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Abstract 

This thesis contains simplified simulations of polymers in the entangled melt/solution state 

and in the glassy state in fast extensional flows where chains become locally stretched at modest 

strains.  Comparisons to experiments show that the “Entangled Kink Dynamics” simulations for 

entangled chains and the “Hybrid Brownian Dynamics” simulations for glassy polymers improve 

on existing models. We also present atomistic Molecular Dynamics (MD) simulations of the 

interactions of for Poly(N-isopropylacrylamide)” (pNIPAAm) excipient with a hydrophobic drug, 

phenytoin, to improve drug release in the GI tract.  

In the first part of the thesis, the conventional “tube-model” constitutive equation is found 

to predict overly rapid approach to a steady-state extensional viscosity of entangled polystyrene 

solutions in fast extensional flow. Based on an analysis of the conformation of polymer chains at 

high strains, a new and simple simulation technique, which we call the “Entangled Kink 

Dynamics” (EKD), is developed to study the late stage dynamics of polymer chains. In this 

approach, a highly strained polymer chain in extensional flow is modeled as a quasi-one-

dimensional chain with kinks at which the polymer folds back on itself. Polymer strands between 

the kinks are considered fully stretched and Brownian force is neglected in comparison with drag 

and tension. The behavior of entangled chains in the kinked state is studied for the cases of dilute 

chains, affinely moving kinks, and kinks entangled with kinks on other chains.  To compare the 

kink dynamics predictions with experimental results, input is needed from more detailed “single-

chain slip-spring” simulations. With this input, EKD simulations show a much better prediction of 

experimental extensional viscosity of entangled long polystyrene solutions, compared to 
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conventional tube models. Validating our model, we explain the potential downfalls of the tube 

theory and provide insight into achieving a better constitutive equation for entangled polymeric 

melts and solutions. 

Secondly, we present a modified Hybrid Brownian dynamics model to study the rheology 

of polymeric glasses. Using a Coarse-Grained Brownian Dynamics (CG-BD) model for polymer 

chains suspended in a glassy solvent that represents the segmental model of the glassy polymer, 

governed by a simple fluidity model, we study the stress and conformation evolution of glassy 

polymers under fast uniaxial extensional flows and compare our results with fine-grained 

molecular dynamics simulations of polymeric glass. Although our CG-BD simulations do not have 

the effect of entanglements explicitly, the conformation evolution of polymer chains in our hybrid 

technique is found to be similar to that found in MD results, where the entanglements are taken 

into account explicitly. This proves that in fast flows of glassy polymers, chain conformation is 

governed by sub-entanglement dynamics and formation of folds, or kinks. The importance of sub-

entanglement scales in generating stress becomes hugely important at high strains where polymeric 

glass show strain hardening. By calculating the number of entangled folds on the chain in the strain 

hardening regime, we prove that the huge rise in the stress is not due to the effect of entanglements. 

Instead, we show that strain hardening behavior is caused because of the highly stretched strands 

between nascent fold points, below the length scales of entanglement spacing.  

Finally, in the last chapter we scale down to atomistic levels and study the molecular level 

interactions between a thermo-responsive polymer called “Poly(N-isopropylacrylamide)” 

(pNIPAAm) and a hydrophobic drug “phenytoin”. First, we validate the chosen forcefield 

(AMBERFF) and input parameters of our method by comparing the simulation results with the 

famous coil-to-globule transition of pNIPAAm and then investigate the design domain of chemical 
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composition to obtain a highly efficient excipient for drug dissolution purposes. By 

copolymerizing pNIPAAm and a hydrophilic polymer called Dimethylacrylamide (DMA), we 

show a much better performance of pNIPAAm based carriers for drug crystallization inhibition.  
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Chapter 1 : Introduction 
 

Polymeric materials have become an inseparable part of our daily life due to their 

applications in different fields of science, technology and industry. During the past decades, the 

capability to predict the flow behavior of polymer liquids has been highly sought because of their 

importance in optimizing and controlling the performance of processing units, which eventually 

determines the cost and quality of final products. Polymers are processed in the solution, melt, and 

glassy states, most often by extensional flows, in blowing of films, drawing of fibers, stretching of 

polymer parts, and many more. Thus, understanding how the polymeric materials, in their liquid 

state, react to a strong extension is necessary for polymer processing, which is a massive industry 

worth well over $100 billion per year. For decades, researchers in the field of rheology have tried 

to develop reliable constitutive equations and models for polymer liquids. However, even with 

recent advances in computational techniques, quantitative approaches to predict the flow response 

of entangled polymer liquids are elusive, due to their complex molecular structure. Recent models 

are not capable of providing correct data for high molecular weight polymers under fast uniaxial 

extension which limits their applicability in complicated flow fields. Therefore, a systematic 

analysis is required to pinpoint the shortcomings of current models and connect the molecular 

behavior to measurable material’s response such as stress or strain. To bridge molecular to 

macroscopic scale phenomena, multi-scale approach seems to be the most reliable method in 

which multiple models at different time/length scales are used simultaneously to describe the 

system. 
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Polymers, as a class of complex fluids, have interesting properties over a broad range of 

time/length scales including monomeric, coil radius of gyration/hydration and experimental 

measurement levels. Therefore, to systematically study a polymeric material, one should 

implement a multi-scale modeling approach to incorporate different physics at different 

time/length scales ranging from femtoseconds/angstroms to seconds/micrometers or even years in 

the case of polymer glasses. This broad range presents a unique challenge for computational 

studies of polymeric fluids. A comprehensive study should provide a clear picture of how the 

chemistry and structure of materials’ composing blocks, or monomers, affect the large-scale 

dynamics of the polymer, such as its response to applied deformation, temperature/PH change, 

crystallization, etc. Under different processing conditions, polymers exhibit complex response to 

the applied force or deformation, spanning from the linear viscoelastic regime, where the stress 

varies linearly with deformation and the departure of the molecules from their equilibrium state is 

negligible, to the non-linear viscoelastic regime, where the deformation is large or rapid enough 

to stretch the molecules considerably. The goal is to develop rheological constitutive equations 

and simulation techniques capable of predicting the flow response of polymer fluids, such as stress 

or conformation evolution, under different conditions. However, even with recent developments 

in the field, our understanding of the underlying physics of polymer liquids is not yet complete 

and further investigation of their behavior is needed. In addition to conventional experimental 

techniques, which are used for model validation and material characterization, newly developed 

simulation approaches have become a nonseparable part of the polymer rheology in the past 

decade. Molecular dynamics simulations of polymers at different length scales, which can be 

viewed as “computational experiments”, provide a unique opportunity to study polymer dynamics 

at molecular to meso-scale levels. Novel computational techniques have given new insights into 
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the field of polymer rheology and helped researchers to develop/modify new constitutive equations 

for polymers under different conditions. However, due to the broad range of time/length scales 

involved in polymer dynamics, different simulation approaches are required at each scale to 

appropriately addresses the important dynamics involved at a specific range. Therefore, the best 

modeling/simulation approach depends on the system one wishes to study and the questions that 

one wishes to answer. Generally, most models for molecular simulations of polymers fall into 

either (1) atomistic or (2) coarse-grained (CG) techniques.  

For all types of polymer liquids, namely solutions, melts and glasses, if one wishes to study 

the local, monomer-level forces, fluctuations, or interactions of different species at functional 

group levels, then atomistic models are the appropriate choice. Many studies during the past 

decades have used atomistic simulations to analyze monomer-level fluctuations, monomer-

monomer contacts/interactions, hydrogen bonding, phase separation at interfaces, solubility, 

absorption and diffusion of molecules in a fluid, and polymer glass transition [1–15]. However, 

due to the large system of equations needed to be solved and consequently, their computational 

expense, atomistic models are limited to time scales of 1	fs − 	100	ns and length scales of 1 −

	100	Å [7,13]. As a result, one cannot use these models to study phenomena happening at polymer 

chain-level, such as unraveling dynamics that occurs over larger length and time scales, as 

discussed in future sections of this thesis. Even with new advances in hardware, such as new CPU 

(core processing units) generations, and parallelization techniques to perform simulations on tens 

to hundreds of CPU cores, atomistic models can take days/weeks to run and give in a reliable 

result. For example, in chapter 4, all the equilibrium final results were gathered after 10 days of 

simulation runs on 64 processors.   
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On the other hand, if the goal is to predict conformation/morphology of long polymer 

chains at a broad range of conditions and applied forces, the best option is to use coarse-grained 

(CG) models, where some of the degrees of freedom in the system is removed by grouping selected 

atoms into a single CG bead [16–22]. This approach utilizes the wide separation of length and time 

scales inherent to polymer systems, where the dynamics at length scales around the polymer chain 

size, are largely unaffected by the local monomer structure and high frequency motions of 

individual chemical bonds. Thus, for the sake of computational efficiency, CG approaches remove 

some of these atomistic details. The removal or coarsening process which determines the 

resolution of the system, depends on the specific material and goal of the study. For example, in 

some studies, only hydrogen atoms are removed (i.e. united atoms models [23–26]) while in others, 

several monomers can be grouped into a single bead [27,28]. By reducing the degrees of freedom 

and removing the fast motions, one can take larger time steps with CG simulations as compared to 

atomistic simulations which enables the researcher to study phenomena such as polymer chain 

relaxation, deformation/stretch, crystallization, and branching. Note that the parameters used in 

CG models are inherently functions of atomistic details and structure of individual monomers at 

smaller scales. Computational efficiency and accuracy of coarse-grain models of polymers have 

made them a reliable choice for researchers to study material response under different conditions. 

Specifically, to study the rheological properties of polymers, almost all of the simulations use some 

level of coarse-graining. 

While the basics of molecular modeling for polymer liquids in their different forms (melts, 

solutions and glasses) stay almost the same, due to the difference in the underlying dynamics, such 

as molecular interactions, the equations developed for each class of these polymer liquids are 

different. Thus, to analyze each case, one needs to focus on a specific material. In this thesis, we 
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focus on two classes of polymer liquids, entangled solutions/melts and polymer glasses. 

Underlying physics of polymer dynamics in each of these materials, our modeling techniques and 

current modeling/simulation challenges are discussed. Performance of conventional models are 

tested and possible solutions for their current shortcomings are provided.  

We start with the polymer solutions and melts, since the ability to predict the flow behavior 

of entangled polymeric fluids in strong flows has a huge impact on the performance of processing 

units used in consumer products, pharmaceutical industries, electronics, etc. The molecular theory 

of Doi and Edwards [29,30] which is based on the “reptation” concept of De Gennes [31] has 

proved successful in describing the linear properties of entangled linear chains.  The basic theory 

assumes that the polymer chain undergoes a one-dimensional diffusion inside a “tube”, where the 

tube is the mean-field approximation of the influence of the surrounding mesh of entanglements. 

During the past few decades, versions of tube theory have been proposed to include several 

relaxation mechanisms relevant to equilibrium and  weak flows [32]. In general, a polymer chain 

in an entangled network relaxes through (1) reptation, (2) contour length fluctuations and (3) 

constraint release, where the second and third mechanisms are related to the flexibility of the chain 

and relaxation of the surrounding network, respectively. A quantitative model combining these 

three relaxation physics was presented by Likhtman and McLeish [33] and its predictions were 

found to be in good agreement with the linear rheology of entangled monodisperse linear 

polystyrene (PS) and polybutadiene (PB) samples. In the nonlinear regime, when a strong flow is 

applied, other mechanisms need to be incorporated into the theory. The first of these is “segmental 

stretch,” in which the chain inside the tube stretches out due to the frictional force imposed by the 

surrounding matrix. This concept, introduced by Marrucci and Grizzuti [34] and further examined 

by Pearson et al. [35] for startup of simple shear flow, results in the Doi-Edwards-Marrucci-
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Grizzuti or “DEMG” model [36,37]. The second mechanism, introduced by Marrucci [38], is 

“convective constraint release (CCR)” whereby a fast flow sweeps away the spatial entanglement 

constraints around a sample chain, providing additional freedom for the chain to relax. Inclusion 

of CCR into the tube theory has resulted in different versions of the tube model for fast flows such 

as the Mead-Larson-Doi (MLD), Double-Convection-Reptation with Chain Stretch (DCS-CS), 

GLaMM, “Rolie-poly” and Marrucci-Ianniruberto (M&I) models [39–43]. These models result in 

reasonably good agreement with experimental data in shear; however poorer agreement is attained 

with experiments in transient fast extensional flows, where the polymer chain is highly stretched 

and aligned in the flow direction [44,45]. Although in some cases the disagreement is due to 

neglecting finite extensibility of the chain [41], it seems that there is a general disagreement for 

high molecular weight chains in fast flows, where the tube model predicts a much smaller Hencky 

strain (𝜖 = 𝜖̇𝑡) to reach the steady-state extensional stress (𝜖������� ) than is observed experimentally 

(𝜖����� ) [46]. The recent addition of “friction reduction” to the tube model in extension [47–50] has 

resulted in better agreement between model predictions and experimental values of the steady-

state extensional viscosity (𝜂���), but this does not address the faster attainment of steady-state 

stress in the model compared to experiments. The inaccuracy of tube-model predictions of stress 

in extensional flows has attracted increasing attention in recent years and new simulation 

techniques [51–54] have been developed to shed light on the underlying dynamics of entangled 

polymers in fast extensional flows. 

With recent advances in computational power, analysis of entangled polymers at the 

molecular level has become possible with the goal of improving the tube theory. In general, 

simulating the response of an entangled polymer chain can be done using (1) multiple-chain and 

(2) single-chain techniques. In the former, a simulation box is generated and filled with chains, 
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wherein the monomers on different chains interact with each other and chain connectivity is 

conserved. Exemplary of this approach is the work of Kremer and Grest [55] who, by visualizing 

the motion of a primitive chain, showed the existence of a tube-like region confining the motion 

of that chain in a melt at equilibrium. Applying this method to strong elongational flows at 

sufficiently large strains to reach steady state has in the past been challenging, due to excessive 

elongation and thinning of the simulation box in uniaxial flows [56–58]. While this limitation has 

now been overcome by a new method of re-mapping the box, still, performing these detailed 

simulations for long chains (𝑀g > 1Mkg/mol) under high, but not unrealistically high, extension 

rates (𝜖̇ > 1/𝜏�, 𝜏� being the Rouse relaxation time of the polymer chain) remains computationally 

time consuming [52]. Therefore, coarse-grained versions of multiple-chain simulations (CG-MCS) 

have been developed, in which the basic length unit is chosen to be the subchain between 

consecutive entanglements. This is the approach taken in some slip-link simulation methods,  in 

which entanglements between chains are replaced by slip-links through which the polymer slides 

longitudinally [59–64]. The recently developed “Primitive Chain Network (PCN)” method has 

shown good agreement with experimental data for high molecular weight polystyrenes in uniaxial 

extensional flow at moderate Rouse Weissenberg numbers (𝑊𝑖� = 𝜖̇𝜏� < 4) [65]. However, the 

application of this method to higher Rouse Weissenberg numbers  (𝑊𝑖� > 4) has not been tested 

[65]. Another limitation of the PCN technique is the coarse-graining of the chain at the 

entanglement level, which results in loss of conformational details at distances smaller than the 

entanglement spacing [60]. We will show in this thesis that at high strains, kink formation and the 

unraveling dynamics govern the stress evolution [46]. In this manuscript, we analyze the chain 

statistics at the kinked state in detail and will show that kinks can form between entangled regions 

along a chain. The number of these unentangled kinks below the entanglement length-scale 
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directly affects the stress evolution at high strains. Thus, chain configuration at sub-entanglement 

level, which is ignored by methods such as PCN, is important.  

To limit the required computational power, single-chain techniques have been developed, 

where the effect of the entanglement network is replaced by slip-links, which confine the 

movement of the chain and require the chain to slide through them to relax. The concept of slip-

links was first introduced by Doi and Edwards [30] and further improved by Schieber and co-

workers [66–68] who added additional dynamics such as constraint release and nonlinear effects. 

Single-chain slip-spring models have also been developed in which the effect of neighboring 

chains is replaced by virtual springs (or slip-springs) along the backbone of a single chain that not 

only confine the motion of the chain, but also exert force on the chain [69,70]. Despite their 

simplicity compared to multi-chain simulations, single-chain results match very well with linear 

viscoelastic data and nonlinear data in shearing flow,  and can provide an intermediate level of 

detail between multiple-chain simulations and the tube theory [61,70–75]. However, predictions 

of single-chain simulations have not been very successful for strong extensional flows at high 

strains [74,76]. Moreover, even for these single-chain models, the computational time becomes 

unaffordably large as the chains become longer (𝑁H > 1000,𝑁H being the total number of Kuhn 

segments in a polymer chain) [77]. Therefore, there is a need for new simulation methods that can 

correctly predict the late-stage evolution of long chains in strong extensional flows (𝑊𝑖� ≫ 1). In 

this thesis, I develop a simulation technique for fast uniaxial deformation of linear polymer chains 

and test its performance by comparing its results with that of experiments. My study shows the 

importance of folded or “kinked” regions in late stage dynamics of entangled polymer networks 

and sheds light on the shortcomings of conventional tube theories. In addition to the development 

of my “Entangled kink dynamics” technique, I modify the single chain slip-spring model of 
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Likhtman [70] for use in strong extensional flows, where most of the other models fail or are 

computationally inefficient.  

As a different polymeric liquid under strong deformation, I worked on development of a 

rheological model for mechanical response of polymeric glass under fast uniaxial deformation. 

Glassy materials possess remarkable properties such as high stiffness and transparency, good 

corrosion resistance, low permeability, as well as ease of fabrication [78,79], making them 

ubiquitous in both traditional and emerging material applications [80–83]. The growing demand 

for low-cost, lightweight materials with sufficient mechanical strength has led to increasing use of 

polymeric glasses as substitutes for inorganic materials such as silicon and metals. Such 

advantages in mechanical properties make polymeric glasses widely-used in the manufacturing 

with applications being found in a variety of fields: printing and packaging, optics, surface 

protection and coatings, etc. To ensure their mechanical stability for a variety of loading 

environments, several methods for strengthening polymeric glasses are available, for example, 

mechanical preconditioning [84,85], subglass-transition-temperature annealing [86], etc. 

However, the complicated interplay of chemistry [87,88], entanglement /crosslink density [89], 

severity of confinement [90], as well as thermomechanical history in determining ultimate 

mechanical properties of polymeric glasses make it extremely difficult to ensure the above 

stability-enhancing procedures are reliable [80,82,91].  Moreover, the still-rapid pace of 

development of new glasses with remarkable performance, including vapor-deposited “ultra-

stable” polymer glasses [83], plasticizer-mediated glasses [91], and rigid polymer-cast 

“superionic” films [92], show that we are still far from a complete understanding of how polymers’ 

molecular structure affects the macroscopic mechanical properties of their bulk glassy state.  
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Unlike the polymer solutions, for which the relaxation times of the material (𝜏5 and 𝜏�) are 

considered constants, polymer glasses show an interesting phenomena known as physical aging 

and rejuvenation [93–95]. In simple words, a polymer glass at equilibrium constantly moves 

toward lower energy wells and re-configures itself and its monomer locations. This causes the 

relaxation time of the glass to increase as the sample stays intact. On the other hand, upon 

application of a deformation or stress, the relaxation time quickly decreases, “fluidizing” the glassy 

material. Adding the intricate relaxation behavior to the intramolecular cooperativity of polymeric 

glasses, including chain connectivity, stiffness, and finite extensibility, has made the rheological 

modelling of polymeric glasses a challenging topic for decades. Due to the aforementioned 

properties, a polymeric glass under constant deformation rate experiment, such as uniaxial 

extension, exhibits five strain amplitude regimes [94,96–98]. (1) linear elastic stress growth with 

strain, (2) “anelastic” regime where stress grows more slowly (3) a local stress maximum at yield 

point followed by a drop of stress (strain softening) (4) a “plastic flow” or “dynamic yielding” 

regime where the stress stays almost constant, showing a plateau region and (5) a “strain 

hardening” regime where at large strains, the stress increases rapidly. Therefore, in a more general 

scope, the mechanical response of a polymer glass under deformation can be divided into two 

regimes, the “pre-yield” and the “post-yield” regimes. In the pre-yield domain, the mechanical 

rejuvenation and the glassy or “segmental” relaxation are coupled while in the post-yield regime, 

the stress contribution from the polymeric part become hugely dominant and the glassy relaxation 

plays a small role in the dynamics of the system.  

Some recently developed coarse-grained theoretical models [93,94,99–102] are beginning 

to yield important insights into the interplay of polymeric and glassy components at different 

regimes of deformation.  By separating the polymeric and segmental contribution to the stress, and 
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assuming that polymer glass can be represented by a single polymer chain in a glassy solvent, Zou 

and Larson recently published a coarse-grained “hybrid” model [103], in which a one-mode 

Maxwellian equation for local segmental relaxation with time constant (𝜏() was used to predict 

the local frictional drag that a “glassy solvent” exerts on an isolated-chain representing the larger-

scale “polymeric” relaxation (with time constant 𝜏u = 𝛼𝜏(, where 𝛼 is the polymer-to-segmental 

relaxation time ratio). While the idea of separating glassy and polymeric modes had been 

previously examined by Fielding et al. [104,105], inclusion of a CG polymer chain, which 

inherently has multiple relaxation modes for the polymer chain, improved the model’s predictions 

considerably. Using a simple fluidity model describing the nonlinear response of 𝜏( under applied 

deformation, the stress from the segmental mode was added to that produced by polymeric 

relaxation, whose dynamics were approximated by a bead-spring chain with bead drag coefficient 

proportional to 𝜏(. Although the interplay between segmental and polymeric stresses allows for 

this hybrid model to capture much of the experimental phenomenology of deformed polymeric 

glasses, the model ignores polymer entanglements. It also ignores energetic terms arising from 

pair, covalent-bond, or angular interactions that are known to be important in determining the 

overall mechanical properties of polymeric glasses [92,106–111]. One might therefore expect this 

model to break down in the post-yield regime, where effects of the above energetic terms become 

increasingly important [112]. Furthermore, the hybrid model approach uses a simple fluidity model 

for the segmental relaxation time of the polymeric glass while recent experimental measurements 

show a broad range of relaxation domain for glassy materials. The simple one-mode fluidity model 

of Zou and Larson also give rise to the question of their model’s validity at pre-yield regime, where 

the interplay of aging and rejuvenation is important. On the other hand, there is considerable 

evidence that single-chain in-mean-field models can in fact capture much of the physics of large-
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strain deformation, including strain hardening, at least up to the beginning of the “dramatic” supra-

Gaussian regime of the stress-strain curve [113–115]. As suggested by Zou and Larson [103], 

strain-hardening results primarily from highly-stretched and folded chain conformations (“kinks”) 

rather than from rheological entanglements. Significantly, the onset of strain hardening at Hencky 

strains of order unity is correctly predicted by this model, in agreement with experimental data, 

and with a hardening modulus greatly in excess of the polymer entanglement modulus, also 

consistent with experiments. These findings suggest strongly that entanglements are not the key 

feature of strain hardening, which is instead caused by the large stretch of sub-entangled strands 

of polymers at deformation rates much greater than the rate at which those strands can relax their 

configurations. Unfortunately, it is not yet possible to test this suggestion experimentally, despite 

the applications of many novel experimental methods to deformed polymeric glasses [80,86,116]. 

MD simulations, however, offer an alternative avenue for exploring and testing new theories 

[92,106,108,109,111,117–121], and can provide complete information on polymer conformations. 

Thus, MD simulations allow testing of the assumptions and findings of the coarse-grained hybrid-

BD (HBD) model, in particular, its ability to predict strain hardening despite neglecting 

entanglements. In this thesis, we study the effect of multi-mode relaxation for glassy dynamics 

and by comparing the HBD model with MD simulations performed by our collaborator, Prof. 

Robert. S. Hoy at University of South Florida, we shed light on the role of entanglements in strain 

hardening of polymeric glass in strong uniaxial deformations. 

As a different research direction, I also worked on another topic, in which I used atomistic 

molecular dynamics simulations to assess the efficacy of thermoresponsive poly(N-

isopropylacrylamide) in drug delivery applications. Biocompatible and biodegradable polymeric 

excipients are used in solid dispersion techniques to improve the solubility of the newly developed 
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Active Pharmaceutical Ingredients (APIs), which are mostly hydrophobic and tend to aggregate 

and crystalize upon abrupt release in the gastrointestinal tract [122–124]. One of most interesting 

groups of polymers used in solid dispersion techniques are the stimuli-responsive polymers which 

change their properties due to the environmental variations in temperature, pressure, light, pH, etc. 

[125,126] Poly(N-isopropylacrylamide) or simply pNIPAAm, is a biocompatible, thermosensitive 

polymer that possesses a lower critical solution temperature (LCST). As the temperature increases 

above ~32�C in a pNIPAAm aqueous solution, polymer chains tend to decrease their interaction 

with water, leading to a coil-to-globule transition resulting in a compact conformation in water, 

and release of the drug molecules inside the solution [126–129]. Many experimental studies have 

analyzed the collapse of pNIPAAm chains and hydrogels in aqueous solutions [130–134]. Yang 

et al. [135], Huang et al. [136] and Zhi et al. [137] used analytical solution theories to model these 

thermo-sensitive hydrogels, but to be accurate, such models need inclusion of parameters obtained 

by molecular simulations. With advances in molecular dynamics techniques, it has become 

feasible to simulate pNIPAAm chains directly to test the ability of different forcefields to predict 

chain collapse, and to determine the role of binding kinetics between different functional groups 

and solvent molecules [7,138–140]. As previous studies, both experimental and computational, 

have revealed, the collapse of pNIPAAm is driven by the weakening of hydrogen bonding with 

water at elevated temperatures, namely above 32¡C, leading to dominance of the hydrophobic 

interactions between isopropyl groups in adjacent monomers [141,142]. Interestingly, this happens 

at a temperature close to the body temperature (37r𝐶), which, along with other properties of 

pNIPAAm, such as the large design space of its copolymers, makes this polymer a potentially 

attractive possibility as an excipient for controlled drug release. Although aqueous solutions of 

pNIPAAm have been widely analyzed both experimentally and computationally, a detailed 
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simulation study of excipient-API interactions in water and their effect on crystallization is not yet 

available for pNIPAAm. In particular the promising alternative of analyzing the interactions 

between polymer and API molecules by molecular dynamics has not yet been carried out for 

pNIPAAm and its copolymers in aqueous solutions. In this thesis, I explore the backbone structural 

design of pNIPAAm chains for efficient absorption of hydrophobic drug molecules at body 

temperature by studying the effect of configurational tacticity and copolymerization on its 

interactions with Phenytoin, an anti-seizure drug molecule.  

The thesis is organized as follows: 

In chapter 2, we review tube theory based constitutive modeling of entangled polymer 

melts and solutions under fast extensional rheology and show the discrepancy between 

experimental data and theory’s predictions. Hypothesizing that the disagreement between theory 

and experiment is due to a missing physics in the tube theory, we introduce the unraveling 

dynamics and develop a simulation technique called “Entangled kink dynamics (EKD)” to study 

the response of an entangled system when the unraveling is included. Using the EKD technique, 

we perform simulations corresponding to real entangled systems and compare experimental data 

and kink dynamics prediction. 

The third chapter focuses on the development of a smaller scale simulation technique for 

nonlinear rheology of entangled polymer fluids. It discusses the development of a single-chain 

slip-spring simulation approach, inspired by the works of Likhtman and coworkers [70,143], and 

modified using the result of our developed EKD analysis. This coarse-grained single chain 

simulation approach provides a fast and reliable platform for analyzing the behavior of entangled 

linear polymer chains under non-linear deformation.  
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Switching to the polymeric glass, the hybrid model of Zou and Larson is reviewed, and its 

shortcomings are discussed in chapter 4. Then, implementation of multi-modes glassy dynamics 

and the effect of entanglements on the strain hardening behaviour of polymer glass at large 

deformations in extensional flow is analyzed. By studying the presence of folded or kinked regions 

on polymer chain using molecular dynamics data, we reveal the underlying physics behind the 

rapid stress rise in a polymeric glass at high strains. We show that although the model uses a simple 

segmental relaxation equation, it can quantitatively predict the overall stress-strain response of the 

polymeric glass under startup extension. 

In the last chapter of my thesis, I focus on the atomistic simulation of thermo-responsive 

pNIPAAm chains. By testing different partial charge assignment techniques, behavior of single 

chain pNIPAAm oligomers in an aqueous solution and its response to temperature rise are studied. 

Using a validated forcefield and input parameters, I perform atomistic molecular dynamics 

simulations where both pNIPAAm and API molecules are present and show the effect of excipient 

presence in preventing the aggregation of hydrophobic drug molecules. We also add comonomers 

to the pNIPAAm chains and show that interactions of phenytoin (as a hydrophobic drug molecule) 

with copolymers of pNIPAAm are consistent with experimental results, proving that there is an 

optimal molar percent of co-monomer that maximizes the excipient efficiency at body temperature 

[144]. We can also provide a quantitative explanation of the physics behind the phenomenon. 
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Chapter 2 : Tube Model and Unraveling Dynamics 
 

2.1 Abstract 

 
The traditional Doi-Edwards tube model, applied to extensional flows at strain rates above 

the inverse Rouse time, predicts that the tube deforms affinely, which implies that the extensional 

stress reaches its plateau as soon as the chain has become locally fully stretched, even if the chain 

is still folded, and far from being completely unraveled.  By starting from a state in which the chain 

is in a locally fully stretched, but folded, state, we develop an “entangled kink 

dynamics algorithm” that predicts the final unraveling of an ensemble of mutually entangled, 

folded chains, driven by a combination of drag forces and chain tension, with negligible Brownian 

motion.  Equations for motions of both unentangled folds and entangled folds in which two chains 

hook together at a single fold point, are derived and solved, including the effects of constraint 

release that occurs when the end of one chain passes through the fold at which that chain is 

entangled.  This model predicts that the stress approaches its final plateau stress only after 

complete chain unraveling, which for long chains is at much higher strains than in the tube model.  

 

2.2 Introduction 

 

The dynamics of entangled polymeric fluids and their rheological properties in linear and 

nonlinear deformations have a significant impact on polymer processing.  Entanglement 
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constraints in melts and concentrated solutions restrict the chain movement to “reptation,” 

preferentially along the chain contour, as described by de Gennes [31] and Doi and Edwards [145]. 

The original Doi-Edwards (DE) theory for nonlinear deformations assumes instantaneous and 

complete chain retraction within a mesh of constraints affinely deformed by the flow. This 

assumption fails to predict accurately the steady-state shear viscosity and stress relaxation after 

flow cessation in shear. A more advanced version of the DE theory by Marrucci and Grizzuti (the 

DEMG theory) [34,36] adds chain stretch to the model, which addresses some of its shortcomings, 

but still fails to predict the monotonic dependence of first normal stress difference and shear stress 

on shear rate that is often observed [37].  

More recently, convective constraint-release (CCR) was introduced into the model by 

Marrucci and Ianniruberto [146], assuming that when the flow is fast compared to inverse of 

relaxation time of the entangled system, spatial constraints around a sample chain are being swept 

away by the flow, providing freedom to the polymer chain to relax much faster compared to slow 

flow or pure reptation relaxation. Including this new physics leads to better agreement with 

experimental data, as shown by models such as the Mead-Larson-Doi (MLD), Double-Convection-

Reptation with Chain Stretch (DCS-CS), GLaMM and “Rolie-poly” models [39–42,147], at least 

in shear flows. However, there are still significant inaccuracies in extensional flows, even with 

these improvements and with carefully determined material inputs, namely the Rouse relaxation 

time (𝜏�), the reptation time (𝜏�), the plateau modulus (𝐺¢B) and the maximum extensibility of a 

tube segment (𝜆�£� = ¤𝑁/𝑍), where 𝑁 and Z are the number of Kuhn steps and tube segments in 

the chain, respectively. Bhattacharjee et al.[45] and Nguyen et al.[148], for example, give 

predictions of different tube models that clearly deviate significantly from the steady-state and 

transient stresses in uniaxial extension for the flow regimes 𝜏�01 < 𝜖̇ < 𝜏�01 and 𝜖̇ > 𝜏�01, where 𝜖̇ 
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is the rate of extensional strain. The disagreement worsens as the molecular weight (𝑀g) and the 

Weissenberg number (𝑊𝑖� = 𝜖̇𝜏� ≫ 1) increase [46,50], especially at high strains where the 

disentanglement and chain stretch dominate the entangled polymers. Although performing 

extensional rheometry for high molecular weight polymers at high extension rates is 

experimentally challenging, the disagreement between available data in the literature and model 

predictions is clear, for both transient and steady state response. A recent addition to the tube 

model, which generally improved tube theories’ predictions for extensional rheometry, is the 

consideration of friction reduction in concentrated polymers or melts. It is suggested that the 

alignment of Kuhn segments results in reduction in local friction coefficient in fast flows, which 

decreases both 𝜏� and 𝜏� [47–49]. Although inclusion of friction reduction in tube model results 

in better agreement of steady-state extensional viscosity with that of experiment for polymer melts 

[50], its use for entangled solutions, especially for those of low polymer weight, is less justifiable.  

A questionable assumption of tube theory is that the tube deforms affinely, which is a 

mean-field assumption in conflict with the argument of Rubinstein and Panyukov [149,150] that 

an entanglement network deforms non-affinely.  Some recent coarse-grained models treat 

entanglements as local interactions between two chains with the velocity of the entanglement point 

set not by the affine motion assumption, but by a force balance involving the tension in the two 

chains at that point [60,65,149–151]. As we will discuss in the following, our fast, simplified, 

“entangled kink dynamics” simulation technique also solves a force balance at each entanglement 

point, and also results in non-affine motion.  We, moreover, show that dropping this force balance 

in favor of affine motion of the entanglement point, as in the tube model, results in predictions for 

stress that disagree markedly both from our model and from experimental data. 
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Our analysis focuses on an entangled system at high strains where the effect of chain stretch 

becomes significant. In this work, we introduce new physics for the final stages of stress growth 

in extension without assuming affine motion and we consider tube models without friction 

reduction to reduce the number of input variables and avoid any data fitting to match our results 

with those of experiments. Therefore, we do not need any inputs other than those required by the 

basic tube model, 𝜏�, 𝜏�, 𝐺¢B,𝑀¥, 𝑍. 

First, we test the performance of two of the most popular models in predicting the 

extensional viscosity of high molecular weight polystyrene solutions. Figures 2.1-2.3 show the 

rather poor performance of the standard one-mode (or “toy”) version of DEMG and MLD models 

[152,153] in predicting the transient extensional viscosity of three samples of linear polystyrene 

solutions at high 𝑊𝑖�. To find the predictions of the theory, we use the one-mode, or “toy” version 

of the DEMG model developed by Pearson et al. [152,154]:  

 

 𝑺
§
¨©y^ + 2𝒌	: 𝑺¨©y^𝑺¨©y^ +

1
𝜏�
­𝑺¨©y^ −

1
3𝜹¯ = 𝟎 (2.1) 

 𝜆̇ = 𝜆	𝒌	: 𝑺	 −
𝑘((𝜆)
𝜏5

(𝜆 − 1) (2.2) 

 𝝈 = 3𝐺³B𝑘((𝜆)𝜆%𝑺 (2.3) 

 𝑘( =
(3𝜆KLM% − 𝜆%)/(𝜆KLM% − 𝜆%)
(3𝜆KLM% − 1)/(𝜆KLM% − 1)  (2.4) 

 

Where in equation (2.1), 𝑺
§
¨©y^ is the orientation tensor that describes the average orientation of 

the tube segments in three-dimensional space. The symbol ∇ above the orientation tensor 𝑺¨©y^ is 

its “upper convective derivative” [152,155] and 𝒌 = (∇𝑣)bis the transpose of the velocity gradient 
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tensor. Equation (2.2) represents the tube segments, or chain, stretch which consists of two terms, 

the first one being the affine deformation with the macroscopically applied flow and the second 

term stands for chain retraction. Equation (2.3) is the stress equation where the coefficient 𝑘( 

accounts for the nonlinearity of the spring and is approximated using the Cohen-Pade 

approximation of the inverse Langevin function [156]. For MLD model, which includes CCR, 

Equations (2.5) - (2.9) are used: 

 1
𝜏 =

1
𝜆%𝜏�

+
1
𝜆 ¶𝒌: 𝑺	 −

𝜆̇
𝜆· (2.5) 

 𝑺¨©y^
§

+ 2𝒌	: 𝑺¨©y^𝑺¨©y^ +
1
𝜏 ­𝑺¨©y^ −

1
3𝜹¯ = 𝟎 (2.6) 

 𝜆̇ = 𝜆	𝒌	: 𝑺	 −
𝑘((𝜆)
𝜏5

(𝜆 − 1) −
1
2
(𝜆 − 1) ¶𝒌	: 𝑺	 −

𝜆̇
𝜆· (2.7) 

 𝝈 = 3𝐺³B𝑘((𝜆)𝜆%𝑺 (2.8) 

 𝑘( =
(3𝜆KLM% − 𝜆%)/(𝜆KLM% − 𝜆%)
(3𝜆KLM% − 1)/(𝜆KLM% − 1)  (2.9) 

 

Note that the main difference between DEMG and MLD models shown here is in Equation (2.5), 

which shows the evolution of representative relaxation time of the polymer chain due to 

entanglement convection effect [39]. 

Input data for the models are taken from experimental data reported by Huang et al. [157] 

and are summarized in Table 2.1. Note that the parameters listed in Table 2.1 are related to each 

other via well-established methods, for example knowing 𝜏� and 𝑍, one can find 𝜏� using 𝜏� =

𝜏�𝑍% [50,157]. Although due to instrumental limitations experimental data may have not reached 

the final values, we can clearly observe that the tube model predicts a much smaller Hencky strain 
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to reach a steady-state extensional stress than is observed experimentally, 𝜖��
��� > 𝜖�������. The 

magnitude of the difference depends on extension rate (𝜖̇) and molecular weight (𝑀¥), as shown 

in the figures. In this chapter, we show that this difference in strain to achieve the plateau is due to 

an incorrect assumption of affine deformation of the tube throughout the unraveling process. This 

affine motion requires that, after polymer chains are locally fully stretched and oriented but still 

folded rather than fully unraveled, the fold points are able to support an arbitrarily high chain 

tension, and propagate this tension along the chain, culminating in a very high maximum tension 

at the center of the chain.  We show that in entangled polymers at high strains, once tube segments 

become fully stretched, the monotonic increase in tension from the ends of the chain to its center, 

required by the tube model, would lead to a high tension at the center of the chain, which cannot 

in general be supported by the partner entangled chains.  Instead, we show that the tension remains 

much more modest, even at the chain center, until the chain is fully unraveled into a globally 

extended state, which requires larger strain than predicted by the tube model for tension (and stress) 

to saturate. We begin, in this chapter, by introducing our kink dynamics model and the governing 

equations of unraveling dynamics in entangled polymeric systems. Kink dynamics results under 

different assumptions are found and compared. Specifically, we show how the stress data under 

affine motion assumption diverges from those under local force balance. Tracking the interchain 

forces at entanglement points, we find the maximum entanglement force in the system and 

evolution of tension along the polymer chain’s contour length in an entangled system. However, 

to apply the kink dynamics to real systems, such as the polystyrene samples shown in Figures 2.1-

2.3, input data about the chains’ configuration and statistics are required. To find the input 

parameters for our kink dynamics technique, we need a smaller scale simulation method to find 

the conformation evolution of an entangled system from equilibrium to the kinked state. 
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Development of such a method is explained in chapter 3. We explain that for the high molecular 

weight chains, the presence of a significant number of kinks results in a gradual increase in the 

stress at long times, which is consistent with the experiments of Huang et al. [157]. For shorter 

chains, this unraveling effect becomes less important, since by the time the short chain achieves 

the locally fully stretched state, there exists only a few remaining kinks, which quickly unravel. 

This may explain the better performance of tube models in predicting the transient extensional 

viscosity of lower molecular weight chains. Our findings provide a new and entirely different 

picture of late-stage stress evolution of entangled polymeric systems, which can guide future 

improvements in the tube model. 

 

Table 2.1. Parameters used in the tube models, reported by Huang et al. [157]. 

𝑀¥(M	gr/mol) 𝜙	(wt%) 𝐺¢B	(Pa) 𝜆�£� 𝑍 𝜏�(s) 𝜏�(s) 𝜏�(s) 𝜖̇(s01) 𝑊𝑖� 

0.9 33 27300 8.2 22.5 0.32 162 5844 
0.04 6.48 

0.07 11.34 

1.76 18 6850 11.1 22.8 0.66 344 12615 
0.03 10.32 

0.06 20.64 

3.28 13 2790 13 22.2 1.51 744 26373 
0.01 7.44 

0.006 4.464 
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Figure 2.1. Comparison of experimental data [50,157] (o) for 33 wt.% 0.9M polystyrene (PS), with predictions (solid lines) of 
DEMG (main figure) and MLD (inset) models in uniaxial extension at strain rates 𝜖̇ = 0.04𝑠01	[𝑊𝑖5 = 6.48] (blue), and 
0.07𝑠01	[𝑊𝑖5 = 11.34] (red). 

 

Figure 2.2. The same as Figure 2.1, for 18 wt.% 1.76M PS, at strain rates 𝜖̇ = 0.03𝑠01	[𝑊𝑖5 = 10.32] (blue), and 0.06𝑠01	[𝑊𝑖5 =
20.64] (red).  
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Figure 2.3. The same as Figure 2.1, for 13 wt.% 3.28M PS, at strain rates 𝜖̇ = 0.006𝑠01	[𝑊𝑖5 = 4.46] (blue), and 0.01𝑠01	 
[𝑊𝑖5 = 7.44] (red). 

 

2.3 Entangled Kink Dynamics (EKD) Model 

 

The concept of kink dynamics in dilute solutions was first introduced in 1990 by Larson 

[158] and independently by Hinch [159]. Based on simulation studies of Rallison and Hinch [160], 

they suggested that an isolated, dilute, chain forms a folded state at large strain rates in which the 

chain consists of locally fully stretched and aligned chain segments connected by “kinks” or back-

folds, and it takes several Hencky strains (𝜖 = 𝜖̇𝑡) for the chain to completely unravel in uniaxial 

extension. This prediction was confirmed by subsequent experimental studies of dilute DNA 

solutions [161,162]. Recent simulation studies of well entangled polymers have established that 

these folded, or “kinked,” states also form in entangled polymers at high extensional strains 

[46,53,163–166].  In fast extensional flows, in the kinked state, the magnitudes of the drag force 
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and chain tension greatly exceed the Brownian force. Thus, one can neglect the effect of Brownian 

motion and assume that unraveling from a kinked to a fully unraveled state is driven by the balance 

of drag and tension. 

Whether entangled or not, these kinks or fold points act like pulleys over which the chain 

travels, as the kinks are convected relative to each other.  The chain thereby unravels by passing 

its chain ends through terminal kinks, and by the joining together and mutual annihilation of two 

kinks that meet each other. At high strains and strain rates the Brownian force becomes negligible 

compared to tension and drag, and the polymer chain collapses within a strain of around 𝜖 = 𝜖b 

Hencky units into a nearly one-dimension conformation (𝑅¾¿ ≫ 𝑅¾À, 𝑅¾Á) and polymer strands 

between kinks become strongly aligned along the x, or extension, direction, Figure 2.4.  

Numbering the kinks sequentially along the chain from 1 to 𝑁ÂÃÄÅ� (with chain ends taken to be 

“kinks”), we let 𝑥I be the 𝑥	 coordinate of kink 𝑖, (1 < 𝑖 < 𝑁ÂÃÄÅ�), where the x direction is the 

stretching direction of the extensional flow. Balancing drag and tension forces on a small segment 

with a length 𝑑𝜉 that lies between positions 𝑥 = 𝜉 and 𝑥 = 𝜉 + 𝑑𝜉, Larson derived the governing 

equation for the tension at position 𝑥 of a chain in its folded state as [158]: 

 𝑓((𝑥) = −
1
2 𝜁

P𝜖̇(𝑥% − 𝑥I01% ) + 𝜁P𝑉I(𝑥 − 𝑥I01) + 𝑓I01 (2.10) 

Here 𝜖̇ is the extension rate, 𝜁P is the friction coefficient per unit length of the chain and 𝑉I is the 

velocity of strand (𝑖) which connects kinks (𝑖) and (𝑖 − 1), and 𝑓I01 is the force at kink (𝑖 − 1). To 

obtain the set of kink forces 𝑓I at the kink positions 𝑥I, we set 𝑥	 = 𝑥I , and 𝑓((𝑥) equal to 𝑓(𝑥I) 

in the above equation. Then, we combine this equation with a similar result relating 𝑓(𝑥IY1) to 

𝑓(𝑥I). Finally, the two equations are added to give (Δ𝑥I = 𝑥I − 𝑥I01) [46]: 
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­
1

𝛥𝑥IY1
¯ 𝑓IY1 + ­

1
𝛥𝑥I

−
1

𝛥𝑥IY1
¯ 𝑓I − ­

1
𝛥𝑥I

¯ 𝑓I01 = −
1
2 𝜁

P𝜖̇(𝑥IY1 + 2𝑥I + 𝑥I01) + 2𝜁P𝑈I (2.11) 

 

 

Figure 2.4. Schematic of the kinked state of a linear chain. Note that the y-dimension is exaggerated for clarity while the polymer 
chain is considered as a one-dimensional object. Kinks are shown by black circles and are connected by fully stretched strands. 

 

Where 𝑈I is the velocity of kink (𝑖) and is equal to 𝑈I = (𝑉I + 𝑉IY1)/2 due to conservation of the 

overall length of the chain. To solve the equation set (2), we need to know either the forces or 

velocities of the kinks. For a dilute solution, due to the absence of any neighboring chains 

entangling with our chain of interest, the forces at the kinks go to zero (𝑓I = 0, 1 < 𝑖 < 𝑁ÂÃÄÅ() 

and the evolution of the system can be found by integrating the kink velocities to obtain the 

positions of the kinks as a function of time. For dilute, unentangled, solutions, since there are no 

opposing forces at the kinks, the tension approaches zero at fold points 𝑓I = 0, and Larson showed 

how in this case the unraveling process and stress evolution diverges from that of affine motion 

[158]. For the unentangled dilute chain, each strand between kinks has a quadratic tension 

distribution with zero tension at each fold point and maximum at the midpoint between two 
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adjacent kinks. In contrast, if the chain is fully entangled, and can be assumed to reside in a tube 

that deforms affinely, then the kinks or fold points in the tube move affinely, which implies 𝑈I =

𝜖̇𝑥I. Knowing the kinks’ velocities, we can find the evolution of the kink position as a function of 

time and calculate the stress. For the stress, we use the one-dimensional form of general Kirkwood-

Riseman formula [167]: 

 𝜎MM = 𝜈 〈 Ë ÌÍ 𝑓((𝑥)𝑑𝑥
MÎ

MÎÏÐ
Ì

³ÑÎÒÓÔ

IÕ1

〉 (2.12) 

Where 𝜈 is the number of molecules per unit volume and 〈	. 〉 stands for the ensemble average. A 

summary of the equations of motion under dilute and affine-deformation assumptions are given in 

Table 2.2. 

Table 2.2. Evolution equations for vector x of kink positions under dilute and affine assumptions 

  Position Evolution Matrix 𝑨: 𝑑𝒙/𝑑𝑡 = 𝑨. 𝒙 Stress: 𝜎MM 

Dilute 
1
4 𝜖̇

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 2 0 0 0 . . . . . .
1 2 1 0 0 . . . . . .
0 1 2 1 0 . . . . . .
. . . . . . . . . . .
. . . . . . 0 1 2 1 0
. . . . . . 0 0 1 2 1
. . . . . . 0 0 0 2 2⎦

⎥
⎥
⎥
⎥
⎥
⎤

 1
12 𝜈𝜁

P𝜖̇ 〈 Ë |𝑥I − 𝑥I01|�
³ßàáâã

IÕ1

〉 

Affine 𝜖̇𝑰 

𝜈 〈 Ë Ì−
1
6 𝜁

P𝜖̇(𝑥I − 𝑥I01)%(𝑥I + 2𝑥I01)
³ßàáâã

IÕ1

+ 𝜁P𝑉I
(𝑥I − 𝑥I01	)%

2 												

+ 𝑓I01(𝑥I − 𝑥I01)Ì〉 

 

For affine motion, the forces 𝑓I at the kinks are found by solving the following system of 

linear equations, derived by explicitly writing Equation (2.11) for all the kinks on a chain (except 

for first and last kink, which, being chain ends, are free kinks): 
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Where 𝑨′ is given as: 
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 (2.14) 

 

The affine motion of the kinks implies that the chain tension does not go to zero, but 

accumulates around the entangled, affinely moving, kinks. Hence, starting from the ends of the 

chain where the tension is zero (𝑓1 = 𝑓¢âàáâã = 0), the tension accumulates monotonically around 

the folds to a maximum at the center of the entire chain, just as it would if the chain were already 

fully extended. The stress therefore reaches its plateau value as soon as the locally fully stretched 

state is reached and remains unchanged even as the chain unravels from locally fully stretched to 

the globally fully extended state. The accumulation of tension from the chain ends to the chain 

center implies that kinks near the chain center retain a very large tension which must be supported 

by the surrounding entangled matrix chains. In the tube theory, affine motion is a consequence of 

the mean-field nature of the tube as a representative of the confining effect of a large number of 

surrounding chains, large enough to represent the deformation of the continuum. Rubinstein and 

Panyukov, however, argued that the mesh of entanglements deforms nonaffinely [149,150]. If 
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entanglements are approximated as binary interactions between pairs of chains, then the tension 

on an entangled fold on one chain must be supported by a second chain with which it is locally 

entangled. If chains entangle randomly along their length, then the kink near the center of one 

chain is unlikely to have an entanglement partner whose entanglement with the first chain is also 

at its center, with a tension there that is high enough to balance the tension on the first chain. Thus, 

the entangled kink on the partner chain will likely give way, and be pulled nonaffinely by the first 

chain, which can exert a greater tension than can the partner chain. So, if the entanglements are 

pairwise interactions of chains, and the forces at the kinks of the two chains balance, we must 

abandon the affinely deforming tube, and instead solve the coupled force equations for a multiple-

chain system where chains are pairwise randomly entangled. This concept is closely related to a 

local force balance criterion introduced into three dimensional primitive chain network (PCN) 

simulations of Masubuchi et al. [168] and have yielded good predictions in both linear and 

nonlinear (shear and extensional flows) regimes [62], over the limited range of chain lengths, strain 

rates, and strains to which it has been applied. 

Here, we generate one dimensional random-walk chains with 𝑝 steps by generating 𝑝 

random numbers from a truncated Gaussian distribution with small standard deviation and an 

average segment length 𝐿£çè( . The steps are made nearly, but not exactly, the same length, so that 

chain configurations are smoothly distributed, which is important in our subsequent simulations. 

The direction (positive or negative) of a step from point 𝑃I to 𝑃IY1 , with 𝑖	 = 	1,2, … 𝑝, is decided 

randomly. A kink on a single chain is formed at point 𝑖 when positions of neighboring points 

satisfy (𝑥I − 𝑥I01)(𝑥I − 𝑥IY1) > 0.  
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Figure 2.5. Schematic of EKD simulations. Dashed lines mark the periodic boundaries of the box; periodic images of chains I and 
IV are shown at box boundaries. Entangled kinks are determined by proximity of kinks of opposite polarity on a pair of different 
chains. Note that chains are one-dimensional objects and the Y-direction above is arbitrarily expanded for clarity. 

 

Finally, we re-scale the strand lengths between kinks uniformly to achieve an overall chain 

length with exactly the desired value, 𝑝𝐿£çè(  (𝑝 steps of unit size, 𝐿£çè( = 1, would result in a chain 

of length 𝐿 = 	𝑝 with approximately 𝐿/2	 kinks).  Use of a narrow distribution of step sizes, as 

mentioned above, ensures that the scaling factor will not be very large or too small, usually 

fluctuating between 0.9 and 1.1. Note that the number of kinks, 𝑁ÅÃÄÅ� is always less than the 

number of steps 𝑝. After determining a set of initial chain conformations for the desired number 

of chains, 𝑁êë£ÃÄ� (typically 50 < 𝑁êë£ÃÄ� < 100), a one-dimensional simulation domain is created 

with length 𝐿yrM, and 𝑁êë£ÃÄ� points are uniformly distributed in the box, specifying the centers of 

mass of the chains generated in the previous step. After locating the chains within the one-

dimensional domain, we determine entanglement points. Two kinks from two chains are 

considered entangled if (1) they have opposite polarity in the x-direction (the extensional axis) and 

(2) they are closer than a certain distance 𝛿q, Figure 2.5. The force equations of the two kinks that 
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are entangled are coupled. Coupling is done by requiring the force and velocity values of the shared 

kink between two chains should be the same. A sample of the coupling between two chains is 

shown in Figure 2.6. 

 
Figure 2.6. Schematic of an entangled kink between two chains in EKD model. The Y-direction above is arbitrarily expanded for 
clarity. Figure is adapted from [46]. 

  

Where for the shared kink, we have: 

 í¶
1
𝛥𝑥f�

· 𝑓f� + ¶
1
𝛥𝑥p�

−
1
𝛥𝑥f�
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 í¶
1
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· 𝑓~�� + ¶
1
𝛥𝑥f��

−
1
𝛥𝑥~��

· 𝑓f�� − ¶
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𝛥𝑥f��

· 𝑓p��î − 2𝜁P𝑈f�� = −
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2 𝜁

P𝜖̇ï𝑥~�� + 2𝑥f�� + 𝑥p��ð (2.16) 

 𝑈p� = 𝑈f�� (2.17) 

 𝑓p� = 𝑓f�� (2.18) 

Here the subscript stands for the kink number and superscript for the chain index. The 

above four equations are used to solve for the four unknowns, 𝑈p�, 𝑈f��, 𝑓p� and 𝑓f��.  These four 

equations are coupled to equations for other kinks through the forces 𝑓�� and 𝑓~�� that also appear 

in Equations (2.15) – (2.18). Therefore, we have a system of 4 × 𝑁@� equations where 𝑁@� is the 
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number of entanglement points in the simulation box; each entanglement point is shared between 

two entangled kinks on different chains coupled at the entanglement point (𝑁@A = 2𝑁@�, 𝑁@A 

being the total number of entangled kinks in the box). The pre-factor of 4 in (4 × 𝑁@�) comes from 

the four equations we need to solve for each entanglement point, Equations (2.15) – (2.18). 

To obtain a statistically uniform distribution of entanglement points in the system, we apply 

periodic boundary conditions across the periodic boundary 𝑥yrM = −𝐿yrM/2 and 𝑥yrM = 𝐿yrM/2 

so that chains passing these limits are allowed to entangle with chains on the other side of the box, 

Figure 2.5. Note that without the PBC, all the kinks at the boundaries would be free. If a chain 

crosses the periodic boundary, its image is created on the other side of the box and the kinks of the 

image chain will be entangled with other chains, based on the polarity and adjacency criteria 

explained earlier. Special care needs to be taken in imposing velocities on mirror-image chains. In 

our system of equations, the velocity of a kink on a chain (𝑈Ir) and that on its mirror image (𝑈IK) 

are related by: 

 𝑈IK = 𝑈Ir + 𝜖̇𝐿yrM (2.19) 

Here superscript (𝑚) stands for “mirror” and (𝑜) for “original”. The difference between center of 

masses of the original and mirror-image chains is equal to the simulation box length (𝐿yrM). 

Constraint-release by loss of an entangling chain is implemented self-consistently, as follows. 

Firstly, when one of the chain ends passes through an entangled kink, the end kink on that chain 

disappears and the corresponding entanglement condition on the partner chain is removed, so that 

the kink on the partner chain becomes a free, or unentangled, kink. Secondly, as a strand on a chain 

shrinks and the two kinks on the same chain on either end of that strand meet, whether the kinks 

are entangled or free, they disappear.  If one of the disappearing kinks is entangled with a partner 

chain, the coupled force condition on the paired kink of the neighboring chain is dropped and it 
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becomes a free kink with zero tension. We do not consider re-entanglement of chains; however, 

we will show that re-entanglement is unlikely to have much effect on the results.  

2.4 Results and Discussions 

To explore the behavior of this model, we choose units such that 𝜁P = 𝜖̇ = 𝜈 = 1 and 

consider initial entanglement fractions 𝜌@AB = 80%, defined as the total number of entangled kinks 

divided by the total number of kinks. These values can be achieved by adjusting 𝛿q and 𝐿yrM to 

obtain a certain entanglement density. Chain lengths of 𝐿 = 25, 50 and 100 are considered. In our 

figures, 𝜖 is the total strain, starting from the equilibrium rest state, while 𝜖̃ is the strain starting 

from the kinked state. The strain at which kinked state is first achieved is given by 𝜖b, which we 

call the transition strain, and then 𝜖̃ = 𝜖 − 𝜖b. In chapter 3, we find that for fast flows 𝜖b ≈ 3. 

Figure 2.7 shows the end-to-end distance and stress evolution of the chains under different 

entanglement conditions.  

 

 

Figure 2.7. Evolution of end-to-end distance (left) and stress (right) for different chain lengths 𝐿 = 25 (blue), 𝐿 = 50(orange) and 
𝐿 = 100 (yellow) at asymptotically high strain rates, 𝑊𝑖5 ≫ 1. For each length, ensemble averaged behavior under the following 
three conditions are shown: 1. no entangled kinks (solid lines), 2.  Entangled Kink Dynamics with 80% initial entanglement density 
(dotted lines), and 3. affine motion of kinks (dashed lines). For all results here, 𝜁P = 𝜖̇ = 𝜈 = 1. 
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As expected, at asymptotically high strain rates, under the affine motion assumption, while 

the end-to-end distance evolves with time, the stress immediately (after formation of the locally 

fully extended kinked state at strain 𝜖b) reaches at its final plateau value of 𝜎MM
u = 𝜈𝜁P𝜖̇𝐿�/12, 

which either an unentangled or an entangled chain eventually attains. For both dilute chains, with 

0% entangled kinks, and the entangled chains with 80% initially entangled kinks, the chain end-

to-end distance 𝑅÷÷ evolves almost identically for each chain length. The stress rise also converges 

rather quickly to the same response in both cases although the starting points have almost a decade 

difference in stress, which is attributed to the forces generated at entanglement points in the 

entangled system. Figure 2.7 clearly shows the much more sluggish rise of 𝑅÷÷ when affine motion 

of the kinks is assumed, compared to that for the dilute and entangled chains, and this difference 

grows as the chain length increases. When affine kink motion is imposed, all kinks move away 

from each other (𝑈I = 𝜖̇𝑥I) initially, and a kink can only be destroyed when a chain end passes 

through it.  This slows the growth of 𝑅÷÷ relative to that for dilute and entangled kinks, which can 

annihilate each other, allowing faster unraveling of internal conformations and faster growth of 

𝑅÷÷ for chains obeying kink dynamics rather than dynamics dictated by an affinely deforming 

tube.  

To check how the forces in the mutually entangled kink method diverge from those in the 

affine motion assumption, we plot the maximum force generated at an entangled kink (𝑓ÅÃÄÅ�£�) under 

affine and EKD assumptions. This calculation gives us the maximum entanglement force that is 

generated by the drag on the two entangling kinked chains in the kinked state. As we will discuss 

in the next chapter, this maximum force at an entanglement is required for the slip-spring 

simulations as well. To calculate the average maximum entanglement force, for each chain in our 

ensemble at a given strain, we first find the maximum force at any kink on that chain. Then, we 
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average this maximum force over all chains in the ensemble and call this the average maximum 

kink force 𝑓ÅÃÄÅ�£�. Figure 2.8 shows the evolution of 𝑓ÅÃÄÅ�£� when the chains deform affinely (solid 

lines) and using the EKD technique (dashed lines) for three chain lengths, 𝐿 = 25, 50 and 100. 

For affine-motion simulations, we solve the system of equations (2.13) at each strain (𝜖̃) and find 

the maximum of the kink forces, 𝑓I’s, for each chain. In EKD simulations, the system of equations 

(2.15) – (2.18) is solved for all entangled kinks and the maximum value of the 𝑓I’s for each chain 

is found. For both affine-motion and EKD simulations, we averaged these maximum values over 

multiple chains (𝑁êë£ÃÄ� = 100).  

 
Figure 2.8. Evolution of the ensemble-averaged maximum kink force (𝑓HIJHKLM) for different chain lengths 𝐿 = 25 (blue), 𝐿 = 50 
(orange) and 𝐿 = 100 (green) at asymptotically high strain rates. For each length, the ensemble averaged force is shown for both 
affine motion of kinks (solid lines) and EKD simulations with 𝜌@AB = 0.8 (dashed lines).  The horizontal dotted lines give the 
maximum possible force, 𝑓NON   at an entangled kink for each chain length, obtained from Eq. (2.20) as discussed in the text. The 
units of the force are set by the parameter values 𝜁P = 𝜖̇ = 1;  i.e., the dimensional force is obtained by multiplying the plotted 
force by 𝜁P𝜖̇ times the square of the unit of length.  

 

Taking an entanglement as a pairwise interaction between two chains, the maximum 

possible force at an entangled kink between two chains is achieved when the two chains are 
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symmetrically entangled at the center of each chain; see Figure 2.9. We call this the “Center 

Hooked Conformation” (CHC). Solving the system of equations (2.15) – (2.18) for the center 

hooked conformation, the force at the entangled kink in the middle, which is the maximum possible 

force, is found to be:  

 𝑓NON =
1
8 𝜁

P𝜖̇𝐿%				 (2.20) 

Values of 𝑓øùø for three chain lengths are plotted as dotted horizontal lines in Figure 2.8. 

Figure 2.8 reveals that for affine deformation, 𝑓£úúÃÄ��£M  initially takes this highest achievable value, 

𝑓øùø, which is at the center of the chain with force away from the center distributed along the 

quadratic curve shown by black line in Figure 2.10. Tube models predict that as tube segments 

stretch, the tension along the entire chain quickly saturates in a parabolic function with zero tension 

at the ends and maximum at the center [35], regardless of the number of folds remaining in the 

chain. As the chain unravels under affine motion, kinks near the chain center move away from 

each other and the strand length between them increases. With fewer kinks and fewer forces, the 

maximum of these is less likely to be near the peak of the black curve and more likely to be off to 

the side, and lower in value, producing the decrease in maximum force 𝑓£úúÃÄ��£�  shown by the solid 

lines in Figure 2.8.   

On the other hand, for the same chain length, with 80% initial entangled kinks in an EKD 

simulation, the evolution of the maximum kink force is drastically different as shown in Figure 2.8 

by the dashed lines. First, the peak occurs at a finite strain (~1 − 2 Hencky strains) rather than 

instantly after startup of the simulation and also the peak tension is much smaller than for affine 

motion.  In EKD simulations, the tension distribution along the whole chain (not just at the kinks) 

is initially nearly uniform, except at the chain ends, and then eventually evolves into a quadratic 
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dependence, which takes almost 6 Hencky strain units to occur for the chain length considered. 

Our flat tension profile at strains high enough to form the folded state, but not high enough to 

unravel the chains (corresponding to 𝜖̃ = 0), qualitatively matches the tension profile from recent 

molecular dynamics simulation results for entangled Kremer-Grest chains by Hsu and Kremer 

[53]. (The tension profile in the Hsu and Kremer work changes sign at every kink, because of the 

definition of tension used.) The tension distribution of a dilute chain, also plotted in Figure 2.10, 

is initially lower than that of the entangled chain, but merges with it at 𝜖̃ = 4. This is because no 

re-entanglement is implemented, so that after annihilation of entangled kinks due to unraveling, 

the entangled chain becomes dilute and loses all its entanglements by  𝜖̃~4.  

 
Figure 2.9. The “center-hooked” configuration between two chains entangled at the center of each chain. The Y-direction is 
arbitrarily expanded for clarity. 
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Figure 2.10. Evolution of tension distribution (𝑓((𝑥)) along an 𝐿 = 25 chain under affine motion, and for dilute and entangled 
chains, the latter simulated by the EKD method and averaged over an ensemble of 150 chains. The arrow at the peak of black curve 
shows the maximum tension value a chain of length 𝐿 = 25 will achieve when fully unraveled for a dilute and an EKD chain, 
which is attained immediately in the kinked state under affine motion of kinks. The peak value of this maximum tension is given 
by equation (2.20). 

 

We observe in Figure 2.8 that the peak value of 𝑓÷Âû�£� in the EKD simulations for each 

chain length is much smaller than the initial value obtained in affine motion, by roughly a factor 

of four. Thus,   

 𝑓@Ad
KLM,u^LH ≅ 0.25	𝑓LmmIJ^

KLM,@	ýþÕB ≅ 0.25	𝑓NON =
1
32 𝜁

P𝜖̇𝐿% (2.21) 

Finally, we check the influence of our initial ensemble of conformations. To do so, we 

simulate an ensemble of unentangled chains with 𝐿 = 50, and, as the chains unravel, at a strain 

𝜖q̃^ = 0, 1, or 2, we entangle the chains with entanglement percent of 𝜌@AB = 50% and resume the 

elongation from that strain (𝜖q̃^).  The evolution of 𝑅@@ and 𝜎MM for dilute chains (yellow line) and 

the chains entangled as described above, are shown in Figure 2.11. Points at which the chains are 
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entangled are shown with circles corresponding to 𝜖q̃^ = 0 (red), 1 (blue) and 2 (green). We 

observe that our results are not very sensitive to the method of generating the initial ensemble of 

conformations, as long as the chain length is held constant. It can also be seen that stress and end-

to-end evolution curves are not very sensitive to this imposed entangling process; those entangled 

at different strains (𝜖q̃^), quickly converge to those of dilute chains. As mentioned before no re-

entanglement is implemented in our method, but these results show that re-entanglement, should 

it occur in real polymers, should have only a small effect on the evolution of stress and of end-to-

end length at high strains of strong flows. 

 

 

Figure 2.11. Evolution of stress (main figure) and end-to-end distance (inset) for dilute chains with 𝐿 = 50 (Thick yellow line) 
compared with EKD simulations with 50% entanglements imposed at strains of 0 (thin red line), 1 (dotted blue line) and 2 (dashed 
green line). 
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The next step is to apply the kink dynamics analysis to experimental polymer solutions, 

e.g. the polystyrene samples of Hunag et al. [157] shown in Figures 2.1 - 2.3. To do so, the 

following questions need to be answered: 

1. What is the transition strain (𝜖b) beyond which the EKD results become valid? 

2. What is the number of kinks for a chain of arbitrary chain length at the transition strain? 

3. What is the ratio of the number of entangled to free kinks in an entangled sample? 

4. What is the distribution of strand lengths between the kinks? 

To answer above questions, we need a simulation technique that can track the evolution of 

the chain conformation from equilibrium at least to the kinked state. For this purpose, we perform 

Brownian dynamics simulations of entangled chains using the single-chain slip-link model of 

Likhtman [70]. In this model, entanglement forces on a chain are captured by slip springs that are 

anchored to the continuum. The anchor points are held fixed in position for simulations of linear 

viscoelasticity and move affinely in the case of imposed flow. This model has been shown to 

predict well the linear rheology and stresses in shear flow of entangled polymers [61,72,143], 

where the forces generated by entangled chains are small or modest. However, as emphasized 

above, in uniaxial extensional flow, the tension in the chain can become large enough to cause 

large deviations from affine motion of entanglement points. Thus, after introducing the slip-spring 

model, we will address this limitation of the original slip-spring model, by either pairing slip 

springs on one chain with those on another, to allow non-affine motion of the anchor point based 

on a simple force re-distribution condition, or by simply imposing a maximum-force constraint on 

the slip spring. We will show that both methods, though rather ad hoc, give similar results up to 

the transition to the kinked state, and fix the severe problems that the model otherwise encounters 

in extensional flow. 
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Chapter 3 : Slip-Spring Simulations of Entangled Linear Polymers Under Strong 
Extensional Flows 

 

3.1 Abstract 

 
We combine a slip-spring model with an “entangled kink dynamics” (EKD) model for 

strong uniaxial extensional flows (with Rouse Weissenberg number 𝑊𝑖� ≫ 1) of long (𝑀g >

1	Mkg/mol for polystyrene) entangled polymers in solutions and melts. The slip-spring model 

captures the dynamics up to the formation of a “kinked” or folded state, while the kink dynamics 

simulation tracks the dynamics from that point forward to complete extension. We show that a 

single-chain slip-spring model using affine motion of the slip-spring anchor points produces 

unrealistically high tension near the center of the chain once the Hencky strain exceeds around 

unity or so, exceeding the maximum tension that a chain entangled with a second chain is able to 

support. This unrealistic tension is alleviated by pairing the slip links on one chain with those on 

a second chain, and allowing some of the large tension on one of the two to be transferred to the 

second chain, producing non-affine motion of each. This explicit pairing of entanglements mimics 

the entanglement pairing also used in the EKD model, and allows the slip spring simulations to be 

carried out to strains high enough for the EKD model to become valid. We show that results nearly 

equivalent to those from paired chains are obtained in a single-chain slip-spring simulation by 

simply specifying that  the tension in a slip spring cannot exceed the theoretical maximum value 

of 𝜁P𝜖̇𝐿%/8 where 𝜁P, 𝜖̇ and 𝐿 are the friction per unit length, strain rate and contour length of the 

chain, respectively. The effects of Constraint-Release (CR) and regeneration of entanglements is 
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also studied, and found to have little effect on the chain statistics up to the formation of the kinked 

state. The resulting hybrid model provides a fast, simple, simulation method to study the response 

of high molecular weight (𝑀g > 1	Mkg/mol) polymers in fast flows (𝑊𝑖� ≫ 1), where 

conventional simulation techniques are less applicable due to computational cost.   

3.2 Introduction 

Kink dynamics simulations are only valid after the chain has reached a folded one-

dimensional conformation with strands between folds almost fully extended. Larson used an 

approximation to determine the mean distance between two folds, Δ𝑥 = 𝑏H(𝑁H%/2𝜋%𝜏5𝜖̇)1/� and 

average number of kinks 𝑁ÅÃÄÅ� = 𝐿/Δ𝑥 = (2𝜋%𝑁H𝜏5𝜖̇)1/�at the folded state for dilute solutions, 

where 𝑁H and 𝑏H are the total number of Kuhn steps and Kuhn step length in a polymer chain, 

respectively [158]. Here, going beyond a simple scaling analysis, we perform Brownian dynamics 

(BD) simulations of an entangled polymer using a single chain model developed by Likhtman [70]. 

As discussed in the introduction chapter, single chain techniques are developed to reduce the high 

computational demand of the multiple-chain methods. For single chain models of entangled 

polymer systems, effect of the entanglement network is replaced by slip-links [30] [66–68], which 

confine the motion of the chain. To add the force interactions between neighboring chains, slip-

spring models have been developed where some virtual springs are placed along the polymer 

backbone and not only confine the motion of the chain, but also they exerts force on the chain 

[69,70]. Although the single chain simulations lack the detailed dynamics of multiple-chain 

techniques, their considerably good performance in predicting the linear viscoelastic and nonlinear 

shearing flow data of entangled melts and solutions [61,70–75], has made them well received 

models in the literature.  
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3.3 Slip-Spring Simulation Method 

 
In the single chain slip-link model, a freely-jointed chain, with 𝑁( springs between 𝑁( + 1 

beads, is generated in three dimensions. Each spring in the chain represents 𝑁H,( Kuhn segments 

with Kuhn length 𝑏H resulting in a total of 𝑁H = 𝑁H,(𝑁(	Kuhn steps and a contour length of 𝐿 =

𝑁H,(𝑏H for the chain. Each bead is a center of friction with a friction coefficient 𝜁y. Slip-springs 

add potentials generated at random positions around the polymer chain. Each slip-spring is 

extended between 𝑎⃗U (its anchoring point)  and 𝑠U (location of slip-link) as shown in Figure 3.1 

[70]. There are 𝑁H,(( Kuhn steps in each slip-spring with the same Kuhn length 𝑏H as in the main 

chain, so that the maximum length of a slip-spring is 𝐿((�£� = 𝑁H,((𝑏H. The initial number of slip-

springs (𝑍B) is determined by the number of beads between slip-springs (𝑁^), so that 𝑍B = 𝑁(/𝑁^. 

To find the location (𝑠U) of a slip-link 𝑗 (where j  runs from 1 to the total number of slip links 𝑍 ) 

on the chain, Likhtman used a continuous dummy variable (𝑥U), which can take any real value 

between 0 and 𝑁(, so that 0 < 𝑥U < 𝑁(. The dummy variable determines the relative position of 

the slip-link on a main chain spring with respect to the neighboring beads connected by that spring.  
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Figure 3.1. Schematic of Slip-Spring simulation in an extensional flow. Position vector of a bead (𝑟I), anchoring point of a slip-
spring (𝑎U), position of a slip-link on the chain (𝑠U) and a dummy variable (𝑥U) of a slip-spring along a chain are shown on the left. 
On the right, a uniaxial extensional flow is applied to this single-chain model of an entangled polymer, where each slip-spring 
anchoring point (red squares) moves affinely with the flow until the force generated in the virtual spring (red) reaches a maximum 
value.  

 

We use the Cohen-Pade spring law for both main springs and slip-springs. Each bead’s 

position changes under the influence of the drag force (𝜁(�𝒓𝒊
�¨
− 	𝜿. 𝒓I)), the spring force (𝑭I(), the 

Brownian motion (𝑭I5) and the slip-spring force (𝑭U((). The position of the slip-link (𝑗 = 1…𝑍(() 

on the chain (𝒔U) is defined by a one-dimensional continuous dummy variable 𝑥U (𝑥U = 0…𝑁() 

which evolves under the action of the slip-spring (𝑭U(() and Brownian (𝑭U
5,(() forces. The stochastic 

equations of motions for the chain and the slip-link positions along the chain are given below, 

taken from Likhtman. (In the following equations, ⌊𝑥⌋ returns the greatest integer less than or equal 

to the continuous variable 𝑥.) 

 𝜁
𝑑𝒓𝒊
𝑑𝑡 = 𝜁	𝜿. 𝒓I + [𝑭IY1( − 𝑭I(] + 𝑭I5 + Ë .1 − ï𝑥U − /𝑥U0ð1𝑭U((

U:/M20ÕI

+ Ë ï𝑥U − /𝑥U0ð𝑭U((

U:/M20ÕI01

 (3.1) 

 𝜁(
𝑑𝑥I
𝑑𝑡 = 𝜁𝑭U(( .𝒓/M20Y1 − 𝒓/M201+ 𝑭U

5,((			 (3.2) 

 𝒔Uï𝑥Uð = 𝒓/M20 + ï𝑥U − /𝑥U0ð .𝒓/M20Y1 − 𝒓/M201 (3.3) 
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 𝜿 = 3
𝜖̇ 0 0
0 −𝜖̇/2 0
0 0 −𝜖̇/2

4 → 	Transpose of velocity gradient tensor (3.4) 

 𝑭I( =
𝑘c𝑇
𝑏H%𝑁H,(

⎣
⎢
⎢
⎢
⎡3 − ­ |𝒓I|

𝑁H,(𝑏H
¯
%

1 − ­ |𝒓I|
𝑁H,(𝑏H

¯
%

⎦
⎥
⎥
⎥
⎤
𝒓I → 	Spring force for main chain (3.5) 

 𝑭I5 = 66𝑘c𝑇𝜁
𝑑𝑡 𝒏 → 	Random force for beads on main chain (3.6) 

 𝑭U(( =
𝑘c𝑇
𝑏H%𝑁H,((

⎣
⎢
⎢
⎢
⎡3 − ¶

8𝒂U − 𝒔U8
𝑁H,((𝑏H

·
%

1 − ¶
8𝒂U − 𝒔U8
𝑁H,((𝑏H

·
%

⎦
⎥
⎥
⎥
⎤

ï𝒂U − 𝒔Uð → Spring force for slip-spring (3.7) 

 𝑭U
5,(( = 62𝑘c𝑇𝜁(

𝑑𝑡 𝒏 → 	Random force for slip-link on the chain (3.8) 

 

Simulations are performed in a dimensionless form by reducing the dimensions of force, 

time and length by 𝑘c𝑇/𝑏H, 𝜁y𝑏H%/𝑘c𝑇 and 𝑏H respectively, which differs from the dimensionless 

variables used in the kink dynamics simulations. An explicit Eulerian forward time stepping is 

used to integrate the equations. The Rouse time of the coarse-grained chain is given by: 

 𝜏5 =
𝜁y(𝑁( + 1)%𝑁H,(𝑏H%

6𝜋%𝑘c𝑇
⇒ 𝜏5∗ =

(𝑁( + 1)%𝑁H,(
6𝜋% ⇒𝑊𝑖5 = 𝜖̇∗𝜏5∗  (3.9) 

Where the superscript (∗) denotes the dimensionless value and 𝑊𝑖� is the Rouse-Weissenberg 

number of the chain. In the following, we report dimensionless values of the simulation parameters 

without the (∗) for simplicity. Simulation inputs are given in Table 3.1.  
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Table 3.1. Input parameters for slip-spring simulations 

Input 𝑁( 𝑁H,( 𝑁^ 𝑁H,(( 𝜁( 𝑊𝑖5 

Value 16, 32, 64, 128 5 4 2.5 0.1 2,4,8,16,32 
 

Here we use 𝑁^ = 4	 and 𝑁H,((/𝑁H,( = 0.5	 as suggested by Likhtman. However, our 

simulations differ from those of Likhtman in that we coarse grain a bit further and use 𝑁H,( = 5 

Kuhn steps for the springs on the main chain instead of 𝑁H,( = 1 used by Likhtman and coworkers 

[70,169]. Using a larger number of Kuhn steps for the springs of the main chain, in comparison to 

what Likhtman used, make the chain more flexible and acts as a diluting effect, since the number 

of Kuhn segments between two consecutive entanglements increases to 20 in our simulations 

compared to Likhtman’s 4 Kuhn segments. Therefore, the entangled chains in our slip-spring 

simulations are about 20% more dilute than a melt, which justifies the use of experimental data of 

entangled solutions, with concentration similar to this, to validate the model. Given 𝑁H,( = 5, we 

use 𝑁H,(( =  2.5 based on the given ratio 𝑁H,(( = 0.5𝑁H,( suggested by Likhtman [70] and 

Sukumaran and Likhtman [170]. With this coarse-graining relative to the original model, the 

number of Kuhn steps in each slip-spring is half that of the springs in the main chain for our coarse-

grained chain with 𝑁^ = 4. The use of this somewhat more coarse-grained version of the model 

allows us to reach longer chain lengths and avoid overly small time-steps in fast extensional flow.  

 
Before applying the extensional flow, all the chains in the ensemble are simulated in the 

absence of flow for a time 5𝜏�∗  to relax the chain from its initially generated random conformation 

and ensure that the chain has reached equilibrium. During the equilibrium process only, we keep 

the number of slip-springs on the chain constant, by generating a new slip-spring at a random 

position along the chain whenever a slip-spring is released from the chain end. Therefore, during 

relaxation, the number of slip-springs is fixed at 𝑍B. To perform these equilibration simulations, 
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the drag term on the right-hand side of Equation (3.1) [46] is simply set to zero. When the flow is 

applied, the anchoring points of the slip-springs (𝑎⃗U) move affinely with the flow and the 

connecting vectors of the slip-springs increase in length gradually. While slip links on the chain 

are lost as they are convected off the chain, neither destruction of slip links by any constraint-

release from the surrounding medium, nor regeneration of slip links are considered. Thus, the 

number of slip-springs on the chain (𝑍) starts from 𝑍B and decreases to zero as the chain gradually 

achieves its fully unraveled state. As the chain orients in the flow direction and its springs stretch 

out, due to the imposed drag and slip-spring forces, the chain evolves into a folded state and kinks 

are formed. Figure 3.2 shows a sample chain of 32 springs evolving from the equilibrium state to 

a fully unraveled chain at 𝑊𝑖� = 16. After the kinks appear in the chain at strains close to 2.5, 

some of the slip-links move towards the kinks and make an entangled kink. At this point the slip-

link cannot escape the kinked region until the kink disappears by chain unraveling. We call this 

situation “slip-link trapping,” since the slip-link is trapped between the three beads that form the 

fold, Figure 3.3, and cannot release itself unless the kink disappears or constraint release (which 

has not been implemented in this section) removes the trapped slip-link. As described below, 

trapping occurs because the flow affinely drives both the kink and the slip link in the same 

direction. Rewriting Equation (3.2) of in its numerically integrated form, the position 𝑥U of slip-

link (𝑗), evolves as follows: 

 𝑥U¨Y<¨ = 𝑥U¨ +
𝛥𝑡
𝜁(
	 ­𝐹⃗U,((. .𝑟⃗/M20Y1 − 𝑟/M201¯ + 𝛥𝑥c (3.10) 

Where 𝐹⃗U,(( shows the force in slip-spring (𝑗). As the magnitude of the force in the slip-spring 

(8𝐹⃗U,((8) increases, the second term on the right-hand-side of Equation (3.10) becomes dominant, 

and one can ignore the effect of Brownian motion Δ𝑥c. As shown in Figure 3.3, when trapping 
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occurs, the direction of the force 𝐹⃗U,(( stays constant, but as the slip-link travels between beads 𝑖 −

1, 𝑖 and 𝑖 + 1, when it passes bead i,  the sign of the position term (𝑟/M20Y1 − 𝑟⃗/M20) in Equation 

(3.10) reverses. Thus, if  𝑥U increases during one time-step, it will decrease in the next, so that the 

position of slip-link (𝑠U) jumps from its location on the spring whose vector is 𝑄=⃗ I = 𝑟I − 𝑟I01 (see 

Figure 3.3), to a location on 𝑄=⃗ IY1, and so on.  Therefore, one end of the slip-spring, 𝑠U, fluctuates 

in the kinked region, while the other end, 𝑎⃗U, moves affinely with the flow, independent of the 

chain conformation.  
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Figure 3.2. Evolution of a sample chain with 𝑁( = 32 (𝑍B = 8) at 𝑊𝑖5 = 16, at Hencky strains of (a) 𝜖 = 0, (b) 𝜖 = 1.7, (c) 𝜖 =
3.4 and (d) 𝜖 = 5.1. Notice the x scale, but not the y scale, is increased in range at large strains. Main chain beads and springs are 
shown with black circles and lines, respectively, while slip-springs are shown in red, extending from their anchoring points marked 
with solid red circles to their positions on the chain, marked with open red circles. A maximum slip-spring force is used, and 
regeneration of slip-springs is turned off. 
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Figure 3.3. Trapping of slip-spring in the kinked region between three beads that define the folded area. The anchoring point (𝑎⃗U) 
moves affinely with the flow, while the position of the slip-link on the chain, determined by Equations (3.2) and (3.10), oscillates 
between spring 𝑄=⃗ Iand 𝑄=⃗ IY1. 

 

This trapping dynamics in the kinked region results in a nearly complete extension of the 

slip-springs and consequently, high values of tension generated in the slip-springs, which exert 

non-physically high magnitudes of force on the main chain. The high slip-spring tension also 

causes slip-spring breakage when the spring stretches beyond its maximum extension within a 

single time state, even with very small Δ𝑡. Note that if the polymer chains were more highly 

resolved, say at the level of a Kuhn step, local Brownian motion would more readily allow beads 

on the chain to cross the slip link and trapping would then not occur. The chain would then slide 

through the slip link, which would keep the slip-spring force from exceeding the maximum chain 

tension for affine deformation, calculated in Equation (2.20). However, such a highly resolved 

chain would require much more computer time, and the advantage of the slip-spring algorithm 

over finer grained molecular dynamics simulations would largely be lost.  Therefore, instead of a 

more highly resolved simulation, an upper limit of slip-spring force (𝐹���£�) can be imposed to 

prevent the overextension of slip-springs and to keep the entanglement force within the physically 

meaningful range determined earlier by our kink dynamics analysis.  For affine kink motion, the 

maximum entanglement force is given by 𝜁P𝜖̇𝐿%/8 (Equation 2.20) and for EKD simulations, the 

actual average maximum force was found to be approximately four times lower, 𝜁P𝜖̇𝐿%/32. Since 
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we initially impose affine deformation on the anchoring points of the slip-springs, we use the 

theoretical maximum force value 𝜁P𝜖̇𝐿%/8  rather than the average maximum actually attained 

𝜁P𝜖̇𝐿%/32.  Thus, from the kink dynamics analysis, we set a maximum entanglement force for the 

slip-springs that depends on the dimensionless contour length of the chain, 𝐿 = 𝑁H,(𝑁(, the strain 

rate 𝜖̇ and the friction coefficient per unit length 𝜁P. The value of 𝜁P , the friction coefficient per 

chain length that can be calculated from the Rouse theory, and the corresponding dimensionless 

value 𝜁P∗, are given as follows [158]: 

 

⎩
⎪
⎨

⎪
⎧𝜁P =

6𝜋%𝑘𝑇𝜏5
𝑏H�𝑁H%

=
6𝜋%𝑘𝑇
𝑏H�𝑁(%𝑁H,(%

𝜏5

𝜏5 =
𝜁y(𝑁( + 1)%𝑁H,(𝑏H%

6𝜋%𝑘𝑇

⇒ 𝜁P =
𝜁y
𝑏H
(𝑁( + 1)%

𝑁(%
1
𝑁H,(

→ 𝜁P∗ =
(𝑁( + 1)%

𝑁(%
1
𝑁H,(

 (3.11) 

When the force in the slip-spring exceeds 𝐹���£� = 𝑓£úúÃÄ��£� = 𝜁P𝜖̇𝐿%/8 = 6𝜋%𝑊𝑖�/8, we 

therefore modify the position of the anchoring point by reducing the stretch of the connecting 

vector, without changing its direction, so that its force equals the maximum entanglement force. 

To do so, each time step the maximum force is exceeded, the anchoring point must be shifted 

backwards along the flow direction relative to the position the flow would otherwise take it, 

resulting in a non-affine motion of anchoring points at high strains where trapping tends to occur.  

If the force in the slip-spring is less than the maximum, the anchoring points move affinely. The 

expression 𝐹���£� = 6𝜋%𝑊𝑖�/8 is obtained by combining Equations (2.20), (3.9) and (3.11) for the 

slip spring simulations. The imposition of a maximum force allows the slip springs to mostly avoid 

trapping, and hence the chain can slide through the slip link as it would do if the chain were more 

highly resolved. However, at the highest Weissenberg numbers, there are a few chains (~1-5) in 

an ensemble of 100 chains that show trapping even with the maximum entanglement force 

imposed. The imposition of the maximum slip-spring tension and non-affine motion of the slip-
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spring is therefore an approximate method of preventing artificial trapping of the slip-link at the 

kink. We also examined the application of the lower maximum force 𝐹���£� = 𝜁P𝜖̇𝐿%/32 on the 

chain conformation and same results were obtained which are not reported here.  

 
Since the imposition of a maximum entanglement tension in slip springs is ad hoc, we also 

implement a more physical means of limiting the force on the slip springs, namely performing 

simulations with a pair of mutually coupled chains. In this method, we generate a pair of chains 

and equilibrate their conformation independently. After equilibration of the two chains and the 

application of extensional flow, the motion of a slip-spring anchoring point on one of the chains is 

coordinated with the motion of the anchor point on another chain, so that the pair moves on average 

affinely. To reduce the maximum tension on a slip spring, at each time-step, the anchoring point 

of the less stretched slip-spring (with a lower tension) located on one chain of the pair, is allowed 

to move farther than the anchoring point of the slip-spring on the other chain of the pair. For 

example, consider a pair of chains with 𝑁( = 32 where each chain has 8 slip-springs randomly 

positioned along their contours. We randomly partner each slip-spring of the first chain with a slip 

link of the second chain.  E.g., let’s say we partner slip-spring 3 of chain 1 with slip-spring 7 of 

chain 2. Now, at each time-step, the force in each slip-spring is calculated from the Cohen-Pade 

equation [46]. Then, the motion of the anchoring points of slip-springs 3 of chain 1 and 7 of chain 

2 follows: 

 

⎩
⎪
⎨

⎪
⎧𝐼𝑓	𝐹�,((

1,¨ > 𝐹C,((
%,¨ → D

𝑎⃗�
1,¨Y<¨ = 𝑎⃗�

1,¨ + 𝛼𝛥𝑡𝜿. 𝑎⃗�
1,¨

𝑎⃗C
%,¨Y<¨ = 𝑎⃗C

%,¨ + (2 − 𝛼)𝛥𝑡𝜿. 𝑎⃗C
%,¨

𝐼𝑓	𝐹�,((
1,¨ < 𝐹C,((

%,¨ → D
𝑎⃗�
1,¨Y<¨ = 𝑎⃗�

1,¨ + (2 − 𝛼)𝛥𝑡𝜿. 𝑎⃗�
1,¨

𝑎⃗C
%,¨Y<¨ = 𝑎⃗C

%,¨ + 𝛼𝛥𝑡𝜿. 𝑎⃗C
%,¨

 (3.12) 

Where 𝐹�,((
1,¨  and 𝑎⃗�

1,¨ are the tension and position vector of the anchor point of slip-spring 3 of 

chain 1 at time 𝑡. The value of the constant 𝛼 determines the strength of the coupling between 
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entangled kinks, with 𝛼 = 1 giving ordinary affine motion of each anchor point. This algorithm, 

with 𝛼 < 1  lessens the build-up of tension in the highly stretched slip-spring, allowing the chain 

to slide more easily through the corresponding slip link, while keeping the average motion of the 

two coupled slip-springs affine. This method also allows us to implement constraint release in a 

self-consistent manner, where if a slip-spring on one chain is lost, the coupled slip-spring on the 

other chain is also removed. No-regeneration of slip links is implemented, consistent with our 

EKD method, where there exists no entanglement renewal. We repeat the two chains simulations 

for at least 100 different pairs and average the results.  

 

Thus, we have three alternatives for managing the motion of the slip springs: 1.) Maximum 

Entanglement Force (MEF), 2.) Two-Chain (TC) simulations for four different values of 𝛼 =

0, 0.25, 0.5, 0.75, and 3.) Affine Motion (AM), which corresponds to method 2 above, with 𝛼 = 1 

but without the inherent CR of method 2. Our EKD simulations suggest that the tension in slip-

springs along the chain should be roughly uniform at the transition strain (𝜖 = 𝜖b or 𝜖̃ = 0), as 

shown by the red dashed line in Figure 2.10. Note that, as explained earlier, the imposition of 

affine motion on the anchoring points of trapped slip-springs at the kinks results in huge tensions 

and eventual breakage of slip-springs, even with very small time-steps. Thus, to keep the slip-

spring forces bounded for all three methods, whenever the length of a trapped slip-spring becomes 

greater than 0.99 of its dimensionless maximum length (𝑁H,((), we calculate the tension of that 

slip-spring for a fixed value 𝐿(( = 0.99𝑁H,(( and exert this force from the slip-springs on the main 

chain, independent of the length of the overextended slip spring which might take arbitrarily higher 

values than its maximum extension. Note that this is only required for alternatives 2 and 3 above 

where the maximum entanglement force, and relocation of slip-spring’s anchoring point are not 
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applied. In comparison to MEF, where the maximum entanglement force is a function of strain 

rate, Equation (2.20), the slip-spring force calculated by considering 𝐿((/𝑁H,( = 𝐿((EEEE 		= 0.99 is a 

constant 𝐹((
FÔÔEEEEÕB.GG = 	111.6 (in dimensionless units) using the Cohen- Pade force equation in one-

dimension [46]. At our high Weissenberg numbers, 𝑊𝑖� = 16, 32, the MEF force for long chains 

will become high, 𝑂(100), but as we will discuss in the next section, the modification of the 

anchoring point’s position in the MEF method at each time step will give the chain time to move 

towards the slip-spring and relieve most of the generated stress in the slip-spring. The results of 

slip-spring simulations with these three methods of managing slip-spring motion and tensions are 

presented in the next section.  

Before moving on to the results and discussion section, we present here our method of 

determining the time-step size (Δ𝑡) which, as we will discuss below, depends on our choice of 𝜁(. 

In our slip-spring simulations using MEF technique, the choice of 𝜁(, which is the friction 

coefficient of the slip links along the polymer chain’s contour length, is very important, since it 

determines the escape time of an slip link from the chain, as mentioned by Likhtman [70]. Here, 

we develop a technique to determine the ratio of 𝜁(/Δ𝑡, where Δ𝑡 is the size of the time step in our 

slip-spring simulations. Upon convection of a slip link to a kinked region, which is composed by 

three beads, Figure 3.3, the slip link position on the chain fluctuates along the length of the two 

springs composing the folded region, based on Equation 3.10. As the length, and consequently the 

generated force, of a slip-spring in the kinked region increases, the displacement of the slip link 

position at each time step increases, which may result in displacing the slip link position beyond 

one spring at a single time step, artificially making an entangled kink unentangled. In the absence 

of any form of constraint release, the only way that an entangled kink can disappear on a chain is 

that the chain destroys that kink, either by passing its ends through the kink or by shrinking the 
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length of a nearby strand length. Therefore, a slip-spring at a kink should not be able to escape the 

kinked region because of input simulation parameters such as 𝜁( or size of the time-step, Δ𝑡. So, 

from 𝑡 to 𝑡 + Δ𝑡, the displacement Δ𝑥 of the slip-link along the spring should not exceed a certain 

value (found below) that artificially moves the slip-link out of the kinked region without the chain 

needing to slide through the slip link. If Δ𝑥 becomes too large the slip link will move past more 

than one bead, and the slip-spring gets out while the kink is not unraveled yet. This picture helps 

us determine the relationship between time-step size, Δ𝑡, and friction coefficient of slip-links on 

the chain, 𝜁(. Based on the evolution equation for 𝑥U, Equation (3.10), the maximum value of Δ𝑥 

during a single time-step Δ𝑡 for a slip-link is achieved when the slip-spring force (𝐹U(() and 

neighboring beads’ connecting vector (𝑟/M20Y1 − 𝑟/M20) are at their maximum values, which we can 

estimate  by a one-dimensional approximation: 

 I
1-D limit → 𝑟⃗/M20Y1 − 𝑟/M20 = 𝑋/M20Y1 − 𝑋/M20

KLM
K⎯M𝑁H,(

1-D limit → 𝐹((KLM =
1
8 𝜁

P𝜖̇ï𝑁(𝑁H,(ð
%																															

⇒ 𝛥𝑥 = ¶
𝜁P𝜖̇𝑁(%𝑁H,(�

8 ·
𝛥𝑡
𝜁(
+6

2𝛥𝑡
𝜁x

𝑛 (3.13) 

 
Where 𝑋 is the x-component of the position vector 𝑟 of a bead and (𝑛) is a random number 

between −1 and 1. Based on the position of the slip-link along a spring on the main chain in the 

kinked region, the Δ𝑥 value in a single time-step should be prevented from moving across more 

than one bead. The criteria are summarized in Table 3.2. 
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Table 3.2. Criteria for maximum 𝛥𝑥 and corresponding times step 𝛥𝑡  for two locations of slip-link in the kinked region. 

Condition Direction of slip-spring jump Criterion for Δ𝑥 

i 

 

Δ𝑥 ≤ /𝑥U0− 𝑥U + 2 

¶
𝜁P𝜖̇𝑁(%𝑁H,(�

8 ·
Δ𝑡
𝜁(
+6

2Δ𝑡
𝜁(

𝑛 ≤ /𝑥U0− 𝑥U + 2 

 

ii 

 

Δ𝑥 ≥ /𝑥U0− 𝑥U − 1 

¶
𝜁P𝜖̇𝑁(%𝑁H,(�

8 ·
Δ𝑡
𝜁(
+6

2Δ𝑡
𝜁(

𝑛 ≥ /𝑥U0− 𝑥U − 1 

 

Here we perform an analysis for condition (i) of Table 3.2, that can be extended to condition 

(ii) as well. For the first condition, we simplify Equation (3.13) by considering PQ¨
RÔ

 as the variable 

of the equation and replacing the coefficients of Equation (3.13) with 𝐴, 𝐵, 𝐶, as follows: 

 

⎩
⎪
⎨

⎪
⎧𝐴 = ¶

𝜁P𝜖̇𝑁(%𝑁H,(�

8
·

𝐵 = 𝑛√2																
𝐶 = ⌊𝑥I⌋− 𝑥I + 2⎭

⎪
⎬

⎪
⎫
⇒ 𝐴Y6

𝛥𝑡
𝜁(
Z

%

+ 𝐵 Y6
𝛥𝑡
𝜁(
Z − 𝐶 ≤ 0 (3.14) 

 
By definition, we have following criteria for the parameters in the inequality (3.14): 

 

⎩
⎪
⎨

⎪
⎧
𝐴 > 0																	
−√2 < 𝐵 < √2
𝐶 > 0																		

6
𝛥𝑡
𝜁(
> 0														

						 (3.15) 

 
To satisfy the inequality (3.14), two conditions should be met: (1) the discriminate of the 

equation (𝐴ï¤Δ𝑡/𝜁(ð
%
+ 𝐵(¤Δ𝑡/𝜁() − 𝐶 = 0) should be positive, Δ = 𝐵% + 4𝐴𝐶 > 0	 and (2) 
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the variable ¤Δ𝑡/𝜁( should take values within the two roots of the equation (𝐴ï¤Δ𝑡/𝜁(ð
%
+

𝐵(¤Δ𝑡/𝜁() − 𝐶 = 0),  𝑃1 ≤ ¤Δ𝑡/𝜁( ≤ 𝑃%, where 𝑃1 and 𝑃% are the two roots, given by: 

 

⎩
⎪
⎨

⎪
⎧𝑃1 =

−𝐵 − √𝐵% + 4𝐴𝐶
2𝐴

< 0

𝑃% =
−𝐵 + √𝐵% + 4𝐴𝐶

2𝐴
> 0

 (3.16) 

 
Since 4𝐴𝐶 term in above expressions is always positive, for any value of 𝐵 between −√2 

and √2, numerator of 𝑃1 will be negative, which results in an always negative 𝑃1 as the smaller 

root of the quadratic equation. However, the value of ¤Δ𝑡/𝜁( is always non-negative. Thus, the 

final bounds for ¤Δ𝑡/𝜁( to satisfy the inequality (3.14) are:   

 0 ≤ 6
𝛥𝑡
𝜁(
≤
−𝐵 + √𝐵% + 4𝐴𝐶

2𝐴 = 𝑃% (3.17) 

 
Based on A3, we have to make sure that our choice of time step size and 𝜁( give us a 

¤Δ𝑡/𝜁( less than 𝑃%. However, the value 𝑃% can change based on 𝐵 and 𝐶 which themselves can 

vary based on the random number generator and location of slip-link, respectively. But, if for the 

smallest value of 𝑃%, our choice of ¤Δ𝑡/𝜁( still meets (3.17) criterion, we can make sure that for 

any generated random number or slip-link location on the chain, (3.17), and consequently (3.14) 

are satisfied. The smallest value of 𝑃%	is achieved in the limit of 𝐵 = √2 and 𝐶 = 1. 𝐴 is calculated 

from the chain length (i.e., the number of Kuhn lengths per spring, 𝑁H,( and number of springs per 

chain, 𝑁(), the applied strain rate, 𝜖̇, and the friction coefficient per unit length, 𝜁P, where the latter 

is given by Equation (3.11). Table 3.3 shows the values of 𝑃%% for the choice of 𝐵 = √2 and 𝐶 =

1, for different chain lengths at difference Weissenberg numbers.  
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Table 3.3. Values of 𝑃%% corresponding to the upper limit of  𝛥𝑡/𝜁( in the slip-spring simulations for various chain lengths and 
Rouse Weissenberg numbers. 

 
𝑁( = 16 𝑁( = 32 𝑁( = 64 𝑁( = 128 

𝑊𝑖� = 2 0.0128	 0.012	 0.01181	 0.01165	

𝑊𝑖� = 4 0.00674	 0.0063	 0.0063	 0.0061	

𝑊𝑖� = 8 0.00347	 0.0033	 0.00326	 0.00316	

𝑊𝑖� = 16 0.00178	 0.00173	 0.00164	 0.00162	

𝑊𝑖� = 32 0.00091	 0.00086	 0.00084	 0.00081	

 

Based on 𝑃%% values in Table 3.3, the choice of Δ𝑡 = 100p and 𝜁( = 0.1, which corresponds 

to Δ𝑡/𝜁( = 100�, is justified for all chain lengths up to 𝑊𝑖� = 16. For 𝑊𝑖� = 32, we reduce the 

time step size and choose Δ𝑡 = 100f and 𝜁( = 0.1, corresponding to Δ𝑡/𝜁( = 100p, to make Δ𝑡/𝜁( 

less than the values of the last row of Table 3.3. Since simulations are performed with explicit 

time-integration, possible spring breakage and slip-spring force in excess of the maximum value 

are also checked at each time step. Applying the same analysis to condition (ii) results in the same 

bounding values for Δ𝑡. Note that using an implicit technique may remove the need of such an 

analysis of maximum timestep to avoid the slip link moving past more than one bead, or the spring 

breaking, or the maximum force being exceeded. However, an implicit method for single-chain 

slip-spring simulations is not yet available, and having the artificial friction coefficient, 𝜁( present 

in the slip-spring model makes above analysis for timestep size necessary. In deriving Δ𝑡, we 

imposed the maximum slip-spring force 𝐹���£� = 𝜁P𝜖̇ï𝑁(𝑁H,(ð
%/8; therefore for any slip-spring 

force below this, the conditions (i) and (ii) are satisfied if 𝛥𝑡/𝜁(  is constrained as specified in 

Table 3.3. 
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3.4 Simulation Results and Discussions 

3.4.1 Comparison of Maximum Entanglement Force (MEF), Two-Chain (TC), Affine 

Motion (AM) Methods 

Figure 3.4 shows the evolution of slip-spring tension along a chain with 𝑁( = 32 and 𝑍B =

8 at 𝑊𝑖� = 32 where the effect of trapping becomes important, for all three simulation methods.  

 

 
Figure 3.4. Distribution of tension in slip-springs on a chain with 𝑁( 	= 32 at 𝑊𝑖5 	= 	32 at different Hencky strains. Affine Motion 
(AM) results are shown with black lines and maximum entanglement force (MEF) results with red lines. Results for the Two-Chain 
(TC) technique are shown with blue, orange, yellow and purple lines for the strengths of entangled kink coupling given by 𝛼 =
0, 0.25, 0.5 and 0.75 respectively. The solid green line without symbols shows the result of EKD simulations at Hencky strains of 
3 and 4. All tensions are averages over an ensemble of 200 chains.   

 

At small strains (𝜖 = 0.01 and 1) the tension distribution is nearly identical in all cases:  a 

nearly uniform tension is found except near the chain ends.  However, as the strain increases to 

around 2-3 Hencky units, the chain starts to align and elongate in the flow direction and the tension 

under affine motion of slip-spring anchor points diverges from the MEF and TC simulations. At a 

Hencky strain of 𝜖 = 3, which we will later show is the transition strain at which the kinked state 
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emerges, the tension under affine motion is almost 5 times higher than for the other cases. Up to 

𝜖 = 3, both TC and MEF show nearly uniform, moderate, tension; however, as the elongation 

continues, the tension predicted by the Two-Chain (TC) method starts to rise faster and approach 

that for affine motion. We find that at high strain, the coupling technique does not prevent trapping, 

and the same behavior is obtained as in affine deformation. On the other hand, the tensions 

obtained for the maximum entanglement force technique remain at much lower values, even for 

𝜖 = 4. To compare the tension in slip-spring simulations to that of EKD simulation for the chains 

used in Figure 3.4, we perform EKD simulations by exporting the conformation of chains at 𝜖 = 3 

from slip-spring simulations and entangling 80% of the kinks (a percentage used in our previous 

publication for a highly entangled polymer). The results are shown by solid green lines in Figure 

3.4. Note that we are not allowed to use kink dynamics for Hencky strains less than 3, below which 

the chain has not yet formed the folded state yet. This explains the absence of the green line at 𝜖 =

1 and 2. Comparing EKD with MEF results, it can be seen that although the MEF method keeps 

the slip-spring tension at moderate values, it predicts lower tension in the chain center than does 

the EKD simulations of the same chain. However, as noted, both MEF and TC give similar tension 

distribution at the transition strain (𝜖b~3) which also resembles that obtained from EKD 

simulations. Thus, the single-chain maximum entanglement force (MEF) method matches with 

that of the TC method up to the transitional strain, where both methods approach that of the EKD 

algorithm.  For higher strains (𝜖 > 𝜖b), the dynamics can be tracked by kink dynamics rather than 

coarse-grained slip-spring simulations. We shall show below, however, the MEF method within 

the slip spring simulations gives extensional viscosities similar to those of the EKD method from 

the transitional strain all the way to complete chain extension. 
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To check the performance of the MEF method beyond the transition strain and during the 

unraveling regime (𝜖 > 𝜖b), a bead-spring chain in a kinked configuration with one kink is 

generated and a slip-spring with 𝐹((KLM = 𝜁P𝜖̇𝐿%/8  is located in the kinked region. The slip-spring 

force is at its maximum 𝐹((KLM = 𝜁P𝜖̇𝐿%/8  at the start of the slip spring simulations and we keep 

this force at this constant maximum value for the slip-springs in these calculations. A picture of 

the same chain in the kink dynamics approach is also generated and affine motion is applied to the 

kink, as illustrated Figure 3.5(b). We study the strain at which the chain achieves full unraveling 

(FU) with both MEF and affine kink dynamics approaches, which we label 𝜖(([\ and 𝜖AIJH[\ , 

respectively. Table B1 shows the values of 𝜖(([\, 𝜖AIJH[\  and their ratios for the three conformations.  

 
Table 3.4. Hencky strains at which the slip-spring and kink conformations of Figure 3.5 achieve a fully unraveled state. 

Conformation 𝜖(([\ 𝜖AIJH[\  𝜖(([\/𝜖AIJH[\  

1 1.22	 0.61	 2.00	

2 4.87	 2.42	 2.01	

3 2.99	 1.52	 1.97	
 

For all three cases, twice as much strain is required to fully unravel the chain from the 

kinked state in the slip-spring simulations than under the affine motion assumption. The factor of 

two can be attributed to the temporary trapping of the slip-spring between the two springs that 

compose the kinked region. Since the slip-spring spends half of its lifetime on the top strand and 

the other half on the bottom strand, the unraveling is delayed since the slip-spring exerts a drag 

alternately first on one strand and then on the other, which frustrates chain unraveling. 

Interestingly, we previously showed that, starting from the kinked state, the strain at which EKD 

achieves full unraveling is almost twice that of affine motion as shown in Figure 2.7, which 

matches with what find here with MEF. Thus, it seems that the slip-spring simulations under MEF 

assumption (a maximum force and re-location of slip spring’s anchoring points) follow the same 
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chain evolution, as in the EKD. This means that for the full coil-to-stretch evolution of the chain, 

one can use the slip spring simulations with MEF assumption. However, as mentioned before, the 

computational time of the slip spring simulations increases as the chains get longer, which may 

limit its use for comparison with experimental data.   

We also compare in Figure 3.6 the extensional stress predicted by the EKD model 

compared to that for the corresponding slip-spring model out to complete extension of polymer. 

The stress in the slip-spring simulations is calculated using the Kramers-Kirkwood equation for a 

Rouse chain [155]. The stresses using the EKD simulations are plotted from the transition strains 

of each chain length, shown by green circles in Figure 3.6. In the next section, we explain how 

these transition strains are found. Note that no vertical fitting of EKD results to the slip-spring 

results is done and the match between EKD and slip-spring stress at the transitional strain is 

remarkable. The results for the two models are in good agreement except at strains beyond the 

transitional value. Since very different methods are used in the two models, one involving paired 

ideally one dimensional chains with no Brownian force (the EKD method) and the other involving 

slip links with non-affine motion of entanglement points imposed by a maximum force criterion, 

the agreement of the two methods suggests the robustness of the results. The discrepancy between 

slip spring simulations and EKD at high strains, 𝜖 = 6 to 8 can be attributed to the discreteness of 

chains in our bead spring model compared to the resolved kink dynamics approach. We will later 

show that the stress predicted by the EKD method also gives good agreement with experimental 

data. 
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Figure 3.5. Three conformations used to compare the unraveling behavior of a chain from the kinked to fully unraveled state in (a) 
the slip-spring simulations and (b) kink dynamics simulations. In the slip-spring simulations, 𝑁( = 64 and the maximum applied 
force, 	𝐹((KLM = 𝜁P𝜖𝐿̇%/8, is applied. In the kink dynamics simulations, affine motion is imposed at the kink. 
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Figure 3.6. Extensional stress in x-direction (𝜎MM) for chains of length 𝑁( = 32 (lower set of curves) and 𝑁( = 64 at 𝑊𝑖5 = 32 
(upper set of curves). Black lines are obtained under the MEF assumption while the dashed red lines are for chains without slip-
springs; i.e., dilute chains. EKD results, plotted starting from the transition strain 𝜖 = 3, are shown with green dotted lines. The 
two horizontal dotted lines show the theoretical final stress value that an entangled or unentangled chain will achieve when fully 
unraveled. The results for both slip link methods and EKD are averaged over an ensemble of 150 chains. 

 

3.4.2 MEF Results for Chain Conformation 

Single-chain slip-spring simulations are performed for chains with 𝑁( = 16, 32, 64, 128 

springs which corresponds to 𝑁H = 𝑁(𝑁H,( 	= 80, 160, 320, 640 Kuhn steps in the chain (𝑁H,( =

5), respectively. The maximum entanglement force (MEF) method with the value of 𝐹���£� =

𝜁P𝜖̇𝐿%/8 is used in all simulations. We seek to determine: (1) the transition strain to the kinked 

state (𝜖]) as a function of chain length and Weissenberg number (2) the number of kinks (𝑁ÂÃÄÅ�); 

(3) the ratio of entangled to unentangled kinks  (𝜌÷ÂB ); and (4) the strand length distribution between 

fold points, with the last three of these determined at the strain 𝜖]. To be consistent with our kink 

dynamics simulations, no regeneration of slip-springs is considered; therefore, when a slip-spring 

passes the chain end, it is lost, and no slip springs are re-introduced. As a consequence, the number 

of slip links, or entanglements, decreases from its initial value, 𝑍B, to 0, as the chain becomes 
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completely unraveled. Later in this section, we will study the effect of entanglement renewal and 

constraint release on chain statistics at the kinked state. 

 
To find the number of kinks, we map the chain along the extension direction (x-axis in our 

simulations) and find the beads at which the chain folds back on itself, as depicted in Figure 3.7.  

 

 
Figure 3.7. Schematic of mapping of a bead-spring chain into a kinked conformation. The chain has 5 kinks, including the first and 
the last beads. 

To define the occurrence of the kinked state in the slip-spring simulations, the chain should 

meet two conditions. First, the chain should take on an “almost” one-dimensional conformation, 

and secondly, the springs on the main chain should be “highly stretched.” The first criterion, one 

dimensionality, is quantified by measuring the ratio of radius of gyration in x-direction to those of 

the y- and z-directions: 

 𝑅¾¿/À =
𝑅¾¿
𝑅¾À

= 6
〈∑ (𝑥I − 𝑥q.K.)%I 〉
〈∑ (𝑦I − 𝑦q.K.)%I 〉 									 , 𝑅¾¿/Á =

𝑅¾¿
𝑅¾Á

= 6
〈∑ (𝑥I − 𝑥q.K.)%I 〉
〈∑ (𝑧I − 𝑧q.K.)%I 〉 (3.18) 

Here 𝑥q.K., 𝑦q.K.and 𝑧q.K. are 𝑥, 𝑦 and 𝑧 components of center of mass of the chain at each time 

step, respectively. Satisfaction of the second criterion is determined by finding the average relative 

extension of springs (𝐿x
��aÃÄè) on the main chain. To do so, we calculate the average length of all 

springs at each time step and then divide that by the maximum extensibility of a spring, which is 

𝑁H,( in our dimensionless length units. 
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 𝐿x
(uxIJ¾ =

1
𝑁(
〈∑ |𝑄I|

³Ô
IÕ1 〉

𝑁H,(
 (3.19) 

where 〈	. 〉 denotes the ensemble average. We choose 𝐿x
��aÃÄè > 0.7 to be our criterion for “nearly 

fully stretched” of strands between folds. This value is chosen for two reasons. First, even in strong 

flows and for a fully unraveled chain, springs at the chain ends are not highly extended, which 

decreases the average relative extension. In addition, when the one-dimensional folded state is 

represented by a bead-spring chain, the springs near a kink shrink as they move around the kink, 

which further limits the average stretch. Thus, we cannot expect to have full extension for all the 

springs. We find as discussed below that around 70% average extension is an appropriate criterion 

to define the folded state 

 

Figure 3.8. Conformation of sample chain in slip-link simulations at 70% relative average spring extension (𝜖 ≅ 3). The chain has 
64 springs (green lines) between 65 beads (green spheres) and the simulation starts with 16 slip-springs (red stars), with 𝑁^ = 4. 
Some slip-links are trapped at kinks and we define these as “entangled kinks.” Other slip-springs move along the chain and are 
swept off the chain ends. Note the expanded Y axis compared to the X axis, to make the chain conformation clear.  Without this 
expansion of the Y axis, the configuration would look more nearly one dimensional. 

 

Figure 3.8 shows a sample chain in a folded state whose unraveling thereafter dominates 

the dynamics. We plot in Figure 3.9 the number of kinks and relative radius of gyration 𝑅¾¿/À for 

a sample chain with 𝑁( = 32 at different Weissenberg numbers. We also plot the average relative 
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extension of springs (𝐿x
��aÃÄè) as the chain is elongated. All the results are ensemble-averaged over 

100 chains.   

 

 
Figure 3.9. Evolution of (left) number of kinks (left axis) and averaged extension of springs (right axis) and (right) relative radius 
of gyration (𝑅𝑔M/a) for a chain with 𝑁( = 32 at different Weissenberg from slip-spring simulations with Maximum Entanglement 
Force (MEF) condition. The averaged extension of springs is calculated using Equation 3.14. 

 
Based on Figure 3.9, by a Hencky strain of around 3 the chain is almost a one-dimensional 

object with 𝑅𝑔M > 20𝑅𝑔a for high Weissenberg numbers. At around the same strain, the average 

extension of springs also reaches the 70% criterion chosen earlier. Based on our observation of 

chain’s conformation evolution, e.g. Figure 3.9, we find the strain (𝜖b)  at which the two criteria 

(nearly 1D configuration and average spring stretch of 70%) are met and plot the results for 

different chain lengths in Figure 3.10. 
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Figure 3.10. Transition strain for different chain lengths as a function of Rouse Weissenberg number for slip-spring simulations 
under MEF assumption.  

Figure 3.10 shows that the transition strain (𝜖b) for different chain lengths approach a value 

of around 3 at high Weissenberg numbers. To further investigate the transition strain, as another, 

independent, method to estimate the transitional strain, for each molecular weight of polystyrene 

sample shown in Figures 2.1 - 2.3, we solve the tube model at high strain rates, and find the strain 

at which stress starts to rise quickly to the asymptotic value. The strain at which this occurs is 

considered to be the strain at which kink dynamics start to dominate. Before this strain, the chain 

is still aligning into the flow direction and tube segment stretch is small. Figures 3.11 – 3.13 show 

the predictions of a tube model (DEMG) for entangled polystyrenes of molecular weights 𝑀¥ =

900𝐾, 1760𝐾 and 3280𝐾 at different strain rates. All inputs for the tube-model predictions are 

taken from Huang et al. and are summarized in Table 2.1. We can see that the value of kinked state 

strain depends somewhat on chain length, it remains close to 𝜖 = 3, as the slip-spring simulations 

also suggest. The largest deviation from 𝜖b = 3 is observed for PS with 𝑀¥ = 900𝐾, which, as 
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might be expected, shows a smaller value of transition strain than for the higher molecular weights. 

As the molecular weight increases, the formation of the kinked state should become progressively 

less sensitive to the presence of the chain ends, and we expect the transitional strain to converge 

to an asymptotic value. For the two higher molecular weights, the transitional strain indeed appears 

to be converging to a constant value of around 𝜖b = 3, and for molecular weights above around 

1,000K, the deviations from 𝜖b = 3 are small. Very similar results were obtained using the MLD 

model, which are not shown here. 

 

 

Figure 3.11. Predictions of DEMG model at high strain rates for a 33 wt% polystyrene (900K) solution. (Data from Huang et al. 
[157]). 
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Figure 3.12. The same as Figure 3.11, except for a 18 wt% polystyrene (1760K) solution. 

 

Figure 3.13. The same as Figure 3.11, except s for 13 wt% polystyrene (3280K) solution. 
 

In an extensional flow, the distance in the extension direction between the ends of the chain 

tends to increase exponentially, in proportion to exp(𝜖). Therefore, by the time 𝜖 = 3, the chain 

ends have increased their separation by a factor of around 20, large enough for the configuration 



 71 

to be approximated as a one-dimensional folded state. Therefore, we take 𝜖 = 3 to be our transition 

strain (𝜖b) for onset of the kinked state. 

Figure 3.14 shows the number of kinks formed along the chain at the transition strains 

found in Figure 3.10. 

 

 
Figure 3.14. Number of kinks divided by the number of springs 𝑁( plotted against 1/𝑁( for different values of 𝑊𝑖5. The intercept 
with the y-axis is the asymptotic value of the ratio 𝑁AIJH(/𝑁( given in the legend for each  𝑊𝑖5. 

A linear correlation 𝑁ÂÃÄÅ� = 𝑤𝑁�, is observed between the number of kinks and number 

of springs, with the ratio 𝑤 converging to 0.1 at high values of 𝑊𝑖�. This relationship gives us the 

number of kinks at the transitional state for an arbitrary number of springs, and for an arbitrary 

chain molecular weight; e.g. 𝑁ÅÃÄÅ�B = 0.02(𝑀g/742) for polystyrene where the molecular weight 

to number of Kuhn steps relation is obtained from standard methods [17].  We use this equation to 

find the initial number of kinks for the polystyrene chains whose extensional viscosities were 

shown in Figures 2.1 – 2.3. 
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We also determine the ratio of entangled to unentangled kinks at the transition to the kinked 

state. We consider an “entangled kink” to be one for which there is a slip-link in a “folded region,” 

which consists of the two springs on either side of a bead located at a “fold point,” which is a bead 

for which the two neighboring beads are both either at small or larger values of 𝑥, the stretch 

direction.  (If multiple slip-links are within the same kinked region, the kink only counts as a single 

“entangled kink.”). We then compute the ratio of entangled to total kinks as: 

 𝜌@AB =
𝑁AIJH(
@J¨LJ¾e^�

𝑁AIJH(br¨Le  (3.20) 

The superscript (0) is used because the entangled kink density is calculated at the transition strain 

determined from the slip-spring simulations; this value, given by Equation 3.15, is used as the 

initial entanglement fraction of kinks in the kink dynamics (EKD) simulations which start at 𝜖̃ =

0. Figure 3.15 shows the ratio of the numbers of entangled to total kinks for different chain lengths 

obtained from slip-spring simulations, with no slip-spring regeneration or constraint release.  
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Figure 3.15. Fraction of entangled to total kinks (𝜌@AB ) for different chain lengths as a function of Weissenberg number at the 
transition to the kinked state.   

Figure 3.15 shows that at high Weissenberg numbers, for all chain lengths, the fraction of 

entangled kinks converges to the range [0.6 − 0.7]. We had the value 𝜌@AB = 0.8 in kink dynamics 

simulations for highly entangled polystyrene samples in the previous chapter [46]. Based on the 

results in Figure 3.15, however, we here choose 𝜌@AB = 0.65 as a more appropriate value for EKD 

simulations. We note that this value is appropriate for entangled polymer solutions of volume 

fraction 0.2, but may well differ for other volume fractions. Different number of Kuhn steps 

between slip-links would be needed to explore further the dependencies of 𝜌@AB  on polymer 

concentration. 

Finally, the strand length distribution at the transition to the kinked state is found by 

measuring the lengths of strands between fold points (beads located at the kinks). Strand lengths 

normalized by the contour length of the chains are plotted in Figure 16 for 𝑊𝑖� = 32, which is 

our strongest flow. The distribution function is approximately exponential. Results for 𝑊𝑖� = 16	 
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and 8 were similar, except that there are significant deviations from an exponential form. Using 

the MATLAB toolbox, we fit to an exponential density function for the two longest chains (𝑁( =

64 and 128), and find: 

 𝑓ï𝐿f(¨xLJ�ð = (1/𝜇) 𝑒𝑥𝑝ï−𝐿f(¨xLJ�/𝜇ð	 , 𝜇 = 0.193 (3.21) 

 
 

 
Figure 3.16. Strand length probability density for different chain lengths at 𝑊𝑖5 = 32. Strand lengths are obtained at the transition 
strain corresponding to formation of the kinked state of each chain at 𝑊𝑖5 = 32. 

We summarize the above results with the following formulas for the statistics of a chain 

with arbitrary length (or molecular weight) at its kinked state produced at asymptotically high 

strain rates: 

 
1. 𝜖b ≅ 3 

2. 𝑁ÂÃÄÅ� ≅ 0.02𝑁H		(e.g. for polystyrene	𝑁H = 𝑀g/742) [46] 

3. Fraction of entangled kinks: 𝜌@AB ≅ 65% 
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4. Strand length probability distribution: 𝑓ï𝐿f�ha£Ä�ð =
1
i
exp .− Ffãjklám

i
1 	 , 𝜇 = 0.193 

Finally, we analyze the effect of slip-spring regeneration and constraint release (CR). 

Previously, Likhtman [70] and Del Biondo et al. [72] implemented constraint release by partnering 

slip-links between different chains within an ensemble of chains, in simulations of linear 

viscoelasticity and simple shear, respectively. In their method, when a slip-link passes off the end 

of its chain, it is destroyed, and, simultaneously, the partner slip link on the partner chain is 

destroyed. Then two new slip links are generated, one at the end of a randomly chosen chain and 

the other one on a random position along the contour length of another chain. This results in a 

constant number of slip-springs at all times, even during a deformation. In his single-chain 

simulations, Uneyama [29] defined destruction and creation probabilities following Glauber-type 

dynamics [171]  and showed a reduction in the number of slip-links (𝑍) with time after start-up of 

shear flow [61]. A similar reduction under shear flow was also reported by Kushwala and Shaqfeh 

[172] and by Schieber and coworkers [74]. Here, we implement a simple single-chain technique 

to incorporate the addition/removal of slip-springs without needing an ensemble of chains or a 

partnering of slip-links on different chains. Although our method of regeneration and CR is not as 

detailed as in previous studies, the method targets some limiting cases. Four different conditions 

are considered:  

 
1. Regeneration Off; CR Off: when a slip-link passes through its chain end, it is destroyed, 

and no further action is taken for other slip-links on the chain. This results in a continual 

reduction in the number of slip-links until all of them are gone. This condition has been 

used to obtain the results in section 3.2. 

 



 76 

2. Regeneration Off – CR On: when a slip-link passes through its chain end, it is destroyed. 

Simultaneously, another slip-link on the same chain is randomly chosen and removed to 

represent constraint release produced by other chains, which are not simulated directly. 

Since there is no regeneration, slip-springs disappear faster than in Condition 1 above. 

 
3. Regeneration On; CR Off: If a slip-link passes by the chain end, it is removed and 

instantaneously recreated at a random location on the chain. Thus, the total number of 

entanglements stays constant under this condition. 

 
4. Regeneration On – CR On: If the chain end passes through a slip-link, the slip-link is 

destroyed and recreated at a random position on the same chain. Simultaneously, another 

randomly chosen slip-link is removed and recreated at a random position along the chain. 

Therefore, the number of slip-links stays constant. 

 
Note that the actual constraint release dynamics should lie somewhere between these 

extreme conditions; however, we now show that our results are almost independent of these 

assumptions at high 𝑊𝑖�. Figures 3.17 – 3.19 show the effect of our Regeneration/CR algorithms 

on the transition strain, the number of kinks, and the entanglement density for a chain with 𝑁( =

32 (𝑍B = 8), respectively. Similar responses are obtained for other chain lengths, which we do not 

show here. The maximum entanglement force of 𝐹((KLM = 𝑓NON = 𝜁P𝜖̇𝐿%/8 is used for all cases.  

 
According to Figures 3.17 - 3.19, at high Rouse Weissenberg numbers, the responses 

become nearly identical for the different cases, showing near independence of the results from the 

constraint release or regeneration processes at high 𝑊𝑖�. Figure 3.17 shows that at lower 𝑊𝑖�, 

there are differences; for example, with “Regeneration-On” (i.e., a constant number of slip-springs 
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at all strains), the kinked state is attained faster, but results converge as 𝑊𝑖�	increases.  The same 

convergence at high 𝑊𝑖� is obtained for the number of kinks, Figure 3.18, except for Regeneration 

Off – CR On where the number of kinks is, perhaps not surprisingly, somewhat less than for the 

other three conditions. The entanglement density at the onset of the kinked state also shows the 

same convergence at high 𝑊𝑖�; see Figure 3.19. Interestingly, 𝜌@AB  under Regeneration Off – CR 

On is close to that obtained under the other conditions at high Weissenberg numbers; one might 

expect that with the rate of loss of slip springs doubled due to CR, and no slip springs regenerated, 

the density of entangled slip springs would be much reduced relative to the other cases. The 

behavior observed is explained by considering that first of all, at high 𝑊𝑖�, there are fewer kinks 

under Regeneration Off – CR On as shown in Figure 3.18, and since 𝜌@AB  is the fraction of kinks 

that have a slip- link, the reduction in kinks tends to offset the decrease in number of slip links. 

Also, for this case, the fewer slip-springs that do remain tend to accumulate at the kinks, thus 

keeping the percentage of kinks with a slip link relatively high despite the fewer slip springs 

present.  Thus, the entanglement percentage is close to that of the other algorithms. At high 𝑊𝑖�, 

since the chain quickly aligns and stretches in the flow direction, by the time the initial slip-springs 

start to leave the chain by passing off the chain ends, the kinked state has been achieved, and 

renewal of slip-springs does not change the conformation. The newly added slip-links, under 

conditions 3 and 4 above, will be quickly convected to chain ends or existing folded regions. As 

mentioned before, the accumulation of newly generated entanglements (i.e., slip springs) at already 

entangled kinks does not change the entanglement percentage. Although the correct renewal 

algorithm lies between our arbitrary assumptions for CR and Regeneration of slip-springs, we see 

that at high 𝑊𝑖�, the results under all renewal assumptions converge to the same values. Note that 

this independency of the results on the process of Convective Constraint Release (CCR) is only 



 78 

valid for strong extensional flows where the chain conformation quickly falls into the folded 

region. The same is not true for shear flows, for example, where the regeneration of slip-springs, 

or entanglements in general, affect chain conformation and tumbling becomes important. 

 

 
Figure 3.17. Transition strain (𝜖b) as a function of Rouse Weissenberg number (𝑊𝑖5) for a chain with 𝑁( 	= 32 springs under 
different renewal/CR algorithms. A constant value of 𝐹((KLM is used for all four conditions. 
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Figure 3.18. The same as Figure 3.17, except for the number of kinks (𝑁AIJH(). 

 
 

 
Figure 3.19. The same as Figure 3.17, except for the entanglement density (𝜌@AB ). 
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In the next section, we use the 𝜖b, 𝑁AIJH(, 𝜌@AB  and 𝐿f�ha£Ä� values obtained by the slip-

spring simulations as initial conditions in our entangled kink dynamics algorithm (EKD) and 

compare the predictions of the kink dynamics model to experimental data.  

 

3.4.3 Kink Dynamics Predictions for Entangled Polystyrene Solutions 

Having used slip-spring simulations to obtain the details describing the conformational and 

entanglement state of polymer chains as they first enter the kinked state, we now perform EKD 

simulations using these realistic starting conditions. First, we determine the number of kinks for a 

specific molecular weight based on the linear correlation we found in previous section. Then, we 

use the exponential distribution to specify the strand lengths between the kinks. After generating 

the kinked conformation based on the average strand length and the number of kinks, we put the 

chains into a simulation box and mutually entangle 65% of the kinks. All results obtained with the 

EKD simulations are shifted to the Hencky strain of 3 which we showed is approximately the onset 

of the kinked state. To compare our predictions with experimental data, in Figures 2.1 – 2.3, 𝜁P is 

estimated using 𝜁P = 6𝜋%𝑘𝑇𝜏5/𝑁H%𝑏H� as approximated from Rouse theory [158] where 𝑏H is the 

length of a Kuhn segment, 𝑘 is the Boltzmann’s constant and 𝑇 is absolute temperature, and 𝜈 =

𝑐𝑁�𝜌/𝑀g is the polymer number concentration, where 𝑐 is the polymer mass fraction, 𝑁� is 

Avogadro’s number and 𝜌 is polymer density. To find the number of kinks for the three samples, 

we use the slip-spring results and the linear scaling. Details of the input parameters for the kink 

dynamics simulations are given in Table 3.5.  
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Table 3.5. Input parameters of kink dynamics simulation for three polystyrene samples of Figures 2.1 – 2.3. 

𝑀¥(𝑀) 𝐿(nm) 𝜈(
1
nm�) 𝜁P(Pa. s) 𝑁ÅÃÄÅ�B  𝜌@AB  

0.9 2183 2.3 × 100p 6220 25 0.8 

1.76 4269 6.4 × 100f 3453 49 0.8 

1.76 7957 2.1 × 100f 2150 92 0.8 

 

 

 

Figure 3.20. Comparison of experimental data [50,157] (o) of 18 wt.%  polystyrene (PS) of molar mass 1.76M, with predictions of 
DEMG model in uniaxial extension and with predictions of  entangled kink dynamics (EKD) model (dashed line) with 65% initial 
entanglement density, starting at a transition strain of 𝜖b = 3. 
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Figure 3.21. The same as Figure 17 for (left) 33 wt.% 0.9M PS and (right) 13 wt.% 3.28M PS. Again, Entangled Kink Dynamics 
simulations are shown by dashed lines. 

 

Figure 3.20 and 3.21 show the predictions of the EKD model for the transient extensional 

viscosity of high molecular weight polystyrenes in strong extensional flows (black dashed lines). 

Kink dynamics results show that the final plateau stress is achieved at much higher strains when 

the chain dynamics is governed by unraveling rather than segmental stretch. This is much closer 

to experimental data, which shows, even at high strains, a gradual increase in 𝜂^ as a function of 

strain, in comparison with tube model (DEMG and MLD) predictions. Although experimental data 

points are not available at higher strains due to measurement limitations, predicted values of 

viscosity from the tube model are far from the experimental data both in value and trend. 

Ianniruberto [50] showed that this discrepancy in the predictions of the tube model could 

be alleviated by reducing the friction coefficient as the chain orients. This brings down the final 

plateau stress value and for entangled solutions the amount of this decrease is determined by the 

value of a nematic interaction parameter (𝜀), that determines the coupling strength of nematic 

interactions between short molecules of the solvent and long polymer chains. Its value was found 
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by fitting the model to experimental data, leading to a value of 𝜀 = 0.5 for polystyrene solutions 

in 4K oligomeric styrene. While the idea of friction reduction is physically plausible and leads to 

improvements in the tube model’s predictions, it mainly changes the final stress value the model 

achieves at high strains and it does not greatly change the strain 𝜖������� required to reach the 

plateau. The tube model used in the work of Ianniruberto [50] gives the same plateau stress as the 

DEMG and MLD models used here if the same polymer friction is used. But for strains below the 

plateau, the predictions of Ianniruberto’s model agree somewhat more closely with experimental 

data than do the DEMG or MLD models, (although most of the seemingly improved agreement in 

Fig. 2b of reference 50 is due to the plotting of data on logarithmic time axis, rather than the linear 

axes of Figs. 3.20 and 3.21). We have here shown that the unraveling process influences the stress 

at high strains, causing the stress to approach steady state much more gradually than predicted by 

the tube model. Accounting for the chain unraveling results in smaller stresses at modest strains 

than in the tube model, without needing to incorporate a large nematic interaction term in entangled 

solutions. Note that without any data fitting or curve shifting the EKD algorithm provides better 

predictions at high strains than do conventional tube models. We nevertheless acknowledge that 

there is good evidence for friction reduction in highly aligned melts, and our findings here do not 

foreclose the possibility of such friction reduction in solutions as well, although we doubt the need 

for large reductions, especially when the polymer volume fraction is well below unity. 

The reason the large failure of the tube model in extensional flows discussed here has not 

been much reported on the literature, is first, because polymers with 𝑁A Kuhn steps are nearly 

fully extended at a strain of  𝜖 ≈ ln	(𝜆�£�) ≈ 	𝑙𝑛ï¤𝑁Að , where 𝜆�£� is the maximum extension 

ratio of the chain. For chains with less than 𝑁A~	400 Kuhn steps, the chain is already fully 

extended at a strain high enough to create the folded state. Thus, polystyrene melts with molar 
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mass of < 400,000 Daltons will be fully stretched and the stress will reach a plateau value at modest 

strains, at which longer chains are still folded. Tube models can successfully predict the transient 

viscosity of such melts [153].  A second reason that large deviations from the tube model have not 

so often been reported is that extensional flows frequently do not extend beyond strains of 2 − 3 

Hencky units for high extension rates, sometimes due to filament breakage [41,173]. However, 

there are some data on well entangled polymer solutions for which 𝑁A ≈ 4000 and strains 𝜖 > 4 

are attained, such as those in Figures 3.20 and 3.21. The tube model predicts that the plateau stress 

for high strain rates is attained at a strain that is essentially independent of chain length, since the 

strain required to locally stretch the chain within the tube is given by  ln	(𝜆¨,�£�) ≈ ¤𝑁A,¨, where 

𝜆¨,�£� is the maximum stretch ratio of a tube segment. This value is set by the number of Kuhn 

segments 𝑁A,¨ in a tube segment and is independent of the molar mass of the whole polymer, 

although it does depend on concentration and entanglement density.  Note in Figure 3.20 that our 

entangled kink dynamics simulation provides a much more realistic estimate of the strain required 

to attain steady-state stress for long chains, with 𝑁A > 1000. Note also that, in contrast to the tube 

model, which predicts that the steady-state stress is attained at a strain that is independent of 

molecular length, but sensitive to entanglement density, our kink dynamics simulations predict the 

reverse: the strain required to reach steady state is dependent only on the molar mass of the chain 

and is independent of entanglement density. The strain required for unraveling a chain of given 

molecular weight in the melt is the same as in a dilute solution; in fact, the final unraveling process 

is essentially the same as for dilute solutions.  
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3.5 Conclusion of Chapters 2 and 3 

A new multiple-chain simulation technique is developed that combines “kink dynamics,” 

borrowed from dilute solution theory, with pair-wise entanglement between two chains. To use 

the entangled kink dynamics approach, input data are obtained from a modified slip-spring 

simulation technique. The slip-spring simulations gave the configurations and entanglement 

density of a linear polymer chain at the transition to the kinked state, before unraveling starts to 

dominate the behavior. To perform these slip-spring simulations under fast extensional flows, we 

imposed a maximum slip-spring force to prevent permanent trapping of slip links at nascent fold 

points along the chain, with force set by a simple analysis of the force at an entangled kink between 

two symmetrically hooked chains. We also carried out slip-spring simulations with the slip springs 

on one chain paired randomly with those on a second chain and allowed less-than-affine motion 

of the slip spring with high tension to be offset by super-affine motion of the partner slip spring so 

as to create affine motion on average. We found that this method of limiting the tension of the slip 

springs produced similar slip-spring tension distributions as the maximum force method, up to the 

formation of the kinked state. The results show that multiple methods of preventing overly high 

tensions on the slip springs produce similar results up to the formation of the kinked state. The 

effect of slip-spring renewal and constraint release on the number of kinks 𝑁ÅÃÄÅ�, fraction of kinks 

that are entangled 𝜌@AB , and transition strain to the kinked state 𝜖b were found to converge at high 

𝑊𝑖� to similar values regardless of the  constraint release and constraint renewal assumptions used 

in the slip-spring model. This provides a self-consistent picture of the late stage behavior of linear 

polymer chains in strong extensional flows. We find, using this theory, that the assumption of 

affine tube deformation in the Doi-Edwards theory breaks down for fast extensional flows of long 

chains once the tube segments are fully aligned and the chains are locally nearly fully stretched.  
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Beyond this point, continued affine deformation of a “test” chain would create tension at the center 

of this chain that is too high to be supported by the surrounding chains, which are entangled with 

the test chain at random points along the contours of the surrounding chains. Using a more realistic 

model in which the fold points, or “kinks” along the chain are supported only by tension supplied 

by a partner chain entangled at the kink, we find that the tension profile in the initially folded state 

is flat, rather than parabolic, and the stress can be more than an order of magnitude below that of 

the fully unraveled chain. Thus, tube model, which might be reasonably successful for strains up 

to that needed to form the folded state (i.e., Hencky strains of 2 − 3), fails at high strains, unless 

the polymer molecules are short enough to be almost fully unraveled already by the time the 1D 

folded state is reached. A typical tube model predicts attainment of steady state at around 𝜖 ≈ 3 

Hencky strain units, which is high enough to align the tube segments and nearly fully stretch the 

polymer locally, but nowhere near high enough to fully unravel the chain into a fully extended 

length. Our kink dynamics model, on the other hand, predicts that the final plateau value of the 

extensional viscosity is attained only at higher strains, at which the stretched segments of polymer 

chains have had time to fully unravel. The strain dependence of the stress growth resulting from 

this unfolding process agrees well with experimental data. Thus, we have provided an entirely 

different, and more realistic, picture of late-stage dynamics and stress of entangled polymers under 

fast extensional flow than is provided by the tube model. Future improvements in the tube model 

should address this limitation of the tube theory, guided by the work presented here.  
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Chapter 4 : Multiscale Modeling of Sub-Entanglement-Scale Chain Stretching and Strain 
Hardening in Deformed Polymeric Glasses 

 
 

4.1 Abstract 

Using both coarse-grained (CG) and fine-grained (FG) simulations we show that much of 

the strain hardening in polymeric glasses under uniaxial extension arises from highly-stretched 

sub-entangled strands that form as the polymer chains enter highly folded states. The coarse-

grained simulations are performed using the hybrid Brownian Dynamics method (HBD) [Zou, W. 

& Larson, R. G. Soft Matter 2016, 3, 3853-3865], while the fine-grained simulations employ the 

Kremer-Grest bead-spring model. We find that the HBD model accurately predicts how the MD 

chain configurations evolve during deformation despite being a single-chain-in-mean-field model 

that does not account for entanglements. We show that a primary reason that the glassy strain 

hardening modulus 𝐺5 is so much larger than the melt plateau modulus 𝐺³B  is that chain segments 

shorter than the entanglement length become highly stretched at modest Hencky strain ϵ < ~1 

owing to the high interchain friction in the glass.  As deformation proceeds, chains begin to form 

kinks or folds (starting at a Hencky strain 𝜖 ~ 1.6) analogous to those produced in extensional 

flows of dilute and entangled polymer solutions. Since stress is affected by glassy modes, and is 

not accurately predicted by the original version of HBD (in which the segmental relaxation time 

is determined by a one-mode fluidity model), we extend the HBD theory to multiple segmental 

relaxation modes, where segmental relaxation rates are obtained from small-molecule probe 

relaxation experiments by Ediger and coworkers [Bending, B. & Ediger, M. D. J. Polym. Sci. B 
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2016, 54, 1957-1967]. This produces excellent agreement between the HBD model and 

experimental stress-strain curves through the yield point. (Text and figures in this chapter are 

from the following manuscript, “Multiscale Modeling of Sub-Entanglement-Scale Chain 

Stretching and Strain Hardening in Deformed Polymeric Glasses” by Zou, W., Moghadam, 

S., Hoy, R.S., Larson, R.G.; Manuscript to be submitted soon to ACS macro letters journal.) 

 

4.2 Introduction 

Glassy materials possess remarkable properties such as high stiffness and transparency, 

good corrosion resistance, low permeability, as well as ease of fabrication [78,79], making them 

ubiquitous in both traditional and emerging material applications [80–83]. The growing demand 

for low-cost, lightweight materials with sufficient mechanical strength has led to increasing use of 

polymeric glasses as substitutes for inorganic materials such as silicon and metals. However, 

polymeric glasses tend to fail in a catastrophic, brittle fashion through avalanche like plastic 

deformation, often manifested as crazing and necking. This often makes their ductility 

significantly lower than that of conventional metals, which can render them useless for many 

applications [106]. To ensure their mechanical stability for a variety of loading environments, 

several methods for strengthening polymeric glasses are available, for example, mechanical 

preconditioning [84,85], subglass-transition-temperature annealing [86], etc. However, the 

complicated interplay of chemistry [87,88], entanglement/crosslink density [89], severity of 

confinement [90], as well as thermomechanical history in determining ultimate mechanical 

properties of polymeric glasses make it extremely difficult to ensure the above stability-enhancing 

procedures are reliable [80,82,91].  Moreover, the still-rapid pace of development of new glasses 
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with remarkable performance, including vapor-deposited “ultra-stable” polymer glasses [83], 

plasticizer-mediated glasses [91], and rigid polymer-cast “superionic” films [92], show that we are 

still far from a complete understanding of how polymers’ molecular structure affects the 

macroscopic mechanical properties of their bulk glassy state. For example, while it is well known 

that the restrictions imposed by the strength and directionality of covalent bonds along chain 

backbones (which distinguish polymeric from small-molecule glasses) play a critical role when a 

polymer glass is subjected to large strains [174–176], the details remain highly controversial 

[53,177]. Progress towards predicting the performance of polymeric glasses under large 

deformation therefore requires an explicit accounting both short-range segmental dynamics and 

long-range polymeric ones, as well as the interaction of the two. 

Recently developed coarse-grained theoretical models [93,94,99–102] are beginning to 

yield important insights. Zou and Larson recently published one such “hybrid” model [103] in 

which a one-mode Maxwellian equation for local segmental relaxation with time constant (𝜏() was 

used to predict the local frictional drag that a “glassy solvent” exerts on an isolated-chain 

representing the larger-scale “polymeric” relaxation (with time constant 𝜏u 	= 	𝛼𝜏(, where 𝛼 is the 

polymer-to-segmental relaxation time ratio). With a simple fluidity model describing the nonlinear 

response of 𝜏( under applied deformation, the stress from the segmental mode was added to that 

produced by polymeric relaxation, whose dynamics were approximated by a bead-spring chain 

with bead drag coefficient proportional to 𝜏(. Although the interplay between segmental and 

polymeric stresses allows for this hybrid model to capture much of the experimental 

phenomenology of deformed polymeric glasses [103–105], the model ignores polymer 

entanglements. It also ignores energetic terms arising from pair, covalent-bond, or angular 

interactions that are known to be important in determining the overall mechanical properties of 



 90 

polymeric glasses [92,106,108–111,117]. One might therefore expect this model to break down in 

the post-yield regime where effects of the above energetic terms become increasingly important 

[112]. On the other hand, there is considerable evidence that single-chains in-mean-field models 

can in fact capture much of the physics of large-strain deformation, including strain hardening, at 

least up to the beginning of the “dramatic” supra-Gaussian regime of the stress-strain curve [113–

115]. Moreover, as suggested by Zou and Larson, strain-hardening below the dramatic regime 

results primarily from highly-stretched and folded chain conformations (“kinks”) rather than from 

rheological entanglements. Significantly, the onset of strain hardening at Hencky strains of order 

unity is correctly predicted by this model, in agreement with experimental data, and with a 

hardening modulus greatly in excess of the polymer entanglement modulus, also consistent with 

experiments. These findings suggest strongly that entanglements are not the key feature of strain 

hardening, which is instead caused by the large stretch of sub-entangled strands of polymer at 

deformation rates much greater than the rate at which those strands can relax their configurations. 

Unfortunately, it is not yet possible to test this suggestion experimentally, despite the applications 

of many novel experimental methods to deformed polymeric glasses [80,86,116]. MD simulations, 

however, offer an alternative avenue for exploring and testing new theories [92,106,119–121,107–

110,113–115,118], and can provide information on polymer conformations and entanglements. 

Thus, MD simulations allow testing of the assumptions and findings of the coarse-grained hybrid-

BD (HBD) model, in particular, its ability to predict strain hardening despite neglecting 

entanglements. Thus, in what follows we will make quantitative comparisons between HBD and 

MD simulations. Moreover, a simple modification of segmental dynamics is implemented in the 

HBD model to improve the glassy dynamics before the yielding point. 
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4.3 Simulation Methods 

4.3.1 Molecular Dynamics (MD) Simulations  

Our standard MD simulations use a flexible Kremer-Grest bead-spring glass [55,178], 

consisting of 𝑁qo 	= 	500 chains of length 𝑁	 = 	600 monomer beads. Since the Kuhn length of 

this model is ~5/3 beads, these chains would have 𝑁A 	= 	360 Kuhn segments in total with 

entanglement length 𝑁^	~	51 Kuhn segments [89], so that a chain has an average of 7	~	8 

entanglements. All monomers have mass 𝑚 and interact via the truncated and shifted LJ potential: 
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where 𝑢B is the intermonomer binding energy, 𝑎 is the monomer diameter and 𝑟q 	= 	2C/~𝑎 is the 

cutoff radius.  Covalent bonds are modeled using the FENE potential defined as:  
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with the standard [55] parameter choices 𝑅B 	= 1.5𝑎 and 𝑘	 = 	30𝑢B/𝑎%. The Lennard-Jones time 

unit is 𝜏	 = (𝑚𝑎%/𝑢B)1/%, and the MD time step we employ is 𝛥𝑡	 = 	0.005𝜏. As in Nguyen et al. 

[119], the system is first thoroughly equilibrated well above 𝑇¾ (at 𝑇	 = 	0.47𝑢B/𝑘c	~	1.3𝑇¾) 

[179], then slowly cooled to 𝑇	 = 	0.3𝑢B/𝑘c	~	0.8𝑇¾.	Since the cooling rate employed for 𝑇	 <

	𝑇¾ 	+ 	0.1𝑢B/𝑘c is 100~𝑢B/𝑘c𝜏, the aging time (𝑡g) of the glass, approximated as the time 

between attainment of the glass transition at	𝑇¾ 	= 	0.37𝑢B/𝑘c and the final temperature 𝑇	 =

	0.3𝑢B/𝑘c is 0.07𝜏/100~ 	= 	7 × 10p𝜏. After cooling the system, we uniaxially stretch the box 

containing the chains at a rate of 𝜖̇ = 	2.5 × 100f/𝜏 while symmetrically reducing its transverse 

dimensions to maintain constant volume. Thus, the strain rate times the aging time is 𝜖̇𝑡g 	= 	1.75, 
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which is close to unity. Throughout all these simulations, periodic boundaries are applied along all 

three directions; the monomer number density of the glass is 𝜌	 = 	1.0578/𝑎�.	All MD simulations 

are performed using LAMMPS [180].  

 

4.3.2 Hybrid Brownian Dynamics (HBD) Simulations 

On the other hand, for HBD simulations, the polymeric glass is represented by phantom 

bead-spring chains with extensible FENE springs, suspended in an implicit “glassy” solvent, with 

each bead acting as a center of force. In the HBD model, the stochastic equation for bead motion 

and the polymer chain’s contribution to stress is given by:  

 𝜁y𝒓̇I = 𝜁y(𝜵𝒗)b. 𝒓I + 𝑭I
(u,¨ + 𝑭I5 (4.3) 
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Where 𝑭I
(u,¨ is the total spring force (which is the sum of two spring forces for interior beads and 

only one for end beads) exerted on bead 𝑖, 𝜈 is the number of polymer molecules per unit volume 

in the system, 𝑹U is the connector vector of spring 𝑗 between two neighboring beads 𝑗 and 𝑗 − 1, 

𝑁Ocd is the total number of springs in a bead-spring chain in the HBD model, and 𝑭U
(u is the spring 

force on spring 𝑗 calculated by the FENE model [162], 𝑭5 is the Brownian force defined in chapter 

3 (Equation (3.6)). 𝑅B, 𝑁A,(u, 𝑁A and 𝑏H are the maximum extensibility of a spring in the bead-

spring polymer chain, number of Kuhn steps per spring, total number of Kuhn steps and Kuhn step 

length, respectively. The segmental, or glassy solvent, is represented by a phenomenological 
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fluidity equation. Evolution of segmental configuration tensor, relaxation time and glassy solvent’s 

contribution to stress is given by: 

 𝝈̇( + 𝒗.𝜵𝝈( = 𝝈(.𝜵𝒗+ (𝜵𝒗)b. 𝝈( − (𝝈( − 𝑰)/𝜏( (4.6) 

 𝜏̇( = 1 − 𝜆(𝜏( − 𝜏B()		 (4.7) 

 = 𝜇¤2𝑡𝑟(𝑫:𝑫)	,			𝑫 = [𝜵𝒗+ (𝜵𝒗)b]/2 (4.8) 

 𝜮𝒔 = 𝐺((𝝈( − 𝑰), 𝜏(|¨ÕB = 𝑡g (4.9) 

 

Here, 𝜏B( is the fully rejuvenated relaxation time, which is fixed at the value of 6𝑠, which is far 

smaller than 𝜏( and so its exact value is not very important [104]. D is the deformation rate tensor, 

and 𝛁v is the deformation gradient. The rejuvenation parameter µ determines how much strain 

(i.e., roughly a strain of 1/µ) is required for the glassy mode to “rejuvenate” and become liquid-

like under a flow field. (We will show below that this parameter has a significant effect on the 

formation of “kinks” or folds in the chain at high strain rate.) 𝜎( and 𝐺( represent glassy 

configuration tensor and plateau modulus. The total stress is given by the sum of polymeric and 

“segmental” contributions, 𝜮u and 𝜮(, where superscripts “p” and “s” represent “polymeric” or 

“segmental” mode, respectively (𝜮¨r¨ = 𝜮u + 𝜮(). The segmental component satisfies an upper 

convected Maxwell model, with relaxation time 𝜏( and modulus 𝐺(. The polymeric stress 𝜮u is 

obtained from the BD simulations of a bead-spring chain and assigned a modulus 𝐺u. The bead 

drag coefficient used in the BD simulations of the polymer is made proportional to the 

instantaneous value of the segmental relaxation time 𝜏( whose evolution is described by Equation 

4.7. Since the polymer chain is a Rouse chain, its longest relaxation time 𝜏u will be roughly equal 

to the square of the number of Kuhn steps in the chain 𝑁A%, times the local relaxation time of a 

single Kuhn segment, which can be taken to be approximately 𝜏(. The ratio 𝛼	 ≡ 	 𝜏u/𝜏( 	≈ 	𝑁A% is 
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therefore proportional to the square of the chain length. For chains of 360 Kuhn lengths used in 

the MD simulations, 𝛼	 ≈ 	10f, close to the value we use here, given in Table 4.1. A detailed 

description of the model can be found in the previous work by Zou and Larson [103].  

 

4.4 Results and discussion 

4.4.1 Comparing MD and HBD Results on Chain Conformation 

To directly compare MD results with our HBD results where a modest number of springs 

(𝑁Ocd 	= 	10, 20, or 30) is used, the MD chain conformations need to be coarse-grained. We do 

this by mapping each MD chain subsection of length 𝑁~d/𝑁Ocd beads onto a single coarse-

grained “MDCG” vector connecting its endpoints. For the “base” case 𝑁Ocd 	= 	20 coarse-grained 

strands, we map 30 MD beads into a single “MDCG” vector, and both MDCG strands and HBD 

springs contain the same number (𝑁~d/𝑁Ocd 	= 	18) of Kuhn segments. We use 𝑁�ûø� and 𝑁ù�û 

as the number of springs in MDCG and HBD models, respectively. With an initial ensemble of 

chain configurations taken from the set of MDCG chains from the starting state of an MD 

simulation, we run an HBD simulation under fast extension so that large-scale chain relaxation is 

negligible, and the responses of our coarse-grained (HBD) and fine-grained (MD) models are only 

weakly dependent on the deformation rate. The “age” of the glassy mode of the HBD model is the 

“waiting time” 𝑡g, which is set to 26.4	ℎ	 = 	9.5 × 104	𝑠 (see Table 4.1). A high extension rate of 

𝜖̇ =	100f	𝑠01	is applied for HBD simulations giving 𝜖𝑡̇g = 	0.95, which is around unity, close to 

the corresponding value for the MD simulations discussed above. Since the relaxation time of the 

polymer chain 𝜏u is many orders of magnitude longer than the relaxation time of the glassy mode, 

which is close to 𝑡g, the value 𝜖̇𝑡g of around unity implies that the Weissenberg number 𝜖𝜏̇u is 
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very much higher than unity and nearly the same in both MD and HBD simulations. The chain 

conformations at two Hencky strains 𝜖	 = 	1.6 and 2.5 from both MD and HBD simulations under 

uniaxial extension are shown in Figure 4.1, with the values of the HBD parameters given in Table 

4.1. 

 
Table 4.1. Standard values of model parameters for HBD simulations in Figs. 4.1-4.4. 

𝝐̇ (𝒔0𝟏) 𝜶	 𝑵𝑯𝑩𝑫	 𝝁	 𝑵𝑲	 𝒕𝒘	(𝒉) 𝑮𝒑 (MPa)  𝑮𝒔 (MPa) 

100f	 8.0 × 10p	 20	 143	 360	 26.4	 0.117	 500	

 

	
Figure 4.1. Chain conformations predicted from MD simulations with/without coarse-graining (i.e., MD and MDCG) and from 
HBD simulations with 𝑁Ocd 	= 	20 for an example chain at (a)	𝜖	 = 	1.6; (b) 𝜖	 = 	2.5. Beads, colored as blue, are connected via 
green springs in MD, MDCG and HBD figures. In the MDCG and HBD panels, pairs of adjacent springs that highly stretched and 
oriented with a folded shape are colored red, instead of green to show the appearance of kinks. (c) The numbers of “kinks” (defined 
later) per chain as functions of strain from MD simulations (dotted lines) under a constant extension rate of 𝜖̇ = 	2.5 × 100f (in LJ 
units) and from HBD simulations (dashed lines) under constant extension rate of 𝜖̇ = 	100f	𝑠01. As discussed in the text, these 
conditions give almost the same values of the product 𝜖̇𝑡g	~	1 in both MD and HBD simulations. 
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4.4.2 Effect of Coarse-Graining (CG) on Parameters in HBD Model 

Here we discuss how the HBD parameters shown in Table 4.1 are affected by the level of 

coarse graining, i.e., the value of 𝑁A,(u, which is the number of Kuhn steps represented by a single 

spring in the HBD simulations. We use the Rouse model [162,181] for the longest relaxation time 

of the polymer, that is: 

 𝜏u = 𝜁y
ï𝑁(u + 1ð𝑁A𝑏A%

6𝜋%𝑘c𝑇
			= 𝜁y

ï𝑁(u + 1ð𝑁(u𝑁A,(u𝑏A%

6𝜋%𝑘c𝑇
		≡ 𝛼𝜏( (4.10) 

where 𝜁y is the drag coefficient per bead, 𝑁(u + 1 is the number of beads per chain in the HBD 

simulations (𝑁(u is the number of springs), and 𝑏A is the Kuhn length. The total number of Kuhn 

steps in the chain is 𝑁A = 	𝑁(u𝑁A,(u  where 𝑁A,(u is the number of Kuhn steps per spring. 𝜏u and 

𝜏( are the polymeric and the segmental relaxation times, respectively, and 𝛼 is defined as the ratio 

𝜏u/𝜏(. Equation (4.10) can be re-arranged to:  

 𝛼 =
𝜁y
𝜏(
ï𝑁(u + 1ð𝑁(u𝑁A,(u𝑏A%

6𝜋%𝑘c𝑇
		 (4.11) 

 
Since the segmental relaxation time 𝜏( should be roughly independent of polymer chain length at 

a given temperature, and represents local relaxation at a length scale of order 𝑏A, and since 𝜁y is 

proportional to 𝑁A,(u, so that 𝜏(~𝜁y𝑏A%/𝑁A,(u𝑘c𝑇, we can estimate the value of 𝛼 to be:   

 𝛼 ∝ 	 ï𝑁(u + 1ð𝑁(u𝑁A,(u% ≅ 𝑁A% (4.12) 

 
Thus, for a fixed polymer length, the value of 𝛼 (taken in our simulations to be 8.0 × 10p), remains 

constant regardless of the CG level. Note that for the chain simulated in here, 𝑁A 	= 	360, so that 

𝑁A% 	= 	1.3 × 10f, close to the value of 𝛼 used here. The values of other HBD parameters, namely, 

the total number of Kuhn steps 𝑁A, the initial age of the glass or the so-called “waiting time” 𝑡g, 
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the glassy modulus 𝐺(, and the deformation rate 𝜖̇, reflect the chain length, the thermomechanical 

history of the glass, or other experimental conditions. Since both HBD and MD simulations start 

from the same initial chain conformations, the values of these parameters are unaffected by the 

coarse-graining level. This leaves two parameters, the polymeric modulus 𝐺u and the fluidity 

parameter 𝜇 to be set. In the formula for the polymeric stress used in Eq. (4a) of Zou and Larson 

[103], 𝐺u is a “spring modulus”: 

 𝐺u ≡
3𝜌𝑅𝑇
𝑀(

	~	𝑁A,(u01  (4.13) 

where 𝜌 is the density of the glass, and 𝑀( is the molecular weight of a single spring whose value 

is inversely proportional to the number of Kuhn steps per spring and hence to the CG level. (Note 

that in [103], Eq. (4b) gives the formula 𝐺u 	= 	𝜈𝑘c𝑇, 𝜈 where had been defined as the number of 

molecules per unit volume. However, 𝜈 must instead be taken to be the number of springs per unit 

volume, because the expression for stress in Eq. (4a) in [103] contains a sum over all springs in 

the denominator.  Note also that the denominator in this expression in Eq. (4a) must contain a dot 

product of end-to-end vectors rather than an outer product so that the denominator is a scalar.) 

Thus, the value of 𝐺u used here depends on the level of coarse graining since it is proportional to 

the stress contributed by a single spring.  

Thus, for chain conformations under asymptotically high deformation rate, with the 

identical initial glass state, i.e., the values of  𝑡g, 𝐺(, 𝑁A, and 𝛼 remain constant as mentioned 

above, the only parameter that can be readjusted to match with the results of MD simulation at 

different CG levels is 𝜇. The resulting excellent agreement in the chain conformations as well as 

the predicted number of kinks between HBD and MD simulations by adjusting 𝜇 for different 

levels of CG is shown in Fig. 4.2. 
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Figure 4.2. The same as Fig. 4.1 except different levels of coarse-graining are used for HBD simulations with 𝑁Ocd 	= 	10, 20, and 
30 springs at the corresponding values of 𝜇	 = 	325, 143, and 75, respectively. Note that the example chain taken here from the 
ensemble of MD chains is different chain than the example taken in the main text, to further prove the excellent agreement between 
the strain-dependent conformations of HBD and MD chains. 
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4.4.3 Non-affine Stretching, Highly Stretched Segments and Kinks 

Figure 4.1 makes evident that both MD and HBD simulations predict similar strain-

dependent chain conformations, given that the initial chain conformation of the MD simulation 

was mapped onto the initial HBD coarse-grained configuration. We quantify the ensemble-

averaged configurations and their similarity between MD and HBD simulations in Figure 4.3. 

Figure 4.3(a) shows the mean-squared end-to-end distance of a strand containing n Kuhn segments 

under an affine deformation follows 〈𝑅J%〉£úú/〈𝑅J%〉�� = (e%ý 	+ 	2e0ý)/3 at a strain 𝜖 of uniaxial 

extension, where 〈𝑅J%〉�� is the mean-squared end-to-end distance at equilibrium. However, the 

near-inextensibility of covalent bonds forces chains to deform sub-affinely on short scales, and the 

length scale above which chains’ deformation is essentially affine increases as deformation 

proceeds [182]. A continuous crossover from sub-affine to affine deformation is shown by both 

HBD and MD results in Fig. 4.3(a) with the crossover strand length 𝑛∗ increasing with strain [118]. 

For the mean segmental stretch 𝑆(𝑛) = (〈𝑅J%〉B.f/𝑛𝑏Å)	, Figure 4.3(b) shows that even at small 

strain (𝜖	~	0.5) when segments of length 𝑛	 > 	𝑁^ (= 	51 Kuhn steps) remain close to their initial 

unstretched length, shorter chain segments (i.e., 𝑛	 = 	𝑁^/3) can still be highly stretched. As the 

strain reaches unity and beyond, 𝑆(𝑛) at the sub-entanglement scale increases dramatically. Figure 

4.3(c) quantifies the fraction of “highly stretched chain segments” 𝐹o((𝑛) that have 𝑆(𝑛) 	>

	𝑆�ÃÄ	(= 	0.7). It is clear that 𝐹o( becomes large around the onset of strain hardening (at 𝜖	~	1.0,), 

and well before fully-formed kinks/well-folded chains appear (at 𝜖	~	1.6, see Fig. 4.1(c)). We will 

now argue that it is these highly stretched chain segments (which appear as precursors to kinks) 

that lead to the onset of strong strain hardening. While the HBD model in Figure 4.3 uses 𝑁Ocd =

20 coarse-grained springs corresponding to 30 MD beads/strands, we will show that the similarity 
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between the MD and HBD chain configurations is insensitive to values of 𝑁Ocd between 10 and 

30.  

 

	
Figure 4.3. Structural response of fine-grained Kremer-Grest polymer model (solid lines) vs. the coarse-grained HBD model (dotted 
lines). (a) The ratio of the mean-squared distance 〈𝑅J%〉 between monomers separated by 𝑛 Kuhn steps to its affine value 〈𝑅J%〉Lmm 
for various 𝑛 and 𝜖; values below unity indicate sub-affine deformation; (b) the mean segmental stretch 𝑆(𝑛) relative to full 
extension; (c) the fraction of “highly stretched segments” 𝐹o((𝑛) as defined in the text with 𝑆KIJ = 	0.7. Note that in MD 
simulations, the entanglement spacing 𝑁^ is 51 Kuhn steps [89]. In panel (c) at 𝜖	 = 	0.5, due to the relatively high level of coarse-
graining, HBD only predicts a single non-zero point of 𝐹o( 	= 	4.0	 ×	100p for 𝑛	 = 	18 Kuhn, which is located outside the range 
of the plot. However, this value is still consistent with that from MD, i.e., 𝐹o( = 3.4	 ×	100p at 𝑛	 = 	18 Kuhn steps. 

 

We note in Figure 4.1 the appearance of “kinks” or folds, i.e., highly stretched and oriented 

pairs of adjacent springs with a folded shape as denoted by red springs in Fig. 4.1(b) at large 

deformations, whose formation can, however, be traced locally back to a lower strain level at 

around 1.6 Hencky strain units as indicated by Fig. 4.1(a). To quantify the chain conformation and 

local formation of kinks, the following procedure is taken to find “kinks” in MD simulations: 

1. First, we examine all beads (600 beads) in a given chain and check whether they can be 

considered as “potential” kink points. To qualify as a “potential” kink point, the z-

coordinate of the bead must satisfy (𝑧I − 𝑧I01)(𝑧I − 𝑧IY1) > 0, where 𝑖 is the bead index 

which varies from 1 to 600. 

2. After finding a potential kink-point bead, say bead i,  we find the positions of bead 𝑖 +

𝑁ê�ÄÄ and bead 𝑖 − 𝑁ê�ÄÄ, respectively, where 𝑁ê�ÄÄ is the number of beads we choose to 

be included in a strand bounding each side of the potential kink point. Using the locations 
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of beads 𝑖 + 𝑁ê�ÄÄ and 𝑖 − 𝑁ê�ÄÄ and that of the potential kink bead i, we create the 

connecting vectors of the kink, as illustrated in 4.4(a). 

3. We compute the relative stretch of each of these bounding strands and the angle each 

makes with the z-direction.   

4. To consider bead 𝑖 as a kink, we require that the fractional stretch of both connecting 

vectors exceed a value 𝜆q and that both connecting vectors make an angle smaller than 𝜃q 

with the z-direction. 

We show the sensitivity of the number of kinks in the MD results on the values of 𝑁ê�ÄÄ, 𝜃q 

and 𝜆q in following sections. Using 𝑁ê�ÄÄ = 20, 𝜆q = 0.5 and 𝜃q = 20r gives the results in Figure 

4.4(b). Note that this criterion for a kink differs from that used in Moghadam et al. [46,165] which 

applied at a strain high enough that the chain was in a “kinked state,” where most strands were 

aligned near the flow direction and highly stretched.  In this work, although the kinks form locally 

along the chain, the chain has not reached the folded or kinked state, as defined by Moghadam et 

al. [46,165] 

To compare consistently results from the MD simulations with those of the HBD model, 

since the HBD model is coarse-grained, we first coarse-grain the MD chains into MDCG chains 

with the same number of MDCG vectors as there are springs in the HBD chains. After doing so, 

we use the same local criteria to identify kinks in MDCG and HBD models. The main difference 

is that in the MDCG and HBD models, we do not use the local process involving every bead of 

the fine-grained MD chain, but instead use the MDCG coarse-grained vectors that are at the same 

level of resolution as the HBD chains. So after finding beads at which ï𝑧U − 𝑧U01ðï𝑧U − 𝑧UY1ð > 0 
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is satisfied, 𝑗 being the index of beads in MDCG or HBD, we check if the connecting vectors 

satisfy the 𝜆q and 𝜃q conditions.  

 

Figure 4.4. (a) Definition of connecting vectors used to identify local kinks in MD chain conformations, as described in the text. 
For illustration, we here use 𝑁qrJJ = 10 as an example. (b) Number of kinks per chain in MD chains, with 𝑁qrJJ = 20, 𝜃q = 20r 
and 𝜆q = 0.5. 

The MD results in Figure 4.4(b) show that the kinks emerge at the onset of strain hardening 

at Hencky strain of around 1, consistent with the the HBD model. Between Hencky strains of 2 

and 2.5, the number of kinks per chain stays almost constant, suggesting an approach towards the 

kinked state, where now the strands between the folded points become highly stretched until finally 

the unraveling dynamics become dominant [46,165]. We plot in Figure 4.5(a)-(c) the average 

number of kinks as a function of the imposed strain for MDCG and HBD conformations for three 

different values of 𝑁Ocd  and three different values of the rejuvenation parameter 𝜇. We note that, 

unlike the properties plotted in Figure 4.3, the number of kinks is sensitive to both 𝑁Ocd and 𝜇. 

However, for each 𝑁Ocd there is a value of 𝜇 that gives a match between the number of kinks 

predicted by the HBD model and the MD simulations, where the MD configurations are mapped 

into the same number of “MDCG” vectors as the number of springs in the HBD model. The best 
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match with the MD results is obtained when the product 𝜇𝑁Ocd = 	2860.  Since 𝜇 controls the 

rate of rejuvenation, the results suggest an interesting coupling between the rate of rejuvenation 

used in the model for the segmental glassy mode and the degree of coarse-graining used for the 

polymeric mode. A high value of 𝜇 means faster mechanical rejuvenation, leading to a faster 

relaxation of local segmental modes. A sensitivity of kink formation to this value is explained by 

its effect on local motion and the locking of two neighboring segments into a kink that is not easily 

unfolded. The value of 𝜇 also strongly controls the time dependence of the segmental relaxation 

during start-up or creep deformations, as explored in the previous work [103].  

 

 

Figure 4.5. Sensitivity of the average number of kinks and the degree of deformation non-affinity for HBD model to the level of 
coarse-graining 𝑁Ocd (a)-(b) and detailed rejuvenation parameter 𝜇 (c)-(d) as a function of the imposed strain. Value of 𝛼 is equal 
to 8 × 10p for all HBD results in this figure. 
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Using the ratio 𝜇𝑁Ocd = 	2860 for different levels of coarse-graining, we plot in Figure 4.6, the 

evolution of the number of kinks per chain in MD, MDCG and HBD models. 

 

Figure 4.6. Comparison of the number of kinks between MD, MDCG and HBD models. For the HBD model the value of 𝜇 is 
chosen so that 𝜇𝑁Ocd ≅ 2860 to give closest results with MDCG model. The value of 𝛼 for all the HBD results is 8.0 × 10p. 

 

Figure 4.6 shows that by coarse-graining the chain, we lose some of the conformational 

details of the polymer chains, in particular an accurate count of the number of kinks per chain, 

since the “kinks” occur at highly localized points along the chain. However, the degree of non-

affinity, degree of strand stretching, and fraction of highly stretched strands are rather insensitive 

to coarse graining, as shown in Figure 4.3. In Figures 4.1 and 4.2 we showed that MDCG, although 

losing some of the details of the MD chain, retains the overall conformations of the polymer chains, 

making the coarse-graining reasonable for at least some purposes. 

 

Further progress will require a better segmental model to describe yielding and 

rejuvenation, and steps in this direction will be discussed shortly. As mentioned above, the results 



 105 

in Figures 4.1 – 4.4 are obtained at asymptotically high strain rates where the dependency of chain 

conformation on strain rate is weak. Since the MD chains are entangled and the HBD chains are 

not, the excellent agreement between conformations shown in Figures 4.1 – 4.3 strongly suggests 

that the straightening of chain segments and kink formation are not much affected by 

entanglements. 

 

While Ediger and co-workers [183–186] have shown that the segmental relaxation time 

probed by fluorescence spectroscopy 𝜏uxy(  is a function of 𝜖̇, it usually approaches a plateau value 

𝜏(((  beyond the yield strain for uniaxial extension at constant 𝜖̇. Such behavior has been modeled 

empirically by a fluidity equation in the HBD model, where Equation (4.7) gives 𝜏((( ≅ 1/(√3𝜇𝜖̇), 

and 𝜇 controls the rate of glass rejuvenation, and 𝜏B�  is too small to be important. Hence the post-

yield Weissenberg number for the polymeric mode is 𝑊𝑖u 	≡ 	 𝜏u𝜖̇ 	= 	𝛼𝜏((( 𝜖̇ = 𝛼/(√3𝜇) = 	323 

for the values of 𝛼 and 𝜇 in Table 4.1. Our HBD simulations in Figure 4.7 show that the number 

of kinks versus the strain collapses onto a common curve if 𝛼/𝜇 is held fixed so that 𝑊𝑖u remains 

the same. This may be understood in terms of the effect of strain and strain rate on the orientation 

of chain segments in the polymeric glass. One corollary of the above commonality in number of 

kinks at constant 𝑊𝑖u (and strain) is that the chain statistics and orientation, or birefringence, on 

sub-entanglement scales are governed by the strain and 𝑊𝑖u at fixed temperature. While our HBD 

model does not yet encompass thermo-mechanical history, it is interesting that recent simulations 

and experiments indicate that many aspects of polymer glasses’ mechanical response depend 

primarily on orientation or birefringence and are otherwise insensitive to the detailed thermo-

mechanical treatment [108,174]. The above results also suggest that improved understanding 

through modeling may provide rational guidance for the design of polymeric glass through thermo-
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mechanical treatment. According to Figure 4.7, for fixed value of 𝜇, a higher molecular weight, 

and therefore a larger relaxation time ratio 𝛼 of polymeric to segmental dynamics, should lead to 

more kinks per unit chain length, which should have implications for controlling the thermo-

mechanical properties of glassy polymers. 

 
Figure 4.7. The number of kinks vs. strain from HBD simulations for different values of α and µ. The three data sets for which α/µ 
is the same (orange, blue, and red) collapse onto a common curve with the same post-yield polymeric-mode Weissenberg number 
(𝑊𝑖u = 𝜏u𝜖 ̇= 𝛼𝜏((( 𝜖̇, where	𝜏(((  is the steady-state value of 𝜏( defined in the text). The values of the other parameters are the same 
as shown in Table I. 

 

4.4.4 Insensitivity of Segmental Stretch and Fraction of Highly Stretched Segments to 

Model Details 

 
We plot in Figure 4.8 the average segmental stretch and fraction of highly stretched 

segments as functions of the imposed strain for MDCG and HBD conformations for three different 

values of 𝑁Ocd and three different values of the rejuvenation parameter 𝜇. These plots show that 

both quantities are rather insensitive to 𝑁Ocd and 𝜇, as was shown for the non-affinity of 

deformation in Figure 4.3.  
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Figure 4.8. The mean segmental stretch 𝑆(𝑛) (a)-(c) as well as the fraction of “highly stretched segments” 𝐹o((𝑛) (d)-(f) as functions 
of the imposed strain at various level of coarse-graining 𝑁Ocd and rejuvenation parameter: for (a) and (d) 𝜇	 = 	72; for (b) and (e) 
𝜇	 = 	143; and for (a) and (d) 𝜇	 = 	286. 

 

4.4.5 Entangled Kinks Identification 

So far, our analysis has ignored the existence of entanglements. To investigate their effects 

on kink formation and strain-hardening, we wish to find which of these kinks that form in the MD 

simulations can be considered “entangled.” A seemingly obvious way to identify such “entangled 

kink pairs” is to perform primitive path analyses [187,188] and find pairs of contacting primitive 

paths that satisfy some predefined kink criterion. However, recent work has shown that it is more 

accurate to regard chains in deformed polymer glasses as being constrained by their rheological 

tubes rather than by individual, crosslink-like entanglements [79]. In any event, our objective is 

not to locate all entanglements, but rather to identify the entanglements that are localized at kinks. 

Hence, we count a pair of kinked chain segments as entangled when they lie within a specific 
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distance of each other, belong to different chains, and mutually interwind. Kinks, defined earlier 

for the MDCG vectors, are here identified as entangled kinks if: 

1. The two kinks have opposite polarity, as illustrated in Figure 4.9(a). 

2. The two kinks are “intertwined” with each other. This is determined by defining a “kink 

triangular surface” as the surface bounded by the two kink-forming connecting vectors (red 

arrows in Figure 4.4-(a)) of each kink (see the in Figure 4.9(a)) and by a third vector formed 

by linking the free ends of the two connecting vectors. If the two kink triangular surfaces 

formed by two kinks intersect each other, and only one of the end-to-end vectors of a kink 

intersects the triangular surface of the other, then the two kinks are considered entangled. 

These criteria allow us to quantify the numbers of “entangled kinks pairs” in Figure 4.9(b). 

The effect on the number of total and entangled kinks of the angle 𝜃q used to define whether a kink 

is formed at a given bead is studied in the next section, which shows that for a wide range of angles, 

around 1/3 of the kinks are entangled.   

 

 
Figure 4.9. (a) Schematic of how an entangled kink is determined in MD simulations using the kink’s connecting vectors obtained 
as defined in Figure 4.4-(a). (b) Average numbers of kinks (blue squares) and entangled kinks (red squares) per chain as a function 
of imposed strain in MD simulations. For all data, 𝑁qrJJ = 20, 𝜃q = 20r and 𝜆q = 0.5. 
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The strain hardening observed in rapidly deformed melts and crosslinked rubbers can be 

entanglement- or crosslink-driven because sub-entangled chain segments relax rapidly compared 

to the inverse strain rate. In glasses, this is no longer the case; here, for example, the post-yield 

Weissenberg number in both our MD and HBD simulations is ~	10�. The highly stretched strands 

discussed above, which first begin to appear at a strain of 𝜖	~	0.5, become prominent by 𝜖	~	1.0. 

As deformation continues, they become highly oriented along the direction of extension, 

leading to the build-up of the “kinked state” starting at 𝜖	 ≈ 	1.6. Chains only become fully folded 

at strains well above 𝜖	 ≈ 	2.0; it is likely that fracture would occur first in a real polymer glass. 

Strong strain hardening does not require fully formed folds, but only their precursors, the highly 

stretched strands. The results in Figures 4.3 and 4.5 are consistent with the view [113–115,118] 

that the increasingly sub-affine deformation as strain increases requires an increasing level of 

microscale plastic deformation which, in turn, drives the dominant dissipative component of strain 

hardening. However, our results significantly extend this picture, both by making the role played 

by the strand stretching much more explicit and by showing, for the first time, that the same 

underlying phenomenon is predicted by a single-chain-in-mean-field model. Our results also 

clarify that entanglements are not primary in this picture because the length scale controlling strain 

hardening is not the rheological entanglement length  𝑁^	obtained from measurements of the melt 

plateau modulus. Instead it is the smaller length scale n* associated with the abovementioned 

strand-stretching. It can be seen in Figure 4.9(b) that at Hencky strain of unity where strain 

hardening begins, there are almost no entangled kinks per chain. Our picture is also consistent with 

the observation that the length scale over which chains are pulled taut in stable crazes is ~	𝑁^/3 

rather than ~	𝑁^ [121]. Note that we do not claim that strain hardening can occur in experiments 
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on unentangled systems — it is now well established that the entanglement network is required to 

prevent brittle fracture before the onset of strain hardening [91,111,174,189]. 

The very good agreement between configurations from the HBD simulations and from the 

much finer-grained MD simulations is particularly noteworthy. Since the HBD model uses a very 

simplistic one-mode model for the glassy segmental mode (that is coupled only through a friction 

coefficient to the polymeric mode), while the MD simulations are resolved at the level of the 

segmental mode, the good agreement between the two models in Figure 4.3 is strong evidence that 

the polymer configurations are not sensitive to the details of the glassy dynamics. In addition, the 

insensitivity of the results to the inclusion of entanglements suggests that the polymeric modes can 

be modeled (as we have done here) using rather simple bead-spring chains. This opens the door to 

modeling glassy polymers accurately by combining an accurate model of the glass (without 

polymeric modes) with a rather simple model of the polymer. It is found in earlier work [103] that 

the strain hardening of glassy polymers in creep is qualitatively predicted correctly by our HBD 

model, including the onset of hardening at a strain of around unity, near the strain at which “highly 

stretched strands” begin to become prominent in Figure 4.3. Since this strain is well below the 

strain required to fully stretch the entire molecule or even to stretch fully the entanglement strands, 

we infer that strain hardening is initiated by a few highly stretched sub-entanglement strands. 

However, the earlier work also showed that stresses at high strains are only qualitatively predicted 

by the model presented so far [103] despite the excellent prediction of polymer conformations. 

Thus, a better glassy model than the simple fluidity model used up to this point is clearly needed. 

Although the stress is dominated by highly stretched strands, it is also governed by the friction that 

is exerted on those strands by surrounding segments, and this friction depends strongly on the 

glassy modes.  Hence, having developed an acceptable model for the polymeric modes, a more 
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accurate glassy polymer model requires an improved segmental model, and in section 4.4.8, we 

turn our attention to the segmental model. 

4.4.7 Sensitivity of the Number of Kinks in MD Simulations to Identification Parameters  

Before moving to segmental mode analysis of HBD model, here we report the sensitivity 

of the number of kinks per chain in MD simulations to the kink identification parameters, namely 

𝜃q, 𝑁��£� and 𝜆q. Figure 4.10(a) shows that by increasing the value of 𝑁ê�ÄÄ to find the connecting 

vectors of the kinks in MD simulations, the number of kinks per chain initially rises and then drops 

again, with identical plateau values for 𝑁ê�ÄÄ = 10	and		20. This is expected since by increasing 

𝑁ê�ÄÄ	beyond a threshold, the connecting vectors of the potential kink point eventually extend 

beyond the region of a single kink and therefore no longer satisfy the angle criterion. We therefore 

chose 𝑁ê�ÄÄ = 20 for our MD analysis in previous plots. Figure 4.10(b) shows that increasing 𝜃q 

initially results in an increase in the number of local kinks in the MD simulations; however, 

increasing it more that ~20r no longer affects the number of kinks, unless the angle is made so 

high that it is no longer reasonable to consider the conformation to be that of a “kink,” which is 

intended to be a relatively sharp fold of the chain back on itself along the flow direction. Based on 

these results, 𝜃q = 20r was chosen as the critical limiting angle limit for defining a kink in the 

figures main text. Finally, we study the effect of stretch ratio of the kink’s connecting vectors on 

𝑁ê�ÄÄ. As expected, as the minimum stretch ratio, 𝜆q, gets larger, the number of kinks decreases. 

Since in this manuscript, we are considering locally formed kinks at strains below that needed for 

the chain to reach the “kinked” or folded state [46,165], we choose a minimum stretch ratio of 

50% to define a locally stretched state for the two strands bounding the kink.  Figure 4.10(d) shows 

that although the absolute value of 𝑁ÅÃÄÅ�, and both the “Total” and “Entangled” numbers of kinks 

depends on 𝜃q, the ratio of the two remains around 30%.  
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Figure 4.10. Sensitivity of the number of kinks per chain in the fine-grained MD simulations on (a) 𝑁qrJJ, (b) 𝜃q and (c) 𝜆q. (d) 
Sensitivity of the number of entangled kinks on 𝜃q. The default values of parameters are 𝑁y^L� = 20, 𝜃q = 20 and 𝜆q = 0.5, unless 
stated otherwise. 

 

4.4.6 Predictions of Stress: Empirical Three-Model Segmental Model 

  The above successes of our simplified modeling, in particular in the agreement of MD and 

HBD simulations of chain configurations shown in Figure 4.3 and 4.5, is not sufficient to allow 

accurate predictions of stresses. This is primarily because the single-mode segmental model is 

over-simplified, and, in particular, ignores the heterogeneity of the segmental dynamics, where 
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rates of molecular rearrangements vary significantly because of heterogeneity across spatial and 

temporal scales [85,87].  

Although it allows semi-quantitative fits to the experimental data of Lee et al. [183,184], 

the single Maxwell mode model for segmental dynamics with characteristic time controlled by a 

simple fluidity equation has major disadvantages as illustrated in Figure 4.11: The 

phenomenological fluidity equation (see Eq. (4.7)) is too crude to predict accurately the change in 

segmental mobility under constant deformation rate. In fact, as shown by the inserted plot in Figure 

4.11(a), the fluidity model greatly underestimates the rate of drop in 𝜏uxy(  at strains of less than 

0.02 during the period of rising stress in the start-up deformation, while underestimating the rate 

of decrease at a strain of around 0.02, near the maximum in stress. As a result, the decay in stress 

after the maximum is reached is much larger than in the experiments [185,186]. (Note that for the 

purpose of comparison, the linear elastic deformation, i.e., strain below 1%, as well as the height 

of stress overshoot predicted by different version of segmental models were fitted to the 

experiments through the choice of the glassy modulus 𝐺(  and waiting time 𝑡g.) This deficiency 

in modelling the evolution of segmental relaxation time can, however, be fixed easily by the use 

of experimentally measured 𝜏uxy(  from fluorescence spectroscopy. After reoptimizing the value of 

some parameters, the corresponding new simulation prediction, as shown in Figure 4.11(b), gives 

a stress-strain curve that is in much better agreement with experiment, but still shows a larger 

strain-softening, due to the single time-constant segmental relaxation assumed here even though 

the stretched exponential relaxation of segmental mobility is observed experimentally [183,184]. 
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Figure 4.11 Comparison of the experimental stress-strain curves of Ediger and coworkers with fitted by the HBD model with single-
mode segmental dynamics with relaxation time given by (a) simple fluidity equation (filled purple triangles in the inserted plot); 
(b) direct measurement from fluorescence spectroscopy (hollow green squares in the inserted plot). Note that in contrast to values 
used in the multi-mode HBD model (Fig. 4.16(b)) the values of 𝑡g and 𝐺( used here are given in Table 4.2. 

 

In addition to the above issues on segmental dynamics, like most constitutive models, the 

values of model parameters are not set a priori, but are fitted to the measured data. Thus, an 

inadequate physical model for segmental dynamics can also result in uncertainties and errors in 

the values of parameters obtained by fitting with experimental data, especially when the data is 

rich in features. Since the applied deformation in Figure 4.11(b) extends only into the strain-

softening regime, the stress contributed from polymeric mode remains mostly inactivated, and only 

the initial age of the sample 𝑡g (= 	21000	𝑠 or 5.8	ℎ, see Table 4.2) and the glassy shear modulus 

𝐺( (= 	0.8	𝐺𝑃𝑎, see Table 4.2) are relevant and can be estimated directly by matching the 

simulation predictions with the experimental data. Relative to the multi-mode segmental model 

discussed later 𝐺( is roughly halved in the single mode model, while 𝑡g is increased by a factor of 

two. Thus, in the single-mode glassy model, the best-fit values of parameters deviate from ranges 

that reasonably reflect the physical properties of a young glass with 𝐺( around 1	𝐺𝑃𝑎 and 𝑡g 
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roughly several hours long. This further supports the importance of stretched exponential 

relaxation for development of a more rigorous physics-based segmental model. 

Table 4.2. Value of segmental parameters for single- and multi-mode HBD simulations in Fig. 4.11 and Fig. 4.14(b) with 
segmental relaxation time from experiment or simple fluidity model. 

Figures No. of modes Segmental time Gs	(MPa)	 tw	(h)	 µ	
Fig. 4.11(a) 1 Fluidity equation 550 5.8 143 
Fig. 4.11(b) 1 Experiment 500 11.1 N/A 
Fig. 4.14(b) 3 Experiment 800 5.8 N/A 

 
Note that the 3-mode segmental dynamics were achieved by decomposing the KWW function through the modified 
genetic algorithm with the nonexponentiality 𝛽 determined from the experiment (see the section below). 

 

Thus, we need improvements in our description of the dynamics at the segmental level to 

include the effects of stretched exponential relaxation (known as the Kohlrausch-Williams-Watts, 

or KWW function) on the nonlinear deformation behaviors, especially for loading and unloading. 

This is achieved below by employing multiple segmental relaxation times (as opposed to the single 

one assumed previously) within the abovementioned “glassy solvent” description of segmental 

dynamics. Since the characteristic probe relaxation time 𝜏uxy(  and the stretching exponent 𝛽 of a 

KWW function has been accurately measured by fluorescence spectroscopy at each instantof  

deformation time [183–186], we construct a small set of distinct Maxwell modes from the 

decomposition of these KWW functions into a discrete spectrum of Maxwell time constants with 

the corresponding amplitude of each mode tuned iteratively at given 𝜏uxy(  and 𝛽. The set of 

equations for the multi-mode glassy model is given by: 

 𝝈̇U( + 𝒗 ∙ 𝜵𝝈U( = 𝝈U( ∙ 𝜵𝒗+ (𝜵𝒗)b ∙ 𝝈U( − (𝝈U( − 𝑰)/𝜏U( (4.14) 

 𝜮( = 𝐺(Ë 𝐶Uï𝝈U( − 𝑰ð
~

U
 (4.15) 
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U

= 	𝛼,			𝜏uxy( 8
¨ÕB

= 𝑡g (4.17) 

In the above, 𝝈U( stands for the segmental configuration tensor for mode 𝑗 with the corresponding 

amplitude 𝐶U and characteristic time 𝜏U( determined by a genetic algorithm, whose details are given 

below. 𝑀	 = 	3 is the total number of segmental modes used here to represent the KWW function 

with experimental determined time-dependent 𝜏uxy(  and 𝛽. This means that 𝐶U and 𝜏U(are also time 

dependent.  

Here we present the procedure for decomposing the KWW function with known 

characteristic time 𝜏uxy(  and stretching exponent 𝛽 from fluorescence spectroscopy into a set of 

single exponential relaxation terms using optimization with a genetic algorithm (GA). This is 

necessary to obtain the constants used in the multi-mode segmental relaxation model. Since a 

generalized protocol for fitting an arbitrary time-dependent function with a discrete spectrum of 

mono-exponentials has been elaborated in [190], in what follows we focus on utilizing this 

protocol for our case without a detailed discussion of the GA method itself. 

 
The GA is used to generate the times constants 𝜏U( and prefactors 𝐶U in Equations 4.10 – 

4.13, for a set of exponential functions whose sum represents adequately the stretched-exponential 

function 𝑒𝑥𝑝[−(𝑥/𝜏uxy( )�] with given values of 𝜏uxy(  and 𝛽. We first generate a set of values of 

the stretched exponential function at times spaced logarithmically over a finite time interval whose 

upper boundary (𝑡KLM) is determined by the following criterion,  

 𝑒𝑥𝑝 �−¶
𝑡KLM
𝜏uxy( ·

�

� = 1%,				𝑡KIJ/𝑡g = 	
𝑡g
𝑡KLM

 (4.18) 
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Note that the lower boundary (𝑡KIJ) is chosen so that these boundaries are symmetric on 

the logarithmic scale. Thus, the ratio 𝑡KLM/𝑡KIJ represents the width of the spectrum of the 

decomposed single exponential terms, which depends on the value of 𝛽 since the spectrum narrows 

as 𝛽 increases. By normalizing the characteristic times for each exponential mode by 𝜏uxy( , which 

is equivalent to setting 𝜏uxy( 	= 	1, we were able to use the GA to create a library of output values 

of 𝜏U(/𝜏uxy(  and 𝐶U  for values of 𝛽 varying from 0.2 to 0.75.With this library, the amplitude 𝐶U and 

the normalized time constant 𝜏U(/𝜏uxy( for each mode 𝑗 can be retrieved at any time required by 

fitting to the stretched exponential function in Equations (4.12) and (4.13), upon inputting 𝛽. Thus, 

the parameters 𝐶U and 𝜏U(/𝜏uxy(  change with time as required by the time-dependent values of 𝛽 and 

𝜏uxy(  from the experimental data. We carried out the fitting for three different numbers of 

exponential modes, i.e., 𝑀	 = 	3, 4, and 5 and results are shown in Figure 4.12 with their 

corresponding fitting errors (defined in Equation (4.15)) given in Figure 4.13. 

 𝜀H =
1
𝑁Ë

⎩
⎪
⎨

⎪
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Figure 4.12. The normalized characteristic times 𝜏U(/𝜏uxy(  in (a), (c), and (e) with corresponding amplitudes 𝐶U in (b), (d), and (f) 
obtained from the GA as functions of 𝛽 at three different total numbers of exponential modes: (a) and (b) for 𝑀	 = 	3; (c) and (d) 
for 𝑀	 = 	4; (e) and (f) for 𝑀	 = 	5. 

Here, 𝜀H is the averaged relative error when using M different mono-exponentials to 

represent the KWW function of 𝛽H. The subscripts “𝑖” and “𝑗” stand, respectively, for the 𝑖th data 

point at time 𝑥I and the 𝑗th mode with amplitude 𝐶U and normalized time constant 𝜏U(/𝜏uxy( . The 

subscript “𝑘” is the index for the set of values of 𝛽H, from smallest to largest, in the library. An 

empirical constraint (see Equation (4.16)) is also introduced so that the smallest and the largest 
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values of 𝜏U(/𝜏uxy( , respectively, increase and decrease with increasing 𝛽 values. This is done to 

smooth out the fluctuations of 𝜏U(/𝜏uxy(  as β increases.  

 D
𝑚𝑎𝑥�𝜏U((𝛽H)� ≥ 𝑚𝑎𝑥�𝜏U((𝛽HY1)�;
𝑚𝑖𝑛�𝜏U((𝛽H)� ≤ 𝑚𝑖𝑛�𝜏U((𝛽HY1)�;

							𝑗 = 1,⋯ , 𝑀 (4.20) 

 

 
Figure 4.13. The relative error in representing the KWW function with different numbers of mono-exponential terms with amplitude 
and characteristic time optimized by a GA. 

According to Figures 4.12 and 4.13, using more exponential terms reduces the fitting error 

for small 𝛽 values with broad relaxation spectra on one hand, but loses the distinction in 𝜏U(/𝜏uxy(  

between different modes for large 𝛽 values with narrow spectra on the other hand. Since the 

relaxation time spectrum narrows down effectively to a nearly single-Maxwell model at large 

deformation as 𝛽 increases to unity, the latter situation is more troublesome under the creep 

measurements, for which the fluctuations in 𝐶U would induce a significant level of noise in 

deformation rate, therefore making quantitative prediction rather challenging. Thus, we choose a 

constant value 𝑀	 = 	3 as a trade-off between accuracy and robustness of the results. Note that 
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since 𝛽 is time-dependent, a constant value of 𝑀 is needed to avoid adding and removing modes 

during a simulation. 

Based on above procedure, we extend the single-mode segmental dynamics in the original 

HBD model [103], whose relaxation time is governed by the fluidity equation, to a discrete 

spectrum of modes with relaxation times derived from the decomposition of the stretched 

exponential function at given 𝜏uxy(  and 𝛽, i.e.,  

The two modes, polymeric and segmental, contribute to the stress (𝜮u,() through their 

moduli 𝐺u,(. 𝑡g is therefore controlled by how long the sample has been aged since the last 

deformation. Thus, assuming that rejuvenation is governed by the deformation-rate-dependent 

fluidity equation (Equation (4.7)), the values of 𝐺( and 𝑡g are further adjusted by fitting to the 

experimental stress-strain curve using 𝜏uxy(  and 𝛽 directly measured from fluorescence 

spectroscopy.  

 

	
Figure 4.14. Comparison of HBD simulation results predicted by the 3-mode segmental model with parameters given in Table I 
(except using a shorter initial age of the glass 𝑡g and a larger glassy modulus 𝐺() with stress-strain curves of Ediger and coworkers 
[183–185] under steady uniaxial extensional straining at 373	𝐾 with (a) 𝜖̇ = 	1.5 × 100~	𝑠01 and (b) 𝜖̇ = 	3.1 × 100f	𝑠01. The 
time-dependent probe segmental relaxation time 𝜏uxy(  and stretched exponential exponent 𝛽 taken from their smoothed fluorescence 
spectroscopy data are shown in the inserted plots. To be consistent with the experimental results in references [183–185], the strain 
along the horizonal axis is taken as the global strain, but the simulations used the actual strain measured near the mid-point of the 
sample where segmental relaxation was monitored. Note that since the final strains considered here are in the pre-strain-hardening 
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regime, the predicted mechanical responses are dominated by the segmental dynamics, with insignificant contributions from the 
polymeric mode. Therefore, the relevant parameters 𝑡g and 𝐺( can be estimated directly by matching the simulation predictions 
with the data of experiments, the resulting fitted values, i.e., (a) 𝐺( 	= 	900	𝑀𝑃𝑎, 𝑡g 	= 	3.3	ℎ for 𝜖̇ 	= 	1.5 × 100~	𝑠01; (b) 𝐺( 	=
	800 𝑀𝑃𝑎, 𝑡g 	= 	5.8	ℎ for 𝜖̇ = 	3.1 × 100f	𝑠01, semi-quantitatively reflecting the effects of temperature and preparation history 
of the testing samples. 

 

As illustrated in Figure 4.14, we performed HBD simulations using this new modified 

segmental model based on experimental data points for 𝜏uxy(  and 𝛽, and obtained good agreement 

with the experimental stress at the beginning of startup flow. This agreement is much better than 

we can obtain with a one-mode glassy model. The importance of a good segmental model in 

capturing both pre-yielding and post-yielding behaviors of polymeric glasses is further indicated 

by the uniaxial stresses predicted from MD and HBD simulations for strains 𝜖 up to 2.0 in Figure 

4.16. To apply the multi-mode model to the MD data, we used the empirical correlation between 

the segmental relaxation time and the stretching exponent 𝛽, obtained from fluorescence probe 

experiments. In general, the lack of quantitative data limits the development of a heterogeneity 

model, since it requires experimental data for the segmental relaxation time 𝜏uxy(  and its stretching 

exponent β, and these are frequently not experimentally inaccessible. Recent findings for 

polymeric glasses indicate that  the heights of barriers between local energy minima in the potential 

energy landscape (PEL) become larger as the system moves towards the lower-energy regions of 

the PEL, suggesting that the heterogeneity can be linked to the segmental mobility [176,191]. For 

example, the thermally excited sampling of the PEL should be especially retarded in lower-energy 

regions of the PEL due to their higher barriers, thus leading to a more pronounced heterogeneity 

and hence smaller 𝛽. Inspired by the plot of stretching exponent 𝛽 vs. the dimensionless segmental 

relaxation time 𝜏uxy( /𝑡g in Lee et al. [183,184] we show in Figure 4.15 that a crude “master curve” 

can be obtained empirically, whose mathematical expression is given by Equation (4.21), by 

extracting 𝛽 and 𝜏uxy( /𝑡g from multiple measurements of fluorescence spectroscopy by Ediger and 
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coworker [183–186], at various temperatures, type of probes, preparation history, as well as 

deformation processes.  

 𝛽 = 0.25 − 0.61𝑙𝑛 ¶
𝜏uxy(

𝑡g
· (4.21) 

 

Figure 4.15. Correlation between the enhanced segmental mobility 𝜏uxy( /𝑡g and stretching exponent 𝛽 from results of fluorescence 
spectroscopy in Refs. [183–185] 𝑅% value for the dashed line fit, given by Eq. (4.21) is 0.755. 

 

This correlation between segmental mobility and heterogeneity, in Figure 4.15, offers us 

an empirical route to incorporate multi-mode segmental dynamics into the HBD model. Thus, 

Equation (4.21) is added to Equations (4.10) to (4.13) to complete the empirical model. 

While the HBD model with only one segmental relaxation mode shows a much larger stress 

overshoot than does the MD simulation, this deviation is reduced significantly in the 3-mode 

model. Note that this overshoot arises primarily from the segmental contribution to stress. The 

results in Figure 4.16 for the one-mode and three-mode segmental models show that the near-

universal behavior of the chain orientation, stretch, and kink formation illustrated in Figure 4.3 
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does not extend to the stress-strain behavior, which is much more sensitive to the dynamics of the 

segmental mode.  

 

	
Figure 4.16. Mechanical response of (a) the fine-grained Kremer-Grest polymer model and (b) the coarse-grained HBD model with 
1-mode (dotted line) and 3-mode (orange line) segmental relaxation. The insert in (a) gives the contributions to energy from bond 
and pair interactions as well as the sum of the two, while the insert in (b) is a blow-up of the stress at small-strain region. The LJ 
units of stress are 𝑢B/𝑎�. 

Much progress has been made recently in understanding segmental-level dynamics of both 

small-molecule and polymeric glasses [192–195]. However, segmental-scale theories such as the 

PNLE theory of Schweizer et al. [93,94,99,196] typically do not treat polymeric relaxation modes; 

indeed they typically assume chains deform affinely above segmental scales. Efforts to obtained 

improved predictions of glassy-polymeric mechanical response should combine accurate 

treatments of both segment-scale and chain-scale physics, including the physical phenomena 

described here (in particular, the formation of highly stretched segments, and kinks). We hope that 

the findings presented here will help the community achieve a useful synthesis of these ideas and 

hence a more complete understanding of polymeric glasses and their rheology.  

 



 124 

4.5 Conclusions 

 
Analyses at two different levels of resolution have provided insight into the effect of 

multiple segmental relaxation times and sub-entanglement chain stretching on strain hardening 

and stress-strain relationships in tensile deformations of polymeric glasses. Both our HBD model 

and the finer-grained MD simulations suggest that sub-entanglement chain stretching and 

orientation trigger strain-hardening in polymeric glasses at a strain level (𝜖	 < 	1) that is far smaller 

than would be required if strain-hardening originated from the affine deformation of an entangled 

network. MD simulations clearly exhibit the emergence of highly-stretched segments with chain 

conformations very similar to those found in HBD simulations, and indicating that strain hardening 

is controlled primarily by chain stretching at high Weissenberg number, and not by entanglements 

or details of the glassy dynamics. This similarity of results from both fine-grained and coarse-

grained models offers a clear explanation of the large magnitude of glassy-polymer strain-

hardening: hardening in the glassy state arises primarily from chain stretching and orientation at 

scales below that of the entanglement mesh. This picture supports the notion39 that while 

entanglements are essential for stabilizing glassy polymers against brittle fracture, they are of less 

importance in strain hardening itself. This improved understanding, if confirmed by additional 

work (in particular, studies of systems possessing a wide range of chain stiffnesses and 

entanglement densities), should help in the design of deformation and temperature protocols that 

maximize properties of polymeric glasses for improved product performance.  

 

The successful prediction of chain stretching and strain hardening from our original coarse-

grained model does not extend to the yielding behavior, which requires a more accurate description 

of the glassy mode, than is provided in our original very simple one-mode fluidity model.  We 



 125 

therefore further modified our model by extending the segmental relaxation from one mode to 

three modes whose dynamics were drawn from experimental measurements, and observed much 

better performance, especially in pre-yield and yielding regimes where segmental mode attributes 

most of the stress and where overshoot occurs. The new three-mode HBD model explicitly 

accounts for local heterogeneity represented by time-dependent values of segmental relaxation 

time 𝜏uxy(  and exponential stretching exponent β probed by fluorescence spectroscopy on 

deforming polymeric glasses. Future work should endeavor to develop a segmental constitutive 

model that accurately predicts the experimental segmental relaxation in arbitrary strain histories 

and incorporates this into HBD simulations to get a complete depiction for polymer glasses under 

deformation.  
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Chapter 5 : Assessing the Efficacy of Poly (N-isopropyl acrylamide) for Drug Delivery 
Applications using Molecular Dynamics Simulations 

 
 

5.1 Abstract 

All-atom molecular dynamic simulations (AA-MD) are performed for aqueous solutions 

of hydrophobic drug molecules (phenytoin) with model polymer excipients, namely (1) N-

isopropyl acrylamide, (pNIPAAm), (2) pNIPAAm-co-Acrylamide (Am), and (3) pNIPAAm-co-

Dimethylacrylamide (DMA). After validating the forcefield parameters using the well-known 

lower critical solution behavior of pNIPAAm, we simulate the polymer-drug complex in water 

and its behavior at temperatures below (295K) and above the LCST (310K). Using radial 

distribution functions, we find that there is an optimum comonomer molar fraction of around 20-

30% DMA at which interaction with phenytoin drug molecules is strongest, consistent with recent 

experimental findings.  The results provide evidence that molecular simulations are able to provide 

guidance in the optimization of novel polymer excipients for drug release. 

 

5.2 Introduction 

For an active pharmaceutical ingredient (API) to be absorbed from the gastro-intestinal 

tract into the bloodstream, it must be sufficiently soluble in the GI fluid [122]. However, more than 

40% of new chemical entities in the pharmaceutical industry are poorly soluble, leading to drug 

aggregation and crystallization [123]. To improve solubility, drug particle size reduction, solid 
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dispersion, modification of crystal habit, cryogenic preparation, as well as use of buffers, micellar 

solubilization and complexation have been employed [123,197]. All of these techniques are 

intended to inhibit precipitation and crystallization of APIs and enhance solubility. Solid 

dispersions [124,125], which are solid-state molecular mixtures of a hydrophilic matrix or network 

and a hydrophobic drug, can maintain the API in an amorphous form and result in a supersaturated 

API solution upon its dissolution in the GI tract. Many studies suggest using biocompatible stimuli-

responsive polymers as the hydrophilic network in solid dispersions. In particular, stimuli-

responsive polymers [126,127] undergo a dramatic change in properties with a change in 

environmental conditions such as temperature, pH, light, ionic concentration, and electric and 

magnetic fields.  Water-soluble bio-compatible polymers such as HPC (hydroxypropyl cellulose) 

HPMC (hydroxypropyl methylcellulose), PEG (poly(ethylene glycol)), and PLGA (poly(lactic-

co-glycolic acid)) have been widely studied for API release properties during the past decade 

[125,198,199]. A group of these stimuli-responsive polymers, which react to a change in 

temperature, are called thermo-sensitive polymers. For the past years, one of the most widely 

investigated thermo-sensitive polymers for potential drug delivery applications has been poly(N-

isopropylacrylamide), namely pNIPAAm (Figure 5.1) and its various copolymers such as poly(N-

isopropylacrylamide-co-acrylic acid) and poly (N-isopropylacrylamide-co-dimethylacrylamide) 

[126–128,200]. The most interesting property of pNIPAAm, along with its biocompatibility, is its 

lower critical solution temperature (LCST). As the temperature increases above ~32�C in a 

pNIPAAm aqueous solution, polymer chains tend to decrease their interaction with water, leading 

to a coil-to-globule transition resulting in a compact conformation in water [129].  
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Figure 5.1. Chemical formula of pNIPAAm sub-unit. The chains are synthesized by free radical polymerization that generally 
results in atactic chains with head-to-tail assembly. 

Many experimental studies have analyzed the collapse of pNIPAAm chains and hydrogels 

in aqueous solutions. In particular, Wang et al. [130] observed hysteresis in the heating-cooling 

cycle of dilute pNIPAAm chains in water. Zhou et al. [131] studied the effect of intrachain 

hydrogen bonding in dilute aqueous solutions of pNIPAAm and found that these bonds are 

responsible for the hysteresis behavior of the chain’s dimension upon heating and cooling. Tanaka 

et al. analyzed how the diffusion coefficient of water molecules decreases at temperatures above 

the LCST in pNIPAAm crosslinked hydrogels [132]. Ray et al. and Biswas et al. showed how 

increasing isotactic content in chains will result in a decrease in phase separation and glass 

transition temperatures of pNIPAAm accordingly [133,134]. Besides the studies on pure 

pNIPAAm, Nan et al., Prasannan et al., Chung et al., and Cao et al. [200–203]  investigated its 

copolymers for possible drug delivery applications. Yang et al. [135], Huang et al. [136] and Zhi 

et al. [137] used analytical solution theories to model these thermo-sensitive hydrogels, but to be 

accurate, as discussed below, such models need inclusion of parameters obtained by molecular 

simulations. Solution theories have also been applied to understand and explain excipient-API 

interactions and their effect on API crystallization. Theoretical work in this area has mostly been 

limited to the use of Flory-Huggins models to predict excipient-API miscibility in the solid state 



 129 

[204,205]. In these studies, solubility parameters of the drug and excipient, which is mainly found 

by experiments or group-contribution methods are used to find the Flory parameter (𝜒) which 

along with entropic terms are used to define the free energy of the API-excipient complex. Relative 

miscibility of different excipients and API is then predicted by Thermodynamic analysis. The 

major challenge of thermodynamic methods, in which excipient-API interaction is assessed using 

the Flory parameter (χ), is the unreliability of solubility parameter estimates. Molecular dynamics 

(MD) simulations can be a promising approach to determine these parameters and analyze the 

mixture, but unfortunately no such study is at hand for pNIPAAm solutions. 

Recently, with advances in molecular dynamics techniques, it has become feasible to 

simulate pNIPAAm chains directly to test the ability of different forcefields to predict chain 

collapse and to determine the dynamics of binding kinetics between different functional groups 

and solvent. Walter et al. [138,206] performed simulations with three forcefields (GROMOS-87, 

GROMOS-96, OPLS-AA) combined with two water models (SPC/E, TIP4P) to find the right 

combination to account for the collapse transition of a single pNIPAAm chain, which they 

suggested is OPLS-AA+SPC/E. Tucker and Stevens [139] studied the polymer length dependence 

(over the range of 3-30mer) of the transition temperature for a single syndiotactic pNIPAAm 

oligomer, found higher LCST for shorter chains. Gangemi et al. [140] simulated a single chain of 

pNIPAAm doped with amino acid-based comonomers and compared the chain collapse parameters 

(e.g. radius of gyration) with those for pure NIPAAm. They showed that the presence of 

comonomers in the chain prevents the chain collapse upon heating above 315K. Based on the 

partition coefficient of a dimer model compound of pNIPAAm in a water/chloroform mixture, 

Katsumoto et al. [207], via molecular dynamics simulations, showed how isotacticity of a dimer 

reduces the hydrophilicity of pNIPAAm, in agreement with experimental results of Ray et al. 
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[133]. Du et al. [208] simulated the effect of added salts (NaCl, NaBr, NaI and KCl) on the LCST 

shift towards lower temperatures for a single chain, and Kamath et al. [209] compared the effect 

of popular forcefields (AMBER, OPLS-AA, GROMOS, CHARMM) on the enthalpy of hydration 

and of solvation of a pNIPAAm monomer in water. As they discussed, thermodynamic analysis 

of a single monomer may not be sufficient for forcefield comparison, since the coil-to-globule 

transition is the result of collective effect of adjacent pNIPAAm monomers. 

As these experimental and computational studies suggest, the collapse of pNIPAAm is 

driven by the weakening of hydrogen bonding with water at elevated temperatures, namely above 

32¡C, leading to dominance of the hydrophobic interactions between isopropyl groups in adjacent 

monomers [141,142]. Interestingly, this happens at a temperature close to the body temperature 

(37r𝐶), which, along with other properties of pNIPAAm, such as the large design space of its 

copolymers, makes this polymer a potentially attractive possibility as an excipient for controlled 

drug release. In addition, the hydrophobic isopropyl groups of pNIPAAm can interact with 

hydrophobic API molecules while its hydrophilic groups maintain interaction with water, thus 

inhibiting aggregation and crystallization of API molecules in the GI tract. Although aqueous 

solutions of pNIPAAm have been widely analyzed both experimentally and computationally, a 

detailed simulation study of excipient-API interactions in water and their effect on crystallization 

is not yet available for pNIPAAm. In particular the promising alternative of analyzing the 

interactions between polymer and API molecules by molecular dynamics has not yet been carried 

out for pNIPAAm and its copolymers in aqueous solutions. 

In this study, we perform atomistic MD simulations of pNIPAAm oligomers and two of its 

copolymers, namely pNIPAAm-co-acrylamide (p(NIPAAm-co-Am)) and pNIPAAm-co-

dimethylacrylamide (p(NIPAAm-co-DMA)) and study the formation of excipient-API complexes 
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which inhibit API aggregation and nucleation. Phenytoin, an anti-seizure drug with an aqueous 

solubility of 26	µg/mL, is chosen for our simulations [210]. Our simulations show that interactions 

of phenytoin with copolymers are consistent with experimental results showing that there is an 

optimal molar percent of co-monomer that maximizes the excipient efficiency at body temperature 

[144]. We can also provide a quantitative explanation of the physics behind the phenomenon. 

Although the length and time scales of our simulations are not high enough to be conclusive, they 

may provide a benchmarking scheme to rank excipients’ relative efficiency for precipitation 

inhibition. 

5.3 Computational Methods and Simulation Details 

MD simulations are performed with the GROMACS simulation package [211,212] with 

AMBER99SB [213], a modified version of the general AMBER FF [214,215] capable of analyzing 

different chemical species including polymers and drugs. The TIP3P model is used for water. 

Model oligomers are constructed in the Materials Studio® software package by Accelrys® and 

the molecular model for phenytoin is obtained from the ZINC40 database. Figure 5.2 shows the 3-

D representations of the polymer chains and phenytoin. Initial chain conformations used in 

simulations are available in supporting information.  
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Figure 5.2. The chemical structures and 3-D representation of the polymer chains (a) PolyNIPAAm, (b) PolyNIPAAm-co-
Acrylamide alternating copolymer, (c) PolyNIPAAm-co-Dimethylacrylamide alternating copolymer, and (d) phenytoin molecule. 
The polymer chains shown are 15 monomers long and the atoms of side chains of the comonomers of Am and DMA are magnified. 

Synthesis of pNIPAAm via free radical polymerization leads to atactic chains. The isotactic 

and syndiotactic content can be tuned experimentally [216], and it is of interest to consider the 

effect of tacticity on the oligomer binding with drug molecules. We use atactic chains with roughly 

58% syndiotactic and 42% isotactic bonds unless stated otherwise. A cubic simulation box and 

periodic boundary conditions are used in all simulations. Simulation box lengths are chosen to be 

comparable to the contour length of the oligomers to avoid periodicity artifacts. The box lengths 

vary from 5-10 nm for 5-26mer chains. The required numbers of polymer chains and API 

molecules to achieve certain weight percents are determined using the Amorphous Cell 

construction tool in Materials Studio. Except for single-chain simulations of pure pNIPAAm, we 

use 10	wt% excipient, 3.3wt% API and 86.7	wt% water. Species are placed randomly in the 

simulation box using GROMACS command tools. The initial density is close to the bulk density 
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of water, 1	g/cm�. Figure 5.4 shows a sample of the initial simulation box (before a simulation 

run). All systems are first subjected to up to 20,000 steps of energy minimization using the steepest 

descent method. A 0.5	𝑛𝑠 NVT equilibration followed by a 10𝑛𝑠 NPT equilibration is conducted 

for each system using a time step of 1	𝑓𝑠. The production run is in an NPT ensemble, with a 1	fs 

time step and total run time of 70 − 80	ns. Therefore, including the equilibration period, each run 

extends to 90	ns. A weak temperature coupling using a velocity-rescale thermostat with a coupling 

constant of 0.2	𝑝𝑠, and a weak pressure coupling using a Berendsen barostat with a coupling 

constant of 0.5	𝑝𝑠 are used for these two equilibration runs. For the production runs, a Nosé-

Hoover thermostat with a coupling constant of 0.5	𝑝𝑠 and Parrinello-Rahman barostat with a 

coupling constant of 0.5	𝑝𝑠 are employed for temperature and pressure coupling, respectively. 

Unless otherwise stated, the reference temperature and pressure are 298	𝐾 and 1	𝑏𝑎𝑟, respectively. 

A cut-off radius of 12	Ȧ is adopted for nonbonded interactions and long-range electrostatics is 

handled by the Particle-Mesh Ewald (PME) method with dielectric constant set to be 61 for the 

water model. The LINCS algorithm constrains the bonds containing hydrogen atoms and the 

velocity-Verlet integration method is used. The neighbor lists are updated every 5 time steps in 

the equilibration runs and every 10 timesteps in the production runs. 

Due to the importance of electrostatic potentials in pNIPAAm studies (hydrogen bonding 

and hydrophobic interactions), determination of partial charges is of great importance. To test the 

performance of different charge methods and make sure that the ab initio calculations can account 

for the physics of the transition, we test two commonly used quantum mechanical schemes, the 

Bond Charge Correction (BCC) [217] and the Restrained Electro-Static Potential (RESP) [218]. 

They use different quantum calculations to assign the charges and the resultant values are therefore 

different. BCC charges are calculated using the ACPYPE toolkit [215,219] and RESP charges are 
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obtained using Gaussian09 [220] at the RHF/6-31G* level. Moreover, to deal with the limitations 

of common methods for assigning partial charges for flexible pNIPAAm long chains (no. 

monomers ≥ 10; persistence length,	l� > 3.3nm) [221] and especially to deal with the 

computation cost, an averaging process is utilized. For both BCC and RESP methods, we use 

ensemble averaging of charge values. The process consists of the following steps. First, we assign 

partial charges to the model oligomers (outputs of Material Studio). Using these values, a 

simulation in water is initiated, run for 40𝑛𝑠, and 10 different conformations are sampled 

randomly from the trajectory. Then, partial charges for these conformations are computed. This is 

applied for different chain lengths of 5 − 15 monomers, and different chain tacticities (isotactic, 

syndiotactic and atactic chains).   

Table 5.1. Averaged partial charges for atoms of pNIPAAm monomers along the chain using BCC and RESP charge methods 
and their standard deviations. 

𝐀𝐭𝐨𝐦	 𝐁𝐂𝐂	 𝛔	 𝐑𝐄𝐒𝐏	 𝛔	

𝐂	 −𝟎.𝟏𝟑𝟕	 0.0025	 −𝟎.𝟒𝟎𝟒	 0.0083	

𝐂𝟏	 𝟎.𝟔𝟔𝟎	 0.0016	 𝟎.𝟖𝟖𝟕	 0.0042	

𝐍	 −𝟎.𝟓𝟔𝟒	 0.0028	 −𝟎.𝟕𝟗𝟔	 0.0071	

𝐂𝟐	 𝟎. 𝟎𝟗𝟓	 0.0013	 𝟎.𝟔𝟐𝟏	 0.0044	

𝐂𝟑	 −𝟎.𝟏𝟏𝟏	 0.0003	 −𝟎.𝟒𝟓𝟑	 0.0023	

𝐂𝟒	 −𝟎.𝟏𝟏𝟏	 0.0003	 −𝟎.𝟒𝟓𝟑	 0.0023	

𝐎	 −𝟎.𝟔𝟑𝟒	 0.0029	 −𝟎.𝟔𝟑𝟕	 0.0044	

𝐂𝟓	 −𝟎. 𝟎𝟕𝟐	 0.0014	 −𝟎.𝟐𝟏𝟒	 0.0034	

𝐇	 𝟎. 𝟎𝟒𝟏	 0.0004	 𝟎.𝟏𝟎𝟔	 0.0006	

𝐇𝟏	 𝟎. 𝟎𝟒𝟏	 0.0004	 𝟎.𝟏𝟎𝟔	 0.0006	

𝐇𝟐	 𝟎. 𝟎𝟒𝟏	 0.0004	 𝟎.𝟏𝟎𝟔	 0.0006	

𝐇𝟑	 𝟎. 𝟎𝟖𝟒	 0.0009	 −𝟎. 𝟎𝟎𝟔	 0.0010	

𝐇𝟒	 𝟎. 𝟎𝟒𝟏	 0.0004	 𝟎.𝟏𝟎𝟔	 0.0006	
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Figure 5.3. Labeling of pNIPAAm monomer atoms used in Table 1. 

Then, we perform simple ensemble averaging over all the obtained set of charges for a 

specific atom to find the averaged value for the atom in the monomer. Note the averaging takes 

place over chains of all different lengths and tacticities to produce a single charge for a given atom. 

Using this approach we can account for the conformational dependence of charge values, 

especially for the RESP charges that have been shown to be more conformation dependent than 

the BCC ones [217]. The obtained averaged values and their standard deviations for both methods 

are shown in Table 5.1. The corresponding atoms are labeled in Figure 5.3. As will be discussed 

in results section, when using the BCC charge values, we cannot predict the collapse behavior of 

pNIPAAm. 

𝐇𝟓	 𝟎. 𝟎𝟒𝟏	 0.0004	 𝟎.𝟏𝟎𝟔	 0.0006	

𝐇𝟔	 𝟎. 𝟎𝟒𝟏	 0.0004	 𝟎.𝟏𝟎𝟔	 0.0006	

𝐇𝟕	 𝟎.𝟑𝟐𝟏	 0.0026	 𝟎.𝟑𝟕𝟒	 0.0033	

𝐇𝟖	 𝟎. 𝟎𝟕𝟕	 0.0041	 𝟎.𝟏𝟔𝟐	 0.0037	

𝐇𝟗	 𝟎. 𝟎𝟔𝟒	 0.0021	 𝟎.𝟏𝟓𝟗	 0.0037	

𝐇𝟏𝟎	 𝟎. 𝟎𝟔𝟒	 0.0021	 𝟎.𝟏𝟓𝟗	 0.0037	
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Analysis tools of the GROMACS package are used to interpret the systems dynamics and 

all simulation snapshots are obtained by VMD [222] software. In the first part of the results section, 

which is related to the validation of the forcefield and partial charge method, the affinity of 

polymer chains for the environment (aqueous solution) is quantified by the radius of gyration of a 

single chain, which is calculated as follows: 

 
𝑅¾% =

1
2𝑁% 	Ëï𝑟I − 𝑟Uð

%

I,U

 
(5.1) 

Here 𝑁 represents the number of monomers and 𝑟I, 𝑟U are the positional vectors of each monomer. 

(𝑅¾ has been used in previous experimental and simulation studies to track the collapse of 

pNIPAAm chains upon heating.) To compare the distribution of API molecules around the 

polymer chains and measure API aggregation, Excipient-API and API-API radial distribution 

functions (RDFs) have been calculated. The excipient-API RDF is defined as the normalized 

probability of finding an atom of API molecule at a radial distance 𝑟 from an atom of an excipient 

molecule. The API-API RDF on the other hand is defined as the normalized probability of finding 

an atom of an API molecule at a radial distance 𝑟 from an atom of any other API molecule. The 

normalization of the RDF is performed with respect to the probability of finding a pair of atoms at 

a radial distance 𝑟 in a hypothetical ideal gas at the same average density as in the simulated 

solution. The general formula to find the RDF is as follows: 
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Here 〈𝜌c(𝑟)〉 is the particle density of type 𝐵 at a distance 𝑟 around a particle 𝐴, and 〈𝜌c〉erqLe is 

the particle density of type 𝐵 averaged over all atoms at a radial distance 𝑟KLM	(half of the box 

length) around particle 𝐴. 𝑟 is the position vector. It should be noted that the RDF plots depicts the 

time-averaged values of distribution functions after apparent equilibration of the system. 

A hydrogen bond between two atoms is defined as a donor-acceptor pair with center-of-

mass distance within a threshold distance (0.35	nm) and a hydrogen-donor acceptor angle of less 

than 30 degrees. Here, we define the normalized number of hydrogen bonds 𝑁O, to be the number 

of hydrogen bonds between excipient and some other species, divided by the total number of 

hydrogen donor/acceptor atoms of excipient molecules in the simulation box. The normalized 

“number of contacts” between excipient and API, 𝑁��,»¼½, is calculated as follows. We take an 

atom of excipient and consider a sphere of radius 0.6	nm around it; then we count the number of 

atoms of API molecules within that sphere and count each of them as a “contact” between excipient 

and API. Then, we repeat this for the next atom of excipient and include as new “contacts” any 

atoms of API within the radius of 0.6 nm of this next excipient atom, even if some of those API 

atoms already are counted as contacts of previously counted excipient atoms. After going through 

all atoms of excipient, we add up all the counted contacts and normalize by the number of atoms 

of excipient molecules in the simulation box to give the normalized excipient-API contact number 

N��,»¼½. Note that the number of atoms in an API molecule is 31 and the diameter of an API 

molecule is roughly 0.8nm. 

In figures with standard errors, the error bars are calculated from a simulation run in the 

following way. First, we discard the early portion of the run, prior to equilibration.  Then we 

number from 1 to 𝑁 the remaining time steps in the run, and determine the mean, 𝑥 and the standard 
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deviation of the quantity of interest over this series. To determine the number of statistically 

uncorrelated sampling points, we first define the autocorrelation function 𝑟(𝑘) as follows:  

 𝑟(𝑘) =
∑ (𝑥I − 𝑥)(𝑥IYH − 𝑥)³0H
IÕ1

∑ (𝑥I − 𝑥)%³
IÕ1

		 (5.3) 

where  𝑥I is the datum at time step 𝑖,  𝑘 is the lag number, and therefore 𝑘𝛥𝑡 is the autocorrelation 

time interval. Approximating 𝑟(𝑘) by an exponential function of 𝑘, we take the autocorrelation 

time step interval 𝑘qrxx to be the value of k at which 𝑟(𝑘) = 1/𝑒. Dividing 𝑁 by 𝑘qrxx	gives the 

effective number of sampling points, 𝑁^. Finally, we divide standard deviation by the square root 

of 𝑁^ to give the standard error. 

 

 

Figure 5.4. A sample simulation box including atactic polyNIPAAm chains (~10wt%) and Phenytoin molecules (~3.3wt%). API 
molecules are colored in red and shown in VDW format. Water molecules are left invisible. 

Two different sets of copolymers are employed in this study, alternating (for both Am and 

DMA) and block copolymers (DMA only). First, the alternating copolymers are studied to see the 

effect of Am and DMA monomers in the chain. Then, tetra-block copolymers of NIPAAm and 
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DMA with different block lengths (shown in Table 5.2) are considered. Both of Am and DMA are 

hydrophilic and DMA has an LCST of around	50¡C [223]. As stated before, except for the single 

chain simulations of pNIPAAm where we analyze the effect of tacticity, all other chains are atactic.  

5.4 Results and Discussion 

A step-by-step approach is used to study pNIPAAm and its interactions with drugs. First, 

a single chain of pNIPAAm is simulated in water at different temperatures to see whether the 

applied partial charge method and Forcefield can represent correctly pNIPAAm collapse or not. 

Next, the drug molecules are introduced to study the effect of the polymer on inhibition of drug 

aggregation and how the tacticity affects the polymer-API interactions at room temperature. In the 

next step, we examine the temperature dependence of pNIPAAm, pNIPAAm-co-Am, pNIPAAm-

co-DMA conformations and interactions with drug molecules. In addition, we consider the 

influence of the molar percent of DMA in the block copolymer NIPAAm-co-DMA and compare 

our results with recent experimental result of Ting et al. [144].  

 

5.4.1 Single Chain in Aqueous Solutions 

First, to validate the forcefield and the implemented partial charge method, simulations are 

performed for a single chain in water. Figure 5.5 shows the evolution of the radius of gyration of 

a 20-mer atactic (42% isotactic, 58% Syndiotactic) pNIPAAm chain at two temperatures, T =

280K and T = 320K for the two charge schemes, BCC and RESP. (We note here that the 

persistence length l� of pNIPAAm corresponds to 10 monomers. [221]) The first 20ns of the 

simulation contains large fluctuations and is therefore omitted. It can be seen that after the initial 
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fluctuations of the chain’s dimensions, at higher temperature (T = 320K), the chain tends toward 

a collapsed conformation (as shown later in Figure 5.7) and the Rè values are much lower than 

at	T = 280K for RESP partial charges (Figure 5.5(a)).  However, with BCC partial charges (Figure 

5.5(b)), we do not see the collapse. We have tried a higher temperature (T = 340K) for BCC but 

still no transition is observed. Using RESP charges, as the temperature is raised above the predicted 

experimental value of LCST, the chain decreases its exposed surface to the water from ~27nm% 

(𝑅¾ = 1.2	nm) to 23	nm%	(𝑅¾ = 0.8nm) as shown by the plot of solvent accessible surface area 

(SASA) versus time in Figure 5.6. SASA has been computed using GROMACS command tool, 

which uses the double cubic lattice model [224].  

 

 

Figure 5.5. Evolution of radius of gyration for two partial charge schemes used in the simulation of an atactic 20-mer atactic 
pNIPAAm chain. (a) RESP (b) BCC. 
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Figure 5.6. Solvent accessible surface area (SASA) of an atactic 20mer at 280K (below LCST) and 320K (above LCST). The 
radius of solvent probe is 0.14	𝑛𝑚. RESP charges has been used for this simulation. 

We also perform simulations for temperatures over the range of 280 − 320𝐾 for a 26mer 

chain, matching the chain length simulated by Gangemi et al. [140]. Figure 5.7 shows the resulting 

temperature dependence of the average values of 𝑅¾. This graph is in very good agreement with 

both experimental data and previous simulation studies since it clearly shows the collapse of the 

single chain by increasing the temperature and it also predicts the LCST of pNIPAAm to be 

around	300 − 305K. Short chains (10mers) are also simulated, and since these chains are one 

persistence length long, as expected, the collapse cannot be clearly seen due to the insufficient 

dihedral movements [139]. The number of hydrogen bonds between the polymer and solvent, 

given in Figure 5.8, shows a 35% drop with increase in temperature from 280 K to 320 K, and 

therefore a rise in hydrophobicity of the polymer; in agreement with previous studies [225]. These 

results clearly show that our parameters and methods can predict the coil-to-globule transformation 

of pNIPAAm. In the following, the same successful partial charge method (Solvated ensemble 

averaged RESP) and forcefield are applied. 
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Figure 5.7. Radius of gyration of an atactic 26mer NIPAAm vs. temperature. Each run was performed for 85	𝑛𝑠 and the averaged 
values shown here are calculated after equilibration, namely 23 − 30	𝑛𝑠. Two chain conformations are shown representing the 
typical chain geometry below and above the LCST. 

 

Figure 5.8. Normalized number of hydrogen bonds between polymer chain (26mer atactic) and water at 280𝐾 and 320𝐾. 
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5.4.2 Single Chain in Presence of Drug 

Experimental studies have shown the importance of isotactic content on transition 

dynamics of pNIPAAm chains [133]. To analyze the effect of tacticity on pNIPAAm-API 

molecular interactions, single 15mer chains of pNIPAAm with molecular weight of 1.52 Åè
���

 and 

different tacticities are simulated in the presence of 10 API molecules of phenytoin (corresponding 

to 2.3wt% polymer and 6wt% API) at	𝑇 = 295K. Figure 5.9 shows the behavior of the API 

molecules with and without the existence of an excipient chain in the simulation box. The 

excipient-API and API-API RDFs (𝑔(𝑟)) are shown in Figure 5.10(a)-(b). Without the excipient 

in the simulation box, API molecules tend to aggregate, as is shown in Figure 5.9(a)-(b) and give 

the highest API-API radial distribution function (RDF), 𝑔(𝑟). However, the presence of 

pNIPAAm inhibits their aggregation by making contact with hydrophilic and hydrophobic parts 

of phenytoin causing a ~35% drop in API-API 𝑔(𝑟) peak height from 10 to around 6.5. However, 

the magnitude of this inhibition of aggregation depends on the interaction sites that the excipient 

provides for the APIs. Syndiotactic chains, due to their ordered arrangement of functional groups 

on both sides of the backbone, provide more sterically accessible interaction sites. On the other 

hand, the isotactic chain has the fewest accessible sites because of its compact arrangement and 

one-sided display of side groups. In Figure 5.10, the syndiotactic chain gives the lowest API-API 

RDF and highest excipient-API RDF. For an aqueous solution of pNIPAAm, Ray et al. [133] 

showed that the higher the syndiotactic content, the higher the collapse transition temperature, 

indicating that increased isotacticity decreases the solubility because of the close packing of the 

functional groups. A similar trend is seen in the average number of contacts between polymer and 

drug, given in Figure 5.11. The error bars, which represent standard deviations, are relatively large 
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because of significant fluctuations due to the low molecular weight of the single polymer chain in 

the simulation box (~2.3	%wt).  

 

Figure 5.9. The evolution of (a-b) water-drug and (c-d) water-drug-excipient systems. Figures 5.9(a) and 5.9(c) show the initial 
random distributions of API molecules and 15-mer pNIPAAm in 5.9(c). 5.9(b) and 5.9(d) show these after 50ns of simulation at 
298K. Water molecules are omitted from the images for clarity. 

 



 145 

 

Figure 5.10. Average number of excipient-API contacts per excipient atom (𝑁@M,���). The error bars are the standard deviations. 

 

5.4.3 PNIPAAm and Copolymers 

The next step is the simulation of multiple polymer chains, including homopolymer 

pNIPAAm and its copolymers in aqueous solutions to study their effect on API aggregation. For 

consistency with previous work [13], 3.3 wt% drug and 10wt% polymer is used in all cases, which 

results in 3-5 polymer chains (with 20 monomers) and 10-11 drug molecules, at body temperature 

𝑇 = 310K and at	𝑇 = 295𝐾 which are respectively above and below the LCST of pNIPAAm. 

Both pNIPAAm-co-Am and pNIPAAm-co-DMA alternating block copolymers are simulated. We 

also study the block copolymers of pNIPAAm-co-DMA with different molar fractions of DMA 

content, a topic inspired by the results of Ting et al. [144]. Figure 5.2 depicts the structures of the 

different copolymers. 
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Table 5.2. Molar fraction of Am and DMA comonomers in copolymers used in simulations. a: number of monomers in NIPAAm 
block and b: number of monomers in DMA block. 

 

As the number of polymer chains in the simulation box increases, the drug molecules are 

more likely to become trapped in the network formed by excipient macromolecules. Compared 

with single chain simulations, the multi-chain system reaches a steady, apparent equilibration, state 

much faster.  

Different chain lengths (10, 15, 20mer) for each pure pNIPAAm and copolymer are tested 

to see the effect of chain length on excipient-API RDF, where the peak height is taken as a measure 

of the affinity of the excipient to interact with drug. The simulations are repeated with different 

random initial positions of API molecules and polymer chains. The first set of data is for 

pNIPAAm, pNIPAAm-co-Am and pNIPAAm-co-DMA alternating copolymer (a = b = 1 in 

Figure 5.2). Data are gathered after the system has reached apparent equilibration, which we take 

to be the time, namely 25	𝑛𝑠, at which the number of excipient-API contacts reaches 

approximately a constant value (Figure 5.12). Figure 5.13(a)-(b) shows polymer-API RDFs for the 

alternating copolymers and for pure pNIPAAm chains at 295K and	310K for 20mers.  

 

Alternating Copolymers Index numbering 
in figure 2 NIPAAm (isopropylacrylamide) Am (Acrylamide) 

0.5	 0.5	 a = 1, b = 1	
NIPAAm (isopropylacrylamide) DMA (Dimethylacrylamide) 	

0.5	 0.5	 a = 1, b = 1	
Tetrablock Copolymers 	

NIPAAm (isopropylacrylamide) DMA (Dimethylacrylamide) 	
0.9	 0.1	 a = 9, b = 1	
0.8	 0.2	 a = 8, b = 2	
0.7	 0.3	 a = 7, b = 3	
0.5	 0.5	 a = 5, b = 5	
0.3	 0.7	 a = 3, b = 7	
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Figure 5.11. Number of contacts between pNIPAAm and phenytoin normalized by the number of pNIPAAm atoms, as defined in 
the methods section. The sample includes three 20mer atactic pNIPAAm chains and 10 drug moleucles. 

For 20mer excipients, the homopolymer pNIPAAm chain has the highest excipient-API 

RDF peak at room temperature (~4.65); however, as the temperature reaches body temperature, 

which is above its LCST, the RDF peak drops by almost	22%. The normalized average number of 

contacts between excipient and API molecules per excipient atom drops from 9.1 to 7.6, and the 

number of hydrogen bonds between excipient and API molecules per donor or acceptor hydrogen 

bonding site on the excipient also drops from 0.09 to 0.07. Compared with the single chain 

simulations, the number of contacts increases with more chains in the simulation box, as expected. 

We generally expect a decrease in the number of hydrogen bonds as temperature increases [225]  

and the system passes through the coil-to-globule transition temperature of pNIPAAm. The chains’ 

average 𝑅¾ values as functions of temperature are depicted in Figure 5.13(e). At 310K the chains 

on average become more compact and reduce their contacts with surrounding water and API 

molecules, while at	T = 295K, the radius of gyration fluctuates around higher average values. For 

copolymers, as shown in Figure 5.13(c), the number of hydrogen bonds decreases as temperature 
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increases, just as is the case for homopolymer pNIPAAm. As discussed before, Am is highly 

hydrophilic and has the same number of hydrogen donor and acceptor as NIPAAm and therefore 

the drop in 𝑁ù with increasing temperature is similar to that seen in NIPAAm.  

Interestingly, pNIPAAm-co-DMA has more contacts with phenytoin molecules (𝑁@M0���) 

at 310𝐾 than at 295𝐾; see Figure 5.13(d). It has been shown experimentally that pDMA polymers 

have a higher collapse transition temperature (~48�C) than does pNIPAAm [223],  since the 

functional groups of DMA are more hydrophilic than for NIPAAm. Therefore, adding DMA co-

monomers reduces the number of hydrophobic sites that phenyl groups on phenytoin might interact 

with. DMA also lacks the highly polarized (𝛿0B.CG~) N-H	(𝛿YB.�Cp) bond present on NIPAAm that 

can interact with the charged ring of phenytoin. Thus, it seems initially puzzling that at body 

temperature DMA co-monomer would increase the peak in the API-excipient RDF by ~15% 

relative to pNIPAAm, as shown in Figure 5.13(b).  

Experimental dissolution studies suggest that NIPAAm-co-DMA excipients improve 

interactions with API relative to NIPAAm excipients over a longer time scale (3 hours) while Am 

homopolymer can only maintain drug concentration for a limited amount of time (30 minutes) 

[144]. A possible explanation for both the increased RDF peak and the improved experimental 

API-polymer interactions seen in the copolymer relative to the homopolymer is suggested by 

comparing the 𝑅¾ for the DMA copolymer in Figure 5.13(e) with that for the pNIPAAm 

homopolymer, in both cases obtained by averaging after 20	𝑛𝑠 of equilibration. At 𝑇 = 310𝐾, 

pNIPAAm chains have low (~0.9	nm) 𝑅¾ while in the pNIPAAm-co-DMA copolymers chains 

are more extended at this temperature. This shows that the presence of DMA monomers raises the 

𝑅¾ values at body temperature, keeping the chain extended, thus presumably improving the steric 
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availability of binding sites for API molecules. pNIPAAm-co-Am copolymer shows the same 

trend in its 𝑅¾ as well but as the experiments suggest, pNIPAAm-co-Am cannot hold its interaction 

with drug molecules for long compared to pNIPAAm-co-DMA. In other words, reducing the 

number of hydrophobic interactions within the polymer by addition of DMA co-monomers helps 

prevent the collapse of the chains at elevated temperature, but, presumably, at the cost of lower 

hydrophobic functionality, and consequently weaker interaction with phenytoin. To confirm this 

statement, in addition to the radius of gyration data in Figure 5.13(e), we perform single chain 

simulations to see how the existence of DMA comonomers affects the dimensions of the excipient 

chain as a function of temperature. The radius of gyration for a pNIPAAm homopolymer at the 

two temperatures 𝑇 = 280𝐾 and 𝑇 = 320𝐾 has been shown in Figure 5.5(a). We add the data for 

a single 20mer alternating copolymer chain of pNIPAAm-co-DMA, in Figure 5.14(a). As we can 

see, the radius of gyration of the copolymer shows no collapse at elevated temperature, unlike the 

behavior of the pNIPAAm homopolymer. We conclude that the presence of bulky DMA 

comonomers interferes with the interaction of hydrophobic groups of the remaining NIPAAm 

monomers with each other and consequently inhibits the coil-to-globule transition. Therefore, 

LCST property of pure pNIPAAm chains will be interrupted at this range of temperature and length 

scale, it acts like ordinary polymer chains. 

Furthermore, to compare the ability of NIPAAm and DMA monomers to interact with API, 

we show in Figure 5.14(b)-(c), the excipient-API RDF, and the average number of contacts of 

syndiotactic 15mers of homo-pNIPAAm and of homo-pDMA with drug molecules at 295𝐾. Both 

plots show a weaker affinity of phenytoin drug molecules for pDMA than for pNIPAAm. Both 

chains are simulated at 𝑇 = 295𝐾, below the LCST of both pNIPAAm and of pDMA, so that both 

chains are in their extended conformations.  NIPAAm itself has both hydrogen bonding and 
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hydrophobic binding sites with API molecules. DMA, on the other hand, has only one hydrogen 

bond acceptor, alongside weaker hydrophobic group compared to the isopropyl group in 

pNIPAAm.  

Thus, adding DMA comonomers will reduce the affinity of API molecules for the 

excipient. On the other hand, DMA comonomers will prevent the collapse of pure pNIPAAm 

chains and consequently, provide more surface area for excipient-API interactions at T = 310K. 

Therefore, there should be a balance between maintaining both polymer chain extension and 

functionality of monomers, and DMA comonomer content can be tuned to achieve this balance.  
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Figure 5.12. Simulation data for alternating copolymers of pNIPAAm 20mers with Am and DMA. (a) Excipient-API RDF at (a) 
𝑇 = 295𝐾 and (b) 𝑇 = 310𝐾. (c) Number of hydrogen bonds per donor or acceptor hydrogen bonding site on the excipient and 
(d) number of contacts between polymer chains and API molecules per excipient atom. (e) Average radius of gyration of polymer 
chains. The error bars show standard errors. 
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Figure 5.13. (a) Radius of gyration of pNIPAAm-co-DMA 20mer alternating copolymer (b) Excipient-API RDF and (c) averaged 
normalized number of contacts per excipient atom for one 15-mer syndiotactic pNIPAAm and one pDMA. There are 10 API 
molecules in the box at 𝑇 = 295𝐾. Error bars show standard deviations. 

To study this balance in more detail, we perform simulations with different molar 

percentages of DMA, changing a and b in Figure 5.2 to achieve the molar fractions in Table 5.2 

within a 20mer tetrablock copolymer at 310𝐾, and plot in Figure 5.15 the excipient-API and API-

API RDF peak heights against copolymer composition. (The concentrations of polymer and drugs 

are kept at 10wt% Excipient-3.3wt% API by adjusting the number of molecules in the box.) Figure 

5.15 clearly shows an optimum, or maximum in the excipient-API RDF peak height, in the range 

of 70 − 80 molar fraction of NIPAAm. The maximum peak height (4.66) exceeds that for the 

alternating copolymer (4.09), in Figure 5.13(b), showing that that block copolymer with optimized 
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co-monomer content interacts more strongly with API molecules than does an alternating 

copolymer. Figure 5.16 shows the evolution of the system as a function of time for 20mer chain 

with phenytoin molecules, starting from random positions and into a cluster.  

 

 
Figure 5.14. The peak heights of excipient-API (blue line) and API-API (red line) RDF for block copolymers of pNIPAAm (with 
different molar fractions) with DMA at 𝑇 = 310𝐾. 

Finally, Figure 5.16 shows the effect of chain length on excipient-API interactions at two 

temperatures at fixed molar composition. For the shorter 10mer, the decrease in the peak height of 

the RDF is much less than for the 20mer, most likely because the 10mer is too short to collapse. 

This is related to the effect of chain length on globule transition of pNIPAAm studied by Tucker 

er al. [139] which showed that shorter chains (no. monomers < 11) only collapse at higher 

temperatures than are needed for regular longer-chain pNIPAAm LCST to collapse.  
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Figure 5.15. Excipient-API RDF for (a) 20mers and (b) 10mers of homo-pNIPAAm below and above the LCST. 

The above results on copolymerization are in good agreement with experimental results 

[144]. They found in dissolution tests that 70%NIPAAm-30%DMA (% molar fraction) is the most 

efficient excipient in maintaining drug concentration in dissolution tests. Our model also predicts 

that low molecular weight (short) chains should be more efficient in binding with hydrophobic 

drug molecules, and eventually provide more prolonged solubility of API in solutions at body 

temperature compared to high molecular weight (long) chains, Figure 5.16.  

Although this agreement is encouraging, possible differences due in part to the much longer 

chains (𝑙 ≫ 𝑙u) and much longer time scales used in the experiments relative to the simulations of 

course cannot be ruled out. The exploration of additional effects beyond those explored here would 

require simulations with 𝑛 > 50 monomers and longer simulation times. 
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Figure 5.16. Evolution of polymer-API complex from initial state after energy minimization (a) to configuration after (b) 20𝑛𝑠 (c) 
40	𝑛𝑠 (d) 60	𝑛𝑠.  Comparing Figure 5.9(b) with 5.9(d), it is evident that the presence of polymer chains and their interactions with 
functional groups of phenytoin prevents API aggregation. 

5.5 Conclusions and Future Directions 

This study explores for the first time the molecular interactions between the thermo-

sensitive biocompatible polymer of N-isopropyl acrylamide, (NIPAAm), and its copolymers with 

acrylamide (Am) and dimethylacrylamide (DMA) with phenytoin, a representative poorly soluble 

active pharmaceutical ingredient (API) in an aqueous solution. 

The effects of chain length, tacticity, and comonomer content were investigated. Our 

simulations show that excipients complex with the API resulting in an inhibition of API 
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aggregation, as revealed by radial distribution functions between API and polymer. Short 20mer 

tetrablock copolymers of NIPAAm and DMA with around 20-30 molar percent of DMA increase 

this inhibition dramatically based on tuning the number of hydrophobic interactions to avoid coil 

collapse while maintaining enough hydrophobic groups to bind the API.  These results, including 

an optimal DMA composition of around 20 mole percent, correlate nicely with the experimental 

results for the dissolution and release of solid dispersions of this API with NIPAAm-co-DMA 

polymers in experimental dissolution tests.  Both simulations and experiments thus show that 

copolymers of NIPAAm with more hydrophilic monomers at optimized co-monomer composition 

perform better as excipients and help maintain highly supersaturated concentrations of APIs in 

water without aggregation, which could result in higher API absorption in the intestine. 

At room temperature, due to hydrophobic attraction between isopropyl groups of excipient 

and phenyl rings of phenytoin, along with chain extension of pure pNIPAAm, it has stronger 

binding to APIs than do the copolymers. However, as the temperature increases and reaches body 

temperature, which is above the lower critical solution temperature, its interactions with API drops 

dramatically since it tends to make more compact conformations and reduce its contact with the 

environment. With the introduction of more hydrophilic comonomers into the chain, the number 

of potential hydrophobic interactions with API molecules decreases but avoidance of the collapse 

of the radius of gyration apparently helps maintain interactions between polymer and drug. A short 

pNIPAAm chain of 10 monomers shows a lower drop in excipient-API RDF between these two 

temperatures presumably because such short chains are too rigid to collapse easily and their LCST 

is much higher than body temperature. Thus, to achieve the best pNIPAAm-based excipient for 

inhibition of drug aggregation, for chains longer than the persistence length, a balance is needed 

between the LCST and the hydrophobicity of the comonomers.  
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Although the simulation results are promising, the length and time scales reachable by 

atomistic simulations are not sufficient to observe rare nucleation events and crystal growth nor 

the effect of polymer on these processes. Furthermore, even though our results clearly show the 

collapse of single chains in aqueous solutions as temperature increases above the LCST, to 

understand the dynamics of gels, which are composed of a complex network of these chains, we 

would need to simulate chains containing hundreds of monomers, which is far beyond the 

capability of atomistic simulations, and would require the development of coarse-grained models 

of both polymer and drug, perhaps also using implicit solvent to increase simulation time/length 

scale. With such a coarse-grained model, one might also study the diffusion of APIs in detail. Our 

atomistic simulation data are thus not only valuable in their own right, but could be used to build 

coarse-grained models that might reach the larger length and time scales at which additional 

information can be gather and better connections made with experimental studies.  
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Chapter 6 : Conclusions 

In this thesis, I studied the unraveling dynamics of entangled polymer liquids, including 

polymer melts, entangled solutions and polymeric glass. For polymer melts and solutions, 

conventional tube theories assume that in strong extensional flows, as soon as the chain become 

locally fully stretched, at level of entanglement spacing, the entanglement network deforms 

affinely and the stress becomes fully saturated even if the chain is still in a folded state. This 

assumption results in a sudden rise in extensional stress, and viscosity, around Hencky strain of 3. 

We showed that even if the chain is fully stretched but still folded at some fold points, or kinks, 

the stress takes much smaller values than that predicted by the tube theory. Instead, beyond Hencky 

strain of 3, the unraveling dynamics at these fold points will dominate the entangled system. I 

developed a multiple-chain simulation technique to study the unraveling dynamics of an entangled 

system of linear chains at asymptotically high extension rates. By mutually entangling polymer 

chains, in a one-dimensional simulation box, at their fold points and requiring that the force and 

velocities of shared kinks are identical, we solve the tension equations of all chains, where 

Brownian motion is neglected, due to its much smaller values compared to drag and tension. 

However, to apply the kink dynamics to real polymer systems, such as Polystyrene samples shown 

in chapter 2, we need to know the chain statistics in an entangled system at high strains. Therefore, 

we develop a simple single chain slip-spring simulation method to study the evolution of a polymer 

chain in an entangled domain from equilibrium state to the kinked conformation. Single chain slip-

spring model simply replaces the effect of entanglement network by a certain number of springs 

along the contour length of a bead-spring polymer chain. In developing the single chain method 
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for fast flows, we use some of the results of our kink dynamics analysis to mitigate the high 

tensions generated due to affine motion of anchoring points of slip-springs. Finally, we compare 

the predictions of kink dynamics with experimental data of Polystyrene samples at high extension 

rates and show the much better agreement of the entangled kink dynamics technique compared to 

the tube model’s predictions. Therefore, by implementing a multi-scale scheme, we studied the 

unraveling dynamics in an entangled system and the need for its implementation in theory to 

achieve a quantitative agreement with experimental data. Inclusion of unraveling dynamics in tube 

theory can result in a modified expression for the maximum tube stretch, 𝜆KLM, which in the current 

version, is a constant and determined by the entanglement density of the network at equilibrium 

state. 

As another polymer liquid of importance, we analyzed the effect of kinks and locally highly 

stretched strands on the stress and conformation evolution of polymer chains in polymeric glass. 

Using a modified hybrid model and molecular dynamics simulations, we show that the underlying 

physics behind strain hardening in loosely crosslinked polymer glasses is not the entanglement 

network. The combination of HBD and MD simulations results offer a clear picture explaining the 

large magnitude of glassy-polymer strain-hardening: hardening in the glassy state arises primarily 

from chain stretching and orientation at scales well below that of the entanglement network. This 

improved understanding, should help in the design of deformation and temperature protocols that 

maximize properties of polymeric glasses for improved product performance. For pre-yield 

regime, a modification of segmental dynamics is implemented into the previously established one-

mode model. Using stretched exponential concept and experimental values of 𝛽 and 𝜏uxyx , we 

developed a multi-mode relaxation dynamic for polymeric glass, which is important at low strains 

in extension startup. The very good agreement between MD and our modified HBD show the 
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capability of our simple HBD technique to predict the whole regime, pre-yield and post-yield, of 

polymeric glass deformation.  

For the last part of this thesis, we investigate the design of thermo-responsive polymer 

excipient at atomistic levels in aqueous solutions. Due to the biocompatibility and LCST response 

of Poly(N-isopropylacrylamide) at 32oC, it has become one of the most studied polymers for drug 

delivery applications. However, there has been no quantitative, systematic study on the pNIPAAm 

structure effect on its interaction with hydrophobic drug molecules. Therefore, using atomistic 

molecular dynamics simulations and close collaborations with experimentalists at university of 

Minnesota, we study the effects of tacticity and co-polymerization on the molecular level 

interactions of pNIPAAm with hydrophobic Phenytoin. We showed that block co-polymerization 

of pNIPAAm with a hydrophilic polymer such as poly(Dimethylacrylamide) improves its 

interaction with hydrophobic drug molecules in aqueous solution at body temperature, despite the 

fact that pDMA has weaker interaction with Phenytoin. In fact, the existence of hydrophilic 

functional groups between the amphiphilic functional groups of pNIPAAm, prevents the chains 

from collapsing at high temperatures, but at the same time decreases the interactions of 

copolymerized chain with neighboring drug molecules. Therefore, by studying different molar 

fractions of pNIPAAm and pDMA in the chain, we find a sweet spot for molar fraction of each 

component that gives us the highest affinity between polymer chain and drug molecule. Although 

the simulation results are promising, the length and time scales reachable by atomistic simulations 

are not sufficient to observe nucleation events, crystal growth and specifically the effect of polymer 

on these processes. However, as mentioned previously, output data of atomistic simulations can 

lead to efficient coarse-grained models. Therefore, our atomistic simulation data are thus not only 

valuable in their own right, but could be used to build coarse-grained models that might reach the 
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larger length and time scales at which additional information can be gathered and better 

connections be made with experimental studies
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