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ABSTRACT

As association studies continue to advance, more efficient statistical methods are

required to fully utilize existing data and to provide insight into genetic architecture

of complex traits. Identifying association for a set of phenotypes or with respect to a

set of variants can be particularly useful for understanding how biological networks

might be affecting the patho-physiology of outcomes. In this dissertation, I attempt

to develop computationally efficient statistical methods that facilitate insights into

the mechanism of complex traits and understanding of their underlying biology.

In Chapter II, I propose a generalized framework for gene-based tests with mul-

tiple correlated phenotypes. In genetic association analysis, a joint test of multiple

correlated phenotypes can increase power to identify sets of trait-associated variants

within genes or regions of interest. Existing multi-phenotype tests for rare variants

make specific assumptions about the patterns of association with underlying causal

variants and the violation of these assumptions can reduce power to detect associa-

tion. In this project we develop a general framework for testing pleiotropic effects of

rare variants on multiple continuous phenotypes using multivariate kernel regression

(Multi-SKAT). To increase power of detecting association across tests with different

kernel matrices, we developed a fast and accurate approximation of the significance

of the minimum observed p-value across tests. To account for related individuals,

our framework uses random effects for the kinship matrix. Using simulated and

exome-array data from the METSIM study, we show that Multi-SKAT can increase

power over single-phenotype SKAT-O test and existing multiple phenotype tests,

while maintaining type I error rate.

xiv



In Chapter III, I extend Multi-SKAT to a meta-analysis strategy, namely Meta-

MultiSKAT, to combine results from several studies. Our method involves extracting

score statistics and phenotype adjusted variant relationship matrix from individual

studies which are then combined using a kernel that models the heterogeneity of

effects between the studies. The proposed method accommodates situations where

one or more phenotypes have not been observed in a particular study and studies

have different correlation patterns among the phenotypes. With minor modifications

our method can be used to test the combined effects of common and rare variants in

a region, as well as incorporate functional information on individual variants. Meta-

analysis of 4 white blood cell subtype traits from the MGI and SardiNIA studies

show that Meta-MultiSKAT can identify associations which were not identified by

existing methods and were not significant in individual studies.

In Chapter IV, I propose a subset based approach for gene-set (pathway) associ-

ation analysis using variant level summary statistics. Existing gene-set association

(GSA) methods can have low statistical power when only a small fraction of the genes

is associated with the phenotype and interpreting results in terms of the underly-

ing genetic mechanism can be challenging since they cannot identify possible active

genes within the set. For this, we propose a maximum-type statistic that selects

the subset of genes with maximal evidence of association as the driver-genes and

evaluates its significance using efficient simulation techniques. Through the analysis

of summary statistics from the UK Biobank data for 1201 phenotypes with 10679

gene-sets, we show that our method can be used to identify novel associations across

a large number of phenotypes and gene-sets.
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CHAPTER I

Introduction

In the past decade, biological datasets have increased in both size and scope

due to the dramatic developments in high-throughput technologies. In particular,

for quantitative human genetics, the availability of data on high-density single nu-

cleotide polymorphisms (SNPs) through micro-arrays provided unprecedented oppor-

tunities, especially to design large-scale genome-wide association studies (GWAS).

In a standard GWAS, the association between a genetic variant and the phenotype

is evaluated typically through a regression model. These tests are carried out for

millions of SNPs across the genome [Bush and Moore, 2012, Visscher et al., 2012].

The results can highlight the region(s) in the genome which might be significantly

associated with the phenotype.

One of the earlier genetic association studies in 2005 had a relatively small sample

size of 96 age-related macular degeneration cases and 50 controls [Haines et al., 2005,

Edwards et al., 2005, Klein et al., 2005]. But its results led to increasing interest in

this field and was followed by several other GWASs including that of Wellcome Trust

Case Control Consortium (WTCCC) in 2007 [The Wellcome Trust Case Control

Consortium, 2007]. Since then, the GWAS datasets have expanded at a fast pace

identifying thousands of genetic variants associated with hundreds of different traits

and continues to grow even now. For example, the current version of UK-Biobank

1



study has data on more than 500, 000 individuals for over 1, 500 phenotypes [Bycroft

et al., 2018]. GWAS findings have now been reported for a numerous complex traits

across several domains, including common diseases, complex traits, gene-expression

and brain-imaging traits [Visscher et al., 2017]. As of May 30th, 2019, GWAS catalog

provides information on more than 120,000 reported associations across more than

2, 500 traits [Buniello et al., 2019].

Although array-based technologies has produced genotype data on millions of

variants across thousands of samples within an affordable price range [Marchini and

Howie, 2010, LaFramboise, 2009], the advent of cost-effective sequencing technology

has further transformed the landscape of GWAS [Cirulli and Goldstein, 2010]. Cur-

rent sequencing studies allows inferences to be based on the full set of variants for a

given trait and fuels downstream analysis of their functional consequences. In partic-

ular, this allows researchers to evaulate the role of rare-variants in detail, which was

not possible with the previous micro-array-based genotyping. However, the statisti-

cal methods for analysis of GWAS data are not well suited for detecting rare-variant

associations. Especially in studies that do not have a huge sample size, these statis-

tical methods are usually underpowered to detect rare-variant association. This has

presented the research community with a need to develop novel statistical methods

to analyze data generated by large-scale sequencing initiatives.

1.1 Rare variant association (RVA) studies

Despite the fact that large-scale meta-analysis and biobank-scale association anal-

ysis are being conducted, most of the genetic variants identified to date have low effect

sizes and explain only a small proportion of the trait heritability. For example, a

study on type 2 diabetes involving a sample of around 650,000 individuals identified

143 genome-wide significant loci but explained only about 21% of trait heritability

[Xue et al., 2018]. Several explanation have been put forth for this problem of missing
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heritability [Eichler et al., 2010, Zuk et al., 2012]. One of the possible explanations

is that low-frequency (1% ≤ MAF ≤ 5%) and rare (MAF ≤ 1%) variants could ex-

plain additional disease risk or trait variability. Rare variants are known to play an

important role in Mendelian disorders, rare forms of common diseases [Gibson, 2012]

as well as complex diseases [Gudmundsson et al., 2012]. Additionally, evelutionary

theory predicts that deleterious alleles are likely to be rare due to purifying selection

[Kryukov et al., 2009]. This is confirmed by the fact that, loss-of-function variants,

which prevent the generation of functional proteins, are especially rare [The 1000

Genomes Project Consortium, 2012, MacArthur et al., 2012]. Hence it is logical to

think that rare or low frequency variants are involved in the genetic architecture of a

given trait and hence incorporating them in the analysis could increase the fraction

of the trait heritability that is explained by genetic variants.

Although, whole-genome or whole-exome sequencing have made it possible for

researchers to analyze rare variants, empirical studies have shown that the standard

statistical framework of GWAS is underpowered to detect associations with rare or

low-frequency variants, unless the sample size or the effect size of the variant is very

large. To boost power, region-based collapsing or binning approaches have become a

standard for analyzing rare variants. In this approach, the variants are first grouped

into biologically relevant regions (or genes) and then the association of joint effect of

multiple rare variants in the region with the outcome is evaluated. Such groupings

can increase the power to detect moderate to weak effects by the accumulating single-

SNP effects within the region or gene and by lowering the multiple testing burden.

Several novel statistical methods have been developed to investigate the associ-

ations between rare variants within a region and a trait. For example, the burden

test [Li and Leal, 2008] collapses variants in a gene or functional region into a single

score and then tests the association between this collapsed score and the trait. The

Sequence Kernel Association Test (SKAT) [Wu et al., 2011] employs a mixed effects
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model and conducts a variance components test for the association. These meth-

ods and others have identified regions or genes harboring rare-variants associated to

phenotypes like hypertriglyceridemia, type-2 diabetes and alzheimer’s disease.

Inspite of the advancements made by RVA studies, the dramatic growth of genetic

datasets continue to present the research community with several further interesting

directions for research. One primary example of such problem, is that of detecting

cross-phenotype (pleiotropy) effects.

1.2 Detecting pleiotropy

Pleiotropy occurs when one gene has an effect on multiple phenotypes [Sivaku-

maran et al., 2011, Li et al., 2014, Yang et al., 2015]. Twin and family studies have

long provided evidence for genetic correlations among diseases (such as major depres-

sive disorder and generalized anxiety disorder [Kendler et al., 1992] or rheumatoid

arthritis and systemic lupus erythematosus [Criswell et al., 2005]), suggesting a role

for pleiotropic genetic effects. In addition, the co-occurrence of multiple diseases

in the same individual (for example, type 1 diabetes and autoimmune thyroid dis-

ease [Eaton et al., 2007]) point to shared genetic causes. The genetic loci identified

through GWAS also show that variants can be associated with multiple and distinct

phenotypes. There are numerous examples where the same variants show associa-

tion with multiple traits (rs6983267 associated with prostate and colorectal cancer

[Tomlinson et al., 2007, Thomas et al., 2008]); A recent evaluation of genome-wide-

significant single-nucleotide polymorphisms (SNPs) listed in the National Human

Genome Research Institute (NHGRI) Catalog of Published Genome-Wide Associa-

tion Studies found that 4.6% of SNPs and 16.9% of genes have cross phenotype effects

[Sivakumaran et al., 2011, Yang et al., 2015]. Thus it remains important to identify

pleiotropic effects for better understanding the biological mechanism underlying a

complex trait.
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Currently, most cross-phenotype association methods are designed to assess the

effect of a single polymorphism at a time and have low power for detecting rare-

variants with pleiotropic effects. Recently, several rare-variant cross-phenotype tests

have been proposed in literature as well. For example, [Wang et al., 2015] pro-

posed a gene-level test of pleiotropy that uses multivariate functional linear models

(MFLM); [Broadaway et al., 2016] used a matrix-similarity based approach to test

for cross phenotype effects of rare variants (GAMuT); [Wu and Pankow, 2016] de-

veloped a score based kernel association test for multiple traits, MSKAT, which has

similar performance to GAMuT; and [Zhan et al., 2017] proposed DKAT, which uses

the similarity-based approach as in GAMuT but is suitable for high-dimensional of

phenotypes.

Despite these developments, existing methods have certain major limitations.

Most methods were developed under a set of specific distributional assumptions re-

garding the effects of the variants on multiple phenotypes. Hence, they lose power if

the actual underlying structures in the data are significantly different from them. Al-

though there has been an recent attempt to make the association results more robust

by combining analysis results across different models [Zhan et al., 2017], computa-

tional scalability of such methods for genome-wide applications is yet to be achieved.

Further, very few of the methods can adjust for relatedness between individuals which

is a common occurrence in many of the current association studies. Thus, to apply

these methods, related individuals must be removed from the analysis to maintain

type I error rate. This can cause a substantial loss in sample size and hence power,

especially for datasets where related individuals are present.

In Chapters II and III, we address these problems and propose novel and com-

putationally efficient methods to detect rare-variants with cross-phenotype effects.
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1.3 Gene-set or Pathway association (GSA) analysis

Besides having rare and low frequency variants associated with a trait, one other

possible explanation for missing heritability might be that the trait is highly poly-

genic with many weak to moderate associations with genetic variants which standard

single-variant or single-gene analysis might be underpowered to detect [Manolio et al.,

2009]. Indeed, with large number of genetic polymorphisms examined in GWAS and

the massive amount of tests conducted, such real but weak associations are likely

to be missed after multiple comparison adjustment [Liu et al., 2010]. Studies have

found that the cumulative effect of a large number of weakly associated SNPs, most

of which are not statistically significant on their own, can predict disease status or

symptoms, for example in psychiatric conditions [Wray et al., 2014]. This highlights

the role of such weak to moderate associations that are not identified by GWAS.

Gene set analysis (GSA), also termed pathway analysis [Cantor et al., 2010], has

been suggested as a more powerful alternative in situations where standard GWAS

is underpowered to detect weaker associations. In GSA, we group individual genes

or variants according to biological or functional characteristics and then test the

association of the trait with the gene-set for significance. This considerably reduces

the number of tests that need to be performed and hence decreases the multiple

testing burden.

GSA can provide a number of benefits when used as a tool for secondary analysis

of a GWAS data set. Because of the polygenic nature of complex diseases, testing for

association with sets of functionally related genes or variants can provide biological

context for multiple genetic risk factors and can provide insights into disease mech-

anisms and possible treatment targets [Pers, 2016]. Further, by cumulating signals

across numerous variants in the gene-set, GSA can increase the statistical power

of detecting weaker signals that would otherwise be missed by GWAS [Fridley and

Biernacka, 2011, Yu et al., 2009].
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There is an extensive literature on numerous methods to perform GSA analysis

and they have identified several novel gene-sets associated with complex traits like

obesity [Locke et al., 2015], height [Allen et al., 2010] and bipolar disorder [Nurn-

berger et al., 2014], yielding important biological insights. However these methods

have certain important limitations. For example, existing GSA methods have been

known to have low power [Jia et al., 2011], especially when only a small fraction of

the genes is associated with the phenotype. Further, several methods cannot main-

tain proper type-I error in presence of linkage disequilibrium between the variants

or gene-gene correlations. Although p-values can be computed using permutations

or simulations in such situations, but this can be both time and memory consuming

[Moskvina et al., 2012, Holmans, 2010].

Another key challenge, which not many methods have tried to address, is the

question of interpretation. Standard GSA analyses fail to identify the genes which

individually or in congregation might be driving the association signal. Thus, al-

though weak associations are identified through such GSA methods, it is difficult

to target individual genes for follow-up analysis, especially for large gene-sets. A

common practice is to recommend the top few genes with the lowest p-values as the

active genes. However, the lack of any principled data-driven approach can lead to

false results and difficulty in interpretation.

To address these issues, we introduce a powerful novel GSA method in Chapter

IV, that can adaptively select the driver-set of genes within the set. Our method is

computationally efficient and can be applied to large biobank-scale datasets.

1.4 Overview of the dissertation

The aim of this dissertation is to propose novel methodological solutions to the

problems in pleiotropy and gene-set association analysis as stated above. We have

also considered the fact that these methods should be computationally scalable to

7



be applied to current genomic datasets. The methods we have developed have been

implemented in R-based softwares and made publicly available through public repos-

itories and github. We have provided links to the softwares corresponding to each

chapter at the end of each chapter correspondingly.

In Chapter II, we propose a computationally efficient and novel method to detect

cross phenotype effects of rare variants, given individual level data in a study. Our

method, Multi-SKAT is a general framework that extends variance components tests

to a multivariate mixed-effects model framework. Mixed-effects models have been

widely used for rare-variant association tests with a single phenotype such as SKAT

[Wu et al., 2011] and SKAT-O [Lee et al., 2012b]. For multiple phenotypes, we use a

phenotype kernel matrix (ΣP ) which models the relationship between the effect sizes

of a particular variant in the region and the phenotypes. By using kernels to relate

genetic variants to multiple continuous phenotypes, Multi-SKAT allows for flexible

modeling of the genetic effects on the phenotypes. To avoid power loss due to model

misspecification, we develop minimum p-value based omnibus tests that can aggre-

gate results across different choices of kernels. It can be shown that several existing

methods like GAMuT, MAAUSS and MF-KM are special cases of Multi-SKAT under

particular choices of the phenotype kernel matrix. Through extensive simulations,

we showed that Multi-SKAT can increase power over single-phenotype SKAT-O test

and existing multiple phenotype tests while maintaining type-I error. We applied

Multi-SKAT to exome-array data from the METSIM (Metabolic Syndrome in Men)

study, where Multi-SKAT identified several novel rare-variant associations in addi-

tion to identifying those identified by standard methods.

In Chapter III, we extend Multi-SKAT to a meta-analysis strategy (Meta-MultiSKAT)

to combine summary statistics from several studies. Meta-analysis of multiple stud-

ies, using association summary statistics, is a practical approach to increase power

by increasing sample sizes [Panagiotou et al., 2013] which is especially important for
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rare-variants. Various methods have been developed for meta-analysis of multiple

phenotypes [Majumdar et al., 2018, Ray and Boehnke, 2018, Zhu et al., 2015], but

most of them are single variant-based methods, which have low power to identify

rare variant associations. To the best of our knowledge, Meta-MultiSKAT is the first

method that focuses on rare-variants in this context. Our method involves sharing

of score statistics and a phenotype adjusted variant relationship matrix from indi-

vidual studies which are then combined using a kernel that models the heterogeneity

of effects between the studies. To achieve robust power under different associa-

tion models, we developed fast and accurate omnibus tests by combining different

models of genetic effects and functional genomic annotation. Additionally, Meta-

MultiSKAT accommodates situations where studies do not share exactly the same

set of phenotypes or have differing correlation patterns among the phenotypes. Simu-

lation studies confirm that Meta-MultiSKAT can maintain type-I error rate. Further

simulations under different models of association show that Meta-MultiSKAT can

substantially improve power of detection over single phenotype-based meta-analysis

approaches. We demonstrate the utility and improved power of Meta-MultiSKAT in

the meta-analyses of four white blood cell subtype traits from the Michigan Genomics

Initiative (MGI) and SardiNIA studies.

In Chapter IV, we introduce Gene-Set association Using Sparse Signals (GAUSS),

a method for GSA with summary statistics using a maximum-type statistic. GAUSS

additionally selects the subset of genes with the maximal evidence of association as

the driver-genes. The p-value for GAUSS, despite being simulation-based, can be

efficiently calculated by using pre-computed matrices using a reference data. Sim-

ulations show that GAUSS can increase power over several existing methods while

controlling type-I error under a variety of association models. Through the analysis

of summary statistics from the UK Biobank data for 1201 phenotypes with 10679

gene-sets, we show that GAUSS can be used to identify novel associations across a
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large number of phenotypes and gene-sets. Additionally, similarities or differences in

genetic mechanism of phenotypes can be investigated by phenome-wide association

analysis of a given gene-set, which has been unexplored to date.

Finally, in Chapter V, we discuss the implications of this dissertation and propose

potential directions of future research.
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CHAPTER II

Multi-SKAT: General framework to test for rare

variant association with multiple phenotypes

2.1 Introduction

Since the advent of array genotyping technologies, genome-wide association stud-

ies (GWAS) have identified numerous genetic variants associated with complex traits.

Despite these discoveries, GWAS loci explain only a small proportion of heritability

for most traits. This may be due, in part, to the fact that these association stud-

ies are underpowered to identify associations with rare variants [Korte and Farlow,

2013]. To identify such rare variant associations, gene- or region-based multiple vari-

ant tests have been developed [Lee et al., 2014]. By jointly testing rare variants in

a target gene or region, these methods can increase power over a single variant test

and are now used as a standard approach in rare variant analysis.

Recent GWAS results have shown that many GWAS loci are associated with

multiple traits [Solovieff et al., 2013], which is called pleiotropy or cross-phenotypic

associations. Nearly 17% of variants in National Heart Lung and Blood Institute

(NHLBI) GWAS categories are associated with multiple traits [Sivakumaran et al.,

2011, Li et al., 2014, Yang et al., 2015]. For example, 44% of autoimmune risk single

nucleotide polymorphisms (SNPs) have been estimated to be associated with two
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or more autoimmune diseases [Cotsapas et al., 2011]. Detecting such pleiotropic

effects is important to understand the underlying biological structure of complex

traits. In addition, by leveraging cross-phenotype associations, the power to detect

trait-associated variants can be increased.

Identifying the cross-phenotype effects requires a suitable joint or multivariate

analysis framework that can incorporate information on the correlation of the phe-

notypes. Various methods have been proposed for multiple phenotype analysis in

GWAS [Ferreira and Purcell, 2009, Huang et al., 2011, Zhou and Stephens, 2014a,

Ried et al., 2012, Ray et al., 2016] primarily aimed at detecting cross-phenotype

associations of common variants. Extending them, several groups have developed

multiple phenotype tests for rare variants [Wang et al., 2015, Broadaway et al.,

2016, Wu and Pankow, 2016, Lee et al., 2016, Sun et al., 2016, Maity et al., 2012,

Yan et al., 2015, Zhan et al., 2017]. For example, [Wang et al., 2015] proposed a

multivariate functional linear model (MFLM); [Broadaway et al., 2016] used a dual-

kernel based distance-covariance approach to test for cross-phenotype effects of rare

variants by comparing similarity in multivariate phenotypes to similarity in genetic

variants (GAMuT); [Wu and Pankow, 2016] developed a score based sequence kernel

association test for multiple traits, MSKAT, which has been shown to be similar in

performance to GAMuT [Broadaway et al., 2016]; and [Zhan et al., 2017] proposed

DKAT, which uses the dual kernel approach as in GAMuT but provides more robust

performance when the dimension of phenotypes is high compared to the sample size.

Despite these developments, existing methods have certain limitations. Most

methods were developed under specific assumptions regarding the effects of the vari-

ants on multiple phenotypes, and hence lose power if these assumptions are violated

[Ray et al., 2016]. For example, if genetic effects are heterogeneous across multiple

phenotypes, methods assuming homogeneous genetic effects can lose a substantial

amount of power [Lee et al., 2016]. Although there has been a recent attempt to
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combine analysis results from different models [Zhan et al., 2017], no computationally

scalable methods have been developed to evaluate the significance of the combined

results in genome-wide scale analysis. In addition, most existing methods and soft-

ware cannot adjust for relatedness between individuals; thus, to apply these meth-

ods, related individuals must be removed from the analysis to maintain type I error

rate. For example, in the METabolic Syndrome In Men (METSIM) study ∼ 15%

of individuals are estimated to be related up to the second degree. Thus to apply

the existing methods on the data from METSIM study, we need to remove these

individuals which will result in a lower sample size.

In this project, we develop Multi-SKAT, a general framework that extends the

mixed effect model-based kernel association tests to a multivariate regression frame-

work while accounting for family relatedness. Mixed effect models have been widely

used for rare-variant association tests. Popular rare variant tests such as SKAT [Wu

et al., 2011] and SKAT-O [Lee et al., 2012b] are based on mixed effect models. By

using kernels to relate genetic variants to multiple continuous phenotypes, Multi-

SKAT allows for flexible modeling of the genetic effects on the phenotypes. The

idea of using kernels for genotypes and phenotypes was previously used by the dual

kernel approaches such as GAMuT and DKAT. However, in contrast to these two

similarity-based methods, Multi-SKAT is multivariate regression based and hence

provides a natural way to adjust for covariates and also can account for sample

relatedness by incorporating random effects for the kinship matrix. Many of the

existing methods for multiple phenotype rare variant tests can be viewed as special

cases of Multi-SKAT with particular choices of kernels. Furthermore, to avoid loss

of power due to model misspecification, we develop computationally efficient om-

nibus tests, which allow for aggregation of tests over several kernels and provide fast

p-value calculation.

In the next section, we present the multivariate mixed effect model and kernel
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matrices. We particularly focus on the phenotype-kernel and describe omnibus pro-

cedures that can aggregate results across different choices of kernels and kinship

adjustment. Following that, we describe the simulation experiments that demon-

strate that Multi-SKAT tests have increased power to detect associations compared

to existing methods like GAMuT, MSKAT and others under a wide range of associ-

ation models. Finally we describe the results from applying Multi-SKAT on a set of

nine amino acids measured on 8,545 Finnish men from the METSIM study, to detect

the cross-phenotype effects of rare nonsynonymous and protein-truncating variants.

2.2 Material and Methods

2.2.1 Single-phenotype region-based tests

To describe the Multi-SKAT tests, we first present the existing model of the

single-phenotype gene or region-based tests. Let yk = (y1k, y2k, · · · , ynk)T be an

n × 1 vector of the kth phenotype over n individuals; X an n × q matrix of the q

non-genetic covariates including the intercept; Gj = (G1j, · · · , Gnj)
T is an n × 1

vector of the minor allele counts (0, 1, or 2) for a binary genetic variant j; and

G = [G1, · · · , Gm] is an n × m genotype matrix for m genetic variants in a target

region. The regression model shown in equation (2.1) can relate m genetic variants

to phenotype k,

yk = Xαk +Gβ.k + εk (2.1)

where αk is a q × 1 vector of regression coefficients of q non-genetic covariates

(can include top principal components to account for population structure), β.k =

(β1k, · · · , βmk)T is an m×1 vector of regression coefficients of the m genetic variants,

and εk is an n × 1 vector of non-systematic error term with each element following

N(0, σ2
k). To test for H0 : β.k = 0, a variance component test under the mixed effects

model have been proposed to increase power over the usual F-test [Wu et al., 2011].
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The variance component test assumes that the regression coefficients, β.k, are ran-

dom variables and follow a centered distribution with covariance matrix τ 2ΣG, where

ΣG is an m×m matrix (for details on ΣG see below). Under these assumptions, the

test for β.k = 0 is equivalent to testing τ = 0. The score statistic for this test is

Q = (yk − µ̂k)TGΣGG
T (yk − µ̂k) (2.2)

where µ̂k = Xα̂k is the estimated mean of yk under the null hypothesis of no as-

sociation. The test statistic Q asymptotically follows a mixture of chi-squared dis-

tributions under the null hypothesis and p-values can be computed by inverting the

characteristic function [Davies, 1980]. Although there are other methods to approx-

imate the p-value using for a mixture of chi-square distributions, Davies’ methods

appears to work well in practice and is widely used in this context [Wu et al., 2011].

The kernel matrix ΣG plays a critical role; it models the relationship among the

effect sizes of the variants on the phenotypes. Any positive semidefinite matrix can

be used for ΣG providing a unified framework for the region-based tests. A frequent

choice of ΣG is a sandwich type matrix ΣG = WRGW , where W = diag(w1, .., wm) is

a diagonal weighting matrix for each variant, and RG is a correlation matrix between

the effect sizes of the variants. RG = Im×m implies uncorrelated effect sizes and

corresponds to SKAT, and RG = 1m1m
T corresponds to the Burden test, where

Im×m is an m × m diagonal matrix and 1m = (1, · · · 1)T is an m × 1 vector with

all elements being unity. Furthermore, a linear combination of these two matrices

corresponds to RG = ρ1m1m
T + (1− ρ)Im×m, which is used for SKAT-O [Lee et al.,

2012b].
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2.2.2 Multiple-phenotype region-based tests

Extending the idea of using kernels, we build a model for multiple phenotypes.

The multivariate linear model shown in equation (2.3) can relate genetic variants to

K correlated phenotypes,

Y = XA+GB + E (2.3)

where Y = (y1, · · · , yK) is an n×K phenotype matrix; A is a q × K matrix of

coefficients of X; B = (βij) is an m×K matrix of coefficients where βij denotes

the effect of the ith variant on the jth phenotype and E is an n × K matrix of

non-systematic errors. Let vec(·) denote the matrix vectorization function, and then

vec(E) follows N(0, In⊗V ), where V is a K×K covariance matrix and ⊗ represents

the Kronecker product.

In addition to assuming that β.k follows a centered distribution with covariance

τ 2ΣG, we further assume that βi. = (βi1, · · · , βiK)T , which is the vector of regression

coefficients of variant i for K multiple phenotypes, follows a centered distribution

with covariance τ 2ΣP , which implies that vec(B) follows a centered distribution with

covariance τ 2ΣG ⊗ ΣP . As before, the null hypothesis H0 : vec(B) = 0 is equivalent

to τ = 0. The corresponding score test statistic is

Q = {vec(Y )− vec(µ̂)}T
{

(GΣGG
T )⊗ (V̂ −1ΣP V̂

−1)
}
{vec(Y )− vec(µ̂)} (2.4)

where µ̂ and V̂ are the estimated mean and covariance of Y under the null hypothesis.

ΣP plays a similar role as ΣG but with respect to phenotypes. ΣP represents a

kernel in the phenotypes space and models the covariance between the effect sizes of

a variant on each of the phenotypes. Any positive semidefinite matrix can be used

as ΣP .

The proposed approach provides a double-flexibility in modeling. Through the

choice of structures for ΣG and ΣP , we can control the dependencies of genetic
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effects. However, the kernel matrices ΣG and ΣP are nuisance parameters in the

model and cannot be estiamted from the data. Additionally, similar to SKAT, the

use of a sandwich type matrix WRGW for ΣG allows us to upweight rare variants by

using Beta(1, 25) weights as in [Wu et al., 2011]. Most of our hypotheses about the

underlying genetic structure of a set of phenotypes can be modeled through varying

structures of these two matrices.

2.2.3 Phenotype kernel structure ΣP

The use of ΣG has been extensively studied previously in literature [Wu et al.,

2011, Lee et al., 2012b]. Here we propose several choices for ΣP and study their

effect from a modeling perspective.

Homogeneous (Hom) Kernel

It is possible that effect sizes of a variant on different phenotypes are homogeneous,

in which case βj1 = · · · = βjK . Under this assumption,

ΣP,Hom = 1K1TK (2.5)

Under ΣP,Hom, the effect sizes βjk, (k = 1, · · ·K) for a variant j are the same for all

the phenotypes.

Heterogeneous (Het) Kernel

Effect sizes of a variant on different phenotypes can be heterogeneous in which βj1 6=

· · · 6= βjK . Under this assumption, we can construct

ΣP,Het = Ik×k (2.6)

The ΣP,Het implies that the effect sizes (βj1, · · · , βTjK) are uncorrelated among them-
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selves. This also indicates that the correlation among the phenotypes is not affected

by this particular region or gene.

Phenotype Covariance (PhC) Kernel

We may model ΣP as proportional to the estimated residual covariance across the

phenotypes as,

ΣP,PhC = V̂ (2.7)

where V̂ is the estimated covariance matrix among the phenotypes. This model as-

sumes that the covariance between the effect sizes is proportional to that between

the residual phenotypes after adjusting for the non-genetic covariates.

Principal Component (PC) Kernel

Principal component analysis (PCA) is a popular tool for multivariate analysis. In

multiple phenotype tests, PC-based approaches have been used to reduce the dimen-

sion in phenotypes [Aschard et al., 2014]. Here we show that PC-based approach

can be included in our framework. Let L = (L1, · · · , LK) be the loading matrix with

each column Li produces the ith PC score. In Appendix A.1, we show that using

ΣP,PC = V̂ LV̂P
−1
V̂P
−1
LT V̂ is equivalent to assuming heterogeneous effects with all

PCs as phenotypes. Instead of using all the PC’s, we can use selected PC’s that

represent the majority of cumulative variation in phenotypes. For example, we can

jointly test the PC’s that have cumulative variance of 90%. If the top t PC’s have

been chosen for analysis using ν% cumulative variance as cutoff, we can use

ΣP,PC−ν = V̂ LselV̂
−1
P V̂ −1P LTselV̂

where Lsel = [L1, · · · , Lt, 0, · · · , 0] and 0 represents a vector of 0’s of appropriate

length.
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Relationship with other Multiple-Phenotype rare variant tests

We have proposed a uniform framework of Multi-SKAT tests that depend on the

kernels ΣG and ΣP . There are certain specific choices of these kernel matrices that

correspond to other published methods.

• Using ΣP,PhC and ΣG = WImW
T is identical to the GAMuT[Broadaway et al.,

2016] with the projection phenotype kernel and the MSKAT with theQ statistic

[Wu and Pankow, 2016].

• Using ΣP = V̂ 2 and ΣG = WImW
T is identical to GAMuT[Broadaway et al.,

2016] with the linear phenotype kernel and the MSKAT with the Q′ statistic

[Wu and Pankow, 2016].

• Using ΣP,Hom and ΣG = WImW
T is identical to hom-MAAUSS [Lee et al.,

2016].

• Using ΣP,Het and ΣG = WImW
T is identical to het-MAAUSS [Lee et al., 2016]

and MF-KM [Yan et al., 2015].

For the detailed proof, please see Appendix A.2.

2.2.4 Minimum p-value based omnibus tests (minP and minPcom )

The model and the corresponding test of association that we proposed through

the Multi-SKAT test statistic (2.4) has two parameters, ΣG and ΣP , which are absent

in the null model of no association. Since Multi-SKAT is a score test, ΣG and ΣP

cannot be estimated from the data. One possible approach is to select ΣG and

ΣP based on prior knowledge; however, if the selected ΣG and ΣP do not reflect

underlying biology, the test may have substantially reduced power [Ray et al., 2016,
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Lee et al., 2016]. In an attempt to achieve robust power, we aggregate results across

different ΣG and ΣP using the minimum of p-values from different kernels.

Although this omnibus test approach has been used in rare variant tests and

multiple phenotype analysis for combining multiple kernels from genotypes and phe-

notypes [Zhan et al., 2017, Wu et al., 2013, Urrutia et al., 2015, He et al., 2017], it

is challenging to calculate the p-value, since the minimum p-value does not follow

the uniform distribution. One possible approach is using permutation or perturba-

tion to calculate the monte-carlo p-value [Urrutia et al., 2015, Zhan et al., 2017];

however, this approach is computationally too expensive to be used in genome-wide

analysis. To address it, here we propose a fast copula based p-value calculation for

Multi-SKAT, which needs only a small number of resampling steps to calculate the

p-value.

Suppose ph is the p-value for Qh with given hth ΣG and ΣP , h = 1, · · · , b, and

TP = (p1, · · · , pb)T is an b × 1 vector of p-values of b such Multi-SKAT tests. The

minimum p-value test statistic after the Bonferroni adjustment is b × pmin, where

pmin is the minimum of the b p-values. In the presence of positive correlation among

the tests, this approach is conservative and hence might lack power of detection.

Rather than using Bonferroni corrected pmin, more accurate results can be obtained

if the joint null distribution or more specifically the correlation structure of TP can be

estimated and incorporated in the test. Here we adopt a resampling based approach

to estimate this correlation structure. Note that our test statistic is equivalent to

Q = ST
{

(GΣGG
T )⊗ (V̂ −

1
2 ΣP V̂

− 1
2 )
}
S, (2.8)

where S = (In⊗V̂ −
1
2 ) {vec(Y )− vec(µ̂)}. Under the null hypothesis S approximately

follows an uncorrelated multivariate normal distribution N(0, InK). Using this, we

propose the following resampling algorithm
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• Step 1. Generate nK samples from an N(0, 1) distribution, say SR.

• Step 2. Calculate b different test statistics asQR = STR

{
(GΣGG

T )⊗ (V̂ −
1
2 ΣP V̂

− 1
2 )
}
SR

for all the choices of ΣP and calculate p-values.

• Step 3. Repeat the previous steps independently for R(= 1000) iterations,

and calculate the correlation between the p-values of the tests from the R

resampling p-values.

With the estimated null correlation structure, we use a Copula to approximate

the joint distribution of TP [Demarta and McNeil, 2005, He et al., 2017]. Copula

is a statistical approach to construct joint multivariate distribution using marginal

distribution of each variable and correlation structure. Since marginally each test

statistic Q follows a mixture of chi-square distributions, which has a heavier tail

than normal distribution, we propose to use a t-Copula to approximate the joint

distribution, i.e, we assume the joint distribution of TP to be multivariate t with the

estimated correlation structure. The final p-value for association is then calculated

from the distribution function of the assumed t-Copula.

When calculating the correlation across the p-values, Pearson’s correlation coeffi-

cient can be unreliable since it depends on normality and homoscedasticity assump-

tions. To avoid such assumptions we recommend estimating the null-correlation ma-

trix of the p-values through Kendall’s tau (τ), which is a non-parametric approach

based on concordance of ranks. The correlation matrix can be reliably estimated in

a small number of iterations (≤ 1000).

The minimum p-value approach can be used to combine different ΣP given ΣG, or

combine both ΣP and ΣG. For example two ΣG’s corresponding to SKAT (WImW )

and Burden kernels (W1m1TmW ) and four ΣP ’s (ΣP,Hom, ΣP,Het, ΣP,PhC , ΣP,PC−0.9)

can be combined, which results in the omnibus test of these eight different tests. To

differentiate the latter, we will call it minPcom which combines SKAT and Burden
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type kernels of ΣG.

2.2.5 Adjusting for relatedness

We formulated equation (2.3) and corresponding tests under the assumption of

independent individuals. If individuals are related, this assumption is no longer valid,

and the tests may have inflated type I error rate. Since our method is regression-

based, we can relax the independence assumption by introducing a random effect

term to account for the relatedness among individuals.

Let Φ be the kinship matrix of the individuals and Vg is a co-heritability ma-

trix, denoting the shared heritability between the phenotypes. Extending the model

presented in equation(2.3), we incorporate Φ and Vg as

Y = XA+GB + Z + E (2.9)

where Z is an n × K matrix with vec(Z) following N(0,Φ ⊗ Vg). Z represents a

matrix of random effects arising from shared genetic effects between individuals due

to the relatedness. The remaining terms are the same as in equation (2.3). The

corresponding score test statistic is

QKin = STKinV̂
−1/2
e

{
(GΣGG

T )⊗ ΣP

}
V̂ −1/2e SKin (2.10)

where SKin = V̂
−1/2
e {vec(Y )− vec(µ̂)} and V̂e = Φ ⊗ V̂g + In ⊗ V̂ is the estimated

covariance matrix of vec(Y ) under the null hypothesis. Similar to the previous

versions for unrelated individuals, QKin asymptotically follows a mixture of chi-

square under the assumption of no association.

This approach depends on the estimation of the matrices Φ, Vg and V . The kin-

ship matrix Φ can be estimated using the genome-wide genotype data [Manichaikul

et al., 2010a]. Several of the published methods like LD-Score [Bulik-Sullivan et al.,
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2015], PHENIX [Dahl et al., 2016] and GEMMA [Zhou and Stephens, 2014a, Zhou

et al., 2013] can jointly estimate Vg and V . In our numerical analysis, we have

used PHENIX, which implements a generalized restricted maximum likelihood es-

timation using individual level data to accurately estimate Vg and V . This is an

efficient method to fit local maximum likelihood variance components in a multiple

phenotype mixed model through an E-M algorithm.

Once the matrices Φ, Vg and V are estimated, we compute the asymptotic p-values

for QKin by using a mixture of chi-square distributions. The computation of QKin

requires large matrix multiplications, which can be time and memory consuming. To

reduce computational burden, we employ several transformations. We perform an

eigen-decomposition on the kinship matrix Φ as Φ = UΛUT , where U is an orthogonal

matrix of eigenvectors and Λ is a diagonal matrix of corresponding eigenvalues. We

obtain the transformed phenotype matrix as Ỹ = Y U , the transformed covariate

matrix as X̃ = XU , the transformed random effects matrix Z̃ = ZU and transformed

residual error matrix Ẽ = EU . Equation (2.9) can be transformed into

Ỹ = X̃A+ G̃B + Z̃ + Ẽ; vec(Z̃) ∼ N(0,Λ⊗ Vg); vec(Ẽ) ∼ N(0, I ⊗ V ) (2.11)

All the properties of the tests developed from equation (2.3) are directly applicable to

those from equation (2.11). QKin can be computed from this transformed equation

as,

QKin = S̃TKinṼ
−1/2
e

{
(G̃ΣGG̃

T )⊗ ΣP

}
Ṽ −1/2e S̃Kin, (2.12)

where S̃Kin = Ṽ
−1/2
e

{
vec(Ỹ )− vec(µ̃)

}
, µ̃ is the estimated mean of Ỹ under the null

hypothesis and Ṽe = Λ ⊗ V̂g + In ⊗ V̂ . Asymptotic p-values can be obtained from

the corresponding mixture of chi-squares distribution. Further, omnibus strategies

for the tests developed from equation (2.3) are applicable in this case with similar

modifications. For example, the resampling algorithm for minimum p-value based
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omnibus test can be implemented here as well by noting that S̃Kin approximately

follows an uncorrelated multivariate normal distribution.

2.3 Simulations

We carried out extensive simulation studies to evaluate the type I error and power

of Multi-SKAT tests. For type I error simulations without related individuals and

all power simulations, we generated 10,000 chromosomes over 1Mbp regions using a

coalescent simulator with European demographic model [Schaffner et al., 2005]. The

MAF spectrum of the simulated variants is shown in Appendix Figure A.6, showing

that most of the variants are rare. We randomly selected a 3 kbps sub-region for

each simulated dataset to test for associations. For the type I error simulations with

related individuals, to have a realistic kinship structure, we used the METSIM study

genotype data.

We generated phenotypes from the multivariate normal distribution as

yi ∼MVN{(β1G1 + · · ·+ βmGm)I, V } (2.13)

where yi = (yi1, · · · , yiK)T is the outcome vector, Gj is the genotype of the jth variant,

and βj is the corresponding effect size, and V is a covariance of the non-systematic

error term. We use V to define level of covariance between the traits. I is a k × 1

indicator vector, which has 1 when the corresponding phenotype is associated with

the region and 0 otherwise. For example, if there are 5 phenotypes and the last three

are associated with the region, I = (0, 0, 1, 1, 1)T .

To evaluate whether Multi-SKAT can control type I error under realistic scenar-

ios, we simulated a dataset with 9 phenotypes with a correlation structure identical

to that of 9 amino acid phenotypes in the METSIM data (See Appendix Figure

A.1). Phenotypes were generated using equation (2.13) with β = 0. Total 5, 000, 000
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datasets with 5, 000 individuals were generated to obtain the empirical type-I error

rates at α = 10−4, 10−5 and 2.5 × 10−6, which are corresponding to candidate gene

studies to test for 500 and 5000 genes and exome-wide studies to test for all 20, 000

protein coding genes, respectively.

Next, we evaluated type I error controls in the presence of related individuals.

To have a realistic related structure we used the METSIM study genotype data.

We generated a random subsample of 5000 individuals from the METSIM study

individuals and generated null values for the 9 phenotypes from MVN(0, Ve), where

Ve = Φ5k ⊗ V̂g;5k + I ⊗ V̂5k, Φ5k is the estimated kinship matrix of the 5000 selected

individuals, V̂g;5k and V̂5k are estimated co-heritability and residual variance matrices

respectively for these individuals as estimated using the MPMM function in the

PHENIX R-package (version 1.0). For each set of 9 phenotypes, we performed the

Multi-SKAT tests for a randomly selected 5000 genes in the METSIM data (For the

details on the METSIM data, see next section). We carried out this procedure 1000

times and obtained 5, 000, 000 p-values, and estimated type I error rate as proportions

of p-values smaller than the given level α.

Our simulation studies focus on evaluating the power of the proposed tests when

the number of phenotypes are 5 or 6. We chose the number of phenotypes to be rela-

tively small since the METSIM data also has a small (9) number of phenotypes. We

performed power simulations both in situations when there was no pleiotropy (i.e.,

only one of the phenotypes was associated with the causal variants) and also when

there was pleiotropy. Under pleiotropy, since it is unlikely that all the phenotypes are

associated with genotypes in the region, we varied the number of phenotypes associ-

ated. For each associated phenotype, 30% or 50% of the rare variants (MAF < 1%)

were randomly selected to be causal variants. We modeled the rarer variants to have

stronger effect, as |βj| = c|log10(MAFj)|. We used c = 0.3 which yields |βj| = 0.9 for

variants with MAF= 10−3. Our choice of β yielded the average heritability of asso-
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ciated phenotypes between 1% to 4%. We also considered situations that all causal

variants were trait-increasing variants (i.e. positive β) or 20% of causal variants were

trait-decreasing variants (i.e. negative β). Empirical power was estimated from 1000

independent datasets at exome-wide α = 2.5× 10−6.

In type I error and power simulations, we compared the following tests:

• Bonferroni adjusted minimum p-values from gene-based test (SKAT, Burden

or SKAT-O) on each phenotype (minPhen)

• Multi-SKAT with ΣP,Hom (Hom)

• Multi-SKAT with ΣP,Het (Het)

• Multi-SKAT with ΣP,PhC (PhC)

• Multi-SKAT with ΣP,PC−0.9 (PC-Sel)

• Minimum P-value of Hom, Het, PhC and PC-Sel using Copula (minP)

• Minimum P-value of Hom, Het, PhC and PC-Sel with ΣG being SKAT and

Burden, using Copula (minPcom)

For the Multi-SKAT tests, we used two different ΣG’s corresponding to SKAT

(i.e. ΣG = WW ) and Burden tests (i.e. ΣG = W1m1TmW ). For the variant weight-

ing matrix W = diag(w1, · · · , wm), we used wj = Beta(MAFj, 1, 25) function to

upweight rarer variants, as recommended by [Wu et al., 2011].

2.3.1 Computation Time

We estimated the computation time of Multi-SKAT tests and the existing meth-

ods. Using simulated datasets of 5000 related and unrelated individuals with 10

phenotypes and 20 genetic variants, we estimated the computation time of Multi-

SKAT tests with and without kinship adjustments. To compare the computation
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performance of Multi-SKAT tests with the existing methods (GAMuT and MSKAT),

we generated datasets of unrelated individuals with five different sample sizes (N =

1000, 2000, 5000, 10000, 15000 and 20000) and four different number of variants

(m = 10, 20, 50, 100). For each simulation setup, we generated 100 datasets and

obtained the average value of the computation time.

2.3.2 Analysis of the METSIM study exomechip data

To investigate the cross-phenotype roles of low frequency and rare variants on

amino acids, we analyzed data on 8545 participants of the METSIM study on whom

9 amino acids (Alanine, Leucine, Isoleucine, Glycine,Valine, Tyrosine, Phenylala-

nine, Glutamine, Histidine) were measured by proton nuclear magnetic resonance

spectroscopy[Teslovich et al., 2018]. Individuals were genotyped on the Illumina Ex-

omeChip and OmniExpress arrays and we included individuals that passed sample

QC filters [Huyghe et al., 2013]. The kinship between the individuals was estimated

via KING (version 2.0) [Manichaikul et al., 2010a]. We adjusted the amino acid

levels for age, age2 and BMI and inverse-normalized the residuals. The phenotype

correlation matrix after covariate adjustment is shown in Appendix Figure A.1. Sub-

sequently, we estimated the genetic heritability matrix and the residual covariance

matrix using the MPMM function from PHENIX [Dahl et al., 2016] R package.

We included rare (MAF < 1%) nonsynonymous and protein-truncating variants

in our analysis. To avoid the effect of singletons or results purely driven by single-

variant effect, we only considered the genes with a total rare minor allele count of

at least 5 for genes that had at least 3 variants leaving 5207 genes for analysis. We

set a stringent significance threshold at 9.6 × 10−6 corresponding to the Bonferroni

adjustment for 5207 genes. Further, we also considered a less stringent threshold of

10−4, corresponding to a candidate gene study of 500 genes, as suggestive to study

the associations which were not significant but close to the threshold.
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2.4 Results

2.4.1 Type I Error simulations

We estimated empirical type I error rates of the Multi-SKAT tests with and with-

out related individuals. For unrelated individuals, we simulated 5, 000 individuals

and 9 phenotypes based on the correlation structure for the amino acids phenotypes

in the METSIM study data. For related individuals, we simulated 5, 000 individ-

uals using the kinship matrix for randomly chosen METSIM individuals (see the

Method section). We performed association tests and estimated type I error rate as

the proportion of p-values less than the specified α levels. Type I error rates of the

Multi-SKAT tests were well maintained at α = 10−4, 10−5 and 2.5 × 10−6 for both

unrelated and related individuals (Table 2.1), which correspond to candidate gene

studies of 500 and 5000 genes and exome-wide studies to test for all 20, 000 protein

coding genes, respectively. For example, at level α = 2.5×10−6, the largest empirical

type I error rate from any of the Multi-SKAT tests was 3.4×10−6, which was within

the 95% confidence interval (CI = (1.6× 10−6, 4× 10−6)).

2.4.2 Power simulations

We compared the empirical power of the minPhen (Bonferroni adjusted minimum

p-value for the phenotypes) and Multi-SKAT tests. For each simulation setting, we

generated 1, 000 sequence datasets of 5, 000 unrelated individuals and for each test

estimated empirical power as the proportion of p-values less than α = 2.5 × 10−6,

reflecting Bonferroni correction for testing 20, 000 independent genes. Since the

Hom and Het tests are identical to hom-MAAUSS and het-MAAUSS, respectively,

and using PhC is identical to both GAMuT (with projection phenotype kernel) and

MSKAT, our power simulation studies effectively compare majority of the existing

multiple phenotype tests.
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In Figure 2.1, we show the results for 5 phenotypes with compound symmetric

correlation structure with the correlation (ρ) being 0.3 or 0.7, where 30% of rare

variants (MAF < 0.01) were positively associated with 1, 2 or 3 phenotypes. Since it

is unlikely that all the phenotypes are associated with the region, we restricted the

number of associated phenotypes to at most 3. In most scenarios, PhC, PC-Sel and

Het had greater power among the Multi-SKAT tests with fixed phenotype kernels

(i.e. Hom, Het, PhC and PC-Sel) while minP, maintained high power as well. For

example, when the correlation between the phenotypes was 0.3 (i.e. ρ = 0.3) and

SKAT kernel was used for the genotype kernel ΣG, if 3 phenotypes were associated

with the region, minP and PhC were more powerful than the other tests. If the

correlation between the phenotypes was ρ = 0.7 and Burden kernel was used for

genotype kernel ΣG, Het, PC-Sel and minP had higher power than the rest of the

tests when 2 phenotypes were associated. It is noteworthy that Hom had the lowest

power in all the scenarios of Figure 2.1.

Figure 2.2 demonstrates scenarios involving 6 phenotypes and clustered corre-

lation structures where PhC was outperformed by other choices of the phenotype

kernel ΣP . When all three phenotype clusters had associated phenotypes and the

correlation within the clusters was low (ρ = 0.3) (Figure 2.2, upper panel), Hom and

minP tests outperformed PhC when the SKAT kernel was used. This may be be-

cause that the phenotype correlation structure did not reflect the genetic association

pattern. When 2 small clusters had high within-cluster correlation (ρ = 0.7) and one

large cluster had low within-cluster correlation (ρ = 0.3) (Figure 2.2, lower panel),

Het and minP had higher power than PhC.

When 20% of causal variants were trait-decreasing variants (80% trait-increasing),

the power of Multi-SKAT tests with Burden ΣG was reduced (Appendix Figure A.2

and A.3). This is because the association signals were attenuated due to presence of

both trait-increasing and trait-decreasing variants. Since SKAT is robust regardless
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Figure 2.1: Power for Multi-SKAT tests when phenotypes have compound symmetric
correlation structures. Empirical power for minPhen, Hom, Het, PhC, PC-Sel, minP
plotted against the number of phenotypes associated with the gene of interest with a
total of 5 phenotypes under consideration. Upper row shows the results for ρ = 0.3
and lower row for ρ = 0.7. Left column shows results with SKAT kernel ΣG, and right
columns shows results with Burden kernel. All the causal variants were trait-increasing
variants.
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Figure 2.2: Power for Multi-SKAT tests when phenotypes have clustered correlation
structures. Empirical powers for minPhen, Hom, Het, PhC, PC-Sel, minP are plotted
under different levels of association with a total of 6 phenotypes and with clustered
correlation structures. Middle column shows the empirical powers for different combi-
nations of phenotypes associated with SKAT kernel ΣG; the rightmost column shows
the corresponding results with Burden kernel; left column shows the corresponding cor-
relation matrices for the phenotypes. The associated phenotypes are indicated in red
cross marks across the correlation matrices. All the causal variants were trait-increasing
variants.
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of the association direction, power with SKAT ΣG was largely maintained. The rel-

ative performance of methods with different ΣP given ΣG was quantitatively similar

to the results without trait-decreasing variants.

Further, we estimated power of minPcom, which combines tests across pheno-

type (ΣP ) and genotype ΣG kernels. The power of minPcom was evaluated for

the compound symmetric phenotype correlation structure presented in Figure 2.1

and was compared with the two minP tests of SKAT (minP-SKAT) and Burden

(minP-Burden) ΣG kernels. Figure 2.3 shows empirical power with and without

trait-decreasing variants. When all genetic effect coefficients were positive (Figure

2.3, left panel) the performances of minP-SKAT and minP-Burden were similar for

both the situations where the correlation between the phenotypes were low (i.e.

ρ = 0.3) and high (i.e. ρ = 0.7). When 20% of genetic effect coefficients were

negative (Figure 2.3, right panel), as expected, the power of minP-Burden was sub-

stantially decreased. Across all the situations, the power of minPcom was similar to

the most powerful minP with fixed genotype kernel ΣG. When 50% of variants were

causal variants and all genetic effect coefficients were positive (Appendix Figure A.4,

left panel), minP-Burden was more powerful than minP-SKAT, and minPcom had

similar power than minP-Burden.

Overall, our simulation results show that the omnibus tests, especially minPcom,

had robust power throughout all the simulation scenarios considered. When ΣG

and ΣP were fixed, power depended on the model of association and the correlation

structure of the phenotypes. Overall, the proposed Multi-SKAT tests generally out-

performed the single phenotype test (minPhen), even when only one phenotype was

associated with genetic variants.
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Figure 2.3: Power for Multi-SKAT by combining tests with ΣP as Hom, Het, PhC,
PC-Sel and ΣG as SKAT and Burden when phenotypes have compound symmetric
correlation structures. Empirical powers for minP-Burden, minP-SKAT and minPcom

are plotted against the number of phenotypes associated with the gene of interest with
a total of 5 phenotypes under consideration. Upper row shows the results for ρ = 0.3
and lower row for ρ = 0.7. Left column shows results when all the causal variants were
trait-increasing variants, and right column shows results when 80%/20% of the causal
variants were trait-increasing/trait-decreasing variants.
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2.4.3 Application to the METSIM study exomechip data

Inborn errors of amino acid metabolism cause mild to severe symptoms includ-

ing type 2 diabetes [Stankov et al., 2012, Wrtz et al., 2012, 2013] and liver diseases

[Tajiri and Shimizu, 2013] among others. Amino acid levels are perturbed in cer-

tain disease states, e.g., glutamic and aspartic acid levels are reduced in Alzheimer

disease brains [Allan Butterfield and Pocernich, 2003]; Isoleucine, glycine, alanine,

phenylalanine, and threonine levels are increased in cerebo-spinal fluid (CSF) of in-

dividuals with motor neuron disease [de Belleroche et al., 2003]. To find rare variants

associated with the 9 measured amino acid levels, we applied the Multi-SKAT tests

to the METSIM study data [Teslovich et al., 2018]. The MAF spectrum of the

genotyped variants is shown in Appendix Figure A.6, showing that most of the vari-

ants are rare variants. We estimated the relatedness between individuals by KING

[Manichaikul et al., 2010a], and coheritability of the amino acid phenotypes and the

corresponding residual variance using PHENIX [Dahl et al., 2016] (Appendix Fig-

ure A.1). Among the 8,545 METSIM participants with non-missing phenotypes and

covariates, 1,332 individuals had a second degree or closer relationship with one or

more of the METSIM participants. A total of 5, 207 genes with at least three rare

variants were included in our analysis. The Bonferroni corrected significance thresh-

old was α = 0.05/5207 = 9.6 × 10−6. Further we used a less significant cutoff of

α = 10−4 for a gene to be suggestive. After identifying associated genes, we carried

out backward elimination procedure (Appendix A.3, Appendix Table A.2) to inves-

tigate which phenotypes are associated with the gene. This procedure iteratively

removes phenotypes based on minPcom p-values.

QQ plots for the p-values obtained by minPhen and Multi-SKAT omnibus tests

(minP and minPcom) are displayed in Figure 2.4. Due to the presence of several

strong associations, for the ease of viewing, any p-value < 10−12 was collapsed to

10−12. The QQ plots are well calibrated with slight inflation in tail areas. The
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genomic-control lambda (λGC) varied between 0.97 and 1.04, which indicates no

inflation of test statistics. Table 2.2 shows genes with p-values less than 10−4 for

minPhen or minPcom. Table 2.5 shows SKAT-O p-values for each of the gene -

amino acid pairs.

Among the eight significant or suggestive genes displayed in Table 2.2, minPcom

provides more significant p-values than minPhen for six genes: Glycine decarboxylase

(GLDC [MIM: 238300]), Histidine ammonia-lyase (HAL [MIM: 609457]), Phenylala-

nine hydroxylase (PAH [MIM: 612349]), Dihydroorotate dehydrogenase (DHODH

[MIM: 126064]), Mediator of RNA polymerase II transcription subunit 1 (MED1

[MIM: 604311]), Serine/Threonine Kinase 33 (STK33 [MIM: 607670]). Interestingly,

PAH and MED1 are significant by minPcom, but not significant by minPhen. PAH

encodes an Phenylalanine hydroxylase, which catalyzes the hydroxylation of the aro-

matic side-chain of phenylalanine to generate tyrosine. MED1 is involved in the regu-

lated transcription of nearly all RNA polymerase II-dependent genes. This gene does

not show any single phenotype association, but cross-phenotype analysis produced

evidence of association. Using backward elimination we find that Phenylalanine and

Tyrosine are the last two phenotypes to be eliminated (Appendix Table A.2). We

have provided a detailed description of the function and clinical implications of the

significant and suggestive genes in Appendix Table A.4.

Among other genes, GLDC has the smallest p-value. Variants in GLDC are

known to cause glycine encephalopathy (MIM: 605899) [Hughes, 2009]. To investi-

gate whether our results were supported by single phenotype associations, we ap-

plied SKAT-O to each of the 9 amino acid phenotypes. Univariate SKAT-O test

with each of these phenotype reveals that this gene has a strong association with

Glycine (p-value = 2.5 × 10−64, Table 2.5). Among the variants genotyped in this

gene, rs138640017 (MAF = 0.009) appears to drive the association (single variant

p-value = 1.0 × 10−64). Variants in HAL cause histidinemia (MIM: 235800) in hu-
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Figure 2.4: QQplot of the p-values of minPhen and Multi-SKAT omnibus tests for
the METSIM data. For the ease of viewing, any associations with p-values < 10−12

have been collapsed to 10−12
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man and mouse. This gene shows significant univariate association with Histidine

(SKAT-O p-value = 3.2 × 10−8, Table 2.5) which in turn is influenced by the as-

sociation of rs141635447 (MAF = 0.005) with Histidine (single variant p-value =

3.7 × 10−13). Similarly, variants in DHODH, which have been previously found to

be associated with postaxial acrofacial dysostosis (MIM: 263750), have significant

cross-phenotype association although the result us mostly driven by the associa-

tion with Alanine (SKAT-O p-value =1.4 × 10−07, Table 2.5) although, no single

variant is significantly associated with Alanine. ALDH1L1 catalyzes conversion of

10-formyltetrahydrofolate to tetrahydrofolate. Published results show that common

variant rs1107366, 5kb upstream of ALDH1L1, is associated with Glycine-Seratinine

ratio [Xie et al., 2013]. Down-regulation of BCAT2 in mice causes elevated serum

branched chain amino acid levels and features of maple syrup urine disease.

Table 2.3 shows p-values of Multi-SKAT kernel and minP with two genotype ker-

nels (SKAT and Burden). Among phenotype kernels, PhC and Het generally pro-

duced the smallest p-values. We further applied Multi-SKAT tests without kinship

adjustment on the whole METSIM study individuals. As expected, this produced

inflation in QQ plots (Appendix Figure A.5) with λGC varying between 1.80 and 1.93.

It is to be noted here, instead of using a Bonferroni threshold of 9.6 × 10−06, using

the exome-wide cut-off of 2.5× 10−06 would not have changed the inference hugely.

The gene MED1 would not have remained significant in that case, although the as-

sociation p-value is suggestive. The other genes would have remained significantly

associated with the amino acid traits.

To directly compare our results with existing methods we applied GAMuT,

DKAT and MSKAT to the METSIM dataset. Since these methods cannot be ap-

plied to related individuals, we eliminated 1332 individuals that were related up to

second degree, leaving us 7213 individuals. Table 2.4 shows p-values of different

methods on the eight significant or suggestive genes displayed in Table 2.2. Since
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DKAT and GAMuT had nearly identical p-values when the same kernels were used,

DKAT p-values were not shown in Table 2.4. For unrelated individuals, as expected,

p-values produced by MSKAT with Q statistic, GAMuT with projection phenotype

kernel and PhC (with SKAT ΣG) were very similar, and minPcom provided similar

or more significant p-values than PhC. Interestingly MSKAT with Q′ statistic and

GAMuT with linear phenotype kernel have less significant p-values than the other

tests. We found that in 5 of the 8 genes in Table 2.4, using all individuals with

kinship correction produced more significant PhC and minPcom p-values than using

only unrelated individuals. Even, when we restricted our analysis to unrelated in-

dividuals, Multi-SKAT, identified more significant genes (using minPcom), compared

to GAMuT or MSKAT. Further, we have listed the top 10 genes for each of PhC,

GAMuT and MSKAT with unrelated individuals (Appendix Table A.4). Except for

the genes in Table 2.4, no other genes were found to be significant or suggestive by

any of the methods.

Overall, our METSIM amino acid data analysis suggests that the proposed method

can be more powerful than the single phenotype tests as well as existing tests, while

maintaining type I error rate even in the presence of the relatedness. It also shows

that the omnibus tests (minP and minPcom) provides robust performance by effec-

tively aggregating results of various kernels.

2.4.4 Computation Time

When ΣP and ΣG are given, p-values of Multi-SKAT are computed by the Davies

method [Davies, 1980], which inverts the characteristic function of the mixture of chi-

squares. On average, Multi-SKAT tests for a given ΣP and ΣG required less than 1

CPU sec (Intel Xeon 2.80 GHz) when applied to a dataset with 5000 independent

individuals, 20 variants and 10 phenotypes (Appendix Table A.1). With the kinship

adjustment for 5000 related individuals, computation time was increased to 3 CPU
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sec. Since minPcom requires only a small number of resampling steps to estimate

the correlation among tests, it is still scalable for genome-wide analysis. In the same

dataset, minPcom required 4 and 10 CPU sec on average without and with the kinship

adjustment, respectively. Further, Multi-SKAT given ΣP and ΣG, is computationally

equivalent to MSKAT and takes less than 1 CPU-sec for up to 20,000 samples, with

20 variants (Appendix Figure A.7), while GAMuT takes considerably more time than

these two. The performance of minPcom is similar to GAMuT for small and moderate

sample sizes (7.5 and 7.1 CPU-secs respectively for 10,000 samples) and performs

better than GAMuT for larger sample sizes (14.9 and 34.6 CPU-secs respectively for

20,000 samples). Computation time of all the methods were slightly increased when

the number of variants were 100 (Appendix Figure A.7). Analyzing the METSIM

dataset with minPcom required 10 hours when parallelized into 5 processes.

2.5 Discussion

In this chapter, we have introduced a general framework for rare variant tests

for multiple phenotypes. As demonstrated, Multi-SKAT gains flexibility with regard

to modeling the relationship between phenotypes and genotypes through the use

of the kernels ΣP and ΣG. Many published methods, including GAMuT, MSKAT,

MAAUSS and MF-KM, can be viewed as special cases of the Multi-SKAT test with

corresponding values of ΣP and ΣG. This can potentially highlight the underlying

assumptions of these methods and their relationships. In addition, by unifying ex-

isting methods to a common framework, our approach provides a way to combine

different methods through the minimum p-value based omnibus test. Multi-SKAT

can also adjust for sample relatedness. From simulation studies we have found that

Multi-SKAT methods are scalable to genome-wide analysis and can outperform the

single phenotype test and existing multiple phenotype tests. The METSIM data

analysis demonstrates that the proposed methods perform well in practice.
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It is natural to assume that different genes follow different models of association.

For some genes, the effect of the variants on the phenotypes might be independent

of each other, thus best detected by the Het phenotype kernel for ΣP , while for

others, the effects might be nearly the same and best detected by the Hom phenotype

kernel. If the kernel structures ΣG and ΣP are chosen based on minor allele frequency,

functional consequence or other prior knowledge about the structure of associations,

but they do not reflect the underlying biology satisfactorily, the corresponding test

of association may have substantially reduced power. The omnibus test, which uses

the minimum p-value from the various choices of kernels, has been a useful approach

under such situations in genetic association analysis [Lee et al., 2012b, Urrutia et al.,

2015, Zhan et al., 2017]. By aggregating association results across several choices

of kernels omnibus tests can produce robust results across a spectrum of different

association models. We applied this omnibus test to Multi-SKAT and used a Copula

to obtain p-values. As seen in simulation studies and real data analysis, our omnibus

approaches (minP and minPcom) are scalable to genome-wide analysis and provide

robust power regardless of underlying genetic models.

Multi-SKAT retains most of the desirable properties of SKAT. The asymptotic p-

values of all the Multi-SKAT tests, other than minP and minPcom, can be analytically

obtained via Davies’ method. The p-value calculations for minP and minPcom depend

on a resampling based approach and a reliable estimate can be obtained using a

small number of resampling steps. Thus, computationally all the Multi-SKAT tests

are scalable at the genome-wide level.

Additionally, Multi-SKAT can adjust for the relatedness among study individuals

by accounting for their kinship matrix. This is an important aspect of our method

because if we do not incorporate the between-sample-relatedness, the corresponding

test of association might not be statistically valid. As shown in Appendix Figure

A.5, in the presence of related individuals, not adjusting for relatedness can produce
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inflated type I error rate. Since Multi-SKAT is a regression based approach, it can

effectively incorporate the relatedness by including a random effect term for kinship.

Simulations and METSIM data analysis indicate that Multi-SKAT can have a

greater power than alternative methods, like GAMuT and MSKAT, while controlling

type I error rates. Majority of the the genes, with the exception of ALDH1L1, that

were found to be significant by GAMuT and MSKAT, were again identified by Multi-

SKAT. Additionally, Multi-SKAT identified additional genes to be significant (like

PAH, MED1 and STK33 ) that were neither identified by existing methods as well

as single phenotype tests.

Although Multi-SKAT provides a general framework for gene-based multiple

phenotype tests, it has certain important limitations. The current formulation is

restricted to continuous phenotypes only. Hence Multi-SKAT cannot be used for

phenotypes like disease status which are binary. In the future, using a generalized

mixed effect model framework, we aim to extend Multi-SKAT to binary phenotypes.

Further, the computation time for omnibus tests can be improved upon by recently

developed cauchy-transformation techniques.

In summary, we have developed Multi-SKAT, a powerful multiple phenotype test

for rare variants. The proposed method has robust power regardless of the underlying

biology and can adjust for family relatedness. Multi-SKAT can be a scalable and

practical solution to test for multiple phenotypes and will contribute to detecting

rare variants with pleiotropic effects. We have implemented these methods in a

publicly-available R-based software (see next section for URL).

2.6 Web Resources

MultiSKAT R-package: https://github.com/diptavo/MultiSKAT

GAMuT R-package: https://epstein-software.github.io/GAMuT

MSKAT R-package: https://github.com/baolinwu/MSKAT
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PHENIX R-package: https://mathgen.stats.ox.ac.uk/genetics software/phenix/phenix.html

Online Mendelian Inheritance in Man (OMIM): http://www.omim.org
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Table 2.1: Empirical type I error rates of the Multi-SKAT tests. The number of phenotypes were nine and the correlation
structure among the phenotypes were similar to that of the amino acid phenotypes in the METSIM study data. The sample
size was 5000.

Level ΣG minPhen Hom Het PhC PC-Sel minP minPcom

SKAT 2.4× 10−06 2.6× 10−06 2.6× 10−06 2.8× 10−06 2.6× 10−06 3.4× 10−06

2.5× 10−06 2.8× 10−06

Burden 2.4× 10−06 2.8× 10−06 2.6× 10−06 2.6× 10−06 2.6× 10−06 3.0× 10−06

SKAT 9.6× 10−06 9.6× 10−06 9.8× 10−06 9.8× 10−06 9.8× 10−06 9.4× 10−06

Independent samples 10−05 1.2× 10−05

(without kinship adjust-
ment)

Burden 9.4× 10−06 9.6× 10−06 9.8× 10−06 9.6× 10−06 9.6× 10−06 9.6× 10−06

SKAT 9.6× 10−05 9.4× 10−05 9.6× 10−05 9.8× 10−05 9.8× 10−05 9.8× 10−05

10−04 1.1× 10−04

Burden 9.8× 10−05 9.6× 10−05 9.4× 10−05 9.7× 10−05 9.6× 10−05 9.7× 10−05

SKAT 2.2× 10−06 2.4× 10−06 2.4× 10−06 2.8× 10−06 2.6× 10−06 3.0× 10−06

2.5× 10−06 2.6× 10−06

Burden 2.2× 10−06 2.6× 10−06 2.4× 10−06 2.6× 10−06 2.4× 10−06 3.2× 10−06

SKAT 9.6× 10−06 9.8× 10−06 9.8× 10−06 9.8× 10−06 9.8× 10−06 9.4× 10−06

Related samples 10−05 1.4× 10−05

(with kinship adjust-
ment)

Burden 9.7× 10−06 9.6× 10−06 9.4× 10−06 9.4× 10−06 9.4× 10−06 9.4× 10−06

SKAT 9.4× 10−05 9.6× 10−05 9.7× 10−05 9.8× 10−05 9.4× 10−05 9.8× 10−05

10−04 1.2× 10−04

Burden 9.5× 10−05 9.7× 10−05 9.6× 10−05 9.8× 10−05 9.8× 10−05 9.7× 10−05
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Table 2.2: Significant and suggestive genes associated with 9 amino acid phenotypes. Genes with p-values < 10−4 by minPhen
or any Multi-SKAT tests (minP-SKAT, minP-Burden and minPcom) were reported in this table. Multi-SKAT tests were applied
with the kinship adjustment, and 5207 genes with at least three rare (MAF < 0.01) nonsynonymous and protein-truncating
variants were used in this analysis. The total sample size was N = 8545. P-values smaller than the Bonferroni corrected
significance α = 9.6 × 10−6 were marked as bold. Smallest p-value for each gene among all the tests have been underlined.
minPhen was calculated as the Bonferroni adjusted minimum SKAT-O p-value across each phenotype.

Gene Chromosome Rare SNPs MAC minPhen minP-SKAT minP-Burden minPcom

GLDC 9 4 183 2.2 × 10−63 1.1 × 10−72 9.7 × 10−64 2.3 × 10−72

HAL 3 6 42 2.9 × 10−08 1.1× 10−05 4.2 × 10−11 9.5 × 10−11

DHODH 16 5 90 1.3 × 10−06 9.7 × 10−08 7.7 × 10−06 1.1 × 10−07

PAH 12 6 27 6.1× 10−04 1.4 × 10−06 1.3 × 10−06 1.9 × 10−06

MED1 17 3 147 6.2× 10−01 3.9 × 10−06 3.4× 10−04 4.9 × 10−06

STK33 11 6 180 8.9× 10−01 3.2× 10−05 3.3× 10−02 4.2× 10−05

ALDH1L1 3 8 103 8.4 × 10−08 3.8× 10−04 4.2× 10−05 5.4× 10−05

BCAT2 19 3 133 1.1× 10−05 9.3× 10−03 3.4× 10−05 6.2× 10−05
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Table 2.3: P-values for MultiSKAT tests (Hom, Het, PhC,PC-Sel, minP) with SKAT and Burden kernels for the genes reported
in Table 2.2. Multi-SKAT tests were applied with the kinship adjustment, and 5207 genes with at least three rare (MAF
< 0.01) nonsynonymous and protein-truncating variants were used in this analysis. The total sample size was N = 8545.
P-values smaller than the Bonferroni corrected significance α = 9.6 × 10−6 were marked as bold. For the upper part of the
table, minPhen was calculated as the Bonferroni adjusted minimum SKAT p-value across each phenotype, while for the lower
part it was calculated as the Bonferroni adjusted minimum Burden p-value across each phenotype.

Gene Multi-SKAT

ΣG Name Chromosome Rare SNPs MAC minPhen Hom Het PhC PC-Sel minP

GLDC 9 4 183 6.8 × 10−63 1.3× 10−03 1.3 × 10−17 2.9 × 10−73 5.3 × 10−59 1.1 × 10−72

DHODH 16 5 90 5.1 × 10−08 1.4× 10−01 3.2× 10−03 3.1 × 10−08 7.1 × 10−06 9.7 × 10−08

PAH 12 6 27 4.3× 10−05 7.9× 10−02 1.8× 10−05 3.9 × 10−07 6.3× 10−04 1.4 × 10−06

SKAT MED1 17 3 147 8.7× 10−02 3.4× 10−01 9.3 × 10−07 2.8× 10−04 1.9× 10−04 3.9 × 10−06

HAL 12 6 42 3.8× 10−05 5.5× 10−01 3.5× 10−03 2.9 × 10−06 1.5× 10−04 1.1× 10−05

STK33 11 6 180 4.0× 10−01 2.3× 10−01 8.9 × 10−06 1.1× 10−03 5.7× 10−03 3.2× 10−05

ALDH1L1 3 8 103 4.4× 10−02 1.1× 10−01 2.2× 10−02 1.6× 10−04 4.2× 10−04 3.8× 10−04

BCAT2 19 3 133 9.7× 10−04 5.0× 10−01 8.1× 10−02 2.4× 10−03 3.5× 10−03 9.3× 10−03

GLDC 9 4 183 1.4 × 10−59 7.5× 10−04 1.5 × 10−15 1.3 × 10−64 2.1 × 10−54 9.7 × 10−64

HAL 12 6 42 2.4 × 10−08 2.8× 10−05 4.6× 10−01 4.2 × 10−12 7.9× 10−03 4.2 × 10−11

PAH 12 6 27 4.3× 10−05 2.0× 10−01 5.3× 10−04 7.2 × 10−06 9.3× 10−03 1.3 × 10−06

Burden DHODH 16 5 90 1.3 × 10−07 5.3× 10−02 1.3× 10−02 2.9 × 10−06 7.6× 10−04 7.7 × 10−06

BCAT2 19 3 133 8.4 × 10−06 4.0× 10−01 1.7× 10−02 1.1× 10−05 6.1× 10−03 3.7× 10−05

ALDH1L1 3 8 103 8.3 × 10−08 1.7× 10−02 5.1× 10−03 2.1 × 10−06 1.7× 10−05 4.2× 10−05

MED1 17 3 147 9.4× 10−01 1.8× 10−01 8.7× 10−05 2.1× 10−03 7.1× 10−01 3.4× 10−04

STK33 11 6 180 4.8× 10−01 7.1× 10−01 7.0× 10−04 3.8× 10−02 6.4× 10−01 6.3× 10−03
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Table 2.4: P-values for genes reported in Table 2.2 using MSKAT, GAMuT and Multi-SKAT (PhC and minPcom). P-values in
columns 2 to 7 were calculated with unrelated individuals (N = 7213), while those in columns 8 and 9 were calculated using all
individuals (N = 8545). Both MSKAT (Q and Q′ statistic) and GAMuT (Projection and Linear phenotype kernel) p-values
were calculated with the linear weighted genotype kernel. DKAT p-values were nearly identical to those of GAMuT when the
same kernels were used (data not shown). P-values smaller than the Bonferroni corrected significance α = 9.6 × 10−6 were
marked as bold.

Unrelated individuals (N = 7213) All individuals (N = 8545)

Gene MSKAT MSKAT GAMuT GAMuT PhC minPcom PhC minPcom

(Q) (Q′) (Projection) (Linear) (ΣG = SKAT) (ΣG = SKAT)

GLDC 8.9 × 10−54 6.1 × 10−15 0* 6.2 × 10−15 8.1 × 10−54 1.3 × 10−53 2.9 × 10−73 2.3 × 10−72

HAL 9.5× 10−05 4.2× 10−02 9.6× 10−05 4.3× 10−02 9.5× 10−05 2.9 × 10−07 2.9 × 10−06 9.5 × 10−11

DHODH 2.1 × 10−06 2.2× 10−03 2.4 × 10−06 2.2× 10−03 1.9 × 10−06 8.3 × 10−06 3.1 × 10−08 1.1 × 10−07

PAH 9.9× 10−06 1.3× 10−02 1.0× 10−05 1.3× 10−02 9.9× 10−06 5.1× 10−05 3.9 × 10−07 1.9 × 10−06

MED1 1.7× 10−03 2.7× 10−01 1.7× 10−03 2.7× 10−01 1.7× 10−03 2.8× 10−05 2.8× 10−04 4.9 × 10−06

STK33 6.8× 10−04 6.9× 10−01 6.7× 10−04 6.9× 10−01 6.7× 10−04 1.9 × 10−06 1.1× 10−03 4.2× 10−05

ALDH1L1 5.9× 10−05 3.1× 10−02 6.1× 10−05 3.0× 10−02 6.0× 10−05 9.5 × 10−06 1.6× 10−04 5.4× 10−05

BCAT2 6.1× 10−04 1.5× 10−02 6.3× 10−04 1.5× 10−02 6.2× 10−04 3.7× 10−05 2.4× 10−03 6.2× 10−05
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Table 2.5: Single phenotype SKAT-O with kinship adjustment test for the METSIM study data (N = 8545). P-values smaller
than the Bonferroni corrected significance α = 9.6× 10−6 were marked as bold.

Gene Ala Gln Gly His Ile Leu Phe Tyr Val

GLDC 2.9× 10−01 2.9× 10−03 2.5 × 10−64 1.0× 10−02 1.5× 10−01 3.4× 10−02 8.5× 10−01 6.6× 10−01 4.7× 10−03

HAL 9.9× 10−01 1.1× 10−01 3.1× 10−01 3.2 × 10−09 2.6× 10−01 2.5× 10−01 6.6× 10−01 1.2× 10−01 3.5× 10−01

DHODH 1.4 × 10−07 9.9× 10−01 9.0× 10−02 3.6× 10−01 7.7× 10−01 1.7× 10−01 1.9× 10−01 3.0× 10−01 1.0× 10−02

PAH 7.9× 10−01 3.0× 10−01 2.8× 10−01 8.6× 10−01 4.5× 10−01 8.1× 10−01 6.8× 10−05 4.0× 10−01 9.9× 10−01

MED1 1.0× 10−01 5.1× 10−01 7.9× 10−01 5.9× 10−01 3.3× 10−01 1.4× 10−01 6.9× 10−01 6.8× 10−02 6.7× 10−01

STK33 8.4× 10−01 8.2× 10−01 3.5× 10−01 5.7× 10−01 6.6× 10−01 1.0× 10−01 9.9× 10−01 8.1× 10−01 4.1× 10−01

ALDH1L1 6.7× 10−01 7.6× 10−01 9.3 × 10−09 7.3× 10−01 3.4× 10−01 3.2× 10−01 9.9× 10−01 5.9× 10−01 2.5× 10−01

BCAT2 1.4× 10−01 2.6× 10−01 8.2× 10−01 9.9× 10−01 1.0× 10−01 2.1× 10−02 5.4× 10−01 5.0× 10−01 1.2 × 10−06
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CHAPTER III

Meta-MultiSKAT: Multiple phenotype

meta-analysis for region-based association test

3.1 Introduction

The advent of large scale genome-wide association studies (GWAS) has shown

that many distinct phenotypes have substantial genetic correlation [Bulik-Sullivan

et al., 2015] and many loci have pleiotropic effects [Cotsapas et al., 2011, Solovieff

et al., 2013, Sivakumaran et al., 2011, Yang et al., 2015, Li et al., 2014].

To leverage the widespread pleiotropy, a statistical model to jointly test multiple

phenotypes is beneficial. Although data on multiple related phenotypes are often

collected in hospital or population based studies, association tests are usually per-

formed with one phenotype at a time. Such methods that do not account for the

correlation between phenotypes may lack power to detect cross-phenotype effects

of associated loci [Ferreira and Purcell, 2009, Huang et al., 2011, Ray et al., 2016].

Alternatively, joint tests which aggregate association signals in multiple phenotypes

can substantially improve power over single phenotype-based tests [Ferreira and Pur-

cell, 2009, Ray et al., 2016, Ried et al., 2012, Zhou and Stephens, 2014b], although

interpreting the results can prove difficult.

Meta-analysis of multiple studies, using association summary statistics, is a prac-
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tical approach to increase power by increasing sample sizes [Panagiotou et al., 2013].

Meta-analysis is especially valuable for association analysis of variation on the lower

end of the allele frequency spectrum, since detecting such associations often require

large sample sizes. It seems logical to expect that meta-analyzing multiple pheno-

types can further increase power of rare variant tests. Various methods have been

developed for meta-analysis of multiple phenotypes [Majumdar et al., 2018, Ray and

Boehnke, 2018, Zhu et al., 2015], but most of them are single variant-based meth-

ods, which have low power to identify rare variant associations. More powerful gene

or region-based tests for multiple phenotypes have been developed for use within a

single study [Broadaway et al., 2016, Lee et al., 2016, Wu and Pankow, 2016]. How-

ever, to the best of our knowledge, no work has been done to extend these methods

to meta-analysis. This is partly because most of the methods are similarity-based

non-parametric methods, which are difficult to extend to meta-analysis.

In the previous chapter we developed a regression-based method, Multiple phe-

notype sequence kernel association test (Multi-SKAT) [Dutta et al., 2019], that can

aggregate signals across models with different kernels while correcting for sample

relatedness, which only few methods have addressed. Through simulations and real-

data analysis we showed that Multi-SKAT can have greater power than current

methods under a wide range of association models while maintaining type-I error

rate. In this project we develop Meta-MultiSKAT, a meta-analysis extension of

Multi-SKAT, which uses summary statistics from individual studies to construct a

test of of cross-phenotype associations. Meta-MultiSKAT models the relationship be-

tween effect sizes of different studies through a kernel matrix and performs a variance

component test of association. Our method retains useful features of Multi-SKAT,

including fast computation. Meta-MultiSKAT can incorporate various missing data

scenarios, including situations where studies do not share exactly the same set of

phenotypes, and test for only rare variants as well as for the combined effects of
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both common and rare variants. The latter allows us to evaluate the overall effect

of gene or region on multiple phenotypes. By using kinship adjusted score statistics,

Meta-MultiSKAT can account for sample relatedness, an important feature to use

in a study with widespread relatedness, such as the SardiNIA study [Sidore et al.,

2015, Vacca et al., 2006]. To avoid loss of the power due to model misspecification,

we have also developed a minimum p-value-based omnibus test that can aggregate

results across different patterns of association. We evaluate the performance of our

method through extensive type-I error and power simulations.

We applied Meta-MultiSKAT to meta-analyze four white blood cell (WBC) sub-

type traits from the Michigan Genomics Initiative (MGI) [Fritsche et al., 2018] study

and the SardiNIA study. In addition to detecting the genes PRG2 [MIM: 605601]

and RP11-872D17.8, that had significant association signals with WBCs within one

of the studies, Meta-MultiSKAT further identified two additionally associated genes

(IRF8 [MIM: 601565] and CCL24 [MIM: 602495]) that did not have any significant

signals in either of the studies but were identified as significant only as a result of

meta-analysis.

3.2 Methods

Suppose we intend to conduct a meta-analysis with S studies each having K phe-

notypes. For the sth study ns subjects are genotyped in a region that has ms variants.

Let yks = (y1ks, y2ks, · · · , ynsks)
T be the ns × 1 vector for the kth phenotype on ns

individuals in the sth study; Gjs = (g1js, g2js, · · · , gnsjs)
T is an ns × 1 vector for the

minor allele counts (0, 1, or 2 variant alleles) for variant j and Gs = (G1s, · · ·Gmss)

is an ns×ms genotype matrix of the ms genetic variants in the target gene or region.

For a gene-based multiple phenotype test we consider the following regression model,

similar to equation 2.3,

Ys = XsAs +GsBs + Es (3.1)
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where Ys = (y1s, · · · , yKs) is an ns × K phenotype matrix of ns individuals and

K phenotypes; Bs = ((βjks)) is an ms × K matrix where βjks is the regression

coefficient of phenotype k on Gjs; As is a qs × K matrix of regression coefficients

for non-genetic covariates Xs; Es is an ns×K matrix of non-systematic error terms.

The null hypothesis of no genetic association between variants in the region and the

phenotypes is H0 : βjks = 0 for all j and k.

Let Ls = GT
s (Ys − µ̂s)V̂ −1s be the ms × K score matrix for the sth study where

µ̂s is an ns ×K matrix of the estimated mean of Ys under the null hypothesis of no

association and V̂s is the K×K estimated null residual covariance matrix among the

K phenotypes in the sth study. To test the null hypothesis of no association, we use

a variance component test. Under the mixed effect model set-up, we assume that

the vectorized form of matrix Bs represented as vec(Bs) follows a distribution with

mean 0 and variance τ 2ΣG ⊗ ΣP (for details on ΣG and ΣP see below; also refer to

Chapter II Methods sections), where ⊗ is a kronecker product. The null hypothesis

of no genetic association can hence be written as H0 : τ = 0. The corresponding

score statistic is

Qs(ΣP ,ΣG) = [vec(Ls)]
T (ΣG ⊗ ΣP )[vec(Ls)] (3.2)

Under the null hypothesis vec(Ls) asymptotically follows a N(0,Φs) where Φs is the

phenotype-adjusted variant relationship matrix

Φs = (GT
sGs −GT

sXs(X
T
s Xs)

−1XT
s Gs)⊗ (V −1s )

Qs(ΣP ,ΣG) asymptotically follows a mixture of chi-square distributions. The mixing

parameters are the eigenvalues of RΦsR
T where RRT = ΣG ⊗ ΣP .

The kernel ΣG represents the effect sizes of the variants to a phenotype. In gen-

eral, ΣG is assumed to be a sandwich matrix WRGW where W = diag(w1, · · · , wms)
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is a diagonal for the variant-weighting; RG = (1−ρ)Ims×ms +ρJmsJ
T
ms

is a compound

symmetric correlation matrix with Ims×ms being an identity matrix of order ms and

Jms = (1, · · · , 1) is an ms× 1 vector with all elements being 1. This model can cover

a wide range of scenarios of the genetic effect distribution. For example, with one

phenotype (K = 1), if ρ = 1 (i.e.RG = JmsJ
T
ms

), which assumes homogeneous effects

of the variants on the phenotypes, the test reduces to a Burden test [Li and Leal,

2008]. Similarly if ρ = 0 (i.e. (RG = Ims×ms), the test is equivalent to a SKAT test

[Wu et al., 2011].

The kernel ΣP represents the effect sizes of a variant on the phenotypes. For

example, under the assumption that the genetic effects of a variant on each phenotype

are independent, we can use ΣP = IK×K of a variant on the phenotypes. For example,

under the assumption that the genetic effects of a variant on each phenotype are

independent, we can use V̂s as ΣP which results in the test equivalent to GAMuT

[Broadaway et al., 2016], MSKAT [Wu and Pankow, 2016] and DKAT [Zhan et al.,

2017].

3.2.1 Input summary statistics from each study for meta-analysis

Single-variant meta-analyses are conducted with single-variant summary statis-

tics, such as the estimated effect sizes and their standard errors. For region based

tests with a single phenotype, [Lee et al., 2013] showed that the score statistics of the

variants, minor allele frequencies (MAFs) and the variant relationship matrix can be

used as summary statistics for meta-analysis. With multiple phenotypes, the multi-

variate forms of these summary statistics from each study are needed. In particular

from the sth study, the score matrix Ls, the phenotype-adjusted variant relationship

matrix Φs, the residual covariance structure of the phenotypes, V̂s and the MAFs of

the variants in the region are needed for meta-analysis.
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3.2.2 Meta-MultiSKAT: Meta-analysis of gene-based tests with multiple

phenotypes

For simplicity, here we assume that all variants and phenotypes are observed in all

S studies, so that m = m1 = · · · = ms. We will relax this assumption later. Suppose

summary statistics (Ls,Φs), s = 1, · · ·S is provided by S studies. We construct

the meta-score-vector as Lmeta = (vec(L1)
T , vec(L2)

T , · · · , vec(Ls)T )T . The variance

component test statistic for meta-analysis is

Qmeta = [vec(Lmeta)
T ](ΣS ⊗ ΣG ⊗ ΣP )[vec(Lmeta)] (3.3)

Under the null hypothesis of no association, Qmeta follows a mixture of chi-square

distributions and the corresponding p-value can be obtained by inverting the char-

acteristic function (See Appendix B.1 for details on p-value calculation).

Here we have introduced another kernel ΣS. Similarly as the other kernels, ΣS

models the heterogeneity between the effects of the contributing studies. In particular

we will consider two special structures of ΣS:

Homogeneous : ΣS;Hom = JSJ
T
S which assumes that across the S studies the effects

of the variants on all the phenotypes are the same (homogeneous).

Heterogeneous : ΣS;Hom = IS which assumes that across the S studies the effects of

the variants on the phenotypes are uncorrelated or heterogeneous.

The test statistic in (3.3) assumes that the kernels ΣG and ΣP are the same across

studies. This assumption is restrictive since different studies might be analyzed with

different hypotheses, reflected in different ΣG and ΣP across studies. This can be

resolved by modifying (3.3) as

Qmeta = [vec(L̃meta)
T ](ΣS ⊗ Im ⊗ IK)[vec(L̃meta)] (3.4)
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where L̃meta = (vec(L̃1)
T , vec(L̃2)

T , · · · , vec(L̃s)T )T and L̃s = Σ
1
2
G;sLsΣ

1
2
P ;s represents

the kernelized scores incorporating study specific ΣG;s and ΣP ;s for the sth study (See

Appendix B.2 for details).

3.2.2.1 Variant weighting scheme

In region-based analysis, [Wu et al., 2011] suggested a MAF- based weighting

scheme. To upweight the rare-variants, they proposed to use Beta(1,25) weights.

When the homogeneity across the studies are assumed (i.e. ΣS = ΣS;Hom), pooled

MAFs across studies can be used to generate weights for variants. For ΣS = ΣS;Het,

we use study specific weights obtained using MAFs of each study. Alternatively,

functional scores, such as CADD [Kircher et al., 2014] and Eigen [Ionita-Laza et al.,

2014] can be used to upweight functionally important variants. In addition to using

the MAF-based weighting, we have also explored the use of CADD scores as weights

for variants in the meta-analysis of MGI and SardiNIA datasets.

3.2.3 Combined effect of common and rare variants (Meta-MultiSKAT-

Common-Rare)

The default setting for SKAT type tests (SKAT, MultiSKAT and Meta-MultiSKAT)

is to use a MAF-based weighting scheme that up-weights the contribution of the

rare variants and down-weights that of common variants. When there are com-

mon variants in the region associated with the phenotype, this weighting scheme

can lead to a loss in power. Similar to [Ionita-Laza et al., 2013] we propose a

test of the combined effects of common and rare variants on the phenotype. As

in equation (3.3), the Meta-MultiSKAT test statistic is given by the quadratic form,

Qmeta = [vec(Lmeta)
T ]K[vec(Lmeta)] where K = (ΣS ⊗ ΣG ⊗ ΣP ). Given each study

MAF, we compute the pooled MAFs for the variants in the region of interest and

using a cut-off on that we partition the variants into common and rare. In practice,
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cut-offs like 5% MAF or 1% MAF are commonly used. To explicitly separate the

effects of common and rare variants, we construct the test statistic separately for

common and rare variants, as

Qmeta;common = [vec(Lmeta;common)T ]Kcommon[vec(Lmeta;common)] (3.5)

Qmeta;rare = [vec(Lmeta;rare)
T ]Krare[vec(Lmeta;rare)] (3.6)

where Lmeta;common and Kcommon (alternatively Lmeta;rare and Krare) are constructed

using common variants (alternatively rare variants) only. The two matrices Kcommon

and Krare only differ in terms of the underlying ΣG matrices and we can allow

different weighting schemes for the ΣG kernels corresponding to common and rare

variants. In particular, here, we use Beta(0.5,0.5) weights for the common variants

and Beta(1,25) weights for the rare variants.

The combined sum (Meta-MultiSKAT-Common-Rare) is then constructed as

Qmeta;common−rare = (1− φ)Qmeta;common + φQmeta;rare (3.7)

with a given weight φ. A simple approach, as used in [Ionita-Laza et al., 2013], is

to select φ such that the rare and common variants contribute equally to the test

statistics, i.e.

φ =
SD(Qmeta;rare)

SD(Qmeta;rare) + SD(Qmeta;common)

. The asymptotic p-value of Qmeta;common−rare can be calculated from a mixture of

chi-squared distribution, similar to the previous discussion.
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3.2.4 Kinship adjustment within studies

Individual studies might require adjustment for kinship if there are related indi-

viduals within the study. For instance, if study s has related individuals with kinship

matrix Ψ, co-heritability matrix Vg;s and the shared non-genetic effect matrix Ve;s

then we construct scores as

vec(Ls) = (Gs ⊗ IK)Ṽ −1t;s (vec(Ys)− vec(µ̂s))

where Ṽt;s = Ψ⊗ V̂g;s + I ⊗ V̂e;s represents the estimated total covariance matrix for

Ys.

3.2.5 Discrepant phenotypes and genotypes across studies

The studies included in the meta-analysis may not have exactly the same set of

variants genotyped (or sequenced). In particular, some variants may be observed in

only a subset of studies. If variant j was not observed in study s, we set the (j, k)th el-

ement in Ls(k = 1, 2, · · · , K) and the corresponding elements in Φs to be zero, which

implies that the studies with missing data do not contribute to the score statistic.

This also corresponds to imputing the missing data with the respective mean under

the null hypothesis of no association. Using the same framework, if phenotype k in

study s was not collected, we set the (j, k)th element in Ls(j = 1, 2, · · · ,ms) and

the corresponding elements in Φs to be zero. As above, this corresponds to the null

hypothesis that the missing phenotype is not associated with the region of interest.

3.2.6 Minimum p-value-based omnibus tests: Meta-Hom, Meta-Het, and

Meta-Com

The Meta-MultiSKAT model and tests have three parameters ΣS , ΣP and ΣG

that are absent in the null model. Since this is a score test, these parameters can-
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not be estimated from the data. One possible solution is to select them based on

a specific prior hypothesis about the underlying model of association, for example

using ΣS;Hom or ΣS;Het for ΣS. However if the selected values do not reflect the

true model, then the corresponding test might have lower power [Lee et al., 2016,

Ray et al., 2016]. To overcome such issues, minimum p-value-based omnibus tests

have been proposed, which aggregate results across different values of the parame-

ters to produce robust results [Dutta et al., 2019, Wu et al., 2013, He et al., 2017,

Urrutia et al., 2015, Zhan et al., 2017]. Here we use the same strategy to formulate

robust tests across different choices of ΣS, ΣP and ΣG. We first calculate p-values

from different choices of (ΣS , ΣP , ΣG) and obtain the minimum of these p-values.

Since the tests are correlated, using a Bonferroni correction can result in conser-

vative type-I error and low power. Instead, we use a fast resampling approach to

estimate the null correlation between the tests being aggregated and subsequently

use a copula approach to estimate the p-value of the minimum p-value test statis-

tic (See Appendix B.3 for details) [Demarta and McNeil, 2005, Dutta et al., 2019].

This approach has also been used previously to integrate information from multiple

functional annotations [He et al., 2017]. Specifically we consider the following tests:

1. Meta-Hom: minimum p-value of Meta-MultiSKAT tests with ΣS= ΣS;Hom

across different choices of ΣP and ΣG. Specifically, we consider the follow-

ing four different choices of (ΣP , ΣG):

• ΣP = V̂s, ΣG = SKAT

• ΣP = V̂s, ΣG = Burden

• ΣP = IK , ΣG = SKAT

• ΣP = IK , ΣG = Burden

The minimum p-value across these four tests will be used as the test statistic

to evaluate the associations.
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2. Meta-Het: minimum p-value of Meta-MultiSKAT tests with ΣS= ΣS;Het across

different choices of ΣP and ΣG. We will use the same four sets of (ΣP , ΣG) as

in Meta-Hom.

3. Meta-Com: combined test of Meta-Hom and Meta-Het. We use the minimum

p-value of the tests used in Meta-Hom and Meta-Het as test statistics.

3.3 Simulation

We carried out extensive simulation studies to evaluate the type I error rate

and power of Meta-MultiSKAT tests. For type-I error simulations and all power

simulations, we generated 10,000 chromosomes over 1Mb-regions using a coalescent

simulator with a European ancestry model [Schaffner et al., 2005]. We randomly

selected a 3 kb sub-region for each simulated dataset to test for associations.

3.3.1 Simulation setting within individual study

In the sth study, we generate K phenotypes according to the linear model:

yi ∼MVN{(β1G1 + β1G1 + · · ·+ βsGs)Is, Vs;ρ}

where Vs;ρ is the covariance of the non-systematic error term. We use Vs;ρ to define

level of residual covariance between the traits. The matrix Vs;ρ is set to be com-

pound symmetric throughout all the simulation settings with varying values of the

correlation parameter ρ (low correlation ρ = 0.3; moderate correlation ρ = 0.5; high

correlation ρ = 0.7). Is is a K × 1 indicator vector, which has 1 when the corre-

sponding phenotype is associated with the region and 0 otherwise. Throughout our

simulations we set Is = (1, 1, 1, 0, 0)T meaning the first 3 phenotypes are associated

with the region of interest in a particular study.

For estimating type-1 error rates we set βi = 0 for all the variants in all the studies.
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For power simulation, we used two different settings. In the first setting, to estimate

the power of Meta-MultiSKAT as a rare-variant test, we set 30% of the rare variants

(MAF ≤ 1%) to be causal. Next, to estimate the performance of Meta-MultiSKAT-

Common-Rare as a test of combined effects of common and rare variants, we set

30% of all variants (common or rare) in the region to be causal. We modeled rare

variants to have stronger association with the phenotypes than the common variants

by setting |βj| = clog10|MAFj| with c = 0.2 for all the simulation scenarios. For

both the settings, as mentioned earlier, the first three among the five phenotypes in

each study were associated with the region of interest.

3.3.2 Simulation settings across studies

Throughout our simulations we have used settings which consist of three stud-

ies on European samples with five phenotypes of interest. The sample sizes for the

studies were 2000, 2000 and 1000 respectively. To assess the performance of Meta-

MultiSKAT under scenarios of missing data, we considered the following 3 scenarios:

Scenario A: all the individuals in each of the study have complete information on

5 correlated phenotypes

Scenario B: 10% samples (chosen completely at random) in the 3rd study have

information on 4 phenotypes only. This means, 100 samples in study 3 have infor-

mation on 4 phenotypes and misses information on 1 phenotype, while the rest 900

samples have information on all the 5 phenotypes. All the 2000 samples in study 1

and 2 have complete information on all the 5 phenotypes.

Scenario C: The 5th phenotype for study 3 is missing for all the samples. For study

1 and 2, all the 2000 samples have complete information on all the 5 phenotypes.

For these above scenarios, in addition to the Meta-MultiSKAT tests (Meta-Hom,

Meta-Het and Meta-Com), we evaluated the following single phenotype-based ap-

proaches:
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1. MinPhen-Het: Bonferroni-adjusted minimum p-value from the single pheno-

type region-based meta-analysis using Heterogeneous Meta-SKAT-O (Het-Meta-

SKAT-O)

2. MinPhen-Hom: Bonferroni-adjusted minimum p-value from the single phe-

notype region-based meta-analysis using Homogeneous Meta-SKAT-O (Hom-

Meta-SKAT-O)

3.4 Meta-analysis of white blood cell traits

To investigate the pleiotropic roles of low frequency and rare-variants on WBC

subtypes, we analyzed data collected under the Michigan Genomics Initiative (MGI

study) [Fritsche et al., 2018] Phase 2 (data-freeze on December 2017) and the Sar-

diNIA [Sidore et al., 2015, Vacca et al., 2006] study. Data on four WBC subtypes

percentages were included in the analysis: lymphocyte, monocyte, basophil and

eosinophil. We excluded the data on percentage of neutrophils since it was highly

correlated with lymphocytes (absolute value of correlation > 0.9 in both MGI and

SardiNIA). European samples with at most two phenotypes missing were included

in the analysis for each of the studies. In all, we included 11,049 and 5,899 samples

from the MGI and the SardiNIA studies, respectively (Table 3.1). We annotated

protein-coding variants and a region of 20kb (± 10kb) around them to genes using

Variant Effect Predictor [McLaren et al., 2010] software. Within each study, we

included age, sex, and study specific top four principal components (PC) as fixed

effect covariates in the analysis. In each study each of the four WBC subtypes were

adjusted for the corresponding covariates and the residuals were quantile-normalized.

Further, we estimated the kinship between the subjects in each study using KING

[Manichaikul et al., 2010b] and estimated the co-heritability matrix of the pheno-

types using PHENIX [Dahl et al., 2016]. The inverse normalized residuals were then
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used in region-based multiple phenotype analysis (Multi-SKAT with kinship correc-

tion). The required summary statistics were calculated from the individual tests.

We conducted three sets of analysis with the extracted summary statistics. First to

test the rare-variant associations of the phenotypes, we used Meta-MultiSKAT tests

(Meta-Het, Met-Hom and Meta-Com) to test groups of protein-coding variants with

pooled MAF ≤ 1%. We only included the groups that had at least three variants and

a total minor allele count of 5. We used a Beta(1,25) weighting scheme to upweight

the effect of the rare variants. Next, to test the combined effect of common and rare

variants, we used the Meta-MultiSKAT-Common-Rare versions of the above tests

with groups of protein-coding variants without any MAF cutoff. This means both

common (MAF > 1%) and rare variants (MAF ≤ 1%) were present in the regions

tested. For the rare variants we used Beta(1,25) weights and for the common vari-

ants we used Beta(0.5,0.5) weights (see Methods). Further, we annotated CADD

scores for all the variants (common and rare) using ANNOVAR [Wang et al., 2010].

We used these scores as weights in the genotype kernel ΣG and performed the above

Meta-MultiSKAT tests.

3.5 Results

3.5.1 Type-I error

For type-I error simulations, we simulated 107 independent datasets with three

studies each having five phenotypes with a compound symmetric null residual co-

variance structure having off-diagonal elements equal to 0.5, i.e. Vs;0.5. The MAF

spectrum for the population allele frequencies shows that the majority of the sim-

ulated variants are rare (MAF ≤ 1%). We estimated the type-1 error rate as the

proportion of p-values less than the specified α levels, with α set at 10−4, 10−5 and

2.5× 10−6.
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Type-I error rates were well maintained at all levels. For example, at α = 2.5×10−6,

the largest estimated type-I error rate for any of the Meta-MultiSKAT tests was

2.7× 10−6, which was well within the estimated 95% confidence interval (Table 3.2).

3.5.2 Power

We compared the empirical power of Meta-MultiSKAT tests with two possible ex-

isting approaches: minimum of the single phenotype MetaSKAT p-values (MinPhen-

Hom and MinPhen-Het). For each simulation setting, we generated 1000 datasets

and estimated the empirical power as the proportion of p-values less than 2.5×10−6,

reflecting the Bonferroni correction for testing 20,000 independent genes. In power

simulations, the first scenario considered the case that each study has the same set

of causal variants and all of them are trait-increasing. Meta-Hom and Meta-Com

had the highest powers in all scenarios while the power for Meta-Het is lower (Figure

3.1). Also, there was a slight overall decrease in power from scenario A through

scenario C. We expect this decrease in power since there is an increase of the amount

of missing-ness in the scenarios A through C, though the power decrease is small

(maximum relative decrease in empirical power < 1%). Overall power of all the

methods was higher when the correlation is high (ρ = 0.7).

Next, we considered a heterogeneous situation in which causal variants for each

study were randomly selected so only small percentage of causal variants were shared

among studies (Figure 3.2). As expected, Meta-Het and Meta-Com had high power

among the tests being compared. Meta-Hom was underpowered compared to these

tests, while MinPhen-Hom and MinPhen-Het had lower power than the rest. We

then assumed that the causal variants for each study are chosen randomly within

the region and 20% of the variants are trait-decreasing (80% are trait increasing)

(Figure 3.3). Similar to the previous scenario, Meta-Het and Meta-Com had higher

power than the rest of the tests. MinPhen-Hom and MinPhen-Het had lower power of
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Figure 3.1: Power for Meta-MultiSKAT tests compared with the existing methods when
the set of causal variants is the same across different studies and has the same direction
of effect. Empirical power for Meta-Hom, Meta-Het and Meta-Com plotted for 3
different scenarios compared against MinPhen-Hom and MinPhen-Het (See Simulations
for details). Left panel shows the results for low correlation (ρ = 0.3) among the
phenotypes and right panel shows the results for high correlation (ρ = 0.7)
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detecting association signals, and Meta-Hom consistently had the lowest power across

all the settings. Next we considered a situation where the correlation structure among

the phenotypes across studies varies. For the 1st and 2nd study the correlation among

the 5 phenotypes is high (ρ = 0.7) while for the 3rd study, the correlation among

the 5 phenotypes is moderate (ρ = 0.5). Similar to the previous cases, Meta-Het and

Meta-Com maintained higher power than the rest of the tests (Figure 3.4). As before,

Meta-Hom performed poorly when 20% of the causal variants are trait-decreasing.

We further estimated type-1 error and power for the Meta-MultiSKAT-Common-

Rare versions of the tests. The results are shown in Appendix Table B.2, Appendix

Figure B.2 and B.3. Type-I error was well maintained at different levels and the

patterns of estimated power remained the same.

Overall our simulations show that Meta-MultiSKAT tests can increase power

over the existing single phenotype-based meta-analysis approaches, while controlling

type-I error rates. In particular, Meta-Com maintains robust power across all the

scenarios regardless of the underlying genetic model.

3.5.3 Meta-analysis of WBC subtype traits

White blood cells (WBCs) are major cellular components of the human immune

system. They have been found to be associated with risk of cardiovascular disease

[Kim et al., 2017] and cancer mortality [Erlinger et al., 2004] among others. Certain

disease risk factors including high blood pressure, cigarette smoking, adiposity and

increased levels of plasma inflammatory markers have been reported to be associated

with elevated WBC counts [Hasegawa et al., 2002, Mu oz et al., 2012]. WBCs are

classified into subtypes according to the functionality and morphology. Abundances

(counts or percentage) of these WBC subtypes have been found to be important

biomarkers for diseases including COPD [Kim et al., 2012] and rheumatoid arthritis

[Salomon et al., 2017], and several GWAS have identified genetic variants associ-
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Figure 3.2: Power for Meta-MultiSKAT tests compared with the existing methods when
the set of causal variants is randomly chosen for each study and has the same direction
of effect. Empirical power for Meta-Hom, Meta-Het and Meta-Com plotted for 3
different scenarios compared against MinPhen-Hom and MinPhen-Het (See Simulations
for details). Left panel shows the results for low correlation (ρ = 0.3) among the
phenotypes and right panel shows the results for high correlation (ρ = 0.7).

ated with them [Astle et al., 2016, Crosslin et al., 2013, Kanai et al., 2018, Keller

et al., 2014]. In this analysis, we used the abundance percentages (quantile normal-

ized) of lymphocyte, monocyte, basophil and eosinophil as phenotypes. Correlations

among the phenotypes for each study are shown in Appendix Figure B.4. Correla-

tion estimates between the WBC subtype traits within MGI samples appear to be

higher in magnitude as compared to samples in SardiNIA study. We applied Meta-

MultiSKAT tests to the analysis of WBC subtypes from the MGI and SardiNIA

studies (See Methods for details). In particular, we applied Meta-Het, Meta-Hom
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Figure 3.3: Power for Meta-MultiSKAT tests compared with the existing methods
when the set of causal variants is randomly chosen for each study and 20% of the causal
variants are traitdecreasing. Empirical power for Meta-Hom, Meta-Het and Meta-Com
plotted for 3 different scenarios compared against MinPhen-Hom and MinPhen-Het
(See Simulations for details). Left panel shows the results for low correlation (ρ = 0.3)
among the phenotypes and right panel shows the results for high correlation (ρ = 0.7)

and Meta-Com tests along with MinPhen-Hom and MinPhen-Het. We also evalu-

ated the single-phenotype tests and multiple-phenotype tests (Multi-SKAT) for each

study (Appendix Table B.1).

3.5.3.1 Results for rare variants with MAF-based weighting

First, we used the MAF-based weighting scheme to upweight the rare variants

as suggested by [Wu et al., 2011]. Using the variants with pooled MAF ≤1%, we

used Beta(1,25) weights. Overall 5,109 genes with at least 3 variants and a total
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Figure 3.4: Power for Meta-MultiSKAT tests when the set of causal variants is ran-
domly chosen for each study and the studies have different covariance structure across
the phenotypes. Empirical power for Meta-Hom, Meta-Het and Meta-Com plotted
for 3 different scenarios compared against MinPhen-Hom and MinPhen-Het (See Sim-
ulations for details). Left panel shows the results when all the causal variants are
trait increasing; right panel shows the same when 20% of the causal variants are trait-
decreasing

minor allele count > 5 were tested. This produces a Bonferroni cut-off of 9.8× 10−6

(approximately 1 × 10−5) The QQ-plots shown in Figure 3.5 corresponding to the

Meta-MultiSKAT tests do not show any indication of inflation (genomic control

varying from 0.998 to 1.003). Table 3.3 shows the genes that had p-values less than

1 × 10−5 for at least one of the tests. Two genes PRG2 (p-value = 5.9 × 10−7)

and RP11-872D17.8 (p-value = 1.7 × 10−7) were identified as significant by Meta-

MultiSKAT tests while the p-values for the existing tests did not reach significance.
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PRG2 gene [MIM: 605601] encodes a protein, which is a major contributor to the

crystalline core of the eosinophil granule. Multiple phenotype analysis (Multi-SKAT)

shows evidence for a strong association in the SardiNIA study (p-value = 2.8×10−7)

whereas the p-value in the MGI study (p-value = 0.76) does not show evidence for

association (Appendix Table B.1). This signal is driven by the association of the

gene with eosinophils in SardiNIA (SKAT-O p-value = 3.7× 10−7; Appendix Table

B.1). A low-frequency SNP at 11:57156106 (A/G; MAF 3% in SardiNIA), which is

significantly associated with the eosinophil percentages (p-value = 9.3×10−12). This

variant is only observed for the individuals in SardiNIA study and was not observed

in MGI. The signal for RP11-872D17.8, an adjacent gene to PRG2, is also driven by

the same variant.
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Figure 3.5: QQ plots for the Meta-MultiSKAT (Meta-Het, Meta-Hom and Meta-Com respectively) p-values obtained from
MGI-SardiNIA meta-analysis.
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3.5.3.2 Results with combined effects of common and rare variant

To illustrate how Meta-MultiSKAT can test the combined effect of common and

rare variants, we used Meta-MultiSKAT-Common-Rare version of each test to an-

alyze the WBC data from the MGI and SardiNIA studies. All the variants, com-

mon and rare, were used in this analysis. The same two genes, PRG2 and RP11-

872D17.8, had p-values less than 1 × 10−5, but with different p-values along with

CCL24 and IRF8 (Table 3.4). Among the genes that showed signal, Chemokine

(C-C motif) ligand 24 gene (CCL24 [MIM: 602495]) encodes a protein that interacts

with chemokine receptor CCR3 to induce chemotaxis in eosinophils [White et al.,

1997]. This chemokine is also strongly chemotactic for resting T lymphocytes and

slightly chemotactic for neutrophils [Salcedo et al., 2002]. Multiple phenotype tests

of CCL24 did not reach significance in any of the individual studies (p-value in Sar-

diNIA = 1.3×10−2; p-value in MGI = 2.0×10−4;Appendix Table B.1). But Meta-Het

(p-value = 4.8×10−7) and Meta-Com (p-value = 8.1×10−7) are significant indicating

the utility of meta-analysis to identify this signal.

Interferon regulatory factor 8 (IRF8 [MIM: 601565]) at 16q24.1 has been pre-

viously reported as associated with several WBC subtype traits. IRF8 has been

found to be associated with monocyte count [Sichien et al., 2016] and has also been

identified as a multiple sclerosis susceptibility locus [De Jager et al., 2009]. Animal

model studies showed that IRF8 as a transcription factor plays an essential role

in the regulation of lineage commitment during monocyte differentiation [Kurotaki

et al., 2018, Yáñez et al., 2015]. [Astle et al., 2016] found several associations of IRF8

with WBC subtype traits like Neutrophils (high correlation with Lymphocytes) and

combinations (sum of neutrophil and basophil counts) in the UK Biobank. Meta-

Hom (p-value=1.8×10−10) and Meta-Com (p-value = 2.9×10−10) show evidence for

strong association. For IRF8 (p-value = 2.9×10−10), CCL24 (p-value = 8.1×10−7)

and PRG2 (p-value = 4.2× 10−8) the combined effect of common and rare variants
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produces substantially more significant results compared to the MAF-based weight-

ing with rare variants, without evidence of inflated false discoveries. In comparison,

the p-values for RP11-872D17.8 (p-value = 1.7×10−7) remain approximately of the

same order of significance. The results from this analysis demonstrate that Meta-

MultiSKAT can be applied as a region-based test for testing the combined effect of

common and rare variants.

3.5.3.3 Results with CADD-score weighting with both common and rare

variants

We reanalyzed the WBC data from the MGI and SardiNIA studies by weighting

the variants with a functional score. Both common and rare variants were used in

this analysis. We used CADD-scores as weights in ΣG = WRGW . The results are

shown in Table 3.5. The same set of 4 genes identified using MAF-based weighting

remained significant (p-value < 1 × 10−5), but with slightly different p-values. For

PRG2 (p-value = 1.2× 10−8), IRF8 (p-value = 1.6× 10−7) and CCL24 (p-value =

1.1 × 10−6), weighting by functional scores resulted in a slightly smaller p-value as

compared to rare-variant test.

Further, Appendix Table B.1 lists the single phenotype and multiple phenotype

p-values for these four genes in each study. It is to be noted that, no other gene

had a p-value less than 1× 10−5 in any of the single phenotype or multi-phenotype

tests in each study. As a further illustration, we performed Meta-MultiSKAT tests

by masking lymphocyte data in SardiNIA and treating that as a missing phenotype

(See Appendix B.4 for details). The results (Appendix Table B.3) show that Meta-

MultiSKAT has a robust power under such scenarios while controlling type-1 error.
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3.5.4 Computation Time

We estimated the computation time of Meta-MultiSKAT tests using simulated

datasets on 3 studies (as described in the Simulations section) with 5 phenotypes

and 50 genetic variants. We set the number of perturbation iterations to 1000.

On average, Meta-Hom and Meta-Het tests required approximately 8 CPU-seconds

(Intel Xeon 2.80 GHz) and Meta-Com required 12 CPU-sec. Analyzing the MGI and

SardiNIA datasets, using the extracted summary statistics from each study, required

about thirty CPU-hours when parallelized to 10 processes.

3.6 Discussions

We propose a new method, Meta-MultiSKAT, which meta-analyzes region-based

association of multiple phenotypes across studies. The model is based on study-

specific summary statistics for the region and is flexible to accommodate a range of

heterogeneity of genetic effects across studies. The simulation and the real data anal-

ysis results involving the summary statistics from MGI and SardiNIA demonstrate

that Meta-MultiSKAT can substantially increase power compared to the existing

tests and can identify additional association signals, while maintaining the desired

type-I error rate. The method is implemented as an R-package.

We note that the test statistics, assuming homogeneous genetic effects, are es-

sentially identical to joint analysis test statistics using all individual level data and

accounting for study-specific covariate effects, resulting in nearly identical power

using meta-analysis and joint analysis. Our power-simulations confirm this finding

(Appendix Figure B.1).

For Meta-MultiSKAT tests with a given choice of ΣS , ΣP and ΣG, asymptotic

p-values can be calculated. For Meta-Hom and Meta-Het, we are aggregating four

such Meta-MultiSKAT tests for a given choice of ΣS , ΣP and ΣG. Although the
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corresponding p-values depend on a resampling scheme, they still can be calculated

using a small number of perturbations. Similarly, p-values for Meta-Com that ag-

gregates 8 Meta-MultiSKAT tests with a given choice of ΣS , ΣP and ΣG can also

be calculated using a small number of resampling iterations. The reported compu-

tation times show that Meta-MultiSKAT tests are computationally manageable at a

genome-wide level. In addition, Meta-MultiSKAT retains the desirable properties of

Multi-SKAT. For instance, Multi-SKAT effectively incorporates kinship information

through a regression framework, allowing the use of the whole sample rather than

only unrelated individuals in a particular study. Meta-MultiSKAT can use the kin-

ship adjusted summary statistics from the Multi-SKAT tests across several studies

to produce a test of association, in which kinship information for each study has

been incorporated. This integration allows for the use of all samples for each of the

studies, further augmenting statistical power.

The asymptotic p-value calculations for Meta-MultiSKAT rely on the normal-

ity assumption of the score vectors. When at least one pair of the phenotypes is

very strongly correlated (i.e. absolute correlation > 0.9), this assumption may be

violated. Currently, we do not have a mechanism to adaptively select an active set

of phenotypes which might produce the optimal association signal for a particular

region. Hence, we recommend that the data be pre-pruned for correlation and such

strongly correlated phenotypes be excluded before analysis. Currently, the frame-

work of Meta-MultiSKAT is developed for continuous phenotypes. A direction of

future research is to extend this framework for phenotypes that are a mixture of

continuous and discrete types.

In summary, we have developed Meta-MultiSKAT, a meta-analysis method for

testing rare-variant associations of multiple correlated phenotypes. Meta-MultiSKAT

has robust power and can handle practical problems such as missing data and differ-

ent covariance structures. The method provides a scalable and practical solution to
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test multiple phenotypes jointly and thus can contribute to detecting regions in the

genome with pleiotropic effects.
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Table 3.1: Estimated Type-1 error rates for Meta-MultiSKAT tests

α Meta-Hom Meta-Het Meta-Com

2.5× 10−6 2.3× 10−6 2.3× 10−6 2.7× 10−6

1× 10−5 1.1× 10−5 1.1× 10−5 1.2× 10−5

1× 10−4 1.2× 10−4 1.2× 10−4 1.3× 10−4

75



Table 3.2: Significant genes identified by Meta-MultiSKAT using rare variants. Genes/ regions identified by either of the
Meta-MultiSKAT methods (Meta-Hom, Meta-Het or Meta-Com) or the existing approaches (MinPhen-Hom or MinPhen-Het).
The p-values < 105 were marked in bold. Variants with pooled MAF ≤1% are included as rare.

Gene Rare SNPs Meta-Het Meta-Hom Meta-Com MinPhen-Hom MinPhen-Het

RP11-872D17.8 3 5.3× 10−8 2.1× 10−4 1.7× 10−7 2.9× 10−5 1.3× 10−5

PRG2 2 3.1× 10−8 6.1× 10−4 5.9× 10−7 6.3× 10−5 1.1× 10−5

76



Table 3.3: Significant genes identified by Meta-MultiSKAT-Common-Rare. Genes/ regions identified by either of the Meta-
MultiSKAT-Common-Rare methods (Meta-Hom, Meta-Het or Meta-Com) or the existing approaches (MinPhen-Hom or
MinPhen-Het). The p-values < 105 were marked in bold. Variants with pooled MAF ≤1% (> 1%) are included as rare
(common)

Gene Common SNPs Rare SNPs Meta-Het Meta-Hom Meta-Com MinPhen-Hom MinPhen-Het

IRF8 28 3 1.3× 10−4 1.8× 10−10 2.9× 10−10 7.4× 10−3 4.9× 10−4

PRG2 5 2 3.1× 10−8 6.1× 10−4 5.9× 10−7 6.3× 10−5 1.1× 10−5

CCL24 12 1 4.6× 10−7 8.3× 10−4 8.1× 10−7 8.2× 10−2 2.2× 10−4

RP11-872D17.8 9 3 5.3× 10−8 2.1× 10−4 1.7× 10−7 2.9× 10−5 1.3× 10−5
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Table 3.4: Significant genes identified by Meta-MultiSKAT using CADD weights. Genes/ regions identified by either of the
Meta-MultiSKAT methods (Meta-Hom, Meta-Het or Meta-Com) with functional (CADD) score weights were used for the
variants. The p-values < 105 were marked in bold. Variants with pooled MAF ≤1% (> 1%) are included as rare (common)

Gene Common SNPs Rare SNPs Meta-Het Meta-Hom Meta-Com MinPhen-Hom MinPhen-Het

IRF8 28 3 1.2× 10−5 9.4× 10−8 1.6× 10−7 7.4× 10−3 4.9× 10−4

PRG2 5 2 7.4× 10−9 3.6× 10−4 1.2× 10−8 6.3× 10−5 1.1× 10−5

CCL24 12 1 8.2× 10−7 5.7× 10−4 1.1× 10−6 8.2× 10−2 2.2× 10−4

RP11-872D17.8 9 3 1.0× 10−6 1.1× 10−3 2.3× 10−6 2.9× 10−5 1.3× 10−5
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Table 3.5: Sample sizes for each phenotype in each study for MGI-SardiNIA meta-
analysis

Phenotype N (MGI) N (SardiNIA) N (Total)

Lymphocyte% 11049 5895 16944
Monocyte% 11049 5876 16925
Basophil% 11038 5866 16904

Eosinophil% 11037 5795 16830
Complete cases 11035 5735 16770

Total Samples 11049 5898 16947
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CHAPTER IV

A powerful Gene-set analysis method to identify

active genes with applications to Biobank-based

association studies

4.1 Introduction

In the past few years, genome-wide association studies (GWAS) have identified

thousands of genetic variants associated with hundreds of complex traits. However,

the variants identified so far, individually or in combination, account for only a

small proportion of the inherited component of disease risk for most of the complex

diseases [Manolio et al., 2009]. A possible explanation is that due to the large

number of genetic polymorphisms examined in GWAS and the massive amount of

tests conducted, real but weak associations are likely to be missed after multiple

comparison adjustment [Liu et al., 2010].

Gene-set analysis (GSA) have been suggested as potentially more powerful alter-

native to the single-variant or single-gene analysis performed in GWAS, specially in

order to identify weak to moderate effects [Cantor et al., 2010]. In GSA, individual

genes are aggregated to groups sharing certain biological or functional characteristics

and association of the trait with the gene-set is tested for significance. This consid-
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erably reduces the number of tests that need to be performed, and makes it possible

to detect effects consisting of multiple weaker associations that would otherwise be

missed [Fridley and Biernacka, 2011, Yu et al., 2009]. Additionally, the majority of

complex phenotypes are manifested through a concerted activity of many variants.

Thus in such cases a gene-set analysis can provide insight into the involvement of

specific biological pathways, cellular functions or gene-sets defined using predefined

biological functions in the genetic architecture of the phenotype [Pers, 2016].

In recent years, several novel statistical methods to perform GSA have been pub-

lished [Lee et al., 2012a, Jia et al., 2011, Segre et al., 2010, O’Dushlaine et al., 2009,

Holmans, 2010, Lips et al., 2015, Wang et al., 2007, Mooney et al., 2014, de Leeuw

et al., 2015, Pan et al., 2015, Sun et al., 2019] and have successfully discovered gene-

sets associated with numerous complex diseases [Locke et al., 2015, Allen et al., 2010,

Nurnberger et al., 2014]. However there are several concerns regarding the properties

and applicability of these methods. Existing GSA methods often demonstrate low

power [Jia et al., 2011], especially in situations where only a few genes within the

gene-set are associated with the trait [Sun et al., 2019]. Further, several methods

depend on permutation or simulation-based p-values which can be computationally

challenging and hence can reduce the applicability of the method [Holmans, 2010].

Additionally, in presence of linkage disequilibrium or gene-gene correlation, many

existing methods cannot control the type-I error [Moskvina et al., 2012].

Another key challenge is the question of interpretability which only a few methods

have tried to address. Although the existing GSA method produce a p-value for

association between the gene-set and the trait, it remains important to understand

the genes that are active within the gene-set. Usual set-based methods fail to identify

such genes which individually or in congregation might be driving the association

signal. Thus, the granularity of information on the active set of genes in the gene-

set is lost which might be important in further downstream analysis and eventually
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using the results as therapeutic targets.

In this project we describe a subset-based gene-set association method Gene-set

analysis Association Using Sparse Signals (GAUSS) which aims to provide a solution

to the issues mentioned above. In general, standard GSA aim to evaluate two types

of null hypotheses, namely the competitive null hypothesis, i.e., the genes in a gene-

set of interest are no more associated with the outcome than any other genes outside

this set, and the self-contained null hypothesis, i.e., none of the genes in the gene-set

is associated with the outcome. The GAUSS procedure focuses on the self-contained

null hypothesis, as our main goal is to identify gene-sets associated with the trait of

interest.

Our method identifies a subset within the gene-set which carries the maximum

signal of association and evaluates its p-value through a fast-simulation approach.

Additionally, this subset of genes within the gene-set, is the active set that appears to

drive the association. Using several pre-computed correlation matrices from publicly

available reference data-sets we show that the computational burden of our method

can be substantially reduced and can be efficiently applied to large biobank-scale

datasets. Furthermore, the test we propose can be conducted using publicly available

GWAS summary level information only.

Using simulation studies we show that under a variety of association models,

GAUSS can be more powerful than existing methods while maintaining the correct

type-I error. We applied the method to evaluate the associations of 1, 201 pheno-

types from UK Biobank [Bycroft et al., 2018] with 10, 679 gene-sets derived from

the molecular signature database (MSigDB) [Liberzon et al., 2015], thus proving it

feasible to be applied to such large-scale data and gaining newer insights into the

genetic architecture of the phenotypes.
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4.2 Methods

To conduct the GAUSS test we need p-values for the regions or genes present in

the gene-set. Popular gene-based tests like SKAT [Wu et al., 2011], SKAT-Common-

Rare [Ionita-Laza et al., 2013], SKAT-O [Lee et al., 2012b], prediXan [Gamazon et al.,

2015] and others can be used for obtaining the p-values when individual level data are

available. If GWAS summary statistics (effect size, standard error, p-value, minor

allele frequency for each variant) are available, we can approximate the gene-based

p-values using LD information from a suitable reference panel as outlined in 4.2.3.

Given the gene-based p-values, constructing the GAUSS test for a given gene-set

or pathway consists of two major steps as follows:

• Step 1: Construct GAUSS test statistic for a given gene-set or pathway

• Step 2: Obtain the p-value for GAUSS test statistic using a suitable reference

panel

4.2.1 Step 1: GAUSS test statistic

We start with the z-statistics for gene-based p-values for the J genes in the

gene-set G. In our data applications here, we have used publicly available GWAS

summary statistics and a reference panel of Europeans from 1000 Genomes data [The

1000 Genomes Project Consortium, 2015] to estimate SKAT-Common-Rare p-values

(4.2.3). Other gene-based tests which are not of the SKAT-family, like prediXan,

can also be used to obtain gene-based p-values.

For any non-empty subset B ⊆ G, we define S(B) the association score for subset

B as S(B) =
∑

b∈B zb√
|B|

where |B| is the number of genes in subset B. We define the

GAUSS statistic for the gene-set G as the maximum score of any non-empty subset

of G.

GAUSS(G) = max
B⊆G

∑
b∈B zb√
|B|

(4.1)
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where |B| denotes the number of genes in the subset B. Such maximum-type statis-

tics have previously been used in context of multiple phenotypes, meta-analysis

[Bhattacharjee et al., 2012] and gene-environment interaction [Yu et al., 2018]. Ad-

ditionally Bopt = argmaxB⊆G
∑

b∈B zb√
|B|

, the subset that has the maximum association

score, is termed the active subset (AS)

The maximum is over all possible 2J − 1 subsets of G, but the computational

complexity can be greatly reduced by the following observations:

GAUSS(G) = max
k∈{1,···J}

max
Bk⊆G

∑
b∈Bk

zb√
|Bk|

where Bk denotes a subset of G with k elements. It is easy to see that

max
Bk⊆G

∑
b∈Bk

zb√
|Bk|

=
z(1) + z(2) + · · ·+ z(k)√

k

where z(1), z(2), · · · z(J) are the z-statistics sorted in a decreasing order with z(1) as

the maximum of the J z-statistic. We implement the following algorithm to obtain

the GAUSS statistic as

• Order the z-statistics for the J genes as z(1), z(2), · · · z(J) in a decreasing order,

where z(1) denotes the maximum of the J z-statistic.

• Starting with i = 1, we compute S(i) =

i∑
l=1

z(l)
√
i

for all i = 1, · · · , J

• GAUSS test statistic is maxi∈{1,··· ,J} S(i)

This algorithm has a computational complexity of O(JlogJ).

4.2.2 Step 2: Fast estimation of the p-value of GAUSS

We use fast two-step approach which uses normal-Copula to estimate p-values of

GAUSS. We first estimate the null correlation structure (V̂G) among the z-statistics
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z(1), z(2), · · · z(J) in G through a small number of simulations using reference LD struc-

ture (See 4.2.4). Then we estimate the p-value of the GAUSS test statistic as follows

• Starting from r = 1, in the rth step, generate a random J × 1 vector vr from

the multivariate normal distribution N(0, V̂G)

• Calculate the GAUSS statistic for vr as GAUSSr, using Step 1 in 4.2.1 above

• Repeat the above steps a large number of times, say R (= 106)

• P-value for observed GAUSS statistic (gsobs) is caluclated as

R∑
r=1

GAUSSr>gsobs

R

Although it is a simulation-based method, the algorithm can be efficiently imple-

mented since it only requires generating multivariate normal (MVN) random vectors.

For example, generating 1 million MVN random vectors for a gene-set with 100 genes

(J = 100) needs 2 CPU-seconds. We also implemented adaptive resampling scheme

to perform small number of iterations if true p-value is large (> 0.001). Thus, if the

true p-value is large the above algorithm estimates the it in less than 1 CPU-seconds

and if the true p-values is small (< 0.001) the algorithm takes approximately 161

CPU seconds on an average to estimate it.

Our approach of simulating MVN random vectors is considerably faster than the

existing approaches for simulation or permutation-based p-values. For example, in

aSPUpath [Pan et al., 2015], which employs a permutation-based p-value, a new null

trait vector (or score vector) is generated through permutation in each iteration.

The test statistic is then calculated based on that null trait (or score) vector and

this process is repeated for the specified number of iterations. This procedure has a

substantially high computational burden since at each step the entire procedure of

calculating a p-value starting from null traits (or scores) is being repeated. On the

other hand, in our algorithm detailed above we have assumed that the z-statistics for

the genes in the gene-set jointly follow a multivariate normal. Hence the simulations
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can be carried out using the null distributions of the z-statistics rather than gener-

ating a null trait (or score) in each iteration which reduces the computation greatly.

Additionally, since simulating MVN random vectors is considerably faster than gen-

erating permutation-based null traits (or scores), our algorithm has a significantly

lower computational burden.

4.2.3 Estimating gene-based p-values from summary statistics: SKAT,

Burden, SKAT-Common-Rare

Individual-level data on genotypes and phenotypes are often unavailable due to

restrictions on data sharing, but summary statistics from such studies may be avail-

able. There are publicly accessible repositories of GWAS summary statistics which

can be queried for numerous genetic variants as well as phenotypes [Buniello et al.,

2019].

To complete Step 1 (4.2.1) above, we need the gene-based p-values for the gene-

set G. In this section, we demonstrate methods to estimate mixed model-based tests

like SKAT, Burden and SKAT-Common-Rare when only GWAS summary statistics

on individual variants are available. Thus, GAUSS can be applicable in a broad

spectrum of scenarios with individual level GWAS data as well as summary statistics.

Let y = (y1, y2, · · · , yn)T be an n× 1 vector of the phenotype over n individuals;

X an n × q matrix of the q non-genetic covariates including the intercept; Gj =

(G1j, · · · , Gnj)
T is an n× 1 vector of the minor allele counts (0, 1, or 2) or dosages

for a binary genetic variant j; and G = [G1, · · · , Gm] is an n ×m genotype matrix

for m genetic variants in a target region. The regression model shown in equation

(4.2) can relate m genetic variants to phenotype,

y = Xα +Gβ + ε (4.2)
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where α is a q × 1 vector of regression coefficients of q non-genetic covariates, β =

(β1, · · · , βm)T is an m× 1 vector of regression coefficients of the m genetic variants,

and ε is an n × 1 vector of non-systematic error term that follows N(0, σ2In). To

test for H0 : β = 0, under the random effects assumption βi ∼ N(0, τ 2). The SKAT

test statistic is

Q = (y − µ̂)TGWWGT (y − µ̂) (4.3)

where µ̂ = Xα̂ is the estimated mean of y under the null hypothesis of no association

and where W = diag(w1, .., wm) is a diagonal weighting matrix. The test statistic Q

asymptotically follows a mixture of chi-squared distributions under the null hypothe-

sis and p-values can be computed by inverting the characteristic function. The mixing

parameters are the eigenvalues of WGTP0GW where P0 = In −X(XTX)−1XT .

Equation (4.2) uses individual level data on the samples. However the test of

association can be approximated by using summary level statistics on the m variants

in the region [Lumley et al., 2018]. Given GWAS summary statistics (MAFi, βi, SEi),

the test statistic Q in (4.3) can be shown to be equal to

Qsummary =

p∑
i=1

2pi(1− pi)w2
i t

2
i (4.4)

where ti = βi
SEi

. Under the null hypothesis, Q follows a mixture of chi-squares and

the mixing parameters are the eigen values of the matrix WGTP0GW . Replacing

P0 by P̃0 = I − 11T/n, we can approximate the eigen values by that of the matrix

WGT P̃0GW . The matrix GT P̃0G is the LD-matrix of the p variants. We can estimate

this matrix using a suitable publicly available reference panel.

To use (4.4) as a rare-variant test, [Wu et al., 2011] suggested using weights

generated from a beta-distribution as wi = Beta(MAFi, a1, a2), the beta distribution

density function with prespecified parameters a1 and a2 evaluated at the sample

minor-allele frequency MAFi. [Wu et al., 2011] suggested using a1 = 1 and a2 = 25
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upweights the contribution of rare-variants (MAF < 1%), while putting lower non-

zero weights for variants with MAF ≥ 1%.

To perform a test of the combined effect of common and rare variants in a region

[Ionita-Laza et al., 2013] developed SKAT-Common-Rare, which modifies (4.4) by

separating the contribution of common and rare variants. Given summary statistics

as above, we construct the test statistic separately for common and rare variants as

Qsummary;common =

p∑
i=1

2pi;common(1− pi;common)w2
i;commont

2
i;common (4.5)

Qsummary;rare =

p∑
i=1

2pi;rare(1− pi;rare)w2
i;raret

2
i;rare; (4.6)

where Qsummary;common (Qsummary;rare) is constructed using common (rare) variants

only. The weights wi;common are generated using a Beta(0.5,0.5) distribution, which

is equivalent to using inverse-variance weights, whereas the weights wi;rare uses a

Beta(1,25) distribution, as mentioned earlier. SKAT-Common-Rare test is then con-

structed as

Qcommon−rare = (1− φ)Qsummary;common + φQsummary;rare (4.7)

where 0 ≥ φ ≥ 1 is a weight. Here we set φ = SD(Qsummary;rare)

SD(Qsummary;common+SD(Qsummary;rare))

as suggested by [Ionita-Laza et al., 2013], which means (1 − φ)Qsummary;common

and φQsummary;rare have the same variance. The asymptotic null distribution of

Qcommon−rare is a mixture of chisquares and can be approximated using the LD ma-

trices of common and rare variants.

In the data applications (4.3.1) and in the implementation of our method we have

used data on Europeans in 1000 Genomes project as our reference panel to compute

the LD between sets of variants. This data is widely used for estimation of LD and

imputation in current association studies.
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4.2.4 Reference data and the estimation of correlation structure VG

Starting from input GWAS summary statistic to obtaining the GAUSS p-value,

we have used a reference panel in two contexts. Firstly, we use the reference panel

to extract LD across variants in a gene or region. This LD information is used to

construct the null distribution and evaluate the gene-based p-value. We have used

emeraLD [Quick et al., 2019] for a fast extraction of LD from variant-call-format

files. Second, we use the reference panel to estimate the null correlation matrix VG

between the z-statistics of a given gene-set G. This is a pre-computed matrix that

is used in calculating the simulation-based p-values. For this, we generate a null

continuous phenotype from standard normal distribution, computed the gene-based

p-values for the annotated genes using SKAT-Common-Rare and convert them to

z-statistics. We repeat this procedure for 1000 iterations and VG is calculated as the

Pearson’s correlation between the 1000 null z-statistic values. This greatly reduces

the computational burden of the GAUSS test since we do not need to estimate VG

for every iteration or gene-set separately.

VG, the correlation between the p-values of the gene-set under null hypothesis

(self-contained) of no association, can be estimated from a given reference panel.

Here we use publicly available data on unrelated Europeans in the 1000 Genomes

(Phase III) data as our reference panel to estimate VG.

4.3 Results

4.3.1 Simulation

We carried out extensive simulation studies to evaluate the type I error control

and power of GAUSS. We selected two gene-sets from the gene-sets annotated by

GO terms in MSigDB for our simulations. The gene-sets are sterol metabolic process

(GO: 0016125) consisting of 123 genes and regulation of blood volume by renin
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angiotensin (GO: 0002016) consisting of 11 genes. For a given gene-set we randomly

set ga genes to be active and within lth active gene with tl variants we set va;l

proportion of variants to have non-zero effects. Using genotypes of 5000 unrelated

individuals from the UK Biobank we generate the phenotypes for individual i (i =

1, · · · , 5000) according to the model

Yi =
T∑
k=1

βkGik + εi εi ∼ N(0, 1) (4.8)

where Gik is the genotype of the ith individual at kth site and T =
∑ga

l=1 tlva;l is

the total number of variants with non-zero effects. The effect size of the kth active

variant with minor allele frequency MAFk is generated as βk = c|log10(MAFk)| which

upweights the effect of rare-variants. For type-I error simulation we used c = 0 while

for power we set c > 0. We calculated the gene-based p-values for the genes belonging

to the gene-sets that we considered and subsequently applied the GAUSS test. To

compare the performance of GAUSS to several existing methods, we also applied

MAGMA [de Leeuw et al., 2015], aSPUpath [Pan et al., 2015] and SKAT-Pathway

(SKAT test of all the variants in the gene-set combined together) to the simulated

data.

We evaluate the type-I error by simulating a phenotype independent of the geno-

types and applying the above tests. This process is repeated 107 times. Type-I errors

of GAUSS remains well calibrated at α = 1× 10−04, 1× 10−05 and 5× 10−06 (Table

4.1) for both the gene-sets under consideration.

Further, we evaluated power at a threshold of α = 5 × 10−06 which represents

the Bonferroni corrected threshold for testing association across 10, 000 independent

gene-sets. For power simulations, with gene-set GO: 0016125, we first set 20(∼ 16%)

randomly chosen genes to be active and within each active gene 30% of the variants

are set to have non-zero effects. The effect size of the kth active variant with minor
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allele frequency MAFk is generated as βk = c|log10(MAFk)| such that rarer variants

had larger effects. With varying magnitude of association determined by c, GAUSS

maintains a high power to detect associations between the simulated phenotype and

the gene-set. The power of GAUSS and MAGMA are quite similar (Figure 4.1)

in most of the scenarios, while the power of SKAT-Pathway is consistently lower.

GAUSS has a higher power than aSPUpath when the magnitude of the effects are

weak or moderate (c = 0.1, 0.12), but for higher magnitude of effect sizes (c =

0.2, 0.25) the powers are similar.

When the signals are even sparser (Figure 4.1), i.e., 2 to 6 genes are active

with c = 0.1, there is a noticeable power difference between GAUSS and MAGMA

as well aSPUpath. The difference is maximum for the model with lowest number

of active genes and is reduced as the number of active genes grows from 2 to 6.

Thus, for gene-sets with many signals, weak or strong, GAUSS performs similar to

MAGMA or aSPUpath, while the advantage of GAUSS is pronounced when only

a few genes are active within the gene-set. This is becasue, GAUSS identifies the

maximum attainable association signal within the gene-set while the other methods

averages over all the signals within the gene-set. Thus, for them, the true signal can

be overtaken by non-signals when the number of such non-signals is substantially

higher than the number of signals. The power of SKAT-Pathway is lower than

GAUSS throughout all the simulation scenarios.

We also report the sensitivity and specificty of GAUSS in identifying the active

subset (AS) genes. Sensitivity and specificity are defined by the proportion of true

active genes (genes having variants with non-zero effect sizes) correctly identified

by GAUSS as AS genes and the proportion of true inactive genes (genes with all

variants having zero effect size) that are not in AS genes, respectively. Both the

quantities remain high (> 75%) at different magnitudes of the effect size and for

varying number of active genes (Figure C.1). High sensitivity implies that there is
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a high overlap between the true active genes and the AS genes in GAUSS. High

specificity implies that there is a high overlap between the true inactive genes and

the genes in the gene-set that are not in AS genes. Overall, this means that the AS

genes extracted by GAUSS approximates the actual active set of genes with high

accuracy. We further evaluate the power to identify the exact set of active genes

which is a more stringent criteria compared to sensitivity and specificity (Figure

C.2). Under different magnitudes of effect size defined by different values of c, the

empirical probability to identify the exact set of active genes through the AS genes,

increases with the number of active genes as well the magnitude of effect size. For

strong effects in 4 or more genes, estimated power to identify the exact set of active

genes is more than 75% for both the gene-sets.

Simulation results highlight the utility of GAUSS compared to existing methods

specially under the scenarios when only a few genes are active in the gene-set. Further

by extracting AS genes, GAUSS can identify the set of such active genes with high

probability and provides a natural way to interpret and utilize the findings.
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Figure 4.1: Power of GAUSS under different simulation settings using GO: 0016125 compared with that of aSPUpath, SKAT-
Pathway and MAGMA. (a) Power of GAUSS when 20 genes are active and the variants with non-zero effect sizes have different
magnitudes denoted by c. (b) Power of GAUSS with different number of active genes and the variants with non-zero effect
sizes have a magnitude denoted by c = 0.15.
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Association analysis in UK Biobank data

We next performed association analysis with GAUSS for 1201 phenotypes in UK

Biobank data. We used two collections of gene-sets from MSigDB:

1. the curated gene-sets (C2) which contains gene-sets from KEGG, BioCarta

and Reactome databases and also gene-sets representing expression signatures

of genetic and chemical perturbations

2. Gene sets that contain genes annotated by the same gene ontology (GO) term

(C5)

resulting in a total of 10,679 gene-sets. The Bonferroni corrected p-value threshold for

testing association across these gene-sets is 4.68×10−06 ≈ 5×10−06. For each pair of

phenotypes and gene-set we computed the association test-statistic, corresponding p-

value and the active subset (AS) of genes (if the gene-set is reported to be significant).

In our analysis, we used publicly available GWAS summary statistic for the phe-

notypes that were generated using SAIGE [Zhou et al., 2018]. The summary statistics

files included results for markers directly genotyped or imputed by the Haplotype

Reference Consortium (HRC) which produced approximately 28 million markers with

MAC ≥ 20 and an imputation info score ≥ 0.3. We annotated a region of ±1 kb

around an exon to a gene using EPACTS. To do this, we used information from

RefSeq gene database as a reference to indicate whether a particular variant resides

in or near a gene and can potentially disrupt the corresponding protein sequence and

its function.

From the summary statistics produced by SAIGE, we used effect size estimates

(β), standard errors and minor allele frequencies (MAF) for the variants that were an-

notated to at least one gene. Using these statistics we constructed SKAT-Common-

Rare test statistic for 18,216 genes and with LD information from a reference panel of

1000 Genomes data, approximated the corresponding p-values (See Methods). These
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p-values were transformed to z-statistics and subsequently used in the gene-set anal-

ysis with GAUSS.

To illustrate the ultility of GAUSS in aggregating weak to moderate signals and

also in improving interpretability through AS genes, association results for three

exemplary phenotypes are shown here. The traits were: E.Coli infection (EC; Phe-

Code: 041.4), Gastritis and duodenitis (GD; PheCode: 535) and Pernicious anemia

(PA; PheCode: 281.11). Single variant GWAS for these traits has been presented

in an online server (Pheweb; See URL). GD has five genome-wide significant loci

while PA has one and EC has none. Figure 4.2 shows the QQ plots for approximated

gene-based p-values for the 3 phenotypes. The p-values are well calibrated without

any indication of inflation (λGC varies from 0.98 to 1.01). At an exome-wide cut-

off of 2.5 × 10−06, EC does not have any significantly associated genes; GD has 3

genes HLA-DQA1 (p-value = 9.8× 10−11), HLA-DQB1 (p-value = 1.4× 10−08) and

XXbac-BPG300A18.12 (p-value = 2.1× 10−06) that are significantly associated; PA

has one gene PTPN22 (p-value = 4.3× 10−08) that is significantly associated.

Gene-set association analysis with GAUSS are shown in Figure 4.4 and 4.3 and the

significant gene-sets are detailed in Table 4.2. EC, which does not have any variant or

any gene significantly associated with it, is associated with two gene-sets namely the

gene-sets related to fatty acid catabolic process (GO: 0009062; p-value < 1× 10−06)

and fatty acid beta oxidation (GO: 0006635; p-value = 2×10−06). Although thorough

gene-set analysis of EC has not been done before, but the antibacterial role of fatty

acids has been reported in existing literature [Heipieper and Chiou, 2005, Ohya

et al., 2000]. A set of 25 distinct genes (Table 4.2) are selected by GAUSS as the AS

genes that are responsible for the association although none of them are marginally

associated with EC.

GD is associated with 4 gene-sets in the Reactome database among those evalu-

ated (Table 4.2). Although the gene-sets and the corresponding functions are biolog-
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ically related, their role in GD is not easily identifiable. However, GAUSS selects a

set of 10 genes to be the AS genes for the gene-sets, majority being from the different

proteasome endopeptidase complex (PSM ) subunits.
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(a) (b) (c)

Figure 4.2: QQ plots for gene-based p-values of (a): E. Coli infection (EC), (b) Gastritis and duodenitis (GD) and (c) Pernicious
anemia (PA)
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Figure 4.3: Significant gene-sets associated with (a) E. Coli infection (EC), (b) Gastritis and duodenitis (GD) and (c) Pernicious
anemia (PA) among the curated gene-sets (C2). Colored horizontal lines denote the Bonferroni correction thresholds for
corresponding groups. The horizontal solid black line denotes the signifiance threshold of 5× 10−06. The horizontal dashed line
denotes a less stringent suggestive threshold of 1× 10−05
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Figure 4.4: Significant gene-sets associated with (a) E. Coli infection (EC), (b) Gastritis and duodenitis (GD) and (c) Per-
nicious anemia (PA) among the GO gene-sets (C5). Colored horizontal lines denote the Bonferroni correction thresholds for
corresponding groups. The horizontal solid black line denotes the signifiance threshold of 5× 10−06. The horizontal dashed line
denotes a less stringent suggestive threshold of 1× 10−05.
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In particular, the role of PSMB8 in gastric cancer has been extensively reported

in literature [Kwon et al., 2016]. Although, none of these genes are individually asso-

ciated with GD, but they jointly drive the strong association signals of the identified

gene-sets.

The set of genes involved in Cobalamin metabolic process (GO: 0009235) is signif-

icantly associated with PA (p-value < 1× 10−06; Table 4.2). This result is expected

since PA is a condition indicated by low levels of vitamin B12 (Cobalamin). Seven

genes are selected as AS genes which include genes like CUBN and TCN1. The

mutations in CUBN have been reported to encode the intrinsic factor-vitamin B12

receptor, cubilin [Aminoff et al., 1999] while mutations in TCN1 result in severe

cobalamin deficiency [Froese and Gravel, 2010]. None of the AS genes are signif-

icantly associated with PA, which means that GAUSS can successfully aggregate

moderate to weak signals which are missed due to stringent exome-wide Bonferroni

correction.

GAUSS can be applied to multitudes of phenotypes that are collected as a part of

association studies, namely the phenotypes present in UK biobank. Using GAUSS for

a given gene-set, we can investigate which phenotypes it is associated with and what

are the corresponding AS genes. Such analysis can potentially be leveraged to gain

mechanistic insights into the genetic relations between phenotypes and moderate to

small pleiotropic effects of different regions or genes.

Association results for three exemplary gene-sets across the phenome of 1201

phenotypes in UK Biobank are shown here (Figure 4.5). The gene-sets are the

ATP-binding cassette (ABC) transporters from KEGG database (ABC transporters;

URL), the genes that are up-regulated in pyloric atrium with knockout of trefoil

factor 2 (TFF2 targets) as reported in [Baus-Loncar et al., 2005] (URL) and genes

constituting a supra-molecular assembly of fibrillar collagen complexes in the form

of a long fiber (fibril) with transverse striations (GO: 0098643; URL).
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Among the phenotypes associated with ABC transporters gene-set, transporter

2 (TAP2 ) is the most frequent gene in the AS genes selected by GAUSS (Table 4.3).

This gene has previously been associated to several phenotypes including diastolic

blood pressure [Warren et al., 2017], type-1 diabetes and autoimmune thyroid dis-

eases [Tomer et al., 2015]. Our results show that the significant association of ABC

transporters to disorders like psoriasis, celiac disease and type-1 diabetes are mainly

driven by TAP2 while those of gout, lipoid metabolism and cholelithiasis are driven

mainly by members of ATP binding cassette subfamily G (ABCG5 and ABCG2 ).

Similarly for phenotypes associated with GO: 0098643, tenascin XB (TNXB) and

genes from collagen alpha chain group (COL11A2, COL27A1 etc.) drive the sig-

nals, especially with different forms of arthritis (Table 4.4). For TFF2 targets the

length of the selected AS genes is usually more than one for different phenotypes but

mostly comprising of protein tyrosine phosphatase, non-receptor type 22 (PTPN22 )

and members of proteasome subunit beta (PSMB8 and PSMB9 ; Table 4.5).

The results highlight several important aspects of association results for pathway

based analysis. First, GAUSS can detect and aggregate even weak to moderate asso-

ciation signals in a gene-set which might not be detected by standard genome-wide or

exome-wide Bonferroni corrections. Second, a phenotype might be associated with

several gene-sets but the signals might not be independent of each other, i.e., driven

by the same AS genes (Table 4.2). Third, the phenome-wide association analysis of

a given gene-set elucidates an aspect of gene-set analysis that has been unexplored

until now. A particular gene-set may be associated to different phenotypes but the

AS genes might be exactly the same (e.g. TNXB for Psoriasis, Type-1 and Type-2

diabetes in Table 4.5) or different (e.g. AS genes of monoarthritis and Osteoarthri-

tis). This undelines the role that AS genes play in producing association signals and

can highlight the underlying biological similarities or differences between phenotypes.
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Figure 4.5: Phenotypes associated with (a) ABC transporters, (b) TFF2 targets and (c) GO: 0098643. P-values which were
< 1 × 10−06 are collapsed to 1 × 10−06 for the ease of viewing. The horizontal black line denotes the Bonferroni cutoff of
4× 10−05.
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4.4 Computation

One of the key features of GAUSS is the efficient computation which allows it to

be applied to large genomic datasets. Although the p-value is based on a simulati-

ing multivariate normal random vectors, we have reduced the computational burden

compared to other methods that also employ simulation by using pre-computed LD

matrices within a gene and V̂G between genes from a given reference panel (See Meth-

ods). We have employed selective-iteration resampling scheme to further reduce the

computational cost. Figure C.3 shows the total run-time (in CPU-hours) of GAUSS,

MAGMA and aSPUpath (we use aSPUspath, an implementation of aSPUpath that

use summary statistics only) applied on pernicious anemia (PA) and type-2 diae-

betes (T2D) from UK biobank as described above. Total run-time is calculated as

the net time taken starting from the input of summary statistic till the p-values for

the 10, 679 gene-sets are generated. GAUSS performs similar to MAGMA, while

aSPUpath, which is also based on simulation p-values, is substantially slower than

GAUSS.

Given summary statistics, the computation time to estimate the SKAT-Common-

Rare p-values for EC, GD and PA were 5.5, 5.6 and 5.6 CPU-hours respectively.

Subsequently, time taken to calculate the p-values for 10, 679 gene-sets for EC, GD

and PA were 4.1, 4.0 and 4.7 CPU-hours respectively.

Run-time can be further reduced by computing the p-values for the gene-sets in

parallel using a high-performance computing cluster. For example, when we paral-

lelized the process into 11 chains, the clock-time was less than 2 hours.

4.5 Discussions

In this project we have presented GAUSS which introduces a maximum-type

statistic to test the association between a gene-set and a phenotype. Similar to
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several existing approaches like MAGMA, aSPUpath, GAUSS aims to cumulate weak

to moderate association signals across a set of genes which might not have been

detected due to stringent Bonferroni correction in standard single variant or region-

based approaches. Given association z-statistics for the genes in the gene-set, GAUSS

computes the maximum association score that can be achieved among any subset of

the gene-set and computes a simulation-based p-value. Further, it also identifies the

subset for which this maximum association score is obtained which is termed the

active subset (AS) of genes.

The distinction between the AS genes and the rest of the gene-set highlights a

key feature of GAUSS. To the best of our knowledge, there does not exist any other

method to adaptively identify the subset that drives the signal. Most of the existing

approaches usually suggest using the top few genes (genes with lowest p-values) in the

gene-set. However, not tuning the choices according to a data driven approach might

be misleading. For example, among the gene-sets presented ABC transporters have

only one gene (TNXB) driving a association for at least 14 phenotypes. Although,

it appears that only one gene-phenotype association drives the signal in these cases,

such insights are eludicated by the extraction of AS genes. On the other hand a set

of 25 genes drives the association of EC and GO:0009062. Hence, selecting the active

set through a principled algorithm is helpful for interpreting the association signals

and understanding the underlying mechanisms.

Computational scalability is another important aspect of GAUSS. Although GAUSS

obtains simulation-based p-values, the computational cost is much lower than exist-

ing methods which employ direct resampling or permutations. This improvement is

obtained since GAUSS uses copula to convert gene-based p-values to multivariate

normal distribution and pre-computed correlation matrices. This allows GAUSS to

be used for many phenotypes as well as many gene-sets.

Our UK Biobank analysis shows only a small percentage of genes in the pathway
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are selected as active genes. Simulations show that GAUSS has substantial higher

power than the existing methods in detecting associations in such scenarios. For

example, MAGMA did not produce any significant results for PA(Figure C.4). When

many of the genes in the gene-set are associated, the power of GAUSS was equivalent

to that of the existing methods. Thus in most of the practical scenarios GAUSS has

power better than or as good as the existing methods to detect association. Further,

the type-I error for GAUSS remains calibrated at the desired level as well.

One of the limitations of GAUSS is that it only allows testing for the self-contained

null hypothesis. Furthermore, the p-value being a simulation-based estimation can

only provide estimates up to a level of accuracy determined by the number of itera-

tions. We have explored a generalized pareto distribution based method to accurately

estimate the very small p-values (< 1 × 10−06). But further research is needed in

this respect.

The novel insights generated by GAUSS and its computational scalability make it

a potentially attractive choice to perform gene-set analysis. We have made available

the results from the analysis of UK Biobank data in a public repository and will

continue to update that. We have also released an R-based package for our method.

4.6 URLS

Pheweb:http://pheweb.sph.umich.edu/SAIGE-UKB/

ABC transporters: http://software.broadinstitute.org/gsea/msigdb/cards/

KEGG_ABC_TRANSPORTERS

TFF2 targets: http://software.broadinstitute.org/gsea/msigdb/cards/BAUS_

TFF2_TARGETS_UP

GO 0098643: http://software.broadinstitute.org/gsea/msigdb/cards/GO_BANDED_

COLLAGEN_FIBRIL

emeraLD: https://github.com/statgen/emeraLD
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Table 4.1: Estimated type-I error of GAUSS for gene-sets GO: 0016125 and GO:
0002016

α GO: 0016125 GO: 0002016

1× 10−04 9.8× 10−05 9.7× 10−05

1× 10−05 9.9× 10−06 9.6× 10−06

5× 10−06 4.6× 10−06 4.2× 10−06
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Table 4.2: Gene-sets associated with E. Coli infection (EC), Gastritis and duodenitis (GD) and Pernicious anemia (PA)
corresponding p-values and the AS genes selected by GAUSS

Phenotype Gene-Set Genes p-value Active subset (AS) genes selected

GO: Fatty acid catabolic process 73 < 1× 10−06 SLC27A2, CRAT, CPT1B, ACOX2, LPIN1, CPT1C,
ETFB, SLC27A4, EHHADH, ACAA1, LEP, ABCD2,
GCDH, HADH, MUT, BDH2, PLA2G15, PEX2, IVD,
ACAAS, PEX13, ACAD8, ACADL, ECI1, ADIPOQ

EC
GO: Fatty acid beta oxidation 51 2× 10−06 SLC27A2, CRAT, CPT1B, ACOX2, CPT1C, ETFB,

EHHADH, ACAA1, LEP, ABCD2, GCDH, HADH,
BDH2, PEX2, IVD, ACAAS, ACAD8, ACADL, ECI1,
ADIPOQ

Reactome: P53 independent
G1/S DNA damage checkpoint

51 < 1× 10−06 PSMB2, PSMB9, PSMC5, CHEK1, PSMB8, PSMD9,
PSMD2, RPS27A, PSMA6, PSMB7

GD Reactome: CDK mediated phos-
phorylation and removal of CDC6

48 < 1× 10−06 PSMB2, PSMB9, PSMC5, PSMB8, PSMD9, PSMD2,
RPS27A, PSMA6, PSMB7

Reactome: Cyclin E associated
events during G1/S transition

65 < 1× 10−06 PSMB2, PSMB9, PKMYT1, PSMC5, PSMB8, PSMD9,
PSMD2, RPS27A, PSMA6, PSMB7

Reactome: P53 dependent G1
DNA damage response

57 < 1× 10−06 PSMB2, PSMB9, PSMC5, MDM2, PSMB8, PSMD9,
PSMD2, RPS27A, PSMA6, PSMB7

PA GO: Cobalamin metabolic pro-
cess

21 < 1× 10−06 CUBN, TCN1, ABCD4, GIF, CD320, MTRR, MMAA
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Table 4.3: Phenotypes associated with ABC transporters gene-set, corresponding p-values and the AS genes selected by GAUSS

Phenotype Category PheCode p-value Active subset (AS) genes selected

Psoriasis dermatologic 696.4 < 1× 10−06 TAP2
Psoriasis and related disorders dermatologic 696 < 1× 10−06 TAP2
Celiac disease digestive 557.1 < 1× 10−06 TAP2

Intestinal malabsorptions (non-
celiac)

digestive 557 < 1× 10−06 TAP2

Cholelithiasis with other cholecystitis digestive 574.12 < 1× 10−06 ABCG5
Cholelithiasis digestive 574.1 < 1× 10−06 ABCG5
Calculus of bile duct digestive 574.2 < 1× 10−06 ABCG5
Cholelithiasis without cholecystitis digestive 574.3 < 1× 10−06 ABCG5,ABCC12,ABCA8,ABCB4
Cholelithiasis and cholecystitis digestive 574 < 1× 10−06 ABCG5
Other biliary tract disease digestive 575 < 1× 10−06 ABCG5
Cholelithiasis and cholecystitis digestive 574 < 1× 10−06 ABCG5
Hypothyroidism NOS endocrine/metabolic 244.4 < 1× 10−06 TAP2
Type-1 diabetes endocrine/metabolic 250.1 < 1× 10−06 TAP2
Hypercholesterolemia endocrine/metabolic 272.11 < 1× 10−06 ABCG5, TAP2, ABCC10, ABCA2, ABCA5,

ABCA1, ABCA6, ABCC12, ABCC1,
ABCA8, ABCB9

Hyperlipidemia endocrine/metabolic 272.1 < 1× 10−06 TAP2, ABCG5, ABCC10, ABCA6, ABCA2,
ABCA5, ABCA1, ABCC1, ABCA8

Disorders of lipoid metabolism endocrine/metabolic 272 < 1× 10−06 ABCG2
Gout endocrine/metabolic 274.1 < 1× 10−06 ABCG2
Asthma respiratory 495 < 1× 10−06 TAP2
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Table 4.4: Phenotypes associated with GO:0098643, corresponding p-values and the AS genes selected by GAUSS

Phenotype Category PheCode p-value Active subset (AS) genes selected

Psoriasis vulgaris dermatologic 696.41 < 1× 10−06 TNXB
Psoriasis dermatologic 696.4 < 1× 10−06 TNXB
Psoriasis and related disorders dermatologic 696 < 1× 10−06 TNXB
Sicca syndrome dermatologic 709.2 < 1× 10−06 TNXB
Grave’s disease endocrine/metabolic 242.1 < 1× 10−06 TNXB
Thyrotoxicosis with or without goiter endocrine/metabolic 242 < 1× 10−06 TNXB
Hypothyroidism NOS endocrine/metabolic 244.4 < 1× 10−06 TNXB
Type-1 diabetes with ketoacidosis endocrine/metabolic 250.11 < 1× 10−06 TNXB
Type-1 diabetes endocrine/metabolic 250.1 < 1× 10−06 TNXB
Type 2 diabetes with ophthalmic

manifestations
endocrine/metabolic 250.23 < 1× 10−06 TNXB

Diabetic retinopathy endocrine/metabolic 250.7 < 1× 10−06 TNXB
Rheumatoid arthritis musculoskeletal 714.1 < 1× 10−06 TNXB
Rheumatoid arthritis and other in-

flammatory polyarthropathies
musculoskeletal 714 < 1× 10−06 TNXB

Unspecified monoarthritis musculoskeletal 716.2 < 1× 10−06 COL11A2, COL2A1, TNXB, COL27A1,
COL1A1

Arthropathy NOS musculoskeletal 716.9 < 1× 10−06 COL11A2, COL11A1, COL27A1, COL2A1,
TNXB

Other arthropathies musculoskeletal 716 < 1× 10−06 COL11A2, COL11A1, COL2A1, COL27A1,
TNXB

Osteoarthritis; localized musculoskeletal 740.1 < 1× 10−06 COL11A1, COL2A1, COL27A1, COL1A2
Osteoarthritis musculoskeletal 740 < 1× 10−06 COL11A1, COL1A2, COL2A1, COL27A1,

COL5A1, TNXB
Multiple sclerosis neurological 335 < 1× 10−06 TNXB
Asthma respiratory 495 < 1× 10−06 TNXB,COL11A2
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Table 4.5: Phenotypes associated with TFF2 targets, corresponding p-values and the AS genes selected by GAUSS

Phenotype Category PheCode p-value Active subset (AS) genes selected

Essential hypertension circulatory system 401.1 < 1× 10−06 PTPN22, SLC2A2, DPEP1, APOA4,
PSMB8

Hypertension circulatory system 401 < 1× 10−06 PTPN22, SLC2A2, APOA4, LTB, PSMB8
Celiac disease digestive 557.1 < 1× 10−06 PSMB8, PSMB9

Intestinal malabsorptions (non-
celiac)

digestive 557 < 1× 10−06 PSMB8, PSMB9

Thyrotoxicosis with or without goiter endocrine/metabolic 242 < 1× 10−06 PSMB9, PSMB8, PTPN22
Hypothyroidism NOS endocrine/metabolic 244.4 < 1× 10−06 PTPN22, PSMB9, PSMB8, IRF7

rule0pt8pt Hypothyroidism endocrine/metabolic 244 < 1× 10−06 PTPN22
Type-1 diabetes with ketoacidosis endocrine/metabolic 250.11 < 1× 10−06 PTPN22, PSMB8, PSMB9
Type-1 diabetes endocrine/metabolic 250.1 < 1× 10−06 PSMB8, PTPN22, PSMB9
Type 2 diabetes endocrine/metabolic 250.2 < 1× 10−06 PSMB8, PTPN22, APOA4
Gout endocrine/metabolic 274.1 < 1× 10−06 ABCG2
Gout and other crystal arthropathies endocrine/metabolic 274 < 1× 10−06 ABCG2
Iron deficiency anemias, unspecified

or not due to blood loss
hematopoietic 280.1 < 1× 10−06 PSMB9, PSMB8, GLO1, IFIT1, BCAT2,

TAP1, PTPN22, GGT1, APOA4
Iron deficiency anemias hematopoietic 280 < 1× 10−06 PSMB9, PSMB8, GLO1, BCAT2, IFIT1,

TAP1, GGT1, PTPN22, APOA4
Other anemias hematopoietic 285 < 1× 10−06 PSMB9, PSMB8, PTPN22, TAP1, LTB
Rheumatoid arthritis musculoskeletal 714.1 < 1× 10−06 PTPN22, PSMB8, PSMB9
Rheumatoid arthritis and other in-

flammatory polyarthropathies
musculoskeletal 714 < 1× 10−06 PTPN22, PSMB8, PSMB9, TAP1

Asthma respiratory 495 < 1× 10−06 PSMB8, PSMB9, PTPN22, TAP1
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CHAPTER V

Conclusion

The growth of biological datasets has presented us with enormous opportunities

to gain insights into genetic architecture of complex traits and diseases. But, along

with this, there are several challenges both in terms of statistical methodology as

well as interpretation. In this dissertation, we have addressed a few such challenges

regarding detecting pleiotropy in rare variants and identifying gene-set association

with a phenotype.

5.1 Summary

The majority of the work on detecting pleiotropy has until now focused on com-

mon variants. Although recently several methods for rare variants have been pub-

lished they have certain statistical and computational limitations. In Chapters II

and III we have addressed these issues and developed novel and computationally

efficient methods to identify rare-variants that have effect of multiple phenotypes.

In Chapter II, we provide a general framework, Multi-SKAT, to test the pleiotropic

effects of rare variants, within a single study. Using kernel matrices we model the

relation between multiple variants in the region and the set of phenotypes. One prin-

ciple advantage of Multi-SKAT is that several existing methods can be expressed as

special cases of it by specific choices of kernel matrices. This facilitates comparison
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between the methods and highlights the modeling assumption for each. Through

the use of fast and accurate omnibus tests, Multi-SKAT maintains robust power

of detection across a range of association models. Further, it can effectively model

between-sample relatedness which only a few methods have addressed. Hence, it can

be applied to datasets that have substantial number of related individual without

discarding samples or increasing type-I error. Multi-SKAT is computationally fast

and can be applied to genome-wide datasets. We have demonstrated the performance

of Multi-SKAT by using nine amino acid data from the METSIM study.

In Chapter III, we have extended Multi-SKAT to a meta-analysis framework,

Meta-MultiSKAT. Meta-analysis is a powerful tool to jointly analyze genetic asso-

ciation results from multiple genome-wide association studies when individual level

data are not available. Aggregating data across studies to increase effective sample

size and power facilitates the discovery of trait-associated variants with modest ef-

fect sizes. Hence it is plausible that meta-analyzing multiple phenotypes can further

increase power of rare variant tests. Our proposed method again uses a kernel matrix

to model the heterogeneity between the effects of different studies and constructs a

variance component test of association. Using data from Michigan Genomics Ini-

tiative and the SaridNIA study, we show that Meta-MultiSKAT can discover rare

variants associated with white blood cell subtype traits and is more powerful than

existing methods.

Next we addressed some challenges in gene-set analysis. In Chapter IV, we pro-

pose GAUSS, a subset-based powerful approach to gene-set analysis that facilitates

interpretation. Although the p-value is evaluated through simulation approach, the

method is computationally efficient since we use a suitable reference panel to pre-

compute correlation matrices. One principal advantage of our method is that it can

identify the set of core genes within the gene-set which contains the maximum as-

sociation signal and hence appear to drive the signal. This has not been addressed
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by any other method to our knowledge. Further, the computational scalability of

GAUSS allows us to apply it to test the association between large numbers of gene-

sets and phenotypes. Using GAUSS, we can evaluate phenome-wide associations for

a given gene-set, which has not been performed to date. This can highlight genetic

and mechanistic similarities or differences between different phenotypes.

5.2 Extensions and future work

Although our methods were developed focusing primarily on rare-variants in

Chapters II and III, they can be used in a more general sense as region-based tests.

With minor changes in the kernel structures, we can use Multi-SKAT as well as

Meta-MultiSKAT for testing the combined effects of common and rare variants in

a gene or region. This is particularly of interest when there might be one or more

common variant in a region associated with the phenotype.

We depend on MAF based weighting of the individual variants in the region.

However, in practice, it is not entirely straightforward to interpret such a weighting

scheme. Researchers have suggested the use of functional scores which are used to

predict the probability of a variant being deleterious or causing any alterations in

protein structure. These scores, used as weights for variants, can yield a result that

is more interpretable in terms of the biology.

The multiple phenotype based methods can be applied to variety of datasets

including that of neuro-imaging phenotypes. Further, with minor modifications these

can also be applied to longitudinal measurements of the same phenotype on an

individual. For example, patients often have blood pressure or BMI measurements

over time which can be leveraged to detect associations.

In spite of the increase in power by using multiple phenotypes, these multivariate

tests give rise to the question of interpretability. We do not have any methods to

adaptively select an active subset of phenotypes which might produce the optimal
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association signal for a particular region. This requires further research and study.

In Chapter IV, we have used simulation-based approach to estimate the p-value of

GAUSS. Thus, the p-value can only be estimated up to a fixed precision determined

by the number of simulation iterations. Any analytical solution to this problem is

worth exploring in the future.

5.3 Perspectives and conclusions

In this era, where rapid growth in technologies have radically transformed the

landscape of GWAS, properly utilizing the scope of information is of critical impor-

tance. It is increasingly evident that several phenotypes could measure a disease in

different dimensions and hence are likely to share the same genetic components. Em-

pirical evidence of such shared genetics between phenotypes is abundant in literature

and can be accurately estimated from summary statistics as well as individual level

data. Thus, it follows that a multiple phenotypes test using a suitable multivari-

ate framework can improve power to detect disease associated variants compared to

single phenotype analysis. This higher power attained by using multivariate meth-

ods, such as Multi-SKAT and Meta-MultiSKAT might prove to be critical to detect

disease variants in practice.

Further, understanding the mechanisms for complex traits or diseases is of paramount

importance to translate the GWAS results into therapeutic targets. GSA have

been used in this respect as a secondary follow up tool to GWAS. The additional

power and insights gained by cumulating weak to moderate effect of variants not

detected through GWAS can be pivotal in understanding the biology of complex

diseases/traits.

In future, integrating multi-omics data such as epigenetic features, eQTLs, tissue-

specific transcript expressions, chromatin conformation and others can improve our

understanding of the functional and mechanistic roles of different variants. The ex-
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pansion of GWAS and its integration with other efforts in understanding the molecu-

lar function of the human genome, will play a critical role in the study of gene coding

and regulatory mechanisms and their contribution to complex diseases/traits. Un-

derstanding the mechanism by which genotype influences phenotype will ultimately

lead to the identification of important targets for drug development and repositioning

of known treatments. Continuing toward such targets will bring us closer to offering

opportunities of innovative therapeutic strategies in precision as well as personalized

medicine. We hope that topics elucidated in this dissertation will be one of the many

starting steps in that direction.
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APPENDIX A

Appendix for Chapter II

A.1 Principal Component (PC) Kernel

Let Li be the loading vector for the ith PC, which produces the ith PC score

Pi = Y Li. In PCA-based analysis, PC scores are used as outcomes instead of original

Y . Since the genetic information regarding the phenotypes may not be confined to

the top few PCs Aschard et al. [2014], we first consider using all PCs. Let P =

(P1, · · ·PK). Since PCs are orthogonal, we assume genetic effects to multiple PCs

are heterogeneous, which resulted in

Q = {vec(P )− vec(µ̂P )}T
{(
GΣGG

T
)
⊗
(
V̂ −1P V̂ −1P

)}
{vec(P )− vec(µ̂P )} (A.1)

where µ̂P is the mean of P under the null hypothesis and V̂P is the estimated covari-

ance matrix between the PC’s. V̂P will be a diagonal matrix since PCs are orthogonal.

Equation ((A.1)) can be written as

Q = {vec(Y )− vec(µ̂)}T
{(
GΣGG

T
)
⊗
(
LV̂ −1P V̂ −1P LT

)}
{vec(Y )− vec(µ̂)} (A.2)
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where L = (L1, · · · , LK) is a K × K PC loading matrix. Equation ((A.2)) shows

that by using ΣP,PC = V̂ LV̂P
−1
V̂P
−1
LT V̂ , we can carry out PC-based tests. It is

to be noted that the genetic effects of the PC’s do not need to be assumed to be

heterogeneous. Any kernel structure that is applicable to the test statistic in equation

2.4 can be applied here as well.

A.2 Relationship between Multi-SKAT and existing meth-

ods

For the ease of algebraic expressions, we will consider that all the K phenotypes

have residual variance 1. For the general case of different residual variances, ΣP

should be replaced by T−1w ΣPT
−1
w where Tw = diag(σ1, · · · , σK), σk being the residual

standard error of kth phenotype.

A.2.1 MSKAT

The Q statistic of MSKATWu and Pankow [2016] is given by

QMSKAT = vec(Sc)
T (WW ⊗ V̂ −1)vec(Sc), (A.3)

where Sc = GT (Y − µ̂) is a matrix of score statistics Wu and Pankow [2016]. Using

row-vectorization properties

vec(Sc) = vec(GT (Y − µ̂)) = (GT ⊗ I)vec(Y − µ̂) = (GT ⊗ I) {vec(Y )− vec(µ̂)}

Then QMSKAT can be written as

{vec(Y )− vec(µ̂)}T
{

(GWWGT )⊗ V̂ −1
}
{vec(Y )− vec(µ̂)} ,
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which is the Multi-SKAT test statistics with ΣG = WW and ΣP = V̂ .

Further, the Q′ of MSKAT is given by

Q′MSKAT = vec(Sc)
T (WW ⊗ I)vec(Sc). (A.4)

Using the similar algebra as above, this can be written as

{vec(Y )− vec(µ̂)}T
{

(GWWGT )⊗ I
}
{vec(Y )− vec(µ̂)}

which is the Multi-SKAT test statistics with ΣG = WW and ΣP = V̂ 2.

A.2.2 GAMuT

Suppose Y − µ̂ =Yadj = HY and Gadj = HG are covariate adjusted phenotype

and genotype matrices where H = I−X(XTX)−1XT . With the intercept in X, Yadj

and Gadj are mean centered. The covariate adjusted GAMuT test statistics is

QGAMuT =
tr(PcXc)

n

where

Pc =


Yadj(Y

T
adjYadj)

−1Y T
adj for projection phenotype kernel

YadjY
T
adj for linear phenotype kernel

and Xc = GadjWWGT
adj. Using the fact that Y T

adjYadj/n = V̂ is the estimate of

variance after adjusting covariates and GT
adjYadj = GTHY = GTYadj (since H is a

symmetric idempotent matrix), we show, for the projection kernel
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tr(PcXc)/n = tr(YadjV̂
−1Y T

adjGadjWWGT
adj)

= tr(V̂ −
1
2Y T

adjGWWGTYadjV̂
− 1

2 )

= vec(WGTYadjV̂
− 1

2 )Tvec(WGTYadjV̂
− 1

2 )

=
{

(WGT ⊗ V̂ −
1
2 )vec(Yadj)

}T {
(WGT ⊗ V̂ −

1
2 )vec(Yadj)

}
= {vec(Y )− vec(µ̂)}T (GWWGT ⊗ V̂ −1) {vec(Y )− vec(µ̂)}

which is the same as the Multi-SKAT test statistic with ΣG = WW and ΣP = V̂ .

Similarly for the linear kernel,

tr(PcXc)/n = tr(YadjY
T
adjGadjWWGT

adj)

=
{

(WGT ⊗ I)vec(Yadj)
}T {

(WGT ⊗ I)vec(Yadj)
}

= {vec(Y )− vec(µ̂)}T (GWWGT ⊗ I) {vec(Y )− vec(µ̂)}

which is the Multi-SKAT test statistic with ΣG = WW and ΣP = V̂ 2.

A.2.3 MAAUSS and MF-KM

There exists two different version of the MAAUSS tests. The homogeneous ver-

sion of MAAUSS assumes that the effects of a variant on multiple phenotypes are

identical and uses the following test statistic

QMAAUSS−HOM = (vec(Y )−vec(µ̂))T (In⊗V̂ −1)(G⊗I)(WW⊗1m1Tm)(GT⊗I)(In⊗V̂ −1)(vec(Y )−vec(µ̂))

(A.5)

which is identical to the Multi-SKAT test statistic with ΣG = WW and ΣP = 1m1Tm.

The heterogeneous version of MAAUSS assumes that the effects of a variant on
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multiple phenotypes are independent, and uses the following test statistic

QMAAUSS−HET = (vec(Y )−vec(µ̂))T (In⊗V̂ −1)(G⊗I)(WW⊗I)(GT⊗I)(In⊗V̂ −1)(vec(Y )−vec(µ̂))

(A.6)

which is identical to the Multi-SKAT test statistic with ΣG = WW and ΣP = I.

Note that the test statistic of MF-KM is exactly the same as QMAAUSS−HET .

A.3 Backward elimination procedure to identify associated

phenotypes

After identifying the gene or region associated with multiple phenotypes, next

question would be identifying truly associated phenotypes. Here we present a sim-

ple backward elimination algorithm to iteratively remove relatively less important

phenotypes. A similar method has previously been applied to identify rare causal

variants in an associated gene Ionita-Laza et al. [2014].

• Step 1. Start with a set of k phenotypes PhenCurrent = {y1, y2, · · · yk} and

compute a Multi-SKAT test association p-value for the set PhenCurrent denoted

by pCurrent.

• Step 2. Remove each of the phenotypes one at a time from the set PhenCurrent.

The resulting set is Phen−i = {y1, y2, · · · yi−1, yi+1 · · · yk} for i = 1, 2, · · · , k and

compute the corresponding p-values p−i for that same Multi-SKAT test.

• Step 3. Remove the phenotype j that leads to the smallest p-value, i.e. j =

argmin{p−1, p−2, · · · , p−k}. Update PhenCurrent to Phen−j.

• Step 4. Continue removing phenotypes till only 1 phenotype is left.

Supplementary Table S2 shows the backward elimination results of 5 most signif-

icant and suggestive genes in the METSIM study data analysis as per the p-values
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reported by minPcom. Although this procedure does not provide a set of phenotypes

truly associated, it provides the relative importance of the phenotypes in driving

association signals. For example, the minPcom p-value for GLDC was 2.3 × 10−72.

When each of the phenotypes were removed one at a time and the minPcom p-values

were calculated on the remaining 8 phenotypes, we found that eliminating Isoleucine

(Ile) actually improved the signal. The minPcom p-value of the set of 8 amino acids

leaving out Ile was 2.8 × 10−73. This indicates that Isoleucine has very minimal

contribution to the association between the amino acids and GLDC. Subsequently,

Valine was the next phenotype to be eliminated indicating that it has the next low-

est contribution after Isoleucine. Carrying out this procedure further, we find that

Glycine is the last phenotype to remain indicating that it is the strongest driver of

the signal. This is in agreement to the single phenotype SKAT-O results (Table 5).

Similary for genes HAL, DHODH, PAH and MED1, Histine, Alanine, Phenylalanine

and Tyrosine were the most associated phenotypes, respectively. Interestingly for

PAH and MED1, single phenotype p-values are not significant, which suggests that

multiple phenotypes are associated with these genes.
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Table A.1: Computation time of MultiSKAT. Computation time to analyze a dataset
with 5000 individuals, 20 variants and 10 phenotypes. Analysis was done on a 2.80
GHz Intel Xeon CPU

Method CPU sec

Multi-SKAT (given ΣP and ΣG) 0.014 secs
Independent samples minP 2.133 secs
(Without kinship adjustment) minPcom 3.971 secs

Multi-SKAT (given ΣP and ΣG) 2.845 secs
Related samples minP 6.961 secs
(With kinship adjustment) minPcom 10.349 secs
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Table A.2: Backward elimination results for the top 5 genes in Table 2.2. For a particular gene, each row indicates the
phenotype eliminated and the p-value produced correspondingly. The last row indicates the remaining phenotype after backward
elimination has been performed. This is the phenotype that drives the signal of association for the particular gene.

GLDC HAL DHODH PAH MED1
Phenotype p-values Phenotype p-values Phenotype p-values Phenotype p-values Phenotype p-values

Ile 2.8 × 10−73 Phe 9.0 × 10−12 Gln 3.5 × 10−07 Leu 6.3 × 10−09 Gly 9.3 × 10−07

Val 8.2 × 10−74 Ile 3.2 × 10−12 His 2.4 × 10−08 Ile 3.2 × 10−10 Ala 3.3 × 10−06

Leu 1.3 × 10−74 Leu 8.6 × 10−14 Ile 5.7 × 10−09 Ala 2.5 × 10−10 His 2.5 × 10−06

Tyr 3.3 × 10−74 Ala 1.0 × 10−14 Phe 2.3 × 10−09 His 7.6 × 10−11 Gln 1.1× 10−05

His 4.8 × 10−74 Val 2.6 × 10−14 Val 2.9 × 10−10 Val 2.6 × 10−09 Ile 2.3× 10−05

Phe 2.4 × 10−76 Gly 2.7 × 10−13 Tyr 1.2 × 10−10 Gln 6.3 × 10−07 Phe 1.5× 10−05

Ala 3.2 × 10−71 Gln 1.2 × 10−11 Gly 6.7 × 10−11 Gly 1.4 × 10−06 Val 1.0× 10−03

Gln 7.4 × 10−64 Tyr 3.3 × 10−09 Leu 1.5 × 10−07 Tyr 6.8× 10−05 Leu 4.9× 10−02

Remaining Gly His Ala Phe Tyr
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Table A.3: Smallest 10 p-values and corresponding genes obtained by PhC(ΣG = SKAT ), GAMuT (Projection and Linear
kernel) and MSKAT (Q and Q′ statistic). Each method produces the same set of top 10 genes, differing slightly by p-values.
The tests were performed on unrelated individuals only (N = 7213).

PhC GAMuT MSKAT GAMuT MSKAT
(ΣG = SKAT ) (Projection) (Q) (Linear) (Q′)

Gene p-value Gene p-value Gene p-value Gene p-value Gene p-value

GLDC 8.1 × 10−54 GLDC 0 GLDC 8.9 × 10−54 GLDC 6.2 × 10−15 GLDC 6.1 × 10−15

DHODH 1.9 × 10−06 DHODH 2.4 × 10−06 DHODH 2.1 × 10−06 METTL4 3.0× 10−05 METTL4 3.0× 10−05

PAH 9.9× 10−06 PAH 1.0× 10−05 PAH 9.9× 10−06 ASB10 4.9× 10−05 ASB10 4.8× 10−05

ALDH1L1 6.0× 10−05 DHODH 6.1× 10−05 ALDH1L1 5.9× 10−05 MEOX1 6.4× 10−05 MEOX1 6.4× 10−05

HAL 9.5× 10−05 HAL 9.6× 10−05 HAL 9.5× 10−05 PAH 1.1× 10−04 PAH 1.3× 10−04

BCAT2 6.2× 10−04 BCAT2 6.3× 10−04 BCAT2 6.1× 10−04 ABCC8 2.5× 10−04 ABCC8 2.5× 10−04

STK33 6.7× 10−04 STK33 6.7× 10−04 STK33 6.8× 10−04 OLFML2A 2.8× 10−04 OLFML2A 2.8× 10−04

TBC1D4 1.7× 10−04 TBC1D4 1.6× 10−04 TBC1D4 1.6× 10−04 OGG1 3.9× 10−04 OGG1 4.0× 10−04

ABCC8 2.1× 10−04 ABCC8 2.3× 10−04 ABCC8 2.3× 10−04 CPT1C 4.7× 10−04 CPT1C 4.5× 10−04

MED1 1.7× 10−03 MED1 1.7× 10−03 MED1 1.7× 10−03 DHODH 2.2× 10−03 DHODH 2.2× 10−03
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Table A.4: Functions and clinical implications for the significant and suggestive genes

Gene Function Clinical Implication / Associations

GLDC catalyst in glycine cleavage system glycine encephanlopathy, Autosomal reces-
sive inheritance

HAL catabolism of Histidine Histidinemia, vitamin D measurement
DHODH catalyzing pyrimidine de novo

biosynthesis
postaxial acrofacial dysostosis, total
cholesterol

PAH iron containing enzyme blood metabolite measurements
MED1 coactivator in the transcription

of RNA polymerase II-dependent
genes

asthma, inflammatory bowel disease

STK33 Serine/threonine protein kinase
which phosphorylates VIME

BMI, small cell lung carcinoma

ALDH1L1 catalyzes the conversion of 10-
formyltetrahydrofolate, NADP, and
water to tetrahydrofolate, NADPH,
and carbon dioxide

homocytosine, insulin sensitivity

BCAT2 catabolism of the branched chain
amino acids leucine, isoleucine and
valine

urinary metabolite, eye measurement,
reticulocyte
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Figure A.1: Correlation and co-heritabilities of 9 amino acid phenotypes in MET-
SIM. (a): Correlation matrix of the 9 amino acid phenotypes from METSIM study.
(b): Co-heritability matrix of the same phenotypes as estimated from PHENIX.(c):
Scaled co-heritability matrix: The elements in the matrix as shown in (b) were di-
vided by the maximum diagonal element.
Ala: Alanine, Gln: Glutamine, Gly: Glycine, His: Histine, Ile: Isoleucine, Leu:
Leucine, Phe: Phenylalanine, Tyr: Tyrosine, Val: Valine.
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Figure A.2: Power for Multi-SKAT tests when phenotypes have compound symmetric
correlation structures with a mixture of trait increasing and decreasing variants. Em-
pirical power for minPhen, Hom, Het, PhC, PC-Sel, minP plotted against the number
of phenotypes associated with the gene of interest with a total of 5 phenotypes under
consideration. Upper row shows the results for ρ = 0.3 and lower row for ρ = 0.7.
Left column shows results with SKAT kernel ΣG, and right columns shows results with
Burden kernel. 80%/20% of the causal variants were trait-increasing/trait-decreasing
variants.
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Figure A.3: Power for Multi-SKAT tests when phenotypes have clustered correlation
structures with a mixture of trait increasing and decreasing variants. Empirical pow-
ers for minPhen, Hom, Het, PhC, PC-Sel, minP are plotted under different levels of
association with a total of 6 phenotypes and with clustered correlation structures.
Middle column shows the empirical powers for different combinations of phenotypes
associated with SKAT kernel ΣG; the rightmost column shows the corresponding re-
sults with Burden kernel; left column shows the corresponding correlation matrices for
the phenotypes. The associated phenotypes are indicated in red cross marks across
the correlation matrices. 80%/20% of the causal variants were trait-increasing/trait-
decreasing variants.
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Figure A.4: Power for Multi-SKAT by combining tests with ΣP as Hom, Het, PhC,
PC-Sel and ΣG as SKAT and Burden when phenotypes have compound symmetric
correlation structures. Empirical powers for minP-Burden, minP-SKAT and minPcom

are plotted against the number of phenotypes associated with the gene of interest with
a total of 5 phenotypes under consideration and 50% of the variants in the region are
causal. Upper row shows the results for ρ = 0.3 and lower row for ρ = 0.7. Left column
shows results when all the causal variants were trait-increasing variants, and right
column shows results when 80%/20% of the causal variants were trait-increasing/trait-
decreasing variants.
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Figure A.5: QQplot of the p-values of Multi-SKAT omnibus tests without kinship
adjustment for the METSIM data (N = 8545). For the ease of viewing, any associ-
ations with p-values < 10−12 have been collapsed to 10−12.
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Simulated data (MAF < 0.05)
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Figure A.6: Minor allele frequency (MAF) spectrum in simulations and METSIM
data. Upper panel shows the MAFs for variants having MAF < 5%. Lower panel
zooms in into a region with variants having MAF < 1%.
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Figure A.7: Computation time of Multi-SKAT and existing methods with unrelated
individuals and 10 phenotypes. (a) Estimated computation time for different sam-
ple sizes when the number of variant was 20. (b) Estimated computation time for
different number of variants when the sample size was 5000. Each dot represents the
average from 100 datasets.
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APPENDIX B

Appendix for Chapter III

B.1 P-value for Meta-MultiSKAT tests

In (3.3), under the null hypotheses Lmeta N(0,Φmeta) asymptotically where

Φmeta =


Φ1 . . . 0

...
. . .

...

0 . . . ΦS


Hence under the null hypothesis, Qmeta in (3.3) follows a mixture of chi-squares. The

mixing parameters of the distribution are eigenvalues of R̃ΦmetaR̃
T with ΣS ⊗ΣG ⊗

ΣP = R̃R̃T . The p-value can be obtained by inverting the characteristic function of

the null distribution.

B.2 Kernelized scores

It is to be noted that (3.3), assumes that ΣG and ΣP are the same for individual

studies. This assumption is restrictive as different studies might be analysed with

different hypotheses, reflected in different ΣG and ΣP across studies. We can relax
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this assumption by using kernelized score matrix for each study in place of the score

matrix. We construct the kernelized score statistic in each study as:

L̃s = Σ
1
2
GLsΣ

1
2
P

Under the null hypothesis, vec(L̃s) ∼ N(0, Φ̃s), where

Φ̃s = (Σ
1
2
GG

T
sGsΣ

1
2
G − Σ

1
2
GG

T
sXs(X

T
s Xs)

−1XT
s GsΣ

1
2
G)⊗ (Σ

1
2
p V
−1
s Σ

1
2
P )

is the kernelized phenotype adjusted variant relationship matrix. Given (L̃s, Φ̃s), s =

1, · · ·S, we construct the kernelized meta-score-vector as L̃meta = (vec(L̃1)
T , vec(L̃2)

T , · · · , vec(L̃s)T )T ,

which under the null hypothesis follows a normal distribution with mean 0 and

variance-covariance matrix

Φ̃meta =


Φ̃1 . . . 0

...
. . .

...

0 . . . Φ̃S


Then the test statistics can be constructed as in (3.4) with the null distribution being

a mixture of chi-squares.

B.3 Resampling algorithm

In (3.3), Ls ∼ N(0,Φs) and in particular Lmeta ∼ N(0,Φmeta). under the null

hypothesis of no association. Suppose we have B Meta-MultiSKAT tests with cor-

responding kernel matrices ΣS , ΣP and ΣG and p-values TP = (p1, p2, · · · , pB).

Our test statistic is pmin = min(p1, p2, · · · , pB). First we adopt a resampling based

approach to estimate this correlation structure as:

• Generate null observations Ls;null from N(0,Φs) for s = 1, 2, · · · , S and con-
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struct Lmeta;null as above

• Calculate Meta-MultiSKAT test statistic Qmeta;null as in (3.3)(alternatively

(3.4)) for each of the B combinations of ΣS , ΣP and ΣG

• Calculate asymptotic null p-value

• Repeat the previous steps for R ( = 500 or 1000) times and calculate the null

correlation between the p-values

With the estimated null correlation structure, we use a t-Copula to approximate

the joint distribution of TP . The final p-value for pmin is then calculated from the

distribution function of the assumed t-Copula. As the same way, the resampling

approach can be used with the kernelized score L̃meta.

B.4 Illustration: Missing phenotype

To demonstrate the utility of Meta-MultiSKAT to handle missing phenotypes,

we performed an analysis with all the 4 WBC phenotypes (lymphocyte, monocyte,

basophil, eosinophill) in SardiNIA and only 3 (monocyte, basophil and eosinophil)

in MGI. The models used for individual studies to extract the summary statistics

remained the same.

We used Meta-MultiSKAT-Common-Rare tests in this analysis (Supplemental

Table S2). All the variants, common and rare, were used in this analysis. The

genes that were identified in the previous analysis were found to be significant or

suggestive (p-value < 105) in this analysis as well, but with slightly differing p-

values. As before, PRG2, RP11-872D17.8, IRF8 and CCL24 found to be significant

using Meta-MultiSKAT methods.
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Table B.1: Single phenotype and Multi-SKAT p-value for each of the 4 WBC subtypes in each of MGI and SardiNIA studies.
For single-phenotype gene-based tests for rare-variants and CADD-score weighting, SKAT-O was used

Lymphocyte Monocyte Basophil Eosinophil Joint (Multi-SKAT)

Test Gene MGI SardiNIA MGI SardiNIA MGI SardiNIA MGI SardiNIA MGI SardiNIA

Rare-variant test PRG2 0.12 0.51 0.67 0.54 0.12 0.09 0.02 3.7× 10−7 0.48 8.8× 10−7

RP11-872D17.8 0.23 0.77 0.58 0.91 0.16 0.11 0.01 5.9× 10−7 0.80 3.1× 10−6

PRG2 0.39 0.54 0.73 0.61 0.12 0.07 0.08 7.8× 10−7 0.37 4.6× 10−7

Common-Rare
tests

RP11-872D17.8 0.33 0.74 0.81 0.88 0.24 0.10 0.29 1.1× 10−6 0.80 9.1× 10−6

IRF8 0.83 0.01 1.0× 10−5 3.9× 10−5 0.76 0.31 0.97 0.93 5.9× 10−5 3.5× 10−4

CCL24 0.67 0.92 0.08 0.39 0.03 4.3× 10−5 9.1× 10−5 0.69 2.0× 10−4 1.2× 10−3

PRG2 0.26 0.43 0.71 0.42 0.06 0.06 0.04 7.1× 10−7 0.17 2.9× 10−8

CADD-score
weighting

RP11-872D17.8 0.41 0.59 0.63 0.81 0.11 0.08 0.10 8.9× 10−6 0.27 4.3× 10−6

IRF8 0.61 0.24 1.7× 10−5 1.9× 10−4 0.63 0.29 0.88 0.81 1.1× 10−5 3.8× 10−3

CCL24 0.48 0.76 0.12 0.16 0.07 1.0× 10−4 8.9× 10−5 0.53 1.3× 10−4 1.2× 10−3
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Table B.2: Estimated Type-1 error rates for Meta-MultiSKAT-Common-Rare tests

α Meta-Hom Meta-Het Meta-Com

1× 10−5 1.3× 10−5 1.3× 10−5 1.4× 10−5

1× 10−4 1.1× 10−4 1.1× 10−4 1.3× 10−4
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Table B.3: Significant genes identified by Meta-MultiSKAT with missing phenotypes. Genes/regions identified by either of the
Meta-MultiSKAT methods (Meta-Hom, Meta-Het or Meta-Com) in the example with missing phenotypes. The p-values < 105

were marked in bold. Variants with pooled MAF ≤1% (> 1%) are included as rare (common)

Gene Meta-Het Meta-Hom Meta-Com

IRF8 6.5× 10−4 1.7× 10−6 2.8× 10−6

PRG2 2.4× 10−7 7.6× 10−5 4.1× 10−7

CCL24 4.8× 10−6 8.2× 10−3 8.9× 10−6

RP11-872D17.8 8.4× 10−7 4.1× 10−4 1.2× 10−6
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Figure B.1: Power comparison for Joint analysis and analysis with Σs = ΣS;Hom
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Figure B.2: Power for Meta-MultiSKAT-Common-Rare tests compared with the exist-
ing methods when the set of causal variants is the same across different studies and has
the same direction of effect. Empirical power for Meta-Hom, Meta-Het and Meta-Com
plotted for 3 different scenarios compared against MinPhen-Hom and MinPhen-Het
(See Simulations for details). Left panel shows the results for low correlation (ρ = 0.3)
among the phenotypes and right panel shows the results for high correlation (ρ = 0.7)

141



Figure B.3: Power for Meta-MultiSKAT-Common-Rare tests when the set of causal
variants is randomly chosen for each study and has the same direction of effect. Em-
pirical power for Meta-Hom, Meta-Het and Meta-Com plotted for 3 different scenarios
compared against MinPhen-Hom and MinPhen-Het (See Simulations for details). Left
panel shows the results for low correlation (ρ = 0.3) among the phenotypes and right
panel shows the results for high correlation (ρ = 0.7)
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Figure B.4: Correlation structure of the WBC phenotypes in MGI and SardiNIA re-
spectively. Lym: Lymphocytes; Mono: Monocytes; Baso: Basophils; Eos:Eosinophils
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APPENDIX C

Appendix for Chapter IV
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Figure C.1: Sensitivity and Specificity of GAUSS for GO: 0016125 and GO: 0002016
for different magnitudes of effects (c) and different number of active genes (ga)
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Figure C.2: Estimate of the probability of identifying the exact non-null subset by
the active subset (AS) genes selected through GAUSS across different magnitudes of
effects (c) and different number of active genes (ga)
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Figure C.3: Total run-time of GAUSS for Pernicious anemia and Type-2 diabetes
in UK Biobank compared to that of MAGMA and aSPUpath. Total run-time is
calculated as the net time taken starting from the input of summary statistic till the
p-values for the 10, 679 gene-sets are generated
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Figure C.4: P-values for association of Pernicious anemia (PA) with the GO gene-sets
(C5) using MAGMA.
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