
CHAPTER 3

High-Resolution Mapping of the Escherichia coli
Chromosome Reveals Positions of High and Low

Transcription

3.1 Contribution details

This work was reproduced from its published form, with permission, from Scholz et al. [197]. I
am third author on this publication and initially became involved in it through the development of
a command-line, sliding window, tool that enabled the primary author, Scott Scholz, to interrogate
the primary data and create many of the figures in the final manuscript. Throughout this data anal-
ysis process, I had many conversations with Scott, Rucheng Diao (the second author), and Peter
Freddolino about, not only technical issues with the data analysis itself, but also with biological
questions and directions the data analysis could go. Once the initial draft was written by Scott, I
provided editing and critical revisions of the manuscript. Through the review process, I contributed
additional analyses and wrote manuscript text on the discovery of the periodicity of the transcrip-
tional propensity signal and the correlation of the signal with Hi-C data from Lioy et al. [198],
which I reanalyzed for this paper. Since publication of this manuscript, I have been involved in
discussions about follow-up experiments and this work has heavily influenced the future direction
of my research on the role of nucleoid associated proteins in regulating bacterial transcription.

3.2 Abstract

Recent studies on targeted gene integrations in bacteria have demonstrated that chromosomal loca-
tion can substantially affect a gene’s expression level. However, these studies have only provided
information on a small number of sites. To measure position effects on transcriptional propensity
at high resolution across the genome, we built and analyzed a library of over 144,000 genome-
integrated, standardized reporters in a single mixed population of Escherichia coli. We observed
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more than 20-fold variations in transcriptional propensity across the genome when the length of the
chromosome was binned into broad 4 kbp regions; greater variability was observed over smaller
regions. Our data reveal peaks of high transcriptional propensity centered on ribosomal RNA
operons and core metabolic genes, while prophages and mobile genetic elements were enriched
in less transcribable regions. In total, our work supports the hypothesis that E. coli has evolved
gene-independent mechanisms for regulating expression from specific regions of its genome.

3.3 Introduction

The bacterial nucleoid is a dense structure composed of DNA, RNA, and proteins and excludes
some other abundant cellular machinery, such as ribosomes, from its interior [199–201]. Several
studies have demonstrated that packing of the nucleoid is non-random and condition dependent.
For example, chromosome conformation capture (3C) studies in multiple bacterial species have
revealed segments of DNA that preferentially self-interact and have been called chromosome in-
teraction domains [198, 202–204] . During exponential growth, RNAPs are also organized into
tight foci on the nucleoid surface, actively transcribing the ribosomal RNA operons (rrn) [205],
most of which appear spatially co-localized [206]. Despite the specific localization of DNA and
RNAP, previous findings based on site-specific integrations have suggested that gene expression
from different genomic loci is roughly equivalent, except for the effect of gene dosage, which de-
creases from the origin of replication to the terminus during exponential growth [92, 207, 208].
Higher gene dosage near the origin is a result of multiple replication initiation events before termi-
nus replication and cell division [209]; historically, the bacterial chromosome has otherwise been
considered generally accessible structurally and for transcription, without detectable interference
from chromosomal structure [208, 210].

By measuring GFP fluorescence from a terminator-flanked reporter integrated into several sites,
Block et al. [211] observed that gene expression variation from the origin to the terminus corre-
sponded to expected growth-rate-dependent gene dosage changes, consistent with the expectations
outlined above. More recently, however, the dogma of uniform expression capability across the
genome has been challenged by several lines of evidence. Using a similar approach to Block et al.
[211], Bryant et al. [93] demonstrated widely varying expression from a GFP reporter in E. coli
that did not correlate with genome copy number. Some of the lowest expressing sites were in
transcriptionally silent extended protein occupancy domains (tsEPODs) [78], which are regions of
high protein occupancy on the genome that appear to correlate with low transcript levels. In some
cases, the reporter gene expression could be increased by replacing the tsEPOD with the reporter
gene instead of integrating within it [93]. For some reporters outside of tsEPODs, expression
interference from neighboring genes drove down reporter expression, depending on the relative
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gene orientation. Gene expression interference between neighboring genes has also been studied
in more detail on plasmids within E. coli cells [212]. In that study, some of the gene expression
interference observed between neighboring genes could be attributed to competition for negative
DNA supercoiling and was gene orientation specific. DNA gyrases and topoisomerases maintain
negative supercoiling, which compacts the nucleoid and is important for gene expression [213].
Brambilla and Sclavi [214] have also tracked expression of a reporter under a promoter known to
be bound by the nucleoid protein H-NS from 9 different sites over the E. coli growth period and
observed different site-specific expression levels depending on the growth phase.

Despite the specific observations described above, a systematic understanding of the effects of
chromosomal position itself on gene expression has so far eluded the field. Previous studies on
position-dependent expression variation have been limited to a small number of integration sites,
which was appropriate for mechanistic studies into the effects of specific genomic features, but
could not reveal the full range of position-dependent effects on transcription. DNA supercoiling,
protein occupancy, transcriptional interference, and binding of promoters and genes by various
nucleoid-associated proteins (NAPs) are examples of genomic features that affect expression of
large portions of genes in the bacterial genome. Extensive work has been conducted to character-
ize the effects of a number of these factors for expression of specific genes. However, genomic
features vary simultaneously across the genome, potentially leading to combinatorial effects on
gene expression [215, 216]. Specific loci may have unique features affecting transcription, which
could only be identified by high-resolution mapping of position-dependent expression variation.

Here, we employ Tn5 transposase to perform massively parallel integration of a standardized,
barcoded reporter construct, allowing us to obtain an empirical map of gene-independent transcrip-
tional propensity—that is, the amount of RNA produced per unit of DNA from a given reporter—
across the bacterial genome (Figure 3.1). High-resolution transcriptional propensity comparisons
with genomic features can reveal both strong and weak correlations with high statistical power. To
test the effect of genome position on gene expression, and not native gene regulation, we designed
a reporter construct with strong bi-directional terminators [217] and its own inducible promoter
(Figure 3.1A). Each reporter construct is tagged with a unique barcode identifier, which allows
simultaneous tracking of gene expression from thousands of integrations. Using a modified trans-
poson footprinting procedure, unique barcodes were paired with integration location, allowing bar-
codes to serve as a proxy for the overall abundance of RNA or DNA at each integration address.
The s70-dependent TetO1 promoter drives expression of mNeonGreen (mNG) followed by a 15
base barcode on the 3’ UTR of the RNA upon induction by anhydrotetracycline (aTc) [218]. The
reporter used here was designed to be relatively small in size and has an intermediate transcription
rate [219] in order to minimize the effect of the reporter on the local genome structure [202]. The
inclusion of an open reading frame in our construct ensures that the transcribed RNA will be sub-
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Figure 3.1: Library Construction and Data Acquisition for Position-Dependent Transcriptional Propensity Mapping.
(A) mNeonGreen (mNG) reporter is controlled by the TetO1 promoter. The orange arrow indicates the position of the
15 bp barcode that is transcribed with mNG. The construct is flanked by strong bi-directional terminators and mosaic
ends (ME), which are recognized by Tn5 transposase. P1 and P2 indicate sites used for light amplification in prepara-
tion for barcode sequencing. Construct size and features are shown before and after curing of a kanamycin resistance
marker (KanR). (B) To produce the reporter library, randomly barcoded reporter constructs in complex with Tn5 are
electroporated into cells and randomly integrated into the E. coli genome in parallel. (C) Transposon footprinting pairs
barcode sequence (orange) with integration location on the genome (black). 4 bp recognition restriction enzymes cut
upstream of the barcode and randomly in the downstream genomic DNA. After ligation of the Y-linker (red), construct-
containing DNA fragments are specifically amplified and sequenced. Footprinting need only be done once for a given
library to identify the insertion location corresponding to each barcode. (D) To measure transcriptional propensities,
the reporter library is grown to an optical density (OD) at 600 nm of 0.2. Total RNA and DNA are extracted. After
nucleic acid processing (Figure 3.2), the RNA:DNA ratio for each barcode is mapped to their corresponding genomic
locations.

ject to typical post-transcriptional phenomena (e.g., co-transcriptional translation and subsequent
protection by ribosomes). In keeping with efforts to minimize reporter size, the selection marker
is an FRT (flippase recognition target)-flanked kanamycin resistance cassette and was removed by
Flp recombinase before the full-scale profiling procedure (Figure 3.1A).

3.4 Results

Tn5 transposition was used to integrate the barcoded reporter in a massively parallel fashion into
the E. coli genome. We mapped 144,672 unique reporter barcodes to 98,034 unique genomic inte-
gration sites, corresponding to an average of one unique location every 47 bp. As integration rate
was not uniform across the genome, resolution varies depending on the region (Figures 3.4C and
3.3E). Neighboring integrations have high similarity in raw RNA barcode produced per unit DNA
barcode (which we refer to as transcriptional propensity), indicating that reporter transcription is

74



Figure 3.2: Plasmid barcoding, nucleic acid processing, and sequencing analysis workflow. (A) Barcoding of pSAS31
for generation of barcoded reporter integration construct. (i) Diagram of the mature barcoded integration construct.
The orange arrow indicates the position of the random barcode. (ii) Representation of key reporter features on the
pSAS31 plasmid; the plasmid backbone (pale blue) is un-annotated for clarity. (iii) After digestion with AscI, pSAS31
is amplified with primers that introduce a random 15 bp barcode (brown primer). (iv) After digestion of the PCR
product from (iii) by AcsI, the plasmid is recircularized and transformed for selection. All plasmids in the library
differ by only the barcode sequence. The orange arrow indicates the position of the random barcode. The barcoded
integration construct is liberated by PvuII digestion of the plasmid library and used for transposome generation. (B)
Nucleic acid processing for sequencing of RNA barcodes. The barcode is indicated in the purple box. First strand
synthesis introduces a site for the i7 NEB sequencing primer to bind (P11). Through a low number of cycles of
PCR the library is lightly amplified and has adapters added for sequencing. (C) Sequencing data analysis workflow. (i)
Structures and processing of raw sequencing reads for footprinting and barcode sequencing runs. Both Read 1 and 2 in
paired-end sequencing for footprinting are used. Read 1 in footprinting data are processed to retrieve barcode sequence
(orange) and genomic sequences (black) at the insertion position by removing the uninformative parts. Footprinting
Read 2 is used to obtain the unique molecular identifier (UMI, yellow) to each barcode-position combination in the
same set of reads. (ii) Sources of transcriptional propensity and footprint reads relative to the construct inserted into
genome. (iii) Use of information from sequencing runs to map transcriptional propensity to positions on genome.
The cDNA barcode counts, genomic DNA barcode counts, and genomic DNA footprinting yield the transcript levels,
DNA- based normalization, and insertion locations, respectively, needed for transcriptional propensity calculation.
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dependent on integration location (Figures 3.4A and 3.4B). After smoothing the raw transcriptional
propensity by taking the median value for reporters in a 500 bp window around each integration,
the highly correlated replicates (Figure 3.4D, Spearman ⇢ = 0.915) were averaged to produce the
high-resolution transcriptional propensity map (Figure 3.4E). The transcriptional propensity map
for all analyses includes only sites where at least three independent integrations were measured
within a 500 bp window. The transcriptional propensity signal is reported as a median of signal
for all integration events within a 500 bp window centered on each integration in all calculations
in order to minimize noise potentially arising from a single barcode (see Supplemental Table S7
for all transcriptional propensity and count values). Several other potentially confounding fea-
tures, such as barcode-specific GC content and reporter-integration-specific growth rate changes,
do not have systematic effects on this transcriptional propensity signal (Figure 3.5; Section 3.6.20).
N.B. the barcode abundance measurements used are for the reporter barcodes only; RNA from na-
tive transcripts is not sequenced in our experiments. We also note that in principle, any potential
genome-position-dependent effects on RNA stability would be part of the transcriptional propen-
sity signal. Although there is a weak positive correlation between the degradation rate of RNA
from neighboring operons [220], RNA abundance is well correlated with transcription rate of na-
tive genes in E. coli [221], whereas RNA stability is generally not predictive of overall transcript
levels in E. coli [222], hence our use of the term transcriptional propensity (as opposed to RNA
abundance propensity).
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Figure 3.3 (previous page): Reporter library properties. (A) Correlation between DNA barcode counts from replicate
1 and replicate 2 (Spearman ⇢ = 0.72). (B) Correlation between RNA barcodes from replicate 1 and replicate 2
(Spearman ⇢ = 0.95). (C) Correlation between unsmoothed RNA/DNA ratio replicate 1 and replicate 2 (Spearman
⇢ = 0.4). (D) Correlation between replicates as in Figure 3.4D after independent median windowing over 500 bp cen-
tered on each integration site (Spearman ⇢ = 0.91); this statistic corresponds to the data discussed in the main text. (E)
Integration density across the genome as the percentages of genomic sites with a minimum of certain counts of inte-
grations within the 1 kb windows centered at each genomic position. 92.6% of genomic sites had at least 1 integration
within the 1 kb window. The orange dashed line indicates the value of the median of integration counts of all genomic
sites (1 integration per 43.5 base pairs). The cyan-green solid line indicates the percentile and value of the geometric
mean of integration counts. (F) Doublings per hour for strains with targeted reporter integrations downstream of the
indicated gene with and without induction by aTc from cells grown in microplate (Corresponding dosage-transformed
transcriptional propensity from these sites range from a maximum of 41.25 for yagF to a minimum of 2.74 for ybcK).
The sites are ordered from left to right by highest to lowest transcriptional propensity. (G) Correlation of log2 ratios
of barcodes genomic DNA abundances post- and pre- aTc induction and growth with log2 ratios of RNA/DNA ratios
(Spearman ⇢ = 0.01). Barcodes were filtered to include only barcodes with over 10 counts in both replicates. (H)
Correlation of log2 ratios of barcodes genomic DNA abundances post- and pre- growth with aTc induction with log2
ratios of RNA/DNA ratios. Barcodes were filtered to include only barcodes with over 100 counts in both replicates
(Spearman ⇢ = 0.14). Note that as described in the text, the Spearman correlations drop in magnitude to below 0.03
upon application of the window-averaging used in processing our transcriptional propensity signals, demonstrating a
lack of any meaningful impact due to clonal variations in growth rate.
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Figure 3.4 (previous page): Genome-Position-Dependent Transcriptional Propensity from Tn5-Based Integration of a
Barcoded Reporter Is Nonrandom (A) Autocorrelation of raw RNA/DNA ratio values for replicate 1. Lag represents
base pair distance. The dashed line represents the 99% autocorrelation confidence interval for a white noise process,
thus representing the level of autocorrelation that would be observed in the absence of a true signal. (B) Autocorrelation
of raw RNA/DNA ratio values for replicate 2. (C) Reporter integration count within 1 kb windows throughout the
genome. (D) Correlation between replicates for calculated transcriptional propensity from 500 bp rolling median
windows (Spearman ⇢ = 0.91). (E) Median transcriptional propensity (over 500 bp median rolling windows with at
least three unique barcodes) mapped to specific integration locations on the E. coli genome. The color indicates the
number of unique transposon insertions in the same bin of RNA/DNA ratio. All values used to generate these plots can
be found in Supplemental Table S7. (F) Shown are kernel density estimates of the distributions of log2-fold deviations
of transcriptional propensities (smoothed by taking the median value from different window sizes around each site)
versus the global median of transcriptional propensity from the same sample. “Int” indicates the minimum number of
integrations required to generate a median-smoothed value for each window size. The blue curve corresponds to the
smoothing used throughout the remainder of the text. (G) Spectral analysis of the observed transcriptional propensity
signal (averaged across biological replicates) using the Lomb-Scargle periodogram method [223, 224]. Only periods
that represent an integer divisor of the total genome length were analyzed. The green dotted line represents an overall
<1% false discovery rate as determined by a permutation test using blocks of 2,200 adjacent collection bins (⇠100,000
bp; see Section 3.6.16 for details). Inset; as in main figure, zoomed out to show periods <160,000 bp. (H) Sinusoidal
function fit (red line) of the period with the highest Lomb-Scargle power (663,093.14 bp, 7 repetitions per genome
length) to the transcriptional propensity.

3.4.1 Transcriptional Propensity Is Highly Variable across the E. coli Genome

Transcriptional propensity variation appears roughly periodic at the whole-genome scale (Figure
3.4E). Several sharp troughs are also apparent, independent of the overall waveform. Transcrip-
tional propensities are not a result of gene dosage resulting from high Ori-Ter ratios during expo-
nential phase growth or from differing representation of a library member because all transcrip-
tional propensities are reported as RNA:DNA ratios. The distributions of transcriptional propensity
values observed using different windowing sizes are plotted in Figure 3.4F. Substantial position-
dependent variation is present throughout the genome. A smooth, roughly log-normal population
is observed spanning a 16-fold range of propensities (with 99% of values contained within a cen-
tral 4.2-fold range); furthermore, many genomic regions are apparent in the tails of the distribution
that represent dramatically activated or silenced sites. There is a >250-fold propensity difference
between the highest and lowest 500 bp windows (using the median of no fewer than three sites
within each window to avoid undue impact of individual outliers). Even considered over broader
regions, an overall >195-fold range persists using a window size of 1 kbp (requiring no fewer than
5 reporters) and a >22-fold range of transcriptional propensity difference between the highest and
lowest 4 kbp regions of the chromosome (median of integration sites within a 4 kb window with at
least 8 reporters, see Figure 3.4F for transcriptional propensity variation considered over different
median-windowing sizes). A trade-off of course exists in expanding the window size used in the
analysis above, as larger windows will be less subject to statistical fluctuations, but also will likely
miss biologically meaningful local variations in transcriptional propensity and instead provide a
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Figure 3.5: Barcode GC content and other barcode-specific properties have little to no effect on transcriptional propen-
sity. Violin plot of raw transcriptional propensity from replicate 1 (A, Spearman ⇢ = 0.15) and replicate 2 (B, Spear-
man ⇢ = 0.13) from each possible barcode GC content fraction. (C) Correlation of the 500 bp median windowed
and replicate-averaged transcriptional propensity (used for correlations with all other genomic features) with barcode
GC content (Spearman ⇢ = 0.01). (D) Median transcriptional propensity within different 500 bp windows of each
gene (cartoon of 500 bp windows on a generic gene indicated above) are divided by the downstream median value
(which does not result in a knockout) and log2 transformed. In general, the values from the upstream, first and last
windows are very similar to the downstream window, with median log2 fold changes of of 0.004, -0.01, and 0.028,
respectively (Integrations within the first window are likely to cause loss of function). (E)-(I) Retention rate of kanR
does not affect measurement of genome-wide transcriptional propensity. (E) Correlation between the raw replicate
1 transcriptional propensity and replicate 1 kanR-associated barcode per DNA barcode (Spearman ⇢ = 0.14). (F)
Correlation between the raw replicate 2 transcriptional propensity and replicate 2 kanR- associated barcode per DNA
barcode (Spearman ⇢ = 0.19). (G) Correlation between replicates for the kanR-associated barcodes per DNA bar-
code (Spearman ⇢ = 0.25). (H) Correlation between the standard transcriptional propensity values (Y-axis) and the
average of the kanR-associated barcodes per DNA barcode replicates after taking the median value from each site and
integrations in the surrounding 500 bp (these data are processed identically to the transcriptional propensity values)
(Spearman ⇢ = �0.05). (I) Windowed average KanR per DNA barcode (as in D) mapped onto the E. coli genome.
(J)-(L) DNA barcode count is not correlated with genomic AT content: (J) Insubstantial correlation between spline
corrected barcode genomic DNA counts with AT content fraction from 500 bp around each integration site (Spearman
⇢ = 0.05) (K) Spline corrected genomic DNA barcode counts mapped to the chromosome. (L) Spline corrected RNA
barcode counts mapped to the chromosome. (M) Zoom-in to a genomic region showing AT fraction and both RNA
barcode counts (red) and DNA barcode counts (blue).
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regional average across large chunks of the chromosome.
The superficially apparent periodicity in the transcriptional propensity is supported by spectral

analysis via Lomb-Scargle periodograms [223, 224]. As shown in Figure 3.4G, strong spectral
lines are apparent at both 663 kb and 773 kb periods, which would correspond to 7 and 6 rep-
etitions, respectively, throughout one genome length, suggesting that this length scale may be
characteristic of a key unit of functional and/or spatial organization in the E. coli chromosome.
Modeling the transcriptional propensity with a sinusoidal function at a period of 663 kb shows a
good fit (Figure 3.4H). These period lengths are roughly consistent with the size of macrodomains
observed in recent 3C-sequencing experiments [198]. We also note that the absence of a ⇠10 kb
component in our periodogram, which might be expected based on experiments measuring the
propagation of supercoiling relaxation upon DNA damage [225], may arise simply because of a
lack of periodicity in the ⇠10 kb domain organization.

3.4.2 Ribosomal RNA Operons Are Centered in Broad Transcriptional Propen-
sity Peaks

Several genomic features are readily apparent as having substantial correlations with regions of
high transcriptional propensity, as shown in Figure 3.6A. The seven rrn operons in the E. coli
genome are located within the major peaks of transcriptional propensity, although a single major
peak (near 1 Mb) occurs without an rrn operon. Thus, either the rrn operons have been selected
to be contained in regions of exceptional transcriptional propensity or they contain some feature
that itself enhances transcriptional propensity in their surroundings. By subtracting a LOWESS
(locally weighted scatterplot smoothing) [226] smoothing on transcriptional propensity with dis-
tance from the nearest rrn operon (Figure 3.6C), from the overall transcriptional propensity signal,
the major waveform pattern is mostly eliminated, while local peaks and troughs are still apparent
(Figure 3.6D); thus, several additional features must contribute locally to both position-dependent
activation and silencing. Another feature that could contribute to the transcriptional propensity
signal is the structural organization of the genome at both long- and short-length scales. In order
to explore the relationship between long-length scale organization and transcriptional propensity,
we examined the interaction between our transcriptional propensity data and the macrodomain
boundaries identified in Lioy et al. [198], shown in Figure 3.6A (lower panel). Working at the level
of each macrodomain, we grouped the transcriptional propensity signal into 10 equally spaced
bins according to length-normalized position within the corresponding macrodomain. Transcrip-
tional propensity is higher at macrodomain boundaries near an rrn operon, but this effect is not
present at macrodomain boundaries that do not have a nearby rrn operon (Figure 3.7C). On shorter
length scales, such as the scale of the chromosomal-interacting domains (CIDs) observed in 3C-
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sequencing experiments [198] or topologically separated domains observed in isolated chromo-
somal DNA [227], we see a limited relationship between the transcriptional propensity and the
position within a defined CID (Figure 3.7A). In fact, similar to the macrodomain boundaries, the
transcriptional propensity tends to be higher at CID boundaries that coincide with a ribosomal
RNA operon, but this effect is not present at CID boundaries that do not have a nearby rrn operon.
Together, these results suggest that measures of the structural organization of the genome alone are
not predictive of transcriptional propensity and other features must also contribute to the transcrib-
ability of any particular region.
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Figure 3.6: Transcriptional Propensity Peaks Correspond to Ribosomal RNA Operon and Macrodomain Boundaries.
(A) (Top) Transcriptional propensity plot with macrodomain boundaries, as determined from Lioy et al. [198]. Red
dashed lines indicate ribosomal RNA operons. Ribosomal RNAs labeled with a star indicate rRNA operons near
macrodomain boundaries. Black dashed lines indicate macrodomain boundaries that are not near a ribosomal RNA
operon, and gene names for the overlapping or nearest gene to these boundaries are indicated above. (Bottom) Di-
rectionality index (DI; see Section 3.6.17) determined at 400 kb scale for each of the two biological replicates taken
from exponentially growing E. coli cells at 37�C in LB media with macrodomain boundaries indicated with black
dashed lines, obtained by re-analysis of data from Lioy et al. [198]. For details on determination of macrodomain
boundaries and accession of Lioy et al. [198] data, see Section 3.6.17. (B) Correlation of transcriptional propensity
and distance from the nearest rrn operon (Spearman ⇢ = �0.56). (C) LOWESS fit of transcriptional propensity with
rrn distance (fitting using a smoothing parameter of 0.33). (D) Transcriptional propensity signal with values from
LOWESS regression subtracted from the overall signal in (A).
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Figure 3.7 (previous page): Relationship between Transcriptional Propensity and Chromosome Interacting Domains.
(A) (top) Transcriptional propensity plot (this study) compared with CID boundaries [198], plotted as dashed black
lines and labeled with an overlapping or nearby gene. Red dashed lines indicate one of seven ribosomal RNA operons.
Stars above ribosomal RNA operon names indicate close proximity to a CID boundary. (bottom) Directionality index
determined at 100 Kb scale for each of two biological replicates taken from exponentially growing E. coli cells at 37
�C in LB media with CID boundaries labeled as in the top panel. For details on determination of CID boundaries and
accession of Lioy et al. [198] data see Section 3.6.17. (B) Violin plots of transcriptional propensity aggregated into
ten bins evenly discretized over the length of each CID and conditioned on the presence or absence of rRNA operons
at either or both boundaries for a given CID (i.e. bin 1 is aggregated data from the left-most bin of each CID and
bin 10 is aggregated data from the right-most bin of each CID, where left and right are defined relative to standard
genome coordinates). Lines on each violin indicate the 50th percentile estimate as determined by the kernel density
for each distribution. Stars indicate bins whose medians are significantly higher (FDR corrected p-value < 0.01) than
the corresponding “rRNA at neither boundary” baseline bin as determined by a one-sided permutation test where class
labels were shuffled 1000 times. (C) Same as (B) but for macrodomains determined from directionality index analysis
at 400 Kb scale as in (Figure 3.6A).

3.4.3 Binding of the NAPs H-NS and Fis Is Strongly Correlated with Tran-
scriptional Propensity

We next examined the correlation of transcriptional propensity with several characterized genomic
features using rolling-window medians over 500 bp for each dataset. We observed the strongest
effects for binding of the nucleoid proteins Fis and H-NS, as well as global protein occupancy mea-
sured via in vivo protein occupancy display (IPOD; Figures 3.8, 3.9A, and 3.9B; see Table 3.1 for
all Spearman correlations). Despite the fact that the abundant NAP Fis is not expected to bind the
reporter construct itself, transcriptional propensity is highly positively correlated with Fis binding
levels at genomic integration sites (Spearman ⇢ = 0.50, Figure 3.8A). Conversely, transcriptional
propensity is strongly negatively correlated with H-NS binding (Spearman ⇢ = �0.58, Figure
3.8B), consistent with the previously described gene silencing role for H-NS (Kahramanoglou et
al., 2011). Transcriptional propensity is also negatively correlated with overall protein occupancy,
strongly supporting reporter silencing observed by Bryant et al. [93] when integrated within tsE-
PODs (Figure 3.9A) [78].

RNA abundance from native genes displays only a weak positive correlation with transcrip-
tional propensity (Spearman ⇢ = 0.24, Figure 3.9D). However, when larger rolling median win-
dows (50 kb) are used for RNA abundance from native genes, correlation with transcriptional
propensity is much higher (Spearman ⇢ = 0.51, Figure 3.9E). These results show that while highly
expressed genes are more frequently located in high transcriptional propensity regions, the regula-
tory logic governing expression of individual genes is dominant over the underlying transcriptional
propensity of a given region.

Binding of other NAPs (HU, LRP, and SeqA) was not well correlated with transcriptional
propensity nor was RNAP binding to active promoters (Figure 3.9). We likewise found no sub-
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Figure 3.8: Correlation of Transcriptional Propensity with Binding of Abundant NAPs and Nucleotide Content. (A)
Correlation of transcriptional propensity with Fis binding (500 bp rolling median, Spearman ⇢ = 0.50). (B) Correla-
tion of transcriptional propensity with enrichment by H-NS binding (500 bp rolling median, Spearman ⇢ = �0.58).
(C) Correlation of transcriptional propensity with AT content (500 bp rolling mean, Spearman ⇢ = �0.59). (D)
Genome browser view of a large tsEPOD (2.79-2.81 Mb) and surrounding genomic context. Tracks from top to bot-
tom for Fis binding, H-NS binding, AT content (AT frac.), and transcriptional propensity (Transcrip. Propensity),
transcripts per million (TPM) RNA from native genes, and tsEPOD ranges. Strand-specific gene annotations are
indicated below the data tracks [48].

stantial correlation of transcriptional propensity with a measure of DNA supercoiling density or
with reporter location with respect to genes encoding proteins recognized by the signal recognition
particle (Figure 3.9) [228, 229]. In contrast, mean adenine and thymine (AT) content in a 500 bp
window around insertion locations was strongly negatively correlated with transcriptional propen-
sity (Figure 3.8B). AT content is also highly correlated with H-NS and protein occupancy binding
(it is notable that both H-NS and Fis have consensus motifs with high AT content [48], although
the Fis consensus sequence is bookended by G and C nucleotides).
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Figure 3.9 (previous page): Correlation of transcriptional propensity a variety of genome features. Unless otherwise
noted, continuous datasets are all 500 bp median windowed. Replicates were quantile normalized and averaged before
performing correlation analysis. (A) Histogram plot of transcriptional propensity within tsEPODs (median = 1.97)
and all other sites (median = 2.74; the observed difference between the tsEPOD set and other regions is -0.77; 95%
CI for difference in medians is -0.91 to -0.62 based on a circular block bootstrap). (B) Correlation of transcriptional
propensity with protein occupancy from Vora et al. [78] (Spearman ⇢ = �0.34). (C) Correlation of transcriptional
propensity with RNAP binding (Spearman ⇢ = �0.22). D) Correlation of transcriptional propensity with E. coli
native RNA abundance over 500bp rolling median window (Spearman ⇢ = 0.24) data from Kroner et al. [138].
(E) Correlation of transcriptional propensity with E. coli native RNA abundance over 50 kb rolling median window
(Spearman ⇢ = 0.51). (F) Correlation of transcriptional propensity with HU binding (Spearman ⇢ = 0.13) [230].
(G) Correlation of transcriptional propensity with SeqA binding (Spearman ⇢ = 0.14) [231]. (H) Correlation of
transcriptional propensity with supercoiling density (Spearman ⇢ = 0.096) [228]. (I) Correlation of transcriptional
propensity with LRP binding (Spearman ⇢ = �0.06). (J) Violin plot of Non-IHF (Median=2.45) and IHF bound
sites (Median=2.65, the observed difference is -0.20; 95% CI for the difference in medians is -0.06 to -0.32 based
on a circular block bootstrap, showing a small but statistically significant decrease of transcriptional propensity in
IHF-bound sites) [230]. (K) Violin plot of transcriptional propensity for genomic regions around non- SRP genes
(Median=2.11) and around SRP genes (Median=2.14, the observed difference is -0.03; 95% CI for the difference
in medians is -0.12 to 0.12, demonstrating no meaningful difference between the sets) [229]. (L) Violin plot of
transcriptional propensity from the leading (Median=2.47) and lagging strands (Median=2.46, the observed difference
between the median of each strand is 0.01; 95% CI for the difference in medians is -0.02 to +0.05 based on a circular
block bootstrap), demonstrating the presence of no meaningful difference between the strands. (M) Correlation of
transcriptional propensity from the leading and lagging strand for sites that contain integrations in both orientations
(Spearman ⇢ = 0.89). (N) Transcriptional propensity map for the leading strand. (O) Transcriptional propensity map
for the lagging strand.

3.4.4 Transcriptional Propensity Does Not Show Substantial Strand Speci-
ficity and Is Insulated from Native Transcription

We also examined the correlation of neighboring RNA abundance in all orientations relative to the
reporter on transcriptional propensity (Table 3.2). These data indicate that neighboring transcrip-
tion has no more than a tiny impact on transcriptional propensity in our experimental setup, likely
due to the strong bidirectional terminators flanking our insertion construct. Since the correlations
of native RNA abundances with transcriptional propensity in the tandem orientation with respect
to the reporter are very similar regardless of which is upstream (Spearman correlation between
reporter and adjacent RNA abundance is 0.16 with the reporter upstream, 0.15 with the reporter
downstream), insulation by the strong upstream transcriptional terminator of the reporter is also
validated. Transcriptional propensity from reporters on the leading and lagging strands display the
same overall waveform pattern, and transcriptional propensities at the same positions are highly
correlated with each other (Spearman ⇢ = 0.89, Figures 3.9L-3.9O).
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Genomic feature Propensity ⇢ Propensity p-value Density Spearman ⇢ Density p-value citation
H-NS binding -0.58 <0.0001 0.51 0.0002 Kahramanoglou et al. [84]
AT-content -0.59 <0.0001 0.37 <0.0001 Blattner et al. [232]
Distance from rrn -0.56 0.0098 0.12 <0.0001 Blattner et al. [232]
Fis binding 0.5 <0.0001 -0.09 <0.0001 Kahramanoglou et al. [84]
IPOD -0.34 <0.0001 0.04 0.0017 Vora et al. [78]
RNA abundance 0.24 0.0002 -0.34 <0.0001 Kroner et al. [138]
HU binding 0.13 <0.0001 0.18 <0.0001 Prieto et al. [230]
SeqA binding 0.14 0.0345 0.01 0.4114 Joshi et al. [231]
Supercoiling density 0.01 0.3494 0.04 0.0042 Lal et al. [228]
RNAP binding -0.22 <0.0001 0.12 <0.0001 Data from Tom Goss (Manuscript in preparation)
LRP binding -0.06 0.0565 -0.06 0.0021 Kroner et al. [138]
density/propensity -0.49 <0.0001 -0.49 <0.0001 This study

Table 3.1: Correlation of genomic features with transcriptional propensity and integration density. Correlations are all
from 500 bp median windowing of each dataset. Replicates were quantile normalized and averaged before performing
correlation analysis. The RNAP binding signal was obtained following a ChIP-seq procedure derived from the ChIP-
chip protocol in Mooney et al. [233] and using the same antibody, but on cells that were treated briefly with rifampicin
immediately prior to crosslinking in order to immobilize RNAP at active promoters.

Relative orientation Leading strand ⇢ Lagging strand ⇢
Divergent 0.11 0.14
Convergent 0.11 0.13
Tandem upstream 0.16 0.14
Tandem downstream 0.16 0.15
Codirectional 0.17 0.14
Opposite 0.12 0.16
Unstranded⇤ 0.24 0.24

Table 3.2: Correlation of transcriptional propensity with directional RNA abundance. Given are the Spearman cor-
relation coefficients (⇢) of transcriptional propensity (from reporters on the header-indicated strands, with respect to
replication) with the corresponding stranded RNA (variable strand depending on the indicated orientation) mean over
a 500 bp window from wild type cells grown under equivalent conditions (RNA-seq data from Kroner et al. [138]). Di-
vergent, convergent and tandem orientations include data from transcriptional propensity and RNA seq from adjacent,
non-overlapping 500 bp windows. Codirectional, Opposite and Unstranded orientations include values from 500 bp
around the same coordinate (⇤Note that the Unstranded measurement includes RNA-seq data from both strands). Tran-
scriptional propensity is slightly more correlated with RNA abundance in the tandem orientations than in convergent
or divergent orientations, and the correlations are virtually identical for upstream vs. downstream RNA.
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3.4.5 Sequence Composition and Nucleoid Protein Occupancy Make Unique
Contributions to Transcriptional Propensity

Given the numerous correlations between transcriptional propensity and other genomic features
observed above, it is useful to consider how much independent information is contributed by the
various features that we have noted, and to what extent transcriptional propensity can be predicted
solely on the basis of those features. We applied lasso regression to obtain regularized models
that predict transcriptional propensities based on a minimal number of useful features. The input
feature set included a total of 96 characteristics including sequence composition, protein occupancy
data, and ribosomal RNA positioning (see Section 3.6.19 for details). During lasso regression, a
regularization parameter (lambda) is gradually scaled from higher to lower values; as it does so, the
penalty associated with having non- zero coefficients for various features falls, and thus more of the
features contribute to the model. As seen in the fits in Figures 3.10 and 3.11, the simplest justifiable
model (based on 5-fold cross validation) incorporates six features (given here in the order in which
they appear during the regression): proximity to ribosomal RNA, AT content, H-NS occupancy,
Fis occupancy, HU occupancy, and total protein occupancy (measured via IPOD).

Consistent with the results in Figures 3.8 and 3.9, proximity to ribosomal RNA, Fis occupancy,
and HU occupancy seem to characterize regions with high transcriptional propensity, whereas high
AT content, H-NS occupancy, and overall protein occupancy are associated with lower transcrip-
tional propensity. The fact that all six of the features discussed here have non-zero coefficients in
the penalized lasso regression model, even when accounting for uncertainty under cross-validation,
demonstrates that each bears significant information content, rather than one of them (e.g., AT con-
tent) acting as an underlying basis for others (e.g., H-NS occupancy, which does show a preference
for high AT regions [84]). The resulting linear model explains 69.9% of the variance in transcrip-
tional propensity using the most parsimonious parameterization and 72.3% of the variance using
the parameterization that minimizes the mean squared error (see Figures 3.10 and 3.11; Table
3.3). Thus, while the predictions are not perfect, a substantial fraction of the observed fluctuations
in transcriptional propensity may be predicted on the basis of simple chromosomal features and
nucleoid-associated protein occupancy. Note that in less conservative parameterizations, many ad-
ditional features are incorporated into the model, including transcript levels, initiating (rifampicin-
treated) RNAP occupancy, and density of motif matches for several other transcription factors
(Figure 3.11); however, in light of the observed uncertainties upon cross-validation, inclusion of
features beyond those shown in Figure 3.10 cannot be strongly justified.
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Figure 3.10: Contributions of Known Genomic Features to Prediction of Transcriptional Propensity. The top panel
shows the mean-squared error (MSE) upon 5-fold cross-validation for lasso regression as a function of the regulariza-
tion parameter lambda (see Section 3.6.19 for details); dashed lines occur at the point of lowest MSE (left) and at the
point with the highest value of lambda that is within 1 standard error of the lowest MSE (right). The bottom panel
shows the signs of coefficients for several key genomic features as a function of lambda (gray, zero; blue, negative;
and red, positive). Fitted values for these coefficients at the two points shown by the dashed lines are given in Table
3.3, and a similar plot showing all features used in the fitted model given as Figure 3.11. “rRNA impact” refers to the
LOWESS-fitted signal assignable to proximity to the nearest ribosomal RNA, as shown in Figure 3.6C.
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Figure 3.11: Contributions of all available features to prediction of transcriptional propensities. As in Figure 3.10, the
top panel shows the mean-squared error (MSE) upon five-fold cross-validation for lasso regression as a function of the
regularization parameter lambda, and the bottom panel shows the sign of the coefficient for each feature in the fitted
model at that lambda (grey: zero, blue: negative; red: positive). Dashed lines occur at the point of lowest MSE (left),
and at the point with the highest value of lambda that is within 1 standard error of the lowest MSE (right).
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Feature Lowest MSE Most Parsimonious
rRNA impact 8.155826e-01 7.479827e-01
H-NS occupancy -8.435171e-05 -7.538871e-05
Fis occupancy 1.644675e-04 1.066400e-04
Protein occupancy (IPOD) -3.604436e-02 -1.209995e-02
AT content -2.728446e+00 -2.356038e+00
HU occupancy 2.123566e-01 1.303875e-01
RNA Pol occupancy 3.256524e-02 –
RNA abundance -5.131865e-05 –

Table 3.3: Fitted coefficients for the key parameters in LASSO models. Parameters correspond to features shown in
Fig. 3.10 at the points of lowest mean-squared error and for the most regularized model within one standard error
of the MSE (the latter should be considered the most parsimonious justifiable model); these points correspond to the
dashed lines in Fig. 3.10. Note that all coefficients are on the scales of the features themselves, and thus are not
of directly comparable magnitude to each other. “rRNA impact” refers to the LOWESS-fitted signal assignable to
proximity to the nearest ribosomal RNA, as shown in Fig. 3.6C.

3.4.6 Location of Specific Classes of Genes Are Informative of Transcrip-
tional Propensity

To obtain a global picture of the biological logic dictating the organization of genes into high
and low transcriptional propensity regions, we used the iPAGE software package [155] to iden-
tify Gene Ontology [234, 235] terms (GO terms) that are informative about the transcriptional
propensity at each gene location (Figure 3.12). As expected, large ribosomal subunit genes are
informative of high transcriptional propensity (GO:0022625). Genes in pathways for enterobacte-
rial common antigen biosynthesis or organic phosphonate catabolism (GO:0009246, GO:0019700)
are clustered together in high transcriptional propensity peaks. Cellular amino acid biosynthetic
process (GO:0008652), which has 105 genes in E. coli, is also associated with high transcriptional
propensity. We also identify intracellular protein transmembrane transport (GO:0065002) as being
enriched in regions of high transcriptional propensity. However, we note that there is no difference
in local transcriptional propensity between genes that encode products that are recognized by the
SRP machinery and all other genes (Figure 3.9K). Genes involved in cytolysis and DNA integration
(GO:00019835, GO:0015074) are significantly enriched in regions of the lowest transcriptional
propensity. They are also both composed predominantly of prophage genes, possibly reflecting
selection for such genes to be in broadly silencing genomic contexts. Genes for lipopolysaccha-
ride core region biosynthesis (GO:0009244) and O-antigen biosynthesis (GO:0009243) are also in
regions of low transcriptional propensity, possibly because several of the GO term member genes
are clustered in large tsEPODs between 3.795 and 3.810 Mb and between 2.102 and 2.115 Mb. It is
important to note that iPAGE automatically filters out GO terms that do not convey substantial con-
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ditional mutual information above an already-present set; the absence of terms such as additional
ribosomal protein GO terms simply arises because of this redundancy filtering.

3.4.7 RNA Abundance from Targeted Reporter Integrations Reveals a Range
of Expression Compared to Native Gene Expression

In order to further test the effect of chromosomal position on reporter transcription, we used lambda
Red recombineering to perform targeted integrations of the reporter construct into several different
sites representing a range of transcriptional propensities. Spline-smoothed genomic DNA sequenc-
ing counts from cells grown under the same conditions (Figure 3.13A) were used to transform
the transcriptional propensity map of RNA per DNA into a measure of reporter RNA counts per
cell (Figure 3.13B). These dosage-corrected values can be used to identify the highest and low-
est transcriptional propensity regions for heterologous gene expression (Table 3.4). We then used
RT-qPCR to quantify reporter RNA from four targeted reporter integration strains relative to a set
of native reference transcripts. To provide a representative range of transcriptional propensities
for comparison with native promoters while avoiding extremes, sites from within EPODs (ybcK
and eaeH) and from relatively high propensity regions (phnO and yihG) were selected to repre-
sent the higher- and lower-middle distribution of transcriptional propensity variation (compare to
Figure 3.4F). Reporter transcription from targeted integrations was in good quantitative agreement
with dosage-transformed transcriptional propensity (Figure 3.13C). Additionally, by measuring
the RNA abundance per unit DNA from three native genes in each of the reporter integration
strains, and comparing with insertions spanning a range of intermediate transcriptional propensi-
ties (1.5–8), we could determine the transcription from the targeted integration reporters relative
to native gene expression (Figure 3.13D). These results show that RNA abundance per DNA from
the reporter construct is in the 80–86th percentile when compared to native genes (Figure 3.13E),
indicating a moderately strong (but far from overpowering) promoter and thus confirming the phys-
iological relevance of our reporter.

Table 3.4 lists broad regions with the most extreme transcriptional propensity per cell (after
transformation by genomic DNA copy number estimates), which may be useful information for
heterologous gene expression from genomic sites.

3.4.8 Reporter Integration by Tn5 Is Biased toward Low Transcriptional
Propensity Regions

The correlation between reporter integration density and known genomic features was also tested
(Figure 3.14). H-NS binding had a very strong positive correlation with integration density (Figure
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Figure 3.12: Over-Representation of GO Terms in Transcriptional Propensity Bins. Pathways identified by iPAGE
analysis [155] as having significant mutual information with transcriptional propensity, and their over-representation
within specific transcriptional propensity bins. Gene-specific metrics for transcriptional propensity are calculated as
the log2 median values of replicate-averaged RNA/DNA ratios within the regions of the genes and all locations within
2.5 kb up- and downstream. iPAGE then discretizes the gene-specific propensity metrics into nine equally populated
bins, as shown in the upper panel, where the range of the propensity metric within each bin (red boxes) is shown
as a proportion of the overall range (background, black boxes). The leftmost bins contain genes within the lowest
transcriptional propensity regions, with the rightmost bins containing the highest. Enrichment of GO terms within
each bin is identified as the absolute value of log10 of enrichment p value, with sign set such that under-represented
GO terms are negative (blue end of left scale) and the over-represented are positive (red end of scale). The heatmap
of the sign-adjusted enrichment shows the over- (as red tiles in heatmap) and under-representation (as blue tiles) of
GO terms in different transcriptional propensity levels that are visualized as separated bins on the horizontal axis of
the heatmap. Tiles with bold borders indicate significant individual enrichments (p < 0.05 after Bonferroni correction
across the row); note, however, that all displayed GO terms have significant mutual information with the transcriptional
propensity profile (as assessed by the default series of tests used by iPAGE).
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Figure 3.13: Expression from Targeted Reporter Integrations Indicate Transcription Level Relative to Native Genes.
(A) Genomic DNA counts (blue) were used to generate spline-smoothed values (red) to estimate DNA dosage for
cells grown under the same conditions as the reporter library. (B) Transcriptional propensity (as in Figure 3.4E)
transformed by the DNA dosage spline line in (A). The map here reflects the transcriptional propensity per cell instead
of per unit DNA (see Section 3.6.18). (C) qPCR measurement of RNA from targeted reporter integrations from strains
grown under the same conditions as the reporter library compared to dosage-transformed transcriptional propensity.
All values were normalized by opgG signal [236]. (D) qPCR measurements of RNA per DNA for mNeonGreen at
four targeted integration strains (green) and for three native genes (black). DNA and DNA values are all relative to
opgG signal within each replicate. Error bars for RNA:DNA ratio signal represent the standard deviation of three
biological replicates. (E) Histogram of RNA abundance (as estimated from TPM using RNA sequencing [138] per
DNA abundance, as estimated from DNA copy number as in (A), for each annotated gene in E. coli. The three native
genes that were measured by qPCR in (D) are indicated.
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Peaks
Average start end length center max min Intergenic center max coord
29.4 281404 288692 7288 285048 52.9 20.9 285168 285070
18 4189573 4204803 15230 4197188 24.6 13.9 4199462 4200392
15.2 4128474 4165334 36860 4146904 22.1 10.14 4158225 4144823
13.9 4003592 4060559 56967 4032075.5 24.5 6.2 4042031 4041973
14.6 3949128 3980248 31120 3964688 24 10.2 3965702 3965302
15.3 4313204 4318232 5028 4315718 23.8 9.55 4314301 4315234
10.4 3387507 3439571 52064 3413539 18.1 5.5 3390503 3408955
Troughs
Average start end length center max min Intergenic center max coord
2.2 1624903 1728263 103360 1676583 5.3 1 1629437 1629261
2.2 2093588 2115488 21900 2104538 3.7 1.28 2103389 2106137
3.3 2469179 2498548 29369 2483863.5 7.1 1.84 2483493 2469547
3.7 2986238 2996317 10079 2991277.5 5.1 2.7 2989806 2994033
5 3796920 3807766 10846 3802343 7 3.4 2798230 3797322
4.3 310546 325753 15207 318149.5 7.1 2.6 314320 325132

Table 3.4: Ranges for the highest and lowest transcriptional propensity regions. The average transcriptional propensity
after transformation by genomic DNA dosage (as in Fig 3.13B), peak range coordinates and length (bp) are indicated,
followed by the center coordinate. The maximum and minimum transcriptional propensity value are indicated. Inter-
genic center is a site within the indicated range where integration is not expected to result in a gene knockout. Finally
the coordinate for the maximum or minimum transcriptional propensity within the range is indicated. The median and
minimum values over the entire genome are 6.38 and 0.24, respectively.

3.14F). In addition, RNA abundance from native transcription showed the strongest negative corre-
lation with integration density. Consistent with these two observations, transcriptional propensity
itself was also negatively correlated with integration density. Although integration density is gen-
erally high, these results indicate that the resolution in low transcriptional propensity regions is
generally better than the resolution at high transcriptional propensity regions and also suggest that
the same biological mechanisms responsible for shaping low transcriptional propensity regions
also tend to occur in an environment more permissive for transposon insertion. It is important to
note that as the integration densities arise from libraries that have undergone growth and antibiotic
selection, some bias may arise from exclusion of essential genes or those genes that cause severe
growth phenotypes upon transposon insertion.
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Figure 3.14 (previous page): Correlations of reporter integration density with genomic features. Reporter integration
by Tn5 is non-random. (A) Genome map of reporter integration density over a 500bp rolling window. (B) Spline
smoothing of integrations density which reflects the integration density variation expected due to only gene dosage
effects from exponentially growing cells; all smoothing splines used here had four knots located at the origin and
equally spaced other points around the chromosome. (C) Integration genome map (as in A) divided by the spline
smoothing values. (E)-(M) Correlation of spline-corrected integration values (as in C) with several genomic features.
Spearman ⇢ values are in Table 3.1.

3.5 Discussion

Random integration of barcoded reporters in the E. coli genome has allowed us to map transcrip-
tional propensity at an unprecedented resolution across the genome. Previously, a reporter has been
integrated into 27,000 sites in parallel in mouse embryonic stem cells using piggyBac transposition
[237]. The average resolution of one integration per 100 kbp revealed a stronger association of low
transcription with lamina-associated domains than with repressive H3K9me2 histone modification.
To our knowledge, as many as 38 sites have previously been tested in a single study for position-
dependent expression variation in bacteria, which, because of the small 4.22 Mb Bacillus subtilis
genome size, is a similar resolution to the mouse genome study described above [238]. Here, we
used Tn5 transposition to integrate and track 144,000 barcoded reporters into the 4.6 Mb E. coli
genome, to produce a map with an average resolution of one integration per 47 bp, the highest
resolution gene-independent expression map for any species to date that we are aware of. This
integration density uniquely allowed testing of reporter transcription from multiple sites within
genomic neighborhoods with rare and distinct features (e.g., ribosomal RNA operon regions and
extreme nucleotide content).

Considered over the entire genome, the fold-change between the highest and lowest transcrip-
tional propensity locations is 272-fold, which is on the order of the fold-change from different
sites reported from reporter fluorescence at a small number of integrations [93]. These calculated
propensities represent the value for a rolling median over 500 bp windows that required at least
three independent integrations, thus avoiding strong influences of single outliers. It is also im-
portant to note that most of the genome shows intermediate levels of transcriptional propensity,
with 99% of sites contained within a 4.2-fold range centered upon the median (using our stan-
dard window averaging). The full range of observed propensities arises because of substantially
higher values at biologically important sites such as rrn operons and dramatically lower values in
silenced regions such as some EPODs; we consider the biological meanings of both extremes in
detail below.
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3.5.1 Ribosomal RNA Operons Occur in Broad Regions of High Transcrip-
tional Propensity

Several large peaks of transcriptional propensity across the genome are centered on rrn operons
(Figure 3.6A). The rrn operons are the most highly transcribed genes in the E. coli genome, with
an average of one RNAP molecule per 85 bp, compared to one every 1020 kb for the rest of the
genome [239, 240]. An rrn encoded on a plasmid can also physically relocate RNAP away from
the nucleoid, which causes a decrease in growth rate [205], suggesting that the rrn genes them-
selves affect RNAP localization. With the exception of rrnC (which appears to have its physical
location controlled by its proximity to the origin), the rrn operons also co-localize in the cell
[206]. Regardless, we find that rrnC is also within a transcriptional propensity peak. Together,
these findings suggest a model in which the very high concentrations of RNAP involved in active
transcription of rrn occur in regions of increased transcriptional propensity, although we cannot
yet determine whether the local propensity is a consequence of rrn transcription or has evolved
to facilitate it. In general, highly transcribed native E. coli genes are more frequently located
in rrn-proximal regions with high transcriptional propensity (Figure 3.9E), suggesting that both
gene-specific regulation and genome organization evolve for specific expression outcomes.

3.5.2 Fis and H-NS Are Markers for Activation and Repression, Respec-
tively

Transcriptional propensity is highly correlated with Fis binding and anticorrelated with H-NS bind-
ing, which are by far the two strongest correlations for protein binding (Figure 3.8) [84]. As two of
the top five most abundant NAPs during exponential phase growth, they bind to and affect expres-
sion of many genes both directly and indirectly [71, 76, 84, 241]. In general, genes bound by H-NS
are directly repressed, shown by increased expression of bound genes in the hns knockout strains.
Fis-bound genes are typically more highly expressed. However, only 15% of Fis-bound genes are
differentially expressed in a fis knockout strain during mid- exponential phase [84]. Our reporter
is essentially identical at every integration site. Therefore, any mechanistic effects of H-NS or
Fis on transcriptional propensity must occur directly on chromosomal integration neighborhood or
region, rather than due to specific binding to the promoter of the reporter itself.

It is conceivable that Fis activates reporter transcription through binding to local regions around
integration sites in a similar manner to rrn transcriptional activation [88, 89, 242]. Alternatively,
regions of high Fis density may be activated through other mechanisms, such as spatial localization
to regions of high RNAP availability, or effects on supercoiling state and DNA conformation that
promote transcriptional initiation. Consistent with these models, Fis binding is also anticorrelated
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with distance from the nearest rrn (Spearman ⇢ = �0.52).
The negative correlation of transcriptional propensity with identified binding sites of the NAP

H-NS from chromatin immunoprecipitation sequencing (ChIP-seq) experiments is consistent with
a silencing role for H-NS (Figure 3.8B) [84]. H-NS can also oligomerize along DNA in a pro-
cess dependent on non-specific electrostatic interactions with DNA [243]. Therefore, H-NS, and
likely other proteins such as StpA and Hha [87], may oligomerize and bridge from silenced ge-
nomic regions into small integrated reporters and silence their transcription [81, 244]. The size,
promoter strength, AT content, and other features of the reporter itself may play an important role
in determining the particular transcriptional outcome at different sites because of the conflict be-
tween H-NS and RNAP, as has been suggested [82]; we reiterate, however, that for comparison
among the barcoded reporters used in our study, we showed that variations in AT content of the
barcode itself has no impact on observed transcriptional propensities (Figures 3.5A3.5C). We also
find that reporter integration density is most highly and positively correlated to H-NS binding and
low transcriptional propensity (both of which partially overlap with genomic AT content). Fur-
thermore, integration density is anticorrelated with RNA abundance from native genes (Spearman
⇢ = �0.34). These results were surprising because the opposite occurs in eukaryotes, where
low gene expression is well correlated with heterochromatin that is inaccessible to Tn5 transposon
insertion, a fact used to great effect in ATAC-seq assays [245]. Although this is only a single obser-
vation for the present study, it suggests a model in which foreign DNA may more readily integrate
into H-NS-bound sites, thereby increasing the likelihood that integrated foreign DNA is silenced,
as has been previously proposed [246–248]. Such a mechanism would also be consistent with the
enrichment of prophages and mobile elements that we observed in low transcriptional propensity
regions (Figure 3.12). As opposed to horizontally transferred genes, which are often bound by
and silenced by H-NS and are generally AT-rich in E. coli and closely related species [79, 80],
the integration construct has 53.7% GC content. Additionally, barcode GC content has no correla-
tion with genomic GC content in 500 bp surrounding each integration site (Spearman ⇢ = 0.001),
indicating that small changes in overall reporter GC content do not affect integration site. The ex-
act mechanism by which H-NS influences integration and expression of foreign DNA remains an
important but challenging subject for ongoing studies because of partial functional redundancies
and suppressive potential of other NAPs [249, 250]. We also observed very low expression from
reporters integrated into tsEPODs (Figure 3.9A), supporting and greatly expanding on previous
functional tests from a few sites [78, 93]. We note that there may also be sites that were silenced
to the extent that integrations could not be selected for in kanamycin-containing media and were
thereby lost from the library.
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3.5.3 Transcriptional Propensity Has Minor Differences Depending on the
Reporter Strand

In general, we observe no more than minor effects of neighboring transcription on transcriptional
propensity (Table 3.2). These results may indicate that DNA supercoiling regulation is highly
efficient on the chromosome, ameliorating supercoiling-mediated transcription conflicts. Addi-
tionally, the expression level for genes in various orientations used in previous studies is likely
high compared to the global transcriptional activity considered for this analysis (note the relative
RNA abundances in Figures 3.13D and 3.13E) [93, 212]. Similarly, we did not observe a bias in
transcriptional propensity depending on whether reporters were encoded on the leading or lagging
strands, indicating that replication conflicts generally do not impose a major effect on transcrip-
tional propensity. It is possible that global strand differences would be detectable in cells that
are deficient in R-loop resolution, as has been reported for reporters and native genes in RNase
HIII mutant B. subtilis cells [251], or in the presence of higher levels of transcription through our
integrated reporter.

3.5.4 Functional Classes of Genes Are Enriched at Specific Transcriptional
Propensity Levels

Clustering of genes involved in the same pathway is a hallmark of bacterial genome organization
[252–254]. By definition, clustered genes will end up within the same transcriptional propensity
region. For example, the large operon encoding genes for organic phosphonate catabolism is en-
tirely contained in a region of very high transcriptional propensity. However, there are other classes
of genes that are not clustered, which are nonetheless significantly enriched at specific transcrip-
tional propensity levels. For example, the GO term for cellular amino acid biosynthetic process
(GO:0008652) is composed of over 100 genes, which are scattered throughout the E. coli genome
in operons and as single genes but are significantly enriched in high transcriptional propensity re-
gions. For genes within a specific pathway, however, clustering for co-regulation or as a result of
horizontal transfer also allows genes within a common pathway to reside in the same transcrip-
tional propensity neighborhood, which may be another evolutionary strategy by which genes in
the same pathway are expressed at optimal levels. Perhaps gene clustering within a transcriptional
propensity region could be considered another method of co-regulation.

In considering the implications of our results, it is important to bear in mind that all experiments
described here were performed on cells growing in rich media during early exponential phase. In
all likelihood, growth-phase-dependent changes in NAP occupancy [255], as well as (potentially)
local regulation of transcriptional propensity across changing physiological conditions may sub-
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stantially alter the positional effects of transcription. Future mapping of transcriptional propensity
under different growth conditions will be particularly interesting in light of the enrichment of
specific gene classes involved in rapid growth that we found in transcriptional propensity levels
observed during exponential growth in rich defined media. It is also important to consider the
properties of the reporter construct itself. Although design and analysis choices were made to opti-
mize the collection of detectable signals while simultaneously minimizing the effect of the reporter
on the underlying biology, there is a large diversity of gene organization in the E. coli genome,
which may be differently affected by position depending on the physiological condition of the cell.
To that end, future studies may elucidate how different gene architectures are affected by position
for each cell in a population, as opposed to the population averages reported here. Our findings
also provide a roadmap for how chromosomal positioning can be utilized to add another layer of
regulatory tuning to control expression of chromosomally integrated heterologous pathways and
potentially will enable the design of dedicated integration platforms to target particular expression
levels (see Table 3.4). Future investigation into condition-dependent changes in transcriptional
propensities at different genomic regions will be essential to realizing the full potential of this
regulatory tool for synthetic biology applications.

Taken together, our results reveal the presence of regional variations in the transcriptional
propensity of an identical construct integrated into different regions of the E. coli chromosome.
Both extremes of transcriptional propensity appear to have functional significance: ribosomal RNA
operons and important biosynthetic operons are disproportionately located in regions of high tran-
scriptional propensity, whereas mobile genetic elements and prophages are located in regions of
low transcriptional propensity. We have also elucidated several mechanistic details determining
transcriptional propensity: regions of low transcriptional propensity are characterized by high lev-
els of H-NS occupancy, high overall protein occupancy, and high AT content, whereas regions
of high transcriptional propensity are characterized instead by higher binding of the nucleoid-
associated proteins Fis and HU. The fact that high local levels of one nucleoid protein or another
in adjacent regions of the chromosome can so profoundly impact the transcription of a uniform
reporter suggests a functional compartmentalization in the bacterial chromosome akin to the dis-
tinction between euchromatin and heterochromatin in eukaryotes, where active and silenced genes
are characterized by the binding state and epigenetic marks of histone proteins [256] and the three-
dimensional structure of the chromosome itself [257]. We expect that future work will more fully
explore both additional molecular details giving rise to these distinctions in bacteria and determine
the role played by position-dependent transcriptional propensity in gene regulation and evolution.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and Virus Strains
E. coli K12 MG1655 CGSC CGSC#:7740
DH5↵™ Invitrogen 18265017
MG1655 Z1 malE Addgene a gift from Keith Tyo (Addgene plasmid) # 65915
Strain BL21(DE3)/pCP20 CGSC CGSC#:14177 Cherepanov and Wackernagel [258]
Chemicals, Peptides, and Recombinant Proteins
CviAII NEB Cat# 0640
CviQI NEB Cat# R0639
T4 DNA ligase Invitrogen Cat# 15224017
iTaq™Universal SYBR®Green Supermix Biorad 1725120
EZ-Tn5™Transposase Lucigen TNP92110
Q5 Hot Start polymerase NEB Cat# M0493
10⇥ ACGU Teknova Cat# M2103
5⇥ Supplement EZ Teknova Cat# M2008
Protoscript II NEB Cat# M0368
AscI NEB Cat# R0558
PvuII NEB Cat# R0151
EvaGreen Biotium Cat# 31000
RNAProtect Bacteria Reagent Qiagen Cat No./ID: 76506
Critical Commercial Assays
AxyPrep™Mag PCR Clean-Up Kit Axygen MAGPCRCL50
NEBNext®Multiplex Oligos for Illumina® NEB E6609S
(96 Index Primers)
Deposited Data
Raw sequence files for cDNA barcodes, genomic DNA Sequence Read SRP149841
barcodes, KanR-associated barcodes and transposon Archive (SRA)
footprinting
Experimental Models: Organisms/Strains
MG1655 Z1 with proD-mCherry This Study ecSAS17
lambda red integration of yihG-pSAS31 integration This Study ecSAS20
fragment & CURED KanR
lambda red integration of yafT-pSAS31 integration This Study ecSAS21
fragment & CURED of KanR
lambda red integration of eaeH-pSAS31 integration This Study ecSAS22
fragment & CURED of KanR
lambda red integration of htrL-pSAS31 integration This Study ecSAS23
fragment & CURED of KanR
lambda red integration of ybcK-pSAS31 integration This Study ecSAS33
fragment & CURED of KanR
lambda red integration of in yagF-pSAS31 integration This Study ecSAS34
fragment & CURED of KanR
lambda red integration of eyeA-pSAS31 integration This Study ecSAS35
fragment & CURED of KanR
lambda red integration of nrfG-pSAS31 integration This Study ecSAS36
fragment & CURED of KanR
lambda red integration of phnO-pSAS31 integration This Study ecSAS37
fragment & CURED of KanR
Oligonucleotides
Supplementary Table File S6: primer list This Study
Recombinant DNA
pSIM5 Gift from Prof. Don Court
pBT1-proD-mCherry Addgene Gift from Michael Lynch (Addgene plasmid # 65823)
PCNS-mNeonGreen Allele Biotech N/A
pBAD-Flp This Study N/A
pSAS31 This Study N/A
Software and Algorithms
Autocorrelation code Shweta Ramdas https://github.com/shwetaramdas/autocorrelation
cutadapt, version 1.8.1 Martin [177] https://cutadapt.readthedocs.io/en/stable/
Trimmomatic, version 0.33 Bolger et al. [178] http://www.usadellab.org/cms/?page=trimmomatic
Bowtie2, version 2.1.0 Langmead et al. [259] http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
iPAGE Goodarzi et al. [155] https://tavazoielab.c2b2.columbia.edu/iPAGE/
Data analysis code This Study https://github.com/freddolino-lab/2018 genomeProfiling

Table 3.5: Key resources used in this study
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3.6 Methods

3.6.1 Experimental Model and Subject Details

MG1655 (CSGC 7740) was obtained from the Coli Genetic Stock Center (CGSC, Yale University)
[232]. We used P1vir transduction to introduce the Z1 cassette from MG1655 Z1 malE, a gift from
Keith Tyo (Addgene plasmid # 65915), into MG1655. The TetR repressor itself is integrated at
the attB site (genomic coordinates 807,328-807,342); as this is a region of high transcriptional
propensity, the variations that we observe cannot be attributed to simple proximity to the site of
repressor production. The MG1655 Z1 strain was then transformed with the lambda red plasmid
pSIM5 (gift from Prof. Don Court). We then used the primers BT1promCh F and BT1promCh R
to amplify the mCherry and ampicillin resistance cassette from pBT1-proD-mCherry, a gift from
Michael Lynch (Addgene plasmid # 65823). The mCherry cassette was then integrated into a site
directly downstream from yihG using lambda red recombination to produce ecSAS17 (MG1655
Z1 mCherry+ AmpR). We confirmed the mCherry integration by genotyping and the transduction
of the Z1 cassette by observing TetR-mediated repression of mNG compared to a blank MG1655
strain. ecSAS17 was then transformed with the pBAD-Flp plasmid (see below) to provide the
starting strain for library generation.

3.6.2 Reporter Construct Design

The mNeonGreen (mNG) coding sequence was obtained through license from Allele Biotech
[260]. We put mNG under control of the TetO1 promoter and the B0030 ribosome binding site,
which is predicted to have 30-fold lower translation initiation rate than the highest rate of a native
gene in E. coli [219, 261]. Upstream of the mNG cassette, an FRT-flanked kanamycin resistance
cassette amplified from a Keio collection strain was introduced in the divergent orientation relative
to mNG [262]. Directly downstream of the mNG coding sequence, we introduced an Illumina
i5 adapter primer complement sequence and an AscI recognition site for later barcoding of the
integration construct. The reporter and antibiotic cassettes are flanked by the strong bidirectional
terminators L3S2P21 and ECK120026481 [217]. Finally the entire cassette is flanked by mosaic
ends (MEs) to allow for binding to Tn5 transposase. The ME-flanked construct was modified to
remove two PvuII restriction sites in order to allow for PvuII digestion of the plasmid pSAS31 and
release the integration construct for Tn5 transposase binding in vitro. The full annotated pSAS31
sequence, with the exception of the mNeonGreen CDS, can be found in Supplementary Data File
S1.
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3.6.3 Large-Scale Plasmid Barcoding

pSAS31 was digested with the restriction enzyme AscI (NEB Cat#R0558). Primers were used to
introduce the barcode and amplify the entire plasmid by PCR (Figure 3.2). The reverse primer
includes one base that is either an A or T directly 5’ of the annealing sequence. Fourteen hand-
mixed random nucleotides followed by an AscI site are directly 5’ of the A/T (Integrated DNA
Technologies) (Supplementary Table File S6). Six mg of resulting fragment was digested by DpnI
(NEB Cat# R0176) and AscI. The digested DNA was column purified and then ligated in a 2.4
mL reaction with 40 ml T4 ligase overnight at 14�C (Invitrogen Cat# 15224017). The reaction
was quenched with 40 ml of 0.5 M EDTA. We then scaled up the Hanahan procedure to transform
chemically competent cells with the ligated plasmid [263]. Cells were recovered in SOC for 1
h at 37�C before removing an aliquot for transformation efficiency counts and adding 50 mg/mL
kanamycin for 8h liquid selection at 37�C. Cells were then pelleted for 7 min at 4600 ⇥g and
snap frozen in liquid nitrogen. To obtain the plasmid, snap-frozen cells were resuspended in lysis
buffer for plasmid miniprep. By colony counts we estimate that 48.55 million cells were uniquely
transformed with a barcoded plasmid, with a transformation efficiency of approximately one in
4,500 cells.

3.6.4 pBAD-Flp Plasmid Construction

Upon initial attempts at library construction, the pCP20 plasmid (Cherepanov and Wackernagel,
1995) caused over 90% of cells with an FRT-flanked kanamycin resistance cassette to lose re-
sistance even at the non-inducing 28�C temperature, presumably due to leaky expression of Flp
recombinase (data not shown). Since leaky expression of Flp recombinase from the pCP20 plas-
mid appeared to be severely reducing transposon integration efficiency, probably due the removal
of the KanR cassette soon after integration and prior to liquid-phase selection, we replaced the
PR temperature sensitive promoter on pCP20 with the arabinose-inducible promoter pBAD and
repressor araC gene. The modified pBAD-Flp plasmid did not cause detectable loss of the KanR
cassette under repressing conditions, yet still allowed efficient excision upon arabinose induction
(data not shown). The full sequence of pBAD-Flp can be found in Supplemental Data File S2.

3.6.5 Tn5 Integration of Barcoded Reporter Constructs

To generate stable transposomes for electroporation into our target strain, we utilized the Epi-
centre EZ-Tn5 custom transposome construction kit following the manufacturer’s instructions. In
brief, barcoded pSAS31 plasmid was digested with PvuII (NEB Cat#R0151) for 1 h at 37�C and
fragments were separated on a 0.8% agarose gel. The band corresponding to the integration frag-
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ment size was excised from the gel and purified (Qiagen Cat# 28706). Two ml of 200 ng/ml
fragment was then incubated with 2 ml Tn5 transposase and 1 ml glycerol, according to the man-
ufacturer’s instructions. After 30 min incubation at room-temperature, the mixture was stored at
-20�C. Electrocompetent cells were prepared using ecSAS17 with 34 mg/L chloramphenicol in-
cluded in the growth medium in order to maintain the pBAD-Flp recombinase plasmid. One ml
of the Tn5-DNA complex was mixed with 50 ml of fresh electrocompetent cells. Four separate
electroporations were carried out in 2 cm electroporation cuvettes at 2500kV and immediately re-
suspended in 1mL of 30�C SOC medium. Each reaction was pooled into SOC medium including
34 mg/mL chloramphenicol and incubated at 30�C for 1.5 h. An aliquot for plating on selective
plates to assess integrant counts was removed from the recovery medium before adding 50 mg/mL
Kanamycin. Liquid selection proceeded for 16 hrs at 30�C. After liquid selection, all cells were
pelleted at 4600 ⇥g for 7 min. Cells were then resuspended in 30 mL 15% glycerol, pipetted into
30 1 mL aliquots and snap frozen in a dry-ice ethanol bath before storage of the transposon library
at -80�C (the entire transformation procedure is adapted from Girgis et al. [264]). According to
colony forming unit counts from plating after recovery, 609,000 cells were uniquely transformed
and maintained pBAD-Flp, as indicated by resistance to kanamycin and chloramphenicol, corre-
sponding to approximately one in 5,600 cells integrated with a reporter; thus, the odds of dual
integration in a single cell are exceedingly small, and we have never observed such an event in
transposon footprinting experiments performed on single colonies (data not shown).

3.6.6 Pairing Integration Site with Barcode via Transposon Footprinting

Cells from one aliquot of the transposon library were recovered in 5 mL SOC for 30 min at 30�C
with shaking. Genomic DNA was isolated from the library using the Qiagen Blood and Tissue
kit for Gram negative bacteria. 1 mg of the resulting DNA was digested separately with each
of CviAII (NEB Cat#0640) and CviQI (NEB Cat#R0639) restriction enzymes (each has a differ-
ent 4 bp cut site but leaves compatible overhangs; the use of both enzymes prevents inability to
identify footprints in the rare event when a restriction site is close to the transposon insertion).
An annealed Y-linker (final concentration of 10 pM of each CviQI-YTA3 with CviQI-YTA5 or
CviAII-YAT3 with CviAII-YAT5, Supplementary Table File S6) that complements the overhangs
was ligated to the digested DNA fragments with T4 DNA ligase (Invitrogen Cat# 15224017) for
10 min. The reaction was quenched with 1 ml 0.5 M EDTA. The DNA from the ligation mix was
purified with Axygen AxyPrep Mag PCR cleanup beads at a 0.9:1 bead to DNA ratio to remove un-
ligated Y-linker. The resulting DNA was amplified by PCR using the primers that bind within the
transposon and on the Y-linker to amplify transposon-genomic DNA specific fragments (P9, P10,
Supplementary Table File S6). NEBnext dual index primers (NEB Cat#E7600) were then used to
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add sequencing adapters by PCR with Q5 Hot Start polymerase (NEB Cat#M0493). Sequencing
preparation was completed in parallel for the CviQI and CviAII cleaved samples, and they were
then combined computationally during postprocessing by concatenating the resulting reads.

3.6.7 Full-Scale Genome Profiling Procedure

For each biological replicate, a single aliquot of the cryopreserved transposon library was scraped
into 1 mL of M9-EZrich medium (NH4Cl 1 g/L, KH2PO4 3 g/L, NaCl 0.5 g/L, Na2HPO4 6 g/L,
MgSO4 240.7 mg/L, ferric citrate 2.45 mg/L, CaCl2 111 ng/L, 200 mL/L 5x Supplement EZ
(Teknova cat # M2008), 1 mL/L micronutrient solution (Neidhardt et al., 1974)) and diluted into
50 mL of M9-EZrich with 1% Arabinose + 0.4% glycerol + 34 mg/mL chloramphenicol in a baf-
fled 125mL flask to achieve OD600 (optical density at 600 nm) of 0.0031. Micronutrient solution
is composed of 0.3 mM Ammonium heptamolybdate, 400 mM boric acid, 30 mM cobalt (ii) chlo-
ride, 10 mM copper (ii) sulfate, 80 mM manganese (ii) chloride, 10 mM zinc sulfate [154]. The
flask was incubated at 30�C for 8 h with shaking at 225 rpm to allow Flp recombinase to excise
the kanamycin resistance cassette. Cells were then pelleted at 4600 ⇥g for 7 min and resuspended
in 25 mL PBS. In parallel, an aliquot of the culture was diluted and plated on LB-kanamycin and
LB plates to determine the fraction cell that permanently lost kanamycin resistance (>92.5%). As-
sessed by qPCR, there was 0.1% and 1.4% kanR relative to the amount of kanR remaining in the
library where Flp recombinase was not induced, for replicates one and two, respectively (mNG
primers P34 and P35 were used to normalize library DNA concentrations with and without Flp
induction). See below for analysis and interpretation regarding the low rate of kanR retention.

After the pre-growth and kanR excision described above, cells were pelleted again and resus-
pended in 10 mL M9RDM. Cells were then diluted into 100 mL of M9RDM (Glucose 4 g/L,
NH4Cl 1 g/L, KH2PO4 3 g/L, NaCl 0.5 g/L, Na2HPO4 6 g/L, MgSO4 240.7 mg/L, ferric citrate
2.45 mg/L, CaCl2 111 ng/L, 200 mL/L 5x Supplement EZ, 100 mL/L 10X ACGU (Teknova cat #
M2103), 1 mL/L micro- nutrient solution). Then a final concentration of 100 mg/L anhydrotetra-
cycline (aTc) was added to 0.0031 OD600 cells. The culture was incubated at 37�C until an OD600

of 0.2 was reached (about 3.5 h) to allow induction of the transposon-born reporter construct. The
entire flask was then immediately transferred to an ice-slurry bath. Three aliquots of 5 mL were
then pelleted at 6600 ⇥g for 3 min and snap-frozen in a dry-ice ethanol bath to allow harvest of
genomic DNA. In parallel, three additional aliquots of 5 mL of the culture was rapidly mixed with
10 mL RNAProtect Bacteria Reagent (Qiagen) and frozen according to the manufacturer’s instruc-
tions to allow harvest of RNA from matched samples of the growing library. All samples were
then stored at -80�C.
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3.6.8 Nucleic Acid Processing and Sequencing

Genomic DNA (gDNA) from harvested samples was extracted following the Qiagen Blood and
Tissue kit instructions. 1 mg of gDNA was then digested for 1 hour with CviQI. The resulting
DNA was purified with PCR cleanup kit and eluted into 0.1x TE. The DNA was then amplified
with primers P9 and P11 flanking the barcode for eight cycles using Q5 polymerase, resulting in
a 186 bp fragment (Figure 3.2; Supplementary Table File S6). The DNA from the PCR mix was
purified with Axygen AxyPrep Mag PCR cleanup beads at a 1.8:1 bead to DNA ratio to remove
unincorporated primers.

RNA from the exponentially growing cells was extracted following the Qiagen RNeasy Bac-
terial RNA protect protocol including on-column DNaseI treatment. 1 mg of the resulting RNA
and a single reverse primer (P11) were used for first strand synthesis with the NEB Protoscript II
First Strand cDNA kit using the manufacturer’s instructions, and the resulting cDNA was stored at
-20�C. No-polymerase controls (-RT) were included. 20 ml of the gDNA or 5 ml of cDNA reaction
mixture was used for a 50 ml minimal-cycle PCR amplification using NEB Q5 hotstart polymerase,
following the manufacturer’s instructions with the following modifications: NEB i5 or i7 primers
were used to add Illumina adapter sequences. EvaGreen dsDNA dye to a final 1x concentration
was added to each reaction. 10 ml of each reaction (including -RT controls) were then monitored
for qPCR fluorescence signal during PCR amplification. The remaining 40 ml of each reaction was
then amplified with the number of PCR cycles corresponding to 25% of the maximum fluorescence
observed in the 10 ml qPCR pilot reaction. We verified that the cycle threshold for the -RT cDNA
controls were at least 7 cycles greater than the standard cDNA samples (indicating background
from DNA contamination of less than 1%). Each 40 ml PCR reaction was then purified with 90
ml of Axygen MAG-S1 beads and eluted in 0.1x TE. The purified, prepared DNA library was was
submitted to the University of Michigan sequencing core for sequencing on an Illumina NextSeq
550.

3.6.9 Construction and Testing of Targeted Reporter Integrations

The ecSAS17 strain was transformed with the lambda Red plasmid pSIM5 (gift from Prof. Don
Court). The reporter construct was amplified with primers with 37-40 bp 5’ flanks to introduce
homology domains for each integration site (Supplementary Table File S6). Each purified reporter
DNA fragment and digested with DpnI to remove the pSAS31 template plasmid. Integration con-
structs were then electroporated into the ecSAS17 + pSIM5 strain and plated on LB-kanamycin
agar. Integration strain candidate colonies were streaked out and grown overnight at 37�C. A single
colony from each candidate streak was then grown overnight at 37�C in LB broth in order to elim-
inate the temperature-sensitive pSIM5 plasmid. The resulting strain was then transformed with

110

https://ars.els.cdn.com/content/image/1-s2.0-S2405471219300389-mmc3.csv
https://ars.els.cdn.com/content/image/1-s2.0-S2405471219300389-mmc3.csv


pCP20 and selected on ampicillin at 30�C in order to cure the KanR cassette. Single colonies were
streaked out on LB ampicillin plates and grown overnight at 30�C. The resulting single colonies
were then spotted onto both LB agar and LB-kanamycin agar in order to confirm loss of kanR. The
strains showing sensitivity to kanamycin were then checked for integration using primers from
each side of the chromosomal integration site and primers P34 and P35 within mNG (Supplemen-
tary Table File S6). PCR reactions that produced bands of the expected size were purified and
sent to the University of Michigan Sequencing Core for Sanger sequencing and confirmed for the
integration site and sequence. Confirmed strains were grown in LB broth at 37�C overnight and
cryopreserved indefinitely.

For qPCR analysis of mNG transcript level in targeted integration strains, cells were grown
overnight in LB broth at 37�C. The strains were then diluted 1:100 into M9RDM and grown for
two h and 37�C. After the pre-growth, the cells were diluted to a final concentration of 0.0031
OD600 cells in fresh M9RDM including 100 mg/L aTc. The culture was incubated at 37�C until an
OD600 of 0.2 was reached (about 3.5 h) to allow induction of the reporter construct. The entire flask
was then immediately transferred to an ice-slurry bath. Two aliquots of 2 mL were then pelleted
at 4600 ⇥g for 6 min at 4�C and snap-frozen in a dry-ice ethanol bath for later harvest of genomic
DNA. In parallel, two additional aliquots of 650 ml of the culture was rapidly mixed with 1.3 mL
RNAProtect Bacteria Reagent (Qiagen) and frozen according to the manufacturer’s instructions to
allow harvest of RNA from matched samples of the growing library. All samples were then stored
at -80�C. The procedure was performed in its entirety on three separate days. Purified RNA was
converted to cDNA using the standard protocol for NEB Protoscript II using random hexamers.
cDNA and genomic DNA was quantified by qPCR with primers P46-P51 using iTaq™Universal
SYBR®Green Supermix. Cycle thresholds for opgG were used to normalize loading of DNA and
cDNA for all other primer sets (Heng et al., 2011).

For growth rate analysis, the same pre-growth procedure as above was performed. Next, cells
from the pregrowth were diluted to 0.0031 OD600 in fresh M9RDM with and without aTc and 150
ml was added into a clear-bottom, black-walled microplate in triplicate. Each culture was covered
with 100ml of sterile mineral oil. The microplate was shaken at 37�C and monitored every 10 min
for OD600 in order to derive the doublings per hour. The procedure was completed in its entirety
on three separate days.

3.6.10 Footprinting Positions of Insertions on the Genome

Sequencing results returned from Illumina NextSeq 550 had sequencing depths of 33,197,291 and
39,030,663 for RNA barcodes, 13,260,924 and 14,763,447 for DNA barcodes, and 5,604,268 and
5,622,546 paired-end reads for kanR retention samples, for each replicate. Barcodes from inserted
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reporter constructs in the genome are included at the 3’ end of the mNG transcript. The footprint-
ing process sequences both the barcodes and genomic sequences after the insertion site obtained
from fragmented genomic DNA. Barcodes and genomic region sequences were extracted from the
obtained Read 1 sequences, using Cutadapt 1.8.1 [177] to remove a fixed length of leading or trail-
ing sequences and to remove construct sequences. Only barcodes and genomic region sequences
from reads with an identifiable construct sequence were extracted (Figure 3.2).

The extracted barcodes from the two sequencing runs for both CviAII and CviQI (four samples
in total) were pooled into a single barcode read pool for further analysis, and the genomic region
sequences were similarly treated. Pooled barcodes were filtered to remove any barcodes with any
base of quality score below 30. The filtering survival rate for the barcodes was 65.96% (68,933,499
out of 104,513,169 reads). In parallel with barcode filtering, pooled genomic region sequences
were trimmed by quality using Trimmomatic 0.33 [178], removing trailing bases with quality
scores below 3, any sliding window of 4 bases that had average quality score below 15, and keeping
reads with a minimum length of 20 bases. Quality trimming survival rate for the pooled genomic
region sequences was 74.74% (78,114,467 out of 104,513,169). Only reads which passed both
filtering steps noted above were included in alignments to the genome. For alignment, the reference
was built using sequences from MG1655 genome (U00096.3), pBAD-Flp, pSAS31 , and pBT1-
proD-mCherry sequences. The alignment of the extracted genomic sequences to the reference was
performed using Bowtie2 (2.1.0), under the “very sensitive” preset. Alignment rate was 58.17%
(45,437,982 out of 78,114,467). The query read names, 5’ aligned positions, and strandedness
information were extracted to match the transcriptional propensity data.

The Y-linkers used in footprinting incorporated a random 4 bp unique molecular identifier
(UMI), which was then observed in Read 2 of footprinting data. Cutadapt was used to cut construct
sequences as anchored 5’ adapters, allowing no indels and discarding uncut sequences. The trailing
sequences of construct were removed from the remainder sequences to retrieve UMI sequences.
UMIs, barcode sequences, and insertion locations were matched to identify the corresponding
insertion location and UMI count for each barcode, keeping only entries with all three types of
information.

Tables of barcodes, UMIs, and genome positions were first deduplicated to keep only unique
records of every combinations of all three source of information. Barcodes with multiple insertion
positions were removed. The barcode-position pairs were then supplemented by the counts of
unique corresponding UMIs. As a result, each barcode sequence was mapped to its unique insertion
position on genome and its unique UMI count number. Combined, these data allowed mapping
of transcriptional propensity for each barcode onto the E. coli genome. In total, 355,314 barcodes
were mapped to E. coli genome (excluding sequences derived from plasmids), of which 184,575
were supported by at least 2 different UMIs; only the latter category of locations were included in
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downstream analysis.
For each genomic position identified above, we used the number of integration sites falling

into a 1-kb window (500 bases on each side) to describe the integration density across genome
(Figure 3.3E). We investigated the percentage of genomic positions with at least a certain number
of integration sites within the window, for all positions on genome. Integration sites included all
integrations identified and mapped in footprinting that were on the genome. The geometric mean
and median were calculated including sites with no integrations in the windows (that is, across the
entire genome).

3.6.11 Quantitation and Mapping of Transcriptional Propensity to Integra-
tion Sites

To retrieve the barcode sequences from RNA or DNA sequencing of the barcodes themselves,
all Read 1 sequences containing the barcodes were processed using Cutadapt, with part of the
construct and primer sequence removed as anchored 3’ adapters (Figure 3.2). The construct cutting
process allowed no indels and discarded any reads that were not cut. The counts of barcodes were
measures of abundances of barcodes in RNA (as cDNA libraries) and DNA (as gDNA libraries)
samples. Ambiguous barcodes were removed.

The barcode abundances were mapped to insertion positions by barcode sequences, keeping
only barcodes that had at least one count in both the RNA and DNA samples of both replicates,
and had a mapped location on the genome from the footprinting data. The barcodes were further
filtered to require at least two different UMIs. A total of 140,292 barcodes, mapping to 98,034
locations, passed all filters on the merge, and were thus included in the transcriptional propensity
calculations described in the text.

3.6.12 Quantitation of Knock-out and Growth Rate Effects of Insertions

“Knock-out effects” refer to the situation where the insertions of barcodes in or near genes could
disrupt that gene’s function. To identify potential knock-out effects of genes, for each gene anno-
tation (NCBI annotation for U00096.3), four statistics were calculated: median RNA:DNA ratio
within the windows of upstream 500 base pairs, downstream 500 base pairs, first 500 base pairs,
and last 500 base pairs of a gene. All calculation of medians required a minimum of 10 insertions
in the window. For genes with length between 500 and 1000 base pairs, overlapping windowing
within the gene was allowed. Genes with length less than 500 base pairs were filtered out.

In addition to gene-specific knockout effects, we also considered the more general possibil-
ity that insertions with a strong impact on growth rate might affect the observed transcriptional
propensity, due to alteration of the dilution rate of the transcript of interest. We have observed in
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low-throughput experiments that the impact of our reporter insertions on growth rate are very low,
even for insertion locations with large differences in transcriptional propensity (Figure 3.3F), thus
immediately arguing against growth rate effects as a major confounder of our observations. Never-
theless, we also assessed impacts of clonal growth rate on transcriptional propensity observations
using the relative abundance of DNA barcodes, regardless of their position relative to genes or the
transcription level from any reporter (Figures 3.3G and 3.3H). To evaluate the potential effect of
cell growth on transcriptional propensity, the DNA abundance ratio between after induction and
growth (post-) and before (pre-) were calculated. Briefly, in the pre-/post-induction experiment,
the reporter library was grown under the same conditions as in the “Full-scale genome profiling
procedure” and genomic DNA was collected before induction (pre-) and at after induction and
growth to OD600 0.2 (post-), processed and sequenced using the same methods as in Section 3.6.8.
To examine reproducibility between the pre-/post- induction experiment and the experiment for
transcriptional propensity profiling, we visualized and quantified the correlation of counts of bar-
codes in common between two sets of experiments. To reduce the effect of noise, we performed
filterings of a minimum requirement of 10 or 100 counts for each barcode in each sample (Figures
3.3F and 3.3H for a minimum requirement of 10 counts).

For the growth rate experiment, we examined the reproducibility when different levels of fil-
terings were applied, by examining how well the barcode counts from two replicates agreed with
each other. More specifically, after filtering by a minimum requirement of 10 or 100 counts, we
calculated the Spearman correlation between replicates as post-growth counts (⇢ = 0.17 when fil-
tered by 10 and ⇢ = 0.90 when filtered by 100), pre-induction counts (⇢ = 0.30 when filtered by
10 and ⇢ = 0.89 when filtered by 100), and ratios of post- growth barcode counts over pre-growth
counts (0.02 when filtered by 10 and 0.37 when filtered by 100). The correlations were generally
low, suggesting a low signal-to-noise ratio (consistent with our low-throughput observations that
the insertions present in the library generally had no effect on growth rate, possibly because clones
containing detrimental insertions were already selected out).

To directly test whether relative growth rate had an effect on RNA/DNA ratios or transcriptional
propensity, we applied the minimum count filter, then calculated the Spearman correlations of the
log2(RNA/DNA) or log2(transcriptional propensity), respectively, with log2(post-/pre-induction).
We required barcodes evaluated for growth-rate effects to be detected in all four samples in both
experiments: growth-rate experiment with two replicates and transcriptional propensity profiling
experiment with two replicates. With a requirement of minimum of 10 barcode counts from growth
rate experiment replicates, 64,003 barcodes passed the filter; with a requirement of a minimum of
100 counts, 185 barcodes passed the filter. As noted below, in neither case was any substantive
correlation with transcriptional propensity observed.
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3.6.13 Profiling Genome-wide HU Binding Landscape

HU binding data was obtained from [230], accessed via Accession Number SRP008538 in NCBI
SRA database. HupA (SRR353962) and HupB (SRR353967) single-end ChIP-seq data were
downloaded as sra data files, converted into single fastq files via sra-toolkit (2.8.2-1). Quality
controls were performed using FastQC (version 0.10.1). Cutadapt was used in preset Illumina se-
quencing cutting mode to remove adapter sequences from reads. Trimmomatic was used to remove
reads and read ends of low quality. The trimming parameters were Phred+33 scores, leading qual-
ity score 3, trailing 3 and sliding windows of length 4 and quality score 15, and a minimum read
length of 20 bases, in single-end mode. Alignments were performed using Bowtie2, in very sensi-
tive preset mode, to E. coli genome version U00096.3. For each position on genome, the coverages
were defined as the counts of aligned templates of reads that spanned the position, calculated using
an in-house Python script. The resulting coverages were divided by a spline-smoothed version of
the same data to correct for origin-to-terminus effect of circular genome of E. coli (see below for
details).

3.6.14 Estimation of Gene-Level Transcriptional Propensity for Functional
Analysis

For each gene annotation, the log2 median value of RNA/DNA ratio within the region of the gene’s
open reading frame plus a flanking region of 2500 bases on each side of the gene were calculated
as the gene-level transcriptional propensity for functional analyses. iPAGE analysis was performed
using nine uniformly populated bins with dependency of GO terms (Figure 3.12). Genes were also
categorized by whether or not the coding products were recognized by SRP, according to the list
of gene names provided in [229]. Gene names in the list were mapped to b numbers based on
gene annotation for genome version U00096.3. For gene names that corresponded to multiple b
numbers, the b number with the gene name as its primary name was prioritized over b numbers
with the gene name as synonyms. For genes with no matching gene name but multiple synonyms,
the smallest b number was used.

3.6.15 Autocorrelation

To compute the autocorrelation in transcriptional propensity across the genome, we estimated the
Spearman correlation coefficient between pairs of loci separated by different base pair lags (ranging
from 1 to 200,000 base pairs). For each base pair distance, we first created two lists representing
expression levels at pairs of loci separated by a distance equal to the lag. We then computed
the Spearman correlation coefficient between these two lists. If a given locus had multiple raw
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transcriptional propensity values (without median windowing), we took the median for all reporters
at that coordinate. To compute the null distribution for the autocorrelation we used a white noise
process with N samples where N is the total number of unique insertion locations (98,034); the
algorithm described here was implemented in Matlab [265].

3.6.16 Discovery of Periodic Signals in Transcriptional Propensity

To detect periodic signals in the transcriptional propensity signal we used the astropy implemen-
tation [266] of the Lomb-Scargle algorithm [223, 224] to perform spectral analysis for signals at
all possible frequencies that could repeat between 1 and 100000 times across the E. coli genome.
Due to the circular nature of a bacterial genome, any periodic signal must repeat at some integer
divisor of the full length of the bacterial chromosome and thus we restrict our analysis to only
frequencies that are possible under this constraint (n.b. each period need not, however, consist of
an integer number of base pairs). The Lomb-Scargle algorithm was designed for unevenly sampled
linear time series data and cannot natively handle data coming from a strictly periodic series as is
the case for our data. Therefore, in order to better detect low frequency, high period signals over
the circular chromosome, we ran the Lomb-Scargle algorithm on the linear transcriptional propen-
sity signal repeated, end-to-end, five times to simulate the circular genome. For all Lomb-Scargle
calculations, the spectral power was normalized using the standard normalization based on data
residuals around a constant reference model as described in the astropy documentation. In order to
assess the statistical significance of the spectral power for the periods we observed we repeated the
Lomb-Scargle analysis on 1000 permuted transcriptional propensity signals generated by shuffling
blocks of 2200 adjacent collection bins (⇠100,000 bp) of the original transcriptional propensity
signal, and repeating the same shuffled signal end-over-end five times. Periods discovered in the
original transcriptional propensity with a Lomb-Scargle power higher than the period with the
highest Lomb-Scargle power in all 1000 permuted signals represent periodic signals discovered at
a false discovery rate of < 1%.

3.6.17 Calculation of Macrodomain and Chromosome Interacting Domain
(CID) Boundaries

Macrodomain and chromosome interacting domains were calculated from data published with
Lioy et al. [198] using GCC contact matrices obtained from E. coli cells in exponential phase
growth at 37�C in LB media (GEO data sets GSM2870426 and GSM2870427). Processed count
matrices taken directly from GEO and were normalized using code from https://github.com/koszul-
lab/E coli analysis. Directionality indices were calculated as described in Lioy et al. on normal-
ized matrices at both 100 Kb (CIDs) and 400 Kb (macrodomains) scales. Significant boundaries
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were determined by choosing locations where the value of the directionality index t-test transi-
tioned to a value of +2 or greater after previously obtaining a value of -2 or less upstream. Final
boundaries were chosen by taking the average of boundaries found within 25 kB of each other
between both replicates. Boundaries found only in one replicate were not considered, and final
boundaries were converted from the U00096.2 gene coordinates to the U00096.3 gene coordinates
used in this study. Boundaries were labeled with the either the first gene overlapping or the closest
gene to the boundary as found in the GeneProductSet dataset in RegulonDB version 9.4 and sorted
by start coordinate in the annotation file.

3.6.18 Transcriptional Propensity, Integration Density and Experimental
Data Processing

RNA barcode counts were divided by DNA barcode counts separately for each replicate to gener-
ate raw transcriptional propensity values. Each replicate was then smoothed by a rolling median
window over 500 bp for all windows with at least 3 reporters. Smoothed transcriptional propen-
sity values for all integration sites were retained. The replicates (Figure 3.4D) were then quantile
normalized and averaged to generate the transcriptional propensity values used in this study, un-
less otherwise noted. All external experimental data sets (see Table 3.1) were subjected to the same
smoothing and averaging of replicates described above. For each correlation python and Matplotlib
were used to generate the hexbin plots, histograms, violin plots and Spearman statistics. All spline
normalization was carried out using a smoothing B-spline with four knots, located at equidistant
points along the chromosome including one at oriC to provide a low-pass filter responding primar-
ily to DNA abundance.

Integration density was calculated by summing reporter integration over a rolling 500 bp win-
dow. Since the reporter was integrated during exponential growth phase, integration density was
expected to be higher around the origin of replication (Figure 3.4C). In order to eliminate density
variation arising from gene dosage effects from all correlation analysis, we performed a B-spline
smoothing of integration rates over the length of the chromosome (Figure 3.14). The raw integra-
tion density data was divided by the spline values to generate the gene-dosage corrected integration
density values that were used for all correlation analysis (Figures 3.14A-3.14C; Table 3.1).

In order to approximate the transcriptional propensity per cell instead of per DNA copy num-
ber (as in Figure 3.4E), we multiplied transcriptional propensity by genomic DNA copy number
during exponential phase for cells grown under the same conditions (Data from Goss, manuscript
in preparation). Specifically, B-spline smoothing was used on read depth of total genomic DNA
(Figure 3.13A). Transcriptional propensity was then multiplied by the spline values to generate the
dosage transformed transcriptional values shown in Figure 3.13B and in Table 3.4.
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3.6.19 Modeling of Transcriptional Propensity Based on Chromosomal Fea-
tures

To obtain a minimal set of informative parameters for use in predicting transcriptional propensity,
we performed lasso regression [267] using the R package glmnet. Table 3.1 shows correlation
statistics and data source for each experimental data set. We fitted the regression under five-fold
cross validation, using a blocked strategy with each group consisting of four ⇠230 kilobase regions
of contiguous locations, in order to account for the correlation structure inherent to the data itself.
We only used data points for which all features were available, and thus the cross validation regions
all contain consistent numbers of locations, but not necessarily precisely the same size of genomic
region.

3.6.20 Elimination of Potentially Confounding Features

As described here, we considered and subsequently eliminated several possible sources of sys-
tematic bias in our transcriptional propensity measurements. For the effects considered here, we
observed in some cases small effects at the level of individual barcodes, but all such effects were
eliminated upon applying the window averaging used in our actual transcriptional propensity statis-
tic (500 bp rolling median requiring at least three independent barcodes), demonstrating a lack of
meaningful contribution from any of the factors noted here to the reported signal.

3.6.20.1 Barcode Sequences

We observed very low correlation of transcriptional propensity with GC content of the barcode
(Spearman ⇢ = 0.13 and 0.15 for each replicate, respectively, considered at the level of individual
barcodes), and essentially all detectable bias was eliminated by the median windowing that we
applied in our analysis (Spearman ⇢ = 0.013 for the 500 bp moving median signal) (Figures 3.5A-
3.5C), eliminating any impact on our final analysis.

3.6.20.2 Transposon-Based Knockout Effects

In principle, it is possible that the signal that we observed could be altered by the effects of gene
disruptions caused by reporter integration. In practice, however, we observed that reporters inte-
grated within the beginning of a gene coding sequence (thus knocking out its activity) were nearly
identical to reporters integrated directly downstream of the CDS for the vast majority of genes
(Figure 3.5D; Supplementary Table File S5), and thus knockout effects appear to play little role
in our observations. We could identify only five genes where transcriptional propensity from re-
porters within a gene differed from the surrounding neighborhood (by at least 1.7 fold) that could

118

https://ars.els.cdn.com/content/image/1-s2.0-S2405471219300389-mmc2.csv


be potentially attributed to gene knockout effects instead of H-NS peak location (rep, bioH, dtpC,
yfdL, and ftsN - see Supplementary Table File S5). The largest effect was a 2.4 fold-change and
these represent exceptions rather than the rule. Most likely, integrations in genes that would glob-
ally affect transcriptional propensity also result in a competitive disadvantage during growth and
were therefore lost from the library, as were integrations in essential genes. However, there may be
some loci where reporter integration causes minor growth defects and results in the appearance of
a slightly elevated transcriptional propensity over specific loci as a result of the decreased growth
rate. Based on the threshold used for our identification of knockout effects above, we would expect
most of these cases to have an effect of less than 1.7-fold. Potential cases that were not already
identified with the knockout analysis (Figure 3.5D) do not explain the genome-scale signal varia-
tion visible in Figure 3.1E, which varies over 10 - 100 kb.

3.6.20.3 Effects of Clone-Dependent Growth Rates

We also considered the possibility that differences in growth rate might impact transcriptional
propensity measurements by altering the effective stability of the transcript (through altering its
dilution rate). Some evidence against this possibility arose from our consideration of targeted in-
sertions (Figure 3.3F), where we saw no growth rate effects from any insertion locations tested,
despite those locations showing a 15-fold range in transcriptional propensities. To provide a more
comprehensive test of possible effects of growth rate, we estimated the relative growth rates from
many transposon-inserted reporters by measuring the abundance of each genomic DNA barcode
at the start of the assay period compared to the end of the assay period. We found low correla-
tions of growth-rate dependent genomic DNA abundance of barcodes with either raw RNA/DNA
ratios and transcriptional propensity (see Table 3.1 for correlation coefficients), which suggested
that the differences in relative growth rates did not have a substantial effect on our measures of
transcriptional propensity. We also noticed that the signal-to-noise ratio in these assays was gen-
erally low, likely due to a relative rarity of insertions that caused strong changes in growth rate.
The Spearman correlation of the observed replicate-averaged genomic DNA abundance ratios of
barcodes after and before growth with raw transcriptional propensity as RNA/DNA ratios before
median windowing, was 0.01 using a threshold of 10 counts (Figure 3.3G) and 0.14 using a thresh-
old of 100 counts (Figure 3.3H), demonstrating that any effect of growth rate on transcriptional
propensity is exceedingly weak, and in particular is not needed even for very low or high propen-
sities (Figure 3.3H). Note well that the correlations stated here are for individual barcodes, rather
than the window-averaged statistics used for transcriptional propensities. Indeed, the Spearman
correlations of the window-averaged, growth-dependent changes in DNA barcode abundance ra-
tios with transcriptional propensity (500 bp median windowing) at each genomic position that had
insertions of filtered barcodes was -0.02 with a 10 count filtering threshold, and 0.02 with a 100
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count filtering threshold, demonstrating a complete lack of meaningful correlation with the key
statistic used in our work.

3.6.20.4 kanR Excision Efficiency

Although the rate of kanR retention after the excision step is generally very low (0.1-1.4% per-
cent of total mNG signal as assessed by qPCR), there was a mild correlation of the rate of kanR
retention between replicates for different reporters (Figure 3.5G), and between the rate of kanR
retention and the transcriptional propensity at individual integration sites (Figures 3.5E and 3.5F).
However, unlike the transcriptional propensity signal, the fluctuations in kanR retention were not
highly correlated between nearby sites, and lose all correlation with the transcriptional propensity
signal upon median windowing (Figures 3.5H and 3.5I). The combination of this lack of overall
correlation, and the very low absolute rates of retention of the kanR marker (see above), leads us
to conclude that any site specific variations in kanR excision efficiency have no meaningful effect
on our overall transcriptional propensity profiles (indeed, it may well be that the site level corre-
lation that is observed is caused by the variation in propensity/ accessibility per se, rather than by
retention of the marker).

3.6.20.5 Effects of Neighboring Sequence Context

The transcriptional propensity signal was not a result of bias in DNA barcode amplification that
could be present due to variations in neighboring genomic AT content, as the two had no meaning-
ful correlation (Figure 3.5J). As expected from the large and diverse reporter library strain, counts
for DNA barcodes and RNA barcodes vary substantially across the genome and at the local scale
(Figures 3.5K-3.5M). Taken together, these figures indicate that genomic nucleotide content has
a strong effect at the level of transcription (Figure 3.8C), but is not a result of bias introduced by
light PCR amplification of genomic DNA barcodes.

3.6.21 Data and Software Availability

Source code implementing the autocorrelation analysis: https://github.com/shwetaramdas/auto-
correlation.

Source code implementing all other statistical analysis and modeling: https://github.com/freddolino-
lab/2018 genomeProfiling

We provide a comprehensive table of transcriptional propensity data (Supplemental Table S7),
which contains the following columns (with description): t1 cDNA (replicate 1 raw RNA bar-
code counts), t1 gDNA (replicate 1 raw DNA barcode counts) ,t2 cDNA (replicate 2 raw DNA
barcode counts), t2 gDNA (replicate 2 raw DNA barcode counts), pos (U00096.3 coordinates),
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strand (relative to U00096.3 reference), gc fraction (Fraction of GC in barcode), raw propensity1
(replicate 1 RNA/DNA barcode counts), raw propensity2(replicate 2 RNA/DNA barcode counts),
500 med win propensity1(replicate 1 median of RNA/DNA barcode counts in 500 bp window
around each integration when at least 3 integrations are included), 500 med win propensity2(replicate
2 median of RNA/DNA barcode counts in 500 bp window around each integration when at least
3 integrations are included), Avrg 500 med win propensity (average of replicates after median
windowing and quantile normalization).

We provide the raw sequence files for the cDNA barcodes, genomic DNA barcodes, KanR-
associated barcodes and transposon footprinting reads. The accession number for all sequencing
data is Sequence Read Archive: SRP149841.

In addition, three large supplementary tables are provided as separate files.
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CHAPTER 4

Global analysis of RNA metabolism using
bio-orthogonal labeling coupled with next-generation

RNA sequencing

4.1 Contribution details

This work was reproduced from its published form, with permission, from Wolfe et al. [268].
As the primary author, I performed the literature review, performed the analyses, and wrote the
manuscript. Peter assisted with the creation of some key figures. Discussions between him and
I resulted in the section on the role of spike-ins. Discussions with and edits from both Peter
Freddolino and Aaron Goldstrohm helped vastly improve the content and direction of the review
article. Their mentorship made this review possible.

4.2 Abstract

Many open questions in RNA biology relate to the kinetics of gene expression and the impact of
RNA binding regulatory factors on processing or decay rates of particular transcripts. Steady state
measurements of RNA abundance obtained from RNA-seq approaches are not able to separate the
effects of transcription from those of RNA decay in the overall abundance of any given transcript,
instead only giving information on the (presumed steady-state) abundances of transcripts. Through
the combination of metabolic labeling and high-throughput sequencing, several groups have been
able to measure both transcription rates and decay rates of the entire transcriptome of an organism
in a single experiment. This review focuses on the methodology used to specifically measure RNA
decay at a global level. By comparing and contrasting approaches and describing the experimental
protocols in a modular manner, we intend to provide both experienced and new researchers to
the field the ability to combine aspects of various protocols to fit the unique needs of biological
questions not addressed by current methods.
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4.3 Introduction

Gene expression is modulated at multiple stages including transcription and processing of nascent
transcripts, regulation of translation efficiency and intracellular localization, and control of the rate
of RNA degradation. This chapter focuses on advanced methods to measure mRNA decay rates
on a transcriptome-wide basis. Multiple RNA decay pathways that degrade RNAs have been dis-
covered and specific regulatory factors that control the rates of RNA decay have been reported
[123, 269, 270] . These include short regulatory RNAs (siRNA and microRNAs) [271] and a
plethora of RNA binding proteins [126]. The key challenge now is to determine the impact of each
of these factors on the transcriptome using facile quantitative approaches. Early approaches to
measuring mRNA decay involved shutting off transcription and measuring RNA abundance over
time using either northern blots, dot blots, or radioactively labeled RNA [272–276]. However,
concerns over the impact on the underlying biology for cells undergoing transcription shutoff have
led to the development of various methods to metabolically label RNA to measure RNA decay in
a less intrusive manner. By incorporating a chemically modified nucleobase into the cellular pool
of ribonucleotide triphosphates (NTPs), RNAs can be labeled without disrupting gene expression,
thereby minimally perturbing the underlying biology. Additionally, the indiscriminate nature of
metabolic labeling combined with label-based purification methods and modern RNA sequencing
allows for transcriptome-wide determinations of both transcription rates and RNA decay in a sin-
gle experiment. Here we review both historical and recent advances in methods using metabolic
labeling to quantitatively measure RNA decay in living cells. We take a modular approach, by
describing individual aspects of the methods that have been developed in such a way that each step
can be mixed and matched with later steps, so that unique experimental designs can be developed
to answer challenging biological questions using an optimal combination of approaches.

4.4 Metabolic Labels

The cornerstone of most modern sequencing-based workflows for measuring RNA decay is the
use of metabolic labeling, via the incorporation of nucleotide analogs into RNA, which are used to
separate or distinguish the labeled RNA from the rest of the cellular RNA pool. Here we review the
development and characteristics of several of the most frequently used metabolic labels in modern
practice.
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Figure 4.1: Structures and inclusion chemistries of common RNA metabolic labels. A) 4-thiouracil variants and path-
ways for incorporation into nucleotide metabolism; once the nucleotide monophosphate is formed, the resulting com-
pound is readily incorporated into cellular RNA. B) Structure of 5-bromouridine, which can be assimilated through the
uridine kinase pathway as on the right side of panel A. C) Structure of the click chemistry substrate 5-ethynyluridine,
again typically incorporated into the cellular nucleotide pool via uridine kinase activity.
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4.4.1 Thiol-containing uracil analogs

A variety of different modified uracil labels have been used to measure both mRNA decay and
mRNA synthesis. The most basic requirements for such a label are that it be cell permeable, read-
ily incorporated into RNA, minimally perturb cellular physiology, and permit either the purification
or specific detection of RNA molecules containing the label. Several commonly used metabolic la-
bels meeting these criteria are shown in Figure 4.1. The most widely used label is 4-thiouridine in
either its nucleoside (4sU) or nucleobase (4tU) forms (Figure 4.1A). Both 4tU and 4sU are readily
taken up by yeast [277, 278], archaea [279], and higher eukaryotes including human cells [280–
282]. In contrast to other thiol-modified nucleotides, incorporation of 4sU at concentrations of up
to 100 µM in cell culture does not have a discernible impact on the synthesis of RNA or protein
degradation rates indicating limited perturbation of transcription and translation following incorpo-
ration of the label [283]. In contrast, 6-thioguanine (6sG) and related compounds are still at times
used for metabolic labeling of RNA [284], but as 6sG has been shown to perturb both transcrip-
tion and translation [283], 6sG is of substantially less utility for the long term labeling required
for RNA stability experiments. Although long term culture (48 hr) in the presence of 4sU has
been associated with a decrease in cell viability [285], short term labeling (10 hrs) of up to 4 mM
4tU does not appear to have a discernible impact on cell growth in yeast [278]. However, in vitro
translation assays have revealed that 4sU-containing mRNAs can decrease ribosomal elongation
processivity and increase downstream initiation rates [286]. For organisms such as S. cerevisiae
and E. coli that express a functional Uracil Phosphoribosyltransferase (UPRT), 4-thiouracil can be
used in place of 4-thiouridine as it is readily converted to 4sU as needed by the cells. However,
in both mouse and human cells incorporation of 4tU into cellular RNA does not readily occur and
coexpression of UPRT from another organism is needed in order to incorporate 4tU into nascent
RNA [277, 287]. Expression of the well-characterized Toxoplasma gondii UPRT has been used
to successively label RNA with 4tU in human foreskin fibroblasts [277] and, subsequently, in a
variety of other cell types [288, 289]. The requirement for UPRT activity in labeling with 4tU has
also led to the development of “TU-tagging”, a method to selectively label mRNAs in only one
cell type in the context of a mixed population of cells. By expressing UPRT only in the cell type
of interest, one can determine both the identity and mRNA decay rates of the mRNAs from that
cell type [290]. Additionally, 4tU [Sigma Aldrich Cat. No. T4509] is substantially cheaper than
4sU [Sigma Aldrich Cat. No. 440736] and is more economical to use for organisms that already
have robust endogenous UPRT activity (please note that throughout this review we indicate prod-
uct numbers merely as examples, and not as a reflection of endorsement of any particular product
or manufacturer). In whatever form it is introduced, RNA-incorporated 4sU readily crosslinks to
both RNA and protein upon exposure to 365 nm UV light, a feature that is taken advantage of for
the analysis of RNA-protein interactions but should be minimized in the analysis of mRNA decay
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[291, 292]

4.4.2 Halogen-containing uracil analogs

Incorporation of 5-bromodeoxyuridine (BrdU) into cellular DNA was first described in the 1950s
[293, 294] and the development of an anti-BrdU antibody allowed for visualization of DNA within
a living cell [295]. Some BrdU antibodies cross-react with 5-bromouridine (BrU) and labeling
with BrU can be used to selectively purify BrU labeled RNA with an anti-BrdU antibody [296].
Like 4sU, BrU (Figure 4.1B) is readily taken up by mammalian cells [297] and BrU does not
appear to have the same general toxicity effects that 4sU has under long exposure [285], making
it an attractive reagent to use for measuring mRNA decay over a longer time course. However, in
vitro translation assays have revealed that BrU containing mRNAs have a modest negative impact
on both ribosomal elongation and initiation, but not as large in magnitude as the effects seen from
4sU [286]. Additionally, BrU [Sigma Aldrich Cat. No. 850187] is comparable in price to 4tU and
does not require UPRT activity for incorporation into mammalian cellular RNA.

4.4.3 Alkyne-containing uracil analogs

First described as a labeling reagent for fixed cells, 5-Ethynyluridine (EU; Figure 4.1C) is a uracil
derivative capable of performing “click” chemistry (reviewed [298]) both in vivo and in vitro [299].
Like BrU, 4sU and 4tU, EU is rapidly taken up into the cellular pool of NTPs and incorporated
into transcribed RNAs. Similar to 4sU and 4tU, short-term labeling with EU does not appear to
have negative effects on cellular health, but longer incubation times do negatively impact growth
rates [285]. Although EU could be used for high throughput determinations of RNA synthesis and
decay rates, most studies have been primarily focused on targeted measurements of select RNAs
through the use of qRT-PCR [300, 301]. Recent development of 5-Ethynylcytosine (EC) [302] in
conjunction with expression of cytidine deaminase and UPRT in Drosophila has led to the devel-
opment of “EC-tagging”, a method to purify cell-type specific RNAs with higher specificity than
“TU-tagging” with 4tU as described above [303]: EU is generated in situ by target cells through the
combined activities of ectopically expressed cytidine deaminase (to generate 5-ethynyluracil) and
UPRT (to generate EU, analogous to the reaction in Figure 4.1A). Additionally, EU has recently
been used to determine the nascent-RNA “interactome” through a combination of EU labeling and
UV crosslinking coupled with RNA-seq and proteome analysis, indicating that EU labeling can
be successively used with high throughput methods [304]. EU is significantly more costly than
4sU, 4tU or BrU, and can be purchased either stand alone [Invitrogen Cat. No. E10345] or in the
Click-iT Nascent RNA Capture Kit [Invitrogen Cat. No. C10365] along with buffers and protocols
for its use.
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4.4.4 Impact of exogenous labels on RNA decay rates

A growing body of evidence has suggested a role for RNA modifications in the post-transcriptional
control of gene expression, including control of RNA processing, binding of RNA binding pro-
teins, changes in secondary structure, and stop-codon readthrough (reviewed in [305]). Although
none of the labels introduced above perfectly match the modifications that have been found natu-
rally in eukaryotic cells, in principle, these exogenous labels could still disrupt RNA decay rates
through similar mechanisms. While this represents an important consideration, to the best of our
knowledge there have been no targeted experiments designed to test the impact of any of the la-
bels above on RNA decay rates themselves. Genome-wide comparisons between 4sU labeling and
transcriptional shutoff experiments in yeast have shown that RNA decay rates determined from
transcriptional shutoff experiments have greater agreement with one another than they do with
RNA decay rates determined using metabolic labeling [306]. However, Sun et al. also show that
decay rates determined from transcriptional shutoff experiments correlate well with genome-wide
measurements of mRNA decay made using metabolically labeled RNA in cells displaying a tran-
scriptional shutoff phenotype. They further show, by using measurements of metabolically labeled
RNA, that RNA decay in cells under osmotic stress or heat shock also correlate well with RNA de-
cay rates determined in transcriptional shutoff experiments, suggesting that perturbations of RNA
abundances from cellular responses to transcriptional shutoff may mimic stress responses and con-
found measurements of RNA decay [306]. On the other hand, comparisons of RNA decay rates
determined from seperate labs using different experimental strategies with the same metabolic la-
bel do not correlate well with one another, suggesting that there may be sources of experimental
error in labeling experiments that are poorly understood [306]. One possible source of error could
be attributed to differences in normalization between RNA abundance measurements. For exam-
ple, Lugowski et al. report better replicate to replicate correlation, as well as better agreement to
transcriptional shutoff experiments and metabolic labeling experiments from other labs, using an
internal normalization method (normalize to introns) as opposed to an external method (normalize
to spike-in) [307]. Further discussion on the impact of normalization methods on measurements
of RNA decay can be found in Section 4.9. As it stands, it is unclear if there is a single major
source of discrepancy that results in disagreement between measurements of RNA decay between
different labs and experimental approaches.

4.5 Selection and purification of labeled RNAs

In the majority of metabolic labeling experiments at present, labeled RNA molecules are physically
isolated from the total RNA pool prior to analysis (one notable exception, SLAM-Seq, is described
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Figure 4.2: Workflow of a 4sU chase experiment to measure the stabilities of different RNA species. Shown is a hypo-
thetical cell containing two types of transcript (blue and red), with similar equilibrium levels but differing stabilities.
Cells are grown in media with 4sU added to label transcripts, and then washed and chased with media containing
unlabeled uridine, with samples harvested for RNA extraction at two or more time points during the pulse/chase. 4sU-
containing transcripts are then covalently linked biotin and purified using streptavidin, and the enriched RNA prepared
for sequenced using standard methods. Note that the RNA purification and 4sU enrichment steps are performed sepa-
rately for each time point.
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below). After purification of total RNA from the cell lysate, the newly labeled RNAs must be
separated and purified using methods specific for the incorporated label. Each label discussed
above uses different chemistry for selection, but the general principle is the same: select the label
with as high affinity as possible thereby minimizing the amount of starting material needed and
maximizing capture specificity. Once purified, the labeled RNAs are then quantified using standard
RNA-seq methods (Figure 4.2) [282, 308–310].

4.5.1 HDPD-biotin

For 4sU and 4tU, purification is performed by chemically linking the labeled RNA to biotin and
using the well-studied affinity between biotin and streptavidin to purify the RNA-biotin complex
[311]. 4sU labeled RNA can be covalently linked to biotin by taking advantage of the thiol-
containing uridine and forming a disulfide bond to modified biotin molecules. The most commonly
used modification to biotin is N-[6-(Biotinamido]hexyl]-3’-(2’-pyridyldithio)-propionamide (HPDP-
biotin) [277, 278, 280, 282] and HPDP-biotin is readily available in the form of the EZ-link HPDP-
Biotin kit [Thermo Scientific Cat. No. 21341]. The covalent link between 4sU and HPDP-Biotin
is completely reversible and elution is performed through the reduction of disulfide bonds with a
reducing agent such as DTT, which results in RNA without covalently bound adducts as input into
downstream sequencing.

4.5.2 MTS-biotin

While the HDPD-biotin based procedure described above has been widely used, the formation of a
disulfide bond between 4sU and HPDP-biotin is inefficient; disulfide exchange reactions between
4sU and HPDP-biotin indicate that less than 20% of free 4sU is converted to 4sU-HPDP-biotin in
reactions as long as 120 minutes. Recent developments using methylthiosulfonate-biotin (MTS-
biotin) have indicated greater than 95% conversion of free 4sU to 4sU-MTS-biotin in as little as
five minutes, indicating a fast and efficient reaction resulting in capture of labeled RNA with-
out the need for as much starting material [310]. The MTS-biotin purification protocol has been
used to study miRNA turnover [312], response to viral infection [313], and transcription rates in
yeast [314], but it has not enjoyed as much widespread use as HPDP-biotin, possibly because of
MTS-biotin’s relatively recent introduction as a viable alternative to HPDP-biotin. Additionally,
MTSEA-biotin [Biotium Cat. No. 90064] is less costly than HPDP-biotin, making it a more
economical alternative.
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4.5.3 Anti-BrdU antibody

Unlike 4sU, BrU does not have a chemical group that can be easily used to create reversible
crosslinks with modified biotin. Thus, purification of BrU-containing RNAs must proceed with
non-covalent interactions mediated through well-established anti-BrdU antibodies (which frequently
also bind BrU). Many commercially available Anti-BrdU antibodies have been used for the quan-
tification of mRNA synthesis or decay through BrU labels: mouse anti-BrdU [Roche 11170376001]
[297], BrdU Antibody (IIB5) [Santa Cruz sc-32323] for GRO-Seq [315], Anti-BrdU mAb 2B1
[MBL International Corporation, cat. No. MI-11-3] for BRIC-seq [316], and mouse anti-BrdU
[BD Pharmingen, 555627] for Bru-Seq and BruChase-Seq [308]. Imamchi et al. [316] indicated
that they have tried multiple anti-BrdU antibodies and the reported 2B1 antibody resulted in the
highest yields, but to the best of our knowledge, no extensive comparison of antibody purification
efficiencies has been published.

4.5.4 Click chemistry

As with 4sU, purifying RNAs labeled with EU usually relies on a covalent linkage with biotin and
selection using streptavidin beads, in this case using the bio-orthogonal copper-catalyzed azide-
alkyne cycloaddition reaction typical of modern ‘click’ chemistry. Most uses of EU to purify
RNA follow the Click-iT Nascent RNA Capture Kit protocol, which involves the use of PEG4
carboxamide-6-azidohexanyl biotin (azide-biotin) with a copper (I) catalyst (generated in situ in
the reaction by reduction of copper (II)) to covalently link the EU to biotin [300, 301, 317]. Unlike
4sU, this covalent bond is not easily reversed and generation of cDNA libraries for sequencing or
qRT-PCR for direct quantification has to be done while linked to the streptavidin-beads [318]. It is
not clear what effect, if any, this has on the error rate of the reverse transcriptase.

It may be possible to take advantage of the ability of very low-salt solutions to cause sur-
prisingly rapid dissociation of the streptavidin-biotin interaction [319] prior to quantitation or se-
quencing library preparation. To our knowledge, this strategy has not been employed to date in the
published literature.

4.5.5 Purification-free detection through enhanced T!C mutation rates

The use of 4sU-containing RNAs for cDNA synthesis results in the reverse transcriptase misincor-
porating a guanine residue opposite the 4sU at a low level that is exacerbated when cross-linked to
protein [292]. Substituting iodoacetamide (IAA) in place of cross-linked protein allows for non-
specific enhancement of T!C conversion rates in the reverse transcriptase reaction for all 4sU
sites in a library through disulfide bond formation between the IAA and 4sU. T!C mutation rates
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increase from 10% without IAA to 94% with IAA. SLAM-Seq takes advantage of this increase
in mutation rates to quantify mRNA synthesis and decay rates without a purification step. By
labeling with 4sU and treating with IAA before library preparation, SLAM-Seq can differentiate
labeled RNA from unlabeled RNA strictly through quantification of T!C mutation rates of the
final library. Removal of a purification step vastly decreases the amount of input RNA needed and
greatly simplifies the mRNA decay protocol [320].

4.5.6 Impact of pulldown efficiency and label incorporation rates on exper-
imental measurements

Two additional parameters that could introduce noise into measurements of RNA decay using
metabolic labeling include the incorporation rate of the label into newly synthesized RNA, and the
efficiency of pulling down labeled RNA from the total purified RNA. We are unaware of any sys-
tematic characterization of the differences in label incorporation between the different metabolic
labels discussed in Section 4.4. In some sense, differences in incorporations rates, so long as they
are consistent across timepoints, are of no consequence in the experimental designs discussed be-
low since quantification of RNA abundance is either relative to the total amount of RNA pulled
down or is normalized by sequencing both the unlabeled and labeled RNAs for each time point
(see Section 4.9 for details). However, incorporation rates may be a crucial parameter for measure-
ments of either fast-decaying or slow-decaying RNAs, as they may limit detection. In such cases,
optimization of the amount of label added to the cells, incubation times with label, and/or choice of
time points may allow for detection of difficult transcripts. As with incorporation rates, a system-
atic comparison of pulldown efficiencies between different labels and selection strategies has also
not been performed. In a typical RNA decay experiment, differences in pulldown efficiency within
a single experiment will be controlled for through the use of spike-ins or internal normalization
(as discussed in Section 4.9), thereby largely eliminating pulldown efficiencies as a major source
of experimental error as long as saturation is not reached. However, improvements in pulldown
efficiency can result in less needed biological material for a given experiment. Furthermore, many
of the computational methods used to analyze RNA decay experiments operate under the implicit
assumption that the sequenced pool of labeled RNA contains no contaminating unlabeled RNA,
which may not be accurate to actual experimental conditions but will be closer approximated with
better pulldown efficiencies. As discussed above, some improvements have been made to biotin
based pulldown strategies for experiments using 4sU as a label through changing the identity of
the chemical crosslinker [310]. Additionally, the use of mutation rates induced by the metabolic
label removes the need for a pulldown step but introduces a separate source of experimental er-
ror related to modification efficiencies of the label itself and misincorporation rates of the reverse
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Figure 4.3: Overview of different metabolic labeling time strategies, as discussed in detail in the text. A) Schematic
of the timing of labeling and sample harvest for three different methods; n.b. labeling in a pulse-chase experiment is
typically too short for equilibrium levels to be reached. The pink bar (+label) indicates the time period during which
labeled nucleotide is present. B) Expected abundance curves (blue) and hypothetical experimental data (red) for the
fractional abundance of labeled transcript for any particular RNA under each experimental procedure shown in panel
A. Time is relative to a zero point at the time of labeled nucleotide removal/washout (chase-alone and pulse-chase) or
addition (RATE-seq).

transcriptase [320].

4.6 Experimental Design for measuring RNA decay

With a label and purification method in hand, an experimental design must be chosen that max-
imizes the amount of information to be gained per unit cost. Different considerations must be
made if both synthesis rates and decay rates are to be determined. Additionally, it is critical to de-
cide whether precise RNA half-lives are to be measured or if end-point abundance estimations are
sufficient for the biological question of interest. A comparison of different experimental designs
frequently used for the determination of RNA decay is shown in Figure 4.3.

132



4.6.1 Chase alone

To determine RNA decay alone, cells can be grown for an extended period of time, often 24 hours,
in the presence of a label. At time zero, the growth media is replaced with identical media contain-
ing the same concentration of unlabeled uridine and the labeled RNAs are tracked via purification
and sequencing. If determining RNA half-lives, several time points are taken and used for fitting a
single exponential decay model [316]. For a more coarse-grained determination of decay, a single
time point can be taken after the switch to unlabeled media and compared to a sample taken at
time zero. There are major trade offs to consider between these two approaches. By taking only
two time points, one drastically cuts down on the costs of sequencing and the labor to prepare the
samples. This can be particularly useful when comparing the difference in RNA decay between
two biological conditions where the exact half-life is not as useful as as the relative change in
decay between the two conditions is. On the other hand, taking several time points allows one to
capture both short-lived and long-lived transcripts that may be missed with a single time point.
In cultured mammalian cells, the average mRNA half-life is 7–9 hours [282, 321, 322] and it is
critical to choose time points that capture the decay of mRNA transcripts of interest. Furthermore,
many time points are needed to accurately fit the exponential models used for half-life determina-
tion. Thus, selection of the duration and number of time points to be analyzed typically needs to
be optimized (left side of Figure 4.3B).

4.6.2 Approach to equilibrium

The converse of the chase-alone experimental methodology, approach to equilibrium, allows for
RNA decay rates to be determined from measuring time points after the addition of the labeled
uridine to the media. Although cells harvested after a short incubation time can be used to measure
transcription rates [323], taking several time points over an extended time course in the presence
of the labeled uridine can allow for the mRNA decay rates to be determined instead. The bio-
logical motivation behind approach to equilibrium is the concern that labeled nucleotides can be
recycled within a cell leading to an ineffective chase with unlabeled nucleotides [324]. To see the
quantitative motivation for the approach to equilibrium method, it is useful to consider the overall
dynamics of a given transcript. Assuming a constant rate of transcription, the concentration of any
particular RNA species, X, will generally follow the equation

[X]0 = ⌧ � �[X]� �[X] (4.1)

Here, ⌧ represents the rate of transcription under the condition of interest, � is the decay rate of the
RNA (typically the quantity of interest), and � is a dilution term dependent on the growth rate of the
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cell (if not explicitly accounted for, dilution effects will be incorporated into the inferred value of
�, which for the slow-growing cells of higher eukaryotes is typically a negligible correction)[325].
If one considers the labeled form of an RNA of interest as a separate species, X⇤, then Eq. 4.1 will
likewise be followed for the labeled species, except that the synthesis rate will be proportional to
⌧ when the label is present, and equal to zero when the label is not. As the steady state level is
defined by the point at which the synthesis and decay rates are perfectly balanced, the steady state
concentration requires [X]0 = 0, or ⌧ = (� + �)[X]eq. From this equation it immediately follows
that knowledge of any two of the equilibrium concentration, overall decay rate, and synthesis rate
are sufficient to specify the third.

By growing cells in a constant amount of label, the fraction of each RNA that is labeled will
increase at a rate that is determined only by its degradation rate and the growth rate of the cells until
it reaches a steady state level [105]. By measuring time points along this increase, one can capture
the decay rate of any given RNA molecule [309], as the equilibrium value will be known from a
very late time point and a curve fit can then reveal the decay parameters (see Figure 4.5B and Figure
4.3B (middle)). However, approach to equilibrium requires cells to grow in the presence of the
label for an extended period of time, which may be problematic for labels that have demonstrated
toxicity under longer exposure, such as 4sU.

4.6.3 Pulse-chase

It is often advantageous to determine both the synthesis and decay rates of an RNA molecule within
the bounds of a single experiment. By incubating with a short “pulse” of label and “chasing” with
unlabeled media one can both minimize exposure of the cells to the label and determine both
synthesis and decay rates separately [277, 282, 308, 326, 327]. Through taking time points at the
initial addition of the label, the switch to unlabeled media, and throughout the “chase” period, the
lifespan of all nascent labeled RNAs can be tracked (Figure 4.3B (right)). Pulse-chase methods
have the advantage of subjecting the cells to short-exposures of the label thereby mitigating any
potential toxicity.

4.7 Quantification of RNA abundance

Although specialized DNA microarrays have been used previously [280, 321, 322], global analy-
sis of RNA decay is more recently measured through the use of high throughput sequencing and
well-established bioinformatics tools are used to analyze the resulting sequencing reads. Library
preparation for RNA sequencing experiments is available through several commercial kits or cus-
tom methods that are specific to the experiment of interest. As a general rule, paired-end and
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Figure 4.4: Overall diagram of data analysis steps needed to process high throughput sequencing reads from RNA
decay experiments. Widely used example software packages are noted underneath each step. A) Preprocessing and
quality control, here adapters and low quality reads are removed from analysis. B) Alignment of reads to a reference
genome or transcriptome. Several key considerations are highlighted in the text below. C) Quantification of each
transcript or feature of interest. Several different programs can be used to convert alignment information into a measure
of RNA abundance that is comparable between experiments. D) Modeling of RNA decay. Many different models can
be used to determine the decay rates of each transcript of interest.
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stranded sequencing is preferred, particularly for organisms that perform splicing or have tran-
scripts regulated by antisense RNAs. Additionally, several strategies exist to remove highly abun-
dant ribosomal RNAs (rRNA) from samples prior to library preparation, including rRNA depletion
with custom oligos or selection of poly-adenylated mRNAs. Because poly(A) metabolism plays an
important role in mRNA decay pathways, it is advisable to avoid poly(A) selection when analyzing
mRNA decay kinetics. [269, 270] After sequencing, several data processing steps must occur to
take the raw sequencing reads to a measurement of RNA abundance. Many of the programs and
tools written for the analysis of high throughput sequencing data are driven by a text interface,
so it is expected that users have some familiarity with the Unix command line. Many institutions
have workshops designed to teach new users both familiarity and comfort with the command line,
and readers who feel uncomfortable working with command line programs can find help both on-
line and locally. For most applications, the RNA sequencing reads obtained from the methods
above can be treated like data from any other RNA-seq experiment. Typically, sequencing reads
are stored in the fastq file format where both sequence and base-calling quality information can
be stored. Here we will briefly outline the set of steps needed to analyze RNA-sequencing data
for RNA decay experiments with extra commentary on possible locations in the analysis that may
differ for RNA decay-type experiments as compared to standard RNA-seq workflows. For more
information on best practices concerning RNA-seq data we point the reader to recent reviews in
the literature [328, 329].

4.7.1 Adapter removal and quality control

As with any sequencing analysis, standard quality control must be employed. Several steps must
be taken to remove adapters needed for Illumina sequencing as well as reads containing low confi-
dence base calls. For the removal of adapters and low quality sequences, several programs exist in-
cluding cutadapt [177], fastx toolkit [http://hannonlab.cshl.edu/fastx_toolkit/],
and trimmomatic [178]. Several key statistics about the quality of the sequencing reads can be cal-
culated both before and after adapter and quality trimming using FastQC [179] (Figure 4.4A).
Next the reads must be aligned to a reference transcriptome which is available from either NCBI
or the UCSC Genome Browser for most model organisms. Several different aligners have been
developed for processing RNA sequencing reads including bowtie2 [182], tophat2 [330], STAR
[331], kallisto [190], and many others. A comparison of the most commonly used aligners indi-
cates tradeoffs between each tool and the specific aligner used will depend on the question being
asked [332]. However, if one is using the SLAM-seq methodology that is dependent on T!C mu-
tations then it is recommended to use the T!C mutation aware aligner NextGenMap [333] with
special settings designed to weaken the penalty for mismatches resulting from a T!C mutation

136

http://hannonlab.cshl.edu/fastx_toolkit/


event [320] (Figure 4.4B).

4.7.2 Reference-based alignment, transcriptome assembly or pseudoalign-
ment?

Several additional considerations need to be made when choosing both the aligner and the down-
stream quantification software for processing the data from a high-throughput RNA decay experi-
ment. For single-celled organisms such as bacteria or archaea where a high quality reference tran-
scriptome is known for the organism and that organism does not process RNAs through splicing,
a simple aligner such as bowtie2 will perform well. However, most higher eukaryotes do process
RNAs through splicing and thus splice-aware aligners, such as hisat2 [334] and STAR, are recom-
mended. Under some biological conditions, novel transcripts are may be expected and have not yet
been characterized and logged in the reference transcriptome of the organism under study. Here,
downstream software will be needed to infer the presence of novel transcripts and assemble a tran-
scriptome either de novo or through assistance of an existing reference transcriptome. However,
many experiments are not designed to look for new transcripts and are instead concerned with the
abundance of well-characterized transcripts annotated in a reference transcriptome. Pseudoaligners
such as kallisto [190] and salmon [335] are designed to deal efficiently with this latter case. Rather
than do a full alignment, pseudoaligners allow for RNA quantification without needed to fully align
the reads to the reference transcriptome. Pseudoaligners have the advantage of being substantially
faster than traditional alignment methods, but will not be able to detect any novel transcripts and
are wholly reliant on the quality of the reference transcriptome. Unlike the pseudoaligners, most
major aligners will output a sequence alignment map (SAM) file or its binary equivalent (BAM)
that contains several details of where a particular sequence aligned and the quality of that align-
ment. Key statistics and simple manipulations of this file format can be obtained using samtools
[183]. After alignment, downstream tools are needed to convert the sequence alignment infor-
mation into some form of quantification of RNA abundance. The most commonly used software
suite that performs this quantification is cufflinks [336] however, StringTie has shown better per-
formance than cufflinks and is currently recommended as a replacement [337]. Both cufflinks and
StringTie (as well as other related tools) perform novel transcript discovery and transcriptome as-
sembly, which is useful under conditions where new transcripts are expected and informative but
is not always necessary. If transcriptome assembly is not needed due to the existence of an already
annotated, high quality reference transcriptome, or if the investigators biological question is not
concerned with novel transcripts, then a simple feature level quantification can be obtained using
HTSeq [338] instead (Figure 4.4C).
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4.7.3 Gene level or exon level?

Another key consideration when quantifying data from RNA decay experiments is to determine
whether to quantify at the gene level (where all reads for a gene are pooled together regardless
of transcript isoforms) or exon level (where each exon is quantified separately). Most reports for
determining RNA decay have focused on gene level quantification, but exon level information may
be needed if one is tracking decay of specific transcript isoforms.

4.7.4 Count level or TPM?

When considering differences between two experimental conditions, another major consideration
to make is how to quantify the amount of change in RNA decay between the two conditions.
Without proper statistical analysis, differences in sequencing depth, the efficiency of labeled RNA
recovery, and biological variability between replicates can confound any true biological difference
that is being measured. Fragments Per Kilobase per Million (FPKM) or Reads Per Kilobase per
Million (RPKM) are two measures that were designed to correct for both sequencing depth and
transcript length bias between different samples and genes (or exons). However, the Transcripts Per
Million (TPM) unit has superseded RPKM and FPKM as the preferred value for reporting RNA
expression, since TPM values can more accurately be directly compared between experiments
[339]. TPM is commonly reported as measure of relative RNA abundance under a particular
experimental condition for a feature of interest, but more sophisticated statistical models have
arisen that better account for the biological variability seen in the quantification of RNA-seq data.
The use of negative binomial models based on count-level data instead of FPKM or TPM for
each feature of interest allow for better estimation of biological variability and thus more accurate
and reproducible results. Negative binomial models are implemented in all of the major differential
expression packages currently used in RNA-seq analysis and are applicable to RNA decay analysis.
Some of the key differential expression software packages include DESeq2 [340], edgeR [341],
limma [342], cufflinks [336], and StringTie [337]. These packages will take count-level data for
each feature (at the gene or exon level) of interest and use negative binomial-based statistical
models to properly account for variability between conditions. Additionally, the kallisto pseudo-
aligner has a downstream package, sleuth [191] designed specifically for use with kallisto, and
uses the same general principles as the packages mentioned above (Figure 4.4D).

4.8 Modeling RNA Decay

The ultimate goal for most RNA decay experiments is to quantitatively measure the kinetics of
RNA abundance over time. For some research questions, a measure of relative changes in RNA
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decay between two conditions or two transcripts may suffice. However, for another subset of re-
search questions, the determination of a quantitative rate constant with meaningful units is the
object of interest. A careful consideration of normalization procedures for measurements of RNA
abundance using high-throughput sequencing techniques is essential for this latter class of exper-
iments (and still useful for the former class), as discussed in Section 4.9. However, a discussion
of the theory that underlies models used for the determination of RNA decay as applied to perfect
measurements of RNA abundance and discussed below is, nevertheless, instructive.

4.8.1 Single exponential decay

Guided by historical transcription shutoff experiments, most chase experimental designs use a sin-
gle exponential equation to determine RNA decay half-lives. A single exponential model assumes
that RNA decays at a rate proportional to its instantaneous concentration over the measurement
time of the experiment:

Ai(t)

Ai(t0)
= e(�↵it) (4.2)

Where Ai(t)
Ai(t0)

is the relative abundance for labeled RNA i at time t as compared to time t0: the
initial time point taken when the labeled RNA has reached equilibrium. Here ↵i represents the
constant decay rate for RNA i. Note that the exponential form for RNA abundance is obtained
directly from integration of Eq. 4.1 with the production term set to zero and growth term omitted.
Thus the half-life of the RNA can be determined by fitting the data with the following equation
(Figure 4.5A):

T 1
2
=

ln(2)

↵i
(4.3)

It is important to note that both the approach given here, and the more sophisticated variations be-
low, work under the assumption that the fitted parameters (e.g., decay rate) do not vary throughout
the experimental time course. An additional modification for the half-life determination to account
for dilution due to cell growth has also been suggested by several groups. [278, 309]:

T 1
2
=

ln(2)

↵i � kgrowth
(4.4)

Where kgrowth is the same for all RNAs and is determined by the growth rate of the culture; again
this equation arises directly from the presumed time-dependent change in RNA abundance stated
in Eq. 4.1. Note that in the context of Eq. 4.4 the “half life” so calculated yields a half life for the
individual RNA molecules themselves, rather than the bulk half life that would be observed for a
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Figure 4.5: Impact of varying parameters in the equations used for modeling RNA decay: For each panel, the left
graph represents the shapes of several arbitrary exponential curves after perturbing a single parameter in each model.
Here, the y-axis represents labeled RNA abundance relative to the equilibrium level of labeled RNA in label-containing
media. The x-axis represents time in the number of half-lives for a single exponential curve with a decay rate of ↵0,
indicated with T↵0 . The right graph in each panel represents half-lives calculated from each of the curves from the
corresponding left graph in the same panel and relative to T↵0 . In each graph, the equation used to either model the
decay or determine the half-life is displayed. A) The effect of varying ↵ on relative RNA abundance (left) and half-life
(right) when modeling RNA decay with a single exponential. B) The effect of varying ↵ when modeling RNA decay
in a to equilibrium experimental design. C) The effect of varying � with a fixed c and a fixed ↵ when modeling RNA
decay with a two component mixed exponential. D) The effect of varying c with a fixed ↵ and � when modeling RNA
decay with a two component mixed exponential.
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population of molecules (the latter ought to include dilution effects, while the former should not).

4.8.2 Mixed exponential decay

Imamachi et al. [316] have noted that a subset of RNAs do not decay in a manner that is easily
described by a single exponential and have suggested fitting the data with a model that considers a
mixed population of RNAs with different decay rates:

Ai(t)

Ai(ti)
= (c)e�↵it + (1� c)e��it (4.5)

Where c indicates a weight for one subpopulation vs. the other subpopulation and �i is the
decay rate for a second population for a particular RNA. In principle, even more complex func-
tional forms could be considered, such as adding additional exponential terms or using a stretched
exponential, which might better account for data where multiple subpopulations decayed on differ-
ent timescales. Precisely such a situation might easily emerge if multiple different subpopulations
of cells were present in the measurements, or if gene-level quantification was in use but multiple
transcript isoforms existed with differing stabilities. Using more complicated models can be prone
to overfitting and appropriate model selection criteria [343] must be made when choosing between
models with more or fewer parameters (Figure 4.5C-D).

4.8.3 Approach to equilibrium

For approach to equilibrium experimental designs, several assumptions and considerations must
be made to properly model the RNA half-lives. Neymotin et al. determine RNA half-lives by
considering the decay of unlabeled RNAs and also taking into account the cell growth rates [309].
They ultimately model the abundance of any given labeled RNA at time t as the following:

Ai(t)

Ai(tf )
= (1� e�(↵i+kgrowth)(t�td)) (4.6)

Where tf is the final time point where the labeled RNA has reached steady state levels (at the
end of the time course) and td is the time between the addition of the label and the first measurement
of labeled RNA. Both the overall ↵, which is equal to the ↵i � kgrowth, and the Yeq for each RNA
can then be estimated from the experimental data, here assuming the td is fixed for all RNAs based
on experimental measurements for when RNA first appears in after label selection (Figure 4.5B).
Half-lives can then be calculated as above using the growth rate-corrected half-life formula above
(Eq. 4.4). DRUID, an automated pipeline for approach-to-equilibrium experiments, has been
developed to deal to help analyze data from this type of experimental design without the need to
have complicated spike-ins or sophisticated ways to deal with normalization [307].
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4.8.4 Pulse-chase considerations

Pulse-chase experimental designs have the advantage of allowing the experimenter to separately
determine both transcription rates and decay rates from a single experiment. By comparing labeled
RNA abundances to unlabeled RNAs (or labeled RNAs between two different experimental condi-
tions) at the beginning of the chase, one can have a general idea of nascent transcription rates [320]
or condition-specific effects on transcription [308]. By taking several time points throughout the
chase part of the experiment, one can use the single exponential equations described above to fit
half-lives of each RNA of interest. Alternatively, one can take a single time point after a chase and
measure differences between labeled RNA abundances in two different experimental conditions or
between the start and end of the chase to determine relative decay rates without determining the
half-life of the RNAs. It is worth noting that many of the methods mentioned above have focused
on following a single species: the labeled RNAs. Whether through following the decay of the la-
beled species over time (chase and pulse-chase), or through measuring the decay of the unlabeled
species over time indirectly by measuring the approach to equilibrium of the labeled species, these
methods allow for accurate determinations of mRNA decay rates. However, valuable information
that may also be gained by sequencing both the labeled and unlabeled pools. More sophisticated
methods that take into account both transcription rates, RNA decay rates and measurement of both
the pool of unlabeled RNAs and the pool of labeled RNAs have also been reported throughout the
literature [281, 282, 344] and can give deeper insight into the full kinetics of individual mRNA
transcripts but are outside the scope of this particular review.

4.8.5 Half-lives vs. differential abundance

The exponential equations above are typically fit using non-linear least squares methods to deter-
mine ↵i by minimizing the squared sum of the errors between the model and the data for each
RNA. Although half-lives can be determined with as few as three time points, it has been recom-
mended to use at least 5 time points [345] in order to accurately determine half-lives. The Akimitsu
lab has developed a custom R package [https://github.com/AkimitsuLab/BridgeR]
for determining the difference in mRNA half-lives between two different conditions of interest.
However, determining the RNA half lives for many different replicates and experimental condi-
tions can be incredibly costly due to the amount of sequencing samples needed in order to properly
fit the exponential equations. Instead of determining full half-lives for every RNA of interest, one
could consider capturing an initial and final time point and using differential expression software
to measure the impact of a particular condition on the relative abundance of RNA in the final time
point compared to the initial time point. Simple models designed to measure the condition-specific
effects on RNA abundance can be specified easily in differential expression analysis software such
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as DEseq2 [340], which at least permits determination of whether or not the decay of a particular
transcript changes between a pair of conditions.

4.9 Normalization and the use of spike-ins for estimation of la-
beled RNA abundance

It is important to note that high-throughput sequencing reactions only give relative abundance mea-
surements of RNA. Any comparison of two separate RNA sequencing reactions will thus require
some sort of normalization in order to put RNA abundance estimations on the same numerical
scale relative to one another. The most commonly reported normalization schemes for RNA-seq
type experiments include RPKM and TPM, which act to normalize the count data obtained from
a typical RNA seq workflow to both the length of the genomic feature of interest as well as the
sequencing depth for that particular sample as discussed above. As most metabolic labeling exper-
iments described here involve a pulldown step, however, the normalization provided by TPM-type
measurements is insufficient, because the resulting abundance measurements are still only known
relative to the total set of labeled RNA. Comparison of different time points, essential for calcula-
tion of RNA stability, is thus impossible without some sort of normalization that allows for proper
scaling of the observed abundances relative to the total (and not only labeled) RNA present in the
sample.

4.9.1 Rationale for the use of spike-ins

To more clearly demonstrate the necessity and utility of a constant reference value for normaliza-
tion of RNA abundance, we must consider what is actually being measured when one performs an
RNA decay experiment where only the labeled RNA is sequenced. Let us represent the abundance
of labeled RNA for any given transcript i as Xi,L(t) and the corresponding abundance of unlabeled
RNA in the same experiment as Xi,U(t). We can then consider the entire abundance of labeled
RNA for all genes at any given time point t to be:

�(t) =
X

j

Xj,L(t) (4.7)

Likewise, the entire abundance of unlabeled RNA for all genes can be represented as:

�(t) =
X

j

Xj,U(t) (4.8)

Thus the total RNA abundance A is simply:
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Figure 4.6: Impact of common normalization procedures on the determination of RNA half-lives. A) Simulated labeled
mRNA counts for several transcripts decaying at the indicated rates in an approach to equilibrium experiment. For this
simulation, bulk RNA (not plotted) decayed at a rate of ↵ and represented 99% of the total RNA sample. Spike-ins
were added at 0.5% of the total RNA (that is, sum of labeled and unlabeled). B) Raw RPKM values for each transcript
and spike-in RNA. For simplicity, each simulated time point was sequenced to the same depth of 5,000,000 reads
and each transcript and spike-in RNA was considered to be the same exact length. Time is indicated in number of
half-lives of the bulk RNA, which decays at a rate of ↵. C) As in B but RPKM values are normalized to the spike-in
RPKM values for each sample. D) As in B-C but RPKM values are normalized to a transcript that decays at a rate of
30↵. E) Calculated half-lives for the transcript with a decay rate of ↵. Each half-life was determined by fitting the the
approach to equilibrium equation indicated in Figure 4.5B using non-linear least squares on five evenly spaced time
points from the indicated simulated traces in panels A-D. F) Relative mRNA decay as determined by the change in
raw RPKM from two time points. T imehalf was chosen to be the time point at exactly one half-life for the bulk RNA.
For comparison, orange bars represent the inverse decay rate for each of the indicated transcripts.
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A(t) = �(t) + �(t) (4.9)

And what is actually measured for any given gene in an RNA decay experiment when only the
labeled RNA pool is sequenced is:

Ri(t) =
Xi,L(t)

�(t)
(4.10)

Where Ri(t) is the relative abundance of RNA i in the total labeled RNA pool at time point t.
Since both �(t) and Xi,L are changing throughout the course of an experiment, attempting to fit
the RNA decay equations we have described here to raw RPKM measurements is not physically
meaningful. However, if one is able to change the variable quantity �(t) in the denominator of
Eq. 4.10 into something that is known to be constant throughout the experiment, then R(t) can be
transformed into a reliable estimator of RNA abundance on an arbitrary scale. One approach to
add a constant to any RNA decay experiment is to add a labeled spike-in RNA at a known ratio
1/d of labeled spike-in to total RNA and normalize RPKM values to that of the measured RPKM
of the spike-in. Thus, the spike-in will be added at some constant value S(t) that is a function of
A(t):

S(t) =
A(t)

d
(4.11)

Now we can modify Eq. 4.10 to include a known constant amount of spiked-in label S:

Ri(t) =
Xi,L(t)

�(t) + S(t)
(4.12)

Likewise, we can represent the relative abundance of the spike in by Rs(t):

Rs(t) =
S(t)

�(t) + S(t)
(4.13)

By normalizing the fractional abundance of labeled RNA in the total labeled pool with the
spike-in Ri(t) (Eq. 4.12) to the relative abundance of the spike-in Rs(t) (Eq. 4.13) we can see that
the denominator �(t) + S(t) will cancel, resulting in a spike-in normalized estimation of labeled
RNA abundance, Ni(t).

Ni(t) =
Xi,L(t)

S(t)
=

d ·Xi,L(t)

A(t)
(4.14)

Furthermore, upon substitution of S(t) with Eq. 4.11 we can see that Ni(t) in Eq. 4.14 is a
reliable estimator for the fractional abundance of labeled RNA i in the total RNA A(t) rather than
just the labeled RNA pool �(t), clearly demonstrating the need for normalization to some source
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of constant labeled RNA when determining RNA decay rates and half-lives. It is important to note,
that any error in the fraction of added spike-in 1/d will add additional noise to the normalized RNA
abundance estimate described by Eq. 4.14.

To further illustrate the impact of normalization on the determination of RNA decay rates, we
simulated an approach to equilibrium experiment where the bulk RNA representing 99% of the
sequences decayed at a rate of ↵. We then considered several different RNA transcripts each at
the same steady state level of overall abundance but at several different multiples of the overall
bulk RNA decay rate. The actual abundances of labeled RNA from this simulation can be seen in
Figure 4.6A. We then added in a spike-in RNA at 0.5% of the total RNA for each time point and
determined what the resulting RPKM values for each of these transcripts would be under a scenario
where labeled RNA is pulled-down with perfect efficiency (Figure 4.6B). In this simulation, it is
evident that the raw RPKM values do not represent the actual RNA abundances. Note that the
spike-in RNA rapidly decays in RPKM abundance throughout the time course even though it is
added at a constant amount relative to the total RNA. This is to be expected, as in early time points
the spiked-in RNA represents the only labeled RNA species in the reaction. As more labeled RNA
is created in the cells, the relative fraction of spike-in RNA drops precipitously. However, if we
normalize the RPKM traces to the spike-in RPKM (Figure 4.6C) the actual RNA abundances are
exactly reproduced, demonstrating both the utility and necessity of a constant reference value in
RNA decay experiments. Therefore, it should not be surprising that many groups advocate for
the use of labeled RNA spike-ins when determining RNA half-lives across a variety of model
organisms [285, 307, 309, 310, 316, 346].

4.9.2 Practical use of labeled spike-ins for RNA decay experiments

For standard quantification of RNA in RNA-seq experiments, a set of agreed upon standards have
been adopted and maintained by the External RNA Controls Consortium (ERCC) [347–349]. Fur-
thermore, spike-ins are seeing widespread use throughout most high-throughput sequencing tech-
nologies (reviewed in [350]). However, unlike RNA-seq, no agreed upon set of labeled RNA
spike-in standards have been established for RNA decay experiments and the ERCC collection is
not available in labeled form. Instead, each lab has developed their own set of standards to use as
spike-ins for their system. Tani et al. have established the use of the exogenous luciferase RNA,
in vitro transcribed with a known quantity of label, and added to the total purified RNA directly
before label selection [285, 316]. Russo et al. use an expensive synthetic labeled positive control
that is not reliant upon the efficiency of labeling within an in vitro transcription reaction [346].
Neymotin et al. used a combination of three spike-ins with different lengths from a different or-
ganism but with matched GC content to their organism of interest [309]. Likewise, Duffy et al.
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also use a mix of RNAs from a different organism as a spike in [310]. Finally, Lugowski et al.
use two sets of spike-ins, a labeled spike-in of whole genome reads from one organism and an
unlabeled spike-in of whole genome reads from a second organism, where both spike-in species
originate from organisms that are sufficiently different from the organism of interest [307]. There
are several advantages and disadvantages to each of the approaches used above. Spike-ins labeled
by in vitro transcription are much cheaper than buying synthetic spike-ins but are also sensitive to
variations in the in vitro transcription reaction itself. To mitigate this effect experiments using in
vitro transcription to create labeled spike-in RNAs should use RNAs from the same transcription
reaction for all samples that are to be compared. From the ERCC experiments, it is evident that
sequence bias can have a major impact on measurements from high throughput sequencing exper-
iments [351]. Thus, the use of a single spike-in may not be sufficient for precise measurements of
mRNA half-lives. The use of whole-genome labeled RNAs from a non-target organism may help
alleviate some of these concerns since a variety of length distributions and sequence compositions
are present from those samples, but mismatches between sequence bias in two different organisms
can add additional source of noise to the experiment. Additionally, any spike-in is particularly
subject to pipetting errors as any mis-quantification of the precise amount of spike-in added to a
reaction will add a considerable amount of noise to the quantification procedure, as the spike-in
provides the sole normalizing factor for recovering proper decay rates (Eq. 4.14).

4.9.3 Spike-in free approaches

Despite the clear utility of a spike-in in estimating RNA abundance, several groups have found
additional ways to accurately estimate RNA abundance in RNA decay experiments without using
a spike-in RNA [280, 282, 307, 308, 320]. Both Dolken et al. and Schwanhausser et al. use a
procedure in which they determine the abundance of both the labeled and unlabeled RNA species
by sequencing both the selected labeled RNAs and the unlabeled RNAs found in the unbound frac-
tion, which allows them to determine absolute RNA abundance and decay rates for each transcript,
albeit at greater cost than a typical RNA decay experiment [280, 282]. Similarly, Herzog et al.
have the ability to measure both labeled and unlabeled pools of RNA abundance with a single se-
quencing reaction since their method relies on the determination of T to C mutations to determine
labeled RNAs and they are able to internally normalize to the total abundance of RNA through this
method [320]. Lugowski et al. developed an entirely new pipeline (DRUID) that uses rapidly de-
caying RNA introns as a constant internal normalization in approach to equilibrium experiments,
which they found to be superior to the spike-in based normalization that they attempted in parallel
[307]. To illustrate how the DRUID procedure works, we simulated normalization to a rapidly
decaying transcript in an approach to equilibrium experiment (Figure 4.6D). Here it is evident that
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the rapidly decaying transcript approaches a constant labeled value quickly within the experimental
procedure and can be used, instead of a constant spike-in, to normalize the RPKM abundances and
recover a true estimator of RNA abundance. We also demonstrate that RNA half-lives determined
using the DRUID approach vs. the spike-in approach are able to easily recover the true half-life
for a transcript in our simulations (Figure 4.6E). Lugowski et al. directly compare their DRUID
approach to a spike-in approach and find that half-lives determined from the DRUID approach
have higher replicate-replicate agreement and also outperformed both spike-in normalization and
transcription shutoff experiments when compared against a benchmark dataset [307], possibly due
to the pipetting error inherent in the use of spike-ins. In theory, a similar approach could be used
for pulse-chase and chase-alone experimental set-ups. However, instead of normalizing to a highly
unstable transcript, one would need to normalize to an extremely stable transcript (after sufficient
labeling time) as has been suggested by some groups [281, 316]. All such internal-reference ap-
proaches provide a potentially simpler workflow than spike-in based methods, and avoid concerns
such as pipetting and RNA quantitation errors, but necessitate the identification of extremely un-
stable or stable pieces of RNA that can be relied upon to have far longer or shorter half lives than
any transcripts of biological interest.

As a simpler alternative, Paulsen et al. 2014 suggest measuring the labeled RNA species at
just two time points, one time point after a short labeling period, and a second time point chosen
at the average half-life of RNA in the organism of interest [308]. A comparison between these
two time points can then be made using differential expression software to get a semi-quantitative
view of RNA decay at a much lower cost. To illustrate this approach we compared the RPKMs of
two different time points in our simulation and compared these ratios with the true decay rates of
the transcripts (Figure 4.6F). Here, it is clear that the rank ordering of the transcript stabilities is
preserved, but no interpretation can be given as far as the magnitude change between each of the
transcripts, and any attempts to fit a decay rate using such data would fail even if many timepoints
were collected. However, the true utility of this approach can be seen when comparing these
relative measurements of RNA decay between two different experimental conditions. We further
illustrate this approach with a case study in Section 4.10.

4.10 Interpretation and follow-up

A careful consideration of each aspect of a successful RNA decay experiment can be best described
through a sample case study. Consider the scenario where one wants to identify the set of mRNA
targets for which RNA decay is primarily mediated by a particular RNA binding protein of interest.
To determine possible targets, mRNA decay is measured transcriptome-wide in both mock-treated
cells and cells in which the RNA binding protein of interest is knocked down with a silencing RNA.
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Figure 4.7: A hypothetical experimental design for determining changes in RNA decay between a WT and RBP
knockdown condition. A)-C). The choices to be made in designing the experiment including which metabolic label
to use (A), how to purify labeled RNA (B), and the timing of label introduction and sample harvest (C). Note that
this experimental design is done in parallel for knockdown and control cells. D) A sample data analysis pipeline to be
used to analyze sequencing results from the experiment described in A. Choices must be made at the preprocessing,
alignment, quantification, and decay determination stages as indicated in Figure 4.4. E) Hypothetical volcano plots
to visualize the results from the experiment in A-C as analyzed by the pipeline in D. A generalized linear model
is used with DEseq2 to determine knockdown specific changes in both transcription and decay. Red dots indicate
significant genes as measured by a FDR corrected p-value < 0.1. The vertical gray line in each plot indicates a log2
fold change of zero. For this hypothetical experiment, few genes had a significant change in transcription under the
knockdown condition (left plot), but many genes were stabilized in the knockdown condition (right plot), suggesting
that experiment identified several genes that can be considered putative targets for the RBP of interest and represent
good candidates for targeted experimental follow-ups.
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Possible targets will include RNAs that have differential mRNA decay in the knockout genotype
compared to the wild-type cells. For this case study, we select an experimental procedure designed
to minimize both the cost and cellular manipulations needed to conduct the experiment. Given
these constraints, BrU is chosen as the labeling reagent for its low toxicity, cost, and the avoid-
ance of any requirement to incorporate a functional UPRT into the human cell line used for the
experiment (Figure 4.7A). With BrU, an anti-BrdU antibody with known cross-reactivity to BrU is
chosen as the selection reagent (Figure 4.7B). For this particular experiment we are not interested
in the exact half-lives of expressed RNAs, but rather the effect of the RNA-binding protein of in-
terest on mRNA decay. Since the RNA binding protein of interest is hypothesized to be involved
only in post-transcriptional regulation and not in transcriptional regulation, we are also interested
in differentiating transcriptional effects from stability effects. Thus, the pulse-chase experimental
design is chosen in order to be able to determine effects on both processes. In this case, we take a
single time point at the start of the chase after 30 minutes of labeling and take a second time point at
the end of the chase several hours later (Figure 4.7C). The end of the chase was chosen to coincide
with the average mRNA half-life in cultured mammalian cells [282, 321, 322]. To assess biologi-
cal reproducibility, three replicates for each time point and genotype are performed and analyzed.
Three replicates were chosen to be consistent with long RNA-seq ENCODE guidelines which
suggest that at least two biological replicates should be used to assess biological reproducibility
[352]. Furthermore, the ENCODE ChIP-Seq guidelines suggest that more than two replicates are
not absolutely necessary as experiments with RNA pol II indicated that more than two replicates
did not increase the number of sites discovered [62, 353]. Since RNA decay experiments have
aspects in common with both ChIP-Seq (with an immunoprecipitation step) and RNA-seq (with
quantification of RNA abundance), elements of both recommendations are likely applicable here.
After RNA quantification, replicate agreement among a single time point can be assessed using
rank-based statistics, such as Spearman correlation coefficients. However, correlation coefficients
between samples at different timepoints are not meaningful as the RNA abundances are expected
to decay at different rates throughout the experiment. Major disagreements between replicates at
the same time point can indicate a need for more replicates to better assess variability or a need to
repeat the experiment and obtain higher quality samples. It is important to note that this experi-
mental design disfavors detection of regulation of mRNAs with very short or very long half lives.
After preparing stranded paired-end libraries for each sample and sending them for sequencing,
we perform quality control and clean-up of the sequencing reads using a combination of FastQC,
cutadapt, and trimmomatic. Since we want to differentiate transcription effects from decay effects
of the RNA binding protein on the transcriptome, we choose to use the splice-aware aligner tophat2
and associated analysis suite cufflinks to assign read counts at both the exon and gene level. We
follow the recommendation of Paulsen et al. [308] and use full gene level counts (including exons
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and introns) at the early time point to measure nascent RNA abundance and use the sum of all
possible exons (but not introns) at the late time point to measure mature RNA abundance (Figure
4.7D). We then take this count data and use a simple model to determine changes in transcription
and stability resulting from the RNA binding protein knock down with DEseq2:

A ⇠ time+ condition+ condition : time (4.15)

Where A is the abundance of any particular transcript, time is a binary term for the time point
(start or end of the chase), condition is a binary term for which condition the RNA is in (knock-
down or control) and condition : time is an interaction term between the time and knockdown
information. Here, the magnitude and direction of the condition term is interpreted as the knock-
down effect on RNA abundance after 30 minutes transcription during the pulse. The magnitude
and direction of the interaction term condition : time is interpreted as the knockdown effect on the
change in RNA abundance from the start to the end of the chase. After false discovery rate correc-
tion using the Benjamini-Hochberg procedure [354], several high confidence targets for the RNA
binding protein of interest can be identified and followed up with targeted experiments (Figure
4.7E).

4.11 Concluding Remarks

This review provides a general overview of the decisions to be made when planning experiments
to globally analyze RNA decay using metabolic labeling coupled with high throughput sequenc-
ing. We hope this article will serve as a resource for new and experienced researchers in the field.
For additional information, we refer readers to several recent reviews that provide more depth on
each topic presented above [345, 355, 356]. With the advent of low cost high-throughput sequenc-
ing, measurements of RNA decay at a global scale are broadly achievable. Metabolic labeling of
RNA has allowed for the measurement of both transcription rates and decay rates with minimal
perturbation of the underlying biology. Recent advances in chemistry have allowed for enhanced
selection of labeled RNAs from the pool of total RNA in the cell [310] or removal of the need to
select the labeled species from the pool of RNA altogether [320], greatly reducing the amount of
starting material needed for these experiments and lowering the overall cost. Additionally, new
experimental approaches using the metabolic labels and methods described here have allowed for
novel insights into RNA biology including the identification of RNA binding proteins involved
in nascent transcription [304], the impact of a single RNA binding protein in amyotrophic lateral
sclerosis [327], and the discovery of antisense RNAs expressed during herpes infection [313], to
name a few. Future applications can include analysis of RNA metabolism during development,
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differentiation, the course of the cell cycle, and in response to external cues, stresses and infec-
tions. Many open questions in RNA biology involve the kinetics of RNA abundance and the effect
of various players on RNA synthesis and degradation, rather than the steady-state abundance of
RNA alone. The combination of metabolic labeling with high-throughput sequencing has allowed
researchers to address these questions at a global level and will prove to be a valuable asset in the
RNA biologist’s toolkit.
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CHAPTER 5

Metabolic labeling reveals global modulation of
mRNA stability by the human Pumilio proteins

5.1 Contribution Details

This work is currently being prepared for submission and has not yet been published. I am the
primary author of this manuscript and I have performed all analyses presented below. I also wrote
this manuscript in its entirety, with editing from Lindsay Cannon, Peter Freddolino, and Aaron
Goldstrohm. The work presented below, particularly the experimental side, involved many labs as
listed in the author contributions at the end of the chapter. The original experiments were initiated
in Aaron Goldstrohm’s lab and I performed all analyses under both Peter Freddolino’s and Aaron
Goldstrohm’s mentorship and guidance.

5.2 Abstract

The human members of the PUF family of proteins, PUM1 and PUM2, are RNA binding proteins
that post-transcriptionally regulate gene expression through binding to a PUM recognition element
(PRE) in the 3’UTR of target mRNAs, promoting RNA decay. Recent RNA-seq experiments in
PUM1/2 knockdown conditions have identified hundreds of known and new human PUM targets
through measurement of changes in steady state RNA levels. However, steady-state RNA levels do
not allow for measurement of changes in RNA stability between conditions and do not allow for
the differentiation between the contributions of changes in initial transcription rates and changes
in RNA decay. Here, we identify hundreds of human PUM1/2 targets that have changes in RNA
stability under PUM1/2 knockdown. We separate the contributions of changes in initial transcrip-
tion rate and RNA decay and find that human PUM proteins primarily modulate RNA abundance
through changing RNA decay. In addition, we find that the sequence preferences of all possible
8mers are largely similar between PUM1 and PUM2 through the use of high throughput in vitro
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RNA binding assays, suggesting that PUM1 and PUM2 recognize similar targets. We identify an
ideal PRE “rulebook” by finding key features around PREs, including local AU content, location of
a PRE within a 3’UTR, clustering of PREs, and number of miRNA sites near a PRE, that help dif-
ferentiate functional PREs from non-functional ones as measured by our decay dataset. Consistent
with previously identified functional roles of mammalian PUMs, we find that human PUM1 and
PUM2 modulate the decay of genes related to signaling cascades and neuronal function. Finally,
we use conditional random forest models to predict functional regulation of RNA targets by the
human PUM proteins and find that, although we are able to predict changes in steady state RNA
levels with accuracy, there is still substantial room for improvement in predicting PUM-mediated
gene regulation.

5.3 Introduction

The control of gene expression at the post-transcriptional level is critical for diverse biological
processes including the proper organismal development in eukaryotes. Diverse regulators act to
control the mRNA stability of transcripts through the recognition of key sequence elements in the
3’UTR of target transcripts [123, 357] and a large fraction of the human RNA binding proteins
(RBPs) surveyed thus far bind to mRNAs [126]. The PUF (Pumilio and FBF [fem-3 binding fac-
tor]) family of proteins are a set of RNA binding proteins (RBPs) with a similar C-terminal high ho-
mology domain (PUM-HD) that results in sequence-specific binding in target RNAs. The founding
member of the family, Drosophila Pum, together with the Nos protein, is needed for correct body
patterning in the developing fly embryo [127, 358]. Patterning is accomplished by location-specific
repression of the hunchback mRNA through sequence-specific recognition of a nanos response ele-
ment (NRE) in the 3’UTR [128]. In humans, there are two members of the PUF family, PUM1 and
PUM2, which share 75% overall sequence identity and 91% sequence identity in the PUM-HD.
In addition, human PUM1 and PUM2 share the 78% and 79% sequence identity in the PUM-HD
to DmPum, respectively [359]. Human PUM1 and PUM2 are expressed across tissues and their
expression is highly overlapping [359] suggesting that they likely act redundantly in human cells.
Functionally, mammalian PUM proteins have been implicated in spermatogenesis [360, 361], neu-
ronal development and function[362–367], immune function [368, 369], and cancer [370–373]. In
humans, PUM1 missense and deletion mutants lead to Adult-onset Ataxia (Pumilio1-related cere-
bellar ataxia, [PRCA]) and loss of one copy leads to developmental delay and seizures (Pumilio1-
associated developmental disability, ataxia, and seizure; [PADDAS]) [374]. Structurally, the hu-
man PUM-HD consists of 8 helical repeats containing specific amino acids that both intercalate
and form Watson-Crick base pairs with target RNA, resulting in exquisite specificity for a UGUA-
NAUA consensus sequence motif or Pum Recognition Element (PRE) [132, 375]. Recognition by
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the PUM-HD is modular and specificity for a given base can be changed through mutation of a
set of three key amino acids in a single repeat [132, 376]. Furthermore, sequence specificity by
PUM-HD across species can be predicted from the identity of these three key amino acids across
the helical repeats in any given PUM-HD [377]. High-throughput measurements of PUM1 and
PUM2 binding sites in vivo have confirmed this high specificity for a PRE and have identified a
diverse set of PUM targets in human cell lines, including those involved in regulating neuronal
function and signaling cascades [135, 292, 378, 379]. Thus, sequence-specific recognition of the
PRE is a key aspect of target recognition for the PUM proteins.

Targeted experiments have indicated that human PUM1 and PUM2 are able to repress expres-
sion of a luciferase reporter through recognition of PREs in the reporter gene’s 3’UTR, likely
through recruitment of the CCR4-NOT complex and subsequent degradation of the mRNA [131].
Additionally, similar targeted assays have shown that repression by the human PUM2 PUM-HD
alone requires the polyA binding protein PABPC1 [380]. However, PUM-mediated repression is
not the only type of gene regulation by human Pumilio proteins. Recently, expression of a key
regulator of hematopoietic stem cell differentiation FOXP1 was shown to be activated by human
PUM1/2 binding to the 3’UTR [372]. Furthermore, measurements of changes in global steady-
state RNA abundance between wild-type (WT) and PUM1/2 knockdown conditions have identi-
fied hundreds of RNAs that either increase or decrease in abundance upon PUM1/2 knockdown.
Targeted experiments have confirmed activation of key targets by human PUMs through the use of
a reporter gene-target 3’UTR fusion construct [134].

Key questions about PUM-mediated gene regulation remain. There are on the order of 10,000
PRE sites across the full set of annotated human 3’UTRs, but only roughly 1000 genes change in
steady state RNA levels under PUM1/2 knockdown [134]. Additionally, models using a simple
count of PREs in the 3’UTR of a transcript do not completely capture the complexity of PUM-
mediated gene regulation [134]. The identification of additional sequence features that discrim-
inate functional PREs from apparently non-functional PREs will improve the understanding of
PUM-mediated gene regulation. Furthermore, as the measurement of steady-state RNA levels do
not allow for differentiation between the individual contributions of initial transcription rates and
RNA decay, we instead set out to measure changes in RNA stability under PUM1/2 knockdown
conditions. This has allowed us to determine RNA targets that display PUM-mediated changes
specifically in RNA decay and facilitated our understanding of functional PRE sites. Through the
use high-throughput sequencing methodologies, we demonstrate the human PUM1/2 modulate the
RNA abundance of mRNA targets primarily through controlling mRNA decay and not initial tran-
scription rates. We demonstrate, through high-throughput in vitro binding assays, that PUM1 and
PUM2 RBDs have highly similar preferences for the same sets of sequences. We find that PUM1/2
control the mRNA decay of transcripts involved in signaling pathways, neuronal development, and
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transcriptional control. In addition, we identify a key set of contextual features around PREs that
help predict PUM-mediated regulation including proximity to the 3’end of a transcript and the AU
content around PRE sites. Taken together, our study illuminates key contributors to determining
functional PRE sites and represents a rich resource for interrogating the control of mRNA decay
by the PUM RBPs.

5.4 Results

5.4.1 Metabolic labeling with BruSeq reveals Pum-mediated effects on mRNA
stability

In order to measure the effect of the human PUM1 and PUM2 proteins on mRNA stability at
a transcriptome-wide scale, we employed the Bru-Seq and BruChase-Seq methodology [308]. In
brief, Bru-Seq involves the metabolic labeling of RNA using 5-bromouridine (BrU), which is read-
ily taken up by the cells and incorporated into the nascent NTP pool [297]. After incubation with
BrU over a short time period, newly synthesized and labeled RNAs are selectively pulled out of
isolated total RNA using an anti-BrdU antibody and sequenced. Labeled RNA abundance is then
tracked over time by continuing to grow the cells in the absence of BrU and isolating BrU labeled
RNA at additional time points. For this study, two time points were chosen: (1) a zero hour time
point taken at the transition to unlabeled media after 30 minutes of incubation in BrU-containing
media and (2) at six hours, a time point chosen to coincide with the average mRNA half-life in
cultured mammalian cells [282, 321, 322]. The experiment was performed in the presence of a
mix of siRNAs targeting both PUM1 and PUM2 mRNAs (siPUM) or in the presence of scrambled
non-targeting control siRNAs (NTC) (Figure 5.1A). It is important to note that the use of two time
points does not allow for determination of full decay rate constants for each transcript, but it does
allow for measurements of relative changes in mRNA stability between the two conditions [268].

In Figure 5.1B the read coverage for cyclin G2 (CCNG2), a cyclin-dependent kinase involved
in the cell cycle, is shown at the 0 hr and 6 hr time points for the NTC (blue) and siPUM conditions
(orange). At the 0 hr time point, read coverage resulting from initial transcription for four distinct
replicates in each condition can be seen (Read coverage includes immature RNAs that still con-
tain introns) (Figure 5.1B top). At the six hour time point, only mature RNA remains, with read
coverage primarily observed at exons and no longer prevalent in the intronic regions (Figure 5.1B
bottom). Here, silencing of both PUM1 and PUM2 clearly increases RNA abundance relative to
the non-targeting control at the 6 hr time point, but does not appear to impact initial transcription
as seen at the 0 hr time point.

To quantify the effect of silencing PUM1 and PUM2 on changes in relative labeled RNA abun-
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dance between the 0 and 6 hour time points, we used DEseq2 [340] to model the count of reads
observed from each gene using a generalized linear model that considers the effects of time, con-
dition, and the interaction between time and condition (see Methods for details). We interpret the
term associated with the interaction between condition and time to be the PUM-mediated effect
on stability – where a positive value indicates that an RNA was stabilized in the PUM knockdown
condition and a negative value indicates that an RNA was de-stabilized in the PUM knockdown
condition. Likewise, we interpret the condition term as the PUM-mediated effect on initial tran-
scription rates. Figure 5.1C displays an overview of PUM-mediated effects on stability as a vol-
cano plot, with 12,165 genes represented in a two-dimensional histogram. A selection of both
previously-identified [134, 378] and newly discovered PUM activated and PUM repressed genes
are represented as individual points with shape and color indicating whether a PRE, as defined by
a match to the PUM1 position weight matrix (PWM) described below, was found in any annotated
3’UTR for that gene. Using an FDR-corrected p-value threshold of 0.05 and a fold-change cutoff
of 1.75 we found 44 genes were statistically significantly de-stabilized (56 with no fold-change
cutoff) and 200 genes were statistically significantly stabilized in the PUM knockdown condition
(252 with no fold-change cutoff). Of these genes, 30 were also identified as having lower abun-
dance under PUM knockdown in the Bohn et al. [134] RNA-seq data set (37 with no fold-change
cutoff). Likewise, 95 were also identified as having higher abundance under PUM knockdown in
the Bohn et al. [134] RNA-seq data set (106 with no fold-change cutoff). As expected, in our data
both PUM1 and PUM2 were destabilized in the PUM knockdown condition relative to the WT
condition. Additionally, we found that genes with a PRE in their 3’UTR were, on average, more
stabilized in the PUM knockdown condition than those without a PRE in their 3’UTR (Figure 5.1C
bottom).

Using our statistical methodology, we separated the impact of silencing PUM on stability from
its impact on initial transcription rates. For each term, we tested for statistically significant changes
under a null model centered around 0. In addition, we tested for a statistically significant lack of
change by considering a null model centered around the boundary of a defined region of practical
equivalence spanning from �log2(1.75) to log2(1.75)(see Methods for details); such a test is im-
portant because failure to reject the null hypothesis cannot, by itself, be taken as evidence favoring
the alternative. In total, four statistical tests were run for each gene: a test for change and a test for
no change for both transcription and stability. For each axis, the smaller of the two FDR-corrected
p-values (i.e. test for change vs. test for no change) was chosen as the coordinate for that term,
which enabled classification of each gene into one of four quadrants: 1. Genes that change in both
stability and transcription (Figure5.1D, upper right quadrant), 2. genes that change only in stability
(Figure5.1D, lower right quadrant), 3. genes that change only in transcription (Figure 5.1D, upper
left quadrant) and 4. genes that change in neither (Figure 5.1D, lower left quadrant). Thus, using
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this methodology, we identified 213 genes with a statistically significant change in stability (Fig-
ure5.1D lower right quadrant). We were also able to identify a set of 2,834 genes with evidence
for no change in stability under our experimental conditions (Figure5.1D lower left quadrant). Ad-
ditionally, we show only one gene, ETV1, with a statistically significant change in transcription
and 11,527 genes with statistically significant lack of change in transcription. Taken together and
consistent with the Pumilio proteins’ role in post-transcriptional regulation, these results suggest
that PUMs primarily regulate gene expression at the level of RNA decay and not transcriptional
initiation. Furthermore, this analysis allows us to divide the genes into those in which Pumilio
knockdown has an EFFECT on RNA stability and those in which there is evidence for NOEF-
FECT on RNA stability, a stronger statement than simply failing to reject the null hypothesis that
a change was occurring. The words EFFECT and NOEFFECT will be used to refer to these gene
classes throughout the rest of the paper.
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Figure 5.1 (previous page): BruSeq allows for determination of Pum-mediated effects on RNA stability. A) Experi-
mental design for measuring Pum-mediated effects on RNA stability. HEK293 cells were incubated for 30 minutes in
the presence of BrU prior to time 0. Cells were then washed and cultured in media containing unlabeled uridine for
six hours. At times 0 and 6 hours, a portion of cells were harvested and BrU labeled RNA was isolated for sequencing.
Changes in relative RNA abundance between the 0 and 6 hour time points were compared between cells grown in
the presence of silencing RNA targeting PUM1 and PUM2 (siPUM) and a non-targeting control siRNA (NTC). B)
Read coverage traces for CCNG2 as measured in reads per million (RPM). Traces are shown for siPUM (orange) and
NTC (blue) conditions at both 0H (top) and 6H (inverted bottom) time points. Four replicates for each combination of
siRNA and time point are overlaid. Known isoforms for CCNG2 are represented above. C) (Top) Volcano hexbin plot
displaying global changes in RNA stability under Pum knockdown conditions. Stability in Pum knockdown is repre-
sented by a normalized interaction term between time and condition (see methods for details). No change in stability
is represented with a dotted line at 0. Statistical significance at an FDR corrected p-value < 0.05 is represented with
a horizontal dashed line. A combination of genes known to be regulated by Pum and genes newly identified in this
study are labeled. Red triangles indicate genes that have a PRE in any annotated 3’UTR as determined by a match
to the Pum1 motif we identified using SEQRS (Figure5.2A). Gray squares indicate genes that did not have a PRE in
their 3’ UTR. Unlabeled genes are binned into a two-dimensional histogram to avoid overplotting. (Bottom) Marginal
distribution of Stability in Pum knockdown for genes with a PRE in their 3’UTR (red) and genes without a PRE in
their 3’UTR (gray). Median values for each distribution are plotted as a dashed line in the appropriate color. The
star indicates a statistically significant difference in the median stability as measured by a two-sided permutation of
shuffled labels (n =1000, p < 0.001). D) Analysis of changes in transcription vs. changes in stability. Four separate
statistical tests were calculated for each gene: 1. a test for statistically significant changes in RNA stability (� Stability
6= 0), 2. a test for statistically significant changes in transcription (� Txn 6= 0), 3. a test for no change in RNA stability
(� Stability = 0), and 4. a test for no change in transcription (� Txn = 0). Genes are plotted as an (x,y)-coordinate
where each coordinate represents the ± log10(FDR corrected p-value) of the test with greater evidence (� 6= 0, +log10;
or � = 0, -log10) for each axis (see methods for details). Representative genes displaying a range of stability effects
are labeled. Red squares represent genes that were destabilized in Pum knockdown, whereas red triangles represent
genes that were stabilized in Pum knockdown. All other genes were binned into a two dimensional histogram. Gray
rectangles represented a statistical significance cutoff of q-value > 0.05. (Left and Below) Marginal histograms for
each axis are plotted with matching gray rectangles to represent the same statistical significance cutoff of q-value >
0.05.

5.4.2 SEQRS shows conserved preference for canonical UGUANAUA PRE
by Pumilio proteins

To determine the binding specificity of the human PUM1 and human PUM2 proteins, we applied
in vitro selection and high-throughput sequencing of RNA and sequence specificity landscapes
(SEQRS) to purified RBDs of each protein [381]. Similar to systematic evolution of ligands by
exponential enrichment (SELEX) [382], SEQRS allows for the determination of an RNA binding
protein’s sequence specificity by selecting for RNAs that interact with the RBP out of a pool of ran-
dom 20mers generated by T7 transcription of a synthesized DNA library. The RNA pulled-down
from a previous round is reverse-transcribed into DNA to be used as the input for the next round
of transcription and selection, allowing for exponential enrichment of preferred sequences for any
RBP of interest. We applied five rounds of SEQRS to the PUM1 and PUM2 RBDs separately and
quantified the abundance for each of the 65536 possible 8mers in the sequencing libraries for each
round (including 8mers that would overlap with at least one base with the adjacent static adapter
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sequences see Methods for details). To obtain representative PWMs for each round of selection
(Figure 5.2A,B (top)), we used the top enriched 8mer, UGUAAAUA, as a seed sequence to create
a multinomial model from the abundance of every possible single mismatched 8mer to the seed se-
quence (see methods for details). This data analysis approach has yielded similar results to that of
expectation-maximization algorithms such as MEME [383] and has been used successfully with
SELEX experiments using DNA binding proteins [384, 385]. We also apply this same analysis
pipeline to previously published SEQRS analysis of the D. Melanogaster Pumilio RBD [381] and
find that it readily captures the D. mel Pum sequence preference for the canonical UGUANAUA
PRE (Figure 5.2D (top)). When considering the enrichment of all 8mers relative to sequencing of
the input pool, we see that 8mers within 1-2 mismatches of the UGUAAAUA seed sequence are
highly enriched compared 8mers with more than 2 mismatches (Figure 5.2A,B,D (bottom)). How-
ever, variation in enrichment scores with higher numbers of mismatches suggests that sequences
matching the canonical UGUAAAUA may not fully explain PUM binding specificity. Addition-
ally, our SEQRS experiment suggests that the PUM2 RBD has much weaker enrichment for the
canonical PUM PRE compared to PUM2 which is inconsistent with PUM2 sequence preferences
obtained from in vivo transcriptome-wide experiments [135, 292]. This may indicate differences
between in vitro and in vivo conditions that specifically impact PUM2 or may indicate that PUM2
RBD does not bind as efficiently to RNA as the full-length protein. Figure 5.2E shows a com-
parison of enrichment scores for all possible 8mers between PUM1 and PUM2 and indicates that
PUM1 and PUM2 RBDs have overall similar and highly correlated enrichments for all 8mers,
with PUM1 RBD having overall higher enrichment than PUM2. Unless otherwise indicated, the
SEQRS round 5 PWM for PUM1 will be used to determine PREs throughout the text.

5.4.3 Features associated with PREs explain variability in Pum-mediated
RNA stability

Determining what defines a functional binding site from a non-functional binding site as well as
factors that control the magnitude of the regulation effect are a major questions for any RBP. Taken
as a whole, RBPs tend to bind similar low sequence complexity motifs in vitro [386]. Additionally,
probing of RBP binding in vivo at a transcriptome-wide scale, has indicated that the majority of
predicted binding sites are not bound for some RBPs [387]. Targeted experiments with the Pumilio-
family of proteins have established that mammalian Pumilio proteins recognize the UGUANAUA
PRE in the 3’UTR of target genes [131, 135, 292, 365].

To determine sequence motifs de novo that have explanatory power for our RNA stability
dataset, we used FIRE [388] to find motifs in the 3’UTR of transcripts that share high mutual
information with our RNA stability dataset by taking the normalized interaction term (see methods
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Figure 5.2: SEQRS analysis of Human Pum1 and Pum2 RBDs reveals preference for canonical the Pum Recognition
Element. A) (Top) Position weight matrices representing 8mer sequence preferences for purified Human Pum1 RBD,
as determined for each SEQRS round. (Bottom) 8mer enrichment, as measured by log2(Enrichment SEQRS round/
Enrichment no protein) (see methods for details) for each 8mer as binned by hamming distance from the canonical
TGTAAATA Pum recognition element. Enrichment scores for 8mers within 2 mismatches are filled in red. B) Same as
in A, but for Human Pum2 RBD. C) Closer view of Human Pum2 RBD PWMs. D) Same as in A, but for Drosophila
Pum RBD. E) Correlation of 8mer enrichment between Human Pum1 and Human Pum2 RBDs. Enrichment for all
possible 8mers are displayed in a two dimensional histogram.
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for details) and discretizing it into ten bins, with an equal number of genes in each bin. Figure
5.3A shows that FIRE rediscovers the canonical UGUANAUA PRE using only the RNA stability
data as input. Furthermore, the UGUANAUA PRE is enriched in transcripts that are highly stabi-
lized under PUM knockdown conditions, suggesting that these transcripts are regulated by PUM
through recognition of a UGUANAUA PRE in the 3’UTR of the transcript. However, this analysis
does not provide direct evidence for PUM binding in vivo at PREs associated with transcripts.

To determine whether there was evidence for PUM binding at PREs associated with a change
in RNA stability, we used publicly available PAR-CLIP data for human PUM2 [292] to determine
the amount of read coverage at PREs associated with transcripts that have a statistically significant
change in RNA stability under PUM knockdown (EFFECT class, Figure5.1D) and compared it
to transcripts with a statistically significant lack of change in RNA stability (NOEFFECT class,
Figure5.1D). In Figure 5.3B, we report the average read coverage in a 40 bp window around PREs
in the 3’UTR of transcripts associated with the EFFECT and NOEFFECT classes. We use a 5%
truncated mean to remove the impact of extreme outliers on the average coverage reported. To es-
timate a 95% confidence interval on the average coverage (shaded region), we performed bootstrap
replicates (n = 1,000) by sampling vectors of read coverage for individual PREs with replacement.
Here, we clearly see that PREs in transcripts with a change in RNA stability have higher read
coverage than those with no change in RNA stability. This is consistent with higher overall PUM
binding at PREs associated with changes in RNA stability but, as the PAR-CLIP signal is not nor-
malized to RNA abundance, the possibility that these transcripts were simply more abundant under
the PAR-CLIP conditions cannot be definitively ruled out.

We have shown that a PRE in the 3’UTR is associated with a change in RNA stability under
PUM knockdown and that PREs in transcripts with a change in RNA stability have more evidence
for being bound by PUM in vivo. However, knowledge of the presence or absence of a PRE in the
3’UTR alone is not sufficient to predict the magnitude of PUM-mediated repression and a wide
variation in the effect of knocking down human PUM1 and PUM2 on steady-state RNA levels
has been observed in previous transcriptome-wide analysis [134]. Here, we demonstrate that a
similar level of variation can be seen in measurements of RNA stability. Figure 5.3C, displays
the overall distribution of RNA stability measurements for transcripts with increasing numbers of
PREs in annotated 3’UTRs. An increase in the number of PREs is associated with an increase
in RNA stability on average under PUM knockdown conditions compared to transcripts that do
not have a PRE in their 3’UTR. However, wide variations in RNA stability can be seen for each
category consistent with previous measurements of changes in steady state RNA levels under PUM
knockdown [134]. Thus, we considered additional contextual features around PREs that could help
to better explain the large variance in RNA stability we observe.

To explore the local sequence context around PREs, we trained a 3rd order Markov model on
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the full set of unique annotated hg19 3’UTRs that were greater than 3 basepairs long (29,380 3’
UTRs). Using this Markov model, we simulated 29,380 3’UTRs that were the same length and
shared similar sequence composition to the empirical set of true 3’UTRs. We then searched for
matching PREs in the simulated set of 3’UTRs and calculated the AU content in a 100 bp window
around these PREs. On average, we discovered 11264.18 matching PREs (standard deviation of
106.167) in simulated sets of 3’UTRs compared to the 12582 matching PREs in the emprical set
of 3’UTRs. Figure 5.3D displays the local AU content for PREs found in 1000 simulated sets of
29,380 3’UTRs (gray), as compared to the empirical distribution of local AU content for PREs
found in the actual set of human 3’UTRs (red). The dotted line represents the average AU content
over all 3’UTRs. Here, the true set of PREs have higher local AU content than one would expect
from chance, as represented by the Markov models (p-value < 0.001). In the Markov models, the
local AU content for PREs is centered around the average AU content for all 3’ UTRs, as would
be expected if there was no selective pressure for PREs to occur in AU rich areas of 3’UTRs. This
analysis is consistent with Jiang et al. [136] who also observed a preference for PREs to occur in
AU rich areas as compared to shuffled PREs with preserved overall sequence content.

Furthermore, we observe that transcripts with PREs that have higher local AU content also have
a larger measured change in RNA stability. Figure 5.3E displays a two-dimensional histogram of
highest local AU content in 100 bp surrounding a PRE in a gene’s 3’ UTR and the RNA stability
measurement associated with the transcript for that PRE. The y axis marginal kernel density plot
displays the distribution of RNA stability for transcripts with no PRE in their 3’UTR. PREs with
local AU content above the average AU content for all 3’ UTRs (dotted line) appear to have a
larger effect than those with lower local AU content. Additionally, PREs in transcripts that had a
statistically significant stability effect in PUM knockdown had higher local AU content compared
to PREs in transcripts with no change in stability (p < 0.001, Figure 5.3E bottom).

Using the Markov models described above, we also looked at the location of PREs within
3’UTRs. In Figure 5.3F, we observe that the empirical distribution of true PRE locations in length-
normalized 3’UTRs appear enriched towards the 3’ end of 3’UTRs (red) as compared to PREs
found within 1000 simulated sets of 3’UTRs (gray). Again, this suggests a selective pressure
for PRE sites to exist at the 3’ end of 3’UTRs as compared to the uniform distribution of PREs
found in simulated 3’UTRs with similar sequence properties. Like the AU content analysis, this
analysis is also consistent with observations made by Jiang et al. [136] who saw an enrichment
towards the 3’ end for PRE locations in the full set of human 3’UTRs compared to a shuffled PRE
motif with preserved overall sequence content. While these approaches are complementary, our
approach allows for the exact identity of the PRE to remain intact thereby maintaining a PRE-
centric assessment rather than one based solely on the general sequence content within the motif.
Additionally, we observe that transcripts with a PRE towards the 3’ end of the 3’UTR tend to have
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a larger RNA stability effect (Figure 5.3G center) and PREs in transcripts that had a statistically
significant change in stability in PUM knockdown were, on average, closer to the 3’ end of the
3’UTR than those with no change in RNA stability (p < 0.001, Figure 5.3G bottom).

In Figure 5.3H, we discretized transcripts according to how many full PREs were clustered
within a 100 bp window within the 3’ UTR of that transcript. Similar to the association with the
number of PREs (Figure 5.3), we find that having more PREs clustered together is associated, on
average, with a higher stabilization effect under PUM knockdown conditions. We also find that
PREs tend to cluster together more than one would expect by chance by determining the divergence
from a simple Poisson model (Figure 5.3I, p < 0.001 for clusters 2-5; see Methods for details).
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Figure 5.3 (previous page): Features associated with a Pum Recognition Element explain some variability in Pum-
mediated effect on decay. A) Results of motif inference using FIRE [388] on RNA stability data discretized into 10
equally populated bins. B) 5% Truncated average of Pum2 PAR-CLIP read coverage [292] over each PRE site in
the 3’UTRs of genes with a statistically significant change in RNA stability (blue) compared to genes in which there
was a statistically significant lack of change in stability (orange; see methods for details on no effect test). Shaded
regions represent 1,000 bootstrap replicates within each group. Dashed lines indicate the PRE site. C) Violin plots
representing the distributions of RNA stability for genes with 0 to 15 PRE sites within their 3’UTR. Stars represent
statistical significance as measured by a Wilcoxon rank sum test using the 0 PRE case as the null distribution. D)
Distribution of AU content in a 100 bp window around all unique PRE sites in the 3’ UTRs of the human transcriptome.
The empirical distribution (red) is compared to the distribution of AU content around PRE sites in 1,000 simulated sets
of 3’UTRs the same size as the true set of 3’UTRs as simulated from a third order Markov model trained on the true
3’UTR sequences. The dotted line represents the average overall AU content of the entire set of 3’UTRs in the human
transcriptome. E) Relationship of AU content in a 100 bp window around a PRE to RNA stability. (left) Marginal
kernel density plot of RNA stability for genes with 0 PREs in their 3’UTRs. (right) 2D histogram of RNA stability
and AU content around each PRE site for all genes with at least one PRE in the 3’UTR. Dotted line represents the
average AU content over the entire set of 3’ UTRs in the human transcriptome (bottom). Marginal kernel density plot
of AU content around a PRE site split amongst genes with a statistically significant change in RNA stability (red) and
genes with a statistically significant lack of change in stability (blue). Dotted black line represents the average AU
content (right). Dashed lines represent the median AU content around a PRE for the effect (red) and no effect (blue)
genes. The star represents a statistically significant difference in medians using a one-sided permutation test (n=1,000)
of shuffled class labels. F) Violin plots representing the distributions of RNA stability for genes with 0 to 6 full PRE
sites clustered within a 100 bp window. Stars represent statistical significance as measured by a Wilcoxon rank sum
test using the 0 PRE case as the null distribution. G) Relationship of normalized location of PRE site in 3’ UTR
to RNA stability. Plots as in (D). H) Distribution of length normalized locations of PRE sites in the 3’UTRs of the
human transcriptome. The empirical distribution (red) is compared to that of PRE sites found in 1,000 simulated sets
of 3’UTRs calculated as in (G). I) Comparison of the empirical frequencies of PRE site clustering over all possible
100 bp windows in the full set of human 3’UTRs with at least 1 PRE in them to the probabilities expected from a
poisson null distribution. Error bars represent 95% confidence intervals based on 1,000 bootstraps of the empirical
distribution.

5.4.4 Pumilio proteins modulate the stability of genes involved in neural de-
velopment and regulators of gene regulation

Mammalian Pumilio proteins have been shown to regulate a diverse set of genes, including those
involved in signaling pathways, transcriptional regulation, and neurological functions [134, 361,
365, 366, 378]. Consistent with prior observations, we see changes in RNA stability for genes in-
volved in these functions. For example, multiple epidermal growth factor-like-domains 9 (MEGF9)
is a transmembrane protein that is highly expressed in the central and peripheral nervous system
and its expression appears to be regulated over nervous system development in mice [390]. We
see strong stabilization of the MEGF9 transcript under PUM knockdown conditions (Figure 5.5A
top). Furthermore, of the five PREs we identify in two unique 3’UTRs for MEGF9, we see the
strongest PUM2 binding signal for the 3’-most PRE (Figure 5.5A bottom right). Additionally, we
see that the 3’-most PRE has high local AU content compared to the overall distribution of PRE
sites (Figure 5.5A bottom left). Taken together, these data implicate the PUM proteins as direct
post-transcriptional regulators of MEGF9.
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Figure 5.4: Additional features considered in determining PUM-mediated decay. A) Here the count of predicted
conserved miRNA sites from conserved families that overlapped within 100 bp of a PRE was tallied for each gene.
Stars indicate statistical significance from a Wilcoxon test compared to the 0 overlapping miRNA case. B) Interaction
between codon usage bias as measured by Relative Codon Usage Bias [389] and PUM-mediated effect as measure in
our BruSeq data. C) Interaction between the probability of a given PRE being unpaired in predicted RNA secondary
structure. Only genes with a PRE with > 0 probability of being unpaired where shown in the heatmap. All other genes
are shown in the marginal y-axis density plot. See methods for details of secondary structure prediction.

Another transcript that is strongly stabilized under PUM knockdown conditions is Glycogen
synthase kinase-3 B (GSK3B) (Figure 5.5B top). GSK3B is a serine-threonine kinase that is in-
volved in the regulation of diverse cellular processes and its misregulation is associated with neu-
rological disease [391, 392]. We identify four PREs in GSK3B 3’UTRs (Figure 5.5B below) with
largely similar adjacent AU content (Figure 5.5B bottom left). We also find that the 3’ most dis-
tal PRE has evidence for PUM2 binding consistent with the global trends we describe in Figure
5.3). Like MEGF9, this evidence suggests that PUM proteins are directly involved in destabilizing
GSK3B transcripts.

We also see examples of RNAs that are destabilized when PUM is knocked down, suggesting
that PUM may actually act to stabilize these transcripts under conditions containing WT levels of
PUM expression. Transcription dimerization partner 2 (TFDP2) encodes a protein that cooperates
with E2F transcription factors to regulate genes important for cell cycle progression and dysreg-
ulation of this system can lead to cancer [393]. PUM proteins have been previously shown to
regulate another member of the E2F family by functionally cooperating to enhance the effect of
miRNA-mediated regulation of E2F3 expression [137]. Furthermore, regulation of TFDP2 by the
liver-specific miRNA miR-122 has been shown to be important for preventing up-regulation of c-
Myc in hepatic cells [394]. We observe that TFDP2 is highly destabilized under PUM knockdown
conditions (Figure 5.5C top). Additionally, we find that the TFDP2 3’UTR has a single PRE site
toward the 3’ end of the 3’UTR and has high adjacent AU content (Figure 5.5C bottom and lower
left). However, there is limited evidence for PUM2 binding in PAR-CLIP data (Figure 5.5C lower
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right). One possible mechanism for PUM mediated activation of TFDP2 is by acting to block reg-
ulation by miRNAs; however, the nearest conserved miRNA site of a conserved miRNA family to
the PRE is over 100 bases away [124] and further evidence would be needed to establish this link.

Another example of a highly destabilized transcript under PUM knockdown conditions is the
embryonic lethal abnormal vision 1 (ELAVL1) or HuR RNA binding protein (Figure 5.5D top).
The ELAVL1 RBP stabilizes RNA transcripts by binding to AU-rich elements in the 3’UTR of
transcripts [395] and its dysregulation is associated with several different types of cancer [396].
We did not find any matching sequence to the PRE we have defined from our PUM1 SEQRS
analysis in the 3’UTR of ELAVL1; however we do find two matching PREs using the Hafner et al.
[292] motif from PAR-CLIP analysis of PUM2 (Figure 5.5D bottom). These motifs are spread
evenly across the 3’UTR and have either below average or average local AU enrichment compared
to other sites defined by the Hafner motif (Figure 5.5D lower left). Additionally, there is limited
evidence for binding by PUM2 at either of the PREs in the ELAVL1 3’UTR (Figure 5.5D lower
right). Taken together, this suggests that ELAVL1 may be indirectly regulated by PUM.

To discover categories of genes that are globally associated with RNA stability in PUM knock-
down, we applied iPAGE—a computational tool that uses mutual information to find informative
Gene Ontology (GO) terms associated with discretized gene expression data [155]—to our stability
dataset as represented by the normalized interaction term discretized into 5 equally populated bins.
It is worth noting that this analysis will pick up pathways regulated both indirectly and directly by
PUM out of the full set of annotated GO terms. Figure 5.6A displays the iPAGE results with several
GO terms that are either significantly overrepresented (red-filled box) or underrepresented (blue-
filled box) across the full range of stability data. We see several enriched GO term categories that
are consistent with previous reports of changes in steady-state RNA levels under PUM knockdown
in HEK293 cells [134] including categories related to guanyl-nucleotide exchange factor activity
(GO:0005085), WNT signaling (GO:0030177), nucleosome (GO:0000786) and platelet-derived
growth factor receptor signaling (GO:00048008).

For a finer grain view, we plotted the RNA stability measurement for each gene involved in
selected GO terms as indicated by either blue (destabilized in PUM KD) or red (stabilized in PUM
KD) text for that GO term in Figure 5.6A. In Figure 5.6B, we show two selected GO terms whose
members tend to be de-stabilized upon PUM knockdown: nucleosome (GO:0000786, left) and
myelin sheath (GO:0043209, right). For genes related to the nucleosome, we see a general desta-
bilization under PUM Knockdown conditions. However, when comparing genes within this GO
term that have a PRE in their 3’UTR to those that do not, we see that genes with a PRE in their
3’UTR have a median stability that is significantly higher than those without a PRE in their 3’UTR
(p ¡ 0.001), suggesting that the destabilization of nucleosome genes under PUM knockdown con-
ditions may be mediated indirectly. Some of these effects could be explained by perturbation of
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the stem-loop binding protein (SLBP), as SLBP is a protein involved in the proper maturation of
replication-dependent histone mRNAs [397], and we observe that SLBP is significantly stabilized
under PUM knockdown conditions (Figure 5.1C). Like the nucleosome GO term, we see a general
de-stabilization of genes categorized into the myelin sheath GO term. A role for PUM in control-
ling the stability, either indirectly or directly, of genes involved in the myelin sheath is consistent
with the previously identified role of Mammalian PUMs in neurogenesis and neurodegenerative
diseases [362, 365, 366, 374]. However, we see no evidence for a difference in stability between
genes that have a PRE in their 3’UTR compared to genes that do not have a PRE in their 3’UTR.
Furthermore, the genes that have a statistically significant de-stabilization under PUM knockdown
have no PRE in their 3’UTR, whereas the genes with a significant stabilization do, suggesting a
complex role of PUM in modulating the stability of genes in this GO term, possibly arising mainly
through indirect effects.

In Figure 5.6C, we report specific GO terms associated with genes that were stabilized un-
der PUM knockdown. Each of these GO terms are involved in regulating gene expression. For
instance, guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases to regulate
a diverse suite of cellular functions, including cell-cycle progression, the actin cytoskeleton, and
transcription [398]. We find that genes associated with guanyl-nucleotide exchange factor activity
(GO:0005085) are stabilized under PUM knockdown conditions. Furthermore, genes within this
GO term that have a PRE in their 3’UTR are significantly stabilized compared to those with no
PRE in their 3’UTR, suggesting that PUM directly acts to destabilize the mRNA transcripts of
these genes under normal conditions. We see a similar pattern with genes involved in peptidyl-
serine phosphorylation (GO:0018105), which includes a broad class of kinases, including those
involved in neurological disease and inflammation [392, 399]. This same pattern also holds with
genes involved in transcriptional repressor activity (GO:0001078), which includes proteins in-
volved in regulating hematopoiesis and controlling neurological development [400–402]. Again,
genes in these GO terms with a PRE in their 3’UTR are more stabilized under PUM knockdown
than those with no PRE, suggesting that PUM has a direct role in regulating a subset of genes in
each of these GO terms. Of particular interest is the mild enrichment of CCR4-NOT complex GO
term (GO:0030014) in genes that were stabilized in PUM knockdown (Figure 5.6C far right). Al-
most every gene in this GO term was stabilized under PUM knockdown to some extent. Although
the effect of a PRE site for genes in this category did not meet our threshold for statistical signifi-
cance, several of the genes have a PRE in their 3’UTR and both genes with a statistically significant
change in stability have a PRE in their 3’UTR. Human Pumilio proteins have been shown to in-
teract with the CCR4-NOT complex and recruit the complex to target mRNAs for de-adenylation
[131]. These data suggest that PUM could also be acting to directly inhibit CCR4-NOT expres-
sion and thus globally lower deadenylation rates, perhaps providing a feedback loop that further
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regulates PUM activity.

5.4.5 Conditional random forest models allow for prediction of Pum-mediated
effects from sequence-specific features

A long standing question for any RBP is how to predict that RBPs effect on a given transcript.
Previous models of PUM-mediated regulation were created using nonlinear regression based on
the number of PREs in various locations across the transcript including the 5’UTR, CDS, and
3’UTR [134]. Here, we use a different approach, which allows us to include a larger feature set of
possible predictors for PUM-mediated regulation. Using conditional random forest models [403],
we classified genes into EFFECT and NOEFFECT classes, as determined in Figure 5.1D. We used
four different definitions for a PRE, (Figure 5.7A) including the SEQRS motifs we defined for
PUM1 and PUM2 in Figure 5.2A-B, the PUM2 motif determined from Hafner et al. [292], and
a regular expression UGUA.AU[AU] defined from the PUM consensus sequence which has been
used extensively to define PREs in previous publications [132, 134, 136]. We focused our analysis
on PREs found in the 3’UTRs of target genes. For each definition of a PRE, we calculated several
features based on our analysis in Figure 5.3, including AU content around a PRE, clustering of
PREs, total count of PREs, a score for PRE match to the specific PRE definition, relative location
of the PRE in the 3’UTR, number of miRNA sites near a PRE, and predicted secondary structure
around a PRE. In addition to these features, we included motif matches for additional human RBPs,
in vivo PUM binding data, predictions of secondary structure, and a measure of codon bias for the
CDS of target genes (see Methods for details). As our data is highly unbalanced (199 EFFECT
genes and 2535 NOEFFECT genes, after performing an inner join on all features) we trained 10
different machine learning models where the NOEFFECT class was randomly downsampled to
match the number of EFFECT class genes in each model. Within each downsampled dataset,
5-fold cross validation was performed to assess performance.

To determine which features best help predict EFFECT genes from NOEFFECT genes, we
used an AUC-based permutation variable importance measure [404], which indicates the aver-
age change in the area under the curve (AUC) of a receiver operator characteristic (ROC) plot
across all trees with observations from both classes in the forest when the predictor of interest
is permuted. Typically values of the AUC of a ROC curve span from 0.5 to 1.0 where 1.0 indi-
cates perfect classification performance and 0.5 indicates random guessing of class distinctions.
Since the AUC-based variable importance measure is calculated using the change in AUC when
the predictor is permuted, the expected values are much smaller and fall between 0.0 and 0.06 in
simulated cases with 65 predictors and variable numbers of observations from n=100 to n=1,000
[404]. Higher values indicate a larger drop in performance when that variable is permuted; thus,
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Figure 5.5: Pum-mediated effects on RNA stability under Pum knockdown include stabilization and destabilization. A)
(top) Read coverage traces for MEGF9 as measured in reads per million (RPM). Traces are shown for siPUM (orange)
and NTC (blue) conditions at both 0H (upper track) and 6H (inverted lower track) time points. Four replicates for
each combination of siRNA and time point are overlaid. Known isoforms for MEGF9 are represented above. (Below)
Diagram of unique MEGF9 3’UTRs. Sites matching the PUM1 SEQRS motif are represented as vertical lines and
labeled alphabetically from 3’ to 5’. (Below left) AU content of a 100 bp window around each PRE labeled above in
the overall distribution of surrounding AU content for all PUM1 SEQRS motif matches in the entire set of 3’UTRs.
(Below right) PAR-CLIP read coverage [292] of 40 bp around each indicated PRE. Number of reads with a T!C
mutation are shown in red, whereas the number reads with no T!C mutation are shown in gray. B) As in A), but for
GSK3B. C) As in A), but for TFDP2. D) As in A), but for ELAVL1 and PREs were determined using the Hafner et al.
[292] PUM2 motif as no match was found with the SEQRS PUM1 motif.
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Figure 5.6: Gene ontology terms associated with Pum-mediated changes in RNA stability. A) Results of iPAGE
analysis to find GO terms sharing mutual information with RNA stability discretized into 5 equally populated bins.
Red bins indicate over representation of genes associated with the corresponding GO term. Blue bins indicate under
representation of genes associated with the corresponding GO term. A black box indicates a statistically significant
over or under representation with a p-value < 0.05 using a hypergeometric test [155]. B) Selected GO terms whose
members are over represented in the RNAs that are destabilized under Pum knockdown, as labeled in blue in panel
A. For each GO term, a volcano plot is shown for all genes within the GO term. Volcano plots are shown as two
dimensional histograms for genes below a statistical significance threshold (q-value < 0.05) and as individual points
for genes above the statistical significance threshold. Individual points are blue if a PRE can be found within any
annotated 3’UTR for that gene and red otherwise. The dashed line represents the statistical significance threshold and
the dotted line represents no change in RNA stability under Pum knockdown. Below each volcano plot is a marginal
density plot for the RNA stability split into two categories: Genes with a PRE in any annotated 3’UTR (blue) and
genes with no PRE in any annotated 3’UTR (red). Medians for each distribution are shown as dashed lines in the
appropriate color. The black dotted line represents no change in RNA stability, as in the volcano plot above. A star
represents a statistically significant (p < 0.05) difference in the medians as tested by a two-sided permutation test of
shuffled group labels (n = 1000). C) As in (B), but for selected GO terms whose members are over represented in the
RNAs that are stabilized under Pum knockdown, as labeled in red in panel A.
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the variables can be ranked based on their unique contribution to the model, with higher values
indicating a more important individual contribution. Figure 5.7B displays the top 20 variables
ranked according to their average AUC-based variable performance across all 50 models (10 sets
of downsampled models with 5-fold cross-validation each). Count based metrics enumerating the
total number of PREs within the 3’UTR appear to be the most important variable for predicting
a PUM-mediated effect in the Bru-Seq data. In addition, local AU content and PRE clustering
appear to be substantial contributors to the models. To a lesser extent, the number of miRNA sites
around a PRE, the location of the PRE in the 3’UTR, and the “Bound” status of the 3’UTR also
appear to contribute meaningfully to our models. It is possible that each of these variables contain
largely the same information (i.e., whether or not the 3’UTR has a PRE or not in it). To rule out this
possibility, we created the same models, where we subset the data to only include genes with one
of the four definitions of a PRE within their 3’UTR, thus only using information beyond a simple
binary classification (“contains a PRE or not”). Each of these models also displayed substantial
contributions for AU content, clustering, and total count in predicting PUM-mediated regulation,
as measured by Bru-Seq (Figure 5.8A-D left panel). It is also noteworthy that the variable that
contributes most meaningfully to our models is a simple count of the regular expression definition
of a PRE, and not the more information-rich PWM definitions.

The high similarity in appearance between each of the definitions of a PRE we include here
led us to explore how much redundant information is contained between each of the top 20 highest
contributing features. To measure redundancy, we use an information theoretic definition based on
discretization of each feature (see Methods for details). In Figure 5.7C, we display the redundancy
between the top 20 features as a hierarchically clustered heatmap, where a value of 1.0 indicates
that the features contain exactly the same information and a value of 0.0 indicates that the features
share no information. Here, we can see that features that are defined around the same motif defi-
nition or feature-type tend to share information (as expected). However, despite their similarity in
appearance, there are some differences in information content between the different motif defini-
tions and different feature types, indicating that there is knowledge to be gained outside of a simple
PRE count.

To assess the performance of our conditional random forest models we, considered several
typical machine learning metrics including summary metrics (Accuracy, F1 measure, Matthews
correlation coefficient [MCC], Area Under the Curve of a Precision-Recall Curve [AUC PRC],
and AUC ROC), and metrics more focused on performance for positive or negative cases (Nega-
tive Predictive Value [NPV], Precision, Recall, Specificity). We considered each of these metrics
for all 50 models (10 downsampled datasets with 5-fold cross-validation each) at a classification
probability cutoff of 0.5. The full range of values obtained are displayed in Figure 5.7D. It is ev-
ident that the models are robust to both downsampling and cross validation and the performance
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hovers around 0.75 for each metric (and 0.5 for MCC), indicating balanced performance in predict-
ing both positive and negative classes. These results are robust even in the case where we only use
one PRE definition and only consider genes that contain a PRE in their 3’UTR (Figure 5.8A-D).

We also tested the performance of these models on the Bohn et al. [134] RNAseq dataset that
was not used to train the models. We first trained 10 different conditional random forest models
on randomly downsampled subsets of our BruSeq data to balance the EFFECT and NOEFFECT
classes. Using these 10 models, we then tested the performance on the Bohn et al. [134] steady
state RNA dataset and measured the performance as shown in Figure 5.7E. Here, the performance
on the trained Bru-Seq data is reported as the five-fold cross-validation performance for each of the
10 downsampled models. As expected, the performance drops on the new dataset, particularly in
its ability to correctly classify EFFECT genes. However, a single probability cutoff (here chosen
to be 0.5) for classification does not show the full performance of these models. To observe the
overall performance of the models, we display precision-recall curves on both the Bru-Seq data
on which the model was trained and the RNA-seq data for each of the 10 different models (Figure
5.7F). Here, the baseline is defined separately for each dataset as the overall class balance between
the positive and negative class. A perfect model tends toward the upper right of the graph, and
a poor model follows the dotted baseline for that dataset. Despite the differences in technique
and biological implications between RNA-seq and Bru-Seq in determining PUM-mediated gene
regulation, we find that the models trained on Bru-Seq are able to perform adequately well in
predicting PUM-mediated regulation in RNA-seq data. We see similar performance when consid-
ering a single definition for a PRE and only considering genes that have a least one PRE in their
3’UTR (Figure 5.8A-D). However, there is still substantial room for improvement in predicting
PUM-mediated gene regulation and the features we have included here are not sufficient to fully
describe PUM-mediated gene regulation in human cells.
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Figure 5.7 (previous page): Predicting Pum-mediated effect on decay using both sequence-based and experimental
features. A) Motifs used to calculate features for machine learning. Shapes indicate the type of feature calculated,
whereas colors indicate the motif used to calculate those features. Shapes filled in with the appropriate color are
used to label features throughout the rest of the figure. B) Variable importance plot displaying the top twenty most
important features, as determined by training a conditional random forest classifier on Pum decay data (see methods for
details). Violin plots represent density from ten separate downsamplings of the majority class, each with five fold cross-
validation. An AUC based variable importance measure is used as described in Janitza et al. [404]. C) Calculation of
the redundancy in information between the top twenty most important variables, as determined in A. Redundancy is
calculated in the information-theoretic sense (see Methods for details) where 1 is completely redundant information
and 0 is no redundancy in information between the two variables. D) Cross-validation of conditional random forest
classifier performance. Each boxplot represents a separate downsample of the majority, no pum-mediated effect class.
Values for each boxplot represent the performance metric as calculated for each of five folds using a classification
cutoff of 0.5. E) Performance of conditional random forest models on the steady state RNA data-set from [134]. Blue
boxplots represent values from seperate downsamplings of the majority, no pum-mediated effect class used to train
the model on the BruSeq data set. Red boxplots indicate values from testing each model on the Bohn et al. [134]
steady-state RNA-seq data set. Metrics were calculated using a classification cutoff of 0.5. F) Precision Recall curves
using the models in E. Each line represents one of ten conditional random forest models trained on separate down
sampled sets of the entire BruSeq data set and tested on the steady state RNA data set.
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Figure 5.8 (previous page): Predicting Pum-mediated effecf subset by motif. A) Conditional random forest models for
the datasets considering only genes that had at least one match to the regex in a 3’UTR. PRE features only consider
those around the regex. Panels are as in Figure 5.7B, D, and F. B) As in A), but for the Hafner et al. [292] PUM2
motif. C) As in A), but for the SEQRS PUM1 motif. D) As in A), but for the SEQRS PUM2 motif.

5.5 Discussion

Through the combination of our high-throughput probing of RNA decay and the mining of se-
quence information in the 3’UTRs of human transcripts, we were able to establish several general
rules of PUM-mediated gene regulation in human embyronic stem cells.

5.5.1 Human PUM proteins control gene expression at the RNA level through
mediating RNA stability

Previous studies have established that both PUM1 and PUM2 mediate the RNA stability of tran-
scripts through recognition of a UGUANAUA PRE [131]. Transcriptome-wide measurements in
PUM1 and PUM2 knockdown conditions have shown that hundreds of RNAs change in abundance,
as measured using RNA-seq [134]. However, measurements of RNA abundance using RNA-seq
only allow for determination of changes in steady-state RNA abundances and do not allow one to
differentiate effects from changes in RNA stability versus changes in transcription rates. Through
the use of metabolic labeling, we are able to differentiate between the effects of knocking down
both PUM1 and PUM2 on initial transcription from the effects on RNA stability [308]. Our re-
sults indicate that perturbing the expression of human PUM1 and PUM2 has a widespread effect
on the mRNA stability of many transcripts in HEK293 cells, but does not appear to perturb ini-
tial transcription rates in any meaningful way, as measured by our system. Rather than determine
full decay rate constants for each transcript, which would have required the use of additional time
points throughout the chase period of our experiment, we chose to determine relative changes in
RNA stability using just two time points. The measurements obtained from these experiments
cannot be interpreted on an absolute scale, but the rank order of stability measurements within
the experiment is preserved, allowing us to determine the relative effects of PUM knockdown be-
tween any two genes [268]. Consistent with the changes in steady-state RNA levels determined
under PUM knockdown conditions, we see transcripts that are both destabilized and stabilized.
As expected, the number of genes that are stabilized under PUM knockdown is much higher than
the number of genes that were destabilized, which is consistent with PUMs role in reducing the
expression levels of target genes likely through the recruitment of the CCR4-NOT complex and
subsequent destabilization of the transcript [131].
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5.5.2 Rules for PUM-mediated activation are only partially clear

In contrast with the clear and robust effects of PUM on PUM-repressed transcripts, the mechanism
for the rarer case of PUM-mediated stabilization remains unclear. Measurements using lumines-
cent reporter assays have shown activation of a subset of predicted PUM-activated transcripts that
is dependent on the presence of a PRE in the 3’UTR of the reporter [134]. Furthermore, direct
binding of PUM1 or PUM2 to PREs present in the FOXP1 3’UTR has been reported to promote
expression of the FOXP1 protein, an important regulator of the cell cycle in hematopoietic stem
cells [372]. Conversely, when considering PAR-CLIP measurements of PUM2 occupancy at PREs
for only the transcripts that were destabilized under PUM knockdown, we find inconclusive evi-
dence for binding in targeted examples (Figure5.5C,D), and when considering the group as a whole
separately from the stabilized transcripts (data not shown), mostly due to the low number of bind-
ing sites that can be considered. Furthermore, attempts to classify transcripts that were stabilized
in PUM knockdown from those that were destabilized using random forest models with identical
feature sets to those used in Figure 5.7 showed poor performance, possibly due to the small num-
ber of examples for transcripts that were destabilized under PUM knockdown. There is also the
possibility that the destabilization of the transcripts under PUM knockdown are indirect effects
mediated through another factor that PUM is directly regulating. We see at least one example of
this in our data with the SLBP protein which is needed for the maturation of replication-dependent
histones [397]. It is likely that SLBP is an example of a transcript directly regulated by PUM with
a PRE in it’s 3’UTR and SLBPs significant stabilization under PUM knockdown conditions. In
addition, we observe that the set of genes in the nucleosome GO term are enriched in the set of
genes that were destabilized under PUM knockdown. Taken together, this evidence suggests that
PUM could be stabilizing these transcripts indirectly through the destabilization of the SLBP tran-
script and perturbation of SLBP-dependent processing of histone transcripts. Similar mechanisms
may explain a substantial fraction of other “PUM-activated” targets, although direct stabilization
by PUM in a subset of cases is also possible.

5.5.3 PUM1 and PUM2 have shared sequence preferences

The sequence preferences for both the full length PUM1 and PUM2 have been previously probed
in vivo [135, 292, 379, 405] and the sequence preferences for the RNA binding domains of both
PUM1 and PUM2 were probed in vitro [406, 407]. Each of these approaches and methodologies
agree on a general preference for the UGUANAUA consensus motif for both PUM1 and PUM2,
with subtle differences in the information content for the PWMs obtained from each technique,
particularly at the 3’ end of the PWM. Using SEQRS [381] on purified RNA binding domains for
both PUM1 and PUM2, we find a strong preference for the UGUANAUA motif for PUM1 and,
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somewhat surprisingly, a much weaker preference for this motif for PUM2. However, when con-
sidering the enrichment of all possible 8mers, we see that the preferences for each RBD are highly
correlated with a larger magnitude in enrichment for PUM1 RBD compared to PUM2 RBD. Our
approach uses a random library of RNA sequences to determine RNA binding preferences and our
analysis of PUM1 qualitatively agrees with previous in vitro approaches with randomized libraries
[406]. However, using a curated library of sequences based on mutations from the consensus
UGUANAUA motif, Jarmoskaite et al. [408] created a thermodynamic model for PUM2 binding
that considers the effects of non-consecutive bases in target recognition, as opposed to our simpler
model that only considers the frequency of occurrence of consecutive bases in a fully randomized
library. Using this model, they show that RBDs from both PUM1 and PUM2 share nearly identical
sequence preferences, which is in agreement with our strong correlation in enrichment between
the two proteins. Thus, the weaker enrichment for the canonical PRE for PUM2 may be the result
of an experimental artifact, or may come from the larger number of non-target sequences in our
library compared to that of Jarmoskaite et al. [408].

When we considered the local sequence content and location of PREs, we found that PREs
tend to be located towards the 3’ end of the 3’UTR and have high local AU content. We are not the
first to observe these properties, as Jiang et al. [136] also arrived to this conclusion by comparing
the locations of shuffled PREs. However, we instead considered the locations of PREs in simulated
sets of 3’UTRs that share similar trinucleotide content to that of the true set of 3’UTRs and this
strengthens the claim that PREs are enriched in these areas more than one would expect by chance.
Furthermore, we show that PREs in transcripts that had a significant change in RNA stability under
PUM knockdown are closer to the 3’ end of the 3’UTR and have higher AU content, suggesting
a functional role for the location of PREs within the 3’UTR itself. The non-random selection of a
PRE to occur towards the 3’end of the 3’UTR is consistent with a model where PUMs recruit the
CCR4-NOT complex for de-adenylation of target sequences.

5.5.4 Human Pumilio proteins regulate genes involved in signaling path-
ways

When looking at the classes of genes that are stabilized under PUM knockdown, we find that
many GO terms with evidence for direct repression by PUMs revolve around regulating signal-
ing pathways mediated by proteins including kinases (GO:0018105), GEFs (GO:0005085), and
receptor signaling (GO:0030177, GO:0048008). The role of mammalian Pumilio proteins in mod-
ulating signaling through controlling mRNA levels has been well established. In human testes,
PUM2 is thought to interact with DAZL proteins to regulate germ-line development and many
GTP-binding, receptor-associated, and GEF encoding-mRNAs are found among a list of targets
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that co-immunoprecipitate with both proteins [360]. Similarly, PUM1 has been shown to be im-
portant in mouse testis development through downregulation of many proteins involved in MAPK
signaling and ultimate activation of p53 [361]. In fact, it has been argued that an ancestral function
of the PUF family of proteins is to regulate the maintenance of stem cells and cells that behave in
a stem cell-like manner through the down-regulation of kinases involved in critical signaling path-
ways [357]. Many studies looking at genes associated with PUM1 or PUM2 binding in mammalian
cells tend to find similar sets of GO terms overlapping with PUM bound targets. Early RIP-Chip
experiments with human PUM1 and PUM2 found that genes bound by both proteins belonged
to GO terms associated with the Ras pathway, MAPK kinase cascade, PDGF signaling pathway,
WNT signaling pathway, small GTPase-mediated signal transduction, and transcription factor ac-
tivity, among others [135, 378]. More recent iCLIP experiments in mouse brains have found that
mouse PUM1 and PUM2 bind genes associated with WNT signaling, regulation of MAP kinase
activity, small GTPase-mediated signal transduction, and several categories related to neural devel-
opment [365]. Similarly, changes in steady-state RNA abundance under both human PUM1 and
human PUM2 knockdown identified several similar classes of genes including WNT signaling,
GEF activity, NOTCH signaling, and PDF signaling [134]. Each of these categories is consis-
tent with identified biological roles for mammalian PUMs. For example, mice lacking PUM1 and
PUM2 have impaired learning and memory, as well as decreased neural stem cell proliferation and
survival [365]. Further, human PUM1 haploinsufficiency is associated with developmental delay
and ataxia [374]. Likewise, PUM2-deficient mice are more prone to chemically-induced seizures
and have impaired nesting abilities [363], and mouse PUM2 regulates neuronal specification in
cortical neurogenesis [366]. Our work shows that genes in these GO categories are modulated
at the level of mRNA stability, likely through direct interaction of the human PUM proteins by
recognition of PREs in the 3’UTR of transcripts.

In many ways, post-transcriptional regulation of proteins involved in signaling cascades is an
ideal way to rapidly modulate those pathways. In contrast to the long distance between the site
of regulation and the site of protein production involved in regulating a gene at the transcriptional
level, post-transcriptional regulation allows for a dampening of expression levels directly where
synthesis is occuring. Furthermore, gene regulation in the cytosol allows for the possibility of
localized control of expression [409]. In fact, temporal and localized control of gene expression –
important for proper development of the fly embryo – was exactly how the PUF family of proteins
were initially discovered [358]. Given the emerging role for human PUM proteins in neuronal
development and function, and the need for localized control of gene expression in neuronal tissue
[410] it is conceivable that PUM proteins could be heavily involved in localized control of signaling
pathways within the neuron.
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5.5.5 Prediction of PUM-mediated regulation defines a set of general prin-
ciples for an ideal PUM target site

Many attempts have been made to predict gene regulation by Pumilio proteins given sequence in-
formation about the possible targets. Previously, a biologically inspired model based strictly on
the count of PREs within the 5’UTR, CDS, and 3’UTR was fit to steady state RNA levels [134].
In this model, the effects of having multiple PREs on a single transcript were found to be less than
linear on the target response to PUM knockdown, which was interpreted to indicate that multiple
PRE sites function to increase the odds of having a PUM bound and that a single PRE likely per-
forms most of the functions needed for PUM-mediated regulation [134]. In this study we expanded
the feature set of possible predictors for PUM-mediated activity and determine a set of rules that
define an ideal functional PRE. Consistent with the Bohn et al. [134], we find that a simple count
of PREs in the 3’UTR acts as the best predictor for PUM activity. However, surprisingly we find
that the simple UGUA.AU[AU] regular expression outperforms more sophisticated PWM-based
definitions from either in vivo and in vitro high throughput data. This may indicate that, although
PUMs can bind PREs with mismatches from this consensus motif, the UGUANAUA may rep-
resent the “ideal” PRE for functional regulation. In fact, structural studies of human PUM1 and
PUM2 have identified three different modes of binding between the nucleotide bases of the fifth
base in the consensus motif and the amino acids of PUM repeats 4 and 5. [411] show that changes
between these modes of binding do not alter PUM binding affinity, but could conceivably present
different surfaces for effector proteins. Although our regular expression allows for any base at the
fifth position, PUM repeats are modular [132] and it is conceivable that a similar mechanism could
apply to other bases in the motif. Additionally this suggests that PUM binding to the UGUANAUA
consensus motif could represent the ideal structure for PUMs interaction with effector molecules.
We also find sequence features surrounding a PRE to be important in predicting PUM activity on a
target. High AU content and position within the 3’UTR both appear to be important for predicting
mammalian PUM regulation. Consistent with prior reports of cooperativity between PUM and
miRNAs [135–137, 405], we find that a count of predicted miRNA sites near PREs helps predict
PUM effect, with a higher number of miRNA sites near a PRE indicating a larger stabilization un-
der PUM knockdown (Figure5.4A). It is possible that PUM could act to block or enhance miRNA
function through direct interactions with the miRNA machinery or through local rearrangements
of RNA secondary structure.

Secondary structure has been predicted to have an effect on many RBPs [386] and PUM has
been shown to change secondary structure upon binding to facilitate miRNA interaction [137].
However, we found that in silico predictions of RNA secondary structure around PREs were not
predictive of PUM function (Figure5.4C). Targeted regression models considering PRE count and
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structure only performed worse when structural information was added (data not shown). Re-
cent studies have shown that structural probing experiments used in tandem with in silico folding
algorithms vastly improve biological predictions based on structural information [412]. Similar
methods may be needed to determine the role of secondary structure in PUM-mediated regulation.
Alternatively, PUM proteins may be able to overcome RNA secondary structure in order to bind
PREs; thus, secondary structure would have no bearing on PUM binding. There has also been a
recent interest in the role of codon optimality in mRNA decay in human cells [413, 414]. Using
relative codon bias as a measure of the rarity of codon usage in mRNAs [389], we find no evidence
for differences in codon bias between targets undergoing PUM-mediated decay in our data set and
those that do not (Figure 5.4B). Similarly, recent efforts have also identified m6A sites across the
human transcriptome at single nucleotide resolution [415]; however, we find limited to no overlap
between m6A sites and PREs (data not shown).

Despite our extensive efforts to predict PUM-mediated regulation using sequence information,
there is still substantial room for improvement. Recent successes in Pumilio target prediction in
Drosophila have come from characterizing binding partners of DmPum: Nos and Brat [416]. Nos
binds together with DmPum to modulate the 5’ sequence specificity of the Pum-Nos complex,
thus introducing fine-tune control over Pum target recognition [417]. A recent study identified
many new and previously known interacting partners for the human PUM1 and PUM2 proteins
including DAZL, PABP, FMRP, miRISC, and members of the CCR4-NOT complex [418]. Like the
Nos/DmPum example, these partners likely add an additional layer of information in the control of
PUM-mediated gene regulation. Furthermore, the probing of RNA secondary structure in vivo may
allow for better incorporation of secondary structural information into models of PUM-mediated
regulation. Finally, we were unable to find determinants of PUM-mediated activation, an area that
is rich for future targeted experiments.

5.6 Materials and Methods

5.6.1 Experimental methodology

5.6.1.1 SEQRS protein purification

Methods are reproduced here from Weidmann et al. [417]. Recombinant PUM1/2 were expressed
in KRX E. coli cells (Promega) in 2xYT media with 25 µg/mL Kanamycin and 2mM MgSO4 at
37�C to OD600 of 0.70.9, at which point protein expression was induced with 0.1% (w/v) rhamnose
for 3hr. Cell pellets were washed with 50mM Tris-HCl, pH 8.0, 10% [w/v] sucrose and pelleted
again. Pellets were suspended in 25mL of 50mM Tris-HCl pH 8.0, 0.5mM EDTA, 2mM MgCl2,
150mM NaCl, 1mM DTT, 0.05% (v/v) Igepal CA-630, 1mM PMSF, 10 µg/ml aprotinin, 10 µg/ml
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pepstatin, and 10 µg/ml leupeptin. To lyse cells, lysozyme was added to a final concentration of
0.5 mg/mL and cells were incubated at 4�C for 30min with gentle rocking. MgCl2 was increased
to 7mM and DNase I (Roche) was added to 10 µg/mL, followed by incubation for 20 min. Lysates
were cleared at 50,000⇥g for 30min at 4�C. Halo-tag containing proteins were purified using
Magnetic HaloLink Resin (Promega) at 4�C. Beads were washed 3 times with 50mM Tris-HCl pH
8.0, 0.5mM EDTA, 2mM MgCl2, 1M NaCl, 1mM DTT, 0.5% [v/v] Igepal CA-630) and 3 times
with Elution Buffer (50mM Tris-HCl, pH 7.6, 150mM NaCl, 1mM DTT, 20% [v/v] glycerol).

To confirm protein expression, beads were resuspended in Elution Buffer with 30 U of AcTEV
protease (Invitrogen), cleavage proceeded for 24hr at 4�C, and beads were removed by centrifuga-
tion through a micro-spin column (Bio-Rad).

SEQRS was conducted as described in Campbell et al. [377] with minor modifications on the
following samples: PUM1 RBD, PUM2 RBD

Magnetic Halolink beads (Promega) were used and the Pum test proteins remained covalently
bound via N-terminal Halotag to the beads.

The initial RNA library was transcribed from 1µg of input dsDNA using the AmpliScribe T7-
Flash Transcription Kit (Epicentre). 200 ng of DNase treated RNA library was added to 100 nM
of Halo-tagged proteins immobilized onto magnetic resin (Promega). The volume of each binding
reaction was 100µl in SEQRS buffer containing 200 ng yeast tRNA competitor and 0.1 units of
RNase inhibitor (Promega). The samples were incubated for 30min at 22�C prior to magnetic
capture of the protein-RNA complex. The binding reaction was aspirated and the beads were
washed four times with 200µl of ice cold SEQRS buffer. After the final wash step, resin was
suspended in elution buffer (1mM Tris pH 8.0) containing 10 pmol of the reverse transcription
primer. Samples were heated to 65�C for 10min and then cooled on ice. A 5µl aliquot of the
sample was added to a 10µl ImProm-II reverse transcription reaction (Promega). The ssDNA
product was used as a template for 25 cycles of PCR using a 50µl GoTaq reaction (Promega).

5.6.1.2 Bru-Seq experimental procedure

Bru-Seq was conducted as described in Paulsen et al. [308] in HEK293 cells grown in the presence
of siPUM1/2 or siNTC. Resulting cDNA libraries were sequenced using an Illumina HiSeq 2000
via the University of Michigan Sequencing core.

5.6.2 BruSeq Computational analysis

5.6.2.1 Modeling PUM-mediated RNA decay

Sequencing reads were aligned and processed according to Paulsen et al. [308] up to obtaining
read counts for exons and introns for each gene and sample. Our experimental design resulted in
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four different replicates of siNTC (WT) and siPUM1/2 (PUMKD) conditions with two different
time points each: t0hr and t6hr. For the t0hr time points, read counts from both exons and introns
were pooled for each gene. For the t6hr time points, only read counts from exons were used. Read
abundance was modeled using DESeq2 [340]. As described in Love et al. [340], DESeq2 models
read count abundance K for gene i in sample j using the generalized linear model described below:

Kij ⇠ NB(µij,↵i) (5.1)

Where ↵i is a gene-specific dispersion parameter for gene i and µij is defined by the following:

µij = sjqij (5.2)

Here, sj is a sample specific size factor used to put read count abundances on the same scale
between samples. Finally, qi,j is defined according to our design matrix:

log2(qi,j) = �0 + �cc+ �tt+ �tctc (5.3)

Where, c is an indicator variable that is 0 when the sample is in condition WT and 1 when
the sample is in condition PUMKD. Likewise, t is an indicator variable that is 0 when sample
is in the 0 hour time point and 1 when the sample is in the 6 hour time point. We interpret the
�tc term to represent changes in RNA stability resulting specifically from the PUM KD condition.
Similarly we interpret the �c term to represent changes in initial transcription rates between the two
conditions. Throughout the text, unless otherwise noted, we report �tc normalized by the reported
standard error for the coefficient, which amounts to the Wald statistic computed for that term by
DESeq2. Thus, the Wald statistic for the interaction term is denoted as “RNA stability in PUM
KD” throughout the text and is a unitless quantity.

5.6.2.2 Analysis of transcriptional vs. stability effects

To test for significant changes in transcription or stability, the Wald test statistic for the appropriate
term – �c for transcription and �tc for stability – was calculated as described above. The Wald
statistic was compared to a zero centered Normal distribution and a two-tailed p-value was calcu-
lated using statistical programming language R’s pnorm function (n.b. this is virtually equivalent
to the p-values calculated by the DEseq2 package for contrasts [340]). To test for a statistically
significant lack of change in transcription or stability, the Wald statistic for the appropriate term
was compared to a Normal distribution centered at the nearest boundary of a region of practical
equivalence (ROPE) and a two-tailed p-value was calculated using R’s pnorm function. The ROPE
was defined as � log2(1.75) – log2(1.75) and was chosen to be within the range of fold expression
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change of a RnLuc reporter gene with between one and three PREs in its minimal 3’UTR [134].
Each p-value was FDR-corrected using the Benjamini-Hochberg procedure [354] and, for each
term, the smaller of the two FDR-corrected p-values was reported. In order for a gene to be classi-
fied in the EFFECT, class the following conditions had to be met: 1. its change in stability q-value
had to be smaller than its no change in stability q-value, 2. Its change in stability q-value had to
pass a cutoff of 0.05 for statistical significance and 3. The original log2 fold-change value had to
be outside the defined ROPE. In contrast, in order for a gene to be classified in the NOEFFECT
class the following conditions had to be met: 1. it was not classified as an EFFECT gene, 2. its no
change in stability q-value had to be smaller than its change in stability q-value, 3. its no change
in stability q-value had to pass a cutoff of 0.05 for statistical significance and 4. The original log2
fold-change value had to be within the defined ROPE. Genes not passing the criteria for either the
EFFECT or NOEFFECT groups are those for which we lack sufficient information to make any
strong statement on the effects of PUM knockdown.

5.6.3 SEQRS Computational analysis

The raw sequencing data was processed according to Weidmann et al. [417] to contain the se-
quences within only the 20mer variable region. The 20mer variable regions of each read where
then broken into all possible 8mer sequences using a sliding window, and raw counts for all pos-
sible 8mer abundances for each sequencing round for each protein were calculated using custom
python scripts. Prior to 8mer abundance estimates, the adapter sequences were computationally
added at the 5’ and 3’ end to account for any 8mers resulting from a combination of the invariant
adapter sequences and the variable region. Only 8mers that had at least one base in the variable
region were considered.

To determine position-weight matrices that best represented selection by the protein of interest
for that round, we followed the approach of Jolma et al. [385] in the analysis of DNA binding
proteins using SELEX. Briefly, a seed sequence is determined from the most abundant N-mer
within that round. From this seed sequence, the abundance of each base at a given position was
tallied when all other positions match the seed sequence. The PWM frequencies were determined
by dividing each column of the resulting count matrix by its column sum. Unlike Jolma et al. [385]
we do not include the correction for non-specific carryover of DNA from the previous cycle. The
enrichment of a particular 8mer was calculated with the following equation:

E = log2

0

@
cs,iPNs
i=1 cs,i
cb,i

PNb
i=1 cb,i

1

A (5.4)

Where cs,i represents the count for 8mer i in sample s and cb,i represents the count for 8mer i in
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blank round where the input sequences were sampled. The DmPum data and corresponding blank
sample was accessed from Weidmann et al. [417] and only the first five rounds were considered.

5.6.4 GO term analysis and iPAGE

GO term analysis was performed using the integrative pathway analysis of gene expression (iPAGE)
software package [155]. Genes were discretized by the interaction term Wald test statistic into five-
equally populated bins and iPAGE was run with default settings.

5.6.5 Determination of matching PREs

The full set of 3’UTRs for hg19 genome was downloaded using the TxDb.Hsapiens.UCSC.hg19.-
knownGene, BSgenome.Hsapiens.UCSC.hg19, and GenomicFeatures R packages. Matches to a
given PWM across all 3’UTRs were determined using the FIMO package with a uniform back-
ground using default cutoffs for reporting matches [419]. For PRE-centric figures, such as the
heatmaps and violin plots in Figure 5.3 and Figure 5.4, each unique 3’UTR isoform is matched
to its corresponding “RNA stability in PUM KD” value by gene name, and each feature’s value is
reported as the given summary statistic over a given 3’UTR isoform for that feature, as described
in the section below (i.e., for AU content, the value reported is the maximum AU content around
any given PRE within that 3’UTR isoform).

For de novo discovery of informative motifs in our Bru-seq dataset, we applied the finding in-
formative regulatory elements (FIRE) software with default settings to each unique 3’UTR isoform
matched to its “RNA stability in PUM KD” value and discretized into ten equally populated bins.

To calculate the location and AU content of PREs in randomly generated sets of the 3’UTRs,
a third order Markov model was trained on the empirical set of unique 3’UTR isoforms from
the hg19 genome. One thousand randomly simulated sets of 3’UTRs – the same length as the
empirical set of 3’UTRs – was generated then generated using custom python scripts. For each of
the thousand simulated sets of 3’UTRs, the fifth round SEQRS PUM1 (Figure 5.2A) was used to
search for matches using FIMO as described above. Here each individual PRE was considered in
the calculation of the kernel density plots shown in Figure 5.3.

To determine the PAR-CLIP read coverage at identified PRE sites in the set of known unique
3’UTR isoforms, raw reads were downloaded from SRA with accession numbers SRR048967 and
SRR048968. Raw fastq files were processed with trimmomatic [178] and cutadapt [177] to re-
move low quality reads and illumina adapters. Processed reads were aligned to the hg19 genome
using the STAR aligner with default parameters [331]. Read coverage and T to C mutations were
determined for reads within 20 bp of each PRE in each unique 3’UTR isoform for both EFFECT
and NOEFFECT genes, individually, using custom python scripts. Coverage over all PREs was
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aligned and the bottom and top 5% of read coverage at each position was removed from the av-
erage calculation. Error bars were determined by sampling with replacement read coverage from
individual PREs in each group separately.

5.6.6 Determination of PRE clustering

To determine whether the PREs cluster together more than would be expected by chance, we
determined the ratio of the empirically observed frequency of PUM sites within all possible 100 bp
windows of 3’UTRs with a least 1 PRE in them to a Poisson model with the rate parameter, �, set to
the average count of PREs within all 100 bp windows. 95% confidence intervals were determined
by sampling the empirical distribution of PRE counts within all windows with replacement.

5.6.7 Predicting PUM-mediated regulation using conditional random forest
models

In order to predict the PUM-mediated regulation on a given transcript, we used conditional random
forest models from the cforest function from the party R package [420–422]. Binary classification
models were trained using default settings with no parameter tuning on the Bru-Seq EFFECT and
NOEFFECT classes and a permutation-based AUC variable importance metric was calculated for
each individual model [404]. Due to the large class imbalance, ten separate datasets were generated
from the full dataset, where the majority NOEFFECT class was randomly downsampled to match
the EFFECT class. Within each of the ten datasets, five-fold cross validation was performed to
assess performance and detect overtraining. Final models were generated using the ten downsam-
pled datasets without cross-validation and performance was tested on the RNA-seq dataset from
Bohn et al. [134]. Precision-recall plots were calculated using the PRROC package based on the
methodology of Davis and Goadrich [423].

5.6.7.1 Calculation of features associated with a PWM

For each of the features described in this section, the feature was first calculated individually
for each unique 3’UTR isoform. Values for each isoform were combined by taking the average
of the value for that feature and isoform weighted by the number of isoforms that shared that
unique 3’UTR in the full set of annotated 3’UTRs in the hg19 genome. For features ending in
“fimo best bygene max fimo”, the maximum FIMO match score for each unique 3’UTR isoform
for that PWM was calculated by setting the p-value cutoff threshold in FIMO to 1.1, thereby
allowing FIMO to consider every possible match for a given sequence. The maximum match
score for each sequence was reported for each unique 3’UTR isoform. For features ending in
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“fimo best bygene total num”, the total number of matching sites for a given unique 3’UTR iso-
form was calculated as described above in the “Determination of matching PREs” section. For
each sequence, the geometric average of FIMO scores for each matching PRE was calculated and
reported in the “fimo bygene geom avg score”. The maximum match score, geometric average
match score, and total match number was calculated for the SEQRS PUM1 round 5 PWM, SE-
QRS PUM2 round 5 PWM, Hafner et al. [292] PUM2 PWM, and each of the PWMs for human
RBPs found in the CISBP-RNA database [424].

For PREs, the shortest distance to the 3’UTR for any given PRE is converted to normalized co-
ordinates (i.e., 0.0 is the 5’ end and 1.0 is the 3’ end) and reported in the “fimo best bygene dist 3”.
For “fimo bygene at content” the largest percentage AT content in a 100 bp window surrounding
any PRE within a given sequence was reported. Similarly for “fimo bygene max cluster”, the
maximum number of full PRE sites within a sliding of 100 bp was calculated. For both of these
features, windows were truncated at the 3’ and 5’ ends of the sequence.

5.6.7.2 Calculation of in silico basepairing probabilities for PREs

For each identified PRE, the probability of the given PRE being base-paired within predicted sec-
ondary structure was calculated using RNAfold [425] by calculating the ensemble free energy of
an unconstrained sequence Fu of 50 bp flanking each side of a given PRE and the ensemble free
energy of a constrained sequence where no base within the PRE is allowed to form a base pair Fc.
The probability of the PRE being constrained from base-pairing can be calculated using:

Pc = exp

✓
(Fu � Fc)

RT

◆
(5.5)

Where T is the temperature (set to physiological temperature, 310.15K), and R is the gas
constant (set to 0.00198 kcal K�1 mol�1). Thus the probability of any given PRE being un-
paired is Pc. We define two features associated with Pc for each PRE in a given 3’UTR isoform.
“ avgprob unpaired” is the average Pc of all the PREs within a given 3’UTR and “ maxprob unpaired”
is the maximum Pc of all the PREs within a given 3’UTR. Values for each isoform were combined
into gene level estimates, as described above.

5.6.7.3 Calculation of information redundancy between features

In order to calculate the information redundancy between features, each feature was discretized
into ten equally populated bins. The redundancy between feature 1 (F1) and feature 2 (F2) was
calculated with the following equation:
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R =
2⇥ I(F1;F2)

(H(F1) +H(F2))
(5.6)

Where H is the entropy of a given vector X of discrete values, as defined below:

H(X) = �
X

x2X

P (x) log2(P (x)) (5.7)

And the mutual information I(X;Y ) of vectors X and Y of discrete values is defined as:

I(X;Y ) =
X

x2X

X

y2Y

P (x, y) log

✓
P (x, y)

P (x)P (y)

◆
(5.8)

5.6.7.4 Determination of EFFECT and NOEFFECT classes for RNA-seq data

RNA-seq data was obtained from Bohn et al. [134] and a gene was only considered if the FPKM for
both the PUM1/2 knockdown condition and the siNTC condition were greater than 5. Genes that
passed this cutoff and that were considered to have statistically significant differential expression
in the original analysis were considered EFFECT genes. Genes that passed the cutoff and were
not considered to have statistically significant differential expression were considered NOEFFECT
genes.
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CHAPTER 6

Conclusion: Structure and context in regulatory
control

Through the use of high-throughput sequencing technology and computational analysis, I have
characterized the regulatory network of a transcriptional regulator (Chapter 2), gained insight into
promoter-independent mechanisms of transcriptional control (Chapter 3), made recommendations
for measuring RNA decay (Chapter 4), and used experimental measurements to predict mRNA
decay as mediated by a post-transcriptional regulator (Chapter 5). Each of these projects has
advanced the understanding of mechanisms of gene regulation; however, each has also left unan-
swered questions. Of particular interest is the importance of contextual information in each of these
systems, whether that be the existence of adjacent and condition-specific binding sites for Lrp, the
binding signal from key architectural proteins in controlling location-dependent expression, or the
relevance of sequence context outside the primary binding site for PUM. Here, I summarize the
key findings for each project. I also suggest additional hypotheses that are generated by this work
that could be tested by future experiments, some of which are suggested below.

6.1 Lrp at the interface between global regulator and architec-
tural protein

In their 2002 review article, Martıńez-Antonio and Collado-Vides [49] refined a set of criteria to
establish the identity of global regulators in bacterial species. Even then, Lrp was identified as
a global regulator, but the evidence we have accumulated has solidified Lrp’s place among the
global regulators in E. coli. We have shown that Lrp regulates, either directly or indirectly, a third
of the transcripts in E. coli. In addition, we have found that Lrp’s regulon changes in a condition-
specific manner and its effects are attenuated in conditions with high concentrations of branched
chain amino acids. We have also found that it regulates more traditional transcription factors,
such as LrhA and CysB, and tends to coregulate with promoters that are bound by the �54-RNAP
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holoenzyme. Each of these findings match the critera for a bon-a-fide global regulator. However,
unexpectedly, we also found that changes in the types of genes that Lrp regulates do not seem
to only depend on the presence of branched chain amino acids, but also seem largely influenced
by growth stage. This is also reflected in Lrp’s sequence specificity, which shifts from a general
preference for high A/T content in early growth phases to slightly more sequence specific binding
in late growth phase regardless of the concentration of branched chain amino acids in the media.

In addition, the presence of adjacent, condition-specific peaks in our data is intriguing. It is
enticing to suggest that these peaks are the result of two octamers of Lrp binding on either side of a
promoter and looping out the intervening DNA, similar to the mechanism behind the Lac repressor
[43]. However, with Lrp’s abundant binding across the genome, as identified in our data and in
others [49, 58], it is possible that Lrp could mediate interactions between disparate regions of the
nucleoid through the formation of hexadecamers from octamers at distal sites. This would allow
regions of the DNA that are separated by a large distance in linear space to be localized in three di-
mensional space. Thus, one basis for regulation by Lrp could be the condition dependent formation
of localized DNA, not dissimilar to the model of localized “transcription factories” that have been
proposed to be involved in transcriptional regulation [426]. In fact, changes in genomic structure
preceding changes in steady-state RNA levels have been shown to occur in the differentiation of
eukaryotic stem cells [427], suggesting that the changes in genomic structure are critical for gene
regulation in some instances. Furthermore, the “poised” Lrp binding sites we identify may be oc-
tamers that are in position to mediate these contacts but are not in the correct conformation to form
higher order Lrp oligomers. An ideal experiment to probe Lrp-dependent interactions between re-
gions of the DNA would be through the use of Chromatin Interaction Analysis by Paired-End Tag
Sequencing (ChIA-PET) [428], using our highly specific monoclonal antibody to identify contact
between distant regions of the genome that may be mediated through Lrp. A pilot experiment
could be done using qPCR on ligated fragments with a known Lrp binding site under conditions
where it is differentially regulated.

Additional questions abound for Lrp. Originally three different modes of Lrp mediated ac-
tivation or repression regulation were introduced by Cho et al. [58]: 1. independent (no Leucine
dependence), 2. concerted (Leucine enhances Lrp’s effect), 3. reciprocal (Leucine diminishes Lrp’s
effect). Analysis of our data to categorize Lrp-mediated gene regulation into these groups by Chris-
tine Ziegler of the Freddolino lab has indicated that the vast majority of the regulation seen in our
data falls under the reciprocal mode. Furthermore, studies by other groups have indicated the Lrp
activity is modulated by more than just Leucine [57]. Both of these observations are consistent with
a role for Lrp as a general nutrient sensor; however, the mechanistic details of how Lrp modulates
gene expression of its targets, and particularly, how Lrp activates some targets and represses others,
is still poorly understood. My attempts to use machine learning models with sequence-based fea-
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tures to try to differentiate between activated and repressed genes performed poorly, indicating that
we likely do not have the correct or sufficient set of features to predict gene regulation by Lrp. Fur-
thermore, mechanistic details of gene regulation by Lrp are lacking. What conformational changes
occur when Lrp is bound by a co-regulator? What protein partners, if any, does Lrp interact with?
What is the structural basis for Lrp’s changes in sequence specificity over growth phases? Each of
these questions are actively being pursued by members of the Freddolino lab.

6.2 The role of bacterial nucleoid structure in transcriptional
regulation

Our analysis of the effects of position on the steady state RNA levels of an identical reporter repre-
sent the highest resolution look at position-effects on gene expression to date. We identify a critical
role for two nucleoid associated proteins, Fis and H-NS, in identifying regions that facilitate and
inhibit gene expression, respectively. Of particular interest is the association between the proxim-
ity to a ribosomal RNA and higher transcriptional propensity. Previous studies have demonstrated
that ribosomal RNA operons cluster together within the bacterial nucleoid [206]. Thus, several
models for the effect of proximity to the rrn operons on transcriptional activation immediately
come to mind:

1. The reporters’ co-localization with the ribosomal RNA operons in an area of assumed high
RNAP concentration could result in higher spontaneous initiation rates for said reporter.

2. Transcriptional read through at the end of the highly transcribed rrn operons could result in
higher transcription of the reporter downstream of the rrn operon.

3. Negative supercoiling upstream of an rrn operon, induced by the action of RNAP elongation
at the ribosomal RNAs could facilate initiation of RNAP at the reporter.

Models 2 and 3 can be ruled out as the sole effect on expression of the reporter from a single exper-
iment. Using the targeted integration of the reporter construct to replace a single rrn operon, higher
protein expression is observed (through measurement of fluorescence) than a targeted integration
upstream or downstream of the rrn operon (Scott Scholz, personal communication). This suggests
that effects coming from read-through (model 2) or the propogation of supercoiling (model 3) are
likely not playing a large role in the associations we are seeing, as the rrn operon is no longer there
to mediate those effects in this experiment. However, this does not rule out model 1 as a possible
mediator of the proximity effect to rrn. If model 1 is responsible for the effect that is seen, then
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the resulting co-localization for the rrn operons must occur in an rrn sequence-independent man-
ner. Thus, an alternative interpretation of this experiment could be that the rrn operons themselves
exist in a region of the bacterial chromosome that is naturally permissive to gene expression. Both
interpretations bring up questions about the actual structural nature of the bacterial chromosome
itself and its impact on transcription.

Unlike the regularly structured C. crescentus genome [429], the E. coli genome structure has
been difficult to capture. The most recent structure of the E. coli genome [198] differs substantially
both from earlier reports [430], and from data obtained from experiments in the Freddolino lab. It is
possible that this experiment performed in E. coli may be more sensitive to the exact experimental
protocols used than other bacterial species (Peter Freddolino & Grace Kroner, personal commu-
nication). My analysis of the overlap between the Lioy et al. [198] data and our transcriptional
propensity map has suggested that only structural boundaries associated with a rrn operon seem to
be correlated with changes in transcriptional propensity. However, regions of the chromosome that
are tied up in high densities of protein occupancy (tsEPODS, Vora et al. [78]) tend to be highly re-
pressed, consistent with H-NS occupancy at those sites. The interaction between local compaction
and higher order chromosomal structure in E. coli remains to be elucidated. Additionally, the role
of DNA supercoiling is gaining wide appreciation as a factor in controlling transcription [431].
Another NAP, the Histone-like protein from E. coli strain U93 (HU), is thought to be involved in
constraining negative supercoils in bacterial cells [432]. We found limited evidence for a correla-
tion between HU ChIP-seq signal and our transcriptional propensity signal; however, the ChIP-seq
signal is highly non-specific and may not reflect the biological function of the HU protein [230].
HU is highly conserved [433], highly expressed [76], and bound non-specifically across the nu-
cleoid [77]. Although it does seem to impact the expression of genes involved in dealing with
stress conditions [434], the details of how HU regulates bacterial transcription are poorly under-
stood. Given its NAP status and putative function in constraining supercoils, it is possible that HU
is involved at the confluence of chromatin structure, DNA supercoiling, and RNAP recruitment.
Building off the intellectual foundation I have created in my graduate work, my post-doctoral work
will focus on this mysterious protein and its role in transcriptional control. Taken together, the full
nature of the interaction between chromatin structure, NAPs, and their impact on transcription
suggests a bacterial heterochromatin/euchromatin analogue and will be a fruitful area for further
inquiry.
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6.3 RNA secondary structure and post-transcriptional regula-
tion

The Pumilio family of proteins are perhaps the most well-studied family of RNA binding pro-
teins involved in post-transcriptional regulation. Our work characterizing the effects of the human
members of the family—PUM1 and PUM2—on mRNA decay shows their widespread impact
on modulating mRNA decay, particularly for transcripts involved in neuronal development and
protein-mediated signaling pathways. Despite the decent performance using sequence-based fea-
tures to predict regulation by the Pumilio proteins, we still cannot fully predict the magnitude of
the impact resulting from Pumilio-mediated regulation. Our analyses also indicated that the use of
in silico models of RNA secondary structure were not useful in predicting PUM-mediated repres-
sion. This is consistent with recent analyses of secondary structural predictions when compared
to experimentally determined accessibility determined through mid-throughput structural probing
assays. Mustoe et al. [412] used selective 2’-hydroxyl acylation analyzed by primer extension and
sequencing (SHAPE-seq) to determine the secondary structure of roughly 200 transcripts in E. coli
and found that the SHAPE-informed structures—particularly when performed within cells rather
than in cell extracts —vastly outperformed purely in silico structures in predicting translational
efficiency from the structure of ribosome binding sites using a kinetic model. Additionally, sec-
ondary structure has been shown to play a critical role in the binding of splicing factors and can
be used to engineer alternative splicing by creating mutants to increase secondary structure and
block binding [387]. In the case of PUM proteins, we find that both local AU content and adja-
cent miRNA sites are important in helping to predict the effect of PUM-mediated gene expression.
Previous studies have also highlighted the relationship between miRNAs and Pumilio proteins,
including specific examples of PUM binding serving to rearrange secondary structure to modulate
miRNA-mediated repression [135–137]. Thus, the ability to accurately determine RNA secondary
structure in vivo and its role in PUM-mediated repression represents an area for rich exploration.

Consistent with previous high-throughput identifications of targets of PUM-mediated gene ex-
pression, we also find a subset of genes that are activated by PUM [134]. Recently, human PUMs
have been implicated in the activation of FOXP1, a critical driver of hematopoeitic stem cell growth
[372]. This, together with measurements of PUM-mediated activation of reporter genes with the
3’UTRs of targets identified in a high throughput screen [134], have demonstrated that, under some
cases, PUM proteins can activate transcripts. The mechanisms behind this activation remain com-
pletely unknown. My attempts to separate PUM-mediated activation from PUM-mediated repres-
sion using machine-learning methods with sequence-based features were not successful and the
PREs associated with PUM-mediated stabilization in our study appeared to be less bound than the
transcripts that were destabilized in a PUM-specific manner. However, we lacked statistical power
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to say this with certainty due to the low number of transcripts with PUM-mediated stabilization.
Work with Drosophila Pum has indicated that the N-terminal domains of Pum can mediate repres-
sion of a reporter transcript independent of the RNA-binding domain when tethered to a reporter
transcript [435]. Furthermore, large protein-protein interaction screens have identified many puta-
tive partners for the human Pumilio proteins, including those involved in mediating the RNA-decay
process [418]. Taken together, the interaction of PUM with protein partners, perhaps through the
N-terminal domain, may determine whether PUM-mediated activation or PUM-mediated repres-
sion occurs for a particular transcript. However, interactions between the N-terminal domain and
protein partners, if any, for the Human PUM proteins are poorly understood.

The use of reporter systems, where the sequence content of the 3’UTR can be carefully con-
trolled, enables targeted probing of the particular features we identified as important for PUM-
mediated control of mRNA decay. Future experiments may use such systems to interrogate the
contributions of some of the contextual features we identify here, such as AU content and PRE
location. Furthermore, the concentration of putative co-regulators could be easily manipulated in
such a system, thereby allowing for the determination of their functional effects in PUM-mediated
gene regulation. These type of experiments may be particularly useful when considering the in-
teraction between PUMs and miRNAs. Functional assays coupled with measurements of RNA
secondary structure may illuminate the effects of PUM on miRNA regulation or vice-versa. It
seems likely that PUM could be acting to either occlude miRNA binding sites or allow for sec-
ondary structural rearrangements that facilitate regulation by miRNAs.

6.4 The interface between protein and nucleic acids

Central to the discussion of gene regulation has been the interaction between proteins and nucleic
acids. In addition, determining the locations of any given regulator’s binding on the nucleic acid
sequence is critical to understanding and predicting that regulator’s effect on gene expression. Tra-
ditionally and throughout this dissertation, position weight matrices (PWMs) have been used to
model a protein’s affinity for a particular nucleic acid sequence [436]. However, PWMs treat the
Watson-Crick identity of each base in a particular sequence as an independent and additive mea-
sure for sequence preference, which can limit their utility. More recently, biophysically-motivated
models have had greater success in predicting protein binding to DNA, as have those that consider
higher order interactions between each base, but for many DNA binding proteins, there is still sub-
stantial room for improvement in predicting and understanding the determinants of protein binding
[437]. Recent studies have shown that some DNA binding proteins prefer more general structural
elements, such as a narrow minor groove width, rather than a simple identification of the Watson-
Crick face of the bases themselves [438]. Furthermore, an algorithm has been developed to predict
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general DNA shape features from sequence information alone [439]. Application of this algorithm
in a machine learning context has led to improvements in predicting the location of ChIP-Seq
peaks for many DNA binding proteins when supplementing sequence information from a PWM
with shape information around a PWM for a given protein [440]. Recently, I have developed an
algorithm that uses structural features to predict transcription factor binding sites and preliminary
analyses have indicated that these structural “motifs” outperform traditional PWMs in some cases.
Similarly, algorithms have been developed to predict secondary structure motifs for RNA binding
proteins [441]. Key to each of the systems I have presented in my dissertation is the prediction of a
particular regulators’ binding site and its effect once bound. Algorithms that take into account the
structure and context of these regulators either at a local level (such as the local secondary structure
of DNA or RNA) or the global level (such as the nucleoid structure and associated stretchs of high
protein occupancy) will improve our ability to model and predict biological systems.

In fact, the interaction between protein and nucleic acids is so fundamental to biology that it
may have been the origin of life. Crucial to the center of information for all biological systems is
the ribosome, the translation apparatus that allows for the nucleic acid language to be converted
into the amino acid language. Work by Bowman et al. [442] has indicated that ribosomal RNA
structure has slowly accumulated on top of a common rRNA core over the history of evolution all
the way back to the last common ancestor. Thus, the ribosome represents a molecule fossil and
the common core is a frozen snapshot of the beginning of life. Bowman et al. [442] also argue
that protein and nucleic acid co-evolved together through a chemical evolution that preceded tradi-
tional Darwinian evolution. Lending support to this model are experiments by Li et al. [443] that
showed that enzymes encoded by the same DNA sequence, but on opposite strands, are capable of
replicating the enzymatic reactions of the two different classes of tRNA synthetases (the enzymes
responsible for charging the correct tRNA with the correct amino acid). They also argue that these
early synthetases conduct spontaneous protein synthesis quickly enough to be a minimal working
system for the nucleic acid and protein codes to simultaneously co-evolve. Another paper by the
same group also argues that the properties of the amino acids can be predicted based off sequence
elements in the acceptor stem or anticodon, thereby suggesting an early system involving tRNA
acceptor stems together with their minimal working synthetases as a substrate for developing the
genetic code [444]. Taken together, this work suggests that the interactions between proteins and
nucleic acids have always formed the fundamental basis for life, forever intertwined in an intricate
molecular dance of ever-increasing complexity.
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[49] Agustino Martıńez-Antonio and Julio Collado-Vides. Identifying global regulators in tran-
scriptional regulatory networks in bacteria. Current Opinion in Microbiology, 6(5):482–489,
October 2003. ISSN 1369-5274. doi: 10.1016/j.mib.2003.09.002.

[50] J. V. Platko, D. A. Willins, and J. M. Calvo. The ilvIH operon of Escherichia coli is pos-
itively regulated. Journal of Bacteriology, 172(8):4563–4570, August 1990. ISSN 0021-
9193, 1098-5530. doi: 10.1128/jb.172.8.4563-4570.1990.

[51] M. Felice De, C. T. Lago, C. H. Squires, and J. M. Calvo. Acetohydroxy acid synthase
isoenzymes of Escherichia coli K12 and Salmonella typhimurium. Annales de microbiolo-
gie, 133(2):251–256, 1982. ISSN 0300-5410.

[52] J. C. Andrews and S. A. Short. Opp-lac Operon fusions and transcriptional regulation of the
Escherichia coli trp-linked oligopeptide permease. Journal of Bacteriology, 165(2):434–
442, February 1986. ISSN 0021-9193, 1098-5530. doi: 10.1128/jb.165.2.434-442.1986.

[53] D. A. Willins, C. W. Ryan, J. V. Platko, and J. M. Calvo. Characterization of Lrp, and
Escherichia coli regulatory protein that mediates a global response to leucine. Journal of
Biological Chemistry, 266(17):10768–10774, June 1991. ISSN 0021-9258, 1083-351X.

[54] S. A. Haney, J. V. Platko, D. L. Oxender, and J. M. Calvo. Lrp, a leucine-responsive protein,
regulates branched-chain amino acid transport genes in Escherichia coli. Journal of Bacte-
riology, 174(1):108–115, January 1992. ISSN 0021-9193. doi: 10.1128/jb.174.1.108-115.
1992.

[55] Travis H. Tani, Arkady Khodursky, Robert M. Blumenthal, Patrick O. Brown, and
Rowena G. Matthews. Adaptation to famine: A family of stationary-phase genes re-
vealed by microarray analysis. Proceedings of the National Academy of Sciences of the
United States of America, 99(21):13471–13476, October 2002. ISSN 0027-8424. doi:
10.1073/pnas.212510999.

[56] Shaolin Chen and Joseph M Calvo. Leucine-induced Dissociation of Escherichia coli Lrp
Hexadecamers to Octamers. Journal of Molecular Biology, 318(4):1031–1042, May 2002.
ISSN 0022-2836. doi: 10.1016/S0022-2836(02)00187-0.

[57] Benjamin R. Hart and Robert M. Blumenthal. Unexpected Coregulator Range for the Global
Regulator Lrp of Escherichia coli and Proteus mirabilis. Journal of Bacteriology, 193(5):
1054–1064, March 2011. ISSN 0021-9193, 1098-5530. doi: 10.1128/JB.01183-10.

[58] Byung-Kwan Cho, Christian L. Barrett, Eric M. Knight, Young Seoub Park, and Bern-
hard Ø. Palsson. Genome-scale reconstruction of the Lrp regulatory network in Escherichia
coli. Proceedings of the National Academy of Sciences of the United States of America, 105
(49):19462–19467, December 2008. ISSN 0027-8424. doi: 10.1073/pnas.0807227105.

201



[59] Stephanie de los Rios and John J. Perona. Structure of the Escherichia coli Leucine-
responsive Regulatory Protein Lrp Reveals a Novel Octameric Assembly. Journal of Molec-
ular Biology, 366(5):1589–1602, March 2007. ISSN 0022-2836. doi: 10.1016/j.jmb.2006.
12.032.

[60] Brian T. Wilhelm and Josette-Renée Landry. RNA-Seq—quantitative measurement of ex-
pression through massively parallel RNA-sequencing. Methods, 48(3):249–257, July 2009.
ISSN 1046-2023. doi: 10.1016/j.ymeth.2009.03.016.

[61] David S. Johnson, Ali Mortazavi, Richard M. Myers, and Barbara Wold. Genome-Wide
Mapping of in Vivo Protein-DNA Interactions. Science, 316(5830):1497–1502, June 2007.
ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1141319.

[62] Joel Rozowsky, Ghia Euskirchen, Raymond K. Auerbach, Zhengdong D. Zhang, Theodore
Gibson, Robert Bjornson, Nicholas Carriero, Michael Snyder, and Mark B. Gerstein. Peak-
Seq enables systematic scoring of ChIP-seq experiments relative to controls. Nature
Biotechnology, 27(1):66–75, January 2009. ISSN 1546-1696. doi: 10.1038/nbt.1518.

[63] Valerie Hower, Steven N. Evans, and Lior Pachter. Shape-based peak identification for
ChIP-Seq. BMC Bioinformatics, 12(1):15, December 2011. ISSN 1471-2105. doi: 10.
1186/1471-2105-12-15.

[64] Jianxing Feng, Tao Liu, Bo Qin, Yong Zhang, and Xiaole Shirley Liu. Identifying ChIP-
seq enrichment using MACS. Nature Protocols, 7(9):1728–1740, September 2012. ISSN
1750-2799. doi: 10.1038/nprot.2012.101.

[65] Yanxiao Zhang, Yu-Hsuan Lin, Timothy D. Johnson, Laura S. Rozek, and Maureen A.
Sartor. PePr: A peak-calling prioritization pipeline to identify consistent or differential
peaks from replicated ChIP-Seq data. Bioinformatics, 30(18):2568–2575, September 2014.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btu372.

[66] Byung-Kwan Cho, Donghyuk Kim, Eric M. Knight, Karsten Zengler, and Bernhard O.
Palsson. Genome-scale reconstruction of the sigma factor network in Escherichia coli:
Topology and functional states. BMC Biology, 12:4, January 2014. ISSN 1741-7007. doi:
10.1186/1741-7007-12-4.

[67] Dongling Zheng, Chrystala Constantinidou, Jon L. Hobman, and Stephen D. Minchin. Iden-
tification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic
Acids Research, 32(19):5874–5893, October 2004. ISSN 0305-1048. doi: 10.1093/nar/
gkh908.

[68] Donghyuk Kim, Sang Woo Seo, Ye Gao, Hojung Nam, Gabriela I. Guzman, Byung-Kwan
Cho, and Bernhard O. Palsson. Systems assessment of transcriptional regulation on central
carbon metabolism by Cra and CRP. Nucleic Acids Research, 2018. doi: 10.1093/nar/
gky069.

[69] Constance Holden. Alliance Launched to Model E. coli. Science, 297(5586):1459–1460,
August 2002. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.297.5586.1459a.

202



[70] Xin Fang, Anand Sastry, Nathan Mih, Donghyuk Kim, Justin Tan, James T. Yurkovich,
Colton J. Lloyd, Ye Gao, Laurence Yang, and Bernhard O. Palsson. Global transcriptional
regulatory network for Escherichia coli robustly connects gene expression to transcription
factor activities. Proceedings of the National Academy of Sciences, 114(38):10286–10291,
September 2017. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1702581114.

[71] Talukder Ali Azam and Akira Ishihama. Twelve Species of the Nucleoid-associated Protein
from Escherichia coli SEQUENCE RECOGNITION SPECIFICITY AND DNA BINDING
AFFINITY. Journal of Biological Chemistry, 274(46):33105–33113, December 1999. ISSN
0021-9258, 1083-351X. doi: 10.1074/jbc.274.46.33105.

[72] Shane C. Dillon and Charles J. Dorman. Bacterial nucleoid-associated proteins, nucleoid
structure and gene expression. Nature Reviews Microbiology, 8(3):185–195, March 2010.
ISSN 1740-1534. doi: 10.1038/nrmicro2261.

[73] Beth A. Shen and Robert Landick. Transcription of Bacterial Chromatin. Journal of Molec-
ular Biology, May 2019. ISSN 0022-2836. doi: 10.1016/j.jmb.2019.05.041.

[74] T. L. Megraw and C. B. Chae. Functional complementarity between the HMG1-like yeast
mitochondrial histone HM and the bacterial histone-like protein HU. Journal of Biological
Chemistry, 268(17):12758–12763, June 1993. ISSN 0021-9258, 1083-351X.

[75] Jean-François Briat, Sylvie Letoffe, Régis Mache, and Josette Rouviere-Yaniv. Similarity
between the bacterial histone-like protein HU and a protein from spinach chloroplasts. FEBS
Letters, 172(1):75–79, June 1984. ISSN 0014-5793. doi: 10.1016/0014-5793(84)80877-7.

[76] Talukder Ali Azam, Akira Iwata, Akiko Nishimura, Susumu Ueda, and Akira Ishihama.
Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nu-
cleoid. Journal of Bacteriology, 181(20):6361–6370, October 1999. ISSN 0021-9193,
1098-5530.

[77] Talukder Ali Azam, Sota Hiraga, and Akira Ishihama. Two types of localization of the
DNA-binding proteins within the Escherichia coli nucleoid. Genes to Cells, 5(8):613–626,
2000. ISSN 1365-2443. doi: 10.1046/j.1365-2443.2000.00350.x.

[78] Tiffany Vora, Alison K. Hottes, and Saeed Tavazoie. Protein Occupancy Landscape of a
Bacterial Genome. Molecular Cell, 35(2):247–253, July 2009. ISSN 1097-2765. doi:
10.1016/j.molcel.2009.06.035.

[79] William Wiley Navarre, Steffen Porwollik, Yipeng Wang, Michael McClelland, Henry
Rosen, Stephen J. Libby, and Ferric C. Fang. Selective Silencing of Foreign DNA with
Low GC Content by the H-NS Protein in Salmonella. Science, 313(5784):236–238, July
2006. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1128794.

[80] Sacha Lucchini, Gary Rowley, Martin D. Goldberg, Douglas Hurd, Marcus Harrison, and
Jay C. D. Hinton. H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria.
PLOS Pathogens, 2(8):e81, August 2006. ISSN 1553-7374. doi: 10.1371/journal.ppat.
0020081.

203



[81] Benjamin Lang, Nicolas Blot, Emeline Bouffartigues, Malcolm Buckle, Marcel Geertz,
Claudio O. Gualerzi, Ramesh Mavathur, Georgi Muskhelishvili, Cynthia L. Pon, Sylvie
Rimsky, Stefano Stella, M. Madan Babu, and Andrew Travers. High-affinity DNA bind-
ing sites for H-NS provide a molecular basis for selective silencing within proteobacterial
genomes. Nucleic Acids Research, 35(18):6330–6337, September 2007. ISSN 0305-1048.
doi: 10.1093/nar/gkm712.

[82] Robert Landick, Joseph T Wade, and David C Grainger. H-NS and RNA polymerase: A
love–hate relationship? Current Opinion in Microbiology, 24:53–59, April 2015. ISSN
1369-5274. doi: 10.1016/j.mib.2015.01.009.

[83] Maarten C. Noom, William W. Navarre, Taku Oshima, Gijs J. L. Wuite, and Remus T. Dame.
H-NS promotes looped domain formation in the bacterial chromosome. Current Biology,
17(21):R913–R914, November 2007. ISSN 0960-9822. doi: 10.1016/j.cub.2007.09.005.

[84] Christina Kahramanoglou, Aswin S. N. Seshasayee, Ana I. Prieto, David Ibberson, Sabine
Schmidt, Jurgen Zimmermann, Vladimir Benes, Gillian M. Fraser, and Nicholas M. Lus-
combe. Direct and indirect effects of H-NS and Fis on global gene expression control in
Escherichia coli. Nucleic Acids Research, 39(6):2073–2091, March 2011. ISSN 0305-1048.
doi: 10.1093/nar/gkq934.

[85] Remus T. Dame, Maarten C. Noom, and Gijs J. L. Wuite. Bacterial chromatin organization
by H-NS protein unravelled using dual DNA manipulation. Nature, 444(7117):387–390,
November 2006. ISSN 1476-4687. doi: 10.1038/nature05283.

[86] Stefan T. Arold, Paul G. Leonard, Gary N. Parkinson, and John E. Ladbury. H-NS forms a
superhelical protein scaffold for DNA condensation. Proceedings of the National Academy
of Sciences, 107(36):15728–15732, September 2010. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1006966107.

[87] Beth A. Boudreau, Daniel R. Hron, Liang Qin, Ramon A. van der Valk, Matthew V. Kot-
lajich, Remus T. Dame, and Robert Landick. StpA and Hha stimulate pausing by RNA
polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Research,
46(11):5525–5546, June 2018. ISSN 1362-4962. doi: 10.1093/nar/gky265.

[88] W Ross, J F Thompson, J T Newlands, and R L Gourse. E.coli Fis protein activates ri-
bosomal RNA transcription in vitro and in vivo. The EMBO Journal, 9(11):3733–3742,
November 1990. ISSN 0261-4189.

[89] Anton J. Bokal IV, Wilma Ross, and Richard L. Gourse. The Transcriptional Activa-
tor Protein FIS: DNA Interactions and Cooperative Interactions with RNA Polymerase at
theEscherichia coli rrnBP1 Promoter. Journal of Molecular Biology, 245(3):197–207, Jan-
uary 1995. ISSN 0022-2836. doi: 10.1006/jmbi.1994.0016.

[90] Michael L. Opel, Kimberly A. Aeling, Walter M. Holmes, Reid C. Johnson, Craig J. Ben-
ham, and G. Wesley Hatfield. Activation of transcription initiation from a stable RNA pro-
moter by a Fis protein-mediated DNA structural transmission mechanism. Molecular Micro-
biology, 53(2):665–674, 2004. ISSN 1365-2958. doi: 10.1111/j.1365-2958.2004.04147.x.

204



[91] Sarah M McLeod, Sarah E Aiyar, Richard L Gourse, and Reid C Johnson. The C-terminal
domains of the RNA polymerase ↵ subunits: Contact site with fis and localization during co-
activation with CRP at the Escherichia coli proP P2 promoter1 1Edited by M. Gottesman.
Journal of Molecular Biology, 316(3):517–529, February 2002. ISSN 0022-2836. doi:
10.1006/jmbi.2001.5391.

[92] Carolina Sousa, Victor de Lorenzo, and Angel Cebolla. Modulation of gene expression
through chromosomal positioning in Escherichia coli. Microbiology, 143(6):2071–2078,
1997. doi: 10.1099/00221287-143-6-2071.

[93] Jack A. Bryant, Laura E. Sellars, Stephen J. W. Busby, and David J. Lee. Chromosome
position effects on gene expression in Escherichia coli K-12. Nucleic Acids Research, 42
(18):11383–11392, October 2014. ISSN 0305-1048. doi: 10.1093/nar/gku828.

[94] O. L. Miller, Barbara A. Hamkalo, and C. A. Thomas. Visualization of Bacterial Genes
in Action. Science, 169(3943):392–395, July 1970. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.169.3943.392.

[95] Giulia Oliva, Tobias Sahr, and Carmen Buchrieser. Small RNAs, 50 UTR elements and
RNA-binding proteins in intracellular bacteria: Impact on metabolism and virulence. FEMS
Microbiology Reviews, 39(3):331–349, May 2015. ISSN 1574-6976. doi: 10.1093/femsre/
fuv022.

[96] Elke Van Assche, Sandra Van Puyvelde, Jos Vanderleyden, and Hans P. Steenackers. RNA-
binding proteins involved in post-transcriptional regulation in bacteria. Frontiers in Micro-
biology, 6, March 2015. ISSN 1664-302X. doi: 10.3389/fmicb.2015.00141.

[97] Melissa J. Moore. From Birth to Death: The Complex Lives of Eukaryotic mRNAs.
Science, 309(5740):1514–1518, September 2005. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.1111443.

[98] Anand Ramanathan, G. Brett Robb, and Siu-Hong Chan. mRNA capping: Biological func-
tions and applications. Nucleic Acids Research, 44(16):7511–7526, September 2016. ISSN
0305-1048. doi: 10.1093/nar/gkw551.

[99] Thomas Gonatopoulos-Pournatzis and Victoria H. Cowling. Cap-binding complex (CBC).
Biochemical Journal, 457(2):231–242, January 2014. ISSN 0264-6021, 1470-8728. doi:
10.1042/BJ20131214.

[100] Yeon Lee and Donald C. Rio. Mechanisms and Regulation of Alternative Pre-mRNA
Splicing. Annual Review of Biochemistry, 84(1):291–323, 2015. doi: 10.1146/
annurev-biochem-060614-034316.

[101] Thomas R. Cech, Arthur J. Zaug, and Paula J. Grabowski. In vitro splicing of the ribosomal
RNA precursor of tetrahymena: Involvement of a guanosine nucleotide in the excision of
the intervening sequence. Cell, 27(3, Part 2):487–496, December 1981. ISSN 0092-8674.
doi: 10.1016/0092-8674(81)90390-1.

205



[102] Evan C. Merkhofer, Peter Hu, and Tracy L. Johnson. Introduction to Cotranscriptional RNA
Splicing. Methods in molecular biology (Clifton, N.J.), 1126:83–96, 2014. ISSN 1064-3745.
doi: 10.1007/978-1-62703-980-2 6.

[103] Nick J. Proudfoot. Ending the message: Poly(A) signals then and now. Genes &
Development, 25(17):1770–1782, January 2011. ISSN 0890-9369, 1549-5477. doi:
10.1101/gad.17268411.

[104] Ran Elkon, Alejandro P. Ugalde, and Reuven Agami. Alternative cleavage and polyadenyla-
tion: Extent, regulation and function. Nature Reviews Genetics, 14(7):496–506, July 2013.
ISSN 1471-0064. doi: 10.1038/nrg3482.

[105] Jay R. Greenberg. High Stability of Messenger RNA in Growing Cultured Cells. Nature,
240(5376):102–104, November 1972. ISSN 1476-4687. doi: 10.1038/240102a0.

[106] Hyeshik Chang, Jaechul Lim, Minju Ha, and V. Narry Kim. TAIL-seq: Genome-wide
Determination of Poly(A) Tail Length and 30 End Modifications. Molecular Cell, 53(6):
1044–1052, March 2014. ISSN 1097-2765. doi: 10.1016/j.molcel.2014.02.007.

[107] Richard J. Jackson, Christopher U. T. Hellen, and Tatyana V. Pestova. The mechanism of
eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular
Cell Biology, 11(2):113–127, February 2010. ISSN 1471-0080. doi: 10.1038/nrm2838.

[108] Christine Mayr. Regulation by 30-Untranslated Regions. Annual Review of Genetics, 51(1):
171–194, 2017. doi: 10.1146/annurev-genet-120116-024704.

[109] Lynne E. Maquat, Woan-Yuh Tarn, and Olaf Isken. The Pioneer Round of Translation:
Features and Functions. Cell, 142(3):368–374, August 2010. ISSN 0092-8674. doi: 10.
1016/j.cell.2010.07.022.

[110] Anna Łabno, Rafał Tomecki, and Andrzej Dziembowski. Cytoplasmic RNA decay path-
ways - Enzymes and mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell
Research, 1863(12):3125–3147, December 2016. ISSN 0167-4889. doi: 10.1016/j.bbamcr.
2016.09.023.

[111] Elmar Wahle and G. Sebastiaan Winkler. RNA decay machines: Deadenylation by the
Ccr4–Not and Pan2–Pan3 complexes. Biochimica et Biophysica Acta (BBA) - Gene Regula-
tory Mechanisms, 1829(6):561–570, June 2013. ISSN 1874-9399. doi: 10.1016/j.bbagrm.
2013.01.003.

[112] Martine A. Collart. The Ccr4-Not complex is a key regulator of eukaryotic gene expression.
Wiley Interdisciplinary Reviews: RNA, 7(4):438–454, 2016. ISSN 1757-7012. doi: 10.1002/
wrna.1332.

[113] Akio Yamashita, Tsung-Cheng Chang, Yukiko Yamashita, Wenmiao Zhu, Zhenping Zhong,
Chyi-Ying A. Chen, and Ann-Bin Shyu. Concerted action of poly(A) nucleases and decap-
ping enzyme in mammalian mRNA turnover. Nature Structural & Molecular Biology, 12
(12):1054, December 2005. ISSN 1545-9985. doi: 10.1038/nsmb1016.

206



[114] Marcos Arribas-Layton, Donghui Wu, Jens Lykke-Andersen, and Haiwei Song. Structural
and functional control of the eukaryotic mRNA decapping machinery. Biochimica et Bio-
physica Acta (BBA) - Gene Regulatory Mechanisms, 1829(6):580–589, June 2013. ISSN
1874-9399. doi: 10.1016/j.bbagrm.2012.12.006.

[115] Roy Parker. RNA Degradation in Saccharomyces cerevisae. Genetics, 191(3):671–702, July
2012. ISSN 0016-6731, 1943-2631. doi: 10.1534/genetics.111.137265.

[116] Aleksander Chlebowski, Michał Lubas, Torben Heick Jensen, and Andrzej Dziembowski.
RNA decay machines: The exosome. Biochimica et Biophysica Acta (BBA) - Gene Regula-
tory Mechanisms, 1829(6):552–560, June 2013. ISSN 1874-9399. doi: 10.1016/j.bbagrm.
2013.01.006.

[117] Christopher Iain Jones, Maria Vasilyevna Zabolotskaya, and Sarah Faith Newbury. The 50

!30 exoribonuclease XRN1/Pacman and its functions in cellular processes and develop-
ment. Wiley Interdisciplinary Reviews: RNA, 3(4):455–468, 2012. ISSN 1757-7012. doi:
10.1002/wrna.1109.

[118] Rafal Tomecki and Andrzej Dziembowski. Novel endoribonucleases as central players in
various pathways of eukaryotic RNA metabolism. RNA, 16(9):1692–1724, January 2010.
ISSN 1355-8382, 1469-9001. doi: 10.1261/rna.2237610.

[119] Olaf Isken, Yoon Ki Kim, Nao Hosoda, Greg L. Mayeur, John W. B. Hershey, and Lynne E.
Maquat. Upf1 Phosphorylation Triggers Translational Repression during Nonsense-
Mediated mRNA Decay. Cell, 133(2):314–327, April 2008. ISSN 0092-8674. doi:
10.1016/j.cell.2008.02.030.

[120] Lasse Peters and Gunter Meister. Argonaute Proteins: Mediators of RNA Silencing. Molec-
ular Cell, 26(5):611–623, June 2007. ISSN 1097-2765. doi: 10.1016/j.molcel.2007.05.001.

[121] Julius Brennecke, Alexander Stark, Robert B. Russell, and Stephen M. Cohen. Principles of
MicroRNA–Target Recognition. PLOS Biology, 3(3):e85, February 2005. ISSN 1545-7885.
doi: 10.1371/journal.pbio.0030085.

[122] Tim A. Rand, Sean Petersen, Fenghe Du, and Xiaodong Wang. Argonaute2 Cleaves the
Anti-Guide Strand of siRNA during RISC Activation. Cell, 123(4):621–629, November
2005. ISSN 0092-8674. doi: 10.1016/j.cell.2005.10.020.

[123] Stefanie Jonas and Elisa Izaurralde. Towards a molecular understanding of microRNA-
mediated gene silencing. Nature Reviews Genetics, 16(7):421–433, July 2015. ISSN 1471-
0056. doi: 10.1038/nrg3965.

[124] Vikram Agarwal, George W Bell, Jin-Wu Nam, and David P Bartel. Predicting effective
microRNA target sites in mammalian mRNAs. eLife, 4:e05005, August 2015. ISSN 2050-
084X. doi: 10.7554/eLife.05005.

[125] Robin C. Friedman, Kyle Kai-How Farh, Christopher B. Burge, and David P. Bartel. Most
mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1):92–105,
January 2009. ISSN 1088-9051, 1549-5469. doi: 10.1101/gr.082701.108.

207



[126] Stefanie Gerstberger, Markus Hafner, and Thomas Tuschl. A census of human RNA-binding
proteins. Nature Reviews Genetics, 15(12):829–845, December 2014. ISSN 1471-0056. doi:
10.1038/nrg3813.

[127] Robin P. Wharton and Gary Struhl. RNA regulatory elements mediate control of Drosophila
body pattern by the posterior morphogen nanos. Cell, 67(5):955–967, November 1991.
ISSN 0092-8674. doi: 10.1016/0092-8674(91)90368-9.

[128] P D Zamore, J R Williamson, and R Lehmann. The Pumilio protein binds RNA through
a conserved domain that defines a new class of RNA-binding proteins. RNA, 3(12):1421–
1433, December 1997. ISSN 1355-8382.

[129] Robin P Wharton, Junichiro Sonoda, Tammy Lee, Michelle Patterson, and Yoshihiko Mu-
rata. The Pumilio RNA-Binding Domain Is Also a Translational Regulator. Molecular Cell,
1(6):863–872, May 1998. ISSN 1097-2765. doi: 10.1016/S1097-2765(00)80085-4.

[130] C Nusslein-Volhard, H. Frohnhofer, and R Lehmann. Determination of anteroposterior
polarity in Drosophila. Science, 238(4834):1675–1681, December 1987. ISSN 0036-8075,
1095-9203. doi: 10.1126/science.3686007.

[131] Jamie Van Etten, Trista L. Schagat, Joel Hrit, Chase Weidmann, Justin Brumbaugh,
Joshua J. Coon, and Aaron C. Goldstrohm. Human Pumilio proteins recruit multiple dead-
enylases to efficiently repress messenger RNAs. Journal of Biological Chemistry, page
jbc.M112.373522, September 2012. ISSN 0021-9258, 1083-351X. doi: 10.1074/jbc.M112.
373522.

[132] Xiaoqiang Wang, Juanita McLachlan, Phillip D. Zamore, and Traci M. Tanaka Hall. Mod-
ular Recognition of RNA by a Human Pumilio-Homology Domain. Cell, 110(4):501–512,
August 2002. ISSN 0092-8674. doi: 10.1016/S0092-8674(02)00873-5.

[133] Aaron C. Goldstrohm, Traci M. Tanaka Hall, and Katherine M. McKenney. Post-
transcriptional Regulatory Functions of Mammalian Pumilio Proteins. Trends in Genetics,
34(12):972–990, December 2018. ISSN 0168-9525. doi: 10.1016/j.tig.2018.09.006.

[134] Jennifer A. Bohn, Jamie L. Van Etten, Trista L. Schagat, Brittany M. Bowman, Richard C.
McEachin, Peter L. Freddolino, and Aaron C. Goldstrohm. Identification of diverse target
RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Research,
46(1):362–386, January 2018. ISSN 0305-1048. doi: 10.1093/nar/gkx1120.

[135] Alessia Galgano, Michael Forrer, Lukasz Jaskiewicz, Alexander Kanitz, Mihaela Zavolan,
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