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Appendices

A. Implementation Details

In this section, we provide the exact expressions of multiple elements in the proposed
method as well as an EM algorithm to estimate the parameters in HGLLiM. The proce-
dures to select tuning parameters, aiming at enhancing implementation feasibility, model
stability and flexibility are described afterwards.

In Section ??, we built the key prediction procedures based on an inverse conditional
density,

p(X = x|Y = y; θ) =

K∑
k=1

M∑
l=1

ρklN (y; ckl,Γkl)∑K
i=1

∑M
j=1 ρijN (y; cij ,Γij)

N (x;Akly + bkl,Σk),

with the indices k and ` representing the global and local cluster memberships, respec-
tively, and a forward regression model,

p(Y = y|X = x; θ∗) =

K∑
k=1

M∑
l=1

ρ∗klN (x; c∗kl,Γ
∗
kl)∑K

i=1

∑M
j=1 ρ

∗
ijN (x; c∗ij ,Γ

∗
ij)
N (y;A∗klx+ b∗kl,Σ

∗
kl),

where θ∗ denotes the parameter vector in the forward regression model, as:

θ∗ = {c∗kl,Γ∗kl, ρ∗kl, A∗kl, b∗kl,Σ∗kl}
K,M
k=1,l=1.
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Note that θ∗ has closed-form expressions as functions of θ, which makes it computation-
ally efficient. The relation is obtained analytically with:

c∗kl = Aklckl + bkl, Γ∗kl = Σk +AklΓklA
>
kl,

A∗kl = Σ∗klA
>
klΣ
−1
k , b∗kl = Σ∗kl(Γ

−1
kl ckl −A

>
klΣ
−1
k bkl),

Σ∗kl = (Γ−1kl +A>klΣ
−1
k Akl)

−1, ρ∗kl = ρkl.

The prediction can be done by taking the expectation over the forward conditional
density:

E[Y |X = x] =

K∑
k=1

M∑
l=1

ρ∗klN (x; c∗kl,Γ
∗
kl)∑K

i=1

∑M
j=1 ρ

∗
ijN (x; c∗ij ,Γ

∗
ij)

(A∗klx+ b∗kl) (1)

As described in Section ??, the low-dimensional data Y could contain a latent
component W . That is, the HGLLiM model considers three sets of latent variables:
Z1:N = {ZN}Nn=1, U1:N = {Un}Nn=1 and W1:N = {Wn}Nn=1, where Z and U indicate
global and local cluster assignment. We use the EM algorithm described in the next
sub-section to obtain estimates of θ, which can be directly converted to θ∗ in prediction.

A.1. The EM algorithm for HGLLiM
The EM algorithm for HGLLiM can be divided into several steps: E-Z,U step for
estimating the posterior probability of being assigned to a global or a local cluster, E-W
step for finding estimation of latent variable W and a maximization step for estimating
parameters at the local and global cluster levels.

E-Z,U Step:
We denote the posterior probability of observation n being assigned to global cluster k,
local cluster l, based on the observed data, to be

rnkl = p(Zn = k, Un = l|tn, xn; θ); (2)

and we let,
rnk = p(Zn = k|tn, xn; θ). (3)

The posterior probability of sample n being assigned to local cluster (k, l) is given by,

rnkl = p(Zn = k, Un = l|tn, xn; θ)

=
ρklp(tn, xn|Zn = k, Un = l; θ)∑K

i=1

∑M
j=1 ρijp(tn, xn|Zn = i, Un = j; θ)

,

where p(tn, xn|Zn = k, Un = l; θ) = p(xn|tn, Zn = k, Un = l)p(tn|Zn = k, Un = l). The
first term is given by p(xn|tn, Zn = k, Un = l) = N (xn;At

kltn + bkl +Aw
k c

w
k , A

w
k Γw

kA
w>
k +

Σk) and recall that the second term p(tn|Zn = k, Un = l) = N (t; ctkl,Γ
t
kl).

A direct derivation shows that

rnk = p(Zn = k|tn, yn; θ)

=

M∑
l=1

rnkl.



Prediction with HGLLiM 3

E-W Step:
The distribution p(wn|Zn = k, tn, xn; θ) can be shown to be Gaussian with mean µwnk
and covariance matrix Sw

k . The estimation of the mean and covariance matrix is given
by:

µ̃wnk =

M∑
l=1

rnkl
rnk

S̃w
k

(
Aw>

k Σ−1k (xn −At
kltn − bkl) + (Γw

k )−1cwk

)
,

S̃w
k =

{
(Γw

k )−1 +Aw>
k Σ−1k Aw

k

}−1
. (4)

The maximization step consists of two sub-steps. The first step aims to estimate param-
eters for a Gaussian Mixture Model and the second one focuses on estimating parameters
for mapping.

M-GMM Step:

In this step we only consider the parameters related to the Gaussian Mixture Model. In
particular, we want to estimate {ρkl, ctkl,Γt

kl, }
K,M
k=1,l=1. Hereinafter, we let rkl =

∑N
n=1 rnkl

and rk =
∑N

n=1 rnk. We obtain:

ρ̃kl =
rkl
N
, (5)

c̃tkl =

∑N
n=1 rnkltn
rkl

,

and Γ̃t
kl =

∑N
n=1 rnkl(tn − c̃kl)(tn − c̃tkl)>

rkl
.

M-mapping Step:
The M-Mapping step aims to estimate {At

kl, bkl, A
w
k ,Σk}K,M

k=1,l=1. It is assumed that T
and W are independent given the cluster assignment. Based on this, we could update
Aw

k first:

Ãw
k = X̃kṼ

>
k (Sw

k + ṼkṼ
>
k )−1 (6)

where

Ṽk =
1
√
rk

[
√
r1k(µ̃w1k − µ̃wk )...

√
rNk(µ̃wNk − µ̃wk )],

X̃k =
1
√
rk

[
√
r1k(x1 −

M∑
l=1

r1kl
r1k

x̃kl)...
√
rNk(xN −

M∑
l=1

rNkl

rNk
x̃kl)],

µ̃wk =

N∑
n=1

rnk
rk
µ̃wnk,

x̃kl =

N∑
n=1

rnkl
rkl

xn.
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Note the difference between how X and V are being centered. For X, we center it
against the local cluster mean, while we let V be centered at the global cluster level.
Once we obtain Aw

k we subtract the latent variables component from X and update At
kl

and bkl, accordingly. Letting x∗nk = xn − Ãw
k µ̃

w
nk, we get:

Ãt
kl = X̃∗klT̃

>
kl (T̃klT̃

>
kl )
−1,

b̃kl =

N∑
n=1

rnkl
rkl

(x∗nk − Ãt
kltn),

where

T̃kl =
1
√
rkl

[
√
r1kl(t1 − t̃kl)...

√
rNkl(tN − t̃kl)],

X̃∗kl =
1
√
rkl

[
√
r1kl(x

∗
1k − x̃kl)...

√
rNkl(x

∗
Nk − x̃kl)],

t̃kl =

N∑
n=1

rnkl
rkl

tn,

x̃kl =

N∑
n=1

rnkl
rkl

x∗nk.

Finally, we can update Σk by:

Σ̃k = Ãw
k S̃

w
k Ã

w
k +

N∑
n=1

rnk
rk

[xn−
M∑
l=1

rnkl
rnk

(Ãt
kltn+b̃kl)−Ãw

k µ̃
w
nk][xn−

M∑
l=1

rnkl
rnk

(Ãt
kltn+b̃kl)−Ãw

k µ̃
w
nk]>.

(7)

A.2. Tuning parameter selection
For HGLLiM, there are several user-defined parameters: the dimension of the latent
variables Lw, the number of global clusters K, the number of local clusters M , the
minimum allowed cluster size minSize and the maximum allowed in-sample prediction
error dropThreshold. Through the changes of these tuning parameters, the algorithm
can be used to analyze all kind of data. We identify default recommendations for certain
parameters, that work for almost all cases, and suggest simple procedures that can be
used to select others.

• K and Lw: The number of clusters, K, reflects the number of local linear associa-
tions between covariates and responses. On the other hand, the number of latent
factors, Lw, models the variation that cannot be captured by these linear associ-
ations. The combination of (K,Lw) influences the ability of capturing the mean
and covariance structure of the relationship between X and Y . Selecting K and
Lw through cross-validation is time-consuming, particularly because there could be
a large set of potential K to be considered. We propose a method to restrict the
searching space via the use of BIC. Using the face dataset as an example, Table
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A.0 shows the cluster number selected using BIC when Lw is fixed; while Table
A.0 shows the number of latent factors selected by BIC when K is fixed. These
two tables show the roles played by K and Lw as how they compensate each other.
The model complexity increases as we increase K or Lw. Therefore, BIC prefers
the combination of either a small K with a large Lw or a large K with a small
Lw. It is also known that BIC is conservative, thus the parameters are most likely
underestimated. Though it matters less here, with additional sub-clustering steps
in HGLLiM, we slightly adjust the K and Lw selected by BIC to improve prediction
performance. We construct a search grid of K and Lw described as follows. First,
we select K using BIC under a small Lw. This cluster number is called KBIC . Next,
we fix the cluster number to KBIC and select the corresponding number of latent
factors, LKBIC

w . To identify the possible range of K and Lw, we increase the cluster
number and select the corresponding number of latent factors. As an example, we
could set the cluster number as KBIC + 15 and find the corresponding number of
latent factors, LKBIC+15

w , again by BIC. Note that LKBIC+15
w is smaller than LKBIC

w .
If not, we can use K = KBIC + 20 or even KBIC + 25, until the resulting Lw is
smaller than LKBIC

w and this K would be the upper bound we use for values of
K. Applying an equivalent consideration of preventing being too conservative, we
could extend the search range of LKBIC

w to LKBIC

w + 2. Finally, a cross-validation is
conducted within the range of (KBIC ,KBIC + 15) and (LKBIC+15

w , LKBIC

w + 2) for
searching the combination of K and Lw that achieves the best performance.

• M : It is assumed that there would be one or more local clusters within each global
cluster. The choice of M depends on how the data structure is. We found that
the final result would not be sensitive to M ; the EM algorithm combined with
the refining algorithm would adjust itself and unneeded local clusters would be
dissolved.

• minSize: A two dimension grid search cross-validation algorithm can be used
to search for the best combination of minSize and dropThreshold and we have
explored this option. However, this practice could be time-consuming. To obtain
an appropriate suggested value for minSize we calculate the matrix volume of Γ∗kl,
the covariance matrix used in prediction, and look for the drop off. Using the
face dataset as an example, we implement HGLLiM with K = 15, M = 5 and set
Lw = 2. The volume of Γ∗kl is approximated by the product of top three eigenvalues.
Figure A.1 shows the relationship between volumes of Γ∗kl versus cluster sizes. A
small covariance matrix is likely to cause a surge in likelihood and difficulties for
nearby testing sample to be classified as a member of the cluster, both lead to
inflation of the prediction MSE. Figure A.1 suggests that small covariance matrices
could be expected when the cluster size is smaller than 4. In view of this, we
set minSize = 5 for this case. Our empirical experiences imply that this simple
approach leads to comparable outcomes to the more complicated two-dimensional
grid search algorithm.

• dropThreshold: As minSize being fixed, dropThreshold could be simply estimated
by a K-fold cross-validation. From the experimental results, we establish that the
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Table A.0: The value of BIC and K selected by BIC for a given Lw. For a fixed Lw,
row 1: the minimum value of BIC; and row 2: the number of clusters, K, that achieves
this BIC.

Lw=0 Lw=1 Lw=2 Lw=8 Lw=9 Lw=10
BIC -8.75e+05 -9.35e+05 -9.48e+05 -1.08e+06 -1.09e+06 -1.11e+06
K 14 13 10 6 6 6

Table A.0: The value of BIC and the Lw selected by BIC for a given K. For a fixed K,
row 1: the minimum value of BIC; and row 2: the dimension of W, Lw, that achieves
this BIC.

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40
BIC -1.11e+06 -1.03e+06 -9.72e+05 -9.33e+05 -8.90e+05 -8.53e+05 -8.14e+05 -8.09e+05
Lw 10 8 7 3 1 1 0 0

prediction MSE is not sensitive to the choice of dropThreshold within a reasonable
range. We show this using the outcomes in Section ??.
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Fig. A.1: The logarithm of approximated volume of Γ∗kl against the cluster size.

B. The distribution of microvascular parameters in the synthetic fingerprint dataset
and group separation

In Table B.1, we summarize the values and the range of the microvascular parameters
(t1 ∼ t6) of the fingerprint dictionary. The values for each parameter are shown in
Figure B.2. There are 1,383,648 observations in the dictionary. The dataset is divided
to cover as many kinds of data as possible for cross-validation purpose. First, we use
t6 to form Group 1 (t6 = 1) and Group 2 (t6 = 2). Our exploratory analysis shows the
high complexity when t6 = 3. Thus, it is necessary to separate more groups on t6 = 3 to
reflect the complexity. For data with t6 = 3, we divide t1 into 3 categories and consider
6 different values in t5. All together, for t6 = 3, we construct 18 groups (Group 3 to
Group 20). The available size of each group is shown in Table B.1.
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Table B.1: Numbers of unique values and range of the microvascular parameters

Parameter Parameter meaning No. of unique values Range
t1 R (µm) 38 0.5 ∼ 1000
t2 BV (%) 47 0.25 ∼ 50
t3 ADC (µm · s−1 ) 33 2× 10−10 ∼ 18× 10−10

t4 DeltaChi (ppm) 29 0 ∼ 1.4
t5 Direction (radians) 6 0, 0.314, 0.628, 0.943, 1.257, 1.571
t6 Geometry 3 1, 2, 3

Table B.1: Size of each group.

Group ID Value Available Size Group ID Value Available Size
Group1 t6=1 1052352 Group11 t1category2, t5value3 2030
Group2 t6=2 233856 Group12 t1category2, t5value4 2030
Group3 t1category1, t5value1 2030 Group13 t1category2, t5value5 2030
Group4 t1category1, t5value2 2030 Group14 t1category2, t5value6 2030
Group5 t1category1, t5value3 2030 Group15 t1category3, t5value1 12180
Group6 t1category1, t5value4 2030 Group16 t1category3, t5value2 12180
Group7 t1category1, t5value5 2030 Group17 t1category3, t5value3 12180
Group8 t1category1, t5value6 2030 Group18 t1category3, t5value4 12180
Group9 t1category2, t5value1 2030 Group19 t1category3, t5value5 12180
Group10 t1category2, t5value2 2030 Group20 t1category3, t5value6 12180

To construct a 20-fold cross-validation, the testing sample size is picked so that all
data within the smallest group would be used. The smallest group size is 2030 (Group 3
to Group 14). Within these groups, we select 102 testing samples from each group. Some
data could have replicates but the number of replicates would be no more than 2. This
aims to make the number consistent through all groups and folds. After excluding testing
data, we would randomly pick 10,000 for Group 1 and Group 2 as training samples. For
Group 3 to Group 14, the remaining 1928 samples would become the training data. For
Group 15 to Group 20, we would pick 2000 training samples. As a result, within each
fold, there would be 55136 training samples (10,000 from Group 1 and Group 2, 1928
from Group 3 to Group 14, 2000 from Group 15 to Group 20) and 2040 testing data
(102 from each group).

C. Parallel processing of the fingerprint dataset

Model building time is a critical issue for large and complex datasets. As the number of
samples increases, the time of computing posterior probabilities in the E-step increases.
In addition, it takes longer for the EM algorithm to converge and it is more difficult
to find a proper initial setting. To speed up the computation, we can take advantage
of the hierarchical structure of HGLLiM. The model building step can be accelerated
by subsetting the dataset into smaller groups and applying HGLLiM on the resulting
groups in parallel. Finally, the prediction can be conducted using the estimated model
aggregated from different groups.

We divide the synthetic library into 20 groups (see Appendix B for more details)
according to different combinations of Dir (6 levels), Geo (3 categories) and Radius (3
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(a)

(b)

Fig. B.2: The distribution of parameters (T ). The x-axis shows the index of observations
and y-axis marks the values of each observation in different dimensions. (a) Dimension
1 to 3; (b) Dimension 4 to 6.

levels). In addition, we observe the peak value in the fingerprint signal could play an
important role when forming cluster. Thus, groups are further divided into “Low-peak”
and “High-peak” subgroups, according to the average of the three highest values in the
fingerprint signal. The threshold to separate these two subgroups is set to 5.

Training is performed within each group separately. In each group, the cluster mem-
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berships are estimated and model parameters are iteratively updated based on the cluster
memberships, until convergence. Once the models for each group are obtained, the pre-
diction can be conducted by combining models from different groups. This can be easily
done by creating a new global latent cluster indicator, Z∗ = (G,Z), where G indicates
the group assignment and Z is the original global-cluster assignment within group G.
By replacing Z with Z∗, the inverse parameter vector, θ, aggregates all inverse param-
eters from different groups. The forward regression model parameter vector, θ∗, can be
updated accordingly using the equations described in Section ??. Prediction is done by
taking expectation over the forward conditional density with the newly updated θ∗. One
key potential drawback of adopting group-division is to use unsuitable group-assignment
strategy. When this happens, the posterior probability of a data point belonging to a
group A given the estimated model parameters could remain high even though this data
point was originally assigned to group B. To investigate influence of incorrect group
assignment, we calculate the posterior probability of each data point being assigned to
each group. The group with the highest posterior probability represents the most suit-
able group assignment and it bears the largest weights when conducting prediction. If
a data point is indeed assigned to the group it originally belongs to, we consider the
group assignment being accurate. In our analysis, the accuracies of group assignment
for HGLLiM and GLLiM-structure are 92.11%, 92.34%, respectively. A similar rate of
93.62% is obtained for the dictionary matching method, in which the accuracy of group
assignment is obtained when a point and its closest match identified for prediction be-
long to the same group. Additionally, the highest group posterior probability is greater
than 0.99 for over 97% of the data. These numbers imply that, for the analysis of this
fingerprint dataset, our strategy on how the groups should be formed in conducting
parallel computing is adequate.

For HGLLiM and GLLiM-structure, it takes about 549.86 and 362.94 seconds, re-
spectively, for each method to complete the EM computation. In comparison, it takes
19341.51 and 14107.63 seconds without using the parallel computing strategy. We eval-
uate and compare the performance of different methods through cross-validation and
show that the model-based methods can achieve comparable results

D. The cross-validation results for the synthetic fingerprint dataset

In this section we evaluate and compare the performance of different methods on the
synthetic fingerprint dataset through cross-validation. The numbers of testing and train-
ing data are picked so that every data in the smallest group could be covered in 20-fold
cross-validation.

Table D.2 shows the 50%, 90% and 99% quantiles of the prediction squared errors
for different parameters using different methods through cross-validation. We observe
that the prediction is close to the true value for 90% of the predicted values. Using
GLLiM, we obtain slightly larger values of E2 for Radius. However, all four methods
reach similar values of E2 for Radius at the 99% quantile. For BVf, GLLiM performs
worse than the other methods but its 99% squared error level is still acceptable. The
prediction performances of BVf for all methods are better than those of other parameters,
with the relationship between BVf and Y being the strongest among all parameters. For
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Table D.2: The 50%, 90% and 99% quantiles of prediction squared errors using different
methods. The models are built upon 3 microvascular parameters: Radius, BVf and
DeltaChi.

Dictionary Matching GLLiM HGLLiM GLLiM-structure
50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Radius 0.2144 69.3636 82.5297 < 10−4 0.2916 21.44 < 10−4 0.2144 21.44 < 10−4 0.2144 21.44
BVf < 10−4 0.2277 0.2277 < 10−4 < 10−4 0.0261 < 10−4 < 10−4 0.0068 < 10−4 < 10−4 0.0269

DeltaChi < 10−4 0.0571 0.7000 < 10−4 0.0108 0.6385 < 10−4 0.0013 0.2012 < 10−4 0.0005 0.3158

DeltaChi, the E2’s for dictionary matching are larger than those of other methods at the
90% quantile level. At the 99% quantile level, its performances become similar to those
of HGLLiM and GLLiM-structure. Note that the model is built using Radius, BVf, ADC
and DeltaChi. The parameter ADC is included for evaluating the prediction performance
on the real image data. However, it is noticed that adding weakly informative parameter,
such as ADC, in the model would downgrade the prediction performance. If predicting
ADC is not the major task, we could obtain lower prediction error when training the
model with Radius, BVf and DeltaChi. The results of using 3 parameters are shown in
Table D.2.

On the other hand, when adopting dictionary matching, testing data are compared
to fingerprint observations, which are associated to 6 parameters as shown in Figure B.2.
With all parameters embedded inside fingerprint observations, the dictionary matching
method is actually using information from 6 parameters. If we restrict the parameter
space, i.e. only consider Radius, BVf and DeltaChi, there would be multiple fingerprints
associated to the same set of the restricted parameters. To evaluate the performance
under restricted parameter setting, we randomly select a fingerprint as the representative
for the same set of parameters. Table D.2 shows the cross-validation results on the
restricted synthetic fingerprint dataset.

Comparing Table D.2 to Table D.2, we observe improvement on 90% quantiles for
model-based methods, which indicates that we could obtain better prediction outcomes
by removing ADC from the training data. On the contrary, the results of dictionary
matching method become worse. This is a natural consequence of lacking sufficient
details to categorizing and distinguishing samples in the dictionary. If the remaining
parameters are insufficient to reflect the data complexity, it is likely to match a testing
data to an inadequate member within the dictionary and, as a result, we would obtain
a large prediction error. This comparison shows the difference between the dictionary
matching method and the model-based method. For dictionary matching method we
hope to enumerate all possible distinction in the dictionary. Thus, the prediction per-
formance deteriorates when this goal cannot be achieved. However, this may not apply
to model-based methods, where the most appropriate model among the ones being con-
sidered is used to conduct prediction. The performance could improve when weakly
informative parameter covariates are removed.
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Table D.2: The 50%, 90% and 99% quantiles of prediction squared errors using different
methods.

Dictionary matching GLLiM HGLLiM GLLiM-structure
50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Radius < 10−4 0.2843 21.44 < 10−4 0.3114 21.44 < 10−4 0.2144 21.44 < 10−4 0.2144 21.44
BVf < 10−4 < 10−4 0.0023 < 10−4 < 10−4 0.0406 < 10−4 < 10−4 0.0091 < 10−4 < 10−4 0.0242

DeltaChi < 10−4 0.0143 0.3571 < 10−4 0.0132 0.5972 < 10−4 0.0009 0.2236 < 10−4 0.0007 0.3361
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