illustration and Appendix Section A.1 for a more in-depth compari-

son between DAGs and CMs. A DAG and CM are defined as ‘corresponding’ if they

represent the same conditional independencies. Despite this published mapping,

an in-depth exploration of its utility and examples deriving CMs from more realistic
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Figure 2.1: From left to right: A simple DAG showing causality wherein exposure E
causes outcome D. Next, in CMD1, We will assume that E and D are
both dichotomous and this corresponding CM will have 2n states where
n = 2 since there are 2 random variables on the DAG. Additionally,
D status does not affect E status. The X̄ notation denotes not X, so
Ē is unexposed. Thus the rates at which individuals become exposed
(i.e. go from Ē to E) are the same whether or not they have D—equal
rates are denoted by the same parameter value and if the parameter
symbol is not indicated, distinct rates are assumed. This CM is further
asserting that once an individual becomes diseased or exposed, they
cannot return to the non-diseased or non-exposed state. In CMD2, we
see that individuals can move from E to Ē, but their D status does not
affect the rate at which they transition as indicated by the equal rates
between ĒD to ĒD̄ and ED to ED̄.

DAGs such as those in published literature has not previously been done.

In this chapter, we extended the work by Ackley et al. by simplifying the mapping

to reduce the combinatorial explosion of CM compartments that results from realis-

tic DAGs (taking advantage of simplifications to the CM that can be included when

conditioning on a variable and tracking mortality). We then developed an opera-

tionalized workflow which uses this mapping to simulate epidemiological studies.

We illustrated our findings by deriving a CM from a published DAG representing

the obesity paradox, the phenomenon wherein obese ever-smoking diabetics have

lower mortality rates than their normal weight counterparts. We examined compet-

ing hypotheses underlying the obesity paradox by incorporating different potential

biases into our CM and then simulating study data. Our method can be applied

to nearly any DAG or study question to gain insight into what underlying causal
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mechanisms can explain patterns observed in epidemiological data. This insight

can be used to reduce bias in study designs and ultimately obtain more accurate

effect measures of an exposure on outcome.

2.3 Methods

2.3.1 Overview of the Obesity Paradox

The obesity paradox is the apparent protective effect of obesity on mortality among

individuals with chronic diseases such as heart failure, stroke, or diabetes [2, 106–

108]. In this analysis, we examined results from an observational study conducted

by Preston et al. in which obese, ever-smoking (but not never-smoking) diabetics

had lower mortality rates than their normal weight counterparts [2].

Figure II.2(a) shows the published DAG from the observational study [2] represent-

ing the obesity paradox. The exposure is body mass index (BMI) and is coded as

either overweight/obese (BMI ≥ 25 kg/m2) or normal weight (BMI = 18.5-24.9

kg/m2) and the outcome is mortality. Individuals are considered to have diabetes

or prediabetes if their hemoglobin A1c is less than 5.7%, or if they have been pre-

viously diagnosed. Smoking is a common risk factor for diabetes, mortality, and

BMI, and is coded as ever-smoking (≥ 100 cigarettes over the course of an indi-

vidual’s lifetime) or never-smoking (< 100 cigarettes). The mortality rates were

age-standardized according to the 2000 census using age groups 40-59 and 60-74.

For simplicity of notation, we will refer to pre-diabetics and diabetics as ‘diabetics’

and overweight and obese as ‘obese’.

To determine how to obtain an unbiased effect measure of BMI on mortality, we can
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refer to the structure of the DAG from Preston et al. (Figure II.2(a)). Overall, if we

assume that there are no other sources of bias in the study, and no other common

causes of the variables on the DAG, an unbiased effect estimate would require that

we adjust for smoking status. Diabetes is a common cause of smoking and BMI (or

collider). Although conditioning on a diabetes will create a spurious association

between its causes i.e., selection bias [109], adjusting for smoking removes this.

Additionally, diabetes is a mediator on the path between BMI and mortality. To

account for the fact that we are conditioning on a mediator, we can assume that

there are no additional unmeasured confounders and only consider the controlled

direct effect of BMI on mortality i.e., when diabetes is held constant [110]. See

Appendix Section A.2 for a more details.

There are numerous potential explanations for the obesity paradox. Example expla-

nations due to bias in study designs include reverse causation [2], confounding, se-

lection bias [2, 111], or inaccuracy of BMI in representing body composition [112].

Study design bias may be due to underlying causal mechanisms that have not prop-

erly been adjusted for in the analysis (e.g. reverse causation). Causal explanations

include the fact that obese individuals may receive better medical treatment [113],

or might be specific to the chronic disease e.g. obese individuals may be protected

from plaque formation on their arteries through a greater mobilization of endothe-

lial progenitor cells [114].

For the purposes of this study, we will define the obesity paradox based on the qual-

itative results of the Preston et al. study i.e., the obesity paradox occurs when obese

never-smoking diabetics have higher rates of mortality than normal weight never-

smoking diabetics and obese ever-smoking diabetics have lower rates of mortality

than normal weight ever-smoking diabetics. We also assumed that comparable in-

dividuals who are obese or ever-smokers always have higher mortality rates than
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their normal weight or never-smoking counterparts, respectively. In other words,

we only considered biases in study designs (specifically reverse causation or se-

lection bias) as potential explanations, rather than examining situations where we

model obesity as being biologically protective.

2.3.2 Workflow Summary

We propose the following workflow to simulate epidemiological studies and conduct

statistical analyses on CMs derived from DAG:

1. DAG and Study Design. Design or use an existing DAG representing the

causal processes related to a given exposure and outcome, and then plan an

epidemiological study to simulate using the model. Using the DAG, determine

which variables will be controlled for in the statistical analysis (see Step 5

below). In our analysis, we started with a published DAG [2].

2. DAG→CM Mapping. Derive a CM from the DAG using the mapping described

by Ackley et al. [32].

(a) Because multiple CMs may match the given DAG, decide the appropriate

CM based on the chosen study design and realistic mechanisms for the

process of interest. In our CM, individuals can transition from never-

smoking to ever-smoking, but not back to never-smoking. In general, the

research question and hypotheses will guide how to correctly derive a

CM from a given DAG since the correspondence between DAGs and CMs

is not one to one. [32].

(b) Potentially reduce the state-space for the chosen CM based on the study
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design. In our analysis, the study design conditions on diabetes, so we

can simplify the model state-space to only include the diabetic states.

3. Simulation and Sampling. Simulate the chosen study population using the

CM based on predefined ranges of parameter values and initial conditions.

In our analyses, we simulated a yearlong longitudinal cohort study among

diabetics aged 40-74 (this matched the population in the observational study)

for each sampled parameter set.

(a) Parameter and initial condition values and ranges can be determined

based on the mechanism of interest, existing data, the literature, or sim-

ply broad ranges that encompass the plausible space of values (as were

used in our analysis). Values may be (for example) uniformly sampled

from these ranges using Latin Hypercube Sampling (LHS) [115].

(b) Simulation of the study using the chosen CM can be implemented in a

variety of ways, e.g. as ordinary differential equations or as a stochastic

model.

4. Generate Simulated Data. Generate a simulated dataset based on the out-

come of interest and measurement details of the study (e.g. number of follow-

up time points, variables measured, potential sampling or measurement er-

ror). In our case, individuals were followed up once at the end of the study,

we made a single simulated dataset for the entire study because individuals

were followed up once at the end of the study. For simplicity and because

we simulated a very large study (1,000,000 individuals), we did not exam-

ine issues of sample size or measurement error. We subsequently calculated

person-time (to estimate time at risk for the study population over the course

of the study) and incident mortality by disease state.

29



5. Analysis and Evaluation. Run statistical analyses or calculate outcomes using

the simulated data in Step 4. Analyses may include calculation of single effect

estimates and/or a wide range of statistical regression methods (depending

on what analyses are of interest/planned for the study). Next, evaluate the

results to examine how the causal relationships and parameters included in

the model affect potential biases and patterns of interest in the data. In our

analysis, we calculated mortality rate ratios or (MRRs) to compare normal

weight to obese individuals within different smoking strata and then assessed

whether each given model and study design could recreate the obesity para-

dox.

6. Revision and Exploration. Based on the results of Step 5, potentially alter

the study design and/or DAG to explore alternative biases and causal mech-

anisms, then re-run the workflow. We did this by simulating epidemiological

studies assuming different unadjusted study design biases (i.e., reverse causa-

tion and selection bias).

In the remainder of this paper, we simulate studies assessing how different under-

lying causal mechanisms might lead to the obesity paradox to illustrate the utility

of this workflow.

2.3.3 Simulating a Longitudinal Cohort Study

We simulated a yearlong cohort study to examine the relationship between obesity

and mortality among diabetics ages 40-74. We followed up participants once at

the end of the study to calculate person-time and incident mortality by disease

state. We started with a population of 1,000,000 people and (for the age-structured

models mentioned below) weighted according to their age group distribution in the
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2010 United States (US) census [116]. See Appendix Section A.7 for details on

age-weighting for our study population and A.8 for a more detailed age-weighting

scheme not implemented in our study.

2.3.4 Alternative CMs

We used 4 different models to explore how our simulated datasets change with dif-

ferent proposed underlying causal mechanisms. See Figure 2.2 for all DAGs and

corresponding CMs. We begin with Model 1, a direct conversion of the published

DAG from Preston et al. [2] to a CM. See Appendix Section A.3 for details on how

we converted this DAG and reduced the number of compartments on the CM. After

following the workflow for Model 1, we explored other possible mechanisms that

might lead to the obesity paradox. Model 2 incorporated age-varying rates and

was age-weighted according to the US census [116]. We split our population into

a younger age-group (ages 40-59) and an older age-group (ages 60-74) and simu-

lated the same model within strata of age. See Appendix Section A.6 for details on

how we incorporated age into the DAG and CM. Model 3 represents reverse causa-

tion due to chronic obstructive pulmonary disease (COPD), a co-morbidity associ-

ated with diabetes for which smoking is a risk factor that can induce cachexia (loss

of weight and muscle mass) and cause higher mortality rates [117–120] (thereby

increasing mortality among a subset of normal weight ever-smokers). Individuals

with comorbid diabetes and COPD can transition into an ‘unhealthy’ compartment,

U . Individuals in U have lost weight due to cachexia and also have higher mortality

rates than their normal weight ‘healthy’ counterparts (i.e. normal weight ever-

smoking individuals with COPD who have not undergone cachexia). See Appendix

Section A.9 for details on the underlying biological mechanism and how we incor-

porated reverse causation into the DAG and CM. Finally, Model 4 is a combination
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of Models 2 and 3. See Appendix Section A.11 for details on how we incorporated

age and reverse causation into the DAG and CM.

In all CMs, once individuals die, they cannot move between disease states and we no

longer track them, therefore to reduce the dimensionality of our model, mortality

is an outgoing flow from each compartment and was not included in the set of

disease states. Overall, we made minimal assumptions about parameter values to

derive generalizable insight into the mechanisms driving the obesity paradox.
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DAG Corresponding CM

Figure 2.2: All DAGs and corresponding CMs used in our obesity paradox simula-
tion study. DAGs (left column) and corresponding CMs (right column)
for each model. By row: 1. Preston et al. [2] DAG; 2. adding in age-
varying mortality rates; 3. reverse causation and 4. combined model.
Mortality rates are denoted by dotted lines. Rates with no labels (in-
cluding mortality rates) may all be distinct. Where ‘BMI’ is the exposure
and ‘Mortality’ is the outcome. ‘Age’ and ‘Smoking’ confound the rela-
tion between ‘BMI’ and ‘Mortality’ The box around ‘Diabetes’ indicates
that the study population is conditioned on individuals with diabetes.
Cachexia is represent by ‘U’, and COPD is chronic obstructive pulmonary
disease. With respect to the longitudinal DAGs, ‘History’ denotes status
before the study, ‘0’ denotes baseline, and ‘1’ represents the end of the
study i.e., one year follow up.
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2.3.5 Parameterization of the CM

We conducted a sweep of parameters (transition and mortality rates) and initial

states (denoted ‘parameter sets’) using LHS [115] to uniformly sample values from

pre-defined ranges [40, 115]. Specifically, we allowed all compartment transition

rates to vary from 1% to 20% per year. For example, this results in between 1%

to 20% of obese ever-smokers becoming normal weight over the course of the 1

year study. Although 20% is unrealistically high (especially in the general popu-

lation), we intentionally set a large range of parameter values to ensure that we

capture realistic ranges and to see if any extreme scenarios might lead to the obe-

sity paradox. Furthermore, we placed no restrictions on the number of individuals

starting in each state and only ensured that the total number of individuals across

all disease states equaled the study population at the start of the simulation. See

Appendix A.12 for more details on the calculation of initial conditions. We imposed

biologically realistic restrictions on the mortality rates such that ever-smokers have

a higher mortality rate than their never-smoking counterparts (i.e., within weight

strata), and obese individuals have a higher mortality rate than their normal weight

counterparts (i.e., within smoking strata). In the age-structured models, older age

group mortality rates for a given disease state were determined by multiplying the

younger age group mortality rate of the same state by a scaling factor between 1

and 2. Finally, in the reverse causation models, we derived the mortality rate in the

U compartment by multiplying the mortality rate of normal weight healthy ever-

smokers with COPD by a cachexia scaling factor between 1 and 2 (similar to the

age scaling factor in Model 2). Overall, each model represents different underly-

ing causal mechanisms and running a model on a given parameter set represents

a single simulated study. See Appendix Section A.13 for more details on sampling

transition and mortality rates for each model and Table 2.1 for all LHS ranges.
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Table 2.1: LHS Ranges
Parameters Range Models

Normal weight never-smoking to obese never-
smoking

1% to 20% All models

Obese never-smoking to normal weight never-
smoking

1% to 20% All models

Smoking initiation rate 1% to 20% All models
Normal weight ever-smoking to obese ever-
smoking

1% to 20% All models

Obese never-smoking to normal weight never-
smoking

1% to 20% All models

COPD incidence rate 1% to 20% Model 3 and combined model
Normal weight ever-smoking with COPD to obese
ever-smoking with COPD

1% to 20% Model 3 and combined model

Obese ever-smoking with COPD to normal weight
ever-smoking with COPD

1% to 20% Model 3 and combined model

Cachexia initiation rate 1% to 20% Model 3 and combined model
Baseline mortality rate 1% to 10% All models
Add on for smoking 0% to 10% All models
Add on for obesity 0% to 10% All models
Age-varying mortality scaling factor 1 to 2 Model 2 and combined model
Add on for COPD 0% to 10% Model 3 and combined model
Cachexia (U) scaling factor 1 to 2 Model 3 and combined model

2.3.5.1 Data Generation and Statistical Analysis

After running each model with 10,000 randomly sampled parameter sets [121],

we calculated person-time and incident deaths per compartment for each study

(i.e. for each model and sampled parameter set). See Appendix Sections A.14

and A.16 for more information on these calculations. Next, we calculated MRRs

comparing normal weight to obese individuals within smoking strata to measure

the effect of BMI on mortality. As mentioned, to recreate the obesity paradox (as per

[2]), the MRRs from the simulated data must simultaneously show normal weight

never-smokers with lower mortality rates than their obese counterparts, and normal

weight ever-smokers with higher mortality rate than their obese counterparts.

In Model 1, we measured all compartments and calculated the MRRs directly from

the simulated data. In Model 2 (age), we initially did not adjust for age as a con-
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founder. Rather, MRRs were calculated by taking the sum of incident deaths divided

by the sum of person-time for a given disease state across age-groups. As a sensi-

tivity analysis, we did adjust for age by externally standardizing the MRRs to the

unexposed (obese) group [122]. Finally, in Model 3 (reverse causation), our study

design did not initially adjust COPD or related complications (i.e., cachexia). There-

fore individuals with COPD were measured together with ever-smokers (e.g., in our

study population, all normal weight individuals with COPD including those with

cachexia were measured together with normal weight ever-smokers). The MRRs

were calculated in the same way as we did for Models 1 and 2. Therefore, we ini-

tially did not adjust for COPD or cachexia. As a sensitivity analyses, we adjusted

for reverse causation by excluding all individuals with COPD (including those with

cachexia) at baseline. Finally, in the combined model, we ignored age, COPD, and

cachexia in our initial analysis, and then adjusted for age only, COPD only and

finally, age and COPD.

All simulations and analyses were conducted in R version 3.3.3 [123]. Compart-

mental models were run using the ‘deSolve’ package [124].

2.4 Results

Overall, we found that not adjusting for study design bias in our CMs resulted in

the obesity paradox. See Table 2.2 and Figure 2.3 for all results.
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Table 2.2: Results from All Analyses
Models Unadjusted Analysis Adjusted Analysis
Model 1: Published
DAG

No obesity paradox NA

Model 2: Adding in age-
varying mortality rates

Obesity paradox oc-
curs – when there are
more younger obese
or more older nor-
mal weight (selective
survival bias)

Adjusting for age stops
the obesity paradox
from occurring

Model 3: Reverse cau-
sation

Obesity paradox oc-
curs – more than in
Model 2 because we
created a mechanism
that directly affects nor-
mal weight individuals
(reverse causation bias)

Excluding those with
COPD at baseline stops
the obesity paradox
from occurring (for 1
year, but not 5 year
study)

Model 4: combined Obesity paradox oc-
curs – Predominant
mechanism is reverse
causation

Interactive effects be-
tween biases
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Results from all Models and Parameter Sets

Figure 2.3: Results from all model runs. Each plot represents the MRR comparing
normal weight to obese for never-smokers against the MRR for ever-
smokers for each of the 10,000 LH-sampled parameter sets with each
point representing a single simulated study. The obesity paradox occurs
when obese never-smoking diabetics have higher rates of mortality than
normal weight never-smoking diabetics and obese ever-smoking diabet-
ics have lower rates of mortality than normal weight ever-smoking dia-
betics. By row: 1. Preston et al. [2] 2. adding in age-varying mortality
rates; 3. reverse causation and 4. combined model.

In Model 1, we did not see the obesity paradox because the MRRs from the sim-

ulated data were simply the ratio of the CM mortality rate parameters (see Figure

II.3(a)). For instance, the ever-smoker MRR is just the mortality rate of normal
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weight diabetic ever-smokers (NWDS) divided by the mortality rate of obese dia-

betic ever-smokers (ODS). See Appendix Section A.17 for more details. Due to the

structure of Model 1 and the restrictions we placed on the parameter values, mor-

tality rates for normal weight individuals were always lower than (or at the very

least equal to) their obese counterparts therefore, all ever-smoking MRRs were ≤ 1.

Overall, Model 1 cannot simulate a protective effect of obesity on mortality among

diabetic ever-smokers.

Next, in Model 2, the obesity paradox did occur in a subset of studies. (See Fig-

ure II.3(b)). Overall, among model runs that resulted in the obesity paradox, there

were generally either more younger individuals in the obese ever-smoking compart-

ment and/or more older individuals in the normal weight ever-smoking compart-

ment. This caused the mortality effects of age to counterbalance those of obesity,

resulting in the obesity paradox. In other words, for the obesity paradox to oc-

cur, age-varying mortality must be sufficiently high and work together with the

relative age distribution of individuals across disease states. This is analogous to

selective survival bias in which obese ever-smoking individuals are more likely to

die before they reach older ages, thus there would tend to be more older normal

weight ever-smokers than older obese ever-smokers. An illustration of this is the

trade-off between the proportion of old vs. young individuals in the obese diabetic

ever-smoking (ODS) compartment and the relative mortality rate of normal-weight

diabetic ever-smokers (NWDS) vs. ODS (shown in Figure 2.4). The majority of

parameter sets that resulted in the obesity paradox show the proportion of individ-

uals in the older age-group among all ODS is < 50%. Additionally, the effect of

obesity on mortality is relatively low (i.e., the NWDS mortality rate is consistently

similar to the ODS mortality rate in the parameter sets that resulted in the obesity

paradox). Finally, as the proportion of individuals in the older age group increases,
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the effect of obesity on mortality decreases even more. This is analogous to obesity

becoming less risky as individuals age [125]. In the age-standardized sensitivity

analysis, no runs resulted in the obesity paradox (results not shown).

(a) ODS in Older Age-Group (b) ODS in Younger Age-Group

Figure 2.4: Age-weighting and relative mortality among Model 2 runs. The propor-
tion of obese diabetic ever-smokers (ODS) who are old (left) and young
(right) at the beginning of the simulation is displayed on the x-axis i.e.,
if equal to 0.5, half of the individuals in ODS are in the older age group
and half are in the younger age group. The relative mortality of normal
diabetic ever-smokers (NWDS) to ODS is displayed on the y-axis i.e.,
if equal to 0.5, the NWDS mortality rate would be half of the ODS
mortality rate. Parameter sets that resulted in the obesity paradox are
in red (coded as ‘1’) and sets that did not result in the obesity are in
blue (coded as ‘0’).

In Model 3 (compared with Model 2), more runs resulted in the obesity paradox

(Figure II.3(c)). This is due to the fact that the reverse causation mechanism dif-

ferentially affects normal weight ever-smoking individuals (compared with obese

ever-smoking individuals). Therefore, the obesity paradox depends on (1) the rela-

tive obese and normal weight (healthy and unhealthy) mortality rates and (2) the

distribution of individuals in healthy and unhealthy compartments. On the other

hand, in Model 2, age-related mortality affects normal weight and obese individu-

als in the same manner and thus relies on the population distribution across more

compartments i.e., both age groups in ever-smoking obese and normal weight com-

partments. Because healthy and unhealthy normal weight ever-smokers are mea-

sured together in our observational study, the unhealthy mortality rate increases
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the combined (healthy and unhealthy) normal weight ever-smoking mortality rate

such that the overall normal weight ever-smoking mortality rate is higher than the

obese ever-smoking mortality rate and the obesity paradox occurs. This mechanism

of weighting the overall normal weight ever-smoking mortality rate is revealed in

the relative proportion of individuals starting in different disease states (Figure 2.5).

For instance, for runs in which the obesity paradox occurs, the relative mortality rate

of individuals who are unhealthy compared to those who are obese ever-smokers

increases when fewer normal weight individuals start in the unhealthy compart-

ment.

(a) Proportion of Normal Weight Individ-
uals who are Unhealthy

(b) [Proportion of Normal Weight Indi-
viduals who are Healthy

Figure 2.5: Age-weighting and relative mortality among Model 3 runs. The pro-
portion of normal weight individuals (ODS) who are unhealthy (left)
and healthy (right) at the beginning of the simulation is displayed on
the x-axis. The relative mortality of unhealthy individuals to ODS is
displayed on the y-axis i.e., if equal to 0.5, the U mortality rate would
be half of the ODS mortality rate. Parameter sets that resulted in the
obesity paradox are in red (coded as ‘1’) and sets that did not result in
the obesity are in blue (coded as ‘0’).

The results from our sensitivity analyses reveal that excluding individuals with

COPD at baseline reduced the number of model runs that result in the obesity para-

dox to 1 (compared with 3,114 in the unadjusted version). If we run the study for

5 years, only 82 model runs resulted in the obesity paradox (results not shown).

This highlights the importance of inclusion and exclusion criteria in an initial study
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population in recreating the obesity paradox.

Finally, in the combined model, we found that the reverse causation mechanism

leads to the obesity paradox substantially more than the age-weighting (selective

survival) mechanism. This is evidenced by the fact that in 91.7% of all runs in

which the obesity paradox occurred, the normal weight ever-smoking unhealthy

(U) mortality rate is higher than both the obese ever-smoking and obese COPD

mortality rates within each age strata. The results from our sensitivity analyses re-

veal that when we control for both age and COPD, the obesity paradox is avoided

almost completely. Interestingly, when we standardize age or exclude individuals

with COPD only, certain parameter sets that didn’t previously result in the obesity

paradox, now demonstrate the obesity paradox. This indicates a ‘two wrongs make

a right’ interactive effect between these two biases: for instance, if there are more

younger normal weight individuals this might counteract the effects of a high pro-

portion of individuals starting in U in the unadjusted model, but if we adjust for

age only, the proportion starting in U may result in the obesity paradox.

2.5 Conclusion

We have developed a workflow that can be used to explicitly examine the under-

lying conditional independencies of DAGs. This method provides a systematic way

to quantitatively evaluate bias and provide insight into the causal relationships be-

tween variables in a study. Our workflow can be applied to nearly any study ques-

tion assuming standard assumptions (e.g., assuming no faithfulness violations on

DAGs [126]). Modeling DAGs and conducting simulated studies can provide insight

into how to design sound observational studies and analysis plans. For instance, if

results from a simulated study don’t match expected results, this may provide in-
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sight into unmeasured and/or unadjusted covariates, or interacting biases as we

found in our obesity paradox simulation study. Although traditional analyses using

DAGs would have likely found the same main sources of bias (i.e., unadjusted co-

variates), our method also identified some additional biases (that would not have

been easily identified using traditional methods (e.g., interaction between age and

reverse causation, excluding individuals with COPD at baseline and then running

the study for 5 years). Overall, we simulated epidemiological study data in a struc-

tured manner based on the conditional independencies of DAGs to test different

hypotheses.

We successfully recreated the obesity paradox by deriving a compartmental model

from a published DAG [2] and then incorporating two different unadjusted biases.

In Model 1, we found that direct conversion of the published DAG was not able to

recreate the obesity paradox. In Model 2, we incorporated age-varying mortality

and found that the relative proportion of individuals in different age groups across

disease states can create a selective survival bias causing the obesity paradox. In

Model 3, we found that reverse causation caused by an unmeasured disease state

can more effectively cause the obesity paradox compared with the age-varying mor-

tality model. The reverse causation mechanism was more effective because it dif-

ferentially affected normal weight ever-smoking individuals (compared with obese

ever-smoking individuals). Finally in the combined model, we observed how dif-

ferent biases can interact to cause or prevent the obesity paradox from occurring.

Overall, adjusting for biases in these models (sensitivity analyses) made the obesity

paradox nearly non-existent, indicating that incorporating bias and not adjusting

for it correctly is required to recreate the obesity paradox (assuming the protec-

tive effect of obesity is not truly present, and that we have sufficient sample size).

Ultimately even with very general parameter assumptions for our model, we were
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able to relax specific assumptions about parameter values and initial conditions to

derive general insight into what causal mechanisms may drive the obesity paradox.

Limitations of this study include the fact that the DAGs we use are overly simplified

(despite our use of a published DAG) and do not represent the complete state of

knowledge about the relationships between variables relevant to the study question.

We decided to use relatively simple DAGs to more effectively illustrate our work-

flow. It is simple to make more realistic DAGs by adding additional demographic

characteristics e.g. race, socioeconomic status, access to medical treatment and in-

cluding these would simply require vectorizing our equations further (as we did for

the extension from Model 1 to Model 2). However, since we are not fitting these

models to study data, we would have added more parameters to our models without

truly adding any information. Because each new DAG variable doubles the number

of equations in the CM, this would add complexity without insight. We aimed to

strike a balance between realism and parsimony in our models to isolate and exam-

ine the qualitative effects of individual causal mechanisms of interest. For instance,

the effects of race may counteract the effects of age leading to overly complicated

results (i.e. identifiability issues may obscure the larger point). A potential future

direction is to construct larger DAGs from the literature and make simplifying as-

sumptions to reduce the corresponding CM’s dimensionality (such as including only

one variable among a colinear set). For instance, suppose both BMI at baseline and

BMI history are included on a given DAG, one could assume that history is a proxy

for baseline BMI among e.g. adults [127] and collapse these two variables into a

single BMI variable. The robustness of results to this simplifying assumption can

also be explored using our workflow. Relatedly, our workflow could also be used to

identify which variable(s) on a DAG are sufficient or necessary to replicate a partic-

ular pattern in the data (e.g., by systematically removing variables and simulating
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the results). Finally, individually-based models may be used for study questions

requiring more detailed demography. Another weakness is that our crude estimate

of person-time (see Appendix Section A.14) will not work if the dynamics of the

model are very fast. It is possible to calculate person-time precisely by tracking the

flows in and out of compartments separately.

Strengths of this study include the methodological contributions to using CMs in

conjunction with DAGs to understand patterns seen in the data. We extended the

mapping that Ackley et al. provided [32] and proposed a method for comparing

simulated data with epidemiological study data. This method can be expanded

for different types of epidemiological analyses and can also be used for different

purposes e.g. relaxing statistical assumptions, multifaceted sensitivity analyses or

exploring counterfactual scenarios. We were able to show that the DAG presented in

the Preston et al. paper did not on its own adequately describe the obesity paradox

and then proposed alternative mechanisms and DAGs that could recreate the obe-

sity paradox. Furthermore, we gained insight into what hypothetical causal mech-

anisms could result in the obesity paradox with limited data informing our model.

Additionally, conducting the random sweep (i.e. LHS) of the parameters and initial

conditions allowed us to account for uncertainty and draw general qualitative con-

clusions about the structure of the model and its effects on our statistical results.

Ultimately, our workflow can help explicate causal mechanisms to explore whether

or not DAGs are valid representations of hypotheses in question even when data is

limited. Additionally, CMs derived from DAGs can be used as a testing ground for

competing causal mechanisms to determine which ones can most closely explain

patterns seen in observational study data. This represents a departure from the

standard paradigm of fitting CMs to epidemiological data where instead, we op-

erationalize causal relationships depicted on the DAG to simulate epidemiological
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study data.

Additional future research can include other statistical analyses. For instance, a

Poisson regression model (for count data) can calculate MRRs and can be useful

if conditioning on multiple variables (see Appendix A.18). Alternatively, simulated

data can be individuated and other types of regression models can be run. Model

parameters can be tuned to quantitatively recreate specific datasets which might be

useful for gaining insight into specific study results or a specific target population.

Additionally, model parameters can be informed directly from data. For instance,

see Appendix Section A.17 for notes on how to parameterize the mortality rates

from data. Similarly, the data collection process itself can be simulated in the com-

partmental model, allowing one to assess how issues such as measurement error or

insufficient power might affect the relationships reflected in the DAG.

Overall, we presented here a new utility for CMs derived from DAGs: testing hy-

potheses to understand patterns seen in study data. We also proposed a method

to compare simulated data with epidemiological study data that can be used to

test competing hypotheses. We used our method to determine that a DAG from

the literature was not complete and could not explain study results (i.e., it could

not recreate the obesity paradox) by itself. We therefore simulated two alterna-

tive causal mechanisms and derived corresponding DAGs that could recreate the

qualitative results of the study. Ultimately, simulating study data by operationaliz-

ing the causal relationships on DAGs can provide insight into how to design sound

observational studies and analysis plans.
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CHAPTER III

Exploring the impact of variation in spatial patterns

of community contact on the effectiveness of

household- vs. community-based screening

interventions for Tuberculosis

3.1 Introduction

Tuberculosis (TB) is the leading cause of death from infectious disease worldwide

killing 1.6 million individuals in 2017 [128]. Additionally, it has recently been es-

timated that ∼ 25% of the global population has a latent TB infection (LTBI) [59].

Individuals with LTBI cannot transmit TB, but are at risk for progressing to active

disease months to years after the initial infection. The majority of individuals with

LTBI who progress to active TB do so within the first 2 years following infection

[62]. This immense burden of latent disease poses particular challenges for TB

control and elimination: Without guidance on how to efficiently find those recently

infected individuals who are most likely to manifest infectious TB, the dramatic re-

ductions in global TB incidence laid out in the World Health Organization’s (WHO)

END TB goals [128] are unlikely to be achievable.
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Evidence from high-incidence settings has suggested that screening of the house-

hold contacts of individuals with active TB (or household contact tracing (HHCT))

is an under-utilized tool for finding and treating (i.e., with preventive therapy (IPT)

[65, 67]) recently-acquired latent infections [17, 18]. HHCT has been successfully

used in high-income, low-incidence countries for decades [9, 10]. Although a recent

contact tracing trial in a high-incidence settings, showed promise for finding new

cases of TB [12], other trials have yielded no significant population-level effects

[11, 13, 14]. These mixed results raise questions about whether contact tracing in

LMICs can be optimized to quickly find new cases of active and latent TB to reduce

population-level risk in a cost effective manner.

On the individual level, TB is transmitted through close or casual contact with an in-

fected individual. Close contacts are repeated and occur over extended periods e.g.,

within households or workplaces [129], while casual contacts are more ephemeral

and may occur between individuals who do not know each other such as in a bus

or a store [130]. Both types of contact contribute differentially to the spread of TB

[17, 18, 56], with close contacts concentrating infection, and community contacts

serving as bridges between these more tightly clustered units. On the population-

level within cities, the distribution of TB is spatially heterogeneous. For example,

incident cases can cluster forming high burden hotspots [20, 131–136]. A math-

ematical modeling analysis found that targeting hotspot transmission can provide

an efficient way to reduce city-wide TB risk in Rio De Janeiro [19]. Given the com-

plexity of different contact networks, and the spatial heterogeneity of TB, screening

interventions targeting one transmission cluster e.g., a household or neighborhood,

may have far-reaching effects on other distal parts of the population.

The potential of HHCT in high-burden settings may not stem primarily from the

role of household transmission: In settings with a high burden of TB, a majority
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of co-prevalent household infections have been shown to be genetically discordant

[15, 137], indicating that outside-household, community-based exposures may be

driving household-based clustering of infection. However, this should not be taken

as evidence that households are unlikely to be an effective site of intervention.

Instead, clustering of genetically distinct infections within households may be sug-

gestive of common community exposures that are shared between household mem-

bers (e.g. through overlapping community contacts). Indeed, sharing a household

with a TB case in a high incidence setting is still a meaningful risk for infection

[17, 18] and a key risk factor for developing active disease [138, 139]. Overall, we

hypothesize that targeting households for TB interventions is more effective than

community-based active case finding [18].

Overall, due to the contact and spatial heterogeneity underlying TB transmission,

and the fact that shared community risk factors (e.g. overlapping contacts) may

be driving incident cases within households, localized community risk may be de-

tectable from the household level. In other words, clustering of risk within house-

holds may help efficiently identify localized hotspots of community transmission.

Overall, it is necessary to examine whether this spatial and contact heterogeneity

can be leveraged to improve the effectiveness of screening interventions for TB.

We present here a spatially explicit network model with individuals and households

representing TB transmission within an urban area. Different networks were used to

represent different spatial and community contact patterns. Key parameters in our

model were informed from a cohort study in Lima, Peru that implemented HHCT

and administered IPT [17]. We used our model to examine the performance of three

screening interventions: HHCT, community contact tracing (community CT), and

community-based active screening (control intervention). Specifically, we explored

how each intervention performs across all networks, and then within a variety of
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different settings to gain generalizable insight into how spatial and contact hetero-

geneity can be leveraged to increase their effectiveness at reducing population-level

TB incidence.

3.2 Methods

3.2.1 Data

The model parameters were derived from several different published data sources

including reviews of historical studies before the onset of chemotherapy e.g. for the

recovery rate of individuals with active TB [140], other contemporary systematic

reviews e.g. for the late latency progression rate [61]. Additionally, the house-

hold transmission rate was derived from the large prospective cohort study that

conducted HHCT in Lima, Peru [17, 67]. See Table 3.1 for a full list of model

parameters and their sources.

3.2.2 Spatial Contact Network

To capture the heterogeneous spatial distribution of TB as well as differential house-

hold and community contact and transmission, we developed a spatially explicit

network model consisting of close (household) and casual (community) contacts.

Our model has 100,000 individuals divided evenly into 20,000 households, with

5 individuals in each household. Households are represented by fully-connected

sub-networks. Each household was placed randomly in a 2 dimensional space of

normalized area equal to the total number of households. Community contacts are

determined by a Gaussian (or normally distributed) connectivity kernel adapted
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Table 3.1: TB Parameter Values and Uncertainty Ranges
Parameter Description (units) Value Source Uncertainty Ranges

θ Life expectancy (years) 74.78 [141] Fixed
ε Early latency progression rate

(/yr)
Years 1-5:
{0.0866, 0.0355, 0.0112,
0.0074, 0.0024}

[142] Each substate rate will be multi-
plied by 0.0817 to 0.0905

τ Late latency progression (/yr) 0.0005 [61] Fixed
γ Recovery rate (/yr) 0.12 [140] 0.09 to 0.15 [70]
κ Active TB mortality rate (/yr) 0.12 [140] 0.05 to 0.4 [70]
βHH Household transmission rate 0.21 [18] 0 to 0.315
βuC Sampled community transmis-

sion rate, this is divided by av-
erage degree to derive βC

Range determined by expected
number of cases (see 3.2.4 for
details)

0 to 7

M Imported case rate (/yr) Assuming 2 to 20 individuals mi-
grate with active TB per year

2 to 20

cdr case detection rate (/yr) 1 Assuming individuals are de-
tected an average of 1 year after
progressing to active TB

Fixed

txd Treatment duration (months) 6 [143] Fixed
iptd IPT duration (months) 6 [144] Fixed
ω Amount of immunity conferred

by current disease state (%)
For ωS , ωEL, ωFL, ωR , ωI ,
ωT , ωD : {0, 80%, 80%, 80%,
100%, 100%, 100%}

[145, 146] Fixed

Network Parameters

n Average degree i.e., the sum of
the number of community con-
tacts and number of household
contacts

{50, 100, 150, 200, 250, 300,
350, 400}

NA

σ Stan-
dard
deviation

Average Degree Distance {0.5, 0.75, 1, 1.25, 1.5, 1.75,
2, 2.25, 2.5, 2.75, 3, 3.25, 3.5,
3.75, 4, 4.25, 4.5, 4.75, 5}

NA

ρ Network
density

Fixed at 1 NA

from Lang et al. [3]. This kernel controls the overall neighborhood size in which

contacts are formed and numbers of contacts, with the probability of a connection

forming between community contacts given by:

f(d) = (n− 4)
e(−d

2/2σ2)/2πσ2

ρ
(3.1)

where (n − 4) is the average number of total contacts (average degree) offset by 4

which is the number of household contacts. Next, d is the distance between nodes,

σ is the average connection radius, and ρ is the density of the network. TB can only

be transmitted between connected individuals. See Figure 3.1 for a schematic of

the household and community network structure.
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Figure 3.1: Schematic of Network Structure: All individuals are fully connected
within their households. Individuals form community contacts based
on a Gaussian (normally distributed) Connectivity Kernel [3]. Networks
consist of 100,000 individuals divided evenly into 20,000 households.

We generated a wide array of networks with different input parameter values. For

each set of network parameters, we generated 10 network realizations to account

for random variation. Specifically, we varied the average degree or number of com-

munity contacts (n) and average connection radius (network standard deviation)

or the distance within which individuals form community connections (σ). We ex-

amined a wide range of networks to determine how clustering and variation in

community contact affected incidence and the performance of screening interven-

tions. Overall, we generated networks covering a large range of parameter space

from very local and close-range community connections to approximately spatially

random and long range community connections. We assumed constant household

and total population sizes, and static network connections. See Appendix Figures

B.1 and B.2 for features of generated networks (for one set of realizations) by dif-

ferent n and σ values.

3.2.3 TB Transmission Model

We adapted a model of coupled household and community TB transmission previ-

ously published by Kasaie et al. [70] to simulate TB transmission on the generated
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networks. See Figure 3.2 for the model schematic. In this section, we will first out-

line the natural history model, which includes the set of possible state transitions

for infected individuals in the absence of intervention. We will then outline the in-

tervention model which adds intervention-relevant states and state transitions to

the underlying natural history model.

Figure 3.2: Schematic of TB Transmission Model. Where S is susceptible; EL is
early latent; LL is late latent; I is active TB; R is recovered; T is treat-
ment; IPTS is susceptible individuals who are given preventive therapy
and IPTL are all other individuals given preventive therapy (i.e., those
who originate in EL, LL or R. Individuals transitioning to treatment
states are represented by dot-dashed lines. The rate at which individu-
als transition to the IPT states depends on the screening scenario and
number of contacts. Vital dynamics are represented by dotted lines.

3.2.3.1 Natural History Model

The natural history model includes 5 main states: susceptible and not infected (S),

early latent or those infected within the last 5 years, but have not progressed to
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active TB (EL), late latent or those infected more than 5 years ago, but have not

progressed to active TB (LL), infectious or those with active TB (I), and recovered

or those who have previously been infected and/or diseased, but were cured either

spontaneously or through treatment or preventive therapy (R).

In our model, susceptible (S), late latent (LL), and recovered (R) individuals can

become infected (or reinfected in the case of individuals in the LL and R states)

according to the force of infection which can be divided into household, community,

and external transmission (from imported TB cases), and is defined as:

FOI = [βHHIHH + βCIC +
M

N
](1− ω) (3.2)

Where βHH and βC are the per-contact transmission rates of household and com-

munity contacts, respectively. The number of active TB household and community

contacts are IHH and IC , respectively. Additionally, to simulate the TB risk due to

migration, we average the impact of imported cases over the entire population to

derive the external force of infection. Specifically, M is the active TB case migration

rate andN is the total population. Because prior infections confer limited protective

immunity [145, 146], the force of infection experienced by individuals with prior

infection (relative to a fully susceptible individual) is modulated by ω. For instance,

fully susceptible individuals have no added protection, but those who have been

infected and subsequently recovered are 80% less likely to contract TB.

Once an individual becomes infected, they move into the non-infectious early latent

state (denoted EL). Between 10 and 20% of individuals in this state will progress

to the infectious (diseased) active TB state (I) within 5 years with annual rates of

progression decreasing with time since infection (see EL sub-states in Figure 3.2)

[142]. After 5 years, the remaining 80% to 90% of individuals in the EL state
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who do not progress to I transition to the non-infectious late latent state (LL).

Individuals in LL may also progress to I, but the rate of progression is substantially

lower than EL such that only 5-10% of individuals in late latency progress over

the course of their lifetimes [61]. I individuals may die from TB, or spontaneously

recover (and move to R) [140]. Individuals in LL or R may become reinfected and

move back to the EL1 sub-state.

Any individual may die of natural causes and upon death is immediately replaced

with a susceptible individual. To avoid placing a susceptible individual into an en-

demic hotspot, we implemented a reshuffling scheme based on [147], in which

individuals who die from TB are replaced with one of their non-infectious con-

tacts (i.e., they could be in any state except for I) who in turn, are replaced with

one of their non-infectious contacts and so on until the 3rd replacement is made.

Replacements take on the same contact network (i.e. household and community

contacts) of those that they replace. Then, a new susceptible individual is born into

that 3rd individual’s previous location. This shuffling scheme maintains the network

structure and constant number of individuals per household over the course of the

simulation. This scheme also decreases the number of susceptible individuals put

directly into a location with high TB transmission (which would ultimately over-

estimate the amount of TB transmission occurring) by forcing births of susceptible

individuals to occur in separate part of the network.

3.2.3.2 Intervention Model

In our model, we implemented two types of screening interventions: passive and

active case finding. First passive case finding included treatment for passively de-

tected primary household cases (T ), representing the current standard of care in
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high-burden settings [148]. Second active case finding explored the impact of de-

livering screening and treatment for LTBI and active TB disease to all of an indi-

vidual’s household contacts, a selection of their community contacts, or both. A

recent model-based analysis examined the direct effects conferred by HHCT com-

pared with community based active screening and found that HHCT resulted in a

higher reduction in cases [18]. Here, we explored the impacts of these screening

interventions on the population-level in a spatially explicit environment.

Passive Case Finding Individuals with active TB who were found through pas-

sive surveillance were given treatment (moved to the T state). Once in the treat-

ment state, individuals were assumed to be non-infectious and eventually recovered

(moved to R). Cases detected through passive surveillance triggered the active case

finding interventions (below).

Active Case Finding For the active case finding interventions, once an infectious

individual was detected through passive surveillance, either a random selection of

community members or the household or community contacts of the index case

(depending on the screening scenario) were screened for TB.

If any of the additionally screened individuals had active TB, they were given treat-

ment and moved to T . All other screened individuals not found to have active TB

(including those who were susceptible, recovered, or latent) were given IPT. Indi-

viduals in the IPT compartments cannot become infected or progress to active TB.

If individuals transition to IPT from the S compartment, they returned to S at the

end of treatment. On the other hand, if individuals originated in the EL, LL, or R

compartments, they moved to R at the end of treatment.
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3.2.3.3 Screening Interventions

We ran the model with following screening intervention scenarios:

Passive Screening: Passive screening [143, 149] in which a fixed proportion of

active TB cases were diagnosed based on the case detection rate. We assumed that

on average, it takes one year for individuals with active TB to be detected. Addi-

tionally, each newly detected case triggered the active screening scenarios below

and represents real-world circumstances in which passive surveillance is ongoing

even when other screening interventions are introduced.

Active Case Finding: In all active case finding scenarios below, screened individ-

uals (e.g., contacts of the index case) who were found to have active TB were given

treatment and screened individuals who did not have active TB were given IPT.

• Community non-targeted (control scenario): Community non-targeted ac-

tive screening and IPT – adapted from [18, 70]. For each case discovered

through passive surveillance, 4 individuals were selected at random from the

entire population during the same time step and screened for TB.

• Community-targeted (community CT): For each case discovered through

passive surveillance, up to 4 community contacts of the index case were

screened for TB during the same time step. If an individual had less than

4 community contacts, all of their community contacts were screened (e.g., if

they only have 3 community contacts, all 3 were screened)

• Household targeted (HHCT): This scenario is adapted from [18, 70]. For

each case discovered through passive surveillance, all 4 household contacts of
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the index case were screened for TB during the same time step.

• Combined Scenario: In the combined scenario, we implemented both com-

munity CT and HHCT simultaneously and compared this to community non-

targeted active screening of 8 individuals.

3.2.4 Simulation Strategy

We ran the model with 3,040 uniformly sampled parameters drawn from predefined

parameter ranges to account for uncertainty in their values using Latin Hypercube

Sampling (LHS) [115]. The majority of the parameter ranges were set to explore

whether our model outcomes were robust to changes in these parameters (i.e., to

conduct sensitivity analyses). The household transmission rate range was derived

from the cohort study in Lima, Peru [18], and the community transmission rate

range was selected such that the annual incidence of the model matched a range

of target incidence levels. See Appendix Figure B.3 for distribution of incidence

levels by model runs. We selected this range to explore which screening interven-

tions are effective across different settings. For instance, higher incidence settings

might saturate transmission to the point where contact tracing does not have a

noticeable effect on population level risk of TB. We randomly selected a network

for each parameter set such that each network type was run 20 times (there are

152 network types (10 realizations each) with different combinations of average

degree and network connection radius values). For each parameter set, we ran the

transmission model 2 times using a different random number seed to account for

stochastic variation.

Because passive surveillance of infectious individuals followed by treatment is the

current standard of care, it was continuously implemented throughout the entire
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simulation. Next, the active case finding interventions were only run after the model

had initially reached steady state. See Figure 3.3 for a timeline of interventions. In

each run, we seeded the model with a single randomly placed infectious individual,

and ran it (with passive surveillance only) until it reached steady-state (burn-in 1)

i.e., for 2,000 one-month time steps or ∼ 167 years. At that point, we implemented

active screening interventions and ran the model until it reached steady state again

(burn-in 2) i.e., for another 2,000 time steps. Overall, we implemented all 4 dif-

ferent screening interventions and a passive surveillance only scenario (discussed

above in Section 3.2.3.3) for each parameter set and random number seed combi-

nation to directly compare how these interventions performed on the exact same

transmission model run accounting for stochastic variation.

Figure 3.3: Timeline of interventions for each simulation run. Passive surveillance
was run until the model reached steady state (burn-in 1), and then
active screening interventions were implemented and the model was
run until it reached steady state again (burn-in 2).

Examining the Impact of Single Screening Interventions To make comparisons

between screening scenarios, we first calculated the 5-year average annual inci-

dence rate at the end of burn-in 2 (i.e., post-active screening intervention incidence)
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for each parameter set, random number seed, and screening scenario combination.

We defined the incidence as the number of new I cases over the previous 12 one-

month time steps. We then calculated rate ratios (RRs) by comparing the burn-in

2 incidence level of each screening scenario for a given parameter set, and random

number seed combination to the burn-in 2 incidence level of the reference group

for the same parameter set, and random number seed combination.

Overall, we examined the impact of screening interventions using 2 reference

groups. First, to determine if additional allocation of resources would contribute

to a reduction in TB incidence (i.e., the extent of protection conferred by each

screening intervention), we assessed how active case finding interventions per-

formed compared with passive surveillance only. Second to determine how best

to allocate resources among different contact tracing interventions, we examined

how community and household targeted contact tracing interventions performed

compared with the control intervention scenario.

RRs for each screening scenario were compared across all parameter sets and also,

within strata of network parameters (average degree and average connection ra-

dius) and the 5-year average annual incidence level at burn-in 1 (i.e., pre-active

screening intervention).

Examining the Joint Effects of Screening Interventions After assessing the ef-

fects of individual screening interventions, we compared the joint effects of the

combined screening scenario to the component effects of HHCT and community CT

to determine if there was interaction between screening programs that could confer

an additional benefit without added cost. We assessed interaction on the additive

scale because it is recommended that biologic interaction be quantified as such

[150]. Additionally, because our risk factors (i.e., screening interventions) were
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preventative, we first re-coded the RRs such that the interventions conferring more

protection became the reference group [151]. Therefore in our analysis, positive

interaction corresponded to synergy between screening interventions and negative

interaction corresponded to effects from the combined intervention being less than

the sum of each individual interventions (i.e., parallelism or less than additive).

We first calculated the relative excess risk due to interaction (RERI) to determine if

there is additive interaction on the rate scale:

RERI = RRHC −RR0C −RRH0 + 1 (3.3)

where RRHC is the RR of the combined scenario, RR0C is the RR of the community

contacts only scenario and finally, RRH0 is the RR of the HHCT only scenario. An

RERI 6= 0 indicates interaction on the additive scale with > 0 indicating positive

interaction and < 0 indicating negative interaction.

For the control reference group, we calculated RRs comparing each intervention to

its corresponding control scenario. Specifically, because we screened up to 8 indi-

viduals per index case in the combined scenario, we used community non-targeted

active screening of 8 individuals as the reference group. For the HHCT community

CT interventions, we used community non-targeted active screening of 4 individu-

als as the reference group. For the passive surveillance only reference group, the

post-burn-in 2 incidence levels of all screening scenarios was compared to the post-

burn-in 2 incidence levels of passive surveillance only.
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3.3 Results

To determine how screening interventions performed across different scenarios, we

first examined whether different key model inputs (i.e., community compared with

household transmission rates, and network parameters) affect TB incidence levels.

Next, we examined how single screening interventions performed across different

strata of these factors. Finally, we looked at potential interactions between screen-

ing interventions.

3.3.0.1 Factors Affecting Population-level TB Incidence

To determine what factors increase population-level TB incidence in our model, we

first examined the relationship between the ratio of the annual number of TB infec-

tions (not active TB cases, though the number of new infections corresponds with

the number of active TB cases) attributed to community vs. household transmission

and annual incidence levels (Figure 3.4). Specifically for each of these metrics, we

calculated yearly averages over the last 5 years of the simulation before burn-in 1.

We also only included incidence levels between the 2.5th and 97.5th percentiles to

remove outliers. Overall, for higher incidence levels, we observe that more infec-

tions are caused by community transmission. Even though the maximum household

transmission rates are higher than the maximum community transmission rates (see

Table 3.1), community transmission is more important in driving these higher inci-

dence levels.
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Figure 3.4: Annual number of TB infections attributed community vs. household
transmission (y-axis) transmission and incidence levels at the end of
burn-in 1 (x-axis).

We next examined how network parameters and transmission rates might together

affect population-level incidence (Figure 3.5). Overall, we can see that for the com-

munity transmission rate to effectively cause higher incidence levels, the average

degree and average connection radius must be sufficiently high (Figures III.5(a)

and III.5(b)). On the other hand, there does not appear to be any increasing trend

in incidence levels corresponding to household transmission rates (Figures III.5(c)

and III.5(d)).
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Average Degree Average Connection Radius

Figure 3.5: Network parameters (i.e., average degree, average connection radius)
and transmission rates colored by incidence levels. Average degree (left
column) and average connection radius (right column) for each model.
By row: 1. network parameters vs. community transmission rates 2.
network parameters vs. household transmission rates.

3.3.0.2 Protection Conferred by Single Interventions by Community Trans-

mission Rate

We next fit splines to the relationship between βuC and all RRs within the 2.5th to

97.5th percentiles, and plotted the results among different screening scenarios. See

Figure 3.6 for results using passive surveillance only as the reference group.
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Figure 3.6: Fitted splines representing relationship between the unscaled commu-
nity transmission rate (βuC) and RR (among RRs within the 2.5th to
97.5th percentiles). Passive surveillance only is the reference group.
Dots represent individual model runs colored by screening scenario and
lines are the splines (with 95% confidence intervals in shaded regions)
which were calculated using the loess method in R [4].

The average RRs in all 3 scenarios (control, HHCT, and community CT) were < 1

regardless of the community transmission rate indicating an overall protective ef-

fect. Contact tracing interventions performed substantially better than the control

intervention. Finally, HHCT performs better than community CT for lower commu-

nity transmission rate values, but worse than community CT for higher community

transmission rate values. However, there is substantial overlap in the 95% confi-

dence intervals. Trends were the same when comparing the performance of screen-

ing interventions with the control intervention as the reference group. The only

notable difference was the passive surveillance only intervention conferred RRs > 1
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(Appendix Figure B.4).

3.3.0.3 Protection Conferred by Single Interventions by Network and Inci-

dence Strata

We next calculated the mean RRs (among RRs within the 2.5th to 97.5th percentiles)

and standard deviation (SD) within strata of network parameters and burn-in 1

incidence. For each network parameter or incidence level strata, we defined ‘high’

as >median across all model runs and ‘low’ as <median across all model runs. See

Table 3.2 for performance of screening interventions with passive surveillance only

as a reference group in order of most effective scenario to least effective scenario.
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Table 3.2: RRs of Screening Interventions–Passive Surveillance as Reference Group
Screening Inter-
vention

Connection
Radius
Strata

Average
Degree
Strata

Incidence
Strata

Mean RR
(SD)

Community CT low low low 0.75 (0.18)
HHCT low low low 0.76 (0.17)
Community CT low low high 0.78 (0.1)
HHCT low low high 0.8 (0.09)
Community CT high low high 0.82 (0.09)
Community CT high low low 0.82 (0.16)
HHCT low high low 0.82 (0.18)
HHCT high low low 0.83 (0.17)
HHCT low high high 0.83 (0.09)
HHCT high high low 0.83 (0.17)
Community CT low high high 0.84 (0.09)
HHCT high low high 0.85 (0.1)
HHCT high high high 0.85 (0.09)
Community CT low high low 0.86 (0.18)
Community CT high high low 0.87 (0.17)
Control low low high 0.87 (0.1)
Community CT high high high 0.87 (0.09)
Control low low low 0.87 (0.18)
Control low high high 0.88 (0.09)
Control high low high 0.89 (0.1)
Control high high high 0.89 (0.09)
Control low high low 0.89 (0.17)
Control high low low 0.9 (0.17)
Control high high low 0.93 (0.17)

In general, contact tracing interventions performed better than the control inter-

vention. Furthermore, screening interventions performed better in lower incidence,

lower average degree, and lower connection radius strata however, there was sub-

stantial variability.

The mean incidence was 203.4 (SD: 127.4) per 100,000 person-years among the

top third (of 24 total) most effective screening scenarios and 253.3 (SD: 149.9)

per 100,000 person-years among the bottom third. The mean community average

degree was 102.1 (SD: 48) among the top third and 192.3 (SD: 93.7) among the

bottom third. Finally among connection radii, the mean radius was 3.2 (SD: 1.5)
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and 3.7 (SD: 1.3) for the top and bottom thirds, respectively. When examining

results only among HHCT and community CT, the mean of all RRs in the high inci-

dence strata is 0.84 (SD: 0.1), while it is only 0.81 (SD: 0.18) in the low incidence

strata. Next, the mean of all RRs in the high average degree strata is 0.85 (SD:

0.13), while it is only 0.79 (SD: 0.15) in the low average degree strata. Finally,

the mean of all RRs in the high average connection radius strata is 0.85 (SD: 0.13),

while it is only 0.8 (SD: 0.15) in the low connection radius strata. Therefore, within

strata of incidence and network parameters, a lower network connection radius and

lower average degree results in slightly better performance of screening scenarios.

Again, there is substantial variability within strata.

Trends were the same when comparing the performance of screening interventions

with the control intervention as the reference group. The RRs were higher and the

passive surveillance only interventions conferred RRs > 1 (see Appendix Table B.1).

3.3.1 Impact of Combined Screening Interventions

Finally, we implemented a combined community CT and HHCT intervention to de-

termine if there were any circumstances (i.e., incidence level or network type) in

which screening interventions modify the effects of each other. We first fit splines

to the relationship between βuC and all RRs within the 2.5th to 97.5th percentiles,

and plotted the results among different screening scenarios. See Figure 3.7 for

results with the passive surveillance only reference group. The combined interven-

tion performs substantially better across the majority of community transmission

rate values. See Appendix Figure B.5 for results with the control intervention is the

reference group. In this analysis, the screening interventions perform worse as the

community transmission rate increases.
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Figure 3.7: Fitted splines representing relationship between the unscaled commu-
nity transmission rate (βuC) and RR (among RRs within the 2.5th to
97.5th percentiles). Passive surveillance only is the reference group.
Dots represent individual model runs colored by screening scenario and
lines are the splines (with 95% confidence intervals in shaded regions)
which were calculated using the loess method in R [4]. ‘Control4’ and
‘Control8’ are community non-targeted screening of 4 and 8 individuals,
respectively.

See Table 3.3 for RERIs with passive surveillance only as a reference group.

We see negative interaction (RERI<0) for the majority network parameter and in-

cidence strata settings. However, there is substantial variability. There appears to

be greater negative interactive effects in strata of low incidence. But, we do not see

any trends in average degree or average connection radius. See Appendix Table B.2

for RERIs with the control intervention as a reference group. Trends were similar

when examining the effect of screening interventions with the control intervention
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Table 3.3: RERIs of Combined Screening Interventions–Passive Surveillance as Ref-
erence Group

Connection
Radius
Strata

Average
Degree
Strata

Incidence
Strata

Mean
RERI (SD)

low high low -0.06
(0.45)

high high low -0.06
(0.38)

low low low -0.06
(0.43)

high high high -0.03
(0.19)

low high high -0.03
(0.21)

high low high -0.02
(0.21)

high low low -0.01
(0.37)

low low high 0 (0.24)

as a reference group.

3.4 Conclusions

Overall, we found that HHCT and community CT provided substantially more pro-

tection against TB compared with passive surveillance only and the control inter-

vention. There did appear to be slight differences between the contact tracing in-

terventions as the community transmission rate increased, with community CT per-

forming slightly better for higher community transmission rate values (see Figure

3.6 and Appendix Figure B.4). Although there was substantial variability in screen-

ing intervention results across strata of network parameters and incidence (as seen

in the SDs of the RR estimates in Table 3.2), we did find general trends wherein

screening interventions tended to confer more protection in the low incidence, low
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average degree, and low network connection radius strata (see Table 3.2 and Ap-

pendix Table B.1). Importantly, network parameters and incidence are correlated

with each other, i.e., a low network connection radius corresponds with a lower av-

erage degree (see Appendix Figure B.2) which in turn may lead to lower incidence

(see Figures 3.5), so it is not entirely clear which of these network features is al-

tering the effectiveness of screening interventions. Presumably, transmission is too

strong in higher incidence settings and on networks with higher average degrees or

higher standard deviations for screening interventions to be as effective.

Consistent with previous literature, results from our model (Figure 3.4) revealed

that transmission in higher incidence settings is driven by the community [15, 137].

We also found that high incidence levels only occur when there is both high com-

munity transmission rates and high community average degree and/or high com-

munity average connection radius 3.5. Thus we can conclude that despite the fact

that household transmission rates are on average higher than community transmis-

sion rates in our model, community transmission leads to higher incidence levels

(compared with household transmission) because incidence is affected by both the

intensity of transmission and the number of contacts. Furthermore, in our model,

individuals have on average many more community contacts than household con-

tacts. These results are consistent with a recent mathematical modeling analysis

that found that contact saturation (as what might occur within a household) and

super-spreading (among individuals with many contacts) might lead to higher inci-

dence levels [152].

Due to the fact that high incidence levels are driven by community transmission

and that community CT does marginally better than HHCT when the community

transmission rates are higher (3.6), it may be preferable to focus on community CT

(instead of HHCT) in high incidence settings. On the other hand in low incidence
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settings, disease is very low in the community and screening community contacts

would likely find fewer cases of active or latent TB. Therefore, HHCT tracing may

be preferable in low incidence settings. Also consistent with standard practice in

low- and high-incidence settings [9, 65], contact tracing interventions in our model

tended to perform better in lower incidence settings (see Section 3.3.0.3 for re-

sults).

The combined intervention (i.e., both HHCT and community CT) resulted in neg-

ative interaction in nearly all settings, with greater negative interaction at lower

incidence levels. In other words, there was no synergy between contact tracing in-

terventions and actually, the effects of the HHCT and community CT interventions

were lower when the they were combined. This is sensible because both interven-

tions are likely to prevent many of the same cases e.g., via overlapping indirect

protection [153, 154]. Overall, the combined intervention resulted in a greater

reduction in TB risk on the population-level compared with any single interven-

tion (Figure 3.7), but it conferred less protection than the sum of contact tracing

interventions.

Limitations of our analytical methods include the wide range of assumptions re-

quired to generate a parsimonious and computationally efficient model. First, we

assumed static network connections over the course of the entire simulation. Al-

lowing dynamic network connections would cause infection to escape from local

clusters more easily [147], therefore in low average degree and high incidence net-

work types, we might over-estimate the effects of HHCT compared with the control

scenario because it will be more efficient when infection is concentrated in clus-

ters. On the other hand, our model covers a range of incidence levels and average

degrees with the majority of runs having relatively low prevalence, rare infection

events and a high average degree which should in general approximate a random
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community sample. We also assumed that number of individuals per household is

fixed with 5 people per household. Although this is unrealistic, keeping the house-

hold size fixed allowed for us to examine how variation in community contact alone

might impact the effectiveness of different screening interventions. Future work can

examine how variations in household size might interact with different community

contact structures to change transmission in our network. Modeling dynamics be-

tween multiple strains of tuberculosis are beyond the scope of our model and study

questions therefore, we did not incorporate re-infection events among individuals

with early latent TB since that would just prolong the time an individual spends in

the early latent state [155]. Finally, our births reshuffling scheme based on [147]

is not realistic, however, it allows for the population size to be constant and pre-

vents our model from consistently placing susceptible individuals into transmission

hotspots.

Future work may consider how to optimize screening interventions in different net-

work connectivity scenarios. One recent simulation model employed adaptive ap-

proaches to find undiagnosed HIV cases and found that accounting for spatial corre-

lation may modestly improve case finding [156]. Additionally, other networks may

be formulated to consider how more heterogeneity in contact may also change the

effectiveness of screening interventions, e.g. in networks with skewed community

contact distributions.

With the exception of the combined intervention, in our analysis, the maximum

number of individuals that are screened for each case is 4. This is consistent with

the fact that screening interventions are more effective in lower incidence strata.

We chose a limit of 4 such that community and household screening interventions

would screen the same number of individuals to facilitate a direct comparison. An-

other potential future direction could include identifying the number of contacts
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needed to screen to obtain a target reduction in community incidence. Alterna-

tively, it would be useful to explore how many individuals must be screened before

the addition of screened individuals leads to diminishing returns. We also found

that results did not differ substantially by reference group for HHCT and commu-

nity CT, thus more work should be done to more precisely classify when HHCT or

community CT should be used.

Overall, it is important to consider how spatial and contact heterogeneity can be

leveraged to optimize screening interventions. Despite a large amount of variabil-

ity within settings, screening interventions conferred reductions in TB incidence.

We found that screening interventions performed better in settings with low inci-

dence levels, low average degree and a low connection radius. Overall, our results

suggest that prior knowledge about the community contact structure and endemic

incidence level can help determine whether or not a specific contact tracing screen-

ing intervention will be effective.
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CHAPTER IV

Examining the discrepancy between explosive

norovirus outbreaks and relatively low attack rates in

daycare and school settings

4.1 Abstract

Background: Norovirus outbreaks are notoriously explosive, with dramatic symp-

tomology and rapid disease spread. Children are particularly vulnerable and drive

norovirus transmission due to their high contact rates with each other and the

environment. Despite the explosive nature of norovirus outbreaks, attack rates in

school outbreaks remain low with the majority of students not reporting symptoms.

Methods: We next explore the biological and epidemiological mechanisms that

may underlie epidemic norovirus transmission dynamics using a disease transmis-

sion model. We compared different model scenarios, including a partially immune

population, stochastic extinction, and an individual exclusion intervention, and we

calibrated our model to daycare and school outbreaks from national surveillance

data.

Results: Including innate resistance and acquired immunity recreated the low

attack rates observed in daycare and school outbreaks. Partial immunity alone
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resulted in outbreaks that were substantially faster than what was observed. The

addition of individual exclusion (to a partially immune population) extended

outbreak durations by reducing the amount of time that symptomatic people

contribute to transmission resulting in attack rates and outbreak durations more

consistent with the surveillance data.

Conclusions: Incorporating both a partially immune population and individual

exclusion is sufficient to recreate explosive norovirus dynamics, with more realistic

outbreak durations (compared with immunity alone), and relatively low attack

rates in school and daycare venues.

4.2 Introduction

Norovirus is the leading cause of acute gastroenteritis across all ages in the United

States (US), with 19 to 21 million cases occurring per year [157]. The role of

children in transmission has recently been highlighted in a mathematical modeling

analysis [5], which found that pediatric vaccination would result in substantially

higher protective population-level effects when compared with vaccination of the

elderly. After the onset of a school outbreak, person-to-person transmission can

propagate the disease to cause secondary cases in households and the broader com-

munity [158–165]. Understanding how norovirus spreads within venues can inform

design of effective interventions to reduce overall population-level risk.

Norovirus transmission can occur directly through person-to-person contact [86]

and indirectly through water [84], food [83], or fomite-mediated pathways

[22, 85, 166, 167]. Symptomatic individuals efficiently spread virus through vom-

iting and defecation [22]. After symptoms resolve, individuals continue to shed for
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an average of ∼2 weeks [88]. Norovirus transmission is sustained through the com-

bination of efficient and prolonged human shedding [22], and extended environ-

mental persistence [91, 168–170]. Additionally, norovirus is highly infectious, with

an infectious dose of 18-2800 virions (peak viral concentration per gram of stool

reach levels of 109) being sufficient to cause infection [87, 171]. These features

of transmission as well as a lack of long-lasting immunity in human hosts [89, 90],

contribute to venue-level norovirus outbreaks potentially exhibiting rapid, explosive

growth rates [21, 172]. These explosive epidemic growth rates would be expected

to correspond to high attack rates with exhaustion of susceptibles, similar to other

highly transmissible diseases like measles [173, 174]. However, despite this ex-

plosive tendency and the important role that children play in transmission, attack

rates (ARs) in school and daycare outbreaks are relatively low (∼15% to ∼20%

in daycares and schools, respectively, based on data from the National Outbreak

Reporting System (NORS) [26]).

There are multiple explanations for the combination of explosive outbreaks and

low ARs observed in outbreak data. First, ∼20% of the US population lack a func-

tional FUT2 gene, conferring innate resistance to some norovirus genotypes [175].

Furthermore, depending on age, up to ∼90% of children < 5 years of age have

norovirus antibodies titers potentially indicating acquired immunity [99, 100], al-

though the level of protection conferred by these of antibodies is not known [176].

Second, the Centers for Disease Control and Prevention (CDC) recommends var-

ious interventions to prevent and control norovirus outbreaks, including isolation

of individuals during the symptomatic period [177] which may also reduce trans-

mission [178]. Finally, stochastic extinction may lead to outbreaks ending without

exhaustion of susceptibles, especially for smaller populations [179] e.g. daycares.

Any combination of these factors may contribute to low ARs and rapid cessation of
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outbreaks within venues.

In this paper, we employ mathematical models to explore underlying mechanisms

leading to disease transmission dynamics that can explain the observed norovirus

epidemiology within daycare and school venues. Given the epidemiological features

discussed above, explaining norovirus dynamics requires a detailed representation

of the mechanisms driving transmission. Here, we examine which mechanisms are

sufficient to explain the epidemiological patterns seen in outbreaks using a trans-

mission model calibrated to CDC NORS surveillance data.

4.3 Methods

Our model (adapted from [5]) represents a school or daycare center that we cali-

brated to NORS outbreak surveillance data. We randomly sampled parameter val-

ues from realistic predefined ranges to account for uncertainty. For each model

scenario (described below), we derived a distribution of parameter sets which best

recreated the distribution of ARs, durations, and populations observed in NORS us-

ing sample-importance-resampling [180]. Sample-importance-resampling involves

sampling parameter sets from a prior distribution (i.e., the predefined parameter

ranges), calculating likelihoods to compare model outcomes from each parameter

set to the NORS data, and resampling the parameter sets with replacement using

the likelihoods as weights to create a posterior distribution. We ran each model

scenario using the resampled parameter set distribution, and both graphically and

quantitatively evaluated which models and underlying mechanisms best matched

the observed NORS data, using Kullback-Leibler divergence (KL) [181].
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4.4 NORS Dataset

We calibrated our model to outbreak duration (in days), student AR, and student

population size data from NORS, a CDC-operated internet-based surveillance sys-

tem through which state, territorial, and local health departments within the US

can enter outbreak information [26, 182] (See Appendix Table C.2 for summary

statistics of dataset).NORS collects various data including AR, duration, primary

mode of transmission (e.g. foodborne or person-to-person), other etiological in-

formation, lab confirmation, secondary transmission data, health outcomes such

as hospitalizations or deaths, sex and age distribution, and location. Our dataset

includes all school and daycare outbreaks in NORS that occurred from 2009–2016

which indicated norovirus as the only suspected or confirmed etiology. We classified

a given venue as daycare or school based on self-reported classification by the re-

porting agency. According to the NORS categorization, ‘daycare’ is the aggregate of

both daycare and preschool and ‘school’ includes all other school-aged venues (i.e.,

elementary school, middle school, and high school) [183]. In total, there were 989

norovirus outbreaks in schools and 329 in daycares, which comprised 4.6% of all

outbreaks reported through NORS during 2009–2016 (i.e., 1,318 of 28,580 total

outbreaks across all modes and etiologies). We only included outbreaks with com-

plete data (i.e., not missing for total students exposed, AR, and outbreak start and

end dates), and with ARs and durations within the 5th and 95th percentiles of the

dataset to remove outliers and to calibrate our model to data generally representa-

tive of common norovirus outbreaks.
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4.4.1 Model Structure

We model transmission in a school or daycare venue, to capture the features of the

NORS calibration data. All analyses were conducted in R version 3.2.4 [184].

Figure 4.1: Model schematic for a single venue. Our model is an extension of [5].
All compartments involved in the force of infection (Equation 4.1) are
in light gray. The full force of infection equation is also shown in the
figure above. Susceptible individuals (S) may be infected and pass
through a latent period (E1 to E3) before becoming symptomatically
(I) or asymptomatically infectious (A1 to A3). Social distancing or in-
dividual exclusion is represented by (X). During infection, individuals
may shed pathogens onto environmental fomites (F1). As pathogens
on the fomites decay, they move to (F2), which represents biphasic de-
cay. Additionally, individuals become immune (R) following infection,
and may have innate resistance (R) or acquired immunity and be par-
tially immune (P ) at the start of the outbreak. All parameter values are
shown in Table 4.1.

4.4.1.1 Transmission Model for Daycare centers and Schools

Transmission occurs directly through person-to-person contact or indirectly through

fomite-mediated pathways i.e., shedding and pickup of virions in the environment.
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Individuals start as susceptible S, partially immune P , or fully recovered R depend-

ing on acquired immunity and innate resistance status (Figure 4.1). Susceptible

and partially immune individuals become infected according to the force of infec-

tion λ(t), which is based on: symptomatic individuals (I), asymptomatic individuals

(A1, A2, and A3), environmental fomite pathogen concentration (F1 and F2), and

human-to-human (βHH), and fomite-to-human (βFH) transmission rates. Excluded

individuals do not contribute to the force of infection:

λ(t) = [I + βA(A1 + A2 + A3)]βHH + (F1 + F2)βFH , (4.1)

where βA represents the reduction in efficiency of asymptomatic transmission com-

pared with symptomatic transmission.

Infected individuals move through a gamma-distributed latent period (E1, E2, and

E3) and then either become symptomatic or asymptomatic [185]. The latent pe-

riod is gamma distributed to represent the empirical distribution of the data [39].

The gamma-distributed asymptomatic period (A1, A2, and A3) represents post-

symptomatic shedding and exhibits reduction in shedding by stage (e.g., individuals

in A2 shed less than individuals in A1). Partially-immune individuals can become

infected, but not diseased (symptomatic). Symptomatic individuals may become

excluded (X) for the remaining duration of their disease (e.g. if sent home from

school/daycare) and do not contribute to transmission while they are excluded. All

non-excluded symptomatic and asymptomatic individuals of a given age-group shed

pathogen into the environment. Norovirus pathogen decay on fomites occurs in a

biphasic pattern with an initial rapid die-off followed by a period of slower decay

[91, 186]. Finally, all individuals who become infected eventually progress to the

fully recovered. See Appendix Table C.1 for initial condition ranges, and Section C.1

for the model description and equations. Also, see Table 4.1 for parameter ranges.
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Table 4.1: Transmission Model Parameter Values and Uncertainty Ranges
Parameter Description Estimate/Uncertainty Ranges (units) Sources
µ Rate of transition through each

latent state

1

( 1.15
3

)
(days−1) Systematic review examining incubation periods for

different types of viral gastroenteritis [187]
θ Proportion of latent individuals

that don’t become symptomatic
0.3 (unitless) Volunteer study [185]

φ Transition rate from symp-
tomatic compartment (I) to
asymptomatic compartment
(A1)

1
1.25

(days−1) Cohort study examining the natural history of cal-
civirus infection in the community [188]

ρ Recovery rate 1

( 15
3

)
(days−1) Review examining norovirus shedding duration data

[88]
αI Shedding rate for diseased (I,

A, X) individuals
0 to 10,000,000 ( pathogens

day
) Study quantifying symptomatic and asymptomatic

shedding in nursing home and hospital outbreaks
[171]

σ Rate of reduction in shedding 0.2 (unitless) See above [171]
ξ Biphasic decay rate of norovirus

in the environment

1
14

to 1
0.333

(days−1) Lab-based study quantifying the persistence of murine
norovirus on a variety of surfaces [91]

βA Reduction factor for asymp-
tomatic shedding and trans-
mission (compared with symp-
tomatic individuals)

-4 to -0.09691; sampled in log space (unitless) See above [171]

Transmission Rates
βHH Human-to-human transmission

rate

1
Population

to 70
Population

(infec-
tion/time)

Approximation of R0. Range from a review of
norovirus mathematical models [189]

βFH Fomite-to-human transmission
rate derived by multiplying a
scaling factor [0,2] by βHH

0 to 2βHH (unitless) Limited empirical data on fomite to human transmis-
sion therefore, we allowed for wide range of values
which can increase or decrease rates relative to βHH

Exclusion Parameters
υ Time spent in symptomatic com-

partment, (I), before becoming
excluded (X)

1

( 1
24

)
to 1 (days−1) Individuals are symptomatic and mixing normally for

between 1 to 24 hours before being excluded

4.4.2 Model Scenarios

We considered the following model scenarios to examine mechanisms that can

recreate the features of norovirus transmission:

• Baseline Model: A fully susceptible population with no individual exclusion.

• Immunity Model: A partially immune population with no individual exclu-

sion. Twenty percent of individuals have innate resistance, are assumed to be

fully immune, and start in R [175]. Individuals with acquired immunity are

assumed to be partially immune.

• Individual Exclusion Model: A fully susceptible population with individual

exclusion. Excluded individuals (X) do not contribute to transmission.

• Combined Model: A partially immune population with individual exclusion.
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See Appendix Section C.2 for more details about the model scenarios. All models

were simulated in a daycare setting and separately, in a school setting. We ran-

domly sampled starting population sizes from the distribution of exposed student

populations in the NORS data. Each model was simulated deterministically and

stochastically for all population sizes. Low numbers of susceptible individuals are

more accurately represented by a stochastic model compared with a deterministic

model, because factors like stochastic extinction might affect dynamics. Therefore,

we calibrated using the stochastic model only and then compared the results to

the deterministic model as a sensitivity analyses to explore whether stochasticity

improved the calibration. To address other assumptions about our modeling frame-

work, we conducted additional sensitivity analyses varying seeding of the initial

outbreak using our best-calibrated model, and separately re-ran all models with

staff added into the model (see Appendix Sections C.9 and C.11 for details).

4.4.3 Calibration

We ran the model with 10,000 randomly sampled parameter and initial condition

sets (collectively denoted ‘parameter sets’) using Latin Hypercube Sampling (LHS)

[115]. Each parameter set was run in a school setting and separately, in a daycare

setting. The only distinction between the model setup for schools and daycares is

the starting population size (which in each setting is taken from the NORS outbreak

data in the corresponding setting). We then calibrated each venue–specific model

separately to its corresponding NORS data using sample-importance-resampling

[180]. The NORS data includes attack rates and populations for students and staff.

Here, we considered two versions of the model and calibration—one model which

included only students (using the student attack rate and population data), and

a sensitivity analysis which included staff members and students separately in the
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model (in which we sampled a matrix of contact rates within and between the two

groups; see Appendix Section C.11 for details). Only one overall outbreak duration

was provided in the NORS data, which was used for calibration in both model ver-

sions. The full calibration results for the staff and student model were similar to the

student-only model (see below and Appendix Section C.11), and so for simplicity

we present only the student model.

For a given venue–specific model, parameter sets were excluded from calibration if,

for the corresponding model run, the outbreak was ongoing when the simulation

ended (60 days set according to the distribution of the NORS data). We note that

all the outbreaks in the NORS data used for calibration had ended by this point (the

maximum duration in NORS was 40 days for daycare and 32 days for school). We

derived a kernel density estimate (KDE) of the 3-dimensional probability distribu-

tion of NORS student ARs, student population size, and outbreak durations. KDE

estimates were computed using the KS package in R which was designed for kernal

smoothing of multidimensional data [190, 191]. The likelihood estimate of a given

parameter set was calculated by taking the NORS KDE value which corresponded

to a given AR, population size, and outbreak duration from the model results. For

each simulation, the AR was defined as the total number of symptomatic individuals

divided by the total population. The outbreak duration was defined as the number

of days from the first symptomatic incident case to the last symptomatic incident

case (we rounded up if the number of incident cases was 0.5 in the deterministic

model). Finally, we resampled the parameter sets 5,000 times with replacement us-

ing the likelihoods as weights to obtain a final array of parameter sets that, if used

as inputs for the model, could most closely recreate the NORS data distribution.

See Appendix Table C.2 for calibration ranges derived from NORS.

To determine the best-fitting model, we derived a KDE of the calibrated model
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results, and calculated the KL divergence to measure the difference between the

each calibrated model and NORS KDEs [181]. We also examined pairwise scatter

plots of ARs, outbreak durations, and population sizes for calibrated model runs

and compared them to the NORS data to assess the model calibration graphically.

4.5 Results

4.5.1 NORS Data

Our final dataset (after removing incomplete data and outliers) consisted of 163

daycare outbreaks and 393 school outbreaks. The median student population, stu-

dent AR, and outbreak duration for daycare outbreaks were 75 people (range: 7,

410), 21.6% (range: 4.6%, 69.2%), and 13 days (range: 2, 40 days), respectively.

The median population, AR, and duration for school outbreaks were 420 people

(range: 6, 6486), 15.3% (range: 4.6%, 68.4%) and 8 days (range: 1, 32 days),

respectively. See Appendix Table C.2 for details.

4.5.2 Model Comparisons

Figure 4.2 shows the median attack rates and durations for the NORS data and each

of the models. Among the mechanisms examined here, partial immunity (included

in the immunity and combined models) was best able to recreate the relatively low

attack rates consistent with NORS data. This is due to the fact that individuals who

are partially immune may become infected, but not symptomatic. Additionally, even

though infected partially immune individuals contribute to transmission, they are

not detected as diseased and do not count in the overall attack rate. The individual
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exclusion model also generates some simulations with low attack rates (see Figure

4.2, Figure 4.3 and the scatter plots in the Appendix Figures C.8, however because

the great majority of simulations have higher attack rates, the overall calibrated

distribution of ARs tends to be higher than the partial immunity models.

In terms of model fit, all models yielded a wide range of attack rates and generally

shorter durations than the NORS data. The individual exclusion model yielded

slightly longer durations than the other models (i.e., 5 days (95% credible interval

(CI): 2 to 21 days) and 5 days (95% CI: 0 to 26 days) for daycares and schools,

respectively). In comparison to the individual exclusion model, the baseline model

durations were shorter (i.e., 4 days (95% CI: 2 to 12 days) and 4 days (95% CI: 0 to

10 days) for daycares and schools, respectively). As discussed above, the immunity

model best captured the low attack rates in NORS. Furthermore, examining the

pairwise comparison between attack rates and populations, we can see that the

immunity and combined models best match the NORS data. See Appendix Table

C.4 for all durations and Figures C.2 and C.5 for populations plotted against attack

rates. Likely because of the balance in fit of these different features, the combined

and individual exclusion models performed best according to the KL divergence (see

Table 4.2 for all KL divergences). However, because of the improved performance

of the combined model in terms of attack rate and visual fit in the pairwise scatter

plots comparing calibrated models to NORS data (Figure 4.3 and Appendix Figures

C.8), we selected the combined model as the overall best-fit model.
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Attack Rate Duration

Figure 4.2: ARs (left column) and durations (right column) for each model com-
pared with NORS data. Each plot corresponds to a different model
structure (indicated on the y-axis label).
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Figure 4.3: Attack rates vs. duration results from resampled parameter and initial
conditions for the NORS daycare data. NORS data is shown in the top
left. Points correspond to parameter sets and are colored by the amount
of times they were resampled.

In the combined model, the daycare and school-aged ARs had medians of 20.9%

(CI: 1.8% to 50.6%) and 14.5% (95% CI: 0.3% to 53.3%), respectively (shown

in Figure 4.2 and Appendix Table C.3). These are slightly lower, but relatively

consistent with the NORS ARs which were 21.6% (range: 4.6% to 69.2%) and

15.3% (range: 4.6% to 68.4%) for daycares and schools, respectively. The daycare

and school-aged durations were 5 days (95% CI: 1 to 21) and 5 days (95% CI: 1.7

to 27), respectively. These are somewhat lower than the NORS outbreak duration

medians which were 13 days (range: 2 to 40) and 8 days (range: 1 to 32) for

daycares and schools, respectively.

Individual exclusion led to longer outbreak durations (see Appendix Table C.4) indi-
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cating that it may slow the spread of norovirus. This is due to the fact that excluded

individuals transmit for a shorter period of time while they are symptomatic (i.e.,

between 1 hour and 1 day before being excluded) compared with non-excluded

individuals (i.e., 1.25 days). This reduction in transmission time likely prevents the

outbreak from spreading as fast as the baseline or immunity models. In the model,

individual exclusion alone does provide slight protection from becoming infected

or symptomatic (as indicated by the reduction in individual exclusion attack rates

compared with the baseline model). Even though the reduction in transmission

time can slow the spread of norovirus and prevent a limited number of individuals

from becoming infected, attack rates are still high at ∼60% which corresponds to

almost complete exhaustion of susceptibles (i.e., an attack rate of 70% because 30%

of susceptible individuals become asymptomatic when they are infected).

For all models the median outbreak durations were less than the average time it

took the first incident cases to fully recover (i.e., less than the ∼ 16-day infectious

period). Thus, outbreaks tended to end within a single infectious period indicating

a rapid spread of disease within venues. Therefore, the combined and immunity

models provided a mechanism for explosive outbreaks without the entire popula-

tion becoming diseased. Importantly, all median outbreaks were substantially faster

than what was observed in the NORS data. However, adding individual exclusion

to the immunity model (i.e., the combined model) resulted in a more realistic dis-

tribution of outbreak durations closer to what was observed in the NORS data. The

remaining analyses use the combined model, because this calibrated to the NORS

data the best and replicated the low attack rates in the NORS data. See Figure 4.2

for forest plots, and Appendix Tables C.3 and C.4 attack rates and durations.
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Model Daycare School
Stochastic Simulations

Baseline 10.49 10.52
Immunity 7.82 9.86

Individual Exclusion 6.9 7.6
Combined 6.45 8.22

Sensitivity Analyses on Combined Model
Seeding: Varying Pathogens in Environment 8.07 8.89

Seeding: Diseased Individual 5.98 8.32

Table 4.2: Kullback Leibler (KL) divergence for each model compared with the NORS
data kernel density estimated distribution. Smaller KL divergence indi-
cates a more similar distribution to NORS (i.e. less information difference
between the NORS and the model distribution). The combined model is
shown in bold. The sensitivity analyses include varying the environmental
contamination at the start of the outbreak (‘Seeding: Varying Pathogens
in Environment’), and seeding with a single diseased individual (‘Seeding:
Diseased Individual’). Results for the deterministic models calibration are
shown in the Appendix Table C.10.

4.5.3 Sensitivity Analyses

We conducted sensitivity analyses on the combined model to ensure that our re-

sults were robust to certain simplifying assumptions. We examined deterministic

versions of the models, a model including staff transmission, and different seed-

ing scenarios. Overall, the deterministic models fit worse than all corresponding

stochastic models. The student and staff model had qualitative results consistent

with the main analysis. Finally, when seeding with an infected individual (instead

of in the environment), the original combined model had a lower KL divergence

for schools, but had a higher KL divergence in the daycare model. See Appendix

Sections C.9, and C.11 for more details, and Tables C.5 and C.6 for age-specific ARs

and durations.

90



4.6 Conclusions

Our analyses suggest that a partially immune population is sufficient to recreate

explosive norovirus outbreaks and relatively low ARs within venues. Furthermore,

although individual exclusion resulted in only a modest reduction in the final num-

ber of symptomatic cases, it appears to slow transmission. Overall, the combined

model was able to generate outbreaks with both low attack rates and a wider dis-

tribution of outbreak durations.

The combined model successfully recreated the general trends of the NORS data

(i.e., relatively fast durations with low ARs) on the venue-level and more consis-

tently generated runs with slightly longer durations and lower attack rates com-

pared with the other models (see Figure 4.3 and Appendix Figure C.4). Although

the initial LH sampled simulations of the combined model were able to recreate

almost the entire joint distribution of ARs and durations observed in the NORS

data, a large fraction of the initially LH sampled simulations had very low outbreak

durations (and these low duration simulations were weighted highly in the sample-

importance-resampling as they are also common in NORS). This skewed the cali-

brated distributions of durations in the combined model toward the lower end of the

NORS data, so that the median model-generated durations were lower than those

in NORS. Therefore, for a model to be able to calibrate well, it is required to both

(1) recreate the joint distribution of attack rates and durations in the NORS data,

and (2) evenly distribute model runs across the distribution. In general, stochastic-

ity provided more variation in model results and therefore led to a distribution of

model runs closer to the NORS data distribution when compared with deterministic

model (see Appendix Section C.10 for more details). Although the combined model

did not evenly distribute model runs across the NORS distribution, it did tend to-
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wards outbreaks with slightly longer durations (due to individual exclusion) and

therefore calibrated better than the immunity model. We also conducted two sensi-

tivity analyses varying seeding to explore how this might affect outbreak durations

and found that the seeding with a single infected individual scenario performed ap-

proximately as well as the combined model in the main analysis. However, varying

the number of pathogens starting in the environment fit worse than the combined

model according the KL divergence (see Appendix Section C.9).

Additionally, although daycares generally had lower population sizes in the NORS

data, they had longer durations. However, in all of our models, lower population

sizes resulted in shorter outbreak durations. Overall in the NORS daycare data,

there appears to be a trade-off between population size and outbreak duration.

Specifically, lower population sizes have shorter durations and higher population

sizes tend towards longer durations. See Appendix Figure C.3 for the joint distribu-

tion of daycare population sizes and outbreak durations in NORS. Importantly, the

outbreak durations may have been misreported in NORS e.g., due to missing the

detection of the first case. Therefore, we focused on recreating the general trends

of the data.

Weaknesses of the calibration dataset include limitations of NORS reporting. Be-

cause NORS relies on passive surveillance, there is under-reporting of outbreaks

which would likely result in the distribution of ARs and durations from reported

outbreaks not being representative of reality [86]. Some outbreaks conducted inter-

ventions (e.g. decontamination), but we did not include this in our model, because

the majority (> 90%) did not report on this. The exposed population reported (i.e.,

the denominator of the ARs) may correspond to a single classroom, grade-level or

entire school, and is not consistent across outbreaks (and the method of determin-

ing the exposed population is not specified in the data set). This may result in lower
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ARs (if the exposed population is overestimated) and could have substantial effects

on how well our models calibrate. In our initial exploration of the NORS data, we

plotted ARs vs. duration while stratifying on exposed population size (for popula-

tions < 200) and found that the overall distribution appeared similar across strata

(see Appendix Figure C.1). Furthermore, classifications of school or daycare venues

relied on self-reporting. Many venues have a mixture of different age groups and

therefore, classifications were likely not consistent.

Weaknesses of our model and analytical methods include the wide range of assump-

tions required to generate a parsimonious model. First, we did not explicitly include

the processes of waning immunity and the existence of different norovirus strains

because we are simulating a single outbreak. These processes are represented by

varying the distribution of individuals who start as partially immune compared with

fully susceptible. We are further assuming that partially immune individuals may

become infected, but not diseased. In fact, reality is more complicated in that indi-

viduals with acquired immunity may become symptomatic or asymptomatic. How-

ever, altering the relative proportion of asymptomatic vs. symptomatic individuals

i.e., by varying the initial conditions of those who start as partially immune should

account for these effects. Another limitation of this model is its compartmental

rather than individual-based structure, which does not include explicit contact net-

work effects such as clustering and degree heterogeneity. One form of contact het-

erogeneity is the different transmission rates for staff and students—while our main

model did not include staff transmission, the staff and student sensitivity analysis

included these features and had results consistent with the main analysis i.e., im-

munity lowers attack rates and individual exclusion may make outbreak durations

longer. For more details see Appendix Section C.11.

Results from our modeling analyses suggest that both immunity and individual ex-

93



clusion are important for understanding outbreak dynamics in school and daycare

venues. Future analyses should consider how interventions can leverage these fac-

tors e.g., using decontamination and vaccination interventions together to prevent

outbreaks. For instance, if individual exclusion leads to slower transmission, other

interventions may be able to work in conjunction with individual exclusion to stop

transmission altogether. Furthermore, the importance of immunity in reducing out-

break attack rates reveals how useful a vaccine may be in preventing outbreaks.
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CHAPTER V

Conclusion

Overall, this dissertation sought to understand what leads to seemingly counterin-

tuitive findings in epidemiology. We used a variety of modeling tools to explicate

causal mechanisms that could potentially represent the key drivers underlying dis-

ease transmission and progression.

In Aim 1, we simplified and extended a previously published mapping to convert

between DAGs and CMs [32], and developed a workflow that can be used to sim-

ulate epidemiological studies and understand patterns seen in data. Ultimately,

our method can be applied to nearly any study question or DAG (e.g., assuming

there are no faithfulness violations on the DAGs [126]). We used our method to

assess bias in study designs, and specifically explored what types of bias can lead

to normal weight ever-smokers (not never-smokers) having higher mortality rates

than their obese counterparts (i.e., the obesity paradox). Because we did not sim-

ulate a physiologically protective effect of obesity on mortality, we found that in

general the obesity paradox occurs when covariates (i.e., age or COPD leading to

reverse causation) are unadjusted in the statistical analysis. Interestingly our mod-

eling framework enabled us to find that study design biases can interact and that

adjusting for only one type of bias (e.g. confounding by age and not reverse causa-
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tion) in a study that previously did not result in the obesity paradox, might cause

the obesity paradox to occur. Other potential applications of our workflow include

obtaining estimates for unmeasured variables on a DAG and relaxing key epidemi-

ological assumptions e.g. no interference between units assumption [192].

In Aim 2, we leveraged spatial and contact heterogeneity to optimize TB screening

interventions across a range of settings and levels of endemic incidence. Consistent

with previous literature we found that transmission in higher incidence settings is

driven by the community [15, 137]. This is due to the fact that incidence is affected

by both the intensity of transmission and the number of contacts and individuals in

our generated networks had substantially more community contacts than household

contacts. Both HHCT and community CT interventions led to overall reductions

in TB incidence. This is consistent with previously published randomized control

trials [11] and analyses [70]. Screening interventions tended to perform better

in settings with lower incidence and on networks with lower average degree and a

lower average connection radius. Future analyses can examine whether or not other

spatial features such as heterogeneity in community contact (e.g. very clustered

networks with longer range connections) can lead to more effective contact tracing

interventions. Other interventions may use adaptive approaches e.g., accounting for

spatial correlation [156]. Overall, our results suggest that prior knowledge about

the community contact structure and endemic incidence level can help determine

whether or not a specific contact tracing screening intervention will be effective.

Finally in Aim 3, we proposed a combination of (realistic) mechanisms that might

explain explosive daycare- and school-level norovirus outbreaks with relatively low

attack rates. We found that partial immunity alone resulted in outbreaks that were

faster than what was observed in surveillance data. The addition of individual ex-

clusion reduced the amount of time that symptomatic people contributed to trans-
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mission and extended outbreak durations (making them more consistent with the

surveillance data). Therefore, our combined model which incorporated both of

these features, calibrated the best to the surveillance data. These results could be

used to inform the design of effective interventions. For instance, future analyses

could consider how interventions can leverage the fact that individual exclusion

slows outbreak dynamics by simultaneously implementing other interventions (e.g.

decontamination) to stop transmission.

Overall, Aims 1 and 3 used models as an explanatory tool which can be used to im-

prove study design or intervention programs. Aim 2 used models to attempt under-

stand drivers of transmission to improve disease control. Epidemiological findings

are seemingly counterintuitive when there is a lack of understanding about what

leads to observed patterns in data. This dissertation highlighted the importance of

resolving this lack of understanding. Explicitly simulating the causal mechanisms

underlying biological and epidemiological processes is a useful way to understand

these patterns. This can, ultimately, provide insight into the design of sound studies

and the optimization of interventions.
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APPENDIX A

Appendix for Chapter 2

A.1 Compartmental Model and Directed Acyclic Graph Compar-

ison

See Table A.1 for a general comparison between Directed acyclic graphs (DAGs)

and Compartmental models (CMs).

DAGs are non-parameterized causal diagrams used to graphically map causes and

effects to aid in designing epidemiological studies. DAGs summarize the complete

set of known relationships between variables relevant to a given study question

[28, 30, 32]. A necessary precursor for a DAG to be considered causal is that

all known common causes of any pair of variables on the graph must also appear

[32]. Once relationships between variables are synthesized, a researcher can iden-

tify what must be measured and/or controlled for to eliminate confounding and

selection bias [28, 109]. On DAGs, statistical associations between variables may

be produced by (1) cause and effect (unbiased), (2) common causes (confound-
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ing bias), (3) common effects (collider bias) [109]. DAGs are therefore used to

separate associations due to causality versus those due to bias. Figure A.1 shows

illustrations of how associations are formed on a DAG. The work flow to structure

and then determine which variables to adjust for on DAGs is described elsewhere

e.g. [29, 30, 193, 194]. Once assumptions about the causal relationships between

variables are made explicit and potential confounders and/or colliders are revealed,

a study design and statistical analysis plan can be created such that an unbiased ef-

fect estimate of a given exposure on outcome can in principle be calculated.

Table A.1: DAGs vs. CMs
DAGs CMs

Non-parameterized Parameterized
Temporality represented Temporality represented
Used to identify bias, gaps in knowledge
and plan analyses in studies

Used to conduct in silico studies e.g., un-
derstand mechanisms, ask policy ques-
tions

Synthesize all a priori knowledge Synthesize key knowledge, but strive for
parsimony

Causal if all common causes are included Depict flows over time i.e., simulate
causal processes

Figure A.1: The sources of association between variables become evident on a DAG.
E is the exposure, D is the outcome or disease, and C is the covariate
(1) cause and effect, (2) common causes or confounding, and (3) com-
mon effect or collider bias e.g. selection bias.

CMs simulate parameterized flows between disease states over time and are them-

selves a form of causal diagram [32, 33]. Specifically, CMs can be used to explicitly

simulate mechanisms underlying disease transmission or disease progression and
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are often fit to population level data [34, 35]. Unlike causal DAGs which must in

principle include all common causes, CMs often must balance realism with parsi-

mony, and often only include the causal processes most relevant to the hypothesis

[36].1

Once a model schematic is created, it may be converted into ordinary differential

equations (ODEs) or simulated stochastically for smaller sample sizes. Data can

then be integrated from a variety of sources as model inputs. For instance, data can

inform the number of people which start in each disease state (initial conditions)

or the transition rate parameter values. Furthermore, model outputs can be fit

to a variety of data types [195], such as an epidemic curve or cancer incidence

time-series[35, 196]. A fitted model can then be used to (1) estimate transition

model parameters and initial conditions, (2) determine which parameters should

be measured in future field studies, and (3) examine counterfactual scenarios when

data collection is untenable due to ethical constraints or limited resources.

A.2 Model 1: Determining What to Adjust for on the Preston et

al. DAG

To determine what to adjust for in a statistical analysis, we can refer to the structure

of the DAG from the observational study (Figure II.2(a)).

Diabetes is a collider or a common effect of smoking status and BMI. The study is

conditioned on diabetics (denoted by the box around diabetes on the DAG) since it

will only be conducted among individuals with diabetes. Conditioning on a collider

1However, we note that DAGs technically also require parsimony in that (for example), all medi-
ators between a given cause and effect are not included. Additionally, in practice DAGs often do not
include all common causes, e.g. if it is not fully clear whether certain features are causally related.
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creates a spurious association between its causes (in this case: smoking status and

BMI) also called selection bias [109]. Additionally, diabetes is a mediator on the

pathway from BMI to mortality. Conditioning on a mediator typically causes bias

when there are unmeasured confounders i.e., between mediator and outcome or

exposure and mediator. However, for simplicity, we will assume that there are no

additional unmeasured confounders. Even though smoking confounds the associa-

tion between mediator and outcome (and mediator and exposure), it is measured

and we will adjust for it. Other issues related to conditioning on a mediator may

arise due to exposure-mediator interaction i.e., if the effect of BMI on mortality is

affected by diabetes status. This is addressed by the fact that we will only consider

the controlled direct effect of BMI on mortality i.e., when the mediator value is held

constant [110]. Next, smoking status is a common cause of BMI and mortality and

therefore confounds their association. If we assume that there are no other sources

of bias in the study, and no other common causes of the variables on the DAG, an

unbiased effect estimate of BMI on mortality would require that we adjust for smok-

ing status. For instance, we will estimate the effect of BMI on mortality in separate

smoking strata to remove the spurious associations. We would therefore expect that

examining the association between BMI and mortality in a population of diabetics

among ever-smokers and then separately among never-smokers would remove the

bias and the protective effect of obesity on mortality. However, this was not found

to be the case in the Preston et al. study [2]. Therefore, either other biases exist

and are not evident due to an inaccurate DAG or incorrectly categorized variables,

or obesity truly is protective against mortality among ever-smoking diabetics.

The work flow to structure and then determine which variables to adjust for on

DAGs is described elsewhere e.g. [29, 30, 193, 194].
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A.3 Deriving a Corresponding CM from the Preston et al. DAG

The DAG of interest in this analysis is taken from Preston et al. [2], shown in Figure

II.2(a). We initially operationalized the causal relationships between variables in

the DAG from Preston et al. (Figure A.3) by creating a corresponding CM A.3,

using the method of Ackley et al. [32]. See Appendix Equations A.1 for the ODEs

of the full model.

Figure A.2: (left) DAG representing the obesity paradox from Preston et al. [2]
(right) CM: Schematic of the single age group compartmental model
diagram corresponding to the DAG.NW represents normal weight indi-
viduals; O represents obesity; D represents diabetes, and S represents
smoking. Individuals in any given compartment can die. Each arrow
represents flows between states and rates that are equal to each other
have the parameter. For instance, diabetes status does not affect the
rate at which an individual transitions from obese to normal weight,
therefore OD to NWD and O to NW have the same rate. We specify
where transition rates are the same between compartments by label-
ing the model schematic accordingly and using the same parameter to
represent equal rates in the equations. Mortality rates are denoted by
dotted lines. Rates with no labels (including mortality rates) may all be
distinct.

We enumerated disease states based on all possible combinations of random vari-

ables appearing in the DAG, i.e. there are 24 possible states, since we have 4 binary

variables: diabetes, obesity, smoking, and mortality. Once individuals die, they can-

not move between disease states and we no longer track them, therefore to reduce
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the dimensionality of our model, mortality is an outgoing flow from each compart-

ment and was not included in the set of disease states. This reduced our model to

23 possible states. Next, we included all biologically plausible transitions between

states. For instance, an individual can become an ever-smoker, but cannot return to

being a never-smoker, also a diabetic individual cannot become non-diabetic.

Since the study population is conditioned on diabetics, we further simplified our

model to only include diabetic compartments. This step reduced our model to 22

possible states. See Figure II.2(b) for the simplified model schematic and Appendix

Equations A.2 for the ODEs.

A.4 Obesity Paradox Model 1 Full Equations

Below are the ODEs used to simulate the flows between disease states for the full

model derived from the Preston et al. DAG. The model schematic is shown in Figure

II.2(b). The model equations are given by:

˙NW = −k2NW + k1O − knwNW − k7NW − k3NW

Ȯ = k2NW − k1O − koO − k3O − k8O

˙NWS = k3NW − knwsNWS − k9NWS − k5NWS + k4OS

ȮS = k3O + k5NWS − k4OS − k6OS − kosOS

˙NWD = k7NW − k2NWD + k1OD − knwdNWD − k3NWD

˙OD = k8O − kodOD − k3OD + k2NWD − k1OD

˙NWDS = k9NWS + k3NWD − knwdsNWDS − k5NWDS + k4ODS

˙ODS = k6OS + k3OD − kodsODS − k4ODS + k5NWDS

(A.1)
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where NW , O, NWS, and OS are normal weight and obese non-diabetic never-

smokers and normal weight and obese non-diabetic ever-smokers, respectively. The

corresponding compartments for diabetics are NWD, OD, NWDS, and ODS. The

mortality rates begin with a k and are labeled according to their corresponding

compartment. For instance, knwd is the mortality rate for normal weight diabetic

never-smokers. All other parameters are transition rates between disease states.

A.5 Simplified Model 1 and 2 Equations

Below are the ODEs used to simulate the flows between disease states for the sim-

plified model that includes state transitions for diabetic individuals only. There is

only one set of equations for Model 1 while each age group has its own set of equa-

tions, transition and mortality rates in Model 2. The model schematic is shown in

Figure II.2(b).The model equations are given by:

˙NWD = −k2NWD + k3OD − knwdNWD − k1NWD

˙OD = −kodOD + k2NWD − k3OD − k1OD

˙NWDS = k1NWD − knwdsNWDS − k4NWDS + k5ODS

˙ODS = −kodsODS − k5ODS + k4NWDS + k1OD

(A.2)

where NWD and OD are normal weight and obese diabetic never-smokers, re-

spectively, and NWDS and ODS are the corresponding normal weight and obese

ever-smokers. The mortality rates begin with a k and are labeled according to their

corresponding compartment. For instance, knwd is the mortality rate for normal

weight diabetic never-smokers. All other parameters are transition rates between

disease states. The initial state variables (initial conditions) are in units of people.
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A.6 Model 2: Adding Age to the Original CM

Although age was not explicitly depicted on the original DAG (Figure II.2(a)), the

analysis conducted by Preston et al. standardized mortality rates according to US

census ages. Because age is a confounder in the relationship between the exposure,

BMI and outcome, mortality, we should adjust for it in the statistical analysis to

obtain an unbiased effect estimate. However, we initially ran the same statistical

analysis as done for model 1 to see if not adjusting for age correctly could result

in the obesity paradox. The purpose of this exercise is analogous to a sensitivity

analysis in that, we investigate how unmeasured bias may have altered our study

data and results.

To incorporate this into our study, we split our population into a younger age-group

(ages 40-59) and an older age-group (ages 60-74) to explore how age-varying rates

might lead to the obesity paradox. Among older adults (i.e., our study population),

age affects obesity status [197], diabetes status [198], and mortality. Smoking

initiation rates are quite low after age 40 i.e., ∼1% so we will assume that this rate

is the same regardless of age-group [199]. See Figure II.2(c) for the Model 2 DAG.

Alternatively, for an example of how to conduct more detailed age-weighting by

individual ages, see Appendix A.8.

Apart from considering age, The model schematic (Figure II.2(b)) and model equa-

tions for Model 2 are the same as Model 1 (Equations A.2). To add in age-varying

rates, we included one set of equations for the younger age group and one identical

set of equations for the older age group. The equations are otherwise the same, but

parameters and initial conditions vary between age-groups, which accounts for the

effects of age. We assumed that everyone remains in their given age group over the

course of the study (one year).
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A.7 Age-Weighting for Age-Structured Models

We age weighted our model using weights from the 2010 census [116]. Specifi-

cally, the proportion of individuals in the young age group (ages 40-59) in the US

population is 0.2771295 while the proportion of individuals in old age group (ages

60-74) is 0.1247997. Thus for a total study population of 1,000,000 individuals,

there are

• 1, 000, 000 0.2771295
0.2771295+0.1247997

= 689,498.3 young individuals

• 1, 000, 000 0.1247997
0.2771295+0.1247997

= 310,501.7 old individuals

A.8 Alternative Age Weighting Example

Here, we show how to age-weight a model such that individual ages may be rep-

resented. Although this was not used in the analysis, certain datasets or study

questions may necessitate a more detailed age weighting scheme.

To demonstrate how to age standardize a model using weights from the 2010 census

[116], we use the following example. Let’s assume that we run a simulation over

time range 40-74 and that time represents age. Thus, time step 51 to 52 represents

the distribution of all individuals who are age 51 by disease state over the course

of the year. We will also take the model state variables to be fractions of the initial

starting population.

First, divide each 5-year age group (from the census) by the total number of indi-

viduals in the census population to calculate age weights for the following groups

(‘40 to 44 years’, ‘45 to 49 years’, ‘50 to 54 years’, ‘55 to 59 years’, ‘60 to 64 years’,
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‘65 to 69 years’, ‘70 to 74 years’). We can assume that individuals are evenly dis-

tributed over each five year interval and so we can further divide each weight by 5

to get the age specific weight.

Next, we can calculate the proportion of the population in each state at a given

age from the simulated dataset by dividing each value by the total fraction of the

population alive at that age (i.e. summing over all disease states). For example,

let’s say at time 51 the proportion of individuals in the normal weight diabetic

never-smoking compartment is 0.02
0.95

where 0.95 is the total proportion of the initial

population still alive at age 51. Thus, 2.1% of people at age 51 are normal weight

diabetic never-smokers.

Finally, we can multiply the age weights calculated from the census by the corre-

sponding age proportions in the adjusted simulation data output and then calculate

the person-time of the weighted dataset A.4 using the trapezoidal rule and the in-

cident mortality A.5 by multiplying the mortality rates of the simulated dataset by

the age weights.

A.9 Model 3: Adding Reverse Causation in the Original Model

We next tested the hypothesis that reverse causation may cause the obesity paradox.

We first assumed that our observational study design was the same as in previous

models and that we did not account for reverse causation in our data collection or

statistical analyses (i.e., we ran the statistical analysis based on the original DAG

in Figure II.2(a)). We made changes directly to the model to test this alternative

underlying causal mechanism and then made a corresponding DAG. Again, since

we assumed that our study design is the same, we did not change the statistical
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analysis. See Figures II.2(f) and II.2(e) for the new model and corresponding DAG,

and see Appendix Equations A.3 for the model equations.

As mentioned previously, complications from comorbid diabetes and other diseases

such as COPD may induce weight loss [117, 118] and also, increase the risk of mor-

tality [119, 120]. We therefore extended Model 1 to simulate how undiagnosed

COPD and associated complications may be a risk factor for mortality and also af-

fect the exposure, BMI. Because these complications affect the outcome and expo-

sure, this model incorporates reverse causation in that the higher risk of mortality

may precede changes in the exposure. In our extended model, normal weight and

obese ever-smokers can transition into COPD disease states, marked with a ‘C ’. We

assumed that comorbidity of diabetes and COPD only occurs among ever-smokers

since smoking is a key risk factor for COPD [200]. Additionally in our extended

model, individuals with comorbid diabetes and COPD can then transition into the

‘unhealthy’ compartment, U . Individuals in U have lost weight due to cachexia and

also have higher mortality rates than their normal weight ‘healthy’ counterparts

(i.e. normal weight ever-smoking individuals with COPD who have not undergone

cachexia). We assumed that BMI does not affect the rate at which individuals get

COPD or transition into U . In some cases (depending on parameter values), individ-

uals in U may also have higher mortality rates than obese ever-smoking individuals

with COPD. Importantly, for the statistical analysis, ‘unhealthy’ individuals are mea-

sured as normal weight ever-smoking diabetics since our original study design did

not measure COPD or the occurrence of cachexia. Individuals with diabetes are at

an increased risk for developing COPD [201], so it is also possible that even if indi-

viduals with COPD at baseline in our cohort study were excluded, participants may

have developed COPD and moved into the unhealthy disease state over the course

of the study (this would be more likely for longer prospective studies more than 1
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year). We examined this in two sensitivity analyses in which we exclude individuals

with COPD at baseline and run the study for 1 year and also, 5 years.

Because this reverse causation mechanism relies on exposure status changing due

to a risk factor for the outcome, mortality, the corresponding DAG is longitudinal to

represent time-varying exposure and covariates. Specifically, this DAG incorporates

changes to BMI over time. The exposure is BMI0 the BMI measurement at baseline,

and the outcome is cumulative mortality at the end of the study. More details for

converting between longitudinal DAGs and CMs can be found in [32].

A.10 Reverse causation Model 3 Equations

Below are the ODEs used to simulate the flows between disease states for the re-

verse causation model. The model schematic is shown in Figure II.2(f). The model

equations are given by:

˙NWD = −k4NWD + k5OD − k1NWD − knwdNWD

˙OD = k4NWD − k5OD − k1OD − kodOD

˙NWDS = k1NWD − k6NWDS + k7ODS − k2NWDS − knwdsNWDS

˙ODS = k1OD + k6NWDS − k7ODS − k2ODS − kodsODS

˙ODSC = k8NWDSC − k9ODSC − k3ODSC + k2ODS − kodscODSC

˙NWDSC = k9ODSC − k8NWDSC − k3NWDSC + k2NWDS − knwdscNWDSC

U̇ = k3NWDSC + k3ODSC − kuU
(A.3)

where NWD represents normal weight diabetic individuals; OD represents obese

diabetic individuals; ODS are obese diabetic ever-smokers; NWDS are normal

weight diabetic ever-smokers; ODSC and NWDSC are obese and normal weight
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ever-smoking diabetic individuals with COPD; and U are unhealthy individuals with

comorbid COPD and diabetes who have undergone cachexia. These individuals

have higher mortality rates than their unhealthy counterparts (i.e., NWDSC) and

in some cases than ODSC but are measured together with healthy normal weight

individuals due to the design of our observational study. Finally, mortality rates are

labeled according to their corresponding compartment. For instance, knwd is the

mortality rate for normal weight diabetic never-smokers. All other parameters are

transition rates between disease states. The initial state variables (initial conditions)

are in units of people.

A.11 Combined Model

In the combined model, we incorporated both reverse causation and age-dependant

mortality. Apart from considering age, the schematic (Figure II.2(f)) and ODE

equations (A.3) are the same as Model 3, but are vectorized such that each age

group has its own set of equations. See Appendix Figure II.2(g) for corresponding

DAG which incorporates both reverse causation and age varying mortality. Because

COPD prevalence increases with age [202], we allowed rates of transition to COPD

to vary between age groups. Furthermore, because cachexia increases with age

[203], we allowed rates of transition to U to vary between age groups. Finally, as

reflected in Model 2, age affects BMI, diabetes and mortality. The MRR calculations

are the same as conducted for the other models. We also ran various sensitivity

analyses to see if adjusting for bias can keep the obesity paradox from occurring.

Specifically, we (1) adjusted for age by standardizing to the unexposed population,

(2) excluded individuals with COPD at baseline, and (3) combined 1 and 2.
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A.12 Initial Condition Calculations

To determine how to distribute the population across disease states, the proportion

of individuals in each state was randomly sampled using LHS [115]. For each model

run, the sum of all sampled population fractions for the initial states must equal 1

to ensure uniformly sampled proportions. We randomly sampled proportions of the

population in each disease state then multiplied the sampled proportions by the

number of individuals in the given age group to get numbers of people starting in

each disease state.

For instance in model 1 there are 4 states, we sampled 3 (total states - 1) values be-

tween [0, 1]. Then we appended 0 and 1 onto the vector and sorted e.g., {0,0.1,0.4,

0.5, 1}, generating cut-points for the interval [0, 1], allowing the interval to be di-

vided uniformly at random among the four states. Next, we took the lagged differ-

ences between the elements in the vector i.e., in this example {0.1,0.3,0.1,0.5} to

get the start proportions for each state. This process avoided sampling in a specific

order which would more frequently result in the last disease state have a lower

proportion. We finally multiplied the proportions by census weights to determine

how many individuals start in each state in this example: {40,192.92, 120,578.76,

40,192.92, 200,964.6}, totalling 401,929.2.

A.13 Mortality Rate Add-Ons

We imposed biologically realistic restrictions on the mortality rates such that ever-

smokers have a higher mortality rate than their never-smoking counterparts (i.e.,

within weight strata), and obese individuals have a higher mortality rate than their

normal weight counterparts i.e., within smoking strata).
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Specifically, we setODS mortality≥NWDS mortality≥NWD mortality andODS

mortality ≥ OD mortality ≥ NWD mortality. We did this by sampling a baseline

mortality rate between 1% to 10% per year and then sampled ‘add-on’ mortality

rates between 0% and 10% for obesity and separately smoking, thus the minimum

mortality rate for obese, diabetic ever-smokers is 1% and the maximum is 30% per

year.

A.13.1 Model 2: Age-varying mortality

All transition rates between disease states were allowed to vary by age group with

the exception of smoking initiation. We set smoking initiation to be the same, be-

cause as mentioned, we assumed that the initiation rates were quite low anyway

in these ages i.e., after 40 years of age [199]. Older age group mortality rates

for a given disease state were determined by multiplying the younger age group

mortality rate of the same state by a scaling factor between 1 and 2. We chose a

maximum of 2 because it is a rough approximation of the relative mortality rates

for the younger compared older age groups in the US according to the Centers for

Disease Control and Prevention [204], although the age-groups are slightly differ-

ent than in our model. Overall, within a given age-group the same restrictions on

the relative mortality rates across disease states were used (as was used in Model

1). See Table 2.1 for all parameter ranges.

A.13.2 Model 3: Reverse Causation

We placed the same biologically plausible restrictions on the relative mortality rates

as we did for Model 1 (i.e., a baseline mortality rate and add-ons for obesity, and
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smoking) and included an additional add-on for COPD related mortality. Finally, we

derived the mortality rate in the U compartment by multiplying the mortality rate

of normal weight diabetic healthy ever-smokers with COPD by a cachexia scaling

factor between 1 and 2 (similar to the age scaling factor in Model 2). We chose

a maximum of 2 since it was a relatively conservative estimate that corresponded

with the age-varying mortality rate. This enabled us to directly compare causal

mechanisms without making assumptions about the relative rates for age compared

with cachexia associated mortality. Thus, the maximum mortality rate of normal

weight diabetic unhealthy ever-smokers was equal to 80%. See Table 2.1 for all

parameter ranges.

A.14 Person-Time for Simulated Studies

Even though the CM parameters were in units of years, the time steps for our model

were in days. This is due to the fact that the sampling of both the initial conditions

and parameter values could potentially lead to very fast, transient dynamics at the

beginning of the simulation. For instance, if the transition rates out of the obese

compartment are very fast and the initial conditions place the majority of individu-

als in the obese compartment, there will be a rapid decline in the numbers of obese

individuals in the early stages of the simulation. This is not realistic especially in

older age groups. Therefore, dividing our one-year time step into days enabled us

to get a more precise estimate of the mean person-time spent in each compartment.

We calculated person-time by taking the daily average number of individuals in each

disease state for the study. Specifically, we approximated the number of individuals

in each state at each timestep using the life table method [205] (which is analogous

to the trapezoidal rule) in which for a given timestep t the number of people in a

114



state at time t and time t + 1 is averaged. See Appendix Equation A.4 for details.

We then added all person-days and converted to person-years by dividing the sum

by 365 days
year

to get a final value in person-years. For slower dynamics or a longer run

study, we could have calculated person years without averaging over each day.

A.15 Trapezoidal Rule for Person-Time Calculation

We calculated person time for a given time step, t, in simulations using the following

equation i.e. the trapezoidal rule, equivalent to the life table method [205] in which

all withdrawals or deaths are assumed to happen at the midpoint of each interval:

Equation for Person Time

PersonT ime = Nrt −
Nrt −Nrt+1

2
=
Nrt+1 +Nrt

2
, (A.4)

where ‘Nrt’ is number of individuals in a given compartment at time t and ’Nrt+1’

is number of individuals in the same compartment at time t+ 1.

A.16 Incident Mortality for Simulated Studies

Next, we calculated incident mortality, the outcome, according to the following

equation:

MD = Mt+1 −Mt, (A.5)

where MD is the incident mortality, Mt is cumulative number of deaths in a given

compartment at time t and Mt+1 is the cumulative number of deaths in the same

compartment at time t+ 1. The cumulative number of deaths by compartment was
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quantified by adding extra equations with only the death rate for given compart-

ment multiplied by the number of people in that compartment. We calculated the

total incident mortality numbers for the entire year by each disease state. We next

split our dataset into ever-smoking diabetics and never-smoking diabetics. We cal-

culated a unique MRR for each strata. This accounts for the role of smoking as

a confounder. See Appendix Section A.19 for an example simulated dataset for a

single study.

A.17 Obesity Paradox Mortality Rate Parameterization

We can approximately back-calculate the mortality rate for a given CM compart-

ment (i.e. the rate determined by LHS) by taking the total number of deaths over

the course of simulation for that compartment (Equation A.5) divided by the person

time approximation for that compartment (Equation A.4). For instance, in Table

A.2, the mortality rate of normal weight never-smokers used in the model is just

25
1500

) = 0.017 deaths per-year. We can also calculate the mortality rate ratio of nor-

mal weight compared to obese never-smokers by hand from the simulated dataset.

For instance, in Table A.2, we can just divide the mortality rate of normal weight

individuals (i.e. 25
1500

) = 0.017 deaths per-year) by the mortality rate of obese indi-

viduals (i.e. 19
988

) = 0.019 deaths per-year) to get an MRR of 0.895. The final MRRs

obtained from our analysis are simply the ratio of CM mortality rates.

Alternatively, if we want to parameterize a CM from real-world data, we can use

MRRs by taking the exponentiated beta estimates from a Poisson model. For in-

stance, if the MRR of normal weight, never-smoking diabetics compared to obese

never-smoking diabetics is 1.5 we know that the ratio of mortality rates among

these two compartments is 1.5 (e.g. they could be 0.3 to 0.2). Now, if our model
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among never-smoking diabetics is the same as the crude Poisson model equation

above (See equation A.6), we can also take the exponentiated β̂0 to obtain the mor-

tality rate among normal weight, never-smoking diabetics and then use the MRR to

determine the mortality rate among obese never-smoking diabetics.

A.18 Poisson Model

Here, we show how to run a Poisson regression model. This was not used in our

analysis because we didn’t incorporate any type of sampling error into our model.

However, one may want to simulate sampling using a multinomial draw in which

case a Poisson regression model would be appropriate and could be used to derive

confidence intervals to account for sampling error.

To run a standard Poisson regression model on our simulated dataset from Model 1

(see Table A.2 for example data), we can calculate mortality rate ratios representing

the effect of normal weight compared to obese individuals on mortality:

log(µ̂) = log(T ) + β̂0 + β̂1NW (A.6)

We ran this model for ever-smokers and then separately for never-smokers, where

log(T ) is log(person− time) and is also the offset term which accounts for unequal

follow up times between compartments and allows us to model the rate. The out-

come, log(µ̂), is the estimated incident mortality rate and β̂0 is log(incident mor-

tality rate) among obese diabetics (i.e. when normal weight (NW ) is equal to 0).

Finally, eβ̂1 is the mortality rate ratio comparing mortality among normal weight

individuals to mortality among obese individuals. It is also the multiplicative effect

on the mortality rate of being obese compared to being normal weight.
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Note that it is also possible to individuate our simulated population by sampling

according to a standard population e.g. the census and then to run a different type

of regression model for count data, e.g. Cox proportional hazards, using individual

(not compartment) level data. However, the Poisson regression model is simpler to

implement and an appropriate choice for count data which is a commonly assumed

in epidemiological studies.

A.19 Example Simulated Dataset

Table A.2 shows an example dataset generated from the CM output among never-

smokers. For each characteristic, ‘yes’ is coded as 1 and ‘no’ is coded as 0. The first

row represents individuals in the obese diabetic never-smoking compartment while

the second row represents individuals in the normal weight diabetic never-smoking

compartment. The MRR comparing normal weight never-smokers to their obese

counterparts for this given parameter set is therefore 25/1500
19/988

.

Table A.2: Example Simulated Dataset Among Never-Smokers
Diabetic Smoker Obese Normal Weight Deaths Person-Years

1 0 1 0 19 988
1 0 0 1 25 1500

118



APPENDIX B

Appendix for Chapter 3
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B.1 Features of Generated Networks

Figure B.1: Average Connection Radius: We generated a wide array of networks
average connection radius (from 0.5 to 5) to examine variation in com-
munity contact e.g. long range connections vs. short range clustered
connections. These plots demonstrate the parameters we used to spec-
ify the networks and the actual calculated metrics on the generated
networks. For instance, specifying a high average degree with low av-
erage connection radius results in a network with a average connection
radius.
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Figure B.2: Network Average Degree: We generated a wide array of networks vary-
ing average degree (from 50 to 450) to examine variation in community
contact e.g. many community contacts vs. few community contacts.
These plots demonstrate the parameters we used to specify the net-
works and the actual calculated metrics on the generated networks. For
instance, specifying a high average degree with low average connection
radius results in a network with a low average degree.
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B.2 Distribution of Incidence Levels by Model Run

Figure B.3: Distribution of incidence levels across all model runs.

B.3 Protection Conferred by Single Interventions by Commu-

nity Transmission Rate: Control Intervention as Reference

Group

We fit splines to the relationship between βuC and all RRs within the 2.5th to 97.5th

percentiles, and plotted the results among different screening scenarios. See Figure

B.4 for results with the control intervention as reference group.
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Figure B.4: Fitted splines representing relationship between the unscaled commu-
nity transmission rate (βuC) and RR (among RRs within the 2.5th to
97.5th percentiles). Passive surveillance only is the reference group.
Dots represent individual model runs colored by screening scenario and
lines are the splines (with 95% confidence intervals in shaded regions)
which were calculated using the loess method in R [4].

B.4 Protection Conferred by Single Interventions by Network

and Incidence Strata: Control Intervention as Reference

Group

We calculated the mean RRs (among RRs within the 2.5th to 97.5th percentiles)

and standard deviation (SD) within strata of network parameters and burn-in 1

incidence. For each network parameter or incidence level strata, we defined ‘high’

as >median across all model runs and ‘low’ as <median across all model runs. See
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Table B.1 for performance of screening interventions with the control intervention

as a reference group ranked in order of most effective scenario to least effective

scenario.

Table B.1: RRs of Screening Interventions–Control Intervention as Reference Group
Screening Inter-
vention

Connection
Radius Strata

Average Degree
Strata

Incidence
Strata

Mean RR
(SD)

Community CT low low low 0.86 (0.2)
HHCT low low low 0.87 (0.2)
Community CT low low high 0.91 (0.12)
HHCT high high low 0.91 (0.19)
HHCT low high low 0.92 (0.19)
Community CT high low low 0.92 (0.21)
HHCT high low low 0.92 (0.18)
Community CT high low high 0.93 (0.11)
HHCT low low high 0.93 (0.11)
HHCT low high high 0.95 (0.1)
Community CT high high low 0.95 (0.18)
Community CT low high high 0.95 (0.1)
HHCT high high high 0.96 (0.09)
Community CT low high low 0.96 (0.2)
HHCT high low high 0.97 (0.1)
Community CT high high high 0.98 (0.08)
Passive Surveil-
lance

high high low 1.07 (0.2)

Passive Surveil-
lance

high low low 1.09 (0.21)

Passive Surveil-
lance

low high low 1.1 (0.21)

Passive Surveil-
lance

low low low 1.12 (0.22)

Passive Surveil-
lance

high high high 1.13 (0.11)

Passive Surveil-
lance

high low high 1.14 (0.12)

Passive Surveil-
lance

low high high 1.14 (0.11)

Passive Surveil-
lance

low low high 1.16 (0.13)

Contact tracing interventions performed better than the passive surveillance only

intervention. Furthermore, screening interventions performed better in lower inci-
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dence, lower average degree, and lower connection radii strata however, there was

substantial variability.

The mean incidence was 174.4 (SD: 116.7) per 100,000 person-years among the

top third (of 24 total) most effective screening scenarios and 245 (SD: 143.1) per

100,000 person-years among the bottom third. The mean community average de-

gree was 126.3 (SD: 79.5) among the top third and 169.3 (SD: 91.6) among the

bottom third. Finally, the trend was less apparent among connection radii in which

the mean radius was 3.5 (SD: 1.5) and 3.7 (SD: 1.4) for the top and bottom thirds,

respectively.

When examining results only among HHCT and community CT, the mean of all RRs

in the high incidence strata is 0.95 (SD: 0.1), while it is only 0.9 (SD: 0.2) in the

low incidence strata. Next, the mean of all RRs in the high average degree strata

is 0.95 (SD: 0.15), while it is only 0.9 (SD: 0.17) in the low average degree strata.

Finally, the mean of all RRs in the high average connection radius strata is 0.95 (SD:

0.14), while it is only 0.91 (SD: 0.17) in the low average degree strata. Therefore,

within strata of network parameters, lower network standard deviation and lower

average degree results in slightly better performance of screening scenarios. Again,

there is substantial variability within strata.

B.5 Protection Conferred by Single and Combined Interventions

by Community Transmission Rate: Control Intervention as

Reference Group

We fit splines to the relationship between βuC and all RRs within the 2.5th to 97.5th

percentiles, and plotted the results among different screening scenarios. See Figure
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B.5 for results with the control intervention as reference group.

Figure B.5: Fitted splines representing relationship between the unscaled commu-
nity transmission rate (βuC) and RR (among RRs within the 2.5th to
97.5th percentiles). Passive surveillance only is the reference group.
Dots represent individual model runs colored by screening scenario and
lines are the splines (with 95% confidence intervals in shaded regions)
which were calculated using the loess method in R [4].

Table B.2 shows the RERIs using the control intervention as a reference group.

There appears to be greater negative interactive effects in strata of low incidence.

However, we do not see any trends in average degree or average connection radius.

126



Table B.2: RERIs of Combined Screening Interventions–Control Intervention as Ref-
erence Group

Connection
Radius
Strata

Average
Degree
Strata

Incidence
Strata

Mean
RERI (SD)

high high low -0.08
(0.44)

low low low -0.04
(0.51)

high low low -0.03
(0.49)

low high high -0.02
(0.24)

high high high -0.01
(0.21)

low low high 0 (0.28)
low high low 0 (0.49)
high low high 0.01

(0.25)
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APPENDIX C

Appendix for Chapter 4

C.1 Transmission Model for Daycare centers and Schools

Transmission occurs either directly through person-to-person contact or indirectly

through fomite-mediated pathways i.e., shedding and pickup of virus in shared

environments. Individuals start as either susceptible S, partially immune P , or fully

recovered R depending on acquired immunity and innate resistance status (Figure

4.1). Susceptible and partially immune individuals become infected according to

the force of infection λ(t), which is based on: (1) the number of symptomatic (I),

and asymptomatic (A1, A2, and A3); (2) the pathogen concentration on fomites in

the environment (F1 and F2); and (3) the human to human and fomite to human

transmission rates (βA, βHH , and βFH).

Force of Infection

λ(t) = [I + βA(A1 + A2 + A3)]βHH + (F1 + F2)βFH (C.1)
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where I is the number of symptomatic individuals, and A1, A2, and A3, are the

numbers of asymptomatic individuals, and F1 and F2 are the numbers of pathogens

on contaminated fomites in the environment. The asymptomatic transmission re-

duction factor, βA, is a reduction in efficiency of transmission compared with symp-

tomatic individuals. The human to human and fomite to human transmission ma-

trices are βHH and βFH , respectively. Excluded individuals, X, do not contribute to

transmission.

Once infected, individuals pass through a gamma distributed latent period i.e. E1,

E2, and E3. It is gamma distributed to represent the empirical distribution of the

data [39]. After they pass through the latent period, they become symptomatic.

After an individual is symptomatic, they pass through a gamma distributed asymp-

tomatic period i.e., A1, A2, and A3 that represents post-symptomatic shedding and

exhibits a reduction in shedding by stage (e.g., individuals in A2 shed less than

individual in A1, see below for details). A proportion of infected individuals who

originate in S do not become symptomatic and pass directly from E3 to A1. In-

dividuals who start as partially immune can become infected, but do not become

symptomatic and move directly to A1.

A proportion of symptomatic individuals become excluded and move into the X

compartment. After their symptoms resolve, they move to A1 and return to the

general population with the normal transmission and shedding rates for the A1

compartment. Finally, all individuals who become infected eventually progress to

the fully recovered state. All symptomatic and asymptomatic individuals (unless

excluded) shed pathogen into the environment as follows:
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Shedding = αII + αIβA(A1e
−σ( 1

φ
) + A2e

−σ( 1
φ
+ 1
ρ
) + A3e

−σ( 1
φ
+ 1
ρ
+ 1
ρ
))

Ḟ1 = Shedding − ξF1

Ḟ2 = ξF1 − ξF2

(C.2)

where αI is the shedding rate for symptomatic individuals, and the reduction factors

for shedding among asymptomatic individuals is βA.

The amount of shedding is reduced exponentially as individuals progress across the

gamma distributed asymptomatic period by σ for each state transition [171]. The

symptomatic period, φ, and the recovery rate, ρ (i.e., from A1 to A2 etc.), account

for the length of time that individuals shed at certain rates.

Viral concentration on fomites is tracked in the venue. Norovirus pathogen decay on

fomites occurs in a biphasic pattern with an initial rapid rate of die-off followed by

a period of slower die-off [91, 186]. Since are simulating a single outbreak, waning

immunity is ignored. See Appendix Section C.3 for the full model equations, Table

C.1 for initial condition ranges, and see Table 4.1 for parameter ranges.

C.2 Model Features

We incorporated different model features to examine mechanisms that can recreate

the explosive outbreaks and low ARs characteristic of norovirus. We considered the

following models (see Figure 4.1 for reference):

• Baseline Model: In this scenario, we simulated a fully susceptible population,

with no individual exclusion. All individuals started in the susceptible, S,

compartment.
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• Immunity Model: In this scenario, we simulated a partially immune popu-

lation with no individual exclusion. Because there is strain-dependent varia-

tion in the amount of protection innate resistance provides [175], and due to

the fact that there is not an established correlate of norovirus protection that

would be able to quantify acquired partial immunity, we examined different

proportions of immunity. We assumed that those with innate resistance could

not become infected at all and started as fully immune (in the R compart-

ment), while those with acquired immunity started as partially immune (in

P ). Individuals in P could become infected, but not diseased. Non-diseased

individuals were assumed to not be detectable during norovirus outbreaks

and therefore were not counted in the numerator of the attack rate. Twenty

percent of the population started in the R compartment i.e., with innate resis-

tance [175], and we varied the total number with acquired immunity (P ). We

chose to vary the percentage starting with acquired immunity, because there

is not a well established correlate of protection [206]. Finally, we calibrated

the proportion of individuals with acquired immunity to the data by sweeping

over a broad range of Latin Hypercube Sampling (LHS) [115] values (Table

4.1).

• Individual Exclusion Model: In this scenario, we simulated a fully suscepti-

ble population (i.e., all individuals started in the S compartment) with indi-

vidual exclusion. During the simulation, a proportion of diseased individuals

were removed from normal mixing and shedding, i.e., excluded. Excluded

individuals do not contribute to transmission.

• Combined Model: In this scenario, we simulated a partially immune popula-

tion, with individual exclusion.
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Each of the above approaches were simulated both stochastically and deterministi-

cally. The stochastic simulation is a tau leaping version of the model [78] based on

the Gillespie algorithm in which the stochastic model is approximate, but more ef-

ficient and updates at each large predefined time step (the time interval is denoted

τ). We then ran the model 3 times using different random number generator seeds

for each parameter set and population size to account for stochastic variation.

C.3 Model equations

Force of Infection

Ninf = I + βA(A1 + A2 + A3)

λ = NinfβHH + (F1 + F2)βFH

(C.3)

Human Transmission Model

Ṡ = −λS

Ė1 = λS − µE1

Ė2 = µE1 − µE2

Ė3 = µE2 − θµE3 − (1− θ)µE3

İ = (1− θ)µE3 − φI − υI

Ẋ = υI − 1
1
φ
− 1

υ

X

Ȧ1 = φI − ρA1 + λP + θµE3 +
1

1
φ
− 1

υ

X

Ȧ2 = ρA1 − ρA2

Ȧ3 = ρA2 − ρA3

Ṗ = −λP

Ṙ = ρA3

(C.4)
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Venue and Pathogens

Shedding = αII + αIβA(A1e
−σ( 1

φ
) + A2e

−σ( 1
φ
+ 1
ρ
) + A3e

−σ( 1
φ
+ 1
ρ
+ 1
ρ
))

Ḟ1 = Shedding − ξF1

Ḟ2 = ξF1 − ξF2

(C.5)

C.4 Initial Conditions

In the baseline model, we start all individuals as Susceptible (S). On the other hand,

in the immunity and combined models, 20% of individuals start as fully recovered

(R) and some proportion of individuals start with partial immunity (P ). This pro-

portion is randomly sample between 0 and 80%. Finally, 10 million pathogens start

in the F1 compartment to initiate the outbreak. However, this number was varied

from 0 to 100 million in a sensitivity analysis. Another sensitivity analysis seeded

the outbreak with a single infectious individual.
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Table C.1: Initial Condition Values and Uncertainty Ranges
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C.5 NORS Calibration Ranges

We calibrated our models to the NORS data below. In total, there were 228 daycare

outbreaks and 686 school outbreaks.

Table C.2: Calibration Ranges from NORS Data

Metric Median (5th to 95th percentiles) [Mean]

Population sizes of daycare venue 75 people (7, 410) [94.3]
Population sizes of school venue 420 people (6, 6486) [447.3]
Attack rate within daycare venue 21.6% (4.6%, 69.2%) [25.5%]
Attack rate within school venues 15.3% (4.6%, 68.4%) [20.4%]

Outbreak duration within daycare venue 13 days (2, 40) [14.7]
Outbreak duration within school venues 8 days (1, 32) [10.8]
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C.6 Attack Rates vs. Outbreak Duration Stratified by NORS Pop-

ulation Sizes

Figure C.1: NORS data: Attack rates vs. outbreak duration stratified by exposed
population size.
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C.7 Durations and Attack Rates from Model Runs

Below are venue-specific attacks rates and outbreaks durations for the models (i.e.,

baseline, immunity, individual exclusion and combined) and the NORS data.

Table C.3: Venue-specific Attack Rates for All Models: Median (95% CI) [Mean]
Model Daycare School

Baseline 67.6% (3.6%, 84.6%) [65%] 65.3% (0%, 83.3%) [60.3%]
Immunity 21.9% (2.2%, 49.2%) [23.1%] 16.7% (1.1%, 53.2%) [20.3%]

Individual Exclusion 63.3% (2.7%, 83.3%) [53.9%] 58.3% (0%, 81%) [45%]
Combined 20.9% (1.8%, 50.6%) [22.6%] 14.5% (0.3%, 53.3%) [19%]

NORS 21.6% (4.6%, 69.2%) [25.5%] 15.3% (4.6%, 68.4%) [20.4%]

Table C.4: Venue-specific Outbreak Durations for All Models: Median (95% CI)
[Mean]

Model Daycare School

Baseline 4 days (2, 12) [4.6] 4 days (0, 10) [4.4]
Immunity 4 days (1, 13) [4.7] 5 days (1, 14) [5.7]

Individual Exclusion 5 days (2, 21) [6.9] 5 days (0, 26) [7]
Combined 5 days (1, 21) [6.4] 5 days (1, 27) [7.1]

NORS 13 days (2, 40) [14.7] 8 days (1, 32) [10.8]

C.8 Results from Calibration for Each Model with NORS data

Below are pairwise scatter plots examining joint distributions of attack rate (%),

outbreak durations (days), and population sizes (people). The NORS data is in the

upper left corner and all models are displayed with individual points colored by the

log of the number of Times Calibrated. Points in white were not resampled.
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Figure C.2: Daycare Model Runs: Attack rates vs. population sizes results from
resampled parameter and initial conditions. NORS data is in the top
left. Points correspond to parameter sets and are colored by the amount
of times they were resampled.
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Figure C.3: Daycare Model Runs: Population sizes vs. outbreak durations results
from resampled parameter and initial conditions. NORS data is in the
top left. Points correspond to parameter sets and are colored by the
amount of times they were resampled.
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Figure C.4: School Model Runs: Attack rates vs. duration results from resampled
parameter and initial conditions. NORS data is in the top left. Points
correspond to parameter sets and are colored by the amount of times
they were resampled.
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Figure C.5: School Model Runs: Attack rates vs. population sizes results from re-
sampled parameter and initial conditions. NORS data is in the top left.
Points correspond to parameter sets and are colored by the amount of
times they were resampled.
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Figure C.6: School Model Runs: Population sizes vs. outbreak durations results
from resampled parameter and initial conditions. NORS data is in the
top left. Points correspond to parameter sets and are colored by the
amount of times they were resampled.
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C.9 Sensitivity Analyses

We conducted sensitivity analyses to ensure that our model results were robust to

key simplifying assumptions. To ensure the duration calculations were not affected

by the choice of initial conditions in different compartments, we conducted two sen-

sitivity analyses. First, we ran the model varying the number of pathogens starting

in the environment from 0 to 100 million and second, we seeded the model with a

single infectious individual.

C.9.1 Sensitivity Analysis Results:

According to the KL divergence, all sensitivity analyses performed fairly well and

were relatively close to the original combined model. Overall, the combined was

lower according to KL divergence in the school model, but seeding with an infected

individual had a lower KL divergence in the daycare model. See Table 4.2 for KL

divergence values of the main analyses and Appendix Table C.7 for KL divergence

values of the deterministic models.

Below are attack rates and durations from seeding scenario the sensitivity analyses.

Table C.5: Venue-specific Attack Rates for Sensitivity Analyses: Median (95% CI)
[Mean]

Model Daycare School

Seeding: Varying Pathogens in Environment 21.4% (2.7%, 48.5%) [22.6%] 15% (0.8%, 52.7%) [19.1%]
Seeding: Diseased Individual 21.8% (0%, 50%) [22.7%] 13.4% (0%, 52.5%) [17.7%]

NORS 21.6% (4.6%, 69.2%) [25.5%] 15.3% (4.6%, 68.4%) [20.4%]

Table C.6: Venue-specific Outbreak Durations for Sensitivity Analyses: Median
(95% CI) [Mean]

Model Daycare School

Seeding: Varying Pathogens in Environment 4 days (1, 17) [5] 5 days (1, 25) [6.5]
Seeding: Diseased Individual 5 days (0, 25) [7.3] 5 days (0, 24) [6.6]

NORS 13 days (2, 40) [14.7] 8 days (1, 32) [10.8]
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C.10 Deterministic Model Calibration Sensitivity Analysis

We calibrated deterministic versions of each model to determine the whether

stochastic extinction could lead to rapid outbreaks with lower attack rates. In gen-

eral, deterministic models performed worse according to KL divergence. All models

performed the same relative to each other with the combined and individual exclu-

sion models performing the best.

Model Daycare School

Deterministic Simulations

Baseline 19.3 16.87
Immunity 11.34 11.57

Individual Exclusion 10.57 10.19
Combined 10.45 10.59

Table C.7: Kullback Leibler (KL) divergence for each model compared with the NORS
data kernel density estimated distribution. Smaller KL divergence indi-
cates a more similar distribution to NORS (i.e. less information difference
between the NORS and the model distribution).

Below are the attack rates and durations from the deterministic model runs. Over-

all, deterministic model runs resulted in less variation in attack rates and durations

with slightly shorter median durations.

Table C.8: Venue-specific Attack Rates for All Models: Median (95% CI) [Mean]
Model Daycare School

Baseline 70% (70%, 70%) [70%] 70% (70%, 70%) [69.9%]
Immunity 22.6% (3.8%, 47.5%) [23.4%] 15.7% (2.6%, 52.6%) [19.9%]

Individual Exclusion 70% (5.3%, 70%) [54.2%] 55.5% (0.5%, 70%) [40.4%]
Combined 20.5% (3.2%, 47.9%) [22.3%] 13.4% (0.9%, 52.5%) [17.9%]

NORS 21.6% (4.6%, 69.2%) [25.5%] 15.3% (4.6%, 68.4%) [20.4%]
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Table C.9: Venue-specific Outbreak Durations for All Models: Median (95% CI)
[Mean]

Model Daycare School

Baseline 4 days (3, 5) [4.1] 4 days (3, 5) [4.3]
Immunity 4 days (2, 5) [3.8] 5 days (2, 6) [4.4]

Individual Exclusion 5 days (1, 16) [6.1] 6 days (0, 26) [7.9]
Combined 4 days (0, 13) [5.1] 5 days (0, 24) [7.1]

NORS 13 days (2, 40) [14.7] 8 days (1, 32) [10.8]

C.11 Staff and Students Model

We added staff into the model, to understand whether or not they can affect how

norovirus is spread within venues.

C.11.1 Students and Staff Model for Daycare and School

Thus, in the staff and student model, there is a staff age group and a student

age group. To derive the human-to-human transmission rates, we assume that the

younger age group (i.e., the students) transmit at higher rates than the older age

group (i.e., the staff) due to both contact rates [208] and susceptibility decreasing

with age (e.g. represented by levels of norovirus antibody titers [209]). Specifi-

cally, the human-to-human transmission matrix is derived by taking the βHH from

the students only model and setting that to the student to student transmission

rate. Next, we assume that the inter-age transmission rates (i.e., staff to student

and student to staff transmission are equal) and calculate that by multiplying the

student to student transmission rate by a randomly sampled reduction factor be-

tween [0,1]. Finally, the staff-to-staff transmission rate is calculated by multiplying

145



the inter-age transmission rate by a randomly sampled reduction factor between

[0,1] (this factor is also used to derive the fomite-to-staff transmission rate.

Next, for fomite-to-human transmission there are two rates, one for students and

one for staff. The fomite-to-student transmission rate is calculated in the same way

as the student only model i.e., βHH multiplied by a randomly sampled parameter

between [0, 2]. The fomite-to-staff transmission rate is derived by multiplying the

fomite-to-student rate by the same factor used to derive the staff-to-staff transmis-

sion rate (mentioned above) between [0,1]. Overall, the force of infection for the

staff and students model is as follows:

λ(t)tot = [I + βA(A1 + A2 + A3)]βHH

λ(t)1 = λ(t)1 + (F1 + F2)βWk

λ(t)2 = λ(t)2 + (F1 + F2)βWa

(C.6)

where λ(t)tot is the total force of infection (and is a vector representing the student

force of infection as the first element and the staff force of infection as the second

element. λ(t)1 and λ(t)2 are added to the force of infection for students and staff,

respectively. Finally, βWk and βWa are the fomite-to-human transmission rates for

students and staff, respectively.

Finally, with respect to shedding, staff and students shed into a single shared envi-

ronment. Thus, the shedding and fomite tracking equations are as follows:

Shedding = αII + αIβA(A1e
−σ( 1

φ
) + A2e

−σ( 1
φ
+ 1
ρ
) + A3e

−σ( 1
φ
+ 1
ρ
+ 1
ρ
))

Ḟ1 =
∑

Shedding − ξF1

Ḟ2 = ξF1 − ξF2

(C.7)

where the sum of shedding across both age groups is added to the F1 compartment
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because there is a single environmental compartment in each venue.

For the immunity and combined models we assumed that staff had higher rates of

partial immunity than children [209].

All other model equations are the same as the student only model, see Appendix

Section C.3 for details.

C.11.2 Students and Staff Model Likelihood Calculation

To derive an overall likelihood for a given venue, we took the NORS KDE values

which corresponded to a given AR and population size for students from the model

and multiplied by the NORS KDE values which corresponded to a given AR and

population size for staff from the model and finally, multiplied by the NORS KDE

values which corresponded to a given duration from the model. More details can

be found in Section 4.4.3.
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C.11.3 Students and Staff Model Results

Table C.10: Venue-specific Attack Rates for Students and Staff Model: Median (95%
CI) [Mean]
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Table C.11: Venue-specific Outbreak Durations for Students and Staff Model: Me-
dian (95% CI) [Mean]

Model Daycare School

Baseline 5 days (0, 17) [6.3] 4 days (0, 13) [4.4]
Immunity 4 days (2, 10) [4.6] 5 days (2, 9) [5.4]

Individual Exclusion 8 days (2, 30) [10.7] 7 days (0, 30) [9.6]
Combined 6 days (2, 23) [8] 6 days (2, 27) [8.6]

NORS 13 days (2, 40) [14.7] 8 days (1, 32) [10.8]
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Thomsen, and Åse B Andersen. Molecular evidence of endogenous reacti-
vation of mycobacterium tuberculosis after 33 years of latent infection. The
Journal of infectious diseases, 185(3):401–404, 2002.

156



[61] C Robert Horsburgh Jr. Priorities for the treatment of latent tubercu-
losis infection in the united states. New England Journal of Medicine,
350(20):2060–2067, 2004.

[62] Marcel A Behr, Paul H Edelstein, and Lalita Ramakrishnan. Revisiting the
timetable of tuberculosis. Bmj, 362:k2738, 2018.

[63] C Huang, MC Becerra, R Calderon, C Contreras, J Galea, L Grandjean,
L Lecca, R Yataco, Z Zhang, and M Murray. Isoniazid preventive therapy
protects against tuberculosis among household contacts of isoniazid-resistant
patients. 2018.

[64] Mukund Uplekar, World Health Organization, et al. The stop tb strategy:
Building on and enhancing dots to meet the tb-related millennium develop-
ment goals. 2006.

[65] World Health Organization et al. Recommendations for investigating
contacts of persons with infectious tuberculosis in low-and middle-income
countries. World Health Organization, 2012.

[66] D Behera. Implementing the who stop tb strategy: A handbook for na-
tional tuberculosis control programmes. Indian Journal of Medical Research,
130(1):95–97, 2009.

[67] Jonathan L Zelner, Megan B Murray, Mercedes C Becerra, Jerome Galea,
Leonid Lecca, Roger Calderon, Rosa Yataco, Carmen Contreras, Zibiao
Zhang, Bryan T Grenfell, et al. Bacillus calmette-guérin and isoniazid pre-
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Buesa. Norovirus infections and seroprevalence of genotype gii. 4-specific
antibodies in a spanish population. Journal of medical virology, 87(4):675–
682, 2015.

171


	DEDICATION
	ACKNOWLEDGEMENTS
	PREFACE
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Aim 1: Mathematical modeling of directed acyclic graphs to explore competing causal mechanisms underlying epidemiological study data
	Directed Acyclic Graphs
	Compartmental Models
	Survival Paradoxes in Epidemiology
	Aim 1: Overview

	Aim 2: Exploring the impact of variation in spatial patterns of community contact on the effectiveness of household- vs. community-based screening interventions for Tuberculosis
	Network Models in Epidemiology
	Transmission of TB
	Latent TB
	TB Screening Methods
	Aim 2: Overview

	Aim 3: Examining the discrepancy between explosive norovirus outbreaks and relatively low attack rates in daycare and school settings
	Infectious Disease Transmission Model
	Stochastic Formulation
	Epidemiology of Outbreaks
	Molecular Biology and Immunity
	Aim 3: Overview


	Mathematical modeling of directed acyclic graphs to explore competing causal mechanisms underlying epidemiological study data
	Abstract
	Introduction
	Methods
	Overview of the Obesity Paradox
	Workflow Summary
	Simulating a Longitudinal Cohort Study
	Alternative CMs
	Parameterization of the CM
	Data Generation and Statistical Analysis


	Results
	Conclusion

	Exploring the impact of variation in spatial patterns of community contact on the effectiveness of household- vs. community-based screening interventions for Tuberculosis
	Introduction
	Methods
	Data
	Spatial Contact Network
	TB Transmission Model
	Natural History Model
	Intervention Model
	Screening Interventions

	Simulation Strategy

	Results
	Factors Affecting Population-level TB Incidence
	Protection Conferred by Single Interventions by Community Transmission Rate
	Protection Conferred by Single Interventions by Network and Incidence Strata

	Impact of Combined Screening Interventions

	Conclusions

	Examining the discrepancy between explosive norovirus outbreaks and relatively low attack rates in daycare and school settings
	Abstract
	Introduction
	Methods
	NORS Dataset
	Model Structure
	Transmission Model for Daycare centers and Schools

	Model Scenarios
	Calibration

	Results
	NORS Data
	Model Comparisons
	Sensitivity Analyses

	Conclusions
	Acknowledgements

	Conclusion
	APPENDICES
	Compartmental Model and Directed Acyclic Graph Comparison
	Model 1: Determining What to Adjust for on the Preston et al. DAG
	Deriving a Corresponding CM from the Preston et al. DAG
	Obesity Paradox Model 1 Full Equations
	Simplified Model 1 and 2 Equations
	Model 2: Adding Age to the Original CM
	Age-Weighting for Age-Structured Models
	Alternative Age Weighting Example

	Model 3: Adding Reverse Causation in the Original Model
	Reverse causation Model 3 Equations
	Combined Model
	Initial Condition Calculations

	Mortality Rate Add-Ons
	Model 2: Age-varying mortality
	Model 3: Reverse Causation

	Person-Time for Simulated Studies
	Trapezoidal Rule for Person-Time Calculation

	Incident Mortality for Simulated Studies
	Obesity Paradox Mortality Rate Parameterization
	Poisson Model
	Example Simulated Dataset
	Features of Generated Networks
	Distribution of Incidence Levels by Model Run
	Protection Conferred by Single Interventions by Community Transmission Rate: Control Intervention as Reference Group
	Protection Conferred by Single Interventions by Network and Incidence Strata: Control Intervention as Reference Group
	Protection Conferred by Single and Combined Interventions by Community Transmission Rate: Control Intervention as Reference Group
	Transmission Model for Daycare centers and Schools
	Model Features
	Model equations
	Initial Conditions
	NORS Calibration Ranges

	Attack Rates vs. Outbreak Duration Stratified by NORS Population Sizes
	Durations and Attack Rates from Model Runs
	Results from Calibration for Each Model with NORS data 

	Sensitivity Analyses
	Sensitivity Analysis Results:


	Deterministic Model Calibration Sensitivity Analysis
	Staff and Students Model
	Students and Staff Model for Daycare and School
	Students and Staff Model Likelihood Calculation
	Students and Staff Model Results

	BIBLIOGRAPHY



