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ABSTRACT

We prove a very powerful generalization of the theorem on generic freeness that gives

countable ascending filtrations, by prime cyclic A-modules A{P , of finitely generated algebras

R over a Noetherian ring A and of finitely generated R-modules such that the number of

primes P that occur is finite. Moreover, we can control, in a sense that we can make precise,

the number of factors of the form A{P that occur.

In the graded case, the number of occurrences of A{P up to a given degree is eventually

polynomial. The degree is at most the number of generators of R over A. By multi-powers

of a finite sequence of ideals we mean an intersection of powers of the ideals with exponents

varying. Symbolic multi-powers are defined analogously using symbolic powers instead of

powers. We use our filtration theorems to give new results bounding the number of generators

of the multi-powers of a sequence of ideals and of the symbolic multi-powers as well under

various conditions. This includes the case of ordinary symbolic powers of one ideal.

Furthermore, we give new results bounding, by polynomials in the exponents, the number

of generators of multiple Tor when each input module is the quotient of R by a power of an

ideal. The ideals and exponents vary. The bound is given by a polynomial in the exponents.

There are similar results for Ext when both of the input modules are quotients of R by a

power of an ideal. Typically, the two ideals used are different, and the bound is a polynomial

in two exponents.

viii



CHAPTER I

Introduction

It appears to be very difficult to give a bound on the number of generators of a symbolic

power or of an intersection of powers. In this thesis, we will introduce a powerful tool to

give a bound for some particular cases.

We prove a very powerful generalization of the theorem on generic freeness that gives

countable ascending filtrations, by prime cyclic A-modules A{p, of finitely generated algebras

R over a Noetherian ring A and of finitely generated R-modules such that the number of

primes p that occur is finite. Moreover, we can control, in a sense that we can make precise,

the number of factors of the form A{p that occur.

When A is a domain, the theorem on generic freeness follows at once: one simply localizes

at one element of A ´ t0u in all of the finitely many nonzero primes of A that occur in the

filtration.

In the graded case, the number of occurrences of A{p up to a given degree is eventually

polynomial. The degree is at most the number of generators of R over A. Therefore, in

a sense, the results have generalized the standard theory of Hilbert functions for standard

graded algebras over a field. We use these theorems to give new results bounding the number

of generators of the multi-powers of ideals, i.e., In1
1 X¨ ¨ ¨XInkk , and of symbolic multi-powers,

I
pn1q

1 X ¨ ¨ ¨ X I
pnkq
k , under various conditions. This includes the case of ordinary symbolic

powers Ipnq.

1



Furthermore, we give new results bounding, by polynomials in the ni, the number of

generators of TorRh p
R
I
n1
1
, ¨ ¨ ¨ , R

I
nk
k

q and of other functors, e.g., ExthRp
R
I
n1
1
, R
I
n2
2
q, some of which

are needed to prove the results mentioned above.

In the paper [13], Craig Huneke and Ilya Smirnov prove related results on prime filtrations

of R{In.

Enescu and Yao define the notion of Frobenius complexity [7], and it follows from the

results of [15] that for a complete local normal domain R of positive prime characteristic p,

the Frobenius complexity is finite if and only if there is a polynomial in d that bounds the

number of generators of Ipdq for a suitably chosen ideal I of R. This question remains open.

This gives further motivation for studying the problems considered here.

Although we do not study the containment problem for symbolic powers here, we do want

to point out that there is considerable recent literature on the existence of constants c such

that P pcnq is contained in P n for all n. P need not be prime, although that case is of great

importance, and there are results giving a single choice of c for all ideals (e.g., in regular

rings and certain isolated singularities) as well as results that place an extra hypothesis on

R{P . Containment results may be found in [2], [8], [3], [4], [5], [9], [12], [14], and [16].

1.1 Outline and main results

In Chapter II, we provide background material necessary in understanding the thesis

work. First, we establish some notations to be used throughout the thesis in Section 2.1.

Next, we give a review of the basic standard facts in the commutative algebra in the rest of

this Chapter.

In Chapter III, we discuss the notion of ωr-filtrations, defined just below. Next, we prove

several useful properties of ωr-filtrations. Also, we prove the existence of ωr-filtrations with

an important property that we will describe in the following theorem.

Definition 3.1.1. Let M be a R-module. We define recursively the notion of an ωr-filtration

2



of M . If r “ 1, an ω-filtration of M is just an ascending sequence of submodules denoted by

the following.

0 “M0 ĎM1 ĎM2 ĎM3 Ď ¨ ¨ ¨

where Mi is a submodule of M and
8
Ť

i“0

Mi “ M . Recursively, if we have already defined

an ωr´1-filtration of an arbitrary R-module for r ě 2, an ωr-filtration of M is an ascending

sequence of submodules denoted byM0,M1,M2, ¨ ¨ ¨ such that
8
Ť

i“0

Mi “M , and eachMi{Mi´1

has an ωr´1-filtration.

Theorem 3.1.15. Let A be a Noetherian commutative ring. Let R be an A-algebra with r

generators and M be a finitely generated R-module. Then M has an ωr-filtration in which

all the factors are prime cyclic A-modules. Furthermore, only finitely many distinct factors

will occur.

In Section 3.2, we give an explicit construction of ωr-filtrations. For several particular

cases, we calculate the factors of these ωr-filtrations.

Proposition 3.2.2. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. Then R

has an ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr where Ri1,i2,¨¨¨ ,ir is defined as the following.

Ri1,i2,¨¨¨ ,ir “

i1´1
ÿ

i11“0

Arθ1, θ2, ¨ ¨ ¨ , θr´1sθ
i11
r (1.1)

`

i2´1
ÿ

i12“0

Arθ1, θ2, ¨ ¨ ¨ , θr´2sθ
i12
r´1θ

i1
r (1.2)

`

i3´1
ÿ

i13“0

Arθ1, θ2, ¨ ¨ ¨ , θr´3sθ
i13
r´2θ

i2
r´1θ

i1
r (1.3)

` ¨ ¨ ¨ (1.4)

`

ir´1
ÿ

i1r“0

Aθ
i1r
1 θ

ir´1

2 ¨ ¨ ¨ θi1r (1.5)

3



“

r
ÿ

j“1

ij´1
ÿ

i1j“0

Arθ1, θ2, ¨ ¨ ¨ , θr´jsθ
i1j
r´j`1

j´1
ź

k“1

θikr`1´k (1.6)

Note that if the upper index is less than the lower index of the sum, we define the sum to

be zero. All the factors are cyclic A-modules. These cyclic A-modules may be replaced,

by filtration, by prime cyclic A-modules, i.e., modules of the form A{p with p prime. Only

finitely many distinct p occur.

Last but not least, we introduce the definition of rectangularly and triangularly normal

ωr-filtrations. Futhermore, we construct rectangularly and triangularly normal ωr-filtrations

in several particular cases.

Definition 3.3.1. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs.

For l1, l2, ¨ ¨ ¨ , lr P N, we define Rrl1,l2,¨¨¨ ,lrs as the following.

Rrl1,l2,¨¨¨ ,lrs “
ÿ

i11ďl1,i
1
2ďl2,¨¨¨ ,i

1
rďlr

Aθ
i12
1 θ

i12
1 ¨ ¨ ¨ θ

i1r
r (1.7)

We call Rrl1,l2,¨¨¨ ,lrs a rectangular submodule of R.

For d P N, we define Rtdu as the following.

Rtdu “
ÿ

i11`i
1
2`¨¨¨`i

1
rďd

Aθ
i12
1 θ

i12
1 ¨ ¨ ¨ θ

i1r
r (1.8)

Similarly, Rtdu is called a triangular submodule of R.

The notions of rectangular and triangular submodules depend on the choice of generators

θi.

An ωr-filtration of R is said to be rectangularly normal (respectively, triangularly normal)

if all the inherited ωr-filtrations on rectangular (respectively, triangular) submodules produce

only finitely many factors.

4



Proposition 3.3.9. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. If

θ1, θ2, ¨ ¨ ¨ , θh are indeterminates and θh`1, θh`2, ¨ ¨ ¨ , θr are integral over A, then the ωr-

filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is rectangularly and triangularly normal.

We cannot prove that ωr-filtrations are rectangularly or triangularly normal in general.

However, in Chapter IV, we derive an ω-filtration in the graded case from the ωr-filtration.

By using a suitable asscending ω-filtration of R or M , we may reduce to studying the graded

case. By this method, we bypass all the difficulties that appear in Chapter III.

Proposition 4.1.5. Let A be a Noetherian ring and R be a finitely generated A-algebra.

We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. If R is a standard

N-graded ring, say R “ R0 ‘ R1 ‘ R2 ¨ ¨ ¨ where Rh “
ř

i1`¨¨¨`ir“h

Aθi11 ¨ ¨ ¨ θ
ir
r for any h ě 0,

there exists an ω-filtration of R in which the factors are prime cyclic A-modules and only

finitely many distinct factors occur. Furthermore, the length of the inherited finite filtration

of Rh is at most Chr´1, where h ě 0 and C is a constant. For h " 0 and any factor in the

filtration of Rh, the number of copies of this factor is a polynomial of degree at most r ´ 1.

Theorem 4.1.10. Let A be a Noetherian ring and R be a finitely generated A-algebra.

We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. There exists an ω-

filtration of R in which the factors are prime cyclic A-modules and only finitely many distinct

factors occur. All the Rthu occur in the filtration. Furthermore, the length of the inherited

finite filtration on Rthu{Rth´1u is at most Chr´1, where h ě 0. Notice that Rt´1u “ 0. For

all h " 0, the number of copies of A{p occurring as a factor in the filtration of Rthu agrees

with a polynomial in h of degree at most r.

Theorem 4.1.12. Let A be a Noetherian ring, R be a finitely generated A-algebra, and

M be a finitely generated R-module. There exists an ω-filtration of M in which factors are

prime cyclic A-modules and only finitely many distinct factors will occur. For all h " 0,

5



the number of copies of A{p occurring as a factor in the filtration of Mthu agrees with a

polynomial in h of degree at most r.

In the very last section, we use these ω-filtrations to give a bound on the number of

generators of an intersection of powers of two ideals or the ordinary symbolic powers Ipnq

under particular restrictions that we will describe later.

Theorem 4.2.7. Let R be a ring that is semi-local or finitely generated over a field. Let

I1, ¨ ¨ ¨ , Ik be k ideals of R with d1, ¨ ¨ ¨ , dk generators, respectively. Suppose also that

dimp R
I1`¨¨¨`Ik

q ď 1. For n1, ¨ ¨ ¨ , nk " 0, we have µpTorRh p
R
I
n1
1
, ¨ ¨ ¨ , R

I
nk
k

qq “ Opnd11 ¨ ¨ ¨n
dk
k q.

If k “ 2, the corresponding fact also holds for ExthR, hence, for HomR.

Theorem 4.2.10. Let R be a ring that is semi-local or finitely generated over a field, let I, J

be two ideals of R with d and d1 generators, respectively. Suppose also that dimp R
I`J
q ď 1.

For m,n " 0, there is a polynomial upper bound on the number of generators of Im X Jn.

Specifically, we have µpIm X Jnq “ Opmdnd
1

q.

Discussion 1.1.1. Let R be a Noetherian ring and p be a prime ideal of R. We have

grppRq “ R{p‘p{p2‘p2{p3‘¨ ¨ ¨ . The ideal J “ kerpgrppRq Ñ pR´pq´1 grppRqq is a finitely

generated ideal of grppRq. Thus, there exists a P R ´ p such that it kills this kernel. Let I0

be the set of all elements of R that kill J . Thus, I0 is an ideal of R such that p Ĺ I0 and for

any a P I0 ´ p we have that ppnq “ pn : an, by Proposition 2.7.30.

Theorem 4.2.8. Let R, p, I0 be the same as in Discussion 1.1.1. Assume that R is semi-

local or finitely generated over a field. Let h “ heightpI0
R
p
q. Suppose that dimpR{pq “

dimp R
I0`p

q ` h and dimp R
I0`p

q ď 1. For n " 0, we have µpppnqq “ Opnd`hq.

In Chapter V, we give a formula to calculate the number of generators of the symbolic

multi-powers of the intersection of prime monomial ideals, i.e., the intersection of powers of

these prime monomial ideals.

6



Definition 5.1.1. Suppose k ě 1. Let Nn
k be the number of non-negative integer solutions

of the equation x1 ` x2 ` ¨ ¨ ¨ ` xk “ n if n ě 0. This is the number of monomials with k

variables of degree n. It will be convenient to make the convention that Nn
k “ 1 if n ă 0.

We make the corresponding convention for powers of ideals, i.e., In “ I0 “ R if n ď 0.

For the rest of this introduction, we are working in the polynomial ringR “ Krx1, ¨ ¨ ¨ , xN s.

Definition 5.1.4. Let p1, p2, . . . , pc be prime monomial ideals. Actually pi is the ideal

generated by a subset Ai of the variables where 1 ď i ď c. Also, σc denotes a binary string

whose entries are 0 or 1, containing at least one 1, with c characters. Since c is fixed, we

replace σc by σ for simplicity. Σ is the set of all σ. The j-th character of σ is denoted by σpjq

where 1 ď j ď c. Let A1i be the set of variables not in Ai. Denote Aσ “ p
Ş

σpiq“1

AiqXp
Ş

σpjq“0

A1jq.

We denote the cardinality of Aσ by mσ.

Definition 5.1.7. A degree restriction is a function d from Σ to the nonnegative inte-

ger whose value on σ is denoted by dσ. Let s1, ¨ ¨ ¨ , sc be nonnegative integers, and let

∆ps1, ¨ ¨ ¨ , scq be the set of all degree restrictions such that for all i, 1 ď i ď c, and for all

σ P Σ, we have that
ř

σPΣ,σpiq“1

dσ ě si and for every σ, either dσ “ 0 or there exists i such

that σpiq “ 1 and
ř

σPΣ,σpiq“1

dσ “ si.

Theorem 5.1.8. Let p1, p2, . . . , pc be prime monomial ideals. Then we have the following

equation

µpps11 X ps22 X ¨ ¨ ¨ X pscc q “
ÿ

dP∆ps1,¨¨¨ ,scq

ź

σPΣ

Ndσ
mσ

In the second section, we give a polynomial upper bound on the number of generators of

the intersection of the powers of two prime monomial ideals.

Theorem 5.2.8. Let p1 and p2 be two prime monomial ideals. m01,m10,m11 are defined in

Definition 5.1.4 above. For fixed m01,m10,m11 and s2 " s1 " 0, µpps11 X ps22 q is a polynomial

function of s1 and s2´s1. Denote a “ m01´1, b “ m10´1, and c “ m11´1. For 0 ď v ď a,

7



denote Φa,b,cpvq “
`

a
v

˘

c
ř

u“0

p´1qu

a`b`u´v`1

`

c
u

˘

. We have Φa,b,cpvq ą 0 and

µpps11 X ps22 q „
1

a!b!c!

a
ÿ

v“0

sa`b`c´v`1
1 ps2 ´ s1q

vΦa,b,cpvq

`
1

a!c!

c
ÿ

u“0

p´1qc´u
`

c
u

˘

a` c´ u` 1
su2ps2 ´ s1q

a`c´u`1

8



CHAPTER II

Conventions and technical background

In this chapter, we will establish some notations to be used throughout the thesis, as

well as a review of the basic standard facts in commutative algebra. It may not contain new

materials.

2.1 Conventions and basic notations

When we say a ring, we always require this ring to be a commutative associate ring with

an identity 1.

When we say a local (semi-local) ring, we always require this ring to be a Noetherian

ring with a unique (respectively, with finitely many) maximal ideal.

AsspMq is the set of associated primes of M . See definition 2.5.17.

AnnRpSq is the annihilator of S over R. See definition 2.5.16.

bigheightpIq is the big height of I. See definition 2.10.4.

9



anpIq is the analytic spread of I. See definition 2.10.1.

dimpRq means the Krull dimension of R. See definition 2.5.22.

depthpMq means the depth of M . See definition 2.4.4.

FracpRq is the fraction field of R. See definition 2.5.30.

grIpRq is the associated graded ring of R with respect to the ideal I. See definition 2.5.11.

heightpIq is the height of I. See definition 2.5.23.

I is usually an ideal of a ring R.

Ie the extension of ideal I. See definition 2.7.8.

Ic the contraction of ideal I. See definition 2.7.8.

Ipsq is the symbolic multi-powers of I. See definition 2.7.29.

Ipnq is the nth-symbolic power of I. See definition 2.7.10.

K means a field.

lpMq denotes the length of M . See definition 2.6.1.

M is usually a module over a ring R.

10



m is a maximal ideal.

tMi1,i2,¨¨¨ ,ir´1,irupi1,i2,¨¨¨ ,ir´1,irqPωr denotes an ωr-filtration of M . See definition 3.1.5.

µpIq denotes the minimal number of generators of I. See definition 2.7.17.

N is the set of all non-negative numbers.

Nn
k is the number of non-negative integer solutions of the equation x1`x2`¨ ¨ ¨`xk “ n.

See definition 5.1.1.

p is a prime ideal.

Q is a primary ideal. See definition 2.7.3.

R is usually a ring.

R is the set of all real numbers.

Ra means the localization of R at takukě0. See definition 2.3.2.

Rp means the localization of R at R ´ p. See definition 2.3.2.

Rrl1,l2,¨¨¨ ,lrs is a rectangular submodule of R. See definition 3.3.1.

Rtdu is a triangular submodule of R. See definition 3.3.1.

11



S´1R means the localization of R at S. See definition 2.3.2.

SpIq is the symbolic Rees algebra of I. See definition 2.7.15.

RadpIq is a radical of an ideal I. See definition 2.7.1.

Rrxs is a polynomial ring over R.

pR,m, Kq is a local ring. See definition 2.5.14.

σi is a projective map. See definition 3.3.5.

slpIq is the symbolic analytic spread of I. See definition 2.7.26.

suppppq is the support of p. See definition 2.7.28.

trdeg is transcendence degree. See definition 2.5.26.

ωr is the set Nr identified with an ordinal number. See definition 3.1.4.

fpxq “ Opgpxqq means that f is dominated by g asymptotically. See definition 2.7.21.

fpxq „ gpxq means that f is equal to g asymptotically. See definition 2.7.25.

� means a surjective map.

12



ãÑ means an injective map.

– means an isomorphism.

2.2 Integral and module-finite extensions

Definition 2.2.1. Let R be a commutative ring with a unit element and S be an R-algebra

with structural homomorphism f : R Ñ S. We call that s P S is integral over R if there

exists d P N` and r0, r1, ¨ ¨ ¨ , rd´1 P R such that we have

sd “ rd´1d
d´1

` ¨ ¨ ¨ ` r1s` r0 (2.1)

We say that S is integral over R if s is integral over R for any s P S.

Proposition 2.2.2. Let S be a ring, R a subring of S. The following are equivalent:

1. s P S is integral over R.

2. Rrss is a finitely generated R-module.

3. Rrss is contained in a subring S 1 of S such that S 1 is a finitely generated R-module.

Proof. See proposition 5.1 in the chapter 5 of the book [1].

Definition 2.2.3. If R Ď S and S is integral over R, then S is said to be an integral extension

of R. S is said to be module-finite over R if S is finitely generated as an R-module. If R Ď S

and S is module-finite over R, then S is said to be a module-finite extension of R.

Theorem 2.2.4. Let S be module-finite over the ring R. Then every element of S is integral

over R.

Proof. See corollary 4.5 in the chapter 4 of the book [6].
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Proposition 2.2.5. Let R Ñ S Ñ T be ring homomorphisms such that S is module-

finite over R with generators s1, s2, ¨ ¨ ¨ , sm and T is module-finite over S with generators

t1, t2, ¨ ¨ ¨ , tn. Then the composition of RÑ T is module-finite with mn generators sitj where

1 ď i ď m and 1 ď j ď n.

Proof. For any t P T , there exists aj P S such that t “
n
ř

j“1

ajtj, and each aj can be written

as
m
ř

i“1

bijsi for some bij P R. Thus, we have the following equation.

t “
n
ÿ

j“1

ajtj “
n
ÿ

j“1

m
ÿ

i“1

bijsitj (2.2)

This actually implies the proposition.

Corollary 2.2.6. The elements of S integral over R form a subring of S.

Proof. We can replace R by its image in S and assume R Ď S. For any two s, t P S which

are integral over R. Rrs, ts “ Rrssrts is integral is module-finite over Rrss since t is integral

over R and Rrss is module-finite R. According to the previous proposition, we know that

Rrs, ts is module-finite over R. According to theorem 2.2.4, we know s˘ t and st are integral

over R since they are in Rrs, ts.

Theorem 2.2.7. Let S be an R-algebra. Then S is module-finite over R if and only if S

is finitely generated as an R-algebra and integral over R. For S to be module-finite over R,

it suffices that if S is generated over R by finitely many elements, each of which is integral

over R.

Proof. According to theorem 2.2.4, we know that module-finite extensions are integral, and

it is clear that they are finitely generated as R-algebras.

Without loss of generality, we suppose that R Ă S and S “ Rrs1, s2, ¨ ¨ ¨ , sns. According

to proposition 2.2.2, Rrs1s is module-finite over R since s1 is integral over R. Suppose that

Rrs1, ¨ ¨ ¨ , sks is module-finite over R where 1 ď k ă n. We know Rrs1, ¨ ¨ ¨ , sk, sk`1s is
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integral over Rrs1, ¨ ¨ ¨ , sks, thus Rrs1, ¨ ¨ ¨ , sk, sk`1s is module-finite over Rrs1, ¨ ¨ ¨ , sks which

implies Rrs1, ¨ ¨ ¨ , sk, sk`1s is integral over R according to proposition 2.2.5. By induction,

we know S is module-finite over R.

Definition 2.2.8. A union of a family of sets, subgroups, submodules, subrings or subalge-

bras is called a directed union if any two of them are contained in a third.

Corollary 2.2.9. S is integral over R if and only if it is a directed union of module-finite

extensions of R.

Proof. If S is a directed union of module-finite extensions of R, then for any s P S, s will be

in one of the module-finite extensions and therefore s is integral over R. This implies that

S is integral over R.

As we all know, S is the directed union of its finitely generated R-subalgebras, each of

which will be module-finite over R.

2.3 Normal rings and the Noether normalization theorem

Definition 2.3.1. The set of elements of S Ě R that is integral over R is a ring according

to corollary 2.2.6. This ring is said to be the integral closure of R in S. A domain R is

called normal if every element of the faction field of R that is integral over R is in R.

Definition 2.3.2. A non-empty subset S of R that is closed under multiplication is called a

multiplicative system of R. The localization of R at S is denoted by S´1R. It is constructed

by enlarging R to have inverses for the elements of S while changing R as little as possible

in any other way.

Remark 2.3.3. For a prime ideal p, R ´ p is a multiplicative system of R. In fact, for any

a, b P R ´ p, if ab R R ´ p, then ab P p implies either a P p or b P p which is a contradiction

to a, b P R ´ p. The localization of R at R ´ p is denoted by Rp.
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Remark 2.3.4. For any nonzero a P R, S “ takukě1 is a multiplicative system. We denote

Ra “ S´1R.

Proposition 2.3.5. Let R be a domain. The following are equivalent:

1. R is a normal domain.

2. For every prime ideal p, the local ring Rp is a normal domain.

3. For every maximal ideal m, the ring Rm is a normal domain.

Proof. See the proof of lemma 10.36.10 in chapter 10 of [20].

Definition 2.3.6. A ring R is called normal if for every prime p Ď R the localization Rp is

normal domain.

Lemma 2.3.7. A localization of a normal ring is a normal ring. Particularly, a localization

of a normal domain is a normal domain.

Proof. See the proof of lemma 10.36.7 in chapter 10 of [20].

Lemma 2.3.8. Let R be a normal ring. Then Rrxs is a normal ring where x is indeterminate.

Particularly, if R is a normal domain, then Rrxs is a normal domain.

Proof. See the proof of lemma 10.36.8 in chapter 10 of [20].

Definition 2.3.9. Let R be an A-algebra and z1, z2, ¨ ¨ ¨ , zd P R. We shall say that the

elements z1, z2, ¨ ¨ ¨ , zd are algebraically independent over A if the unique A-algebra homo-

morphism from the polynomial ring Arx1, ¨ ¨ ¨ , xds Ñ R that sends xi to zi for 1 ď i ď n is

injective.

Theorem 2.3.10. Let K be a field and let R be any finitely generated K-algebra. Then

there are algebraically independent elements z1, z2, ¨ ¨ ¨ , zd in R such that R is module-finite

over its subring Krz1, . . . , zds, which is isomorphic to a polynomial ring (d may be zero).

That is, every finitely generated K-algebra is isomorphic with a module-finite extension of

polynomial ring.
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Proof. See the proof of theorem 13.3 in chapter 13 of the book [6].

Remark 2.3.11. Let D be an integral domain and let R be any finitely generated D-algebra

extensions of D. Then there is a nonzero element c P D and elements z1, z2, ¨ ¨ ¨ , zd in Rc alge-

braically independent over Dc such that Rc is module-finite over its subring Dcrz1, z2, ¨ ¨ ¨ , zds,

which is isomorphic to a polynomial ring (d may be zero) over Dc.

Lemma 2.3.12. Let A be a Noetherian integral domain. R is a finitely generated A-algebra.

And, R is a domain. Then, there exists nonzero a P A, elements u1, ¨ ¨ ¨ , um P R algebraically

independent over Aa, and elements v1, ¨ ¨ ¨ , vn P R integral over Aru1, u2, ¨ ¨ ¨ , ums such that

Ra “ Aaru1, u2, ¨ ¨ ¨ , umsrv1, v2, ¨ ¨ ¨ , vns. It is easy to see that m “ trdegApRq. Furthermore,

We denote

B “ Aru1, u2, ¨ ¨ ¨ , umsrv1, v2, ¨ ¨ ¨ , vns (2.3)

There exists f1, f2, ¨ ¨ ¨ , fr P B such that R “ Brf1{a, f2{a, ¨ ¨ ¨ , fr{as.

Proof. According to the remark of theorem 2.3.10, there exists nonzero a P A and ele-

ments u1, u2, ¨ ¨ ¨ , um in Ra algebraically independent over Aa such that Ra is module-finite

over its subring Aaru1, u2, ¨ ¨ ¨ , ums. Thus, there exists v1, v2, ¨ ¨ ¨ , vn P Ra integral over

Aaru1, u2, ¨ ¨ ¨ , ums such that Ra “ Aaru1, u2, ¨ ¨ ¨ , umsrv1, v2, ¨ ¨ ¨ , vns.

We can require that v1, v2, ¨ ¨ ¨ , vn are the module-basis of Ra over Aaru1, u2, ¨ ¨ ¨ , ums.

Since if there is a linear relation between v1, v2, ¨ ¨ ¨ , vn, we say r1v1 ` r2v2 ` ¨ ¨ ¨ ` rnvn “ 0,

and we assume r1 is nonzero without loss of generality, then we can replace a by ar1, then

Ra “ Aaru1, u2, ¨ ¨ ¨ , umsrv2, ¨ ¨ ¨ , vns. Thus, without loss of generality, we say v1, v2, ¨ ¨ ¨ , vn

are module-basis.

We can also require u1, u2, ¨ ¨ ¨ , um, v1, v2, ¨ ¨ ¨ , vn are elements in R. In fact, for any

ui, vj P Ra, there exists u1i, v
1
j P R such that ui “ u1i{a

ni , vi “ v1i{a
nj , then we have Ra “

Aaru
1
1, u

1
2, ¨ ¨ ¨ , u

1
msrv

1
1, v

1
2, ¨ ¨ ¨ , v

1
ns. It is easy to see that u11, u

1
2, ¨ ¨ ¨ , u

1
m are also algebraically

independent over Aa and v11, v
1
2, ¨ ¨ ¨ , v

1
n are module-basis. We may replace u1, u2, ¨ ¨ ¨ , um

and v1, v2, ¨ ¨ ¨ , vn by u11, u
1
2, ¨ ¨ ¨ , u

1
m and v11, v

1
2, ¨ ¨ ¨ , v

1
n, respectively. Furthermore, we can
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require v1, v2, ¨ ¨ ¨ , vn are integral over Aru1, u2, ¨ ¨ ¨ , ums. For each vi where 1 ď i ď n, it is

integral over Aaru1, u2, ¨ ¨ ¨ , ums. There exists r0, r1, ¨ ¨ ¨ , rs´1 P Aaru1, u2, ¨ ¨ ¨ , ums such that

vsi “ r0 ` r1vi ` ¨ ¨ ¨ ` rs´1v
s´1
i . As we all know, there exists N large enough such that each

rj has the form r1j{a
N where r1j P Aru1, u2, ¨ ¨ ¨ , ums for 1 ď j ď m. Thus, we have

paNviq
s
“ aNsvsi “ aNps´1qr10 ` a

Nps´2qr11pa
Nviq ` ¨ ¨ ¨ ` r

1
s´1pa

Nviq
s´1 (2.4)

It is obvious that aNvi is still the module-basis of module Ra over Aaru1, u2, ¨ ¨ ¨ , ums. We

may replace vi by aNvi. Thus, each vi is integral over Aru1, u2, ¨ ¨ ¨ , ums.

We denote B “ Aru1, u2, ¨ ¨ ¨ , umsrv1, v2, ¨ ¨ ¨ , vns. Then we have

Ba “ Aaru1, u2, ¨ ¨ ¨ , umsrv1, v2, ¨ ¨ ¨ , vns “ Ra (2.5)

R is a finitely generated A-algebra, without loss of generality, we assume R “ Arθ1, ¨ ¨ ¨ , θrs.

There exists f1, f2, ¨ ¨ ¨ , fr P B and M large enough such that θi “ fi{a
M for 1 ď i ď r. We

may replace a by aM . Then R “ Brf1{a, ¨ ¨ ¨ , fr{as.

2.4 Depth and Cohen-Macaulay rings

Definition 2.4.1. Let R be a ring. Let M be an R-module. A sequence of elements

r1, r2, ¨ ¨ ¨ , rn P R is called an M -regular sequence if the following conditions hold:

1. ri is a nonzero divisor on M{pr1, r2, ¨ ¨ ¨ , ri´1qM for any 1 ď i ď n, and

2. the module M{pr1, r2, ¨ ¨ ¨ , rnqM is not zero.

If I is an ideal of R and r1, r2, ¨ ¨ ¨ , rn P I then we call r1, r2, ¨ ¨ ¨ , rn a M-regular sequence in

I. If M “ R, we simply call r1, r2, ¨ ¨ ¨ , rn a regular sequence.

Remark 2.4.2. The empty sequence is regular sequence on every nonzero module M .
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Remark 2.4.3. If r1, r2, ¨ ¨ ¨ , rm, rm`1, ¨ ¨ ¨ , rn P R is a regular sequence on M if and only if

r1, r2, ¨ ¨ ¨ , rm is a regular sequence on M and rm`1, ¨ ¨ ¨ , rn P R is a regular sequence on

M{pr1, r2, ¨ ¨ ¨ , rmqM .

Definition 2.4.4. Let R be a ring, and I Ď R an ideal. Let M be a finitely generated

R-module. The I-depth of M , denoted by depthIpMq, is defined as follows:

1. if IM ‰ M , then depthIpMq is the supremum of the lengths of M -regular sequences

in I,

2. if IM “M , we set depthIpMq “ 8.

If pR,m, Kq is local, we call depthmpMq the depth of M which is denoted by depthpMq.

Theorem 2.4.5. Let pR,m, Kq be a local ring. Then, the depth of R is at most the Krull

dimension of R.

Definition 2.4.6. Let pR,m, Kq be a local ring. This ring is called Cohen-Macaulay if its

depth is equal to its dimension.

Definition 2.4.7. Let R be a Noetherian ring. This ring is called Cohen-Macaulay if all of

its localizations at maximal ideals (equivalently, at prime ideals) are Cohen-Macaulay.

2.5 Reductions of ideals in local rings

Definition 2.5.1. Let R be a Noetherian commutative ring with a unit element. We assume

a and b are two proper ideals of R. We will call b a reduction of a if b Ď a and bar = ar`1

for at least one positive integer r.

Remark 2.5.2. It is easy to see that every ideal is a reduction of itself. Also, if bar “ ar`1

then ban “ an`1 for all n ě r and bmar “ ar`m for all positive integers m.

Definition 2.5.3. A module M over a ring R is called faithful if for any a P R, a ‰ 0, then

we have aM ‰ 0.
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Lemma 2.5.4. a P R is integral over a if and only if a is a reduction of a` aR.

Proof. a is a reduction of a ` aR is equivalent to say that there exists a positive integer r

such that apa` aRqr “ pa` aRqr`1. Also, we have

apa` aRqr “ apar ` aar´1
` ¨ ¨ ¨ ` arar´t ` ¨ ¨ ¨ ` arRq (2.6)

“ ar`1
` aar ` ¨ ¨ ¨ ` arar`1´t

` ¨ ¨ ¨ ` ara (2.7)

and

pa` aRqr`1
“ ar`1

` aar ` ¨ ¨ ¨ ` arar`1´t
` ¨ ¨ ¨ ` ara` ar`1R (2.8)

Then apa` aRqr “ pa` aRqr`1 is equivalent to ar`1 P ar`1` aar` ¨ ¨ ¨` arar`1´t` ¨ ¨ ¨` ara,

and this is precisely the condition for a to satisfy an equation of integral dependence on a

of degree r ` 1. This actually proves the lemma.

Lemma 2.5.5. If R is a domain, I Ď J are two ideals of R and M is finitely generated

faithful R-module such that JM “ IM then J is integral over I.

Proof. Let u1, . . . , un be generators for M and µ be an element of J . Then for each j we can

write µuj “
n
ř

i“1

vijui where vij P I. Let I denote the size n identity matrix, let B denote the

size b matrix pvijq. Let U be an n column vector whose entries are the ui. Then, in matrix

notation, we have µU “ BU . It follows that pµI´ BqU “ 0. Let C be the transpose of the

cofactor matrix of µI ´ B. Then CpµI ´ Bq “ DI, where D “ detpµI ´ Bq. So we have

DU “ 0, which means that D kills all the generators of M and M is faithful, it follows that

D “ 0. Now, we proved the lemma.

Lemma 2.5.6. If J is integral over I in R is equivalent to JpR{pq is integral over IpR{pq

for any minimal prime p of R.

Proposition 2.5.7. Let R be a Noetherian commutative ring. b is a reduction of a iff a is

integral over b.
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Proof. Since R is a Noetherian ring and b Ď a, a is finitely generated over b. First, we assume

that a is integral over b, we can prove it by the induction on the number of elements needed to

generate a over b. We say a1 “ r1R`r2R`¨ ¨ ¨`rnR`b, and suppose that ak`1
1 “ bak1, we try

to prove that am`1 “ bam for some positive integer m where a “ r1R`¨ ¨ ¨`rnR`rn`1R`b.

The previous lemma tells us that there exists some positive integer l such that al`1 “ a1a
l.

Then al`1ak1 “ ak`1
1 al “ bak1a

l, it follows that akl`1ak1 “ baklak1. Also we have apl`1qk “ ak1a
kl.

So akl`1ak1 “ apapl`1qkq “ baklak1 “ bapl`1qk. We can just choose m “ pl ` 1qk.

Next, we assume that b is a reduction of a which means am`1 “ bam for some positive

integer m. This equation still holds if we consider the images of a, b modulo a minimal

prime of R, and so if suffices to consider the case where R is a domain. We can also assume

that I ‰ 0. Otherwise, if I “ p0q the result is immediate. Thus, Jn is a faithful R-module.

According to the previous lemma, we actually proved the proposition.

Remark 2.5.8. This proposition actually gives us another equivalent definition of reduction.

Definition 2.5.9. A homogenous ideal I in a graded ring S “
À

Si is an ideal generated

by a set of homogenous elements.

Definition 2.5.10. S is called a standard graded R-algebra if S is finitely generated over

R and N-graded with S0 “ R and 1-forms S1 of S generate S as an R-algebra. If S is a

standard graded K-algebra, where K is a field, then S has a unique homogeneous maximal

ideal m “
8
À

n“1

Sn.

Definition 2.5.11. Generally, if R is a commutative ring and I is an ideal of R, then the

associated graded ring, denoted by grIpRq, of R with respect to the ideal I is the N-graded

ring

R{I ‘ I{I2
‘ I2

{I3
‘ ¨ ¨ ¨ ‘ In{In`1

‘ ¨ ¨ ¨ (2.9)

so that the k-th graded piece is Ik{Ik`1. The multiplication is such that if u P Ij represents

an element ū P Ij{Ij`1 and v P Ik represents an element v̄ P Ik{Ik`1, then uv represents

21



the product ūv̄ P Ij`k{Ij`k`1. Actually, this ring is generated by its forms of degree 1:

moreover, given a set of generators of I as an ideal, the images of these elements in I{I2

generate grIpRq as an R{I-algebra. It follows that grIpRq is Noetherian if R is Noetherian.

Theorem 2.5.12 (Nakayama’s lemma, homogeneous form). Let R be an N-graded ring

and let M be any Z-graded module such that M has only finitely many nonzero negative

components. Let I be the ideal of R generated by elements of positive degree. If M “ IM ,

then M “ 0. Hence, if N is a graded submodule such that M “ N ` IM , then N “M , and

a homogeneous set of generators for M{IM generates M .

Lemma 2.5.13. Let S Ñ T be a degree preserving K-algebra homomorphism of standard

graded K-algebras. Let m Ď S and n Ď T be the homogeneous maximal ideals. Then T is a

finitely generated S-module if and only if the image of S1 in T1 generates an n-primary ideal

where S1 and T1 is degree 1 component of S and T , respectively.

Proof. By the homogeneous form of Nakayama’s lemma, T is finitely generated as a module

over S if and only if T {mT is a finite-dimensional K-vector space, and this will hold if and

only if and homogeneous components rT {mT ss are 0 for all large enough positive integer s,

which holds if and only if ns Ď mT for all s " 0.

Definition 2.5.14. A local ring is a ring R that contains a single maximal ideal. We denote

the local ring by pR,m, Kq where m is the maximal ideal and K “ R{m is a field.

Proposition 2.5.15. Let pR,m, Kq be a local ring. If I Ď J Ď m are ideals, then J is integral

over I if and only if the image of I in J{mJ generates n-primary ideal in T “ K bR grJpRq,

where n is the homogeneous maximal ideal in T .

Proof. Note that J is integral over I if and only if RrJts is integral over RrIts, and this

is equivalent to the assertion that RrJts is module-finite over RrJts, since RrJts is finitely

generated as an R-algebra, hence, as an RrIts-algebra.

If this holds, we have K bR RrJts is finitely generated module over K bR RrIts, and,

since the image of I generates the maximal ideal M in S “ K bR grIpRq – K bR RrIts, the
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preceding lemma implies that the latter statement in proposition is true if and only if the

image of I in J{mJ “ rK bR grJpRqs1 generates an n-primary ideal in T “ K bR grJpRq.

We will prove the proposition completely if we can show that when T is module-finite

over S, then RrJts is module-finite over RrIts. Let j1 P J
d1 , . . . , jh P J

dh be elements whose

images in Jd1{mJd1 , . . . , Jdn{mJdh , respectively, generate T as an S-module. We claim that

jd1t
d1 , . . . , jdht

dh generate RrJts over RrIts. To prove the claim, note that these elements

generate T over S implies that for every N ,

JN “
ÿ

1ďiďh such that diďN

IN´dijdi `mJN (2.10)

For each fixed N , we apply Nakayama’s lemma to conclude that

JN “
ÿ

1ďiďh such that diďN

IN´dijdi (2.11)

then, for all N , we have

JN tN “
ÿ

1ďiďh such that diďN

IN´ditN´dijdit
di (2.12)

It implies that jd1t
d1 , . . . , jdht

dh generate RrJts over RrIts.

Definition 2.5.16. Let R be a ring, and let M be a module over R. For a nonempty subset

S of M . The annihilator of S, denoted by AnnRpSq, is the set of all elements r P R such

that , for all s P S, rs “ 0.

Definition 2.5.17. Let R be a Noetherian ring. A prime ideal p of R is called an associ-

ated prime of the R-module M if there is an element m P M whose annihilator is p. Or,

equivalently, there is an injection R{p ãÑM .

Remark 2.5.18. The set of associated primes of M is denoted by AsspMq. If I is an ideal, we

denote AsspIq as the associated primes of I as an ideal and it should be the same as AsspR{Iq.

23



Actually, AsspR{Iq is the same as the set of primes that occurs as radicals of primary ideas

in an irredundant primary decomposition of I. That is the reason why we also call it an

associated prime of I as an ideal. One important fact is that AsspR{pq “ Assppq “ tpu where

p is a prime ideal. And another useful fact is that AsspMq is finite and non-empty if M is a

nonzero Noetherian module.

Definition 2.5.19. A prime ideal p is said to be a minimal prime ideal over an ideal I if

it is minimal among all primes ideals containing I. A prime ideal is said to be a minimal

prime ideal if it is a minimal prime ideal over the zero ideal.

Remark 2.5.20. If I is a prime ideal, then I is the only minimal prime over it.

Definition 2.5.21. The support of a module M over a ring R is the set of all prime ideals

p of R such that Mp ‰ 0. It is denoted by SupppMq.

Definition 2.5.22. Let p0 Ă p1 Ă p2 Ă ¨ ¨ ¨ Ă pd be a chain of prime ideals in a ring R.

We call the integer d the length of the chain. The supremum of lengths of finite strictly

ascending chains of prime ideals of R is called the Krull dimension of the ring R which is

denoted by dimpRq.

Definition 2.5.23. If p is a prime ideal of R, by the height of p we mean the supremum

of lengths of finite strictly ascending chains of prime ideals contained in p. The height of

any proper ideal I is the minimum of the heights of the prime ideals containing I which is

denotes by heightpIq.

Remark 2.5.24. It should be clear that the dimensions of R is the same as the supremum of

heights of all prime ideals, and that this will be the same as the supremum of heights of all

maximal ideals.

Theorem 2.5.25. If R ãÑ S is an integral extension then dimpRq “ dimpSq.

Proof. See the proof of lemma 11.26 in chapter 11 of the book [1].
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Definition 2.5.26. The transcendence degree of a field extension L{K is the largest cardi-

nality of an algebraically independent subset of L over K. A subset S of L is a transcendence

basis of L{K if it is algebraically independent over K and if furthermore L is an algebraic

extension of the field KpSq (the field obtained by adjoining the elements of S to K).

Remark 2.5.27. We can show that every field extension has a transcendence basis, and that all

transcendence bases have the same cardinality. This cardinality is equal to the transcendence

degree of the extension and is denoted by trdegKpLq.

Definition 2.5.28. Let A be an integral domain. R is a finitely generated A-algebra and it

is also an integral domain. The transcendence degree of R over A is the largest cardinality of

an algebraically independent subset of R over A. It is the same as the transcendence degree

of the field extension FracpRq{FracpAq.

Definition 2.5.29. An affine k-algebra is an integral domain that is also a finite-dimensional

algebra over a field k.

Definition 2.5.30. R is an integral domain. Then we denote the fraction field of R by

FracpRq.

Theorem 2.5.31. If R is an affine k-algebra, then dimpRq “ trdegk FracpRq.

Theorem 2.5.32. If p is a prime ideal of the affine k-algebra R, then heightppq`dimpR{pq “

dimpRq.

Theorem 2.5.33. Let M be an N-graded module over an N-graded Noetherian ring S. Then

every associated prime of M is homogeneous. Hence, every minimal prime of the support

of M is homogeneous and, in particular the associated(hence, the minimal) primes of S are

homogeneous.

Proof. By definition, any associated prime p of M is the annihilator of some elements u of

M , and then every nonzero multiple of u ‰ 0 can be thought of as a nonzero element of
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S{p – Su ĎM , and so has annihilator p. If ui is a nonzero homogeneous component of u of

degree i, its annihilator Ji is a homogeneous ideal of S. If Jh ‰ Ji we can choose a form F

in one and not the other, and then Fu is nonzero with fewer homogeneous components than

u. Thus, the homogeneous ideals Ji are all equal to J and J Ď p. Suppose that s P p ´ J

and subtract off all components of s that are in J , so that no nonzero component is in J .

Let sa R J be the lowest degree component of s and ub be the lowest degree component in

u. Then saub is the only term of degree a ` b occuring in su “ 0, and so must be 0. But

then sa P AnnS ub “ Jb “ J , a contradiction.

Corollary 2.5.34. Let S be a standard graded K-algebra of dimension d with homogeneous

maximal ideal m, where K is an infinite field. Then there are forms L1, . . . , Ld of degree 1

in S1 such that m is the radical of pL1, . . . , LdqS.

Proof. The minimal primes of a graded algebra are homogeneous, and dimpSq is the same

as dimpS{pq for some minimal prime p of R. Then p Ă m, and

dimpSq “ dimpS{pq “ dimpS{pqm ď dimSm ď dimpSq (2.13)

so that dimpSq “ dimpSmq “ heightm. If dimpSq “ 0, m must be the unique mini-

mal prime of S, and therefore it is nilpotent. Otherwise, S1 can’t be contained in the

union of the minimal primes of S, or it will imply that it is contained in one of them,

and S1 generates m. Choose L1 P S1 not in any minimal prime, and then dimpS{L1q “

d ´ 1. We can prove the corollary by induction. If L1, . . . , Lk have been chosen in S1 such

that dimpS{pL1, . . . , LkqSq “ d ´ k ă d, choose Lk`1 P S1not in any minimal prime of

pL1, . . . , LkqS(if S1 were contained in one of these, m would be, and it would follow that

height m ď k, a contradiction). Thus, we have L1, . . . , Ld such dimpS{pL1, . . . , LdqSq “ 0,

and then by the case where d “ 0 we have that m is nilpotent modulo pL1, . . . , LdqS.

Proposition 2.5.35. If b is a reduction of a, then a and b have the same minimal prime

ideals.[18]
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Proof. We have bar “ ar`1 for some positive integer r by definition. It follows that a Ě b Ě

ar`1. Also if a prime ideal p Ě b, then p Ě ar`1, which means that p Ě a. Now, we actually

proved the proposition.

Definition 2.5.36. A reduction b of a is called a minimal reduction of a if there is no ideal

strictly contained in b which is a reduction of a.

Definition 2.5.37. An ideal is called a basic ideal if it doesn’t have reduction other than

itself.

Remark 2.5.38. An ideal which is a minimal reduction of a given ideal is a basic ideal. It

follows from the following proposition.

Proposition 2.5.39. If b is a reduction of a and c is a reduction of b, then c is a reduction

of a.

Proof. It is easy to see that c Ď a. By definition, there exist positive integers r and s such

that bar “ ar`1 and cbs “ bs`1, then we have

car`s “ cbsar “ bs`1ar “ ar`s`1 (2.14)

Theorem 2.5.40. We fix a local ring pR,m, Kq such that K is infinite. If b is a reduction

of a, then there exists an ideal c contained in b which is a minimal reduction of a.

Proof. We need two lemmas first. As to the detailed proof, we can refer to the paper [18].

Lemma 2.5.41. If the ideals a1 and a2 are such that a1 Ď a2 ` a1m, then a1 Ď a2.

Proof. From a1 Ď a2 ` a1m, we have a1 Ď a2 ` pa2 ` a1mqm Ď a2 ` a1m
2, it follows that

a1 Ď a2 ` a1m
k by induction where k is any positive integer. Thus,

a1 Ď

8
č

k“1

pa2 ` a1m
k
q Ď

8
č

k“1

pa2 `mk
q “ a2 (2.15)
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Lemma 2.5.42. We have two ideals b Ď a, then b is a reduction of a iff b`am is a reduction

of a.

Proof. If b is a reduction of a, then there exists r such that bar “ ar`1, it follows that

pb`amqar “ bar`mar`1 “ ar`1, which means b`am is a reduction of a. Conversely, if b`am

is a reduction of a, there exists r such that pb` amqar “ ar`1, we have bar `mar`1 “ ar`1.

According to the previous lemma, we have ar`1 Ď bar. And, it is easy to see, bar Ď ar`1,

then ar`1 “ bar.

2.6 Finite filtrations

Definition 2.6.1. A finite filtration of an R-module M is a sequence 0 “M0 ĎM1 Ď ¨ ¨ ¨ Ď

Mn´1 Ď Mn “ M of submodules of n. The filtration is said to have length n. The modules

Mi`1{Mi, 0 ď i ď n´ 1 are called the factors of the filtration.

Definition 2.6.2. A nonzero module over a ring R is called simple if, equivalently, p1q it

have no nonzero proper submodule or p2q it is isomorphic with R{m for some maximal ideal

m.

Definition 2.6.3. A module is said to have finite length if it has a filtration in which every

factor is simple.

Remark 2.6.4. If M has finite length, the length lpMq is defined to be the number of simple

factors in any finite filtration such that all factors are simple or 0. It is well-defined because

of Jordan-Hölder theorem.

Proposition 2.6.5. If we have a short exact sequence of modules,

0 ÑM 1
ÑM ÑM2

Ñ 0 (2.16)
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then M has finite length iff both M 1 and M2 have finite length, and then lpMq “ lpM 1q `

lpM2q.

Proposition 2.6.6. Let M be a finitely generated R-module where R is Noetherian. Then

(a) If u ‰ 0 is any element of M , one can choose s P R such that AnnR su is a prime ideal

p of R, and p P AsspMq. In particular, if M ‰ 0, then AsspMq is nonempty.

(b) If ru “ 0 where r P R and u P M ´ t0u, then one can choose s P R such that

AnnRpsuq “ p. Note that r P p. Consequently, the set of elements of R that are

zerodivisors on M is the union of the set of associated primes of M .

(c) if M ‰ 0, it has a finite filtration 0 “ M0 Ď M1 Ď M2 Ď ¨ ¨ ¨ Ď Mn “ M in which all

the factors Mi{Mi´1 for 1 ď i ď n are prime cyclic modules, i.e., have the form R{pi

for some prime ideal pi of R.

Proof. (a) We consider a family of ideals tAnnR tu : t P R and tu ‰ 0u is nonempty since

we may take t “ 1. R is Noetherian, then R has ACC, thus it has a maximal element

AnnR su “ p. We claim that p is prime. If ab P p, then absu “ 0. If a R p, we must

have b P p, otherwise bsu ‰ 0, then AnnR bsu containing p` aR is strictly larger than

p. This is a contradiction to the fact that p is a maximal element in the family of

ideals.

(b) From (a), we can choose s P R such that AnnR su is a prime ideal p. Since ru “ 0,

we have r P p. It implies that the set of elements of R that are zerodivisors on M is

a subset of the union of the set of the set of associated primes of M . Furthermore, it

is obvious that if p “ AnnR u with u P M , then u ‰ 0, and so every element of p is a

zerodivisor on M .

(c) Choose a sequence of elements u1, u2, ¨ ¨ ¨ in M recursively as follows. Choose u1 to be

any element of M such than AnnR u1 “ p1 is prime. If u1, u2, ¨ ¨ ¨ , ui have been chosen

and Ru1 ` Ru2 ` ¨ ¨ ¨ ` Rui “ M , the sequence stops. If not, we can choose ui`1 P M
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such that its image ui`1 in M{pRu1 ` Ru2 ` ¨ ¨ ¨ ` Ruiq has annihilator pi`1 that is

prime. Let Mi “ Ru1 ` ¨ ¨ ¨ ` Rui. The sequence must stop, since the Mi are strictly

increasing and M has ACC. By construction, the factors are prime cyclic modules.

2.7 Symbolic powers and symbolic multi-powers

Definition 2.7.1. Let I be an ideal of a ring R. The intersection of all the prime ideals of

R that contain I is called the radical of I which is denoted as RadpIq. [1]

Remark 2.7.2. As we all know, RadpIq “ ta P R| there exists some n ě 1 such that an P Iu.

Definition 2.7.3. An ideal I in a ring R is called primary if whenever ab P I then either

a P I or b P RadpIq. If I is primary, RadpIq is prime, say p. We can say that I is primary

to p.

Remark 2.7.4. It’s not true that I is primary simply because its radical is prime. See

examples in chapter 4 of the book [1]. However, if RadpIq is maximal, then I is primary.

See the proposition 4.2 in chapter 4 of the book [1].

Definition 2.7.5. A primary decomposition of an ideal I is a representation of I as a finite

intersection of some primary ideals i.e., I “ Q1 XQ2 X ¨ ¨ ¨ XQc where Qi is primary for all

1 ď i ď c. Furthermore, the decomposition is said to be irredundant if Qi are all distinct

and we have Qi Ğ
Ş

j‰i

Qj.

Theorem 2.7.6. Every proper ideal I of a Noetherian ring R has an irredundant primary

decomposition.

Definition 2.7.7. If I, J are two ideals in a ring R, their ideal quotient is

pI : Jq “ tr P R|rJ Ď Iu (2.17)

which is an ideal. Particularly, for any a P R, we have pI : aq “ tr P R|ra P Iu.
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Definition 2.7.8. Let f : AÑ B be a ring homomorphism. If I is an ideal in A, we define

the extension Ie of I to be the ideal BfpIq generated by fpIq in B. If J is an ideal of B,

then f´1pJq is always an ideal of A, called the contraction J c of J .

Theorem 2.7.9. Let R be an arbitrary commutative ring. I Ď R is an ideal. If I has a

primary decomposition, it has an irredundant one, say I “ Q1 X Q2 X ¨ ¨ ¨ X Qc. In this

case the prime ideals pi “ RadpQiq are distinct, by the definition of irredundant, and are

uniquely determined. In fact, a prime p occurs if and only if it has the form RadpI : rq

for some r P R. Thus, the number of terms c is uniquely determined. The minimal ele-

ments among p1, p2, ¨ ¨ ¨ , pc, when intersected, give an irredundant primary decomposition of

RadpIq, and are the same as the minimal primes of I. The primary ideal Q in the decom-

position corresponding to p, where p is one of the minimal primes among tp1, p2, ¨ ¨ ¨ , pcu, is

the contraction of IRp to R, and so is uniquely determined as well.

Proof. See the proof of theorem 4.5 in chapter 4 of the book [1].

Definition 2.7.10. Let pR,m, Kq be a Noetherian local ring of dimension d and let I be an

ideal of R. We can define the nth-symbolic power of I via the following formula[3].

Ipnq “
č

pPMinpIq

pInRp XRq (2.18)

where Rp is the localization of R to p and the intersection runs through all of the minimal

primes of I denoted by MinpIq. To be clearer, InRp X R means the contraction of InRp to

R.

Remark 2.7.11. Suppose we have MinpIq “ tp1, p2, . . . , pcu, the corresponding primary com-

ponents of I are denoted by tQ1,Q2, . . . ,Qcu, it is easy to see that Ipnq “
c
Ş

j“1

pQn
jRpj XRq “

c
Ş

j“1

Q
pnq
j .

Remark 2.7.12. Once we have defined symbolic powers, we may wish they had some relations

with the ordinary powers. They do not coincide with the ordinary powers in general, but

31



they have deep relations. Actually, we can construct a counterexample. Let us first focus

on symbolic powers of prime ideals. We say p is a prime ideal, then ppnq is the p-primary

component of pn by definition. In fact, ppnq “ tr P R : for some w P R ´ p, wr P pnu. We

should have pn Ď ppnq for all n, now we construct an example to explain why the converse

fails.

Example 2.7.13 (F. S. Macaulay). Let R “ Krx, y, zs, the polynomial ring in three vari-

ables over a field. And map R by a K-algebra homomorphism onto Krt3, t4, t5s Ď Krts,

where t is another variable, via x ÞÑ t3, y ÞÑ t4 and z ÞÑ t5. Of course, the kernel of the map

denoted by p is a prime ideal of R. And we can show that p “ pf, g, hqR where f “ xz´ y2,

g “ x3 ´ yz, and h “ x3y ´ z2. If we consider fh ´ g2 mod x, we can see it should be 0,

which means that x divides fh ´ g2. We say xl “ fh ´ g2 P p2 while x R p, by definition,

we may have l P pp2q. And, l could not be in p2. Actually, if we assign degrees to x, y, z so

that x, y, z have degrees 3, 4, 5, respectively, then the generators f 2, g2, h2, fg, gh, hf of p2

all have degree 16 or more while l has degree 15.

Definition 2.7.14. The Rees algebra of an ideal I in a commutative ring R is defined to be

RrIts “
8
à

n“0

Intn Ď Rrts (2.19)

Definition 2.7.15. Let I be an ideal, we can define the symbolic Rees algebra of I as

SpIq :“
À

ně0

Ipnqtn.

Remark 2.7.16. Generally speaking, SpIq is not Noetherian. There are many counterexam-

ples. P. Roberts[19] found a counterexample based on the counterexamples of Nagata[17] to

the 14th problem of Hilbert. However, for some interesting classes of ideals such as monomial

ideals [11], SpIq is Noetherian.

Definition 2.7.17. Let I be an ideal. We denote by µpIq, the minimal number of generators

of I, i.e., the least element in the set tk P N| there exists r1, r2, ¨ ¨ ¨ , rk P I such that I “

pr1, r2, ¨ ¨ ¨ , rkqu. If the set is empty, we say µpIq “ 8.
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Definition 2.7.18. Let R be a commutative ring and M be a R-module. We denote by

µpMq, the minimal number of generators of M , i.e., the least element in the set

tk P N| there exists r1, r2, ¨ ¨ ¨ , rk PM such that M “ r1R ` r2R ` ¨ ¨ ¨ ` rkRu (2.20)

If the set is empty, we say µpMq “ 8.

Proposition 2.7.19. Let M1,M2,M be R-modules. And we have the exact sequence defined

by the following:

0 ÑM1 ÑM ÑM2 Ñ 0 (2.21)

Then we have µpMq ď µpM1q ` µpM2q.

Proposition 2.7.20. Let M be a R-module. Suppose M has a finite filtration denoted by

the following:

0 “M0 ĎM1 Ď ¨ ¨ ¨ ĎMn “M (2.22)

Then, we have

µpMq ď
n
ÿ

i“1

µp
Mi

Mi´1

q (2.23)

Definition 2.7.21. Let fpxq, gpxq be two functions of x P R. We say fpxq “ Opgpxqq if

and only if there exists a positive real number M and a positive real number x0 such that

|fpxq| ďMgpxq for all x ě x0.

Definition 2.7.22. For s “ ps1, ¨ ¨ ¨ , snq, s
1 “ ps11, ¨ ¨ ¨ , s

1
nq P Rn, we call s ą s1 if si ą s1i for

all 1 ď i ď n, s “ s1 if si “ s1i for all 1 ď i ď n, and s ă s1 if si ă s1i for all 1 ď i ď n. Also,

we call sÑ 8 if and only if si Ñ 8 for all 1 ď i ď n.

Definition 2.7.23. Let fpsq, gpsq be two functions of s P Rn. We say fpsq “ Opgpsqq if and

only if there exists a positive real number M and s1 P Rn
` such that |fpsq| ď Mgpsq for all

s ě s1.

Remark 2.7.24. This a general version of definition 2.7.21.
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Definition 2.7.25. Let fpsq, gpsq be two functions of s P Rn. We say fpsq „ gpsq if and

only if for any ε ą 0, there exists s1 P Rn such that |fpsq
gpsq

´ 1| ă ε for any s ě s1, i.e.,

limsÑ8
fpsq

gpsq
“ 1 (2.24)

Definition 2.7.26. We denote by slpIq, the symbolic analytic spread of I,

slpIq “ mintt|µpIpnqq “ Opnt´1
qu (2.25)

A priori, slpIq may be infinite. Actually, from the definition, slpIq gives control of the growth

of least number of generators of Ipnq as function of n.

Remark 2.7.27. It is a major open question whether slpIq is always finite.

Definition 2.7.28. As usual, let R “ krx1, . . . , xds the polynomial ring over the field k and

m “ px1, . . . , xdq. For pa1, . . . , adq P Nd, let xa denote the monomial ideal of xa11 ¨ ¨ ¨ x
ad
d . For

a monomial prime ideal p we denote by suppppq :“ ti|xi P pu the support of p.

Definition 2.7.29. Let pR,m, Kq be a Noetherian local ring of dimension d and let I be

an ideal of R. Suppose we have MinpIq “ tp1, p2, . . . , pcu, and the corresponding primary

components of I are denoted by tQ1,Q2, . . . ,Qcu. We can define the symbolic multi-powers

of I via the following formula

Ipsq “
c
č

j“1

Q
psjq
j (2.26)

where s is ps1, . . . , scq P Nc.

Proposition 2.7.30. Let R be a Noetherian ring and p be a prime ideal of R. We have

grppRq “ R{p ‘ p{p2 ‘ p2{p3 ‘ ¨ ¨ ¨ . The ideal kerpgrppRq Ñ pR ´ pq´1 grppRqq is a finitely

generated ideal of grppRq. Thus, there exists a P R ´ p such that it kills this kernel. Let I0

be the set of all such elements, i.e., the set of elements that kill the pR´pq-torsion in grppRq.

Thus, I0 is an ideal of R and for any a P I0 ´ p we have that ppnq “ pn : an. Generally, for

any a1, a2, ¨ ¨ ¨ , ah P I0 ´ p, we have ppnq “ pn : pah1 , ¨ ¨ ¨ , a
h
hq
n.
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Proof. It is easy to see that J is an ideal.

By definition, we have ppnq “ pnRp X R “ tu P R| there exists c P R ´ p such that

cu P pnu.

It is easy to see that pn : an Ď ppnq. For any u P pn : an, uan P pn, then u P ppnq since

a P R ´ p implies that an P R ´ p.

Say u P ppnq´pn, then there exists c P R´p such that cu P pn. There exists 0 ď k ď n´1

such that u P pk ´ pk`1 since R Ě p Ě p2 Ě ¨ ¨ ¨ and u R pn. Consider u P pk{pk`1. It can

be viewed as an element in grppRq. Since cu P pn Ď pk`1, u
1
“ cu

c
“ 0. Furthermore, a kills

the kernel, thus, we have au P pk`1. Now, there exists l ě k ` 1 such that au P pl ´ pl`1, by

induction, we have ahu P pk`h. Thus, anu P pn which implies that pn : an Ě ppnq.

For any u P pn : pah1 , ¨ ¨ ¨ , a
h
hq
n, then upah1 , ¨ ¨ ¨ , a

h
hq
n Ď pn. Say c “ ahn1 P R ´ p, according

to previous argument, we have an1u P p
n. Thus, pn : pah1 , ¨ ¨ ¨ , a

h
hq
n Ď pn : an1 .

For any u P ppnq, we claim that upah1 , ¨ ¨ ¨ , a
h
hq
n Ď pn. In fact, for any element x in

pah1 , ¨ ¨ ¨ , a
h
hq
n, there exists 1 ď i ď h and b P R such that x “ ani b. We know that ppnq “ pn :

ani , thus, we have uani P p
n implies that ux P pn.

Proposition 2.7.31. Let R be a Noetherian ring and p1, ¨ ¨ ¨ , pk be prime ideals of R. For

any 1 ď i ă j ď k, neither pi Ď pj nor pj Ď pi. Assume no element in AsspRq strictly

contains any of the pi (This is automatic if R is a domain). There exists x P R´p1Y¨ ¨ ¨Ypk

such that p
pn1q

1 X ¨ ¨ ¨ X p
pnkq
k “ ppn1

1 X ¨ ¨ ¨ X pnkk q : xn where n “ maxpn1, ¨ ¨ ¨ , nkq.

Proof. Denote the set of elements that kill the pR ´ piq-torsion in grpipRq by Ji for any

1 ď i ď k. Clearly, pi Ĺ Ji.

We claim that Ji Ę p1Y ¨ ¨ ¨Y pkYp
Ť

qPAsspRq

qq. Otherwise, there exists j such that Ji Ď pj

or q P AsspRq such that Ji Ď q. Then we have pi Ĺ Ji Ď pj or pi Ĺ Ji Ď q which is a

contradiction.

Then there exists xi P Ji ´ p1 Y ¨ ¨ ¨ Y pk Y p
Ť

qPAsspRq

qq such that p
pnq
i “ pni : xni according

to proposition 2.7.30.
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Denote x “ x1 ¨ ¨ ¨ xk. Since xi is not a zero-divisor, x is not a zero-divisor. We claim

that p
pn1q

1 X ¨ ¨ ¨ X p
pnkq
k “ ppn1

1 X ¨ ¨ ¨ X pnkk q : xn where n “ maxpn1, ¨ ¨ ¨ , nkq.

Clearly, for any m, p
pmq
i “ pmi : xmi Ď pmi : xm Ď p

pmq
i since x P R ´ p1 Y ¨ ¨ ¨ Y pk. Then

we have p
pniq
i “ pnii : xni Ď pnii : xn Ď p

pniq
i .

In conclusion, we have that

p
pn1q

1 X ¨ ¨ ¨ X p
pnkq
k “ ppn1

1 : xnq X ¨ ¨ ¨ X ppnkk : xnq (2.27)

“ ppn1
1 X ¨ ¨ ¨ X pnkk q : xn (2.28)

Proposition 2.7.32. Let R be a Noetherian ring and p1, ¨ ¨ ¨ , pk be prime ideals of R. For

any 1 ď i ă j ď k, neither pi Ď pj nor pj Ď pi, i.e., they are distinct and incomparable.

Assume no pi is strictly contained in any associated prime q P AsspRq. There exists x P

R ´ p1 Y ¨ ¨ ¨ Y pk Y p
Ť

qPAsspRq

qq such that µpp
pn1q

1 X ¨ ¨ ¨ X p
pnkq
k q “ µppn1

1 X ¨ ¨ ¨ X pnkk X pxqnq

where n “ maxpn1, ¨ ¨ ¨ , nkq.

Proof. According to Proposition 2.7.31, we have p
pn1q

1 X ¨ ¨ ¨ X p
pnkq
k “ ppn1

1 X ¨ ¨ ¨ X pnkk q : xn.

Then we have

µpp
pn1q

1 X ¨ ¨ ¨ X p
pnkq
k q “ µpppn1

1 X ¨ ¨ ¨ X pnkk q : xnq (2.29)

“ µppppn1
1 X ¨ ¨ ¨ X pnkk q : xnqxnq (2.30)

“ µppn1
1 X ¨ ¨ ¨ X pnkk X pxqnq (2.31)

according to Lemma 2.7.34.

Proposition 2.7.33. Let R be a Noetherian ring and I “ Q1X¨ ¨ ¨XQk where Qi is primary

to pi. The pi are mutually incomparable. Assume no pi is strictly contained in any associated

prime q P AsspRq. There exists a non zero-divisor x P R ´ p1 Y ¨ ¨ ¨ Y pk Y p
Ť

qPAsspRq

qq such

that Ipnq “
Ş

Q
pnq
i “ In : xn for any n.
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Proof. Let W “ R´
Ť

i

pi. In W´1R, the piW
´1R to maximal ideals and give all the maximal

ideals. We have that

InW´1R “ pQ1 X ¨ ¨ ¨ XQkq
nW´1R (2.32)

Ě Qn
1 ¨ ¨ ¨Q

n
kW

´1R (2.33)

“ Qn
1W

´1R X ¨ ¨ ¨ XQn
kW

´1R (2.34)

We know that Ipnq “ InW´1R XR “ Q
pnq
1 X ¨ ¨ ¨ XQ

pnq
k .

I0 kills all W -torsion in grIpRq. We know that I0 Ę
Ť

pi. For any x P I0´
Ť

pi, we have

Ipnq “
Ş

Q
pnq
i “ In : xn.

Lemma 2.7.34. Let R be a commutative ring and I be an ideal of R. For any non zero-

divisor x P R, we have pI : xqx “ I X pxq.

2.8 Subquotients

Definition 2.8.1. Let M be a R-module. A R-module M 1 is called a subquotient of M if

there exists two submodules M1 ĚM2 of M such that M 1 has the form M1{M2.

Remark 2.8.2. Any submodule (and, hence any quotient) of M is a subquotient of M .

Lemma 2.8.3. A submodule M2 of a subquotient M 1 of M is a subquotient of M .

Proof. By definition, there exists M1 ĚM2 such that M 1 “M1{M2. Since M2 is a submodule

of M 1, there exists a submodule M 1
1 of M1 containing M2 such that M2 – M 1

1{M2 implies

that M2 is a subquotient of M .

Remark 2.8.4. If A1{A2 is a subquotient of M , then A1XN
A2XN

is a subquotient of M . Actually,

A1XN
A2XN

is a submodule of A1{A2.

Lemma 2.8.5. A subquotient M2 of a subquotient M 1 of M is a subquotient of M . Par-

ticularly, a quotient of a subquotient of M is a subquotient of M .
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Proof. By definition, there exists M1 Ě M2 such that M 1 “ M1{M2. Also, there exists M 1
1

and M 1
2 such that M2 “ M 1

1{M
1
2. Since M 1

1 and M 1
2 are two submodules of M 1 “ M1{M2,

there exists two submodules M2
1 and M2

2 of M1 containing M2 such that M 1
1 “M2

1 {M2 and

M 1
2 “M2

2 {M2. Thus, we have M2 “M 1
1{M

1
2 –M2

1 {M
2
2 which implies that it is a subquotient

of M .

Lemma 2.8.6. If M has a finite flitration with factors Mj such that Mj is a subquotient of

Nj, then the same is true for any subquotient of M .

Proof. For a submodule of M , the inherited filtration works: the factors are submodules of

the original factors. For a quotient, the quotient filtration works: the factors are quotients

of the factors in the original filtration.

Remark 2.8.7. If a complex consists of modules with filtrations in which the factors are

subquotients of certain modules N1, . . . , Nh, the same is true for homology. If the E2 terms

of the spectral sequence of a finite double complex have such a filtration, so does the homology

of the total complex, since a finite associated graded module of that homology is obtained

by repeatedly taking homology of the E2 terms.

2.9 Bounds on the number of generators of submodules of one

dimensional modules

Lemma 2.9.1. Given a finitely generated one-dimensional module M over a local ring

R, there is a bound on the number of generators of all submodules (and, hence, of all

subquotients) of M .

Proof. If N is a submodule of M , then N̂ Ď M̂ has the same number of generators as N .

We may replace R and M by their completions R̂ and M̂ , respectively.

We may take a prime cyclic filtration of M . This induces a filtration of any submodule

N of M whose factors are submodules of R{p where p is a prime ideal of R. Then, the
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bound on the number of generators of all submodules of R{p give us a bound on the number

of generators of all submodules of M since there are only finitely many distinct p. By

construction, we have Mi{Mi´1 – R{p implies that dimpR{pq ď dimpMq ď 1.

1. if dimpR{pq “ 0, then R{p is a field. It is easy to see the bound is 1.

2. if dimpR{pq “ 1, as we all know, R{p is a complete local ring, then R{p is module

finite over V (structure theory) where V is a complete regular one-dimensional local

domain i.e., V is DVR implies that V is PID. Then, we have R{p – V r where r is the

rank of R{p over V since a finitely generated module over a PID is free if and only if

it is torsion-free. All submodules of V r are free over V of rank less than or equal to r

and need at most r generators over V , hence, they need at most r generators over R.

Remark 2.9.2. One can generalize to the case where R is semi-local: after completion, R

becomes a finite product of local rings, and the module becomes a product and so has a

filtration in which each factor is a module over a local ring.

There is no bound on generators of ideals for a Noetherian ring that is not semi-local in

general, although this is true for a ring that is finitely generated over a field. This reduces to

the domain case (dimension one) and then the ring is module-finite over a polynomial ring

in one variable and the same argument works.

2.10 Analytic spread of ideals

Definition 2.10.1. Let pR,m, Kq be a Noetherian local ring. For any ideal I in R, the

analytic spread of I, which is denoted by anpIq, is defined to be the Krull dimension of

RrIts{mRrIts – R{m‘ pI{mIqt‘ pI2{mI2qt2 ‘ ¨ ¨ ¨ – R{mbR RrIts. [21]

Remark 2.10.2. Note that pR{mq bR pR{Iq – R{I, it follows that

R{mbR RrIts – ppR{mq bR pR{Iqq bR RrIts (2.35)
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– pR{mq bR ppR{Iq bR RrItsq (2.36)

– R{mbR grIpRq (2.37)

which means that lpIq can be also defined to be the Krull dimension of R{m bR grIpRq. In

the rest of this section, the ring means a local ring.

Proposition 2.10.3. The analytic spread of a nilpotent ideal is 0.

Proof. First we assume that I is a nilpotent ideal which means that there exists a positive

integer n such that In “ 0. Then R{mbRrIts is a finite dimensional vector space over field

R{m. The Krull dimension of finite dimensional vector space is 0.

Definition 2.10.4. The big height of a proper ideal I of a Noetherian ring is defined to be

the largest height of any minimal prime of I.

Remark 2.10.5. Notice that the height of a proper ideal I is the smallest height of any

minimal prime of I. It is obvious that height less than big height. Also, the height of an

m-primary ideal is the same as its big height.

Theorem 2.10.6. Let pR,m, Kq be local and J Ď R an ideal. Then any reduction I of

J has at least anpJq generators. Moreover, if K is infinite, there is a reduction with anpJq

generators.

Proof. According to Proposition 2.5.15, the problem of giving i1, . . . , ih P J such that J

is integral over pi1, . . . , ihqR is equivalent to giving h elements of J{mJ that generate an

M-primary ideal of S “ KbR grJpRq, where M is the homogeneous maximal ideal of S. We

have h ě dimpSq “ anpJq. If K is infinite, the existence of suitable elements follows from

the Corollary 2.5.34.

Lemma 2.10.7. Let pR,m, Kq be a local ring and J be any proper ideal, then dimpRq “

dimpgrJ Rq. It follows that dimpK bR grJpRqq ď dimpRq.
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Proposition 2.10.8. For any proper ideal I of pR,m, Kq, the analytic spread of I lies

between the big height of I and dimpRq. In particular, the analytic spread of an m-primary

ideal is the dimension of the ring.

Proof. From the preceding lemma, we have anpJq ď dimpRq. Let p be a minimal prime of

J . We want to show that height p ď anpJq. According to previous theorem, we have that J

is integral over an ideal I with anpJq generators. Then J is contained in the radical of I. In

Rp we have that p is the radical of JRp, since p is a minimal prime of J , and so is contained

in the radical of IRp. Thus, height p ď anpJq, as desired.

2.11 Multi-Tors

We follow the discussion in [8] here.

Definition 2.11.1. Let R be a commutative ring. Given k modules M1, ¨ ¨ ¨ ,Mk over ring

R, define the R-module TorRh pM1, . . . ,Mkq by choosing a projective resolution G
piq
‚ for each

Mi, tensoring together all of these projective resolutions, with the modules Mi removed as

usual, taking the total complex of this tensor product, and taking the homology of the total

complex

Remark 2.11.2. One obtains a functor of several R-modules M1, ¨ ¨ ¨ ,Mk, covariant in each

of the Mi.

Remark 2.11.3. For k ě 2, this construction has many of the same properties as the usual

2-variables Tor. For example:

1. A short exact sequence in any of the variables yields a long exact sequence as usual

when the other modules are held fixed.

2. AnnRMi also kills TorRh pM1, ¨ ¨ ¨ ,Mkq.

3. TorR0 pM1, ¨ ¨ ¨ ,Mkq “M1 bR ¨ ¨ ¨ bRMk.
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4. If all but one of the Mi is flat, then TorRh pM1, ¨ ¨ ¨ ,Mnq “ 0 for all h ą 0.

5. If the Mi are all finitely generated over a Noetherian ring R, so is TorRh pM1, ¨ ¨ ¨ ,Mkq.

6. Let R be a Noetherian ring. If S1, ¨ ¨ ¨ , Sk are finitely generated R-algebras and Mi is a

finitely generated Si-module, 1 ď i ď k, then TorRh pM1, ¨ ¨ ¨ ,Mkq is a finitely generated

module over S “ S1 bR ¨ ¨ ¨ bR Sk.

Proof. We only prove the sixth property. Let Ti be a polynomial ring in finite many variables

over R such that Si – Ti{Ji. Let G
piq
‚ be a free resolution of Mi over Ti such that modules in

G
piq
‚ are finitely generated Ti-modules. The G

piq
‚ are also free over R since Ti is a polynomial

ring over R. Let G‚ be the total tensor product of the G
piq
‚ over R. Then TorR‚ pM1, ¨ ¨ ¨ ,Mkq –

H‚pG‚q. The modules inG‚ are finitely generated and free over T “ T1bR¨ ¨ ¨bRTk. Therefore

H‚pG‚q is finitely generated over T . For each i, we have a surjection Ti � Si with kernel Ji.

Since Ji kills Mi, it follows that H‚pG‚q is a module over T {pJ1T, J2T, ¨ ¨ ¨ , JkT q – S.
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CHAPTER III

Filtration theorems

In this Chapter, we discuss the notion of ωr-filtrations. We also prove several useful

properties of ωr-filtrations and prove the existence of ωr-filtration with an important property

that we will describe later in this Chapter.

In Section 3.2, we give an explicit construction of ωr-filtrations. For several particular

cases, we calculate the factors of these ωr-filtrations.

Last but not least, we introduce the definition of rectangularly and triangularly normal

ωr-filtrations. Futhermore, we construct rectangularly and triangularly normal ωr-filtrations

in several particular cases.

We will use the results that appears in this Chapter to prove main theorems in Chapter

IV.

3.1 Introduction to ωr-filtrations

In this section, we first discuss the notion of ωr-filtrations. Then we prove several useful

properties of ωr-filtrations and prove the existence of ωr-filtration with an important property

that we will describe later in this section.

Definition 3.1.1. Let M be a R-module. We define recursively the notion of an ωr-filtration

of M . If r “ 1, an ω-filtration of M is just an ascending sequence of submodules denoted by
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the following.

0 “M0 ĎM1 ĎM2 ĎM3 Ď ¨ ¨ ¨ (3.1)

where Mi is a submodule of M and
8
Ť

i“0

Mi “ M . Recursively, if we have already defined

an ωr´1-filtration of an arbitrary R-module for r ě 2, an ωr-filtration of M is an ascending

sequence of submodules denoted byM0,M1,M2, ¨ ¨ ¨ such that
8
Ť

i“0

Mi “M , and eachMi{Mi´1

has an ωr´1-filtration.

Remark 3.1.2. We can also recursively define the factors of an ωr-filtration of M . If r “ 1,

the factor has the form Mi`1{Mi where i ě 0. For r ą 1, the factor of the ωr-filtration of M

is actually the factor of the ωr´1-filtration of Mi`1{Mi where i ě 0.

Proposition 3.1.3. Let M be a R-module with a submodule M 1. M{M 1 has an ωr-filtration

is equivalent to that there is an ωr-filtration from M 1 to M .

Proof. This simply comes from the Noether correspondence between submodules of M{M 1

and submodules of M containing M 1 gotten by taking inverse images under φ : M �M{M 1.

We also need the following fact.
8
Ť

i“0

Mi “ M implies
8
Ť

i“0

φpMiq “ M{M 1 where Mi is a

submodule of M .
8
Ť

i“0

Mi “ M{M 1 implies
8
Ť

i“0

φ´1pMiq “ M where Mi is a submodule of

M{M 1.

Definition 3.1.4. We can define a totally ordered set denoted by ωr. pi1, i2, ¨ ¨ ¨ , irq ă

pi11, i
1
2, ¨ ¨ ¨ , i

1
rq if for some k, 1 ď k ď r, it “ i1t for t ă k and ik ă i1k.

Definition 3.1.5. According to Proposition 3.1.3, we have an alternative definition of an

ωr-filtration. An ωr-filtration of M can be denoted by tMi1,i2,¨¨¨ ,ir´1,irupi1,i2,¨¨¨ ,ir´1,irqPωr .

0 “M0,0,¨¨¨ ,0,0 ĎM0,0,¨¨¨ ,0,1 ĎM0,0,¨¨¨ ,0,2 Ď ¨ ¨ ¨

ĎM0,0,¨¨¨ ,1,0 ĎM0,0,¨¨¨ ,1,1 ĎM0,0,¨¨¨ ,1,2 Ď ¨ ¨ ¨

ĎM0,0,¨¨¨ ,2,0 ĎM0,0,¨¨¨ ,2,1 ĎM0,0,¨¨¨ ,2,2 Ď ¨ ¨ ¨

¨ ¨ ¨
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ĎM1,0,¨¨¨ ,0,0

¨ ¨ ¨

ĎM2,0,¨¨¨ ,0,0

¨ ¨ ¨

where
8
Ť

i1“0

Mi1,0,¨¨¨ ,0 “ M . Factors have the form Mi1,i2,¨¨¨ ,ir´1,ir`1{Mi1,i2,¨¨¨ ,ir´1,ir for any

pi1, i2, ¨ ¨ ¨ , irq P ω
r.

Remark 3.1.6. Particularly, if r “ 2, we have

0 “M0,0 ĎM0,1 ĎM0,2 Ď ¨ ¨ ¨

ĎM1,0 ĎM1,1 ĎM1,2 Ď ¨ ¨ ¨

ĎM2,0 ĎM2,1 ĎM2,2 Ď ¨ ¨ ¨

Ď ¨ ¨ ¨

where
8
Ť

i1“0

Mi1,0 “M .

Proposition 3.1.7. Let M be a R-module. Let M 1 and N are submodules of M . If there

is an ωr-filtration from M 1 to M , then there is an ωr-filtration from M 1XN to N “M XN .

Particularly, an ωr-filtration of M deduces an ωr-filtration of N “M XN . We also call this

ωr-filtration of N is inherited from the ωr-filtration of M .

Proof. If r “ 1, an ω-filtration from M 1 to M is denoted by the following.

M 1
“M0 ĎM1 ĎM2 ĎM3 Ď ¨ ¨ ¨ (3.2)

where Mi is a submodule of M containing M 1 and
8
Ť

i“0

Mi “ M . We denote Ni “ Mi X N .

We have

M 1
XN “ N0 Ď N1 Ď N2 Ď N3 Ď ¨ ¨ ¨ (3.3)
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and
8
Ť

i“0

Ni “
8
Ť

i“0

pMi X Nq “ M X N . Recursively, suppose the proposition holds for any

1 ď r ď s where s ě 1. An ωs`1-filtration from M 1 to M is denoted by the following.

M 1
“M0 ĎM1 ĎM2 ĎM3 Ď ¨ ¨ ¨ (3.4)

where Mi is a submodule of M containing M 1 and
8
Ť

i“0

Mi “ M . We denote Ni “ Mi X N .

We have an ascending sequence of submodules M 1 X N “ N0 Ď N1 Ď N2 Ď N3 Ď ¨ ¨ ¨ with
8
Ť

i“0

Ni “
8
Ť

i“0

pMi XNq “ M XN . For each i ě 0, by definition, there is an ωs-filtration from

Mi to Mi`1 which implies there is an ωs-filtration from Mi XN “ Ni to Mi`1 XN “ Ni`1.

By definition, there is an ωs`1-filtration from M 1 XN to M XN .

Definition 3.1.8. Let M be a R-module, we say M has a general ωr-filtration, if there is a

finite filtration

0 “M0 ĎM1 ĎM2 Ď ¨ ¨ ¨ ĎMn “M (3.5)

such that each Mi{Mi´1 has an ωr-filtration where 1 ď i ď n.

Remark 3.1.9. It is obvious that an ωr-filtration of M is also a general ωr-filtration of M .

And a general ωr-filtration corresponds to an ωr`1-filtration of M in which the ωr-filtration

submodules are eventually all the same. The factor of a general ωr-filtration is defined

similarly to the factor of an ωr-filtration. Furthermore, Proposition 3.1.3 and Proposition

3.1.7 hold for general ωr-filtrations.

Lemma 3.1.10. Let A be a Noetherian commutative ring, and B1 be a finitely generated

A-module. We have the following surjective morphism over A-modules.

B1 � B2 � B3 � B4 � ¨ ¨ ¨ (3.6)

We claim that there exists T ě 1 such that BT – BT`1 – BT`2 – ¨ ¨ ¨ .
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Proof. We have the following surjective map via composition.

φi : B1 � Bi (3.7)

where i ě 1. For any i ă j, we have kerφi Ď kerφj since φj is a composition of φi : B1 � Bi

and f : Bi � Bj. Thus, we have

kerφ1 Ď kerφ2 Ď kerφ3 Ď kerφ4 Ď ¨ ¨ ¨ (3.8)

Since B1 has ACC, the ascending chain will be eventually stable, i.e., there exists T ě 1

such that kerφT – kerφT`1 – kerφT`2 – ¨ ¨ ¨ . According to isomorphism theorems, we have

B1

kerφi
– Bi (3.9)

which means that there exists T ě 1 such that BT – BT`1 – BT`2 – ¨ ¨ ¨ .

Lemma 3.1.11. Let A be a Noetherian commutative ring, and R be an A-algebra generated

by an element θ. R “ Arθs where A is an image under the map Arxs� R with xÑ θ. Then

R has an ω-filtration over A such that by prime cyclic A-modules involving only finitely

many prime ideal of A.

Proof. We may replace A by its image in R and assume R “ Arθs. Consider the following

filtration

A Ď A` Aθ Ď A` Aθ ` Aθ2
Ď A` Aθ ` Aθ2

` Aθ3
Ď ¨ ¨ ¨ (3.10)

We claim that there are only finitely many distinct factors in this filtration. Let us denote

the factor A`Aθ`¨¨¨`Aθi´1`Aθi

A`Aθ`¨¨¨`Aθi´1 by Bi where i ě 1. Of course, Bi is an A-module. We have the

following morphism:

Bi ÝÑ Bi`1

b ÝÑ bθ (3.11)
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First, it is well-defined. Since for any element a P A ` Aθ ` ¨ ¨ ¨ ` Aθi´1, we have aθ P

A ` Aθ ` ¨ ¨ ¨ ` Aθi´1 ` Aθi. Second, the morphism is surjective. Actually, any element

in Bi`1 has the form aθi`1 where a P A, as we know aθi Ñ aθi`1. Thus it is a surjective

morphism. Then we have the following surjective morphism.

B1 � B2 � B3 � B4 � ¨ ¨ ¨ (3.12)

B1 is an A-module generated by one element. According to Lemma 3.1.10, there are only

finitely many distinct Bi. Now we can prove the lemma. Bi can be viewed as an A-module

with only one generator. According to Proposition 2.6.6, each Bi has a finite filtration in

which all the factors are prime cyclic A-modules. Suppose we have the following filtration

0 “ Bi,0 Ď Bi,1 Ď Bi,2 Ď ¨ ¨ ¨ Ď Bi,in “ Bi (3.13)

then we can lift to the following filtration

A` Aθ ` ¨ ¨ ¨ ` Aθi´1
“ C0 Ď C1 Ď C2 Ď ¨ ¨ ¨ Ď Cin “ A` Aθ ` ¨ ¨ ¨ ` Aθi´1

` Aθi (3.14)

Actually, we have A`Aθ`¨ ¨ ¨`Aθi´1`Aθi � Bi, then Cj is the inverse image of Bi,j Ď Bi

where 0 ď j ď in. According to isomorphism theorems, we have

Cj{Cj´1 – Bi,j{Bi,j´1 (3.15)

Now, we actually construct a countable filtration with only finitely many distinct prime

cyclic modules.

Proposition 3.1.12. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. Then R

has an ωr-filtration in which all the factors are prime cyclic A-modules. Also, only finitely
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many distinct prime cyclic modules occur.

Proof. According to Lemma 3.1.11, we know the proposition holds when r “ 1. Suppose

the proposition holds when r “ j. We claim that it still holds for r “ j ` 1. We denote

Arθ1, θ2, ¨ ¨ ¨ , θjs by Sj, then Sj`1 “ Sjrθj`1s can be viewed as a Sj-algebra. According to

Hilbert Theorem, Sj is a Noetherian ring. Thus, Sj`1 has an ω-filtration in which all the

factors have the form Sj{Qi where Qi is prime. As we know, only finitely many distinct

factors occur. We have the following natural isomorphism

Sj{Qi “
A

AXQi

rθ1, θ2, ¨ ¨ ¨ , θjs “
A

pi
rθ1, θ2, ¨ ¨ ¨ , θjs (3.16)

where pi “ A X Qi is prime. We can view Sj{Qi as a A{pi-algebra. As we all know, A{pi

is Noetherian since A is Noetherian. By assumption, Sj{Qi has an ωj-filtration in which

all the factors are prime cyclic A{pi-modules which are also prime cyclic A-modules. Also,

there are only finitely many distinct factors.

Remark 3.1.13. When A is a domain, the theorem on generic freeness follows at once: one

simply localizes at one element of A ´ t0u in all of the finitely many nonzero primes of A

that occur in the filtration. See section 6.9 in [10].

Theorem 3.1.14. Let A be a Noetherian commutative ring. Let R be an A-algebra with r

generators and M be a finitely generated R-module. Then M has a general ωr-filtration in

which all the factors are prime cyclic A-modules. Furthermore, only finitely many distinct

factors occur.

Proof. According to Proposition 2.6.6, M has a finite filtration in which all the factors are

prime cyclic R-modules.

0 “M0 ĎM1 ĎM2 Ď ¨ ¨ ¨ ĎMn “M (3.17)

where Mi{Mi´1 – R{Qi where Qi is prime. R{Qi is a finitely generated A{pi-algebra with
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at most r generators where pi “ Qi X A. According to Proposition 3.1.12, R{Qi has an

ωr-filtration in which all the factors are prime cyclic A{pi-modules. These factors are also

prime cyclic A-modules. Only finitely many distinct factors occur.

Theorem 3.1.15. Let A be a Noetherian commutative ring. Let R be an A-algebra with r

generators and M be a finitely generated R-module. Then M has an ωr-filtration in which

all the factors are prime cyclic A-modules. Furthermore, only finitely many distinct factors

occur.

Proof. We assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs and M “ Rα1 ` Rα2 ` ¨ ¨ ¨ ` Rαs. Denote Aα1 `

Aα2 ` ¨ ¨ ¨ ` Aαs by B.

If r “ 1, we have an ascending sequence of submodules of an A-module Brθs where

θ “ θ1.

B Ď B `Bθ Ď B `Bθ `Bθ2
Ď B `Bθ `Bθ2

`Bθ3
Ď ¨ ¨ ¨ (3.18)

As in the proof of Lemma 3.1.11, we have the following well-defined surjective A-module

morphisms.

B �
B `Bθ

B
�

B `Bθ `Bθ2

B `Bθ
�

B `Bθ `Bθ2 `Bθ3

B `Bθ `Bθ2
� ¨ ¨ ¨ (3.19)

B is Noetherian as B is a finitely generated A-module. Then the sequence of factors will be

eventually stable according to Lemma 3.1.10. Thus, there are finitely many distinct factors.

Furthermore, we have the following natural isomorphism.

B `Bθ ` ¨ ¨ ¨ `Bθi´1 `Bθi

B `Bθ ` ¨ ¨ ¨ `Bθi´1
– Aθi ` Aθiα1 ` Aθiα2 ` ¨ ¨ ¨ ` Aθiαs (3.20)

where i ě 1. It is a finitely generated A-module. According to Proposition 2.6.6, each factor

has a finite filtration in which all the factors are prime cyclic A-modules. Then only finitely

many distinct factors occur. It is obvious that M “ Brθs when r “ 1.

Suppose the theorem holds when r “ j, we claim that it still holds for r “ j` 1. Denote
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Brθ1, θ2, ¨ ¨ ¨ , θjs by B1, Arθ1, θ2, ¨ ¨ ¨ , θjs by A1 and θj`1 by θ. Then Brθ1, θ2, ¨ ¨ ¨ , θj`1s “

B1rθs. According to the base case, B1rθs has an ω-filtration in which all the factors have the

form A1{Qk where Qk is a prime ideal of A1. Also, only finitely many distinct factors occur.

There is a natural isomorphism:

A1{Qk –
A

pk
rθ1, θ2, ¨ ¨ ¨ , θjs (3.21)

where pk “ Qk X A. According to Proposition 3.1.12, A1{Qk has an ωj-filtration over A

such that by prime cyclic A-modules involving only finitely many distinct prime ideal of A.

The last part of the proof is to prove that Brθ1, θ2, ¨ ¨ ¨ , θrs “ M . We can easily check it is

true.

3.2 Explicit construction of ωr-filtrations

In this section, we give an explicit construction of ωr-filtrations. For several particular

cases, we calculate the factors of these ωr-filtrations.

Proposition 3.2.1. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. Consider

the case r “ 2 first. Then R has an ω2-filtration tRi,jupi,jqPω2 where Ri,j is defined as the

following.

Ri,j “

i´1
ÿ

u“0

Arθ1sθ
u
2 `

j´1
ÿ

v“0

Aθv1θ
i
2 (3.22)

Note that if the upper index is less than the lower index of the sum, we say the sum is zero.

All the factors are cyclic A-modules, i.e., Ri,j`1{Ri,j – A{I where I is an ideal of A for any

i, j ě 0. Only finitely many distinct I occur.

Proof. First, we claim than Ri,j Ď Ri1,j1 for any pi, jq ă pi1, j1q P ω2. If i “ i1, j ă j1, it is
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simply from the definition. If i ă i1, we have Ri,0 Ď Ri,j and Ri1,0 Ď Ri1,j1 . Also, we have

Ri,j “

i´1
ÿ

u“0

Arθ1sθ
u
2 `

j´1
ÿ

v“0

Aθv1θ
i
2 Ď

i´1
ÿ

u“0

Arθ1sθ
u
2 `

8
ÿ

v“0

Aθv1θ
i
2

Ď

i´1
ÿ

u“0

Arθ1sθ
u
2 `

8
ÿ

v“0

Aθv1θ
i
2

Ď

i´1
ÿ

u“0

Arθ1sθ
u
2 ` Arθ1sθ

i
2

Ď

i
ÿ

u“0

Arθ1sθ
u
2 “ Ri`1,0

Thus, Ri,j Ď Ri`1,0 Ď Ri1,0 Ď Ri1,j1 . Furthermore, Ri,j`1 “ Ri,j ` Aθj1θ
i
2 which means

Ri,j`1{Ri,j is a cyclic A-module.

We claim that distinct I only occur finitely many times. Consider the following surjective

morphism.

R1,0

R0,0

�
R2,0

R1,0

�
R3,0

R2,0

�
R4,0

R3,0

� ¨ ¨ ¨ (3.23)

According to Lemma 3.1.10, there exists T such that we have

RT,0

RT´1,0

–
RT`1,0

RT,0

–
RT`2,0

RT`1,0

–
RT`3,0

RT`2,0

– ¨ ¨ ¨ (3.24)

For each fixed t, there exists St such that

Rt,St`1

Rt,St

–
Rt,St`2

Rt,St`1

–
Rt,St`3

Rt,St`2

– ¨ ¨ ¨ (3.25)

We can denote MaxtStutďT by S. For any k, we have

RT`k,1

RT`k,0

�
RT`k,2

RT`k,1

�
RT`k,3

RT`k,2

�
RT`k,4

RT`k,3

� ¨ ¨ ¨ (3.26)
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By construction, we also have the following injective morphism

RT`k,l

RT`k,0

ãÑ
RT`k`1,0

RT`k,0

(3.27)

for any k and l. Consider the following isomorphism

φT`k :
RT`k`1,0

RT`k,0

θ2
ÝÑ

RT`k`2,0

RT`k`1,0

(3.28)

restricted on
RT`k,l
RT`k,0

. By defintion, we have

φT`kp
RT`k,l

RT`k,0

q “
RT`k`1,l

RT`k`1,0

(3.29)

which means we have

RT`k,l

RT`k,0

–
RT`k`1,l

RT`k`1,0

(3.30)

where l P N. Thus, for any l ą 0, we have

RT`k,l

RT`k,l´1

–
RT`k`1,l

RT`k`1,l´1

(3.31)

In conclusion, we have the commutative diagram 3.1.

Now, we actually prove that distinct I only occur finitely many times.

Theorem 3.2.2. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. Then R

has an ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr where Ri1,i2,¨¨¨ ,ir is defined as the following.

Ri1,i2,¨¨¨ ,ir “

i1´1
ÿ

i11“0

Arθ1, θ2, ¨ ¨ ¨ , θr´1sθ
i11
r

`

i2´1
ÿ

i12“0

Arθ1, θ2, ¨ ¨ ¨ , θr´2sθ
i12
r´1θ

i1
r
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R0,1

R0,0

R0,2

R0,1

R0,3

R0,2
¨ ¨ ¨

R0,S

R0,S´1

R0,S`1

R0,S
¨ ¨ ¨

R1,1

R1,0

R1,2

R1,1

R1,3

R1,2
¨ ¨ ¨

R1,S

R1,S´1

R1,S`1

R1,S
¨ ¨ ¨

R2,1

R2,0

R2,2

R2,1

R2,3

R2,2
¨ ¨ ¨

R2,S

R2,S´1

R2,S`1

R2,S
¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

RT,1
RT,0

RT,2
RT,1

RT,3
RT,2

¨ ¨ ¨
RT,S
RT,S´1

RT,S`1

RT,S
¨ ¨ ¨

RT`1,1

RT`1,0

RT`1,2

RT`1,1

RT`1,3

RT`1,2
¨ ¨ ¨

RT`1,S

RT`1,S´1

RT`1,S`1

RT`1,S
¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

„ „

„ „

„ „

„ „

„ „ „ „ „

„

„

„

„

„ „ „ „ „

„

„

„

„

„ „

Figure 3.1: Commutative diagram of factors of an ω2-filtration

`

i3´1
ÿ

i13“0

Arθ1, θ2, ¨ ¨ ¨ , θr´3sθ
i13
r´2θ

i2
r´1θ

i1
r

` ¨ ¨ ¨

`

ir´1
ÿ

i1r“0

Aθ
i1r
1 θ

ir´1

2 ¨ ¨ ¨ θi1r

“

r
ÿ

j“1

ij´1
ÿ

i1j“0

Arθ1, θ2, ¨ ¨ ¨ , θr´jsθ
i1j
r´j`1

j´1
ź

k“1

θikr`1´k

Note that if the upper index is less than the lower index of the sum, we define the sum to

be zero. All the factors are cyclic A-modules. These cyclic A-modules may be replaced,

by filtration, by prime cyclic A-modules, i.e., modules of the form A{p with p prime. Only

finitely many distinct p occur.

Proof. We can prove the theorem by induction. Assume it holds for case r´1. Arθ1, θ2, ¨ ¨ ¨ , θrs

is an Arθ1s-module. Thus, for any pi1, i2, ¨ ¨ ¨ , irq P ω
r, there are only finitely many distinct
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Ri1,i2,¨¨¨ ,ir´1`1,0{Ri1,i2,¨¨¨ ,ir´1,0. It is equivalent to say, for any pi1, i2, ¨ ¨ ¨ , ir´2q P ω
r´2, there

exists ir´1 so that we have

Ri1,i2,¨¨¨ ,ir´1`1,0

Ri1,i2,¨¨¨ ,ir´1,0

–
Ri1,i2,¨¨¨ ,ir´1`k`1,0

Ri1,i2,¨¨¨ ,ir´1`k,0

(3.32)

for any k. The induced map

Ri1,i2,¨¨¨ ,ir´1,l

Ri1,i2,¨¨¨ ,ir´1,0

Ñ
Ri1,i2,¨¨¨ ,ir´1`k,l

Ri1,i2,¨¨¨ ,ir´1`k,0

(3.33)

is injective and surjective. It is similar to the proof of case r “ 2. Thus, for any l, we have

Ri1,i2,¨¨¨ ,ir´1,l

Ri1,i2,¨¨¨ ,ir´1,0

–
Ri1,i2,¨¨¨ ,ir´1`k,l

Ri1,i2,¨¨¨ ,ir´1`k,0

(3.34)

which implies that

Ri1,i2,¨¨¨ ,ir´1,l`1

Ri1,i2,¨¨¨ ,ir´1,l

–
Ri1,i2,¨¨¨ ,ir´1`k,l`1

Ri1,i2,¨¨¨ ,ir´1`k,l

(3.35)

In conclusion, only finitely many distinct factors appear in tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr .

Corollary 3.2.3. Let A be a commutative Noetherian ring, and R “ Arx1, x2, ¨ ¨ ¨ , xrs

where x1, x2, ¨ ¨ ¨ , xr are indeterminates. Then R has an ωr-filtration in which factors are

cyclic A-modules. Also, only one distinct factor occurs.

Proof. We define

Ri1,i2,¨¨¨ ,ir “

r
ÿ

j“1

ij´1
ÿ

i1j“0

Arx1, x2, ¨ ¨ ¨ , xr´jsx
i1j
r´j`1

j´1
ź

k“1

xikr`1´k (3.36)

Then we have

Ri1,i2,¨¨¨ ,ir`1

Ri1,i2,¨¨¨ ,ir

“

Ri1,i2,¨¨¨ ,ir ` A
r
ś

k“1

xikr`1´k

Ri1,i2,¨¨¨ ,ir

– A (3.37)

since x1, x2, ¨ ¨ ¨ , xr are indeterminates.
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Corollary 3.2.4. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. For θk,

there exists ak,0, ak,1, ¨ ¨ ¨ , ak,dk´1 P A such that

θdkk “

dk´1
ÿ

l“0

ak,lθ
l
k (3.38)

Then R has an ωr-filtration in which factors are cyclic A-modules. The number of distinct

nonzero factors is at most d1d2 ¨ ¨ ¨ dr.

Proof. We define Ri1,i2,¨¨¨ ,ir as the same in Proposition 3.2.1. Thus, we have

Ri1,i2,¨¨¨ ,ir`1

Ri1,i2,¨¨¨ ,ir

“

Ri1,i2,¨¨¨ ,ir ` A
r
ś

k“1

θikr`1´k

Ri1,i2,¨¨¨ ,ir

– A
r
ź

k“1

θikr`1´k (3.39)

If there exists l such that il ě dl, then we have

r
ź

k“1

θikr`1´k “
ź

k‰l

θikr`1´kθ
il´dl
l

dl´1
ÿ

j“0

al,jθ
j
l “

dl´1
ÿ

j“0

ź

k‰l

al,jθ
ik
r`1´kθ

il´dl`j
l (3.40)

For any j ď dl´1,
ś

k‰l

al,jθ
ik
r`1´kθ

il´dl`j
l P Ri1,i2,¨¨¨ ,ir since il´dl` j ă il. This actually proves

that if there exists l such that il ě dl, then
Ri1,i2,¨¨¨ ,ir`1

Ri1,i2,¨¨¨ ,ir
– 0. Furthermore, the number of

distinct factors is at most d1d2 ¨ ¨ ¨ dr.

Remark 3.2.5. In this particular case, we can see that the ωr-filtration reduces to a finite

filtration.

Proposition 3.2.6. Let K be a commutative Noetherian ring, A “ Krx1, x2, ¨ ¨ ¨ , xns where

xi is indeterminate for 1 ď i ď n, y1 be another indeterminate, and R “ Ary1, y2s where

y2 “
y1
x1
x2. Then the factors of the ω2-filtration tRi,jupi,jqPω2 are isomorphic to either A or

A{Ax1.
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Proof. According to Proposition 3.2.1, we have

Ri,j`1

Ri,j

“
Ri,j ` Ay

j
1y
i
2

Ri,j

(3.41)

When i “ 0, we know that

R0,j`1

R0,j

“

řj
v“0Ay

v
1

řj´1
v“0Ay

v
1

– Ayj1 – A (3.42)

since y1 is indeterminate. When i ě 1, we have

Ri,j`1

Ri,j

“
Ri,j ` Ay

j
1y
i
2

Ri,j

– Ayj1y
i
2 “ A

yi`j1 xi2
xi1

(3.43)

Furthermore, we have the following natural surjective morphism.

A� A
yi`j1 xi2
xi1

(3.44)

φ : aÑ a
yi`j1 xi2
xi1

(3.45)

We claim that kerφ “ Ax1.

First, for any ax1 P Ax1, we have φpax1q “ a
yi`j1 xi2
xi´1
1

“ 0 since
yi`j1 xi2
xi´1
1

“ x2y
j`1
1 yi´1

2 P Ri,j

for i ě 1.

Second, a
yi`j1 xi2
xi1

“ 0 implies that a
yi`j1 xi2
xi1

P Ri,j. Since x1, x2, y1 are indeterminates, a has

to be the form bx1 where b P A. In fact, generators of Ri,j have the form yt1y
s
2 where either

any t P N, s ď i´ 1 or t ď j ´ 1, s “ i. By definition, we have

yt1y
s
2 “

yt`s1 xs2
xs1

(3.46)

If a R Ax1, a
yi`j1 xi2
xi1

“ ayj1y
i
2 must be generated by yt1y

i
2 where t ď j ´ 1. Contradiction. We
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actually prove the following isomorphism.

Ri,j`1

Ri,j

“ A
yi`j1 xi2
xi1

– A{ kerφ “ A{Ax1 (3.47)

Thus, factors of the ω2-filtration tRi,jupi,jqPω2 are isomorphic to either A or A{Ax1.

Remark 3.2.7. Let R “ Ary1, y2, ¨ ¨ ¨ , yrs where 2 ď r ď n. Then the factors of the ωr-

filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr are isomorphic to either A or A{pAx1 ` Ax2 ` ¨ ¨ ¨ ` Axkq

for any 1 ď k ď r ´ 1.

Proof. According to Proposition 3.2.1, we have

Ri1,i2,¨¨¨ ,ir`1

Ri1,i2,¨¨¨ ,ir

“

Ri1,i2,¨¨¨ ,ir ` A
r
ś

k“1

yikr`1´k

Ri1,i2,¨¨¨ ,ir

– A
r
ź

k“1

yikr`1´k (3.48)

If pi1, i2, ¨ ¨ ¨ , ir´1q “ 0, we have

R0,0,¨¨¨ ,ir`1

R0,0,¨¨¨ ,ir

“
R0,0,¨¨¨ ,ir ` Ay

ir
1

R0,0,¨¨¨ ,ir

– Ayir1 – A (3.49)

since y1 is indeterminate and yir1 R R0,0,¨¨¨ ,ir .

If pi1, i2, ¨ ¨ ¨ , ir´1q ‰ 0, there exists l such that pi1, ¨ ¨ ¨ , il´1q “ 0 and il ą 0. We have

Ri1,i2,¨¨¨ ,ir`1

Ri1,i2,¨¨¨ ,ir

– A
r
ź

k“1

yikr`1´k “ Ayir1 p
y1

x1

x2q
ir´1 ¨ ¨ ¨ p

y1

x1

xrqi1 (3.50)

“ A
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

(3.51)

Similar to the case r “ 2, we have the following natural surjective morphism.

A� A
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

(3.52)

φ : aÑ a
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

(3.53)
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We claim that kerφ “ Ax1 ` Ax2 ` ¨ ¨ ¨ ` Axr´l.

First, for x1 P Ax1, we know that

φpx1q “ x1
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

(3.54)

“
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1´1
1

(3.55)

since ir´k`1 ě 1 where k “ r ´ l ` 1, then we have

φpx1q “
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1´1
1

(3.56)

“ yir`1
1 y

ir´1

2 ¨ ¨ ¨ y
ir´k`2

k´1 y
ir´k`1´1
k y

ir´k
k`1 ¨ ¨ ¨ y

i1
r (3.57)

“ 0 (3.58)

because we have yir`1
1 y

ir´1

2 ¨ ¨ ¨ y
ir´k`2

k´1 y
ir´k`1´1
k y

ir´k
k`1 ¨ ¨ ¨ y

i1
r P Ri1,i2,¨¨¨ ,ir . For xk P Axk where

2 ď k ď r ´ l, we have

φpxkq “ xk
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

(3.59)

“
yi1`i2`¨¨¨`ir1 x

ir´1

2 ¨ ¨ ¨ x
ir´k`2

k´1 x
ir´k`1`1
k x

ir´k
k`1 ¨ ¨ ¨ x

i1
r

x
i1`i2`¨¨¨`ir´1

1

(3.60)

“ xly
ir
1 y

ir´1

2 ¨ ¨ ¨ y
ir´k`2

k´1 y
ir´k`1`1
k y

ir´k
k`1 ¨ ¨ ¨ y

il´1

r´l y
il´1
r´l`1 (3.61)

“ 0 (3.62)

since yir1 y
ir´1

2 ¨ ¨ ¨ y
ir´k`2

k´1 y
ir´k`1`1
k y

ir´k
k`1 ¨ ¨ ¨ y

il´1

r´l y
il´1
r´l`1 P Ri1,¨¨¨ ,il´1,¨¨¨ ,ir´k`1`1,¨¨¨ Ď Ri1,¨¨¨ ,ir .

Second, for any a P kerφ,

a
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

“ 0 (3.63)
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implies that

a
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

P Ri1,i2,¨¨¨ ,ir (3.64)

Since x1, x2, ¨ ¨ ¨ , xr, y1 are indeterminates, we know that generators of Ri1,i2,¨¨¨ ,ir have the

form y
i1r
1 y

i1r´1

2 ¨ ¨ ¨ y
i11
r where pi11, i

1
2, ¨ ¨ ¨ , i

1
rq ă pi1, i2, ¨ ¨ ¨ , irq. Suppose a R Ax1`Ax2`¨ ¨ ¨`Axr´l,

since y1 is an indeterminate, we have i11 ` i
1
2 ` ¨ ¨ ¨ ` i

1
r “ i1 ` ¨ ¨ ¨ ` ir. Also, pi11, i

1
2, ¨ ¨ ¨ , i

1
rq ă

pi1, i2, ¨ ¨ ¨ , irq means there exists v ě l such that i1v ă iv. Then there exists u ą v ě l

such that i1u ą iu. Then the degree of xr`1´u should be greater than iu. As we know,

xr`1´u P Ax1 ` Ax2 ` ¨ ¨ ¨ ` Axr´l. Contradiction.

Thus, we have the following isomorphism.

Ri1,i2,¨¨¨ ,ir`1

Ri1,i2,¨¨¨ ,ir

– A
yi1`i2`¨¨¨`ir1 x

ir´1

2 x
ir´2

3 ¨ ¨ ¨ xi1r

x
i1`i2`¨¨¨`ir´1

1

(3.65)

– A{ kerφ (3.66)

“ A{pAx1 ` Ax2 ` ¨ ¨ ¨ ` Axr´lq (3.67)

In conclusion, factors of the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr are isomorphic to either

A or A{pAx1 ` Ax2 ` ¨ ¨ ¨ ` Axkq for any 1 ď k ď r ´ 1.

Proposition 3.2.8. If f, g forms a regular sequence of A, the factors of the ω-filtration of

Arf{gs have the form A{gA.

Proof. For any k P N, we have

Rk`1

Rk

“
A` Af

g
` ¨ ¨ ¨ ` Apf

g
qk ` Apf

g
qk`1

A` Af
g
` ¨ ¨ ¨ ` Apf

g
qk

(3.68)

–
Agk`1 ` Afgk ` ¨ ¨ ¨ ` Afkg ` Afk`1

Agk`1 ` Afgk ` ¨ ¨ ¨ ` Afkg
(3.69)

–
A

Ik
(3.70)

where Ik “ pg
k`1, fgk, ¨ ¨ ¨ , fkgq : fk`1.

First, we have Ik Ď gA : fk`1 “ gA since f, g forms a regular sequence of A.
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Second, Ik Ě gA since gAfk`1 Ď pgk`1, fgk, ¨ ¨ ¨ , fkgq. Thus, we have Ik “ gA.

In conclusion, the factors have the form A{gA.

Example 3.2.9. LetK be a commutative Noetherian ring, A “ Krx,y,zs
px3`y3`z3q

, and R “ Arθ1, θ2s

where θ1 “
y
x
, θ2 “

z
x
. We know x, y forms a regular sequence of A. According to Proposition

3.2.8, we have

R0,j`1

R0,j

–
A

Ax
(3.71)

For i ě 1, we have that

Ri,j`1

Ri,j

–
Ri,j ` Aθ

j
1θ
i
2

Ri,j

“
Ri,j ` A

yjzi

xi`j

Ri,j

(3.72)

If i ě 3, then zi “ ´zi´3px3 ` y3q which implies

yjzi

xi`j
“
´yjzi´3px3 ` y3q

xi`j
“ ´pθj1θ

i´3
2 ` θj`3

1 θi´3
2 q P Ri,j (3.73)

Thus,
Ri,j`1

Ri,j
“ 0.

If i “ 2, we claim that

Ri,j`1

Ri,j

–
Ri,j ` A

yjzi

xi`j

Ri,j

– A
yjzi

xi`j
–

A

Ax` Ay ` Az
(3.74)

As usual, consider the following surjective map.

A� A
yjzi

xi`j
(3.75)

φ : aÑ a
yjzi

xi`j
(3.76)

First, we have kerφ Ě Ax ` Ay ` Az since x y
jz2

x2`j
“ θj1θ2z P R2,j, y

yjz2

x2`j
“ θj`1

1 θ2z P R2,j,

and z y
jz2

x2`j
“ ´

yjpx3`y3q
x2`j

P R2,j.

Second, for any a P K, a y
jz2

x2`j
R R2,j since the degree of y is at most j, the degree of

θ1 is at most j, we have the degree of θ2 is at least 2 because the denominator is x2`j.
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While the degree of θ2 is 2, we have the degree of θ1 is j. We know θj1θ
2
2 R R2,j. Thus,

kerφ “ Ax` Ay ` Az implies that

Ri,j`1

Ri,j

–
A

Ax` Ay ` Az
(3.77)

If i “ 1, we claim that

Ri,j`1

Ri,j

–
Ri,j ` A

yjzi

xi`j

Ri,j

– A
yjzi

xi`j
–

A

Ax` Ay ` Az2
(3.78)

Similarly, we have the following surjective map.

A� A
yjzi

xi`j
(3.79)

φ : aÑ a
yjzi

xi`j
(3.80)

We only need to prove that kerφ “ Ax` Ay ` Az2.

First, since x yjz
x1`j

“ θj1z P R1,j, y
yjz
x1`j

“ θj`1
1 z P R1,j, and z2 yjz1

x1`j
“ ´

yjpx3`y3q
x1`j

P R1,j, we

have kerφ Ě Ax` Ay ` Az2.

Second, for any a P K, aθj1θ2 “ a yjz
x1`j

R R1,j, and az yjz
x1`j

“ a y
jz2

x1`j
, the degree of y is at

most j which means the degree of θ1 is at most j, then the degree of θ2 is at least one since

the denominator is xj`1. As we know, θj1θ2 R R1,j and θj´1
1 θ2

2 R R1,j. This actually means

az yjz
x1`j

R R1,j.

In conclusion, we know that the factors of ω2-filtration have the form A{Ax,A{pAx `

Ay ` Azq, A{pAx` Ay ` Az2q.

3.3 Rectangularly and triangularly normal ωr-filtrations

In this section, we first introduce the definition of rectangularly and triangularly normal

ωr-filtrations. Then we construct rectangularly and triangularly normal ωr-filtrations in
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several particular cases.

Definition 3.3.1. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs.

For l1, l2, ¨ ¨ ¨ , lr P N, we define Rrl1,l2,¨¨¨ ,lrs as the following.

Rrl1,l2,¨¨¨ ,lrs “
ÿ

i11ďl1,i
1
2ďl2,¨¨¨ ,i

1
rďlr

Aθ
i12
1 θ

i12
1 ¨ ¨ ¨ θ

i1r
r (3.81)

We call Rrl1,l2,¨¨¨ ,lrs a rectangular submodule of R.

For d P N, we define Rtdu as the following.

Rtdu “
ÿ

i11`i
1
2`¨¨¨`i

1
rďd

Aθ
i12
1 θ

i12
1 ¨ ¨ ¨ θ

i1r
r (3.82)

Similarly, Rtdu is called a triangular submodule of R.

An ωr-filtration of R is said to be rectangularly normal (respectively, triangularly normal)

if all the inherited filtrations on rectangular (respectively, triangular) submodules produce

only finitely many factors.

Lemma 3.3.2. Let A, R be the same as in Definition 3.3.1. For any finitely generated

A-module N , the set tN X Ri1,i2,¨¨¨ ,ir |pi1, i2, ¨ ¨ ¨ , irq P ω
ru is a finite set which means the

ωr-filtration N X tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is actually a finite filtration. Thus, there are only

finitely many distinct factors of N X tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr .

Proof. According to Proposition 3.1.7, we know N X tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is actually an

ωr-filtration of N XR.

We claim that there are only finitely many distinct N XRi1,i2,¨¨¨ ,ir .

In fact, N is Noetherian. If there are infinitely many distinct N XRi1,i2,¨¨¨ ,ir , we can pick

countably many distinct N X Ri1,i2,¨¨¨ ,ir such that they form a strictly increasing sequence

which is a contradiction to the fact N has ACC. We have only finitely many distinct N X

Ri1,i2,¨¨¨ ,ir implies only finitely many distinct
NXRi1,i2,¨¨¨ ,ir`1

NXRi1,i2,¨¨¨ ,ir
will occur.
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Corollary 3.3.3. Let A, R be the same as in Definition 3.3.1. For any fixed d, l1, ¨ ¨ ¨ , lr,

there are only finitely many distinct factors of ωr-filtration RtduXtRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr and

Rrl1,l2,¨¨¨ ,lrs X tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr .

Proof. This comes from Lemma 3.3.2 directly since both Rtdu and Rrl1,l2,¨¨¨ ,lrs are finitely

generated A-modules.

Proposition 3.3.4. Let A, R be the same as in Corollary 3.2.3. For any l1, l2, ¨ ¨ ¨ , lr P N, we

have the factors of ωr-filtration Rrl1,l2,¨¨¨ ,lrs X tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr are isomorphic to either

0 or A. It actually implies that tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is rectangularly normal. Similarly,

for any d P N, factors of ωr-filtration Rtdu X tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr are isomorphic to either

0 or A which implies that tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is triangularly normal.

Proof. By definition, we have

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir`1

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir

“

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir `Rrl1,l2,¨¨¨ ,lrs X A
r
ś

k“1

xikr`1´k

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir

(3.83)

Since x1, x2, ¨ ¨ ¨ , xr are indeterminates, if
r
ś

k“1

xikr`1´k R Rrl1,l2,¨¨¨ ,lrs, then

Rrl1,l2,¨¨¨ ,lrs X A
r
ź

k“1

xikr`1´k “ 0 (3.84)

which implies

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir`1

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir

“ 0 (3.85)

If
r
ś

k“1

xikr`1´k P Rrl1,l2,¨¨¨ ,lrs, then we have

Rrl1,l2,¨¨¨ ,lrs X A
r
ź

k“1

xikr`1´k “ A
r
ź

k“1

xikr`1´k (3.86)
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which implies

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir`1

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir

– A (3.87)

Similarly, we can prove tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is triangularly normal.

Rtdu XRi1,i2,¨¨¨ ,ir`1

Rtdu XRi1,i2,¨¨¨ ,ir

“

Rtdu XRi1,i2,¨¨¨ ,ir `Rtdu X A
r
ś

k“1

xikr`1´k

Rtdu XRi1,i2,¨¨¨ ,ir

(3.88)

Since x1, x2, ¨ ¨ ¨ , xr are indeterminates, if
r
ś

k“1

xikr`1´k R Rtdu, then Rtdu X A
r
ś

k“1

xikr`1´k “ 0

implies that
RtduXRi1,i2,¨¨¨ ,ir`1

RtduXRi1,i2,¨¨¨ ,ir
“ 0. If

r
ś

k“1

xikr`1´k P Rtdu, then RtduXA
r
ś

k“1

xikr`1´k “ A
r
ś

k“1

xikr`1´k

implies that
RtduXRi1,i2,¨¨¨ ,ir`1

RtduXRi1,i2,¨¨¨ ,ir
– A.

Definition 3.3.5. For any x P Nr, we denote the i-th coordinate of x by σipxq where

1 ď i ď r.

Lemma 3.3.6. Let ∆r be a subset of Nr containing infinitely many elements. Then, we

can construct a sequence δ1, δ2, ¨ ¨ ¨ , δn, ¨ ¨ ¨ such that σipδ1q, σipδ2q, ¨ ¨ ¨ , σipδnq, ¨ ¨ ¨ is a non-

decreasing sequence for any 1 ď i ď r, and δn P ∆r for any n P N. Also, δj ‰ δk for any

j ‰ k.

Proof. If r “ 1, it is obvious.

If we prove the lemma for any r ď k ´ 1, we consider the case k.

We denote ∆1
k´1 “ tpi1, i2, ¨ ¨ ¨ , ik´1q P Nk´1|pi1, i2, ¨ ¨ ¨ , ik´1, ikq P ∆ku. Since ∆k contains

infinitely many elements, if ∆1
k´1 is a finite set, there exists pl1, ¨ ¨ ¨ , lk´1q such that ∆k,k´1 “

tδ P ∆k|σipδq “ li where 1 ď i ď k ´ 1u contains infinitely many elements. We can choose

δ1, δ2, ¨ ¨ ¨ P ∆k,k´1 such that σkpδ1q, σkpδ2q, ¨ ¨ ¨ is strictly increasing. If ∆1
k´1 is an infinite set,

by induction, there exists a sequence δ11, δ
1
2, ¨ ¨ ¨ P ∆1

k´1 such that σipδ
1
1q, σipδ

1
2q, ¨ ¨ ¨ , σipδ

1
nq, ¨ ¨ ¨

is a non-decreasing sequence for any 1 ď i ď k´ 1. Thus, we can choose δ1, δ2, ¨ ¨ ¨ P ∆k such

that σipδ1q, σipδ2q, ¨ ¨ ¨ , σipδnq, ¨ ¨ ¨ is a non-decreasing sequence for any 1 ď i ď k ´ 1. For

this particular sequence, if the set tσkpδiq|i P Nu contains only finitely many elements, there
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exists l P N such that tδi|σkpδiq “ l, i P Nu contains infinitely many elements which gives

us the desired sequence. If the set tσkpδiq|i P Nu contains infinitely many elements, we can

choose a strictly increasing sequence in tσkpδiq|i P Nu. Thus, this subsequence of δ1, δ2, ¨ ¨ ¨

is the desired sequence.

Proposition 3.3.7. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. If R is also

a finite generated A-module, then the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is rectangularly

and triangularly normal.

Proof. We claim there are only finitely many distinct Rrl1,l2,¨¨¨ ,lrs where l1, l2, ¨ ¨ ¨ , lr P N.

Suppose there are infinitely many distinct Rrl1,l2,¨¨¨ ,lrs. We denote the set of distinct

Rrl1,l2,¨¨¨ ,lrs by ∆. Furthermore, we define

∆r “ tpl1, l2, ¨ ¨ ¨ , lrq P Nr
|Rrl1,l2,¨¨¨ ,lrs P ∆u (3.89)

According to Lemma 3.3.6, there exists a sequence δ1, δ2, ¨ ¨ ¨ , δn, ¨ ¨ ¨ such that δn P ∆r for any

n P N, and σipδ1q, σipδ2q, ¨ ¨ ¨ , σipδnq, ¨ ¨ ¨ is a non-decreasing sequence for any 1 ď i ď r. Thus,

Rδ1 , Rδ2 , ¨ ¨ ¨ is a strictly increasing sequence of submodules of R. Contradiction to the fact

R has ACC. According to Corollary 3.3.3, we know the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr

is rectangularly normal.

Since R has ACC, the increasing sequence Rtdu will be eventually stable which means

there are only finitely many distinct Rtdu. According to Corollary 3.3.3, we know the ωr-

filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is also triangularly normal.

Remark 3.3.8. As we all know, R “ Arθ1, θ2, ¨ ¨ ¨ , θrs is a finite generated A-module is equiva-

lent to say θk is integral overA for any 1 ď k ď r i.e., for θk, there exists ak,0, ak,1, ¨ ¨ ¨ , ak,dk´1 P

A such that

θdkk “

dk´1
ÿ

l“0

ak,lθ
l
k (3.90)
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Then, there are at most d1d2 ¨ ¨ ¨ dr distinct Rrl1,l2,¨¨¨ ,lrs. For any l1, l2, ¨ ¨ ¨ , lr P N, if there

exists 1 ď k ď r such that lk ě dk, then we have

Rrl1,l2,¨¨¨ ,lrs “ Rrl1,¨¨¨ ,lk´1,lk´1,lk`1,¨¨¨ ,lrs “ ¨ ¨ ¨ “ Rrl1,¨¨¨ ,lk´1,dk´1,lk`1,¨¨¨ ,lrs (3.91)

since θlkk “ θlk´dkk

řdk´1
l“0 ak,lθ

l
k. The degree of θk will decrease one. We can keep going until

the degree of θk is dk ´ 1. Now, we actually prove that for any l1, l2, ¨ ¨ ¨ , lr, there exists

l11, l
1
2, ¨ ¨ ¨ , l

1
r where l1k ă dk for all 1 ď k ď r such that Rrl1,l2,¨¨¨ ,lrs “ Rrl11,l12,¨¨¨ ,l1rs. Thus, the

number of distinct Rrl1,l2,¨¨¨ ,lrs is at most d1d2 ¨ ¨ ¨ dr. According to Corollary 3.3.3, there are

finitely many distinct factors of Rrl1,l2,¨¨¨ ,lrsXtRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr for any fixed l1, l2, ¨ ¨ ¨ , lr.

Thus, for finitely distinct pl1, l2, ¨ ¨ ¨ , lrq, there are only finitely many distinct factors. In

conclusion, for any pl1, l2, ¨ ¨ ¨ , lrq, the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is rectangularly

normal.

We also claim that there are only d1 ` d2 ` ¨ ¨ ¨ ` dr ´ r ` 1 distinct Rtdu. If d ě

d1 ` d2 ` ¨ ¨ ¨ ` dr ´ r ` 1, since i11 ` ¨ ¨ ¨ ` i1r “ d, there exists k such that i1k ě dk, then

θ
i11
1 ¨ ¨ ¨ θ

i1r
r P Rtd´1u since θ

i1k
k “ θ

i1k´dk
k

dk´1
ř

l“0

ak,lθ
l
k. Then, we have

Rtdu “ Rtd´1u “ ¨ ¨ ¨ “ Rtd1`d2`¨¨¨`dr´ru (3.92)

which implies that there are at most d1 ` d2 ` ¨ ¨ ¨ ` dr ´ r ` 1 distinct Rtdu. According to

Corollary 3.3.3, we know the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is also triangularly normal.

Proposition 3.3.9. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. If

θ1, θ2, ¨ ¨ ¨ , θh are indeterminates and θh`1, θh`2, ¨ ¨ ¨ , θr are integral over A, then the ωr-

filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is rectangularly and triangularly normal.

Proof. We may replace θ1, θ2, ¨ ¨ ¨ , θh by x1, x2, ¨ ¨ ¨ , xh. In order to prove the ωr-filtration

tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is triangularly normal, it suffices to prove that there are only finitely
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many distinct factors.

Rtdu XRi1,i2,¨¨¨ ,ir`1

Rtdu XRi1,i2,¨¨¨ ,ir

“

Rtdu XRi1,i2,¨¨¨ ,ir `Rtdu X A
h
ś

k“1

x
ir`1´k

k

r
ś

k“h`1

θ
ir`1´k

k

Rtdu XRi1,i2,¨¨¨ ,ir

(3.93)

Since x1, x2, ¨ ¨ ¨ , xh are indeterminates, if d ă
h
ř

k“1

ir`1´k, we have

Rtdu X A
h
ź

k“1

x
ir`1´k

k

r
ź

k“h`1

θ
ir`1´k

k “ 0 (3.94)

implies that

Rtdu XRi1,i2,¨¨¨ ,ir`1

Rtdu XRi1,i2,¨¨¨ ,ir

“ 0 (3.95)

If d ě
h
ř

k“1

ir`1´k, say d1 “ d
h
ř

k“1

ir`1´k and R1 “ Arθh, ¨ ¨ ¨ , θrs, then we have

Rtdu X A
h
ź

k“1

x
ir`1´k

k

r
ź

k“h`1

θ
ir`1´k

k (3.96)

“p
ÿ

ř

i1kďd
1

A
r
ź

k“h`1

θ
i1k
k X A

r
ź

k“h`1

θ
ir`1´k

k q

h
ź

k“1

x
ir`1´k

k (3.97)

“pR1td1u X A
r
ź

k“h`1

θ
ir`1´k

k q

h
ź

k“1

x
ir`1´k

k (3.98)

Also, by definition, we have

Ri1,i2,¨¨¨ ,ir X A
h
ź

k“1

x
ir`1´k

k

r
ź

k“h`1

θ
ir`1´k

k (3.99)

“pRi1,i2,¨¨¨ ,ir´h,0,¨¨¨ ,0 X A
r
ź

k“h`1

θ
ir`1´k

k q

h
ź

k“1

x
ir`1´k

k (3.100)

“pR1i1,i2,¨¨¨ ,ir´h X A
r
ź

k“h`1

θ
ir`1´k

k q

h
ź

k“1

x
ir`1´k

k (3.101)
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Thus, we have

Rtdu XRi1,i2,¨¨¨ ,ir X A
h
ź

k“1

x
ir`1´k

k

r
ź

k“h`1

θ
ir`1´k

k (3.102)

“pR1td1u XR
1
i1,i2,¨¨¨ ,ir´h

X A
r
ź

k“h`1

θ
ir`1´k

k q

h
ź

k“1

x
ir`1´k

k (3.103)

As we all know,

Rtdu XRi1,i2,¨¨¨ ,ir`1

Rtdu XRi1,i2,¨¨¨ ,ir

“

Rtdu XRi1,i2,¨¨¨ ,ir `Rtdu X A
h
ś

k“1

x
ir`1´k

k

r
ś

k“h`1

θ
ir`1´k

k

Rtdu XRi1,i2,¨¨¨ ,ir

(3.104)

–

Rtdu X A
h
ś

k“1

x
ir`1´k

k

r
ś

k“h`1

θ
ir`1´k

k

Rtdu XRi1,i2,¨¨¨ ,ir X A
h
ś

k“1

x
ir`1´k

k

r
ś

k“h`1

θ
ir`1´k

k

(3.105)

“

pR1
td1u X A

r
ś

k“h`1

θ
ir`1´k

k q
h
ś

k“1

x
ir`1´k

k

pR1
td1u XR

1
i1,i2,¨¨¨ ,ir´h

X A
r
ś

k“h`1

θ
ir`1´k

k q
h
ś

k“1

x
ir`1´k

k

(3.106)

–

R1
td1u X A

r
ś

k“h`1

θ
ir`1´k

k

R1
td1u XR

1
i1,i2,¨¨¨ ,ir´h

X A
r
ś

k“h`1

θ
ir`1´k

k

(3.107)

–
Rtd1u XR

1
i1,i2,¨¨¨ ,ir´h`1

Rtd1u XR
1
i1,i2,¨¨¨ ,ir´h

(3.108)

According to Proposition 3.3.7, we know there are only finitely many distinct factors

which implies that the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is triangularly normal.

Similarly, we can prove this ωr-filtration is rectangularly normal. In fact, since x1, x2, ¨ ¨ ¨ , xh

are indeterminates, if there exists one 1 ď k ď h such that lk ă ir`1´k, then we have

Rrl1,l2,¨¨¨ ,lrs X A
h
ź

k“1

x
ir`1´k

k

r
ź

k“h`1

θ
ir`1´k

k “ 0 (3.109)
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implies that

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir`1

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir

“ 0 (3.110)

Now, we assume for all 1 ď k ď h, we have lk ě ir`1´k. Denote R1 “ Arθh, ¨ ¨ ¨ , θrs. Then,

we have

Rrl1,l2,¨¨¨ ,lrsXA
h
ź

k“1

x
ir`1´k

k

r
ź

k“h`1

θ
ir`1´k

k “ pR1rlh`1,lh`2,¨¨¨ ,lrs
XA

r
ź

k“h`1

θ
ir`1´k

k q

h
ź

k“1

x
ir`1´k

k (3.111)

Thus,

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir`1

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir

(3.112)

“

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir `Rrl1,l2,¨¨¨ ,lrs X A
h
ś

k“1

x
ir`1´k

k

r
ś

k“h`1

θ
ir`1´k

k

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir

(3.113)

–

Rrl1,l2,¨¨¨ ,lrs X A
h
ś

k“1

x
ir`1´k

k

r
ś

k“h`1

θ
ir`1´k

k

Rrl1,l2,¨¨¨ ,lrs XRi1,i2,¨¨¨ ,ir X A
h
ś

k“1

x
ir`1´k

k

r
ś

k“h`1

θ
ir`1´k

k

(3.114)

“

pR1
rlh`1,lh`2,¨¨¨ ,lrs

X A
r
ś

k“h`1

θ
ir`1´k

k q
h
ś

k“1

x
ir`1´k

k

pR1
rlh`1,lh`2,¨¨¨ ,lrs

XR1i1,i2,¨¨¨ ,ir´h X A
r
ś

k“h`1

θ
ir`1´k

k q
h
ś

k“1

x
ir`1´k

k

(3.115)

–

R1
rlh`1,lh`2,¨¨¨ ,lrs

X A
r
ś

k“h`1

θ
ir`1´k

k

R1
rlh`1,lh`2,¨¨¨ ,lrs

XR1i1,i2,¨¨¨ ,ir´h X A
r
ś

k“h`1

θ
ir`1´k

k

(3.116)

–
R1
rlh`1,lh`2,¨¨¨ ,lrs

XR1i1,i2,¨¨¨ ,ir´h`1

R1
rlh`1,lh`2,¨¨¨ ,lrs

XR1i1,i2,¨¨¨ ,ir´h
(3.117)

According to Proposition 3.3.7, we know there are only finitely many distinct factors

which implies that the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is rectangularly normal.

Remark 3.3.10. Use the same method, if R “ Arθ1, θ2, ¨ ¨ ¨ , θrs where θi is either an indeter-

minate or integral over A for all 1 ď i ď r, then the ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is
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rectangularly and triangularly normal.

Lemma 3.3.11. Let K be a field, A “ Krx1, x2, ¨ ¨ ¨ , xns where xi is indeterminate for

1 ď i ď n, y1 be another indeterminate, and R “ Ary1, y2s where y2 “
y1
x1
x2. For fixed

t, s P N, we have

Ayj1y
i
2 XRrt,ss “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0 i` j ą t` s

Ayj1y
i
2x

j´t
2 j ą t, i` j ď t` s

Ayj1y
s
2x

i´s
2 i ą s, i` j ď t` s

Ayj1y
i
2 j ď t, i ď s

(3.118)

Proof. For any α, β P N , if α ` β ‰ i ` j, we claim that Ayj1y
i
2 X Ayα1 y

β
2 “ 0. Actually,

we know that yj1y
i
2 “

xi2
xi1
yi`j1 , yα1 y

β
2 “

xβ2
xβ1
yα`β1 , and y1 R A is indeterminate which implies

Ayj1y
i
2 X Ay

α
1 y

β
2 “ 0. If α ` β “ i` j, we have

Ayj1y
i
2 X Ay

α
1 y

β
2 “ Ayi`j1

x
maxpi,βq
2

x
minpi,βq
1

(3.119)

which implies

Ayj1y
i
2 XRrt,ss “

ÿ

αďt,βďs

Ayj1y
i
2 X Ay

α
1 y

β
2 “

ÿ

α`β“i`j
αďt,βďs

Ayi`j1

x
maxpi,βq
2

x
minpi,βq
1

(3.120)

If t` s ă i` j, we have Ayj1y
i
2 XRrt,ss “ 0. Otherwise,

1. if t ă j, s ě i, then α ď t ă j implies β “ i` j ´ α ą i.

Thus, we have

Ayj1y
i
2 XRrt,ss “

ÿ

α`β“i`j
αďt,βďs

Ayi`j1

x
maxpi,βq
2

x
minpi,βq
1

(3.121)

“

t
ÿ

α“0

Ayi`j1

x
maxpi,i`j´αq
2

x
minpi,i`j´αq
1

(3.122)
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“

t
ÿ

α“0

Ayi`j1

xi`j´α2

xi1
(3.123)

“ Ayi`j1

xi`j´t2

xi1
(3.124)

“ Ayj1y
i
2x

j´t
2 (3.125)

2. if t ě j, s ă i, then β ď s ă i implies α “ i` j ´ β ą j.

Thus, we have

Ayj1y
i
2 XRrt,ss “

ÿ

α`β“i`j
αďt,βďs

Ayi`j1

x
maxpi,βq
2

x
minpi,βq
1

(3.126)

“

s
ÿ

β“0

Ayi`j1

x
maxpi,βq
2

x
minpi,βq
1

(3.127)

“

s
ÿ

β“0

Ayi`j1

xi2

xβ1
(3.128)

“ Ayi`j1

xi2
xs1

(3.129)

“ Ayj1y
s
2x

i´s
2 (3.130)

3. if t ě j, s ě i, we have Ayj1y
i
2 XRrt,ss “ Ayj1y

i
2.

Proposition 3.3.12. Let K,A,R be the same as in Lemma 3.3.11. Then the ω2-filtration

tRi,jupi,jqPω2 is rectangularly and triangularly normal.

Proof. For fixed t, s P N, factors of the ω2-filtration Rrt,ss X tRi,jupi,jqPω2 have the following

form

Ri,j`1 XRrt,ss
Ri,j XRrt,ss

–
Ri,j XRrt,ss ` Ay

j
1y
i
2 XRrt,ss

Ri,j XRrt,ss
(3.131)
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If i “ 0, we have

Ayj1 XRrt,ss “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 j ą t` s

Ayj1x
j´t
2 t ă j ď t` s

Ayj1 j ď t

(3.132)

Since the degree of y1 in R0,j is at most j´1 and y1 is indeterminate, we have
R0,j`1XRrt,ss
R0,jXRrt,ss

– A

for j ď t` s and
R0,j`1XRrt,ss
R0,jXRrt,ss

“ 0 for j ą t` s.

Now, we consider the case i ě 1.

According to Lemma 3.3.11, if i` j ą t` s, then
Ri,j`1XRrt,ss
Ri,jXRrt,ss

“ 0.

If j ď t, i ď s, we have Ayj1y
i
2 XRrt,ss “ Ayj1y

i
2. Consider the following surjective map.

A� Ayj1y
i
2 (3.133)

φ : aÑ ayj1y
i
2 (3.134)

First, x1y
j
1y
i
2 “ yj1y

i´1
2 x2 P Ri,jXRrt,ss implies that Ax1 Ď kerφ. Second, if ayj1y

i
2 P Ri,jXRrt,ss,

then ayj1y
i
2 P Ri,j implies a P Ax1 according to the proof of Proposition 3.2.6. Thus, kerφ “

Ax1. We have
Ri,j`1XRrt,ss
Ri,jXRrt,ss

– A{Ax1.

If j ą t, i ď t`s´j, we have Ayj1y
i
2XRrt,ss “ Ayj1y

i
2x

j´t
2 . Similarly, consider the following

surjective map.

A� Ayj1y
i
2x

j´t
2 (3.135)

φ : aÑ ayj1y
i
2x

j´t
2 (3.136)

According to the proof of Proposition 3.2.6, ayj1y
i
2 P Ri,j is equivalent to a P Ax1. Thus,

ayj1y
i
2x

j´t
2 P Ri,j X Rrt,ss implies that axj´t2 P Ax1, then a P Ax1. Furthermore, if a P Ax1,

we say a “ bx1, then ayj1y
i
2x

j´t
2 “ byj`1

1 yi´1
2 xj`1´t

2 P Ayj`1
1 yi´1

2 xj`1´t
2 “ Ayj`1

1 yi´1
2 X Rrt,ss Ď

Ri,j XRrt,ss. It actually means that
Ri,j`1XRrt,ss
Ri,jXRrt,ss

– A{Ax1.
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If i ą s, j ď t ` s ´ i, we have Ayj1y
i
2 X Rrt,ss “ Ayj1y

s
2x

i´s
2 Ď Ayj1y

s
2 Ď Ri,j. Thus,

Ayj1y
i
2 XRrt,ss Ď Ri,j XRrt,ss implies

Ri,j`1XRrt,ss
Ri,jXRrt,ss

“ 0.

In conclusion, for any t, s P N, factors of the ω2-filtration Rrt,ssXtRi,jupi,jqPω2 are isomor-

phic to 0, A, or A{Ax1. Thus, the ω2-filtration tRi,jupi,jqPω2 is rectangularly normal.

For fixed d P N, factors of the ω2-filtration Rtdu X tRi,jupi,jqPω2 have the following form

Ri,j`1 XRtdu
Ri,j XRtdu

–
Ri,j XRtdu ` Ay

j
1y
i
2 XRtdu

Ri,j XRtdu
(3.137)

If j ` i ď d, we have Ayj1y
i
2 XRtdu “ Ayj1y

i
2. According to the proof of Proposition 3.2.6,

ayj1y
i
2 P Ri,j is equivalent to a P Ax1. If ayj1y

i
2 P Ri,j X Rtdu, then ayj1y

i
2 P Ri,j implies that

a P Ax1. If a P Ax1, then ayj1y
i
2 P Ri,j and Ayj1y

i
2 X Rtdu “ Ayj1y

i
2 imply ayj1y

i
2 P Ri,j X Rtdu.

Thus,
Ri,j`1XRtdu
Ri,jXRtdu

– A{Ax1.

If j` i ą d, we have Ayj1y
i
2XRtdu “ 0 since Ayj1y

i
2 “ Ayj`i1

xi2
xi1

and y1 R A is indeterminate.

Then
Ri,j`1XRtdu
Ri,jXRtdu

“ 0.

In conclusion, for any d P N, factors of the ω2-filtration RtduXtRi,jupi,jqPω2 are isomorphic

to 0, A, or A{Ax1. Thus, the ω2-filtration tRi,jupi,jqPω2 is triangularly normal.
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CHAPTER IV

The main result on ω-filtrations and applications

We cannot prove that ωr-filtrations are rectangularly or triangularly normal in general.

However, in this Chapter, we derive an ω-filtration in the graded case from the ωr-filtration.

By using a suitable ascending ω-filtration of R or M , we may reduce to studying the graded

case. By this method, we bypass all the difficulties that appear in Chapter III.

In the second section, we use these ω-filtrations to give a bound on the number of gen-

erators of an intersection of powers of two ideals or the ordinary symbolic powers Ipnq under

particular restrictions that we will describe later.

4.1 ω-filtrations of rings and modules

In this section, we derive an ω-filtration in the graded case from the ωr-filtration. By

using a suitable ascending ω-filtration of R or M , we may reduce to studying the graded

case.

Definition 4.1.1. Let A be a commutative ring and R be a finitely generated A-algebra. We

may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. We define the triangular

graded-ring of R over A as follows:

TriApRq “ A‘
Rt1u
A

‘
Rt2u
Rt1u

‘ ¨ ¨ ¨ (4.1)
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where Rtdu is the triangular submodule of R for d P N. It is actually the associated graded

ring of the filtration tRtduudě0 and depends on both A and the choices of θ1, ¨ ¨ ¨ , θr.

Discussion 4.1.2. When we form the graded ring TripRq, the images of the θi in degree 1

generate, call them ui. The ideal of relations on the ui is homogeneous. One gets a relation

in degree d if and only of one has a homogeneous polynomial of degree d in the θi that is

equal to one of smaller degree. This means that if one maps ArX1, ..., Xns onto R so that

Xj maps to θj and the ideal of relations is J , the ideal of relations on the ui is generated by

all leading (top degree) forms of elements of J .

One can say a bit more from this point of view. Given a polynomial in F in J , one can

homogenize it it by using an auxiliary variable, say z, and inserting a power of z into each

term of F that is not of highest degree to bring it up to degree d “ degpF q. Formally, this

is the same as zdF pX1{z, ..., Xr{zq.

Consider the ideal generated by all these homogenized polynomials in Arx1, ..., xr, zs.

They generated a homogeneous ideal Jh.

Let S “ Arx, zs{Jh. Then if one kills z ´ 1 in S, one gets R,. If one kills z, one gets the

associated graded ring TripRq.

In many cases, this will show enable one to compare the dimensions of TripRq and R:

often, they will both be dimpSq ´ 1.

Remark 4.1.3. The ascending filtrations Rt0u Ď Rt1u Ď Rt2u Ď Rt3u Ď ¨ ¨ ¨ are interesting.

The following example shows that the associated graded ring TripRq depends heavily on the

generators.

Suppose we start with R “ Krxs and use the generator θ1 “ x. The associated graded is

isomorphic with R.

Suppose we use θ1 “ x and θ2 “ x2. Then the n-th submodule consists of everything of

degree at most 2n, and the quotient is spanned by the images of x2n´1, x2n.

Suppose we denote the images of x, x2 in the degree 1 piece by u, v. Then the degree n

piece is spanned by vn, uvn´1. Note that u2 “ 0. This ring is isomorphic with Kru, vs{pu2q.
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It is not isomorphic to R.

Map Arx1, ¨ ¨ ¨ , xrs � R. Let J be the kernel and Jh be generated by all homogeneous

polynomial F px1, ¨ ¨ ¨ , xr, zq P Arx1, ¨, xr, zs such that F px1, ¨ ¨ ¨ , xr, 1q P J . Then z is not a

zero-divisor on Jh from the definition and z ´ 1 is not a zero-divisor because Jh is homoge-

neous. Let S “ Arx1, ¨ ¨ ¨ , xr, zs{J
h. Then we have that S{pzq – TripRq and S{pz ´ 1q – R.

When A “ K and in many other situations, this implies dimpTripRqq “ dimpRq.

Proposition 4.1.4. TripRq is a standard N-graded ring. If A is Noetherian, so is TripRq.

Proof. Clearly, for any i, j ě 0, we have RtiuRtju Ď Rti`ju. Notice that we denote Rt0u “ A

and Rt´1u “ p0q. Since RtiuRtj´1u, Rti´1uRtju Ď Rti`j´1u, there is a natural morphism as

follows:

Rtiu
Rti´1u

bA
Rtju
Rtj´1u

Ñ
Rti`ju
Rti`j´1u

(4.2)

which means that TripRq is an N-graded ring. Furthermore, TripRq is a finitely generated A-

algebra with generators θ1, θ2, ¨ ¨ ¨ , θr P
Rt1u
A

. This actually proves that TripRq is a standard

N-graded ring. Clearly, if A is Noetherian, so is TripRq.

Proposition 4.1.5. Let A be a Noetherian ring and R be a finitely generated A-algebra.

We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. If R is a standard

N-graded ring, say R “ R0 ‘ R1 ‘ R2 ¨ ¨ ¨ where Rh “
ř

i1`¨¨¨`ir“h

Aθi11 ¨ ¨ ¨ θ
ir
r for any h ě 0,

there exists an ω-filtration of R in which the factors are prime cyclic A-modules and only

finitely many distinct factors occur. Furthermore, the length of the inherited finite filtration

of Rh is at most Chr´1 where h ě 0 and C is a constant. For h " 0 and any factor in the

filtration of Rh, the number of copies of this factor is a polynomial of degree at most r ´ 1.

Proof. According to Proposition 3.2.1, R has an ωr-filtration tRi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr in which

all the factors are cyclic A-modules and only finitely many distinct factors will occur.

Now we consider the inherited ωr-filtration of Rh where h ě 0. Since Rh is a finitely

generated A-module , this inherited ωr-filtration of Rh is actually a finite filtration according
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to Lemma 3.3.2. By definition,

Ri1,i2,¨¨¨ ,ir`1 “ Ri1,i2,¨¨¨ ,ir ` A
r
ź

k“1

θikr`1´k (4.3)

We denote the piece of Ri1,i2,¨¨¨ ,ir of degree h by Ri1,i2,¨¨¨ ,ir||h, then we have

Ri1,i2,¨¨¨ ,ir`1

Ri1,i2,¨¨¨ ,ir

“

Ri1,i2,¨¨¨ ,ir ` A
r
ś

k“1

θikr`1´k

Ri1,i2,¨¨¨ ,ir

–
Ri1,i2,¨¨¨ ,ir`1||i1`¨¨¨`ir

Ri1,i2,¨¨¨ ,ir||i1`¨¨¨`ir

(4.4)

which means this factor is isomorphic to the factor of the finite filtration of Ri1`¨¨¨`ir . Thus,

only finitely many distinct factors of the inherited finite filtrations of all Rh for all h ě 0

may occur.

For simplicity, we denote the finite filtration of Rh by 0 “ Rh|0 Ď Rh|1 Ď Rh|2 Ď ¨ ¨ ¨ Ď

Rh|nh “ Rh. As we know all, the length nh of this filtration is less than or equal to the

number of monomials of r variables of degree h which is
`

h`r´1
r´1

˘

. Then, we can construct

the following filtration of R.

0 “R0|0 Ď R0|1 Ď ¨ ¨ ¨ Ď R0|n0 Ď R0 ‘R1|0 Ď R0 ‘R1|1 Ď ¨ ¨ ¨ Ď R0 ‘R1|n1

Ď ¨ ¨ ¨ Ď R0 ‘ ¨ ¨ ¨ ‘Rh ‘Rh`1|0 Ď ¨ ¨ ¨ Ď R0 ‘ ¨ ¨ ¨ ‘Rh ‘Rh`1|nh`1
Ď ¨ ¨ ¨

We have

8
ď

h“0

nh
ď

k“0

h´1
à

j“0

Rj ‘Rh|k “

8
ď

h“0

h
à

j“0

Rj “ R (4.5)

which means this is an ω-filtration in which the factors are cyclic A-modules and only finitely

many distinct factors occur.

Since for each cyclic A-module, there is a finite filtration in which the factors are prime

cyclic. Thus, there exists an ω-filtration of R in which the factors are prime cyclic A-modules

and only finitely many distinct factors occur.
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The above argument also works for cyclic R-modules. We denote M “ Rα and D “ Aα.

We may replace A and R by D and M , respectively.

We claim that for h " 0 and any factor in the filtration of Mh, the number of copies of

this factor is a polynomial of degree at most r ´ 1.

If r “ 1, it is obviously true since Mh “ Dθh1 .

If r ă s, the claim holds. We denote N “ Drθ1, ¨ ¨ ¨ , θs´1s “ N0 ‘ N1 ‘ N2 ‘ ¨ ¨ ¨ and

M “ N rθss “ M0 ‘ M1 ‘ M2 ‘ ¨ ¨ ¨ . By induction hypothesis, M has a ω-filtration in

which the factors are prime cyclic Arθ1, ¨ ¨ ¨ , θs´1s-modules and only finitely many distinct

factors occur. For h " 0 any factor in the filtration of Mh, the number of this factor is a

constant. As we all know, Arθ1, ¨ ¨ ¨ , θs´1s{Q – A
AXQ

rθ1, ¨ ¨ ¨ , θs´1s. By induction hypothesis,

A
AXQ

rθ1, ¨ ¨ ¨ , θs´1s has a ωs´1-filtration in which the factors are prime cyclic Arθ1, ¨ ¨ ¨ , θs´1s-

modules and only finitely many distinct factors occur. For h " 0 any factor in the filtration

of degree h piece of A
AXQ

rθ1, ¨ ¨ ¨ , θs´1s, the number of this factor is a polynomial of degree

s ´ 1. Furthermore, M “ Drθ1, ¨ ¨ ¨ , θss “ M 1
1 ‘M 1

2 ‘M 1
3 ‘ ¨ ¨ ¨ , M

1
h is sum of the degree

j piece of the factors in the filtration of Mh´j. Thus, the number of copies of the given

factor is the sum of the number of copies of this factor in degree j piece of the factors in the

filtration of Mh´j. It is a polynomial of degree at most r´ 1 since the sum of h polynomials

is a polynomial and the degree increases at most 1.

Remark 4.1.6. This Proposition also works for a standard N-graded module M over R.

Remark 4.1.7. If R (and M) are graded by N or Nh, then one can form the filtration to be

compatible with the given grading. This shows that one can localize at one nonzero element

of A so that all components become A-free. (If one only knows the whole ring or the whole

module is A-free, it is automatic that the graded or multi-graded pieces are projective, but

one does not know they are actually free). In the argument, simply choose all generators of

M and all of the θi to be homogeneous (or multi-homogeneous). The resulting filtration will

then factor all homogeneous or multi-homogeneous components.

We give an immediate consequence as an example.
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Corollary 4.1.8. Let R be a Noetherian ring and M1, ¨ ¨ ¨ ,Mk be finitely generated R-

modules. Let I1, ¨ ¨ ¨ , Ik be k ideals of R with d1, ¨ ¨ ¨ , dk generators, respectively. Denote

A “ R
I1`¨¨¨`Ik

. Then there exists an ω-filtration of TorhpgrI1 M1, ¨ ¨ ¨ , grIkMkq in which the

factors are prime cyclic A-modules and only finitely many distinct factors occur. For any

n " 0 and any factor in the filtration of
À

s1`¨¨¨`sk“n

Torhp
I
s1
1 M1

I
s1`1
1 M1

, ¨ ¨ ¨ ,
I
sk
k Mk

I
sk`1

k Mk

q, the number of

copies of this factor is a polynomial function in terms of n of degree at most d1`¨ ¨ ¨`dk´1.

Then we have that µp
À

s1`¨¨¨`sk“n

Torhp
I
s1
1 M1

I
s1`1
1 M1

, ¨ ¨ ¨ ,
I
sk
k Mk

I
sk`1

k Mk

qq “ Opnd1`¨¨¨`dk´1q.

Proof. According to Remark 2.11.3, we know that TorhpgrI1 M1, ¨ ¨ ¨ , grIkMkq is a finitely

generated module over grI1 R b ¨ ¨ ¨ b grIk R. We have that

TorhpgrI1 M1, ¨ ¨ ¨ , grIkMkq “
à

n

p
à

s1`¨¨¨`sk“n

Torhp
Is11 M1

Is1`1
1 M1

, ¨ ¨ ¨ ,
Iskk Mk

Isk`1
k Mk

qq (4.6)

We also know that grI1 Rb¨ ¨ ¨bgrIk R is a finitely generated graded algebra over A “ R
I1`¨¨¨`Ik

.

According to Proposition 4.1.5, we are done.

Remark 4.1.9. Let R be a Noetherian ring and M1,M2 be finitely generated R-modules. Let

I1, I2 be two ideals of R with d1, d2 generators, respectively. Denote A “ R
I1`I2

. Then there

exists an ω-filtration of ExthpgrI1 M1, grI2 M2q in which the factors are prime cyclic A-modules

and only finitely many distinct factors occur. For any n " 0 and any factor in the filtration of
À

s1`s2“n

Exthp
I
s1
1 M1

I
s1`1
1 M1

,
I
s2
2 M2

I
s2`1
2 M2

q, the number of copies of this factor is a polynomial function in

terms of n of degree at most d1`d2´1. Then we have that µp
À

s1`s2“n

Exthp
I
s1
1 M1

I
s1`1
1 M1

,
I
s2
2 M2

I
s2`1
2 M2

qq “

Opnd1`d2´1q.

Theorem 4.1.10. Let A be a Noetherian ring and R be a finitely generated A-algebra.

We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs. There exists an

ω-filtration of R in which the factors are prime cyclic A-modules and only finitely many

distinct factors occur. All the Rthu occur in the filtration. Furthermore, the length of the

inherited finite filtration from Rth´1u to Rthu is at most Chr´1, where h ě 0. Notice that
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Rt´1u “ 0. For all h " 0, the number of copies of A{p occurring as a factor in the filtration

of Rthu agrees with a polynomial in h of degree at most r.

Proof. According to Proposition 4.1.4, TripRq is a standard N-graded ring. It is a finitely

generated A-algebra with generators θ1, θ2, ¨ ¨ ¨ , θr P
Rt1u
A

. Denote R1 “ TripRq. And we

denote R1h “ Rthu{Rth´1u. Thus, we have R1 “ R10 ‘R
1
1 ‘R

1
2 ¨ ¨ ¨ . According to the previous

proposition, we have the finite filtration of R1h denoted by 0 “ R1h|0 Ď R1h|1 Ď R1h|2 Ď ¨ ¨ ¨ Ď

R1h|nh “ R1h. Since R1h “ Rthu{Rth´1u, there is a finite filtration from Rth´1u to Rthu such that

factors are the same as the factors of the finite filtration of R1h. Furthermore, R “
8
Ť

d“0

Rtdu

implies that we actually construct an ω-filtration of R in which the factors are prime cyclic

A-modules and only finitely many distinct factors occur.

For all h " 0, the number of copies of A{p occurring as a factor in the filtration of

Rthu{Rth´1u agrees with a polynomial in h of degree at most r´ 1 according to the previous

proposition. The sum of polynomials of degree r ´ 1 is a polynomial of degree r. Thus,

the number of copies of A{p occurring as a factor in the filtration of Rthu agrees with a

polynomial in h of degree at most r

Corollary 4.1.11. Let A be a Noetherian ring, R be a finitely generated A-algebra, and

M be a finitely generated R-module. There exists a general ω-filtration in which the factors

are prime cyclic A-modules and only finitely many distinct factors will occur.

Proof. According to Proposition 2.6.6, there exists 0 “ M0 Ď M1 Ď ¨ ¨ ¨Mn “ M such that

Mh`1{Mh are prime cyclic R-modules for h ě 0. According to Theorem 4.1.10, Mh`1{Mh

has an ω-filtration in which the factors are prime cyclic A-modules and only finitely many

distinct factors will occur. This actually gives us a general ω-filtration in which the factors

are prime cyclic A-modules and only finitely many distinct factors will occur.

Theorem 4.1.12. Let A be a Noetherian ring, R be a finitely generated A-algebra, and M

be a finitely generated R-module. There exists an ω-filtration M in which the factors are

prime cyclic A-modules and only finitely many distinct factors will occur. For all h " 0,
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the number of copies of A{p occurring as a factor in the filtration of Mthu agrees with a

polynomial in h of degree at most r.

Proof. We may replace A by its image in R and assume R “ Arθ1, θ2, ¨ ¨ ¨ , θrs and M “

Rα1 `Rα2 ` ¨ ¨ ¨ `Rαs. Denote B “ Aα1 `Aα2 ` ¨ ¨ ¨ `Aαs. Then, M “ Brθ1, θ2, ¨ ¨ ¨ , θrs.

We denote Mtdu “
ř

i1`¨¨¨`irďd

Bθi11 ¨ ¨ ¨ θ
ir
r . TripMq “ B ‘ Mt1u{B ‘ Mt2u{Mt1u ‘ ¨ ¨ ¨ is an

N-graded module over TripRq. Similar to Ri1,i2,¨¨¨ ,ir , we can define Mi1,i2,¨¨¨ ,ir as follows:

Mi1,i2,¨¨¨ ,ir “

i1´1
ÿ

i11“0

Brθ1, θ2, ¨ ¨ ¨ , θr´1sθ
i11
r

`

i2´1
ÿ

i12“0

Brθ1, θ2, ¨ ¨ ¨ , θr´2sθ
i12
r´1θ

i1
r

`

i3´1
ÿ

i13“0

Brθ1, θ2, ¨ ¨ ¨ , θr´3sθ
i13
r´2θ

i2
r´1θ

i1
r

` ¨ ¨ ¨

`

ir´1
ÿ

i1r“0

Bθ
i1r
1 θ

ir´1

2 ¨ ¨ ¨ θi1r

“

r
ÿ

j“1

ij´1
ÿ

i1j“0

Brθ1, θ2, ¨ ¨ ¨ , θr´jsθ
i1j
r´j`1

j´1
ź

k“1

θikr`1´k

We can see that tMi1,i2,¨¨¨ ,irupi1,i2,¨¨¨ ,irqPωr is an ωr-filtration of M in which all the factors are

finitely generated A-modules and only finitely many distinct factors will occur.

As in the proof of Theorem 4.1.10, we know that there exists an ω-filtration of M in

which the factors are finitely generated A-modules and only finitely many distinct factors

will occur. For these factors, according to Proposition 2.6.6, since they are finitely generated

A-module, there is a finite filtration in which all factors are prime cyclic A-modules. There

exists C which is the uniform bound of length of each finite filtration. Thus, there exists

an ω-filtration of M in which the factors are prime cyclic A-modules and only finitely many

distinct factors may occur.

For all h " 0, the number of copies of A{p occurring as a factor in the filtration of Mthu
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agrees with a polynomial in h of degree at most r.

Remark 4.1.13. It is easy to see that this ω-filtration is triangularly normal.

Remark 4.1.14. In the situation of the theorem above, suppose that p P SpecpAq is min-

imal in the support, over A, of TripMq. Then A0 “ pA{AnnApTripMqqqp is an Artin

local ring because p is minimal. Then the number of copies of A{p in the filtration of

Mtdu or of rTripMqsďd, i.e., the pieces of TripMq with degree at most d, is the same as

lengthA0
prTripMpqsďdq which may be thought of as a finitely generated graded module over a

standard graded algebra over A0. But this length agrees with a cumulative Hilbert function

and for d " 0 agree with a polynomial of degree at most the Krull dimension of TripMqp.

Remark 4.1.15. The degree bound for the eventual behavior of the number of occurrences

of a specific prime cyclic A-module for a finitely generated R-module M over a ring R can

sometimes be improved, or utilized in a more general context, as follows.

(1) In the module case, one may replace the ring by its quotient by the annihilator of M ,

either before or after passing to the graded case.

(2) In the graded case, if R is integral (hence, module-finite) over an A-subalgebra R1

generated by r1 forms of degree 1, where r1 ă r, one may view M or R as a finite module

over R1, and improve the degree bound to r1.

(3) If R is not standard, but has generators of varying degrees, let L be the least common

multiple of these degrees. The generators of R have powers of degree L, and these will

generate an A-subalgebra of R, call it R1, that may be thought of as standard once the

degrees are divided by L. R is module-finite over R1. If 0 ď ρ ď L ´ 1, let ρM denote

the direct sum of the homogeneous components of M in degrees that are congruent to ρ

mod L. Then M is the direct sum of these finitely many ρM , and every ρM is a finitely

generated module over R1, to which our results already apply. This will yield L polynomials,

Fρ, 0 ď ρ ď L ´ 1 such that the number of occurrences of A{p in degree d (we may write

d “ td{LuL ` ρ) is Fρptd{Luq. This is entirely similar to the behaviour of Hilbert functions

in non-standard N-graded algebras over a field.
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4.2 Upper bounds on the number of minimal generators

In this section, we first construct a finite filtration of R{In with properties that we will

describe later in the section. Then we use these filtrations to give a bound on the number

of generators of an intersection of powers of two ideals or the ordinary symbolic powers Ipnq

under particular restrictions that we will describe in this section.

Lemma 4.2.1. Let R be a Noetherian ring and I be an ideal of R with r generators. For

any n P N, there exists a finite filtration of R{In in which the factors have the form R{Q

where Q is a prime ideal of R containing I. There are only finitely many distinct R{Q in all

of the filtrations of R{In, and the number of copies of each is eventually polynomial in n of

degree at most r.

Proof. For each R{In, we have a finite filtration defined as follows:

0 “
In

In
Ď
In´1

In
Ď ¨ ¨ ¨ Ď

I1

In
Ď
I0

In
“
R

In
(4.7)

Each factor has the form Ih´1

In
{ I

h

In
– Ih´1

Ih
where 1 ď h ď n. The associated graded ring

grIpRq is a standard N-graded ring over A “ R{I, according to Proposition 4.1.5, there is

an ω-filtration of grIpRq in which all factors are prime cyclic R
I

-modules and only finitely

many distinct factors occur. The factors of inherited finite filtration of Ih´1

Ih
have the form

R
I
{Q1 – R

I
{Q
I
– R

Q
where Q1 is a prime ideal of R

I
and Q is the corresponding ideal of Q1 in R

containing I. Thus, there is a finite filtration from Ih

In
to Ih´1

In
. Then, there is a finite filtration

of R
In

in which the factors have the form R{Q where Q is a prime ideal of R containing I.

The number of copies of each R{Q is eventually polynomial in n of degree at most r since

the sum of polynomials of degree r ´ 1 is a polynomial of degree r.

Remark 4.2.2. Craig Huneke and Ilya Smirnov prove that for all n , simultaneously, they

can choose prime filtrations of R{In such that the set of primes appearing in these filtrations

is finite in the paper [13].
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Theorem 4.2.3. Let T be a functor of k variable R-modules (it may be covariant in some

variables and contravariant in others) such that if all but the i th module are held fixed,

producing a functor F of the module in the i th spot, and one has a short exact sequence

0 ÑM 1 ÑM ÑM2 Ñ 0, then the sequence p˚q F pM 1q Ñ F pMq Ñ F pM2q (with the roles

of M2 and M 1 interchanged in the contravariant case) is exact at the middle spot. Suppose we

have modules M1, ¨ ¨ ¨ ,Mk and Mi has a finite filtration 0 “Mi|0 ĎMi|1 Ď ¨ ¨ ¨ ĎMi|ni “Mi

with factors Mi,j “ Mi|j{Mi|j´1, 1 ď j ď ni of Mi, 1 ď i ď k. Then T pM1, ¨ ¨ ¨ ,Mkq has a

finite filtration whose factors are subquotients of the n1 ¨ ¨ ¨nk modules T pM1,j1 , ¨ ¨ ¨ ,Mk,jkq.

Proof. We use induction on k and on nk. Assume k “ 1. We give the argument for the

covariant case. The argument for the contravariant case is identical. If n1 “ 1 there is nothing

to prove. If n1 ą 1, we have an exact sequence T pM1|n1´1q Ñ T pM1q Ñ T pM1,n1q. By the

induction hypothesis and the Lemma 2.8.6, the first term has a filtration by subquotients

of the modules T pM1,jq, 1 ď j ď n1 ´ 1, which induces such a filtration on the image N of

the first map, while the quotient of the middle module by N is a submodule of T pM1,n1q.

If k ą 1, and we hold M1, ¨ ¨ ¨ ,Mk´1 fixed, we get a filtration of T pM1, ¨ ¨ ¨ ,Mk´1,Mkq by

subquotients of the modules T pM1, ¨ ¨ ¨ ,Mk´1,Mk,jkq using the case k “ 1. The result is

then immediate from the induction hypothesis and the Lemma 2.8.6.

Corollary 4.2.4. Let R be a Noetherian ring. Let I and J be two ideals of R with d and d1

generators, respectively. For m,n " 0, Torhp
R
Im
, R
Jn
q has a finite filtration with length at most

Cmdnd
1

where C is a constant. The factors in this filtration are subquotients of Torhp
R
Q
, R
Q1
q

where Q and Q1 are two prime ideals of R containing I and J , respectively. Furthermore,

there are only finitely many distinct Q and Q1 occurring in two filtrations.

Proof. According to Lemma 4.2.1 and Theorem 4.2.3, we get the corollary directly.

Corollary 4.2.5. Let R be a ring that is semi-local or finitely generated over a field. Let

I, J be two ideals of R. We suppose that dimp R
I`J
q ď 1. For any prime ideals Q and Q1
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containing I and J , respectively, there is a upper bound on the number of generators of any

submodules (and, hence, of all subquotients) of Torhp
R
Q
, R
Q1
q.

Proof. Torhp
R
Q
, R
Q1
q is a finitely generated R

Q`Q1
-module. Since we have R

I`J
� R

Q`Q1
,

dimpTorhp
R

Q
,
R

Q1
qq ď dimp

R

Q`Q1
q ď dimp

R

I ` J
q ď 1

According to Lemma 2.9.1, we actually prove the corollary.

Theorem 4.2.6. Let R be a ring that is semi-local or finitely generated over a field. Let I, J

be two ideals of R with d and d1 generators, respectively. Suppose also that dimp R
I`J
q ď 1.

For m,n " 0, we have µpTorhp
R
Im
, R
Jn
qq “ Opmdnd

1

q.

Proof. According to Corollary 4.2.4, Torhp
R
Im
, R
Jn
q has a finite filtration with length Cmdnd

1

where C is a constant. The factors in this filtration are subquotients of Torhp
R
Q
, R
Q1
q where

Q and Q1 are two prime ideals of R containing I and J , respectively.

According to Corollary 4.2.5, there is a bound on the number of generators of subquotients

of Torhp
R
Q
, R
Q1
q. Furthermore, there are only finitely many distinct Q and Q1 occurring in

two filtrations. Thus, there is a bound on the number of generators of factors of the finite

filtration of Torhp
R
Im
, R
Jn
q.

According to Proposition 2.7.20, we know that µpIm X Jnq “ Opmdnd
1

q.

Theorem 4.2.7. Let R be a ring that is semi-local or finitely generated over a field. Let

I1, ¨ ¨ ¨ , Ik be k ideals of R with d1, ¨ ¨ ¨ , dk generators, respectively. Suppose also that

dimp R
I1`¨¨¨`Ik

q ď 1. For n1, ¨ ¨ ¨ , nk " 0, we have µpTorRh p
R
I
n1
1
, ¨ ¨ ¨ , R

I
nk
k

qq “ Opnd11 ¨ ¨ ¨n
dk
k q.

If k “ 2, the corresponding fact also holds for ExthR, hence, for HomR.

Proof. According to Lemma 4.2.1 and Theorem 4.2.3, for n1, ¨ ¨ ¨ , nk " 0, Torhp
R
I
n1
1
, ¨ ¨ ¨ , R

I
nk
k

q

has a finite filtration with length at most Cnd11 ¨ ¨ ¨n
dk
k where C is a constant. The factors in

this filtration are subquotients of Torhp
R
Q1
, ¨ ¨ ¨ , R

Qk
q where Q1, ¨ ¨ ¨ ,Qk are prime ideals of R

86



containing I1, ¨ ¨ ¨ , Ik, respectively. Furthermore, there are only finitely many distinct prime

ideals Qj occurring.

As we all know, Torhp
R
Q1
, ¨ ¨ ¨ , R

Qk
q is a finitely generated R

Q1`¨¨¨`Qk
-module. Then, we have

dimpTorhp
R
Q1
, ¨ ¨ ¨ , R

Qk
qq ď 1. According to Lemma 2.9.1, there is a bound on the number of

generators of any submodules (and, hence, of all subquotients) of Torhp
R
Q1
, ¨ ¨ ¨ , R

Qk
q. Since

there are only finitely many distinct Qj, there is a uniform upper bound on the number of

generators of any submodules (and, hence, of all subquotients) of Torhp
R
Q1
, ¨ ¨ ¨ , R

Qk
q.

According to Proposition 2.7.20, we know that µpTorhp
R
I
n1
1
, ¨ ¨ ¨ , R

I
nk
k

qq “ Opnd11 ¨ ¨ ¨n
dk
k q.

Theorem 4.2.8. Let R, p, I0 be the same as in Proposition 2.7.30. Assume that R is semi-

local or finitely generated over a field. Let h “ heightpI0
R
p
q. Suppose that dimpR{pq “

dimp R
I0`p

q ` h and dimp R
I0`p

q ď 1. For n " 0, we have µpppnqq “ Opnd`hq.

Proof. Denote R{p “ D. Pick a1 P I0 ´
Ť

minimal primes of D, then dimpD{pa1qq ď

dimpDq ´ 1 and heightpI0{pa1qq ě h´ 1. By induction we can pick a1, ¨ ¨ ¨ , ah P I0 ´ p such

that dimpD{pa1, ¨ ¨ ¨ , ahqq ď dimpDq ´ h “ dimp R
I0`p

q ď 1.

Denote J “ pah1 , ¨ ¨ ¨ , a
h
hq. According to Proposition 2.7.30, we have ppnq “ pn : Jn.

As we all know, HompR
A
, R
B
q – B:A

B
, then HompR{Jn, R{pnq – pn:Jn

pn
–

ppnq

pn
. We have that

dimp R
J`p
q “ dimp D

pa1,¨¨¨ ,ahq
q ď 1. According to Theorem 4.2.7, we have µpp

pnq

pn
q “ Opnd`hq.

According to Proposition 2.7.19, we know that µpppnqq ď µppnq ` µpp
pnq

pn
q, thus µpppnqq “

Opnd`hq.

Lemma 4.2.9. Let R be a commutative ring and I, J be two ideals of R. Then we have the

following inequality:

µpIm X Jnq ď µpImJnq ` µpTor1p
R

Im
,
R

Jn
qq (4.8)

where n,m P N.
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Proof. We have the following short exact sequence:

0 Ñ ImJn Ñ Im X Jn Ñ
Im X Jn

ImJn
Ñ 0 (4.9)

According to Proposition 2.7.19, we know that µpIm X Jnq ď µpImJnq ` µp I
mXJn

ImJn
q. As we

all know, Tor1p
R
Im
, R
Jn
q – ImXJn

ImJn
which implies the desired inequality.

Theorem 4.2.10. Let R be a ring that is semi-local or finitely generated over a field. Let

I, J be two ideals of R with d and d1 generators, respectively. Suppose that dimp R
I`J
q ď 1.

For m,n " 0, there is a polynomial upper bound on the number of generators of Im X Jn.

Specifically, we have µpIm X Jnq “ Opmdnd
1

q.

Proof. According to Lemma 4.2.9, we have

µpIm X Jnq ď µpImJnq ` µpTor1p
R

Im
,
R

Jn
qq (4.10)

µpImJnq ď
`

m`d´1
d´1

˘`

n`d1´1
d1´1

˘

“ Opmd´1nd
1´1q.

According to Theorem 4.2.6, we know that µpIm X Jnq “ Opmdnd
1

q.

Corollary 4.2.11. Let R be a Noetherian ring and I “ Q1X¨ ¨ ¨XQk with d generators where

Qi is primary to pi. The pi are mutually incomparable and 1 ď dimpR{piq ď 2. Assume no

pi is strictly contained in any associated prime q P AsspRq. For n " 0, µpIpnqq “ Opnd`1q.

Proof. According to Proposition 2.7.33, there exists a non zero-divisor x P R ´ p1 Y ¨ ¨ ¨ Y

pk Y p
Ť

qPAsspRq

qq such that Ipnq “ In : xn for any n.

Then we have

µpIpnqq “ µpIn : xnq “ µppIn : xnqxnq “ µpIn X pxnqq “ µpIn X pxqnq (4.11)

according to Lemma 2.7.34.

According to Theorem 4.2.10, we have µpIpnqq “ µpIn X pxqnq “ Opnd`1q.
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Remark 4.2.12. Dutta’s paper [4] gives a better polynomial bound with degree at most d´2.

However, it requires that R is S2. The proof uses the notion of analytic spread. See Section

2.10.
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CHAPTER V

The number of generators of the symbolic multi-power

of the intersection of prime monomial ideals

In this Chapter, we are working in the polynomial ring R “ Krx1, ¨ ¨ ¨ , xN s. We give a

formula to calculate the number of generators of the symbolic multi-power of the intersection

of prime monomial ideals, i.e., the intersection of powers of these prime monomial ideals.

In the second section, we give a polynomial upper bound on the number of generators of

the intersection of the powers of two prime monomial ideals.

5.1 The number of generators of the symbolic multi-power of the

intersection of prime monomial ideals

In this section, we first introduce some useful notations, and then we give a formula to

calculate the number of generators of the intersection of powers of prime monomial ideals.

Definition 5.1.1. Suppose k ě 1. Let Nn
k be the number of non-negative integer solutions

of the equation x1 ` x2 ` ¨ ¨ ¨ ` xk “ n if n ě 0. This is the number of monomials with k

variables of degree n. It will be convenient to make the convention that Nn
k “ 1 if n ă 0.

We make the corresponding convention for powers of ideals, i.e., In “ I0 “ R if n ď 0.
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Remark 5.1.2. It is well known that

Nn
k “

ˆ

n` k ´ 1

k ´ 1

˙

“

ˆ

n` k ´ 1

n

˙

(5.1)

if n ě 0.

Example 5.1.3. Let I “ p1 X p2 X ¨ ¨ ¨ X pc where pi is a prime monomial ideal and the

generators of pi and pj are disjoint if i ‰ j. Then

µpIpsqq “ µp
c
č

j“1

p
psjq
j q “ µp

c
č

j“1

p
sj
j q

“ µpps11 ps22 . . . pscc q

“ µpps11 qµpp
s2
2 q . . . µpp

sc
c q

“ N s1
µpp1q

N s2
µpp2q

. . . N sc
µppcq

(5.2)

If we assume µppiq “ mi, then

µpIpsqq “
ps1 `m1 ´ 1q!

pm1 ´ 1q!ps1q!

ps2 `m2 ´ 1q!

pm2 ´ 1q!ps2q!
. . .
psc `mc ´ 1q!

pmc ´ 1q!pscq!
(5.3)

As we know, for fixed mi,

psi `mi ´ 1q!

pmi ´ 1q!psiq!
“ Opsmi´1

i q (5.4)

if si " 0. Furthermore, we have

µpIpsqq “ Opsm1´1
1 sm2´1

2 . . . smc´1
c q (5.5)

Actually,

limsiÑ8

psi`mi´1q!
pmi´1q!psiq!

smi´1
i

“
1

pmi ´ 1q!
(5.6)

Generally, we have

limsÑ8
µpIpsqq

śi“c
i“1 s

mi´1
i

“ 1{
i“c
ź

i“1

pmi ´ 1q! (5.7)
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Then, we can say

µpIpsqq „
i“c
ź

i“1

smi´1
i {

i“c
ź

i“1

pmi ´ 1q! (5.8)

Definition 5.1.4. Let p1, p2, . . . , pc be prime monomial ideals. Actually pi is the ideal

generated by a subset Ai of the variables where 1 ď i ď c. Also, σc denotes a binary string

whose entries are 0 or 1, containing at least one 1, with c characters. Since c is fixed, we

replace σc by σ for simplicity. Σ is the set of all σ. The j-th character of σ is denoted by σpjq

where 1 ď j ď c. Let A1i be the set of variables not in Ai. Denote Aσ “ p
Ş

σpiq“1

AiqXp
Ş

σpjq“0

A1jq.

We denote the cardinality of Aσ by mσ.

Remark 5.1.5. The set of variables is the disjoint union of all the Aσ.

Remark 5.1.6. If c “ 2, we have the Venn diagram showing in the figure 5.1.

A10 A01A11

A1 A2

Figure 5.1: Venn diagram of two sets

Definition 5.1.7. A degree restriction is a function d from Σ to the nonnegative inte-

ger whose value on σ is denoted by dσ. Let s1, ¨ ¨ ¨ , sc be nonnegative integers, and let

∆ps1, ¨ ¨ ¨ , scq be the set of all degree restrictions such that for all i, 1 ď i ď c, and for all

σ P Σ, we have that
ř

σPΣ,σpiq“1

dσ ě si and for every σ, either dσ “ 0 or there exists i such

that σpiq “ 1 and
ř

σPΣ,σpiq“1

dσ “ si.

Theorem 5.1.8. Let p1, p2, . . . , pc be prime monomial ideals. Then we have the following

equation

µpps11 X ps22 X ¨ ¨ ¨ X pscc q “
ÿ

dP∆ps1,¨¨¨ ,scq

ź

σPΣ

Ndσ
mσ
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Proof. We claim that any monomial
ś

σPΣ

xdσσ is a minimal generator of ps11 Xps22 X¨ ¨ ¨Xpscc “ I

where dσ satisfies degree restrictions and xdσσ is an element of the set:

tx
dσ,1
σ,1 x

dσ,2
σ,2 ¨ ¨ ¨ x

dσ,mσ
σ,mσ |dσ,i P N and xσ,i P Aσ where 1 ď i ď mσ,

mσ
ÿ

i“1

dσ,i “ dσu (5.9)

First, we prove
ś

σPΣ

xdσσ P I. Since
ř

σPΣ,σpiq“1

dσ ě si, we have

ź

σPΣ,σpiq“1

xdσσ P psii (5.10)

where 1 ď i ď c. Also,
ś

σPΣ,σpiq“1

xdσσ |
ś

σPΣ

xdσσ which implies
ś

σPΣ

xdσσ P I.

Second, if
ś

σPΣ

x
d1σ
σ |

ś

σPΣ

xdσσ and
ś

σPΣ

x
d1σ
σ ‰

ś

σPΣ

xdσσ where dσ satisfies degree restrictions and

d1σ may not satisfy degree restrictions, then
ś

σPΣ

x
d1σ
σ R I.

In fact, there exists σ˚ such that d1σ˚ ă dσ˚ . Since dσ˚ satisfies degree restrictions, at

least on inequality in degree restrictions hold the equality. Without loss of generality, we

have the following equation.
ÿ

σPΣ,σpiq“1

dσ “ si (5.11)

σ˚ P tσ P Σ|σpiq “ 1u. Since d1σ˚ ă dσ˚ , we have

ÿ

σPΣ,σpiq“1

d1σ ă si (5.12)

which means that
ź

σPΣ,σpiq“1

xd
1
σ
σ R psii (5.13)

Furthermore,
ź

σPΣ

xd
1
σ
σ “

ź

σPΣ,σpiq“1

xd
1
σ
σ

ź

σPΣ,σpiq“0

xd
1
σ
σ (5.14)
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the variables appearing in
ś

σPΣ,σpiq“0

x
d1σ
σ are not in the ideal pi. Thus,

ź

σPΣ

xd
1
σ
σ R psii (5.15)

which implies
ś

σPΣ

x
d1σ
σ R I.

From above argument, we can say

ź

σPΣ

xdσσ -
ź

σPΣ

xd
1
σ
σ (5.16)

if both dσ and d1σ satisfy degree restrictions and pdσq is not identical to pd1σq.

We also claim that a minimal generator of I has the form
ś

σPΣ

xdσσ where dσ satisfies degree

restrictions. Actually, we have
ÿ

σPΣ,σpiq“1

dσ ě si (5.17)

for any i since
ź

σPΣ,σpiq“1

xdσσ P psii (5.18)

It implies that
ř

σPΣ,σpiq“1

dσ ě si and dσ ě 0 for any i and σ. For any particular σ˚, if none of

inequalities containing dσ˚ holds the equality, let d1σ˚ “ dσ˚ ´ 1. We define a new monomial

x
dσ˚
σ˚

ś

σ‰σ˚

xdσσ P I. We have

x
dσ˚
σ˚

ź

σ‰σ˚

xdσσ ‰
ź

σPΣ

xdσσ and x
dσ˚
σ˚

ź

σ‰σ˚

xdσσ |
ź

σPΣ

xdσσ (5.19)

which means that at least one of inequalities containing σ˚ hold the equality.

The number of elements in the set

tx
dσ,1
σ,1 x

dσ,2
σ,2 ¨ ¨ ¨ x

dσ,mσ
σ,mσ |dσ,i P N and xσ,i P Aσ where 1 ď i ď mσ,

mσ
ÿ

i“1

dσ,i “ dσu (5.20)
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is Ndσ
mσ . Thus, above all, we have

µpps11 X ps22 X ¨ ¨ ¨ X pscc q “
ÿ

dP∆ps1,¨¨¨ ,scq

ź

σPΣ

Ndσ
mσ (5.21)

Corollary 5.1.9. If c “ 2, without loss of generality, assume that s1 ď s2. Denote

∆1
pd10, d11, d01q “ tpd10, d11, d01q P N3

|d11 ` d01 “ s2, d10 “ Maxp0, s1 ´ d11qu (5.22)

Then we have the following equation:

µpps11 X ps22 q “
ÿ

pd10,d11,d01qP∆1pd10,d11,d01q

Nd10
m10

Nd11
m11

Nd01
m01

(5.23)

Proof. By definition, we only need to prove ∆pd10, d11, d01q is the same as ∆1pd10, d11, d01q.

First, for any pd10, d11, d01q P ∆pd10, d11, d01q. If d01 “ 0, we have d11 ě s1 ´ d10 and

d11 ě s2. d11 “ s2 since s2 ě s1. Then d10 “ 0 since one of d10 ě s1 ´ d11 and d10 ě 0 holds

the equality. p0, s2, 0q is also a point in ∆1pd10, d11, d01q. If d01 ą 0, then d11 ` d01 “ s2.

d10 ě s1 ´ d11 and d10 ě 0 tell us d10 “ Maxp0, s1 ´ d11q.

Second, for any pd10, d11, d01q P ∆1pd10, d11, d01q. d10 “ Maxp0, s1 ´ d11q implies d10 ě

s1´ d11. d11` d10 “ s2 implies d11` d10 ě s2. According to d11` d10 “ s2, both d11 and d10

hold at least one equality. d10 “ Maxp0, s1 ´ d11q tells us d01 holds at least one equality.

Remark 5.1.10. Actually, we have

µpps11 X ps22 q “
ÿ

∆1pd10,d11,d01q

Nd10
m10

Nd11
m11

Nd01
m01

(5.24)

“
ÿ

0ďd11ďs2

NMaxp0,s1´d11q
m10

Nd11
m11

N s2´d11
m01

(5.25)

“

s1
ÿ

d11“0

N s1´d11
m10

Nd11
m11

N s2´d11
m01

`

s2
ÿ

d11“s1`1

Nd11
m11

N s2´d11
m01

(5.26)
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Particularly, if m11 “ 1, we have

µpps11 X ps22 q “

s1
ÿ

d11“0

N s1´d11
m10

N s2´d11
m01

`

s2
ÿ

d11“s1`1

N s2´d11
m01

(5.27)

5.2 Two monomial prime ideals

In this section, we give a polynomial upper bound on the number of generators of the

intersection of the powers of two prime monomial ideals. These prime monomial ideals are

simply the ideals generated by a subset of the variables.

Lemma 5.2.1. For fixed α, β P N,
n
ř

k“0

kβpk ` dqα is a polynomial function of n, d. If

n " 0, d " 0, we have the following equation.

n
ÿ

k“0

kβpk ` dqα „
α
ÿ

i“0

`

α
i

˘

β ` i` 1
nβ`i`1dα´i (5.28)

Proof.

n
ÿ

k“0

kβpk ` dqα “
n
ÿ

k“0

kβp
α
ÿ

i“0

kidα´i
ˆ

α

i

˙

q (5.29)

“

n
ÿ

k“0

α
ÿ

i“0

kβ`idα´i
ˆ

α

i

˙

(5.30)

“

n
ÿ

k“0

dα´i
ˆ

α

i

˙

p

α
ÿ

i“0

kβ`iq (5.31)

As we all know,
α
ř

i“0

kβ`i is a polynomial function of n with the leading term nβ`i`1{pβ`i`1q

which means
α
ř

i“0

kβ`i „ nβ`i`1{pβ ` i` 1q. Thus,
n
ř

k“0

kβpk ` dqα is a polynomial function of

n, d. And, we have
n
ÿ

k“0

kβpk ` dqα „
α
ÿ

i“0

`

α
i

˘

β ` i` 1
nβ`i`1dα´i (5.32)

Lemma 5.2.2. For fixed a, b P N,
n
ř

k“0

`

k`b
b

˘`

k`d`a
a

˘

is a polynomial function of n, d. If
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n " 0, d " 0, we have the following equation.

n
ÿ

k“0

ˆ

k ` b

b

˙ˆ

k ` d` a

a

˙

„
1

a!b!

a
ÿ

i“0

`

a
i

˘

b` i` 1
nb`i`1da´i (5.33)

Proof.

n
ÿ

k“0

ˆ

k ` b

b

˙ˆ

k ` d` a

a

˙

“
1

a!b!

n
ÿ

k“0

b
ź

i“1

pk ` iq
a
ź

j“1

pk ` d` jq (5.34)

b
ź

i“1

pk ` iq
a
ź

j“1

pk ` d` jq “ kbpk ` dqa `
ÿ

0ďuďb
0ďvďa

pu,vq‰p0,0q

kb´upk ` dqa´vφu,vpa, bq (5.35)

where φu,vpa, bq is a function of a and b. φu,vpa, bq is fixed as both a, b are fixed and u, v are

given. According to Lemma 5.2.1, we have

n
ÿ

k“0

kbpk ` dqa „
a
ÿ

i“0

`

a
i

˘

b` i` 1
nb`i`1da´i (5.36)

n
ÿ

k“0

ÿ

0ďuďb
0ďvďa

pu,vq‰p0,0q

kb´upk ` dqa´vφu,vpa, bq (5.37)

“
ÿ

0ďuďb
0ďvďa

pu,vq‰p0,0q

φu,vpa, bq
n
ÿ

k“0

kb´upk ` dqa´v (5.38)

„
ÿ

0ďuďb
0ďvďa

pu,vq‰p0,0q

φu,vpa, bq
a
ÿ

i“0

`

a
i

˘

b` i` 1
nb´u`i`1da´v´i (5.39)
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Thus,
n
ř

k“0

`

k`b
b

˘`

k`d`a
a

˘

is a polynomial function of n, d for fixed a and b. Furthermore, we

have

n
ÿ

k“0

ˆ

k ` b

b

˙ˆ

k ` d` a

a

˙

„
1

a!b!

a
ÿ

i“0

`

a
i

˘

b` i` 1
nb`i`1da´i (5.40)

since nb´u`i`1da´v´i|nb`i`1da´i and nb´u`i`1da´v´i ‰ nb`i`1da´i for any pu, vq ‰ p0, 0q.

Proposition 5.2.3. Let p1 and p2 be two prime monomial ideals and m11 “ 1. For fixed

m10,m01 and s2 " s1 " 0, we have that µpps11 Xps22 q is a polynomial function of s1 and s2´s1.

Denote a “ m01 ´ 1 and b “ m10 ´ 1. We have

µpps11 X ps22 q „
1

a!b!

a
ÿ

i“0

`

a
i

˘

b` i` 1
sb`i`1

1 ps2 ´ s1q
a´i
`
ps2 ´ s1q

pa`1q

pa` 1q!
(5.41)

Proof. According to the remark of Corollary 5.1.9, we have

µpps11 X ps22 q “

s1
ÿ

d11“0

N s1´d11
m10

N s2´d11
m01

`

s2
ÿ

d11“s1`1

N s2´d11
m01

(5.42)

“

s1
ÿ

t“0

ˆ

s1 ´ t`m10 ´ 1

m10 ´ 1

˙ˆ

s2 ´ t`m01 ´ 1

m01 ´ 1

˙

`

s2
ÿ

t“s1`1

ˆ

s2 ´ t`m01 ´ 1

m01 ´ 1

˙

(5.43)

“

s1
ÿ

t“0

ˆ

s1 ´ t` b

b

˙ˆ

s2 ´ t` a

a

˙

`

s2
ÿ

t“s1`1

ˆ

s2 ´ t` a

a

˙

(5.44)

where a “ m01 ´ 1 and b “ m10 ´ 1. For the first term, we have

s1
ÿ

t“0

ˆ

s1 ´ t` b

b

˙ˆ

s2 ´ t` a

a

˙

“

s1
ÿ

k“0

ˆ

k ` b

b

˙ˆ

k ` d` a

a

˙

(5.45)

where d “ s2 ´ s1 and k “ s1 ´ t. According to Lemma 5.2.2,
s1
ř

t“0

`

s1´t`b
b

˘`

s2´t`a
a

˘

is a
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polynomial function of s1 and d “ s2 ´ s1.

s1
ÿ

t“0

ˆ

s1 ´ t` b

b

˙ˆ

s2 ´ t` a

a

˙

„
1

a!b!

a
ÿ

i“0

`

a
i

˘

b` i` 1
sb`i`1

1 ps2 ´ s1q
a´i (5.46)

As to the second term, we have

s2
ÿ

t“s1`1

ˆ

s2 ´ t` a

a

˙

“

d´1
ÿ

k“0

ˆ

k ` a

a

˙

(5.47)

where d “ s2 ´ s1 and k “ s2 ´ t. It is easy to check that
d´1
ř

k“0

`

k`a
a

˘

“
`

a`d
a`1

˘

. a is fixed, we

have
d´1
ÿ

k“0

ˆ

k ` a

a

˙

„
ps2 ´ s1q

pa`1q

pa` 1q!
(5.48)

In conclusion,

µpps11 X ps22 q „
1

a!b!

a
ÿ

i“0

`

a
i

˘

b` i` 1
sb`i`1

1 ps2 ´ s1q
a´i
`
ps2 ´ s1q

pa`1q

pa` 1q!
(5.49)

where a “ m01 ´ 1 and b “ m10 ´ 1. Both of a and b are fixed.

Lemma 5.2.4. For fixed α, β, γ P N,
n
ř

k“0

kβpn´ kqγpk` dqα is a polynomial function of n, d.

Denote Φα,β,γpvq “
`

α
v

˘

γ
ř

u“0

p´1qu

α`β`u´v`1

`

γ
u

˘

. We have Φα,β,γpvq ą 0. If n " 0, d " 0, we have

the following equation.

n
ÿ

k“0

kβpn´ kqγpk ` dqα „
α
ÿ

v“0

nα`β`γ´v`1dvΦα,β,γpvq (5.50)

Proof.

n
ÿ

k“0

kβpn´ kqγpk ` dqα “
n
ÿ

k“0

kβp
γ
ÿ

u“0

p´kqunγ´u
ˆ

γ

u

˙

qp

α
ÿ

v“0

kα´vdv
ˆ

α

v

˙

q (5.51)

“

γ
ÿ

u“0

α
ÿ

v“0

p´1qu
ˆ

γ

u

˙ˆ

α

v

˙

nγ´udv
n
ÿ

k“0

kα`β`u´v (5.52)
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„

γ
ÿ

u“0

α
ÿ

v“0

p´1qu
ˆ

γ

u

˙ˆ

α

v

˙

nγ´udv
nα`β`u´v`1

α ` β ` u´ v ` 1
(5.53)

since
n
ř

k“0

kα`β`u´v is a polynomial function of n and d with the leading term nα`β`u´v`1

α`β`u´v`1
.

n
ÿ

k“0

kβpn´ kqγpk ` dqα „
γ
ÿ

u“0

α
ÿ

v“0

p´1qu
ˆ

γ

u

˙ˆ

α

v

˙

nγ´udv
nα`β`u´v`1

α ` β ` u´ v ` 1
(5.54)

“

α
ÿ

v“0

nα`β`γ´v`1dv
ˆ

α

v

˙ γ
ÿ

u“0

p´1qu

α ` β ` u´ v ` 1

ˆ

γ

u

˙

(5.55)

“

α
ÿ

v“0

nα`β`γ´v`1dvΦα,β,γpvq (5.56)

where Φα,β,γpvq “
`

α
v

˘

γ
ř

u“0

p´1qu

α`β`u´v`1

`

γ
u

˘

. In conclusion,
n
ř

k“0

kβpn´kqγpk`dqα is a polynomial

function of n and d. Now, we prove that Φα,β,γpvq ą 0. Denote α ` β ´ v ` 1 by δ. δ ě 1

since v ď α. Thus, we have

ˆ

α

v

˙ γ
ÿ

u“0

p´1qu

u` δ

ˆ

γ

u

˙

“

ˆ

α

v

˙ γ
ÿ

u“0

p´1qu
ˆ

γ

u

˙
ż 1

0

xu`δ´1dx (5.57)

“

ˆ

α

v

˙
ż 1

0

γ
ÿ

u“0

p´1qu
ˆ

γ

u

˙

xu`δ´1dx (5.58)

“

ˆ

α

v

˙
ż 1

0

xδ´1
γ
ÿ

u“0

p´1qu
ˆ

γ

u

˙

xudx (5.59)

“

ˆ

α

v

˙
ż 1

0

xδ´1
p1´ xqγdx (5.60)

ą 0 (5.61)

Lemma 5.2.5. For fixed a, b, c P N,
n
ř

k“0

`

k`b
b

˘`

n´k`c
c

˘`

k`d`a
a

˘

is a polynomial function of n, d.

Denote Φa,b,cpvq “
`

a
v

˘

c
ř

u“0

p´1qu

a`b`u´v`1

`

c
u

˘

. We have Φa,b,cpvq ą 0. If n " 0, d " 0, we have the
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following equation.

n
ÿ

k“0

ˆ

k ` b

b

˙ˆ

n´ k ` c

c

˙ˆ

k ` d` a

a

˙

„
1

a!b!c!

a
ÿ

v“0

na`b`c´v`1dvΦa,b,cpvq (5.62)

Proof.

n
ÿ

k“0

ˆ

k ` b

b

˙ˆ

n´ k ` c

c

˙ˆ

k ` d` a

a

˙

(5.63)

“
1

a!b!c!

n
ÿ

k“0

b
ź

i“1

pk ` iq
c
ź

l“1

pn´ k ` jq
a
ź

j“1

pk ` d` jq (5.64)

b
ź

i“1

pk ` iq
c
ź

l“1

pn´ k ` jq
a
ź

j“1

pk ` d` jq (5.65)

“kbpn´ kqcpk ` dqa `
ÿ

0ďiďb
0ďjďa
0ďlďc

pa,b,cq‰p0,0,0q

kb´ipn´ kqc´lpk ` dqa´jφi,j,lpa, b, cq (5.66)

where φi,j,lpa, b, cq is a function of a, b, c. φi,j,lpa, b, cq is fixed as both a, b, c are fixed and i, j, l

are given. According to Lemma 5.2.4, we have

n
ÿ

k“0

kbpn´ kqcpk ` dqa „
a
ÿ

v“0

na`b`c´v`1dvΦa,b,cpvq (5.67)

n
ÿ

k“0

ÿ

0ďiďb
0ďjďa
0ďlďc

pa,b,cq‰p0,0,0q

kb´ipn´ kqc´lpk ` dqa´jφi,j,lpa, b, cq (5.68)

“
ÿ

0ďiďb
0ďjďa
0ďlďc

pa,b,cq‰p0,0,0q

φi,j,lpa, b, cq
n
ÿ

k“0

kb´ipn´ kqc´lpk ` dqa´j (5.69)

101



„
ÿ

0ďiďb
0ďjďa
0ďlďc

pa,b,cq‰p0,0,0q

φi,j,lpa, b, cq
a
ÿ

v“0

na`b`c´pi`j`lq´v`1dvΦa´i,b´j,c´lpvq (5.70)

Thus,

n
ÿ

k“0

ˆ

k ` b

b

˙ˆ

n´ k ` c

c

˙ˆ

k ` d` a

a

˙

(5.71)

„
1

a!b!c!

a
ÿ

v“0

na`b`c´v`1dvΦa,b,cpvq (5.72)

since i ` j ` l ą 1 which means the order of na`b`c´pi`j`lq´v`1dv is strictly less than

na`b`c´v`1dv. From above all,
n
ř

k“0

`

k`b
b

˘`

n´k`c
c

˘`

k`d`a
a

˘

is a polynomial function of n, d for

fixed a, b, c.

Lemma 5.2.6. For fixed α, γ P N,
d´1
ř

k“0

pn` d´ kqγkα is a polynomial function of n and d. If

n " 0, d " 0, we have the following equation.

d´1
ÿ

k“0

pn´ kqγkα „
γ
ÿ

u“0

p´1qγ´u
`

γ
u

˘

α ` γ ´ u` 1
pn` dqudα`γ´u`1 (5.73)

Proof.

d´1
ÿ

k“0

pn` d´ kqγkα “
d´1
ÿ

k“0

γ
ÿ

u“0

p´1qγ´upn` dqukγ´ukα
ˆ

γ

u

˙

(5.74)

“

γ
ÿ

u“0

p´1qγ´u
ˆ

γ

u

˙

pn` dqu
d´1
ÿ

k“0

kα`γ´u (5.75)

„

γ
ÿ

u“0

p´1qγ´u
ˆ

γ

u

˙

pn` dqu
pd´ 1qα`γ´u`1

α ` γ ´ u` 1
(5.76)

“

γ
ÿ

u“0

p´1qγ´u
`

γ
u

˘

α ` γ ´ u` 1
pn` dqudα`γ´u`1 (5.77)

Lemma 5.2.7. For fixed a, c P N,
d´1
ř

k“0

`

n`d´k`c
c

˘`

k`a
a

˘

is a polynomial function of n and d. If
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n " 0, d " 0, we have the following equation.

d´1
ÿ

k“0

ˆ

n` d´ k ` c

c

˙ˆ

k ` a

a

˙

„
1

a!c!

c
ÿ

u“0

p´1qc´u
`

c
u

˘

a` c´ u` 1
pn` dquda`c´u`1 (5.78)

Proof.

d´1
ÿ

k“0

ˆ

n` d´ k ` c

c

˙ˆ

k ` a

a

˙

“
1

a!c!

d´1
ÿ

k“0

c
ź

i“1

pn` d´ k ` iq
a
ź

j“1

pk ` jq (5.79)

c
ź

i“1

pn` d´ k ` iq
a
ź

j“1

pk ` jq “ pn` d´ kqcka `
ÿ

0ďiďa
0ďjďc

pi,jq‰p0,0q

pn` d´ kqc´jka´i (5.80)

According to Lemma 5.2.6, we have

d´1
ÿ

k“0

ˆ

n´ k ` c

c

˙ˆ

k ` a

a

˙

„
1

a!c!

c
ÿ

u“0

p´1qc´u
`

c
u

˘

a` c´ u` 1
pn` dquda`c´u`1 (5.81)

And,
d´1
ř

k“0

`

n`d´k`c
c

˘`

k`a
a

˘

is a polynomial function of n, d.

Theorem 5.2.8. Let p1 and p2 be two prime monomial ideals. m01,m10,m11 are defined

in Definition 5.1.4. For fixed m01,m10,m11 and s2 " s1 " 0, µpps11 X ps22 q is a polynomial

function of s1 and s2´s1. Denote a “ m01´1, b “ m10´1, and c “ m11´1. For 0 ď v ď a,

denote Φa,b,cpvq “
`

a
v

˘

c
ř

u“0

p´1qu

a`b`u´v`1

`

c
u

˘

. We have Φa,b,cpvq ą 0 and

µpps11 X ps22 q „
1

a!b!c!

a
ÿ

v“0

sa`b`c´v`1
1 ps2 ´ s1q

vΦa,b,cpvq

`
1

a!c!

c
ÿ

u“0

p´1qc´u
`

c
u

˘

a` c´ u` 1
su2ps2 ´ s1q

a`c´u`1
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Proof. According to the remark of Corollary 5.1.9, we have

µpps11 X ps22 q “

s1
ÿ

d11“0

N s1´d11
m10

Nd11
m11

N s2´d11
m01

`

s2
ÿ

d11“s1`1

Nd11
m11

N s2´d11
m01

“

s1
ÿ

t“0

ˆ

s1 ´ t`m10 ´ 1

m10 ´ 1

˙ˆ

t`m11 ´ 1

m11 ´ 1

˙ˆ

s2 ´ t`m01 ´ 1

m01 ´ 1

˙

`

s2
ÿ

t“s1`1

ˆ

t`m11 ´ 1

m11 ´ 1

˙ˆ

s2 ´ t`m01 ´ 1

m01 ´ 1

˙

“

s1
ÿ

t“0

ˆ

s1 ´ t` b

b

˙ˆ

t` c

c

˙ˆ

s2 ´ t` a

a

˙

`

s2
ÿ

t“s1`1

ˆ

t` c

c

˙ˆ

s2 ´ t` a

a

˙

where a “ m01 ´ 1, b “ m10 ´ 1 and c “ m11 ´ 1. For the first term, we have

s1
ÿ

t“0

ˆ

s1 ´ t` b

b

˙ˆ

t` c

c

˙ˆ

s2 ´ t` a

a

˙

“

s1
ÿ

k“0

ˆ

k ` b

b

˙ˆ

s1 ´ k ` c

c

˙ˆ

k ` d` a

a

˙

(5.82)

where d “ s2 ´ s1 and k “ s1 ´ t. According to Lemma 5.2.5,
s1
ř

t“0

`

s1´t`b
b

˘`

t`c
c

˘`

s2´t`a
a

˘

is a

polynomial function of s1 and s2 ´ s1. Also,

s1
ÿ

t“0

ˆ

s1 ´ t` b

b

˙ˆ

t` c

c

˙ˆ

s2 ´ t` a

a

˙

„
1

a!b!c!

a
ÿ

v“0

sa`b`c´v`1
1 ps2 ´ s1q

vΦa,b,cpvq (5.83)

As to the second term, we have

s2
ÿ

t“s1`1

ˆ

t` c

c

˙ˆ

s2 ´ t` a

a

˙

“

d´1
ÿ

k“0

ˆ

s1 ` d´ k ` c

c

˙ˆ

k ` a

a

˙

(5.84)

where d “ s2 ´ s1 and k “ s2 ´ t. According to Lemma 5.2.7, we have

s2
ÿ

t“s1`1

ˆ

t` c

c

˙ˆ

s2 ´ t` a

a

˙

„
1

a!c!

c
ÿ

u“0

p´1qc´u
`

c
u

˘

a` c´ u` 1
su2ps2 ´ s1q

a`c´u`1 (5.85)

We actually prove the theorem.
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