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ABSTRACT

We prove a very powerful generalization of the theorem on generic freeness that gives
countable ascending filtrations, by prime cyclic A-modules A/P, of finitely generated algebras
R over a Noetherian ring A and of finitely generated R-modules such that the number of
primes P that occur is finite. Moreover, we can control, in a sense that we can make precise,
the number of factors of the form A/P that occur.

In the graded case, the number of occurrences of A/P up to a given degree is eventually
polynomial. The degree is at most the number of generators of R over A. By multi-powers
of a finite sequence of ideals we mean an intersection of powers of the ideals with exponents
varying. Symbolic multi-powers are defined analogously using symbolic powers instead of
powers. We use our filtration theorems to give new results bounding the number of generators
of the multi-powers of a sequence of ideals and of the symbolic multi-powers as well under
various conditions. This includes the case of ordinary symbolic powers of one ideal.

Furthermore, we give new results bounding, by polynomials in the exponents, the number
of generators of multiple Tor when each input module is the quotient of R by a power of an
ideal. The ideals and exponents vary. The bound is given by a polynomial in the exponents.
There are similar results for Ext when both of the input modules are quotients of R by a
power of an ideal. Typically, the two ideals used are different, and the bound is a polynomial

in two exponents.
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CHAPTER I

Introduction

It appears to be very difficult to give a bound on the number of generators of a symbolic
power or of an intersection of powers. In this thesis, we will introduce a powerful tool to
give a bound for some particular cases.

We prove a very powerful generalization of the theorem on generic freeness that gives
countable ascending filtrations, by prime cyclic A-modules A/p, of finitely generated algebras
R over a Noetherian ring A and of finitely generated R-modules such that the number of
primes p that occur is finite. Moreover, we can control, in a sense that we can make precise,
the number of factors of the form A/p that occur.

When A is a domain, the theorem on generic freeness follows at once: one simply localizes
at one element of A — {0} in all of the finitely many nonzero primes of A that occur in the
filtration.

In the graded case, the number of occurrences of A/p up to a given degree is eventually
polynomial. The degree is at most the number of generators of R over A. Therefore, in
a sense, the results have generalized the standard theory of Hilbert functions for standard
graded algebras over a field. We use these theorems to give new results bounding the number
of generators of the multi-powers of ideals, i.e., I{* n--- N I;'*, and of symbolic multi-powers,
I 1("1) Nn--nl ,gn’“), under various conditions. This includes the case of ordinary symbolic

powers (.



Furthermore, we give new results bounding, by polynomials in the n;, the number of

R R

generators of Tor,lf(IITl, e

) and of other functors, e.g., Ext}}%(%, I%), some of which
1 2

are needed to prove the results mentioned above.

In the paper [13], Craig Huneke and Ilya Smirnov prove related results on prime filtrations
of R/I".

Enescu and Yao define the notion of Frobenius complezity [7], and it follows from the
results of [15] that for a complete local normal domain R of positive prime characteristic p,
the Frobenius complexity is finite if and only if there is a polynomial in d that bounds the
number of generators of I for a suitably chosen ideal I of R. This question remains open.
This gives further motivation for studying the problems considered here.

Although we do not study the containment problem for symbolic powers here, we do want
to point out that there is considerable recent literature on the existence of constants ¢ such
that P is contained in P™ for all n. P need not be prime, although that case is of great
importance, and there are results giving a single choice of ¢ for all ideals (e.g., in regular
rings and certain isolated singularities) as well as results that place an extra hypothesis on

R/P. Containment results may be found in [2], [8], [3], [4], [5], [9], [12], [14], and [16].

1.1 Outline and main results

In Chapter II, we provide background material necessary in understanding the thesis
work. First, we establish some notations to be used throughout the thesis in Section 2.1.
Next, we give a review of the basic standard facts in the commutative algebra in the rest of
this Chapter.

In Chapter III, we discuss the notion of w"-filtrations, defined just below. Next, we prove
several useful properties of w”-filtrations. Also, we prove the existence of w”-filtrations with

an important property that we will describe in the following theorem.

Definition 3.1.1. Let M be a R-module. We define recursively the notion of an w"-filtration



of M. If r = 1, an w-filtration of M is just an ascending sequence of submodules denoted by
the following.
O=Myc Mic My<c Ms<---
0
where M; is a submodule of M and | J M; = M. Recursively, if we have already defined
i=0
an w’~-filtration of an arbitrary R-module for r > 2, an w"-filtration of M is an ascending
0
sequence of submodules denoted by My, My, M,, - - - such that | J M; = M, and each M;/M;_,
i=0
has an w"!-filtration.
Theorem 3.1.15. Let A be a Noetherian commutative ring. Let R be an A-algebra with r
generators and M be a finitely generated R-module. Then M has an w"-filtration in which

all the factors are prime cyclic A-modules. Furthermore, only finitely many distinct factors

will occur.

In Section 3.2, we give an explicit construction of w”-filtrations. For several particular

cases, we calculate the factors of these w”-filtrations.

Proposition 3.2.2. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[0;,05, -+ ,0,.]. Then R

has an w'-filtration {R;, i, .. i, } (i1 ,in, in)ewr Where R; 4, .. ; is defined as the following.

i1—1

Riy iy = . Albr, 02, 06,1100 (1.1)

i =0
271 -/ .

+ Z A[ela 027 e 707'—2]9:-2710;1 (12)
ih,=0

+ Z A[eh 02, - - - 707“*3]9:”3—29;2—167{1 (1-3)
i%=0

e (1.4)
ir_l .y .

+ ) AGyOy 0 (1.5)
ir.=0



roij— Jj—1

72 Z A 91’6‘2’ ' 6.7” J]er J+1H(9:"Ii1 k (16)

]117 k=1

Note that if the upper index is less than the lower index of the sum, we define the sum to
be zero. All the factors are cyclic A-modules. These cyclic A-modules may be replaced,
by filtration, by prime cyclic A-modules, i.e., modules of the form A/p with p prime. Only

finitely many distinct p occur.

Last but not least, we introduce the definition of rectangularly and triangularly normal
w'-filtrations. Futhermore, we construct rectangularly and triangularly normal w”-filtrations

in several particular cases.

Definition 3.3.1. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[f0,6,,--- ,0,].

For ly,l5,- -+, 1, € N, we define Ry, ,.... ;] as the following.

Rity gy 1] = > AO202 - 0 (1.7)
i <ly iy <layee il <Ly
We call Ry, 4,.... 1,1 a rectangular submodule of R.

For d € N, we define R4 as the following.

Ray= ), A6p0F---0F (1.8)
i) i+ +il.<d
Similarly, R4 is called a triangular submodule of R.

The notions of rectangular and triangular submodules depend on the choice of generators

An w"-filtration of R is said to be rectangularly normal (respectively, triangularly normal)
if all the inherited w"-filtrations on rectangular (respectively, triangular) submodules produce

only finitely many factors.



Proposition 3.3.9. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[f0,6,,---,0,]. If
01,05, ,0, are indeterminates and 6j,1,0,49, - ,0, are integral over A, then the w"-

filtration {R;, iy, i, } (i1 iz, ir)ewr 1 rectangularly and triangularly normal.

We cannot prove that w"-filtrations are rectangularly or triangularly normal in general.
However, in Chapter IV, we derive an w-filtration in the graded case from the w”-filtration.
By using a suitable asscending w-filtration of R or M, we may reduce to studying the graded

case. By this method, we bypass all the difficulties that appear in Chapter III.

Proposition 4.1.5. Let A be a Noetherian ring and R be a finitely generated A-algebra.
We may replace A by its image in R and assume R = A[6;,0,,---,0,.]. If R is a standard
N-graded ring, say R = Ry ® R1 ® Ry--- where R;, = ‘ Z Afh - -0 for any h = 0,
there exists an w-filtration of R in which the factors argg.r.;rgg hcyclic A-modules and only
finitely many distinct factors occur. Furthermore, the length of the inherited finite filtration

of Ry is at most Ch™!, where h > 0 and C is a constant. For h » 0 and any factor in the

filtration of Ry, the number of copies of this factor is a polynomial of degree at most r — 1.

Theorem 4.1.10. Let A be a Noetherian ring and R be a finitely generated A-algebra.
We may replace A by its image in R and assume R = A[fy,05, - ,60,]. There exists an w-
filtration of R in which the factors are prime cyclic A-modules and only finitely many distinct
factors occur. All the Ry occur in the filtration. Furthermore, the length of the inherited
finite filtration on Ryuy/Ry,—1y is at most Ch™!, where h > 0. Notice that Ri_1y = 0. For
all h » 0, the number of copies of A/p occurring as a factor in the filtration of Ry, agrees

with a polynomial in h of degree at most r.

Theorem 4.1.12. Let A be a Noetherian ring, R be a finitely generated A-algebra, and
M be a finitely generated R-module. There exists an w-filtration of M in which factors are

prime cyclic A-modules and only finitely many distinct factors will occur. For all h » 0,



the number of copies of A/p occurring as a factor in the filtration of My, agrees with a

polynomial in h of degree at most r.

In the very last section, we use these w-filtrations to give a bound on the number of
generators of an intersection of powers of two ideals or the ordinary symbolic powers (™

under particular restrictions that we will describe later.

Theorem 4.2.7. Let R be a ring that is semi-local or finitely generated over a field. Let

I, , Iy be k ideals of R with dy,--- ,dy generators, respectively. Suppose also that
. d d
dlm(ﬁ) < 1. For ny,---,ngp » 0, we have M(Torf(ll%,--- 7[;%)) = O(n{*---nyk).

If k = 2, the corresponding fact also holds for Ext%, hence, for Hompg.

Theorem 4.2.10. Let R be a ring that is semi-local or finitely generated over a field, let I, J
be two ideals of R with d and d’ generators, respectively. Suppose also that dim(l%) < 1
For m,n >» 0, there is a polynomial upper bound on the number of generators of I"™ n J".

Specifically, we have u(I™ n J") = O(m?n®).

Discussion 1.1.1. Let R be a Noetherian ring and p be a prime ideal of R. We have
gr,(R) = R/p®p/p°®p?/p°@®- - -. The ideal J = ker(gr,(R) — (R—p) " gr,(R)) is a finitely
generated ideal of gr,(R). Thus, there exists a € R — p such that it kills this kernel. Let Iy
be the set of all elements of R that kill J. Thus, [ is an ideal of R such that p < I, and for

any a € Iy — p we have that p™ = p™ : a”, by Proposition 2.7.30.

Theorem 4.2.8. Let R, p, Iy be the same as in Discussion 1.1.1. Assume that R is semi-
local or finitely generated over a field. Let h = height([of). Suppose that dim(R/p) =

dim(lo—ﬁp) + h and dim(lo—ﬁp) < 1. For n » 0, we have u(p™) = O(nh).

In Chapter V, we give a formula to calculate the number of generators of the symbolic
multi-powers of the intersection of prime monomial ideals, i.e., the intersection of powers of

these prime monomial ideals.



Definition 5.1.1. Suppose k£ > 1. Let N;' be the number of non-negative integer solutions
of the equation 1 + 9 + --- + 2, = n if n > 0. This is the number of monomials with &
variables of degree n. It will be convenient to make the convention that N;' = 1 if n < 0.

We make the corresponding convention for powers of ideals, i.e., I" = I° = R if n < 0.
For the rest of this introduction, we are working in the polynomial ring R = K[z, -, zn].

Definition 5.1.4. Let pi,po,...,p. be prime monomial ideals. Actually p; is the ideal
generated by a subset A; of the variables where 1 < ¢ < ¢. Also, 0. denotes a binary string
whose entries are 0 or 1, containing at least one 1, with ¢ characters. Since c is fixed, we
replace o, by o for simplicity. ¥ is the set of all 0. The j-th character of ¢ is denoted by ()
where 1 < j < c. Let Aj be the set of variables not in A;. Denote A, = ( (| Aj)n( [ A)).
We denote the cardinality of A, by m,. o e

Definition 5.1.7. A degree restriction is a function d from > to the nonnegative inte-
ger whose value on o is denoted by d,. Let si,---,s. be nonnegative integers, and let

A(sy, -+, 8.) be the set of all degree restrictions such that for all i, 1 < i < ¢, and for all

o € X, we have that > d, = s; and for every o, either d, = 0 or there exists 7 such

oeX,o(i)=1
that o(i) =1and > d, =s;.
oeX,o(i)=1
Theorem 5.1.8. Let pq,po,...,p. be prime monomial ideals. Then we have the following

equation

pp o nnp) = Y [N

deA(s1, - ,8¢c) OEXD
In the second section, we give a polynomial upper bound on the number of generators of

the intersection of the powers of two prime monomial ideals.

Theorem 5.2.8. Let p; and ps be two prime monomial ideals. mqy, myg, m1; are defined in
Definition 5.1.4 above. For fixed mqy, mig, m11 and so » s1 » 0, u(pi* N ps?) is a polynomial

function of s; and sy — s1. Denote a = mg; —1, b =myg—1, and ¢ = my; — 1. For 0 < v < a,



b+u—v+1

denote @, .(v) = () i H(;)u(z) We have @, .(v) > 0 and
u=0

a
alble! Z SPHTETT (59 — 1) @y pe(v)
ble! <

1 ¢ 1)e—u (€
3 CU70)

+ —
ale! “a+c—u+1
u=0

p(pi N py’) ~

35(82 _ Sl)a-‘rc—u-i-l



CHAPTER II

Conventions and technical background

In this chapter, we will establish some notations to be used throughout the thesis, as
well as a review of the basic standard facts in commutative algebra. It may not contain new

materials.

2.1 Conventions and basic notations

When we say a ring, we always require this ring to be a commutative associate ring with

an identity 1.

When we say a local (semi-local) ring, we always require this ring to be a Noetherian

ring with a unique (respectively, with finitely many) maximal ideal.
Ass(M) is the set of associated primes of M. See definition 2.5.17.
Anng(S) is the annihilator of S over R. See definition 2.5.16.

bigheight (/) is the big height of I. See definition 2.10.4.



an([]) is the analytic spread of I. See definition 2.10.1.

dim(R) means the Krull dimension of R. See definition 2.5.22.

depth(M) means the depth of M. See definition 2.4.4.

Frac(R) is the fraction field of R. See definition 2.5.30.

gr;(R) is the associated graded ring of R with respect to the ideal I. See definition 2.5.11.

height(7) is the height of I. See definition 2.5.23.

I is usually an ideal of a ring R.

I¢ the extension of ideal I. See definition 2.7.8.

I¢ the contraction of ideal I. See definition 2.7.8.

1) is the symbolic multi-powers of I. See definition 2.7.29.

I is the nth-symbolic power of I. See definition 2.7.10.

K means a field.

[(M) denotes the length of M. See definition 2.6.1.

M is usually a module over a ring R.

10



m is a maximal ideal.

{ M, ig,e iv1,iv Hir iz sin—1,ir)ewr denotes an w-filtration of M. See definition 3.1.5.

p(I) denotes the minimal number of generators of I. See definition 2.7.17.

N is the set of all non-negative numbers.

N} is the number of non-negative integer solutions of the equation x; + x5 +- - - +x, = n.

See definition 5.1.1.

p is a prime ideal.

£ is a primary ideal. See definition 2.7.3.

R is usually a ring.

R is the set of all real numbers.

R, means the localization of R at {a*}i>o. See definition 2.3.2.

R, means the localization of R at R — p. See definition 2.3.2.

Ry, 1y, 1, 1s a rectangular submodule of R. See definition 3.3.1.

Rygy is a triangular submodule of R. See definition 3.3.1.

11



S~'R means the localization of R at S. See definition 2.3.2.

S(I) is the symbolic Rees algebra of I. See definition 2.7.15.

Rad(I) is a radical of an ideal I. See definition 2.7.1.

R[x] is a polynomial ring over R.

(R,m, K) is a local ring. See definition 2.5.14.

0; is a projective map. See definition 3.3.5.

sl(I) is the symbolic analytic spread of I. See definition 2.7.26.

supp(p) is the support of p. See definition 2.7.28.

trdeg is transcendence degree. See definition 2.5.26.

w" is the set N” identified with an ordinal number. See definition 3.1.4.

f(z) = O(g(x)) means that f is dominated by g asymptotically. See definition 2.7.21.

f(x) ~ g(x) means that f is equal to g asymptotically. See definition 2.7.25.

— means a surjective map.

12



— means an injective map.

~ means an isomorphism.

2.2 Integral and module-finite extensions

Definition 2.2.1. Let R be a commutative ring with a unit element and S be an R-algebra
with structural homomorphism f : R — S. We call that s € S is integral over R if there

exists d € N and rq,r1, -+ ,rq_1 € R such that we have

Sd = Td_ldd_l + - +1ris+1 (21)

We say that S is integral over R if s is integral over R for any s € S.
Proposition 2.2.2. Let S be a ring, R a subring of S. The following are equivalent:

1. s € S is integral over R.

2. R[s] is a finitely generated R-module.

3. R|s] is contained in a subring S’ of S such that S’ is a finitely generated R-module.
Proof. See proposition 5.1 in the chapter 5 of the book [1]. ]

Definition 2.2.3. If R < S and S is integral over R, then S is said to be an integral extension
of R. S is said to be module-finite over R if S is finitely generated as an R-module. If R < S

and S is module-finite over R, then S is said to be a module-finite extension of R.

Theorem 2.2.4. Let S be module-finite over the ring R. Then every element of S is integral

over R.

Proof. See corollary 4.5 in the chapter 4 of the book [6]. O

13



Proposition 2.2.5. Let R — S — T be ring homomorphisms such that S is module-
finite over R with generators s, Ss, -, s, and T is module-finite over S with generators
t1,t2, - ,t,. Then the composition of R — T'is module-finite with mn generators s;t; where
I<i<mand 1<j<n.

n
Proof. For any t € T, there exists a; € S such that ¢ = )] a;t;, and each a; can be written
j=1

as Y, by;s; for some b;; € R. Thus, we have the following equation.

=1

n

t:ZCthj:

n
J=1 J=1

Z bijsit; (2.2)
i=1

This actually implies the proposition. O]
Corollary 2.2.6. The elements of S integral over R form a subring of S.

Proof. We can replace R by its image in .S and assume R < S. For any two s,t € S which
are integral over R. R[s,t] = R|[s][t] is integral is module-finite over R[s] since ¢ is integral
over R and R[s] is module-finite R. According to the previous proposition, we know that
R[s,t] is module-finite over R. According to theorem 2.2.4, we know s+t and st are integral

over R since they are in R[s,t]. O

Theorem 2.2.7. Let S be an R-algebra. Then S is module-finite over R if and only if S
is finitely generated as an R-algebra and integral over R. For S to be module-finite over R,
it suffices that if S is generated over R by finitely many elements, each of which is integral

over R.

Proof. According to theorem 2.2.4, we know that module-finite extensions are integral, and
it is clear that they are finitely generated as R-algebras.

Without loss of generality, we suppose that R < S and S = R[s1, S2," - , $n]. According
to proposition 2.2.2, R|[s;] is module-finite over R since s; is integral over R. Suppose that

R[s1,- -+, sk] is module-finite over R where 1 < k < n. We know R[sy, -, Sk, Sk+1] 18

14



integral over R[sy, -+, sk, thus R[s1, -, Sk, Sk+1] is module-finite over R[sy, - - , 8] which
implies R|[sq, -, Sk, Sk+1] 18 integral over R according to proposition 2.2.5. By induction,

we know S is module-finite over R. O

Definition 2.2.8. A union of a family of sets, subgroups, submodules, subrings or subalge-

bras is called a directed union if any two of them are contained in a third.

Corollary 2.2.9. S is integral over R if and only if it is a directed union of module-finite

extensions of R.

Proof. 1f S is a directed union of module-finite extensions of R, then for any s € S, s will be
in one of the module-finite extensions and therefore s is integral over R. This implies that
S is integral over R.

As we all know, S is the directed union of its finitely generated R-subalgebras, each of

which will be module-finite over R. O

2.3 Normal rings and the Noether normalization theorem

Definition 2.3.1. The set of elements of S 2 R that is integral over R is a ring according
to corollary 2.2.6. This ring is said to be the integral closure of R in S. A domain R is

called normal if every element of the faction field of R that is integral over R is in R.

Definition 2.3.2. A non-empty subset S of R that is closed under multiplication is called a
multiplicative system of R. The localization of R at S is denoted by S™!R. It is constructed
by enlarging R to have inverses for the elements of S while changing R as little as possible

in any other way.

Remark 2.3.3. For a prime ideal p, R — p is a multiplicative system of R. In fact, for any
a,be R—p,if ab¢ R — p, then ab € p implies either a € p or b € p which is a contradiction

to a,b € R —p. The localization of R at R — p is denoted by R,.

15



Remark 2.3.4. For any nonzero a € R, S = {a*};>, is a multiplicative system. We denote

R, = S7'R.
Proposition 2.3.5. Let R be a domain. The following are equivalent:

1. R is a normal domain.
2. For every prime ideal p, the local ring R, is a normal domain.

3. For every maximal ideal m, the ring R,, is a normal domain.
Proof. See the proof of lemma 10.36.10 in chapter 10 of [20]. O

Definition 2.3.6. A ring R is called normal if for every prime p < R the localization R, is

normal domain.

Lemma 2.3.7. A localization of a normal ring is a normal ring. Particularly, a localization

of a normal domain is a normal domain.
Proof. See the proof of lemma 10.36.7 in chapter 10 of [20]. O

Lemma 2.3.8. Let R be a normal ring. Then R|[z] is a normal ring where z is indeterminate.

Particularly, if R is a normal domain, then R[z] is a normal domain.
Proof. See the proof of lemma 10.36.8 in chapter 10 of [20]. O

Definition 2.3.9. Let R be an A-algebra and 2y, 29, -,z € R. We shall say that the

elements z1, 29, -+ , zq are algebraically independent over A if the unique A-algebra homo-
morphism from the polynomial ring A[zy, - ,24] — R that sends x; to z; for 1 < i < nis
injective.

Theorem 2.3.10. Let K be a field and let R be any finitely generated K-algebra. Then
there are algebraically independent elements 21, 25, -+ , 24 in R such that R is module-finite
over its subring K|z1,..., z¢], which is isomorphic to a polynomial ring (d may be zero).
That is, every finitely generated K-algebra is isomorphic with a module-finite extension of

polynomial ring.
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Proof. See the proof of theorem 13.3 in chapter 13 of the book [6]. [

Remark 2.3.11. Let D be an integral domain and let R be any finitely generated D-algebra
extensions of D. Then there is a nonzero element ¢ € D and elements 21, 25, - - - , 24 in R, alge-
braically independent over D, such that R. is module-finite over its subring D.[z1, 22, - -, z4],

which is isomorphic to a polynomial ring (d may be zero) over D..

Lemma 2.3.12. Let A be a Noetherian integral domain. R is a finitely generated A-algebra.
And, R is a domain. Then, there exists nonzero a € A, elements uy, - - , u,, € R algebraically
independent over A,, and elements vy, --- ,v, € R integral over Aluy,us, -+ ,u,] such that
R, = Auluq,ug, -+ g ][v1,v2, -+ ). Tt is easy to see that m = trdeg,(R). Furthermore,
We denote

B = A[ulau%“' 7um][2}17v27"' 7vn] (23)
There exists fi, fa,-- -, fr € B such that R = B|[fi/a, f2/a, -, f;/a].

Proof. According to the remark of theorem 2.3.10, there exists nonzero a € A and ele-
ments uy, Ug, -+ , U, in R, algebraically independent over A, such that R, is module-finite
over its subring A,[uy,us, -+ ,uy]. Thus, there exists vy, v, -+ ,v, € R, integral over
Aglug, ug, -+ up] such that R, = Ag[ug, ug, -+ tup|[v1, 02, vp].

We can require that vy, v, -+, v, are the module-basis of R, over A,[uy,us, -, Up].
Since if there is a linear relation between vy, v, -+ ,v,, we say rivy + rovg + - -+ + 1,0, = 0,
and we assume 7 is nonzero without loss of generality, then we can replace a by ary, then
R, = Ajlui,ug, -+ upm][va, -+ ,v,]. Thus, without loss of generality, we say vy, vo, -+, v,
are module-basis.

We can also require uq,us, -+ , Uy, V1, Vs, -+ , v, are elements in R. In fact, for any
u;,v; € Ry, there exists uj, v; € R such that u; = wj/a™, v; = vj/a", then we have R, =
Agful,uly, -l o], vh, - vl ] Tt is easy to see that ), ub, -+ ,ul are also algebraically

independent over A, and v{,v5,--- v, are module-basis. We may replace uy, ug, -, Up

/
m

and v}, vh, -+ v, respectively. Furthermore, we can

Y Un)

/ !
and vy, vy, -, v, by uj,ub, - u
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require vy, Vg, -+ , U, are integral over Aluy, ug, -+ ,uy]. For each v; where 1 < i < n, it is
integral over A,|uq, ug, -, uy]. There exists ro,ry, -+ ,rs_1 € Ag|uq, us, -+, uy] such that

v =19+ v + -+ rs_lvf_l. As we all know, there exists IV large enough such that each

r; has the form r;-/aN where 7% € Aluy, u, -+, up] for 1 < j < m. Thus, we have
(a™v;)® = a™*v3 = aVCEVr) 4+ aVEr (aNy) + -+ (0 wy)* (2.4)
It is obvious that a™v; is still the module-basis of module R, over Ay[uy,ug, -+, uy,]. We
may replace v; by a”v;. Thus, each v; is integral over Alug, ug, -+ U]
We denote B = Aluy,ug, -, up|[v1,v2, -+ ,v,]. Then we have
Ba :Aa[ulau%"' aum][vbv%”' 7Un:| = Ra (25)
R is a finitely generated A-algebra, without loss of generality, we assume R = A[f;,--- ,0,].

There exists fi, fo, -+, f» € B and M large enough such that §; = f;/a™ for 1 <i <r. We
may replace a by a™. Then R = B[fi/a, -, f./a]. O

2.4 Depth and Cohen-Macaulay rings

Definition 2.4.1. Let R be a ring. Let M be an R-module. A sequence of elements

ri,Te, -,y € R is called an M-regular sequence if the following conditions hold:
1. r; is a nonzero divisor on M /(ry,re, -+ ,r;_1)M for any 1 < i < n, and
2. the module M /(ry, 79, -+ ,7r,)M is not zero.

If I is an ideal of R and rq,79,--- ,7, € I then we call r{,7ry,--- ,r, a M-reqular sequence in

I. If M = R, we simply call r{,ry,--- , 7, a reqular sequence.

Remark 2.4.2. The empty sequence is regular sequence on every nonzero module M.
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Remark 2.4.3. If ri,ro, - ", Tons1, -+ ,7n € R is a regular sequence on M if and only if
ri,T9, -+ , Ty 1S a regular sequence on M and rp, 1, -+ ,7, € R is a regular sequence on

M/(ri,r9, -+ rm) M.

Definition 2.4.4. Let R be a ring, and I < R an ideal. Let M be a finitely generated
R-module. The I-depth of M, denoted by depth,; (M), is defined as follows:

1. if IM # M, then depth;(M) is the supremum of the lengths of M-regular sequences
in I,
2. if IM = M, we set depth; (M) = co.
If (R,m, K) is local, we call depth,,(M) the depth of M which is denoted by depth(M).

Theorem 2.4.5. Let (R, m, K) be a local ring. Then, the depth of R is at most the Krull

dimension of R.

Definition 2.4.6. Let (R, m, K) be a local ring. This ring is called Cohen-Macaulay if its

depth is equal to its dimension.

Definition 2.4.7. Let R be a Noetherian ring. This ring is called Cohen-Macaulay if all of

its localizations at maximal ideals (equivalently, at prime ideals) are Cohen-Macaulay.

2.5 Reductions of ideals in local rings

Definition 2.5.1. Let R be a Noetherian commutative ring with a unit element. We assume
a and b are two proper ideals of R. We will call b a reduction of a if b € a and ba” = a”*!

for at least one positive integer r.
r+1

Remark 2.5.2. Tt is easy to see that every ideal is a reduction of itself. Also, if ba” = a

then ba™ = a"™! for all n > r and b™a” = a"*™ for all positive integers m.

Definition 2.5.3. A module M over a ring R is called faithful if for any a € R, a # 0, then

we have aM # 0.
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Lemma 2.5.4. a € R is integral over a if and only if a is a reduction of a + aR.

Proof. a is a reduction of a + aR is equivalent to say that there exists a positive integer r

such that a(a + aR)" = (a + aR)"**. Also, we have

a(a+aR)" =a(@" +aa" '+ +dd "+ +dR) (2.6)
—adtMrad + - +add T 4" (27)

and
((1 + aR)rJrl _ ar+1 +aa” 4+ aTaTJrl*t 4+ .4+ ada+ arJrlR (28)

Then a(a+aR)" = (a+aR)" is equivalent to a™™ € a""' +aa" + - - +a"a" ™"+ ... +a"q,
and this is precisely the condition for a to satisfy an equation of integral dependence on a

of degree r + 1. This actually proves the lemma. O

Lemma 2.5.5. If R is a domain, I < J are two ideals of R and M is finitely generated
faithful R-module such that JM = IM then J is integral over I.

Proof. Let uq,...,u, be generators for M and p be an element of J. Then for each j we can
write pu; = i v;;u; where v;; € I. Let T denote the size n identity matrix, let B denote the
size b matrixzz(lvij). Let U be an n column vector whose entries are the w;. Then, in matrix
notation, we have uU = BU. It follows that (ul — B)U = 0. Let C be the transpose of the
cofactor matrix of ul — B. Then C(ul — B) = DI, where D = det(ul — B). So we have
DU = 0, which means that D kills all the generators of M and M is faithful, it follows that

D = 0. Now, we proved the lemma. O

Lemma 2.5.6. If J is integral over I in R is equivalent to J(R/p) is integral over I(R/p)

for any minimal prime p of R.

Proposition 2.5.7. Let R be a Noetherian commutative ring. b is a reduction of a iff a is

integral over b.
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Proof. Since R is a Noetherian ring and b < a, a is finitely generated over b. First, we assume
that a is integral over b, we can prove it by the induction on the number of elements needed to

generate a over b. Wesay a; = riR+7roR+---+7,R+b, and suppose that a* ™' = ba¥, we try

m+1

to prove that a = ba™ for some positive integer m where a = riR+---+r,R+r,. 1 R+b.

The previous lemma tells us that there exists some positive integer I such that a'*! = a;a.
Then a'*'al = a¥™al = bakd', it follows that a**'a} = bakal. Also we have al*1* = gFakl,
So aktlah = q(a*Dk) = paklah = pal*V%. We can just choose m = (I + 1)k.

mtl = pa™ for some positive

Next, we assume that b is a reduction of a which means a
integer m. This equation still holds if we consider the images of a, b modulo a minimal
prime of R, and so if suffices to consider the case where R is a domain. We can also assume

that I # 0. Otherwise, if I = (0) the result is immediate. Thus, J" is a faithful R-module.

According to the previous lemma, we actually proved the proposition. O
Remark 2.5.8. This proposition actually gives us another equivalent definition of reduction.

Definition 2.5.9. A homogenous ideal I in a graded ring S = @ S; is an ideal generated

by a set of homogenous elements.

Definition 2.5.10. S is called a standard graded R-algebra if S is finitely generated over
R and N-graded with Sy = R and 1-forms S; of S generate S as an R-algebra. If S is a
standard graded K-algebra, where K is a field, then S has a unique homogeneous maximal

o0
ideal m = @ S,,.

n=1
Definition 2.5.11. Generally, if R is a commutative ring and [ is an ideal of R, then the
associated graded ring, denoted by gr;(R), of R with respect to the ideal I is the N-graded
ring

RiI@I/PolP/)P® -/ ®-- (2.9)

so that the k-th graded piece is I*/I**!. The multiplication is such that if u € I’ represents

an element @ € 7/’ and v € I* represents an element v € I¥/I**1 then uv represents
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the product uv € [F+*/[F+*k+1  Actually, this ring is generated by its forms of degree 1:
moreover, given a set of generators of I as an ideal, the images of these elements in I/I?

generate gr;(R) as an R/I-algebra. It follows that gr;(R) is Noetherian if R is Noetherian.

Theorem 2.5.12 (Nakayama’s lemma, homogeneous form). Let R be an N-graded ring
and let M be any Z-graded module such that M has only finitely many nonzero negative
components. Let I be the ideal of R generated by elements of positive degree. If M = I M,
then M = 0. Hence, if N is a graded submodule such that M = N + IM, then N = M, and

a homogeneous set of generators for M /IM generates M.

Lemma 2.5.13. Let S — T be a degree preserving K-algebra homomorphism of standard
graded K-algebras. Let m < .S and n € T" be the homogeneous maximal ideals. Then 7" is a
finitely generated S-module if and only if the image of Sy in T generates an n-primary ideal

where S; and T} is degree 1 component of S and T, respectively.

Proof. By the homogeneous form of Nakayama’s lemma, 7T is finitely generated as a module
over S if and only if T//mT is a finite-dimensional K-vector space, and this will hold if and
only if and homogeneous components [T'/mT]s are 0 for all large enough positive integer s,

which holds if and only if n® € mT for all s » 0. O

Definition 2.5.14. A local ring is a ring R that contains a single maximal ideal. We denote

the local ring by (R, m, K') where m is the maximal ideal and K = R/m is a field.

Proposition 2.5.15. Let (R, m, K) be alocal ring. If [ < J < m are ideals, then J is integral
over [ if and only if the image of I in J/mJ generates n-primary ideal in 7' = K ®g gr,;(R),

where n is the homogeneous maximal ideal in 7.

Proof. Note that J is integral over I if and only if R[Jt] is integral over R[It], and this
is equivalent to the assertion that R[Jt] is module-finite over R[Jt], since R[.Jt] is finitely
generated as an R-algebra, hence, as an R[[t]-algebra.

If this holds, we have K ®g R|[Jt] is finitely generated module over K ®g R[It], and,

since the image of I generates the maximal ideal 9t in S = K ®gr gr;(R) = K ®g R[It], the
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preceding lemma implies that the latter statement in proposition is true if and only if the
image of I in J/mJ = [K ®g gr;(R)]; generates an n-primary ideal in 7' = K ®g gr;(R).
We will prove the proposition completely if we can show that when 7' is module-finite
over S, then R[Jt] is module-finite over R[It]. Let j; € J%, ..., j, € J% be elements whose
images in J% /mJ% ... J% /mJ%  respectively, generate T as an S-module. We claim that
Jat®, ... ja, t% generate R[Jt] over R[It]. To prove the claim, note that these elements

generate T over S implies that for every N,

JN = > NG, +mJN (2.10)

1<i<h such that d; <N

For each fixed N, we apply Nakayama’s lemma to conclude that

JN = > N, (2.11)

1<i<h such that d;<N

then, for all N, we have

JNEN = > JN-digN=di ;g (2.12)

1<i<h such that d; <N
It implies that jg, t%, ..., ja,t% generate R[Jt] over R[It]. O

Definition 2.5.16. Let R be a ring, and let M be a module over R. For a nonempty subset
S of M. The annihilator of S, denoted by Anng(S), is the set of all elements r € R such

that , for all s€ S, rs = 0.

Definition 2.5.17. Let R be a Noetherian ring. A prime ideal p of R is called an associ-
ated prime of the R-module M if there is an element m € M whose annihilator is p. Or,

equivalently, there is an injection R/p < M.

Remark 2.5.18. The set of associated primes of M is denoted by Ass(M). If I is an ideal, we

denote Ass(I) as the associated primes of I as an ideal and it should be the same as Ass(R/I).

23



Actually, Ass(R/I) is the same as the set of primes that occurs as radicals of primary ideas
in an irredundant primary decomposition of I. That is the reason why we also call it an
associated prime of I as an ideal. One important fact is that Ass(R/p) = Ass(p) = {p} where
p is a prime ideal. And another useful fact is that Ass(M) is finite and non-empty if M is a

nonzero Noetherian module.

Definition 2.5.19. A prime ideal p is said to be a minimal prime ideal over an ideal I if
it is minimal among all primes ideals containing /. A prime ideal is said to be a minimal

prime tdeal if it is a minimal prime ideal over the zero ideal.
Remark 2.5.20. If I is a prime ideal, then [ is the only minimal prime over it.

Definition 2.5.21. The support of a module M over a ring R is the set of all prime ideals
p of R such that M, # 0. It is denoted by Supp(M).

Definition 2.5.22. Let pp < p; < po < --- < pg be a chain of prime ideals in a ring R.
We call the integer d the length of the chain. The supremum of lengths of finite strictly
ascending chains of prime ideals of R is called the Krull dimension of the ring R which is

denoted by dim(R).

Definition 2.5.23. If p is a prime ideal of R, by the height of p we mean the supremum
of lengths of finite strictly ascending chains of prime ideals contained in p. The height of
any proper ideal [ is the minimum of the heights of the prime ideals containing I which is

denotes by height(7).

Remark 2.5.24. Tt should be clear that the dimensions of R is the same as the supremum of
heights of all prime ideals, and that this will be the same as the supremum of heights of all

maximal ideals.
Theorem 2.5.25. If R — S is an integral extension then dim(R) = dim(S).

Proof. See the proof of lemma 11.26 in chapter 11 of the book [1]. O
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Definition 2.5.26. The transcendence degree of a field extension L/K is the largest cardi-
nality of an algebraically independent subset of L over K. A subset S of L is a transcendence
basis of L/K if it is algebraically independent over K and if furthermore L is an algebraic

extension of the field K(S) (the field obtained by adjoining the elements of S to K).

Remark 2.5.27. We can show that every field extension has a transcendence basis, and that all
transcendence bases have the same cardinality. This cardinality is equal to the transcendence

degree of the extension and is denoted by trdeg, (L).

Definition 2.5.28. Let A be an integral domain. R is a finitely generated A-algebra and it
is also an integral domain. The transcendence degree of R over A is the largest cardinality of
an algebraically independent subset of R over A. It is the same as the transcendence degree

of the field extension Frac(R)/ Frac(A).

Definition 2.5.29. An affine k-algebra is an integral domain that is also a finite-dimensional

algebra over a field k.

Definition 2.5.30. R is an integral domain. Then we denote the fraction field of R by
Frac(R).

Theorem 2.5.31. If R is an affine k-algebra, then dim(R) = trdeg,, Frac(R).

Theorem 2.5.32. If p is a prime ideal of the affine k-algebra R, then height(p)+dim(R/p) =
dim(R).

Theorem 2.5.33. Let M be an N-graded module over an N-graded Noetherian ring .S. Then
every associated prime of M is homogeneous. Hence, every minimal prime of the support
of M is homogeneous and, in particular the associated(hence, the minimal) primes of S are

homogeneous.

Proof. By definition, any associated prime p of M is the annihilator of some elements u of

M, and then every nonzero multiple of u # 0 can be thought of as a nonzero element of
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S/p =~ Su < M, and so has annihilator p. If u; is a nonzero homogeneous component of u of
degree 17, its annihilator J; is a homogeneous ideal of S. If J, # J; we can choose a form F
in one and not the other, and then F'u is nonzero with fewer homogeneous components than
u. Thus, the homogeneous ideals J; are all equal to J and J < p. Suppose that s € p — J
and subtract off all components of s that are in J, so that no nonzero component is in J.
Let s, ¢ J be the lowest degree component of s and u;, be the lowest degree component in
u. Then s,up is the only term of degree a + b occuring in su = 0, and so must be 0. But

then s, € Anngu, = J, = J, a contradiction. O

Corollary 2.5.34. Let S be a standard graded K-algebra of dimension d with homogeneous
maximal ideal m, where K is an infinite field. Then there are forms Lq,..., Ly of degree 1

in S7 such that m is the radical of (Ly, ..., Ly)S.

Proof. The minimal primes of a graded algebra are homogeneous, and dim(S) is the same

as dim(S/p) for some minimal prime p of R. Then p < m, and

dim(S) = dim(S/p) = dim(S/p)m < dim Sy < dim(S) (2.13)

so that dim(S) = dim(Sy,) = heightm. If dim(S) = 0, m must be the unique mini-
mal prime of S, and therefore it is nilpotent. Otherwise, S; can’t be contained in the
union of the minimal primes of S, or it will imply that it is contained in one of them,
and S; generates m. Choose L; € S; not in any minimal prime, and then dim(S/L;) =
d — 1. We can prove the corollary by induction. If L, ..., Ly have been chosen in S; such
that dim(S/(Ly,...,Lx)S) = d — k < d, choose Lyy; € Sinot in any minimal prime of
(Ly,...,L)S(@f S; were contained in one of these, m would be, and it would follow that
height m < k, a contradiction). Thus, we have Ly, ..., Ly such dim(S/(Ly,...,Ly)S) = 0,

and then by the case where d = 0 we have that m is nilpotent modulo (L4, ..., Ls)S. O]

Proposition 2.5.35. If b is a reduction of a, then a and b have the same minimal prime

ideals.[18]
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Proof. We have ba” = a" ™! for some positive integer r by definition. It follows that a 2 b 2
a" 1. Also if a prime ideal p 2 b, then p 2 a" ™!, which means that p 2 a. Now, we actually

proved the proposition. O

Definition 2.5.36. A reduction b of a is called a minimal reduction of a if there is no ideal

strictly contained in b which is a reduction of a.

Definition 2.5.37. An ideal is called a basic ideal if it doesn’t have reduction other than

itself.

Remark 2.5.38. An ideal which is a minimal reduction of a given ideal is a basic ideal. It

follows from the following proposition.

Proposition 2.5.39. If b is a reduction of a and ¢ is a reduction of b, then ¢ is a reduction

of a.

Proof. 1t is easy to see that ¢ < a. By definition, there exist positive integers r and s such

that ba” = a"*! and ¢b* = b5*!, then we have
ca” ™ = cb*a” = b¥Ta" = "t (2.14)

O

Theorem 2.5.40. We fix a local ring (R, m, K') such that K is infinite. If b is a reduction

of a, then there exists an ideal ¢ contained in b which is a minimal reduction of a.
Proof. We need two lemmas first. As to the detailed proof, we can refer to the paper [18]. [
Lemma 2.5.41. If the ideals a; and ay are such that a; € as + aym, then a; € a,.

Proof. From a; S as + aym, we have a; S a + (ay + aym)m S ay + a;m?, it follows that

a; € ay + agm” by induction where £ is any positive integer. Thus,
o0 oo
c ﬂ(aQ + a;mh) ﬂ (ag +m") = ay (2.15)
k=1 k=1
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]

Lemma 2.5.42. We have two ideals b < a, then b is a reduction of a iff b+ am is a reduction

of a.

Proof. If b is a reduction of a, then there exists r such that ba” = a"*!, it follows that

(b+am)a” = ba"+ma" = a" !, which means b+am is a reduction of a. Conversely, if b+am

r+1 r+1 r+1

is a reduction of a, there exists r such that (b + am)a” = a"*', we have ba” + ma™*' = a
According to the previous lemma, we have a”*! < ba”. And, it is easy to see, ba” < a"*!,

then a"™+! = ba’. ]

2.6 Finite filtrations

Definition 2.6.1. A finite filtration of an R-module M is a sequence 0 = My < M; < --- <
M,y € M, = M of submodules of n. The filtration is said to have length n. The modules

M;1/M;, 0 <i<n—1are called the factors of the filtration.

Definition 2.6.2. A nonzero module over a ring R is called simple if, equivalently, (1) it
have no nonzero proper submodule or (2) it is isomorphic with R/m for some maximal ideal

m.

Definition 2.6.3. A module is said to have finite length if it has a filtration in which every

factor is simple.

Remark 2.6.4. If M has finite length, the length [(M) is defined to be the number of simple
factors in any finite filtration such that all factors are simple or 0. It is well-defined because

of Jordan-Hoélder theorem.

Proposition 2.6.5. If we have a short exact sequence of modules,

0—M —M—M -0 (2.16)
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then M has finite length iff both M’ and M” have finite length, and then (M) = I[(M’) +

1(M").

Proposition 2.6.6. Let M be a finitely generated R-module where R is Noetherian. Then

()

(b)

(c)

If u # 0 is any element of M, one can choose s € R such that Annpg su is a prime ideal

p of R, and p € Ass(M). In particular, if M # 0, then Ass(M) is nonempty.

If ru = 0 where r € R and u € M — {0}, then one can choose s € R such that
Anng(su) = p. Note that r € p. Consequently, the set of elements of R that are

zerodivisors on M is the union of the set of associated primes of M.

if M # 0, it has a finite filtration 0 = My < M; < M, < --- < M,, = M in which all
the factors M;/M;_; for 1 < i < n are prime cyclic modules, i.e., have the form R/p;

for some prime ideal p; of R.

Proof. (a) We consider a family of ideals {Anngtu : t € R and tu # 0} is nonempty since

we may take t = 1. R is Noetherian, then R has ACC, thus it has a maximal element
Anng su = p. We claim that p is prime. If ab € p, then absu = 0. If a ¢ p, we must
have b € p, otherwise bsu # 0, then Anng bsu containing p + aR is strictly larger than
p. This is a contradiction to the fact that p is a maximal element in the family of

ideals.

From (a), we can choose s € R such that Anng su is a prime ideal p. Since ru = 0,
we have r € p. It implies that the set of elements of R that are zerodivisors on M is
a subset of the union of the set of the set of associated primes of M. Furthermore, it
is obvious that if p = Anngu with uw € M, then u # 0, and so every element of p is a

zerodivisor on M.

Choose a sequence of elements wuy, us, - -+ in M recursively as follows. Choose u; to be
any element of M such than Anngu;, = p; is prime. If uy, us, - - - , u; have been chosen

and Ru; + Rus + -+ + Ru; = M, the sequence stops. If not, we can choose u; .1 € M
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such that its image w37 in M /(Ruy + Rus + -+ + Ru;) has annihilator p;,; that is
prime. Let M; = Ru; + --- + Ru;. The sequence must stop, since the M; are strictly
increasing and M has ACC. By construction, the factors are prime cyclic modules.

]

2.7 Symbolic powers and symbolic multi-powers

Definition 2.7.1. Let [ be an ideal of a ring R. The intersection of all the prime ideals of

R that contain [ is called the radical of I which is denoted as Rad([). [1]
Remark 2.7.2. As we all know, Rad(/) = {a € R| there exists some n > 1 such that a™ € I}.

Definition 2.7.3. An ideal [ in a ring R is called primary if whenever ab € I then either
a€ I orbe Rad(I). If I is primary, Rad([) is prime, say p. We can say that I is primary

to p.

Remark 2.7.4. 1t’s not true that I is primary simply because its radical is prime. See
examples in chapter 4 of the book [1]. However, if Rad(I) is maximal, then I is primary.

See the proposition 4.2 in chapter 4 of the book [1].

Definition 2.7.5. A primary decomposition of an ideal I is a representation of I as a finite
intersection of some primary ideals i.e., [ = Q1 N Qo N -~ N Q. where £; is primary for all
1 < ¢ < ¢. Furthermore, the decomposition is said to be irredundant if £Q; are all distinct

and we have Q; D (] Q;.

J#i
Theorem 2.7.6. Every proper ideal I of a Noetherian ring R has an irredundant primary

decomposition.

Definition 2.7.7. If I, J are two ideals in a ring R, their ideal quotient is

(I:J)={reR|rJcI} (2.17)

which is an ideal. Particularly, for any a € R, we have (I : a) = {r € R|ra € I}.
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Definition 2.7.8. Let f : A — B be a ring homomorphism. If [ is an ideal in A, we define
the extension I¢ of I to be the ideal Bf(I) generated by f(I) in B. If J is an ideal of B,

then f~1(J) is always an ideal of A, called the contraction J¢ of J.

Theorem 2.7.9. Let R be an arbitrary commutative ring. I € R is an ideal. If I has a
primary decomposition, it has an irredundant one, say I = Q; N Qs N --- N Q.. In this
case the prime ideals p; = Rad(f;) are distinct, by the definition of irredundant, and are
uniquely determined. In fact, a prime p occurs if and only if it has the form Rad(I : r)
for some r € R. Thus, the number of terms ¢ is uniquely determined. The minimal ele-
ments among pq, Po, - - - , P, When intersected, give an irredundant primary decomposition of
Rad(I), and are the same as the minimal primes of /. The primary ideal 9 in the decom-
position corresponding to p, where p is one of the minimal primes among {p1,pa, - ,Pc}, i8

the contraction of IR, to R, and so is uniquely determined as well.
Proof. See the proof of theorem 4.5 in chapter 4 of the book [1]. O

Definition 2.7.10. Let (R, m, K) be a Noetherian local ring of dimension d and let I be an

ideal of R. We can define the nth-symbolic power of I via the following formulal3].

™= () (I"R,nR) (2.18)
peMin(I)
where R, is the localization of R to p and the intersection runs through all of the minimal
primes of I denoted by Min(/). To be clearer, I"R, n R means the contraction of I"R, to
R.

Remark 2.7.11. Suppose we have Min(I) = {p1, ps, ..., p.}, the corresponding primary com-

C

ponents of I are denoted by {Q;,Qs, ..., .}, it is easy to see that I™ = (QFRy, " R) =

j=1
nay.

j=1

Remark 2.7.12. Once we have defined symbolic powers, we may wish they had some relations

with the ordinary powers. They do not coincide with the ordinary powers in general, but
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they have deep relations. Actually, we can construct a counterexample. Let us first focus
on symbolic powers of prime ideals. We say p is a prime ideal, then p(™ is the p-primary
component of p” by definition. In fact, p™ = {r € R : for some w € R — p,wr € p"}. We
should have p™ < p™ for all n, now we construct an example to explain why the converse

fails.

Example 2.7.13 (F. S. Macaulay). Let R = K|[z,y, z|, the polynomial ring in three vari-
ables over a field. And map R by a K-algebra homomorphism onto K[t3 ¢4 5] = K]Jt],
where t is another variable, via z — t3, y — t* and z — t°. Of course, the kernel of the map
denoted by p is a prime ideal of R. And we can show that p = (f, g, h)R where f = zz —y?,

2. If we consider fh — g*> mod x, we can see it should be 0,

g=12%—yz,and h = 23y — 2
which means that x divides fh — g?>. We say 2l = fh — ¢g* € p* while z ¢ p, by definition,
we may have [ € p®. And, [ could not be in p?. Actually, if we assign degrees to x, 7, z so

that z,y, z have degrees 3, 4, 5, respectively, then the generators f2, g2, h?, fg, gh, hf of p?

all have degree 16 or more while [ has degree 15.
Definition 2.7.14. The Rees algebra of an ideal I in a commutative ring R is defined to be

R[It] = éfﬂt” < R[t] (2.19)

n=0

Definition 2.7.15. Let I be an ideal, we can define the symbolic Rees algebra of I as
S(I):= @ 1™,

n=0

Remark 2.7.16. Generally speaking, S(I) is not Noetherian. There are many counterexam-
ples. P. Roberts[19] found a counterexample based on the counterexamples of Nagata[17] to

the 14th problem of Hilbert. However, for some interesting classes of ideals such as monomial

ideals [11], S(I) is Noetherian.

Definition 2.7.17. Let I be an ideal. We denote by u(I), the minimal number of generators
of I, i.e., the least element in the set {k € N| there exists ry,re, -+, 7, € I such that I =

(ri,72,- - ,7)}. If the set is empty, we say p(l) = oo.
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Definition 2.7.18. Let R be a commutative ring and M be a R-module. We denote by

(M), the minimal number of generators of M, i.e., the least element in the set

{k € N| there exists 71,79, -+ , 7, € M such that M = iR+ roR + -+ + 1R} (2.20)

If the set is empty, we say u(M) = oo.

Proposition 2.7.19. Let My, M,, M be R-modules. And we have the exact sequence defined
by the following:

Then we have (M) < p(My) + p(Ms).

Proposition 2.7.20. Let M be a R-module. Suppose M has a finite filtration denoted by

the following;:

Then, we have
p(M) < 3 (e (223)
M;_,

i=1
Definition 2.7.21. Let f(x),g(x) be two functions of x € R. We say f(z) = O(g(x)) if
and only if there exists a positive real number M and a positive real number xy such that

|f(z)] < Mg(zx) for all x > x.

Definition 2.7.22. For s = (s1, - ,s,),s = (s],---,s,) e R", we call s > " if 5; > ] for
all<i<n,s=sifs;=¢ forall 1 <i<n,and s < ifs; < s forall 1 <i < n. Also,

we call s — oo if and only if s; — o for all 1 < i < n.

Definition 2.7.23. Let f(s), g(s) be two functions of s € R". We say f(s) = O(g(s)) if and

only if there exists a positive real number M and s’ € R" such that |f(s)] < Mg(s) for all

s= s

Remark 2.7.24. This a general version of definition 2.7.21.
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Definition 2.7.25. Let f(s),g(s) be two functions of s € R". We say f(s) ~ g(s) if and

only if for any € > 0, there exists s’ € R™ such that \gg — 1] <eforany s = ¢, i.e,

lim, ., 1) _ 4 (2.24)

g9(s)

Definition 2.7.26. We denote by sl(I), the symbolic analytic spread of I,
sI(I) = min{t|u(I™) = O(nt~1)} (2.25)

A priori, si(I) may be infinite. Actually, from the definition, si(I) gives control of the growth

of least number of generators of 1™ as function of n.
Remark 2.7.27. It is a major open question whether si([) is always finite.

Definition 2.7.28. As usual, let R = k[xy, ..., 24| the polynomial ring over the field & and
m = (z1,...,24). For (ay,...,aq) € N let x* denote the monomial ideal of z{* - -- x4¢. For

a monomial prime ideal p we denote by supp(p) := {i|x; € p} the support of p.

Definition 2.7.29. Let (R, m, K) be a Noetherian local ring of dimension d and let I be
an ideal of R. Suppose we have Min(I) = {py,ps,...,p.}, and the corresponding primary
components of I are denoted by {Q1,Qs,...,Q.}. We can define the symbolic multi-powers

of I via the following formula

¢ = af (2.26)
j=1

where s is (s1, ..., S.) € N

Proposition 2.7.30. Let R be a Noetherian ring and p be a prime ideal of R. We have
gr,(R) = R/p @ p/p* ®p°/p° ®---. The ideal ker(gr,(R) — (R —p) "' gr,(R)) is a finitely
generated ideal of gr,(R). Thus, there exists a € R — p such that it kills this kernel. Let Iy
be the set of all such elements, i.e., the set of elements that kill the (12— p)-torsion in gr,(R).
Thus, I, is an ideal of R and for any a € I, — p we have that p = p™ : a™. Generally, for

any ay, as, -+ ,an € Iy — p, we have p™ = p": (al,---  aP)".
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Proof. 1t is easy to see that J is an ideal.

By definition, we have p™ = p"R, n R = {u € R| there exists ¢ € R — p such that
cu € p'y.

It is easy to see that p™ : a® < p(™. For any u € p” : a”, ua™ € p”, then u € p™ since
a € R —p implies that a" € R —p.

Say u € p™ —p”, then there exists ¢ € R—p such that cu € p”. There exists 0 < k <n—1
such that u € p* — pF+1 since R 2 p 2 p2 2 -+ and u ¢ p*. Consider u € p¥/p**L. Tt can

% = 0. Furthermore, a kills

be viewed as an element in gr,(R2). Since cu € p" S phL, 2=
the kernel, thus, we have au € p**'. Now, there exists [ > k + 1 such that au € p' — p'*!, by

induction, we have a"u € p**". Thus, a"u € p” which implies that p” : @™ 2 p(™.

For any u € p": (a?,--- ,aM)", then u(a?, -+ al)" < p™. Say c = af™ € R — p, according
to previous argument, we have afu € p". Thus, p": (al, -~ af)* < p" : a}.
For any u € p™, we claim that u(a?,---,al)" < p". In fact, for any element z in

(a?, -, amM)", there exists 1 <4 < h and b e R such that = a’b. We know that p™ = p" :

al, thus, we have ua] € p™ implies that uz € p™. O

Proposition 2.7.31. Let R be a Noetherian ring and py,-- -, pr be prime ideals of R. For
any 1 < i < j < k, neither p; < p; nor p; < p;. Assume no element in Ass(R) strictly
contains any of the p; (This is automatic if R is a domain). There exists x € R—py U -+ - U pg

such that p™ A -+ A pl™) = (p Ao A ™) : 2" where n = max(ny, - - -, ny).

Proof. Denote the set of elements that kill the (R — p;)-torsion in gr, (R) by J; for any
1 <i< k. Clearly, p; < J;.

We claim that J; €pyu---uppu( |J ¢). Otherwise, there exists j such that J; < p;
or ¢ € Ass(R) such that J; < q. Theq;A\S;(eR)haVe pi & Ji S pjorp; & J; & g which is a
contradiction.

Then there exists z; € J; —pru---up,u( |J ¢) such that pgn) = p? : 2! according

qeAss(R)
to proposition 2.7.30.
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Denote © = x1---x,. Since x; is not a zero-divisor, x is not a zero-divisor. We claim

n

that p&"l) NN p,g £ = (P N ppt) s a™ where n = max(nq, -, n).

Clearly, for any m, pgm) =pltialt Cpt ™ C pgm) since v € R —p; U --- U pg. Then

we have p,(’“) =ptiatCpliiat C pgm).

In conclusion, we have that

A ™ = e e () (227)
[

Proposition 2.7.32. Let R be a Noetherian ring and py, - - -, pr be prime ideals of R. For
any 1 < ¢ < j < k, neither p, < p; nor p; < p;, i.e., they are distinct and incomparable.
Assume no p; is strictly contained in any associated prime ¢ € Ass(R). There exists x €
R—piu-—-upru( U g such that g(p{™ Ao apl™)) = u(pf Ao np A (2)7)

geAss(R)
where n = max(nq, -+, ng).

Proof. According to Proposition 2.7.31, we have p(lm) N N p,(cn’“) = (p* N pF) s at

Then we have

ap™ A p™) = p(r o o ppt) ) (2.29)

= pu(((py" e npyt) s ) (2.30)

= p(pf N npt 0 (2)") (2.31)

according to Lemma 2.7.34. [

Proposition 2.7.33. Let R be a Noetherian ring and I = Q- --nQy where £; is primary
to p;. The p; are mutually incomparable. Assume no p; is strictly contained in any associated

prime ¢ € Ass(R). There exists a non zero-divisor t € R—p;u---upru( |J ¢) such
geAss(R)

that 1™ = Q™ = 1" : 2 for any n.
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Proof. Let W = R—{Jp;. In W IR, the p;/¥ "' R to maximal ideals and give all the maximal

ideals. We have that

I'WI'R=(Qin-nQ)"W'R (2.32)
207 - QQWT'R (2.33)
=QW'Rn-- - n QYW 'R (2.34)

We know that I™ = I"W'RAR =" ...~ Q".
I kills all W-torsion in gr;(R). We know that Iy & | Jp;. For any = € Iy — [ p;, we have
1™ =™ =1 g, O

Lemma 2.7.34. Let R be a commutative ring and I be an ideal of R. For any non zero-

divisor x € R, we have (I : z)x = I n ().

2.8 Subquotients

Definition 2.8.1. Let M be a R-module. A R-module M’ is called a subquotient of M if
there exists two submodules M; 2 My of M such that M’ has the form M;/M,.

Remark 2.8.2. Any submodule (and, hence any quotient) of M is a subquotient of M.
Lemma 2.8.3. A submodule M” of a subquotient M’ of M is a subquotient of M.

Proof. By definition, there exists M; 2 M such that M" = M;/M,. Since M"” is a submodule
of M’ there exists a submodule M of M; containing M, such that M"” =~ M;]/M, implies

that M” is a subquotient of M. H

Remark 2.8.4. If A;/As is a subquotient of M, then 2—2% is a subquotient of M. Actually,

—ﬁ;?% is a submodule of A;/A,.

Lemma 2.8.5. A subquotient M” of a subquotient M’ of M is a subquotient of M. Par-

ticularly, a quotient of a subquotient of M is a subquotient of M.
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Proof. By definition, there exists M; 2 My such that M’ = M;/M,. Also, there exists M]
and M} such that M” = M]/M}. Since M| and M} are two submodules of M’ = M;/M,,
there exists two submodules M{ and MJ of M, containing M, such that M| = M{ /M, and
M} = M} /M,. Thus, we have M" = M, /M} ~ M /M} which implies that it is a subquotient
of M. ]

Lemma 2.8.6. If M has a finite flitration with factors M; such that M; is a subquotient of

Nj;, then the same is true for any subquotient of M.

Proof. For a submodule of M, the inherited filtration works: the factors are submodules of
the original factors. For a quotient, the quotient filtration works: the factors are quotients

of the factors in the original filtration. O

Remark 2.8.7. If a complex consists of modules with filtrations in which the factors are
subquotients of certain modules Ny, ..., N, the same is true for homology. If the Fy terms
of the spectral sequence of a finite double complex have such a filtration, so does the homology
of the total complex, since a finite associated graded module of that homology is obtained

by repeatedly taking homology of the Fy terms.

2.9 Bounds on the number of generators of submodules of one

dimensional modules

Lemma 2.9.1. Given a finitely generated one-dimensional module M over a local ring
R, there is a bound on the number of generators of all submodules (and, hence, of all

subquotients) of M.

Proof. If N is a submodule of M, then N = M has the same number of generators as N.
We may replace R and M by their completions R and M , respectively.
We may take a prime cyclic filtration of M. This induces a filtration of any submodule

N of M whose factors are submodules of R/p where p is a prime ideal of R. Then, the
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bound on the number of generators of all submodules of R/p give us a bound on the number
of generators of all submodules of M since there are only finitely many distinct p. By

construction, we have M;/M;_; =~ R/p implies that dim(R/p) < dim(M) < 1.

1. if dim(R/p) = 0, then R/p is a field. It is easy to see the bound is 1.

2. if dim(R/p) = 1, as we all know, R/p is a complete local ring, then R/p is module
finite over V' (structure theory) where V' is a complete regular one-dimensional local
domain i.e., V is DVR implies that V is PID. Then, we have R/p =~ V" where r is the
rank of R/p over V since a finitely generated module over a PID is free if and only if
it is torsion-free. All submodules of V" are free over V of rank less than or equal to r

and need at most r generators over V', hence, they need at most r generators over R.

]

Remark 2.9.2. One can generalize to the case where R is semi-local: after completion, R
becomes a finite product of local rings, and the module becomes a product and so has a
filtration in which each factor is a module over a local ring.

There is no bound on generators of ideals for a Noetherian ring that is not semi-local in
general, although this is true for a ring that is finitely generated over a field. This reduces to
the domain case (dimension one) and then the ring is module-finite over a polynomial ring

in one variable and the same argument works.

2.10 Analytic spread of ideals

Definition 2.10.1. Let (R, m, K) be a Noetherian local ring. For any ideal I in R, the
analytic spread of I, which is denoted by an(I), is defined to be the Krull dimension of
R[It]/mR[It] ~ R/m @ (I/mI)t® (I*/mI*)t*® - - =~ R/m®g R[It]. [21]

Remark 2.10.2. Note that (R/m)®g (R/I) = R/I, it follows that

R/m®pg R[It] = ((R/m)®g (R/I)) ®r R[It] (2.35)
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= (R/m) ®r ((R/I) ®r R[I1]) (2.36)

~ R/m ®p gr,(R) (2.37)

which means that [(I) can be also defined to be the Krull dimension of R/m ®p gr;(R). In

the rest of this section, the ring means a local ring.
Proposition 2.10.3. The analytic spread of a nilpotent ideal is 0.

Proof. First we assume that [ is a nilpotent ideal which means that there exists a positive
integer n such that I™ = 0. Then R/m® R[It] is a finite dimensional vector space over field

R/m. The Krull dimension of finite dimensional vector space is 0. O

Definition 2.10.4. The big height of a proper ideal I of a Noetherian ring is defined to be

the largest height of any minimal prime of I.

Remark 2.10.5. Notice that the height of a proper ideal I is the smallest height of any
minimal prime of I. It is obvious that height less than big height. Also, the height of an

m-primary ideal is the same as its big height.

Theorem 2.10.6. Let (R,m, K) be local and J € R an ideal. Then any reduction I of
J has at least an(.J) generators. Moreover, if K is infinite, there is a reduction with an(.J)

generators.

Proof. According to Proposition 2.5.15, the problem of giving 4y,...,7, € J such that J
is integral over (iy,...,i,)R is equivalent to giving h elements of J/m.J that generate an
M-primary ideal of S = K ®pgr;(R), where 91 is the homogeneous maximal ideal of S. We
have h = dim(S) = an(J). If K is infinite, the existence of suitable elements follows from

the Corollary 2.5.34. O

Lemma 2.10.7. Let (R,m, K) be a local ring and J be any proper ideal, then dim(R) =
dim(gr; R). It follows that dim(K ®g gr;(R)) < dim(R).
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Proposition 2.10.8. For any proper ideal I of (R,m, K), the analytic spread of I lies
between the big height of I and dim(R). In particular, the analytic spread of an m-primary

ideal is the dimension of the ring.

Proof. From the preceding lemma, we have an(J) < dim(R). Let p be a minimal prime of
J. We want to show that height p < an(J). According to previous theorem, we have that J
is integral over an ideal I with an(.J) generators. Then J is contained in the radical of /. In
R, we have that p is the radical of JR,, since p is a minimal prime of J, and so is contained

in the radical of I R,. Thus, height p < an(J), as desired. O

2.11 Multi-Tors

We follow the discussion in [8] here.

Definition 2.11.1. Let R be a commutative ring. Given k£ modules My, -, M} over ring
R, define the R-module Toth(Ml, ..., My) by choosing a projective resolution G for each
M;, tensoring together all of these projective resolutions, with the modules M; removed as
usual, taking the total complex of this tensor product, and taking the homology of the total

complex

Remark 2.11.2. One obtains a functor of several R-modules M, -- , My, covariant in each

of the M;.

Remark 2.11.3. For k > 2, this construction has many of the same properties as the usual

2-variables Tor. For example:

1. A short exact sequence in any of the variables yields a long exact sequence as usual

when the other modules are held fixed.
2. Anng M; also kills Torf (M, - -- , My).

3. Torf{(My, -+, My) = My ®g - - ®p M,
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4. Tf all but one of the M,; is flat, then Torf (M, --- , M,) = 0 for all h > 0.
5. If the M; are all finitely generated over a Noetherian ring R, so is Torf(Ml, cee My,

6. Let R be a Noetherian ring. If Sy, -, Sy are finitely generated R-algebras and M; is a
finitely generated S;-module, 1 < i < k, then Torf (M, --- , My) is a finitely generated

module over S = 5, ®r -+ Qp Sy.

Proof. We only prove the sixth property. Let T; be a polynomial ring in finite many variables
over R such that S; = T;/J;. Let G’Ei) be a free resolution of M; over T; such that modules in
GV are finitely generated T;-modules. The GY) are also free over R since T; is a polynomial

ring over R. Let GG, be the total tensor product of the G over R. Then Tor®(My, -+, My)

lle

H,(G,). The modules in G, are finitely generated and free over T' = T1®g- - -®gT). Therefore
H.(G.,) is finitely generated over T'. For each i, we have a surjection T; — S; with kernel J;.

Since J; kills M;, it follows that H.(G.) is a module over T'/(J\T, J,T,--- , Jy/T) = S. O
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CHAPTER III

Filtration theorems

In this Chapter, we discuss the notion of w"-filtrations. We also prove several useful
properties of w™-filtrations and prove the existence of w”-filtration with an important property
that we will describe later in this Chapter.

In Section 3.2, we give an explicit construction of w”-filtrations. For several particular
cases, we calculate the factors of these w”-filtrations.

Last but not least, we introduce the definition of rectangularly and triangularly normal
w’-filtrations. Futhermore, we construct rectangularly and triangularly normal w”-filtrations
in several particular cases.

We will use the results that appears in this Chapter to prove main theorems in Chapter

IV.

3.1 Introduction to w"-filtrations

In this section, we first discuss the notion of w”-filtrations. Then we prove several useful
properties of w”-filtrations and prove the existence of w"-filtration with an important property

that we will describe later in this section.

Definition 3.1.1. Let M be a R-module. We define recursively the notion of an w"-filtration

of M. If r = 1, an w-filtration of M is just an ascending sequence of submodules denoted by
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the following.
O0=Myc My My Msg<--- (31)
0
where M; is a submodule of M and (J M; = M. Recursively, if we have already defined
i=0
an w"~!filtration of an arbitrary R-module for r > 2, an w'-filtration of M is an ascending
o0
sequence of submodules denoted by My, My, M,, - - - such that | J M; = M, and each M;/M;_,
i=0

)

has an w"!-filtration.

Remark 3.1.2. We can also recursively define the factors of an w”-filtration of M. If r = 1,
the factor has the form M;,,/M; where i = 0. For r > 1, the factor of the w"-filtration of M

is actually the factor of the w™!-filtration of M;,/M; where i > 0.

Proposition 3.1.3. Let M be a R-module with a submodule M’. M /M’ has an w"-filtration

is equivalent to that there is an w”-filtration from M’ to M.

Proof. This simply comes from the Noether correspondence between submodules of M /M’
and submodules of M containing M’ gotten by taking inverse images under ¢ : M — M /M’.

0

0
We also need the following fact. |J M; = M implies | J ¢(M;) = M/M' where M; is a
i=0 0

© 0 - _
submodule of M. |JM; = M/M' implies |J ¢~'(M;) = M where M; is a submodule of
i=0 i=0
M/M. O
Definition 3.1.4. We can define a totally ordered set denoted by w”. (i, - i) <

(4,15, -+ 1) if for some k, 1 <k <r, iy =i, for t < k and s, < i}.

Definition 3.1.5. According to Proposition 3.1.3, we have an alternative definition of an

w-filtration. An w"-filtration of M can be denoted by {M;, iy .. i1 }irsin, i1 in)ewr-

0= MO,U;",(LO - M0707...7071 - M0707...70’2 -
< M0707...717() - M0707...7171 - M0707...7172 c .-

- M0,07...7270 - M0707...7271 - M0707...7272 c .-
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- Ml,(]’.‘. 0,0

S Msp, 00

o0
where | J M, 0.0 = M. Factors have the form M; ,, ... 1iv+1/Mij iy iy 1.0, for any
i1=0

(il,iQ, U 7Z'r') Ew'.

Remark 3.1.6. Particularly, if r = 2, we have

O=M070§M071§M0’2§"'
§M170§M171§M172§"'
QMZQQMQJQMQQQ"'

o0
where | J M;, 0= M.

i1=0
Proposition 3.1.7. Let M be a R-module. Let M’ and N are submodules of M. If there
is an w"-filtration from M’ to M, then there is an w"-filtration from M’ "N to N = M n N.
Particularly, an w"-filtration of M deduces an w"-filtration of N = M n N. We also call this

w'-filtration of N is inherited from the w"-filtration of M.

Proof. If r = 1, an w-filtration from M’ to M is denoted by the following.
MIZMonggMggMgg"‘ (32)

o0
where M, is a submodule of M containing M’ and | J M; = M. We denote N; = M; n N.
i=0

We have
M/QN:NogngNQQNgg"‘ (33)
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ee} 0

and (JN; = UM; n N) = M n N. Recursively, suppose the proposition holds for any
i=0 i=0

1 <7 < s where s > 1. An w*t!-filtration from M’ to M is denoted by the following.

MIZMonggMQQMgg"' (34)

where M; is a submodule of M containing M’ and 6 M, = M. We denote N; = M; n N.
We have an ascending sequence of submodules M’ rlw:;)\f =Ny Ny € Ny € N3 < - with
6 N; = @(Ml N N)= M n N. For each i = 0, by definition, there is an w®-filtration from
;\:/[2 to M:(l) which implies there is an w*®-filtration from M; " N = N; to M; ;1 n N = N; 1.

By definition, there is an w*™!-filtration from M’ n N to M n N. O

Definition 3.1.8. Let M be a R-module, we say M has a general w"-filtration, if there is a
finite filtration

O=MycMycMyc---CcM, =M (35)
such that each M;/M;_; has an w"-filtration where 1 < i < n.

Remark 3.1.9. 1t is obvious that an w"-filtration of M is also a general w"-filtration of M.
And a general w"-filtration corresponds to an w”!-filtration of M in which the w”-filtration
submodules are eventually all the same. The factor of a general w"-filtration is defined
similarly to the factor of an w”-filtration. Furthermore, Proposition 3.1.3 and Proposition

3.1.7 hold for general w"-filtrations.

Lemma 3.1.10. Let A be a Noetherian commutative ring, and By be a finitely generated

A-module. We have the following surjective morphism over A-modules.
BlﬁBg—»Bg—»le—»”' (36)

We claim that there exists T' > 1 such that By ~ By, =~ Bp,o =~ ---.
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Proof. We have the following surjective map via composition.

where ¢ > 1. For any ¢ < j, we have ker ¢; < ker ¢; since ¢; is a composition of ¢; : By — B,

and f: B; — B;. Thus, we have

ker QZ51 C ker qbg C ker ¢3 C ker ¢4 < - (38)

Since By has ACC, the ascending chain will be eventually stable, i.e., there exists T > 1

such that ker ¢ = ker ¢ = ker ¢, o = ---. According to isomorphism theorems, we have
By
~ B; 3.9
ker ¢1 ( )
which means that there exists T' > 1 such that Br ~ By, =~ By >~ ---. O

Lemma 3.1.11. Let A be a Noetherian commutative ring, and R be an A-algebra generated
by an element §. R = A[f] where A is an image under the map A[x] — R with  — 6. Then
R has an w-filtration over A such that by prime cyclic A-modules involving only finitely

many prime ideal of A.

Proof. We may replace A by its image in R and assume R = A[f#]. Consider the following
filtration

ACA+AIC A+ AD+ AP C A+ AD+ AD* + AG® < - - (3.10)

We claim that there are only finitely many distinct factors in this filtration. Let us denote

i—1 K . .
the factor A*ffzg :f‘f 2% by B; where i > 1. Of course, B; is an A-module. We have the

following morphism:

B; — B

b—> b0 (3.11)



First, it is well-defined. Since for any element a € A + A0 + --- + A0!, we have af €

A+ AD + -+ AP + AP’ Second, the morphism is surjective. Actually, any element

in B;,; has the form af*! where a € A, as we know a6’ — afit!. Thus it is a surjective

morphism. Then we have the following surjective morphism.

Bl—»B2—>'>B3—»B4—»“' (312)

B is an A-module generated by one element. According to Lemma 3.1.10, there are only
finitely many distinct B;. Now we can prove the lemma. B; can be viewed as an A-module
with only one generator. According to Proposition 2.6.6, each B; has a finite filtration in

which all the factors are prime cyclic A-modules. Suppose we have the following filtration

0= Bi,O - B,;jl - Bi’g c .. C Bi,in = B; (313)

then we can lift to the following filtration

A+ A0+ + AP =ChcCicCyC---CC,=A+A0+ -+ AP+ A9 (3.14)

Actually, we have A+ A0+ -+ A9~ + A9 — B, then C; is the inverse image of B; ; € B;

where 0 < j < 7,. According to isomorphism theorems, we have

Cj/Cj,1 = Bz',j/Bi,jfl (315)

Now, we actually construct a countable filtration with only finitely many distinct prime

cyclic modules. O

Proposition 3.1.12. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[0;,05, -+ ,0,]. Then R

has an w"-filtration in which all the factors are prime cyclic A-modules. Also, only finitely
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many distinct prime cyclic modules occur.

Proof. According to Lemma 3.1.11, we know the proposition holds when r = 1. Suppose
the proposition holds when r = j. We claim that it still holds for » = 7 + 1. We denote
Al0:1,05,--- ,0;] by S;, then S;j11 = S;[0;41] can be viewed as a Sj-algebra. According to
Hilbert Theorem, S; is a Noetherian ring. Thus, S;;; has an w-filtration in which all the
factors have the form S;/Q; where £, is prime. As we know, only finitely many distinct

factors occur. We have the following natural isomorphism

A — _ A _
S/ = m[ebe% et = p—i[91,92>"' ,0;] (3.16)

where p; = A n Q; is prime. We can view S;/Q; as a A/p;-algebra. As we all know, A/p;
is Noetherian since A is Noetherian. By assumption, S;/Q; has an w’-filtration in which
all the factors are prime cyclic A/p;-modules which are also prime cyclic A-modules. Also,

there are only finitely many distinct factors. O

Remark 3.1.13. When A is a domain, the theorem on generic freeness follows at once: one
simply localizes at one element of A — {0} in all of the finitely many nonzero primes of A

that occur in the filtration. See section 6.9 in [10].

Theorem 3.1.14. Let A be a Noetherian commutative ring. Let R be an A-algebra with r
generators and M be a finitely generated R-module. Then M has a general w"-filtration in
which all the factors are prime cyclic A-modules. Furthermore, only finitely many distinct

factors occur.

Proof. According to Proposition 2.6.6, M has a finite filtration in which all the factors are

prime cyclic R-modules.
O=MycMycMyc---CcM, =M (317)

where M;/M; 1 =~ R/Q; where £Q; is prime. R/Q); is a finitely generated A/p;-algebra with
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at most r generators where p; = Q; n A. According to Proposition 3.1.12, R/Q; has an
w"-filtration in which all the factors are prime cyclic A/p;-modules. These factors are also

prime cyclic A-modules. Only finitely many distinct factors occur. O

Theorem 3.1.15. Let A be a Noetherian commutative ring. Let R be an A-algebra with r
generators and M be a finitely generated R-module. Then M has an w"-filtration in which
all the factors are prime cyclic A-modules. Furthermore, only finitely many distinct factors

occur.

Proof. We assume R = A[0y,0s,---,0,] and M = Ray + Rag + -+ + Ra,. Denote Aoy +
Aag + -+ + Aag by B.
If = 1, we have an ascending sequence of submodules of an A-module B[] where
0 =06,
BC B+BI<C B+ BO+B0>< B+ B+ BO>+ Bo < - (3.18)

As in the proof of Lemma 3.1.11, we have the following well-defined surjective A-module

morphisms.

B+B# B+ BO+ B B + B + B#?> + B&?

B —» —»
B B + B6 B + B0 + BO?

(3.19)

B is Noetherian as B is a finitely generated A-module. Then the sequence of factors will be
eventually stable according to Lemma 3.1.10. Thus, there are finitely many distinct factors.

Furthermore, we have the following natural isomorphism.

B+ B0+ ---+ B~ + BO

ErBis s pg S A0t Aba+ Afar -+ A, (3.20)

where ¢ > 1. It is a finitely generated A-module. According to Proposition 2.6.6, each factor
has a finite filtration in which all the factors are prime cyclic A-modules. Then only finitely
many distinct factors occur. It is obvious that M = B[] when r = 1.

Suppose the theorem holds when r = j, we claim that it still holds for » = j + 1. Denote
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B[@l, 927 s ,9]‘] by B/, A[@l, 02, ce ,6)]‘] by A’ and €j+1 by 0. Then B[‘gl, 927 ce 79j+1] =
B'[6]. According to the base case, B'[#] has an w-filtration in which all the factors have the
form A’/Q; where Q. is a prime ideal of A’. Also, only finitely many distinct factors occur.

There is a natural isomorphism:

A _

A//Qk = —[91,02,"' ,0]‘] (321)
k

where pr = Qp N A. According to Proposition 3.1.12, A’/Q; has an w’-filtration over A

such that by prime cyclic A-modules involving only finitely many distinct prime ideal of A.

The last part of the proof is to prove that B[fy,6s,---,0,] = M. We can easily check it is

true. O

3.2 Explicit construction of w'-filtrations

In this section, we give an explicit construction of w"-filtrations. For several particular

cases, we calculate the factors of these w”-filtrations.

Proposition 3.2.1. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[6;,0s,- - ,0,]. Consider

the case » = 2 first. Then R has an w?-filtration {Ri;}(j)ew? Where R;; is defined as the

following.
i—1 j—1 A
Rij =) Al0:\]05 + | A076; (3.22)
u=0 =0

Note that if the upper index is less than the lower index of the sum, we say the sum is zero.
All the factors are cyclic A-modules, i.e., R; j11/R;; = A/I where [ is an ideal of A for any

1,7 = 0. Only finitely many distinct I occur.

Proof. First, we claim than R;; € Ry j for any (i,j) < (i, /) € w?

i S Ifi=4d, j<j,itis
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simply from the definition. If i < 4’, we have R,y < R;; and Ry < Ry ;. Also, we have

j—1

i—1 7 i—1 o0
Rij = Z;JA[el]eg + ) A6Y6; < Z;JA[el]eg + ;AW%

=0

IN

i—1 0

D A[01]0; + > ABY6;
u=0 v=0

i—1

> A[61]05 + A[6116;

u=0

> A[01]05 = R
u=0

IN

IN

ThUS, R@j - RiJrl,O - Ri’,O - Ri’,j’- Furtherrnore, Ri7]’+1 = Ri,j + AQ{GZQ which means
R, j11/R;; is a cyclic A-module.
We claim that distinct I only occur finitely many times. Consider the following surjective

morphism.

Ry Ry Rsp Ry
—» —»

N — 3.23
Roo  Rio  Rspo  Rap (3.23)
According to Lemma 3.1.10, there exists T" such that we have
Rt N Rri10 N Rry20 N Rris0 o (3.24)
Rr10 Rro — Rryio Rrigo
For each fixed t, there exists S; such that
Risior  Bisgve | Bisies (3.25)
Rt,Sz B Rt,St+1 B Rt,5t+2 N
We can denote Max{S;},<r by S. For any k, we have
Ry N Rryro N Rrirgs N Ryyya N (3.26)

Rriko  Rrika  Rrik2  Rriks

52



By construction, we also have the following injective morphism

Ryyry Ryyri1p
>

Rryro Rryro

for any k and [. Consider the following isomorphism

'}%T+k+1@ 02 Z%T+k+zp
¢T+k: . -

Rryko Ryyriip

Rrik,i

Frro” By defintion, we have

restricted on

s (RT+k,z Ryyrq1g
T+k =
Rryko Ryyriip
which means we have
Rring  Rrigsiy

~

Rriko  Rrirs10

where [ € N. Thus, for any [ > 0, we have

Rriky _ Rryke1g

Rrigi-1 Rriks11-41

In conclusion, we have the commutative diagram 3.1.

Now, we actually prove that distinct I only occur finitely many times.

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

]

Theorem 3.2.2. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R = A[fq,0s, -

has an w'-filtration {R;, i, .. i, } (i1 ,ia, ir)ewr Where R; 4, .. ; is defined as the following.

i1—1
Ri1,i2,-~~,ir = 2 A[Qh 627 . 70r—1]0:~/1
i’1=0
ig—1 3 ‘
+ 3 Al Oa, -, 0,5)0, 07

A
15=0

93

,0,]. Then R



Ro, o Roz o Ros N o _Bos ~  Rosq ~
o 7 S 7 72N 7 7 7
Ro,0 Ro1 Ro 2 Ro,s—1 Ry, s
¥ ¥
R]‘Yl A\ R1Y2 A\ R]‘YB AN AN R17S ~ \ R17S+1 ~ \
- 7 5 7 S 7/ 7 7 7
Ripo Ry Ry Ry s-1 Ry s
¥ ¥
R2’1 A\ R272 A\ R273 A\ AN R2VS ~ \ R2’5+1 ~ N
o 7 7 o 7/ 7 7 7
R Ro; Ra 2 Ry 51 Ry s
¥ ¥ ¥ ¥ ¥ ¥ ¥
A\N PR A\N . .. A\ . e e A\N . .. ~ AN ~ AN
l l 7w l 7 7
¥ ¥ ¥ ¥ ¥
¥ ¥
T,1 W\ T2 W\ RTa3 N .. \ RT7S ~ \ RT75+1 ~ \
7w 7w 7w l 7 7
Rro Rt Rr2 Rr,s—1 Rr.s
14 14 14 14 14 14 14
N\ N\ N\ N\ N\
~ ~
Rri1,1 « Briipe « Briis « . PBriis ~  Rryis41 ~
7 7 7 * 7 7 *
Rri1,0 Rryi11 Rryi12 Rry1,5-1 Rry1,s
2 2 2 ¢ 2 2 ¢
~ ~ ~ ~ ~ ~ ~
A\N .« .. A\N .. A\ ) A\N .. ~ AN ~ AN
l l 7w l 7 7

Figure 3.1: Commutative diagram of factors of an w?-filtration

i3_1 -/ . .
+ 3 AL, 6, 16,60 60
ig=
+ .o
ir—1 L ‘
+ ) AlOT 0
1.=0
i1 N
7 1
= Z Z A[ela 927 e 79T—j]9r]fj+1 H evszlfk
j=1 i;: k=1

Note that if the upper index is less than the lower index of the sum, we define the sum to
be zero. All the factors are cyclic A-modules. These cyclic A-modules may be replaced,
by filtration, by prime cyclic A-modules, i.e., modules of the form A/p with p prime. Only

finitely many distinct p occur.

Proof. We can prove the theorem by induction. Assume it holds for case r—1. A[fy,60s,--- ,6,]

is an A[f;]-module. Thus, for any (i1,is,--- ,,) € w", there are only finitely many distinct
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Riy iy in 1410/ Rty in_10- 1t is equivalent to say, for any (iq,42, - ,4,—2) € w" 2, there

exists 7,1 so that we have

Riy i v 1110 Rigjin, e in 145410 (3.32)

Riy iy e ip10 Riy g e ip 14,0

for any k. The induced map

Riy g inad Rigigo iy kil
—

(3.33)

Riyigoip10  Rivigiip1+k0

is injective and surjective. It is similar to the proof of case r = 2. Thus, for any [, we have

Riyioivat _ Biviigye ip y+hl

~ (3.34)
Riyigira0 Rigin,e i1 k0
which implies that
Riy iy vt Rininira kit
~ (3.35)
Ri g, vl R iy o i 4
In conclusion, only finitely many distinct factors appear in {R;, i, ... i, } (i1 ia, i )ewr - O

Corollary 3.2.3. Let A be a commutative Noetherian ring, and R = Alxy,zo,- - ,z,]
where xq, s, - ,x, are indeterminates. Then R has an w"-filtration in which factors are

cyclic A-modules. Also, only one distinct factor occurs.

Proof. We define

r o t;—1 ¥ 7j—1
il .
— E E . J | | 1k
Ril,iQ,'” ir T A[xIJ Loy 7xr_]]xr—j+l ‘/E'r'-i-l—k (336)
J=1i%=0 k=1

Then we have
T .
Tk
Riigin T AT 20 4
k=1

Ry iy

Rij iy i1

Ry iy

lle

A (3.37)

N2 Jir

since x1, s, - ,x, are indeterminates. O
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Corollary 3.2.4. Let A be a Noetherian commutative ring. Let R be a finitely generated

A-algebra. We may replace A by its image in R and assume R = A[6,0,,--- ,0,]. For 0,

there exists ag o, ax1,- -, ara,—1 € A such that
dp—1
O = > arab; (3.38)
1=0

Then R has an w’-filtration in which factors are cyclic A-modules. The number of distinct

nonzero factors is at most d;dy - - - d,.

Proof. We define R;, ;, ... ;, as the same in Proposition 3.2.1. Thus, we have

T

ik -
Ri1,i2,"'7ir + A H 0r+1—k

T

Ril 19, ,ir+1 k=1 - ]
2 T = >~ Al |0, (3.39)
Rijig,e i R jig,o i ,!:[1 ek
If there exists [ such that 7; > d;, then we have
v dj—1 d;—1
. . - . . s
[10m =110 Y a6l = > [ [awb, 00~ (3.40)
k=1 k£l j=0 j=0 k#l
Forany j <d;—1, [] alJ@iil_kHli‘*dl” € Ri, iy 4, since iy —d; + j < 4;. This actually proves
k#l
that if there exists [ such that i; > d;, then % =~ (. Furthermore, the number of
i ir
distinct factors is at most d;ds - - - d,. O

Remark 3.2.5. In this particular case, we can see that the w"-filtration reduces to a finite

filtration.

Proposition 3.2.6. Let K be a commutative Noetherian ring, A = K[z, 29, -, ,] where
x; is indeterminate for 1 < ¢ < n, y; be another indeterminate, and R = A[y;, y2| where

Yo = %xg. Then the factors of the w?-filtration {R;;}(; w2 are isomorphic to either A or

A/ASCl
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Proof. According to Proposition 3.2.1, we have

R R;; + Ay{y%

= (3.41)
When i = 0, we know that
Ra . I Ay —
01 _ 2o WL r sy (3.42)
R j—1 Ay? 1
0,7 ZU:O yl
since y; is indeterminate. When ¢ > 1, we have
Rij1 _ Ry +Aylys _ 5 oy 7
LTS >~ Aylyi = AZL 2 3.43
Ri,j Ri,j Y2 7 ( )
Furthermore, we have the following natural surjective morphism.
g0
A A B (3.44)
Ty
x
¢:a—all"2 (3.45)
I
We claim that ker ¢ = Ax;.
. yi . yi GH1 i1
First, for any ax, € Az, we have ¢(az;) = a®5—=2 = 0 since =52 = 22y{ y5 € R;;
Zy Zy
for ¢ > 1.
itioa i+ i
Second, aylx:-% = 0 implies that aylx# € R; ;. Since z1,29,y; are indeterminates, a has

1

to be the form bz; where b € A. In fact, generators of R;; have the form yiys where either

anyteN,s<i—1lort<j—1,s=1i. By definition, we have

t+s,.s
t s Y1 T
Y1Y2 = s

Ty

(3.46)

i+j

If a ¢ Axy, aylxiggé — ayly’ must be generated by 4y} where t < j — 1. Contradiction. We
1
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actually prove the following isomorphism.

R Z+]
Bisor _ 0077 o g vers = AJAm (3.47)
R i
Thus, factors of the w?-filtration {R;;}; jje.2 are isomorphic to either A or A/Aw;. O

Remark 3.2.7. Let R = Aly1,9o, - ,y.] where 2 < r < n. Then the factors of the w’-
filtration {R;, i, i, }(ir iz, in)ewr are isomorphic to either A or A/(Axy + Axy + -+ + Axy)

forany 1 <k <r—1.

Proof. According to Proposition 3.2.1, we have

R _— Ri17i27 K . T Akl_ll yr+1 k
11,0 7"'77"r+ = ~
Rl, : = R, AH Y1k (3.48)

11,82, ir 11,82, ir

If (il,ig, s ,Z'rfl) = O, we have

i
Roo,i,+1  Roo,. i + Ayl
Ro0.. i, Roo.. i,

~ A% ~ A (3.49)

since y; is indeterminate and y7" ¢ Rop.... 4,

If (41,49, -+ ,i,—1) # 0, there exists [ such that (i1, -+ ,7_1) = 0 and 7; > 0. We have

R;
Hiryig, o yip 1 ir Y1 Y1 ;
Ry AH R N (3.50)
i1z, i T T
i14ig4-Fip, tr—1, lr—2 7
_ A?Jll ’ "ry wg o eeay (3.51)
- i1+io++ir_1 .
Ly
Similar to the case r = 2, we have the following natural surjective morphism.
i1+ia++ip dr—1 ) lr—2 %
A Ayll 2 erT xgr .. xrl <3 52)
11+i2+ i1 .
Iy
i1 +igdediy tr—1 ip—2 i1
Y Ty X Xy
¢:a—a> 23 (3.53)

i1 +t2+ - Fip—1
Ty "
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We claim that ker ¢ = Az + Axg + -+ + Az,

First, for x; € Az, we know that

T i il -
B y’il+12+ +'LTI,2T 1x37‘ 2. xzrl
¢(z1) = 1 i tiat i1
Ty
i14ig+-+ip, lr—1, Ir—2 i1
_ yl szr iL’3T c e J/‘T‘
xli1+i2+~--+ir71—1

since %,_p41 = 1 where k = r — [ + 1, then we have

i1+io+-+iy Gr—1 ir—2 i1
¢($ ) _ yl x2 xS ~..SET
1 i1+ig+-Fi_1—1
Ly

i1, ir—1 bp—k+2, br—kt1—1 fr—k

1 i
=Y Yo Yk T Yg Y1 Y

=0
i+l Ir—1 lp—k+2, br—k+1—1 Gr—k i1
because we have yi" "y, -y Ty, Yprt Ut € Riiy iy
2 <k <r—1, we have
i14+io4-+ip fr—1 Tp—
B y§1+z2+ +’er27‘ 1x3r 2. ‘r;l
(b(l.k) = Tk t1+io+-+ip_1
Ly
i14io+-+ip, ir—1 br—kt2, br—k+1+1_ ir—g i1
B yl xz e :L.k—l $k $k+1 R
= izt
x11 2 r—1
_ s Tr—1 . ir—k+2 ir—k+l+1 Tr—k . i1 i—1
=TiYr Y2 Y1 Yk Ye+1 Yot Yr—it1
=0
: ip, tr—1 . lp—k+2, g1+l dr—k . i—1 i—1 c R . . c R .
smce yl y2 yk—l yk yk—i—l yr—l yT—l+1 iyt =1 11, = 1y 5t
Second, for any a € ker ¢,
i1 4 G0ttt bp—1  Tp— i
y§1+12+ +er27‘ 1x3r 2, .x? 0
a i1 +io+Aip 1 -
Ly

29

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

For x, € Az, where

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)



implies that

i1+io+- -+ Gp—1 p—2 i1

% Ly T3 -y
a i1 +ig 4+ ip 1 € Ril:i%”'yir (364)

Ty

Since 1,2, -+, Ty, Y1 are indeterminates, we know that generators of R;, ;, .., have the

il il i g . .. .
form y"y, " - - -yt where (4,45, -+ i) < (41,49, ,1). Suppose a ¢ Axy+Axo+- -+ Ax,_y,

. . . . g g ‘ g y

since y; is an indeterminate, we have i} + 4, +--- 4+ =43 + -+ +i,. Also, (¢},45,--- ,i) <
(11,19, - ,i,) means there exists v = [ such that i/ < i,. Then there exists u > v > [

such that i/, > 4,. Then the degree of x,,1_, should be greater than i,. As we know,
Tpt1-u € Axy + Azg + - - - + Az,_;. Contradiction.

Thus, we have the following isomorphism.

Ril,i2,-.. ikl yi1+i2+-~.+irx;r—1xér—2 o ZEil
Ri1 i, i =4 x§1+i2+"'+ir71 (365)
~ A/ker ¢ (3.66)
= A/(Azy + Amy + -+ + Az, ) (3.67)

In conclusion, factors of the w"-filtration {R;, ;... 4 }( .ir)ewr are isomorphic to either

i17i27“

Aor AJ(Axy + Azg + -+ + Axy,) forany 1 <k <r—1. O

Proposition 3.2.8. If f, ¢ forms a regular sequence of A, the factors of the w-filtration of

A[f/g] have the form A/gA.

Proof. For any k € N, we have

Resp A+ AL+ 4 AR+ A(L)F

- 3.68
Ry At AL o AL (3.68)
AT+ AfgE -+ Affg + AR (3.69)
B Aghtl + Afgh + -+ Aftyg '
A
> — 3.70
I (3.70)

where I, = (¢**1, fg*, -, ffg)  fF*1

First, we have I, € gA : f¥*! = gA since f, ¢ forms a regular sequence of A.
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Second, I, 2 gA since gAf**t < (¢*, fg*,- -+, f¥g). Thus, we have I} = gA.
O

In conclusion, the factors have the form A/gA.

Example 3.2.9. Let K be a commutative Noetherian ring, A = %, and R = A[6,, 0]

where 0 = 2,0, = 2. We know z, y forms a regular sequence of A. According to Proposition

3.2.8, we have
A
(3.71)

For ¢« > 1, we have that

Rijin _ Ry +A616;  Rij+ ALZ (3.72)
Rij Ry Ri;
If i > 3, then 2* = —2"73(2% + y3) which implies
Y2 =y (@ + ) i j+3 i
e — = —(0]057% + 070 e Ry (3.73)

Thus, Lfl = 0.
Zv]

If © = 2, we claim that

Rijin Bt AL NN A (3.74)
Ri,j RZ’J ity Ax + Ay + Az

As usual, consider the following surjective map.

J ~1
A — Aiifj (3.75)
J ~1
v= (3.76)

¢:a’_)al.i+j

_ Qi Yy’ 2? J+1
916’22 € RQ,], Y o247 (91 922 € RQJ,

First, we have ker ¢ 2 Ax + Ay + Az since a:yz =

J
and zg;ij = 4 (jﬁjy € Ry ;.
Second, for any a € K, a;gi] ¢ Ry ; since the degree of y is at most j, the degree of

0, is at most j, we have the degree of 6y is at least 2 because the denominator is x
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While the degree of 6, is 2, we have the degree of 6, is j. We know 9{9% ¢ Ry ;. Thus,

ker ¢ = Ax + Ay + Az implies that

Ri7j+1 N A

~ 3.77
R@j Az + Ay + Az ( )
If = 1, we claim that
Riji1 _ Rij +A%S Y A (3.78)
Ri’j - Ri’j - [Ei+j - A$ + Ay + A22 '
Similarly, we have the following surjective map.
A AL 3.79
A (3.79)
. Yy
¢ a— L (3.80)
We only need to prove that ker ¢ = Ax + Ay + Az%.
First, since xflj—f] = 0lz € Ry, yj%fj = 6/"'2 € Ry, and z%ﬁi = —yj(;fijs) € Ry, we

have ker ¢ 2 Az + Ay + Az

; j i 3,2 :
Second, for any a € K, ab{f, = a5 ¢ Ry, and az 55 = a%%;, the degree of y is at

most 7 which means the degree of 6, is at most j, then the degree of 6, is at least one since
the denominator is 27*'. As we know, 610, ¢ R, ; and 6]'63 ¢ R, ;. This actually means
azf%fj ¢ Ry .

In conclusion, we know that the factors of w?filtration have the form A/Az, A/(Ax +

Ay + Az), A/(Ax + Ay + A2?).

3.3 Rectangularly and triangularly normal w’-filtrations

In this section, we first introduce the definition of rectangularly and triangularly normal

w’-filtrations. Then we construct rectangularly and triangularly normal w”-filtrations in
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several particular cases.

Definition 3.3.1. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[f,65,--- ,0,].

For Iy, 1y, -+ , 1. € N, we define R, 4, ... ;] as the following.

Ripy i 1] = >, AdeR -6 (3.81)
i) <ly,i5<la, - il <l
We call Ry, ,.... 1,1 & rectangular submodule of R.

For d € N, we define Rqy as the following.

Ray= >, AGPGP--- 6 (3.82)

i) Fiy+--+ih.<d
Similarly, R4 is called a triangular submodule of R.
An w'-filtration of R is said to be rectangularly normal (respectively, triangularly normal)

if all the inherited filtrations on rectangular (respectively, triangular) submodules produce

only finitely many factors.

Lemma 3.3.2. Let A, R be the same as in Definition 3.3.1. For any finitely generated
A-module N, the set {N n Ry i,....i.|(i1,%2, - ,4,) € w"} is a finite set which means the
w'-filtration N N {R;, iy .. iv } (i1 ia, ir)ewr 15 actually a finite filtration. Thus, there are only

finitely many distinct factors of N N {R;, iy i Firsin, o sir)ewr-

Proof. According to Proposition 3.1.7, we know N N {R, iy i, }(i1,ia, in)ewrls actually an
w"-filtration of N n R.
We claim that there are only finitely many distinct N N R;, 4, ... 4,.-

In fact, IV is Noetherian. If there are infinitely many distinct N n R;, 4, ... ;,, We can pick

countably many distinct N n R;, ;,.... ;. such that they form a strictly increasing sequence

(o

which is a contradiction to the fact N has ACC. We have only finitely many distinct N n

NNRij iy, ip+1
NARiy i

Ri, iy ... i, implies only finitely many distinct will occur. O

63



Corollary 3.3.3. Let A, R be the same as in Definition 3.3.1. For any fixed d,ly, - ,1,,
there are only finitely many distinct factors of w”-filtration Ryay N {R;, iy, i }(in,in, - iv)ewr and

R[h,lz,-” ,lr] N {Ri17i27“' 7ir}(7:17i27"' ﬂ'r)ewr'

Proof. This comes from Lemma 3.3.2 directly since both Ry and Ry, ..., are finitely

generated A-modules. m

Proposition 3.3.4. Let A, R be the same as in Corollary 3.2.3. For any l,ls,--- ,l, € N, we
have the factors of w™-filtration Ry, 4,.... 1,] N {Riyin, - iv } (i1 iz, ir)ewr aT€ isomorphic to either
0 or A. It actually implies that {R; ... i, }(i1,is, ir)ewr 15 Tectangularly normal. Similarly,
for any d € N, factors of w"-filtration Ryg N {Ril,i%...,ir}(ihim...,mgwr are isomorphic to either

0 or A which implies that {R;, i, .. i, }(i1i0, ir)ewr 1 triangularly normal.

Proof. By definition, we have

R ﬁRZ' i 1T+R ﬂA .I‘T
Bt 1] 0 Biyi i1 _ otz ] e stz d H Tk (3.83)
By o, 1] 0 R i,y By, ) O L iz i
Since x4, Z2, - - , ¥, are indeterminates, if ]_[ a ¢ Ry 1., then
k=1
Rity tp ] O Anxm L =0 (3.84)
which implies
R mRz 12,00 iy
Utey ] T Btz el (3.85)
R[ll,lz"', ] M Ril,iz,"-,ir
If 1—[ 2 . € Ry, iy 1,1, then we have
Ry gy ) 0 A H xr-i—l p=A H xr+1 k (3.86)
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which implies
Ry 01 0 iy g e i1
Ry g 0] O Biyig e i,

5

lle

A (3.87)

Similarly, we can prove {R;, i, ... i } (i1 ia, i )ewr 1S triangularly normal.

R ﬁRii.A.ir—{'R N A $ik7
Biay 0 Rigigint1 _ @ e @ 191;[1 ok

R{d} M Ri1,i2,---

3.88
R{d} N Ril,iz,"- ( )

i i

r . T .
. . . . i i B
Since 1, %9, - ,x, are indeterminates, if k| |1 )k, & Rygy, then Ry N Ak| [2f, =0
= =1

. . Ry nRiyig, yir+1 ik T i Sk
implies that — Lipirts — (). If T € Ry, then RipnA T =A T
p R{d}mRil,iz,m Jir ]El r+1—k {d}’ {d} k:;l;[l r+1—k ]}:[1 r+1—k

. . R d}mRz 49, ip+1
implies that — Li2irts ~ A, O
p RyaynRay g ir

Definition 3.3.5. For any = € N", we denote the i-th coordinate of x by o;(z) where

1<i<r.

Lemma 3.3.6. Let A, be a subset of N containing infinitely many elements. Then, we
can construct a sequence 91,09, - , 0y, such that 0;(61),0;(d2), - ,0:(d,), - is a non-
decreasing sequence for any 1 < ¢ < r, and 9,, € A, for any n € N. Also, J; # 0, for any

j# k.

Proof. If r = 1, it is obvious.

If we prove the lemma for any r < k — 1, we consider the case k.

We denote A}, = {(iy,42, -+ ,ix_1) € N*7Y(iy,d9, -+ ,ig_1,1%) € Ar}. Since Ay contains
infinitely many elements, if A} _, is a finite set, there exists (I1,-- - ,l;_1) such that Ay, =
{0 € Ag|oi(0) = I; where 1 < i < k — 1} contains infinitely many elements. We can choose
01,09, - -+ € Ag g1 such that 03 (01), 0k (d2), - - - is strictly increasing. If Aj_; is an infinite set,
by induction, there exists a sequence 07, 93, - - - € A} _; such that 0;(07), 0;(0%),- - ,04(d)), -
is a non-decreasing sequence for any 1 < i < k — 1. Thus, we can choose 91, ds, - - - € Ay such
that 0;(01),0:(2), -+ ,04(0,), -+ is a non-decreasing sequence for any 1 < i < k — 1. For

this particular sequence, if the set {0y (J;)|i € N} contains only finitely many elements, there
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exists [ € N such that {d;|ox(0;) = [,7 € N} contains infinitely many elements which gives
us the desired sequence. If the set {o4(d;)|i € N} contains infinitely many elements, we can
choose a strictly increasing sequence in {o(;)|i € N}. Thus, this subsequence of 91,09, - -

is the desired sequence. O

Proposition 3.3.7. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[0y,05,--- ,0,]. If Ris also
a finite generated A-module, then the w'-filtration {R; ;... i, }(i1,ig, ir)ewr 1S Tectangularly

and triangularly normal.

Proof. We claim there are only finitely many distinct R, ... ;] where [y,lo,--- [, € N.

T

Suppose there are infinitely many distinct Ry, g,...;,. We denote the set of distinct

R, o, 1,1 by A. Furthermore, we define

Ar = {(ll, lQ, s ,l,n) € Nr’R[117127...7lr] € A} (389)

According to Lemma 3.3.6, there exists a sequence 01, d9, - -+ , d,,, - - - such that §,, € A, for any
n e N, and 0;(01),0:(82), -+ ,04(0,), - - - is a non-decreasing sequence for any 1 < i < r. Thus,
Rs,, Rs,, - -+ is a strictly increasing sequence of submodules of R. Contradiction to the fact
R has ACC. According to Corollary 3.3.3, we know the w”-filtration {R;, i, .. i, } (i i, ir)ewr
is rectangularly normal.

Since IR has ACC, the increasing sequence R4 will be eventually stable which means
there are only finitely many distinct Ry4. According to Corollary 3.3.3, we know the w"-

filtration {R;, iy ... i, }(i1,in, ir)ewr 18 also triangularly normal. O

Remark 3.3.8. As we all know, R = A[0;,0s,--- ,0,] is a finite generated A-module is equiva-

lent to say 0y, is integral over A for any 1 < k < r i.e., for 0y, there exists ay o, ax 1, , Ak a,—1 €
A such that
dp—1
O = > arab; (3.90)
1=0
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Then, there are at most didy---d, distinct Ry, 4,.. ;1. For any ly,lp,---,l. € N, if there

exists 1 < k < r such that [, > dj, then we have

Ry g 0] = Bity o oy te—lr o] = 0 = By i de—10 0 0] (3.91)

since 92,’“ = 92’“_”1’“ ijg ! ar,0%. The degree of 0) will decrease one. We can keep going until
the degree of 0 is d, — 1. Now, we actually prove that for any [ly,ls, - ,[., there exists
ly,1y, -+, [, where [}, < dj for all 1 < k < r such that Ry, 4, .. 1,) = By, n)- Thus, the
number of distinct R, y,.... 5, is at most did; - - - d,. According to Corollary 3.3.3, there are
finitely many distinct factors of Ry, 1, 1,1 "V { Ry io, - ir } (61,9, ir)ewr fOr any fixed Iy, o, - 1.
Thus, for finitely distinct (l1,ls,--- ,l.), there are only finitely many distinct factors. In
conclusion, for any (ly,ly,--- ,I,), the w-filtration {R;, i, .. i }(i,in, i)ewr 1S Tectangularly
normal.

We also claim that there are only dy + dy + -+ + d, — 7 + 1 distinct Ryg. If d >

dy+dy+---+d. —r+1,since ¢} +--- + 1, = d, there exists k such that i; > dj, then

-/ .y i il — dkfl
0;1 0 e Ry4_1; since 0, =0, o > ak’l%. Then, we have
1=0
Rigy = Ria—1y = -+ = Ria;rdysvdo—r) (3.92)

which implies that there are at most d; + dy + --- + d, — r + 1 distinct Ryq. According to

Corollary 3.3.3, we know the w”-filtration { R, i, ... i, } (i1 iz, ir)ewr 18 also triangularly normal.

Proposition 3.3.9. Let A be a Noetherian commutative ring. Let R be a finitely generated
A-algebra. We may replace A by its image in R and assume R = A[f0,6,,---,0,]. If
01,05, ,0;, are indeterminates and 6,1,0,.0, - ,0, are integral over A, then the w’-

filtration {R;, iy ... i, }(i1,in, ir)ewr 1S Tectangularly and triangularly normal.

Proof. We may replace 601,60, ,0, by x1,29,--+ ,x,. In order to prove the w"-filtration

{Ri ig, ir } (ir iz, in)ewr 15 triangularly normal, it suffices to prove that there are only finitely
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many distinct factors.

h . T .
R{d} N Ri1,i2,---,ir + R{d} N A H LEZJrkk H 0;T+17k
k=1

Rigy 0 Ry iy, i1 k=h+1
R{d} M Ril,iQ,“',ir R{d} M Rihiz,'“,ir
h
Since x1, X9, -,z are indeterminates, if d < Y] 4,11, we have
k=1

h r
R{d} A AHxZMkk H 62’r+17k -0
k=1

k=h+1

implies that

R{d} M Ril,i2,...,ir+1 —0

Riay N Ry iy i,
h

h
Ifd= > 41, 8ayd =d D) i1 and R = A[f,--- ,0,], then we have
k=1 k=1

h I
R{d} ﬁAHIZTH_k 1_[ 6;:‘+1—k

k=1 k=h+1
T , r h
_ A ir+1—k 7:'r-f—l—lc
(X AT #ea [T dn] e
Zi;@sd’ k=h+1 k=h+1 k=1
=(Rigy n A T o7 [ [a
k=h+1 k=1

Also, by definition, we have

lr4+1—k lr4+1—k
Ri17i27"'7ir N A | | Ty | | Gk
k=1 k=h+1

T

h
o L i ir+1—k Z"r-f—l—k
=(Rir gy o0 0 A [T 07 [ T
k=1

k=h+1

. / lr+1—k lr+1—k
_(Ril,ig,u-,ir,h nA H 0y ) 1_[ Ly,
k=1

k=h+1
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(3.98)
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Thus, we have

Ryay A Ry iy mAHx““ 1T o (3.102)
k=h+1
) h
=(Rigy " R}, s, N A H g, H Tk (3.103)
k=h+1 k=1

As we all know,

T

R{d} M RllﬂZ, iy + R{d} a) A H I r+1 k 1—[ le;;r+17k

Riay 0 Riy iy i1 _ k=h+1 (3.104)
R{d} M Ril,ig,n-,iT R{d} M Ri1,ig,-~-,ir .
h . T .
R{d} A A H x;;rJrlfk H elkrﬂfk
~ e (3.105)
R{d} A Rzl P ﬂ A H Ilr+1 k H 1r+1 k
k=1 k=h+
r h
(R0 A 11 00 T
- = b=l (3.106)
. h
(R,{d’ ngl in B F\A H 9;;“71@) H (e
k=h+1 k=1
N AT
~ LSLAR SR (3.107)
Riyy R, o nA ] 67
k=h+1
R{d'} a R’Ll 42, ir—pt1
(3.108)
R{d’} a Rn,lz, Jir—h

According to Proposition 3.3.7, we know there are only finitely many distinct factors

which implies that the w’-filtration {R; ;, ... ;, } iy)ewr 18 triangularly normal.

11,82, %

Similarly, we can prove this w”-filtration is rectangularly normal. In fact, since x1,z9, -+, x)

are indeterminates, if there exists one 1 < k < h such that [, < i,,1_;, then we have

Rty g 1 mAHIZT“ 1T o =0 (3.109)

k=h+1
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implies that
Rty g, 001 N Rigig e iv 41

=0 3.110
R[l17l27“'7l7-] N Ry iy i ( )

sbr

Now, we assume for all 1 < k < h, we have [ = i,,1_j. Denote R’ = A[0, - ,0,]. Then,

we have

lr+l—k lrtl—k / Tyl — k rtl—k
11’12’ ok ﬂAH:U H 0 B lh+1»lh+2» il ﬂA 1_[ 9 1_[33' 3111)

k=h+1 k=h+1
Thus,
Ry gy, 0] 0 Risig, v 41 (3.112)
Ry g 0] O Biyig e iy
T .
ZT‘+1 k lr+l—k
R[l17l27'“7l7'] N Ri17i27"'7i?° + R[l17l27 7 m A H '/I/‘ H 9’{5
= hhl (3.113)
R[l17l27"'7l7“] N Rilyi%'”ﬂ'r
h i r i
Rty g, ) N A [Tz, I 6"
- f=1 k=h+1
>~ o . i (3.114)
+1—k +1—k
Ryt 1,1 O Rigig e 0 AT 2y [T o
k=1 k=h+1
T i h i
/ r+l1—=k r+l—k
(Bt s 1] O Ak 1;[ ) 0, ) kﬁl Ly
= JF =
_ (3.115)
(R/ ﬁ R/ ﬁ A H 92r+1 k) H xl'r+1 k
l l 11,02, -
Lassidnrar k=h+1
r 'L
/ r+1—k
[lh+17lh+27“' 7l7‘] a A kJ‘;[+1 Qk
~ . i (3.116)
/ / rl—k
R[lh+l7lh+27"'al ] a Rzl 12’ lr— m A H ek
k=h+1
/ /
NR[lh+17lh+27 4]0 Rll”Z’ dr—ntl (3 117)
- R N R '
[lha1lnyo, )l 11,02, sir—p

According to Proposition 3.3.7, we know there are only finitely many distinct factors

which implies that the w-filtration {R; i, .. i, } (i, i, ,ir)ewr 18 rectangularly normal. O

Remark 3.3.10. Use the same method, if R = A[fy,60,,- - ,0,] where 6; is either an indeter-

minate or integral over A for all 1 <4 < r, then the w'-filtration {R;, i, .. i }(i1,i, ir)ewr 15
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rectangularly and triangularly normal.

Lemma 3.3.11. Let K be a field, A = K|[x1,29, - ,2,] where z; is indeterminate for

1 < i < n, y1 be another indeterminate, and R = Aly,y] where yp = Ly, For fixed

t,s € N, we have

)
0 iti>t+s

. Ay{ygx];t j>ti+j7<t+s
Ay1ys 0 Rpys) = (3.118)

Aylny’ Ti>si+j<t+s

Aylys j<ti<s
\

Proof. For any o, € N, if a + 8 # i + 7, we claim that Ay1y2 N Ay?yg = 0. Actually,

we know that yjyb = = yiﬂ,y?yg = ﬁylo‘w , and y; ¢ A is indeterminate which implies

Ay{yé N Ay?yﬁ =0. f a+ 5 =1+ 7, we have

A max(,5)
Aylyh o Ayl = Ay 2 (3.119)
xlflm(uﬁ)
which implies
5 . ;naX(z B)
Aylys A Ry = DL Aylyh o Ayl = > AyY o (3.120)
a<t,f<s a+p=i+j
a<t,f<s
If t + s < i+ j, we have Aylyi N Ry = 0. Otherwise,
1.ift<j,s>1 thena <t <jimpliesf=i+j—a>1.
Thus, we have
.
Ay1y2 M R[t,s] = Z A jm (3121)
a+pB=i+j Ty

a<t,B<s

max(z i+j—a)

= Z Ay ”]2— (3.122)

mm ii+j—a)
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i+j—a

t
Z it2 - (3.123)

i+j—t

— Ay (3.124)
T
= Ayiysas ! (3.125)

2.ift>=j,s<i,then f <s<iimpliessa=i+7j5—05>7.

Thus, we have

max(z B8)

Aylys o Rpg = ), Ay fmn o (3.126)

PP

H] x;naX(z Ne))
- Z Ay = (3.127)
- Z Ayt x—; (3.128)
Ty

= Ayt (3.129)

7
— Aylysei (3.130)

3. if t > j,s =i, we have Ayjys N Ryt g = Aylyb.
]

Proposition 3.3.12. Let K, A, R be the same as in Lemma 3.3.11. Then the w?-filtration

{Ri;}(j)ew is rectangularly and triangularly normal.

Proof. For fixed t,s € N, factors of the w?-filtration Ry N {R; ;} (. )ew? have the following

form
Riji1 0 Ry g N Ri;n Ryq + Aylys 0 Ry
R@j M R[t,s] o Ri,j N R[t,s]

(3.131)
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If © = 0, we have

-

0 J>t+s
Ayl O Ry = § Ayl ™ t<j<t+s (3.132)
Ay{ J<t
\
Since the degree of y; in Ry ; is at most j—1 and y; is indeterminate, we have %(z“’f] ~ A
»J S
. R0,j+1r\R[t,5] o .
for j <t+ s and RoynRpg = 0 for j >t +s.
Now, we consider the case i > 1.
According to Lemma 3.3.11, if i + j >t + s, then %ﬁ“ﬁ = 0.
1,7 yS
If y <t,i<s, we have Ay{y% N Ry = Ay{y%. Consider the following surjective map.
A — Aylyi (3.133)
¢:a— aylyl (3.134)

First, xly{yé = y{yé_lxg € R; jn Ry 5 implies that Az < ker ¢. Second, if ay{yg € R jn Ry 4,

then ay{yé € R;; implies a € Az, according to the proof of Proposition 3.2.6. Thus, ker ¢ =
Rij+1nRp s

Al’l. We have Rjgﬁ—R[t,i] = A/ALCl

Ifj>ti<t+s—j, wehave Ay{yé N Ry s = Ay{ygxg_t. Similarly, consider the following

surjective map.

A — Aylyial™ (3.135)

¢:a— aylyixl (3.136)

According to the proof of Proposition 3.2.6, ay{y% € R;; is equivalent to a € Azy. Thus,

ay{ygxéft € R;; N Ry s implies that a:c]{t € Axq, then a € Azxy. Furthermore, if a € Azq,

t j+1,i—1,_j+1—t

we say a = bxy, then ay{y%x%_ = by Yy Ty € Ay{“yé_lmgﬂ_t = Ay{“y;_l N Ry g S

Rijt10Rs)
R;; N Ry 4. It actually means that Rijﬁ—% ~ A/Az;.
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If i > 5,5 <t+s—i, we have Aylys n Ry g = Aylysai < Aylys < R;;. Thus,

RijrinBys 0

Aylys 0 R € Rij 0 Ry g implies By Ry s

In conclusion, for any ¢, s € N, factors of the w?-filtration R g N {R;;} (i )ew? are isomor-
phic to 0, 4, or A/Az;. Thus, the w?-filtration {R; ;}; jjew? is rectangularly normal.

For fixed d € N, factors of the w?-filtration Ry N {Ri;}(.j)e have the following form

Rij1 0 Ry _ Rij 0 Rigy + Aylys 0 Ryay (3.137)
Rijn Ry R;j n Ry

If j +i < d, we have Ay]y) N Rygy = Aylyi. According to the proof of Proposition 3.2.6,
aylyh € R;; is equivalent to a € Azy. If aylyl € Ri; N Ryqy, then aylyl € R;; implies that
a € Axy. If a € Ay, then aylyl € Ri; and Aylyh N Ry = Aylys imply aylyh € Rij 0 Rygy.

Rijt1nRay
ThUS, W = A/Al'l
If j+¢ > d, we have Ay{yﬁ N Ryg = 0 since Ay{y% = Ay{“i—:? and y; ¢ A is indeterminate.

1
Rijt1nRgy
The R R

In conclusion, for any d € N, factors of the w-filtration Ryq N {R; ;}(i jjew? are isomorphic

to 0, A, or A/Az,. Thus, the w?filtration {R; ;}(; j)ew? i triangularly normal. O
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CHAPTER IV

The main result on w-filtrations and applications

We cannot prove that w"-filtrations are rectangularly or triangularly normal in general.
However, in this Chapter, we derive an w-filtration in the graded case from the w”-filtration.
By using a suitable ascending w-filtration of R or M, we may reduce to studying the graded
case. By this method, we bypass all the difficulties that appear in Chapter III.

In the second section, we use these w-filtrations to give a bound on the number of gen-
erators of an intersection of powers of two ideals or the ordinary symbolic powers 1™ under

particular restrictions that we will describe later.

4.1 w-filtrations of rings and modules

In this section, we derive an w-filtration in the graded case from the w"-filtration. By
using a suitable ascending w-filtration of R or M, we may reduce to studying the graded

case.

Definition 4.1.1. Let A be a commutative ring and R be a finitely generated A-algebra. We
may replace A by its image in R and assume R = A[fy,0s, - ,0,]. We define the triangular

graded-ring of R over A as follows:

: Ry | Ry
Trig(R) = Ao —H o= g... 4.1
ria(R) = A® L@ B ® (4.1)
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where R4 is the triangular submodule of R for d € N. It is actually the associated graded

ring of the filtration {R4}a=0 and depends on both A and the choices of 6;,--- ,0,.

Discussion 4.1.2. When we form the graded ring Tri(R), the images of the 6; in degree 1
generate, call them w;. The ideal of relations on the w; is homogeneous. One gets a relation
in degree d if and only of one has a homogeneous polynomial of degree d in the 6; that is
equal to one of smaller degree. This means that if one maps A[Xj, ..., X,,] onto R so that
X, maps to ¢; and the ideal of relations is J, the ideal of relations on the u; is generated by
all leading (top degree) forms of elements of J.

One can say a bit more from this point of view. Given a polynomial in F' in J, one can
homogenize it it by using an auxiliary variable, say z, and inserting a power of z into each
term of F' that is not of highest degree to bring it up to degree d = deg(F'). Formally, this
is the same as 2¢F(X1/z, ..., X, /2).

Consider the ideal generated by all these homogenized polynomials in Alxzy, ..., z,, z].
They generated a homogeneous ideal J".

Let S = A[x,z]/J". Then if one kills 2 — 1 in S, one gets R,. If one kills z, one gets the
associated graded ring Tri(R).

In many cases, this will show enable one to compare the dimensions of Tri(R) and R:

often, they will both be dim(S) — 1.

Remark 4.1.3. The ascending filtrations Ry S Ry S Rypy S Ry3y S -+ are interesting.
The following example shows that the associated graded ring Tri(R) depends heavily on the
generators.

Suppose we start with R = K[z] and use the generator §; = x. The associated graded is
isomorphic with R.

Suppose we use §; = x and 6, = 2. Then the n-th submodule consists of everything of

2n71’ I2n'

degree at most 2n, and the quotient is spanned by the images of x
Suppose we denote the images of x, 2% in the degree 1 piece by u,v. Then the degree n

piece is spanned by v", uv™ 1. Note that u* = 0. This ring is isomorphic with K[u, v]/(u?).
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It is not isomorphic to R.

Map A[xy, -+ ,x,] = R. Let J be the kernel and J" be generated by all homogeneous
polynomial F(zy,--- ,z,,2) € Alxy,-, 2, 2] such that F(xy,--- ,x,,1) € J. Then z is not a
zero-divisor on J" from the definition and 2 — 1 is not a zero-divisor because J" is homoge-
neous. Let S = A[zy,--- ,x,, z]/J". Then we have that S/(z) =~ Tri(R) and S/(z — 1) ~ R.

When A = K and in many other situations, this implies dim(Tri(R)) = dim(R).
Proposition 4.1.4. Tri(R) is a standard N-graded ring. If A is Noetherian, so is Tri(R).

Proof. Clearly, for any 7,7 > 0, we have R Ryjy S Ry45). Notice that we denote Ry = A
and Ry_1y = (0). Since RyyRyj_1y, Ru—13 Ry S Ryitj—1y, there is a natural morphism as

follows:
Ry ® Ry, Ryisjy
A e
Ry 7 Ryj—iy Rypvjyy

(4.2)

which means that Tri(R) is an N-graded ring. Furthermore, Tri(R) is a finitely generated A-

algebra with generators 61, 60,,--- ,0, € RX}. This actually proves that Tri(R) is a standard

N-graded ring. Clearly, if A is Noetherian, so is Tri(R). O

Proposition 4.1.5. Let A be a Noetherian ring and R be a finitely generated A-algebra.
We may replace A by its image in R and assume R = A[6,0,,---,0,]. If R is a standard
N-graded ring, say R = Ry ® R1 ® Ry --- where R; = 4 Z AfY -G for any h = 0,
there exists an w-filtration of R in which the factors arlelgglge: };yclic A-modules and only
finitely many distinct factors occur. Furthermore, the length of the inherited finite filtration

of Ry is at most Ch"™! where h > 0 and C is a constant. For i » 0 and any factor in the

filtration of R}, the number of copies of this factor is a polynomial of degree at most r — 1.

Proof. According to Proposition 3.2.1, R has an w"-filtration {R;, i, ... i, } (i1 is, ,ir)ewr i Which
all the factors are cyclic A-modules and only finitely many distinct factors will occur.
Now we consider the inherited w"-filtration of R;, where h > 0. Since Rj is a finitely

generated A-module , this inherited w"-filtration of R}, is actually a finite filtration according
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to Lemma 3.3.2. By definition,

.
Riy iy iyt = Riyige iy + A [ 000, (4.3)
k=1

We denote the piece of R;, ;, ... ;. of degree h by R

r i1 iz, ir||hy then we have

r .
ik
Ril:iQ:"'yir + A II 97‘+1—k
k=1

Ril,ig,"-,ir-l—l o ~ Rh,’ig,---,iT+1Hi1+-“+ir (4 4)

Rilvi%'”air Rilui%"',ir Ri1,i2,"',ir||i1+-~~+ir

which means this factor is isomorphic to the factor of the finite filtration of R;, ;...;;,.. Thus,
only finitely many distinct factors of the inherited finite filtrations of all R, for all h > 0
may Occur.

For simplicity, we denote the finite filtration of Rj by 0 = Ry0 S Rpy1 S Rpp S -+ S

Ry, = Rp. As we know all, the length ny, of this filtration is less than or equal to the

h+r—1

A ) Then, we can construct

number of monomials of r variables of degree h which is (

the following filtration of R.

0 =Rojo S Rop S+ S Rojng ERoD R1jo S Ro@ Ryjp S+ € Ry @ Ry,

g"'gRO@"'@R}L@R}H—HOQ"'QROEB"'@Rh@Rh—i-HmHlg"'

We have

h

(-

0
h=0k=0J

—1 O h
Ri@Ry=| PR =R (4.5)
=0 h

k =0J=0

which means this is an w-filtration in which the factors are cyclic A-modules and only finitely
many distinct factors occur.

Since for each cyclic A-module, there is a finite filtration in which the factors are prime
cyclic. Thus, there exists an w-filtration of R in which the factors are prime cyclic A-modules

and only finitely many distinct factors occur.
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The above argument also works for cyclic R-modules. We denote M = Ra and D = Aa.
We may replace A and R by D and M, respectively.

We claim that for A » 0 and any factor in the filtration of M}, the number of copies of
this factor is a polynomial of degree at most r» — 1.

If r = 1, it is obviously true since M, = DO?.

If r < s, the claim holds. We denote N = D[f,--- ,05 1] = No@® N1 ® No @ --- and
M = N[0s] = My @ M; & My @ ---. By induction hypothesis, M has a w-filtration in
which the factors are prime cyclic A[6y,--- ,0s_1]-modules and only finitely many distinct
factors occur. For h » 0 any factor in the filtration of M), the number of this factor is a

constant. As we all know, A[f, -+ ,0,_1]/Q = ﬁ[@?, -++,0s_1]. By induction hypothesis,

A .

aaglti, -, 0.1] has a w*-filtration in which the factors are prime cyclic A[f;, - ,0,_1]-
modules and only finitely many distinct factors occur. For A » 0 any factor in the filtration
of degree h piece of ﬁ[Q_l, .-+ ,0,_1], the number of this factor is a polynomial of degree
s — 1. Furthermore, M = D[by,--- ,0s] = M] ® M,® M, ® ---, Mj is sum of the degree
J piece of the factors in the filtration of Mj_;. Thus, the number of copies of the given
factor is the sum of the number of copies of this factor in degree j piece of the factors in the
filtration of M} _;. It is a polynomial of degree at most 7 — 1 since the sum of i polynomials

is a polynomial and the degree increases at most 1. O

Remark 4.1.6. This Proposition also works for a standard N-graded module M over R.

Remark 4.1.7. If R (and M) are graded by N or N  then one can form the filtration to be
compatible with the given grading. This shows that one can localize at one nonzero element
of A so that all components become A-free. (If one only knows the whole ring or the whole
module is A-free, it is automatic that the graded or multi-graded pieces are projective, but
one does not know they are actually free). In the argument, simply choose all generators of
M and all of the 6; to be homogeneous (or multi-homogeneous). The resulting filtration will

then factor all homogeneous or multi-homogeneous components.

We give an immediate consequence as an example.
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Corollary 4.1.8. Let R be a Noetherian ring and My, -- , M be finitely generated R-
modules. Let Iy, -+ I be k ideals of R with dy,--- ,dy generators, respectively. Denote

A= ﬁ Then there exists an w-filtration of Tory,(gr;, My, --- ,gr; M) in which the

factors are prime cyclic A-modules and only finitely many distinct factors occur. For any

s Ik M,
£t AT

n » 0 and any factor in the filtration of @  Tory(

S1++Sg=n
copies of this factor is a polynomial function in terms of n of degree at most dy +---+dj — 1.

), the number of

Then we have that (@  Tor( WM L )) = O(ndrt+de=1),

s1+1 ) ) psptl
S1+-+s=n I M Iy" Mg

Proof. According to Remark 2.11.3, we know that Tor,(gr;, Mi,--- ,gr; My) is a finitely

generated module over gr; R® ---® gr; R. We have that

LM, I3F My,
FELhny VPR S VA

TOI'h<gI‘11 Mh e 7grlk Mk) = @( @ TOI'h(

n  Si+-+Sg=n

) (4.6)

R

We also know that gr; R®---®gr;, Ris afinitely generated graded algebra over A = yr—y

According to Proposition 4.1.5, we are done. O

Remark 4.1.9. Let R be a Noetherian ring and M;, My be finitely generated R-modules. Let

I, I be two ideals of R with d;, dy generators, respectively. Denote A = hfIQ. Then there

exists an w-filtration of Ext"(gr,, M, gr;, Ma) in which the factors are prime cyclic A-modules

and only finitely many distinct factors occur. For any n » 0 and any factor in the filtration of

M 132 M, : : . . Do
P Exth(lsllﬂj\i[ : Isgﬂjéf ), the number of copies of this factor is a polynomial function in
s1+s2=n 1 1 iz 2

terms of n of degree at most d; +dy—1. Then we have that u( @ Ext”(

S1+S82=n
O(nhi+d2=1)

I'My I2M, ) =
Y 2 v

Theorem 4.1.10. Let A be a Noetherian ring and R be a finitely generated A-algebra.
We may replace A by its image in R and assume R = A[0;,0,--- ,0,]. There exists an
w-filtration of R in which the factors are prime cyclic A-modules and only finitely many
distinct factors occur. All the Ry, occur in the filtration. Furthermore, the length of the

inherited finite filtration from Ry,_1y to Ry, is at most Ch™!, where h > 0. Notice that
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R¢_1y = 0. For all h » 0, the number of copies of A/p occurring as a factor in the filtration

of Ry agrees with a polynomial in h of degree at most r.

Proof. According to Proposition 4.1.4, Tri(R) is a standard N-graded ring. It is a finitely

generated A-algebra with generators 0;,0,,--- ,0, € RX}. Denote R’ = Tri(R). And we

denote R}, = Ryn/Ryn—13. Thus, we have R' = Ry @ Ry ® R; - - -. According to the previous
proposition, we have the finite filtration of R} denoted by 0 = R;L|o - R;m - R;L|2 c .- c
;1\nh = Rj,. Since R}, = Ryn/Ryn—13, there is a finite filtration from Ry,_1y to Ry such that
factors are the same as the factors of the finite filtration of Rj. Furthermore, R = Ej Ryay
implies that we actually construct an w-filtration of R in which the factors are primc(l:(c)yclic
A-modules and only finitely many distinct factors occur.
For all h » 0, the number of copies of A/p occurring as a factor in the filtration of
Rypy/Rin—1y agrees with a polynomial in h of degree at most r — 1 according to the previous
proposition. The sum of polynomials of degree » — 1 is a polynomial of degree r. Thus,

the number of copies of A/p occurring as a factor in the filtration of Ry, agrees with a

polynomial in h of degree at most r O

Corollary 4.1.11. Let A be a Noetherian ring, R be a finitely generated A-algebra, and
M be a finitely generated R-module. There exists a general w-filtration in which the factors

are prime cyclic A-modules and only finitely many distinct factors will occur.

Proof. According to Proposition 2.6.6, there exists 0 = My < M; < --- M, = M such that
My, 11/ My, are prime cyclic R-modules for h > 0. According to Theorem 4.1.10, M}, ,1/M,
has an w-filtration in which the factors are prime cyclic A-modules and only finitely many
distinct factors will occur. This actually gives us a general w-filtration in which the factors

are prime cyclic A-modules and only finitely many distinct factors will occur. n

Theorem 4.1.12. Let A be a Noetherian ring, R be a finitely generated A-algebra, and M
be a finitely generated R-module. There exists an w-filtration M in which the factors are

prime cyclic A-modules and only finitely many distinct factors will occur. For all A » 0,

81



the number of copies of A/p occurring as a factor in the filtration of My, agrees with a

polynomial in h of degree at most r.

Proof. We may replace A by its image in R and assume R = A[#1,0,,---,0,] and M =
Ray + Rag + -+ + Ra. Denote B = Aoy + Aag + -+ - + Aa,. Then, M = B[6y,05,--- ,0,].
We denote Mg, = >,  BO'---0r. Tri(M) = B@® M /B @® Mgy /My, @ -+ is an

i+t <d
N-graded module over Tri(R). Similar to R;, ;,.... ;,, we can define M;, 4, ... ;, as follows:

Mi17i27'“7i7‘ = B[917 92’ ce 791“—1]9'7,;‘/1

+ Z B[eh 927 e 797‘—2]0:‘«,2,18;{1

+ 2 B[y, 0, - -- 797“*3]9:«?129:319:«1

A
i5=0

ir—1 L
+ > BOy Oy 00
i1.=0

roij—1

L gl
= Z Z B[Qla O, - - aer—j]ejijﬂ H 9:]1171@
j=1i=0 k=1

We can see that {M;, i, ... i} i1, i)ewr 15 an w'-filtration of M in which all the factors are
finitely generated A-modules and only finitely many distinct factors will occur.

As in the proof of Theorem 4.1.10, we know that there exists an w-filtration of M in
which the factors are finitely generated A-modules and only finitely many distinct factors
will occur. For these factors, according to Proposition 2.6.6, since they are finitely generated
A-module, there is a finite filtration in which all factors are prime cyclic A-modules. There
exists C' which is the uniform bound of length of each finite filtration. Thus, there exists
an w-filtration of M in which the factors are prime cyclic A-modules and only finitely many
distinct factors may occur.

For all h » 0, the number of copies of A/p occurring as a factor in the filtration of M,
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agrees with a polynomial in A of degree at most 7. O]

Remark 4.1.13. 1t is easy to see that this w-filtration is triangularly normal.

Remark 4.1.14. In the situation of the theorem above, suppose that p € Spec(A) is min-
imal in the support, over A, of Tri(M). Then Ay = (A/Anny(Tri(M))), is an Artin
local ring because p is minimal. Then the number of copies of A/p in the filtration of
Miqy or of [Tri(M)]<a, i.e., the pieces of Tri(M) with degree at most d, is the same as
length 4 ([Tri(M,)]<q) which may be thought of as a finitely generated graded module over a
standard graded algebra over Ay. But this length agrees with a cumulative Hilbert function

and for d » 0 agree with a polynomial of degree at most the Krull dimension of Tri(M),.

Remark 4.1.15. The degree bound for the eventual behavior of the number of occurrences
of a specific prime cyclic A-module for a finitely generated R-module M over a ring R can
sometimes be improved, or utilized in a more general context, as follows.

(1) In the module case, one may replace the ring by its quotient by the annihilator of M,
either before or after passing to the graded case.

(2) In the graded case, if R is integral (hence, module-finite) over an A-subalgebra R’
generated by ' forms of degree 1, where ' < r, one may view M or R as a finite module
over R’ and improve the degree bound to 7.

(3) If R is not standard, but has generators of varying degrees, let L be the least common
multiple of these degrees. The generators of R have powers of degree L, and these will
generate an A-subalgebra of R, call it R’, that may be thought of as standard once the
degrees are divided by L. R is module-finite over R'. If 0 < p < L — 1, let ,M denote
the direct sum of the homogeneous components of M in degrees that are congruent to p
mod L. Then M is the direct sum of these finitely many ,M, and every ,M is a finitely
generated module over R’, to which our results already apply. This will yield L polynomials,
F,, 0 < p < L —1 such that the number of occurrences of A/p in degree d (we may write
d = |d/L|L + p) is F,(|d/L]). This is entirely similar to the behaviour of Hilbert functions

in non-standard N-graded algebras over a field.

83



4.2 Upper bounds on the number of minimal generators

In this section, we first construct a finite filtration of R/I"™ with properties that we will
describe later in the section. Then we use these filtrations to give a bound on the number
of generators of an intersection of powers of two ideals or the ordinary symbolic powers (™

under particular restrictions that we will describe in this section.

Lemma 4.2.1. Let R be a Noetherian ring and I be an ideal of R with r generators. For
any n € N, there exists a finite filtration of R/I™ in which the factors have the form R/Q
where £ is a prime ideal of R containing /. There are only finitely many distinct R/ in all
of the filtrations of R/I™, and the number of copies of each is eventually polynomial in n of

degree at most r.

Proof. For each R/I™, we have a finite filtration defined as follows:

(4.7)

Each factor has the form - 1/ = " where 1 < h < n. The associated graded ring
gr;(R) is a standard N-graded ring over A = R/I, according to Proposition 4.1.5, there is
an w-filtration of gr;(R) in which all factors are prime cyclic Z£-modules and only finitely
many distinct factors occur. The factors of inherited finite filtration of Lo " have the form

£/ ~ I ~ = % where £’ is a prime ideal of £ and 9 is the corresponding ideal of Q" in R

containing /. Thus, there is a finite filtration fro
of & + in which the factors have the form R/Q where Q is a prime ideal of R containing I.
The number of copies of each R/Q is eventually polynomial in n of degree at most r since

the sum of polynomials of degree r — 1 is a polynomial of degree 7. m

Remark 4.2.2. Craig Huneke and Ilya Smirnov prove that for all n , simultaneously, they
can choose prime filtrations of R/I" such that the set of primes appearing in these filtrations

is finite in the paper [13].
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Theorem 4.2.3. Let T be a functor of k variable R-modules (it may be covariant in some
variables and contravariant in others) such that if all but the ¢th module are held fixed,
producing a functor F' of the module in the ith spot, and one has a short exact sequence
0— M — M — M" — 0, then the sequence (x) F(M') — F(M) — F(M") (with the roles
of M" and M' interchanged in the contravariant case) is exact at the middle spot. Suppose we
have modules M, -+, M}, and M; has a finite filtration 0 = M;o < M, < -+ - S My, = M;
with factors M;; = M;;/M;j;—1, 1 < j <mn; of M;, 1 <i < k. Then T'(M,---, M) has a

finite filtration whose factors are subquotients of the ny - - - ny modules T'(My ;,,- -+ , My, )

Proof. We use induction on k£ and on ng. Assume k = 1. We give the argument for the
covariant case. The argument for the contravariant case is identical. If ny = 1 there is nothing
to prove. If ny > 1, we have an exact sequence T'(Mj,,—1) — T (M) — T(Mi,,). By the
induction hypothesis and the Lemma 2.8.6, the first term has a filtration by subquotients
of the modules T'(M; ;), 1 < j < n; — 1, which induces such a filtration on the image N of
the first map, while the quotient of the middle module by N is a submodule of T'(M ,,).
If £ > 1, and we hold My, .-, My, fixed, we get a filtration of T'(My,--- , My_1, My) by
subquotients of the modules T'(Mjy, -, My_1, My j,) using the case k = 1. The result is

then immediate from the induction hypothesis and the Lemma 2.8.6. O

Corollary 4.2.4. Let R be a Noetherian ring. Let I and J be two ideals of R with d and d’

R R

7> 7 ) has a finite filtration with length at most

generators, respectively. For m,n » 0, Tor(

Cmn? where C' is a constant. The factors in this filtration are subquotients of Torh(g, g)
where Q and Q" are two prime ideals of R containing I and .J, respectively. Furthermore,

there are only finitely many distinct 9 and Q" occurring in two filtrations.
Proof. According to Lemma 4.2.1 and Theorem 4.2.3, we get the corollary directly. O]

Corollary 4.2.5. Let R be a ring that is semi-local or finitely generated over a field. Let

I, J be two ideals of R. We suppose that dim(%) < 1. For any prime ideals Q and £’
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containing I and J, respectively, there is a upper bound on the number of generators of any

submodules (and, hence, of all subquotients) of Tor, (£, &).
Proof. Torh(g Dﬁ) is a finitely generated 5 5 +Q, -module. Since we have If 5 %,
. R R , R , R
dlm(Torh(E, 5)) < dlm(Q - Ql> < dlm(H—J) <
According to Lemma 2.9.1, we actually prove the corollary. O]

Theorem 4.2.6. Let R be a ring that is semi-local or finitely generated over a field. Let I, J
be two ideals of R with d and d’ generators, respectively. Suppose also that dim( If -) < L.

For m,n » 0, we have p(Tor, (£, 4%)) = O(min®).

Proof. According to Corollary 4.2.4, Torh(ﬁm J—IE) has a finite filtration with length Cmn®
where C' is a constant. The factors in this filtration are subquotients of Torh(g, g) where
9 and Q' are two prime ideals of R containing I and J, respectively.

According to Corollary 4.2.5, there is a bound on the number of generators of subquotients
of Torh(D, g,) Furthermore, there are only finitely many distinct Q and Q' occurring in
two filtrations. Thus, there is a bound on the number of generators of factors of the finite
filtration of Tory, (£, 5% ).

According to Proposition 2.7.20, we know that pu(I™ n J") = O(mn?). O

Theorem 4.2.7. Let R be a ring that is semi-local or finitely generated over a field. Let

Ii,--- I be k ideals of R with dy,---,dy generators, respectively. Suppose also that
dim(ﬁ) < 1. For ny,---,n, » 0, we have M(Torh(ﬁl,--- L)) = O nd).

k

If k = 2, the corresponding fact also holds for Ext’, hence, for Homp.

Proof. According to Lemma 4.2.1 and Theorem 4.2.3, for nq, -+ ,ng » 0, Tor,( 51 R Inik)
k

dy,

has a finite filtration with length at most Cn" - - -n,” where C is a constant. The factors in

this filtration are subquotients of Torh()%, e Q%) where 1, -+, 8, are prime ideals of R
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containing Iy, - - - , I}, respectively. Furthermore, there are only finitely many distinct prime

ideals 9; occurring.

As we all know, Torh(D%, SRR 1) is a finitely generated ﬁ—module. Then, we have
dim(Torh(Q%, I Q%)) < 1. According to Lemma 2.9.1, there is a bound on the number of

generators of any submodules (and, hence, of all subquotients) of Tory (L

D_l""’Q) Since

there are only finitely many distinct ;, there is a uniform upper bound on the number of

generators of any submodules (and, hence, of all subquotients) of Torh(if1 o L%)
According to Proposition 2.7.20, we know that ,u(Torh( e ,I%)) = O(nfr---nik).
k
[

Theorem 4.2.8. Let R, p, I be the same as in Proposition 2.7.30. Assume that R is semi-
local or finitely generated over a field. Let h = height(IOFR). Suppose that dim(R/p) =

dim(+2-) + h and dim( 1. For n » 0, we have u(p™) = O(n®").

To+p I+p)

Proof. Denote R/p = D. Pick a1 € Iy — ) minimal primes of D, then dim(D/(ay)) <
dim(D) — 1 and height(Iy/(a1)) = h — 1. By induction we can pick aq,- -+ ,a, € Iy — p such

that dim(D/(ay,- -+ ,ap)) < dim(D) — h = dim( <1

Tots)

Denote J = (a?, ---,al). According to Proposition 2.7.30, we have p™ = p”

As we all know, Hom(#, £) ~ 24 then Hom(R/J", R/p") = p:;fn ~ p;—z). We have that

dlrn(ﬁp) dim(ﬁ) < 1. According to Theorem 4.2.7, we have u(ﬂ) = O(ndth).
According to Proposition 2.7.19, we know that u(p™) < u(p™) + p,( ) thus p(p™) =
O(ndth). O

Lemma 4.2.9. Let R be a commutative ring and I, J be two ideals of R. Then we have the
following inequality:
R R
W™ A T < (I + i Tor (=, —)) (4.8)

I Jn

where n, m € N.
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Proof. We have the following short exact sequence:

Imn Jr
0—-I"J" > I""nJ" > ———— =0 4.9
n [mjn (4.9)

According to Proposition 2.7.19, we know that p(I™ n J") < p(I™J") + p(fm2e). As we

all know, Torl(lﬂm, J—h}b) ~ I;lm“j{l" which implies the desired inequality. ]

Theorem 4.2.10. Let R be a ring that is semi-local or finitely generated over a field. Let
I, J be two ideals of R with d and d’ generators, respectively. Suppose that dim(%) <1.
For m,n » 0, there is a polynomial upper bound on the number of generators of I™ n J".

Specifically, we have u(I"™ n J") = O(mn).

Proof. According to Lemma 4.2.9, we have

W(I™ A ") < (I J") + M(Torl(lﬂm, %)) (4.10)

M([mjn) < (m;_dl_l) (n—;/cﬁ;l) _ O(md_lnd'—l).

According to Theorem 4.2.6, we know that pu(I™ n J") = O(mn?). O

Corollary 4.2.11. Let R be a Noetherian ring and [ = Q11 ---nQy with d generators where
£Q; is primary to p;. The p; are mutually incomparable and 1 < dim(R/p;) < 2. Assume no
p; is strictly contained in any associated prime ¢ € Ass(R). For n » 0, u(I™) = O(n®*!).
Proof. According to Proposition 2.7.33, there exists a non zero-divisor t € R —p; U --- U
pru( U q) such that I™ = [": 2" for any n.

geAss(R)
Then we have

W) = p(I" 2™ = (17 2 )™ = p(I" A @) = p(I" A @)7) (411)

according to Lemma 2.7.34.

According to Theorem 4.2.10, we have pu(1™) = pu(I" n (z)") = O(nd+1). O
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Remark 4.2.12. Dutta’s paper [4] gives a better polynomial bound with degree at most d — 2.
However, it requires that R is S;. The proof uses the notion of analytic spread. See Section

2.10.
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CHAPTER V

The number of generators of the symbolic multi-power

of the intersection of prime monomial ideals

In this Chapter, we are working in the polynomial ring R = K[z,--- ,zx]. We give a
formula to calculate the number of generators of the symbolic multi-power of the intersection
of prime monomial ideals, i.e., the intersection of powers of these prime monomial ideals.

In the second section, we give a polynomial upper bound on the number of generators of

the intersection of the powers of two prime monomial ideals.

5.1 The number of generators of the symbolic multi-power of the
intersection of prime monomial ideals

In this section, we first introduce some useful notations, and then we give a formula to

calculate the number of generators of the intersection of powers of prime monomial ideals.

Definition 5.1.1. Suppose k£ > 1. Let N;' be the number of non-negative integer solutions
of the equation 1 + 9 + - -+ + x, = n if n > 0. This is the number of monomials with &
variables of degree n. It will be convenient to make the convention that N;' = 1 if n < 0.

We make the corresponding convention for powers of ideals, i.e., I" = I° = R if n < 0.
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Remark 5.1.2. It is well known that

N;ZL:(anIl):(nJr:_l) (5.1)

if n>0.

Example 5.1.3. Let I = p; npa n--- N p. where p; is a prime monomial ideal and the

generators of p; and p; are disjoint if 4 # j. Then

p(I®) = u(ﬁ ) = u(ﬁ p>7)

= pu(p1'py’ .. p2) (5.2)
= p(pH)p(p3?) - . p(pee)

- Nuzpl)NN?m) T Nuzpc)

If we assume p(p;) = m;, then

(s1+mqy— D! (sa+ma— 1) (sc+m.—1)!

19y = . 5.3
M) = D) (ma = D))l (e — 1)1(s0)! (5:3)
As we know, for fixed m;,
(si +m; —1)! i1
if s; » 0. Furthermore, we have
(1) = O(smtsye=t | gmemt) (5.5)
Actually,
(Si-‘rmi—l)! 1
hmsi—>00 S;nifl - (mZ . 1)' (56)
Generally, we have
p(I) T
limy oy =y = 1/ [(ms = 1)! (5.7)
[Ii=i s i=1



Then, we can say
u(1) ~ T T/ T T i — 1) (5.5)
i=1 i=1

Definition 5.1.4. Let pi,ps,...,p. be prime monomial ideals. Actually p; is the ideal
generated by a subset A; of the variables where 1 < ¢ < ¢. Also, 0. denotes a binary string
whose entries are 0 or 1, containing at least one 1, with ¢ characters. Since c is fixed, we
replace o, by o for simplicity. ¥ is the set of all 0. The j-th character of ¢ is denoted by o(5)
where 1 < j < c. Let Aj be the set of variables not in A;. Denote A, = ( (] Aj)n( () A)).

o(i)=1 o(3)=0
We denote the cardinality of A, by m,.

Remark 5.1.5. The set of variables is the disjoint union of all the A,.

Remark 5.1.6. If ¢ = 2, we have the Venn diagram showing in the figure 5.1.

Al A2

Figure 5.1: Venn diagram of two sets

Definition 5.1.7. A degree restriction is a function d from ¥ to the nonnegative inte-
ger whose value on ¢ is denoted by d,. Let sq,---,s. be nonnegative integers, and let
A(sy, -+, 8.) be the set of all degree restrictions such that for all i, 1 < i < ¢, and for all

o € X, we have that > d, = s; and for every o, either d, = 0 or there exists ¢ such

oeX,o(i)=1
that (i) =1and > d, =s;.
oeX,o(i)=1
Theorem 5.1.8. Let py,po,...,p. be prime monomial ideals. Then we have the following

equation

ppy Apy aaps) = > [[NE

deA(s1, -+ ,8¢c) OEX
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Proof. We claim that any monomial [| x% is a minimal generator of pi' np3> n---npse =1
oEX

where d,, satisfies degree restrictions and x% is an element of the set:

o,l V0,2

Mo
d" dc’ o,m y
R A -xi;n; |dy; € N and z,; € A, where 1 <i < mg,z dy; = dy} (5.9)
i=1

First, we prove || x% € I. Since Y.  d, > s;, we have
o€eY oeX,o(i)=1

[[ x¥eps (5.10)

oeX,o(i)=1

where 1 <i<c. Also, [[ x%]|]]x% which implies [] x% € I.

oeX,o(i)=1 ) o€eY
. d’ d’ . .
Second, if [] x57| [T x% and ] x5” # [ x% where d, satisfies degree restrictions and
oex cey cey cey ,
. - d
d! may not satisfy degree restrictions, then [] x,” ¢ I.
oeY

In fact, there exists o, such that dg* < d,,. Since d,, satisfies degree restrictions, at
least on inequality in degree restrictions hold the equality. Without loss of generality, we

have the following equation.

dodo=s; (5.11)

oeX,o(i)=1

o, € {0 € X|o(i) = 1}. Since d,, < d,,, we have

>y <s (5.12)

oel,o(i)=1
which means that
[T x¥¢p (5.13)
oeX,o(i)=1

Furthermore,

HXZQ,: 1_[ x% l_[ x% (5.14)

o€y oeX,o(i)=1 oeX,o(i)=0

93



the variables appearing in || Xg—li’ are not in the ideal p;. Thus,
oeX,o(i)=0

[ [x%¢ps (5.15)

o€

S d!
which implies [] x5 ¢ 1.
oeX
From above argument, we can say

ng" " ngg (5.16)

oEY oEY

if both d, and d., satisfy degree restrictions and (d,,) is not identical to (d).

We also claim that a minimal generator of I has the form [] x% where d, satisfies degree
cey

restrictions. Actually, we have

dody = (5.17)

oeX,o(i)=1

for any 7 since

[[ xEeps (5.18)

oeX,o(i)=1
It implies that ~ >.  d, = s; and d, > 0 for any ¢ and o. For any particular o,, if none of

oeX,o(i)=1
inequalities containing d,, holds the equality, let d, = d,, — 1. We define a new monomial

do
Xo¥ [ x% e I. We have

OFOy4

X H xlr HXZ" and xoo* H g | HXZO (5.19)

g o™ oeEX O#0 % oEX

which means that at least one of inequalities containing o, hold the equality.

The number of elements in the set

Mo
do’,l da,2 dg N
{2,772y gy |de; € N and x4, € Ay where 1 < < mU’Z dy; = dy} (5.20)
i=1
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is Nf,lgj . Thus, above all, we have

ppst op2n-np) = Y [ [N (5.21)

deA(s1, -+ ,S¢c) OEXD

Corollary 5.1.9. If ¢ = 2, without loss of generality, assume that s; < so. Denote
A'(dro, dr1, dor) = {(dro, dr1, dor) € NP|diy + doy = $2,d1o = Max(0, 51 — di1)} (5.22)
Then we have the following equation:

ulp (1 py?) = > Nk, Nt N, (5.23)
(d10,d11,do1)€A (d10,d11,do1)
Proof. By definition, we only need to prove A(dyg, d11,dp1) is the same as A’(dy, d11, do1).
First, for any (dig,d11,do1) € A(dyo, d11,dor). If doy = 0, we have dy; = s; — djp and
di1 = S9. dy; = S9 since sy = s1. Then dyg = 0 since one of dyg = s; — dy; and dyg = 0 holds
the equality. (0,s2,0) is also a point in A'(dyg, d11,dp1). If doy > 0, then di; + do; = so.
dig = 1 — dyy and dyjp = 0 tell us dig = Max(0, s1 — di1).
Second, for any (dyo,d11,do1) € A'(dyo, d11,do1). dio = Max(0,s, — dyp) implies dig =
s1 —dq1. di1 + dyg = So implies dyq + dig = s9. According to di; + dig = So, both dq; and dyg

hold at least one equality. djp = Max(0, s; — dy1) tells us do; holds at least one equality. [

Remark 5.1.10. Actually, we have

d d d,
,u(p‘il N p§2> = Z leloonllll NTH?()ll (524)
A’(d10,d11,do1)
Max(0,s1—d d —d
= Z Nm;( 51 11)]\[7711111]\7:;201 11 (5.25>
0<di1<s2
S1 52
—d d —d d —d
= Z Nsllm 11Nm1111N51201 Yt Z Nm1111N51201 " (526)

d11=0 di1=s1+1
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Particularly, if m;; = 1, we have

52
s1—di1 £\TS2 d11 s2—d11
pl me Z Nm10 Nm01 Z Nm01 (527)
d11=0 di1=s1+1

5.2 Two monomial prime ideals

In this section, we give a polynomial upper bound on the number of generators of the
intersection of the powers of two prime monomial ideals. These prime monomial ideals are

simply the ideals generated by a subset of the variables.

Lemma 5.2.1. For fixed o, € N, > kP(k + d)® is a polynomial function of n,d. If
k=0

n > 0,d >» 0, we have the following equation.

+1+1

SRk +d) ~ ) L‘,)nﬂ”“da—i (5.28)
k=0 =0 ﬁ
Proof.

Zn: K (k+d)~ = >k Z kide ( ) (5.29)
k=0

_ gi ;ﬂiida—i (0;) (5.30)
- éda—i ((;) (g kP (5.31)

As we all know, > kP*%is a polynomial function of n with the leading term n**+1 /(8 +i+1)
i=0

which means Y] k%t ~ nPH+1 /(8 44 +1). Thus, Y, k°(k + d)* is a polynomial function of
i=0 k=0
n,d. And, we have

SRk +d) ~ ) L‘,)nﬂ”“da—i (5.32)
k=0 i=0 B
O

Lemma 5.2.2. For fixed a,b € N (kzb) (“ZM) is a polynomial function of n,d. If

Bl
Irss
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n » 0,d » 0, we have the following equation.

" 1 & a . ‘
Z <k 2‘ b) <k + d + CL) N |b' b (z) nb-‘rl-i—lda—z (533)
s a a..i:O +74+1
Proof.
" k +0\ (k+d+a 1 & e a 4
k=0 k=02:1 j=1
b a
H(k +i) [ [k +d+j)=kE+d)*+ D> KTk +d)* " duu(a,b) (5.35)
i=1 j=1 o<u<b
0<v<a
(u,v)#(0,0)

where ¢, (a,b) is a function of a and b. ¢, ,(a,b) is fixed as both a,b are fixed and u,v are

given. According to Lemma 5.2.1, we have

i (k +d)° ZHL bkt o= (5.36)

1+ 1

DD BTk + d) bu(ab) (5.37)
k= o<u<b

0<v<a

(u,0)#(0,0)

= > qswabz Ko (k4 d)* (5.38)
0<u<b k=0
O<sv<a
(u,0)#(0,0)

~ 2: ¢uv a, b 2: _F2-+ 1 b u+d+1da—v—i (5'39)

0<u<b =0
0<v<a
(u,v)#(0,0)
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Thus, > (kzb) (H?“) is a polynomial function of n,d for fixed a and b. Furthermore, we
k=0
have

" k+ b\ (k+d+a I C
,;)<b>< a )Na!b!;m@“” d (5.40)

since nb—u+i+1da—v—i‘nb+i+1da—i and nb—utitl Ja—v—i £ nbTitlga—i for any (u’ U) -+ (O, O) ]

Proposition 5.2.3. Let p; and ps be two prime monomial ideals and my; = 1. For fixed
mig, M1 and sy » s1 » 0, we have that u(pj' np35?) is a polynomial function of s; and sy — 7.

Denote a = mg; — 1 and b = m1g — 1. We have

Lo (D) i, (82— sp)0tV
S1 S2 7 +i+1 a—1
~—) — — - 5.41
Hpt O py) a!b!;)bﬂ'ﬂsl (52 = 1) (@t 1) (541)
Proof. According to the remark of Corollary 5.1.9, we have
Pt ) = D) NN e D N (5.42)
d11=0 di1=s1+1
:i(31—t+m10—1><82—t+m01—1)+ i (32—t+m01—1)
=0 myg — 1 mop — 1 pa b1 Mo — 1
(5.43)
< —t+b —t+ S —t+
S (31 X ) <82 a) + ) (82 a) (5.44)
t=0 a t=s1+1 a

where a = mg; — 1 and b = my9 — 1. For the first term, we have

i<31—5+b>(52—5+a>:i<k2b)(k+2+a> (5.45)

t=0 k=0

S1
where d = s, — s; and k = s; —t. According to Lemma 5.2.2, Y’ (sl_bter) (52_5”) is a
=0
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polynomial function of s; and d = s — 5.

S1 o u
s1—t+0b\[(ss—t+a 1 () brint y

~ — 7 3 _ a—1i 4
2 ( b ) ( a ) bl &byt (82— 1) (5.46)

t=0

As to the second term, we have

i <Sg—t+a) Z(Iwra) (5.47)

t=s1+1

d—1
where d = so — 57 and k = sy — t. It is easy to check that )| (kl‘a) = (Zi‘f) a is fixed, we
k=0

:Z; (k Z “> ~ (32(%11()'“) (5.48)

have

In conclusion,

s o) ~ 3 i ey (om0
1Py 'b‘ ib+it+ 1 > (a+1)! '
where a = mg; — 1 and b = myg — 1. Both of @ and b are fixed. O

Lemma 5.2.4. For fixed a, 8,7 € N, 3} k%(n—k)7(k +d)* is a polynomial function of n, d.

k=0
2l
Denote @, 5, (v) = (%) zo +ﬁ+u v+1( ). We have ®, 5, (v) > 0. If n» 0,d » 0, we have
the following equation.
2 V(k + d)* 2 noTAITHL D 5 (v) (5.50)

v=0

Proof.

i K (n — k) (k +d)* = i kﬂ(i(—k)%ﬂ” (Z) )(i ke (2‘)) (5.51)

k=0 k=0 u=0 v=0
v o n
— Z 2 (_1)u <’Y) (Oé) n»yfudv Z kaJrﬁJrufv (552)
u=0v=0 u v k=0
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v« a+pf+u—v+1
N () ._ n
~ —1) y—u Ju )
ZZ( )<u)(v)n da+ﬁ+u—v+1 (5:53)

u=0v=0

since Z ko+P+u=v i a polynomial function of n and d with the leading term 2 notAru—vi

frrt at+fB+u—v+1"°
n v o« a+pf+u—v+1
K (n — k) (k + d)* ~ () (e —L 54
St srteir SEOr() (e EE
«Q Y _1>u
_ a+ﬁ+77v+1dv a ( Y
;n <v);a+ﬁ+u—v+l<u (5.55)
= T, 5 (0) (5.56)
v=0

v .
where ®, 5., (v) = (%) > %( ). In conclusion, Z kP (n—k)Y(k+d)* is a polynomial
u=0 k=0

function of n and d. Now, we prove that ®,3.(v) > 0. Denote a + 5 —v+1by d. 6 > 1

since v < «. Thus, we have

()50 -

1
J 2Oy (5.57)

()
L@
Qg o
— <Z‘> L 1 21— 2)da (5.60)
>0 (5.61)

O

Lemma 5.2.5. For fixed a,b,c € N, kZO (k:b) ("_k+c) (’”Z”) is a polynomial function of n, d.

[

C

Denote @ .(v) = ( ) Z a+b+u v+1< ) We have &, .(v) > 0. If n » 0,d » 0, we have the
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following equation.

“ k+b)(n—k+c)<k+d+a) 1 Z“] et
> ~ naHTe LG L (v) (5.62)
= ( b c a alblc! =

v=

Proof.

%000 s

1 & T e ,
s IGERN (RN N (LR ) (5.64)
k=0 i=1 =1 j=1
b c a
[T+ Jon—k+ 5] [k +d+5) (5.65)
i=1 =1 j=1

—E'(n—k)(k+d)"+ > KT (n—k) T (k+d)* Vi (ab,c) (5.66)

0<i<b

0<j<a

where ¢; ;;(a,b,c) is a function of a, b, c. ¢;;;(a,b, c) is fixed as both a, b, ¢ are fixed and 1, 7,

are given. According to Lemma 5.2.4, we have

DK = k)(k + d)* ~ Y nt e, (0) (5.67)
k=0 v=0
DY KT = k)T (k4 d) P dijala,b o) (5.68)
k=0 0<i<bh
0<j<a
o<i<c

(a,b,c)#(0,0,0)

n

= > iulabe) Y KT — k)T (K + d) (5.69)
0<i<b k=0
0<j<a
0<i<c
(a,5,)%(0,0,0)
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a

a+b+c—(i+j+l)—v+1 v
~ > Gulabo) )y n DDy e (v) (5.70)
0<i<b v=0
0<j<a
0<i<c
(a7b?c)¢(07070)

Thus,

(kzb)(n—lerc)(k:Jr;Ha) (5.71)

~ T ZO na+b+cfv+1dvq)a7b’c(v) (572)

o

—_

since 4 + j + [ > 1 which means the order of ne+t+e=(+i+h—v+lgy jg strictly less than

n
patbre=vtlgv - From above all, >’ (k;;b) (”_f+c) (k+j+“) is a polynomial function of n,d for
k=0

fixed a, b, c. O

d—1
Lemma 5.2.6. For fixed a,7 € N, >} (n+d— k)"k* is a polynomial function of n and d. If
k=0

n > 0,d >» 0, we have the following equation.

:Z_:(” —R)ES ~ uz:‘f) %(n +d)det e (5.73)
Proof.
:(n +d—k)E = :::;)(—1)7‘“(“ +d) Rk (Z) (5.74)
- ;)(_1)” (Z) (n+ d)“:Z_::k"‘”“ (5.75)
N 20 (—1)r (Z) -+ 0 i)izfll (5.76)

u=0

O

d—1
Lemma 5.2.7. For fixed a,ce N, )| ("+d2k+c) (kza) is a polynomial function of n and d. If
k=0
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n » 0,d » 0, we have the following equation.

S S e

a alc! a+c—u+1
u=0

Proof.
S (n+d—k+c\[(k+a g 2 .
Z( >( ): ”Znn+d k+ 1) (k:+j)
k=0 a ac: k=0 i=1 J
[[n+d=k+d)][[(k+7)=(n+d=k)%k+ >, (n+d—k)"7k"
i=1 j=1 0<i<a
0<y<c
(4.3)#(0,0)

According to Lemma 5.2.6, we have

SN B e

d—1
And, 3 (") (*1%) is a polynomial function of n, d.
k=0

(5.78)

(5.79)

(5.80)

(5.81)

]

Theorem 5.2.8. Let p; and py be two prime monomial ideals. mgi, mig, m1; are defined

in Definition 5.1.4. For fixed mg1,m1g,m11 and sy » s1 » 0, u(pi* » p5?) is a polynomial

function of s; and sy —s1. Denote a = mg1 —1, b =mjg—1,and ¢ = my; —1. For 0 <o

denote @, .(v) = (g) zo %( ) We have @, .(v) > 0 and

1 a
alblel 2 ST (55— 51) Py e (V)

1 Za( (s

S
a'c' +ec—u+12

p(ptt N py?) ~

(82 — s )a+c—u+l
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Proof. According to the remark of Corollary 5.1.9, we have

S1

52
—d d —d d —d
n(pst A ps2) = Z N;zllg 11Nm1111N82 o Z N ys2—du

mo1 mi1 mo1
d11=0 di1=s1+1

_i(Sl—t-f—mlo—l) <t+m11—1)(32—t+m01—1>
-0 m10—1 mu—l m01—1

i (t+m11—1><52—t+m01—1)

t=s1+1 ma — 1 Mo1 — 1

:i(81—t+b)<t+0)<82—t+a)+ i (t+c>(32—t+a>
b c a c a
t=0 t=s1+1

where a = mg; — 1, b = myg — 1 and ¢ = my; — 1. For the first term, we have

;(sl—bter)(thrc)(sQ—jJra) :§<kzb)<sl—f+c)<k+z+a> (5.5

S1 —t+b) (t+c) (32 —t+a

S1
where d = sy — s; and k = s; —t. According to Lemma 5.2.5, )] ( b . " ) is a
t=0

polynomial function of s; and sy — s1. Also,

(s —t+b\ [t+c\ [(sa—t+a I O gipies .
Z<1 b )( ¢ )(2 a >~a!b!c!zsl+b+ sz 51) Pape(v)  (5:83)

t=0 =0

As to the second term, we have

i (t+c)(52—t+a>:§<31+d—k+c)(l€+a) (5.84)
E c a c a
t=s1+1 k=0

where d = s9 — s1 and k = sy —t. According to Lemma 5.2.7, we have

& [t+c\(s2—t+a 1 & (=D)7(0) te—u+tl
b s (52— s) 5.85
Z < ¢ )( a ) a!c!%a%—c—u—i—l%(s? 51) (5.85)

t=s1+1

We actually prove the theorem. O

104



BIBLIOGRAPHY

105



1]

[11]

[12]

BIBLIOGRAPHY

Atiyah, M. F., and I. G. MacDonald (1969), Introduction to Commutative Algebra.,
[-IX, 1-128 pp., Addison-Wesley-Longman.

Bocci, C., and B. Harbourne (2010), Comparing Powers and Symbolic Powers of Ideals,
J. Algebraic Geom., 19(3), 399-417, doi:10.1090/S1056-3911-09-00530-X.

Dao, H., A. De Stefani, E. Grifo, C. Huneke, and L. Ninez Betancourt (2018), Symbolic
Powers of Ideals, in Singularities and foliations. geometry, topology and applications,
Springer Proc. Math. Stat., vol. 222, pp. 387-432, Springer, Cham.

Dutta, S. P. (1983), Symbolic Powers, Intersection Multiplicity, and Asymptotic Be-
haviour of Tor, Journal of the London Mathematical Society, s2-28(2), 261-281, doi:
10.1112/jlms/s2-28.2.261.

Ein, L., R. Lazarsfeld, and K. E. Smith (2001), Uniform Bounds and Sym-
bolic Powers on Smooth Varieties, Inventiones Mathematicae, 144(2), 241-252, doi:
10.1007/s002220100121.

Eisenbud, D. (1995), Commutative Algebra with a View Toward Algebraic Geometry,
Springer-Verlag.

Enescu, F., and Y. Yao (2018), On the Frobenius Complexity of Determinantal Rings,
J. Pure Appl. Algebra, 222(2), 414-432, doi:10.1016/j.jpaa.2017.04.011.

Fields, J. (2002), Lengths of Tors Determined by Killing Powers of Ideals in a Local Ring,
Journal of Algebra, 247(1), 104 — 133, doi:https://doi.org/10.1006 /jabr.2001.9020.

Grifo, E., and C. Huneke (2019), Symbolic Powers of Ideals Defining F-pure and Strongly
F-regular Rings, Int. Math. Res. Not. IMRN, pp. 2999-3014, doi:10.1093 /imrn /rnx213.

Grothendieck, A. (1965), Eléments de géométrie algébrique (rédigés avec la collaboration
de Jean Dieudonné) : IV. Etude locale des schémas et des morphismes de schémas,
Seconde partie, Publications Mathématiques de I'THES, 24, 5-231.

Herzog, J., T. Hibi, and N. V. Trung (2007), Symbolic Powers of Monomial Ideals and
Vertex Cover Algebras, Adv. Math., 210(1), 304-322, doi:10.1016/j.aim.2006.06.007.

Hochster, M., and C. Huneke (2002), Comparison of Symbolic and Ordinary Powers of
Ideals, Inventiones Mathematicae, 147(2), 349-369, doi:10.1007/s002220100176.

106



[13]

[14]

[15]

[20]
[21]

Huneke, C., and I. Smirnov (2014), Prime filtrations of the powers of an ideal, arXiv
e-prints, arXiv:1407.3320.

Huneke, C., D. Katz, and J. Validashti (2009), Uniform Equivalence of Symbolic and
Adic Topologies, Illinois J. Math., 53(1), 325-338.

Katzman, M., K. Schwede, A. K. Singh, and W. Zhang (2014), Rings of Frobenius
operators, Mathematical Proceedings of the Cambridge Philosophical Society, 157(1),
151-167, doi:10.1017/50305004114000176.

Ma, L., and K. Schwede (2018), Perfectoid multiplier/test Ideals in Regular Rings
and Bounds on Symbolic Powers, Inventiones mathematicae, 214(2), 913-955, doi:
10.1007/s00222-018-0813-1.

Nagata, M. (1960), On the fourteenth problem of Hilbert, Proc. Internat. Congress
Math. 1958, Cambridge.

Northcott, D. G., and D. Rees (1954), Reductions of Ideals in Local Rings, Math-
ematical Proceedings of the Cambridge Philosophical Society, 50(2), 145-158, doi:
10.1017/S0305004100029194.

Roberts, P. C. (1985), A Prime Ideal in A Polynomial Ring Whose Symbolic Blow-up
Is Not Noetherian, Proc. Amer. Math. Soc. 94 (1985), 589-592.

Stacks project authors, T. (2019), The Stacks Project, Columbia online.

Swanson, 1. (1994), A Note on Analytic Spread, Communications in Algebra, 22(2),
407-411, doi:10.1080/00927879408824857.

107



