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ABSTRACT

Smartphones, wearable devices and emerging autonomous vehicles (AVs) are sig-

nificantly transforming our way of communication, networking, knowledge acquisition,

healthcare and transportation. As our daily lives are increasingly relying on these smart

end systems, certain guarantees on the performance, security and safety becomes critical

requirements to the design and implementation of the software for these systems. To ensure

such key requirements are met before shipping the software into users’ devices/vehicles, it

is necessary to exhaustively test and verify the software at the development and testing

stage. However, testing and verifying the performance, security and safety requirements

for the software of these systems remains a research challenge. Due to the high mobil-

ity of these systems in the real world, the runtime environments faced by these systems

vary significantly, which poses challenges to the testing and validation of performance re-

quirements. Also, due to the layering design fashion and multi-party development process,

software running on these systems is usually highly complex, potentially enlarging attack

surface and posing challenges to the testing and validation of security and safety require-

ments.

To address this challenge, this dissertation focuses on developing systematic and au-

tomated software analysis tools for testing the performance, security and safety require-

ments of the software for smart end systems. Specifically, we demonstrate that automated

program analyses based on 1) static program analysis and 2) runtime program profiling

with certain system domain-specific customization, can lead to effective testing and val-

idation of key performance, security and safety requirements for smart system software.

xii



This dissertation contributes to the performance, security and safety requirements testing

of smart end systems in following aspects: (1) effectively test performance requirements

and diagnose the cause of performance slowdown through lightweight monitoring of and

systematic performance characterization based on cross-layer runtime events, (2) system-

atically detect noncompliance with important security principles (e.g., publish-subscribe

overprivilege vulnerability) through systematic program analysis and mitigate security vul-

nerabilities through policy enforcement, and (3) systematically verify the compliance with

safety requirements on the mission-critical components (e.g., AV’s driving decision con-

trol) of smart end systems.
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CHAPTER I

Introduction

Smart end systems operate in the wild, directly interact with users and are equipped

with increasing processing power, connectivity and intelligence. Real-world systems of this

category include smartphones, wearable devices and emerging autonomous vehicles (AVs)

and are reshaping our daily lives tremendously. The last decade has seen how smartphones,

smartwatches and smart home devices revolutionize the way we acquire information and

communicate with each other. Nowadays various mobile devices have become ubiquitous

and the number of mobile apps in app markets keep multiplying. Today’s Google Play

store stocks over 2 million Android apps with over 50 billions of total downloads [65,

41]. Moreover, the recent emergence of AVs holds great promise in transforming current

transportation systems for better road safety and mobility efficiency and enabling future

mobility services. Recently, highly autonomous driving systems are being deployed in

real vehicles [106, 78, 97, 15] and have demonstrated potential of mass production in the

coming decade.

Due to its increasing ubiquity and deployment for mission-critical purposes, perfor-

mance, security and safety become critical requirements for the design and implementa-

tion of smart end systems. First, performance is an important requirement for achieving

desired interactivity of these systems, since they either are user-facing or make mission-

critical decisions in response to the change of physical environment in low-latency control

1



loops. Good quality-of-experience (QoE) for mobile apps (e.g., has been shown crucial

for achieving good user experience and improve app engagement. Google’s RAIL perfor-

mance model [98] indicates that a user may lose focus on the task they are performing if

the system response takes over 1 second. In order to achieve fast reaction to the change

of physical surroundings in self-driving, software modules of an AV system needs to go

through a control loop including sensor input acquisition and processing, machine learning

based object prediction, optimization-based path planning and control decision actuation in

as tight as 10 to 100 milliseconds. Such low latency requirements pose stringent challenges

to even today’s commodity operating systems and device hardware, not to mention that they

need to be placed within a space-constrained platform like a smartphone or vehicle.

Second, these systems face security and privacy threats given their high software com-

plexity for supporting rich functionalities and the increasing number of communication

and sensing interfaces exposed on them. New programming defects or attack surface can

occur due to the increasing software complexity. A broad range of security vulnerability

and privacy leakage, due to the open development nature, the coarse granularity of per-

mission control, etc., have been uncovered in smartphone systems. Automotive systems

also face a number of cybersecurity threats. Security vulnerabilities on automotive Con-

troller Area Network (CAN bus) and Electronic Control Units (ECU) have been uncovered

that lead to remote compromise and control of a wide range of automotive functions and

completely ignore driver input [162, 125, 144, 130, 44, 36, 68, 63]. Moreover, the vari-

ous sensors equipped on AVs can expose new attack surface with severe security implica-

tions [174, 189, 204, 188, 178, 91]. Besides these known attack surfaces, another highly

critical yet less explored AV-specific attack surface, the AV software systems for making

autonomous driving decisions, can be potentially exploited when more and more advanced

autonomous driving algorithms and functionalities incorporated into its code base.

Third, unanimously agreed by AV vendors and transportation authorities, strong safety

guarantees for the self-driving control are at the core of the design and implementation

2



of AV software systems. Nowadays, AV software is the main component responsible for

making real-time mission-critical driving control decisions for an AV to avoid crash and

comply with safety driving practices. Specifically, certain safety policies, such as NHTSA’s

safety elements for AVs [17], existing traffic laws, etc., need to be correctly enforced in

the key self-driving modules of an AV software system. Since these software systems

generate physical driving actions that have direct impact on road safety, it is necessary to

understand potential security vulnerabilities and safety policy violation in the design and

implementations of AV software systems, and proactively address them in the AV system

development stage.

Besides the software complexity, some smart platforms, e.g., Android, Baidu Apollo,

etc., encourage open-source contribution from third-party developers, making the compli-

ance with these key requirements difficult at development stage. In the AV context, things

get worse because AV software development is a multidisciplinary task and typically con-

ducted by a large team of developers with different domains of expertise. Therefore, before

the real-world deployment, the compliance with performance and safety requirements and

key security properties needs to be rigorously verified in the lab. Moreover, performance

requirements testing and validation needs to be extended to the stage of deployment given

that it is highly correlated to the user runtime, where network or server conditions may vary

drastically and physical resource constraints on individual devices/vehicles may differ.

However, testing and validating performance, security and safety requirements for these

smart systems remains a research challenge due to their unique characteristics. First, indi-

vidual devices/vehicles spread in the wild and are highly mobile at run time. As a result,

testing the performance requirements and diagnosing the root cause for any noncompli-

ance requires holistic yet lightweight performance monitoring and policy enforcement at

run time. Effective diagnosis should lead to useful and actionable findings that can help

app and AV developers localize the executed code causing performance degradation and

also understand the cause of execution slowdown from a system perspective, e.g., due
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to variable network or server factors or device-specific resource bottlenecks (e.g., CPU,

memory, I/O, etc.). Second, the software stack of these systems, such as the AOSP frame-

work [2] for smartphones, Baidu Apollo framework [14] for AVs, etc., commonly adopts

the layering design fashion to reduce the overall system complexity and improves resource

management and programability. Besides, third-party libraries are extensively used and

increases the code complexity of the software stack. Both the layering design and high

code complexity pose new challenges to the systematic testing of certain requirements and

detection of any noncompliance for the smart systems. One challenge is the completeness

guarantee in static code analysis for achieve systematic analysis goals. Another is the need

of monitoring runtime events across multiple layers of a system for program profiling to

gain holistic root cause understanding for performance issues. For example, mobile apps

at the run time may frequently interact with the underlying operating system to access cer-

tain types of resource and their execution performance can be constrained by the shortage

of a desired system resource. To better guide the root cause analysis of performance re-

quirement noncompliance, runtime profiling should capture not only app-level execution

traces but also system-wide events for localizing easy-to-reason code-level bottleneck and

pinpointing the system-level resource bottleneck. Third, some important security proper-

ties and safety requirements, e.g., traffic rules in human language specification, are too

abstract to be easily defined using a code-level representation that can be directly verified

in the software stack of these systems. Domain-specific abstraction and mapping are re-

quired to bridge the semantic gap between the specification of safety/security properties

and code-level implementation, such that a requirement can be formulated as specification

in code-level constructs and verified in the software implementation of smart systems.

My dissertation is to address this challenge by developing systematic and automated

software analysis support for smart end systems. Specifically, my approach leverages

two main types of analysis techniques, 1) static program analysis to achieve completeness

guarantees of analyzing program behaviors and 2) runtime program profiling to capture
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runtime conditions of program execution. By applying both techniques, my dissertation

demonstrates that systematic software analysis approaches based on static program

analysis and runtime profiling techniques, with certain domain-specific customiza-

tion, can lead to effective testing of key performance, security and safety requirements

for smart system software: (1) effectively test performance requirements and diagnose the

cause of performance slowdown through lightweight monitoring of and systematic perfor-

mance characterization based on cross-layer runtime events, (2) systematically detect non-

compliance with important security principles (e.g., publish-subscribe overprivilege vulner-

ability) through systematic program analysis and mitigate security vulnerabilities through

policy enforcement, and (3) systematically verify the compliance with safety requirements

on the mission-critical components (e.g., AV’s driving decision control) of smart end sys-

tems. Table 1.1 summarizes the key problem and analysis technique used in each project

demonstration.

Scope Problem & Requirement Analysis technique
Smartphone Unpredictable slowdown diagnosis (performance) Runtime program profiling

Autonomous vehicle Publish-subscribe overprivilege analysis (security) Static program analysis
Autonomous vehicle Safety driving rule compliance verification (safety) Static program analysis

Table 1.1: Overview of smart systems covered in this dissertation.

This dissertation proposes a unified software analysis framework (illustrated in Fig-

ure 1.1) for smart system software vendors and developers to achieve systematic testing of

performance, security and safety requirements of smart system software. This framework

is customizable to incorporate smart system domain-specific knowledge to improve the ef-

fectiveness of requirement testing based on runtime profiling and static program analysis

techniques. Our project demonstrations incorporate a set of problem and system domain-

specific customization to both analysis techniques to addresses following challenges with

testing the performance, security and safety requirements of certain smart systems.

• For performance requirement testing with smartphone systems, we propose a new

adaptive sampling technique to limit the performance overhead within 3.5% increase
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Figure 1.1: Software analysis framework to support systematic testing of performance,
security and safety requirements for smart end systems.

of user-perceived delays for user interactions of 100 popular Android apps.

• For security vulnerability analysis of AV software systems, we address analysis chal-

lenges caused by the broad use of object-oriented programing principles and event-

triggered asynchronous model in AV software to achieve zero false negative in detec-

tion of an overprivilege vulnerability.

• For driving safety compliance testing, we incorporate AV-specific domain knowledge

(a.k.a., traffic scenarios and driving actions) to allow flexible specification of driving

safety rules, as target code-level patterns.

The contributions of this dissertation are elaborated in the following three sections.
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1.1 Addressing Performance Requirement: Diagnosing Unpredictable

Performance Slowdown with Mobile Apps

User-perceived performance slowdown in mobile apps can occur in unpredictable and

sophisticated ways, with root cause spanning at different layers (app or system layer).

There is a lack of effective approaches to provide cross-layer, holistic insights to diagnose

unpredictable performance slowdown on mobile platforms, motivating us to develop

PerfProbe as a performance diagnosis framework for mobile platforms. PerfProbe monitors

app performance and records app and system-layer runtime information in a lightweight

manner on mobile devices, and performs systematic, novel statistical analysis on collected

runtime traces at different layers to localize code-level performance variance in the form of

critical functions and zoom into them to pinpoint system-level root causes in the form of

relevant resource factors to explain the performance slowdown. PerfProbe effectively diag-

noses performance slowdown due to various root causes in 22 popular Android apps from

real-world usage monitoring and in-lab testing, by providing holistic, cross-layer insights

to help the root cause diagnosis. Diagnosis findings from PerfProbe provide actionable

insights for root cause finding and guiding real-world app developers’ code fixing or ad-

justment of platform-level policies to reduce user-perceived latency of 6 real Android apps

by 32-86%. PerfProbe incurs small system overhead and impact to app performance at

runtime and is suitable for real-world deployment.

1.2 Addressing Security Requirement: Overprivilege Analysis and Pol-

icy Enforcement for Autonomous Vehicle Systems

Autonomous vehicle (AV) software systems are emerging to enable rapidly developed

self-driving functionalities. Since such systems are responsible for safety-critical deci-

sions, it is necessary to secure them in face of cyber attacks. Through an empirical study

of representative AV software systems Baidu Apollo and Autoware, we discover a common
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overprivilege problem with the publish-subscribe communication model widely adopted

by AV systems: due to the coarse-grained message design for the publish-subscribe com-

munication, some message fields are over-granted with publish/subscribe permissions. To

comply with the least-privilege principle and reduce the attack surface resulting from such

problem, we argue that the publish/subscribe permissions should be defined and enforced

at the granularity of message fields instead of messages.

To systematically address such publish-subscribe overprivilege problem, we present

AVGuardian, a system that includes (1) a static analysis tool that detects overprivilege

instances in AV software and generates the corresponding access control policies at the

message field granularity, and (2) a low-overhead, module-transparent, run-time publish/-

subscribe permission policy enforcement mechanism to perform online policy violation

detection and prevention. Using our detection tool, we are able to automatically detect 579

overprivilege instances in total in Baidu Apollo. To demonstrate the severity, we further

constructed several concrete exploits that can lead to vehicle collision and identity theft for

AV owners, which have been reported to Baidu Apollo and confirmed as valid. For defense,

we prototype and evaluate the policy enforcement mechanism, and find that it has very low

overhead and does not affect original AV decision logic.

1.3 Addressing Safety Requirement: Safety Rule Verification for Au-

tonomous Vehicle Software

As we are getting to a feasible stage of running our daily transportation and mobility

services using AVs on real-world roads, safety requirement is paramount in the design and

implementation of AV software systems. A set of key safety elements [17] defined by the

National Highway Traffic Safety Administration (NHTSA), including the safety rules in

existing traffic laws, forms the voluntary safety standards for autonomous driving systems

to comply with. However, in reality, compliance with these safety policies is hard to be
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enforced an verified at the software level. One main reason is the increasing complexity

of AV software due to new features to be supported and the multidisciplinary development

nature in AV software. The open ecosystem promoted in certain AV developer communities

(e.g., Baidu Apollo [14]) also makes the policy compliance difficult to guarantee.

To help AV developers verify the compliance with predefined safety requirements of

their software before real-world testing, we develop AVerifier, a static program analysis

framework towards verifying the compliance of user-defined safety requirement in AV soft-

ware with completeness guarantees (e.g., full code coverage). Specifically, we design and

implement a program dependence analysis framework to help AV developers perform static

detection of safety requirement noncompliance problems in AV software. Our analysis

uncovers the noncompliance with some well-recognized safety requirements (e.g., com-

pliance with traffic laws) in an early version of Baidu Apollo. To allow expressive spec-

ification of safety requirements, a specification interface is proposed based on a unique

abstraction of the rich road traffic and driving semantics and a semantic mapping that re-

lates each semantic entity to its code-level implementation in AV software. We validate

that this interface enables AV developers to express a broad range of common safety rules

from existing traffic regulation documents in a composable and flexible manner.

1.4 Approach Generality

The customized runtime profiling and static program analysis techniques are in princi-

ple applicable to both smart end systems studied in our project demonstrations (i.e., smart-

phone and autonomous vehicle). As presented in Chapter II, both smartphones and AVs

share the layering design fashion in their software stacks. Though §1.1 demonstrates the

performance requirement testing and problem diagnosis in the context of Android smart-

phone systems, the demonstrated runtime profiling and diagnosis techniques are in prin-

ciple applicable to the performance requirement testing of AV software systems. How-

ever, the location of instrumentation need to be specific to the implementation of an AV
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system (e.g., Baidu Apollo’s runtime framework and customized Linux kernel [14]) to

achieve effective our cross-layer runtime profiling. Moreover, due to the common use of

object-oriented programing principles in both smartphone and AV software systems, the

customized static program analysis techniques presented in §1.2 and §1.3 by design can

be generalized to smartphone systems for detecting similar security vulnerabilities (e.g.,

publish-subscribe overprivileged if exists) and verifying security policies (e.g., access con-

trol policies). Yet, as highlighted by the thesis statement of this dissertation, smartphone-

specific domain knowledge should be considered to achieve systematic analysis goals of

the static detection in the smartphone software context.

1.5 Lessons Learnt

Based on our research investigation on the three projects, we summarize our general

takeaway on the advantages and limitations of both analysis techniques on the requirement

testing of smart end systems.

• Runtime profiling, as demonstrated by PerfProbe, is able to capture the dynamic

runtime environments in a holistic manner even under the high mobility of smart

end systems (e.g., smartphones). It is thus well suited for testing and analyzing

performance properties significantly influenced by the system runtime. However,

performance overhead remains a key barrier for their deployability in smart end sys-

tems. From our empirical study, we discovered that Android’s built-in app profiling

tool [72] may introduce up to 22% increase of user-perceived latency for some user

interactions in commercial Android apps. Also, as profiling certain layers (e.g., call

stack) may require high system privilege, e.g., a rooted smartphone, deployability

issues and usage scenarios should be a primary concern when incorporating runtime

profiling techniques for software analysis.

• Static program analysis by design is capable of providing completeness guarantee in

10



analyzing possible program behaviors. Given this advantage, it is particularly useful

for testing security properties to find vulnerable flows and paths of software code

or verifying compliance with predefined rules in the code-level implementation in

general software systems. However, one prerequisite to perform static program anal-

ysis in target software is a precise definition of target code-level patterns, which is

usually specific to an analysis goal and a target software system. Defining the pat-

ters may require some levels of domain knowledge. For example, AVerifier requires

common traffic and driving domains for building driving safety rule abstractions and

non-trivial implementation domain knowledge to construct the semantic mapping for

code-level rule specification. Moreover, static program analysis requires definition

of entry points (a.k.a., sources) and sinks for the code analysis to start with and ter-

minate on. Identifying sources and sinks of software for new smart systems may

be non-trivial and requires prior knowledge specific to the system domain. Based

on our research investigation, the life cycle of an app/module and their used APIs

for performing relevant actions (e.g., publish-subscribe, self-driving control actions),

can be generalized as a common source-sink pattern across different system imple-

mentations and domains.

• Due to the use of advanced programming paradigms (e.g., object-oriented program-

ing principles, event-triggered asynchronous model) in smart systems and lack of

runtime conditions at compile time, conservative assumptions on the flows of a pro-

gram becomes unavoidable for static program analysis to achieve full code coverage

and complete approximation of program behaviors, which however may lead to over-

approximation of the code-level pattern detection. In the context of security vulner-

ability or safety violation detection, over-approximation usually results in high false

positive rate and may thus affect the tool usability from the developer perspective.
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1.6 Thesis Organization

This dissertation is structured as follows. Chapter II provides sufficient background

of Android platform, AV software architecture and key program analysis techniques used

across this dissertation. In Chapter III, we describe a lightweight profiling approach for

testing performance requirement in real-world usage and systematic characterization ap-

proach for diagnosing root cause for noncompliance. In Chapter IV, we conduct our first

systematic analysis of publish-subscribe overprivilege in popular open-source AV software

systems. In Chapter V, we present our a program analysis approach to verify safety com-

pliance in AV software. We discuss related work in Chapter VI before concluding the thesis

in Chapter VII.
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CHAPTER II

Background

2.1 Android Platform

This section provides sufficient background of mobile operating systems and Android’s

framework. Android is a mobile operating system developed by Google [2]. It is based

on a modified version of the Linux kernel and other open source software, and is designed

primarily for smartphones and tablets, but recently extends the support to televisions (An-

droid TV), cars (Android Auto), and smartwatches (Android Wear OS). Its software stack

follows the layering design illustrated in Figure 2.1. From bottom to top, it consists of 4

software layers.

• Linux kernel. This layer features core operating system (OS) services and device

drivers that allow the OS to access the low-level hardware.

• Android runtime and native libraries. Android runtime features a Dalvik virtual

machine (DVM) that executes the Dalvik bytecode of Android apps, similar to Java

virtual machine (JVM) for executing Java bytecode. Native libraries are shipped

with native code that can be executed by the CPU directly to achieve high runtime

efficiency.

• Application framework. This layer provides an interface for Android apps to access

the system resources. It consists of a number of key services, including ActivityMan-
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Figure 2.1: Overview of Android architecture [3]

ager to manage the life cycle of Android apps, LocationManager to support Android

apps retrieving GPS coordinates of a device, etc. Android apps can access these

services through the Android SDK.

• Applications. This layer supports all the apps that users interact with, including sys-

tem apps shipped by device vendors and third-party apps from Android app markets

(e.g., Google Play).

This dissertation demonstrates performance requirement testing and diagnosis of Android

apps, by monitoring and analyzing app and system-level runtime events when a user inter-

action is performed and executed in an Android app. Specifically, we design a lightweight

monitoring framework to perform runtime profiling across the four layers of the Android
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Figure 2.2: Overview of AV architecture in Baidu Apollo v3.0 [14]

stack.

2.2 Autonomous Vehicle Systems

This section provides sufficient background of autonomous vehicle architecture and

how the self-driving functionalities are achieved in this architecture. Figure 2.2 shows a full

stack of typical software and hardware architecture of current AV systems. This dissertation

focuses on the software platform layer in the figure. In this layer, from top to bottom,

consists of key software modules implementing the self-driving control pipeline (detailed

in §4.2), a runtime framework/middleware for efficient inter-module communication and

flexible resource management, and a real-time operating system (RTOS) with a customized

kernel.

One popular middleware used in AV systems is Robot Operating System (ROS). We

define some common terms of this middleware that are used in the following chapters.

Figure 2.3
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Figure 2.3: Publish-subscribe topic transport in ROS [76]

• Node: A node is a process that performs computation and has a graph resource name

that uniquely identifies it to the rest of the system. Nodes are combined together into

a graph and communicate with one another using streaming topics, RPC services, or

the Parameter Server. Usually, an AV system comprise a number of nodes to control

different functions.

• Message: Nodes communicate with each other through messages. A message con-

tains data that provides information to other nodes. Besides the standard message

types defined in a middleware (e.g., ROS), new types of messages can be defined in

the self-driving modules of an AV software system using standard message types.

• Topic: Topics are named buses over which nodes exchange messages over a publish-

subscribe communication channel. Each message must have a name to be routed by

the ROS network. When a node is sending data, we say that the node is publishing a

topic. Nodes can receive topics from other nodes by simply subscribing to the topic.

Figure 2.3 illustrates the setup of this publish-subscribe communication channel in
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ROS. In ROS, all messages on the same topic must be of the same data type.

This dissertation demonstrates security and safety requirement verification on the software

design and implementation of the self-driving control pipeline and the middleware of open-

source AV systems.

We draw following common observations on smartphone and AV systems and charac-

terize some commonalities of the software for smart end systems.

• A majority of smart end systems, including smartphones, wearable devices and AVs,

are deployed in the wild and highly mobile at the run time. Thus, the performance

requirement testing for smart systems need to capture a holistic view of runtime

environments and dynamics.

• The layering design adopted by smart end systems increases the complexity of soft-

ware analysis. On the one hand, ideally all layers should be considered for capturing

holistic runtime conditions, which however may lead to high performance overhead

for the runtime profiling. On the other hand, the layering design makes interproce-

dure as a necessary analysis requirement for static program analysis of smart systems

software and increases the complexity of control and data flow analysis.

• Most smart end systems are developed following object-oriented programing prin-

ciples (e.g., inheritance and polymorphism) and the event-triggered asynchronous

model. As a result, the runtime behaviors need to be conservatively modeled for

achieving the completeness for flow-sensitive analysis. Additional program anal-

ysis techniques, e.g., symbolic execution, may be required to reduce the over-

approximation of static program analysis.

2.3 Program Analysis Techniques

This dissertation leverages two main types of program analysis techniques: 1) static

program analysis, and 2) runtime program profiling. We briefly summarize the pros and
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cons of each technique as follows.

• Static program analysis is capable of automatically analyzing the behavior of a pro-

gram regarding certain program property, e.g., performance [109], correctness [164],

and security [128], by examining its source code or binary without executing it. De-

pending on the analysis goals and requirements, such analysis can be performed stat-

ically at the compile time for predicting computable approximations to the targeted

property The program behaviors to be analyzed commonly need to be precisely de-

fined as some code-level patterns. On the one hand, it usually holds great potential in

checking a target property with full code coverage and has been widely used as a sys-

tematic approach for various security problems, including discovering vulnerabilities

such as buffer overflow [133] and cross-site scripting [196], detecting privilege esca-

lation attack in access control systems [187], detecting privacy leakage [146, 113],

detecting and analyzing malware [190], etc. On the other hand, the static nature

makes it tend to over-approximate the behavior of a program and may incur false

positives in problem detection [113, 187].

• Runtime program profiling is a form of dynamic program analysis to measures

certain properties of a program, e.g., the memory consumption of a program, the us-

age of particular instructions, or the frequency and duration of function calls. The

runtime information gathered from profiling can produce insights that are not deriv-

able from static analysis, especially when target properties are highly dependent on

specific runtime environments (e.g., network condition, hardware platform, etc.).

However, profiling may introduce substantial overhead to the system runtime and

impact application performance [72, 34]. Profiling can be achieved by trapping cer-

tain events (a.k.a., event-based), instrumenting the program source code or its binary

(a.k.a., instrumented), or probing the target program’s call stack at regular intervals

using operating system interrupts (a.k.a., sampling). Each technique has its advan-

tages and drawbacks in accuracy and overhead.
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CHAPTER III

PerfProbe: A Systematic Cross-Layer Performance

Diagnosis Framework for Mobile Platforms

3.1 Introduction

With the rapid advancement of mobile computing and networking technologies, mobile

devices have become ubiquitous and the app market is multiplying. Today’s Google Play

store stocks over 2 million Android apps with over 50 billions of total downloads [65, 41].

Different from server-based applications, mobile apps are user-facing and highly inter-

active, and usually running on a resource-constrained and dynamic environment. These

unique runtime features make apps more likely to be affected by internal device-specific

resource constraints (e.g., CPU, memory, disk) as well as external environment factors,

including network quality and server-side delay. Variance of some key factors may lead

to large variation in user-perceived latency, degradation of which is an important type of

quality-of-experience (QoE) problems for mobile apps. As one critical performance metric

for a wide variety of interactive apps, user-perceived latency has recently drawn attention

from the research community [126, 168] and app industry [64]. Google’s RAIL perfor-

mance model [98] shows that a user may lose focus on the task they are performing if

the system response takes over 1 second. Therefore, it becomes crucial to uncover perfor-

mance degradation in critical user interactions and diagnose them at the early testing or
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deployment stage, so as to provide app developer or device vendors with useful hints for

implementing effective strategies to ensure app responsiveness and good user experience.

Our empirical study on 100 popular Android apps shows that user-perceived perfor-

mance for key user interactions in an app can degrade by multiple times in some runs.

As later shown by our diagnosis, such unpredictable performance slowdown can be due

to specific runtime context (§3.6.3) or code-level design issues (§3.6.1). Pinpointing these

sophisticated factors requires analyzing app and system-layer information collected at run-

time. On the one hand, localizing code-level performance variance with common program

abstractions (e.g., function) provides semantically meaningful hints for root cause reason-

ing and code fixing by human developers. On the other hand, system-wide runtime events

record fine-grained details on how an app interacts with system resources over time, which

may help app developers quantify the runtime cost of their code to certain types of re-

source, especially when an invoked third-party library is proprietary or too complex to

understand its resource intensity. Such resource-level root cause reasoning is also useful

to guide device vendors’ refinement of system-level configurations or policies (e.g., buffer

size, frequency governor, code offloading [134, 148, 147]) to achieve better mobile perfor-

mance.

Unfortunately, we see a lack of effective approach to provide such cross-layer, holis-

tic insights for helping the diagnosis of unpredictable performance slowdown on mobile

platforms. To fill this gap, we develop PerfProbe as a performance diagnosis framework

for mobile platforms. PerfProbe does not require app source code and takes app binary as

input. Developers can specify their interested user interactions to be monitored through its

configuration interface (§3.3.1). PerfProbe then monitors performance of these interactions

triggered by real-world usage and records app and system-layer runtime information in a

lightweight manner on a mobile device. Once performance slowdown is detected, Perf-

Probe performs offline diagnosis by associating the collected runtime traces at different

layers using a statistical learning approach. PerfProbe provides cross-layer, informative in-
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sights as its diagnosis output to facilitate the root cause analysis by app developers or device

vendors: 1) critical function showing the executed function calls whose slowdown is most

correlated to performance degradation; 2) relevant resource factor indicating what system

resource (e.g., computation, network, disk, etc.) a critical function interacting with is most

correlated to the slowdown of the function. Motivated by a real-world app study and sub-

sequent diagnostic evaluation, our cross-layer characterization approach enables resource-

level understanding compared to existing app-level profiling approaches [183] (§3.2.1), and

achieves higher accuracy in pinpointing the relevant resource factors causing performance

slowdown than existing OS monitoring or resource profiling approaches [206, 39, 67, 159]

(§3.6.4).

To develop PerfProbe, we overcome two major research challenges. First, recording

fine-grained app and OS-layer runtime information can incur large overhead to a mobile

device and degrades app performance, influencing both user experience and accuracy of

problem diagnosis. To address this challenge, we propose a novel model-driven adaptive

sampling mechanism to accommodate the different levels of profiling overhead incurred by

different apps on different devices and achieve lightweight call stack profiling. It performs

real-time monitoring of the performance impact to an app due to profiling its call stack

and based on that adjusting the call stack dumping frequency to limit its impact within

some configurable threshold (§3.3.2). Second, a user interaction in real apps usually in-

volves execution across dozens or hundreds of threads and even across process boundary,

with different threads bounded by different system resources. To overcome this challenge,

we propose a novel statistical analysis approach that first zooms into app-level execution

to identify a small set of critical functions and then pinpoints their underlying resource

factors relevant to the cause of performance variance (§3.4). As one main novelty of our

system, this two-step critical function and resource factor characterization imitates human

inspection, but involves no manual efforts.

Our work makes the following research contributions:
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• We develop a lightweight performance monitoring mechanism with smaller perfor-

mance impact than state-of-the-art for mobile platforms that collects detailed app

and system-layer runtime information to support the diagnosis of unpredictable per-

formance slowdown in mobile apps.

• We design an automated, systematic cross-layer characterization approach that per-

forms two-step statistical characterization on app and OS-layer traces to pinpoint crit-

ical functions and their underlying relevant resource factors for explaining the cause

of unpredictable performance slowdown in mobile apps. This cross-layer charac-

terization approach by design can be generalized to diagnosing similar performance

issues in other software systems.

• Diagnosis findings from PerfProbe on real-world performance issues provide valu-

able insights for guiding code-level fixing of real-world app developers and adjust-

ment of platform-level policies to reduce user-perceived latency of 6 real Android

apps by 32-86%.

In the following sections, we will use the term performance or user-perceived latency in-

terchangeably.

3.2 Motivation & Approach

In this section, we motivate the need of associating app and OS-layer runtime informa-

tion for performance analysis using a popular Android app as a motivating example (§3.2.1)

and present a key design challenge to achieve our diagnosis goal (§3.2.2).

3.2.1 Motivating Example

We study SSE, a popular Android encryption app, in which users click a UI button to

encrypt a file stored in SD card. Perturbing different resources in the system consistently

causes severe performance degradation. Figure 3.1 illustrates the execution workflow for
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Figure 3.1: Performance slowdown due to different root causes (length of the arrows cor-
responding to execution time) in Run 1, 2, 3 (from left to right). No slowdown in Run
1.

this interaction in different runs. In this interaction, the main/UI thread invokes a worker

thread to execute an encryption function that performs three operations: read the file from

SD card, encrypt the bits and write the encrypted file to SD card. Performance slowdown

that occurs in 2nd and 3rd run, however, are due to different resource bottlenecks – slow

disk I/O in loading the file from the local storage in one run and insufficient CPU cycles

for performing computation-intensive encrypting operations in the other run.

The benefits of associating app and OS-layer runtime information together for per-

formance diagnosis are two-fold. First, app-level profiling [72, 183] may identify

what function calls lead to performance variance (critical functions SCrypt.scryptN or

Posix.readBytes in Table 3.2) under different resource perturbations, but is unable to pin-

point underlying resource bottlenecks that are unique to the runtime. Domain knowledge

on the script or posix library is required for understanding. In fact, performance slowdowns

observed in our deployment study were caused by app’s invocation of certain system re-

sources that become a bottleneck (e.g., computation bottleneck due to the CPU frequency

cap enforced by DVFS governor policies in §3.6.3.1, disk I/O bottleneck due to the read-

ahead buffer limit in §3.6.3.2, etc.), which can hardly be uncovered by analyzing app-layer

execution alone. Second, applying traditional resource profiling [39, 67] or tracking sys-
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tem calls [159] or primitive OS events [206] loses track of details of program semantic

(e.g., functions) and cannot provide developers with easy-to-reason hints to enable further

code-level inspection. Moreover, traditional resource profiling [39, 67] alone, as shown

by our evaluation (§3.6.4), is sometimes too coarse-grained to accurately pinpoint the true

resource bottleneck.

PerfProbe’s cross-layer diagnosis approach aims to address these limitations. It local-

izes to function calls with running time correlated to the performance variance (a.k.a., crit-

ical functions), and pinpoints what system resources (e.g., CPU, network, disk, etc.) they

interact with cause their running time variance (a.k.a., relevant resource factors). In above

example, PerfProbe further pinpoints CPU as the resource bottleneck for SCrypt.scryptN

and disk I/O for Posix.readBytes (Table 3.2).

3.2.2 Profiling Challenge

Android’s built-in profiler Traceview [72] (integrated in CPU profiler [51] in latest An-

droid) provides runtime visibility of an app’s call stack and can be used for characterizing

critical functions. While its sampling mode [51], which captures the call stack at fixed

sampling intervals, is suggested for reducing the performance impact to apps, if it is kept

always-on for profiling an actively used app, the app is likely to become unresponsive

and throw an ANR error. Thus, we propose to support event-triggered profiling on only

developer-configured user interactions (§3.3.1). Also, our empirical study indicates that

small sampling intervals may still introduce high overhead to the runtime execution, espe-

cially when it involves CPU or disk I/O intensive workload. Figure 3.2 shows the profiling

overhead (in relative increase of latency due to profiling) under different sampling inter-

vals when the computation-intensive optical character recognition (OCR) is performed to

extract texts from images in 3 popular apps. First, the 10-95% overhead incurred by small

sampling intervals are unacceptable for real-world deployment. Second, this large over-

head may skew the running time of function calls and affect the accuracy in pinpointing

24



 0

 20

 40

 60

 80

 100

1ms 5ms 10ms 20ms 50ms

P
ro

fi
li

n
g

 o
v

er
h

ea
d

 (
%

)

Sampling interval

App 1 (Nexus 4)
App 1 (Nexus 6)
App 2 (Nexus 4)
App 2 (Nexus 6)
App 3 (Nexus 4)
App 3 (Nexus 6)

Figure 3.2: Profiling in different sampling intervals and hardware platforms

app-layer execution slowdown [34]. For example, profiling of App 3 on Nexus 4 device in-

curs 2-3x increase in running time of file operations, causing corresponding function calls

(with small running time in reality) to be wrongly identified as execution hotspots.

As Figure 3.2 implies, large sampling intervals may lead to smaller overhead, but by

design prevent capturing of function calls completed within a sampling interval and thus

hinder fine-grained performance inspection. Moreover, though the profiling overhead com-

monly decreases when the sampling interval scales up, the performance impact of profiling

varies across apps with similar workload and across platforms for a same app. One ap-

proach to find a proper sampling interval that preserves sufficient profiling granularity with

small runtime overhead is profiling in advance, but becomes hard to scale given the large

number of apps and high variety of platforms. To address this challenge, we propose to

track the performance impact caused by profiling at runtime and based on which adjust the

sampling interval to constrain the profiling overhead to the current app execution below

some configurable bound. Our approach is agnostic to apps or platforms and requires no

extra manual efforts (§3.3.2).
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3.2.3 System Overview

As illustrated in Figure 3.3, PerfProbe consists of two key modules: an on-device per-

formance monitoring module (§3.3) and a problem diagnosis module deployed on a

server (§3.4). Its workflow has following steps: 1) App binaries are installed and targeted

user interactions are configured on a rooted mobile device running PerfProbe; 2) The on-

device PerfProbe manager in the performance monitoring module controls the profiling of

preconfigured interactions and records multi-layer runtime traces, which are periodically

uploaded to a remote server (e.g., once per day); 3) The problem diagnosis module an-

alyzes traces to detect unpredictable performance slowdown in a user interaction and if

any slowdown is detected performs further diagnosis to provide app developers or device

vendors with cross-layer diagnosis insights.
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3.3 Performance Monitoring

PerfProbe’s performance monitoring module measures the latency of user interactions

by instrumenting Android’s UI framework to intercept common UI input and update events,

and records the app-layer runtime execution using Traceview [72] and system-wide OS

events using Panappticon [32], which together form the input to the diagnosis module.

To mitigate the runtime overhead caused by this cross-layer monitoring, we make two

improvements on existing profiling mechanism in Android.

3.3.1 Event-Triggered Profiling

We instrument UI event handlers in Android’s framework to monitor user’s invocation

on UI components of an app in the run time and start the profiler when certain UI compo-

nent (e.g., a touch button on a particular view) is invoked. The PerfProbe manager provides

an interface for developers to configure user interactions to be profiled, by providing the

resource ID (which is device independent and determined at compile time) of the UI com-

ponents for denoting input and output of an interaction, app package name of an interaction,

and profiling parameters including the profiler’s sampling frequency and profiling duration.

In the run time, when a pre-configured input UI component is invoked, an intent is broad-

casted and intercepted by PerfProbe manager, which then launches the profiler based on

the configuration. Auxiliary information (e.g., timestamp, location, network trace, CPU

load, system log) when profiling an interaction can also be optionally recorded by Perf-

Probe manager. This asynchronous messaging, by separating the app execution from the

profiling process, aims to prevent any stall on the app due to the launch of profiling. One

concern with this design is that the profiler may miss some early phase of the app execution,

since the app does not wait once sending the intent. Through our empirical study on a wide

range of apps (§3.6.2), we validate that profiled events consistently cover key execution

of an interaction, since intent messages are received promptly by PerfProbe manager and

profiling starts immediately after a user input is performed.
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3.3.2 Adaptation of Sampling Intervals

Android’s profiler in sampling mode runs as a background thread spawned from an

app and periodically (at sampling interval) records the call stack of each thread in an app

process sequentially, during which the whole app process (i.e., all its threads) is paused.

This pause is the major source of overhead in profiling an app. Due to this design, the

pause time depends on the number of threads in an app process and also the running time

of the profiler thread, which can be affected by runtime resources of the platform. Our

empirical study on apps of different categories shows that the pause time for one sampling

may vary from several to hundreds of milliseconds.

Following the intuition that profiling should be made less frequent to cause shorter

pause to an app when the app is performing resource-intensive operations, we propose to

adjust the sampling interval at runtime based on the pause duration observed in most re-

cent profiling and the computation intensity of current execution in an app. Based on our

observation on the source overhead, we define the relative profiling overhead (i.e., the per-

centage of increase in app latency due to pause for profiling) as O(n) = P (n)
S(n)+P (n)

, where

P (n) denotes the observed app pause duration, S(n) denotes the sampling interval for nth

profiling round. To limit the profiling overhead, O(n+1), below some configurable bound

during the intervals when the profiled app will be experiencing high load, we determine

a new sampling interval S(n + 1) using the following equations with a user configurable

bound, denoted as T (0 < T ≤ 1). Parameter T in our experiments is set to 0.03. Note that

we also need to ensure that the new sampling interval is not shorter than the current pause

duration.

S(n+ 1) =


max(S(n), P (n), P (n)

T
− P (n)), if high load

max(P (n),min(S(n), P (n)
T
− P (n))), otherwise

Following this adaptation model, small sampling intervals (e.g., 1ms) are initialized when
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profiling starts and the sampling interval is updated after each sampling. In our current

design, an app is classified as at high load if its total CPU usage time across multiple cores

in the most recent sampling round exceeds the sampling interval.

3.4 Problem Diagnosis

As show in Figure 3.3, the input to the diagnosis module includes function call profiles,

UI event logs and OS event traces from deployed devices. User-perceived latencies of an

interaction can be determined from UI event logs. Performance labels, with the labeling

criteria specified by developers, indicates the occurrence of slowdown in one run based

on the distribution of all measured latencies of an interaction. In our evaluation, we use a

binary indicator for labeling: given runs of an interaction found with long tail latency dou-

bling or multiplying average latency, any run with perceived latency higher than a threshold

is associated with a bad performance label and otherwise a good label. If any unpredictable

slowdown is detected, a two-step trace-based diagnosis (detailed as follows) is performed

to provide human developers with app and OS-layer diagnostic insights and facilitate root

cause identification.

3.4.1 Approach Overview

Running on a cloud server, the diagnosis module performs trace analysis by first zoom-

ing into an app-level program execution and then inspecting its interaction with OS in two

sequential steps, in order to gain holistic insights on the source of problem at app program

level and the cause of problem at system level. Specifically, as illustrated in Figure 3.3, the

first step takes the performance labels and app and library function call trace for many runs

of an interaction as input, and pinpoints a small subset of functions (a.k.a., critical func-

tions) within the function call trace that are most accountable for the performance variance.

For each critical function, its executing thread and time intervals are also generated in the

output. The second step leverages the output of the first step and OS event traces as input to
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extract runtime resource usage features relevant to the execution of each critical function,

including but not limited to CPU, network, disk resource usage and IPC usage, and asso-

ciates each critical function to one or several resource usage features based on correlation

explain what causes its execution slowdown. Finally, both the critical functions and their

relevant resource factors are presented to human developers to guide their further root cause

analysis of the performance variance. We select functions as one diagnosis output because

they are program semantic-rich and easy-to-reason for developers, and resource factors as

the other because they are usually related to the root cause of performance variance. The

remaining subsections present the technical details of this two-step analysis.

3.4.2 Critical Function Characterization

In critical function characterization, a candidate set of critical functions is first selected.

Decision tree based learning, taking each run as one data sample, in which the total execu-

tion time of each critical function candidate acts as an input feature and the performance la-

bel as an input label, is performed to identify a small set of critical functions with execution

time correlated to the performance variance. In the generated tree, each node corresponds

to a critical function.

Critical function candidate. A critical function satisfies the following requirements:

• A critical function consumes a significant amount of execution time of an interaction,

based on the intuition that time-consuming functions tend to cause a stronger impact

on the user-perceived latency of an interaction.

• The execution time of a critical function varies significantly between runs with dif-

ferent performance labels, based on the intuition that the extra time spent in that

function will contribute to the overall user-perceived latency if it causes the perfor-

mance slowdown.

To fulfill the first requirement, we compute the total time spent in each function for each
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run based on the function call trace. Then we pick the top-K functions with longest total

execution time in each run and merge them across runs to form a candidate set of critical

functions. To satisfy the second requirement, we aim to select a small set of functions from

the candidate set such that their total execution time in runs with performance slowdown

is consistently longer than that in runs without performance slowdown. In other words, we

can apply conjunction on this set of functions to discriminate runs with good performance

labels from those with bad labels.

Identifying critical functions. We construct a decision tree to understand what functions

are most correlated to the performance variance. We use decision trees for two main rea-

sons. First, a decision tree using a compact combination of features selected from a large

feature set naturally determines a linear boundary to separate data samples with different

labels. Second, a decision tree well depicts the preconditions for performance slowdown:

with each node identifying a critical function, given a path from the root node to some

leaf containing performance slowdown instances alone, the conjunction of nodes along this

path defines a precondition for the slowdown, and the disjunction of all such paths define a

set of preconditions under which performance slowdown occurs.

Decision tree details. We use mutual information gain as the criteria for node selection.

Before the decision tree characterization, we first apply function pruning by evaluating

the relative difference of the total time feature for each function f in the candidate set:

prune f if (mf
− - mf

+) <α (pf95 - pf5 ). The relative difference is the absolute difference of

means over the central range of a feature’s values in groups by performance labels (i.e.,

mf
−, mf

+), where central range is the difference between the two 95-percentile values pf95

and pf5 . α is set as 0.1 by empirical study. The remaining functions in the candidate set

provide the input features, which along with performance labels will be used for feature

selection to generate splitting nodes of a decision tree. In feature selection, given a set of

features with equally highest mutual information gain, we select one with largest relative

difference as the splitting node. Moreover, to reduce the variance and avoid overfitting, we
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Figure 3.4: Decision tree to characterize critical functions in Vine interaction (two slow-
down preconditions as conjunctions of nodes from the root to a highlighted leaf, recvfrom-
Bytes and SSL read identified as critical functions, the other two nodes are pruned because
the latency of their corresponding functions is insignificant)

stop generating a splitting node when it reaches certain depth or contains too few samples.

Through our empirical study, we find that the depth of a generated decision tree does not

usually go beyond 4 when data samples are completely separated. We also exclude a node

from being considered as a critical function when it contains too few samples, or when

its split gap (i.e., minimum distance between good and bad samples) is not significant, or

when the latency of its corresponding function is not significant. We leverage the scikit-

learn library to implement our decision tree and configure the decision tree to compute gini

and apply a best split heuristic for feature selection [82].

An illustrative example. We use the Vine interaction to showcase our diagnosis flow.

From the deployment study, we observe 10 out of 100 runs of Vine interaction (listed in

Table 3.6) show user waiting 2x long as the median. The decision tree generated from

critical function characterization is shown in Figure 3.4 that identifies 2 critical functions,

recvfromBytes and SSL read.
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3.4.3 Resource Factor Characterization

The resource factor characterization takes the output of the critical function characteri-

zation as input and aims to understand what resource usage causes execution slowdown in

each critical function. To achieve that, we first profile the resource usage for each critical

function by identifying its execution intervals, under which key resource usage features

are extracted. Decision tree learning is then applied on each critical function across runs

as data samples, with resource usage features as input features and a binary indicator for

the execution time of the critical function as input labels, to identify the resource factors

relevant to the slowdown of that critical function.

Identifying relevant execution intervals. Given a set of critical functions, we define a

thread executing it as a critical thread and its duration as a relevant execution interval.

Thus, a relevant execution interval corresponds to a critical function and a critical thread.

The next step of diagnosis is to narrow down to these execution intervals and reason why

slowdown happens in each critical function.

To determine the most relevant resource factors, we construct a set of resource features

for each critical function. We summarize key resource features in Table 3.1. Note that the

resource usage feature set is extensible for the characterization. For each run, we then sum

up each type of resource usage under all relevant execution intervals to form one resource

feature for a critical function.

Resource feature Description
CPU usage time Time spent in running state by thread T
CPU wait time Time spent in the ready state waiting for CPU by thread T
CPU frequency Average CPU frequency when thread T is running

Interruptible sleep time Time when thread T is in interruptible sleep
Uninterruptible sleep time Time when thread T is in uninterruptible sleep

Network blocking time Time when thread T is blocking for network I/O
Disk blocking time Time when thread T is blocking for local disk I/O

IPC wait time Time spent in inter-process communication by thread T

Table 3.1: Resource usage features

Extracting resource usage features. To compute how much time is spent in CPU running
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state, in interruptible/uninterruptible sleep state or in the ready state waiting for context

switch-in, we rely on the context switch events within a relevant execution interval. To

extract network or disk blocking time, we analyze the I/O blocking events within a relevant

execution interval. To obtain IPC wait time, we compute the waiting time between each

binder request and response within a relevant execution interval. We also compute the

average CPU frequency when a thread is occupying CPU across its relevant execution

intervals based on frequency governor events.

Pinpointing relevant resource factors. The resource factor characterization of each crit-

ical function is also achieved through decision tree learning similar to that in the critical

function characterization, in which a corresponding node for a critical function contains a

subset of runs that becomes input samples to the characterization at this step. The input

features of each sample consists of the key resource usage features for a critical function.

In the critical function characterization, a threshold on execution time has also been de-

termined for each critical function, which is used for labeling the input data in this step.

In other words, the label indicates whether execution slowdown occurs in a critical func-

tion. The same feature pruning and node selection technique applied to critical function

characterization are followed to construct a decision tree, in which each node identifying a

resource usage feature relevant to the slowdown of a critical function. Using the example in

Figure 3.4, all 100 samples (88 positive, 12 negative) are used to characterize the resource

factor for recvfromBytes, resulting in a decision tree with the network blocking time as its

root (i.e., relevant resource factor). Analysis of 88 samples in the left branch (87 positive,

1 negative) pinpoints interruptible sleep time as the relevant resource factor for SSL read.

3.5 Implementation

We have implemented a PerfProbe prototype that can be deployed on Android 4.4.4

KitKat and 5.1.1 Lollipop. While we build on top of state-of-the-art tracing and profiling

tools to implement system-wide, cross-layer instrumentation (as illustrated in Figure 3.3),
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we find that additional automation features are necessary to support our usage scenario.

Also, low-overhead profiling and tracing techniques are essential to support performance

diagnosis in the wild. We highlight several implementation challenges from both perspec-

tives as follows.

System instrumentation and trace collection. In our prototype, OS-layer event tracing

is built based on Panappticon [32] that was originally developed for Android 4.1. Further-

more, we reuse Android’s built-in method profiler (a.k.a., Traceview) to implement our

app profiler. To integrate them into our prototype for performance diagnosis, we make the

following implementation efforts. First, to deploy Panappticon on newer Android systems,

we port its kernel and framework-level instrumentation into the kernel and framework code

base for KitKat and Lollipop (i.e., AOSP 4.4.4 and 5.1.1). Second, while the Android

profiler is accessible from the Traceview GUI, to support automatic profiling using the An-

droid profiler, one feasible way is to leverage the am command line interface to control the

profiler. However, we find that the am command line interface in existing AOSP can only

launch the profiler in tracing mode, which incurs large performance impact to the app and

is not an option in PerfProbe, we extend the profiler implementation across the Dalvik VM

and framework layer of AOSP to support programmable sampling-based profiling. Third,

our prototype includes a system app (a.k.a., PerfProbe manager) that runs a long-living

background service for not only collecting OS event and function call traces from memory

buffer and uploading them to a preconfigured server if the device is under certain network

and/or battery condition, but also enabling programmable control of Android’s profiler to

minimize its impact on app performance (detailed in the rest of this section).

Event-triggered profiling. Another key challenge is to enable low-overhead tracing and

profiling based on pre-configured user interactions in the wild. One naive approach is to

keep the tracing and profiling process long-running once the system is up. Our empirical

study shows that, though the OS event tracing can keep running in the background with

little resource overhead, if the app profiling lasts for a long period of usage, most apps will
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become unresponsive (i.e., throwing an ANR error). Therefore, our prototype needs to sup-

port event-based profiling, meaning that the profiling is activated only when the interested

interactions are performed. To achieve that, we instrument UI event handlers in Android’s

framework to monitor user’s invocation on UI components of an app in runtime and start

the profiler when certain UI component (e.g., a touch button on a particular view) is in-

voked. The PerfProbe manager provides an interface to configure user interactions to be

profiled. The configuration includes the resource ID of its input UI component and pack-

age name as identifiers of an interaction, as well as the sampling frequency and profiling

duration. In runtime, when a pre-configured UI component is invoked, an intent is broad-

casted and intercepted by PerfProbe manager, which then launches the profiler based on

the configuration. This asynchronous messaging, by separating the app execution from the

profiling process, aims to prevent any stall on the app due to the launch of profiling. One

concern with this design is that the profiler may miss some early phase of the execution.

Through our empirical study on a wide range of apps, we validate that profiled events con-

sistently cover key execution of an interaction, since intent message are received promptly

by PerfProbe manager and profiling starts immediately after a user input is performed.

3.6 Evaluation

We perform controlled experiments on 5 real Android apps with synthetic performance

variance introduced by perturbing different system resources or triggering a programming

mistake into app source code (summarized in Table 3.2) in some runs. Diagnosis results

demonstrate that our diagnosis approach can always localize functions with injected faults

or correctly pinpoints the perturbed system resource.

We also conduct a real-world deployment and diagnosis study to answer following

questions. How useful is PerfProbe in guiding root cause diagnosis and code fixing of

unpredictable performance issues for real-world app developers (§3.6.1)? How effective

is PerfProbe in diagnosing real-world unpredictable performance issues with popular An-
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App Interaction Injected problem Critical function Relevant resource factor

Download Manager [31] Download a
file

H&M [46] View an item Network delay Posix.recvfromBytes Network blocking time
CNET [27] View a post

Sudoku Solver [56] Solve a grid Programming flaw SudokuCore.solveMethodOptimised CPU usage time

SSE [86] Encrypt a file
from SD card

Background load SCrypt.scryptN CPU wait time

Throttled disk access Posix.readBytes Disk blocking time

Table 3.2: Diagnosis results for synthetic performance issues

droid apps (§3.6.2 & §3.6.3)? What benefit can PerfProbe’s cross-layer characterization

achieve compared to existing diagnosis approaches (e.g., monitoring system calls, resource

profiling) (§3.6.4)? How much overhead can PerfProbe incur to a mobile device and how

much performance impact can our adaptive sampling reduce (§3.6.5)?

3.6.1 Android App Developer Study

We apply PerfProbe to diagnose user-reported performance problems in 6 open-source

Android apps (user rating above 3.5 and over 50K downloads) and report our findings to

their developers for feedbacks. Specifically, we mimic app developers to conduct followup

debugging based on the critical functions and relevant resource factors output from Perf-

Probe. To quantify the extra manual effort for code inspection with hints from PerfProbe,

we define a metric relative extra effort based on prior works [156, 166], as the ratio of

the portion of app source code we manually inspected based on the critical functions from

PerfProbe to the portion of app source code invoked in the run time (i.e., baseline).

Table 3.3 shows the relative extra effort and summarizes the root cause findings (de-

tailed in app’s GitHub issue tracker) for each issue. With PerfProbe, less than 3% of the

executed source code needs to be inspected and the pinpointed resource factors give direct

explanation to the running time variance in pinpointed critical functions. We reported our

findings through GitHub’s issue tracker to app developers and obtained acknowledgment

from developers of 3 apps (highlighted in Table 3.3). Based on followup analysis using

PerfProbe’s output, we also suggested feasible optimizing solutions to some issues. The

iNaturalist and Riot developer invited us to submit pull requests for our suggested solu-
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tions. Our suggested strategy for iNaturalist [83], implemented in 90 lines of code, has

been adopted by its developer (detailed as follows).

App Interaction Root cause summary Relative extra effort
iNaturalist [47] Click Guides tab Overloaded sequential web requests [83] ∗ 0.45%

Riot [74] Open chat room Web requests and computation delay for bitmap decoding [87] ∗ 2.43%
K9 Mail [57] Sync mailbox Occasional loss and re-establishment of IMAP connection [55] ∗ 0.70%

c:geo [24] Search nearby cache Delay for sequential web requests [53] 0.33%
GeoHash Droid [38] Launch app Location query and computation delay for map rendering [88] 2.78%

Tomahawk Player [99] Search songs keyword Web server unavailability [54] 0.81%

Table 3.3: Summary of diagnosis reporting: ∗ indicates our report is acknowledged by app
developer

Case study. iNaturalist app (over 500K downloads in Google Play) enables users to view

or upload plant and animal observations. PerfProbe pinpoints Posix.recvfromBytes (in-

voked by getAllGuides) as the critical function, with network blocking time as its relevant

resource factor. To trace the source of network blocking, we investigate the definition of

getAllGuides and discover that a series of HTTP requests are issued sequentially to retrieve

many (>1000) JSON objects. As we observe that users cannot view all loaded items from

the UI screen, we suggest limiting the number of JSON objects to be retrieved through

HTTP requests and adding a “Load more” option in the UI for users to choose whether

to continue loading more new items in order to reduce the user waiting time for UI up-

date [83]. We implemented our suggested strategy [83] by adding 90 lines of code and

validated that it reduces the user-waiting time for this interaction by 86%. Eventually, the

developer adopted our suggestion and changed the app to load only the first page of items

for better interactive experience [33].

Riot. Riot is a popular group chatroom app with an average rating of 4.5 in Google Play.

Besides delay for web requests, PerfProbe also pinpoints nativeDecodeAsset (An-

droid’s bitmap API) that is invoked by setContentView as a critical function, caused

by longer CPU wait time (i.e., computation bottleneck). We investigate the resource file

with setContentView in app source code and find the resource file includes several

large bitmaps to be decoded, which is usually memory-heavy and computation-intensive,

for rendering the layout of the chatroom activity. To alleviate this computation bottleneck,
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we suggest loading a scaled-down version of bitmap following Android’s developer guide-

line [60] for accelerating the decoding. Riot’s developer acknowledged our findings and

waits for our pull request for our suggested fix [87]. As unveiled from our diagnosis, the

performance of nativeDecodeAsset is dependent on the size of input bitmap and thus

solely pinpointing the critical function alone is not adequate for root cause understanding.

PerfProbe correspond with its resource bottleneck and successfully leads to more insights

about root cause.

3.6.2 Real-World Deployment

To diagnose unpredictable performance slowdown issues in the real world, we deploy

PerfProbe’s monitoring module on Nexus 4 and 6 devices to monitor common user interac-

tions for a wide range of popular Android apps. We select top-ranked Android apps [16, 40]

from different categories and obtain in total 100 popular apps (summarized in Table 3.4).

For each app, we identified a common interaction based on our domain knowledge of an

app and configure PerfProbe manager to monitor it. In each deployment run, a subset of

selected apps were installed on a test device and replaced by another subset in the next

run. To mimic real-world daily usage, a device was brought to different locations, in-

cluding an office, campus, and residential environment (all with WiFi access), where UI

inputs were automatically replayed using UIAutomator [100] to launch an interaction

randomly picked from the preconfigured ones. During the deployment, each preconfigured

interaction was performed for sufficiently many times (65∼110 runs).

Out of the 100 apps, we discover 11 apps (spanning 6 main categories in Table 3.4)

in which tail latencies are 1.5∼8x as long as the median latency. Figure 3.5 shows the

distribution of waiting time for the user interactions of these apps (listed in Table 3.5).

Root cause analysis based on PerfProbe’s cross-layer trace diagnosis is presented in §3.6.3.
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Category # of apps Downloads
Tool 32 500K∼500M

Shopping 15 10M∼500M
News 10 50K∼1B
Social 8 50M∼5B
Media 6 100M∼500M

Navigation 5 100M∼5B
Other 24 50K∼500M

Table 3.4: Android apps for performance monitoring in the real world

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100

C
D

F

User waiting time (second)

Flipp
Meitu

OfferUp
Where Am I
Sina News

VLC Player
Google Translate

Vine
Text Fairy

AI Camera
TF Detect

Figure 3.5: Unpredictable performance slowdown in popular Android apps

3.6.3 Diagnosis of Performance Issues

We apply PerfProbe to diagnose performance variance (listed in Table 3.5) uncovered

in our deployment study (§3.6.2). We label a run as performance slowdown if its waiting

time is longer than the median waiting time by one or two standard deviation, depending

on the skewness of the distribution of the user waiting time. Table 3.6 summarizes the

diagnosis output of PerfProbe for each case, with their diagnosis details documented in

an anonymous website [70]. We also perform further analysis and validation based on

PerfProbe’s diagnosis findings as follows.

• For CPU frequency bound, by reconfiguring existing userspace parameters of the

Dynamic Voltage and Frequency Scaling (DVFS) governors [59], the tail latency of
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App Interaction Version
Vine [102] Launch app to play a video 5.18.0
Flipp [35] Launch app to load flyers 5.0.1

OfferUp [66] Launch app to load deals 2.2.25
Sina News [81] Click a bookmarked post 4.9.5

Google Translate [42] Translate texts in an image 5.5.0
VLC Player [103] Play a video from SD card 2.0.6

Meitu [61] Enhance a photo in SD card 5.1.9.1
Where Am I [107] View current address 1.14

Text Fairy [93] Extract texts in an image 3.0.8
AI Camera [1] Detect objects in camera Demo
TF Detect [94] Detect objects in camera 1.0.0

Table 3.5: Android apps with unpredictable performance slowdown

3 CPU-bounded interactions are reduced by 32-40%.

• For disk I/O factor, by applying a common tweak of a system parameter to boost the

access speed of on-device SD card, the tail latency of 2 disk-bounded interactions is

reduced by near 50%.

• For network or server-side factor, we investigate network trace captured by tcpdump

for further validation.

• For GPS problem, we trace the destination of the pinpointed inter-process communi-

cation to locate GPS-related system process.

3.6.3.1 DVFS governor issue

This case study presents diagnosis and validation on 3 apps where performance is af-

fected by the computation speed controlled by DVFS governors.

Problem diagnosis. When performing offline OCR-based text extraction using Text Fairy

on a Nexus 4 device (1.5 GHz quad-core Krait), as shown in Figure 3.5, a user may

wait extra 20 seconds (compared to 70 seconds in fast runs) for English texts to be ex-

tracted from an image. PerfProbe identifies TessBaseAPI.nativeGetHOCRText, defined in
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App Critical functions Relevant re-
source factors

Root cause sum-
mary

Vine Posix.recvfromBytes Network block-
ing

network or server-
side delay

NativeCrypto.SSL read Interruptible
sleep

Sina News Posix.recvfromBytes Network block-
ing

network or server-
side delay

Flipp NativeCrypto.SSL read Interruptible
sleep

network or server-
side delay

OfferUp
Google
Translate
VLC Player VideoPlayerActivity.onCreate Disk blocking Slow SD card read

speed
MediaCodec.start Disk blocking

Meitu SmartBeautifyActivity.onCreate Disk blocking Slow SD card read
speed

Where Am
I

MessageQueue.next IPC wait GPS signal locking
delay

Text Fairy TessBaseAPI.nativeGetHOCRText CPU frequency Frequency capped
by governor policy

AI Camera classificationFromCaffe2 CPU frequency Frequency capped
by governor policy

TF Detect org.tensorflow.Senssion.run CPU frequency Frequency capped
by governor policy

Table 3.6: Diagnosis output for real-world performance slowdown

Google’s Tesseract OCR API [92] and invoked by a worker thread, as a critical function for

all slowdown instances. Furthermore, the average CPU frequency is pinpointed as its rele-

vant resource factor. Based on the split threshold from the resource factor characterization,

the average frequency along the execution of the critical fuction reaches above 1.2GHz for

all fast runs. Figure 3.6 shows the time series of the CPU frequency for the core on which

the critical function is executed for a randomly picked fast and slow run in traces collected

from our real-world deployment. We can clearly see that the frequency scaling gets stuck

at 1.1GHz in some runs when executing the critical function and thus leads to slowdown of

the overall interaction.

Root cause validation. To validate the root cause in frequency governor, we intentionally

increase the upper frequency limit for scaling (i.e., scaling max freq) to 1512MHz (max-

imum available scaling frequency on Nexus 4) and also change the governor type from

42



 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  10  20  30  40  50  60  70  80

C
P

U
 F

re
q

u
e

n
c
y
 (

G
H

z
)

Time (sec)

Fast run
Slow run
Improved

Figure 3.6: CPU frquency for executing critical function over time

ondemand (default governor type in Nexus 4) to performance right before an interaction

is performed. As a result, the tail user waiting time is reduced by 40% (to 53 seconds).

Interestingly, even when the ondemand or interactive governor is used, the tail latency can

be reduced to 57 seconds by presetting scaling max freq to 1512MHz. Figure 3.6 indicates

the execution time for the critical function is significantly reduced when its execution fin-

ishes at maximum frequency. Note that this strategy is unrealistic as a long-term strategy

given the energy and temperature constraint.

Object detection apps. Our diagnosis on AI Camera and TF Detect also reveals CPU fre-

quency as the resource bottleneck for running the pinpointed critical functions for detecting

objects in a camera frame on a Nexus 6 device (2.7 GHz quad-core Krait 450). Further

investigation on the CPU states leads us to the interactive frequency governor policy: scal-

ing max freq is capped at 1958MHz when either app is running. To improve their object

detection performance, we initialize scaling max freq as 2649MHz (maximum available

scaling frequency on Nexus 6) and set ondemand governor at app launch. As a result, the

per-frame object detection latency is reduced by 32% on AI Camera and 40.6% on TF

Detect.
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3.6.3.2 Disk hardware issue

This case study presents diagnosis and validation on 2 apps with performance degrada-

tion caused by disk I/O.

Problem diagnosis. As shown in Figure 3.5, the latency for playing an HD video (of

size 35.5MB) from SD card in VLC Player or processing a photo (of size 1.93MB) in SD

card in Meitu can take more than 2.5x of median (both around 4 seconds) on a Nexus

4 device. PerfProbe reveals that 62.5% of slowdown instances are characterized by the

critical functionVideoPlayerActivity.onCreate on the main thread to load the video playing

activity, while the rest happen in executing the other critical function MediaCodec.start on

the VLC object thread. Both are bounded by disk blocking. Similarly, PerfProbe pinpoints

the critical function SmartBeautifyActivity.OnCreate and attributes its slowdown to slow

disk I/O for the photo enhancing interaction in Meitu.

Root cause validation. To validate the disk I/O bottleneck, we increase the SD card access

speed for Android devices by tuning the read-ahead buffer [48, 50, 49]. The read-ahead

buffer defines the size of a disk block to be loaded into memory for each read. For long

sequential file read operation (e.g., copying large file from SD card), having a larger read-

ahead buffer will usually speed up the read process. We find its size is set to 128KB by

default on Nexus 4 phones and can be configured through the sysfs interface. Through em-

pirical tuning, we find the SD card read speed on a Nexus 4 phone is improved significantly

as the size of read-ahead buffer increases from 128KB to 2048KB. Therefore, we recon-

figure the read-ahead cache size as 2048KB on our Nexus 4 test device, while keeping the

other setup unchanged, to perform controlled testing on both interactions. Figure 3.7 shows

the improvement of user waiting time for both apps after increasing the read-ahead cache.

Specifically, the tail user waiting time is reduced by 45% (to below 6 seconds) for VLC

Player and by 42% (to below 7 seconds) for Meitu.
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Figure 3.7: Performance improvement by mitigating disk I/O bottleneck

3.6.4 PerfProbe’s Benefit Highlight

One baseline for performance diagnosis is identifying resource bottleneck from the

overall resource usage throughout the whole execution of an interaction. This approach

leads to misidentification of resource bottlenecks in 8 out of 22 cases, including Text Fairy,

AI Camera, TF Detect (true cause is the CPU frequency cap set by the DVFS governor),

VLC Player (true cause is disk I/O delay), Where Am I (true cause is GPS handling

delay), Riot (true cause is server-side delay and waiting time on CPU resource) and K9

mail, iNaturalist (true cause for both is server-side delay). Therefore, critical function

characterization is indeed necessary for achieving high accuracy in pinpointing relevant

resource factors.

Another baseline approach is monitoring system calls. For issues due to the DVFS

governor, while system calls can hardly reveal frequency change on different CPU cores,

identifying the computation bottleneck caused by frequency governor can be inaccurate

even when general resource profiling is used. For issues due to the disk I/O bottleneck, we

try profiling system calls using strace on both cases to check if the run time of disk-related
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system calls has significant variance to account for the bottleneck, but find that the total

run time spent in system calls for both cases take up less than 5% of the overall latency and

that disk-related calls do not show significant variance in the run time.

3.6.5 Runtime Impact & System Overhead

App performance impact. To evaluate the benefit of our adaptive sampling mechanism

for app profiling, we conduct a controlled experiment to measure profiling impact on app

performance (i.e., increase of user-perceived latency in PerfProbe) under adaptive and fixed

10ms/20ms sampling interval (baseline). Compared to fixed sampling intervals, our adap-

tive sampling mechanism increases the sampling interval of Traceview when resource-

intensive operations are ongoing for some apps and converges at a larger interval to main-

tain low runtime overhead. The sampling interval decreases and converges to 5-50ms once

those expensive operations finish. For interactions in Table 3.2, 3.3, 3.6, adaptive sampling

incurs at most 3.5% increase of the median latency of an interaction, while fixed sampling

intervals incur 3-22% increase. Note that this 3.5% increase causes negligible effect to

detecting and diagnosing performance slowdown with at least 50% increase of the over-

all latency. Though adaptive sampling may miss function calls with small running time

due to reduced sampling frequency for accommodating resource-intensive operations, the

output critical functions and relevant resource factors for all studied interactions remain

consistent with fixed sampling intervals and adaptive sampling, mainly because only top-K

time-consuming functions are taken as input for critical function characterization.

CPU & memory overhead. In our current prototype, PerfProbe manager uses a 10MB

memory buffer for logging OS kernel events, a 15MB buffer for Android framework events

and Traceview’s default 8MB buffer for an app’s call stack. PerfProbe showed no notice-

able increase in CPU or memory usage in our deployment. We also measure the logging

time (averaged over 100K executions): logging a kernel event takes less than 1 microsecond

and logging a framework event takes 3.2 microseconds in an instrumented function.
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Storage & energy overhead. In our current prototype, function call and OS event traces

are stored in the local storage of a device and periodically uploaded to a remote server when

certain network (e.g., in WiFi network) and/or battery condition (e.g, charging state) is met.

We conduct a controlled measurement on a Nexus 4 device: based on the PhoneLab [71]

data we find that 85% of the time real users perform no more than 210 interactions per day,

so we replay 210 interactions on the 11 apps with performance slowdown uncovered from

the deployment study (§ 3.6.2) using UIAutomator [100] for 5 times with or without

PerfProbe enabled, and measure the average storage and energy overhead caused by Perf-

Probe. Measurement results show that each interaction incurs 10KB∼500KB function call

trace and on average 2.2MB OS event trace. Given the growing capacity of mobile device

storage and high availability of WiFi networks for trace uploading, this storage overhead is

acceptable for real-world deployment of PerfProbe. Moreover, PerfProbe incurs only 1.9%

energy overhead to a smartphone device.

3.7 Discussion

We discuss the scope and limitations of PerfProbe and the threats to the validity of

our experiments. First, PerfProbe’s approach is general to other mobile platforms, e.g.,

iOS using Instruments [52]. Second, current PerfProbe targets at performance slowdown

occurring occasionally. To diagnose slowdown that consistently occurs, additional mecha-

nism, such as resource amplification [168, 205, 195], can be leveraged to amplify resource-

intensive operations for enabling PerfProbe’s differential analysis. Third, as the output

of PerfProbe, the critical functions and relevant resource factors facilitate the root cause

analysis of performance issues and may not be the actual root cause. Forth, the synthetic

performance issues (Table 3.2) are mainly for validating the accuracy in pinpointing crit-

ical functions and relevant resource factors, but the injected performance causes are ell

encountered in our real-world app deployment and effectively pinpointed by PerfProbe.
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3.8 Summary

PerfProbe is a mobile performance diagnosis framework that associates app and OS-

layer runtime information in a lightweight manner to provide holistic, cross-layer insights

to the root cause of unpredictable performance slowdown in real-world usage. Perf-

Probe effectively pinpoints code-level or system resource-layer factors for performance

slowdown in 22 Android apps and guides real-world Android developers’ code-level fixing

to significantly improve app responsiveness.
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CHAPTER IV

AVGuardian: Detecting and Mitigating Publish-Subscribe

Overprivilege for Autonomous Vehicle Systems

4.1 Introduction

The world is facing an enormous revolution of transportation with the emergence of

connected and autonomous vehicles. Autonomous driving hold the promise to improve

road safety and significantly improve transportation mobility efficiency in our daily lives.

As a result, advanced autonomous driving algorithms and software are gaining impor-

tance. Autonomous vehicle (AV) systems are being developed and deployed in real ve-

hicles [106, 78, 97, 15] and have demonstrated great promise towards full autonomous

driving in the near future. Despite this rapid development, AV systems are facing a num-

ber of cybersecurity threats, for example, attacks on automobile Electronic Control Unit

(ECU) [162, 125, 144, 44] and key sensing devices for autonomous [174, 36, 63]. How-

ever, a highly critical attack surface is still underexplored so far: the AV software systems

for making autonomous driving decisions. Since these decisions have direct impact on

road safety, it is necessary to understand potential security vulnerabilities in the design and

implementations of AV software systems, and proactively address them in the AV system

development stage.

We observe that AV software systems are usually composed by a number of key self-
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driving modules, which interact through a publish-subscribe communication model to ex-

change computation states using different types of messages defined by AV developers.

Modules are granted publish or subscribe permission to be a publisher or subscriber for cer-

tain types of messages. To improve the functionality and reliability of autonomous driving,

these modules are becoming feature rich and as a consequence the messages also become

increasingly complex. Based on our empirical study on two popular AV software platforms

Baidu Apollo [14] and Autoware [18], we observed 60-80 types of publish-subscribe mes-

sages, each consisting of several to dozens of fields. Despite the new functionality enabled

by the rich set of fields, this complex message structure also introduces a new security

problem to the publish-subscribe messaging system in an AV system. Specifically, in both

Baidu Apollo and Autoware, we found a number of code examples indicating a common

overprivilege problem with this messaging model, stemming from a lack of sufficient gran-

ularity when granting publish or subscribe permissions of key messages to a module.

Through further in-depth study on both AV systems, we discover two common types

of overprivilege in its publish-subscribe messaging, when either: 1) fields in a published

message are not used in a particular subscriber; 2) the values of certain fields in a pub-

lished message are directly copied from other messages subscribed to by the publisher. We

characterize these behaviors as subscriber- or publisher-side overprivilege in AV systems,

respectively, since the granted publish or subscribe permission of a message to a mod-

ule that does not follow the least-privilege principle at the message field granularity. We

have constructed several concrete exploits of such non-compliance, which demonstrates

that this problem indeed exposes a new attack surface to AV systems and may lead to ve-

hicle collision and identity theft for AV owners under a realistic threat model (detailed

in §4.3) inspired by existing automotive attack surface analysis. Therefore, we argue that

this publish-subscribe overprivilege problem should be fully addressed when designing

secure AV software. In particular, to overcome this problem, the publish/subscribe per-

mission should be defined at a message field granularity. Subscribe permission for a field
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should be granted to a subscriber only when it uses that field for computation, and publish

permission should be granted to a publisher only when it modifies the state of that field

before publishing.

However, enabling such fine-grained permission control can be challenging in AV soft-

ware systems, because AV software development is a multidisciplinary task and typically

conducted by a large team of developers with different domains of expertise. Moreover,

some AV systems are built upon an open platform to encourage open-source contribution

of self-driving algorithms and code. As a result, AV system designers may not have com-

plete knowledge about the exact usage of message fields in a module and tend to include

as many fields in each message as possible to simplify software development. Even if an

explicit message field-level permission model and static access control policy enforcement

are enabled in AV software, we cannot fully trust a module to comply with the enforcement

at run time, since an AV module can be compromised and the pre-defined access control

logic can get bypassed. Because the runtime policy enforcement will be performed on ev-

ery published or subscribed message, the run time enforcement must incur little overhead.

To address these challenges, we propose a systematic analysis and mitigation approach to

address this overprivilege problem for AV software.

To effectively detect and mitigate publish-subscribe overprivilege in AV systems, we

propose AVGuardian, consisting of a static analysis tool that systematically detects over-

privilege instances in AV software and generates the corresponding access control poli-

cies at the message field granularity, along with a runtime policy enforcement mechanism

to perform online policy detection and prevention. Our static analysis approach handles

complex real-world C++ source code, including virtual functions and asynchronous pro-

gramming models, to both achieve high precision in overprivilege detection and prevent

under-granting publish/subscribe permissions. Our runtime policy enforcement can defend

against publish-subscribe overprivilege with a single module compromised, and does not

require any additional efforts from AV software developers or changes to the AV software
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development process. As we observe that several popular AV software systems [14, 18]

are developed on top of ROS [75], we prototype the policy enforcement component of AV-

Guardian as a ROS plug-in that is transparent to AV modules. Trace-based performance

evaluation in realistic setup shows that the runtime policy enforcement incurs only 10-

millisecond increase of the end-to-end delay for AV’s control decision making and does

not affect original decision logic.

We performed responsible disclosure and received confirmation from the Apollo de-

veloper team that our attack findings are valid under our threat model, and the publish-

subscribe overprivileged attack is indeed a general security challenge in AV software de-

velopment. They also commented that it can be highly beneficial to have a systematic

approach to automatically uncover and prevent overprivilege problems, which is exactly

the research goal in this work.

The contributions of this work are as follows:

• We discover the overprivilege problem in publish-subscribe messaging model for

AV software systems, and perform the first characterization and systematic study.

To demonstrate the severity of such problem, we construct three concrete attacks by

exploiting vulnerabilities resulting from overprivilege problems in GNSS and LiDAR

driver modules.

• We design and implement a data-flow analysis tool to help AV developers perform

static detection of publish-subscribe overprivilege problems in AV software and gen-

erate fine-grained permission control policies at the message field level to mitigate

the security consequence from overprivilege. From runtime profiling results, we ob-

serve zero false positives in overprivilege detection and less than 1.8% false negative

rate. Using this tool, we are able to automatically detect 523 subscriber-side over-

privilege instances and 56 publisher-side overprivilege instances in the Baidu Apollo

code base.
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• We design an efficient and module-transparent policy enforcement solution to per-

form online detection and prevention of violation of permission control policies for

publish-subscribe communication in ROS-based AV systems. We prototype this so-

lution in ROS and find that it incurs very low overhead, i.e., only 9-millisecond in-

crease in end-to-end delay in Baidu Apollo, and does not affect original AV decision

logic.

4.2 Background & Motivation

This section presents a background overview of common AV software systems and how

the publish-subscribe messaging model is used to enable interaction among key self-driving

modules. We then present our discovery of overprivilege in this messaging model from our

study on representative AV software systems (Baidu Apollo [14] and Autoware [18]) and

characterize two common types of overprivilege in the publish-subscribe messaging model

through a real-world example. Finally, we contrast the publish-subscribe overprivilege

addressed in our work with previous approaches to overprivilege in other contexts.

4.2.1 AV Software System

The architecture of most existing AV software systems falls into two categories: model-

based [14] and end-to-end [121]. Our study focuses on model-based systems since such

designs have already been adopted in many real-world AV systems [15, 18]. Figure 4.1

shows a typical pipeline in model-based AV systems, which often contain a set of mod-

ules for performing key self-driving functionalities including vehicle localization, routing,

obstacle perception and prediction, path planning, and control decision execution. AV

software also often contains driver modules for peripheral sensor devices, such as GNSS,

LiDAR, radar, and cameras. Similar to the architecture of ECUs and CAN bus in com-

modity automobiles, these modules are instantiated as nodes (each in separate processes)

that run on a middleware such as ROS [75] and communicate through a publish-subscribe
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Figure 4.1: Typical architecture of AV software systems (based on Baidu Apollo): rectan-
gles representing a ROS node/nodelet, arrows representing the ROS message flow through
ROS’s publish-subscribe messaging model.

message channel, acting like a virtual CAN bus for AV systems. In such message channels,

the producer of a message is called a publisher and the consumer is called a subscriber.

In the context of AV systems, the computation pipeline of AV software is dictated by

the publish-subscribe message flow. Sensing input from peripheral devices is processed,

module-by-module, until a final control decision is reached and executed on the physical

actuators. Thus, the messages sent between these modules are responsible for mission-

critical communication in AV systems, which directly influence the end-to-end self-driving

decisions. Therefore, safeguarding the messaging channel in AV systems is critical to

ensure secure and safe autonomous driving.

4.2.2 Publish-Subscribe Overprivilege Problem

Due to the high importance of these messages, the security of this publish-subscribe

message channel has already attracted attention of the research community. The state-of-

the-art solution, SROS (Security Enhancements for ROS) [84, 199], defines a message-

level publish-subscribe permission model and authentication mechanism to enhance the

security of publish-subscribe messaging in ROS. However, we find that such message-
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Figure 4.2: Concrete examples of publisher- and subscriber-side overprivileges.

level permission granting is actually not fine-grained enough to satisfy the least-privilege

principle [185]. Based on our investigation on the Apollo AV software system, we discover

overprivilege problems when messages are both published and subscribed to.

1. Publisher-side overprivilege: In message publishers, the values of some fields in

published messages may be directly copied from messages that module subscribes

to. In other words, the publisher only copies these fields without changing, but the

granted publish permission, which allows both value copying and changing, permits

more than what is actually needed.

2. Subscriber-side overprivilege: In message subscribers, certain fields in a message

may be received but not used in the subscribing module. In other words, the sub-

scriber is over granted with the subscribe permission for these fields.

Figure 4.2 illustrates a real example of subscriber-side overprivilege on the Gps

message (defined in Figure 4.3) and publisher-side overprivilege on tf message [96]

at the TFBroadcaster node of the GNSS driver module of Apollo. First, the

localization.linear velocity field in subscribed Gps messages is never used in any

code path of TFBroadcaster node. Thus, this is a subscriber-side overprivilege on

Gps.localization.linear velocity because read permission for this field is granted to TF-
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Figure 4.3: Field definition of the Gps message in Baidu Apollo

Broadcaster but never used in it. Second, the state of the transform field in published tf

messages is always copied from the localization field in subscribed Gps messages, which

is a publisher-side overprivilege on tf.transform because TFBroadcaster does not need to

change the value of tf.transform.

Even though these two example overprivilege problems are subtle, we find that they

can have severe security and safety implications. As detailed in §4.8.1, an attacker can

cause an AV running Apollo to lose sight of a front vehicle and crash into it by exploiting

these over-granted privileges. This attack is demonstrated in our attack demo videos, and

its validity has been confirmed by the Baidu Apollo developer team.

General existence of publish-subscribe overprivilege in ROS-based AV systems. Be-

side Baidu Apollo, we studied another popular open-source AV system Autoware [18],

which is also built upon the ROS middleware. As shown in Table 4.1, we are also able

to discover many publisher and subscriber-side overprivilege instances in a variety of key

AV modules such as Perception, Planning and Actuation [18]. These results concretely

show that the publish-subscribe overprivilege problem generally exists in ROS-based AV

systems today.

Considering the general existence of the publish-subscribe overprivilege problem and

its severity in AV systems, it is thus highly necessary to develop solutions to fully eliminate
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Overprivileged node Type Affected topic Affected fields
waypoint follower’s twist gate [22] Pub /vehicle cmd ctrl cmd, steer cmd, ac-

cel cmd, brake cmd, gear,
lamp cmd, emergency

AS [19] Pub /as/arbitrated speed commands speed
lidar trackers obj reproj [21] Sub /image obj tracked total num, real data, lifespan

autoware connector’s can odometry [20] Sub /vehicle status drivemode, steeringmode,
gearshift, drivepedal,
brakepedal, lamp, light

Table 4.1: Summary of overprivileged instances in Autoware. In the ”Type” column, ”Pub”
means publisher-side overprivilege and ”Sub” means subscriber-side overprivilege.

the problem early at the AV system development stage. Thus, in this work, we fulfill this

very need by being the first to develop a systematic solution.

4.2.3 Uniqueness of Publish-Subscribe Overprivilege in AV

Previous work considers overprivilege with publish-subscribe messaging [199, 120,

117, 194] at the coarser topic granularity, our work performs overprivilege detection and

prevention at the message field granularity. Compared to previously-observed overprivi-

lege problems in smartphone and smart home systems [142, 141, 143, 155], the publisher-

subscribe overprivilege is unique in two aspects, creating both new design challenges and

new opportunities for a practical solution. First, previous overprivilege problems occur in

systems with regular user interactions like smartphone and smart home systems, where it

is reasonable to rely on user judgment based on context to block unnecessary permission

granting [200, 181, 155]. However, in the AV context, this is no longer acceptable since

the whole design purpose is to enable autonomous driving without human input. In §4.5

and §4.6, we detail how we address this new challenge using static program analysis tech-

niques.

Second, different from previous work on overprivilege in API accesses, the overprivi-

lege here occurs when accessing message fields during the publish-subscribe communica-

tion of AV systems. This thus makes it possible to enforce access control policy entirely in

the messaging layer and create a module-transparent solution. In §4.6, we detail how this

domain-specific solution is created.
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4.3 Threat Model

In this work, we assume that the attacker can fully compromise a single ROS module

N in the victim AV system, which enables the attacker to: 1) sniff contents of arbitrary

subscribed ROS-layer messages that N has been authorized to subscribe; 2) modify or

inject ROS-layer messages that N has been authorized to publish; and 3) bypass or in-

validate defense mechanisms implemented on N . Assuming a compromised ROS mod-

ule is a typical threat model considered by previous ROS security work [199, 136, 122].

Though it is possible to compromise multiple modules, we believe that is harder for attack-

ers and thus less realistic. For AV systems, such threat model is particularly realistic when

M is a driver model for peripheral devices. Previous work has concretely demonstrated

that all types of peripheral devices of an automobile, e.g., bluetooth and cellular, can be

fully compromised remotely through common software vulnerabilities such as buffer over-

flow [125, 144, 171, 44, 36, 63]. By inspecting the commit logs of Baidu Apollo’s open-

source software repository [14], various patches can be found related to common imple-

mentation mistakes, such as out-of-bound array indices, uninitialized variables, and wrong

definition of if-else conditions, in the driver modules of LiDAR, GNSS, radar and CAN bus

devices [9, 10, 13, 7, 12, 8, 11, 5, 4, 6]. Thus, it is highly likely that similar software security

problems in traditional automobiles’ peripheral devices also exist in the driver modules of

AV’s peripheral devices, making these driver modules vulnerable to remote compromises.

We also assume that the underlying middleware (e.g., ROS) has been safeguarded with

state-of-the-art authentication and access control mechanisms provided by Secure ROS

(SROS) [199, 77, 85]. We assume that the access control policies, i.e., granted publish

and subscribe permissions, are correctly enforced in SROS. Since this work focuses on the

overprivilege problem described in §4.2.2, the security of the policy enforcement in SROS

is out of the scope of this work.

Thus, after compromising module N , the attacker can perform any action allowed by

the granted publish and subscribe permissions in SROS (introduced in §4.2). For example,
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the attacker can abuse the over-granted write permission of publish-overprivileged fields

by publishing malicious information in the overprivileged fields, or abuse the over-granted

read permission of subscribe-overprivileged fields by passively sniffing sensitive informa-

tion from the overprivileged fields.

4.4 System Design

Figure 4.4 summarizes the design of our proposed fine-grained control of publish-

subscribe permissions in AVGuardian. AVGuardian takes as input the source code of AV

modules, the message format, and the current message-level publish-subscribe specifica-

tion, that is, the messages each module registers to publish and subscribe. The fine-grained

permission protection in AVGuardian has two major steps:

(1) Offline overprivilege detection: During AV software development, AVGuardian

performs static program analysis to automatically examine each AV module’s source code

(from trusted AV developers) and detect overprivilege instances in the message fields of the

messages defined by the module’s publish-subscribe messaging specification. To prevent

false positives in this detection which will lead to under-granting permissions in the online

policy enforcement later, our static analysis tool is designed to handle complex real-world

code with virtual functions and asynchronous callbacks.

(2) Online fine-grained access control: At run time once the software is deployed,

for each detected publisher- or subscriber-side overprivilege instance, a fine-grained access

control policy is generated and applied to the detected overprivileged message fields by

online monitoring and policy enforcement. The access control is performed at the domain-

specific publish-subscribe messaging layer so it is module-transparent, meaning that ap-

plying it does not require any changes to the AV module development process.
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Figure 4.4: AVGuardian overview showing our publish-subscribe overprivilege detection
and mitigation workflow. ”Pub-Op” stands for a policy on a message field with publisher-
side overprivilege, ”Sub-Op” stands for a policy on a message field with subscriber-side
overprivilege.

4.5 Overprivilege Detection Tool

Identifying both publisher- and subscriber-side overprivilege instances at the message

field granularity is a prerequisite for policy generation and runtime enforcement to miti-

gate overprivilege in AV software. We propose to leverage static analysis to systematically

detect overprivileged message fields on the publisher and subscriber side. Specifically, we

design a static analysis tool for tracking flow-sensitive, field-sensitive and inter-procedural

data flow (§4.5.2). Static analysis by design can achieve full code coverage of target soft-

ware modules, which thus has the capability to achieve zero false negatives in data flow

analysis and thus zero false positive in our overprivilege detection. Moreover, static anal-

ysis can pinpoint locations in the source code so that vulnerabilities can be proactively

patched before deployment. Making no assumption on overlay AV modules, our tool can

detect overprivilege in various ROS-based AV systems and is also extensible to detect other

AV software vulnerabilities if they can be defined at the control/data flow level.

Besides the field/object-sensitivity requirement, to prevent removing true read/write

permission for legitimate functionalities of an AV module, our tool need achieve zero false
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positive in the overprivilege detection. However, the extensive use of virtual function and

asynchronous event callback in the complex C++ code base for AV systems [14, 18] can

cause under-approximation in data flow analysis and lead to false positives of our over-

privilege detection. In §4.5.3, we propose practical solutions to address these challenges to

meet above two design requirements.

4.5.1 Static Analysis Overview

Pre-processing: We perform static analysis on function-level control flow graphs (CFGs)

that are generated by LLVM intermediate representation (IR) of an AV module’s source

code. Analysis sources and sinks are determined based on the lifecycle and event callbacks

of the module. We combine CFGs of callee functions that can be invoked along some

control flow path from an analysis source to build an inter-procedural CFG (ICFG) for

supporting inter-procedural analysis.

Subscriber-side overprivilege: We formulate the subscriber-side overprivilege problem

as follows: within a module N , a field f in N ’s subscribed message Ms is over-granted

with read permission if Ms.f is never used for computation in any possible control flow

path within N . We use inter-procedural define-use analysis at flow and field sensitivity to

detect such instances (detailed in §4.5.2).

Publisher-side overprivilege: We formulate the publisher-side overprivilege problem as

follows: within a module N , a field f in N ’s published message Mp is over-granted with

write/modify permission if Mp.f at publishing is never modified in any possible control

flow paths within N , but is directly copied from certain fields in subscribed messages by

N . Inter-procedural taint tracking at flow and field sensitivity is used for detecting such

instances (detailed in §4.5.2).
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Figure 4.5: Lifecycle and event callbacks in an AV module

4.5.2 Dataflow Analysis Framework

AV module lifecycle: As illustrated in Figure 4.5, implementation of an AV module typi-

cally follows a predefined life cycle and usually includes multiple event callbacks for per-

forming message subscription or periodic task processing (e.g., message publishing). In

Apollo, when a module is launched, it first enters Init phase and then transits to Start phase,

where key program states (e.g., publish-subscribe messaging interface) are initialized, mes-

sage subscription event or periodic timer callbacks are registered and some ”main” entry

function is called to start actual processing. When a module is stopped, it enters the Stop

phase to clear its program states and terminate. Based on this observation, to ensure com-

pleteness, our dataflow analysis captures all possible entry points of the execution to form

analysis sources: 1) Init and Start lifecycle functions, and 2) event callback functions reg-

istered in the Init or Start function. Analysis sinks are the calling instruction of ROS’s

message publishing API for publisher-side overprivilege analysis or the sinks of an ICFG

for subscriber-side overprivilege analysis.

Inter-procedural support: Starting from one of above entry points, an inter-procedural

CFG (ICFG) is generated by expanding the CFG of that entry point function in a recursive

manner: for each function invocation along any possible control flow path, a CFG of the

callee functions is generated and attached to the callee invocation point. Our anlaysis per-

forms data flow tracking on this ICFG and also jumps into the CFG of a callee function to
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update the dataflow information of function parameters and class variables when a function

invocation is met. The inter-procedural analysis can be computationally expensive without

function summarization [201]. To ensure analysis efficiency, we perform summarization

of functions that invoke message variables based on the caller-callee order. The current

summary of a function f consists of 3 parts: 1) a target message variable set consisting

of message variables that are defined in f or passed into f , 2) variables defined in f and

tainted by the target message variable set, 3) define-use statements for variables in 1) and

2). Once a function is summarized, the subsequent analysis will directly read the summary

to update the summary of current caller function when encountering it again.

Message taint tracking: Message instances instantiated from subscription may propagate

across functions and class objects in an AV module. One common practice is storing a

subscribed message instance into some member variable of a class object that may be later

accessed by other functions in a module. Also, a message instance can be passed as param-

eters into a callee function where its fields can be read or modified before publishing. As a

result, to detect read/write of message fields with completeness, we need to track originally

subscribed message instances and their tainted variables at a field level across all control

flows in an ICFG. In the field-sensitive context, field access on a message variable is also

tainted. Assignments to elements of recursive data structures (e.g., array, list) are taken as

tainting the entire structure. To support inter-procedural tainting, we perform and summa-

rize above tainting within the CFG of a callee function that can be invoked in some control

flow and whose parameters are tainted, and get back to the caller function to update its

summary if the return variable is also tainted in the callee function. We preform this track-

ing process recursively until no new taints are found. A direct-copy label is also assigned

on each left-hand side tainted variable to indicate if it is a direct copy or field access of

the right-hand side tainted source. We detect direct-copy relationship by tracking all types

of load, store, cast, getelementptr instructions in LLVM that invoke a tainted source as its

source operand.
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Overprivilege detection: To detect publisher-side overprivilege, we trace the taint tracking

results on the target message variables: for all control flow paths from any entry point to

a sink (i.e., message publishing), if a field f of the message variable Mp to be published

is only tainted by some subscribed message instances with direct-copy label, Mp.f is a

publish-overprivileged field. To detect subscriber-side overprivilege, define-use analysis

is performed on the target message variables and their tainted variables (with direct-copy

label): along all control flow paths from any entry point to any sink of an ICFG, take the

union of use statements on these variables to identify a set of accessed fields (i.e., fields with

true read permission) and the other fields defined in a subscribed message are subscriber-

side overprivileged by the current module.

4.5.3 Key Analysis Challenges

Field and object sensitivity: Detecting message field overprivilege requires tracking the

data flow at field granularity. As shown in Figure 4.3, messages defined in the publish-

subscribe message model in AV systems usually consist of many fields, some of which

may be of composite or recursive types. Also, a message variable can be defined as a

member in a class object. We support field sensitivity with the standard technique of de-

tecting field access of a message variable based on getelementptr LLVM instruction

and expanding it with an offset element inferred from the operands of getelementptr.

Depending on the levels of composition in a composite typed field, the number of field-

sensitive variables to be tainted and analyzed can become very large before primitive fields

are hit. A configurable depth (3 by default) is defined to limit the level of field-sensitive

analysis on a message variable. Also, we observe that some message fields at certain levels

are not semantically meaningful to be differentiated further (e.g., the latitude and longi-

tude value for a GPS field in a localization message). For recursive typed message fields

(e.g., list, vector, map), a configurable length is also defined to limit the iteration on ele-

ments for analysis, which is a common practice in field-sensitive data flow analysis. This
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field-sensitive analysis also applies to class objects containing message variables.

Virtual function handling: Inheritance with base and derived classes in C++ are widely

used in AV software to provide extensible interfaces for supporting multiple options of self-

driving algorithms and vehicle models. However, this poses class binding uncertainty to our

static analysis: at the LLVM IR level, calling a virtual function occurs through an indirect

call and the target callee address is loaded through a variable determined at run time. To

guarantee zero false positive in overprivilege detection, our analysis framework tracks data

flows in virtual function calls with over-approximation by enumerating all possible derived

classes. To identify all possible implementation of a virtual function defined in subclasses,

we leverage LLVM’s devirtualization pass to dump virtual table (vtable) entries and to

get the index of each virtual function. Specifically, we detect instructions for loading a

vtable pointer and determine which virtual function is invoked by the indirect call based

on its type and the accessed vtable index. Then data flow analysis is performed in its

implementation at each possible subclass.

Asynchronous event callbacks handling: The processing of asynchronous event call-

backs and their ordering depend on runtime events, while at static analysis they are in-

dependent entry points. Assuming no or a specific order, however, may cause under-

approximation in data flow tracking. As illustrated in Figure 4.6, assuming no or different

orders of callbacks may lead to different data flow tracking results: if OnChassis callback

is analyzed before OnMobileye, use on speed mps field in the subscribed Chassis mes-

sage is captured and otherwise missed. To avoid false positive in overprivilege detection,

we enumerate all possible ordering among event callbacks in a module. To implement that,

we define a synthetic entry point function containing an infinite loop within which all call-

back functions are added sequentially and the invocation of each one is predicated on some

random condition. Figure 4.7 shows the resulted CFG for the synthetic entry point function

that handles 6 asynchronous event callbacks, where arbitrary orders among callbacks are

already encoded . Therefore, our data flow tracking need not take special handling on these
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Figure 4.6: Order of message event callbacks affects data flow tracking.

Figure 4.7: CFG for the synthetic entry point function, each block contains the definition
of a callback. Dataflow analysis can be directly applied to these blocks.

event callbacks.

4.6 Overprivilege Mitigation

To prevent the publish-subscribe overprivilege problem, a straw-man solution is re-

designing topic structures for the publish-subscribe model (e.g., chopping an existing topic

into several sub-topics based on the read/write permission at message field granularity and

having a module publishing or subscribing privileged sub-topics). However, this approach

requires substantial changes in the current AV software, e.g., re-designing topics and how
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topics are handled, which hinders the deployability of such solution. Moreover, such more

fine-grained topics significantly increase the number of messages and thus the messaging

overhead at the run time, which makes it hard to meet the real-time requirement in AV

systems.

In this section, we find that we can actually leverage the uniqueness of the overprivilege

problem identified in this work to design a solution that is both module transparent, i.e.,

requiring no changes to the existing AV modules, and has low messaging overhead.

4.6.1 Access Control Policy Design

As shown in Figure 4.4, given the publisher- and subscriber-overprivilege instances de-

tected by our static analysis, AVGuardian generates corresponding access control policies

for each overprivilege instance during AV software deployment and applies low-overhead,

module-transparent policy enforcement at runtime. Specifically, policies for subscriber-

side overprivilege are defined based on the unused fields of a target subscriber, while poli-

cies for publisher-side overprivilege are defined based on the over-granted publisher, the

fields that are over-granted write permission, and the source that was copied from. Vio-

lation of generated policies are detected online as anomaly indicators and pre-configured

recovery strategies are performed. To highlight, our policy enforcement based overprivi-

lege mitigation approach has the following key features:

• Online overprivilege policy violation detection and prevention

• Low performance overhead with acceptable delay to common ROS operations (e.g.,

module launch, publish-subscribe communication)

• Module transparency without requiring efforts from AV software developers or

change of the AV software development process

• Flexibile run-time access control policy reconfiguration by simply changing the pol-

icy file for a module and restarting it
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Figure 4.8: Detection and prevention of overprivilege policy violation. Assume module
A publishes message M1, module B (compromised by attacker) subscribes M1 (with an
overprivileged field f1) and publishes M2 (with an overprivileged field f2 copied from
M1.f2), module C subscribes M2, and B is controlled by an attacker. Step 1-3 represent
the message flow with policy enforcement on publisher- and subscriber-side overprivilege,
where sign(f2) is the signature generated by Module A using M1.f2. Step 4 represents our
proposed recovery strategy to directly contact publish originator when policy violation is
detected.

4.6.2 Policy Enforcement

Our threat model assumes an attacker can compromise a single module to inject and run

arbitrary code (i.e., code execution in other modules are legitimate and not compromised).

Therefore, to ensure the effectiveness of our defense, AVGuardian needs to perform en-

forcement of generated access control policies on messages before they reach to a compro-

mised module, since an attacker once compromising a module can arbitrarily bypass any

defense logic or access control policies implemented on that module. Figure 4.8 shows

an example where publisher- and subscriber-side overprivilege problems are identified on

module B that is compromised by an attacker. Next, we use this example to help explain

the following key functions in our proposed policy enforcement solution:

Subscriber-side overprivilege prevention: AVGuardian prevents subscriber-side over-

privilege problems by proactively enforcing subscriber-side access control policies at pub-

lisher side (i.e., module A): given a message M to be published, for each subscriber S of
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M , the publisher clears or sets meaningless values to fields in M that are unused at S. In

this case, a module will receive no more information than it actually uses when subscribing

to messages from other modules. Under this design, a message to be published needs to fol-

low access control policies defined on a per-subscriber basis. Therefore, the performance

overhead becomes proportional to the number of subscribers.

Publisher-side overprivilege policy monitoring: We use a digital signature-based solu-

tion for this function. First, from the static overprivilege detection, we can identify the

original publisher (i.e., A) whose published message (M1) is copied from by the publish-

overprivileged module (B) to craft a published message (M2), denoted as a publish orig-

inator. Then, by leveraging the key management feature of SROS [199], which has been

integrated into ROS, a publish originator signs the source (i.e., M1.f2) of each overpriv-

ileged field before publishing a message. The publish-overprivileged module (B), if not

compromised, will simply include an overprivileged field (M2.f2) without modification

along with its signature into its published message. Finally, policy violations are checked

at the subscriber (C) through verifying the signature of each overprivileged field to con-

firm that either the current value of an overprivileged field is consistent with that published

by its publish originator or that a publish-overprivileged module has modified it. Using

this method, AVGuardian can perform online detection if a publish-overprivileged mod-

ule abuses the over-granted write permission at the message field granularity. If a policy

violation is detected, AVGuardian reports this anomaly and activates recovery strategies

pre-configured by AV developers.

Recovery strategies: When a publisher-side overprivilege policy violation is detected, we

propose a solution, shown in Figure 4.8, that can recover the correct value of the over-

privileged message fields with best effort and thus continue correct system operations. As

shown, once the violation is detected, the subscriber (i.e., C) starts to subscribe M1 from

the publish originator (A) to obtain legitimate state for M2.f2 based on the latest M1.f2.

Note that due to the asynchronous communication nature in publish-subscribe messaging,
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there is no guarantee that a copy of M2.f2 retrieved using M1.f2 is consistent to that from

B. We make this design choice due to our observation that a module in AV software (e.g.,

Apollo) usually fetches the latest message in a subscription queue for its processing (e.g.,

GetLatestObserved calls of AdapterManager in Apollo).

Note that such best-effort recovery solution may not satisfy everyone due to the critical

safety requirement of AV systems. For example, a conservative user may prefer to have

an emergency stop for any anomly in the AV system. Thus, in AVGuardian, we provide

a configurable interface to allow AV developers specify recovery actions based on their

preferences.

Defense against replay attack: For publisher-side overpriviledge, even with the overpriv-

iledged message fields signed by the publish originator, the attacker may still exploit the

vulnerability using message replay attack, i.e., saving a signed message with values of

its interest from the publish originator and replaying them later at a desired attack time.

To defend against such attack, in our design we require a publish originator to sign the

publish-overprivileged field with the publishing timestamp. The subscriber of a publish-

overprivileged message maintains a message expiration window based on the one-way de-

lay of an overprivileged field from its publish originator to its subscriber. When receiving

an overprivileged message, it compares such window with the time difference between the

current time and the publishing timestamp signed with the overprivileged field in the re-

ceived message. Since it is typical that different modules in a AV system run in a single

industrial PC [43], the modules share the same clock source and thus are already synchro-

nized. If the time difference exceeds the expiration time window, potential replay attacks

may be ongoing and the recovery strategies above can be applied accordingly.

AV developers can configure the message expiration window by profiling one-way de-

lays from a publish originator to subscribers for each publish-overprivileged field. In our

experiments, we choose 95-percentile of our profiled delays as a threshold. While false

negatives or positives in replay attack detection may occur given the variation of message
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transmission, queuing, and processing delay, our empirical study in §4.7.3 using real-world

AV system traces shows that for realistic exploitation scenarios, this mechanism can effec-

tively detect replayed messages with both zero false positive rate and zero false negative

rate.

Module transparency: We implement the policy enforcement in the ROS middleware be-

tween the AV software and commodity OS, by extending its ros comm module responsible

for communication among ROS nodes. Specifically, we implement our proposed solution

in the TopicManager class that is defined as a singleton for each ROS node. Over-

privilege access control policy files are read by the TopicManager during launch of a

ROS node. The policy enforcement is performed by the TopicManager when it receives

a message from its upper node to get published or receives a message from a subscription

channel to be forwarded to its upper node. This such makes the policy enforcement process

transparent to AV software, requiring no additional efforts from AV developers.

4.7 Evaluation

AVGuardian’s overprivilege detection tool is implemented based on LLVM 3.4 and its

runtime policy enforcement is prototyped through instrumentation of the ROS middleware

(ROS Indigo used by Baidu Apollo [28]). We choose Apollo for our evaluation study

because it is a popular production-level AV software platform with rapid growth of users

and partners [15, 26, 62, 97, 89, 105, 104, 23]. We perform runtime profiling of AV modules

in Apollo using real-world and fuzzed message traces to evaluate false positives/negatives

in our overprivilege detection, and also micro-benchmarking and end-to-end evaluation on

performance overhead of runtime policy enforcement.

4.7.1 Setup

Table 4.2 shows statistics of modules in Apollo 3.0 code base that we evaluated for

overprivilege detection and the scale of fuzzed message traces used in runtime profiling for
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validation.

Module # Publish
topics

# Subscribe
topics

# Functions # Unique field input (# real
value + # fuzzed value)

GNSS 13 2 6827 3100+7K
Velodyne 3 3 4773 77+10K
Pandora 2 2 4416 NA
Lslidar 5 3 4615 NA
RS-LiDAR 1 2 5317 NA
Canbus 2 2 9038 NA
Radar 2 0 3782 NA
USB Camera 2 0 2432 NA
Localization 2 2 15982 5415+7K
Routing 1 1 4831 2+11K
3rd-party perception 1 5 2868 233+11K
Perception 3 8 42485 NA
Prediction 1 4 10666 208+11K
RelativeMap 1 4 2955 560+11K
Planning 2 7 24397 420+10K
Control 1 4 8239 2300+10K
Monitor 3 15 4262 2+11K
Dreamview 8 19 12344 310+11K
Guardian 1 3 1392 2250+10K

Table 4.2: Statistics of evaluated modules in Apollo. At last column, ”NA” indicates that a
module was not run due to lack of sensor stream input or GPU support.

Runtime message profiling:. We validate the overprivilege detection results through run-

time profiling, by injecting realistic messages subscribed by a target module and capturing

their usage events as well as messages published at run time, based on which we can val-

idate that: 1) detected used fields in subscribed messages are indeed used at runtime; 2)

detected unmodified fields in published messages remains unmodified across large number

of input. To intercept such events, we instrument the protobuf library [73] (complemented

by module instrumentation) to record use of message fields for our subscriber-side over-

privilege validation. In addition, we record publish-subscribe messages on the fly using the

rosbag utility provided by ROS and recover the in-and-out mapping of publish-subscribe

messages at a target module based on their record timestamps.

Fuzzing input messages: We profile each module in Apollo using 3 demo input message

traces (ROS bags) provided by Apollo that were captured from their real-world vehicle

testing. To improve the confidence of our trace validation, we generate more diverse input

traces for profiling by randomly fuzzing values of fields of input messages and using the
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demo input messages as our seeds. As shown in Table 4.2, more than 10K different values

for each field are generated.

4.7.2 Accuracy of Overprivilege Detection

We validate our static detection results using results from runtime message profiling

with real and fuzzed message input, and compute the false positives (FPs) and false nega-

tives (FNs) to evaluate the accuracy of our tool. From the dataflow analysis perspective, a

FP of subscriber-side privilege occurs when the static analysis determines a message field is

unused, but at run time the field is used. A FP for publisher-side overprivilege occurs when

static analysis determines a field is unmodified by a module, but at run time the field is

written. For both subscriber-side and publisher-side overprivilege, an observed FN occurs

when static analysis detects a field as used or modified but no reads or writes are observed

at run time.

As shown in Table 4.3 and 4.4, comparing with the profiling results, we observe zero

false positives in overprivilege detection of both types, which validates that our dataflow

analysis should cover all possible execution paths and by design achieve zero false positive

in overprivilege detection. Our data-flow analysis may over-approximate used/modified

message fields due to conservative resolution of virtual functions and asynchronous event

callbacks, leading to FNs of overprivilege detection. However, we only observe 3 false

negative of subscriber-side overprivilege and 1 false negative for publisher-side (last row

of Table 4.3 and 4.4). Note that these FNs cause no functional errors in policy enforcement

(i.e., not blocking true read/write permission). Such low FN rate (less than 1.8%) also

demonstrates the effectiveness of our overprivilege detection in attack surface reduction.

The subscriber-side FN is due to limitations in the number of inputs available to exercise

code paths at runtime, whereas the publisher-side FNs are caused by loading static values

from configuration files into messages.

We also break down the accuracy improvement with analysis enhancements to address
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virtual function and asynchronous callback issues. The virtual function enhancement sig-

nificantly reduces FNs in define-use analysis (or equivalently FPs in subscriber-side over-

privilege detection) and FNs in detecting direct copy from subscribed to published message

fields (publisher-side overprivilege), by tracking data flow in more control flow paths. The

event callback order enumeration targeting at specific modules further improves the preci-

sion of the overprivilege detection.

Tool w/o features Detected # FP # Observed Observed
FN # FP #

w/o virtual function 551 28 NA NA
w/o callback ordering 525 2 NA NA

w/ both 523 0 (baseline) 3 0

Table 4.3: Evaluation of accumulative improvement of subscriber-side overprivilege detec-
tion. In total 523 TPs.

Tool w/o features Detected # FN # Observed Observed
FN # FP #

w/o virtual function 50 6 NA NA
w/o callback ordering 55 1 NA NA

w/ both 56 0 (baseline) 1 0

Table 4.4: Evaluation of accumulative improvement of publisher-side overprivilege detec-
tion. In total 56 TPs.

Running time. As a part of the offline analysis, our tool summarizes functions of a mod-

ule in Baidu Apollo in roughly 15 minutes to several hours depending on the code size.

The computed summary can be reused later for overprivilege detection. After the sum-

marization, the overprivilege detection process completes in less than a minute. Note that

the overprivilege analysis is an offline task and thus does not affect the runtime system

performance. Also, the efficiency can be further improved by analyzing functions in paral-

lel [202].

4.7.3 Effectiveness of policy enforcement

We evaluate the performance overhead due to runtime policy enforcement in an Apollo

docker container using real input messages provided by Apollo. A 1024-bit RSA key is
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generated for signing publisher-side overprivileged fields using a popular cryptography

library libgcrypt [58]. As our container runs the same Apollo codebase installable on real

vehicles, the only contributing factor for performance difference on real vehicles would

be hardware capabilities. Apollo’s documentation recommends real vehicles to run Apollo

in an industrial PC [43] with CPU configuration (Intel Xeon E3-1275v5 3.6GHz) more

powerful than that of our server (Intel Xeon E5-4620v2 2.6GHz). Thus, the following

performance results (e.g., message latency) should be better on real vehicles.

Overhead analysis. Our policy enforcement requires enforcing a policy on a message to

be published towards a certain subscriber. Table 4.5 shows the overhead of extra operations

for enforcing a policy for publisher and subscriber-side overprivilege. At module launch

a module needs to read a list of policies and load its key to memory. The average launch

time of an AV module without policy enforcement is around 1.58 seconds and increases by

1% with enforcement. During publish-subscribe communication, a publisher may enforce

subscriber-side overprivilege policies by clearing unused fields of a message to each target

subscriber, and publisher-side policies by signing the source of an overprivileged field.

The subscriber may thus need to verify the signature. Given 10ms baseline latency for

publish-subscribe on medium-size message and the overhead of each operation shown in

Table 4.5, we propose to accelerate the digital signature generation by specialized hardware

to improve the scalability of our policy enforcement design [191, 193, 153].

Source of overhead Overhead (ms)
Policy parsing (100 policies) 0.8

Key loading 0.2
Per-field clearing 0.15
Per-field signing 3

Per-field verifying 0.15

Table 4.5: Performance overhead introduced by the policy enforcement design. Based on
our overprivilege detection results, the number of policies on a module in reality is fewer
than 100.

End-to-end overhead. We evaluate the end-to-end performance overhead of AV’s decision
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Figure 4.9: End-to-end policy enforcement evaluation setup

cycle shown in Figure 4.9: 1) Localization module subscribes GPS and IMU messages that

are played out from collected trace and publishes LocalizationEstimate messages; 2) Plan-

ning module subscribes LocalizationEstimate, Routing and Chassis messages (also played

out from trace) and publishes ADCTrajectory messages; 3) Control module subscribes AD-

CTrajectory messages and publishes a ControlCommand message. In particular, policies

apply on one publish-overprivileged field in ADCTrajectory and ControlCommand message

and several subscribe-overprivileged fields in LocalizationEstimate, Planning and Control-

Command messages. Policy enforcement is performed at message publishing by each of

these three modules: each needs to clear subscribe-overprivileged fields before publishing

to a target subscriber and Localization and Planning module as publish originators need to

generate signatures for one publish-overprivilege field in ADCTrajectory and one in Con-

trolCommand message.

To evaluate the end-to-end performance overhead, we measure the end-to-end delay

from when a LocalizationEstimate message is to be published until a ControlCommand

message is published by Control module to close current control cycle. The end-to-end

delay without policy enforcement is on average 122ms. With enforcement of publisher

and subscriber-side overprivilege polices, this end-to-end delay increases to 132ms. We

validate that this 10ms overhead does not affect AV decision logic, since the message se-

quence and order were confirmed unchanged with and without our policy enforcement.

Also, digital signature operations can be accelerated using GPUs (required by Apollo [43])
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to significantly reduce this overhead (e.g., 12.7x speedup [153]).

Defense effectiveness against message replay: To evaluate our replay attack defense

mechanism, we use real-world traces captured from Baidu Apollo’s testing on local roads

of Sunnyvale, California [112], and simulate message replay attacks by replaying the most

recent publish-overprivileged field other than the up-to-date one always leads to an exploit.

From the results, we analyze whether there exists an expiration window value that fully

separates the replayed copy and the up-to-date copy based on the time gap from when the

overprivileged field is sent by a publish originator to when it reaches a subscriber. Our

analysis results show that in this worst case our defense mechanism can indeed have false

positives and false negatives, but its Area Under the Curve (AUC) [140] is still greater than

0.99, which is generally considered acceptable [140].

Meanwhile, we further find that for specific exploitation scenarios, since the attacker

usually needs messages with specific values in the overpriviledged fields to cause meaning-

ful damages at the vehicle control level, our relay attack defense mechanism can actually

achieve zero false positive and false negative rates. To evaluate this, we experiment our de-

fense mechanism on two concrete exploitation scenarios we construct, TF attack and PCL

attack, which can both cause vehicle crashes as detailed later in §4.8.1 and §4.8.2.

In this evaluation, we simulate message replay attacks by letting the malicious node

capturing and replying messages with the attack-desired values, and still use the real-world

traces captured by Baidu Apollo [112]. Specifically, for the TF attack scenario, we examine

old GPS messages with exploited fields set using values that can cause obstacles to be

relocated out of the AV’s current traffic lane. Our results show that only messages at least

4 seconds before can cause the relocation, while the profiled one-way message delay from

the GNSS parser nodelet to the perception module is less than 110 milliseconds. Thus,

our message replay defense mechanism in the perception module can detect such attack

without incurring any false positives or negatives. For the PCL attack, since PointCloud

messages with zero height or width values may only happen when the LiDAR sensor is
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broken, we cannot observe any such messages in our real-world traces and thus there are

no replay attack opportunities.

4.8 Findings

Our tool detects 523 subscriber-side overprivilege instances and 56 publisher-side

overprivilege instances in the Apollo code base. Through investigation on the use of

these overprivileged fields, we identify important security or privacy implications with

9 publish/subscribe-overprivileged instances in 11 ROS nodes, confirmed by code vali-

dation and attack demonstration. Table 4.6 summarizes details of these overprivilege in-

stances and security findings. These overprivilege vulnerability instances exist in Apollo

1.5/2.0/2.5/3.0 (latest version at the time of our study) and as demonstrated by us can lead to

two major types of security consequences: 1) vehicle collision caused by attacks manipulat-

ing perceived obstacles; 2) leakage of sensitive information, such as Vehicle Identification

Number (VIN), GPS data, etc., that can lead to theft of AV owner’s personal information,

VIN cloning to hide the identity of stolen vehicles and real-time tracking of AV passengers.

To demonstrate the severe security impacts of publisher-side overprivilege in our threat

model, we construct two attacks, called the TF and PCL attacks, which exploit publish-

overprivileged fields in driver modules for the GNSS and LiDAR devices (assuming they

are compromised) to disrupt the LiDAR processing in the perception module of Apollo,

leading to relocation or removal of front-facing perceived obstacles. When evaluated

using Apollo’s built-in simulation environment (SimControl) and its provided real-world

traffic traces, both attacks cause an AV to crash into an obstacle. Figure 4.10 shows the

simulated attack outcomes of both attacks in SimControl. Moreover, to demonstrate the

privacy implication of subscriber-side overprivilege vulnerability, we construct an attack

called VIN stealing attack that exploits a subscribe-overprivileged field in the GNSS driver

module (assuming it is compromised) to steal the Vehicle Identification Number (VIN)
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Overprivileged
node

Type Affected topic Affected fields AV security implication

TFBroadcaster Pub tf transform.translation Relocate perceived obstacles to cause col-
lision in TF attack (4.8.1)

TFBroadcaster Pub tf transform.rotation Reduce the perceived size of obstacles
Velodyne’s
compensator

Pub PointCloud width, height Remove perceived obstacles to cause colli-
sion in PCL attack (4.8.2)

Pandora’s,
Lslidar’s,
RS-LiDAR’s

Pub PointCloud width, height Remove perceived obstacles to cause colli-
sion

motion com-
pensator
Control Pub ControlCommand signal Manipulate the on/off state of signal light
TFBroadcaster Sub GPS pose.linear velocity Vehicle speed reconnaissance for launch

TF attack (4.8.1)
GNSS Sub Chassis license.vin AV owner’s identity theft in VIN stealing

attack (4.8.3)
Perception,
3rd-party
perception,

Sub Chassis chassis gps AV’s location privacy leakage

RelativeMap,
Control
Prediction,
Control

Sub Planning debug.routing AV’s route privacy leakage

Table 4.6: Summary of overprivileged instances with security implication. In the ”Type”
column, ”Pub” means publisher-side overprivilege and ”Sub” means subscriber-side over-
privilege.

of an AV and highlight serious identity and privacy theft to AV owners. We performed

responsible disclosure of our attacks to Apollo developer team and received acknowledge-

ment confirming that our attacks are valid.

4.8.1 Obstacle Relocation Attack (TF Attack)

A TF attack exploits a publish-overprivileged field defined in the /tf message that is

published by the TFBroadcaster nodelet in the GNSS driver module. TFBroadcaster [95]

is a ROS nodelet that subscribes to Gps (i.e., /apollo/sensor/gnss/odometry) topic and pub-

lishes /tf message. /tf message is mainly used by the LiDAR and radar processing subnode

in the perception module to construct pointcloud-to-world coordinate system that is used

for estimating the position of perceived obstacles in the physical world. AVGuardian de-

tects over-granting write permission of tf.transform to TFBroadcaster: TFBroadcaster does

not compute tf.transform field, but copies the value of certain sub-fields of localization field
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in subscribed Gps messages to tf.transform.

Attack construction: We discover that the two subfields of tf.transform, translation and

rotation, are used to perform the affine transformation to estimate the position and size of a

perceived obstacle in the physical world, where A is constructed using rotation and b using

translation.

y = Ax+ b

Specifically, translation consists of values for the x, y, and z dimensions: adding an offset

to certain dimension will relocate the estimated position by the same offset on that dimen-

sion. Therefore, by manipulating the translation field in a /tf message to be published, an

attacker can cause the LiDAR subnode to perceive an obstacle that is moving ahead on

the same lane to be on another lane and at a farther distance (illustrated in 4.11). In the

worst case, surrounding obstacles on the road can be relocated out of the road and may be

treated as background objects rather than obstacles. To make the attack worse, an attacker

can further exploit the subscribe-overprivileged field localization.linear velocity of the Gps

message on TFBroadcaster (illustrated in Figure 4.2) to perform reconnaissance on the lin-

ear velocity of an attacked AV and launch a TF attack in high speed traveling situations

(e.g., when localization.linear velocity is higher than 60mph). Based on this observation,

assuming that TFBroadcaster is controlled by an attacker, we construct an attack through

abusing the write-permission of tf.transform field by adding no more than 15 to its x and y

dimension values in a series (5-second duration) of /tf messages published from TFBroad-

caster. The reason for sending multiple exploited messages is based on the observation that

the prediction module in Apollo maintains 5-second memory for each perceived obstacle

generated from the perception module: when an obstacle under tracking is invalidated by

the output of perception module, it is still tracked as an obstacle by the prediction module

for the subsequent 5 seconds and will still be considered for path planning. Therefore, to

completely relocate an obstacle, exploited /tf messages need to be continuously sent for at

least 5 seconds. Validated in SimControl with sensor traces captured from real-world test-
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ing provided by Apollo, the TF attack causes an AV running Apollo’s self-driving software

to perceive obstacles that are moving ahead on its same lane as if they were on another

lane, and results in obstacle collision.

AVGuardian’s defense solution. To prevent a TF attack following AVGuardian’s mitiga-

tion approach, the publisher of Gps topic, namely the parser nodelet in the GNSS mod-

ule, uses its private key to generate signatures for two relevant fields of a Gps message

to be published, one for localization.position and one for localization.orientation, and ap-

pends them to the fields when publishing. In legitimate operations, TFBroadcaster copies

Gps.localization.position and Gps.localization.orientation along with their signatures to the

transform field of a /tf message to be published. Any subscriber of /tf topic, such as the per-

ception module, will verify both sub-fields in tf.transform using the public key of the GNSS

parser nodelet to detect any abuse of write permission on the tf.transform field by TFBroad-

caster. If any signature cannot be verified, the subscriber will flag anomaly and trigger a

recovery solution, for example, by requesting a latest Gps message from the GNSS parser.

4.8.2 Obstacle Removal Attack (PCL Attack)

The PCL attack exploits publish-overprivileged fields defined in PointCloud message

that is published from the compensator nodelet in the Velodyne driver module. The Velo-

dyne compensator [29] is a ROS nodelet that performs motion compensation for point

cloud data collected by Velodyne LiDAR devices [101]. It subscribes to /apollo/sen-

sor/velodyne64/PointCloud2 messages from the Velodyne converter nodelet and publishes

PointCloud (/apollo/sensor/velodyne64/compensator/PointCloud2) topic. Both topics are

defined as sensor msgs/PointCloud2 type in ROS [79], which consists of several metadata

fields and a data field for encoding attributes and actual contents of point cloud data, re-

spectively. These published PointCloud messages serve as point cloud input to the LiDAR

processing subnode in the perception module of Apollo to construct surrounding obsta-

cles. AVGuardian discovers that write permission is over-granted to all fields beside data
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of PointCloud topic to the compensator node: only the data field is modified while the

rest of fields (e.g., width, height) are field-wise copies of subscribed /apollo/sensor/velo-

dyne64/PointCloud2 messages.

Attack construction:. The LiDAR processing subnode in Apollo’s perception module

pre-processes input PointCloud message (implemented in TransPointCloudToPCL) using

pcl library of ROS, where a two-level loop is defined to perform element-wise copy of the

bytes in the data field of a PointCloud message to construct point cloud input for obstacle

identification (implemented in fromPCLPointCloud2 [37]). In particular, we observe that

two metadata fields width and height in PointCloud message, defining the size of the point

cloud data, is used in the boundary condition for the nested looping. If the value of width or

height field is reduced, the LiDAR subnode will construct obstacles using incomplete point-

cloud data. By setting either of the fields as 0, point cloud frames will not be taken into

the perception surrounding obstacles can be zeroed out (illustrated in Figure 4.12). Based

on this observation, assuming that the compensator node is controlled by an attacker, we

construct an attack through abusing the write-permission of height field by setting it to 0

for 5 seconds at the compensator node. This time duration is also determined based on the

5-second memory for each tracked obstacle in the prediction module (explained in §4.8.1).

Therefore, to completely zero out an existing tracked obstacle, exploited PointCloud mes-

sages need to be published continuously from the compensator node for at least 5 seconds.

Validated in SimControl with the same sensor traces used in the TF attack, the PCL attack

causes perceived front-facing obstacles moving on a same lane to temporarily disappear

and results in collision with an obstacle.

AVGuardian’s defense solution: To prevent a PCL attack following AVGuardian’s miti-

gation approach, the publisher of /apollo/sensor/velodyne64/PointCloud2 topic, namely the

converter nodelet in Velodyne driver module, uses its private key to generate one signa-

ture for height and another for the width field of published messages. Similar to defense

against TF attacks, any subscriber of PointCloud topic (e.g., perception module) verifies

82



the height and width field of a subscribed PointCloud message using the public key of Velo-

dyne converter nodelet to detect any abuse of the write permission on height and width

field by Velodyne compensator nodelet. If any signature cannot be verified, the subscriber

should flag the anomaly and trigger a recovery solution, for example, by requesting a new

/apollo/sensor/velodyne64/PoitCloud2 message from Velodyne converter nodelet.

PCL attack feasibility in other LiDAR drivers: We also apply our detection tool to other

LiDAR driver modules that are available in Apollo 3.0 code base. Besides Velodyne driver,

our tool also detected a same publish-overprivilege problem on the compensator node of

the driver module for Pandora’s LiDAR device [69], Lslidar and RS-LiDAR.

4.8.3 VIN Stealing Attack

Chassis message in Apollo 3.0 includes a field license that contains the Vehicle Iden-

tification Number (VIN) of an AV [25]. AVGuardian detects that this field is set in each

Chassis message to be published by the Canbus module, but remains unused by any Chas-

sis subscriber, including the GNSS driver module. As a result, an attacker controlling the

GNSS driver module can passively sniff this subscribe-overprivileged field to steal the VIN

of an attacked AV, using which to uncover personal information of the AV owner, including

name, address, and in some cases phone number and email address [108]. Furthermore,

attackers can use a single stolen VIN to register dozens of stolen vehicles for masking ve-

hicle theft or filing insurance claims on totaled vehicles, and even to make duplicate keys

for an attacked AV [30]. Using AVGuardian’s mitigation approach in §4.6, such attack can

be fully prevented by enforcing a corresponding subscribe-overprivilege policy at runtime

to set the license field of each Chassis message published from the Canbus module to zero.

4.8.4 Apollo Developer Feedback

We performed responsible disclosure and received confirmation from the Apollo de-

veloper team that our attack findings are valid under our threat model. We also obtained
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valuable insights to the cause of such overprivilege problems in AV software. Based on

feedback from the Apollo developer team, the cause of overprivilege is likely due to the

fact that the Apollo team aims to encourage open-source contribution to Apollo and thus

provides a unified and liberal message interface. They commented that it can be highly

beneficial to have a systematic approach to automatically uncover and prevent overprivi-

lege problems, which is exactly the research goal of this work.

4.8.5 Publish-Subscribe Overprivilege Fixing

Based on our feedback from Baidu Apollo developers, the major reason for the exis-

tence of publish-subscribe overprivilege across old versions to the latest one, is that they

provide a sparse set of fields for a message topic in order to allow open contribution of

new functionalities leveraging the available fields in a message. Also, due to the multidis-

ciplinary development nature of AV software, it is hard to enforce unified security design

principles and polices across a large team of developers with different domains of expertise.

Given that AV software is at an early, active development stage, it is hard to expect what

fields will be used as the development goes from an AV system designer’s perspective.

One feasible fixing solution of this overprivielge problem is redesigning topic structures

for the publish-subscribe model (e.g., chopping an existing topic into several sub-topics

based on the read/write permission at message field granularity and having a module pub-

lishing or subscribing privileged sub-topics). However, this approach requires substantial

and constant changes in the current AV software, e.g., re-designing topics and how topics

are handled across different AV modules. Such more fine-grained topics significantly in-

crease the number of messages and thus the messaging overhead in the run time and poses

another challenge to satisfy the real-time requirement in AV systems. In Apollo code base,

we observe that 24 new message topics (40% increase on the total number of topics) need

to be created using this approach and require changes of the message handling logic in 11

modules.
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4.9 Limitation & Scope

False negatives from overprivilege detection: Our current tool performs data flow anal-

ysis on only target message variable and their propagated taints, and taint propagation only

considers certain types of LLVM instructions. Thus, our tool may miss implicit pass-

through in our publisher-side overprivilege detection (e.g., adding a target variable with a

constant or a constant variable will not propagate the taint) and result in FNs in publisher-

side overprivilege detection. We leave the resolution of this problem as future work since

(1) these cases are not prevalent in real-world AV code bases, e.g., we only observed one in

our evaluation (§4.7), and (2) FNs will not affect the functional correctness of the system

since they does not lead to under-granting of permissions in our policy enforcement.

Potential scalability issue in policy enforcement: AVGuardian’s policy violation de-

tection on publisher-side overprivilege requires signing each overprivileged fields and the

cost is proportional to the number of overprivileged fields existing in a message, which

may cause scalability issue to our solution. As future work, we plan to address this issue

by integrating crypto acceleration approaches [191, 193, 153] to AVGuardian. Also, our

proposed recovery solution against violation of publisher-side overprivilege policy, through

contacting the publish originator, only provides best-effort recovery of the valid state of a

publisher-side overprivileged field. However, similar to our recovery solution, we observe

that it is common to use the latest state of a message field for computation in different AV

modules.

Threat model scope: AVGuardian targets at defending against attacks exploiting the over-

privilege at the publish-subscribe communication model, and thus does not handle other

attacks, such as spoofing of non-overprivileged fields to the publish-subscribe communica-

tion channel at publisher side. A publisher, even if not compromised, must be granted write

permission on those fields and AVGuardian cannot differentiate valid or spoofed states for

them. Also, we do not consider scenarios that a compromised module maliciously with-

holds messages to be published.
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4.10 Summary

In this work, we design and implement AVGuardian that systematically detects mes-

sage field level overprivilege for the publish-subscribe communication in AV systems and

performs policy enforcement on overprivileged fields at runtime to mitigate their security

damage. AVGuardian performs flow- and field-sensitive data flow analysis with enhance-

ments on virtual function and asynchronous callback handling to achieve high precision

in overprivilege detection and prevents under-granting necessary publish/subscribe permis-

sions. Its policy enforcement is transparent to AV modules and incurs low performance

overhead to publish-subscribe communication. AVGuardian discovers 579 overprivilege

instances in Baidu Apollo, which lead to concrete exploits causing vehicle collision and

identity theft for AV owners that have been confirmed valid by the Apollo developer team.
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Figure 4.10: Comparison of attack outcomes in a same road and traffic scenario: obstacle
relocation by TF attack vs. obstacle remove by PCL attack
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Figure 4.11: Relocating obstacles in AV’s perception view through exploiting publish-
overprvilege of /tf message on TFBroadcaster

Figure 4.12: Removing obstacles from AV’s perception view through exploiting publish-
overprvilege of PointCloud message on Velodyne compensator
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CHAPTER V

AVerifier: Verifying Driving Safety Compliance for

Autonomous Vehicle Software

5.1 Introduction

Emerging Level 4 and 5 fully autonomous vehicles (AV) hold great promise in trans-

forming today’s transportation systems and mobility services. However, a recent survey

shows that 50% of consumers have safety concerns on AVs [90]. Unanimously agreed

by AV software vendors and the government authorities, driving safety, in particular veri-

fied compliance with well-recognized safety standards (e.g., traffic laws, voluntary safety

standards for AVs from NTHSA [17], Responsibility-Sensitive Safety [186]), is the most

important design requirement for AVs before their deployment in the real world at large

scale. However, there is a lack of systematic approach to sufficiently verify the safety

compliance of the design and implementation of AV software with certain guarantees.

Existing AV safety testing approaches (e.g., simulation, close track testing, on-road

testing) mainly fall in the black-box dynamic testing category. They take test case input

generated from real-world traffic scenarios and validate the correctness of AV software by

comparing its output with the expected outcome. As a result, the effectiveness of existing

approaches highly depends on the quality and diversity of the test cases. However, due to

the infancy of autonomous driving technologies at the current stage, regulation barriers and
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high cost/risk of real-world testing, it is unrealistic for AV vendors to collect a sufficiently

diverse set of traffic scenarios for test case generation. Corner cases for various traffic sce-

narios are widely thought as a major paint point for the current AV safety testing and valida-

tion. To address this inefficacy, we propose AVerifier, a static program analysis framework

that verifies the compliance with standard safety policies in the code implementation of AV

software in a more systematic manner. AVerifier aims to support the verification of a diverse

set of safety policies for AVs, including the AV safety elements (e.g., operational design

domains, object and event detection and response, minimal risk condition, etc.) defined

by U.S. Department of Transportation [17], existing traffic laws, Responsibility-Sensitive

Safety [186], etc. We develop our approach towards providing strong guarantees of zero

false negatives in compliance verification: once compliance of a rule is verified, zero vio-

lation of that rule is guaranteed in the software logic. Our approach differs fundamentally

from existing black-box AV testing solutions. Leveraging rigorous programming language

and software engineering techniques, AVerifier provides completeness guarantee in code

verification. Moreover, its white-box code analysis provides easy-to-reason hints for de-

bugging and policy enforcement. In addition, its systematic test case generation capability

enables reproducing identified flaws under realistic traffic scenarios. Also, our approach

can provide other new advantages including improving testing efficiency and reducing test

cost for AVs.

AVerifier takes the source code of AV software and safety policies/rules as input, trans-

forms the safety rules into some specification format that can be directly analyzed at the

code level of AV software based on an AV domain-specific semantic mapping and presents

to AV developers any potential inconsistency between the specification and source code

detected from the static analysis. Symbolic execution can be further applied to the ana-

lyzed code paths to systematically explore the path feasibility and generate any violation-

triggering test cases to AV developers for further validation. Two key challenges need to be

addressed in order to achieve the systematic and complete verification guarantees in AVer-
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ifier. First, AV safety rules (e.g., traffic rules)are usually very domain specific. A semantic

gap exists between policy specifications and the AV code-level behaviors. Thus, an expres-

sive specification interface is required to allow AV software developers to define high-level

safety policies and then handle their mappings to code-level patterns. However, how to

develop such interface is non-trivial since it needs to be both rich in AV semantics and also

directly expressible at the AV code level. To incorporate unique higher-level semantics

involving complex decision/control logic into the static analysis process in our verifica-

tion, AVerifier generates AV-specific safety specification with rich road traffic and driving

semantics (e.g., vehicle/traffic states) through an inferred mapping between the high-level

AV semantics and code-level implementation. Second, the extensive use of object-oriented

programming in AV software development increases the complexity of the software logic

and poses engineering challenges to control dependence analysis for identifying code rele-

vant to safety rule implementation. To address this challenge, we consider beyond control

dependence and leverage program dependency analysis to identify more code pieces rele-

vant to the safety rule implementation in AV software. Validation on safety rules defined

in existing traffic laws using Baidu Apollo’s APIs demonstrate the generality of the spec-

ification interface, as all implemented rules can be expressed into our policy specification

form. Also, our initial evaluation results on Baidu Apollo indicate that the current AVer-

ifier’s analysis approach captures the code-level implementation of common safety rules

and uncovers some noncompliance with the safety requirement defined in existing safety

standards (e.g., instructions for driver license tests).

The contributions of this work are as follows:

• To the best of our knowledge, we are the first to propose a practical solution for

verifying the traffic semantic-level safety requirements of AV software with com-

pleteness guarantees by design.

• We design and implement a program dependence analysis framework to help AV

developers perform static detection of safety requirement noncompliance problems
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in AV software. Based on the dependence analysis output, we propose to further

use symbolic execution in a scalable manner to generate violation-triggering test

input in a systematic manner. Our analysis uncovers the noncompliance with some

standardized safety requirements in an early version of Baidu Apollo.

• We propose a safety policy/rule specification interface by constructing a unique ab-

straction of the rich road traffic and driving semantics and a semantic mapping that re-

lates each semantic entity to its code-level implementation in AV software. Through

this interface, AV developers are able to express common safety rules in a com-

posable and flexible manner. We validate its generality using rules extracted from

existing traffic regulation documents.

5.2 Background and Motivation

This section surveys the state-of-the-art of safety policy development for autonomous

driving and points out a representative safety policy standard, traffic laws, as our primary

focus of safety verification.

5.2.1 AV Safety Policy

We survey some common safety polices recently proposed to guide the development

of AV software systems. As one of the most well recognized safety guidance for AVs,

Figure 5.1 illustrates the federal policy for highly automated vehicles or HAVs (i.e., SAE

Levels 3-5 vehicles with automated systems that are responsible for monitoring the driving

environment as defined by SAE J3016) issued by the U.S. Department of Transportation

(DOT). In particular, federal, state and local laws for transportation need to be complied

with by all HAV systems on the vehicles. Also, operating design domain (ODD), object

and event detection and response (OEDR) and minimum risk condition (MRC) should be

explicitly defined for each HAV system, with their details left to individual HAV vendors
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Figure 5.1: U.S. DOT’s safety policy framework for highly automated vehicles [17]

to specify.

More recently, Mobileye releases Responsibility-Sensitive Safety (RSS) [186], a rigor-

ous mathematical model formalizing an interpretation of the Duty of Care law. The Duty of

Care states that an individual should exercise “reasonable car” while performing acts that

could harm others. RSS is constructed by formalizing the following ‘common sense” rules

of human driving:

• Do not hit someone from behind.

• Do not cut-in recklessly.

• Right-of-way is given, not taken.

• Be careful of areas with limited visibility

• If you can avoid an accident without causing another one, you must do it.

93



AVerifier aims to support the verification of various safety rules, include above two

categories, by taking their specifications composed by code-level constructs as input and

analyzing them at the code level of target AV software. It also aims to provide strong

guarantees of zero false negatives in compliance verification: once compliance of a rule

is verified, zero violation of that rule is guaranteed in the software logic. Furthermore, an

AV-specific policy abstraction is proposed to support safety requirement specification for

verifying user-defined safety policies. Towards achieving this safety verification goal, we

start by verifying AV software’s compliance with traffic regulations designed by govern-

ments for public transportation safety. As suggested by the Baidu Apollo developer, such

regulations also apply to autonomous driving vehicles and an autonomous driving vehi-

cle should follow traffic regulations at all times [139]. In particular, we extract dozens of

common safety rules defined in state traffic laws [45] and verify them in the Baidu Apollo

software.

5.2.2 Motivating Example: Baidu Apollo

We studied the software logic for traffic rule rule enforcement software logic in Baidu

Apollo, the one and only one open-source AV software code base that supports common

traffic rules to the best of our knowledge, to guide our design of the safety verification

approach. Figure 5.2 illustrates the execution flow of the planning module of Baidu Apollo

(v3.0) and highlights the components (in red) that enforce common traffic rules during path

planning.

The traffic rule enforcement logic supports common traffic objects, e.g., traffic

lights, stop sign, crosswalk, speed limit, etc. and common driving actions, e.g.,

stop, follow, sidepass, overtake, lane-change, nudge, etc. At run time of plan-

ning, the rule enforcement is performed for each planning cycle (100ms) through

apollo::planning::TrafficDecider::Execute using the up-to-date traffic

scene/frame. When this function is invoked, a predefined set of rule objects is ap-
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Figure 5.2: Overview of the traffic rule handling (highlighted in red) in Baidu Apollo (v3.0)

plied one by one through apollo::planning::TrafficRule::ApplyRule and

per-object decisions are generated and combined as input costs and constraints for the

optimization-based path computation by apollo::planning::PathDecider and

apollo::planning::SpeedDecider.

5.3 AVerifier Design

This section presents the design overview and details of our proposed static program

analysis and symbolic execution infrastructure to achieve the safety policy verification goal.

5.3.1 Overview

Figure 5.3 illustrates the key components and workflow of AVerifier. Given the source

code of AV software and a list of safety rules as input, the code-level specification for each

safety rule is generated based on a specification-to-code semantic mapping. The action

in a rule specification is directly consumed by static analysis to identify the code-level

predicates leading to the action, which are further compared with the predicates in the rule

specification to detect potential violation. Furthermore, symbolic execution is applied to
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Figure 5.3: AVerifier framework overview

systematically explore the feasibility of violation cases.

5.3.2 Safety Rule Characterization

We collected and formulated 60 traffic rules from the handbook for getting driver li-

censes in Michigan [45] and characterize them based on the condition-action pattern. Ta-

ble 5.1 summarizes the four main categories with rule patterns. According to our character-

ized rule patterns, safety driving rules defined in such traffic regulations commonly follow

the “if-then” pattern (defined as trigger-action form). Certain traffic scenarios defined in

triggering condition . To verify the consistency of a driving safety policy between its speci-

fication and code-level implementation, the first step is to identify the code-level predicates

(a.k.a., “if” part) for the implemented policies in relevant modules of AV software, assum-

ing that a set of driving decision action APIs used in the software is given. In terms of

Baidu Apollo, traffic rule related policies are implemented in the planning module.
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Rule pattern Example
Don’t apply action() Do not use the bicycle lane as a right-turn lane

If cond, apply action1(), action2(), ... If your car is disabled, pull far off the roadway, activate the emergency lights
Apply action() only if cond1 and cond2 and ... When passing on the left, do not pass more than one vehicle at a time
Don’t apply action() if cond1 and cond2 and ... Do not pass if you are within 100 feet of an intersection

Table 5.1: Traffic rule categorization

5.3.3 Control Dependence Analysis

In program analysis, a statement S2 has a control dependence on a preceding statement

S1 if the outcome of S1 determines whether S2 should be executed or not. The control

dependence is defined by a control flow edge coming out of S1 and reachable to S2. A

typical example of control dependence is the if-else branches: control dependences exist

between the condition part of an if statement and the statements in its true/false branching

bodies. Based on our safety driving rule characterization, the common “if-then” trigger-

action form in safety rules can be extracted from control dependence analysis, where the

“trigger” part is equivalent to the control dependence of a target program statement (a.k.a.,

“action”).

Control dependence graph (CDG). In a control flow graph (CFG), a node d domi-

nates a node n if every path from an entry node to n must go through d. By definition,

every node dominates itself. The dominance frontier of a node d is the set of all nodes n

such that d dominates an immediate predecessor of n, but d does not strictly dominate n.

Control dependences are essentially the dominance frontier in the reverse graph of a CFG.

Analogous to the definition of dominance above, a node z post-dominates a node n if all

paths to an exit node of a CFG starting at n must go through z. Therefore, a common way

to construct a CDG is computing post-dominance frontier of the CFG, and then reversing

it to obtain a control dependence graph.

Post-dominator analysis. Given a CFG = < V,E,Entry, Exit >, assume Exit is

reachable from all V , a node p post-dominates v, if all paths from v to Exit include p.

Figure 5.4 presents the pseudo-code for constructing the post-dominance frontier.

In our problem context, we start from a set of predefined sinks (i.e., invocation of
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Figure 5.4: Algorithm for post-dominance frontier generation

Figure 5.5: Rule predicate extraction based on control dependence analysis (traffic light
rule in Apollo)

control decision functions in Apollo) and trace its control dependences within a pro-

cedure. Figure 5.5 illustrates the control dependence for the stop decision function

apollo::planning::SignalLight::BuildStopDecision in the traffic light

rule handling in Apollo. Then the caller function is treated as an intermediate sink and the

control dependences to all its invocations across the program are computed. This process

is iterated until the program entries are hit. Finally, the set of rule predicates for a target

sink is comprised of the union of control dependences identified from above analysis.
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Figure 5.6: Implicit dependence not captured by control dependence analysis (crosswalk
rule handling in Apollo)

5.3.4 Program Dependence Analysis

Control dependence in reality does not capture a complete set of rule predicates to man-

ifest the triggering condition the runtime execution dependence in reality. Due to extensive

use of composite data structures in the code of AV software, some code-level predicates

corresponding to the high-level safety rule are connected through data dependence to an

action sink (defined as implicit dependence). Figure 5.6 illustrates a motivating example

based on the crosswalk rule handling logic in Baidu Apollo (v3.0).

To address this implicit dependence challenge, dataflow information, which can be

computed based on the taint analysis, is embedded on top of the control dependence graph

to form a program dependence graph, or PDG (illustrated in Figure 5.7). Similar to the

previous rule predicate extraction on control dependence graph, starting from a predefined

sink, we now trace its control and data dependence to identify intermediate sinks on a PDG

and iterate above process on the intermediate sinks, until some program entries are hit.

The final set of rule predicates consists of all the control-dependent predicates found from

above analysis. According to our empirical study, the implicit dependence issues can be
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Figure 5.7: Overview of program dependence graph

fully addressed with PDGs so that a full set of rule predicates are extracted.

5.3.5 Detection of Rule Violation

Once the set of rule predicates determined from the PDG analysis, the constraints from

each rule predicate are extracted and compared with conditions in the rule specification to

detect potential violation. In our current prototype, this comparison is left to AV develop-

ers. If the conditions in the specified rule do not fall within the code-level predicate set, a

potential violation of the input rule is flagged. For safety rules with “Do not X’ ’ action, we

extract the code-level rule predicates leading to “X” action and take the complement con-

straint set of the rule predicates for comparison with the specified rules. According to our

empirical evaluation and validation of traffic rules, the program dependence analysis is able

to extract a complete set of code-level predicates. In the future, we plan to implement the

symbolic execution support for AVerifier using KLEE [124] to enable systematic test case

generations for violation-triggering paths and further validate the feasibility of detected vi-

olation. Our program dependence analysis narrows down to the code paths relevant to the
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safety rules of our interest and potentially mitigates the path explosion issue in symbolic

execution.

5.3.6 Safety Rule Specification

To address the challenge in providing an expressive policy specification interface, we

propose to define a generic abstraction for AV-specific policies in the trigger-action form,

which consists of code-level policy primitives that are composable and extensible, and

policy composition operators to enable flexible specification of code-level safety policies.

First, AV-specific policy primitives are defined to capture a diverse set of traffic entities

in common driving scenarios, e.g., static obstacles, moving objects (e.g., vehicle, pedes-

trian, bicyclist), and road signs (e.g., stop sign, traffic light, speed bump). These policy

primitives will help construct the triggering condition of a policy. Second, driving control

actions in a policy, e.g., stop, sidepass, overtake, are defined leveraging actuation APIs

in the AV software code base. For example, the policy specification about stopping for

a stop sign will have stop sign as a policy primitive in the triggering condition, and

the apollo::planning::StopSign::BuildStopDecision() API as the ac-

tion in Baidu Apollo [80]. We find that such specification is flexible enough to describe

the 35 implemented rules out of the 60 traffic rules we extracted from the handbook for

getting driver licenses in Michigan [45]. Meanwhile, it can also be conveniently mapped to

code-level patterns in Baidu Apollo since the trigger-action form can be directly mapped to

control dependencies, and the policy primitives and actuation APIs can be directly mapped

to existing data structures in Baidu Apollo.

Specification-to-code traffic semantics. Table 5.2 lists of a set of AV-semantic data struc-

tures we identified from the Apollo code base. We assume that such code-level traffic

semantics can be identified using some APIs in the code of AV software.

Policy specification with AV semantics. Table 5.3 shows some common policy primitives

specified using above AV-semantic data structures to define the relative position between
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Data structure Meaning Attributes
PathObstacle.obstacle() An obstacle object Perception(),

IsStatic(),
IsVirtual()

PathObstacle.PerceptionSLBoundary() Physical boundary of an
obstacle

end s(), start s(),
start l(), end l()

PathObstacle.st boundary() Predicted speed of an ob-
stacle over a period of
time

IsEmpty(),
boundary type(),
min s(), min t(),
max s(), max t()

PathObstacle.reference line st boundary() Predicted speed of an ob-
stacle over a period of
time (on current refer-
ence line)

IsEmpty(),
boundary type(),
min s(), min t(),
max s(), max t()

ReferenceLineInfo.reference line() Planned driving path for
AV

Length(),
map path(),
XYToSL(),
HasOverlap()

ReferenceLineInfo.AdcSlBoundary() Physical boundary of AV end s(), start s(),
start l(), end l()

ReferenceLineInfo.Lanes() Lanes used in planned
driving path

IsOnSegment()

VehicleStateProvider::instance() Av’s current states linear velocity(),
x(), y(), z()

HDMapUtil::BaseMap() Road information in HD
Map

lane table ,
signal table ,
...

Table 5.2: Key data structures for traffic entities in Baidu Apollo (v3.0)

an AV and its surrounding objects. For example, a common traffic rule stop behind a

crosswalk for pedestrians on it can be specified using crosswalk, forthcoming (i.e., in front

of) and pedestrian primitives and the stop decision function as If a pedestrian is

on a forthcoming crosswalk, apply stop action. Based on the code-

level traffic primitives in Table 5.3, the code-level specification of this rule is presented

in 5.4.

5.4 Evaluation

We perform the rule predicate extraction in the planning module of Baidu Apollo (v3.0)

code base. We use the 35 implemented safety rules we extracted from the handbook for

getting driver licenses in Michigan [45] to analyze the extracted predicates to find potential

violation.
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Traffic entity Code-level specification
Object in front of AV PathObstacle.PerceptionSLBoundary().end s() >

ReferenceLineInfo.AdcSlBoundary().start s()
Object behind AV PathObstacle.PerceptionSLBoundary().start s() <

ReferenceLineInfo.AdcSlBoundary().end s()
Object on the left of AV PathObstacle.PerceptionSLBoundary().start l() >

ReferenceLineInfo.AdcSlBoundary().end l()
Object on the right of AV PathObstacle.PerceptionSLBoundary().end l() <

ReferenceLineInfo.AdcSlBoundary().start l()
Longitudinal distance ahead of AV PathObstacle.PerceptionSLBoundary().end s() -

ReferenceLineInfo.AdcSlBoundary().start s()
Lateral distance from the left of AV PathObstacle.PerceptionSLBoundary().start l() -

ReferenceLineInfo.AdcSlBoundary().end l()

Table 5.3: Code-level specification of common traffic entities

Policy primitive Code-level trigger/action
Forthcoming
crosswalk c

c in reference line().map path().crosswalk overlaps(),
c.end s() + config .crosswalk().min pass s distance() >
ReferenceLineInfo.AdcSlBoundary().end s()

Pedestrian p on
crosswalk c

p.obstacle()->Perception().type() == PEDESTRIAN,
p.obstacle()->Perception().x() > c.start l(),
p.obstacle()->Perception().x() < c.end l(),
p.obstacle()->Perception().y() > c.start s(),
p.obstacle()->Perception().y() < c.end s()

Stop decision AddLongitudinalDecision(p, object decision=stop)

Table 5.4: Code-level specification of rule: stop behind a crosswalk for pedestrians on it

5.4.1 Analysis Setup

Table 5.5 summarizes the decision functions as our analysis sinks for the safety rule

verification in Apollo v3.0.

Decision function Action type
PathObstacle::AddLateralDecision sidepass, nudge

PathObstacle::AddLongitudinalDecision stop, yield, follow, overtake, ignore
ReferenceLineInfo::ExportTurnSignal Left/right turn signal

PathDecision::MergeWithMainStop stop
SpeedDecider::AppendIgnoreDecision ignore

ReferenceLine::AddSpeedLimit speed limit
ReferenceLineInfo::SetJunctionRightOfWay right-of-way

Table 5.5: Decision functions in Baidu Apollo (v3.0)
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5.4.2 Rule Inconsistency Findings

We highlight some detected inconsistency findings between the specification and code-

level implementation detected based on our current analysis. The current validation of

the inconsistency requires human efforts. As future work, we plan to explore symbolic

execution to automate the generation of violation-triggering test cases. We present the 2

cases that have been confirmed inconsistent with the corresponding safety rules as follows

from our extensive code study and validation from different sources.

Rule: Slow down to 15mph when approaching a speed bump. We spec-

ify this safety rule as: for a forthcoming speed bump, if AV is approaching it

within a distance of min slow down speedbump distance and has a speed over

max speedbump speed limit, invoke ReferenceLine::AddSpeedLimit.

Using ReferenceLine::AddSpeedLimit as an analysis sink, we find that the code-

level rule predicates leading to this sink does not contain the speed bump check. Its code-

level specification in Table 5.6). Through manual validation, we confirm that this rule is

not enforced in Baidu Apollo v3.0 code base. According to our further study, this missing

condition check has been added into a later version (v3.5).

Policy primi-
tive

Code-level trigger/action

Approaching
a speed bump
s

s in reference line().map path().speed bump overlaps(),
s.start s() > ReferenceLineInfo.AdcSlBoundary().end s(),
s.start s() - ReferenceLineInfo.AdcSlBoundary().end s() <
min slow down speedbump distance

AV speed
over limit

VehicleStateProvider.linear velocity() > max speedbump speed limit

Speed limt
decision

AddSpeedLimit(s.start s(), s.end s(), max speedbump speed limit)

Table 5.6: Code-level rule specification: slow down to 15mph when approaching a speed
bump

Rule: Do not pass if you are within 100 feet of an intersection. Using

PathObstacle::AddLateralDecision as an analysis sink, we find that the code-

level rule predicates leading to this sink with side pass object decision contains the

constraint that the AV is within 100 feet of an intersection. Through manual validation, we
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confirm that this rule is not enforced in Baidu Apollo v3.0 code base. According to our

further study, this missing condition check has been added into a later version (v3.5).

5.5 Discussion and Future Work

In this section, we discuss the current limitation with our approach, and propose imme-

diate and potential future work following this research direction.

5.5.1 Improvement on Policy Specification-to-Code Mapping

The major limitation of the AVerifier approach is the need of defining the traffic entities

for composing policy primitives in safety rule specification and constructing their semantic

mapping to the code-level implementation of AV software. This in reality may require

AV developers’ input to customize the mapping for target AV software and involve certain

amounts of manual efforts for building the mapping. However, this is a one-time effort

and can be potentially facilitated with the help of API documentations available with AV

software. In the future, we plan to evaluate the actual amount of efforts required in more

comprehensive ways and evaluate the usability and effectiveness tradeoff caused by this

safety verification workflow.

5.5.2 Symbolic Execution Support

An engineering limitation of the current AVerifier prototype is the lack of support of

symbolic execution for exploring the feasibility of paths relevant to a detected violation

and generating concrete test cases to validate them in realistic traffic scenarios. We plan

to implement the symbolic execution support for AVerifier using KLEE [124] to enable

systematic test case generations for violation-triggering paths and further validate the fea-

sibility of detected violation. Our program dependence analysis narrows down to the code

paths relevant to the safety rules of our interest and can potentially reduce the chance of

path explosion in symbolic execution.
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5.5.3 Improvement on Violation Detection and Validation

Given the constraints in the rule predicates extracted from the program dependence

analysis, the current approach requires AV developers to determine any mismatch between

the extracted constraints and those in the rule specification. This manual checking process

to find potential violation can be nontrivial and may affect the usability of AVerifier. To

automate this, some road traffic and driving semantics (e.g., speed, position, etc.) need

to be considered to help determining the semantic relationship (e.g., full inclusion, partial

overlap, etc.), which can directly guide the violation detection outcome. We admit that

this is another key research challenge and plan to explore how to define such semantic

comparison in the future. Also, the detected inconsistency or violation of target safety rules

needs to be validated in a more rigorous and automated way. We plan to leverage symbolic

execution and simulation tools (e.g, Baidu Apollo’s built-in SimControl) to generate and

reproduce the violation-triggering cases in realistic traffic scenarios.

5.6 Summary

In this work, we develop AVerifier, a static program analysis framework towards veri-

fying the safety requirement compliance in AV software with completeness guarantees and

zero false negatives in compliance verification. Specifically, We design and implement a

program dependence analysis framework to help AV developers perform static detection

of safety requirement noncompliance problems in AV software. Our analysis uncovers the

noncompliance with some standardized safety requirements in an early version of Baidu

Apollo. To allow expressive specification of safety requirements, a specification interface

is proposed based on a unique abstraction of the rich road traffic and driving semantics

and a semantic mapping that relates each semantic entity to its code-level implementation

in AV software. We validate that this interface enables AV developers to express a broad

range of common safety rules from existing traffic regulation documents in a composable
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and flexible manner.
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CHAPTER VI

Related Work

6.1 Performance Testing and Diagnosis for Smart Systems

Mobile app testing: Functionality bugs, crashes or performance issues in mobile apps can

be uncovered through automated UI testing [110, 111, 169, 116, 182, 152, 126, 150, 170,

172, 165], runtime analysis [161, 183, 206, 126, 157, 195, 123] or static analysis [163, 168].

Static analysis is not proper for uncovering runtime cause of performance issues since it

does not capture runtime contexts. PerfProbe is complementary to existing app testing and

profiling tools. PerfProbe can be used to monitor user interactions with performance issues

detected from testing tools and perform further trace-based diagnosis to help understand

the root cause of the issues.

Mobile performance monitoring: PerfProbe complements existing profiling-based diag-

nosis systems in providing an automated systematic approach that performs lightweight

profiling and holistic analysis of app and OS-layer runtime events to guide the root cause

diagnosis of a broad category of real-world performance issues, which is less extensively

explored. ProfileDroid [198] profiles cross-layer information including static app spec-

ification, user interaction, operating system, and network of individual Android apps to

detect performance problems in Android platform, but it lacks a systematic approach to

diagnose the cause of performance problems. ARO [180] exposes the cross-layer interac-

tion in the network stack to understand energy and radio resource usage of mobile apps,
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but does not focus on diagnosing user-perceived latency problems. It can be potentially

integrated into PerfProbe for understanding the impact of radio resource usage on the

performance. AppInsight [183] instruments app binary for performane monitoring and

profiling in the wild. PerfGuard [160] proposes an automated, lightweight approach to

instrument binary code for performance monitoring and diagnosis in production environ-

ments. Panappticon [206] instruments Android OS and framework to track OS-wide events

but cannot provide easy-to-reason code-level hints to app developers. Also, PerfProbe’s

cross-layer characterization can provide systematic root cause reasoning and validation on

potentially runtime-expensive operations detected by existing tools [168, 205, 195]. Perf-

Probe leverages Panappticon’s instrumentation framework [206] to record OS events and

Traceview [72, 51] to capture an app’s call stack, but provides a new diagnosis approach

by systematically associating such cross-layer runtime information to gain holistic under-

standing on the cause of performance slowdown. App instrumentation [183, 149, 160] may

achieve lower monitoring overhead compared to Traceview, but requires specification from

app developers and is thus unscalable for systematic localization of code-level performance

variance (i.e., critical function) in arbitrary apps.

Cross-layer performance analysis: Cross-layer analysis was applied to investigate the

performance of wearable systems [167] and smartphone platforms [180, 198, 126].

ARO [180] mainly focuses on radio resource efficiency problems rather than app QoE,

while QoE Doctor cannot break down app latencies into more fine-grained operations, such

as disk access and inter-process communication that PerfProbe can address, due to the lack

of system or application event profiling.

Performance diagnosis using machine learning: Previous works [132, 173] apply ma-

chine learning techniques on system logs to diagnose performance problems in distributed

systems. Decision tree is also used for per-application QoS-to-QoE mapping for QoE infer-

ence of mobile apps [175]. Though PerfProbe also leverages decision tree learning, the use

of decision tree in the two-step analysis is new and different from them. Gist [158] relies
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on hardware features for extracting control flow traces to sketch failure predicting events

that have the highest positive correlation with the occurrence of failures. However, these

hardware features that Gist relies on are not widely available in mobile processors and is

thus not applicable to diagnosing mobile app performance problems.

6.2 Security Testing and Defense for Smart Systems

Permission models & overprivilege detection: Previous works have discovered various

overprivilege problems in smartphone [142, 141] and smart home systems [143] through

static and dynamic analysis. Other work characterizes and mitigates context-based over-

privilege issues with smart home systems a [155]. Our overprivilege problem is different

from them in two aspects. First, previous overprivilege problems happen in systems with

regular user interactions while human interaction may not exist in AV systems. Second,

different from previous overprivilege in API access, our overprivilege problem is in the

access to message fields during the publish-subscribe communication of AV systems. Due

to these differences, we develop a system-level and module-transparent solution to perform

fine-grained permission control on this communication channel.

Static analysis for vulnerability detection: Static analysis is a common approach for vul-

nerability detection in various software systems, but usually requires specific accommoda-

tion to the problem domain. To address complexity due to the event and component-based

nature in smartphone systems, inter-component communication, life-cycle awareness and

inter-component data flow graph [176, 114, 197, 154] are built on top of standard dataflow

analysis to uncover common vulnerabilities in smartphone systems. Furthermore, call-

graph analysis with pruning heuristics is used to discover inconsistency in security policy

enforcement in Android framework [187]. Our work contributes to this area in presenting

new insights on how standard dataflow analysis techniques can be adapted to the virtual

functions and asynchronous programming models for security analysis in the AV software

system domain.
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Security policy enforcement: There are two major approaches for security policy enforce-

ment. One approach is providing developers with access control APIs [184]. Another is au-

tomatic policy generation and enforcement. Previous work performs automated authoriza-

tion hook placement on Linux security modules framework to guard kernel functions [145].

AutoISES [192] automatically infers security policies by statically analyzing source code

and uses them to detect security violations. Aurasium [203] automatically repackages arbi-

trary Android apps to attach user-level sandboxing and policy enforcement code. Different

from previous work, AVGuardian targets at the publish-subscribe message channel rather

than code level to enforce fine-grained access control policies generated from static over-

privilege detection under the module-compromise threat model, where code-level policy

placement and enforcement can be bypassed.

Vehicle attack surface analysis: Attacks surface analysis has been conducted on in-

vehicle network of modern automobiles [162, 125, 130], vehicular applications [137],

perception sensors for autonomous driving systems [179], and connected vehicular com-

munication channel [127]. Our work contributes to this area in discovering overprivilege

problems with the publish-subscribe communication channel as new attack surfaces in au-

tonomous vehicle systems and proposing a systematic approach to detect these attack sur-

faces. One major defense solution to existing in-vehicle attacks is intrusion detection.

Fingerprinting-based solutions based on time profiles of periodic messages sent from Elec-

tronic Control Units (ECUs) [129] or voltage profiles of ECUs [131], are shown to be

effective in identifying an attacker-controlled ECU. Our work proposes a different mitiga-

tion solution to the overprivilege problem through policy enforcement and provides new

insight for enabling fine-grained permission control on AV software.

6.3 Requirement Verification Techniques

Static analysis approach: Meta-level compilation (MC) is proposed to write system-

specific compiler extensions that automatically check the source code for violations of
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system rules [138]. Programmers can write system-specific compiler extensions to enable

system-specific static analysis to find security errors that violate certain system rules [115].

Rules for driver API usage can be verified and temporal safety properties of sequential C

programs I can checked thoroughly [118]. Furthermore, static analysis can be used to iden-

tify a small portion of paths relevant to rules and apply symbolic execution them for verify-

ing system rules with better scalability [135]. Our safety requirement focuses on verifying

different safety rules for autonomous driving and requires AV-specific traffic modeling to

bridge the semantic gap between specification and code implementation.

Model checking approach: Model checking is a technique for automatically verifying

correctness properties of finite-state systems. In order to solve such a problem algorith-

mically, both the model of the system and the specification are formulated in some pre-

cise mathematical language. Model checking software based on the abstract-check-refine

paradigm [151] or predicate abstraction techniques [119] have been shown effective in

verifying desired properties and find violation in system software. Furthermore, formal

techniques are applied to verify the design requirements of real-world safety-critical sys-

tems [177]. However, existing approaches cannot be directly applied to the verification

of safety requirements for autonomous driving due to the lack of system-specific semantic

mapping in requirement specification. Our safety verification work on AV software takes

the first step to define AV-specific semantics for specifying system-specific system rules.
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CHAPTER VII

Conclusion and Future Work

In this chapter, we conclude by highlighting the contributions of this dissertation and

discuss future research directions based on the current research contribution in this disser-

tation.

7.1 Concluding Remarks

As various forms of smart end systems are emerging and making significant influence

to our daily work and life, it becomes critical to assure expected performance and robust-

ness with their software as they operate in the real world. However, in reality, the required

performance, security and safety guarantees have never been thoroughly tested and veri-

fied on the well developed smartphone systems, not to mention the emerging autonomous

vehicle platforms.

This dissertation proposes practical and systematic software analysis solutions towards

testing and verifying the performance, security and safety requirements of the software

for smart end systems. Specifically, we demonstrate that automated program analyses

based on 1) static program analysis for achieving completeness guarantees of analyzing

program behaviors and 2) runtime program profiling for capturing runtime conditions of

program execution, can achieve systematic requirements testing and verification for smart

end systems and significantly reduce manual efforts. This dissertation contributes to the
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requirements testing and verification of smart end systems in following aspects: (1) ef-

fectively test performance requirements and diagnose the cause of performance slowdown

through lightweight monitoring of and systematic performance characterization based on

cross-layer runtime events, (2) systematically detect noncompliance with important secu-

rity principles (e.g., publish-subscribe overprivilege vulnerability) through systematic pro-

gram analysis and mitigate security vulnerabilities through policy enforcement, and (3)

systematically verify the compliance with safety requirements on the mission-critical com-

ponents (e.g., AV’s driving decision control) of smart end systems.

7.2 Future Work

AVerifier requires defining the traffic entities for composing policy primitives in safety

rule specification and constructing their semantic mapping to the code-level implementa-

tion of AV software. This in reality may require AV developers’ input to customize the

mapping for target AV software and involve certain amounts of manual efforts for building

the mapping. An interesting question is to evaluate the actual amount of efforts required

in more comprehensive ways and its resulted usability and effectiveness tradeoff. Another

future direction is to involve road traffic and driving semantics (e.g., speed, position, etc.)

for building the semantic relationship (e.g., full inclusion, partial overlap, etc.), which can

directly guide the violation detection outcome. In the future, we plan to implement the

symbolic execution support for AVerifier using KLEE [124] to enable systematic test case

generations for violation-triggering paths and further validate the feasibility of detected

violation, e.g., using simulation in realistic traffic scenes.
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