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ABSTRACT

More than 50 years ago, Jacob and Monod first laid out a model for the regulation of gene ex-
pression through the interaction of proteins and nucleic acids. With the advent of high-throughput
sequencing and the unprecedented ability to take millions of simultaneous measurements of the
same biological system, better understanding of the full complexity of gene regulation is finally
being unraveled. Here, I present my graduate work investigating the control of gene expression
at the transcriptional and post-transcriptional levels through the analysis of high-throughput bio-
logical measurements in bacterial and human cell culture. In the realm of bacterial transcriptional
control, I explore the impact of a global regulator, Lrp, and its regulation of up to one third of the
genes in E. coli. We identify a prevalent mode of “poised” binding, where Lrp is bound at a given
promoter but only appears to have a regulatory effect under certain conditions. We find that Lrp
appears to change its binding mode from a non-specific A/T-rich preference in early growth phases
to a more sequence specific preference in later growth phases. I also look at promoter-independent
effects on transcriptional regulation in E. coli. I describe key features of the bacterial genome that
predict the position-dependent effect of transcription on a randomly integrated uniform reporter
gene. We find that binding signal from the highly abundant nucleoid associated proteins H-NS and
Fis act as key predictors for low and high transcription, respectively. We also find that integration
proximity to a ribosomal RNA operon appears to be the single greatest contributor to position-
dependent transcriptional activation. Absent of ribosomal RNA operon effects, we find that recent
maps of E. coli chromosomal structure do not help us explain the periodic transcriptional signal ob-
tained from our library. In eukaryotic systems, I focus on post-transcriptional control through the
regulation of mRNA decay. I review methods that can be used to measure the decay of mRNA in
a high-throughput manner. I highlight the importance of spike-in controls and demonstrate strate-
gies to determine relative mRNA decay between experimental conditions at minimal cost. Finally,
I present my work identifying key sequence features that allow for the prediction of mRNA decay
mediated by the human Pumilio proteins. I find that contextual sequence features around pre-
dicted PUM binding sites contribute meaningful information to the prediction of PUM-mediated
post-transcriptional regulation. I also demonstrate that human Pumilio proteins primarily modulate
RNA abundance through controlling mRNA decay and not through control of transcription. Taken
together, my graduate work provides a comprehensive view of the regulation of gene expression at
both transcriptional and post-transcriptional levels.
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CHAPTER 1

Introduction: The use of information in biological
systems

1.1 The Central Dogma of Biology

Information, through its efficient transfer, encoding, use, and storage, is fundamental to biology
and the processes of life. Inherent at the beginning of life, and in the critical process of reproduc-
tion, is the transfer of information. This key notion was initially proposed in Ancient Greece by
Pythagoras and later refined by Aristotle [1]. In discussing animal reproduction in De Generatione
Animalium, Aristotle observed that:

Just [as] no material part comes from the carpenter to the material, i.e. the wood in
which he works, nor does any part of the carpenter’s art exist within what he makes,
but the shape and form are imparted from him to the material by means of the motion
he sets up . . . it is his knowledge of his art, and his soul, in which is the form . . . In
like manner, . . . Nature uses the semen as a tool . . . [2]

Here, Aristotle is suggesting that, just like a carpenter imparts their knowledge to create form out
of raw materials through the use of tools, Nature is using some biological material as a tool to
transfer the information needed to create the form of another organism. Although Aristotle goes
on to incorrectly characterize aspects of reproduction in inherently sexist language, the key idea
that information is transferred in the act of reproduction was born. It was not until the 1800’s
that experiments shedding light on the nature of this informational tool began in earnest with the
Augustinian friar, Gregor Mendel, and his pea experiments. Gregor was able to show, with careful
breeding of different pea hybrids and fortunate choices of observable biological traits, that the
offspring of pea hybrids tended to have a trait that took after one or the other of the pea plant’s
parents. These experiments suggested that, not only was information transferred from parent to
offspring, but those pieces of information were being transferred in an apparently discrete manner
[1, 3]. Further work in the early 1900’s by Thomas Hunt Morgan, this time using the now model
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organism Drosophila Melanogaster, a species of fruit fly, demonstrated that some of these units
of heredity for certain traits tended to transfer to offspring together as if they were physically
“linked.” He suggested that it was the physical proximity of these discrete units of information on
chromosomes—large structures which were observable under the microscope in dividing cells—
that allowed for them to be linked together during the process of reproduction [4]. However, the
chemical nature of the heritable material was still unknown.

1.1.1 DNA as the information carrier

A critical set of experiments in the 1920’s by Frederick Griffith showed that material from a heat-
treated and killed virulent strain of bacteria could be used to “transform” a living and non-virulent
strain into a virulent strain. Moreover, the previously non-virulent strain now remained virulent
over many generations. This suggested that information was being transferred between the dead
virulent strain of bacteria to the living non-virulent strain. It also suggested that the material na-
ture of this information could stay intact even after the cell was dead, and, once transferred to the
living bacteria, could continue to pass on to progeny [5]. This led Oswald Avery and colleagues
to determine, through careful purification of nucleic acids and treatment with crude preparations
of enzymes to degrade the nucleic acids, that deoxyribonucleic acid (DNA) was the “transforming
agent” that was necessary for Griffith’s observations [6]. It was known at the time that the chromo-
somes that Morgan was observing were made up of both protein and nucleic acid; however, it was
widely believed that protein, not nucleic acid, was the key information carrier. Through the use
of radioactively labeled P32-DNA and S35-protein, Hershey and Chase demonstrated that primarily
P32, and not S35, was transferred into bacteria by a bacteriophage upon infection. This suggested
that DNA, and not protein, was the information carrier consistent with Avery’s results [7].

1.1.2 The structure of DNA

Once the chemical identity of the molecule carrying genetic information was known, the stage was
set for Watson and Crick, together with work from Franklin, Gosling, and Wilkins, to create the
first model of the structure of DNA. In 1953, Watson and Crick first described the structure of DNA,
an elegant two stranded structure with basepairs between adenine and thymine, and guanine and
cytosine, which “immediately suggests a possible copying mechanism for the genetic material” [8].
The discovery of DNA—central to information processing within every cell—is one of the most
ground-breaking scientific advances of the 20th century. However, although the essential nature of
the information carrier had been determined, questions still remained about how that information
is used within the cell, (i.e., how does the essential structure of DNA give rise to the form of all
living things?).
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1.1.3 Information is stored in the DNA sequence

Immediately after the discovery of the structure of DNA, work began to test if the “copying mech-
anism” that the DNA structure so evocatively suggested (i.e., one strand can be used as a tem-
plate to reproduce the other strand) was indeed how DNA was reproduced. This idea of “semi-
conservative” replication was confirmed through careful experiments conducted by Meselson and
Stahl in which they grew E. coli in media containing N15 until DNA was fully labeled and then
shifted growth into media containing N14. By tracking the density of the labeled DNA over time,
they found that the DNA only existed at densities consistent with either all N14, all N15, or an inter-
mediate density consistent with half of both species, thus confirming semi-conservative replication
[9]. This, together with the structural model of DNA, also suggested that since the order of the
bases was kept intact under replication, then some sort of code may be stored within the actual
sequence of bases [10].

1.1.4 Information is copied from DNA into RNA

Broad clues as to how information could be stored and used by organisms were first described by
Beadle and Tatum, who showed that individual biological functions could be disrupted by inducing
mutations in the bread mold Neurospora crassa while it grows on a “complete” media and then
observing the mutated bread mold’s growth on minimal media. Mutants deficient in synthesizing
a particular metabolite could then be discovered by adding in individual components present in the
complete media but absent in the minimal media until the newly essential metabolite was found
[11]. This led to the idea that a single gene could encode for a single biological function or a single
enzyme in a given pathway and was thus named the “one gene-one enzyme” hypothesis. However,
the nature of how information was transferred from DNA to protein enzymes was still unclear. It
was known that ribosomes, largely made of ribonucleic acid (RNA), were the locations of protein
synthesis and it had been proposed that genes each encoded a special type of ribosome that could
then create a single protein. However, a key set of work performed simultaneously by both Brenner
et al. [12] and Gros et al. [13], discovered a new class of metabolically unstable RNA that was
associated with ribosomes in bacteria during an active phage infection. Using radioactively labeled
precursors to RNA, they showed that newly synthesized RNA with nucleotide base ratios that
matched the DNA of infecting bacterial phage (with the appropriate substitution of Ts for Us)
were associated with metabolically stable ribosomes. This suggested that: 1. the phages were not
producing new ribosomes to create proteins needed for their function and 2. the highly unstable
RNA—which they called “messenger” RNA (mRNA)—was synthesized as a copy of the genetic
information contained within the phage DNA and was being used as a template by the ribosome to
create a protein.
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1.1.5 Cracking the genetic code

Following these experiments, the essential nature of this code, the genetic code, was still not
known. How could a sequence of four nucleotide bases be used to specify a different sequence
of 20 amino acids? Based solely on the number of amino acids and nucleotide bases, initial pro-
posals suggested a triplet code—three nucleotides for every one amino acid—was probable as it
was the smallest number of bases that would allow for the encoding of all 20 amino acids [14, 15].
Using mutations that introduced a single nucleotide insertion or deletion to a gene, Crick et al. [16]
showed that the genetic code was a non-overlapping triplet code. However, it would take Nirenberg
and Matthei’s work to finally crack the code that mapped any given nucleotide triplet to its corre-
sponding amino acid. Using poly-U RNA in a cell-free translation system, they first determined
that the triplet UUU coded for the amino acid phenylalanine [17]. A highly competitive race to
uncover the genetic code followed this discovery and a flurry of papers from Nirenberg and addi-
tional colleagues at the National Institutes of Health, as well as work from their main competitors
Severo Ochoa and Gobind Khorana, resulted in a full solution for the genetic code, including the
three codons that encoded for the end of a message [18–21].

1.1.6 tRNAs as a molecular Rosetta Stone

The final piece of the puzzle, the adapter molecule that allows for “translation” from the mRNA
nucleotide code to the amino acid protein code, was first proposed by Crick [22, 23] and the
structure of the key molecule, “transfer” RNA, was elucidated by Robert Holley using a series
of nucleic acid digests to determine the first structure of a nucleic acid [24, 25]. Transfer RNAs
(tRNA) are a special and highly abundant class of RNAs that form into cloverleaf-like shapes
of three stem loops. The middle stem loop contains a three nucleotide anticodon that base-pairs
with the corresponding codon on an mRNA molecule. The amino acid that corresponds to the
matching codon for a given tRNA is added to the acceptor stem at the 3’ end of the molecule
by specialized enzymes in a process called aminoacylation [26]. During protein synthesis, the
ribosome matches the mRNA codons with the tRNA anticodons, thereby stringing together amino
acids in the sequence determined by the triplet genetic code. Thus, the tRNA represents a biological
“Rosetta stone,” serving as the translator between the nucleic acid and amino acid codes [27, 28].

1.1.7 The Central Dogma and beyond

Taken together, these discoveries represent a framework for describing how biological information
is stored and inherited, as well as how that stored information is subsequently used to create func-
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tional biological molecules in the form of proteins.1 These ideas culminated in what is now called
“The Central Dogma of Biology.” Represented in Figure 1.1, the term Central Dogma represents
the flow of information in biological systems and was coined by Crick [22] when he first referred
to the idea that once information is passed to the protein, information cannot go backwards to nu-
cleic acid. In this model, the DNA acts as a storage molecule with the instructions needed to make
active biological agents. Through the process of transcription, one strand of the DNA is used as
a template to create a nucleic acid copy of a short stretch of DNA that encodes for a particular
protein. The copy— a short stretch of RNA, called mRNA (described above)—is subsequently
translated into protein through the use of the ribosome and tRNA adapter molecules. However, in
direct contrast to Crick’s original meaning for Central Dogma, I have drawn two additional arrows
in red representing the flow of a higher level of information from protein back into the processes
of transcription and translation. These arrows are no longer representing the flow of information at
the level of direct manipulations of the same underlying symbols of the genetic code itself, either
through transcription (nearly direct copies) or translation (conversion from one set of symbols to
another). Instead, they represent a higher level of information transfer that acts on the biologi-
cal mechanisms used to interpret the genetic code. Thus, in these cases, the act of translating a
message gives the system information about how to translate future messages, much like a hypo-
thetical record player that uses the sound waves from a previously played song to determine which
song to play next.2 Through gene regulation (the information transfer represented by these arrows)
the DNA becomes more than just a passive information carrier; rather, through the very act of
self-reference—changes in the process of expressing genes brought on by the expression of genes
themselves—the system is able to control its own fate and act directly upon itself. It is this pro-
cess of gene regulation, the control of the information flow in biology (as stored in nucleic acids)
through the action of the end product of that information flow (i.e., proteins), that is the central
focus of this thesis and my graduate work.

For the rest of this section I will focus on a detailed look at two overall mechanisms of gene
regulation on which my graduate work has focused: transcriptional regulation (control of the syn-
thesis of mRNA) and post-transcriptional regulation (specifically, control of the degradation of
mature mRNA). Subsequent chapters will give detailed overviews of specific regulatory systems
involved in each of these processes and references will be made to each chapter as they relate to
the concepts being presented.

1For a more comprehensive overview on this subject, including details on the lives of each of the key scientists, see
Siddhartha Mukherjee’s The Gene[1].

2My thoughts on self-reference in biological systems are heavily influenced by Douglas Hofstadter’s Gödel, Escher,
Bach[29], in which he uses similar analogies to describe information transfer in the Central Dogma.
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Figure 1.1: The Central Dogma of Biology. Red arrows represent gene regulation resulting from information flow at a
higher level than strict symbol manipulation of the genetic code.

1.2 Transcriptional control of gene expression

Strong evidence for the existence of gene regulation first came from work describing how �-
galactosidase activity was “induced,” or turned on, in E. coli upon growth in lactose media. It
had been observed that when growing E. coli in a mixture of glucose and lactose acting as a car-
bon source, the bacteria first consume the glucose exclusively. Once the glucose was completely
consumed, a short lag time in growth was observed until the metabolic enzymes required for con-
suming lactose were created [30]. Thus, the activity required for lactose digestion, �-galactosidase,
was induced by the presence of lactose in the absence of glucose. Using a series of mutants that
were deficient either in the enzyme responsible for the �-galactosidase activity, or involved in
controlling inducible vs. constitutive expression of the system, Jacob & Monod proposed that the
inducibility of the �-galactosidase activity was controlled by a separate genetic element that acted
as a “repressor” by preventing the synthesis of the gene involved in producing the �-galactosidase
enzyme. In their landmark 1961 paper, Jacob & Monod synthesized their ideas about this system
and other systems that were being identified at the time. They proposed that information flow from
gene to protein must go through some intermediate messenger, that control of this messenger must
occur in regions of the genetic sequence that do not code for protein (regions they termed “oper-
ators” to distinguish them from “structural” genes like the �-galactosidase enzyme), and that the
structural genes required for a particular biological function are linearly connected in the sequence
both to each other and to an operator. This final idea they termed an “operon” and they suggested
that the operons could be controlled through their operators [31]. This influential paper inspired the
discovery of messenger RNA (as discussed in Section 1.1.4), and began the study of mechanisms
that control the expression of genes.
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1.2.1 Major steps in transcription

The synthesis of RNA is universal to all domains of life and is carried out by a specialized enzyme
complex known as RNA polymerase. Although the specific details of transcription and the exact
identity of the molecular players differ between organisms, the general process is the same. Tran-
scription occurs in three major steps: 1. initiation, in which the RNA polymerase binds upstream
of the gene to be expressed and opens up the DNA helix to access the correct template strand, 2.
elongation, where the RNA polymerase tracks along the DNA and adds the nucleotide base com-
plementary to the template strand on to the 3’ end of the growing nascent RNA, and 3. termination,
in which the RNA polymerase halts synthesis of the nascent RNA and is released through vari-
ous mechanisms. Control can be exerted at each step in transcription, but for the purposes of this
thesis, I am primarily concerned with the processes of initiation and, to a lesser extent, elongation
(termination will not be discussed).

1.2.2 � factors and their role in initiation

In bacteria, particularly in the well studied model organism E. coli, the core RNA polymerase
(RNAP) complex alone is capable of initiating transcription with low efficiency, but it requires
a series of proteins called � factors to increase affinity for regions of the DNA upstream of the
transcription start site (TSS) and allow for specificity in the initiation of transcription [32]. These
regions, called promoters, allow for the coordination of genes with similar functions to be ex-
pressed at the same time. For example, �70—the most abundant � factor—directs RNAP to genes
involved in general housekeeping processes that are constitutively expressed [33]. In contrast, �54,
directs RNAP to genes involved in nitrogen metabolism and often requires an activator protein,
in addition to the �54-RNAP complex, to initiate transcription at these genes [34–36]. Upon the
transition from initiation to elongation, the � factor is displaced from the RNAP and replaced by
the elongation factor protein NusA. This allows � factors to be rapidly reused by additional RNAP
complexes for subsequent rounds of initiation [37]. Thus, key to predicting which genes are initi-
ated by which �-RNAP complex is the determination of the particular promoter sequence that the
�-RNAP complex recognizes.

1.2.3 Sequence elements controlling bacterial initiation

The first attempts at determining a “consensus” sequence for bacterial promoters were conducted
with the �70-RNAP complex, due to its high abundance in the cell. Work by two separate groups
characterized two sites that were specifically recognized by this complex: TATRATG, at 10 base-
pairs upstream from the start of RNA synthesis (-10 site), and GTTGACACTTTA, at 35 basepairs
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upstream (-35 site) [38–40]. Further work established the identity of the UP element—a large AT
rich element upstream of the -35 site that stimulates transcription by �70-RNAP in vitro for some
promoters [41]. However, simple recognition of a general promoter sequence does not explain how
specific genes are regulated. For example, how do systems that turn off gene expression, such as
the mysterious repressor discovered by Jacob and Monod, work?

1.2.4 The Lac repressor, a bacterial transcription factor

Continued work on the �-galactosidase operon, or the lac operon, allowed for a detailed under-
standing of single operon repressors. The Lac repressor attenuates transcription of the lac operon
by binding to two operator sites, one directly downstream and one directly upstream of the pro-
moter region for RNAP and mediating the formation of a loop in the DNA [42]. It has been shown,
through a combination of mathematical modeling and targeted in vivo experiments, that the pri-
mary role of this looping is to occlude the RNAP from binding to the promoter region [43]. Thus,
the Lac repressor is acting as a transcription factor—defined here as a protein that modulates the
activity of RNAP at a promoter region—to control the expression of the lac operon. In order for
de-repression, or induction, of the lac operon to occur, lactose binds to the Lac repressor in an
allosteric site, which induces a conformational change in the protein that disrupts its affinity for
the operator sites [44]. Thus, in the presence of high lactose concentrations, the Lac repressor no
longer binds to its operator site, thereby freeing up the promoter to be bound by RNAP and the
initiation of transcription of the lac operon to begin. However, repression of expression through the
Lac repressor alone does not fully explain regulation of the lac operon. How does the bacterium
decide to only metabolize glucose and not lactose when both are present in the media?

1.2.5 Combinatorial control from the global regulator CRP

The current model explained thus far suggests that the lac operon should be expressed whenever
lactose is present, regardless of the concentration of glucose in the media. It turns out that another
transcription factor, the cyclic AMP (cAMP) receptor protein (CRP), allows for the fine-tuning of
the lac operon by activating lac operon expression only when glucose levels are low [45]. cAMP
is created from ATP by the enzyme cAMP phosphodiesterase and serves as a molecular signal for
low glucose levels. Upon binding of cAMP to CRP, CRP binds to DNA in a sequence specific
manner [46]. Activation of transcription by the CRP protein occurs through interactions with the
RNAP that promote RNAP binding to the promoter and, in some cases, facilitate conformational
changes in the RNAP-promoter complex that allow for the completion of transcriptional initiation
[47]. Thus, in the case of media that is rich in both lactose and glucose, the Lac-repressor is
not blocking the promoter of the lac operon due to the excess lactose in media. However, due to
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the high concentration of glucose, the cAMP-CRP complex is not formed. Thus, the absence of
cAMP-CRP complex binding upstream of the lac operon, results in repression of expression due
to lack of activation of the RNAP by CRP. Once the glucose is fully utilized by the E. coli cells,
the CRP transcription factor can then promote transcription of the lac operon. However, unlike the
Lac repressor’s specificity for a single promoter region, CRP proteins bind hundreds of different
promoters in the E. coli genome and can either activate or repress transcription at those promoters
[48]. In addition, CRP regulates the expression of both � factors and other identified transcription
factors, making it a regulator of regulators—a global regulator [49].

1.2.6 Global regulators coordinate large regulatory networks

In contrast to single promoter regulators, like the Lac repressor, global regulators influence the ac-
tions of many promoters. They frequently work together with other co-regulators to exert control
over those promoters, and also tend to work together with other global regulators. In addition,
global regulators work together with promoters from different � factor classes and tend to sense
and respond to a large number of growth conditions. Finally, global regulators tend to occur in
their own isolated regions of the genome and their expression is controlled by feedback from
themselves [49]. The Leucine-responsive regulatory protein (Lrp) is one key global regulator in
E. coli that is well-studied, but still not well-understood. Lrp was first identified by its activation
of the ilvIH promoter which is attenuated in media containing leucine [50]. The ilvIH operon is
one of three operons that encodes an aceto hydroxyacid synthase which performs the first com-
mon step in the biosynthesis of the branched chain amino acids [51]. In addition, it was found
that Lrp also acted as a negative regulator of the oppABCDF operon—an operon involved in the
transport of oligopeptides—whose repression was attenuated in the presence of leucine [52]. Thus,
Lrp was identified as a dual-regulator involved in controlling amino acid synthesis and transport
in response to leucine levels. Early experiments indicated that leucine could disrupt the equilib-
rium of Lrp binding at the ilvIH promoter [53]. Identification of additional promoters that are
regulated by Lrp demonstrated that for some promoters—such as livK—Lrp needed leucine for
negative regulation [54]. This was inconsistent with a simple model of leucine disrupting Lrp
binding in all cases. Consistent with its role as a global regulator, microarray experiments have
indicated that Lrp regulates about 70% of the 215 genes with differential expression upon entrance
to stationary phase [55]. Tani et al. [55] also identified a subclass of genes whose regulation did
not depend on presence or absence of leucine in the media, suggesting that leucine is not the only
signal Lrp responds to. Lrp itself is thought to exist primarily as an octamer in vivo and dynamic
light scattering experiments have demonstrated that leucine disrupts the formation of higher order
hexadecamer oligomeric states—forcing the equilibrium towards the octameric form [56]. Further-
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more, additional amino acid co-regulators have been shown to modulate the activity of Lrp at the
livK promoter, resulting in everything from activation to repression depending on the amino acid
present [57]. Recently, Cho et al. [58] used high-throughput assays to explore the full regulatory
network of Lrp in the presence and absence of leucine. However, this study is confounded by the
use of a C-terminal 8xMyc tag that is on the order of half the size of a single Lrp monomer. The
C-terminus has been shown to be important for the oligomerization of the Lrp protein [59] and
the presence of a large tag on the C-terminus likely disrupts native oligomerization. In Chapter
2, I present our published work on Lrp. To alleviate the need to use a tagged protein and remove
concerns about disruptions to native oligomerization, we developed a monoclonal antibody to Lrp.
We then used modern high-throughput sequencing techniques to identify both the binding loca-
tions and RNA expression in a combination of three different media conditions and three different
time points. In that chapter, we provide evidence that Lrp regulates up to one third of the E. coli
genome. We find that Lrp appears to bind at promoters even in conditions where no Lrp-dependent
regulation is observed, suggesting that Lrp is sitting in a poised position in preparation for regula-
tory activity under the correct condition. Further, we hypothesize that like the Lac repressor, Lrp
may cause looping in the DNA to control access to a given promoter.

1.2.7 Technologies enabling the resolution of regulatory networks

The full complexity of gene regulation mediated at promoter regions in E. coli, as described above,
conjures up a tangled web of regulation and co-regulation resulting from interactions between
many different factors. Current understanding, through targeted biochemical experiments, has
allowed for the determination of the key regulators and, for some, mechanistic detail about how
they work. However, one needs to understand the connections between the regulators and their
targets to fully understand gene regulation and model biological systems. With the advent of
high-throughput sequencing, key techniques have been developed that allow for the simultaneous
measurement of transcription factor binding sites and steady-state RNA levels across the entire
genome and transcriptome.

The first of these techniques, RNA sequencing (RNA-Seq) allows for the measurement of the
relative abundance of RNA within a pool of purified RNA [60]. The second of these techniques,
chromatin immunoprecipitation and sequencing (ChIP-Seq), allows for the empirical determina-
tion of the locations of binding for a specific transcription factor within the genome [61]. ChIP-Seq
is performed by using a chemical, such as formaldehyde, to cross-link protein to the DNA in vivo.
After cell lysis and sonication of the cellular debris, an antibody specific to the protein of interest
is used to pull-down DNA specifically cross-linked to the protein. This is compared to an input
sample which either consists of the cellular debris before pull-down or mock pull-down with a
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non-specific antibody. Both the input and the specific pull-down sample are then sequenced and,
through computational analysis, regions of DNA that were enriched in the specific protein sample
can be identified. Many different computational techniques have been developed to analyze ChIP-
Seq data [62–65]. However, in Chapter 2, I present an analysis pipeline I developed to specifically
address our unique experimental setup.

Together these technologies, and their older iterations using microarrays instead of high-throughput
sequencing, have allowed for the resolution of regulatory networks for each of the �-RNAP com-
plexes [66], the CRP regulon [67, 68], and the regulons of many transcription factors in E. coli.
These regulons are curated and maintained in a large database, RegulonDB, which is free for aca-
demic use [48]. With this database and other databases in hand, it appeared that the original call to
mathematically model an E. coli cell [69] would finally be realized. However, recent attempts to
use current databases to do this fell well short of the mark [70], suggesting that our current set of
regulatory interactions is incomplete.

1.2.8 Nucleoid-associated proteins and their role in transcription

The current understanding of transcriptional regulation presented thus far has focused around con-
trol at the stage of initiation through direct interactions at promoter regions. These interactions
can be thought of as local and highly specific interactions between a given transcription factor and
the DNA. However, larger regions of protein-DNA complexes exist within the bacterial nucleoid.
Work focused on isolating proteins that share similar properties with eukaryotic histones, illumi-
nated a set of proteins named “Nucleoid-associated proteins” (NAPs) for their high abundance,
general propensity to bind non-specifically to DNA [71], and role in controlling chromosomal
structure [72]. Although these proteins share similar properties to eukaryotic histones, they appear
to be specific to bacteria [73]. However, homologues of the most highly conserved NAP, HU,
have been seen in both yeast mitochondria [74] and spinach chloroplasts [75], suggesting a broad
functional role for this class of proteins. The need for constraining and controlling DNA structure
and accessibility is likely a universal problem for biological systems and it perhaps not surprising
that the different domains of life have come up with unique solutions. Analysis of the expression
patterns of several identified NAPs revealed large changes in expression across growth-phases for
twelve of the identified NAPs, suggesting functional roles for NAPs at different stages of growth
[76]. Furthermore, visualization of different NAPs’ locations throughout the nucleoid allowed for
separation of the proteins into two groups: 1. those that formed localized clusters and 2. those that
seemed to bind diffusely throughout the DNA [77]. Further evidence for large regions of protein
occupancy was found using a technique to isolate protein-DNA complexes in a non-specific man-
ner. Using this technique, Vora et al. describe large transcriptionally silent regions of extended
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protein occupancy (tsEPODs) that suggested a silencing role for the complexes [78].
Silencing of transcription through general protein occupancy was also consistent with the

known role of the Histone-like nucleoid-structuring protein (H-NS) in silencing AT rich DNA
by blocking RNAP access to the promoter region [79–82]. ChIP-chip (ChIP-Seq with using a mi-
croarray instead of sequencing) and ChIP-Seq studies have indicated that H-NS does indeed form
large regions of protein occupancy across the bacterial chromosome [83, 84]. It has been suggested
that H-NS’s primary biochemical role is to mediate DNA-DNA contacts by bridging together two
strands of DNA [85, 86]. In fact, in vitro studies using H-NS and its partner proteins StpA and Hha
have shown that, not only can H-NS prevent transcriptional initiation, but it can also promote the
pausing of RNAP during elongation, presumably by trapping the RNAP in a constrained topoiso-
metric state [87]. However, H-NS does not appear to be the only NAP bound up in tsEPODs, as
experiments with a �hns E. coli strain have shown that tsEPODs remain even in the absence of
H-NS (Peter Freddolino, personal communication).

Additionally, NAPs do not strictly silence gene expression by blocking initiation or disrupting
transcriptional elongation. The NAP, factor of inversion stimulation (Fis), has important roles in ac-
tivating the transcription of several genes. Like H-NS, Fis binds throughout the bacterial genome,
but it has more distinct peaks around promoter regions, albeit with a more diffuse background
binding signal [84]. Fis has been shown to increase the expression of a lacZ gene fused to the rrnB
promoter up to 20-fold in vitro [88]. It is thought that Fis directly interacts with RNAP upstream of
the UP site to promote transcription in this manner [89]. For some promoters, it has been proposed
that Fis mediates the local supercoiling of the DNA to facilitate transcriptional initiation, a mech-
anism that suggests a more general role for Fis activation beyond specific interactions with RNAP
[90]. The targeted nature of Fis regulation makes Fis more akin to a global regulator than a NAP
[91], but it also highlights the fluidity of these assignments and the difficulty of drawing distinct
boundaries for proteins with multiple avenues of regulatory control. The promoter-independent
aspects of transcriptional control have been best studied by using reporter constructs with identi-
cal promoters and inserting these reporters throughout the E. coli genome. Initial experiments of
this type suggested that position-dependent effects on transcription could be explained by a sim-
ple gene-dosage effects—rapidly dividing E. coli cells have multiple copies of genomic sequence
around the origin compared to a single copy around the terminus. Thus, reporters inserted closer
to the origin of replication had higher measured transcription levels than reporters inserted near
the terminus [92]. However, a later study found that reporters integrated in regions coinciding with
tsEPODs had lower expression than one would expect strictly from gene dosage effects [93]. For
both of these studies, observations were made from only a handful of sites, limiting the ability to
make any sort of broad conclusions about position-dependent transcription in E. coli. In Chapter
3, I present our published work on position-dependent effects on transcription at an unprecedented
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resolution of an average of one unique integration site every 47 bp in the E. coli genome. We
find that both Fis and H-NS are highly correlated with position-dependent expression levels of a
reporter gene with an identical promoter in each integration site. Consistent with the previously
identified functional roles of each NAP, we find that H-NS occupancy is negatively correlated and
Fis occupancy is positively correlated with transcription levels from our reporter library. Taken
together, we find that position-dependent and promoter-independent effects represent an additional
layer of regulatory control beyond the gene-specific impact of particular promoters.

1.3 Post-transcriptional control of gene expression

The process of transcription is not the only process where an “operator,” as proposed by Jacob
and Monod [31], could be used to control the expression of a gene. After the message has been
created, it still must be translated from the nucleic acid code into the amino acid code through the
actions of the ribosome. Thus, the mRNA represents a second chance to intercept or enhance the
expression of a gene through post-transcriptional control. In bacteria, the process of transcription
and translation are coupled and there is less room for control at this level [94]. Although several
mechanisms for post-transcriptional control in bacteria do exist, particularly the well studied Hfq-
sRNA system which uses base-pairing between a class of small RNAs (sRNAs) and target mRNAs
to either occlude the ribosome from initiating translation or recruit RNAses to degrade the mRNA
[95, 96], these systems are not the focus of this thesis. I will instead focus on mechanisms for
post-transcriptional control in eukaryotic systems.

Unlike bacteria, eukaryotes have a distinct nucleus that is separated from the cytosol by a nu-
clear membrane, decoupling the process of transcription from translation. The separation of tran-
scription and translation allows for a larger role for post-transcriptional regulation, as the nascent
mRNA message can be targeted at many steps before and after it is exported from the nucleus and
into the cytosol for translation [97].

1.3.1 Mature mRNA formation in eukaryotes involves several steps

Messenger RNAs in eukaryotes require processing at several stages to mature from a pre-mRNA
into a fully translatable mRNA. Although my thesis work is primarily focused on controlling the
decay of a particular message, an understanding of the complementary reactions that create the key
elements of a messenger RNA in eukaryotes is needed for putting the subsequent decay reactions
and their post-transcriptional control in context. The stages of mRNA formation include 5’ end
capping, splicing, 3’ end cleavage, and polyadenylation. Many of these processes happen simul-
taneously and most are coordinated through the actions of RNA-binding proteins (RBPs). Mature
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mRNAs are capped on the 5’ end by an N7 methylated guanosine residue that is connected by a
5’ to 5’ connection to the 5’ end of the nascent RNA. Capping happens co-transcriptionally early
during the synthesis of mRNA and is added by a complex of proteins that differs from organism
to organism [98]. Once created, the 5’ cap is bound by the Cap Binding Complex (CBC), which
plays various roles in controlling splicing, export, and ultimately, the initiation of translation [99].

Unlike bacterial genes, eukaryotic genes do not occur in continuous linear regions of the
genome; rather, they contain regions of coding sequence (exons) interspersed with regions of non-
coding sequence (introns). Thus, in order to create a mature mRNA molecule that will ultimately
code for a protein, the introns must be cut out and the exons must be stitched together. This process
is called splicing and is carried out by a specialized complex made of both RNA and protein called
the spliceosome. Through binding to the pre-mRNA, RBPs can mediate different choices of exons
to include or exclude for a given message, which leads to a substantial expansion of the possible
isoforms that can be encoded for from a single gene [100]. Splicing can also be mediated through
self-splicing introns, which were the basis for the discovery of catalytic RNA [101]; however,
splicing mediated through the spliceosome, like capping, often occurs co-transcriptionally [102].

After establishing the 5’end through capping and the central region of the mRNA through splic-
ing, the final aspect of the pre-mRNA must be processed to be converted into a mature mRNA.
Present in the 3’ un-translated (3’UTR) region of the nascent RNA is the sequence of AAUAAA,
a U-rich upstream element, and a G/U-rich downstream element that, together, serve as a sig-
nal to cleave the nascent mRNA and subsequently, act as a substrate for non-templated addition
of adenosine residues (polyA tail) to the 3’ end. Like the other steps described in this section,
cleavage and polyadenylation also occur co-transcriptionally and serve as the signal for transcrip-
tional termination [103]. However, many transcripts have several separate alternative cleavage and
polyadenylation sites, the choice of which can influence the identity of the 3’UTR and lead to
differential regulation downstream [104]. The polyA tail plays an important role in the stability of
the mRNA, and transcripts with shorter polyA tails tend to be degraded faster [105, 106]. Addi-
tionally, interaction of the 3’ polyA tail with the polyA binding protein PABP, together with the
5’ cap, form a loop that is stimulatory for the initiation of translation [107]. Thus, the polyA tail
plays a vital role in controlling the fate of the mature mRNA transcript.

Together, each of these steps define the anatomy of the mature eukaryotic mRNA. Starting
from the 5’ end the transcript consists of a 5’ cap, a 5’ untranslated region (5’UTR), a coding
region made up of spliced together exons, a 3’UTR, and finally the polyA tail. Each of these
regions of the mature RNA have a role to play in its life-cycle and ultimate translation, but the
3’UTR serves as one of the key operators that Jacob & Monod had postulated over fifty years ago
[108].
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1.3.2 Control of mRNA stability allows for a key locus of control

Like the production of mRNA, the decay of a eukaryotic mRNA is a multistep process involving
large enzyme complexes that act on each end, as well as the middle, of the mRNA. Each of these
steps represents a locus of putative post-transcriptional control and several different regulatory
factors take advantage of each stage of mRNA decay. Just as the cap and polyA tail were added
to the mRNA, they are also removed to allow access for exonucleases to facilitate mRNA decay.
Alternatively, endonucleases can cleave at internal sites in the mRNA to allow for access of free 5’
and 3’ ends to be degraded by exonucleases.

RNA decay in the cytoplasm is typically initiated through disruption of the translational initi-
ation complex involving the loop-like structure formed between the interactions of PABP and the
translation initiation factor 4F—a replacement for CBC in the cytosol after the pioneer round of
translation [109]. This process is thought to start primarily through deadenylation of the polyA
tail at the 3’ end of the mRNA [110]. The primary enzyme complex involved in deadenylation is
the Ccr4-Not complex, a multi-component enzyme complex with two catalytic members, Ccr4 and
Caf1. Ccr4 (CNOT6 and CNOT6L in humans) and Caf1 (CNOT7 and CNOT8 in humans) both
act together as catalytic subunits and each have 3’!5’ exonuclease activity that is polyA-specific
[111, 112]. The scaffold protein NOT1, the only subunit of the Ccr4-Not complex that is essential
in yeast, is involved in facilitating interactions between Ccr4, Caf1, and a menagarie of additional
proteins involved in making up the Ccr4-Not complex [112]. A secondary deadenylase complex,
the Pan2-Pan3 complex, also specifically degrades polyA tails in the 3’!5’ direction; however, it
appears to only degrade up to the last PABP protein [111]. Thus, a model has emerged suggest-
ing that the Pan2-Pan3 complex has a 3’ end trimming activity, whereas the Ccr4-Not complex is
involved in a second phase of deadenylation and polyA shortening [111, 113].

Deadenylation of an mRNA transcript results in the dissociation of PABP and the disruption of
the translation initiation complex. This disruption allows for the decapping complex, Dcp1-Dcp2,
to remove the 5’ m7G cap from the mRNA. Outside of deadenylation, additional enhancer proteins
can help facilitate cap removal, even during translation elongation [114].

The removal of the 5’ cap and 3’ polyA tail opens up the mRNA for attack by both 5’!3’ and
3’!5’ exonucleases for the full degradation of the mRNA transcripts. The key 3’!5’ exonuclease
in mammalian cells is an enzyme complex known as the exosome. After deadenylation, the RNA
exosome, together with the Ski proteins, proceeds to degrade the mRNA through the 3’UTR and
beyond [115, 116]. On the 5’ end of the molecule, XRN1 and XRN2 act as the 5’!3’ exonucleases
to degrade the mRNA after decapping [117]. By acting together, either simultaneously or alone,
these two pathways serve to completely degrade mRNA within the cytoplasm.
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1.3.3 Quality control and surveillance pathways promote decay through en-
donucleases

Decapping and deadenylation are not the only pathways that can lead to free 5’ or 3’ ends for
XRN1, XRN2, and the RNA exosome to act. Endonuclease activity is involved in both surveil-
lance and quality control mechanisms to target mRNAs for degradation. Three pathways involved
in the quality control of mRNAs through detection of the improper translation of a message include
Nonsense-mediated decay (NMD), nonstop decay (NSD), and no-go decay (NGD). NMD involves
the detection and degradation of mRNA transcripts with a premature stop codon, NSD detects and
degrades mRNAs with no stop codon, and NGD degrades mRNAs with a stalled ribosome [118].
NMD is the best studied of these pathways and occurs when the UPF1-SMG1 complex, associated
with the terminating ribosome, interacts with a UPF2-bound exon junction complex downstream
of the stop codon during the first round of translation [109]. A phosphorylation event occurs on the
UPF1 protein that then inhibits additional rounds of translation and promotes RNA decay, perhaps
through the recruitment of DCP1 and XRN1 [119]. Additional evidence suggests that NMD me-
diated decay can also occur through an endonucleolytic pathway through the catalytic activities of
the SMG6 protein. Additionally, both NGD and NSD are also thought to occur through endonucle-
olytic pathways[118]. Thus, these pathways represent a last line of defense for detecting mistakes
in messages and allow for rapid acceleration of the decay pathways through the exonucleases by
quickly creating free 3’ and 5’ ends through an endonucleolytic cleavage event [118].

In contrast to a general affinity for disrupted messages through the quality control pathways,
targeted control of specific mRNAs is achieved through the use of small non-coding RNAs—
called micro-RNAs (miRNA)—that, together with their protein partners, inhibit translation and
promote decay. Mature miRNAs are single stranded RNAs with an average length of 22 bases
that are bound by the Argonaute proteins to together make a RNA-induced silencing complex
(RISC) [120]. RISC complexes use the sequence of their bound miRNAs to recognize target
RNAs through complementary base-pairing, typically in the 3’UTR of target transcripts [121]. In
one mechanism of post-transcriptional control by miRNAs, the Ago2 protein of the RISC complex
cleaves the target mRNA in an endonucleolytic fashion after site specific recognition using the
miRNA [122]. After cleavage, the mRNA then becomes a substrate for the typical exonucleases
to fully degrade the mRNA. However, miRNA-induced silencing of gene expression has also been
shown to recruit factors involved in both deadenylation and decapping, and this is now thought to
be the primary mechanism of silencing by RISC complexes [123]. Due to the sequence specific
manner of miRNA binding, several groups have bioinformatically determined putative miRNA
binding sites for known miRNAs to varying degrees of accuracy [124]. Similar to global regulators
in bacterial transcriptional control, miRNAs target a large number of mRNAs and are involved in
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many biological processes [125].

1.3.4 RNA binding proteins promote decay through binding to the 3’UTR

Central to the control of mRNA metabolism is the role of RNA binding proteins. RNA binding
proteins regulate diverse processes from the control of splicing through the splicesome, to direct
involvement in mediating RNA decay by recruitment of deadenylases. A census of 1,542 human
RNA binding proteins indicated that, of the different classes of RNA binding proteins studied thus
far, the RNA binding proteins that are bound directly to mRNAs are by far the most abundant.
Furthermore, RNA binding proteins are more highly expressed than transcription factors across
diverse tissue types and they have substantial expression dynamics during tissue development,
particularly in neuronal tissue [126].

The most prototypical example of post-transcriptional control of gene expression through RNA
binding proteins revolves around the establishment of body segmentation in the developing Drosophila
embryo. In this process, a gradient of expression of the maternal RNA hunchback is established
through the action of the Nos and Pum proteins binding to a nos-response element in the 3’UTR
of the gene [127, 128]. After binding of the Pum-Nos complex, translation initiation is blocked
and the hunchback gene is silenced [129]. Disruption of the activity of either the Pum or Nos pro-
teins results in incorrect patterning and development of the embryo [130]. Further work with Pum
proteins in both Drosphila and Homo sapiens has unraveled key aspects of Pum function, such as
its recruitment of the Ccr4-Not complex to facilitate deadenylation [131], and the structural deter-
minants of its high sequence specificity [132]. Additionally, the activity of Pumilio proteins have
been implicated in a number of developmental functions, such as neurological development and
cancer [133]. Recent measurements of the effect of the human members of the Pumilio family
of proteins on steady state RNA abundances have identified over 1000 transcripts that change in
steady state abundance when the Pumilio proteins are knocked down [134]. Models using a simple
count of Pumilio sequence motifs in the 3’UTR of target transcripts fail to account for the full vari-
ance of Pum-mediated control of RNA abundances [134]. Several groups have suggested the Pum
proteins may interact with the miRNA system due to overlaps in binding sites between the two
systems [135, 136] and human Pum proteins have been shown to remodel RNA secondary struc-
ture during coregulation with miRNAs for some targets [137]. Key to understanding regulation
by Pumilio proteins is the ability to measure RNA decay at a global level. In Chapter 4, I review
high throughput sequencing techniques that allow for the measurement of RNA decay at a global
level both within and between samples. Additionally, I discuss some of the standard computational
methods used to process data from these experiments as well as suggesting new ways to maximize
the utility of sparse decay data. In Chapter 5 we use these techniques to measure changes in RNA
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decay mediated by PUM1 and PUM2, the two human PUM homologues. There, I define sequence
determinants of PUM action in human cell culture, revealing a rulebook for the ideal PUM bind-
ing site, based on contextual features around predicted binding sites, to facilitate regulation by the
protein.

1.4 Interactions between protein and nucleic acid at the center
of gene regulation

Throughout this introduction, I have discussed several examples of protein-mediated control of
the processes of transcription and translation through interactions with specific sequences of DNA
or RNA, respectively. In the coming chapters, I will give more detail on exactly how specific
proteins mediate gene regulation in both bacteria and human cells as measured through large high-
throughput experiments. Although the details differ, understanding the interactions between pro-
teins and nucleic acids is fundamental to predicting the functioning of biological systems. In
Chapter 6, I give my perspective on some of the key findings from the particular systems under
study. I also highlight gaps in our knowledge, focusing on the complex role that higher order struc-
ture and context play in determining how genes are regulated. Thus, my graduate work represents
a conceptual bridge between the work defining the detailed molecular mechanisms of the key com-
ponents driving biological systems, as presented in this introduction, and the emergent properties
resulting from the higher order interactions between said components into which we are just now
beginning to gain mechanistic insight.
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CHAPTER 2

Escherichia coli Lrp regulates one-third of the
genome via direct, cooperative, and indirect routes

2.1 Contribution details

This work was reproduced from its published form, with permission, from Kroner et al. [138].
I am a co-first author on this manuscript and I developed the entire computational pipeline for
analyzing the ChIP-seq and RNA-seq data used in this study. In addition, I created my own ChIP-
seq peak caller that is described in detail in the methods section and is available freely online on
Github (link in the methods section). The figures in this manuscript are a mix of those created
by both Grace Kroner and me. The intellectual content and models about Lrp action come from
many conversations between Grace, Peter, and me as we strove to make sense of this complicated
system. Likewise, the text is also a combination of work between Grace, Peter, and me.

2.2 Abstract

The global regulator Lrp plays a crucial role in regulating metabolism, virulence and motility
in response to environmental conditions. Lrp has previously been shown to activate or repress
approximately 10% of genes in Escherichia coli. However, the full spectrum of targets, and how
Lrp acts to regulate them, has stymied earlier study. We have combined matched ChIP-seq and
RNA-seq under nine physiological conditions to comprehensively map the binding and regulatory
activity of Lrp as it directs responses to nutrient abundance. In addition to identifying hundreds of
novel Lrp targets, we observe two new global trends: first, that Lrp will often bind to promoters
in a poised position under conditions when it has no regulatory activity to enable combinatorial
interactions with other regulators, and second, that nutrient levels induce a global shift in the
equilibrium between less sequence-specific and more sequence-specific DNA binding. The overall
regulatory behavior of Lrp, which as we now show extends to 38% of E. coli genes directly or
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indirectly under at least one condition, thus arises from the interaction between changes in Lrp
binding specificity and cooperative action with other regulators.

2.3 Introduction

Regulation in response to changing nutrient conditions is a vital characteristic for free-living mi-
crobes, which must rapidly sense and respond to their environment in order to optimize fitness. The
frequently-studied model microbe Escherichia coli (E. coli) uses a hierarchical regulatory archi-
tecture to coordinate responses to environmental changes, with the activity and actions of dozens
of specific transcription factors organized by seven global regulators: ArcA, FNR, Fis, CRP, IHF,
H-NS and Lrp [49]. E. coli Lrp is the eponymous member of the Lrp/AsnC protein family, and
regulates 70% of the 215 genes with differential expression upon entrance to stationary phase [55].
It influences a variety of cellular processes: amino acid synthesis, degradation and transport, porin
expression, and pilus formation [53, 54]. The latter represents an example of how Lrp homologues
have recently been tied to expression of virulence genes [139–144].

Lrp itself is an 18 kD protein containing a helix-turn-helix DNA binding domain and a regulator
of amino acid metabolism (RAM) domain [59]. In vivo, it is thought to exist in an equilibrium
between octameric and hexadecameric states [145]. Binding of leucine to the RAM domain is
known to favor formation of octamers over hexadecamers [56] and to increase the nonspecific
DNA binding affinity of Lrp [146]. In addition, the presence of leucine can affect Lrp’s regulatory
role. Depending on the target, Lrp either activates or represses transcription, and in turn, leucine
binding to Lrp either potentiates, inhibits, or has no effect on Lrp function [58]. Recent studies
also indicate that Lrp may respond to other amino acids, including alanine, methionine, isoleucine,
histidine and threonine [57]. Cho et al. [58] performed chromatin-immunoprecipitation (ChIP)
using epitope-tagged Lrp under three conditions, resulting in expansion of the known Lrp regulon
to 138 binding-sites. However, based on estimates about the levels of Lrp and the percentage found
free of the nucleoid [146], we estimate that there should be between 400 and 500 Lrp octamers
bound and capable of modulating transcription levels under logarithmic growth in both rich and
minimal media conditions. Additionally, we still lack a mechanistic understanding of how Lrp
regulation occurs.

Making use of a carefully refined ChIP-grade antibody for Lrp, we employed chromatin-
immunoprecipitation followed by DNA sequencing (ChIP-seq) of native Lrp in a variety of media
conditions and growth phases to assess the full spectrum of Lrp binding sites. Coupled RNA-seq
experiments on both wild type (WT) and Lrp knockout (lrp::kanR) cells enabled us to distinguish
between productive and apparently non-functional binding events, and between direct and indirect
Lrp regulatory targets. This rich, high-confidence data set has allowed us to categorize hundreds
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of novel direct and indirect Lrp targets, representing 38% of genes in E. coli (roughly one-sixth
of which are direct targets of Lrp) compared to the 2.3% currently documented in RegulonDB
[48]. The fact that many of the newly identified Lrp targets are only apparent under physiological
conditions which had not been included in prior studies of the Lrp regulon underscores the impor-
tance of considering a wide range of conditions in any survey of transcription factor activity, and
also highlights the physiological role of Lrp in balancing foraging and biosynthetic strategies as
nutrient conditions change.

We also identify a surprising but highly prevalent mode of Lrp binding in which Lrp binds to
a site under many physiological conditions, but only alters transcription under certain conditions,
similar to poised transcription factor binding in eukaryotes [147, 148]. We show that some of
Lrp’s poised regulation may be explained by interactions with other regulatory factors such as
the nitrogen-response sigma factor, �54, as well as to changes in Lrp binding occupancy that are
consistent with changes in Lrp’s oligomerization state. Despite extensive efforts, we were unable
to identify systematically enriched sequence determinants sufficient to either explain transitions
from poised to active regulation, or predict Lrp activation from Lrp repression. However, we did
observe a shift in Lrp’s DNA binding specificity in response to varying nutrient conditions. The
conservation of Lrp across many species of bacteria and archaea [149] argues for its critical role
in organismal survival, and here we provide the most comprehensive picture of the Lrp regulon in
E. coli to date, establishing rules for Lrp behavior that will likely illuminate study of the protein
in many species. The general principles of Lrp’s behavior across conditions may also serve as a
template for other bacterial global regulators.

2.4 Results

We performed both ChIP-seq and RNA-seq on WT and Lrp knockout (lrp::kanR) cells to establish
a global picture of Lrp binding and regulatory effects in nine physiological conditions. Conditions
and time points will be referenced as follows: the time points are denoted X Log (logarithmic
phase), X Trans (transition point), and X Stat (stationary phase), where the X may be MIN (mini-
mal media), LIV (minimal media supplemented with branched-chain amino acids), or RDM (rich
defined media); representative growth curves for each condition are shown in Figure 2.1. Overall,
the combination of Lrp binding data from the ChIP-seq experiments and the expression data from
the RNA-seq experiments resulted in identification of hundreds of novel Lrp targets (Figure 2.2,
Table 2.1). Care must be taken while interpreting these results, as knocking out a global regulator
such as Lrp may induce some regulatory re-wiring that is perhaps distantly related to Lrp’s normal
biological function. For ChIP-seq analysis we are only using the knockout strain samples as a
control to filter out peaks resulting from non-specific interactions of the antibody with complexes

21



other than Lrp. For the RNA sequencing results we are looking at transcriptional changes between
the WT and lrp::kanR strains, and it is possible that some of the changes in transcription may be
a result of this regulatory rewiring. Therefore, some false positives are unavoidable. Nevertheless,
we find this data to be a valuable resource for exploring the full scope of Lrp regulatory activ-
ity. Thus, when we observe, and state, that a given gene is ‘regulated’ by Lrp, we mean by this
that its transcript level changes substantially in the complete absence of Lrp—we find this to be
an appropriate definition to reflect the extremely broad impacts of a global regulator such as Lrp
on cellular regulation and physiology. For the more specific definition of genes that are regulated
directly by Lrp binding to their promoters, we introduce below the concept of a ‘direct target’ of
Lrp, which defines a more narrowly construed Lrp regulon based only on effects in cis at specific
target promoters.

Many well-studied Lrp targets are reproduced in our data. For example, IlvI (b0077) is an
enzyme critical for valine and isoleucine biosynthesis that is known to be activated by Lrp [150].
Consistent with prior work, we see a strong Lrp binding signal at the ilvI transcription start site
(Figure 2.2B, top panel), and a Lrp-dependent activation of ilvI transcription in several media con-
ditions (Figure 2.2B, bottom panel). The extent of activation is weakened or eliminated completely
in LIV or RDM conditions, in agreement with previous studies showing that leucine inhibits the
Lrp-mediated activation of ilvI [50]. Similarly, we also see strong binding at the promoter of sdaA
(b1814), a serine deaminase that has been previously shown to be repressed by Lrp in minimal
media [58] (Figure 2.2C). Consistent with prior reports, this repression and binding is relieved in
the presence of exogenous leucine. Due to the higher resolution of our ChIP-seq data compared to
that of prior ChIP-chip studies, we are able to resolve an additional peak in the MIN conditions at
the 3’ end of the sdaA coding region that may play a role in the repression seen exclusively in these
conditions. Note that the lack of a unique transcription start site for pdeD precluded classification
of pdeD in our analysis pipeline.

2.4.1 ChIP-seq identifies hundreds of novel Lrp binding sites

While the level of Lrp protein remained fairly stable across the conditions that we tested (Figure
2.3), we observed a ten-fold range (between 61 and 638) in the number of Lrp peaks identified
across the nine physiological conditions examined here. Fewer Lrp binding sites are identified in
media with higher nutrient conditions (either LIV or RDM) relative to the MIN (summarized in
Figure 2.2A), in agreement with previously published Lrp ChIP data [58] and with Lrp’s known
role as a regulator which responds to decreasing nutrient levels. However, our data identifies
between 1.8-fold (at LIV Log) and 4.8-fold (at MIN Stat) more binding sites overall than previous
studies [58]. In general, we document more Lrp binding sites at later time points (Trans and
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Figure 2.1: Representative growth curves for each condition. Arrows indicate approximate position on the growth
curve for each timepoint.

No. (%) of total genes significantlya:
Condition Upregulated by Lrp Downregulated by Lrp
MIN Log 251 (5.39) 227 (4.87)
MIN Trans 453 (9.73) 635 (13.63)
MIN Stat 90 (1.93) 71 (1.52)
LIV Log 147 (3.16) 258 (5.54)
LIV Trans 105 (2.25) 138 (2.96)
LIV Stat 99 (2.13) 71 (1.52)
RDM Log 41 (0.88) 90 (1.93)
RDM Trans 58 (1.25) 21 (0.45)
RDM Stat 728 (15.63) 670 (14.38)
aPercentage is out of the total number of genes in E. coli (4,658).

Table 2.1: Genes with significant Lrp-dependent changes in expression
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Figure 2.2: ChIP-seq data shows agreement with previous data and reveals novel Lrp binding sites. (A) Total number
of high-confidence Lrp binding sites identified in each condition (black circles), and the number of genes upregulated
and downregulated by Lrp in each condition based on RNA-seq. (B) ChIP robust Z-score (top) and RNA-seq expres-
sion change (log2(WT/KO); bottom) for known Lrp activated target ilvI. Error bars for the RNA-seq data indicate a
percentile based 95% confidence interval from 100 bootstrap replicates of expression levels, with conservative pooling
of replicate information (see Section 2.6.15 for details). Labels above each bar indicate classification of the gene based
on combining RNA-Seq and ChIP-Seq results (D-Direct Lrp target, I-Indirect Lrp target, P-Poised Lrp binding site
with no regulatory effect under that condition, N-No Lrp Link; see Figure 2.6A and accompanying text for details of
the classification). Dashed lines in RNAseq plots indicate a 1.5 fold cutoff for the ratio between WT and KO strains
needed for biological significance (see Section 2.6.15 for details). In the genomic diagram above the plots, open read-
ing frames (ORFs) are shown in black, regulatory regions (as defined in our Methods but without the 250 bp padding)
in purple, and the particular gene of interest in orange; we follow this color scheme throughout the text. (C) ChIP
robust Z-score (top) and RNA-seq expression change (log2(WT/KO); bottom) for known Lrp repressed target sdaA,
panels as in B.
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Stat) relative to Log (Figure 2.2A); again in agreement with previously published Lrp ChIP data
[58] and with the known role of Lrp as being a critical regulator at the transition to stationary
phase. As would naturally be expected, we saw strong enrichment of Lrp binding sites among
regulatory regions of the genome (see Section 2.4.8). Comparing our data to previously published
ChIP-chip studies [58], we identify extensive overlap in binding locations: 96% of sites in prior
ChIP-chip data are reproduced in our data at MIN Log (27.7 fold enrichment compared to a null
distribution of randomly shuffled peaks of identical lengths; p < 0.001, permutation test, r =

1000; here and throughout the chapter we use r to refer to the number of replicates used for
resampling tests), 44% at LIV Log (123.0 fold enrichment compared to a null distribution, p <

0.001, permutation test, r = 1000) and 84% at MIN Stat (15.5 fold enrichment compared to
a null distribution, p < 0.001, permutation test, r = 1000). The larger disparity at LIV Log
is likely due to differences in metabolic responses upon addition of leucine alone (as in prior
studies) versus supplementation with leucine, isoleucine and valine as in our study. Overall, across
the conditions in our study, we identified over 730 novel Lrp binding sites, 198 only occurring
under conditions that had not previously been tested and 532 occurring under conditions similar
to those tested previously, highlighting both the enhanced resolution given by modern sequencing
techniques [151] and the general need to explore a broad range of condition space to understand
the complete regulon of any transcriptional regulator (Binding sites under each condition in the
regulatory regions of genes are enumerated in Supplementary Data File 1; data on all identified
binding sites can be accessed at GEO Dataset GSE11874). In fact, our newly identified binding
sites found in conditions that have been previously studied with ChIP-chip [58] have, on average,
lower ChIP-signal at their peak summits than the peaks that overlap with the peaks found in the
previous ChIP-chip study (Figure 2.4). However, the newly identified direct Lrp targets in this
study have a similar distribution of magnitude log2 fold change in RNA expression as genes that
were previously annotated as Lrp targets in RegulonDB (Figure 2.5), showing far more overlap
with the effect sizes shown for previously annotated targets than did the ChIP signals in Figure 2.4.
Taken together with our stringent data analysis pipeline, these data suggest that the novel sites we
are identifying in this study represent functional Lrp binding sites that are revealed by our more
sensitive experimental methods.

2.4.2 Lrp’s regulatory effects are broad and highly condition specific

Through our use of parallel RNA-seq experiments in WT and lrp::kanR cells, we were able to
identify the full range of transcripts showing Lrp-dependent regulation across the conditions in our
study. Based on our RNA-seq data, we find that the number of genes regulated by Lrp varies across
conditions from 1.7% to 30.0% of all known E. coli genes (Figure 2.2A, Table 2.1); in all, 2,459
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Figure 2.3: Lrp levels are consistent within each condition. Western blots of whole cell lysate harvested at indicated
times across the experimental time course (times are given in hours; compare with Figure 2.1 for representative growth
curves covering the same time range). Lysate was quantified by Bradford assay, and 15 µg of total protein was loaded
for the MIN and LIV time courses (except for samples at 13.1 (⇠7.9 µg), 13.8 (⇠6.3 µg), 15.3 (⇠13.1 µg), and 18.2
hours (⇠5.4 µg) in the MIN time course which were too dilute to reach 15 µg); 20 µg of total protein was loaded for
the RDM time course (except for the samples at 3.9 (⇠2.3 µg) and 4.8 hours (⇠13.2 µg) which were too dilute to
reach 20 µg). Molecular weight ladder markers are indicated in the leftmost lane.
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Figure 2.4: Newly identified Lrp peaks have a lower overall ChIP-seq signal than those previously identified by ChIP-
chip. Box plots representing the distribution of the peak summit RZ score for peaks identified in this study. The
data is split into novel peaks identified only in this study and peaks identified in this study that overlap with previous
ChIP-chip data from Cho et al. [58]. Only the conditions that were similar between this study and the Cho et al. [58]
study are shown.

genes (52.8% of all genes in E. coli) show Lrp-dependent changes in transcript levels under at least
one condition (see Section 2.6.15 for details). Lrp-dependent RNA expression changes for each
categorized gene can be found in Supplementary Data File 1. Overall RNA expression changes for
all annotated genes in both WT and lrp::kanR cells can be accessed at GEO dataset GSE11874.

Comparing all genes with a Lrp-dependent change in expression in our RNA-seq data to genes
previously identified as Lrp targets, our data set overlaps with 73% of the known targets in Reg-
ulonDB (1.38 fold enrichment compared to a null distribution of randomly shuffled gene names,
p < 0.001, permutation test, r = 1000), 81% of the previously identified ChIP-chip targets (1.53
fold enrichment compared to a null distribution, p < 0.001, permutation test, r = 1000) (15),
and 89% of the previously identified microarray targets (1.68 fold enrichment compared to a null
distribution, p < 0.001, permutation test, r = 1000) [55], showing good agreement across the
variety of strains and media conditions present in the compared studies, despite some variations in
precise experimental conditions (it is important to note that the large fraction of the genome that is
regulated by Lrp imposes a fairly low upper limit on the amount of enrichment possible when com-
paring with prior lists of targets). Our data also reveals 2,241 genes with previously undocumented
Lrp-dependent expression.
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Figure 2.5: Newly identified Lrp direct targets have a similar magnitude change in RNA expression as known Lrp
targets. Box plots representing the distribution of magnitude log2 fold change in RNA expression as compared between
WT and lrp::kanR strains and calculated as described in Section 2.6.7. The data is split into newly identified direct
Lrp targets and Lrp targets that were previously identified as indicated by RegulonDB. All nine conditions are shown
here.
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2.4.3 The majority of Lrp-dependent regulation occurs via indirect effects

Global regulators are known to act both directly, by binding target sites and modulating transcrip-
tion levels, and indirectly, by modulating the expression of other transcription factors or regulatory
RNAs which have their own targets [49]. Previously, most focus on Lrp regulation has been at
the direct target level. By comparing the binding data from our ChIP-seq experiments and the
corresponding expression data provided by our RNA-seq experiments, we are able to identify and
categorize both direct and indirect targets under a variety of physiological conditions (see Section
2.6.17). Direct and indirect targets are both characterized by Lrp-dependent changes in transcript
level, but only direct targets have a Lrp binding signal in their regulatory regions, defined as 250
bp upstream and downstream of all annotated transcription start sites in RegulonDB (Figure 2.6A;
annotations from RegulonDB; see Section 2.6.17 for details).

In order to allow cross-referencing of our binding and expression data, we restrict our analysis
here to the set of genes for which an annotated transcription start site exists in the PromoterSet
dataset in RegulonDB version 9.4 [48], or an unannotated transcription start site exists in the same
direction within 500 base pairs upstream of the start of the coding region (covering 2908 genes out
of the possible total of 4658). Typically, this categorizable subset includes the first gene in each
transcriptional unit, as well as any genes with additional internal promoters. A heatmap of clas-
sifications for all categorizable genes across conditions is shown in Figure 2.6B. Additionally, the
total number of direct and indirect targets which were identified in previous studies are tabulated
in Table 2.3.

From our analysis of that categorizable subset, we note that 37.8% of all E. coli genes are reg-
ulated by Lrp, either directly or indirectly, in at least one condition. Out of those, about 10% are
only ever regulated directly across the experimental conditions, 84% are only ever regulated indi-
rectly, and 6% are regulated directly and indirectly in different conditions. Due to the restriction
on categorizing genes noted above, the counts given here are an underestimate. Even so, we also
observe a dramatic increase in the number of indirect targets at MIN Trans and RDM Stat, going
from 237 to 610 indirect targets between MIN Log and MIN Trans, and from 36 to 985 indirect
targets from RDM Trans to RDM Stat.

Given the high proportion of indirect Lrp targets, and especially the dramatic increase in the
number of indirect targets at MIN Trans and RDM Stat (Figure 2.6B), we investigated whether
some of the expression changes of those indirect targets can be explained by the activity of di-
rect Lrp targets at those time points. As Lrp is a global regulator, we expected to find that some
percentage of its indirect targets at each condition were annotated targets of transcriptional regula-
tors categorized as direct Lrp targets under that condition (all transcription factor-gene interactions
were taken from RegulonDB [48]; see Section 2.6.17 for details). We would expect that in such
cases, we should observe an enrichment among Lrp indirect targets of genes known to be regulated
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by Lrp direct targets. We observe significant (q < 0.05, permutation test), albeit small, enrichment
of explainable indirect targets at LIV Log and RDM Stat; a maximum of 5.2% of indirect targets
can be explained by the currently known targets of direct Lrp targets (Table 2.2). Several key
transcription factors that are direct Lrp targets are responsible for explaining the identified indirect
Lrp targets across conditions: Nac, LrhA, LeuO, ArgR, QseB, CysB, SlyA, SoxS, and GadW (Ta-
ble 2.2). Many of these transcription factors have been previously identified as Lrp targets [152].
Direct Lrp targets that are not currently identified as transcriptional regulators or regulators with in-
completely documented regulons could account for why we are not able to explain more instances
of indirect regulation, as could transcriptional units regulated by aspects of cellular state that are
themselves Lrp-dependent (recent large-scale studies based on current annotations of the E. coli
transcriptional regulatory network demonstrate that our current enumeration of regulatory interac-
tions is incomplete [70]). In addition, regulatory RNAs that are direct Lrp targets are also likely
important in mediating indirect regulation. However, based on current RegulonDB annotations, we
are unable to account for any indirect targets in this manner. Since our classification scheme allows
for some genes within operons to be separately annotated from transcription of the full operon due
to existing internal TSSs, it is possible that some indirect targets could be accounted for by direct
Lrp regulation of the gene’s parent operon. Additionally, it is also possible that Lrp may be me-
diating transcription by binding within a particular gene’s coding region, rather than its TSS. We
therefore subclassified our indirect targets into these possibilities and noted that both cases repre-
sent a small fraction of indirect targets in all conditions (Figure 2.7B). Furthermore, Lrp binding
within the coding region of genes does not appear to meaningfully impact raw RNA-Seq coverage
as would be expected if Lrp was interfering with transcription by binding within the coding region
of genes (Figure 2.7C-E).

Investigating at a local as opposed to global scale provides several informative examples of
indirect regulation by Lrp. At LIV Log, LIV Trans and RDM Log, the dual regulator LrhA is
a direct Lrp-activated target gene (Figure 2.6C). LrhA represses flhC and flhD (Figure 2.6D). At
LIV Trans, flhC is indirectly repressed, and at RDM Log, both flhC and flhD are indirectly re-
pressed (Figure 2.6C). While this pattern does not show activity at all LrhA targets in each condi-
tion (for example, fimE is known to be activated by LrhA in some conditions, but does not show
a Lrp-dependent response under conditions tested here), overall it suggests that indirect regulation
of flhCD by Lrp may be explained in some cases by direct LrhA activation by Lrp. All three target
genes (fimE, flhC, and flhD) are also known to be regulated by other transcription factors, poten-
tially explaining the incomplete activity from LrhA. Similarly, at MIN Trans, the transcriptional
regulator CysB is a direct Lrp-repressed target gene (Figure 2.6E). CysB is known to activate tcyP
and cysI, among other genes (Figure 2.6F). Both tcyP and cysI were categorized as indirect Lrp-
repressed targets, supporting the hypothesis that Lrp repression of cysB is what leads to repression

30



Total Number (Percentage) Number of direct
indirect of indirect targets targets implicated in
targets explained by direct targets indirect regulation Fold-enrichmenta p-value q-value

MIN Log 237 6 (2.53%) 2 (LeuO, GadW) 2.73 0.121 0.218
MIN Trans 610 29 (4.75%) 6 (Nac, ArgR, CysB, SlyA, SoxS, GadW) 1.20 0.086 0.193
MIN Stat 76 2 (2.63%) 1 (ArgR) 1.56 0.621 0.799
LIV Log 252 13 (5.16%) 2 (LeuO, GadW) 4.84 0.001 0.009
LIV Trans 121 1 (0.83%) 1 (LrhA) 6.01 0.206 0.309
LIV Stat 104 0 (0%) 0 0 1 1
RDM Log 56 2 (3.57%) 1 (LrhA) 12.98 0.026 0.078
RDM Trans 36 0 (0%) 0 NA 1 1
RDM Stat 985 12 (1.22%) 3 (QseB, GadW, SlyA) 2.08 0.002 0.009
aFold enrichment is calculated by dividing the fraction of indirect targets
regulated by direct targets, by the fraction of all classified genes that are regulated by direct targets.

Table 2.2: Numbers of indirect targets in different conditions and results of a permutation test for enrichment of
indirect Lrp targets among known targets of Lrp direct targets.

of tcyP and cysI. The transcription factor GadW is an interesting example in that it is a direct
Lrp-repressed target at LIV Log and a direct Lrp-activated target at RDM Stat. At both condi-
tions, more than 75% of GadW’s classified annotated targets are indirect Lrp targets, all repressed
at LIV Log and all activated at RDM Stat, as would be expected if GadW activates them. Thus,
this illustrates another case where indirect Lrp-mediated regulation is explained by identifying a
transcription factor which is a direct Lrp target. However, it is important to note that due to the in-
terconnected regulatory network of E. coli, compensatory and interconnecting mechanisms likely
also contribute to the regulation of these targets; Lrp is unlikely to be the sole regulator responsible
for the observed behavior, and other Lrp-dependent pathways may also act in parallel with those
suggested.

2.4.4 The majority of Lrp binding reflects poised, rather than active, regu-
latory sites

In addition to the indirect regulation discussed above, our data shows many examples of a converse
mode of Lrp activity, in which binding of Lrp is apparent at a particular promoter, but there are no
Lrp-dependent changes in expression (Figure 2.6A). In fact, these sites comprise as little as 53%
(at LIV Log) to as much as 92% (at MIN Stat, LIV Stat, and RDM Trans of all instances of Lrp
binding (Figure 2.7A). We refer to such cases as poised targets of Lrp, since they suggest that Lrp
is bound in preparation for regulatory activity under changed conditions. The regulatory potential
of the identified poised sites is apparent from the fact that across the set of nine experimental con-
ditions in our study, 40% of genes that are poised targets in at least one condition become direct
targets in a different condition, and conversely, 93% of direct Lrp targets are poised targets under at
least one other condition (several such cases are discussed in the following section; for further dis-
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Figure 2.6: Lrp regulates genes both directly and indirectly. (A) Schematic showing how genes were categorized:
direct targets of Lrp (Lrp-bound regulatory region and with a significant RNA expression change between WT and
lrp::kanR cells), indirect targets (not bound but with a significant RNA expression change), poised targets (bound but
with no significant RNA expression change), or not linked (not bound and no significant RNA expression change).
Filtering was done independently for each condition. (B) Heat map indicating how each gene was classified in the
nine experimental conditions. Genes with no Lrp link in any condition were removed from visualization. Genes were
hierarchically clustered using a Manhattan distance metric and average linkage clustering. Pink boxes mark out notable
clusters of genes: those with leucine-dependent or -independent binding. (C) ChIP density and RNA-seq expression
change (log2(WT/KO)) for direct Lrp target LrhA and its known target genes, FimE, FlhC and FlhD (56). Error bars
for the RNA-seq data indicate a percentile based 95% confidence interval from 100 bootstrap replicates of expression
levels. Labels above each bar indicate classification of the gene based on combining RNA-Seq and ChIP-Seq results
(D-Direct Lrp target, I-Indirect Lrp target, N-No Lrp Link) (D) Proposed model of Lrp/LrhA mediated regulation of
LrhA targets. (E) ChIP density and RNA-seq expression change (log2(WT/KO)) for direct Lrp target CysB and some
of its known target genes, TcyP and CysI (56), as in C. (F) Proposed model of Lrp/CysB mediated regulation of CysB
targets. In both (C) and (E), only conditions where LrhA or CysB was a direct target are shown.
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Figure 2.7: Subclassification of Poised and Indirect targets. (A) Subclassification of poised Lrp targets into additional
categories per condition. Direct is the same classification as Figure 2.6A. Poised are genes that transition to direct
targets in at least one condition. Poised nearby direct are genes that were classified as poised but have a gene within
1000 bp that was classified as direct in the same condition. Poised uncertain direct represent genes that we do not have
strong enough evidence from our RNA-seq data to decisively conclude that they are not transcriptionally regulated by
Lrp in that condition. Poised unexplained represent poised genes in which the conservative 95% confidence interval for
the RNA-seq data falls entirely within the region of practical equivalence. (B) Subclassification of indirect Lrp targets
into additional categories per condition. Indirect operon direct represent indirect targets that are part of an operon that
is a direct target in the same condition. Indirect peak in cds represent targets that have a Lrp peak overlapping their
coding region but not their regulatory region. Indirects represent all indirects that do not fall into either of the other
two categories. For both subclassifications more details can be found in the methods. (C-E) Selected examples of
genes subcategorized as indirect peak in cds. Here, RNA coverage in MIN Trans is plotted as Fragments per Million
(FPM) for each replicate of both WT and lrp::kanR strains. Peaks in MIN Trans are represented above each plot as a
red bar and labeled as MIN Trans #, where the # represents the peak number in the associated GEO narrowPeak files.
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cussion on the classification of poised targets, including analysis of the ⇠60% of poised targets that
do not become direct targets, see Section 2.4.9). Among genes that undergo a transition between
being a poised target and a direct target, 37.8% become activated, 45.9% become repressed, and
16.2% become both activated and repressed in different conditions. The gene brnQ, for example,
shows a strong Lrp binding site in its regulatory region under all conditions that we studied, but is
only Lrp-repressed under a subset of those conditions, and under other conditions is clearly unaf-
fected by Lrp (Figure 2.8A). On the other hand, consistently poised binding is apparent at the mog
gene; its promoter region is bound by Lrp in 7 of the 9 conditions we studied, but never exhibits
a significant change in expression, thus making it a poised target in all of those conditions (Figure
2.8B). Interestingly, mog plays a role in the synthesis of molybdenum-containing cofactors [153]
and is non-essential in the conditions we are studying here [48]. The consistent binding of mog’s
promoter by Lrp suggests that Lrp is poised to regulate mog, and that it may be a direct target of Lrp
under conditions not tested here (perhaps those involving changing molybdenum concentration, as
all of our conditions supply abundant molybdenum as part of the MOPS micronutrient mixture
[154]). In our consideration of poised targets, it is important to note that some fraction of targets
that we assign as poised may actually represent direct targets that our differential expression anal-
ysis lacks the power to detect, although this scenario likely accounts for only a minority of cases
(see Section 2.4.9). At a system-wide level, it is particularly apparent from the highlighted blocks
of leucine-dependent and leucine-independent binding sites in Figure 2.6B, that many genes are
bound by Lrp under a far broader range of conditions than the set under which they are regulated
by Lrp (or at least by Lrp alone). These findings suggest more broadly that Lrp is often poised
at a particular gene under many conditions, but may act combinatorially with some other factor
or environmental stimulus in order to actually alter expression. The total number of poised genes
which overlap with those identified in previous studies are enumerated in Table 2.3.

2.4.5 Poised Lrp targets enable condition-specific combinatorial regulation

The abundance of genes that shift between direct and poised Lrp targets across conditions suggests
that Lrp binds some promoters in a poised position under a broad range of conditions, but only
regulates when certain additional criteria are met, perhaps by coordinating with a second regulatory
factor to enable combinatorial logic, or acting completely redundantly with a second factor to
repress or activate transcription from a particular target. That second regulator could in principle
be a sigma factor, another classical transcription factor, or even a nearby condition-dependent Lrp
binding site; we in fact observe examples of all three such scenarios in our data.

Lrp binding at the potF promoter region represents a case of additional nearby Lrp binding
being associated with conversion of a poised to a direct target. A strong Lrp binding signal is seen
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Figure 2.8: Poised targets show condition dependent Lrp regulation separate from their Lrp binding profiles.(A) ChIP
robust Z-scores (left) and Lrp dependent RNA-seq expression change (log2(WT/KO); right) for Lrp poised target
brnQ, which shows condition invariant binding but is clearly Lrp regulated only under some conditions (MIN Log,
MIN Trans, RDM Stat), whereas in other conditions it can be confidently said to have no substantial Lrp-dependent
effect (LIV Stat, MIN Stat). Coloring as in Figure 2.2B. (B) As in panel A, but for the mog gene, which shows
constitutive Lrp binding but no direct Lrp-dependent regulation under the conditions studied.
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LIV Log LIV Trans LIV Stat MIN Log MIN Trans MIN Stat RDM Log RDM Trans RDM Stat
Total Direct Targets 33 39 20 93 196 43 25 23 69
Total Indirect Targets 252 121 104 237 610 76 56 36 985
Total Poised Targets 37 213 237 276 335 489 155 277 114
RegulonDB Overlaps (103 annotated targets)
Direct 12 11 5 16 18 6 12 11 5
Indirect 9 4 3 12 12 5 2 2 16
Poised 4 8 18 9 11 23 9 13 17
No Link 34 36 33 22 18 25 36 33 21
Microarray overlaps (53 annotated targets)
Direct 3 2 0 4 7 4 2 1 3
Indirect 29 5 2 19 9 3 3 0 37
Poised 0 3 5 2 2 4 2 4 1
No Link 13 35 38 20 27 34 38 40 4
ChIP-chip overlaps (185 annotated targets)
Direct 20 22 9 49 48 22 20 16 34
Indirect 13 9 3 22 17 4 5 2 22
Poised 14 40 62 30 33 59 53 62 41
No Link 72 48 45 18 21 34 41 39 22

Table 2.3: Total classified genes overlapping with previous studies

directly at the potF promoter in all nine conditions measured in our data, but potF expression is
only activated by Lrp in six of the conditions that we studied (Figure 2.9A). In contrast with the
variable Lrp-dependent RNA expression levels, Lrp binding directly at the potF promoter is very
similar across conditions, spanning a similar length of DNA, and showing maximal signal at the
same point. However, an adjacent upstream Lrp peak at the ybjN promoter shows nearly mono-
tonically increasing occupancy with the strength of Lrp-dependent regulation. Interestingly, this
secondary peak does not appear to modulate expression of the ybjN gene in any of the conditions
in our study suggesting that the primary role of this secondary peak under these conditions is in the
modulation of potF. This secondary condition-specific binding site may represent an interaction
between a weak and strong Lrp binding site or it may represent the formation of a hexadecamer
through the bridging of these two sites (Figure 2.9B). Future studies will be needed to differentiate
these possibilities. Additional examples of secondary peaks appearing under the condition where
we can detect Lrp-dependent regulation can be seen clearly in sdaA (Figure 2.2C), lrhA and alaA
(Figure 2.10A), and dadA and ycgB (Figure 2.10B).

In contrast to potF, pepD has relatively invariant Lrp binding signal at its promoter across each
condition (Figure 2.9C). Although a small secondary peak can be seen in each MIN condition, only
the MIN Trans condition shows direct Lrp regulation. Additionally, the RDM Stat condition does
not show this secondary peak but is similarly Lrp-repressed, suggesting that the secondary peak is
not sufficient to explain Lrp regulation at this locus. Thus, pepD, likely represents a case where
Lrp is interacting with an additional factor; for example, the activity at pepD could be explained
by Lrp’s presence blocking a transcriptional activator from binding (Figure 2.9D), although other
scenarios are also possible. An additional example of invariant Lrp binding with differential RNA
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regulation can be seen at ilvI (Figure 2.2A). As detailed in Section 2.4.10, systematic analysis of
all genes with Lrp bound at their regulatory regions reveals that both the transcription factor NtrC
and �54 explain a subset of these transitions from poised to direct targets, but additional factors
also likely interact with Lrp in similar ways.

2.4.6 Lrp directs distinct survival strategies across changing nutrient con-
ditions

By applying iPAGE [155] to search for gene ontology (GO) terms that that show significant pat-
terns in Lrp binding and regulation across conditions, we identified several key patterns in Lrp’s
regulatory logic (summarized in Figure 2.11A and detailed in Figure 2.12). Consistent with its
previously established physiological roles, and the fitness effects of lrp loss of function mutations
(e.g., [152, 156]), the most prominent pathways regulated by Lrp involve the synthesis and uptake
of amino acids, as well as nutrient foraging (via regulation of flagellar motility). In particular,
Lrp tends to directly activate amino acid biosynthetic pathways during logarithmic and transition
phase growth, particularly in nutrient poor media, and at the same time, to directly repress amino
acid uptake pathways under the same conditions, presumably responding to a lack of available
substrates in the environment (Figure 2.12B). Regulation of leucine transport itself represents a
special case, where Lrp appears to activate a subset of leucine transporters and repress others (Fig-
ure 2.11B). A similar switch is apparent in Lrp’s regulation of flagellar motility in rich media,
where Lrp acts as a global repressor of motility in log phase (presumably keeping cells static in
conditions of optimal nutrition) but lifts repression and activates a small set of flagellar genes when
nutrients are depleted during stationary phase (Figure 2.11C). Thus, Lrp directly governs a shift
between strategies of synthesizing or foraging for critical nutrients, depending on their availability
in the cell’s surroundings. A very different Lrp-dependent regulatory program is apparent under
conditions of slowing growth (typified by our MIN Trans and RDM Stat conditions), where Lrp
additionally acts to inhibit translation, through indirect repression of ribosomal components and
tRNA synthetases (Figure 2.12B).

It is intriguing to note that several of Lrp’s pathway-level activities, such as the aforementioned
switching between amino acid biosynthesis vs. transport, do not appear to depend solely on the
presence of leucine, as similar regulatory behaviors are observed in both our MIN and LIV condi-
tions. Indeed, the same behavior is also suggested by the leucine-independent cluster of Lrp targets
noted in Figure 2.6B. To assess if there is any class of genes that Lrp binds in a Leucine-dependent
manner, we identified GO terms showing informative patterns of leucine-dependent occupancy
at their promoters (Figure 2.11D). Aside from being surprisingly short, this list is especially no-
table for the fact that Lrp binds genes associated with several GO terms involved in amino acid
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Figure 2.9: Lrp sits at genes in poised position in preparation for regulatory activity. ChIP robust Z-score (left) and
RNA-seq expression change (log2(WT/KO); middle) for two Lrp targets. (A) potF represents a case where a secondary
Lrp peak is seen only in the conditions where it is a direct target. ybjN is clearly not transcriptionally regulated by Lrp
in these conditions. Here and in panel C, error bars for the RNA-seq data indicate worst-case percentile based 95%
confidence interval from 100 bootstrap replicates of expression estimates across different biological replicates (see
Section 2.6.15 for details). Labels above each bar indicates classification of the gene based on combining RNA-Seq
and ChIP-Seq results. (D-Direct, I-Indirect, P-Poised, N-No Lrp Link, see Figure 2.6A for details). Dashed lines in
RNA-Seq plots indicate a 1.5 fold cutoff for the ratio between WT and KO strains needed for biological significance
(see Section 2.6.15 for details). (B) Model suggested by panel A, in which Lrp primarily interacts at the promoter
site in most conditions (poised) but upon changes in condition, Lrp binds adjacent sites as a separate octamer (direct
top) or together as a hexadecamer through potential looping of the DNA (direct bottom). (C) pepD represents a case
where no obvious changes in Lrp binding signal occur, but differences in transcriptional regulation are clear. (D)
Model suggested by the data in panel C, where Lrp is always bound at the site (poised) but upon conditions where a
secondary factor is needed for expression, Lrp is present to interact with the factor (direct) and block or enhance its
activity. Here, gpt displays similar RNA expression patterns to pepD.
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Figure 2.10: Additional examples of poised targets showing evidence for secondary Lrp binding sites with regulatory
activity. ChIP robust Z-score (left) and RNA-seq expression change (log2(WT/KO); right) for several Lrp targets.
(A) alaA and lrhA represent cases where a secondary peak appears under conditions where the gene is a direct target.
(B) ycgB and dadA represent cases where secondary Lrp peaks appear under conditions for which transcriptional
regulation by Lrp is strongest, with opposite effects for each gene. Error bars for the RNA-seq data indicate worst-
case percentile based 95% confidence intervals from 100 bootstrap replicates of expression estimates across different
biological replicates (see Section 2.6.15 for details). Labels above each bar indicate classification of the gene based
on combining RNA-Seq and ChIP-Seq results. (D-Direct, I-Indirect, P-Poised, N-No Lrp Link, see Figure 2.6A for
details). Dashed lines in RNA-seq plots indicate a 1.5 fold cutoff for the ratio between WT and KO strains needed for
biological significance (see 2.6.15 for details)
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Figure 2.11: Pathway analysis of genes regulated and bound by Lrp. (A) Pathway analysis using iPAGE identifying GO
terms that show significant mutual information with gene classification (Direct, Indirect, Poised, or No Lrp link). Color
indicates magnitude of the log10 p value, with positive values indicating enrichment and negative values indicating
depletion of members of a given GO term among genes in that class. Boxes indicate particularly outstanding cells
(p < 0.01). (B) Comparison of Lrp-dependent effects on gene expression for genes annotated with GO:0015820
(leucine transport). Stars indicate significant Lrp-dependent expression changes (following our standard criteria),
with error bars indicating bootstrap-based 95% confidence intervals. (C) As in panel B, for genes annotated with
GO:0071973 (bacterial-type flagellum-dependent cell motility). Error bars that pass to infinity under our bootstrap-
based 95% confidence intervals are indicated with dashed lines. Bars where WT/KO ratio could not be determined are
not plotted. (D) iPAGE plots (as in panel A) showing genes with significant leucine dependents of nearby Lrp binding
sites. Categories are: -: Lrp binds target genes only in low leucine conditions (MIN); +: Lrp binds target genes only in
high-leucine conditions (RDM, LIV); X: leucine independent; Lrp binds in at least 8 of 9 conditions; M: genes with
any other pattern of Lrp binding. Several additional transposition-related terms with similar expression profiles to
GO:0032196 are omitted for clarity. (E) As in panel D, showing dependence of binding on growth phase. Categories
are: L: Lrp binds target genes only in log phase (in one or more media types, but at no other growth phase); T: Lrp
binds target genes only in transition phase; S: Lrp binds target genes only in stationary phase; M: all other genes with
Lrp binding across multiple growth phases.

metabolism independently of leucine, suggesting an important role for poised regulation in me-
diating the key metabolic functions of Lrp. A similarly small set of GO terms shows consistent
occupancy patterns at different phases of growth (Figure 2.11E), although the inclusion of tRNAs
among those targets is notable. These findings highlight the important role played by Lrp in re-
pressing the translational apparatus during stationary phase, but at the same time, demonstrate the
importance of poised regulation and local regulatory interactions in setting the effects of Lrp at
each bound promoter.
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Figure 2.12: Full GO-term enrichment results for general target classification and sub-classification by direction of
Lrp regulatory change. (A) All GO-terms identified by iPAGE as having significant mutual information with our
target classification within various conditions are listed to the left. Abbreviations are as follows: D - Direct targets, I
- Indirect targets, P - Poised targets, N - No Lrp link genes. Boxes around specific GO-term/condition/target groups
indicate significant enrichment or depletion (indicated by a hypergeometric test p-value < 0.01). Color inside the box
specifies the magnitude of enrichment (red) or depletion (blue) as indicated by the color bar. (B) Similar to panel A,
but downregulated and upregulated targets are treated as separate groups for target classification. Abbreviations are as
follows: DD - Direct Downregulated targets, DU - Direct Upregulated targets, ID - Indirect Downregulated targets, IU
- Indirect Upregulated targets, P - Poised targets, N - No Lrp link genes.
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2.4.7 Lrp shows condition-dependent changes in DNA sequence specificity

While not as invariant as motifs for other E. coli transcription factors, a 15 base-pair motif compris-
ing terminal inverted repeats and an AT-rich center has been previously identified for Lrp [58, 157].
To determine how well previously identified Lrp motifs could predict the binding sites identified in
our study, we used a logistic regression model to classify 500 bp windows of the genome as either
containing a Lrp binding site or not, using as predictors the presence of previously documented
Lrp motifs and the AT content (given the AT richness of the Lrp motif itself). Starting with a mini-
mal model containing only an intercept term, we created more complex models by adding a single
predictor at a time and scoring each new model with the Bayesian Information Criterion (BIC) as
displayed in Figure 2.13A; n.b. a lower BIC indicates a more parsimonious model. A minimal
model was chosen by adding to the new model the predictor with the largest decrease in BIC from
the intercept-only model and iterating this process until the change in BIC switched sign (indicat-
ing that additional terms were no longer informative). A similar analysis was done in which we
started with a full model containing all of the predictors and removed the predictor with the largest
increase in BIC until the change in BIC switched sign (Figure 2.14). In both cases we arrived at
the same set of minimal models for each condition. Intriguingly, among the minimal models for
each condition, we see a shift between a general preference for low information content AT-rich
regions at Log points and a preference for higher information content sequence motifs at later time
points across all conditions (Figure 2.13A). Here we are referring to information content in the
information-theoretic sense, i.e. a motif with higher information content indicates that protein has
higher specificity for more positions within the motif and we consider a motif with higher infor-
mation content to indicate a higher sequence specificity. In each condition, from early to late time
points, there is a decrease in how predictive the general AT-content is in terms of differentiating
between Lrp binding sites and background genomic locations. While their relative importance to
the model shifts, the minimal variables needed to explain most of the data include a combination
of AT-content and established Lrp motifs across all conditions. This suggests that Lrp binding is
less influenced by higher information content sequence motifs in earlier phases of growth, and only
gains preference for these higher information content sequence-motifs upon nutrient limitation and
entrance into stationary phase, which also agrees with our observed increase in the number of peaks
in later time points. Additionally, this pattern of specificity agrees with Lrp’s proposed position
of importance as a regulator of the transition to stationary phase. However, since we see the same
lack of preference for higher information content sequence motifs in LIV Log and MIN Log (two
conditions with dramatically different leucine concentrations), we can conclude that leucine level
alone is not sufficient to shift the binding specificity of Lrp, but rather, that other signals (such as,
potentially, energy/carbon source availability) must also be integrated somehow into Lrp’s binding.

The derived models perform relatively well; the receiver operator curves, which show the re-
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Condition MCCa Specificitya Sensitivitya ROC-AUCa

LIV Log 0.61 (0.45-0.77) 0.85 (0.81-0.87) 0.80 (0.66-1.00) 0.86 (0.73-1.00)
LIV Trans 0.38 (0.26-0.48) 0.77 (0.72-0.80) 0.64 (0.49-0.76) 0.78 (0.71-0.83)
LIV Stat 0.40 (0.30-0.47) 0.77 (0.73-0.81) 0.66 (0.54-0.71) 0.79 (0.75-0.84)
MIN Log 0.34 (0.29-0.38) 0.74 (0.70-0.77) 0.64 (0.56-0.72) 0.77 (0.70-0.81)
MIN Trans 0.25 (0.16-0.30) 0.71 (0.68-0.76) 0.57 (0.49-0.62) 0.70 (0.65-0.72)
MIN Stat 0.24 (0.19-0.34) 0.72 (0.69-0.74) 0.55 (0.47-0.63) 0.70 (0.65-0.74)
RDM Log 0.49 (0.38-0.54) 0.80 (0.72-0.85) 0.74 (0.65-0.83) 0.84 (0.81-0.86)
RDM Trans 0.31 (0.22-0.41) 0.74 (0.67-0.78) 0.60 (0.54-0.69) 0.73 (0.70-0.77)
RDM Stat 0.34 (0.24-0.46) 0.74 (0.69-0.79) 0.64 (0.54-0.74) 0.77 (0.73-0.82)
aValues in parentheses show the minimum and maximum values from 5-fold cross-validation for each metric.

Table 2.4: Performance of Lrp binding site prediction models

call for every potential false positive rate, trend toward the upper left corner where a perfect model
would be (Figure 2.13B; quantified by area under the curve, ROC-AUC, in Table 2.4). In ad-
dition, the Matthews correlation coefficient (MCC), a combined measure of precision and recall
which has potential values from -1 to 1, ranges from 0.24 to 0.61 (Table 2.4). These performance
metrics were robust to withholding of shuffled subsets of the data, as indicated by minimum and
maximum values found in five-fold cross-validation (values in parenthesis in Table 2.4). Overall
the specificity of these models is much better than their sensitivity, indicating that they perform
well in rejecting locations where Lrp does not bind. However, there is still substantial room for
improvement in calling Lrp bound sequences. Interestingly, the sensitivity drops in the conditions
where higher information content sequence motifs are more informative. It is likely that we are
missing additional features that would improve the sensitivity in these conditions; however, efforts
to discover additional sequence determinants of Lrp binding were unsuccessful, as well as efforts
to determine any sequence elements that differentiated activated from repressed targets (data not
shown). This could simply indicate that sequence independent mechanisms, such as the well-
established observation of Lrp cooperativity in binding [158], or recruitment of Lrp by binding of
additional factors, could play a role in determining Lrp binding locations.

2.4.8 Lrp binding is enriched among regulatory regions of the genome

As detailed in Section 2.6.17, our process for categorizing genes as Lrp targets involved testing
whether there was a called Lrp peak overlapping anywhere within 250 bp upstream or downstream
of each annotated transcription start site (TSS) in the E. coli genome. If there were multiple an-
notated transcription start sites, we took 250 bp upstream of the most distal TSS (relative to the
start of the gene itself) and 250 bp downstream of the most proximal TSS. We classified those
approximately 500 bp windows as regulatory regions, and tested whether Lrp binding was sig-
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Figure 2.13: Lrp exhibits condition-dependent sequence-preference. (A) Change in BIC for add-one-in logistic re-
gression models. The y-axis displays the Position Weight Matrix (PWM) used to create a particular feature. PWMs
were obtained from the publication indicated above the PWM [66, 157, 159], RegulonDB [48] or, in the case of SR
motifs, the SwissRegulon [160]. Features were created from a given PWM by dividing the count of matches within a
sequence (as obtained by FIMO [161] with q-value < 0.0001) by the length of the sequence. AT-stretch indicates the
longest stretch of continuous As and Ts normalized by the length of the sequence. AT-content indicates the number
of As and Ts normalized by the length of the sequence. Colors, moving from dark red (negative BIC, added term is
favored in the model) to light blue (positive BIC, added term is disfavored in the model), then indicate the change in
BIC when a given term is added to a minimal model containing only an intercept term. Heavy boxes indicate a feature
was included in the final model for that condition. For both this panel and panel B, the positive class of sequences
was obtained by taking 500 bp around the center of each peak for each condition. The negative class of sequences
was obtained by taking three times the number of equal-sized random sequences from the subset of the genome that
was not in a peak for that condition. (B) Receiver Operator Characteristic curves for each final model by condition.
Curves were calculated at 0.01 increments from 0 to 1 for a predicted probability cut off from the logistic regression.
Full statistics including five-fold cross-validation are included in Table 2.4.
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Figure 2.14: Changes in BIC for leave-one-out logistic regression models. PWMs were obtained from the publication
indicated above the PWM [66, 157, 159], RegulonDB [48] or, in the case of SR motifs, the SwissRegulon [160].
Features were created from a given PWM by dividing the count of matches within a sequence (as identified by FIMO
[161] with p-value < 0.0001) by the length of the sequence. AT-stretch indicates the longest stretch of continuous
As and Ts normalized by the length of the sequence. AT-content indicates the number of As and Ts normalized by
the length of the sequence. Colors, moving from light red (negative BIC, removed term is disfavored in the model)
to dark blue (positive BIC, removed term is favored in the model), indicate the change in BIC when a particular term
is dropped from the original model (containing all possible terms) under that condition. Heavy boxes indicate that a
feature was included in the final model for that condition.
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Condition p-value
MIN Log < 1.0⇥ 10�3

MIN Trans < 1.0⇥ 10�3

MIN Stat < 1.0⇥ 10�3

LIV Log < 1.0⇥ 10�3

LIV Trans < 1.0⇥ 10�3

LIV Stat < 1.0⇥ 10�3

RDM Log < 1.0⇥ 10�3

RDM Trans < 1.0⇥ 10�3

RDM Stat < 1.0⇥ 10�3

Table 2.5: Results of permutation test for enrichment of Lrp binding in regulatory regions

nificantly enriched anywhere within those regions. Overall, 29% of the E. coli genome falls into
these regulatory regions. However, we observe between 53% and 85% of Lrp peaks overlapping
with regulatory regions. A permutation test in which the same size and number of peaks were
randomly shuffled across the genome indicated that there is significant enrichment for Lrp binding
in regulatory regions (Table 2.5). This strongly supports Lrp’s role as a specific regulatory protein.

The Lrp peaks not in regulatory regions were distributed in gene coding regions, between genes
in a transcription unit, or in truly intergenic regions at relative ratios similar to the proportion
of those regions on a genome-wide scale (Table 2.6); the only exception is at LIV Log, which
only has 61 Lrp peaks, thus leading to some skewing of expected percentages. We investigated
whether any of those peaks might affect full transcription of an operon, hypothesizing that Lrp
binding in the middle of an operon might block RNA polymerase. From the RNA-seq data, we
identified any genes that showed a Lrp dependent change in expression, did not have a Lrp peak
within the promoter region but did have a Lrp peak overlapping the gene coding region. We then
compared the RNA-seq coverage to the location of the peak as identified by the Lrp ChIP signal.
As seen for the binding at ilvI (Figure 2.2B), we again note that Lrp binding does not guarantee
a regulatory effect. Genes that have an internal Lrp binding site do not evince a Lrp dependent
change in expression, and Lrp binding sites within an operon do not, in general, appear to hamper
transcription (Figure 2.7C-E). These findings again suggest that Lrp regulation is often dependent
on cooperative interaction with other regulatory factors, and that Lrp binding alone within operons
does not appear to have a constant effect.

2.4.9 Uncertainties in identification of poised Lrp targets

An important caveat to consider in the analysis of ‘poised’ targets is that some of the identified
poised sites may represent misannotation due to Lrp binding that is specific to a nearby gene such
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Condition % in gene region % in transcription-unit % in intergenic regionb

Genome-widea 95.6 0.6 3.8
MIN Log 97.6 0 2.4
MIN Trans 99.2 0 0.8
MIN Stat 100 0 0
LIV Log 66.7 11.1 22.2
LIV Trans 98.2 0.6 1.2
LIV Stat 97.9 0 2.1
RDM Log 93.9 3.0 3.0
RDM Trans 98.3 0 1.7
RDM Stat 97.8 0 2.2
aPercentages genome-wide were determined at a 1 bp resolution.
bIntergenic defined as region neither in regulatory region, gene or transcription-unit.

Table 2.6: Percentages of non-regulatory region peaks that annotate to other mutually exclusive regions of the genome

as the ybjN/potF case above (Figure 2.9A). Systematic analysis of all poised sites showed that tar-
gets that we classified as poised but had a direct target within 1000 bp of their regulatory region in
the same condition represent a small fraction of all total sites (Figure 2.7A, POISED nearby direct
class). However, of the poised sites that never transition to direct targets in any condition, we
must distinguish between those that clearly have no Lrp-dependent regulation, and those for which
our RNA-seq analysis lacks the statistical power to say with certainty that there is no Lrp depen-
dent change. To distinguish between those cases, we defined a region of practical equivalence
(ROPE) as a Lrp-dependent change in expression of less than 1.5-fold, and account as clearly
Poised the subset of putative Poised targets for which a conservative 95% confidence interval falls
entirely within the ROPE (Figure 2.7A, POISED unexplained). For the remainder of sites, due to
the uncertainty in our experimental measurements, we do not have strong enough evidence from
our RNA-seq results to decisively conclude that there is no Lrp dependent effect on the target
gene (Figure 2.7A, POISED uncertain direct). However, for the vast majority of these cases, the
maximum likelihood estimate of the Lrp-dependent change falls within the ROPE, and thus in all
probability only a small fraction of the POISED uncertain direct class are actually mis-annotated
direct targets; the majority are most likely true Poised targets with no Lrp-dependent change in
expression.

It is also useful to consider the question of what fraction of poised peaks will become active
under at least one other physiological condition. By its nature this question requires extrapolation
from our data set to hypothetical other, unobserved conditions, but we can at least provide an ap-
proximate answer by considering the rate of discovery of targets that are always poised, vs. targets
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that are poised in some conditions and direct targets of Lrp in others, as we expand among the con-
ditions in our study. We plot the results of analyzing these discovery rates in Figure 2.15, which
leads us to three main conclusions. First, our discovery of direct targets is slower than our discov-
ery of poised targets, indicating that a given target is likely poised under more conditions than it is
a direct target. Thus, consideration of a broader range of conditions is necessary to exhaustively
identify the set of poised targets which become direct under at least one condition. Second, the dis-
covery of new direct targets is by no means saturated among the set of conditions that we have so
far identified, whereas the discovery of poised targets is nearing saturation (compare the slopes of
the Poised vs. Poised and Direct vs. Direct curves in Figure 2.15). Thus, we expect that consider-
ation of additional conditions would bring discovery of relatively fewer exclusively poised targets,
while a larger fraction of the poised targets would be found to become direct under at least one
condition. Attempting to press on to estimate the precise fraction of poised targets which would be
direct under at least one conceivable condition seems to us unduly speculative at this point, as we
do not know how conditions highly dissimilar to those considered here would affect our discovery
of new targets, but at the very least, based on the data in Figure 2.15 it seems likely that the fraction
of poised targets which are direct under at least one condition (and thus represent functional Lrp
sites rather than sites that play no regulatory role) would substantially increase beyond what we
have observed here.

2.4.10 Lrp connects with other regulatory factors

The phenomenon of poised targets—at which Lrp frequently binds to a promoter under many
conditions but only shows regulatory activity under a few—suggests that other regulatory factors,
such as � factors or transcription factors, may be important in triggering an activating or repressive
effect secondary to Lrp binding. If a � factor and Lrp co-regulate some set of targets, we expect to
see enrichment for direct targets relative to poised targets within the � factor’s regulon, especially
at conditions when the � factor is most active. To establish relative � factor activity, we determined
the average expression of all known � factor target genes (taken as the union of the Sigma-gene
interactions annotated in RegulonDB and the factor associated with each annotated TSS to each
gene (Factor column in Supplementary Data File 1) at each of our nine experimental conditions
(Figure 2.16A) [48]. This allows us to estimate in which conditions the � factor is most active; for
example, �38 activity peaks at LIV Stat, MIN Trans and RDM Stat in agreement with its role as
the general stress response � factor. One caveat of our analysis is that some data is missing since
we do not classify all genes in relation to Lrp, as outlined above, and, likewise, it is not known by
which � factor all genes that are classified are regulated. Subject to these constraints, our analysis
in this section included 2885 genes (out of the total 4685 genes in E. coli). In addition, in some
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Figure 2.15: Rates of discovery of new poised and direct targets as additional conditions are considered. Results
from resampling calculations enumerating the fraction of direct and poised targets that remain undiscovered when
considering only one of the nine conditions in our study, to considering all nine of them. In each case, points represent
the mean across all possible orderings of acquisition of experimental knowledge, and error bars represent bootstrap-
based 95% confidence interval for the mean of the observations across different possible condition orderings. ‘Poised
vs. poised’ refers to the fraction of all poised targets known in the entire data set that have been discovered by a
certain point, and likewise, ‘Direct vs. direct’ indicates the fraction of all direct targets from our entire data set that are
discovered by a certain point (thus both reach zero when all nine conditions, which comprise our entire data set, are
considered). ‘Direct vs. poised’ indicates the fraction of all poised targets (pooled across all experimental conditions in
our study) that have been observed as a direct target at least once after consideration of a given number of conditions.
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cases, overlap between other factors and Lrp may not indicate a direct interaction but may indicate
that the other factor and Lrp have independent roles or functions at shared targets, here termed
convergent regulation. However, if Lrp does interact directly with certain � factors to activate
target genes at specific conditions, there are a few possible explanations for why the poised to direct
target transition occurs at those points: 1) the transition only occurs when the genes’ controlling
� factor is active; 2) the nature or extent of Lrp binding itself changes at that condition; or 3) an
accessory factor needed for Lrp-� factor interaction is only present at that condition.

We applied a permutation test to identify any � factors with a significant enrichment of overlap
between their targets and all direct Lrp targets or specifically direct Lrp-activated targets. All q-
values and enrichment levels for the permutation test with all direct targets are listed in Table 2.7;
results from the permutation test with only direct-activated targets are in Table 2.8, (r = 10000

for both). Only �54 at MIN Trans had significant overlaps (q < 0.05). Specifically, we document
enrichment for direct Lrp targets with �54(�N ) at MIN Trans (1.9-fold enrichment, q-value: 0.038).
At MIN Trans, 37% of Lrp binding sites overall are direct targets, whereas 70% of �54 targets with
Lrp binding sites are direct targets. Furthermore, as we would expect for the case where Lrp acts
as a co-activator for a given � factor, there is enrichment specifically for direct Lrp-activated target
genes among �54 targets at MIN Trans (2.6-fold enrichment, q-value: 0.032). Overall, 19% of
Lrp binding sites are direct activated targets at MIN Trans, whereas Lrp-bound targets in the �54

regulon are direct Lrp-activated targets 50% of the time, a 2.6-fold increase. �54 regulates many
genes involved in nitrogen assimilation [162], and these results indicate that Lrp is likely involved
in co-activating some �54 dependent genes, in agreement with Lrp’s role in sensing and responding
to nutrient levels. At MIN Trans, Lrp actually also weakly represses �54 itself directly; �54 is not
a direct or indirect target under any other conditions.

Average expression of �54 targets reaches peak levels at MIN Trans (Figure 2.16A), in agree-
ment with when we see significant overlap with Lrp direct-activated genes (15.8% of the direct
Lrp-activated targets at MIN Trans are known �54 targets, and conversely 13.9% of the classified
�54 targets are direct Lrp-activated targets at MIN Trans). Twelve out of the fifteen overlapping
target genes only become a direct Lrp-activated target at MIN Trans. The remaining three genes
(astC, potF, yhdW) are sometimes affected at conditions when there is a slight peak in �54 activity,
as measured by the overall expression of known target genes (Figure 2.16A), and could be sub-
ject to other regulatory control. For example, astC is also regulated by ArgR in some conditions
[163, 164]. The fact that the shared regulated genes are generally only direct Lrp-activated targets
when �54 itself is most active supports the notion that �54 may require Lrp binding to activate
transcription of certain genes. At a molecular level, this suggests that while expression of �54 itself
during MIN Trans does not require Lrp (and in fact, is slightly repressed by Lrp), its transcriptional
activity is enhanced by the presence of Lrp.
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To investigate the possibility that Lrp binding itself changes to facilitate interaction with �54,
we visualized the Lrp-ChIP binding signal at shared direct Lrp/�54 targets. Changes in Lrp binding,
either complete reversals of binding between conditions or changes in peak length, are evident in
the cases of some genes (glnH, yeaG and yhdW), while others, such as ibpB and potF have very
similar binding regardless of condition (see Figure 2.9A for potF Lrp-binding signal); thus, it is
unlikely that changes in Lrp binding itself are in general responsible for the regulatory interaction
with �54. Given that �54 is known to require activating factors, it is likely that an accessory factor
may facilitate Lrp/�54 co-regulation.

To identify other candidates for co-regulators acting with Lrp, just as we tested for Lrp co-
regulation with � factors, we investigated whether Lrp has particular correlations with any of the
other annotated transcription factors in E. coli. We compared the average expression of all an-
notated targets of individual transcription factors in WT and Lrp KO conditions to identify those
transcription factor regulons that show Lrp-dependent changes. Several transcription factors were
identified as significant (q < 0.05) based on a permutation test (r = 10000): FlhDC, GadW, ModE,
and NtrC. We then applied the additional threshold of requiring an average four-fold or greater
change in expression of target genes dependent on Lrp status (WT vs. KO) at the appropriate con-
dition to identify the most biologically relevant interactions (Figure 2.16B); the transcription factor
FlhDC did not pass this filter and was eliminated from further analysis. ModE likely represents an
example of convergent regulation due to the existence of no or limited overlap between its targets
and direct Lrp targets. As detailed in the main text, GadW likely represents an example of indirect
Lrp regulation via direct regulation of a transcription factor (see Section 2.4.3).

The transcription factor NtrC is a notable exception to the above trends, as 31% of all its
targets are also direct Lrp-activated targets (Figure 2.16C). This number is an underestimate since
it only accounts for the genes classified in our scheme (namely those with annotated promoters);
if we expand our classification to include the genes that comprise the transcription units of those
classified genes, 63% of NtrC targets are also direct Lrp-activated targets. NtrC is one of the
transcription factors which can serve as an activator of �54, so the intersection between Lrp, NtrC
and �54 is interesting to consider. Activators of �54, such as NtrC, often bind to an upstream site and
require precise looping of the DNA in order to bring the activator in contact with �54; in previous
studies, the bending has been documented as being intrinsic to the region or looping mediated by
IHF [36]. In accordance with the possibility of intrinsic bending, the average AT content upstream
of �54 target genes is 70%, with the lowest being at 50% [162]. As previously reported and seen
in our data, Lrp is known to bind AT-rich regions preferentially [165]. Lrp induces bending of
52� to 135� depending on the size of the binding sites [166]. Thus, we hypothesize that Lrp
may play a role in bending DNA to coordinate NtrC-�54 interaction at NtrC targets. Thus, while
many instances of Lrp regulation appear to require co-regulation with as yet unidentified regulatory
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Condition Value �24 �28 �32 �38 �54 �70

MIN Log q-value 1 0.671 1 0.661 0.450 0.784
Fold changea 0.51 1.30 0.71 1.30 1.80 1.04

MIN Trans q-value 1 0.848 0.946 0.755 0.038 1
Fold changea 0.75 1.01 0.97 1.12 1.89 0.94

MIN Stat q-value 1 1 0.848 0.644 0.644 0.946
Fold changea 0.65 0.42 1.02 1.60 1.75 0.99

LIV Log q-value 1 1 1 0.644 1 0.802
Fold changea 0.78 0.58 0.58 1.40 0 1.04

LIV Trans q-value 1 0.755 1 0.784 1 0.644
Fold changea 0.61 1.32 0.68 1.20 0.41 1.14

LIV Stat q-value 0.848 0.848 1 0.792 0.644 1
Fold changea 1.12 1.02 0 1.28 2.36 0.95

RDM Log q-value 1 0.671 1 1 0.661 0.450
Fold changea 0.37 1.62 0.40 0 1.80 1.28

RDM Trans q-value 1 0.848 1 0.848 0.792 0.450
Fold changea 0.31 1.01 0.34 0.97 1.31 1.30

RDM Stat q-value 1 1 0.165 0.644 0.661 1
Fold changea 0.56 0.28 1.69 1.32 1.39 0.90

a Fold change is calculated by dividing the fraction of bound � factor targets (either direct or
poised) which are classified as direct targets, by the overall fraction of Lrp-bound targets which
are direct targets.

Table 2.7: Results of permutation test for enrichment of direct Lrp targets relative to poised targets within the known
� factor regulons at each condition

factors, we are able to identify some likely possible mechanisms.

2.5 Discussion

2.5.1 Lrp regulates hundreds of genes in distinct categories by direct and
indirect mechanisms

By investigating both the binding and regulatory activity of Lrp under several media conditions
and time points, we are able to present a broader view of the Lrp regulon. Our use of a high-
quality antibody against native Lrp removes any possibility of epitope tagging hindering native
behavior in our experiments, and the use of modern sequencing-based methods provides us with
a high resolution snapshot of both Lrp’s binding and regulatory activity. We document hundreds
of novel targets, and note the especially important effect of indirect regulation at MIN Trans and
RDM Stat, which appear in our experimental setup to correspond to times of high Lrp activity
due to dropping nutrient conditions. Targets may appear selectively in certain conditions due to a
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Figure 2.16: Lrp interacts with other regulatory factors to control some targets’ expression. (A) Average expression
of known targets of each � factor in WT cells at each condition (calculated for each gene as normalized transcript
abundance divided by gene length). (B) Average log2(WT/KO) expression ratio of known transcription factor targets
for selected transcription factors at each condition. (C) Heatmap showing classification of those NtrC targets which
have an annotated transcription start site and thus are classified in our analysis. Abbreviations on the color bar are as
follows: DD - Direct Downregulated targets, DU - Direct Upregulated targets, ID - Indirect Downregulated targets, IU
- Indirect Upregulated targets, P - Poised targets, N - No Lrp link.
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Condition Value �24 �28 �32 �38 �54 �70

MIN Log q-value 1 0.846 1 0.837 0.592 0.837
Fold changea 0.19 1.12 0.92 1.22 2.33 1.08

MIN Trans q-value 1 0.846 0.741 1 0.032 1
Fold changea 0.81 1.07 1.29 0.90 2.57 0.82

MIN Stat q-value 1 1 0.846 0.741 0.837 0.846
Fold changea 0.32 0 1.24 1.68 1.43 1.07

LIV Log q-value 1 1 1 0.741 1 0.837
Fold changea 0.81 0 0 1.62 0 1.08

LIV Trans q-value 1 0.988 1 0.837 1 0.695
Fold changea 0.75 1.01 0 1.47 0 1.29

LIV Stat q-value 0.741 1 1 0.741 0.592 1
Fold changea 1.74 0 0 1.98 3.65 0.65

RDM Log q-value 1 1 1 1 0.837 0.479
Fold changea 0 0 0.78 0 1.72 1.45

RDM Trans q-value 1 1 1 0.837 1 0.741
Fold changea 0.48 0 0.53 1.53 0 1.27

RDM Stat q-value 1 1 0.894 0.286 0.741 1
Fold changea 0.57 0.48 1.04 2.26 1.59 0.84

aFold change is calculated as for Table 2.7 except that the number of direct targets is replaced with
the number of direct Lrp-activated targets.

Table 2.8: Results of permutation tests for enrichment of direct Lrp-activated targets relative to direct Lrp-repressed
and poised targets within the known � factor regulons at each condition
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number of potential influences, including: 1) variable levels of Lrp protein may dictate that only
the strongest binding sites are occupied; 2) required co-regulators may only be expressed in certain
conditions; 3) post-translational modifications of Lrp may influence its binding or interaction with
co-regulators. In addition, the high number of indirect targets that are unique to one or two condi-
tions are most easily explained by invoking one transcription factor that is regulated by Lrp as we
discuss above, but we cannot know from this study alone how many levels of regulatory control
are actually in play for many indirect targets. Given that, it is clear that there are many possibilities
for condition-specific regulation.

The differences between direct and indirect targets are borne out by the GO-term analysis in
which we see a shift between GO-terms at direct targets (more transport and biosynthesis related
genes) and those at indirect targets (flagellum associated genes among others). This could point to
organization at a temporal level; the genes needing most urgent regulation (such as those involved
directly in importing or generating needed nutrients) may be under direct Lrp control, while genes
requiring less urgent modulation and instead governing foraging strategies may be indirectly regu-
lated by Lrp. Many of the identified GO-terms include genes previously implicated as Lrp targets,
indicating agreement with previous work. However, newly identified targets and novel patterns of
regulation (such as poised binding) suggest that further work on the mechanistic aspects of Lrp
regulation is important.

2.5.2 Poised Lrp binding argues for interaction with co-regulatory factors

From our experiments, we identify many points at which Lrp binds the regulatory region of a gene
without producing an effect on transcription, and even points at which an apparently identical Lrp
binding pattern has no effect on transcription in one condition, but has a substantial effect under
another. Given that Lrp binding is enriched in regulatory regions relative to other locations in the
genome, this argues against a purely DNA-organizing role for these poised sites. If that was the
case, we would expect Lrp binding sites (the majority of which are poised sites in any condition)
to be distributed more evenly across the genome. The idea of poised regulation is not without
precedent, as poised regulation has also been reported for some eukaryotic transcription factors
such as the tumor suppressor p53 in binding to the mdm2 gene [148]. Therefore, while Lrp itself is
not conserved in eukaryotes, its ability to bind without regulating may have parallels to eukaryotic
regulation, suggesting convergent evolution to a similar regulatory scheme.

There are several possibilities for why Lrp may not have regulatory function in all cases where
it binds, including 1) Lrp acts as a scaffold to interact directly with other proteins which are only
present at certain conditions and modulate transcription, 2) Lrp wraps DNA in order to control
DNA accessibility of other regulators, reminiscent of eukaryotic histone-like behavior, and/or 3)
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switching between the presence of a Lrp octamer or hexadecamer may control or influence the
regulatory behavior of Lrp. We investigated the first possibility by analyzing if certain � factors or
transcription factors might be responsible for the condition-dependent regulation on a global scale
(see Section 2.4.10). While many potential connections appear to be cases of convergent regula-
tion, we do find that Lrp may facilitate NtrC/�54 interaction by binding and bending DNA. This
would agree with the connection between Lrp and nitrogen metabolism regulation seen previously
in genome-wide studies [167]. Analogous interactions with other transcription or regulatory fac-
tors may explain other poised/direct target transitions. For example, Lrp interaction with H-NS is
important for regulating rRNA promoters [168], and Lrp competition with DNA adenine methyl-
transferase is critical in regulating expression of the pap operon, which produces pili [169]. In
addition, non-protein small molecules like ppGpp are known to affect some Lrp-regulated target
genes [170]. Finally, although we do not see global evidence in our analysis, gene-level studies
have previously implicated Lrp in interacting with �38 [171, 172]. Further studies are needed to
investigate Lrp’s interactions with other regulatory factors and the alternate mechanisms proposed
above. We must also acknowledge the possibility that some fraction of the always-poised sites
present in our data set are in fact false positives; some false positive rate is essentially unavoid-
able in a high throughput experiment of this type, and thus the behavior of any particular site can
only be resolved with certainty through a targeted follow-up experiment. However, several lines
of evidence point to the majority of poised sites being genuine, and likely being cases where Lrp
binding will play a regulatory function under an as-yet unstudied condition: our ChIP-seq peak
calling pipeline is designed to err toward being conservative; even the low-intensity binding sites
near direct targets called in our study have levels of regulatory activity similar to those identified
in previous experiments (Figure 2.5); and extrapolation from our existing set of conditions sug-
gests that while we have neared saturation in our discovery of poised targets, the fraction of poised
targets that become direct under at least one condition is likely to increase upon consideration of
additional conditions not studied here (Figure 2.15).

2.5.3 Lrp binding activity is partially predicted by known sequence motifs

While we detected a preference for Lrp binding at several previously-identified, related motifs and
AT-rich regions, there are still a significant subset of peaks that are not predicted by these mod-
els. We were unable to improve Lrp binding prediction from additional sequence determinants
despite application of several state-of-the-art motif finders. As mentioned above, this could be due
to Lrp binding initially at a sequence-specific location, and subsequent Lrp molecules binding due
to cooperativity and the high local concentration of Lrp molecules provided by Lrp’s oligomeric
nature. Alternatively, Lrp itself may be recruited by other proteins. Due to Lrp’s relatively high
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non-specific DNA binding affinity, especially under rich conditions [146], it is reasonable to find
that not all of its binding locations can be predicted based on sequence alone. It is again impor-
tant to note that the switch in DNA-binding specificity occurs regardless of the levels of leucine,
suggesting that other small molecule regulators [57] or potentially post-translational modifications
[173, 174] may play a role in Lrp regulatory activity. Additionally, despite extensive effort, we
were unable to identify any sequence determinants capable of reliably explaining Lrp regulatory
activity, either through predicting transitions from poised to active regulation, or distinguishing Lrp
activation from Lrp repression. Possible mechanisms for this behavior include interactions with
condition-specific factors that bind near the multifunctional Lrp sites (many potential partners have
likely not yet been characterized), condition-dependent DNA looping triggered by the binding of
Lrp to nearby sites or by octamer-hexadecamer transitions, or post-translational modifications to
Lrp itself. Dissecting the detailed molecular mechanisms underlying the binding and regulatory
landscape that we have revealed here will be a fruitful area for future research.

2.6 Materials and Methods

2.6.1 Strains and media

The WT strain used in this study was E. coli K-12 MG1655 (ATCC 47076). The Lrp deletion strain
was constructed by homologous recombination resulting in the insertion of kanamycin resistance
cassette [175]. Primers used for strain construction and validation are listed in Table 2.9. The
lrp::kanR strain was validated by sizing of the P965/P1568/P1569 products and Sanger sequenc-
ing.

All routine cell growth during cloning was done in LB medium (10 g/liter tryptone, 5 g/liter
yeast extract, 5 g/liter NaCl) or on LB plates (LB medium plus 15 g/liter Bacto agar) supple-
mented with 50 µg/mL kanamycin or 100 µg/mL ampicillin (both from US Biological; Salem,
MA) as required. For the ChIP-seq and RNA samples, a single colony of wild type E. coli or the
lrp::kanR strain was inoculated into MOPS media (Teknova; Hollister, CA) with 0.04% glucose
[154] and grown overnight. The cells were then back-diluted to OD600 = 0.003 in 100 mL of the
appropriate target media. Experiments were performed in MOPS with 0.2% glycerol (the MIN
media condition), MOPS with 0.2% glycerol and 0.2% (weight/volume) each leucine (Amresco;
Solon, OH), isoleucine (Alfa-Aesar; Haverhill, MA) and valine (Amresco; Solon, OH; the LIV
condition), or MOPS plus 0.4% glycerol, ACGU and EZ supplements (Teknova; Hollister, CA; the
RDM condition). Media conditions are summarized in Table 2.10.

The cells were grown at 37�C with shaking (200 rpm) until the OD600 was between 0.15 and
0.25 (for log phase samples), between 1.8 and 2.2 (for transition point in MIN or LIV media),
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Figure 2.17: Exponential phase growth rates for all biological replicates used in the present study. Plotted are the
biological replicate level log phase growth rates observed during growth of each sample used in the present study.
Growth rates were calculated using a simple linear regression for each replicate (solid points), and error bars indicate a
95% confidence interval based on jackknife resampling at the level of individual optical density measurements. Time
points to use in the calculation were selected from the overall growth curve by identifying the points most closely prior
to an OD600 level of 0.15-0.25 which exhibited log linear growth kinetics.

between 2.3 and 2.7 (for transition point in RDM), or 12 hours past the log point (for stationary
phase samples). The same incubator was used for all cell growth in order to limit variation in tem-
perature or aeration. The OD600 range for transition point harvest was determined by monitoring
the growth of cells grown in conditions identical to the experiment and selecting the point in the
OD600 range during which exponential growth becomes non-linear when visualized on a log scale
(Figure 2.1). Logarithmic growth rates for all samples are summarized in Figure 2.17. Associated
data for growth rates can be found in Supplementary Data File 2.

2.6.2 ChIP-seq

At the appropriate time, either WT or lrp::kanR cells were cross-linked by adding formaldehyde
(37% Sigma-Aldrich; St. Louis, MO) to a final concentration of 1% (vol/vol) and incubated with
shaking for 15 min at room temperature. Formaldehyde cross-linking was quenched by addition of
Tris (pH 8) to a final concentration of 280 mM and incubation with shaking at room temperature
for 10 min. The culture was then immediately centrifuged for 5 min at 5,500 ⇥g at 4�C. The pellet
was washed twice with 30 mL ice cold TBS (50 mM Tris, 150 mM NaCl, pH 7.5) before being
resuspended in 1 mL TBS. Following a 3 minute centrifugation at 10,000 ⇥g at 4�C and removal
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Identifier Sequence Notes
P1582 TCAGACAGGAGTAGGGAAGGAATAC

AGAGAGACAATAATATGTGTAGGCTG
GAGCTGCTTC

Generate Kan cassette to delete lrp

P1583 GAGTGTAATCAAAATACGCCGATTTT
GCACCTGTTCCGTGCATATGAATATC
CTCCTTA

P965 GAACTTCGAAGCAGCTCCAG
Test lrp::kanR deletionP1568 CAAGGCAACGGTCTTCTCAC

P1569 CCTGGCTCAAGAAAGGCTCT

Table 2.9: Primers used for lrp::kanR construction

Pre-growth media Minimal Min+LIV RDM
Media Base MOPSa MOPSa MOPSa MOPS RDMa

Carbon Source (weight/volume) 0.04% glucose 0.2% glycerol 0.2% glycerol 0.4% glycerol
Leucine, Isoleucine, Valine Supplement 0.2% (weight/volume)
a All MOPS media formulations are based on [154].

Table 2.10: Media conditions for cell growth

of the supernatant, the pellet was flash-frozen in a dry ice/ethanol bath and then stored at -80�C.
Two biological replicates, grown on different days, were prepared for each condition.

The cell pellet was resuspended in lysis buffer (phosphate-buffered saline [PBS], 0.1% Tween
20, 1 mM EDTA, 1⇥ cOmplete Mini EDTA-free Protease Inhibitors (Roche; Basel, Switzerland),
0.6 mg lysozyme (Amresco; Solon, OH)), vortexed for 3 s, and incubated at 37�C for 30 min.
The sample was then sonicated in 3 bursts of 10 s each at 25% power (Branson Digital Sonifier).
Cellular debris was removed by centrifugation at 16,000 ⇥g for 10 min at 4�C. To obtain an
accurate representation of the isolated pool of DNA before the extraction procedure, 50 µL of the
supernatant was removed and mixed with EDTA to 8.6 mM and 235 µL Elution Buffer (50 mM
Tris (pH 8), 10 mM EDTA, 1% SDS (vol/vol)) to be the input sample. The remainder of the lysate
was added to 50 µL pre-washed SureBeads Protein G magnetic beads (Bio-Rad; Hercules, CA)
and rocked for 1 hr at room temperature for pre-clearing. A separate aliquot of 100 µL of pre-
washed SureBeads Protein G magnetic beads was incubated with 10 µg Lrp monoclonal antibody
(Neoclone; Madison, WI) for 10 min at room temperature with rocking and then washed thrice
with PBS/0.1% Tween-20 before the pre-cleared supernatant was added. The bead/lysate mixture
was again incubated with rocking for 1 hr at room temperature. The beads were then washed
thrice with PBS/0.1% Tween-20. To elute the cross-linked Lrp/DNA complexes, the beads were
resuspended in 285 µL Elution Buffer and incubated at 65�C for 20 min, vortexing every 5 min.
The resulting eluate was incubated overnight at 65�C to reverse the cross-links.
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The sample was treated with 0.05 mg RNase A (Thermo Fisher; Waltham, MA) for 2 hrs at
37�C, then 0.2 mg Proteinase K (Thermo Fisher; Waltham, MA) for 2 hrs at 50�C before the
DNA was isolated by phenol-chloroform extraction and ethanol precipitation. The samples were
quantified (QuantiFluor dsDNA Kit, Promega; Madison, WI) and prepared for sequencing using
the NEBNext Ultra DNA Library Prep Kit for Illumina (NEB; Ipswich, MA). The library was
checked for quality by 2% agarose gel electrophoresis using GelRed stain (Biotium; Fremont, CA).
Samples were pooled and the sequencing performed on an Illumina NextSeq500, with 38⇥37 bp
paired end reads. We obtained at least 3,000,000 reads that passed all filters and aligned properly to
the genome per biological replicate with an average of 9,000,000 reads per replicate (Supplemental
File 2). Input samples were treated identically to the ChIP extracted samples beginning at the
overnight incubation to reverse the cross-links.

2.6.3 RNA-seq

For RNA-seq samples in both WT and lrp::kanR cells, 2.5 ml of culture was removed when cells
had reached the appropriate OD and mixed with 5 mL Qiagen RNAProtect Bacteria Reagent (Qi-
agen; Hilden, Germany), vortexed, incubated 5 min at room temperature, and then centrifuged for
10 min at 5,000 ⇥g in a fixed angle rotor at 4�C. The supernatant was removed and the pellet was
flash-frozen in a dry ice/ethanol bath before being stored at -80�C. The pellet was resuspended
in TE and treated with 177 kilounits Ready-Lyse Lysozyme Solution (Epicentre; Madison, WI)
and 0.2 mg Proteinase K (Thermo Fisher; Waltham, MA) for 10 min at room temperature, vor-
texing every two min. The RNA was purified using the Zymo RNA Clean and Concentrator kit
(Zymo; Irvine, CA), treated with 5 units Baseline Zero DNase (Epicentre; Madison, WI), in the
presence of RNase Inhibitor (NEB; Ipswich, MA), for 30 min at 37�C, and then again purified
with the Zymo RNA Clean and Concentrator kit. RNA quality was assessed by electrophoresis in
a denaturing agarose-guanidinium gel [176]. rRNA depletion was performed using the Ribo-Zero
rRNA Removal Kit for Bacteria (Illumina; San Diego, CA), halving all reagent and input quan-
tities but otherwise following the manufacturer’s instructions. cDNA synthesis and sequencing
library preparation were performed following the NEBNext Ultra Directional RNA Library Prep
Kit (NEB; Ipswich, MA). The library was checked for quality by 2% agarose gel electrophoresis
using GelRed stain (Biotium; Fremont, CA). Samples were pooled and the sequencing performed
on a NextSeq500 at the University of Michigan’s DNA Sequencing Core Facility.

2.6.4 Preprocessing of ChIP-seq data

Sequencing adapters were removed from all sequences using CutAdapt version 1.8.1 [177] with
parameters -a AGATCGGAAGAGC -A AGATCGGAAGAGC -n 3 -m 20 –mask-adapter –match-
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read-wildcards. Low quality reads were trimmed with Trimmomatic version 0.32 [178] using
the parameters TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:20. The quality of the raw and
preprocessed fastq files was assessed using FastQC version 0.10.1 [179] and MultiQC version 1.2
[180]. The number of raw and surviving reads for each sample are described in Supplemental File
2.

2.6.5 Alignment of ChIP-seq data

All samples were aligned to the MG1655 U00096.2 genome modified to match the insertions and
deletions for the ATCC 47076 variant of E. coli MG1655 as reported by [181]. Alignments were
performed using bowtie version 2.1.0 [182] and arguments: -X 2000 -q –end-to-end –very-sensitive
-p 5 –phred33 –dovetail in order to maximize the sensitivity of the alignment. Final alignment rates
for each sample are described in Supplemental File 2.

2.6.6 Calculation of ChIP-seq summary signal

The amount of Lrp-mediated DNA enrichment in any given experimental condition or geno-
type is represented by two different sequencing reactions: An extracted sample, where the DNA
crosslinked to Lrp is extracted and purified using a specific monoclonal antibody, and a matched
input sample (taken from the same tube after lysis and digestion), where the total input DNA before
the extraction procedure is sequenced. Throughout the following text references to the extracted
and input samples will refer to the definitions above for any given pair of samples for each com-
bination of experimental condition and genotype. To determine the raw enrichment for a set of
paired extracted and input samples, the coverage c of paired-end reads at every tenth base pair n
across the genome, was calculated from the alignments for the ChIP-extracted and input reads for
each sample separately using samtools [183] and custom python scripts. The raw read coverage
for extracted and input samples was then scaled using the median coverage across the genome
for each individual track to account for differences in sequencing depth between the two samples.
The median coverage was chosen as a scaling factor as it represents an estimator of the baseline
read coverage in a given sample that is less impacted by the exact heights of the peaks within that
sample. The raw enrichment (RE) was calculated using the log2 ratio of scaled extracted to input
coverage separately for each pair of extracted and input samples as shown below:

RE(n) = log2
cE(n)

median(cE)
� log2

cI(n)
median(cI)

(2.1)

Where E and I denote the extracted and input samples, respectively. Thus, the RE represents
a log2 transformed ratio of normalized extracted DNA abundance to normalized input DNA abun-
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dance. In addition, these log transformed ratios put each sample, for each condition, on the same
scale and removes the need for additional normalization between samples, thereby allowing for
direct comparison between REs from any given genotype or experimental condition.

Unique to this experimental set-up is the use of Lrp knockout samples as an additional control
to account for any biases from the antibody-mediated extraction procedure. Possible biases could
include antibody interactions with the DNA or low-level cross reactivity with other crosslinked
proteins during the extraction procedure. To the best of the author’s knowledge, no existing ChIP-
seq analysis pipeline is able to use two separate sets of control information from both an input
control sample and an entirely separate set of extracted and input samples under the knockout
genotype for the protein of interest. Therefore, we set out to create our own pipeline tailored
to this experimental design with the goal of minimizing the high rate of false positives commonly
seen in ChIP-seq experiments. We use the lrp::kanR samples to remove enrichment that also exists
in the absence of Lrp by subtracting the lrp::kanR RE signal from the Lrp WT RE signal to obtain
a raw enrichment signal (RSE) for any combination of WT and lrp::kanR replicates within a single
experimental condition (see Figure 2.18B and C. for an example of how this subtraction removes
false positive peaks). The RSE is represented mathematically below:

RSE(n) = REWT (n) � max(RElrp::kanR(n), 0) (2.2)

The max function in the equation above ensures that the lrp::kanR signal is subtracted only
if its RE was positive. Since both the Lrp WT RE signal and the lrp::kanR RE signal represent
normalized log transformed ratios they can be directly subtracted without additional normalization
between the samples from the two genotypes. The RSE can be interpreted as how much more
enrichment with the monoclonal antibody over the purified DNA is obtained when Lrp is present
in the WT genotype as compared to when Lrp is not present in the lrp::kanR genotype. For
each experimental condition in this paper we generated two Lrp WT replicates and two lrp::kanR
replicates. The Lrp WT and lrp::kanR samples are not paired; therefore, we took each combination
of a WT Lrp RE replicate and a lrp::kanR RE replicate to generate a raw subtracted enrichment
signal representing the Lrp WT - lrp::kanR signal. This results in four possible RSEs for each
condition and time point (i.e. WT rep1 - KO rep1, WT rep2 - KO rep1, WT rep2 - KO rep1, WT
rep2 - KO rep1). We next converted each of the RSE scores to a robust Z-score so that enrichments
between different experimental conditions could more easily be interpreted on a universal scale.
For each replicate pairing, the raw subtracted Lrp enrichment signals were converted to robust
Z-score estimates (RZ) using the following formula:

RZ(n) =
RSE(n) � median(RSE)

median(
��RSE(n) � median(RSE)

��)⇥ 1.4826
(2.3)

62



Here, the 1.4826 is a standard scaling factor used to convert the Median Absolute Deviation
(MAD) in the denominator into an estimator for the standard deviation under the assumption that
the values follow a normal distribution [184, 185]. This allows the RZ to be treated as a proper Z-
score. The RZ replicates were then averaged to generate a final occupancy signal for visualization
and estimates of the ChIP signal at a peak summit. Reproducibility of both the RE and RSE for
each replicate can be seen in Figure 2.18A.

2.6.7 Determination of high-confidence Lrp binding sites

In order to determine regions of high-confidence Lrp binding we required three criteria for Lrp
enrichment to be satisfied: 1. The enrichment must be technically reproducible. 2. The enrichment
must be above the input background. 3. The enrichment must be biologically reproducible. The
following paragraphs detail how each of these criteria were determined.

2.6.8 Assessment of technical reproducibility of Lrp enrichment

To assess the technical reproducibility of the Lrp enrichment, we used custom python scripts to
sample with replacement from the aligned reads separately for each paired extracted and input
sample. The RSE for each of the four possible subtracted Lrp WT vs. lrp::kanR replicates was
calculated, as described above in Section 2.6.6, for each of 1000 bootstrap replicates. To test for
technically reproducible enrichment, we considered a null hypothesis that the RSE is normally
distributed centered at 0. A Z-score for each location n was then determined as follows:

Z(n) =
RSE0(n)

median(
��RSEB(n)(m) � median(RSEB(n))

��)⇥ 1.4826
(2.4)

Where RSE0 is the unsampled dataset and RSEB represents the bootstrap replicates for which
m = 1 : 1000. The resulting Z-score was converted to a p-value using a one-sided Z test through
the scipy.stats normal cumulative distribution function [187]. These p-values were FDR corrected
using the procedure described by Benjamini and Hochberg [188]. A region was considered to be
technically reproducible if its q-value was less than 0.001.

2.6.9 Assessment of Lrp-specific enrichment

To assess enrichment of ChIP signal above the input background and to differentiate from off-target
antibody enrichments seen in pulldowns using the lrp::kanR strain, an RZ score (see eq. 2.3 above)
was calculated for each of the four possible combinations of WT-lrp::kanR replicates, yielding
positive signal only when the WT pulldown value was substantially above that of the lrp::kanR
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Figure 2.18: Lrp ChIP-Seq data is highly reproducible. (A) Heatmap displaying the similarity between replicates
based on shared locations in the highest 2% of signal in each replicate as quantified by the Jaccard statistic (A\B

A[B ).
Replicates for each WT Raw Enrichment(WT RE), lrp::kanR Raw Enrichment (KO RE), and WT-lrp::kanR Raw
Subtracted Enrichment (WT-KO RSE) are shown. (Details for each signal calculation in the methods). Red lines
separate replicates in the same nutrient conditions, Blue lines separate replicates in the same genotype. Plot generated
with the corrplot R package [186]. (B) Representative non-specific peak from the MIN Trans condition. Since the
peak is seen in both the lrp::kanR and WT strains, it does not qualify as a Lrp peak in our data analysis pipeline. Green
traces represent the WT Raw Enrichment (RE) from each of two replicates. Likewise, red traces indicate lrp::kanR RE
and blue traces represent the lrp::kanR subtracted replicates. (C) Representative true Lrp peak from the MIN Trans
condition. Colors are the same as in B.
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signal. We then tested for enrichment of the RZ score above the median signal for that track
through the use of a one-sided Z-test using scipy.stats normal cumulative distribution function and
FDR correction of the resulting p-value to a q-value. To be considered enriched above background,
a region was required to have an enrichment q-value less than 0.001.

2.6.10 Assessment of biological reproducibility

To assess the biological reproducibility of each region n, the irreducible discovery rate [189] was
calculated for each data point between the RSE signals for each possible combination of the four
Lrp WT - lrp::kanR combinations for each condition and time point (i.e. WT1 - KO1 and WT2-
KO2; WT1-KO2 and WT2-KO1). Starting parameters for the IDR calculation for each condition
included µ = 0.0, � = 1.4826, ⇢ = 0.1 and an associated weight based on the estimated number
of bound Lrp octamers for each nutrient condition x as determined in [146]:

W =
250bp ⇥ Lx

10bp
⇥ 463968 (2.5)

Where Lmin = 684, LLIV = 616, LRDM = 188. A region was considered to be biologically
reproducible if the FDR-corrected IDR q-value for regions passing the previous 2 filters was less
than 0.01 for both combinations of RSE replicates.

2.6.11 Combining enrichment and reproducibility into final peaks

Final peaks were determined if a region n passed the biological reproducibility filter (using each
possible pair of RSE signals), and at least one of the four subtracted replicate combinations passed
both the technical and enrichment filters (using each possible RSE signal). Adjacent passing re-
gions were consolidated into one region if they were within 30 base pairs. The applied cutoffs and
other thresholds were confirmed to be reasonable through manual inspection of called peaks and
candidate peaks that narrowly missed one or more cutoffs. An example peak in comparison to a
non-Lrp-specific peak can be seen in Figure 2.18B and C.

2.6.12 Preprocessing of RNA-Seq data

Similar to the ChIP-Seq reads, sequencing adapters were removed from all sequences using Cu-
tAdapt version 1.8.1 [177] with parameters –quality-base=33 -a AGATCGGAAGAGC -A AGATCG-
GAAGAGC -n 3 -m 20 –mask-adapter –match-read-wildcards. Low quality reads were trimmed
with Trimmomatic version 0.32 [178] using the parameters LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:20. The quality of the raw and preprocessed fastq files was assessed
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using FastQC version 0.10.1 [179] and MultiQC version 1.2 [180]. The number of raw and surviv-
ing reads for each sample are described in Supplemental File 3.

2.6.13 Filtering highly abundant RNAs from analysis

In some, but not all, of our samples as much as 70% of our RNA-seq reads were ribosomal reads
or the highly abundant RNA products from ssrA and ssrS (Supplemental File 3). To filter highly
abundant RNA reads and thus avoid having variations in ribosome depletion efficiency interfere
with proper normalization, all RNA-seq reads were aligned using bowtie2 version 2.1.0 [182] to
the same ATCC 47076-modified version of the U00096.2 genome used for the ChIP-Seq data.
The following parameters were used for bowtie2: -q –end-to-end –very-sensitive -p 5 –phred33
–dovetail. The subsequent alignments were parsed for reads that overlapped with ribosomal reads
in a strand specific manner using custom python scripts. New fastq files were written that only
included reads that did not overlap ribosomal reads, and these files were used for downstream gene
expression analyses. In all replicates at least two million reads survived this final filter with the
smallest size replicate containing 2.6 million reads after filtering (Supplemental File 3).

2.6.14 Gene-centric quantification of RNA-Seq data

Gene-centric quantification of RNA expression for all samples was performed using kallisto ver-
sion 0.43.0 [190] with the arguments: quant -t 4 -b 100 –rf-stranded. The appropriate transcriptome
file needed for alignment was created through converting the GeneProductSet dataset from Reg-
ulonDB version 9.4 [48] to the appropriate ATCC 47076 coordinates and input file format for
kallisto using custom python scripts.

2.6.15 Determination of Lrp-dependent changes in transcription

To determine Lrp-dependent changes in transcription, we used kallisto’s companion post-processing
data analysis software, sleuth [191] to model the transcript abundance for each condition and time
point. We tested for differential expression between the WT and lrp::kanR strains separately for
each condition and time point by using a Wald test on the genotype term of the simple model: tran-
script abundance ⇠ genotype; here the lrp::kanR is the baseline condition. Additionally, we used
the bootstrapped read counts from Kallisto to calculate the average WT to lrp::kanR expression.
We first normalized the count k for gene i using a scaling factor for each replicate j as adapted
from equation 5 in [192] and shown below:

sj = emedian(ki� 1
N

PN
i=1 log ki) (2.6)
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Expression for gene i in replicate j is thus:

expri =
ki
sj

(2.7)

We then calculated the log2 expression ratio between WT and lrp::kanR as below:

log2(expr ratio) = mean(log2(WT1), log2(WT2))� mean(log2(KO1), log2(KO2)) (2.8)

Transcripts that passed both an FDR corrected p-value of less than 0.05 and a log2 expression
ratio magnitude of greater than log2(1.5) were considered to have a significant Lrp-dependent RNA
expression change under that condition.

To obtain a maximally conservative credible interval on the log2 expression ratio we calculated
the 95% credible interval on the log2 ratio of each of the four possible WT replicate to lrp::kanR
replicate pairs across all 100 bootstrap replicates performed by kallisto. We then chose the min-
imum of the minimum credible intervals of all possible pairs and the maximum of the maximum
credible intervals of all possible pairs to report in each of our RNA-seq plots. This credible inter-
val is on average two times larger than a credible interval obtained from bootstrap replicates of the
average expression ratio and best represents the true uncertainty of each ratio.

2.6.16 Antibody development and testing

The monoclonal antibody used in these experiments was developed via a contract with NeoClone
(Madison, WI). Using purified His-tagged Lrp, several rounds of potential antibodies were devel-
oped. The potential antibodies were tested for cross-reactivity with the known Lrp homologues
AsnC and YbaO by ELISA at NeoClone. We used an in vitro DNA pull-down assay to ensure that
the potential antibodies did not inhibit Lrp-DNA binding (Figure 2.19A). In addition, we tested the
antibody for use in Western blotting (Figure 2.19B). We also confirmed that the antibody did not
bind the oligomerization interface by observing bands corresponding to Lrp octamers and hexade-
camers in native Western blots (data not shown).

2.6.17 Filtering of genes into Lrp-dependent categories

For gene target filtering, we established four categories through a two-level filtering scheme (Fig-
ure 2.6A). We first tested whether the gene had a Lrp-dependent change in RNA expression by
comparing the target gene’s expression in WT and lrp::kanR strains using a Wald test as described
above. We next asked if the gene had any overlapping high confidence Lrp binding site, as de-
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Figure 2.19: Lrp antibody does not interfere with DNA binding and is specific for Lrp. (A) Pull down assay to test
ability of antibody to bind DNA-bound Lrp. The first two labeled lines show the expected size of the band for pull
down of the specific (ilvI) and non-specific (mntH) DNA-fragments. Lanes 1-8 are candidate anti-Lrp antibodies.
Lane 9 is a negative control with antibody but no Lrp to illustrate no off-target DNA binding to the antibody alone.
Lane 10 is a positive control with a previously successful antibody clone (which had suffered degradation at the time
of this assay). The star above lane 1 indicates that this is the antibody subclone we selected to produce. Lrp’s ability
to bind DNA non-specifically is strongly evident. (B) Western blot using the selected antibody subclone. Monomer
Lrp bands (with some size discrepancy due to the presence of a tag) are apparent in the WT lysate and the two lanes
with purified Lrp. No bands are visible in the lrp::kanR lysate lane. Note that the purified Lrp is at much higher
concentration than the Lrp concentration in crude cell lysate.
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fined above, within the regulatory region (defined as 250 bp upstream and downstream from the
annotated transcription start site (TSS; annotations from RegulonDB [48])). If multiple TSSs were
annotated for a gene, the regulatory region included 250 bp upstream of the most distal TSS and
250 bp downstream of the most proximal TSS. For unannotated TSSs present within the Regu-
lonDB PromoterSet, we assigned the TSS to the nearest downstream gene within 500 bp based on
the ORF definitions in RegulonDB’s GeneProductSet and any TSS that fell outside this range was
left unassigned. This automated TSS assignment is consistent with those used in other, similar
applications (e.g., [193]).

Genes were thus categorized as either a direct target (RNA expression change and Lrp bind-
ing), an indirect target (RNA expression change but no Lrp binding), a poised target (no RNA
expression change but Lrp binding), or unconnected to Lrp (neither RNA expression change or
Lrp binding). For the additional classification of poised targets in Figure 2.7A, we further divided
the poised targets into four subcategories poised, poised nearby direct, poised uncertain direct,
and poised unexplained. Poised targets were considered true poised targets if, in any other con-
dition, they transitioned to a direct target. Of the genes that do not fit into the true poised classi-
fication if, within the same condition, a nearby gene (with a promoter region within 1000 bp of
the poised gene) was a direct target then they were classified as a poised nearby direct. Failing
those two classifications, genes for which the conservative credible interval on the log2 expression
values (described in Section 2.6.15) spanned our log2(1.5) ratio biological cutoff were considered
poised uncertain direct since we do not have enough information in our data to definitively say
that the RNA expression is not impacted by Lrp in that condition. Finally, any poised gene not
falling in the above classifications was considered a poised unexplained gene, representing genes
where Lrp is binding at the promoter but never regulates the transcription levels of the gene under
the conditions studied here.

We also subcategorized the Lrp indirect genes into three categories, indirect, indirect operon direct,
and indirect peak in cds (Figure 2.7B). Some genes classified as indirects were the result of alter-
native TSSs within an operon, for which Lrp binds the TSS of the first gene in the operon. Genes
that fall under this category were considered indirect operon direct. Additionally, some genes had
a called Lrp peak that overlapped within the coding region of the gene, these genes were classified
as indirect peak in cds. All other indirect genes were classified as truly indirect.

For comparing enrichment of Lrp targets with � factor or transcription factor targets, we used
permutation tests as noted in the text, implemented using custom python scripts and 1000-10000
permutations. When testing for enrichment across several different � factors or transcription fac-
tors, we corrected for multiple hypothesis testing with the python statsmodels.sandbox.stats.multi-
comp.multipletests implementation of the Benjamini-Hochberg method [188, 194]. All plots ex-
cept where noted were created using ggplot2 [195] or Matplotlib [196]. All genomic features above
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plots were created using the DNA features viewer python library (https://github.com/Edinburgh-
Genome-Foundry/DnaFeaturesViewer).

2.6.18 Accession numbers

Raw sequencing data has been deposited in the Gene Expression Omnibus with accession number
GSE111874. Source code for standalone analysis of sequencing data are publicly available from
https://github.com/freddolino-lab/2018 Lrp ChIP.
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