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Preface

"A native protein molecule with specific properties must possess a definite

configuration, involving the coiling of the polypeptide chain or chains in a rather

well-defined way. The forces holding the molecule in this configuration may arise

in part from peptide bonds between sidechain amino and carboxyl groups or

from sidechain ester bonds or S-S bonds; in the main, however, they are probably

due to hydrogen bonds and similar interatomic interactions. Interactions of this

type, while individually weak, can by combining their forces stabilize a particular

structure for a molecule as large as that of a protein."

– Pauling, L., and Niemann, C. The Structure of Proteins J. Am. Chem. Soc.

(1939): 1860-1867.
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Abstract

Molecular diagnosis has proven to be a powerful tool for early detection of neurodegener-

ative disease, but research in this field is still relatively nascent. In Alzheimer’s Disease

specifically, levels of microtubule associated protein tau and amyloid-β1-42 in cerebrospinal

fluid are becoming reliable pathological indicators. The current gold standard for detecting

these biomarkers is an enzyme-linked immunosorbent assay, and while this method has a

limit of detection on the order of pg mL-1, it lacks the ability to provide information about

aggregation extent and structure on a per-protein basis. From a disease standpoint, neuro-

logical pathologies are often extremely complex in their biological manifestation, and precise

mechanisms for many of these diseases are still being discovered and revised. A thorough

understanding of in situ structure and properties of neurological disease-related proteins

would likely help clarify some of these complicated mechanisms. Resistive-pulse methods

may be useful in this effort, as they can determine specific biomarker concentrations and can

also unveil multiple physical qualities of single proteins or protein aggregates in an aqueous

sample. The latter capability is critical, and could allow for both earlier diagnoses and a

stronger mechanistic understanding of neurological disease progression.

The work presented in this dissertation, therefore, represents broad efforts toward devel-

oping a nanopore-based system able to characterize amyloids and protein complexes related

to neurodegenerative disease. These efforts range from upstream fabrication and character-

ization of nanopores in synthetic substrates to downstream techniques for optimizing the

accuracy and efficiency of analyses on resistive pulses. Single proteins rotating and trans-

lating while tethered to the surface of a nanopore provide rich information during transit

xviii



through the pore that makes it possible to determine their ellipsoidal shape, volume, dipole

moment, charge, and rotational diffusion coefficient in a time frame of just a few hundred

microseconds. This five-dimensional protein fingerprint, however, requires chemical mod-

ification of each protein and is thus not ideal for studying protein dynamics or transient

protein complexes, both of which are relevant when characterizing amyloids. Transitioning

to low-noise nanopore substrates and high-bandwidth recordings enables label-free identi-

fication and quantification of unperturbed, natively-folded proteins and protein complexes

in solution – no chemical tags, tethers, or fluorescent labels are needed. Such a transi-

tion is nontrivial; proteins passing uninhibited through the strong electric field inside of

a nanopore rotate and translocate rapidly, posing a challenge to time-resolve their various

orientations adequately while circumventing adhesion to nanopore walls. Furthermore, dur-

ing their translocation through the nanopore, untethered, native proteins diffuse laterally,

generating asymmetric disturbances of the electric field and larger-than-expected resistive

pulse magnitudes. Known as off-axis effects, these latter phenomena add a noise-like element

to the electrical recordings. We evaluate, both computationally and experimentally, the in-

fluence of such label-free complications on resulting parameter estimates, and place these

results in the context of developing future iterations of nanopore-based protein sensors.

In light of the spectacular recent success of nanopore-based nucleic acid sequencing, it

is likely that the next frontier for nanopore-based analysis is the characterization of single

proteins and, in particular, the characterization of protein aggregates such as amyloids.

The experiments and results presented here enable future particle-by-particle analysis of

amyloids with nanopores to rapidly reconstruct their heterogeneity in size and shape, both

of which are correlated with the neurotoxicity of amyloid samples and are being investigated

as biomarkers for neurodegenerative diseases.
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Chapter 1: Overview and Concepts

Aggregates of misfolded proteins are associated with several devastating neurodegenerative

diseases. These so-called amyloids are therefore explored as biomarkers for diagnosis of de-

mentia and other disorders, as well as for monitoring of disease progression, and assessment

of the efficacy of therapeutic intervention. Quantification and characterization of amyloids

as biomarkers is particularly demanding because the same amyloid-forming protein can exist

in different states of assembly ranging from nanometer-sized monomers to micrometer-long

fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo.

Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects,

and their molecular organization, size, and shape appears to determine their toxicity. The

emerging field of nanopore-based analytics, which has recently demonstrated single molecule

and single aggregate sensitivity, holds the potential to account for the heterogeneity of amy-

loid samples and to characterize these particles – rapidly, label-free, and in aqueous solution

– with regard to their size, shape, and abundance. This introductory chapter describes the

concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analy-

sis, and discusses limitations and challenges that will need to be overcome to realize the full

potential of nanopore-based amyloid characterization on a single-particle level.
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1.1 Background

Neurodegenerative disorders like Alzheimer’s disease and Parkinson’s disease, as well as other

medical conditions like Type II diabetes, are often associated with the presence and activity of

toxic protein aggregates known as amyloids.[1–6] The incidence, or probability of occurrence,

of many of these diseases increases with age.[5] Today, more than 30 million people worldwide

suffer from dementias linked to amyloids, and the World Health Organization predicts that

this figure may exceed 100 million by the year 2050 as life expectancies increase.[7] While

these conditions are devastating with regard to patient suffering and impacts on family

members and caregivers, neurological amyloidoses are also responsible for more than USD

500 billion in worldwide annual costs.[7] To reduce patient suffering as well as the associated

economic burden, research groups across scientific disciplines have investigated strategies to

better understand and interfere with the transition from soluble monomeric proteins and

peptides into soluble oligomers and, eventually, into insoluble amyloid fibrils and plaques

that are hallmarks of neurodegenerative disease.[8, 9]

Amyloid-forming proteins often undergo an aggregation process analogous to crystal for-

mation where the generation of a "seed" is the rate-limiting step for the assembly of a large

ordered structure.[10, 11] Treatments that are currently in clinical trial target these seeds

and their precursors in order to redirect or disrupt downstream aggregate formation at an

early stage before irreversible nerve cell damage occurs.[12] Additionally, there is evidence

that the size, shape, and concentration of oligomeric amyloid aggregates determines their

toxicity to neurons,[13, 14] and patients with certain amyloidoses have elevated counts of

these oligomeric species in their cerebrospinal fluid (CSF).[15, 16] Findings like these suggest

that soluble amyloid aggregates may be valuable biomarkers for predicting or monitoring dis-

ease progression and may also help to assess the efficacy of therapeutic intervention. There

is thus a need for a characterization technique that provides a comprehensive profile of the

individual amyloid particles in bodily fluids like CSF, blood, tears, saliva, or urine.[17, 18]

While a range of techniques is currently being used to characterize amyloids and their
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Table 1.1. Comparison of different characterization techniques for amyloid samples. In the resources required
and expertise required columns, one star corresponds to minimal resources, and three stars correspond to ex-
tensive resources. In the continuous measurement column, "Y", or yes, represents continuous measurements,
and "N", or no, represents a snapshot measurement. Adapted with permission.[19] Copyright 2018, Wiley-VCH.
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aggregation processes (Table 1.1), amyloid samples remain extremely demanding to analyze

and none of the established techniques meets all demands of an ideal analysis method.[20–22]

For instance, amyloid aggregates are challenging analytes to characterize because they are

heterogeneous in size and structure, they rearrange, interchange dynamically and grow over

time, and they adhere to various surfaces including tubing and microvials.[23, 24] Meth-

ods attempting to characterize ensembles of these heterogeneous aggregates obscure po-

tentially important physical differences between individual macromolecular assemblies.[25]

Conversely, techniques that label or chemically modify individual amyloids vary in their

sensitivity and specificity to different morphologies or chemical structures and the modi-

fication itself may alter the sample.[26] Long and extensive sample preparation processes

can bias amyloid populations toward stable species and may destroy potentially important

transient complexes.[27] Nonetheless, current approaches to characterize amyloids provide a

range of relevant parameters of amyloid aggregates. For instance, methods like transmission

electron microscopy (TEM), atomic force microscopy (AFM), and mass spectrometry (MS)

create "macromolecular snapshots", providing structural information about proteins and ag-

gregates at a single time point.[22] Other techniques using fluorescent dyes, tracer molecules

such as 18F-florbetapir, or fluorescently labeled antibodies track aggregation processes in

vivo or in vitro to probe the dynamics and formation rates of different complexes.[28] Some

methods focus on defining and detecting amyloid biomarkers that indicate disease predispo-

sition or progression.[15] It is common to perform various analysis approaches in parallel in

order to determine structural and chemical characteristics of an amyloid sample, though such

combinations often require significant financial and technical resources. An ideal technique

for amyloid characterization would combine these functionalities to provide rich, rapid, and

robust information about single amyloid particles in high throughput and in a clinical setting

without the need for expensive equipment or technical expertise.

One emerging technique that may meet several of these demands is resistive pulse-based

nanopore sensing, as it is capable of characterizing individual unlabeled particles in aqueous
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Figure 1.1. Cartoon introduction to nanopore sensing. A) The main principle of single particle resistive pulse
analysis is similar to security scanners at airports: the interrogation volume accommodates only one particle
(here, one person) at a time. B) Scanning of particle properties occurs during its residence time in this volume,
determined properties can be related back to each particular particle because only one is present.

solution. The method was originally developed in the late 1940s for applications on the

microscale such as counting and characterizing biological cells.[29–31] Resistive pulse exper-

iments have now made it possible to probe nanoscale analytes including small molecules,[32,

33] metal ions,[34] polynucleotides,[35] nanoparticles,[36, 37] proteins,[38–41] and amyloids.[40,

42–51] The application of resistive pulse sensing to protein characterization emerged less

than 15 years ago and is not as developed as the established methods listed in Table 1.1,

but it combines attractive capabilities that make it a potentially powerful tool for studying

amyloids. Some of these benefits, such as the characterization of shapes, volumes, diffu-

sion coefficients, and electrical and mechanical properties of individual proteins and protein

complexes, are appealing for fundamental biophysical studies. Other advantages, including

the ability to extract resistive pulses from single unlabeled molecules and to perform anal-

yses of those resistive pulses in real time, may be clinically useful (shown visually later in

Figure 6.1).[52] This chapter focuses specifically on the application of resistive pulse sens-

ing to amyloid-related protein analytes and discusses the concepts and challenges of this

application.
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1.2 Principles of Resistive Pulse Sensing

The concept of resistive pulse sensing traces back to the invention of the Coulter counter for

blood cells.[53] Briefly, if two electrolyte-filled reservoirs are connected by a small channel,

a difference in electrical potential between the two reservoirs generates a current through

the channel. This ionic current is constant at a constant potential difference, but when an

insulating particle passes from one reservoir to the other through the channel (i.e. through

the sensing volume), it transiently displaces conducting electrolyte and reduces the current

to produce a resistive pulse.[36, 54, 55] With regard to the other macromolecules in solution,

the method can also be thought of as a transient purification, as it interrogates one particle

at a time from bulk solution; this concept is illustrated in Figure 1.1. Due to the strong

electric field and concomitant fast electrophoretic motion of particles in the pore, the prob-

ability of finding two macromolecules in the small sensing volume at the same time is very

low, especially when the average duration between particle capture is at least 100-fold longer

than the average duration of the resistive pulses (see Section 4.4.5 for calculations). In sce-

narios where particle concentrations are relatively high (∼1 mM or greater) and each particle

dwells within the pore for a relatively long duration (∼1 ms or greater), the probability of

multiple-occupancy events increases and may lead to rare events that must be excluded from

analysis.[56] For protein analysis by resistive pulse sensing, the protein concentrations are,

however, typically in the micromolar range or below and the dwell times are typically shorter

than 1 ms. "Continuous" resistive-pulses, like those generated when long strands of nucleic

acids pass end-to-end through a sensing volume, have a particular set of intricacies that

are reviewed elsewhere.[57–61] Here, we highlight the resistive pulses produced by discrete

particles, which typically have lengths shorter than the length of the nanopore, as these are

relevant for the sensing and characterization of amyloid oligomers and short protofibrils.

For resistive pulse sensing at any scale, sensing volumes must be appropriately sized to

their target analyte.[62] A particle will not produce a detectable signal if its volume is

more than 1000-fold smaller than the sensing volume, and it will not translocate through a
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Figure 1.2. Fundamental concepts of resistive pulse sensing. A) An electrical potential applied across the pore
creates a constant ionic current, and particles passing through the sensing volume produce resistive pulses pro-
portional to their volume. B) Translocation of spherical particles through cylindrical nanopores produces square-
shaped resistive pulses, and the duration of translocation events is proportional to their electrophoretic mobility.
Brownian rotation of non-spherical particles modulates the ionic current through the sensing volume depending
on their orientation within the pore. The minimum (∆Imin) and maximum (∆Imax) blockade values can be used
to estimate shape, dipole moment, and rotational diffusion coefficient of the particle. C) Two or more particles
bound together produce a larger resistive pulse (∆Ibound) than sequential translocations of individual particles
(∆Iunbound). The fraction of resistive pulses from bound to unbound proteins is related to binding affinities. D)
Particle structures can fluctuate when confined or compressed within a sensing volume depending on mechani-
cal properties of the molecules or molecular complexes. Less-flexible particles (σstiff ) produce resistive pulses
with smaller amplitude fluctuations than flexible particles (σflex). Adapted with permission.[19] Copyright 2018,
Wiley-VCH.
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sensing volume that it cannot enter due to steric constraints. Particles that do not conform

to these size restrictions can still provide indirect information about the system,[63] but they

cannot be analyzed directly within the sensing volume. If the sensing volume is sufficiently

large to allow a non-spherical particle to rotate relatively freely, that particle will produce

a unique resistive pulse signature that depends not only on its volume, but also on its

shape and relative orientation to the electric field (Figure 1.2).[39, 62] Rotations during

transit through the pore cause fluctuations within the resistive pulse that originate from

different orientations of a three-dimensional shape in the electric field. The physical basis

for this orientation dependence was first explored by Golibersuch[62] and others,[29, 64] who

found that rotations of disk-shaped red blood cells passing through a cylindrical channel

generated characteristic resistive pulses with distinct minima and maxima. The minimum

values (∆Imin) corresponded to the cell in its edgewise orientation relative to the channel

axis, and the maximum values (∆Imax), which were about 2-fold greater in amplitude than

the minimum, corresponded to the cell in its crosswise orientation relative to the channel axis

(Figure 1.2-B). Fricke [65] and others [66] quantified these effects with a physical descriptor,

the electrical shape factor γ, which depends on the particle’s ellipsoidal shape and orientation

within a cylindrical sensing volume, and is directly proportional to resistive pulse amplitude.

The electrical shape factor is also valid on the nanoscale, though nanometer-sized proteins

and particles rotate at a rate that is several orders of magnitude faster than cells and thus

require high-bandwidth recording electronics and strategies like surface anchoring [38] to

slow their rotation in order to fully resolve their characteristic fluctuations. We recently

took advantage of these fluctuations in order to approximate the shape of an individual

particle translocating through a nanopore, and present those results in Chapters 3 and 4.[39,

67] Furthermore, we used the particle’s bias toward certain orientations during its transit

through the strong electric field inside of the nanopore (several MV m-1) to estimate the net

dipole moment of the particle. The most probable speed at which the particle transitions

between these orientations is proportional to its bulk rotational diffusion coefficient, and the
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amount of time that a particle occupies the sensing volume, also referred to as its dwell

or residence time, is a function of the particle’s lateral diffusion coefficient and is inversely

proportional to its net charge. Measured simultaneously, these five parameters – ellipsoidal

shape, volume, charge, rotational diffusion coefficient, and dipole moment – define a high-

content multidimensional "fingerprint" of a single particle that helps to characterize and

discriminate between particles in a mixture.[39]

Resistive pulse sensing can also probe the conformational variability of particles.[41, 68,

69] When a particle is sterically constrained within a small sensing volume, the resistive

pulse associated with that particle’s translocation provides information about the particle’s

conformational variability.[41, 68, 69] In the case of proteins, this information appears as

fluctuations in amplitudes between multiple resistive pulses (Figure 1.2-D) and has been at-

tributed to differences in secondary structural composition (e.g. β-sheet to α-helix ratio).[41,

68, 69] Resistive pulse experiments, in principle, may also make it possible to monitor the

interactions of particles or amyloid-forming molecules with soluble species. For instance,

our group used a nanopore to monitor immunoprecipitation and to determine the binding

affinity of an antibody to the surface of a virus particle by relating resistive pulse amplitudes

over time to the number of binding sites occupied on the particle. In these approaches, each

binding event increased the aggregate volume, and thus the magnitude of the resistive pulse,

by a constant increment.[70–72] Likewise, Si et al. showed that denatured proteins produce

different resistive pulses than their native protein counterparts, and that the differences cor-

respond to unfolding processes.[39, 73] Each of these applications of resistive pulse sensing

provides different information about individual particles in aqueous solution and about their

time-dependent changes in response to various stimuli.
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1.3 Detection and Characterization of Amyloids with

Biological Nanopores

Biological nanopores range from ion channels to assemblies of pore-forming toxins[74, 75]

and their biological function is to facilitate or regulate the passage of polar molecules, ions,

or peptides across cell membranes.[76] With regard to resistive pulse sensing, biological

nanopores are appealing as their sensing volumes are often defined with atomic precision

and they can be produced in large quantities through bacteria fermentation or cell culture

followed by purification.[77] Due to their extremely small sensing volumes in pore lumens with

diameters smaller than 4 nm (Figure 1.3), biological nanopores are particularly well-suited to

sensing small analytes, including proteins smaller than 30 kDa as well as single-stranded and

double-stranded DNA or RNA.[78–80] Furthermore, several of these protein-based nanopores

can be engineered by site-directed mutagenesis to integrate desired properties such as specific

binding sites or residues that modify the electrostatic landscape in the pore lumen.[32, 81–

84]

1.3.1 Resistive Pulses Provide Information about the Kinetics of

Enzyme Cleavage of Amyloid-Forming Peptides

Two key research developments facilitated the nanoscale application of resistive pulse count-

ing with biological nanopores: inhibiting the voltage-dependent nature of ion channel pro-

teins,[33, 84, 85] and limiting the rate at which biomolecules of interest transit the lumen

of the pore.[82, 86] These developments enabled seminal work by Berzrukov and Kasionow-

icz, who used the pore from α-toxin (Staphylococcus aureus) to measure protonation rates

and to discriminate between protons and deuterons.[33, 84, 85] Kasianowicz et al. were the

first to demonstrate the detection of individual polynucleotide molecules using the pore α-

hemolysin,[87] and Berzrukov et al. showed that dwell times of certain polyethylene glycol

(PEG) molecules were more than 1000-fold longer than values predicted by 1D diffusion be-
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Figure 1.3. Examples of biological nanopores used for sensing biomolecules. Cross-sections show their unique
high-resolution structures and sizes that connect two electrolyte-filled chambers across a lipid membrane. As
shown for α-hemolysin, protein pores insert into lipid bilayer membranes (grey) and conduct a constant ionic
current if a voltage is applied across the membrane. Scale bars show the narrowest constriction of each sensing
volume and were measured from high-resolution structures using Chimera software. Protein cartoons were
generated using Chimera software with the following codes from the protein data bank: α-hemolysin (7AHL),
MspA (1UUN), FraC (4TSY), Phi29 Motor Protein (1JNB), Aerolysin (5JZT) , and ClyA (2WCD). Adapted with
permission.[19] Copyright 2018, Wiley-VCH.
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cause the molecules reversibly bind within the nanopore;[82] a formal theory later proposed

by Lubensky and Nelson helped to explain these polymer-pore interactions.[88] This body of

research established biological nanopores as resistive pulse sensors, and biological nanopores

have since made it possible to detect not only polymers, but also small molecules,[56] and

amyloid-forming peptides.

The first report of characterizing an amyloid-related peptide with biological nanopores

focused on the amyloid-β (Aβ) peptide segment Aβ10-20.[89] (Note here that Aβ refers to

a peptide involved in Alzheimer’s disease that typically contains between 37 and 43 amino

acids, and we denote the particular segment of Aβ using subscripted numbers.) By modify-

ing the interior of an α-hemolysin pore to contain additional aromatic binding regions, Zhao

et al. prolonged the residence times of Aβ10-20 and other peptides rich in aromatic residues.

They related residence times and resistive pulse amplitudes of the peptides to binding affini-

ties within the nanopore, and demonstrated that nanopores could be used to determine the

presence or absence of various small peptides in a mixture.[43] This setup also allowed Zhao

and colleagues to monitor trypsin-catalyzed cleavage of Aβ10-20. Cleavage of proteins like

amyloid precursor protein (APP) by β- and γ-secretases plays a role in downstream amy-

loid formation and thereby possibly influences diseases like Alzheimer’s and Parkinson’s.[90]

These results demonstrated that nanopores can provide information about the kinetics of

enzymatic cleavage of amyloids without the need to label the amyloids.[43]

1.3.2 Interactions between Amyloid-Forming Peptides and Molecules

that Modulate Aggregation

Experiments with biological nanopores can investigate interactions between small molecules

and amyloid-forming peptides. Hai-Yan Wang et al. studied the influence of aggregation

promotors like β-cyclodextrin and aggregation inhibitors like Congo red on the aggregation

kinetics of Aβ. To this end, the authors followed aggregation over time by monitoring the

frequencies of resistive pulses, which are related to particle concentration, and the amplitudes
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of resistive pulses, which are related to particle size.[44] A similar assay revealed the influence

of copper (Cu2+) ions on the conformation of Aβ1-16 peptide and the rate at which it formed

oligomers. Human Aβ1-16 had stronger and longer-lasting interactions with Cu2+ compared

to the rat variant of Aβ1-16, likely because of a single amino acid difference (human HIS-13

versus rat ARG-13).[91] Wang et al. proposed that HIS-13 plays a role in metal-induced

aggregation and could therefore be a potential therapeutic target.[44, 92] Information about

aggregation behavior of specific peptide sub-sequences may be useful in the context of ther-

apeutic approaches to inhibit aggregation, and it can reveal structure-function relationships

for the full-sequence peptide. For instance, the Aβ25-35 peptide has a β-sheet structure and

forms aggregates, but its inverted sequence Aβ35-25 takes on a random coil structure and does

not exhibit neurotoxicity.[93] Hu et al. found that Aβ25-35 produced large current blockages

due to its extended β-sheets and its translocation events became less frequent with time,

suggesting that it was aggregating into complexes too large to enter the sensing volume of

the α-hemolysin nanopore.[47] Solutions of Aβ35-25, on the other hand, generated smaller

and shorter blockage events than those of Aβ25-35, and frequencies of Aβ35-25 translocation

events were consistent over time, suggesting that the β-sheet motif could be detected using

a nanopore and likely plays a role in aggregation.[47]

1.3.3 Investigations of Amyloid-Forming Peptides other than Aβ

Most detection and characterization of amyloids using biological nanopores has focused

on the Aβ peptide. There are more than 30 amyloid-forming peptides or proteins that

are associated with human disorders, including prion protein (PrP) in the spongiform en-

cephalopathies, huntingtin protein in Huntington’s disease, and α-synuclein (α-Syn) in Parkin-

son’s disease.[5] One reason that Aβ has been popular in research with biological nanopores

thus far is its small (4.5 kDa) molecular weight; many other amyloid-forming proteins are

too large in their natively folded conformation to fit through the small confines of a biolog-

ical nanopore. Some proteins, like α-Syn, are natively unfolded and can pass through the
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nanopore as a single strand,[94] while large globular proteins can be denatured in a solution of

5M Guanidinium HCl and passed through the sensing volume in a mostly unfolded state.[95]

Jeremy Lee’s research group employed this denaturation strategy and reported distributions

of current blockades for different prion proteins, as well as for Aβ and α-Syn.[95–98] Despite

these approaches, the large size of some amyloid-forming proteins or their aggregates remains

a major challenge to their characterization with biological pores, especially when the native

structure of the protein or amyloid particle is of interest. At present, no biological pore can

accommodate an intact amyloid oligomer larger than 4 nm. Some research groups have be-

gun to engineer protein-based nanopores with larger sizes than natural pores,[99, 100] while

others have chosen to fabricate and use synthetic nanopores in different sizes and materials.

1.4 Detection and Characterization of Amyloids with

Synthetic Nanopores

Synthetic nanopores with custom diameters in the range from 1 nm to 100 nm facilitate

the detection and analysis of larger biomolecules including natively-folded proteins[101] and

double-stranded DNA.[102–104] Typically, these sensing volumes are fabricated by generat-

ing holes with nanometer-scale diameters in thin (less than 100 nm) insulating membranes

(Figure 1.4). Manufacturing techniques for nanopore formation include dielectric break-

down,[105], TEM drilling,[106] helium ion microscope drilling,[107] capillary shrinking,[108]

and gold particle heating,[109] while substrates range from silicon,[110] silica (glass),[111] sil-

icon nitride,[102] MoS2,[112] HfO2,[113] and graphene.[114] Synthetic nanopores of all sizes

and materials still suffer from two critical drawbacks: proteins tend to adhere to the nanopore

substrate and hence clog the pore, or – when proteins do not adhere to the substrate – they

transit the nanopore too quickly such that the majority of them cannot be detected by

conventional electrical recording equipment.[38, 115]
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Figure 1.4. Examples of synthetic nanopores for characterizing biomolecules. A) Image of a silicon scaffold sup-
porting a free-standing silicon nitride membrane, and cross-section of a nanopore in a free-standing membrane
with an anti-adhesive coating. B) Glass capillary tubes can be locally heated and mechanically stretched to ter-
minate in hollow tips with nanometer diameters. The terminal tips then act as a sensing volume that connects two
electrolyte-filled reservoirs. C) Scanning electron microscopy (SEM) images of a membrane containing parallel
nanochannels used to connect two reservoirs. The membrane was functionalized with amyloid-forming peptides,
and the ionic current through the membrane slowly declined as peptides aggregated and occluded the channels.
Adapted with permission.[19] Copyright 2018, Wiley-VCH.
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1.4.1 Lipid Bilayer Coatings Allow First Measurements of Amyloids with

Synthetic Nanopores

In response to these problems, several research groups in the synthetic nanopore field have

focused on creating anti-adhesive coatings.[38, 116] One such coating introduced by our

group – fluid lipid bilayers – prevents unwanted adhesion and slows protein transit through

the nanopore by anchoring proteins to activated lipids.[117] To this end, we coated a silicon

nitride nanopore with a supported lipid bilayer in order to characterize Aβ1-40 peptide in

the first application of a synthetic nanopore to an amyloid-related protein.[38, 40] This

work quantified the formation of four distinct Aβ1-40 aggregates over the course of a 72-hour

aggregation period: spherical oligomers, short protofibrils, long protofibrils, and amyloid

fibers. The event frequency of each species, which is a measure of their abundance, reflected

the extent of aggregation; spherical oligomers gradually became less frequent as they grew

in size while resistive pulses from protofibrils and mature fibers increased in frequency over

time.

Coatings derived from materials other than lipid bilayers can also reduce unwanted ad-

hesion. Rui et al. investigated α-Syn aggregation using synthetic nanopores coated with

polysorbate 20 (Tween-20). This work characterized four different oligomeric species, and

investigated the impact of small unilamellar vesicles (SUVs) containing certain lipids on the

rates of aggregation of α-Syn.[50] Similarly, Giamblanco et al. functionalized nanopores with

polyethylene glycol (PEG-5k) chains in order to study the aggregation kinetics and fibril sizes

of amyloid particles comprised of lysozyme and other model proteins.[51]

1.4.2 Fibril-Forming Proteins Demonstrate Assembly Processes in

Nanopores

Because of difficulties with the preparation or analysis of amyloid samples,[23] several groups

have chosen to investigate proteins like lysozyme or bovine serum albumin (BSA) that readily
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aggregate into amyloid-like fibrils but are not necessarily pathogenic to humans. In an

attempt to develop a system that relates a population of resistive pulse amplitudes and

durations to a concentration profile of amyloid (proto)fibrils, Martyushenko et al. monitored

the aggregation process of lysozyme into long fibrils using glass nanocapillaries.[46] The

authors performed the experiments at pH 2.0 in order to prevent adhesion to the glass

substrate and determined a distribution of aggregates that they compared with results from

simulations.[46] Balme et al. expanded upon this research with lysozyme fibrils and focused

on the effects of protein adhesion to the surface of a silicon nitride nanopore; these authors

mitigated adhesion by treating the nanopore with concentrated sulfuric acid directly before

experiments. The authors then extracted distinct populations of lysozyme oligomers from

the distribution of resistive pulse amplitudes and correlated those particular populations

with individual monomer additions.[48]

1.4.3 Investigations of Prion Protein with Synthetic Nanopores

Li et al. took advantage of the large volumes of synthetic nanopores to characterize and

compare a range of commonly available proteins like BSA and IgG1 antibody as well as hu-

man prion protein (PrP).[45] This report represented the first measurements of native PrP

with a synthetic nanopore. The experiments were hampered by transient protein adhesion to

the glass substrate, but nonetheless revealed differences in dwell times and pulse amplitudes

between standard proteins and PrP; the authors related these differences to protein structure

and aggregation processes.[45] In general, synthetic nanopores enable direct monitoring of

changes in the populations of oligomeric species and of large natively-folded monomers (Fig-

ure 1.5). Recent years indicate a shift toward synthetic nanopores for amyloid sensing, and

we expect this trend to continue with the development of low-noise recording setups,[118]

high-bandwidth recording equipment,[119] and advanced surface coating technologies[38,

120] that may selectively bind amyloids. Because of their single molecule sensitivity and

broad size range, synthetic nanopores may ultimately provide insight into the ways in which
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Figure 1.5. Graphical summary of prior nanopore work characterizing amyloid particles. A) Biological nanopores
have been used to investigate interactions of amyloid forming peptides with aggregation promotors or inhibitors as
well as toevaluate conformational differences between peptides. Synthetic nanopores have determined size dis-
tributions of aggregates over time, by employing a variety of anti-adhesive coatings. Both biological and synthetic
pores have been used to determine aggregation rates of amyloids. B) The peptide Aβ1-42 produces brief spikes
in the presence of an aggregation promoter because the protein is sterically excluded from entering the pore, and
generates small, short-lived events in the presence of an aggregation inhibitor.[44] C) As Aβ10-20 is enzymatically
cleaved by trypsin, it produces smaller and shorter resistive pulses that correspond to the turnover rate and the
length of the Aβ fragments.[43] D) The protein α-Syn aggregates over the course of 96 hours; aggregates can
be grouped into four major phenotypes (O1, O2, O3, and O4).[50] E) The peptide Aβ1-40 goes through an aggre-
gation process where it forms small spherical oligomers (SO), short protofibrils (SP), long protofibrils (LP), and
finally fibrils (F) over time. Each of these species can be detected and characterized using a lipid bilayer coated
synthetic nanopore.[40] Adapted with permission.[19] Copyright 2018, Wiley-VCH.
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these amyloid-forming proteins aggregate as well as into their structure.

1.5 Challenges and Motivation

Given the development and commercialization success of nanopore-based DNA and RNA

sequencing over the past 20 years,[56, 121–125] it is clear that resistive pulse sensing provides

exciting opportunities as a bioanalytical method on the nanoscale. Applications of the

technique to protein-based analytes, however, have not yet fully realized this potential.

For example, one of the most compelling aspects of resistive pulse sensing – analyzing an

individual resistive pulse to determine the physical characteristics of the unique particle that

produced it – has yet to be fully exploited on amyloid targets. All of the work in Table

1.2 measured resistive pulses resulting from the translocations of single amyloid particles

but performed subsequent analyses on populations of resistive pulses. Furthermore, these

studies typically reduced resistive pulses to two quantities, amplitude and dwell time, before

clustering those data into groups to generate high-level comparisons about aggregation rates

and distributions of aggregate sizes. These analyses produced insights into processes of

amyloid aggregation and the size of aggregates, but they overlooked rich information about

relevant physical properties of individual amyloid particles such as shape, dipole moment,

or conformational variability. In order to take full advantage of this detailed single-amyloid

information in a way that may have clinical usefulness, nanopore sensors must first overcome

several challenges summarized in Table 1.3.

Diagnostic characterization of a patient’s amyloid profile with nanopores requires investi-

gation of complex biological solutions like blood or CSF. A fundamental challenge of applying

label-free single molecule techniques to such samples is the ability to discriminate between

a few analytes of interest and a large concentration of background molecules. Purification

techniques like filtration, size exclusion, or affinity chromatography can remove most of these

background molecules, but they prolong analyses and add complications that can limit use-
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Table 1.2. List of the studies that characterized amyloid-forming peptides and proteins or amyliod aggregates
with nanopores. Adapted with permission.[19] Copyright 2018, Wiley-VCH.
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fulness. For instance, the presence of interfaces as well as changes in pH or ionic strength

during these procedures may influence the amyloid aggregation state in the sample. Direct

analysis of complex samples without purification is possible when employing target-specific

detection labels.[126] Amit Meller’s group simultaneously monitored optical and electrical

signals of a strand of fluorescently labeled DNA transiting a nanopore,[127] and a similar

approach may allow for selective resistive pulse analyses in complex protein samples. Op-

tical methods can even replace electrical measurements to monitor ionic current through a

nanopore, as has been shown with calcium-flux sensing on nanopore arrays.[68, 128–131]

The challenge is, however, to collect a sufficient number of photons during the short-lived

dwell times (µs) of proteins through nanopores. Solutions may emerge from sensing volumes

themselves, as they can also be engineered to interact specifically with a target analyte.

Binding sites designed inside or around biological nanopores enhance detection of target

molecules through transient binding,[132] and synthetic nanopores with fluid lipid bilayer

coatings can concentrate specific molecules around the surface of the pore by incorporating

lipid anchors with binding sites into the coating.[38] But even when applying techniques

to improve specificity, resistive pulse sensing with a single nanopore is still inherently a se-

rial process and profiling the individual molecules in a non-purified mixture may require

long recording times. This limitation can be addressed through parallelization as shown by

Oxford Nanopore Technologies with their recent nanopore-based DNA sequencing devices

that record data from hundreds of nanopores independently and simultaneously.[133] Mean-

while, novel integrated CMOS current amplifiers combined with nanopore chips with low

electrical capacitance will continue to improve the signal-to-noise ratio of high-bandwidth

current recordings and provide more detailed and accurate insights from the translocations

of single particles than the electrical setups currently available.[119] Fast and high-fidelity

data acquisition requires robust data processing, and improvements in recording equipment

have prompted a trend toward applying machine learning algorithms to resistive pulse-based

data, including deep learning by neural networks.[134, 135] Amyloid characterization with
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Table 1.3. Challenges and their potential solutions for characterizing amyloid particles using nanopores. Adapted
with permission.[19] Copyright 2018, Wiley-VCH.

nanopores will also benefit from further development and optimization of sensing volumes.

While biological pores are currently limited to diameters less than 4 nm, engineered protein

pores[99,100] as well as DNA origami channels[136] might extend the range of potential an-

alyte sizes. Novel coating strategies taking inspiration from nature [38, 137] can overcome

unwanted adhesion issues for synthetic pores, while fabrication techniques like dielectric

breakdown [105] or laser-assisted nanopore formation [138] can quickly produce single-use

pores without the need for sophisticated equipment.

Few, if any, techniques can quickly identify, quantify, and characterize individual unla-

beled proteins or protein aggregates in a complex aqueous sample.[139] Because nanopores

can probe multiple physical parameters of individual particles in solution, we suggest that
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they are compelling candidates for an analytical platform technology that makes it possible

to detect and characterize amyloid aggregates. We hope that the studies summarized here

represent the initial steps toward a rapid and robust amyloid characterization platform using

nanopores. If solutions to the challenges above can be incorporated into a single device, we

propose that nanopore-based single particle analysis has the potential to improve the di-

agnosis of neurodegenerative diseases. Ultimately, nanopore-based amyloid characterization

may enable monitoring of neurodegenerative disease progression using microliter volumes of

patient samples in a rapid, low-cost, and broadly accessible format that can be applied rou-

tinely and longitudinally to an ever increasing aging population. The insights gained from

such population-based monitoring may help to accelerate the development of new therapies

against those diseases.
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Chapter 2: Fabrication of Nanopores

Synthetic nanopores with diameters from 20-50 nm in freestanding silicon nitride (SiNx)

membranes are useful for single-molecule studies of globular biological macromolecules and

protein complexes. These pores can be fabricated to a desired size using many different

methods on a broad array of different substrate materials. One limitation to using synthetic

nanopores, as discussed in Chapter 1, is that proteins adhere non-specifically to synthetic

surfaces; our group has circumvented this issue by coating the surface of these nanopores with

a lipid bilayer. Lipid bilayers have qualities that are essential for the protein characterization

presented throughout this thesis, but their ability form stable and reproducible coatings in

this context depends on factors including lipid composition, nanopore geometry, surface

chemistry, surface roughness, and others. Simply creating a nanopore of a desired size is

no guarantee that it will be amenable to lipid coating. In this chapter, I discuss my efforts

to fabricate nanopores using multiple techniques, and I evaluate the resulting pores with

regard to their noise properties, their performance in nanopore recordings, and their ability

to support stable lipid bilayer coatings.
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2.1 Introduction to Nanopore Fabrication

The critical component of any successful nanopore-based protein sensing experiment is a

suitable nanopore. Ideally, this pore would be a perfectly cylindrical hole with a well-

characterized geometry, while also maintaining long-term stability under rigorous cleaning,

and would be fabricated within a low-noise, low-capacitive substrate having surface qualities

amenable to a lipid-bilayer coating. Recent interest in nanoscale techniques has brought

about a wide variety of approaches to fabricate such pores including but not limited to;

dielectric breakdown,[1], TEM drilling,[2] helium ion microscope drilling,[3] capillary shrink-

ing,[4] and gold particle heating,[5] while substrates range from silicon,[6] silica (glass),[7]

silicon nitride,[8] MoS2,[9] HfO2,[10] and graphene [11] (Figure 2.1). Despite this diversity,

most successful protein experiments presented in this thesis were performed using nanopores

made with an ion beam sculpting technique developed by Li et al.,[8] whereby a low-intensity,

feedback-controlled helium ion beam induces material migration of silicon nitride, effectively

closing a large nanopore (≥ 100 nm diameter) to a nanopore of desired size. This process

results in a relatively low-noise pore that can be successfully coated with a lipid bilayer.[12]

More importantly, the robust structure of ion beam sculpted nanopores allows them to with-

stand upwards of 20 experimental setups and cleanings – in comparison, we have observed

that pores made with other methods tend to change size or shape after only several ex-

perimental attempts.[13] Note that pore stability has important implications with regard

to experimental accuracy and reproducibility (see Chapter 3 for details). Nevertheless, due

to the timescale and complexity of the ion beam sculpting process, and given that other

nanopore substrates like fused silica exhibit superior noise characteristics, we have investi-

gated several alternative fabrication techniques and present the results of those investigations

throughout this chapter.
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Figure 2.1. Schematic of techniques to fabricate nanopores in synthetic substrates. A) Dielectric breakdown,
whereby a strong electrical potential is applied across a freestanding SiNx membrane in order to accumulate
defects which ultimately converge into a nanopore (or multiple nanopores).[1] B) Femtosecond laser ablation,
where a femtosecond pulsed laser is focused onto a freestanding membrane and pulses with feedback-control
from ionic current through the membrane. C) Ion beam sculpting, whereby helium ions are directed through a thick
(∼300 nm) freestanding membrane with a ∼100 nm diameter pore, inducing material migration and effectively
closing the existing pore to a desired size.[8] D) Electron or Ion Beam drilling, in which a beam of high energy
particles drills a hole of desired size – confirmed visually – in a freestanding membrane.[2, 3] E) Gold nanoparticle
sinking, in which a gold disk is patterned on a freestanding membrane, and once heated up to ∼ 1000◦C, the
gold sinks through the SiNx, leaving a nanopore behind. Note that this fabrication method can be carried out in
batch, rather than serially like the other methods here. [5]
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Figure 2.2. Process for fabricating nanopores by ion beam sculpting. A) We generate a freestanding membrane
on a silicon scaffold using standard wafer processing techniques, and then irradiate that membrane with a gallium
ion beam to produce a channel with a diameter of approximately 100 nm. B) We direct helium ions through
through this channel in a three step process: first, we use a high beam energy to close the pore rapidly (i.e.
pre-sputter) under manual control, then we reduce the beam energy to close the pore slowly under automated
feedback, and finally we pulse the beam for precise control of final nanopore diameter. C) The resulting nanopore
has a unique geometry with an adjacent channel – green tomographic cross-section adapted from Rollings.[15]

2.2 Ion Beam Sculpting of Single Nanopores in SiNx

Membranes

In 2001, Li et al. introduced the method of feedback-controlled, ion beam sculpting,[8]

and then employed this technique to fabricate a nanopore with a diameter of 5 nm, which

they used to observe translocations of double stranded DNA.[14] Our group later coated

these nanopores with a lipid bilayer and demonstrated that the functionalized pores have a

variety of appealing properties for protein characterization.[12] These initial works inspired

an ongoing collaboration between the Li and Mayer research groups, and during my time as

a doctoral researcher under Prof. Michael Mayer, I made several trips to the University of

Arkansas in order to fabricate nanopores using this technique. Figure 2.2 shows details of

the fabrication method, as well as images of the resulting nanopores.

The fabrication technique begins with a silicon chip containing a small (100 µm × 100

µm) and thin (∼300 nm) freestanding SiNx window, which is produced on a wafer-scale
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using standard etching and photolithography methods (Figure 2.2-A). A focused ion beam

(FIB) is then used to drill a pore between 70 and 120 nm in diameter completely through the

freestanding window, after which the pore is irradiated with low-intensity beam of helium

ions to induce SiNx migration under ion flux-based feedback, effectively closing the FIB hole

to a desired diameter (20-40 nm for our purposes). The closing procedure itself consists of

three stages, outlined in Figure 2.2-B: 1) an initial pre-sputter step, where the beam current

is set to 15 mA under user-controlled feedback (i.e. the pore begins to close quickly and the

user manually switches off the beam), 2) a secondary closing step, where the beam current

is reduced to 200 µA to allow for gradual closing with computer-automated feedback, and

3) a final pulsing step, where the user applies individual pulses 100 ms in length at a beam

current of 15 mA for precise diameter control. Once the nanopore appears to have a desired

size based on ion-flux measurements, it is placed in a furnace set to ∼ 700◦ C under an inert

atmosphere in order to anneal the migrated SiNx material, and then imaged using a TEM

(Figure 2.2-C) to verify pore dimensions. The resulting nanopore has a unique geometry

with the nanopore adjacent to a larger channel, as shown in the green tomographic cross-

section from Ryan Rollings (Figure 2.2-C).[15] We derive a method to properly account for

this geometry in the analysis of resistive pulses in Chapter 4.

Regarding the success rates of these nanopores, we have observed that one in three ion

beam sculpted nanopores can be used for protein characterization experiments. There are

three typical causes for failure: 1) the measured baseline current is lower than expected

(Ibaseline < 0.9 ∗ Iexpected) based on the known nanopore geometry prior to coating the

nanopore with a lipid bilayer, 2) the chip does not coat with a lipid bilayer based on the

predicted increase in resistance after coating (see Section 2.4 below for more details), or 3)

the baseline current after coating is too noisy to detect translocation events. For the work

presented in Chapter 3, we obtained the expected baseline current in 73% of attempts, suc-

cessfully coated the pore in 37% of attempts (cumulative success rate = 27%), and achieved

sufficiently low noise for recording after successfully coating the pore in 46% of attempts
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(cumulative success rate = 12%). These statistics indicate that roughly 1 in 10 experiments

yields a measurement, on average; however, it is worth stressing that the success rate is

highly dependent on the nanopore being used. For example, an ion beam sculpted nanopore

that supports a stable lipid bilayer can typically be coated repeatedly, and that particular

nanopore may enable upwards of 20 successful experiments before either growing in size or

clogging irreversibly.

2.3 Preliminary Results of Femtosecond Laser Ablation of

Nanopores

Long-pulse (≥ 10 ps) and continuous-wave (cw) lasers interact with material via linear

absorption, directly heating a region of interest within some absorption depth, and then

heating adjacent regions at a rate dependent on the thermal conductivity of the material,

ultimately leading to material ablation.[16] One problem with using these kinds of lasers

to produce nanopores is that their spot sizes are typically on the order of hundreds of

nanometers, so ablated features are often too large (e.g. ≥ 100 nm in diameter) for use in

experiments aiming to characterize protein.[17] Material absorption of ultrafast pulses (≤ 1

ps), on the other hand, is nonlinear and plasma mediated. The absorption intensity of these

types of lasers should, in theory, be strongly concentrated around the center of the laser spot

and decay rapidly moving outward, making it possible to fabricate features much smaller

than the laser spot size.[16]

In attempt to generate single nanopores in a rapid and reproducible way, we employed

a diode-pumped Nd:glass chirped-pulse amplifation laser system (Intralase) to generate 600

fs pulses with a wavelength of 1053 nm. These pulses were focused through a KTP crystal

to clean their intensity profile before they passed into a Axiovert 200M inverted microscope

with a 0.65 NA Achroplan air objective. We mounted substrate chips containing freestanding

SiNx windows (Norcada, 5 × 5 mm frame or 3 mm disk, 250 × 250 µm window with
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Figure 2.3. Setup schematic and size distributions of nanopores fabricated via femtosecond laser. A) Cross-
section view of a silicon chip on the microscopy stage, with fluidic channels above and below the membrane
accessed by Ag/AgCl electrodes, and the membrane secured to a glass coverslip using double-sided tape. B)
Histogram showing the nanopore diameters estimated from the conductance across the membrane (see equation
2.1), with an inset showing a TEM image of a feature generated using the single-shot approach. C) Histogram
showing the nanopore diameters estimated from the conductance across the membrane (see equation 2.1), with
an inset showing a TEM image of a feature generated using the multi-shot approach.
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30 nm thickness) as shown in Figure 2.3-A on the microscope stage and positioned the

window laterally with high precision using a piezoelectric positioner.[18] We applied a 100

mV potential across the defect-free membrane, and continuously monitored the current using

a Kiethley picoammeter connected to Ag/AgCl electrodes immersed in 2 M KCl filling the

compartments above and below the chip.

We employed two different methods for fabricating nanopores with the femtosecond laser:

single-shot, and multi-shot. In the single-shot approach, we set the laser potential to 7.4 mV,

released a single pulse, and checked the measured current. If the membrane remained intact

(i.e. the current was 0 pA), we moved the laser focal position by 0.4 µm, incremented the

potential by 0.1% and repeated the procedure (Figure 2.3-B). In the multi-shot approach,

we set the laser potential to 4.8 mV and released up to 10 pulses with at least a 1 second

delay in between at a single location before moving to a new location 1 µm away and

repeating the process (Figure 2.3-C). We fabricated approximately 20 "nanopores" using

each of these methods, and report their theoretical diameters based upon their conductance

after fabrication in Figure 2.3-B,C. Subsequent TEM imaging showed, however, that rather

than creating a single well-defined nanopore, the laser – in both fabrication methods – was

ablating a large region of the window and creating non-cylindrical nanoscale features that

conducted ionic current (Figure 2.3-B,C insets). After confirming this result on several TEM

images, we decided to discontinue our efforts to fabricate nanopores with this approach.

2.4 Formation of Nanopores with Dielectric Breakdown

While current nanopore fabrication processes using ion or electron beam drilling can pro-

duce nanopores with 1-nm precision,[2, 3, 8, 11] these methods often require advanced skill

and specialized instrumentation, limiting broad access. An alternate approach to nanopore

fabrication is controlled breakdown (CBD),[1, 19] a stochastic process involving defect ac-

cumulation in an insulating membrane under high external electric fields (0.5 to 1 V/nm).
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Kwok et al. demonstrated that when the density of accumulated defects reaches a criti-

cal value, a channel with sub-nanometer diameter opens in the freestanding membrane, the

resulting nanopore fills with electrolyte and produces in a measurable increase in current

(Figure 2.4).[1] After this initial breakthrough event, reduction of the electric field can be

used to slowly enlarge the nanopore to a desired diameter.[1, 20] During the CBD process,

monitoring the ionic conductance provides an estimate of the diameter of the nanopore at a

time resolution of milliseconds. The equation below gives the relationship between the ionic

conductance, G, of a cylindrical nanopore and its radius, Rp (m).[1, 21]

G = σ

(
lp

πR2
p

+ 1
2Rp

)−1

(2.1)

Here σ (S m-1) is the conductivity of the electrolyte solution and lp (m) is the length of the

nanopore.

Figure 2.4-B shows a controlled breakdown process with an applied voltage of 0.6 V nm-1

during the initial breakdown phase (18 V across a SiNx membrane with thickness of 30 nm),

and 0.3 V nm-1 during the enlargement phase. The observed stepwise increase in current

suggests either fast, discrete enlargement processes during pore growth or the formation of

additional breakdown paths. The TEM image in Figure 2.4-C illustrates an example of a

nanopore chip after fabrication of a large nanopore by controlled breakdown. The image

also shows the unintended formation of a second nanopore in the field of view, which is a

result that we observed in preliminary efforts to fabricate pores by dielectric breakdown.

Although TEM images provide a direct visualization of nanopore quantity and size, it

can be time consuming and difficult to locate a randomly-generated, nanometer-scale pore

in a large area of a SiNx membrane (e.g. 250 µm × 250 µm for most chips used here for

dielectric breakdown fabrication) littered with debris – this was also an issue when imaging

the laser-fabricated pores in Section 2.3. In addition, TEM imaging precludes the immediate

use of the nanopore for resistive pulse recording directly after CBD formation.[1] Hence, to
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determine whether more than one nanopore formed in the membrane, we took advantage

of geometric considerations of controlled pore shrinkage upon coating the nanopores with a

lipid bilayer.[12] Assuming a cylindrical nanopore has radius Rp and length lp, a lipid bilayer

coating reduces this radius to Rp − tb − WL and extends the pore length to lp + 2tb + 2WL

(Figure 2.4-D). Here tb = 3.7 nm is the length of a lipid bilayer made from 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC), and WL = 1.2 nm is the average thickness of

the interstitial water layer between the lipid bilayer and the nanopore wall.[12] Hence, the

pore’s conductance after lipid bilayer coating changes from above equation to:

G = σ

(
lp + 2tb + 2WL

π(Rp − tb − WL)2 + 1
2(Rp − tb − WL)

)−1

(2.2)

Using the equation above, we calculated the expected conductance of a single cylindrical

nanopore after lipid bilayer coating as a function of the conductance before coating (red curve

in Figure 2.4-D). This reduction in conductance after surface coating is a function of nanopore

geometry as well. [23–25] In an attempt to evaluate the effect of non-cylindrical shapes,

we determined the expected conductance changes before and after lipid bilayer coating for

different nanopore geometries by finite element simulations (see Chapter 5 for more details).

A cone shape and a double-cone shape (both with an angle of 45◦) had conductance values

that were within 10% of the theoretically expected conductance after coating a perfectly

cylindrical nanopore (Figure 2.4-D). This result means that deviations of more than 10%

from the theoretically expected conductance after coating do not necessarily indicate non-

cylindrical pore geometries, but rather indicate the formation of multiple pores or imperfect

lipid coatings.

Based on our previous experience with coating nanopores,[12, 26] we expect single nanopores

with stable lipid bilayer coatings to have conductance values within 20% of the theoretically

expected conductance. When evaluating nanopores formed by controlled breakdown, we

observed that only ∼20% of nanopores met the criterion of deviating by less than ±20%

from the expected conductance after coating. For the nanopores outside of this threshold,
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Figure 2.4. Overview of controlled dielectric breakdown technique. A) Schematic drawing of the setup used for
controlled breakdown (not to scale); the electrolyte solution was 2 M LiCl2 at pH 8.0. B) Graph of the electric
field applied across a 30-nm thick SiNx membrane and the corresponding current measured during the nanopore
formation process and subsequent period of pore enlargement. Once breakdown occurred, as indicated by a
sudden increase in current (>150 nA), feedback control decreased the voltage from 0.6 V nm-1 for breakdown to
0.3 V nm-1 for enlargement. During the enlargement phase of the experiment, the current occasionally changed
in steps (see inset), indicating possible formation of additional pores.[1] C) TEM image of the SiNx membrane
indicating undesirable formation of a second nanopore. For this experiment, we used custom-ordered chips with
a freestanding SiNx membrane of 10 µm × 10 µm to reduce the time required to scan the entire window by
TEM. Scale bar is 100 nm. D) Schematic of expected changes in nanopore geometry after lipid bilayer coating
(not to scale). E) Plot of nanopore conductance after lipid bilayer coating as a function of the conductance
before coating calculated by finite element simulations for a single cylindrical nanopore (black curve), a single
cone-shaped pore (blue dashed curve), and a single double-cone-shaped pore (violet curve). The red curve
represents the analytically expected conductance change of a single cylindrical nanopore based on Eq. 2.1 and
Eq. 2.2; the green region represents ± 20% deviation from the red curve, and the grey region represents ± 10%
deviation from the red curve. The yellow dots and orange squares are the conductance values before and after
coating of different chips used for Ca2+ fluorescence detection. Yellow dots indicate single nanopores; orange
squares indicate multiple nanopores. To convey the estimated nanopore size, the upper x-axis represents the
estimated diameter assuming a single cylindrical nanopore derived from the conductance based on Eq. 2.1.
Adapted with permission.[22] Copyright 2018, American Chemical Society.
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we attribute their large conductance values after coating to either imperfect coating or the

existence of multiple nanopores in the membrane. While it is straightforward to under-

stand why a partial coating or a coating with defects would lead to larger than theoretically

predicted conductance after coating, it may seem counterintuitive that the formation of ad-

ditional pores may lead to larger than expected conductance after coating. Indeed, coating

two pores with a lipid bilayer would lead to a smaller conductance after coating than coating

a single pore with equivalent pre-coating conductance. The situation is, however, different

if one, several, or all pores that may have formed during a controlled breakdown process

have diameters smaller than 16 nm. Anecdotal evidence in our lab over the last five years

showed that we were never able to coat nanopores with diameters smaller than 16 nm with a

lipid bilayer.[12, 26] One plausible reason for this observation is that supported lipid bilayers

are limited in their geometric conformations and cannot conform to high-curvature surfaces

due to surface tension (see Section 2.6.1).[27–29] For instance, if there are multiple pores in

the membrane with diameters smaller than 16 nm, then these pores would contribute to the

conductance before coating, but because the supported lipid bilayer would not form within

these pores, the total measured conductance after coating would be larger than theoretically

predicted by Eq. 2.2. On the other hand, a smaller-than-expected conductance after coat-

ing might indicate one of two different scenarios: 1) the nanopore(s) are sufficiently small

that liposome fusion forms pore-spanning lipid bilayers, or 2) as mentioned above, multiple

nanopores with diameters larger than 16 nm could successfully coat with a lipid bilayer, lead-

ing to a smaller conductance than coating a single nanopore with corresponding pre-coating

conductance.

Initial attempts to fabricate nanopores with this technique demonstrated that controlled

breakdown carries the risk of generating multiple pores in the membrane. We later identified

two strategies for minimizing this risk and forming single nanopores: accelerating defect ac-

cumulation within a confined membrane area before breakdown, and reducing the magnitude

of the electric field applied during enlargement. By applying a focused laser beam on the
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SiNx membrane during the breakdown process and by decreasing the electric field strength

during pore enlargement, we tripled the success rate for generating single nanopores with

diameters larger than 20 nm. We have also presented evidence [22] that laser-induced local

heating contributes to the increased rate of pore formation by controlled breakdown. As with

the ion beam sculpted nanopores, a subsequent annealing step at ∼ 700◦ C improved the

success rate of coating these nanopores with a lipid bilayer, which is critical to quantify the

translational and rotational dynamics of single proteins, and to make such characterization

accessible to a broader community. Annealing also reduced the current noise of nanopore

chips in general (i.e. also without a coating and slowed undesirable enlargement of pore di-

ameters during cleaning and recording compared to chips that were not annealed).[15] One

additional exciting aspect of generating large nanopores without the need for FIB or elec-

tron beam equipment is that it may further accelerate the development of nanopore-based,

single-particle and single-molecule interrogation approaches.

2.5 Fabrication of Nanopores in Fused Silica Substrates

and Comparison of Different Nanopore Platforms

The strong (MV m-1) electric field in the nanopore moves charged particles and proteins

through the pore on nanosecond to millisecond time scales; the temporal resolution of re-

sistive pulse recordings is, therefore, one of the most important and limiting parameters of

the technique. This temporal resolution is limited by recording electronics as well as by

the need for low-pass filtering in order to minimize current noise such that resistive pulses

can be distinguished from the noise.[30] Specifically, resistive pulse sensing with nanopores

suffers from four major contributions to noise, namely flicker noise, thermal noise, dielectric

noise and amplifier noise.[30–32] Smeets et al. proposed that flicker noise originates from

surface charges and nanobubbles present at the nanopore wall; this source of noise influ-

ences the lowest frequencies in electrical recordings.[32] The factors contributing to thermal
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Figure 2.5. Schematic showing wafer-scale fabrication process for fused silica substrates. A) Fabrication scheme
for fused silica chips with a SiNx membrane by laser density modification of fused silica followed by accelerated
etching of the laser exposed parts of the chips. B) Photograph of a fused silica wafer with a diameter of 100 mm
showing wafer scale fabrication of 322 chips. C) Photograph of a 4 mm × 4 mm fused silica chip with a 500 µ-thick
frame and the opening of the cavity with diameter of 500 µm. D) Optical microscopy image of the transparent,
freestanding SiNx membrane at the bottom of the etched cavity. Adapted with permission.[37] Copyright 2019,
IOP Publishing.

noise are the electrolyte concentration and nanopore size and affect the full recording band-

width.[31, 33] The main noise sources that become increasingly important for high bandwidth

recordings are the dielectric noise and amplifier noise. While amplifier noise results from am-

plifier design, electrode connections, shielding and grounding of the setup as well as from

the presence and choice of electrolyte solution, dielectric noise results from the capacitance

of the nanopore chip and the recording setup.[30] Therefore, in order to resolve globular

macromolecules passing through nanopores on a time scale of microseconds and shorter,

high-bandwidth recordings are required, which begin at 50 kHz and ideally approach 1 to

10 MHz.[34–36]

In order to limit the noise levels and to maximize the signal-to-noise ratio (SNR) at

high recording bandwidth, it is therefore important to reduce the electrical capacitance

49



of the nanopore chips. Chips with nanopores for resistive pulse sensing usually consist

of a cavity in a support material from one side, which leads to a freestanding membrane

containing a nanopore. These freestanding membranes are commonly prepared by thin-film

deposition techniques such as low-pressure chemical vapor deposition (LPCVD) or plasma

enhanced chemical vapor deposition (PECVD), while the cavities are typically defined using

photolithography and formed using dry and wet etching (see Figure 2.5-A) [36, 38–42] or

by a membrane transfer technique.[7, 43–45] Most chips used for nanopore recordings are

silicon based.[7, 36, 38, 40, 42] Due to the semi-conducting electrical properties of silicon

and the presence of thin, insulating SiO2 or SiNx layers on many silicon support structures,

silicon chips can, however, have a large capacitance, leading to large current noise at high

recording bandwidth.[30, 46] Nonetheless, silicon remains often the material of choice due to

its established manufacturability. Various methods can reduce capacitive noise from silicon

chips. For example, deposition of relatively thick SiO2 insulation layers in-between the

silicon and the SiNx membrane layer or on all exposed silicon surfaces can greatly reduce

capacitance.[47] Shekar et al. showed that placing recording amplifiers directly on the chip

with the nanopore greatly reduced noise, in part, because the approach minimized capacitive

contributions from the electrical recording setup and, in part, because the intrinsic noise

of this custom-made amplifier was very low.[36] This approach enabled measurements at

bandwidths up to 10 MHz while maintaining adequate SNR to resolve the translocation

of ssDNA through nanopores filled with a solution of 3 M KCl.[36] Polymeric insulator

coatings deposited on the membrane layer after chip fabrication can also reduce capacitance

and dielectric noise. Examples of insulating coatings on chip surfaces include deposition of

polyimide nanospheres or thin layers of painted polydimethylsiloxane (PDMS).[38, 42, 43,

48] Alternatively, several groups have shown a significant improvement in the SNR during

translocation experiments with silica-based chips or glass nanopipettes. These materials are

completely insulating such that their capacitance is in the range of a few picoFarad and

below.[7, 32, 38, 39, 49, 50]
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In an attempt to reduce capacitance and recording noise, we manufactured chips by 3D pat-

terning of a fused silica wafer with a femtosecond-pulsed laser in combination with LPCVD

of a SiNx layer and a subsequent chemical wet etching step at an approximately 200-fold

accelerated etch rate in the laser-exposed regions of the wafer (Figure 2.5). Unlike in Section

2.3 above where we ablated the freestanding membrane, here the laser was applied to the

thick fused silica substrate in order to increase its rate of etching. The use of a writing

step with a femtosecond-pulsed laser combined with subsequent chemical wet etching for the

creation of sub-micrometer features recently became available as a manufacturing technique

for high volume production of micro-structured glass.[51–55] We compared the noise levels

of the resulting fused silica chips with silicon chips and with previously published work at

bandwidths approaching 1 MHz, and Figure 2.6 shows an example equivalent circuit for

estimating the capacitance of a layered, silicon-based nanopore chip.

The capacitance of the chip architecture shown in Figure 2.6 can be estimated by treating

the freestanding membrane region and substrate region of the chip as capacitors in parallel

using the following equation:

CT ot = 1
1/C1 + 1/C2

+ 1
1/C3 + 1/C4 + 1/C5 + 1/C6

(2.3)

where

C = ε0εmed
Area

Thickness
(2.4)

As in Table 2.1, ε0 is the vacuum permitivity, and εmed is the dielectric constant of the

medium. Using this approach, we estimated capacitance values for chip architectures re-

ported in the literature, and compared those estimates to capacitance values that we mea-

sured experimentally for a variety of different nanopore chips in Table 2.1.
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Figure 2.6. Schematic showing cross-section of a synthetic nanopore and the equivalent circuit for estimating
capacitance. Each material layer of the chip can be treated as a unique capacitor (C1 - C6), and the overall
theoretical capacitance can be evaluated using equation 2.3.
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From Table 2.1, it is clear that nanopores fabricated in fused silica substrates outperform

those in silicon substrates. In combination with recent developments in integrated CMOS

current amplifiers, these low-noise chips could further improve the information content and

accuracy of estimates of multiple parameters calculated from the resistive pulses of individ-

ual globular biomolecules such as proteins.[26, 40] This improved information content and

accuracy has important implications for future investigations that are discussed in detail in

Chapter 6.

One additional benefit of fused silica substrates is that they exhibit no laser-induced

electrical noise upon illumination. In contrast, measurements with silicon chips showed

strong noise upon laser illumination in agreement with a previous report.[43] Therefore,

fused silica substrates are well suited for nanopore-based experiments that perform electrical

recording and optical monitoring in parallel.[43, 44] Approaches that combine optical with

electrical measurements have shown promise in recent applications for DNA sequencing [56,

57] but have thus far been limited by optical and thermal noise under laser illumination.

It is important to note that there are limitations on the resolution of this fabrication

method. The femtosecond pulsed laser makes it possible to modify the fused silica to within

a distance of 25 µm from the SiNx thin film (see Figure 2.7). If the laser focal spot is

placed closer than 25 µm from the SiNx film, it can damage or ablate the SiNx film and

render it inadequate as an insulating freestanding membrane material, similar to what is

shown in Figure 2.3-B,C. We therefore had to leave a small gap between the laser-patterned

fused silica and the interface between the fused silica and the SiNx to prevent unwanted

damage of the SiNx. Reducing the diameter of the freestanding membrane would require:

1) improving the precision (sub-micrometer) of z-axis control of the laser focal spot, or

2) further optimizing the protocol for KOH etching, possibly by implementing a feedback

measurement of electrical capacitance. Another possible solution, for example, would be

to use deep reactive ion etching in place of KOH during the etching step. Both of these

approaches may be excellent extensions for future optimization of this fabrication method.
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Figure 2.7. (LEFT) Schematic showing laser patterning within 25 µm of the SiNx membrane. If the subsequent
KOH etch is too short (lower left), we achieve a rounded cone in the fused silica which renders the chip useless.
Under the proper etching conditions, we expose an approximately circular area of the SiNx membrane (lower
center). (RIGHT) Schematic showing laser patterning too near to the SiNx membrane, resulting in ablation of
SiNx. After etching the fused silica, there is no longer a free standing SiNx membrane (lower right).

Looking forward, the fabrication process we report here also has potential benefits ex-

tending beyond producing nanopores, as it can generate other three-dimensional nanoscale

features such as fluidic channels, mixers and reaction chambers on the surface or within the

transparent bulk material of fused silica.[51–55] Advanced combinations of these lab-on-a-

chip features with nanopore detectors, produced in a batch format, may ultimately enable

the next generation of nano- and microscale devices with possible applications in low-cost

diagnostics, point-of-care devices, fundamental biophysics studies, and implantable measure-

ment systems. Moreover, in the context of recent work on large area nanopore arrays [5,

58] the direct writing method presented here may contribute to the field of energy research

where such arrays in membranes function as part of energy storage or conversion devices.[59]
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2.6 Supplementary Notes and Figures

2.6.1 Automation of FRAP Analyses for Bilayer Characterization

In the context of nanopore-based protein sensing, lipid bilayer coatings carry several bene-

fits; they make it possible to finely tune nanopore diameters of an individual pore between

experiments, they prevent unwanted protein adhesion to the nanopore substrate, they can

promote analyte specificity through the addition of lipid-conjugated functional groups, and

they can slow both the translation and rotation of proteins through lipid anchoring.[12] But

why is this important? Nanopore dimensions are critical to translocation analyses, and a sin-

gle nanopore is useful for a particular range of protein sizes (e.g. a 20 nm diameter nanopore

can typically accommodate proteins less than 100 kDa, while a 30 nm nanopore is suited

to larger sizes). Modifying the lipid coating composition can lead to 1.4 nm of dynamic

diameter adjustment, which extends the range of potential protein targets accessible to a

well-characterized nanopore, thus improving analysis accuracy and reducing fabrication de-

mand. Additionally, the non-stick nature of lipid coated pores means they rarely clog during

an experiment, and their bilayers can be stripped off and regenerated 20 or more times in

some cases. Again, this improves inter-experiment versatility and nanopore robustness. The

ability to anchor protein to the bilayer, and to target particular proteins with this anchoring,

also has important implications for nanopore-based protein experiments. It vastly increases

the translocation event frequency (e.g. the number of pore-transiting protein molecules

detected per second) of a desired protein at a given concentration; bulk (unanchored/low-

affinity) protein requires more than a 300-fold greater concentration to translocate at the

same frequency as anchored protein.[12] This reduces experimental time and improves gen-

eral data quality by limiting the influence of false noise-based events. Anchoring also bolsters

the information gathered from each individual translocation event, as it slows protein trans-

lation and rotation, leading to better time resolution of those actions. We exploit many of

these advantages in Chapters 3 and 4 of this thesis.
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When attempting to coat nanopores with lipid bilayers, we find that certain pores are

more amenable to lipid bilayer coatings than others. One possible reason for the discrepancy

in ease of coating between different pores may be due to heterogeneities in the sharpness

of the radii of curvature of the corners at the brims of the pores. While we typically ob-

serve relatively low success rates when coating nanopores with a lipid membrane, nanopores

with diameters less than 20 nm [22] and those with sharp edges rarely support stable lipid

coatings. This same phenomenon of curvature-dependent bilayer formation appears both in

research on phospholipid vesicles[27] and in applications of lipid membranes to nanoparti-

cles.[28, 29, 60] We therefore tested if lipid membrane compositions that form more flexible

coatings with regard to membrane curvature, when compared to those composed of cylin-

drically shaped lipids, would be able to conform more readily to sharp corners and thereby

coat nanopores with extremely small radii of curvature. Figure 2.8 shows an example of

a curvature-tolerant lipid composition containing lipids with a cone-shaped geometry (1-

oleoyl-2-hydroxy-sn-glycero-3-phosphocholine or LysoPC), with a complementary inverted

cone shape (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or DOPE), and with 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC), a cylindrically-shaped lipid.[29]

Curvature-tolerant lipid bilayers did not improve coating success rates, and in fact, we

observed that they significantly increased the noise in current recordings. These elevated

noise levels putatively stem from the diversity of lipid shapes present in the bilayer. Given

that membranes containing conical lipids are prone to forming curved regions,[61] mem-

brane undulations along the pore walls are likely more pronounced when the membrane is

formed from a mixture of curvature-tolerant lipids compared to membranes comprised of

homogeneously-shaped lipids.

In addition to the curvature-tolerant lipid composition, we evaluated more than ten other

lipid mixtures based on their baseline stability, noise properties, viscosity, and their ease of

coating. The viscosity in particular is relevant as it determines the extent of "slowing" of a

protein anchored within the lipid membrane. We determined the effective viscosity (i.e. the

57



Figure 2.8. Cartoon showing a lipid bilayer coating with complementary conical lipids. We expect this lipid
composition to conform to sharp corners more readily by re-arranging such that the head groups with smaller
surface area (blue) align to the surface interface, and the head groups with the larger surface area (red) align on
the solution interface.

diffusion coefficient of the lipids within the membrane) of each different composition using

Fluorescent Recovery After Photobleaching (FRAP) analysis, and designed a MATLAB

script and associated GUI to automate the calculations. Figure 2.9 outlines the procedure

of determining the lipid diffusion coefficient from a FRAP experiment.

In the context of resistive pulse-based sensing, and based upon the results from all lipid

compositions tested, we ultimately recommend lipid coatings comprised of pure POPC with

up to 20 mol% cholesterol, or coatings comprised of Archaea-inspired lipids with up to 10-20

area% POPC. Archaea-inspired lipid compositions enabled the longest anchored transloca-

tion times of all the lipids tested while maintaining stable, low-noise baselines, and are best

suited for experiments that seek to confine proteins in the nanopore for as long as possible.

58



Figure 2.9. Process used for Fluorescent Recovery After Photobleaching (FRAP) measurements. A) We direct
a laser at a small region of the membrane in order to photobleach fluorescently active lipid headgroups, and
then allow those headgroups to diffuse throughout the membrane (in the absence of light), taking photographs at
consistent time intervals. B) A custom MATLAB program reads in these image stacks, allows the user to select
regions for the photobleached region of interest (ROI) and adjacent background regions (BG), and then performs
a normalized intensity analysis to determine the rate of diffusion of the photobleached lipids into the surrounding
bilayer.
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Chapter 3: 5-D Fingerprinting of Proteins

This chapter demonstrates that analysis of protein rotation and translocation inside nanopores

can reveal the ellipsoidal shape, volume, charge, rotational diffusion coefficient, and dipole

moment of single proteins simultaneously and in real time. This multiparametric information

makes it possible to identify and quantify single proteins and protein complexes in a mixture

and provides instantaneous, low-resolution shape information without the need for protein

purification. Moreover, the kHz to MHz bandwidth of current recordings complements ex-

isting methods for structure determination, which provide higher resolution but are limited

to gathering static information, in that it can interrogate and monitor protein dynamics

and transient protein-protein complexes in solution. The work presented in this chapter

represents a fundamental foundation on which subsequent chapters are built, and focuses

largely on my personal contributions to a large project carried out by multiple students over

multiple years.[1]
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3.1 Introduction to Five-Dimensional Protein Fingerprinting

Methods to characterize, identify, and quantify unlabeled, folded proteins in solution on a

single-molecule level do not currently exist.[2] If available, such methods would simplify rou-

tine protein analysis, enabling rapid and ultra-sensitive biomarker detection,[3], and allowing

the analysis of personal proteomes. Furthermore, methods providing low-resolution approx-

imations of shape could help to reveal the conformation of transient protein complexes or

large assemblies that are not accessible by electron microscopy, NMR spectroscopy, X-ray

crystallography, or small-angle X-ray scattering.[4] In this chapter, we demonstrate that in-

terrogation of single proteins or protein-protein complexes during their passage through the

electric field inside of a nanopore enables the determination of ellipsoidal approximations

of their shape, as well as their volume, charge, rotational diffusion coefficient, and dipole

moment.

Dipole moment has been largely neglected as a protein descriptor. Despite the pioneering

work by Debye and Oncley,[5] the usefulness of this parameter for protein identification

and its importance for concentrated protein solutions are often overlooked, and existing

experimental methods – as opposed to computational methods – for determining protein

dipole moments are cumbersome and unable to measure dipole moments on a single-molecule

level. We propose, however, that dipole moment provides a powerful dimension for label-

free protein analysis because its magnitude is widely distributed among different proteins,

with absolute values ranging from 0 to 4,000 Debye.[6] Dipole moment may, therefore, be

comparable to protein size for its usefulness in identification and would likely exceed the

usefulness of protein charge, which has values that are less distributed and range from -40e

to +40e. Moreover, the pharmaceutical industry is increasingly recognizing the importance

of dipole moment for antibody formulations,[7] in part because subcutaneous injection of

highly concentrated solutions of monoclonal antibodies, which are the fastest growing class

of therapeutics, can be impractical due to high viscosity and aggregation resulting from

dipole alignment.[7, 8] Measurements of antibody dipole moments could therefore provide
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a criterion to select early candidates in the drug discovery process and reduce development

costs.[8]

Interrogating single protein particles during their passage through a pore is simple in

principle, [9, 10] and is explained in detail in Chapter 1. Of note for this chapter, the small

volume of the nanopore transiently separates single proteins from other macromolecules in

solution (see also Figure 1.1), enabling the interrogation and interpretation of the rotational

dynamics of one protein at a time. For this reason, time-dependent modulations of ionic

current as a single protein passes through a nanopore (Figure 3.1-D) can, under appropriate

conditions, relate uniquely to the time-dependent molecular orientation of that protein as

well as its ellipsoidal shape, volume, charge, rotational diffusion coefficient, and dipole mo-

ment. Several groups have recently considered, in qualitative terms, the effect of a protein’s

[11–17] or nanoparticle’s shape when analyzing distributed ∆I signals [18] as well as the

effect of a protein’s dipole on its translocation through an α-hemolysin pore in the presence

of an AC field.[19] The work presented here develops the theory for a quantitative under-

standing of the dependence of measured ∆I values on the ellipsoidal shape, dipole, and

rotational dynamics of a protein inside a nanopore and makes it possible to estimate the vol-

ume, approximate shape, rotational diffusion coefficient, and dipole moment of non-spherical

proteins in real time. We suggest that this ability to measure five parameters simultane-

ously on single proteins in real time has fundamental implications. For instance, analyzing

individual proteins one-by-one may inherently mean that these proteins do not need to be

purified for determining their approximate shape or the other four parameters (see Chapter

4 for more discussion). This consequence would be a paradigm shift compared to existing

methods for determining the shape or structure of proteins, which either require purified,

concentrated, or crystallized protein samples or cannot examine protein dynamics.

The main concept underlying the analysis introduced in this chapter is that rotation of

a single non-spherical object during translocation through a cylindrical nanopore[20] mod-

ulates the current reduction through the pore and that these modulations can be used to
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Figure 3.1. Lipid bilayer coatings facilitate tethering and allow for shape determination. A) Drawing showing a
cross-section through a sensillum in the antenna of the silk moth Bombyx mori. These sensilla facilitate the cap-
ture, pre-concentration, and translocation of specific pheromones to the dendrites of olfactory neurons, allowing
for tremendous sensitivity and specificity. Adapted with permission.[13] Copyright 2011, Springer. B) Scaled car-
toon showing the binding of streptavidin protein to the head groups of lipids functionalized with the small molecule
biotin. Adapted with permission.[13] Copyright 2011, Springer. C) Top and side views of a nanopore showing the
two extreme orientations of an ellipsoidal particle transiting a nanopore. Adapted with permission.[1] Copyright
2017, Springer. D) Example current trace showing resistive pulses, with a "long" pulse outlined with a dashed
blue line. Current values can be plotted as a histogram and subsequently analyzed with a convolution fitting
procedure to estimate physical protein parameters.
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determine the orientation, approximate shape, and volume of the object in the pore (Fig-

ure 3.1-D). Golibersuch [21] and others[22, 23] demonstrated both theoretically on ideal

spheroids and experimentally on red blood cells that a crosswise orientation of an oblate

(lentil-shaped object) or prolate (rugby ball-shaped object) distorts the electric field along

a tube more dramatically than a lengthwise orientation (Figure 3.1-C). In the context of

current recordings through a nanopore, this means that the particle-induced blockade of

current, ∆I, is maximal when the spheroidal particle is in its extreme crosswise orientation

and minimal in the extreme lengthwise orientation; orientations between these two extremes

induce intermediate current reductions. The center box labeled "Convolve and Solve" in

Figure 3.2 shows that all possible orientations of the protein within the pore are not equally

probable; instead, the two orientations corresponding to electrical shape factors γMIN and

γMAX describing extreme lengthwise and crosswise orientations are more likely than the

other orientations because of the manner that the orthogonal projection of a non-spherical

particle rotating within a nanopore varies with that particle’s orientation relative to the

electric field, described by the angle θ. The U-shaped probability distribution that describes

this phenomenon implies that randomly rotating ellipsoidal proteins translocating through

a nanopore should produce a distribution of ∆I values with two maxima, one corresponding

to ∆IMIN and one to ∆IMAX . In contrast, spherical proteins, with a γ value of 1.5 that is

independent of orientation (e.g. γMIN = γMAX), should produce normal distributions of ∆I

values, as the probability distribution describing their orientations within the pore resembles

a Dirac-δ function rather than a U-shaped distribution.

In addition to these orientation-dependent effects, the particle’s volume and shape also

affect the extent of electric field line distortion (Figure 3.1-C). For example, when comparing

two oblates of equal volume in a cross-wise orientation, the particle that deviates most from

a perfect sphere (i.e. the flatter oblate) distorts the field lines more dramatically than the

rounder object. Conversely, in a lengthwise orientation, the flatter (m << 1) of these two

particles distorts the field lines less dramatically than the rounder object. In other words,
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particles with increasingly non-spherical shapes produce a more extreme ratio between the

current blockage in their crosswise versus lengthwise orientation. For translocation of two

particles with the same ellipsoidal shape but different volume, both the orientation-dependent

minimal and maximal current reductions have larger magnitudes for the larger particle com-

pared to the smaller one. Therefore, the magnitude of the current reduction depends on par-

ticle volume, while the ratio between the minimal and maximal current reduction depends on

particle shape. The dependence of ∆I values on the shape and orientation of translocating

particles has generally been neglected in nanopore-based protein characterization, thereby

introducing uncertainty in measurements of volume for particles that are not perfect spheres.

Considering these shape-dependent effects, as proposed here, will likely increase the accuracy

of nanopore-based particle characterization, as most particles and proteins are not perfect

spheres (see, for example, Figure 3.3, 4.12).

3.2 Results of Resistive-Pulse Analyses of Lipid-Tethered

Proteins

In order to obtain time-resolved values of ∆I from the translocation of single proteins,

we slowed down translocation by tethering proteins to a lipid anchor that was embedded

in the fluid lipid bilayer coating of the nanopores, either by incorporating lipids into the

bilayer with headgroups containing primary amines to react with a bi-functional NHS PEG-

based linker, by incorporating lipids into the bilayer with headgroups containing a protein

binding complement (Figure 3.1-B), or by investigating proteins that contain a molecule

which actively incorporates into a lipid bilayer (e.g. GPI-AchE).[1, 13] In this way, the

speed of protein translocation was dominated by the approximately 100-fold higher viscosity

of the lipid coating compared to that of the aqueous electrolyte. In addition, we maximized

the possibility that the proteins could rotate and sample all orientations in the nanopore by

employing long and flexible PEG tethers.[1] Finally, the lipid coating minimized non-specific
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Figure 3.2. Process flow of the analysis of resistive pulses, showing both population-based and individual event
proceudres. The procedure of analyzing resistive pulses begins with a peak finding algorithm first introduced by
[24], which extracts resistive pulses from baseline noise using a threshold of 5× the standard deviation of the
baseline. A single maximum value is taken from all events longer than 50 µs or longer (red pathway), while all
measured values are taken from events longer than 400 µs. These values are then used to estimate five different
protein parameters, labeled in bold font, from a single experiment. Adapted with permission.[1] Copyright 2017,
Springer.
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interactions between proteins and the pore wall,[13] thus enabling extraction of quantitative

data on Brownian rotational and translational dynamics of proteins while they were in the

pore. For instance, we took advantage of the resulting translocation times to determine

the net charge of all ten proteins and found a strong correlation between the charge from

nanopore experiments and reference values for the charge of each protein (Pearson correlation

coefficient r = 0.95, see Figure 3.3-C).

To determine the approximate shape and volume of proteins, we developed two strategies

based on the theory developed by Fricke[25] Velick and Gorin,[26] and Golibersuch[21] (Fig-

ure 3.2 red and blue pathways). Both strategies approximate the shape of proteins as an

ellipsoid of rotation and have different strengths and weaknesses. The first strategy estimates

shape and volume from distributions of maximum ∆I values from many translocation events

that were obtained from a pure protein solution. In other words, only the single maximum

value of ∆I from each resistive pulse is used for analysis. Maximum ∆I values have been

employed in almost all nanopore-based resistive pulse analyses of protein volume to date

combined with the assumption of a perfectly spherical particle shape (i.e. γ = 1.5, m =

1), thereby foregoing the opportunity to evaluate protein shape. In contrast, Golibersuch

showed by examining red blood cells that maximum ∆I values could also be used to approx-

imate the shape of particles.[21] Here, we applied this concept for the first time to proteins

transiting nanopores. An advantage of using maximum ∆I values to estimate protein shape

and volume is that the ratio between the extreme values of current reduction, ∆IMIN and

∆IMAX , is relatively insensitive to deviations in pore geometry from a perfect cylinder. A

disadvantage of this approach is that ellipsoidal shape and volume cannot be determined

from a single translocation event because only the maximum ∆I value from each translo-

cation event is analyzed and thus many translocations are required to sample all possible

electrical shape factors (see Section 4.4.4 for more discussion). It is important to note that

population-based analysis depends on inadequate sampling of protein orientations within

the pore in order to capture the full distribution of translocation values. In other words, if we
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were to perform population-based analysis only on translocation events of proteins that ade-

quately sampled all orientations within the nanopore, we would select only the value for the

maximum orientation of that protein, vastly overestimating its volume and underestimating

its shape.

Determining the shape and volume of spheroids from distributions of maximum ∆I values

proceeds in three steps (Figure 3.2 red pathway numbers 1-3). First, an algorithm detects

resistive pulses from the translocation of hundreds to thousands copies of the same protein

and determines the maximum amplitude of the current modulation, ∆I, with respect to the

baseline current for each pulse (Figure 3.2 red number 1). As predicted theoretically, the

resulting distribution of maximum ∆I values is bimodal for non-spherical proteins (Figure

3.2). Second, in order to circumvent binning effects encountered with probability distribu-

tions, the experimentally determined distribution of ∆I values is converted to an empirical

cumulative density function, CDF (Figure 3.2 red number 2), and fit iteratively with an

equation that describes the variation in ∆I due to rotation of proteins with non-spherical

shape (Figure 3.2 red number 3). We refer to this equation as the convolution model because

it accounts for broadening of the ∆I distribution due to convolution of the true signal with

noise (Figure 3.2 center box, more details in Chapter 4) and for bias toward either the cross-

wise or lengthwise orientation as a result of the electric-field-induced torque on the protein’s

dipole moment.[5] The bias in a distribution of maximum ∆I values, however, may also be

affected by other factors than the dipole moment (as discussed in Chapter 4), which are all

accounted for by the same fitting parameter. The values of ∆IMIN and ∆IMAX returned

by the fitting procedure reflect the two extreme orientations of the protein (Figure 3.1-C).

Third, based on the direct proportionality between ∆I and γ, and the geometric relationship

between γ and the length-to-diameter ratio m of a spheroid (see equations in Chapter 4),

we determine the shape and volume that agree best with the experimental distribution of

∆I values for the protein.

Figure 3.3-D shows the spheroidal approximation of the shape of ten different proteins
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compared to the respective crystal structure for each protein, illustrating that this analysis

yields excellent estimates of protein shape, particularly for proteins that closely resemble

a spheroid. Figure 3.3-A,B for instance, shows that the volume and length-to-diameter

ratio values agree well with the expected reference values; the average deviation of both

parameters is less than 20% (see Supporting Information of [1]). These results also show

that two proteins with a similar molecular weight and volume but different shape are clearly

distinguishable by this analysis; for instance, compare the ellipsoids determined for the IgG1

antibody and GPI-AChE in Figure 3.3-D.

Independent from these experimental results, we confirmed the accuracy of this approach

for ellipsoidal shape and volume determination using simulated data that was generated from

the theory of biased one-dimensional Brownian diffusion and convolved with current noise.

Fitting the simulated data with the convolution model, just as with the experimental data,

returned values of length-to-diameter ratio and volume that were in excellent agreement with

the input parameters (see Supporting Information of [1]).

Compared to other methods for determining the shape and volume of proteins in aque-

ous solution such as solution-state NMR spectroscopy, analytical ultracentrifugation, and

dynamic light scattering, the nanopore-based approach is faster (seconds to minutes), re-

quires smaller sample volumes (1 µL) and lower protein concentrations (pM to nM), and

may see improved performance as the size of proteins or protein complexes increases due

to the concomitant potential increase in signal-to-noise ratio. While the resolution of shape

is significantly lower than that of NMR spectroscopy for small proteins (<80 kDa), it is

higher than the resolution of analytical ultracentrifugation and dynamic light scattering.

In addition, although the limited time-resolution of currently available amplifiers requires

tethering proteins to the lipid coating (a reaction that occurs in situ on the nanopore chip),

the nanopore-based approach does not require extensive modification of pure proteins by

isotope labeling as it is the case for protein NMR spectroscopy.

As opposed to this first strategy, which analyzes maximum ∆I values from many translo-
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cation events, the second strategy estimates the length-to-diameter ratio and volume of

proteins from individual resistive pulses by analyzing all current values from the beginning

to the end of single translocation events, ∆I(t), in a stand-alone manner (Figure 3.2 blue

pathway numbers 1-3). This analysis relies on a single translocating protein to rotate and

sample virtually all orientation-dependent γ values such that the resulting single-event, or

intra-event, ∆I distribution reveals ∆IMIN and ∆IMAX and thereby the protein’s spheroidal

shape approximation and its volume from an individual translocation event. The advan-

tage of this strategy, in addition to estimating length-to-diameter ratio and volume from

the translocation of a single protein, is that it can also determine the protein’s rotational

diffusion coefficient and dipole moment from individual resistive pulses based on orientation-

dependent modulations in current over time. In fact, estimates of all four parameters can be

determined and updated in real time as a single protein travels through the pore. The disad-

vantage of this simultaneous multiparametric analysis of single molecules is that the analysis

is limited to resistive pulses with durations of at least 400 µs to ensure that each protein

resides sufficiently long in the pore to sample the full range of electrical shape factors (under

the conditions used in this work, approximately 10% of events exceeded this threshold). We

chose this duration based on the mean-square angular displacement equation that predicts

a protein will sample all possible orientations in less than 400µs, on average, as long as its

rotational diffusion coefficient exceeds 3,000 rad2 s-1, which was the case for the tethered

proteins examined here (see Chapter 4, specifically Figure 4.2). Other disadvantages of this

analysis include that it is more sensitive to deviations of the pore geometry from a perfect

cylinder than the multi-event analysis of maximum ∆I values (see Section 3.4.3) and that

the analysis of individual resistive pulses is associated with relatively high uncertainty as

with other single-molecule measurements.

We find that the individual-event distributions from translocations of individual proteins

retain their key features (e.g. minimal and maximal ∆I values) although the current record-

ings are smoothed due to filtering (see, again, Chapter 4). The median protein ellipsoidal
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shapes obtained from this analysis are in reasonable agreement with their crystal struc-

ture,[1] although the analysis of maximum ∆I values yielded more accurate estimates. With

regard to the robustness of each stand-alone single molecule measurement, more than half

of all measurements yielded values of the length-to-diameter ratio and of volume that were

within ± 35% of the median value. Based on this result and the expectation that further im-

provements are possible, we propose that intra-event analysis has the potential to yield good

estimates of ellipsoidal shape and volume of single proteins from individual translocation

events. Moreover, this strategy of analyzing individual-event ∆I distributions introduces,

to the best of our knowledge, the only existing method for estimating, in real time, the

ellipsoidal shape and volume of single protein molecules in solution. Shape and volume de-

termination on a single particle level is particularly advantageous for analysis of samples

with large heterogeneity in size and shape (e.g. amyloids, see Chapter 1); ensemble methods

such as dynamic light scattering are poorly suited for such samples as they blur potentially

important heterogeneities within a population into a single output value. Other techniques

for analyzing the shape and volume of single proteins such as cryo-electron microscopy and

atomic force microscopy either require freezing or surface immobilization that fixes the ori-

entation of the proteins; therefore, these methods are not particularly well suited to tracking

protein dynamics.

Figure 3.2 shows that monitoring the time-dependent modulations of ∆I while a single

particle moves through a nanopore makes it possible to measure its rotational diffusion

coefficient, DR, by tracking its rotation over short time scales and therefore over small

fluctuations in angle. We carried out this analysis in three steps by transforming the intra-

event current signal into an angle (i.e. orientation) versus time curve, calculating the mean-

square angular displacement over various time intervals, τ , and fitting its initial slope with

a model for rotational diffusion about a single axis (Figure 3.2 Bottom Left Box). Figure

3.3-F shows that the most-probable DR values for tethered proteins obtained from many

individual-event analyses of single resistive pulses were strongly correlated with the expected
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Figure 3.3. Main results of 5D analysis across all proteins. A) Comparison of the measured length-to-diameter
ratios, m, of all proteins determined through population-based analyses with expected reference values. B) Com-
parison of the measured volumes, Λ, of all proteins determined through population-based analyses with expected
reference values. C) Comparison of the measured net charge of all proteins determined through population-
based analyses (Figure 3.2 red pathway number 4) with expected reference values. D) Comparison of the
approximate ellipsoidal shape of ten proteins as determined by analysis of resistive pulses (blue ellipsoids) with
crystal structures from the Protein Databank in red (streptavidin, 3RY1; bovine serum albumin (BSA), 3V03;
anti-biotin antibody fragment (FAB), 1F8T;α-amylase, 1BLI; anti-biotin immunoglobulin G1, 1HZH; glucose-6-
phosphate dehydrogenase (G6PDH), 4EM5; L-Lactate dehydrogenase (L-LDH), 2ZQY; butyrylcholineesterase
(BChE), 1P01; β-phycoerythrin, 3V57; and GPI-anchored acetylcholinesterase, 3LII). E) Comparison of the mea-
sured most-probable dipole moment of all proteins determined through individual-event analyses (Figure 3.2 blue
pathway numbers 1-3) with expected reference values. F) Comparison of the measured most-probable rotational
diffusion coefficient of all proteins determined through individual-event analyses (Figure 3.2 blue pathway number
4) with expected reference values. Adapted with permission. [1] Copyright 2017, Springer.
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values of DR in bulk solution (Pearson’s r = 0.93). As expected, the presence of the lipid

tether and close proximity of the proteins to the bilayer coating reduced DR significantly;

this tether-induced attenuation of rotation was consistent with an apparent viscosity increase

by a factor of 211 compared to the viscosity in bulk solution (see Supporting Information

of [1]). This value is in excellent agreement with fluorescence polarization measurements

of GPI-anchored AChE by Yuan and Axelrod, which revealed that the rotational diffusion

coefficient of tethered AChE is 199 times smaller than its expected value in bulk solution.[27]

For analyzing the rotational dynamics of proteins in real time as presented here, this tether-

induced reduction of DR was beneficial as it enabled changes in protein orientation to be

resolved in time (see Chapter 4 for a direct comparison of time-resolution of tethered and

untethered proteins).

With regard to the robustness of these measurements, we found that, on average, the

relative standard deviation of the most probable value of DR from distributions of measured

single molecule values was 46% from experiment-to-experiment or day-to-day; however, as is

typical for many single molecule measurements, the variation from event-to-event was large

with a mean absolute deviation of 403%.

To the best of our knowledge, this approach is the fastest method (sub-millisecond) for

estimating the rotational diffusion coefficient of single proteins in solution, albeit with con-

siderable uncertainty at this initial stage of the technology; it is also the only non-fluorescent

method to determine DR.[7] While the requirement for tethering proteins precludes direct

determination of the bulk value of DR by this approach, the good correlation shown in Figure

3.3-F demonstrates that bulk DR values can be estimated from the measured DR values of

tethered proteins.

Monitoring the rotational dynamics of proteins at long time scales and hence over large

changes in angle shows theoretically and experimentally that proteins with a dipole moment

do not rotate randomly when they experience the MV m-1 electric field intensity inside the

pore; instead, the proteins undergo biased Brownian rotation due to electric-field-induced
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torque on their dipole moment.[5] Quantifying this bias in orientation by fitting the intra-

event ∆I distribution from an individual resistive pulse with the convolution model made it

possible to calculate a protein’s dipole moment by considering the potential energy landscape

of a dipole in an electric field (see Supporting Information of [1]). In this analysis, the fitting

parameter µ of the convolution model is equivalent to the dipole moment and therefore

yields its magnitude. In contrast, in the population-based analysis of maximum ∆I values,

the same parameter encompasses additional factors including inadequate sampling of protein

orientation, as discussed before, and hence precludes estimation of dipole moment.

Figure 3.2-E shows that the most probable values of dipole moment from this nanopore-

based analysis agree well with expected values; the average deviation is less than 25%.

With regard to the robustness of this method from experiment-to-experiment or day-to-day:

the relative standard deviation of the most probable value from distributions of measured

single molecule values was 12% and compares well with dielectric impedance spectroscopy

measurements; however, as is typical for many single molecule measurements, the variation

from event-to-event was large with a mean absolute deviation of 227%.

While the uncertainty in each stand-alone single molecule measurement of dipole moment

will have to be reduced in order to realize the full potential of this approach (see Chapter 6 for

details), this technique introduces the first experimental method for determining the dipole

moment of individual proteins in solution. To this end it exploits a fundamental advantage

of single molecule techniques, namely that statistical fluctuations of one particle are easier to

interpret and to compare with theoretical models than it would be of an ensemble of particles.

An additional advantage of this single-particle analysis is that it can estimate dipole moments

in real time and requires only pico- to nanomolar concentrations of proteins. In contrast, the

standard method for measuring dipole moment, dielectric impedance spectroscopy, requires

micromolar protein concentrations and significantly larger sample volumes.[7]

To extend the technique beyond biophysical characterization of pure protein solutions,

we applied it to the identification and quantification of different proteins in a well-defined
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Figure 3.4. Results of experiment with heterogeneous protein mixture. A) Values for the volume, rotational
diffusion coefficient, and dipole moment determined from individual events. The k-means clustering algorithm
in MATLAB classified single events as corresponding to G6PDH (red points) or G6PDH / IgG1 (grey points).
This individual-event classification indicated that 28% of events were associated with the complex, which is
approximately the same proportion of events as determined by population-based analysis. B) The volume of
G6PDH and G6PDH / IgG1 complex from clustering individual-event analyses agree well with those determined
for the pure proteins. C) The volume and ellipsoidal shape approximation of G6PDH and G6PDH / IgG1 complex,
determined through individual-event analysis and shown in the same fashion as the proteins in Figure 3.3-D.
Adapted with permission.[1] Copyright 2017, Springer.

mixture (Figure 3.4). We repeated our original experiment with glucose-6-phosphate dehy-

drogenase (G6PDH), but this time added a polyclonal anti-G6PDH IgG1 antibody to the

recording buffer after cross-linking. This procedure resulted in a mixture of three distinct

species; anchored G6PDH, anchored G6PDH bound to IgG1, and unanchored IgG1 in bulk

solution. Because the lipid coating prevents adhesion, we assumed that nearly all (99.9+%)

of the translocation events resulting from freely translocating IgG1 would fall short our 400

µs threshold for individual event analysis and thus were discarded. We analyzed the re-

maining "long" events individually, and used a clustering algorithm (Figure 3.4-A) to classify

each one as G6PDH (red) or G6PDH/IgG1 complex (grey). This analysis produced excellent

estimates of both species (Figure 3.4-B,C), and the experiment serves as a proof-of-concept

for future nanopore-based analysis of heterogeneous protein mixtures.
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3.3 Conclusion and Future Prospects of Five-Dimensional

Analyses

The work presented here extends the potential of nanopore-based DNA sequencing to five-

dimensional characterization and fingerprinting of proteins and protein complexes. Unlike

standard bulk methods, this technique interrogates individual proteins one-at-a-time by tak-

ing advantage of the molecular scale volume of the nanopore. This zeptoliter volume (10−21

L) temporarily separates individual proteins from other proteins in the bulk solution and in-

herently forms a focal point for measuring protein-induced changes in ionic conductance with

exquisite sensitivity. Hence, only the protein residing in the nanopore modulates the elec-

trical signal. This arrangement, together with the lipid coating that minimizes non-specific

interactions and slows down the translocation and rotation of lipid-anchored proteins, en-

ables interrogation of the translational and rotational dynamics of single proteins and uses

those dynamics to determine their ellipsoidal shape, volume, charge, rotational diffusion co-

efficient, and dipole moment. Additionally, we showed that this approach has advantages in

distinguishing a protein from its complex with another protein in a binary mixture.

Based on the success in commercializing nanopore-based DNA sequencing,[28–30] we

predict that improvements to the approach introduced here will increase the potential of

nanopore-based protein characterization. For instance, the individual-event analysis likely

suffers from deviations in the pore geometry from a perfect cylinder. These irregularities,

which are a consequence of the current state-of-the-art fabrication methods, affect the lo-

cal resistance along the lumen of the pore and hence affect the precision with which the

maximum and minimum ∆I value can be determined. Alternative fabrication methods may

produce pores that are almost perfectly cylindrical and should therefore minimize possi-

ble artifacts from this source of error, as discussed in Chapter 2, but to take advantage

of the five-dimensional characterization presented here, these pores must also be amenable

to a lipid bilayer coating. In addition, the recent development of integrated CMOS current
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amplifiers,[31] which can be produced in parallel to record from hundreds of nanopores simul-

taneously while reaching at least ten-times higher bandwidth and three-times higher signal-

to-noise ratio compared to the amplifier used in this work,[31] will increase the throughput

and improve the precision and accuracy of determining the rotational dynamics of proteins

on their journey through the pore. Such fast amplifiers may eliminate the need for tethering

proteins to lipid anchors [32] while their improved signal to noise ratio combined with the

recent development of low-noise nanopore chips[33] will likely reduce the uncertainty in each

determined parameter (see Chapter 2,4).[31, 34] Furthermore, computational approaches

that can model proteins with shapes more complex than simple spheroids (see Chapter 6)

may increase the resolution of shape determination, while the capability to monitor current

modulations with MHz bandwidths may enable measurements of transient changes in protein

conformation and folding as well as the ability to estimate the shape of short-lived protein

complexes whose structure and dynamics are not easily accessible by existing techniques.

We suggest that the ability to measure five parameters simultaneously on single proteins

in real time, including parameters that can otherwise not be obtained on a single molecule

level, has transformative potential for the analysis and quantification of proteins as well as

for the characterization of nanoparticle assemblies. For instance, fast protein identification

and quantification in complex mixtures is an unsolved problem.[3] Despite its tremendous

capabilities, mass spectrometry has currently limited throughput and is not broadly appli-

cable to meet demand for routine protein analysis.[2, 3] Two-dimensional gel electrophoresis

remains one of the most important techniques for analyzing complex protein samples, but its

reproducibility is limited, and the method is slow and semi-quantitative. We propose that

multi-dimensional analysis and fingerprinting of single proteins in nanoscale volumes may be

one alternative. The work presented here is only a first step in this direction; if improvements

similar to the ones made in nanopore-based DNA sequencing can be realized, we think it has

the potential to replace methods such as 2-D gel electrophoresis by providing additional pro-

tein descriptors, improved quantification, increased sensitivity, reduced analysis time, and
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lower cost. Such a capability may ultimately make it feasible to characterize and monitor

an individual’s proteome with significant implications for personalized medicine. Multipa-

rameter protein characterization on a single molecule level may also reveal biochemically-

or clinically-relevant static or dynamic heterogeneities, such as sub-populations of phospho-

rylated proteins, that are often hidden in ensemble measurements.[35] Moreover, real-time

identification of single proteins might ultimately enable single molecule sorting in a fashion

analogous to cell sorting.

Finally, this chapter focused on one of the most relevant and challenging applications of

nanoscale shape approximation, namely the characterization of single proteins. The same

approach may, however, apply to particles such as DNA origami, synthetic nanoparticles,

and nanoparticle assemblies, whose characterization on a single particle level is important

because they are typically more heterogeneous than proteins and because their charge, shape,

volume, and dipole moment affect their assembly characteristics and function.
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3.4 Supplementary Notes and Figures

3.4.1 Protein-Based Calibration of Nanopore Length

One question that arises when considering the analysis used to determine parameters from

resistive pulses of proteins is: can we use the known size and ellipsoidal shape of a protein to

calibrate geometric parameters of a particular nanopore, and then use that same nanopore

with its calibrated geometric parameters to improve estimates of physical parameters of other

proteins? To do this experiment, we calibrated a nanopore chip by translocating streptavidin

(SA) protein whose molecular shape can be approximated as spherical (i.e. shape m ≊ 1

and electrical shape factor γ ≊ 1.5) and then we determined the volume of BSA using the

same pore with a newly calibrated length. Before calibration, we used our usual approach

for determining lp from the conductance of the uncoated nanopore using equation 2.1. From

this standard approach, we determined the following geometry for this particular pore: rp

= 12.8 nm (from the TEM image of this pore using the area-equivalent pore radius rp =

(r1 ∗ r2) ∗ 0.5) and lp = 16 nm from its conductance before coating by solving for total

resistance of the system. The standard, uncalibrated analysis with this pore determined a

volume of 77 nm3 for SA and in a second experiment, after Piranha cleaning, the same pore

using the same rp and lp, determined a volume of 104 nm3 and a length-to-diameter ratio

m of 0.51 for BSA. Next, we calibrated the pore by keeping rp constant and adjusting lp so

that the determined volume for SA was equal to 95 nm3, which is the average of all reported

volumes we could find for SA (range 94-105 nm3). With the resulting calibrated, new lp,eff

value of 19.3 nm, we then Piranha cleaned this pore again and ran a new translocation

experiment with BSA. The results of the calibrated analysis for BSA with rp = 12.8 nm

and lp,eff = 19.3 nm now were length-to-diameter ratio m = 0.51 and volume Λ = 122

nm3. For comparison, the average reported value we could find for BSA in the literature is

121.5 nm3. In summary, in this particular experiment, our uncalibrated, standard analysis

underestimated the volume of SA by 19% and underestimated the volume of BSA by 14%,
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Figure 3.5. Results of calibration experiment for Streptavidin and BSA. A) Distribution of maximum current block-
ade values (population-based) for BSA protein, (grey) and fit from the convolution model after calibration. (red)
B) Distribution of maximum current blockade values (population-based) for streptavidin (grey) and associated fit
(red). In the convolution fit, we varied the nanopore length, lp and assigned a constant length-to-diameter ratio
m = 1 until we achieved the reference volume of 95 nm3. We applied this new length, lp,eff , to analyze the data
for BSA shown in (A) in order to improve our estimate for volume. Adapted with permission.[1] Copyright 2017,
Springer.

while the same pore after obtaining lp,eff from calibration with SA, determined the exact

average of the reference volumes published for BSA.

This result shows that, not surprisingly, a pore calibration improves the accuracy of deter-

mining protein volumes. This analysis also shows, however, that a pore whose area-equivalent

diameter is known from TEM images (as is the case for all pores that we used throughout

Chapter 3) and whose length is determined from its conductance (as we do with each pore

before coating with a lipid bilayer), is able to determine protein volumes within an aver-

age uncertainty of ± 20% without calibration (consistent with this result, we stated earlier

in this chapter that the average error in length-to-diameter ratio m and volume is smaller

than ± 20%). This result is again unsurprising once the cylindrical shape of the sensing

zone of the pore is established because the difference between the determination of lp by

our standard conductance measurement compared to determination of lp,eff by calibration

is that our standard method could be viewed as a pseudo one-point calibration by measuring

baseline current through the nanopore (which could also be thought of as translocating a
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particle with zero volume) compared to real one-point calibration that measures ∆I from

the translocation of a spherical, lipid-tethered particle with well-known volume such as the

SA protein.

Here, we followed the protocol of previous groups who used the volume of BSA in its na-

tively folded state, implicitly assuming that BSA translocates in its native state at applied

potentials below 0.3 V. We used an electrolyte with a similar ionic strength and made the

same assumption that proteins transit in their natively folded state by making sure to limit

the applied potentials to ∼ 0.12 V and below. As mentioned previously, the majority of

nanopore-based protein characterization work has made the same assumption of natively

folded proteins and obtained good agreement between their determined protein volumes and

reference volumes of the folded state. Therefore, the standard approach without calibration,

presented throughout this chapter and outlined above, led to reasonable agreement between

estimated volumes of 11 proteins and associated reference values. The error bars in Figure

3.3-A show this agreement with the variations for measuring the same protein either on dif-

ferent days with the same pore or with different pores on different days. Without calibration,

the method leads to an average uncertainty of ± 20%. While the calibration is hence not

required for good agreement with reference values, the new calibration experiment shown

above provides the opportunity to further improve the accuracy of the approach.

Calibrated and uncalibrated nanopore-analyses both have advantages and disadvantages.

We value the fact that straight-forward physics equations based Ohm’s law combined with

knowledge of the pore shape (Figure 2.2-C), area-equivalent diameter (from TEM images),

and length (from IV curves of the uncoated pore), make it possible to determine protein

volumes on average within ± 20% of reference values without the need for calibration,

because this approach circumvents an extra step. On the other hand, the advantage of

calibration is that it improves estimation accuracy; its disadvantage is that it requires an

extra step/experiment, which further limits the already-limited lifetime of nanopores that

are repeatedly cleaned with stringent Piranha solution.
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3.4.2 Evaluation of Size-Distribution of Gold Nanoparticles

We also attempted to calibrate a nanopore using synthetic nanoparticles, out of a concern

that proteins may be denaturing and are thus unsuitable for such measurements. To do so,

we first ordered 20 nm non-functionalized NanoXact Silica nanoparticles from the company

nanoCompsix (Lot JEA0218) with the following specifications: diameter (TEM): 22.5 ± 2.8

nm; coefficient of variation (CV): 12.8%; and zeta potential -23 mV.

We then suspended an appropriate concentration of these particles in our standard 2 M

KCl recording electrolyte and analyzed this suspension by DLS. Unfortunately the DLS

results showed that these particles aggregate at pH 7.4 although at this pH most of the

silanol groups on the silica are expected to be deprotonated (because their pKa is ≤ 2).

Consistent with aggregation, our attempt to characterize these particles with a lipid-coated

nanopore resulted in the absence of translocation peaks at both polarities of the applied 0.1

V potential. Aggregation of nanoparticles in aqueous solutions with high ionic strength such

as our recording electrolyte has been observed by many other groups before.[1]

We then obtained gold nanoparticles coated with a thiol-PEG5000 terminated with a

carboxylic acid group. Figure 3.6 shows a TEM image of these particles as well as their

size distribution by TEM (red) in comparison to the size distribution we determined from

resistive pulses through a lipid coated nanopore using our standard, uncalibrated analysis

(grey). DLS indicated that these particles did not aggregate in our 2 M KCl electrolyte.

The most striking result from Figure 3.6 is that the most frequently observed diameters

determined by TEM analysis and nanopore analysis are between 14 and 15 nm and therefore

very similar with both techniques. In both cases, we assumed a spherical shape for the

comparison of sizes. This excellent agreement in size, once again, shows that our standard

approach of determining the length of the sensing zone of the nanopore by its conductance

together with a TEM image of the pore yields size estimates that are within ± 20% of the

expected reference values; as argued before, calibration was not necessary for this type of

accuracy.
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Figure 3.6. Results of size distribution analysis of gold nanoparticles using both nanopore and TEM-based
analyses. The grey histogram represents an estimated nanoparticle diameter determined from individual-event
analysis of translocation events, assuming a length-to-diameter ratio of m = 1, while the red histogram represents
the equivalent diameter determined from area-based measurements of TEM images (inset). Note that while the
distribution shapes are inherently different, the peak values show very good agreement.

The second interesting result is that the distribution from the nanopore analysis is some-

what wider than the distribution from TEM analysis. To reveal the exact reason for this

difference is in our view sufficiently complex for a stand-alone publication in its own right.

Speculative reasons are: 1) the assumption of a spherical particle shape leads to uncertainty

of resistive-pulse based volume determination of those particles that deviate from a perfect

sphere as Golibersuch [21] and we (above) have argued. Because close inspection of the TEM

images in the inset of Figure 3.6 illustrates that most particles are not perfect spheres, this

uncertainty affects the determined size distribution by nanopore analysis due to its volu-

metric measurement principle, while the analysis of the TEM image is not affected to the

same extent since it is straightforward to envelope a particle on a 2D image with a circle. 2)

Another important consideration is that these PEG-coated gold nanoparticles translocated

the pore in an untethered fashion. This consideration means that, in contrast to all our pro-

tein translocation experiments in this chapter, nanoparticles were not confined to a distance
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of maximally ∼1.5 nm from the wall of the nanopore but rather untethered particles were

able to sample all distances from the pore walls during their translocation. This is a critical

difference that we describe in detail in Chapters 4 and 5. Qin et al. demonstrated in an

excellent article that off-axis positions of spherical particles during translocations can induce

up to 15% variations in the magnitude in ∆I if the diameter of the particles is approximately

half the diameter of the pore, as was the case for the experiment shown in Figure 3.6.[11]

In other words, if a particle undergoes Brownian motion from the center of the nanopore

to the wall of the nanopore during its translocation, then the same particle can result in

∆I values that differ by ∼15%. This effect widens the distribution of nanopore-based size

determination in cases when particles are untethered. On the other hand, in our case of lipid

tethered proteins, the maximum distance of proteins from the wall is limited by the length

of the extended tether, which we estimate to be ∼1.5 nm, while the minimal distance from

the wall is likely 0.5 to 1 nm due to the thickness of the water layer near the headgroup

of phospholipid bilayers (see [13]). Nonetheless, even when considering the unrealistic case

that tethered proteins would somehow be able to sample all distances from the pore wall

including the center position of the pore, Figure 5 of the Qin et al. article predicts that

the maximum ∆I variations will be smaller than 7% because of the small ratio between the

protein diameters and the pore diameters that we used in this chapter.

The reason why we discuss the effect of off-axis translocation of untethered particles here

in such detail is that we would expect this effect to distort the accurate determination of

the shape of untethered translocating particles by our current analysis approach (in Chapter

4, however, we determine that, fortuitously, effects of lowpass filtering counteract these

effects). We predict that any fluctuation in ∆I caused by off-axis diffusion during the

translocation of a single particle would be interpreted as the rotation of a non-spherical

particle and would result in a non-spherical shape even for perfectly spherical particles. In

contrast, as illustrated Figures 3.7 and 3.8, the translocation of the lipid-tethered spherical

proteins ferritin or streptavidin does not result in fluctuations of the ∆I signal beyond the
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baseline current noise, showing that such off-axis effects are negligible for lipid-tethered

proteins that are significantly smaller than the pore diameter as is typically the case in our

experiments. This discussion is continued in great detail in subsequent chapters, and these

"free translocation" experiments with gold nanoparticles represent the first step toward –

and, in some ways, a motivation for – the extensive work on freely translocating proteins

presented in Chapter 4.

3.4.3 Evaluation of Nanopore Cylindrical Geometry

In order to address concerns about the geometry of the nanopores used throughout this

chapter, we conducted additional experiments specifically designed to shed light on the

validity – or lack thereof – of approximating our nanopores by a cylindrical nanopore shape.

Specifically, we considered the following hypothesis: if many copies of a lipid-tethered, perfect

sphere translocate through a nanopore that is significantly longer than the diameter of the

sphere, then we expect these translocations to produce square-shaped resistive pulses if the

nanopore is shaped like a cylinder. The shape of these pulses will have a relatively fast rise

from the baseline current to its plateau peak value and then a relatively fast drop back to

the baseline due to relative magnitude of access resistance compared to pore resistance. We

anticipate the shape of the resistive pulses to be symmetric with respect to the beginning

and end portion of the resistive pulse. This expectation is confirmed by the finite element

simulation that we carried out in a cylindrical nanopore in the Supporting Information of

Yusko et al. [1] showing a symmetric peak at its beginning and end with a flat part at its

maximum. In contrast, a nanopore with a pronounced hourglass-shape would mean that a

significant time-fraction of the resistive pulse would grow in amplitude as the pore would

gradually become smaller at its entrance and then a significant fraction of the pulse would

become smaller as the particle exits the gradually bigger exit of the pore. An hour-glass

pore shape would lead to a relatively small fraction of the resistive pulse being flat at its

maximum. Finally, a conical pore shape would lead to an asymmetric profile of the resistive
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pulse with either a fast rise and gradual drop for pores with a small entrance and large exit

or vice versa for the opposite pore shape. A conical pore shape would not lead to a flat

maximum of the peak shape but rather to a tip-shaped resistive pulse and such a conical

pore shape would lead to an asymmetric IV curve before coating the pore.

Figure 3.7 shows results for individual translocation events of lipid-tethered ferritin, a

large protein with perfectly spherical shape (see Protein Data Bank: 1HRS) and Figure 3.8

shows the results for translocation of lipid-tethered streptavidin, a smaller protein that is

also approximately spherical. As can be appreciated both from the individual translocation

events and the average of 20 resistive pulses obtained from both proteins, respectively, the

resistive-pulse shape, in both cases, is almost perfectly square with a relatively large and flat

plateau section. This pulse shape confirms that the sensing zone of our nanopores can indeed

be approximated by a perfect cylinder. As we have argued before, any other pore shape with

significant deviations from a cylinder would have introduced errors into parameter estimates

relative to reference values and we would not have been able to obtain good agreement of

five measured parameters across ten different proteins.

3.4.4 Analysis of Chemical Protein Denaturation in a Nanopore

In an attempt to demonstrate that proteins transited the pore in a native state, we performed

experiments where we chemically denatured protein prior to analysis, and compared the

results from translocation events with denatured protein to those of the same native protein.

As reported previously, the apparent volume of BSA proteins increases significantly (in our

experiment by 60%) upon denaturation, presumably because of a looser conformation and

increased solvent-exposed area compared to native BSA. Similarly, the shape of the BSA

changes dramatically upon denaturation from an m value of ∼0.5 to ∼0.3.

Interestingly the normalized ∆I distribution for BSA from the experiment with 0 M urea

and with 1 M urea are similar, indicating that BSA maintains its native conformation in

the presence of 1 M urea. This result suggests that, under the experimental conditions and
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Figure 3.7. Evaluation of cylindrical nanopore geometry using long events of ferritin. Resistive pulses were
normalized with regard to the event duration such that all events had a relative duration from 0 to 1. The panel in
the lower right corner shows the overlay of 20 resistive pulses (grey) with their average current shown in red. The
other panels show 8 examples of these 20 pulses, which were selected based on a random number generator.
The important result from these experiments is that translocation of a spherical protein leads to square-shaped
resistive pulses indicating a uniform electric field in the sensing zone of the pore and hence confirming that the
shape of the sensing zone can be approximated by a cylinder. Note also that for spherical proteins, the magnitude
of the current noise during the translocation event is similar to the magnitude of the current noise of the baseline
near this event. This result is in stark contrast to the significant current modulations during translocation events
of non-spherical proteins (see for instance Figure 3.1-D, 4.1-E,F), which are the result of time-variant shape- and
orientation-dependent electrical shape factors γ while non-spherical proteins translocate and rotate through the
pore. Using our standard, uncalibrated individual-event analysis approach, we determined a volume of 705 nnm3

for ferritin, which compares well to the expected volume of 775 nm3. Adapted with permission.[1] Copyright 2017,
Springer.
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Figure 3.8. Evaluation of cylindrical pore geometry using long events of streptavidin. Resistive pulses were
normalized with regard to the event duration such that all events had a relative duration from 0 to 1. The panel
in the lower right corner shows the overlay of 22 resistive pulses (grey) with their average current shown in red.
The other panels show 8 examples of these 22 pulses, which were selected by a random number generator.
As in Figure RL3, the important result from these experiments is that translocation of a spherical protein leads
to square-shaped resistive pulses indicating a uniform electric field in the sensing zone of the pore and hence
confirming that the shape of the sensing zone can be approximated well by a perfect cylinder. Using our standard
individual-event analysis approach, we determined a volume of 106 nm3 for streptavidin, which compares well to
the expected volume of 95 nm3. Adapted with permission.[1] Copyright 2017, Springer.
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Figure 3.9. Evaluation of a chemical denaturant on protein shape and volume. A) Results from population-based
analyses, comparing histograms of maximum ∆I values from the translocations of natively folded proteins (grey)
to those from chemically denatured proteins (blue and red). Note that in 8M urea, we observe a large increase
in resistive pulse amplitude, which we expect to represent a heterogenous mixture of globular expanded and
unfolded proteins and multimeric protein complexes. B) Results from individual-event analyses, with length-to-
diameter ratios and volumes plotted in black for native proteins, and in red for proteins that have been chemically
denatured. Again, looking at the associated normalized histograms at the top of the plot, we see that the most
common volume of the denatured proteins is approximately a dimer with a wide spread, and the length-to-
diameter ratio tends toward a more flattened disk shape after denaturation.

electric fields we used, proteins appear to maintain their native conformation even in the

presence of low concentrations of chemical denaturant. This result supports the idea that

under the experimental conditions we used, proteins translocate through the pores in their

native conformation, as we have argued before and as our results indicate for eleven different

proteins. In the presence of 4 and 8 M urea, however, we observe a significant shift in

apparent protein volume. In fact, we observe only a small overlap in the histogram between

the data from 0 M urea and 8 M urea, indicating that either 1) almost all BSA molecules have

lost their native conformation in the presence of 8 M urea and are translocating through the

nanopore in an expanded and flattened globular disk, or 2) cysteine residues typically buried

within BSA become more exposed upon unfolding, and the protein forms semi-unfolded

dimers. As reported before, the change in dwell times upon denaturation was relatively

small.
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While it is not the focus of the present chapter, we were at first surprised that the shape of

BSA flattened (i.e. became less spherical) after denaturation compared to its native state.

Naïvely, we would have expected the shape of denatured BSA to correspond to a loosely

packed, random-coiled sphere. Importantly, however, BSA contains 17 disulfide bonds in its

native state, which makes it plausible that upon unfolding with 8 M urea in the absence of a

reducing agent to break S-S bonds, these disulfide bonds persist and hold the coil together in a

flattened conformation with 8 interconnects and one free cysteine.[36] Speculative alternative

or additional reasons for a non-spherical shape of denatured monomeric BSA in the pore

may be the consequence of 1) interactions between exposed hydrophobic amino acid residues

with the bilayer coating, leading to flattening of the random coil or 2) confinement of the

denatured coil within 1.5 nm from the pore wall due to the lipid tether, 3) depletion forces

between the bilayer coating and the denatured, loose protein conformation due to depletion

of counterions in the gap between lipid bilayer surface and the denatured protein, or 4)

electric field induced distortions in the loose conformation. An alternative and simpler

explanation to these four is that the protein is forming dimers or oligomers, which has been

observed for BSA.[36] Regardless of the possible explanations for our findings, the purpose

of the experiment shown in Figure 3.9 was to demonstrate that our method is able to resolve

significant differences in volume and shape of BSA before and after denaturation and Figure

3.9 indeed provides strong evidence to this effect. We are currently investigating the effects

of denaturation on the ellipsoidal shapes of other model proteins and anticipate that we will

be able to build upon this preliminary finding.

3.4.5 Investigation of Initialization Values for Dipole Moment

When we analyze distributions of current blockade values using our convolution model (de-

scribed in more detail in Chapter 4), we need to initialize four fitting parameters, namely

(∆I/I0)min as the 10th percentile of the input data, (∆I/I0)max value as the 90th percentile

of the data, the spread of the noise σ as the standard deviation of the current trace, and the
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protein’s permanent dipole moment. In order to investigate the effects of the initialization of

dipole moment in particular, we re-performed the analysis of all nine non-spherical proteins

examined in this chapter, initializing each individual-event fit with either the reference value

for the dipole moment of the protein, or the average value (550 D) across a broad sample of

proteins in the Protein Databank. We present the values in Figure 3.10.

From this analysis, we determined that the method of dipole initialization in the convolu-

tion fit has a small but measurable effect the accuracy of resulting estimates. Importantly,

this analysis shows that initializing with an approximately average dipole moment (550 D)

can produce accurate estimates of protein dipole moment, and is therefore applicable in a

scenario where the dipole moment of a particular protein is unknown.
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Figure 3.10. Evaluation of initialization parameters for dipole moment in the convolution fitting procedure. A)
Comparison of the measured most-probable dipole moment of all proteins determined through individual-event
analyses (Figure 3.2 blue pathway numbers 1-3) with expected reference values, initializing the dipole moment
as 550 D. B) Comparison of the measured most-probable dipole moment of all proteins determined through
individual-event analyses (Figure 3.2 blue pathway numbers 1-3) with expected reference values, initializing the
dipole moment as the associated reference value of the protein. C) Comparison of the percent error in estimated
dipole moment versus reference dipole moment between the two different initialization styles across all nine non-
spherical proteins. The average error of each initialization mode is shown as a dashed line of the respective color
(black or grey).
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Chapter 4: Label-Free Characterization of

Proteins

This chapter demonstrates that high-bandwidth current recordings in combination with low-

noise silicon nitride nanopores make it possible to determine the molecular volume, approx-

imate shape, and dipole moment of single native proteins in solution without the need for

labeling or other chemical modifications of these proteins. The analysis is based on current

modulations caused by the translation and rotation of single proteins through a uniform

electric field inside of a nanopore. We applied this technique to nine proteins and show that

these measured protein parameters agree well with reference values, but only if the nanopore

walls were coated with a non-stick fluid lipid bilayer. One potential challenge with this ap-

proach is that an untethered protein is able to diffuse laterally while transiting a nanopore,

which generates increasingly asymmetric disruptions in the electric field as it approaches the

nanopore walls. These "off-axis" effects add an additional noise-like element to the electrical

recordings, which can be exacerbated by non-specific interactions with pore walls that are

not coated by a fluid lipid bilayer. We performed finite element simulations to quantify the

influence of these effects on subsequent analyses. Examining the size, approximate shape,

and dipole moment of unperturbed, native proteins in aqueous solution on a single-molecule

level in real time while they translocate through a nanopore may enable applications such

as monitoring the assembly or disassembly of transient protein complexes based on changes

in their shape, volume, or dipole moment.
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4.1 Introduction to Label-Free Nanopore Sensing

Recent advances in single-molecule methods, including resistive pulse sensing with nanopores,

have made it possible to interrogate the physical characteristics of individual proteins and

other biomolecules in aqueous solution.[1–4] Other established biophysical techniques such

as atomic force microscopy (AFM) can determine the mechanical properties of proteins in

an aqueous sample [5–7], while optical techniques like fluorescence correlation spectroscopy

(FCS) [8–10] and fluorescence resonance energy transfer (FRET) [11–14] reveal spatial and

temporal information about single proteins that can provide insight into their structure

or interactions with other molecules in solution. In each of these methods, proteins are

often subjected to either chemical or physical modifications for optimal analysis on a single-

molecule level. These preparation steps can alter intrinsic protein properties and subsequent

measurements may not be representative of native proteins in their physiological environ-

ments.[5, 9, 11]

Nanopore-based, resistive pulse sensing is a single-molecule method capable of investigat-

ing the physical and structural properties of individual proteins and protein complexes.[15–

27] This technique can characterize up to 100 particles per second, in electrolyte-rich aque-

ous solution, as they individually transit the zeptoliter confines of a nanopore.[28, 29] As

shown in Figure 4.1, each particle disrupts the flow of ions to an extent that is proportional

to its volume, shape, and relative orientation to the electric field, while its dwell time (td)

within the pore corresponds to its net charge and electrophoretic mobility in the applied elec-

tric field.[30, 31] Resistive pulse-based, nucleic acid sequencing has made notable progress

recently by combining biological nanopores with complimentary enzymes that ratchet nu-

cleotide strands through the pore one base at a time.[32–40] Protein characterization with

nanopores, however, is not as advanced as nucleic acid characterization for two key reasons:

the size of globular proteins necessitates synthetic nanopores with large diameters that are

prone to non-specific adhesion [41], and protein characterization targets mobile particles that

transit the sensing zone - in the absence of adsorption - at rates approaching or exceeding
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the bandwidth of conventional current-recording systems.[42–45]

In response to these challenges, we and others have designed a variety of nanopore systems

that slow the transit speeds of proteins while avoiding clogging of the pores that would

otherwise end experiments. For example, Wloka et al. engineered a non-stick biological

nanopore, Cytolysin A, with a 5.5 nm diameter sensing vestibule above a 3.8 nm diameter

pore and used it to detect the attachment of an individual ubiquitin protein (8.6 kDa) to a

protein substrate. [27, 47, 48] Waduge et al. estimated the sizes and intrinsic flexibilities of

proteins as they slowly squeezed through synthetic nanopores with diameters only slightly

larger than the proteins themselves [49], while others have investigated protein analytes

with a variety of anti-adhesive approaches.[3, 50–57] Increasing the viscosity of the recording

buffer (e.g. by adding glycerol) also makes it possible to slow the diffusion of proteins,

though this approach reduces the conductivity of the recording buffer and thus reduces the

amplitude of resistive pulses. In Chapters 2 and 3, we discussed coating synthetic nanopores

with a fluid lipid bilayer, which prevents or minimizes non-specific adhesion to the nanopore

substrate.[58] This coating can present fluid lipid anchors to slow the diffusion of tethered

proteins by taking advantage of the viscosity of the bilayer.[58] We then demonstrated in

Chapter 3 that lipid-coated nanopores make it possible to determine the volume, ellipsoidal

shape, dipole moment, rotational diffusion coefficient, and charge of proteins simultaneously

in aqueous solution and employed this multiparametric fingerprint to categorize populations

of protein in a binary mixture.[15] For these applications, however, the protein needed to

be attached to the lipid bilayer using either chemical cross-linking or a lipid-functionalized

protein binding complement.

In this chapter, we demonstrate that it is possible to determine the ellipsoidal shape,

volume, and dipole moment of single untethered and unmodified proteins in aqueous solution

as they translocate through a nanopore, driven by electrophoretic force due to their net

charge in the electric field. This approach is different than the method we demonstrated

previously because here we allow proteins to diffuse freely in solution and no longer slow their
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Figure 4.1. Introduction to experiments with untethered proteins. Individual, non-spherical proteins passing
untethered through a nanopore create current modulations that contain information about their length-to-diameter
ratios, volumes, and dipole moments. A) Schematic cross-section of a setup with a nanopore in a silicon chip
and fluid compartments confined by a silicone elastomer (PDMS). B) Cartoon representation of oblate ellipsoids
(red) passing through a nanopore in a free-standing silicon nitride membrane of a nanopore chip. C) Baseline
current measured across the bare (without lipid coating) nanopore substrate at an applied potential difference of
-100 mV and digitally filtered with a 50 KHz Gaussian lowpass filter. Both nanopores are approximately 25 nm in
diameter. The RMS current noise with the 3 × 3 scaffolds was a factor of 1.8 lower than with the previously used
configuration. D)Example current trace with a duration of 10 s, digitally low-pass filtered at 50 kHz, with maximum
values of all resistive-pulse events shown as green dots, and a long event with a duration greater than 150 µs
signified by a dashed grey box. E,F) Probability distribution of current values within a single resistive pulse
as a function of particle length-to-diameter ratio and orientation during its translocation through the nanopore.
Inset: original current-versus-time traces of single resistive pulses from the translocation of a streptavidin protein
(black) and an IgG protein (red). These traces were digitally low-pass filtered at 10 kHz for clarity. Maximum
and minimum blockade values corresponding to electrical shape factors γmax and γmin are shown by dashed
lines. Scale bars represent 100 µs and 0.01 (∆I/I0). Adapted with permission.[46] Copyright 2019, American
Chemical Society.
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diffusion by tethering them to a lipid anchor in the fluid lipid bilayer. To make this approach

possible, we now use nanopore chips with a 3 mm × 3 mm frame, sandwiched between two

layers of polydimethylsiloxane (PDMS) with small access ports to the nanopore (Figure 4.1-

A). This experimental design reduced the current noise by 40% at 50 kHz bandwidth and

thus increased the signal-to-noise ratio (SNR) at this bandwidth (see Figure 4.1-C,4.14). By

digitally low-pass filtering the data at 50 kHz as opposed to 15 kHz, as we had done in

previous work, we increased the number of analyzable resistive pulses [42, 59] as well as the

temporal resolution from each translocation event. We show here that the number, duration,

and bandwidth of resistive pulses are critical for the accuracy of subsequent analyses on those

pulses.

We previously discussed the analysis of data from non-spherical particles rotating in an

electric field to calculate protein parameters from individual resistive pulses (see Chapter

3);[15] the approach is based on fundamental theory developed by Golibersuch [31], Fricke

[60], Velick and Gorin [61], and others.[54, 58, 62–65] Briefly, particles rotate and adopt

different orientations relative to the electric field during their passage through the pore

(Figure 4.1-B). In the case of simple ellipsoidal particles rotating and translocating through

a nanopore, an electrical shape factor, γ, relates the particle’s orientation, θ, within the

electric field, and its length-to-diameter ratio, m, to the current blockade, ∆I/I0. A perfectly

spherical particle samples only one γ value (equal to 1.5, Figure 4.1-E) during transit. A

non-spherical particle can sample all γ values contained between perfectly crosswise (γmax)

and perfectly lengthwise (γmin) orientations (Figure 4.1-F), and will do so with a probability

for various γ values that can be described by a U-shaped distribution.[31]

In order to quantify protein length-to-diameter ratio, volume, and dipole moment, we

determined the particular probability distribution of γ values for a given protein by using

an iterative convolution fitting procedure (described in detail in Section 4.4.1).[15] In this

procedure, we fit the entire ∆I/I0 distribution from each individual translocation event with

a dwell time greater than 150 µs (Figure 4.1-D, grey box). This approach returned an
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approximate ellipsoidal shape, volume, and dipole moment value for tens to hundreds of in-

dividual protein translocation events within a single experiment. Characterization of freely

translocating proteins based on stand-alone analysis of single events one-by-one is uncom-

mon, as the majority of work characterizing proteins with nanopores extracts parameters

like volume from populations of resistive pulses rather than from the individual pulses them-

selves. Here, we report all values from individual translocation events as well as the median

length-to-diameter ratio, median volume, and the most-probable dipole moment determined

from distributions of single molecule-based individual event analyses (Table 4.2), and discuss

factors that influence the uncertainty of those values. In order to demonstrate that this char-

acterization methodology can be applied to determine a range of protein characteristics, we

chose a set of proteins that vary widely in length-to-diameter ratio (m = 0.14 to 2.5), volume

(Λ = 95 to 1700 nm3) and dipole moment (µ = 484 to 1846 D). We demonstrate that, in

order to be feasible, the method combines three important characteristics: First, it estimates

multiple physical parameters of proteins translocating freely through a synthetic nanopore

by combining low-noise nanopores and high-bandwidth recordings. Second, it proceeds in a

more straightforward manner than its tethered alternative by circumventing the tethering

step and thus provides measurements on unperturbed proteins. And third, it takes advan-

tage of anti-adhesive nanopore coatings that are critical in providing the free translocation

and rotation necessary to collect these measurements without artifacts.
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4.2 Results and Considerations of Label-Free Protein

Analyses

4.2.1 Filtering Attenuates Fluctuations in the Resistive Pulses from

Freely Translocating Proteins

Signal bandwidth is critical for recording accurate amplitudes and durations of resistive

pulses; inadequate bandwidth can clip the amplitude of the signal or overlook resistive pulses

that occur between two sampled points.[66] Moreover, proteins that are not tethered to a lipid

bilayer during translocation rotate at a rate that is approximately two orders of magnitude

faster than tethered proteins.[15, 67, 68] This difference in rotational diffusion coefficient has

important implications when the goal is to resolve differences in protein orientation during

a single translocation event, as is necessary, for instance, to determine a bias in orientation

that reflects the dipole moment of a protein.

To investigate the extent to which we could resolve different orientations of an unteth-

ered protein rotating and translocating freely through a lipid bilayer coated nanopore, we

performed random-walk simulations.[15] To do so, we used the rotational diffusion coeffi-

cient of the protein to determine the average rotated angle during each time step around

a single rotational axis. We then selected a rotational direction (e.g. clockwise or counter-

clockwise) based on orientation-dependent biased diffusion in an electric field, and converted

the resulting array of angles to their corresponding ∆I/I0 values.[15] Figure 4.2 shows ideal

representations (i.e. without recording noise) of resistive pulses produced by a simulated ran-

dom walk for an oblate ellipsoid that represents a 150 kDa protein as it translocates through

a nanopore. When the protein rotated with a rotational diffusion coefficient that corresponds

to a lipid anchored state [15], filtering at 50 kHz retained the large majority of fluctuations as

well as their maximum and minimum blockade amplitudes (Figure 4.2-A). This figure panel

also shows that in order to sample both the minimum and maximum orientations of the
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Figure 4.2. Effects of filtering on simulated resistive pulse signals. A) Simulated resistive-pulse trace generated
from a random-walk simulation for a 150 kDa protein with a shape that can be approximated by an oblate (m
= 0.29, Λ = 340 nm3, µ = 840 D) rotating at a rate of 5 × 103 rad2 sec-1 that corresponds to this protein after
tethering it to a lipid bilayer with a lipid anchor as reported by Yusko et al. [15] B) Simulated resistive-pulse trace
for the same protein as in (A) rotating with a diffusion coefficient of 9 × 105 rad2 sec-1, estimated for the particle
in bulk solution using the software HydroPRO.[69] Blue arrows show the attenuation effect of low-pass filtering.
C) Simulated resistive-pulse trace for the same protein as in (A) rotating with a rotational diffusion coefficient of
1.8 × 105 rad2 sec-1 that corresponds to an untethered protein inside of the confinement of a nanopore according
to Dix & Verkman.[67] A-C) Grey lines represent each ns time step of the random-walk simulation, red lines show
the same trace downsampled at 500 kHz, and the blue lines are the downsampled trace digitally low-pass filtered
at 50 kHz. Note that the blue filtered trace is shifted in time to show visual alignment with other traces (see Figure
4.6). Green dashed lines show minimum and maximum ∆I/I0 values that correspond to electrical shape factors,
γmin and γmax. Estimated values of protein length-to-diameter ratio, m, are compared between the filtered data
(blue) and the ideal random-walk data (grey). The dwell time of the protein in the pore was set to either (A)
400 µs or (B,C) 150 µs. The electric field within the pore was 1.646 MV m-1, corresponding to a nanopore with
a length of 38 nm and a diameter of 17 nm connected to an adjacent channel with a length of 275 nm and
diameter of 100 nm [70] with an applied potential of 0.1 mV in 2 M KCl solution with a resistivity of 0.046 Ω m.
D) Cartoon showing small, time-step rotations of an ellipsoidal particle passing through a nanopore, representing
the random-walk simulations shown in (A-C). Adapted with permission.[46] Copyright 2019, American Chemical
Society.
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particle, however, dwell times of at least 400 µs duration were required.[15] The reason is,

that in order to estimate the ellipsoidal shape, m, of a protein accurately, the protein must

remain sufficiently long in the pore to sample the orientations that correspond to minimum

and maximum blockade values because these two values represent the extreme lengthwise

and extreme crosswise orientations of a particle with a given volume and length-to-diameter

ratio (see Eqn’s 4.10-4.15 for how (∆I/I0)min and (∆I/I0)max influence the quantification of

ellipsoidal shape and volume). In contrast, when the protein rotated with a rotational diffu-

sion coefficient that corresponds to bulk solution, a sampling rate of 500 kHz was too slow

to completely resolve fluctuations between minimum and maximum orientations, and digital

filtering at 50 kHz produced a 41% underestimate of length-to-diameter ratio as represented

by the m value (Figure 4.2-B). At a rotational diffusion coefficient that was 5-fold slower

than bulk – one that describes the protein rotating untethered but within a confined space

[67] – sampling at 500 kHz was sufficient to track the protein rotating between minimum

and maximum orientations. Low-pass filtering at 50 kHz, however, still produced a 24%

underestimate of protein length-to-diameter ratio under these conditions (Figure 4.2-C).

In general, filtering attenuates the current fluctuations that correspond to different protein

orientations during its translocation through the nanopore. This effect depends on the time

resolution of the recording and is pronounced when the protein rotates at faster rates, as is the

case in Figure 4.2-B. Estimates of length-to-diameter ratio appear to be most influenced by

choice of filter cutoff frequency and the rotational diffusion coefficient of the protein (Figure

4.15-A,B). Estimates of volume follow a similar trend to those of length-to-diameter ratio,

whereby the estimates are more accurate at higher filter frequencies and slower rotational

diffusion coefficients (Figure 4.15-C,D). Estimates of dipole moment, however, appear to be

relatively independent of protein rotation rate and filter cutoff frequency (Figure 4.15-E,F),

but improve as dwell times increase (Figure 4.11). These trends highlight the usefulness of

anchoring proteins to anti-adhesive coatings in order to slow both their rotation as well as

their speed of transit through the nanopore; they also highlight the importance of attempts
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to increase recording bandwidth and SNR in future resistive pulse-based experiments for

protein characterization. For example, according to Figure 4.2-B, the commercially available

Chimera VC-100 amplifier, with a bandwidth of ∼1 MHz, should be able to time-resolve

the rotation of an untethered protein in the confines of a nanopore with significantly higher

fidelity than the Axopatch 200B used here, assuming that the SNR at this bandwidth permits

resolving various orientations.[59]

With the results from the simulations in Figure 4.2 in mind, we expected untethered

proteins translocating through the confines of a nanopore (analogous to the case illustrated

in Figure 4.2-C) to produce estimates of length-to-diameter ratio, m, that were less extreme

than predicted and thus closer to a sphere (m = 1) than to a flattened or elongated ellipsoid

of rotation (m << 1 or m >> 1). Specifically, data filtered at 50 kHz will not reach the

full amplitudes of γmin and γmax (blue curve in Figure 4.2-C) and thus lead to a systematic

underestimate of the m value by approximately 25 %.

4.2.2 Individual Translocations through Lipid Bilayer-Coated Nanopores

Contain Information about Protein Ellipsoidal Shape, Volume, and

Dipole Moment

Figure 4.3 (A,C) shows individual data of experimental length-to-diameter ratio and volume

determinations that resulted from individual translocation events of a single protein moving

through the nanopore. To allow for sufficient time such that proteins could sample all

electrical shape factors, we restricted the analysis to resistive pulses with a duration of at

least 150 µs. Determined values for length-to-diameter ratio and volume were in reasonable

agreement with reference values: median estimates for the length-to-diameter ratio deviated

on average by 35% from reference values across all proteins (Figure 4.3-B), and median

volume estimates were within 40% of reference values (Figure 4.3-D). Figure 4.3 also shows

that estimates of protein shape, volume, and dipole moment from individual translocation
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events varied considerably for each protein. We attribute this variability to the intrinsic

uncertainty of single-molecule analyses, to noise in the signal recording [66], to the limited

recording bandwidth,[66], to the fundamental limitation of approximating a complex three-

dimensional protein shape with a simple ellipsoid (see Figure 4.12 for visual details on the

accuracy of this approximation), and to off-axis effects as discussed below.[30] We note that

the approach of analyzing single translocation events in a stand-alone fashion as shown

in Figure 4.3 (A,C,E) is particularly demanding and thus the median length-to-diameter

ratio and volume estimates from these analyses were less accurate than those estimates

from population-based analyses, similar to findings from previous work.[15] For instance,

population-based analyses performed on the same data revealed protein shapes that were

within 20% of reference values for all oblate-shaped proteins, and volume estimates that were

strongly correlated with reference values for all nine proteins (slope = 0.989, Pearson’s r =

0.99, see Figure 4.5). The reason why we emphasized stand-alone event-by-event analysis in

the work presented here is that this approach is required when the long-term goal to analyze

mixtures of proteins is to be achieved.

Proteins with a permanent dipole moment do not rotate randomly while passing through

the electric field within a nanopore; rather, they experience a Brownian rotation that is

biased by torque acting on their dipole from the electric field.[71] The convolution-based

model used to fit the data in this work accounted for this bias, and ultimately determined

the extent of bias each protein had for its minimum (γmin) and maximum (γmax) electrical

shape factors; i.e. did the protein sample both maxima with equal probability, or did it

sample one orientation and hence electrical shape factor more often than the other? Figure

4.3-F shows the most-probable dipole moment values (µ) determined through log-normal

fitting of the distribution of measured dipoles for each protein.[15] These dipole estimates

were in good agreement with reference values; most probable dipole moment estimates for

each protein deviated on average by less than 20% from their reference values. Event-to-

event variability in dipole moment was large, consistent with the data spread in shape and
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Figure 4.3. Results of individual-event analyses on untethered proteins. A) Length-to-diameter ratios determined
from individual resistive pulses from the translocation of various oblate-shaped proteins (red) and various prolate-
shaped proteins (blue). B) Comparison of the median values of measured length-to-diameter ratios, m, with
reference values for each protein. The red line is the linear fit for all proteins in the study, the black dotted line
shows the ideal 1:1 agreement, and the dark and light green regions represent estimates of length-to-diameter
ratio in the presence of ±10% and ±25% deviations in minimum and maximum blockade values, respectively.
C) Volumes of all proteins, with IgM in grey corresponding to the left y-axis in grey, and other proteins in red
corresponding to the right y-axis in red. D) Comparison of the median values of the volumes for 8 proteins
determined from single event analyses with reference values for these proteins. Inset shows values for proteins
with volumes smaller than 500 nm3. The red line represents a linear fit for only the proteins with volumes smaller
than 500 nm3 and the blue line represents a linear fit through data for all proteins. E) Dipole moment estimates
for individual events of all non-spherical proteins. Data are plotted on a log-scale to represent their underlying
log-normal distribution, as discussed by Yusko et al. [15] A,C,E) Parameter estimates from individual long events
are shown as red diamonds, red squares represent mean values, horizontal lines represent median and quartile
values, whiskers represent the standard deviation of the values, black filled circles denote reference values, and
black open circles denote most-probable values determined through log-normal fitting.[15] F) Comparison of
estimated dipole moments with reference values for all 7 non-spherical proteins investigated. The black dotted
line represents the ideal 1:1 agreement, and the red solid line is the linear fit. B,D,F) Proteins are plotted as
follows: anti-biotin Fab (open stars), α-Amylase (open triangles), G6PDH (open circles), IgM (triangles), anti-
biotin IgG (circles), BSA (diamonds), ADH (stars), and Streptavidin (squares). See Table 4.3 for quantitative
values. Adapted with permission.[46] Copyright 2019, American Chemical Society.
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volume estimates; the estimates of dipole moment for individual BSA events, for example,

had a median absolute deviation of 73%. While this level of uncertainty is relatively high,

we note that this is the only technique available to estimate the dipole moment of individual

unmodified proteins in solution. In our previous work [15], tethering removed one positive

charge from each protein when cross-linking them to a lipid anchor in the bilayer by means

of a bifunctional N-hydroxysuccinimide (NHS) linker. Removing a charge of a randomly

located amine on the surface of the protein inherently distorted that protein’s permanent

dipole moment and is thus not desirable.[15] Furthermore, the technique presented here gen-

erates dipole estimates within a few hundred microseconds as the protein passes through the

nanopore, and is compatible with small sample volumes ranging from nano- to microliters as

well as protein concentrations ranging from nano- to micromolar. These characteristics are

attractive because dipole moments are becoming increasingly important for the rheological

properties of concentrated antibody formulations used for subcutaneous administration.[72]

Rapid quantification of dipole moments in aqueous solution also provides additional discrim-

inatory power in heterogeneous protein mixtures as dipole moments are distributed broadly

between different proteins and show little to no correlation with the volume or shape of

proteins.[15]

In previous work on lipid-anchored proteins, we restricted the analyses to individual re-

sistive pulses longer than 400 µs because we could be confident that most tethered proteins

would sample all possible orientation-dependent electrical shape factors (γ) within this time

frame.[15] Proteins that rotate freely in bulk solution, however, do so at a rate approximately

two orders of magnitude faster than tethered proteins inside of a nanopore [15, 68], and thus

freely translocating proteins sample all possible γ values on much shorter time scales than

tethered proteins. When selecting a threshold for sufficiently long events, we struck a balance

between accuracy and sample size (see Section 4.4.4 for details). In other words, we needed

to gather current-versus-time data with sufficient duration to produce accurate estimates of

protein parameters, but we also needed to collect as many events as possible for analysis
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within a standard experimental time frame. Based on theoretical predictions using a model

that treats translocations of charged proteins as a biased first-passage-time problem [73], we

estimated that the most probable dwell times for the proteins in this study were all shorter

than 10 µs. Hence, only a small percentage (< 1%) of the total number of translocation

events that we resolved had dwell times longer than 150 µs.[15, 42, 58] Nonetheless, we found

that a threshold of 150 µs was the optimal choice for our recording setup combined with a

digital Gaussian low-pass filter with a cutoff frequency of 50 kHz, rather than the 15 kHz

filter that we used in previous work.[15] This elevated cutoff frequency made it possible to

time-resolve a larger fraction of high-frequency protein movement, and to reduce the rise

time of the digital filter and thus increase the fraction of each resistive pulse that could be

analyzed (Figure 4.2-C). Unexpectedly, the values that we determined for the shape of eight

proteins after filtering the data with this low-pass filter were not systematically attenuated

as the simulations in Figure 4.2-C predicted; rather, they varied evenly over all proteins

(slope = 1.07). Figure 4.4 shows that this better-than-expected agreement between simu-

lation and experiment arose, at least in part, from off-axis effects that influenced resistive

pulse amplitudes and acted to shift determined protein shapes toward more extreme values

(Figure 4.4).

In order to determine if the analysis approach presented here could be applied in the

context of commonly used anti-adhesive coatings other than lipid bilayers, we also performed

experiments with Tween-20 coated nanopores (see Figure 4.8), following the protocol of Li

et al.[74] This coating is attractive because it is more straightforward to prepare than lipid

bilayer coatings of high quality. We found that while volume estimates from a Tween-

20 coated pore agreed with reference values, the estimates for length-to-diameter ratio were

skewed toward an m value of 0.5, and estimates for dipole moment showed a weak correlation

with reference values (see Figure 4.8-D). Additionally, the event frequencies and protein

dwell times that we observed with Tween-20 coated nanopores did not correspond to freely

translocating proteins. For example, we recorded an average event frequency of 1.7 Hz for
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Alcohol Dehydrogenase (ADH) at a protein concentration of 80 nM in a Tween-20 coated

pore. A theoretical analysis following the approach by Plesa et al. [42] predicts a detection

frequency of only 0.02 Hz at this protein concentration. The reason why we experimentally

observed almost 100-fold more frequent translocations than theoretically expected at the

bandwidth of our experiments is that the protein’s residence times in the Tween-20 coated

pore were significantly longer than predicted. We attribute this observation to nonspecific

interactions with the pore walls [45] possibly in combination with electroosmotic flow (EOF)

mediated by residual surface charge in nanopores coated with Tween-20.[75] In contrast,

when we used nanopores that were coated with a lipid bilayer, the theoretical predictions of

event frequencies were in excellent agreement with experimentally observed event frequencies.

Specifically, at a concentration of 10 µM ADH, we observed an event frequency of 1.2 Hz using

a lipid bilayer coated pore; the theoretical prediction was 1-5 Hz at this concentration. If

significant non-specific interactions of the protein with the pore wall would have been present,

then our experimentally observed detection frequency would again have been significantly

higher than the theoretical prediction, and we would have expected to observe differences

between the shortest and longest translocation events for a given protein (see Figure 4.9,

4.10).

While the Tween-20 surface coating could not completely circumvent EOF and adhesive

interactions with the pore wall, it did, however, prevent clogging of the nanopore. If we

used pores in silicon nitride without any surface coating, we encountered clogging during

translocation experiments of Ferritin and IgM proteins at typically employed concentra-

tions between 0.1 and 1 µM which terminated the experiments. Tween-20 also enabled the

accurate estimation of protein volumes (see Figure 4.8-C) as reported previously.[44, 74]

Adhesive interactions with the nanopore wall, however, led to erroneous quantification of

dipole moments and these interactions also led to inaccurate determination of protein shape.

Therefore, the results with Tween-20 highlight the critical advantage of lipid bilayer coatings

in providing non-stick synthetic nanopores with almost completely suppressed EOF.[76, 77]
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4.2.3 Off-Axis Effects Distort Resistive Pulse Magnitudes

The analysis that we used to determine the shape and, in particular, the dipole moment

of proteins requires that the protein is able to rotate unperturbed within the nanopore. It

follows that the diameter of the nanopore must be larger than the largest dimension of the

protein, which inherently means that the protein has space to diffuse laterally within the

pore during its translocation.[15] Proteins that translocate untethered, therefore, may be

electrically sampled at the center of the pore, at the pore wall, or anywhere in between,

limited only by steric hindrance and random diffusion.[30, 44] When a particle transits a

nanopore not through the very center but at some radial distance b from the central pore

axis, it distorts the electric field within the pore asymmetrically.[30] This asymmetrical

disruption produces a larger-than-expected resistive pulse whose magnitude depends on the

particle’s off-axis distance (b) and on the ratio of particle diameter to pore diameter (Figure

4.4-A,B). This phenomenon, known as off-axis effects, has been studied sporadically in the

context of Coulter counters since the 1970s [78, 79]; it has attracted renewed consideration

as research groups are beginning to perform finite element simulations on nanopore systems,

and as the analysis of resistive pulses from single macromolecules is becoming increasingly

sophisticated and information-rich.[30, 80–83]

In order to provide insight into the extent to which off-axis effects influence the parameter

estimates of freely translocating non-spherical proteins - as opposed to spherical proteins [30]

- we performed finite element simulations of ellipsoidal particles passing through a cylindrical

nanopore at various distances from the central axis. Figure 4.4 (C-F) shows the results

of these simulations, carried out for relatively extreme oblate-shaped and prolate-shaped

particles in their minimum and maximum orientations relative to the electric field. We

found that for the range of nanopore and protein sizes that are typically used for protein

characterization, and in the most extreme off-axis scenario (prolate-shaped particle, γmax,

bmax), these effects can distort the resistive pulse magnitudes of non-spherical particles by

up to 18%. An untethered protein may therefore sample its maximum blockade orientation
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Figure 4.4. Quantified effects of off-axis translocation. A) Schematic of a spherical particle (black) passing
through a pore (grey). The diameter of the particle is denoted as d, the diameter of the pore is labeled D,
and the radial distance from the center of the pore is labeled b. B) Analytical solutions according to Qin et al.
showing the magnitude of off-axis effects on the magnitude of the resistive pulse labeled as an increase in ∆I/I0
in the scenario where a perfectly spherical particle transits a cylindrical nanopore.(19) The x-axis represents ε,
which relates the off-axis distance to the pore diameter. C-F) Plots generated using finite element simulations
(COMSOL) showing the increase of the magnitude of resistive pulses for both oblate (C-D) and prolate (E-F)
proteins at orientations that produce a maximum blockade (C,E) and a minimum blockade (D,F). For the oblate
scenario, the simulation was conducted using a particle with a size and shape similar to anti-biotin IgG (m = 0.2,
Λ = 275.6 nm3) passing through a pore with a 30 nm diameter and a 30 nm length. For the prolate scenario,
the simulation was conducted using a particle with a size and shape similar to G6PDH (m = 3.0, Λ = 268.4 nm3)
passing through a pore with a 30 nm diameter and a 30 nm length. For non-spherical particles, we defined b as
the distance from the central axis of the pore to the center of mass of the particle. Adapted with permission.[46]
Copyright 2019, American Chemical Society.
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near the pore wall, and its minimum blockade orientation near the central pore axis, leading

to a larger difference between maximum and minimum blockade values and thus to a more

extreme estimate for protein shape than if the protein transited only through the central

pore axis. With regard to the resulting error in shape estimates, this distortion falls within

the green shaded regions in Figure 4.3-B and likely contributes to the spread of the data

in Figure 4.3-A. We see that prolate-shaped particles are the most susceptible to variation;

this result agrees with the uncertainty in the length-to-diameter ratio estimates for prolate-

shaped proteins. We defined the threshold for detecting a resistive pulse as 5× the standard

deviation of the baseline noise, and thus the magnitude of each resistive pulse can deviate up

to 20% simply due to noise from the recording setup. We suggest that the off-axis effect on

resistive pulse signals can be viewed as another contributor to the overall noise in the system,

with a frequency component related to the lateral diffusion coefficient of the protein within

the pore. Hence, off-axis effects contributed to the variability in calculated parameter values

- especially for analyses of individual events - but they did not preclude the determination

of protein parameters, as evidenced by the agreement of parameter estimates with reference

values in Figure 4.3. Furthermore, and fortuitously for this work, off-axis effects, which led

to estimates of particle shape that were more extreme than those from experiments without

off-axis effects, offset the effects of sampling rate and filtering, which led to estimates of

particle shape that were less extreme than those revealed from experiments with adequate

bandwidth (e.g. greater than 500 kHz). It appears, therefore, that these two opposing effects

canceled each other to some extent and led to the good agreement between experimental

and reference length-to-diameter ratios reported in Figure 4.3. Based on these arguments,

off-axis effects will become more dominant in scenarios with higher bandwidths and lower

noise levels than the recording setup used here and will need to be considered in future

efforts to improve analysis methods of particles translocating freely and untethered through

nanopores.
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4.3 Conclusions and Future Prospects of Label-Free

Analysis with Nanopores

This work estimates three distinct protein parameters from the resistive pulses generated by

single untethered proteins passing through a lipid-coated synthetic nanopore. Among these

parameters is dipole moment, which can be quantified on a single-molecule level for unmod-

ified proteins in solution. No other technique has this capability, and given the increasing

importance of dipole moments for formulations of monoclonal antibodies [72], this capability

may accelerate the development of formulations for subcutaneous administration of thera-

peutic antibodies, which is the fastest growing class of therapeutics.[84] In addition, dipole

moment is an excellent protein descriptor that is orthogonal to protein volume and shape

[15], such that simultaneous quantification of these three parameters in sub-millisecond time

frames of unmodified proteins in solution may be a first step toward a plug-and-play benchtop

protein analysis system that counts and characterizes single proteins. The approach intro-

duced here can likely be optimized; ongoing improvements in SNR will reduce the spread in

parameter estimates [85–87], and further increases in recording bandwidth through improved

CMOS current amplifiers [59] will increase event capture rates, resolve larger fractions of td

distributions, and monitor information about protein rotation and shape at smaller time

steps.

The work presented here reaffirms the critical importance of anti-adhesive coatings in

nanopore-based analyses that rely on translational and rotational dynamics of proteins in

an electric field [15, 55, 58, 74, 88, 89], and highlights the need for developing future systems

that confine proteins to a single translocation axis rather than allowing them to diffuse later-

ally within the pore. But perhaps the most promising aspect of the nanopore-based analysis

technique presented here is that it has the potential to probe native proteins and protein

complexes that are transient in nature, including amyloids and amyloid oligomers without

the need for modifications.[3, 4] Interest in characterizing this class of heterogeneous protein
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analytes with synthetic nanopores is growing [44, 55, 90], and the single-particle analysis

approach that we present here adds additional protein descriptors such as shape and dipole

moment to particle volume and charge. Together these parameters may be useful for corre-

lating the physical characteristics like size and shape of various amyloid species with their

toxicity [91] as well as for defining and detecting biomarkers that reveal disease progression or

the efficacy of therapeutics at early stages of amyloid-induced neurodegenerative diseases.[8,

92]
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4.4 Supplementary Notes and Figures

4.4.1 Convolution Fitting Model

The core of the convolution fitting model is a U-shaped probability distribution (derived

previously by Yusko et al.[15]) that describes the probability of observing some orientation-

dependent electrical shape factor, γ, as a protein undergoes biased rotation in an electric

field:

P (γ)dγ = 1
A

cosh


Eµ

(
γ−γ⊥
γ∥−γ⊥

) 1
2

kBT


 1

π[(γ − γ⊥)(γ∥ − γ⊥)] 1
2

 dγ (4.1)

and

P (γ)dγ = 1
A

cosh


Eµ

(
γ−γ∥

γ⊥−γ∥

) 1
2

kBT


 1

π[(γ − γ⊥)(γ∥ − γ⊥)] 1
2

 dγ (4.2)

where A is a normalization constant for integration

A =
∫ γ⊥

γ∥

cosh


Eµ
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γ−γ⊥
γ∥−γ⊥

) 1
2

kBT


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π[(γ − γ⊥)(γ∥ − γ⊥)] 1
2

 dγ (4.3)

and

A =
∫ γ⊥

γ∥

cosh


Eµ

(
γ−γ∥

γ⊥−γ∥

) 1
2

kBT


 1

π[(γ − γ⊥)(γ∥ − γ⊥)] 1
2

 dγ (4.4)

γ∥ describes the orientation of the ellipsoid when its singleton axis (ellipsoids of rotation

have two axes identical in length and one axis that is different, which we denote here as a

singleton axis) is aligned parallel to the electric field; γ⊥ describes the ellipsoid’s singleton

axis aligned perpendicular to the electric field. If the particle/protein is an oblate, then
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γ∥ ∝ (∆I/I0)max , and γ⊥ ∝ (∆I/I0)min, or if the particle is a prolate, e.g. γ⊥ ∝ (∆I/I0)max

, and γ∥ ∝ (∆I/I0)min. The reason that we have two probability distribution equations

is to account for dipole-moment bias (or skew) in either the γ⊥ direction, or in the γ∥

direction. In practice, we fit the data with both equations and determine which fit to accept

by comparing their goodness of fit (e.g. is the data skewed toward γ⊥ or γ∥ ?). Because they

are proportional, we substitute in ∆I/I0 values for γ to determine the particular U-shaped

distribution for each set of data, as we alluded to in the introduction and as explained in

detail by Yusko et al.[15] The minimum, or left side of the ’U’, corresponds to (∆I/I0)min

and the maximum or right side of the ’U’, is (∆I/I0)max. This probability distribution

does not account for noise in the current recording, so we iteratively convolve the U-shaped

distribution with a standard Gaussian noise distribution function, shown below:

P ((∆I/I0)σ) = 1√
2πσ2

e− (∆I/I0)2
σ

2σ2 (4.5)

The expression describing the probability of observing any blockade value, ∆I/I0 , is

therefore:

P (∆I/I0) = P ((∆I/I0)γ) ⊗ P ((∆I/I0)σ) (4.6)

In the iterative convolution, performed using MATLABs lsqcurvefit function, we initialize

a total of four parameters: the protein’s permanent dipole moment to 550 Debeye, which

is an approximate average dipole moment across all proteins [15], (∆I/I0)min as the 10th

percentile of the input data, (∆I/I0)max value as the 90th percentile of the data, and the

spread σ as the standard deviation of the current trace (we also now constrain this value to

be greater than or equal to the standard deviation of baseline noise). It is important to note

that while the convolution itself is performed on probability distributions, the fitting function

compares cumulative distributions during each iteration to circumvent binning artifacts. As

such, the algorithm runs in the following steps: (1) we generate an experimental cumula-
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tive distribution from the data that represents the distribution we would like to match with

our fitting function, (2) the fitting function performs a convolution between the theoretical

U-shaped probability distribution and theoretical Gaussian noise (equations above) substi-

tuting only initial parameter estimates, (3) the function then integrates that convolution

result to generate a predicted cumulative distribution,(4) after which it compares this pre-

dicted cumulative distribution to the experimental cumulative distribution from step 1, (5) it

then adjusts the input parameters accordingly, and (6) iterates again until the experimental

and predicted cumulative distributions align within some defined tolerance (Termination tol-

erance on the function value, or ’TolFun’, and Step Tolerance, or ’TolX’ both set to 1×10−9,

and minimum change in variables for finite-difference gradients, or ’DiffMinChange’ set to

0.5). As expected, this fitting procedure produces four values corresponding to the initial

input values; that is, (∆I/I0)min, (∆I/I0)max, dipole moment (µ), and distribution spread

(σ). We can then take the estimates for (∆I/I0)min and (∆I/I0)max, (again, either side of the

U-distribution), and substitute them into the system of equations outlined by Golibersuch

[31], and later described by Yusko et al. [15], to determine a corresponding protein shape

and volume. Briefly, the relationship between normalized resistive pulse magnitude ∆I/I0,

and the volume of the associated translocating particle traces back to Maxwell’s derivation

[93]:

∆I

I0
= − 4Λγ

πd2
p(lp + 0.8dp)

 1

1 − 0.8
(

dM

dp

)3

 (4.7)

where Λ is the volume of the particle, γ is the particle’s electrical shape factor (γ = 1.5

for perfect spheres), dp is the diameter of the pore, lp is the length of the pore, and dM

is the diameter of the particle. Note that the expression in large brackets on the right

represents a correction factor which we set to equal 1, as we performed the experiments

using nanopores much larger than the longest dimension of the protein(e.g. dM < 2dp).

Upon closer examination of the left-hand side of the equation, we see that the denominator
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represents the volume of the pore with a slight modification of the length of pore, which

we define as an effective length, e.g. leff = (lp + 0.8dp). The ’4’ in the numerator simply

accounts for the use of the square of the diameter (rather than the square of the radius)

in the denominator. The nanopore chips that we use for these experiments are fabricated

using an ion beam sculpting process, giving them a unique geometry where the nanopore

sits adjacent to a larger channel, ∼250 nm long and ∼100 nm in diameter.[70] Expanding

on previous work, we now account for this channel geometry by first determining the total

resistance in the system (note ∆I/I0 = R0/∆R), and then deriving a new effective length

term that incorporates channel dimensions, giving the final form:

∆I

I0
= Rtot

∆Rtot

= γΛr2
c

πr2
p

(
r2

c lp + π
2 rpr2

c + r2
plc + π

4 r2
prc

) (4.8)

where rc is the radius of the channel, rp is the radius of the pore, and lc is the length of

the channel. We first rearrange this equation into an aggregate variable, g, to isolate all of

the constants:

g = ∆I/I0

γΛ
= r2

c

πr2
p

(
r2

c lp + π
2 rpr2

c + r2
plc + π

4 r2
prc

) (4.9)

Then we substitute this variable g into the following system of equations for the well-

described depolarization factors n for oblate-shaped particles [31, 64, 94, 95]:

nmin,oblate = 2nmax,oblate

(2nmax,oblate − 1)
(4.10)

nmax,oblate =
(

m · cos−1(m)
(1 − m2) 3

2
− m2

1 − m2

)−1

(4.11)
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Λoblate = (∆I/I0)max

g · nmax,oblate

= (∆I/I0)min

g · nmin,oblate

(4.12)

And into the following depolarization factor equations for prolate-shaped particles:

nmin,prolate =
(

m2

m2 − 1
− m · cosh−1(m)

(m2 − 1) 3
2

)−1

(4.13)

nmax,prolate = 2nmin,prolate

(2nmin,prolate − 1)
(4.14)

Λprolate = (∆I/I0)max

g · nmax,prolate

= (∆I/I0)min

g · nmin,prolate

(4.15)

To solve, we substitute in three known values, (∆I/I0)min, (∆I/I0)max, and g, and deter-

mine values for the two unknowns, Λ and m, which represent volume and length-to-diameter

ratio, respectively. We determine an oblate solution from all data sets, and some data sets

produce both an oblate and a prolate solution. This is an aspect of the fitting procedure that

we previously discussed at length [15] and ultimately arises because we distill a rich data

array of current measurements into two components:(∆I/I0)min and (∆I/I0)max . When

these two values differ considerably, e.g. (∆I/I0)min < 1
3(∆I/I0)max , they can only be de-
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scribed by an oblate-like shape, but in the scenario where (∆I/I0)min > 1
3(∆I/I0)max ,their

separation could correspond to the rotation of a slightly disk-shaped (oblate) protein, or

it could correspond to the rotation of a slightly rod-shaped (prolate) protein, resulting in

two possible solutions. This is an intrinsic challenge with this analysis methodology, and

we propose that it could be solved in future low-noise implementations of the technique by

comparing auxiliary protein parameters like rotational diffusion coefficient and using those to

discriminate between the two approximations. We expect to observe differences in rotational

diffusion coefficients between oblate-shaped and prolate-shaped ellipsoids, and indeed we did

measure differences between the rotational diffusion coefficients of oblates and prolates. [15]

Alternatively, it may be beneficial to move away from a pure ellipsoidal model and toward

a bead-like model for non-spherical particles to improve the shape resolution and the ability

to discriminate between different current traces.

We carry out the procedure for population-based and individual-event analyses in almost

exactly the same fashion. The only difference is whether the experimental cumulative dis-

tribution that we recreate with the fitting algorithm is generated from a set of maximum

blockade values (population-based) or if it is generated from all of the individual data points

contained within a single long event (individual-event).

4.4.2 Population-Based Analyses

In population-based analyses, we created a single probability distribution by combining the

maximum ∆I/I0 value of all protein translocation events that had dwell times (td) longer

than 30 µs (Figure 1-C in the Main Text, green dots). In order to calculate one length-

to-diameter ratio and one volume value for a given experiment, we used this approach to

estimate ellipsoidal shape and volume values for nine proteins (Figure 4.5, Table 4.3). The

volume and length-to-diameter ratio estimates were in good agreement with reference values;

the average deviation of length-to-diameter ratios was less than 30% for all proteins (less than

20% for oblate-shaped proteins), and the average deviation of volumes was less than 40% for
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Figure 4.5. Results of population-based analyses for untethered proteins. A) Comparison of estimate and refer-
ence length-to-diameter ratio values for the three prolate proteins Fab (open stars), α-Amylase (open triangles),
and G6PDH (open circles) and for (INSET) the 6 oblate proteins IgM (triangles), IgG (circles), BSA (diamonds),
ADH (stars), Ferritin (X’s), and Streptavidin (squares) - tested in this study. Note m = 1 represents spheres. The
blue line is the linear fit for all proteins in the study, the black dotted line shows an ideal 1:1 relationship, and
the red line is a fit to data from oblate-shaped proteins only. The dark and light green regions represent ±10%
and ±25% uncertainty in minimum and maximum blockade values, respectively. B) Comparison of volume esti-
mates (including replicates) with reference values for all proteins examined in the study. The inset corresponds
to smaller volume proteins, the red line is the linear fit, and the black dotted line is the 1:1 relation. C) Example
probability distribution and cumulative distribution (inset) fits for IgG protein to determine shape and volume (see
Section 4.4.1 for details). Refer to Table 4.3 for precise values shown in scatter plots in panels A and B. Adapted
with permission.[46] Copyright 2019, American Chemical Society.
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all proteins. We performed duplicate or triplicate experiments on each protein, and denote

replicates as unique points with the same symbol (Figure 4.5-A,B). As shown in Figure 1 in

the main text, non-spherical proteins fluctuate between minimum and maximum blockade

orientations while transiting a nanopore. Oblate-shaped proteins, as they deviate further

away from a sphere (e.g. become flatter disks), produce large current fluctuations when

rotating between minimum and maximum orientations during transit, and thus provide rich

information about their approximate shape. The ratio of minimum and maximum blockade

values for prolate-shaped proteins, however, levels off asymptotically as the protein becomes

closer to an extreme rod-like shape (see Section 4.4.1).[31] Small experimental uncertainties

in observed minimum and maximum blockade values lead to larger uncertainties in length-

to-diameter estimates for prolate-shaped proteins than for oblate proteins (Figure 4.5-A,

green shaded regions). This effect is visible in the spread in m values that we observe for

prolate-shaped proteins.

Since Han et al. determined the volume of BSA with a synthetic nanopore in 2006 [1],

the majority of synthetic nanopore-based protein characterization methods have estimated

protein volumes by averaging across large sets of maximum blockade values (∆I/I0, or

simply ∆I) and assuming spherical protein geometry.[53, 54, 58] This population-based

approach has the advantage that it can be carried out on shorter events than individual-

event analyses (30 µs vs 150 µs), permitting the calculation of protein shape and volume

in experiments where it is difficult to gather a sufficient amount of events longer than 150

µs, as was the case here for Ferritin (see Section 4.4.3 for details on the 30 µs threshold

selection). Furthermore, we demonstrated previously with tethered proteins that shape and

volume estimation is typically more accurate using population-based methods compared to

individual event methods.[15] However, population-based methods rely on samples with only

one pure protein in solution. These methods cannot be easily applied to mixtures of different

proteins if the proteins are similar in volume (overlapping ∆I/I0 distributions), limiting their

practicality.
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4.4.3 Threshold Selection for Population-Based Analyses

We selected 30 µs as the minimum event dwell time for incorporation into the population-

based analysis. Previously, we only accepted events longer than 50 µs, as we digitally

low-pass filtered the data at 15 kHz. Here, with a filter frequency of 50 kHz, we performed

a filter response analysis similar to that demonstrated by Plesa et al.[42] Briefly, we added

digital square pulses of varying durations to experimentally recorded baseline noise at full

bandwidth. For reference, the Axopatch 200B has an intrinsic bandwidth of approximately

57 kHz. We applied a digital low-pass filter with a cutoff frequency of either 50 kHz or 15

kHz to determine the extent of signal truncation at various pulse widths for the respective

cutoff frequencies. Figure 4.6 shows these filter responses at the two frequencies. The

plots represent an ideal response scenario for a real translocation event; we chose 30 µs

rather conservatively to prevent any truncation of experimental data. While reducing this

threshold from 50 µs to 30 µs may seem like a marginal change, it increased the fraction of

time-resolved events by approximately 60%, on average.

4.4.4 Threshold Selection of Adequate Dwell Times for Individual-Event

Analysis

Event duration is a critical parameter with regard to individual-event analysis. We demon-

strated previously that the accuracy of parameter estimates improves as a function of event

duration; conversely, analyzing individual events with relatively short durations introduces

more uncertainty into the determined values. Because we reduced the noise of our experi-

mental setup, increased the recording bandwidth, and analyzed untethered proteins, we were

able to select a lower threshold than the 400 µs chosen in previous work. In order to deter-

mine which particular threshold to select, we performed an investigation of individual-event

analysis for a group of events longer than 400 µs for BSA protein. We performed more than

200 individual convolution model fits on each event, analyzing the first 2 µs, then 4 µs, then

129



Figure 4.6. Filter responses for determining minimum event duration for population-based analyses. (Left) Data
filtered at 15 kHz with pulses ranging from 10 to 150 µs in duration. The square pulse shown in dashed grey
represents the longest pulse length (150 µs). (Right) Data filtered at 50 kHz with pulses ranging from 5 µs to
50 µs. The square pulse shown in dashed grey represents the longest pulse length (50 µs). The black dotted
line represents the resistive pulse amplitude - 5× the standard deviation of the baseline noise - required for
consideration as a translocation event. Note that while all pulses were applied in the same region of the noise
trace for each particular cutoff frequency, the 15 kHz pulses were added in a different region of the trace than the
50 kHz pulses, for demonstration purposes. Additionally, we offset the square pulses by 25 µs for visual clarity.
Refer to Table 4.3 for precise values shown in scatter plots in panels A and B. Adapted with permission.[46]
Copyright 2019, American Chemical Society.

6 µs, and so on until the full length of the event. Figure 4.7 shows the results of this analysis

- more specifically, it shows the dependence of event duration on length-to-diameter ratio

estimates - for recorded long events of BSA.

4.4.5 Lipid Bilayers Provide Unperturbed, Free Translocation

Chemical tethering, non-specific adhesion, and electroosmotic flow can all slow down protein

transit through a nanopore.[75] In the absence of these phenomena, many protein translo-

cation events are too rapid (< 10 µs) to detect using standard recording equipment such

as the Axopatch 200B amplifier.[42] Untethered protein experiencing biased diffusion in an

electric field requires roughly 300-fold greater concentrations to produce the same frequency

of observed events as protein tethered to a lipid bilayer.[42, 58] When we added protein

concentrations between 1 nM and 100 nM to the upper fluid compartment of a lipid-coated

nanopore, we observed few if any translocation events (f < 0.5 Hz). However, upon increas-
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Figure 4.7. Determination of minimum event duration for individual-event analyses. Grey solid lines represent
results of analyses for individual events longer than 400 µs of untethered BSA translocations, and each data
point (separated by 2 µs) was generated through a unique convolution model fit. The red curve is the average
value across all long events displayed. The blue dotted line is the reference shape value for BSA (0.57), and, for
reference, the grey dashed line denotes the 150 µs threshold that we selected. Dark green and light green regions
±10% and ±25% uncertainty in minimum and maximum blockade values, respectively. Note that when taken
individually, long event length-to-diameter estimates vary considerably around a reference value. When taken
in aggregate, their most probable value typically converges to within ±20% of the reference length-to-diameter
value. Adapted with permission.[46] Copyright 2019, American Chemical Society.
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ing the concentration of protein to 1-10 µM, we observed event frequencies between 1 and 5

Hz, which is in agreement with Schrödinger’s first passage probability relationship described

more recently in this context by Ling and Ling.[73]

A concern with using relatively high protein concentrations for nanopore experiments is

that more than one protein may reside in the pore at a given time, resulting in resistive pulse

artifacts.[51] Taking a 100 kDa protein with a translational diffusion coefficient of 30 × 10-12

m2 sec-1, note that confined diffusion can be 5-fold slower than in bulk [67], a net protein

charge of 3e in aqueous solution, in a system with 100 mV applied across a nanopore with

a length of 24 nm and diameter of 21 nm after coating with a lipid bilayer, we approximate

based on first passage probabilities that only 0.2% of all translocation events will last longer

than the ∼20 µs temporal resolution threshold of an Axopatch 200B amplifier. The most

probable td of a protein in this system is approximately 3.5 µs, so we are detecting only the

tail end of this td distribution.[42, 73] If we detect three translocation events per second, a

rate that was typical for the experiments in this work, then we estimate that approximately

1700 proteins are transiting the pore each second and on average the pore is occupied by any

single protein 5.97 ms out of every second, or about 0.6% of the time. It follows that the

probability of two proteins residing in the pore simultaneously in this scenario is 0.004%; this

situation is thus unlikely to significantly affect the calculated parameters. These theoretical

event frequency estimates are also in agreement with the Smoluchowski rate equation, which

predicts that for this same system with a 21 nm diameter nanopore and a protein with a

diffusion constant of 30 × 10-12 m2 sec-1 at a concentration of 2 µM (12 × 1020 molecules

m-3), we would expect 2400 proteins to diffuse passively into the pore each second. As

Plesa et al. showed [42], proteins with molecular weights in the range of 100 kDa tend

to translocate a single nanopore at a frequency that is somewhere between 10% and 80%

of what is predicted by Smoluchowski, consistent with the calculations here. Based on a

most probable translocation time of 3.5 µs, this simplified calculation reveals that the pore

is empty 99.4% of the time, and the probability of multiple proteins residing in the pore
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simultaneously is well below 1%, assuming negligible protein-protein and protein-surface

interactions.

4.4.6 Experiments with Tween-20 Coated Nanopores

We observed relatively low success rates when attempting to coat synthetic nanopores with

lipid bilayers. We hypothesize that the ability of a particular pore to successfully coat is

dependent on a combination of factors including its surface chemistry, surface roughness,

aspect ratio, radius of curvature, and cleanliness.[41] In an attempt to alleviate some of this

difficulty, we coated nanopores with Tween-20, in a similar fashion to that described by Li

et al.[74] Briefly, we cleaned the nanopore chips using a Piranha solution, as described in

Section 4.5.2. Once clean, we air dried the nanopore chips under a flow of nitrogen gas for

60 seconds, and then incubated them in a solution of 0.01% w/v fresh Tween-20 (dissolved

in 1 M KCL, 10 mM Tris-HCl, 1 mM EDTA, pH 4.0) for 30 minutes. After incubation, we

rinsed the chips with DI water and quickly dried them again with nitrogen gas before placing

them into a standard experimental setup (Figure 1-A of the Main Text). In this fashion,

we performed replicate experiments on all of the oblate proteins in the study and found

that in both population-based and individual-event analyses on experiments with Tween-20

coated nanopores, the length-to-diameter ratio estimates were all skewed toward 0.5 oblate

solutions, as shown in Figure 4.8.

4.4.7 Finite Element Simulations

We calculated the blockage current of particles in their off-axis position in Figure 4 of the

main text by solving Poisson-Nernst-Planck [96–99] equations using COMSOL Multiplysics

5.3a.

∇2Φ = −F

ε

∑
zici (4.16)
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Figure 4.8. Results from experiments with untethered proteins passing through Tween-20 coated pores. (A)
and individual-event (B-D) analyses. A. Shape calculations for the oblate proteins IgM (triangles), IgG (circles),
BSA (diamonds), ADH (stars), Ferritin (Xs), and Streptavidin (squares) tested with Tween-20 coated pores.
The blue dashed line shows an unconstrained linear fit, the red dashed line shows a 0-intercept linear fit, and
the black dotted line shows a 1:1 relationship. B. Median length-to-diameter ratios calculated through individual
event analysis. A-B. Dark green and light green regions ±10% and ±25% uncertainty in minimum and maximum
blockade values, respectively. C. Volumes (nm3) of all proteins, with IgM in grey and other proteins in red.
Reference values are shown as black circles. D. Estimated dipole moments for all proteins investigated with
Tween-20 coatings. Black dotted line represents the 1:1 ratio, and red solid line is the linear fit. Adapted with
permission.[46] Copyright 2019, American Chemical Society.
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Table 4.1. Constants and parameters used for COMSOL Multiphysics simulations. Adapted with permission.[46]
Copyright 2019, American Chemical Society.

Constants Values Details
zK 1 the charge of K+
zCl -1 the charge of Cl-
F 96485.3365 C· mol-1 Faraday Constant
ε 80 dielectric constant of the fluidic medium
R 8.31 J· (mol·K)-1 gas constant
T 295 K absolute temperature
DK 1.957 × 10-9 m2·s-1 diffusion coefficient of K+
DCl 2.032 × 10-9 m2·s-1 diffusion
Parameters Values Details
Φ -0.1 V applied voltage across the nanopore

ci (K+ or Cl-) 1680 mol·m3 effective concentration of the K+ and Cl- ions
according to the measured solution conductivity(30)

lp 30 nm length of the nanopore
dp 30 nm diameter of the nanopore

σpore 0 mC·cm-2 surface charge density of the lipid bilayer
coated nanopore[76]

σparticle 0 mC·cm-2 surface charge density of the particles
Λ 268 nm3 volume of the particle
moblate 0.2 length-to-diameter ratio,m, of the oblate
mprolate 3 length-to-diameter ratio, m, of the prolate

Ji = −Di∇ci − ziF

RT
Dici∇Φ (4.17)

where i represents an ionic species (K+ or Cl-, in this case). Table 4.1 lists the constant

parameters [100, 101] that we used in the simulations.

We performed off-axis simulations for three different particle orientations to represent γmax

and γmin, obtained the open pore current as I0 with absence of the particle, and reported

the corresponding ∆I/I0 values in Figure 4 of the Main Text. We adjusted the mesh size in

the simulation to achieve the best resolution within a reasonable time frame: finer for the

nanopore domain, extra fine for the nanoparticles, and normal for other domains. Table 4.1

lists the experimental parameters that we used in the simulation.

135



4.4.8 Comparison of Resistive Pulses with Different Dwell Times

While we cannot exclude the possibility that a fraction of the long events may originate from

artifacts such as wall interactions, we are confident that the majority of events arise from a

single distribution and that the results from this largest fraction are representative of their

respective protein populations. The reasons are:

• The theoretical frequencies of events with a duration longer than 25 µs that we deter-

mined using the Smoluchowski rate equation and the biased first passage probability

relationship (Section 4.4.3) agreed with the frequencies that we observed experimen-

tally using lipid bilayer-coated nanopores. In contrast, when non-specific interactions

between proteins and the pore walls were not eliminated, then these theoretical es-

timates did not agree with the 100-fold more-frequent-than-predicted translocation

events during experiments with Tween-20 coated nanopores, as discussed throughout

Chapter 4.

• Estimated values for length-to-diameter ratio, volume, and dipole moment agree well

with reference values across all proteins that we tested. Significant non-specific inter-

actions with the pore wall would introduce errors, especially for the determined dipole

moment, again as we indeed observed with the Tween-20 coatings.

• When we overlay histograms of measured current values from subpopulations of the

shortest 10%, middle 10%, and longest 10% of events of a particular protein, we see ex-

cellent overlap, as shown in Figure 4.9. In other words, the shortest 10% of events lead

to parameter estimates that are similar (albeit with larger uncertainty) to parameter

estimates from the longest 10% of events, again suggesting no significant differences

between these populations.

The translocation events that we observed did in fact originate from the tail of the dwell

time distribution for each protein, but such a tail is expected in First Passage Time Proba-

bility theory,[73] and from a purely theoretical point of view, the proteins in this tail region
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Figure 4.9. Overlay of current blockade distributions for events of G6PDH with different dwell times. A) Shortest
10% of G6PDH events with durations longer than 150 µs plotted as an ensemble histogram, B) Middle 10% -
between 45th and 55th percentile of G6PDH events with durations longer than 150 µs plotted as an ensem-
ble histogram. C) Longest 10% of G6PDH events with durations longer than 150 µs plotted as an ensemble
histogram. D) Overlay of histograms, showing relative frequencies and alignment of minimum and maximum
blockade values. Adapted with permission.[46] Copyright 2019, American Chemical Society.
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do not physically differ from proteins in other regions of the distribution. In other words,

the tail is inherent to the passage time distribution even in the absence of non-specific inter-

actions. If significant non-specific interactions were to take place, then the number of events

above a threshold dwell time value would be larger than the number predicted by the biased

first passage time equation. This is the observation we made with Tween-20 coatings, while

lipid bilayer coatings resulted in a good agreement between the theoretically predicted and

experimentally observed number of events, therefore providing no indication for a significant

fraction of artificially prolonged translocation events.

We demonstrated before [58] that lipid bilayer coatings eliminate non-specific interactions

with proteins almost entirely. As discussed above, if a large fraction of the analyzed proteins

were non-specifically interacting with the surface of the nanopore, we would expect to observe

greater-than-predicted event frequencies, as was the case in the experiments with Tween-20

coatings (see Section 4.4.6). Note that the bilayer coatings largely eliminate electroosmotic

flow [58, 76], which may also slow down proteins passing through nanopores coated with

Tween-20 depending on the polarity of the applied electric field. The biased first passage

time probability relationship, outlined by Ling and Ling [73] assumes no surface interactions

or electroosmotic flow, and still shows that long-lived translocation events are expected to

occur, albeit with probabilities that decrease with increased dwell times.

In the presence of nonspecific interactions with the membrane, we would expect clogging

or issues with nanopore stability during long experiments when using protein concentrations

greater than 1 µM. We did not observe these issues when running experiments with lipid

bilayer coated nanopores, while uncoated nanopores frequently clog at protein concentrations

greater than 1 µM (see Section 4.2).

While it is possible to observe a protein entering and exiting a nanopore, we are unable

to track the radial (i.e. between pore walls and central axis) motion of a protein while it

transits the pore. Proteins that occupy the pore for extended periods of time are more likely

to sample all radial positions during transit, and we expect them to diffuse relatively freely
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Figure 4.10. Comparison of power spectral densities between translocation events with different durations. Power
spectral densities of the recorded current within the shortest 10%, middle 10%, and longest 10% of experimentally
recorded translocation events of IgG1. The white dashed line represents the 1/f noise. All data were digitally
lowpass filtered at 50 kHz, as described in Section 4.5.2. Adapted with permission.[46] Copyright 2019, American
Chemical Society.

between the central axis of the pore and pore walls. We have no evidence for significant

interactions between the lipid bilayer coated nanopore and the translocating proteins, as

evidenced by our observed event frequencies, agreement between estimated and reference

values, and prior work with lipid bilayer-coated nanopores.[15, 58]

As Figure 4.10 shows, we did not observe significant differences in 1/f noise related to

the length of the event, and we found that the accuracy of parameter estimates tended to

improve, rather than worsen, with event length (see Figure 4.7, 4.11), which is consistent

with our previous work tethering proteins to the lipid bilayer.[15] For the data plotted in

Figure 4.10, we calculated the power spectral densities for the shortest 10%, the middle

10%, and the longest 10% of experimental data for translocations of IgG1 protein. Note

that, in order to determine a meaningful power spectra from a sufficiently large data set, we
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concatenated the resistive pulse traces of each subpopulation of events to generate a single

"long" current trace for each subpopulation. Consequently, the shortest subpopulation has

one order of magnitude fewer current values than the longest subpopulation. Figure 4.10

also shows that the three data sets overlapped completely indicating no detectable difference

in 1/f noise. Because one component of 1/f noise are fluctuations in the surface ionic

current,[102] variations in charge density at the surface of the nanopore would likely alter

1/f noise levels. The almost complete overlap between the shortest, middle, and longest

subpopulations of translocation events in Figure 4.10 provides further evidence that we do

not observe significant differences in surface interactions between the shortest and longest

translocation events, and therefore that long-lasting events are not artificially prolonged by

surface interactions.

In order to determine whether current blockades themselves vary with event length, we

examined all translocation events of G6PDH longer than 150 µs that were suitable for

individual-event analysis from a single experiment. It is clear that the three distributions

overlap, with approximately the same width and associated ∆IMIN (0.0079) and ∆IMAX

(0.0126) values. To generate the distributions, we concatenated the current values of events

from each respective region of the total population, and created a histogram for each of the

three sets of concatenated values (Figure 4.9 A-C). It is worth noting that the distribution

representing the shortest 10% of events contains approximately 15% of the amount of total

current data relative to the distribution of the longest 10% of events. The minor differences

in histogram appearance may therefore be due to the bias in data quantity, and the longest

10% of events provide a better representation of the protein population (m = 2.56, Λ =

233 nm3), than the shortest subpopulation (m = 3.93, Λ = 201 nm3), relative to reference

values of length-to-diameter ratio, m = 2.5 and volume, Λ = 222 nm3 for G6PDH. Such a

finding agrees with previous work on proteins passing through nanopores while tethered to

lipid bilayers, where we showed that estimates of protein parameters typically improve with

increasing event length.[15]
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Figure 4.11. Error in estimates of protein dipole moment relative to event length. Data were generated through
random-walk simulations, as described previously,[15] for an ellipsoid representing IgG1 (length-to-diameter ratio
m = 0.29, volume Λ = 340 nm3). We performed a parameter sweep across 60 different conditions (6 different
dipole moments 450, 550, 650, 750, 850, and 950 D and 10 different dwell times plotted). We simulated 100
events for each combination of dipole moment and dwell time, combined those events with true experimental
noise, filtered them at 50 kHz, fit each event with our convolution model (Section 4.4.1), and then averaged the
resulting percent error in dipole estimate across the various subsets of dipole moments (6 for each data point
above). We fit the aggregate data plotted above with an exponential decay function because we would expect
the percent error to tend asymptotically toward 0 as dwell time approaches infinity. Adapted with permission.[46]
Copyright 2019, American Chemical Society.
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In Section 4.4.4, we examined the trend of accuracy versus dwell time in order to determine

a cutoff threshold for individual event analysis (Figure 4.7), and focused primarily on the

effect of event duration on the determination of the length-to-diameter ratio. In light of the

distributions plotted in Figure 4.9, we also performed random-walk simulations to better

understand the effect of event duration on the quantification of dipole moment. Figure 4.11

shows that the uncertainty of determined dipole moments decreases with increasing event

duration, as intuitively expected.

With the discussion above in mind, we assert that the majority of the events that we

analyze with individual-event analysis do not originate from a secondary or biased popula-

tion, but rather they are representative of the entire protein population with regard to all

determined protein parameters. In fact, we find that the longest events produce the most

accurate protein parameter estimates relative to reference values, which would not be the

case if (1) those events resulted from a different protein in solution, or (2) if their duration

was influenced by non-specific interactions with the pore walls. As we stated in Section

4.4.4, choosing a dwell-time threshold for individual event analysis longer than 150 µs would

increase the accuracy of parameter estimates at the cost of reducing the total number of

analyzable events.

4.4.9 Limitations to Ellipsoidal Approximation

There are limits to approximating complex three dimensional shapes as simple ellipsoids, as

discussed in Yusko et al.[15] To provide insight into these limits, we have overlaid crystal

structures of each protein in this study with the ellipsoidal estimate that we determined

through convolution analysis and include these cartoons in Figure 4.12.

For many of the proteins, simple ellipsoids appear to capture much of the protein’s shape

information. However, in the case of proteins like BSA, IgM, and IgG1, it is clear that

ellipsoids fail to account for all three-dimensional complexity. It is important to keep in

mind that while the ellipsoidal approximations may provide shape information with limited-
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Figure 4.12. Comparison of the approximate shapes and volumes of nine proteins as determined by analysis of
resistive pulses (gray spheroids) with crystal structures from the Protein Data Bank in various colors (streptavidin,
red, 3RY1; bovine serum albumin (BSA), dark orange, 3V03; anti-biotin antibody fragment (FAB), light orange,
1F8T;α-amylase, yellow, 1BLI; alcohol dehydrogenase (ADH), green, 4W6Z; anti-biotin immunoglobulin G1, blue,
1HZH; ferritin, indigo, 1MFR; human immunoglobulin M antibody (IgM), violet, 2RCJ). The length-to-diameter ratio
and volume for Ferritin were calculated using population-based analyses. All proteins and ellipsoidal approxima-
tions are shown on the same scale, as indicated by the scale bar. Note that the ellipsoid approximations of
molecular shape agree well with most proteins but this simple model has limitations for proteins whose complex
shape deviates significantly from perfect ellipsoids, such as BSA, IgG1, and IgM. Nonetheless, even for these
three proteins, the true molecular shape resembles the ellipsoidal approximation more closely than a perfect
sphere. Adapted with permission.[46] Copyright 2019, American Chemical Society.
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resolution, very few methods make it possible to determine structural information about

single, unlabeled, natively folded proteins in solution, and we demonstrated previously that

estimating ellipsoidal shape was critical in discriminating between multiple proteins in a

mixture.[15] As the nanopore community moves toward low-noise platforms, we expect the

information content of each resistive pulse signal to increase, and this rich information content

will make it possible to improve upon the ellipsoidal model.

4.4.10 Investigation of Protein Purity

We always acquired pure protein with the highest possible quality and purity directly from

the supplier (see Section 4.5.1 for more details), although it is true that there remains some

level of impurity in commercially sourced proteins. We have found that for the size range

(>40 kDa) of proteins that we investigate in this study, most impurities are typically much

smaller than the target protein (e.g. buffer salts, glycerol, or other additives). We expect

that such impurities will be too small to elicit a 5× threshold resistive pulse when transiting

the nanopore, and will not contribute noticeably to resistive pulses above baseline. In the

case of low concentrations of impurities by protein fragments or small proteins, we consider it

unlikely that they transit at the same time as the target protein in our range of concentrations

(see Section 4.4.5 for more details). In order to investigate the purity of all of our proteins,

we performed HPLC size exclusion chromatography (SEC) experiments on each protein in

this study, and report the chromatograms for each protein in Figure 4.13, and summarize

the results in Table 4.2.

4.5 Materials and Methods

4.5.1 Materials

We purchased all phospholipids, namely 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC) and 1,2-dipalmitoyl-sn-glycero-3- phosphoethanolamine-N-(lissamine rhodamine B
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Figure 4.13. Chromatograms from HPLC experiments of proteins. Absorbance values at 220 nm are shown in
blue, absorbance values at 280 nm are shown in red. The calibration standards are plotted in the top row (left)
with a linear fit of log(MW) as a function of retention time (top row, right) showing a 95% confidence interval
shaded in red. Adapted with permission.[46] Copyright 2019, American Chemical Society.
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Table 4.2. Summary of results from HPLC analysis of proteins. Results were obtained for nine different com-
mercially available proteins using size exclusion chromatography (SEC). Adapted with permission.[46] Copyright
2019, American Chemical Society.
Protein Expected Mol. Weight (kDa) Peak Retention Time (min) Mol. Weight (kDa)a

ADH 82 9.49 100.1 (55.1 – 171.0)
Fab 50 11.04 23.5 (13.7 – 41.7)
IgM 950 6.48 1670.9 (941.2 – 2984.3)b
IgG1 150 9.93 66.1 (38.9 – 114.8)
G6PDH 128 9.29 120.7 (65.9 – 215.8)
BSA 66 10.02 61.0 (36.1 – 105.4)
α-Amylase 55 11.09 22.4 (13.1 – 40.9)
Streptavidin 54 10.31 46.5 (27.7 – 80.0)
Ferritin 474 8.40 277.5 (137.4 – 559.8)
aValues in bold estimated from the linear fit in Figure 4.13, values in parentheses show 95% confidence
interval of the linear fit at the given point.
bRange estimated from average percent error across other proteins (43.7% lower, 78.6% upper).

sulphonyl) (Rh-PE), from Avanti Polar Lipids. Monoclonal anti-biotin IgG1 (B7653), glucose-

6-phosphate dehydrogenase (G5885), IgM from human serum (I8260), bovine serum albumin

(A7638), α-amylase (A4551), streptavidin from Streptomyces avidinii (85878), alcohol de-

hydrogenase from saccharomyces cerevisiae (A7011), and ferritin from human liver (F6754)

were purchased from Sigma Aldrich. Polyclonal anti-biotin IgG-Fab fragments (800-101-098)

were purchased from Rockland Immunochemicals. We investigated the purity of each sam-

ple using using size exclusion high performance liquid chromatography (SEC-HPLC), with

an Agilent SEC3 column (300 mm, 300 nm pore size, 4.6 mm internal diameter) using 1×

PBS + 1 mM EDTA as the running buffer at 0.3 mL min-1, and include the results of this

investigation in Figure 4.13, and Table 4.2.

4.5.2 Setup and Experimental

Nanopores were fabricated in a silicon nitride membrane, 275 nm thick, supported by a

silicon chip, 3 mm × 3 mm square, using an ion beam sculpting technique (see Section 4.4.1

for details on pore geometry).[70] Experiments using Tween-20 coated pores (see Section

4.4.6) were performed both on these ion beam sculpted nanopores, as well as on nanopores

generated using a helium ion microscope drilling technique.[103] Before each experiment, we

cleaned nanopores in a freshly mixed Piranha solution containing 3:1 (v/v) concentrated
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sulfuric acid and aqueous hydrogen peroxide solution at a temperature of 60 − 70◦C for at

least 30 min, rinsed the chips copiously with deionized water and dried them with nitrogen

gas. We then mounted the chips between two pieces of cured PDMS containing ports with

a 1 mm diameter for access the nanopore in order to separate cis and trans electrolyte

reservoirs (Figure 4.1-A). The active lead of the headstage of the amplifier was connected

to the cis compartment, while the ground lead of the headstage was connected to the trans

compartment. To apply the lipid coatings, we formed supported lipid bilayers with 0.8 mol%

of fluorescently labeled lipid, Rh-PE, in 99.2 mol% POPC through fusion of small unilamellar

vesicles (SUVs), which were prepared in a buffer containing 150 mM KCl and 10 mM HEPES

at pH 7.4 for 20 min before thoroughly rinsing with deionized water and then replacing the

solution in both compartments with a recording buffer (2 M KCl) as described previously.[58]

To perform the experiments, we placed the experimental setup with the nanopore chip

in a Faraday cage, immersing Ag/AgCl pellet electrodes (Warner Instruments) into their

respective electrolyte compartments. We applied a constant potential of ± (100 to 150) mV

across the nanopore, and then measured the current (500 kHz sampling rate via NI PCI

6281 or USB-6361, 100 kHz analog low-pass filter, fc = 50 kHz digital Gaussian low-pass

FIR filter of length L = 2N + 1 with delay N / SR seconds) using an AxoPatch 200B

(Molecular Devices) patch-clamp amplifier in voltage-clamp mode (β = 1) in combination

with LabVIEW (National Instruments) software. We defined a resistive pulse by a reduction

of the baseline current that exceeded a threshold of 5× the standard deviation of the noise,

and marked the beginning and end of that resistive pulse where the current started and

returned to within 1× standard deviation of the baseline.[104] We defined the translocation

time of each event as the full-width at half-maximum value of that resistive pulse. All peak-

finding and analysis procedures were performed using MATLAB (MathWorks) software.
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Figure 4.14. Comparison of noise levels of electrical recording setup used in this work (RED) with the setup
used previously by Yusko et al.[15] (BLACK). Power spectral densities (PSD) are plotted to show the frequency
dependence of noise levels in each experimental setup. The Axopatch 200B amplifier was set to β = 1 with
its analog lowpass filter set to 100 kHz; the sampling frequency was 500 kHz. Adapted with permission.[46]
Copyright 2019, American Chemical Society.
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Figure 4.15. Accuracy of protein parameter estimates depends on the protein’s rotational diffusion coefficient, on
the cutoff frequency, fc, of the digital filter, and on the event duration. A,B) Contour plot showing the error (%) in
estimates for length-to-diameter ratio, m, determined from simulated resistive pulses of an oblate-shaped protein
(m = 0.29, Λ = 340 nm3, µ = 840 D). C,D) Contour plot showing the error in estimates of protein volume, Λ, for the
same protein as in (A). E,F) Contour plot showing the error in estimates of protein dipole moment, µ, for the same
protein as in (A). A-F) All plots display the results of a parameter sweep across 70 different simulation conditions
(7 rotational diffusion coefficients, 10 cutoff frequencies) where 100 unique resistive pulses with a duration of
150 µs (A,C,E) or 1 ms (B,D,F) were simulated for each of the 70 conditions and combined with experimentally
recorded baseline noise before fitting with the convolution model. Note that both length-to-diameter ratio and
volume estimates tend toward larger uncertainties as rotational diffusion coefficient increases and as filter cutoff
frequency decreases, while dipole moment shows little to no correlation with either rotational diffusion coefficient
or filter frequency. Adapted with permission.[46] Copyright 2019, American Chemical Society.
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Chapter 5: Computational Evaluation of

Off-Axis Effects

Most approaches to analyze resistive pulses assume that the particles that produce them

translocate along the central pore axis – i.e. equidistant from all pore walls. In reality, par-

ticles freely transiting a nanopore also diffuse laterally, and as they approach the pore walls

they generate non-uniform distortions in the electric field, resulting in larger-than-expected

resistive pulses. In this chapter, we present results from studies of these off-axis effects that

we obtained using finite element and random-walk simulations. We varied the size, ellip-

soidal shape, and axial position of individual particles, as well as the size of the nanopore.

We demonstrated that randomly sampling a translocating nanoparticle at different distances

from the central axis leads to overestimates of that particles volume. Additionally, we have

shown that minimizing – or better characterizing– off-axis effects is critical to accurately de-

termine a particle’s shape; we observed up to 200% deviation in estimates of ellipsoidal shape

when off-axis effects were present. We present optimal ratios of nanopore to nanoparticle

size for experiments targeting freely translocating particles, and highlight the importance of

tethering nanoparticles to the pore walls to mitigate unwanted off-axis effects on the shape

determination of those particles. By considering off-axis effects in nanopore sensing, and

even possibly correcting for them, we are able to further improve our ability to accurately

characterize individual nanometer-sized particles in solution.
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5.1 Introduction to Off-Axis Effects

The underlying concepts of resistive pulse-based nanopore sensing have been described now

many times throughout this dissertation. Importantly for this chapter, the amplitude, du-

ration, and frequency of resistive pulses provide information about the size, charge, and

concentration of the particles passing through the pore.[1, 2] Moreover, as a non-spherical

particle adopts different orientations within the nanopore, it produces fluctuations in the

measured current that relate to the ellipsoidal shape of the particle, which can be described

by an electrical shape factor,γ.[3–6] By comparing the minimum and maximum current values

within a resistive pulse, nanopore sensing makes it possible to characterize proteins with dif-

ferent sizes, ellipsoidal shapes, charges, dipole moments, and rotational diffusion coefficients,

as described in Chapter 3.[6] This fundamental resistive pulse analysis, however, assumes

that the particles translocate through the central axis of a perfectly cylindrical nanopore,

and that the particles are able to rotate freely within that nanopore. Such an assumption

holds true when proteins are tethered to a lipid anchor within a fluid lipid bilayer coating

on the surface of the nanopore, because the lipid tether confines protein translocation to a

single (albeit off-center) translocation axis.[6, 7] We demonstrated in Chapter 4, however,

that the same multiparametric analysis makes it possible to characterize proteins that are

not tethered to the lipid bilayer. When these freely translocating particles diffuse away

from the central axis during their transit through the nanopore, they distort the electric

field asymmetrically and produce resistive pulse fluctuations that depend on their distance

from the central axis,[8–10] as well as on their particular electrical shape factor, γ, relating

their ellipsoidal shape to their orientation relative to the electrical field in the nanopore.

These distortions lead to larger-than-expected estimates of protein volume and deviations

away from reference values for estimates of protein length-to-diameter ratio. Additionally,

the fluctuations produced when a spherical particle diffuses laterally within the pore appear

similar to that of a rotating non-spherical particle passing through the center of a nanopore.

It is therefore important to quantify the effects of off-axis translocation on resistive pulse
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measurements, especially in the context of characterizing mixtures of proteins or examining

transient changes in a protein population.

In this chapter, we determine the influence of off-axis effects in the context of character-

izing ellipsoidal nanoparticles passing through a cylindrical nanopore using finite element

simulations (COMSOL Multiphysics 5.2a) in combination with random-walk simulations.

To this end, we performed a wide parameter sweep, varying the radial position of individual

particles as well as the ratio of particle size to nanopore radius. We further examined the

effects of off-axis translocation on the estimation of protein length-to-diameter ratio by con-

sidering particles with a fixed volume but with different ellipsoidal shapes and at different

radial positions and rotational orientations. The results suggest that 1) off-axis effects be-

come more extreme in scenarios where the diameter of the nanopore is much larger than the

diameter of the particle, 2) ellipsoidal particles with length-to-diameter ratios further from

a sphere (m << 1 or m >> 1) illicit larger – and orientation-dependent – off-axis effects

than spherical particles of the same volume, and 3) off-axis effects add a noise-like element

to resistive pulse recordings that can produce large errors in estimates of length-to-diameter

ratio and volume, both in individual-event and in population-based analyses.

5.2 Analysis Methods

We described the methods to analyze resistive pulses produced by non-spherical particles

at length in the previous chapters of this thesis.[6] Briefly, resistive pulse-based nanopore

sensing monitors ion flux through a sensing volume – here, the nanopore – in the presence

and absence of non-conducting particles. The principle is straightforward when considering

the electrolyte as a homogeneous conductive medium with resistivity ρ. The resistance of

a cylindrical nanopore with diameter of dp and length of lp consists of two components:

resistance to ions passing through the confines of the pore itself, Rpore, and access resistance,

Raccess, of ionic current paths converging to the entrance of the pore.
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R = Rpore + Raccess = ρ

(
4lp
πd2

p

+ 1
dp

)
(5.1)

Hence, a particle occupying the nanopore modulates the resistance to R =
∫

A−1(x)dx,

where A(x) is the area of the electrolyte at some position, x. In principle, each resistive

pulse contains information about a single particle’s 2-dimensional orthogonal projection on

the transverse plane that is normal to the axis of the nanopore. For resistive pulse-based

analyses, the electric field is considered to be uniform along the effective nanopore (Figure

5.1). Note that lp and dp are the length and diameter of the nanopore, respectively. We

relate the volume, Λ, and electrical shape factor, γ, to the magnitude of the current blockade

using the following equation, as discussed in Chapter 4:

∆I

I0
= 4γΛ

πd2
p(lp + π

4 dp)
(5.2)

Non-spherical particles have a maximum shape factor, γMAX , describing their crosswise

orientation in the nanopore, and a minimum shape factor, γMIN , describing their lengthwise

orientation in the nanopore, both of which are directly related to current blockade maxima.[3]

These non-spherical particles generate resistive pulses that fluctuate between ∆Imin/I0 =
4γminΛ

πd2
p(lp+ π

4 dp) and ∆Imax/I0 = 4γmaxΛ
πd2

p(lp+ π
4 dp) . The electric field produces a torque on non-spherical

particles that have a permanent dipole moment; this torque biases non-spherical particles

toward either their minimum or maximum orientation in the nanopore, and the magnitude

of this bias is proportional to the strength of the electric field in the nanopore and the dipole

moment of the particle (see Chapters 3 and 4).[6, 11].

This model simplifies the electrolyte solution as homogeneous conducting medium and

resolves the particle information steadily, without dynamic analyses. It describes the scenario

whereby a particle is located at the center of a large-aspect-ratio (diameter:length) cylindrical

nanopore. The mobility of ions in the nanopore is, in practice, non-uniform as ions are

unable to diffuse freely near the nanopore wall. In other words, the ohmic medium inside
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Figure 5.1. Schematic showing the finite element-based determination of the electric field strength in a nanopore.
A) The distribution of electric field strength in the nanopore simulations, as well as the electric field strength
according to Ohm’s model, for comparison. B) The electrical shape factor as a function of a particles length-to-
diameter ratio, m.

the nanopore is non-homogeneous. This inhomogeneity leads to deviations away from the

model when the particle is electrically sampled away from the central axis of the pore.

5.3 Finite Element Analyses of Resistive Pulses Based on

the PNP Equations

Poisson-NernstPlanck (PNP) equations are commonly used to express the flow of ionic cur-

rent through a nanopore.[12–15] The Poisson function describes the distribution of potentials,

ϕ, in an electrolyte solution containing ionic species, i, at some concentration ci and charge

of zi.[16]

∇2Φ = −F

ε

∑
i

zici (5.3)

The Nernst-Planck relationship describes the motion of the ions in a fluid medium under

an applied external potential by considering the diffusion of ions, Di, [17, 18]
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Ji = −Di∇ci − ziF

RT
Dici∇Φ (5.4)

Where F represents the Faraday constant F = 96485.3365 C mol-1, ε is the dielectric

constant of the fluidic medium, ε = 80, R is the gas constant R = 8.31 J mol -1 K-1, and

T is the absolute temperature, T = 295 K. Solving the PNP equations by using the finite

element method, we can determine the ionic current through a nanopore. In comparison

with analytical models, numerical simulations of the PNP equations make it possible to

incorporate complex parameters including surface charge and curvature, off-axis position of

particles, and irregular geometries for both the nanopore and the particles.

Here, we used COMSOL Multiphysics 5.2a to solve the PNP equations. To simulate our

experiments for lipid-coated nanopores, we define the nanopore length to be 40 nm (30 nm

before coating) and the surface charge of zero on nanopore wall. We applied 0.1 V across

the nanopore containing a recording buffer with an ionic strength of 2 M KCl. Because

the effective ionic transference number is nonlinearly related to salt concentration,[17, 18]

we used a concentration of 1.68 M KCl instead of 2 M according to the measured solution

conductivity. Figure 5.1 shows the electric field distribution in an uncoated (e.g. no lipid

bilayer) 30-nm diameter nanopore determined by solving the PNP equations. We plot the

electric field strength across the axis and longitude center of the nanopore, along with the

electric field considered in Eq. 2. The simulated electric field is non-uniform on both the

lateral and transverse axes, as shown in the grey boxes at the top and left of Figure 5.1.

5.4 Coupled Random-Walk Simulations to Probe Off-Axis

Effects on Individual-Event Analysis

We numerically simulated translocation events due to ellipsoidal particles in MATLAB in

order to probe the influence of off-axis effects on individual-event analyses. We performed two
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types of simulations in parallel, and then combined these simulations with results from the

finite element model in order to generate an array of off-axis influenced resistive pulses. We

described the first type of simulation, referred to here as a rotational simulation, previously

in Chapters 3 and 4.[6] The second type of simulation simply tracks the radial diffusion (i.e.

between the central pore axis and pore walls) of a protein within a nanopore, which we

assume to be unbiased. Input parameters for the rotational simulations included ∆IMIN/I0,

∆IMAX/I0, the dipole moment, µ, the rotational diffusion coefficient of the protein, DR, the

pore geometry including length and diameter (assuming a perfect cylinder), the resistivity

of the solution, the standard deviation of the baseline noise measured from a true baseline

recording, and the dwell time, or td, of each particle in the nanopore. Input parameters for

the lateral simulations include the 2-D lateral diffusion coefficient of the protein, DL, the

pore geometry including length and diameter (assuming a perfect cylinder), and the dwell

time, or td, of each particle in the nanopore.

To generate the rotational portion of the resistive pulse signal, we adapted a model de-

veloped by Gauthier and Slater for translational motion,[19, 20] and assumed that any bias

in rotation of the particle was due to the electric field acting on that particle’s permanent

dipole moment (assumed here to be along the principle axis of the particle). We simulated

discrete 1-ns time steps, in which we varied the angle of the particle’s principle axis relative

to the electric field by a fixed step size based on the mean squared angular displacement

around a single axis:

MSAD = ∆θ = 2DR∆t (5.5)

For each time step, we used the following equation to determine the probability that the

particle would rotate in the positive or negative direction:

p± = 1
1 + e∆U/kBT

= 1
1 + e±Eµ[cos(θ−∆θ)−cos(θ+∆θ)]/(2kBT ) (5.6)
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Figure 5.2. Overview of coupled random-walk simulations combined with FEM data. A) Side-view of a lipid-
coated nanopore showing an oblate-shaped rotating particle, representing our rotational simulation. B) Top-view
of a lipid-coated nanopore showing an oblate-shaped particle diffusing radially, and the discretization of that
radial diffusion using our FEM model. C) By combining the rotational diffusion simulation ( θ1 : θN ) with the
discretized radial diffusion corresponding to different extents of off-axis effects (colored boxes), we can convert
each combination of orientation and radial distance to an associated blockade amplitude, (∆I/I0)OffAx. D)
Simulated current blockade from a single rotation profile combined with many radial diffusion simulations, and
associated histograms with U-Shaped convolution fits (see Chapters 3 and 4).
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After simulating the biased rotational diffusion of a protein transiting a nanopore, we

performed a random lateral diffusion of that same protein relative to the central pore axis,[19,

20] and then combined the two simulations (both with a number of steps that we pre-defined

based on an event length of 1 ms) using an error matrix generated from COMSOL describing

an expected percent increase in the measured resistive pulse for a particle with a particular

length-to-diameter ratio at various distances from the central pore axis. Figure 5.2 gives

an overview of this simulation method, and a more thorough description is included in the

appendix.

5.5 Results and Discussion

5.5.1 Off-Axis Position Modulates Resistive Pulse Amplitudes

A particle that passes through a nanopore near to the pore wall produces a larger resistive

pulse than that same particle passing through the center of the pore. Figure 5.3 demonstrates

this phenomenon, showing the passage of an 8-nm diameter dielectric particle through a

nanopore along two paths along with their associated current traces. When the particle

passes through the nanopore along the central axis, it produces a rounded resistive pulse

shape due to gradual changes in access resistance at the entrance and exit of the pore. The off-

axis passage, however, yields a square-shaped resistive pulse due to sharp changes in electric

field at the corners of the pore. As expected the blockage current for off-axis translocation,

∆Ioff , is larger than the blockage current from translocation along the central axis, ∆I.

The size of the nanopore relative to the size of the nanoparticle strongly influences the

magnitude of off-axis effects. To quantify this influence, we varied the nanopore radius from 8

nm to 26.7 nm for a spherical particle with a radius of 4 nm. Figure 3 shows the distortion of

resistive pulse magnitude, or deviation in ∆I/I0, for different off-axis positions the spherical

nanoparticle in this scenario.
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Figure 5.3. Influence of off-axis effects on the electric field distribution within a nanopore. A) Electric field
distribution in a nanopore with an 8 nm diameter particle passing through the center (left) or off-axis (right). The
fine streamlines represent the electric field. B) The measured current as a function of the particle position when
particle transits through the center (black curve) and near the wall (red curve) of the nanopore.

5.5.2 Effects of Off-Axis Translocation on Estimates of Protein Volume

and Ellipsoidal Shape from Population-Based Analyses

Most approaches to characterize protein with nanopores analyze populations of resistive

pulses (see Chapter 1).[7, 21, 22] In an ideal scenario, a population of identical, perfectly

spherical particles would all produce the same resistive pulse amplitude. In practice, ensem-

ble analyses are influenced by the recording noise of the experimental setup,[23–25] which

produces an approximately Gaussian distribution of resistive pulse amplitudes. The experi-

mental ∆I/I0 distribution can be viewed as the convolution of the recording noise and the

theoretical resistive pulse amplitude (see Figure 3.2). For a spherical particle, this theo-

retical amplitude is a Dirac-δ function, while for a non-spherical ellipsoid, the theoretical

value is described by a U-shaped distribution that represents the probability of sampling

any electrical shape factor, γ, between γMIN and γMAX .[3]

Off-axis translocation influences the population-based estimation of protein parameters in

two ways: 1) off-axis effects increase ∆I/I0 values and thus lead to an overestimation of the

particle volume by up to 30% depending on the size and ellipsoidal shape of the particle, and

2) the spread of the distribution of ∆I/I0 for a population of resistive pulses increases, as not
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Figure 5.4. Influence of the ratio between particle size and nanopore size on off-axis effects. A)The deviation
of ∆I/I0 as a function of radial position. We simulated the same spherical nanoparticle with a radius, r, of 4
nm, passing through different nanopores with radius R. B) Cartoon example of a large r/R ratio, simulating a
nanopore with a diameter of 16 nm, and a particle with a diameter of 8 nm. C) Cartoon example of a small r/R
ratio, simulating a nanopore with a diameter of 53.4 nm, and a particle with a diameter of 8 nm.

all particles transit the pore at a consistent off-axis position, which can produce large errors

in length-to-diameter ratio relative to reference values (Figure 5.5-C-E, grey regions). Both

of these consequences of off-axis translocation influence the accuracy of parameter estimates

determined through population-based analyses of resistive pulses.

5.5.3 Effects of Off-Axis Translocation on Estimates of Protein Volume

and Ellipsoidal Shape from Individual-Event Analyses

Non-spherical particles rotate as they translocate through the nanopore, and these rotations

produce characteristic fluctuations in their associated resistive pulse. Figure 5.2-D shows the

fluctuations within a resistive pulse caused by different orientations of a non-spherical particle

(red), as well as the variation in those fluctuations due to off-axis effects (grey). The ratio of

maximum to minimum blockade current, ∆Imax/∆Imin, can be used to estimate the particle’s

ellipsoidal shape (see Chapter 3,4). When we perform a coupled random-walk simulation,

as described above, on a prolate-shaped particle (m = 2.5) and on an oblate-shaped particle

(m = 0.3), we find, somewhat surprisingly, that the oblate particle is associated with larger

influence from off-axis effects than the prolate particle. We previously observed that length-

to-diameter ratio estimates of prolate-shaped particles tend to be associated with larger

uncertainties,[6] and we report a similar finding above for population-based analyses. In
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individual-event analyses, however, we observed a ∼5% error between the ideal (i.e. without

off-axis effects) and measured (i.e. with off-axis effects) values for the length-to-diameter

ratio in the case of the prolate particle, and a ∼13% error for the oblate particle. For both

particles, off-axis effects led to estimates of length-to-diameter ratio that were more extreme

(e.g. further from a sphere) than expected. We are in the process of performing a more

thorough evaluation of the effects of off-axis translocation on individual-event analyses by,

again, performing a parameter sweep across a range of particle shapes and sizes relative

to the nanopore, and then using the output values from that parameter sweep within our

coupled random-walk simulations. From this evaluation, we hope to describe general trends

in the influence of off-axis effects on parameter estimates not only of length-to-diameter

ratio, but also of volume and dipole moment. We expect that such trends will be useful in

improving the accuracy of future efforts to characterize proteins passing uninhibited through

synthetic nanopores.

5.5.4 Efforts to Correct for Effects of Off-Axis Translocation in

Population-Based Analysis

Similar to the calibration for nanopore geometry presented in Chapter 3, here we performed

an experiment characterizing streptavidin protein in a nanopore coated with Tween-20, fit

the results with a 2-Gaussian distribution, shifted each respective Gaussian distribution

such that streptavidin had a length-to-diameter ratio of 1 (i.e. had a spherical shape),

and then applied that same shift to experimental data measured for Alcohol Dehydrogenase

(ADH). Saleh et al. previously reported a similar method for correcting off-axis effects on the

microscale.[26] We used the following relationships to manipulate the Gaussian distributions:

µY = aµX + b (5.7)

and
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Figure 5.5. Effects of off-axis translocation on population-based analysis of length-to-diameter ratio and volume.
A) The probability distribution of ∆I/I0 values determined by randomly sampling a translocating nanoparticle at
different distances from the central axis. We fit the distribution with a probability distribution function (PDF) that
is calculated by convolving the ∆I/I0 with normally distributed noise (25 pA), and the spatial distribution of the
particle in the nanopore. B) The deviation of ∆I/I0 as a function of the r/R ratio. C-F) Determined versus true
shapes for different particle-to-pore size ratios, ranging from 0.15 to 0.4. The largest deviations away from true
shape values in both tethered and untethered translocations occured when the pore was much larger than the
protein and the particle was a relatively extreme prolate shape.
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Figure 5.6. 2-Gaussian fit of experimental data to correct for effects of off-axis translocation. A) Histogram of
population-based data for streptavidin, with initial 2-gaussian fits shown by dotted lines, and shifted 2-gaussian
fits shown with solid lines. B) Histogram of population-based data for ADH, with initial 2-gaussian fits shown by
dotted lines, and shifted 2-gaussian fits shown with solid lines.

σ2
Y = a2σ2

X (5.8)

Where µ represents the mean of each Gaussian distribution, and σ2 represents the spread,

or variance of each distribution. Figure 5.6 shows the results of this attempted correction.

We found that for these two proteins in particular, we were unable to correct for off-axis

effects. There are several reasons that could explain the failure of this approach: 1) we

have found, as discussed in Chapter 4, that resistive pulses measured on nanopores coated

with Tween-20 are likely prolonged due to non-specific adhesion with the nanopore walls [27]

and/or electroosmotic flow [16, 28, 29] that acts to slow proteins down during transit. These

prolonged events (td > 2ms) do not allow for accurate estimations of protein parameters,

especially with regard to length-to-diameter ratio. 2) Population-based analysis selects only

a single, maximum value for each translocation event, and therefore effects of the protein

not sampling all orientations within a single event (as is the case for the shortest events that

we analyzed here) will confound effects of off-axis translocation in subsequent analyses.

A future method to correct for these effects would be to perform tethered and unteth-
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ered experiments of the same protein on the same lipid-bilayer coated nanopore, and then

compare the resulting resistive pulse signals from each experiment, looking in particular at

frequency components of the signals. If we treat the effects of off-axis translocation as an-

other contributor to the overall noise in nanopore recordings of freely translocating proteins,

as proposed in Chapter 4, then we might expect this noise component to be related to the

rate of lateral diffusion of the protein within the pore, and such a component could appear

in power spectra or autocorrelations of resistive pulses.

5.6 Conclusion

Off-axis effects produce larger-than-expected, population-based estimates of particle volume

in resistive pulse experiments, and can result in more than 200% error in population-based

estimates of length-to-diameter ratio in extreme scenarios (prolate-shaped particles, small

ratio of particle size to nanopore size). Additionally, effects of off-axis translocation influence

parameter estimates from individual-event analyses, though this influence appears to be less-

pronounced than for population-based analyses. We observed such a result experimentally

in Chapter 4, where estimates of length-to-diameter ratio for prolate-shaped proteins had

much larger uncertainties in population-based analyses (Figure 4.5) than in individual-event

analyses (Figure 4.3). An initial conclusion of this work, therefore, is that estimates from in-

dividual events should be emphasized in future work characterizing proteins with nanopores,

especially when those proteins are able to diffuse laterally within the nanopore. Moreover,

selecting a nanopore with a diameter that is as small as possible while still allowing the

particle to fully rotate within the pore minimizes off-axis effects in both population-based

and individual-event analyses, however, this choice may increase the amount of time required

for the particle to sample both maxima due to effects of confinement within the nanopore.

Tethering nanoparticles to fluid coatings on the nanopore walls mitigates the effects of off-

axis translocation on estimates of nanoparticle shapes, in particular for particles with shape
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values between m = 0.1 and m = 2.0.[6] By considering off-axis effects in nanopore sens-

ing, and possibly correcting for them,[26] we are further improving the ability to accurately

characterize individual nanometer-sized particles free in solution.
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Chapter 6: Outlook

The work presented throughout this thesis has focused on detecting and analyzing individual

proteins with lipid bilayer coated nanopores. Chapter 1 outlined fundamental principles of

nanopore-based protein sensing and described progress in this field related to characterizing

amyloids; Chapter 2 discussed efforts to fabricate nanopores in different substrates and

the associated challenges with those efforts; Chapter 3 detailed methods for the analysis

and five-dimensional characterization of resistive pulses generated by lipid-tethered proteins;

Chapter 4 explored the considerations and nuances associated with label-free sensing of

the resistive pulses produced by untethered proteins; and finally, Chapter 5 investigated,

via computational simulation, off-axis effects due to freely translocating proteins. These

studies present a glimpse toward the forefront of nanopore sensing; we are currently on

the cusp of an interdisciplinary convergence, where biophysical experimentalists are joining

forces with bioinformaticians, machine learning experts, biomedical engineers, computational

biologists, mathematicians, microfabrication experts, and theoretical physicists in order to

realize the full potential of the resistive-pulse sensing technique. In this chapter, I discuss

this convergence, and describe the ongoing efforts within our research group – as well as

outside of it – aiming to push the limits of nanopore-based protein characterization.
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Figure 6.1. Advantages of the nanopore sensing technique. These advantages are further related to their
potential usefulness in clinical analysis or fundamental biophysical characterization.

6.1 Avenues for Future Development in Nanopore Sensing

Resistive-pulse sensing with nanopores is a technique with a variety of unique advantages

that make it well-suited to both clinical use (see MinION[1]) and fundamental biophysical

studies.[2–14] Figure 6.1 highlights some of these advantages and acts as a starting point in

the design of future nanopore-based systems and applications requiring such capabilities.

In order for the technique to see success in characterizing proteins on a commercial scale,

however, a number of challenges must be met. Proteins are an incredibly diverse class of

biomolecules, both in form and in function. Methods to interrogate complex mixtures of

proteins, therefore, need to accommodate different shapes, sizes, surface charges, stabilities,

and functionalities.[15] Because nanopores are sized to match their target analyte, a single

nanopore in a freestanding membrane has a relatively narrow size-range of proteins to which

it is sensitive. That is, proteins that are much smaller than the pore will not produce a

resistive pulse distinguishable from baseline noise, and those that are too large will either

be unable to rotate within the pore or simply not translocate through the pore. There are

several different approaches to overcome the geometric issue: 1) reduce the recording noise of
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the experimental setup such that a relatively large nanopore becomes sensitive to very small

proteins,[16–21] 2) perform experiments with an array of differently sized, independently

monitored nanopores that are each sensitive to a portion of the protein mixture, 3) sort

protein mixtures into groups based on size and evaluate each group independently using

a different nanopore, or 4) denature all proteins and pass them through a small nanopore

as a single strand similar to nucleic acid sequencing.[22] Charge is the next challenge; in a

diverse protein mixture, some proteins will be highly charged will transit the nanopore much

more rapidly than those with fewer net charges.[23] While dwell time can be used here as an

additional descriptor for distinguishing proteins (e.g. by setting the pH of the buffer we can

target proteins with an isoelectric point in a certain range), short-lived resistive pulses have

inherently less information content than long-lived pulses and produce larger uncertainties

in parameter estimates (see Chapters 3,4). As with geometry, there are several solutions to

inequalities in net charge: 1) anchor proteins to a fluid surface coating such that the transit

speed of all proteins is slowed considerably, though at the cost of chemically modifying

the proteins [23] 2) slow all proteins by increasing solution viscosity, either by decreasing

temperature or adding glycerol,[24] but at the cost of reduced signal, 3) increase the recording

bandwidth into the MHz range such that pulses less than 10 µs can be effectively analyzed,

[21] or 4) incorporate a preprocessing step where proteins are first separated into groups and

then interrogated independently and in parallel. An additional challenge with diverse protein

mixtures is protein stability, as an inherent limitation to resistive pulse sensing is using a

buffer solution with high conductivity (i.e. high salt concentration), which may promote

protein denaturation or aggregation.[25] Instability in high-salt buffers can be overcome by:

1) decreasing the salt content to physiologic levels at the cost of reduced signal, 2) limiting the

time the protein spends in the high salt buffer, either by only analyzing a brief initial period

after the protein is injected, or by injecting proteins using a system analogous to an H-filter

in microfluidics,[26] where a physiologic buffer flows alongside recording buffer and proteins

diffuse across the interface directly before transiting a nanopore, or 3) exploring alternative
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Figure 6.2. Schematic showing four areas of future development in nanopore sensing. These areas include
Fabrication, as discussed in Chapter 2, Functionalization, as discussed in Chapters 3 and 4, Sophistication, as
alluded to in Chapter 5, and Application, of which amyloids have been highlighted throughout this dissertation.

experimental conditions (e.g. different salts, temperatures, stabilizers, etc.). Many of these

solutions will require designs that incorporate some combination of at least four overlapping

themes of ongoing development, as shown in Figure 6.2.

6.1.1 Prospective Advances in the Fabrication of Nanopores

As discussed in Chapter 2, there are many different ways to fabricate a nanopore in a syn-

thetic membrane. Some of these methods, like electron beam drilling,[27] require expensive

equipment and technical expertise, while others, like dielectric breakdown,[28, 29] can be

performed quickly on a laboratory benchtop with modest electronics. Each technique has

advantages and disadvantages, as do the resulting nanopores. Several trends appear to be

emerging among the nanopore community, which include nanopores being fabricated: 1)

in low-noise substrates like fused silica, which also enable seamless integration with optical
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Figure 6.3. Future themes for the fabrication of synthetic nanopores. A) Cartoon showing a wafer containing
multiple circuitry components embedded in nanopore chips and fabricated in batch, B) Image of a low-noise
fused-silica scaffold containing a freestanding membrane with a nanopore, C) Schematic of a biological nanopore
(here, α-aerolysin (5JZT)) held within a synthetic substrate as a hybrid system. Adapted with permission.[30]
Copyright 2019, IOP Publishing.

techniques,[30] 2) in batch, rather than serially, to reduce cost and time burden,[31] 3) with

on-board amplifiers (e.g. FET-based systems) to improve recording characteristics,[21] and

4) in hybrid systems, where biological components are combined with synthetic components,

much like lipid bilayer coatings.[32] Figure 6.3 provides a visual overview of these themes.

We recently published work, mentioned in Chapter 2, in which we fabricated freestanding

membranes on fused silica substrates on a wafer scale.[30] Not only did these chips outperform

those fabricated in silicon, but they also allowed for coupled optical measurements without

additional noise. Within the scope of this project, we also evaluated prior work in nanopore

fabrication and found that nanopores with the best noise characteristics to date all have

amplifiers integrated in close proximity to the nanopore (Table 2.1). Oxford Nanopore

Technologies has popularized such a design in a commercial format with their MinION device

and associated products for nucleic acid sequencing, which allow the user to monitor hundreds

of nanopores independently and in parallel, although with far lower bandwidth than required

for protein characterization.[1] Hybrid systems, where biological and synthetic components

are combined, are also gaining popularity. For example, Wanunu et al. have spanned a

synthetic nanopore with lipids and then incorporated a biological nanopore into the nanoscale

planar lipid bilayer.[33] Other groups have recently engineered a template designed to contain

a discrete number of pore-forming peptides, using differently sized templates to control
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the resulting nanopore size in order to overcome traditional size limitations of biological

nanopores.[34, 35]

Resistive pulses, which are typically measured across nanopores using Ag/AgCl electrodes

immersed in cis and trans compartments filled with ionic solution, can also be measured

using field-effect transistors (FET), which have been recently developed using graphene

nanoribbons.[36–38] In this format, the FET detects and amplifies a local change in potential

produced by the translocating biomolecule, rather than a change in current.[39] In state-of-

the-art amplifiers used for taking measurements across nanopores, capacitive noise dominates

high frequency regimes (e.g. greater than 100 kHz); these amplifiers rely on negative op-amp

circuits to measure the current through the pore while keeping a consistent applied voltage,

which in turn produces a current noise (stdev) of 1 nA at 10 MHz.[40] FET-based electrical

measurements, on the other hand, are limited by a parasitic capacitance between the source

and drain electrodes.[39] If these electrodes are sufficiently passivated, then thermal noise,

rather than capacitive noise, dominates at high-bandwidths. To investigate the magnitude

of thermal noise in the context of high-bandwidth protein characterization, we followed an

approach similar to that presented by Parkin et al.,[39] estimating the thermal noise-limited

using the following equation:

BW = (∆Ven/SNR)2

4kTReq(Deff )
(6.1)

where BW is the bandwidth, SNR is the signal to noise ratio (set to be 5), k is the

Boltzmann constant, T is the temperature of the resistor, Req is the Thevenin equivalent

resistance Req = Ra(Ra+Rp)/Rtot, and Ven is the change in voltage at the nanopore entrance,

represented by the following equation:

∆Ven = Vionic

(
Ra(D)
Rtot(D)

− Ra(Deff )
Rtot(Deff )

)
(6.2)

where Vionic is the applied ionic voltage (e.g. with Ag/AgCl electrodes), D is the diameter
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Figure 6.4. Thermal noise-limited bandwidth for characterizing proteins with an FET-based nanopore. A) Crystal
structure (blue) of IgG1 overlaid with an approximate ellipsoid estimate (m = 0.3) and associated heat map show-
ing the thermal noise-limited bandwidth of resolving the difference between minimum and maximum orientations
of the protein within the nanopore. B) Crystal structure (red) of BSA overlaid with an approximate ellipsoid esti-
mate (m = 0.5) and associated heat map showing the thermal noise-limited bandwidth of resolving the difference
between minimum and maximum orientations of the protein within the nanopore.

of the nanopore, and Deff is the effective diameter of the nanopore during the translocation

of a biomolecule - Deff ≊ (D2 − d2)1/2. We calculated the thermal noise-limited bandwidth

in order to discriminate between the minimum and maximum orientations of IgG1 protein

and Bovine Serum Albumin for a range of nanopore sizes and present the results in Figure

6.4.

From the plots in Figure 6.4, we see several trends: proteins with more extreme shapes can

be analyzed at higher bandwidths as they produce larger variation between minimum and

maximum orientations (100 MHz for IgG1 versus 10 MHz for BSA), and pores with smaller

diameters and shorter lengths are more sensitive to translocation events than larger pores

for the same protein (as discussed throughout this dissertation). This estimate assumes no

surface charge and complete electrode passivation passivation, and represents an upper limit
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in bandwidth for an ideal recording scenario scenario. Because of the trend of increased

sensitivity in smaller pores due to scaling of thermal noise, FET-based systems may be

appealing for studying proteins and peptides smaller than 10 kDa, or for protein sequencing

using nanopores.[22]

6.1.2 Functionalization of Nanopores with Polymer Thin Films

While bio-inspired lipid bilayer coatings have addressed many key challenges in protein

characterization with synthetic nanopores by reducing nonspecific adsorption, concentrating

analyte near the nanopore entrance, eliminating electroosmotic flow, and extending translo-

cation times,[23] they have several shortcomings: 1) lipid bilayer coatings have low experi-

mental success rates, with approximately 10 percent of attempts producing a stable coating,

2) they add an undulatory noise element to electrical recordings (see Chapter 2 for discussion

on complementary conical lipids), and 3) they are single-use and their formation requires

a vigorously cleaned surface which destroys the nanopore over time.[23] Thin film polymer

coatings offer an intriguing alternative which could address the pitfalls of lipid bilayer coat-

ings while retaining some of their advantages. We are currently investigating a polymer

coating based on poly(N,N-dimethylacrylamide) (PDMA), and have used it successfully to

determine the length-to-diameter ratio of IgG1 protein. These results are quite encouraging

considering that, until now, we have only been able to determine ellipsoidal shape accurately

using nanopores coated with lipid bilayers; we have found that nanopores with other coat-

ings like Tween-20 (see Chapter 4) lead to large errors in estimated shape. We are hoping to

investigate this particular polymer coating more thoroughly in the context of protein char-

acterization, as it may be easier to use and more suitable to different nanopore geometries

and surface chemistries than lipid bilayer coatings.

We also performed a theoretical investigation of the stability of a variety of thin film coat-

ings that have been used to prevent protein adhesion to synthetic surfaces (see Appendices).

We found that many different thin films would, in theory, form stable coatings on an SiOx
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membrane, although in practice, applying them to a complex three dimensional nanopore

geometry could present a challenge, as these types of films are typically applied using spin

coating techniques that may not be suitable for trans-pore coatings. Additionally, there

are also issues with the inability to anchor proteins to the polymeric surface in order to

slow translocation; these issues could be addressed by fastening the protein to a secondary

structure (e.g. a large engineered biomolecule unable to translocate through the nanopore)

to observe them for long periods of time inside of the nanopore. However, considering the

noise generated by the undulations of the lipid bilayer would be eliminated, and given that

the nanopore community is shifting toward low-noise platforms with high bandwidths, there

will be less of a need for "long" events in order to estimate protein parameters, depending

on the desired application, of course.

6.1.3 Data-Driven Approaches for Resistive Pulse Analyses

As the nanopore community moves toward low-noise platforms, we expect the information

content of each resistive pulse signal to increase, and this rich information content will

make it possible to improve upon the ellipsoidal model described in detail throughout this

dissertation. We have an ongoing project with this particular goal in mind, and we are in the

process of developing hydrodynamic bead models to represent complex, anisotropic protein

shapes more accurately. IgG1, for instance, is a Y-shaped molecule that is not particularly

suited to an ellipsoid approximation (see Figure 4.12), and thus we have developed a bead

model for IgG1 and produced a simulated distribution of resistive pulse values from that

model, as shown in Figure 6.5.

While we are approaching the capability of simulating current traces from a rigid arrange-

ment of beads in space passing through a nanopore, relating an experimentally measured

current trace to the set of beads that likely produced it is a complicated inverse problem

(e.g. multiple different bead arrangements could produce a similar looking current trace).

We are in the process of combining finite element methods with machine learning techniques
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Figure 6.5. Preliminary results for hydrodynamic bead modelling of IgG1. Beads arranged in a Y-shape pro-
duce a different distribution of current blockade values than beads arranged in a disk. A) Example of two bead
models for an IgG1 protein, both with a volume of ∼300 nm3, one approximating a Y-shape (top) and the other
approximating an oblate (bottom) as we are doing in this work. B) Normalized histograms of the current blockade
values generated from simulated translocation events of either the disk-shaped (gray) or y-shaped (red) bead
arrangement.

to tackle this problem.

With regard to machine learning techniques, we are currently in the process of extract-

ing features from resistive pulse signals and evaluating their power in discriminating be-

tween pulses generated by particles with different physical properties. In this effort, we

are investigating resistive pulses measured experimentally, as well as those generated using

random-walk simulations, as described in previous chapters. In order to produce data in

quantities sufficient for training machine learning algorithms, I programmed a parallel ver-

sion of the random-walk simulations that is executable on a graphics processing unit (GPU).

This version of the simulation reduced the computation time for simulations by several or-

ders of magnitude relative to the MATLAB version, and is described in more detail in the

Appendices.
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6.1.4 Ongoing Efforts to Characterize Tau Protein and Oligomeric

Aggregates

Despite the fact that low-n oligomers of microtubule associated protein tau (a.k.a. tau)

have been shown to exhibit toxicity in vivo,[41, 42] these protein aggregates are poorly un-

derstood with regard to their structure, shape, and mechanism of action. Consequently,

biophysical characterization of such oligomers on a single-particle basis may provide insight

into why particular species are toxic, and could inform strategies for therapeutic interven-

tion. Structural characterization of tau oligomers is challenging because they are highly

dynamic and exist in a metastable, heterogenous population.[43, 44] We have preliminary

data demonstrating that lipid bilayer-coated solid-state nanopores make it possible to char-

acterize low-n oligomers of tau protein in aqueous solution and differentiate between them

based on their shape and volume. Figure 6.6 shows a proposed aggregation pathway based on

our findings from nanopore analysis, with the monomer structure determined using Nuclear

Magnetic Resonance (NMR) spectroscopy.[45] We are in the process of applying supervised

cluster analysis – both with k-means clustering and using a Gaussian Mixture Model – to

the individual-event data in order to inform the grouping of particular events. From these

clusters of events, we will determine of most probable length-to-diameter ratio, volume, and

dipole moment of four distinct oligomeric sub-populations, none of which have, to the best

of our knowledge, previously been reported using single-molecule, label-free measurements.

Tau aggregation is associated with a class of neurodenerative diseases known as tauopathies,

and abnormal phosphorylation of tau has repeatedly been implicated as one of the driving

forces of this process.[46, 47] Abnormal phosphorylation of tau destabilizes microtubules, de-

grades neuronal function, and has been a major target in designing drugs against tauopathies.[48]

Phosphorylation of serine residues – Ser-214, Ser-258 and Ser-26 – which are otherwise im-

portant for forming stabilizing hydrogen bonds, has been shown to reduce binding affinities

between tau and microtubules.[49] Hyperphosphorylation of tau, therefore, not only pre-

vents normal function in stabilizing microtubules, but also leads to a toxic gain of function
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Figure 6.6. Cartoon depiction of the aggregation of Microtubule Associated Protein Tau. The monomeric struc-
ture, shown in red, was calculated from NMR analysis.[45]

that results in poor transport along axons and, ultimately, neurodegeneration.[50] In addi-

tion to distinguishing between sub-populations of tau oligomers, we also have preliminary

data showing that, using lipid-coated nanopores, we can differentiate between native tau

and hyperphosphorylated tau based on charge and dipole moment on an individual protein

basis. Such a finding could be critical step toward using phosphorylation as a biomarker for

determining the aggregation status in certain tauopathies, and may possibly provide earlier

diagnoses for this class of diseases. We expect to publish these results in the coming months.

6.2 Additional Extensions

Outside of the ongoing development within our group, the work presented in this disserta-

tion enables investigations of many unique protein targets and systems. I will outline two

systems in particular: 1) observation of an individual, shape-changing protein in situ, and

2) manipulation of a magnetic-sensitive protein complex within a nanopore.

Adenylate Kinase, also referred to as Myokinase or AK, is an important enzyme that

regulates intracellular adenine nucleotide levels by catalyzing the reversible transfer of a

phosphate group between adenine nucleotides.[51] It has the primary role of maintaining the

energy balance within cells, and its importance in biology is exemplified in its appearance
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Figure 6.7. Future protein targets that are well-suited to characterization with nanopores. A) Protein crystal struc-
tures of the open Adenylate Kinase (green, PDB: 4AKE), and the closed Adenylate Kinase (orange, PDB:1AKE)
overlaid over the theoretical ellipsiods of rotation. Note how the open shape resembles a prolate (m = 1.6), while
the closed form is closer to a sphere (m = 0.9). B) Magnetic protein complex, from Qin et al. [Qin Nat Mater],
showing a rod-like structure with 10 repeats of a protein from the class Cryptochromes (yellow, PDB: 4GU5),
wrapping around a polymer-chain core of magnetic receptor proteins (purple, PDB: 1R94). The complex is a rod
that is about 24 nm long and 18 nm in diameter (when fully bound), giving it an expected length-to-diameter ratio
of 1.3. Without Cry (yellow) proteins, the polymer-chain core is a 24 × 9 nm rod with a length-to-diamer ratio of
2.7, which may be more suitable for a nanopore sensing application as it should produce a larger difference in
current blockade between its minimum and maximum orientations within a nanopore.

throughout a large variety of organisms and tissue types.[52] One of the unique attributes of

this particular enzyme is the relatively large conformational change it undergoes during its

catalytic reaction. The protein structure has been determined for both its closed or substrate-

bound state, and its open or free state, and is shown below in Figure 6.7-A. Interestingly, the

flexibility of AK’s structure is directly correlated with its efficiency to catalyze the adenine

reaction, and its transition from closed to open following catalysis limits the rate at which

the reaction progresses[53].

AK exists in an equilibrium between open and closed states in the absence of substrate,

and the addition of substrate (ATP and AMP) simply shifts that equilibrium in favor of the

closed state.[54] Because of its unique properties and its biological significance, AK has been

the subject of an abundance of in-depth structural and functional studies, which makes it an

excellent candidate for a model protein in a shape change detection experiment. We showed
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previously that five-dimensional analysis makes it possible to distinguish between proteins

with similar molecular weights - for example, anti-biotin IgG1 antibody and GPI-AChE (see

Chapter 3).[2] The evaluation of multiple conformational variants of a single protein, as is

proposed here with AK, is analogous in many ways to this prior experiment. Three different

experiments would be necessary for a preliminary investigation : 1) an experiment with

the protein, either tethered or free in solution, mostly in its open state and without any

substrate, 2) an experiment with AK in a mostly closed state after incubation with a high

concentration of substrate, and 3) an experiment showcasing the transition from an open to

a closed population of protein due to an injection of substrate in situ. The biggest challenge

in working with AK is its size: at ∼ 25 kDa, it requires a small nanopore, or exceptionally

low noise, in order to produce accurate shape estimates. Given the ongoing work discussed

above, one or both of these conditions are likely already available.

Another unique system suitable for study with nanopores is the protein complex formed by

the combination of a class of Cryptochrome proteins, and a magneto-receptive protein known

as MagR.[55] The conglomerate structure has a long rod-shape (Figure 6.7-B), and is thought

to be responsible for magnetic-based navigation in a variety of organisms.[56, 57] Several of its

qualities are beneficial in the context of nanopore analysis; this complex 1) is not a sphere,

and thus will modulate its resistive pulse according to its orientation with a nanopore,

2) has axial symmetry roughly resembling a prolate (e.g. rugby ball) and thus would be

amenable to our convolution model-based analysis, and most importantly, 3) aligns to an

external magnetic field.[55] The magnetic sensitivity of Cry/MagR means that, theoretically,

it can be manipulated while inside of the nanopore simply by applying a magnetic field

around the pore. This ability to control Cry/MagR could enable 1) in-depth studies of the

magnetic sensitivity of different Cry/MagR varieties on a single-molecule level, and/or 2)

incredibly precise calibration of a nanopore-based system for protein characterization. One

can imagine that, by applying an alternating magnetic field, it may be possible to force

Cry/MagR to rotate at a user-defined rate, which would then be measurable within the
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resistive pulse and could help to inform and improve calculations of rotational diffusion

coefficient. Alternatively, it should be possible to apply a strong enough magnetic field such

that all individual Cry/MagR are forced to transit the nanopore in a single – and user-defined

– orientation. Forcing a single orientation during transit using the torque from the electric

field on a protein’s dipole moment requires an electric field (or dipole moment) several orders

of magnitude larger than what we have explored in this dissertation, and poses challenges

both in material and protein stability. If successful, the combination of the Cry/MagR

protein complex with nanopore sensing could produce a more thorough understanding of the

complex itself, and could accelerate efforts to improve data analysis techniques for nanopore-

based protein characterization.

6.3 Concluding Remarks

In summary, this dissertation has demonstrated the ability to estimate different physical

parameters from the resistive pulses generated by individual proteins transiting through

nanopores. We explored a variety of different fabrication methods for forming single nanopores

in freestanding synthetic membranes and used those nanopores to determine a five-dimensional

fingerprint of single tethered proteins. We then built upon our work with tethered proteins,

showing that it is also possible to estimate parameters from native proteins diffusing freely

in solution, and highlighted several important considerations within this label-free scenario,

including effects of recording bandwidth and off-axis translocation on resulting analyses. We

expect that general improvements in recording noise and bandwidth will usher in the next

wave of protein characterization with nanopores, enabling applications in the detection and

characterization of amyloid biomarkers for neurodegenerative disease, as well as for broader

applications such as the construction of personalized proteomes.[58]
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Appendix

A.1 Pseudocode and Explanations of Scripts for Fabrication

of Nanopores, and Analysis of Resistive Pulses

During my time in the Mayer group, I wrote a variety of scripts to expedite and simplify

certain aspects of the nanopore experimental process. In this section of the appendix, I will

discuss the various scripts with regard to their programming design and functionality.

A.1.1 MATLAB Script for Fabrication of Nanopores via Dielectric

Breakdown

As discussed in Chapter 2, dielectric breakdown is a process in which a high electrical po-

tential applied across a freestanding membrane leads to defect accumulation and ultimately

the formation of a nanopore.[1, 2] In order to automate this process, I designed a MATLAB

script to communicate with a Kiethley picoammeter over an RS-232 serial cable, relaying

precise current measurements on the order of milliseconds, and allowing a user to input a

particular voltage protocol with current-based feedback in order to create a nanopore of

desired size. Pseudocode for this script is shown below:
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Algorithm 1: Dielectric Breakdown
Data: voltage protocol, desired nanopore diameter
Result: current-versus-time trace, estimated final diameter
GUI initialization;
picoammeter initialization;
while diameter estimate < desired diameter do

read current from picoammeter;
estimate diameter from current;
if diameter estimate > desired diameter then

set picoammeter potential to 0;
else

set picoammeter potential according to voltage protocol;
end
plot measured current value;
plot applied potential value;

end
export current-versus-time trace, final diameter;

A.1.2 MATLAB Script for Population-Based Analysis of Resistive Pulses

As discussed in Chapters 3 and 4, populations of resistive pulses can be used to estimate

the length-to-diameter ratio and volume for a pure protein in solution. Each resistive pulse

is extracted and analyzed using a peak finding algorithm initially developed by Pedone et

al., which defines "true" resistive pulses as those that cross a threshold of 5× the standard

deviation of baseline noise. The maximum value from each of these pulses, along with its

associated dwell time, is arranged in a CSV file (referred to as a peak-scatter, or pscat,

file), which we then analyze using our convolution model (Chapter 4). To simplify the user

experience of this process, I wrote a graphical user interface (GUI) that allows a user to load

these pscat files, input experimental parameters, modify the data, and fit the data using our

analysis methods. Pseudocode for this program is shown below:

A.1.3 MATLAB Script for Individual-Event Analysis of Resistive Pulses

Discussed in detail in Chapters 3 and 4, single resistive pulses can be used to determine a

multidimensional fingerprint of a translocating protein. As with population-based analysis,
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Algorithm 2: Population-Based Analysis
Data: pscat files with resistive pulse maxima and dewll times
Result: length-to-diameter ratio, volume, charge
GUI initialization;
while analysis in progress do

determine user input from GUI;
import various parameters and variables from GUI;
if user selects load data then

allow user to select directory;
parse selected directory for "pscat" files;
import files into workspace;

end
if user selects crop data then

duplicate original data;
crop data by value OR percentage;
plot newly cropped data;

end
if user selects fit shape and volume then

generate experimental CDF & PDF from max data;
initialize fitting values;
perform convolution fit with lsqcurvefit;
update GUI with fit output values;
plot fit and data overlaid;

end
if user selects fit charge then

generate experimental CDF & PDF from dwell time data;
initialize fitting values;
perform biased first passage fit with lsqcurvefit;
update GUI with fit output values;
plot fit and data overlaid;

end
if user selects export then

generate CSV file for export;
allow user to select file name and output directory;
export file;

end
end
close GUI;
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each resistive pulse is extracted and analyzed using a peak finding algorithm initially devel-

oped by Pedone et al., which defines "true" resistive pulses as those that cross a threshold of

5× the standard deviation of baseline noise. All values from each of these pulses are stored

together in a CSV file (referred to as an intraevent file), which we then analyze using our

convolution model (Chapter 4). Similar to above, I wrote a graphical user interface (GUI)

that allows a user to load these intraevent files, plot and examine the raw current and cur-

rent histograms of single events, input experimental parameters, modify the data, and fit

the data using our analysis methods. Pseudocode for this program is shown below:

A.1.4 C++ & Cuda-C Script for Simulations of Resistive Pulses

As mentioned in Chapter 6, I wrote a random-walk simulation algorithm to simulate resistive

pulses for particles with different ellipsoidal shapes on a graphics processor (GPU). FigureA.1

shows a schematic overview of this code:

By switching away from MATLAB and into C++, I was able to reduce computation time

for the simulations by approximately two orders of magnitude. It is important to note,

however, that single dimensional random-walk simulations are not particularly suited to

parallelization, and we expect computational gains to be much greater for future simula-

tions of hydrodynamic bead models (Chapter 6), as well as for the coupled random-walk

simulations to determine the influence of off-axis effects in Chapter 5. One technique that I

implemented to reduce computational time was treating the biased probability distribution

– determined using equation 5.6 – as a three state decision system, as shown in Figure A.2.

In this fashion, I created two probability states where a decision (e.g. rotate clockwise or

counterclockwise) was orientation-independent and could be assigned immediately based on

the associated random number, and only one probability state (approximately 1% of steps

with our dipole moment and electric field parameters) that was orientation-dependent and

required serial processing to compute.
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Algorithm 3: Individual-Event Analysis
Data: intraevent files with all current values from "long events"
Result: length-to-diameter ratio, volume, dipole moment, and rotational diffusion

coefficient
GUI initialization;
while analysis in progress do

determine user input from GUI;
import various parameters and variables from GUI;
/* Data load is same as population-based, except also w workspaces */
if user selects fit shape, volume, dipole moment then

for all events in data stack do
evaluate event(s) based on exclusion criteria;
if exclusion criteria satisified then

generate experimental CDF & PDF from single event;
initialize fitting values;
perform convolution fit with lsqcurvefit;
update GUI with fit output values for single event;
plot fit and single event histogram overlaid;
store fit output for later analyses;

else
mark event as not-fit;

end
end

end
if user selects fit rotational diffusion coefficient then

for all events in data stack with S,V,D values do
evaluate event(s) based on additional exclusion criteria;
if exclusion criteria satisified then

for lowpass cutoff frequencies from 15 kHz to max BW do
determine MSAD from trace filtered at loop frequency;

end
determine and store most probable DR across all frequencies;

else
mark event as not-fit;

end
end

end
if user selects update population parameters then

create ensemble datasets of fit values from each event for export and plotting;
report median length-to-diameter ratio and median volume across all events;
report most probable dipole moment and DR via lognormal fitting;

end
/* Data export is same as population-based, except more options */

end
close GUI;
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Figure A.1. Diagram showing code structure for GPU-based simulations.
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Figure A.2. Biased probability distribution used for random-walk simulations, taken from equation 5.6. Each time
step was assigned one of three states in parallel before serial processing.

Figure A.3. Chemical structures of seven different polymers analyzed for their stability as nanopore coatings,
including structures, names, and shorthand abbreviations.

A.2 Evaluation of the Theoretical Stability of Thin Polymer

Films in the Context of Nanopore Coatings

Figure A.3 shows examples of the chemical structures of these adhesion-resistant films. We

used similar methods to those presented by Bal et al. [3] for stability prediction, calculating

Hamaker constants for both the SiNx/Polymer/Air and SiOx/Polymer/Air systems, and

using the Lifshitz equation (below) to calculate the various constants based on the dielectric

and refractive properties for each polymer.[4]
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Figure A.4. Chart showing the various properties - contact angle of water, dielectric constant, and refractive index
- of each of the polymers, as well as the Hamaker constants both with and without the SiOx layer incorporated.
Finally, the state of the polymer was determined by calculating/plotting the free energy change using equation 2.
Right) Plot of ∆F over various film thickness values, h, for each of the polymers assuming that dSiOx = 2 nm.
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Then, using an expression (below) for free energy that incorporates these constants as well

as the polymer height and SiOx thickness, we determined the theoretical stability of each

polymer:

∆F V DW (h) =
(

−ASiN/P/Air

12π(h + dSiOx)2

)
+
(

−ASiOx/P/Air

12πh2

)
−
(

−ASiOx/P/Air

12π(h + dSiOx)2

)
(A.4)

Figure A.4 shows results from these calculations, along with various polymer properties. It

is important to note why the Hamaker constants were not simply the only method of stability

determination here. Traditionally, the sign of a Hamaker constant has been a hallmark of

the stability of a thin film.[4] However, in the case of a polymer like Polystyrene (PS) on a

pure SiN substrate, the large negative Hamaker constant would indicate stability. This is

not always the case, as these PS films are reported to dewet often through hole nucleation.[5]

Several hypotheses may explain this discrepancy: heterogeneities may exist at the surface,

there may be a silica layer at the substrate-polymer interface, spacial density variations may
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exist due to film confinement, or stresses may be released during spin coating.[5] For this

reason, we calculated Hamaker constants both in the presence and absence of the SiOx layer,

and then combined through a free energy relationship to determine a more accurate measure

of stability.

A.3 Investigation of Insects as Inspiration for Engineering

I spent a portion of my dissertation researching and co-writing a review about the many

different ways that insects solve problems, and how their solutions might be applied to some

of our own engineering challenges.[6] The review is loosely related to the work presented

throughout this thesis in that the inspiration for lipid bilayer coatings on nanopores comes

from the silk moth, Bombyx mori, which uses lipid coated pores on its antennae to concen-

trate and guide pheromone molecules around the dendrites of its olfactory neurons. After

lengthy discussion about the capabilities of nanopore sensing and its newfound prospects

as a technique to characterize amyloids, it seems only fitting to conclude this thesis with a

starting point for the engineers of future biomedical and material solutions. As such, I have

included the abstract of the review, as well as a table-of-contents figure below:

"Over the course of their wildly successful proliferation across the earth, the in-

sects as a taxon have evolved enviable adaptations to their diverse habitats, which

include adhesives, locomotor systems, hydrophobic surfaces, and sensors and ac-

tuators that transduce mechanical, acoustic, optical, thermal, and chemical sig-

nals. Insectinspired designs currently appear in a range of contexts, including

antireflective coatings, optical displays, and computing algorithms. However, as

over one million distinct and highly specialized species of insects have colonized

nearly all habitable regions on the planet, they still provide a largely untapped

pool of unique problem-solving strategies. With the intent of providing materi-

als scientists and engineers with a muse for the next generation of bioinspired
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materials, here, a selection of some of the most spectacular adaptations that in-

sects have evolved is assembled and organized by function. The insects presented

display dazzling optical properties as a result of natural photonic crystals, pre-

cise hierarchical patterns that span length scales from nanometers to millimeters,

and formidable defense mechanisms that deploy an arsenal of chemical weaponry.

Successful mimicry of these adaptations may facilitate technological solutions to

as wide a range of problems as they solve in the insects that originated them."
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Figure A.5. The ability of insects to thrive in diverse environments is linked to two evolutionarily optimized sys-
tems: a cuticlederived exoskeleton with associated functional micro and nanostructures, and glandular complexes
that secrete chemically diverse substances. Most structures rely deeply on hierarchical organization, with struc-
tural ordering on length scales ranging from nanometers to millimeters. Insects’ structural adaptations function to
serve a broad set of insect needs including environmental sensing and control, protection, communication, and
locomotion. Adapted with permission.[6] Copyright 2018, Wiley-VCH.
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