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Summary.

In this paper we propose a structured mixture model, named Hierarchical Gaussian Lo-

cally Linear Mapping (HGLLiM), to predict low-dimensional responses based on high-

dimensional covariates when the associations between the responses and the covariates

are non-linear. For tractability, HGLLiM adopts inverse regression to handle the high di-

mension and locally-linear mappings to capture potentially non-linear relations. Data with

similar associations are grouped together to form a cluster. A mixture is composed of sev-

eral clusters following a hierarchical structure. This structure enables shared covariance

matrices and latent factors across smaller clusters to limit the number of parameters to

estimate. Moreover, HGLLiM adopts a robust estimation procedure for model stability. We

use three real-world datasets to demonstrate different features of HGLLiM. With the face

dataset, HGLLiM shows the ability of modeling non-linear relationship through mixtures.

With the orange juice dataset, we show the prediction performance of HGLLiM is robust to

the presence of outliers. Moreover, we demonstrate that HGLLiM is capable of handling

large-scale complex data using the data acquired from a magnetic resonance vascular

fingerprinting (MRvF) study. These examples illustrate the wide applicability of HGLLiM

on handling different aspects of a complex data structure in prediction.

Keywords: Expectation-Maximization, High dimension, Mixture of regressions, Mag-

netic resonance vascular fingerprinting, Robustness.

1. Introduction

Building a regression model for the purpose of prediction is widely used in all disciplines.
A large number of applications consists of learning the association between responses
and predictors and focusing on predicting responses for the newly observed samples. In
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2 C.-C Tu, F. Forbes, B. Lemasson and N. Wang

this work, we go beyond simple linear models and focus on predicting low-dimensional re-
sponses using high-dimensional covariates when the associations between responses and
covariates are non-linear. Non-linear mappings can be handled through different tech-
niques such as kernel methods (Elisseeff and Weston, 2002; Wu, 2012) or local linearity
(De Veaux, 1989; Frühwirth-Schnatter, 2006; Goldfeld and Quandt, 1973). In general,
the conventional methods adopting local linearity assume assignment independence and
are considered as not adequate for regression (Hennig, 2000). Alternatively, one can
adopt a mixture-modeling strategy and let the membership indicator of a mixture com-
ponent depend on the values of the covariates. The Gaussian Locally Linear Mapping
(GLLiM Deleforge et al., 2015) follows this principle.

GLLiM groups data with similar regression associations together. Within the same
cluster, the association can be considered as locally linear, which can then be resolved
under the classical linear regression setting. Besides adopting the framework of model-
based clustering (Banfield and Raftery, 1993; Fraley and Raftery, 2002), GLLiM also
takes on a factor-model based parameterization (Baek et al., 2010; Bouveyron et al.,
2007; McLachlan and Peel, 2000; Xie et al., 2010) to accommodate the high-dimensional
and potentially dependent covariates (see Equation (20) in Deleforge et al. (2015)). In
particular, the high-dimensional variables were postulated as a sum of two components:
the one that is linearly related with the low-dimensional responses, and the other which
can be projected onto a factor model and then be presented as augmented latent vari-
ables. This data augmentation approach is applicable in many application scenarios,
whenever certain variables are only partially observed or corrupted with irrelevant infor-
mation. The augmentation step, with added latent variables, acts as a factor analyzer
modeling for the noise covariance matrix in the regression model. GLLiM is based on
a joint modeling of both the responses and covariates, observed or latent. This joint
modeling framework allows for the use of an inverse regression strategy to handle high-
dimensional data.

However, when the covariate dimension is much higher than the response dimension,
GLLiM may result in erroneous clusters at the low dimension, leading to potentially
inaccurate predictions. Specifically, when the clustering is conducted at a high joint di-
mension, the distance at low dimension between two members of the same cluster could
remain large. As a result, a mixture component might contain several sub-clusters and/or
outliers, violating the Gaussian assumption of the model. This results in a model mis-
specification effect that can seriously impact prediction performance. We demonstrate
this phenomenon with a numerical example in Section 2. A natural way to lessen this
effect is to increase the number of components in the mixture making each linear map-
ping even more local. But this practice also increases the number of parameters to be
estimated. Estimating parameters in a parsimonious manner is required to avoid over-
parameterization. In addition, increasing the number of clusters could isolate some data
points or lead to singular covariance matrices. Hence, a robust estimation procedure for
model stability is also necessary.

In this work, we propose a parsimonious approach combined with a robust estimation
procedure which we refer to as Hierarchical Gaussian Locally Linear Mapping (HGLLiM)
to construct a stable model for predicting low-dimensional responses. Parsimonious mod-
els generally refer to some model instances where the number of parameters is reduced
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Prediction with HGLLiM 3

compared to the full parameterization. The goal of parsimonious models is to find a good
compromise between model flexibility and parsimony. HGLLiM inherits the advantages
from GLLiM on handling high-dimensional, non-linear regression with partially-latent
variables. In terms of the number of parameters, the largest costs usually come from
high-dimensional covariance matrices. On this front, HGLLiM follows a two-layer hier-
archical clustering structure in which we reduce the number of covariance parameters in
the model. HGLLiM also includes a pruning algorithm for eliminating outliers as well
as determining an appropriate number of clusters. The number of clusters and training
outliers determined by HGLLiM can be further used by GLLiM for improving prediction
performance.

With the goal of investigating the flexibility in accommodating data structure and the
ability to protect from influences of outliers, we evaluate our method on three datasets
with different characteristics. The face dataset contains face images, the associated
angles of faces and the source of the light. There is no obvious cluster structure at first
glance nor the existence of real outliers. We use this dataset to evaluate the ability
of HGLLiM on modeling regression through local linear approximations. The orange
juice dataset contains continuous spectrum predictors and some abnormal observations.
Using this dataset, we aim to show that HGLLiM is robust and can effectively identify
outlying observations. We use these two moderate size datasets to demonstrate how the
method works on data with different features and the insensitivity of tuning parameter
selection on a wide range of selection domain. Finally, in our last data analysis, we study
a problem where researchers are interested in predicting the microvascular properties
using the so-called magnetic resonance vascular fingerprinting (MRvF). Hereafter we
refer to this dataset as the fingerprint data. We use this dataset to demonstrate the
power of HGLLiM on modeling complex associations over a large number of observations.
Results show that HGLLiM can provide comparable prediction performance on one case
and much smaller prediction errors on the other, compared to the dictionary matching
method in Lemasson et al. (2016) with only 25% of the computational time.

This paper is organized as follows. In Section 2 we explain and illustrate the issue
encountered with unstructured GLLiM in high-dimensional settings. In Section 3, we
present the structured alternative that we propose. The experiment results on three real
datasets are provided in Section 4. Finally, Section 5 concludes with a discussion and
potential future directions.

2. Unstructured Gaussian Locally Linear Mapping (GLLiM)

To predict low-dimensional data Y ∈ R
L using high-dimensional data X ∈ R

D, D >> L,
GLLiM elegantly copes with several challenging issues simultaneously. The high-to-low
mapping difficulty is circumvented by inverse regression. And then the desired high-
to-low relationship can be easily converted from the low-to-high associations under a
proper model construction. Non-linearity is approximated by locally linear associations
(Chapter 6, Scott, 2015). The parameter estimation is carried out by an Expectation-
Maximization algorithm, which nicely incorporates estimation of latent variables.

The original GLLiM model groups data into K clusters. For cluster k, the data follow
the distributions below:
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4 C.-C Tu, F. Forbes, B. Lemasson and N. Wang

p(X = x|Y = y, Z = k; θ) = N (x;Aky + bk,Σk). (1)

p(Y = y|Z = k; θ) = N (y; ck,Γk), (2)

p(Z = k; θ) = πk,

where the latent variable Z represents the cluster assignment, and θ = {ck,Γk, πk, Ak,
bk,Σk}

K
k=1

is a vector denoting the model parameters. For the k-th cluster, the center and
the covariance matrix for the mixture at low dimension are ck and Γk. The parameter Ak

and bk are the transformation matrix and intercept, mapping data from low dimension
to high dimension with Σk capturing the reconstruction errors.

A distinct feature of GLLiM is that Y needs not be a completely observable vector.
In fact, it is set to have Y ⊤ = (T⊤, W⊤), where T contains the observable variables,
which one intends to predict, and W, being latent, absorbs the remaining dependency
and variation in the high-dimensional X. The inclusion of W strengthens the chance to
reach validity of Equation (1).

The issue with GLLiM is that the high dimensionality of the data may have an
unexpected impact on the posterior probability of the cluster assignment. When the
dimensions ofX and Y are satisfyingD >> L, this comes from the following observation:
in the E-step the posterior probabilities rnk (Equation (27) in Deleforge et al. (2015)) is
computed as:

rnk = p(Zn = k|xn, yn; θ) =
πkp(xn, yn|Zn = k; θ)

∑K
j=1

πjp(xn, yn|Zn = j; θ)
(3)

for all n and all k, where p(xn, yn|Zn = k; θ) can be computed as p(xn|yn, Zn =
k; θ)p(yn|Zn = k; θ). The first term is a density with much higher dimension (D) so
that its value could dominate the product. In addition, yn can be decomposed into two
parts: the observed variable tn and the latent variable wn. The component wn reflects
the remaining variation in xn that cannot be explained by xn’s association with tn.
When wn accounts for explaining most of the variation in xn, the clustering outcome
would highly depend on wn and weaken the ability of detecting sub-clusters in T .

Therefore, although GLLiM assumes that within each cluster p(Y = y|Z = k; θ) is
Gaussian and centered on ck, in practice, the model groups data according to the high di-
mension term and could fail in imposing the Gaussian shape on the tn’s. In other words,
the model rather chooses the clusters to satisfy the assumption in Equation (1). And
this induces a clustering of the (xn, yn)’s into groups within which the same affine trans-
formation holds. Thus, a cluster could contain several sub-clusters and/or outliers since
the Gaussian assumption on T , as part of the Y , in Equation (2) is sometimes neglected.
This may cause a serious impact on the estimation of ck and Γk and consequently on
the prediction step.

We illustrate this issue by presenting an example using a face dataset (Tenenbaum
et al., 2000). This dataset contains 698 images (of size 64 × 64 and being further
condensed to 32 × 32). The pose of each image is defined by three variables in T :
Light, Pan and Tilt, as shown in Figure 1 (a). We adopt GLLiM to predict these T ’s
(low-dimensional) using the image (high-dimensional). The superiority of GLLiM in
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Prediction with HGLLiM 5

(a) (b)

Fig. 1: The clustering results of the face dataset obtained from GLLiM: (a) six face
images from Cluster 7; (b) scatter plot of T for points within Cluster 7 and 13 clustered
by GLLiM. Data points are from Cluster 7 (circle) and Cluster 13 (triangle). The three
variables are (Light, Pan, Tilt).

Table 1: The comparison of original and post cluster-division Squared Error (SE). The
improved ratio is calculated as the ratio of difference of SE from pre- to post cluster-
division over the original SE. The value is positive if the procedure reduces the SE, and
negative, otherwise.

Image ID GLLiM cluster Original SE Post-Division SE Improved ratio
56 7 0.306 0.043 86.03%
223 7 0.016 0.180 -1039.83%
293 7 0.060 0.023 61.27%
302 7 0.087 0.003 96.99%
114 13 0.114 0.118 -2.93%
204 13 0.307 0.073 76.19%
294 13 3.119 0.120 96.15%

prediction, comparing to multiple existing approaches, for this data set was numerically
illustrated in Deleforge et al. (2015).

Figure 1(b) shows the scatter plot of T within Clusters 7 and 13, grouped by GLLiM.
By visual inspection, both clusters seem to consist of two or more sub-clusters. In
GLLiM, samples within the same cluster are assumed to follow Gaussian distributions.
This sub-cluster structure, however, violates the assumption and potentially increases
the prediction errors. We demonstrate the difference of prediction performance before
and after accounting for the sub-cluster structure in Table 1. We use prediction Squared
Error (SE) for testing data pre- and post cluster-division. We observe that the prediction
errors are mostly reduced if we account for the sub-cluster structure.

Dividing samples at low dimension is an effective and straightforward solution for
this issue. However, we could obtain small sub-clusters after division and then increase
the prediction variance. In Table 1, Images 114 and 223 were assigned to small and/or
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6 C.-C Tu, F. Forbes, B. Lemasson and N. Wang

tight local clusters and the prediction of T for these two images become worse after
cluster-division. Conceptually, small clusters could damage the prediction performances
for several reasons: the small number of observations in such a cluster lead to estimates
with large variation; a small cluster with a small covariance matrix determinant (volume)
could lead to instability of the whole likelihood-based algorithm, and a small/tight cluster
could consider a close-by testing sample unfit and force it to be predicted by another
less suitable cluster with a larger within-cluster covariance. The last consideration is not
relevant to model building but plays an important role in prediction precision.

This observation motivates us to look into enhancing prediction stability by eliminat-
ing small clusters and outliers in the training samples. We further explore both issues
in Section 4.

3. Hierarchical Gaussian Locally Linear Mapping (HGLLiM)

In our proposed work, we intend to strike a balance between model flexibility and vari-
ation reduction in the estimated predictive model, with the goal of predicting the low-
dimensional observable variables, T, using the high-dimensional X. This predictive
model needs not to be the true model but should be effective in prediction. To present
the fundamental concepts with clarity, we will first describe the model structure when
Y = T, with minimum required notations. The scenario of Y containing W is easily
extended in Section 3.2.

3.1. Model description

The joint probability, p(X = x, Y = y; θ), of high-dimensional predictor X and low-
dimensional response Y can be written as:

K
∑

k=1

M
∑

l=1

p(X = x|Y = y, Z = k, U = l; θ)p(Y = y|Z = k, U = l; θ)p(Z = k, U = l; θ),

where θ denotes the vector of parameters; Z and U are, respectively, latent global and
local cluster assignment. The locally linear relationship between X and Y is given by
the mixture model below:

X =

K
∑

k=1

M
∑

l=1

I(Z = k, U = l)(AklY + bkl + Ek),

where I is the indicator function, Akl ∈ R
D×L and bkl ∈ R

D map Y onto X, and
Ek ∈ R

D×D is the error term that absorbs the remaining uncertainty. Recall that D and
L are dimensions of X and Y, respectively, and D >> L. Here, we let the local cluster
size M(k) ≡ M for notation simplicity only. We assume, within the k-th global cluster,
all local clusters share the same error structure which follows a zero-mean Gaussian
distribution with covariance matrix Σk. That is, we have,

p(X = x|Y = y, Z = k, U = l; θ) = N (x;Akly + bkl,Σk).
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Prediction with HGLLiM 7

As in (2), the model is completed by assuming that the low-dimensional Y, given the
clustering-assignment indicators (Z, U) = (k, ℓ), follows a Gaussian distribution with
mean ckl and variance Γkl, and by defining a prior for clustering assignment: p(Z =

k, U = l | θ) = ρkl, where ckl ∈ R
L, Γkl ∈ R

L×L and
∑K

k=1

∑M
l=1

ρkl = 1. The vector of
parameters in the inverse regression model, θ, is given by

θ = {ckl,Γkl, ρkl, Akl, bkl,Σk}
K,M
k=1,l=1

. (4)

The remaining task is to use the inverse conditional density to construct the exact
formulations of the conditional density of Y given X in the forward regression model
and the resulting expression of E[Y |X = x]. Equivalent to how we define θ in the model
of X given Y, we let θ∗ denote the parameter vector in the forward regression model
of Y given X. We then derive the closed-form expression of θ∗ as a function of θ, as
given in Appendix A. The prediction of Y given X can then be done by taking the
expectation over the forward conditional density, E[Y |X = x], given in (12). The use of
the closed-form expressions provided in Appendix A makes it computationally efficient
in conducting prediction.

3.2. HGLLiM model with partially-latent responses

Recall that the low-dimensional data Y ∈ R
L contains a latent component W . Namely,

Y ⊤ = (T⊤,W⊤), where T ∈ R
Lt is observed and W ∈ R

Lw is latent and thus L =
Lt + Lw. It is assumed that T and W are independent given Z, and so are W and U.
According to the decomposition of Y , the corresponding mean (ckl), variance (Γkl) and
regression parameters (Akl) of Y , at the local-cluster level, are given as:

ckl =

[

ctkl
cwk

]

, Γkl =

[

Γt
kl 0
0 Γw

k

]

, and Akl = [At
kl A

w
k ]. (5)

That is, when Z = k, U = l, at the local-cluster level, T ∼ N (ctkl,Γ
t
kl); when Z = k, at

the global-cluster level, W ∼ N (cwk ,Γ
w
k ). It follows that locally, the association function

between the high-dimensional Y and low-dimensional X can be written as:

X =

K
∑

k=1

I(Z = k)

{

M
∑

l=1

I(U = l)(At
klT + bkl) +Aw

k W + Ek

}

. (6)

Finally, the parameter vector θ in the inverse regression model is rewritten as: θ =
{ρkl, c

t
kl,Γ

t
kl, A

t
kl, bkl, c

w
k , Γ

w
k , A

w
k ,Σk}

K,M
k=1,l=1

.

It follows that (6) rewrites equivalently as

X =

K
∑

k=1

I(Z = k)

{

M
∑

l=1

I(U = l)(At
klT + bkl) +Aw

k c
w
k + E′

k

}

, (7)

where the error vector E′

k is modeled by a zero-centered Gaussian variable with a D ×D
covariance matrix given by

Σ′

k = Σk +Aw
k Γ

w
k A

w⊤

k . (8)
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8 C.-C Tu, F. Forbes, B. Lemasson and N. Wang

Considering realizations of variables T and X, the addition of the latent W naturally
leads to a covariance structure, namely (8), where Aw

k Γ
w
k A

w⊤

k is at most of rank Lw.
When Σk is diagonal, this structure is that of factor analysis with at most Lw factors,
and represents a flexible compromise between a full covariance with O(D2) parameters
on one side, and a diagonal covariance with O(D) parameters on the other.

Using the same number of total clusters and considering the fact that Σk and Aw
k are

only estimated at the global-cluster level, we note that the total number of parameters
needed to model the covariances, Σk, and the latent transformation coefficients, Aw

k ,
using HGLLiM is 1/M of that required by using GLLiM. In addition, the key emphasis
of HGLLiM is to conduct prediction. As shown in (5), (7), and (8) at the local vs. global-
cluster levels, we now separate the estimation of the mean association functions, which
play a key role in prediction, from that of high-dimensional covariance matrices, so that
the means can be obtained even more locally. Together with the current dependence
structures, being stably estimated at the global-cluster level using more data points per
cluster, the HGLLiM provides a strong prediction tool built on a structure facilitating
sensible approximations to the true underlying distribution of low-dimensional T and
high-dimensional X.

3.3. Robust estimation procedure
The HGLLiM model contains three sets of latent variables: Z1:N = {ZN}Nn=1

, U1:N =
{Un}

N
n=1

andW1:N = {Wn}
N
n=1

. The first two sets of variables indicate the global and the
local cluster assignments and the last one is the latent covariates. The model parameters,
θ, as defined in Equation (4) can be estimated using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). However, even with the inversion step, the prediction
procedure still involves a high-dimensional predictor and elevated variation in estimated
parameters, induced by small clusters or abnormal observations, that could lead to
deteriorated prediction quality. The stability can be achieved by constraining the sizes
of the clusters (control both covariance volume and prediction variance) and trimming
outliers. We design a robust estimation procedure to refine the standard EM algorithm
with the purpose of enhancing model stability, which consequently leads to improved
prediction performance.

Define the posterior probability of observation n being assigned to cluster (k, l) as

rnkl = p(Zn = k, Un = l|tn, xn; θ), (9)

and let
∑N

n=1
rnkl represent the cluster size for cluster (k, l). Each data point in a cluster

whose cluster size is smaller than a pre-determined minSize is reassigned to other clus-
ters. The point is kept when the prediction squared error is less than a pre-determined
dropThreshold ; otherwise, it would be excluded from the current EM iteration when
updating the estimated parameters. With the data points within a cluster playing a
dominating role in estimating within-cluster parameters, the cluster-size plays the role
of the sample size in estimation: when the sample size is too small, the prediction quality
deteriorates even if the assumed structure is true. An improved prediction performance
might be achieved by assigning such a data point within a small cluster to another clus-
ter that shares similar structures. If no such a cluster can be identified, then the data
point is excluded from the construction of the prediction model.
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Prediction with HGLLiM 9

An EM algorithm for HGLLiM directly constructed according to models given in
Sections 3.1 and 3.2 is described in Appendix A.1. The algorithm iterates between E-
steps to update latent W, Z, U and M-steps that update θ. Here, we describe the robust
estimation procedure, tailored to ensure stability and outlier trimming. The algorithm
is described as follows:

(a) The algorithm is initialized by adopting the parameters θ, mean and covariance,
µ̃w
nk, S̃

w
k , of latent W of the k-th cluster, and cluster assignment rnkl obtained from

the EM algorithm described in Appendix A.1.

(b) The estimating procedure iterates through the following substeps until the algo-
rithm converges:

(i) Trimming step: In order to remove outliers, we scan through all local clusters
and remove all samples whose in-sample prediction squared errors are greater
than a pre-determined dropThreshold. The prediction squared error for the
n-th sample is calculated as:

E2

n = ||tpredn − tn||
2

2
, (10)

where tn is the true value and tpredn is the prediction from Equation (12).
Note that the low dimension data {tn}

N
n=1

are standardized before training so
that each dimension would be equally weighted. The samples with in-sample
prediction squared error larger than dropThreshold are considered as outliers
and are temporarily removed by assigning rn∗kl to be 0 at that iteration of
M-step, where n∗ indicates the training sample whose E2

n∗ > dropThreshold.

(ii) Maximization step with a cluster size constraint: The estimation of θ is the
same as the Maximization step described in Appendix A.1 but with an ad-
ditional cluster size constraint. Before estimating parameters for each local
cluster (k, l), we first check the associated cluster size. If the cluster size is
smaller than the given minSize, we force the training data originally assigned
to this cluster to either be assigned to other clusters during the E-step in
updating cluster-assignment Z, and U , or, if no appropriate cluster could be
found, be trimmed during the next Trimming Step.

(iii) Update step for the latent variables: Estimation of µ̃w
nk, S̃

w
k and rnkl are done

using E-W and E-Z,U step described in Appendix A.1.

All outcomes in Section 4 are obtained using the algorithm presented in this section.
The procedure to select all tuning parameters, aiming at obtaining better prediction
performances, is given in Appendix A.2.

4. Numerical Investigation

We analyze three datasets and use the outcomes to illustrate the usage of the proposed
method. Key features of each dataset, thus the type of data they represent, are reported
in the corresponding subsections. Throughout, we use squared error (Equation (10)) to
evaluate the prediction performance for each data point. We also calculate the prediction
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10 C.-C Tu, F. Forbes, B. Lemasson and N. Wang

mean squared error (MSE) among all testing samples with MSE =
∑Ntest

n=1
E2

n/Ntest,
where Ntest is the total number of testing samples.

We calculate and compare the MSE or the quantiles of squared errors over several
methods:

(a) HGLLiM: This is the proposed method. The user-defined parameters K and Lw

are set to values using the method described in Appendix A.2. The number of
local clusters M is set to 5 to reflect the possible sub-cluster structure. In each
global cluster, the number of local clusters varies and depends on the structure of
the dataset. Some of the local clusters would be dissolved so the number of local
clusters could be less than M . The initial cluster assignment is done by dividing
the GLLiM clustering outcomes at the low dimension using the R package mclust
(R Core Team, 2018; Scrucca et al., 2017). As stated before, the robust version of
the EM algorithm is used throughout the experiments. We set minSize = 5 for all
of the analyses and post-analysis checks at the neighborhood of 5 suggest this is an
appropriate choice. The prediction MSE using different values of dropThreshold
would be calculated and compared.

(b) GLLiM: The original GLLiM algorithm. GLLiM is compared to other methods
under the same settings of K and Lw. The initial cluster assignment is done by
applying a Gaussian Mixture Model to a dataset that combines the low-dimensional
T and high-dimensional X together.

(c) GLLiM-structure: This method adopts the number of clusters learned structurally
by HGLLiM. In addition, outliers identified by HGLLiM are removed from the
training dataset. We adopt the same tuning parameters as GLLiM and the ini-
tial conditions are obtained from the outcomes of HGLLiM. The key difference
between GLLiM-structure and HGLLiM is that GLLiM-structure uses local esti-
mated covariance, which may be more appropriate for a large dataset with more
local dependence features. Its effectiveness also suggests an additional usage of
HGLLiM, in terms of structure learning and identification of outliers.

4.1. The face dataset

The face dataset, consisting of 698 samples, was analyzed in the original GLLiM paper
(Deleforge et al., 2015). For this dataset, we are interested in predicting the pose pa-
rameters (Lt = 3) using the image information. The size of each image is condensed to
32 × 32, and thus D = 1024 . In addition, T is standardized so that all three dimen-
sions are equally weighted. The histograms of the three T variables bear no clustering
structure. Consequently, the mixture modeling serves the purpose of local linear approx-
imation and the inverse regression is utilized to circumvent the difficulties encountered
in high-dimensional regression.

In each run of cross-validation investigation, we follow the procedure in Deleforge
et al. (2015) and select 100 testing samples and keep the remaining 598 as training sam-
ples. We repeated this procedure 20 times to establish 2000 testing samples. According
to the approach described in Appendix A.2, we run cross-validation on K from 10 to
25, Lw from 1 to 15. The cross-validation results in Figure 2(a) suggest that K = 20,
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Fig. 2: Results for different user-defined parameters of the face dataset. (a) The HGLLiM
cross-validation results for different K and Lw. (b) The prediction MSE of different K
and different methods against different dropThreshold.

Lw = 9. It is noted that the prediction errors decrease with increasing values of Lw. This
phenomenon suggests that the high-dimensional X are dependent and that accounting
for such dependency via the latent W leads to improvement in prediction. It is also
observed that the change of prediction error is relatively small when Lw exceeds a cer-
tain value. Therefore, we fix the number of latent factors and compare the prediction
performance under K = 10, K = 15 and K = 25.

Figure 2(b) shows prediction outcomes under different values of dropThreshold. We
observe that for different methods and different K, the prediction MSE’s are not sensi-
tive to the values of dropThreshold. Thus, we compare the prediction MSE of HGLLiM,
GLLiM-structure when dropThreshold = 0.5 to GLLiM in Table 2. The prediction MSE
for GLLiM decreases as K increases, which indicates that more clusters could be helpful
to capture the non-linear relationship between X and T . For HGLLiM, we observe that
the prediction MSE is not sensitive to the choice of K. In addition, the numbers of
clusters are similar under different choices of K. This indicates that HGLLiM could
adjust itself to reach the number of clusters suitable to its setting. As for GLLiM-
structure, the prediction MSE’s are slightly smaller than those of HGLLiM. This is be-
cause GLLiM-structure estimates all parameters using local clusters, local covariances,
and the prediction would be less biased when the local structures sufficiently differ. In
the face dataset, there is no obvious cluster structure and, as a result, clustering only
serves the purpose of improving local approximation. Thus, the prediction MSE for
GLLiM-structure would be smaller. However, the differences of prediction MSE’s be-
tween HGLLiM and GLLiM-structure are small, which implies that the settings learned
from HGLLiM are appropriate, even though HGLLiM imposes a global-cluster structure
when there is none. Overall, the prediction performance for HGLLiM is similar when
K = 20 and K = 25. As for GLLiM-structure, the MSE is smaller when K = 25 but
the difference is negligible.

We further investigate the phenomenon described in Section 2. Specifically, as the
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Fig. 3: The prediction MSE of the face dataset under different dimension of X. Each
image in the face dataset consists of ℓ× ℓ pixels, where ℓ, the side length of the image,
is the square root of the dimension of X.

Table 2: The prediction MSE and the average cluster number of the face dataset when
dropThreshold = 0.5.

K=10 K=15 K=20 K=25
MSE #Cluster MSE #Cluster MSE #Cluster MSE #Cluster

GLLiM 0.0711 10.00 0.0441 15.00 0.0369 20.00 0.0321 25.00
HGLLiM 0.0314 43.90 0.0318 51.35 0.0294 53.75 0.0295 53.45
GLLiM-structure 0.0307 43.90 0.0301 51.35 0.0291 53.75 0.0288 53.45

dimension of X becomes higher, not only the number of covariance parameters increases,
but there is also a higher chance the clusters formed by GLLiM could contain sub-clusters
and/or outliers, which could deteriorate the prediction quality. We use Cluster 7 as our
reference to create two clusters. There are two sub-clusters within Cluster 7. We first
identify the center of each sub-cluster using the low-dimensional T and find 30 nearest
samples to each center. We randomly select 25 data points from each sub-cluster as the
training data and use the rest of the data points as the testing samples. Thus, there will
be 50 training samples and 10 testing samples. The procedure is repeated 20 times and
the results are aggregated together to evaluate the model performance.

To investigate the prediction performance under the different dimensions of X, we
resize the face image to ℓ × ℓ pixels, where we denote ℓ the side length of the image
so that the dimension of X is D = ℓ × ℓ. For GLLiM, we set the number of clusters,
K, to be 2 and the dimension of the latent variables, Lw, to be 9. For HGLLiM, we
have one global cluster and two local clusters, that is, K = 1,M = 2. As suggested in
Figure 2(a), we let Lw = 9 since this setting results in smaller cross-validation MSE.
We disable the robust estimation step, which is equivalent to setting minSize = 0,
dropThreshold = ∞, as described in Section 3.3; also see Appendix A.2. Figure 3 shows
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Fig. 4: The orange juice dataset. The upper panel shows the high-dimensional data (X)
and the lower one shows the low-dimensional data (T ).

the result of prediction MSE under different dimensions of X. When the dimension of
X is low, GLLiM can outperform HGLLiM. However, as the dimension of X increases,
we observe that the prediction error of GLLiM increases, suffering from the potentially
less suitable cluster-assignments. On the other hand, HGLLiM maintains appropriate
clustering results and thus the prediction performance remains similar for all image sizes,
if not slightly improved with the increasing dimension ofX and the enhanced information
in the images with higher resolution.

4.2. The orange juice dataset

The orange juice dataset contains the spectra measured on different kinds of orange
juice (N = 218). The goal is to use the spectra to predict the level of sucrose (Lt = 1).
We follow the step described in Perthame et al. (2018) and decompose the spectra on a
spline basis with (D = 134) to make D ≈ N . This dataset is known for the presence of
outliers; the realization of X and T is given in Figure 4.

We setup the following prediction evaluation procedure. In each run, we randomly
select 20 testing samples from the main population (excluding outliers). The remain-
ing 198 samples (including outliers, unless otherwise specified) are used for training.
These outliers were identified through Leave One Out Cross Validation (LOOCV) using
GLLiM, with K = 10 and Lw = 2. Although the set of outliers may differ for different
selection of K, Lw, the severe outliers are always selected and they are included here.
We identify 11 points, which are the observations with top 5% of the prediction E2’s
(above 4.8) among all data points, as outliers. Removing outliers from testing data pre-
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Fig. 5: Results for the user-defined parameters of the orange juice dataset. (a) The
HGLLiM cross-validation results for different K and Lw. (b) The prediction MSE of
different K and different methods against different dropThreshold.

vents the summarized outcomes being overwhelmed by prediction results of few points,
which potentially makes the differences among methods less obvious. All methods were
evaluated using the same settings.

Figure 5(a) shows the cross-validation results, which suggests the use of K = 5,
Lw = 8. For comparison purpose, we also provide MSE results for K = 10 and K = 15.
The rest of the setting is the same as the experiment setting used for the face dataset.

To evaluate the influence of outliers on GLLiM, we conduct an analysis in which
we use the same cluster number as in GLLiM-structure but without removing training
outliers. This method is referred to as GLLiM-outlier. In addition, we consider SLLiM in
Perthame et al. (2018) provided by the R package xLLiM (Perthame et al., 2017). SLLiM
is a counterpart of GLLiM that accommodates abnormal samples using Student’s t-
distributions. Precisely, the high-dimensional X is modeled by a mixture ofK generalized
multivariate Student’s t-distributions, using the structure given in Section 5.5 (p.94) of
Kotz and Nadarajah (2004). We also compare SLLiM performances by using the same
cluster number learned structurally by HGLLiM. We refer to the resulting procedure
as “SLLiM-structure”. We use the default settings in xLLiM for the remaining SLLiM
configurations.

Figure 5(b) shows the prediction MSE for different dropThreshold’s. The prediction
MSE’s vary, mainly reflecting the high variation in this data set, partially due to outliers.
For a small dropThreshold, the number of identified training outliers is more than
expected. This reduces the training data size and makes the prediction unreliable. As
dropThreshold reaches a reasonable value, the prediction performance becomes better.
However, more and more abnormal training samples are included in the training dataset
as dropThreshold keeps increasing. These outlying data enlarge the model variance and
downgrade the prediction performance. Table 3 shows the results for dropThreshold =
0.5. We observe that for K = 5, the cluster number is not sufficiently large for GLLiM
to capture the non-linear trend in the data, which results in a relatively large prediction
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Table 3: The prediction MSE and the average cluster number of the orange juice dataset
when dropThreshold = 0.5.

K=5 K=10 K=15
MSE #Cluster MSE #Cluster MSE #Cluster

GLLiM 0.1259 5.00 0.1210 10.00 0.0918 15.00
HGLLiM 0.0587 9.95 0.0681 11.85 0.0692 12.80
GLLiM-structure 0.0621 9.95 0.0742 11.85 0.0746 12.80
GLLiM-outlier 0.0976 9.95 0.1171 11.85 0.1044 12.80
SLLiM 0.1039 5.00 0.0788 10.00 0.0706 15.00
SLLiM-structure 0.0907 9.95 0.0747 11.85 0.0721 12.80

MSE. HGLLiM, on the other hand, adjusts the cluster number automatically and the
prediction errors are smaller. In addition, HGLLiM removes training outliers that would
deteriorate the model performance. This explains why even though the cluster number
is as large as K = 15 (larger than the average size of 12.8 used in GLLiM-structure),
GLLiM still suffers from large prediction errors. We further observe the benefit of
removing outliers by comparing GLLiM-structure and GLLiM-outlier. The prediction
errors for GLLiM-structure are smaller than those produced by GLLiM-outlier and the
only difference between GLLiM-structure and GLLiM-outlier is whether training outliers,
identified by HGLLiM, are removed. There are 11 outliers in the training dataset.
HGLLiM could effectively identify and remove all of them. In addition to these outliers,
some potential outlying samples that could result in unstable model are trimmed as well.
Overall, about 6% to 10% of the training samples would be removed by HGLLiM.

SLLiM and SLLiM-structure use t-distributions to accommodate the existence of out-
liers. They are expected to perform better than their Gaussian counterparts (GLLiM
and GLLiM-outlier). When K, the cluster number, is small, there would be more sam-

ples in each cluster and thus the cluster size,
∑N

n=1
rnkl for cluster (k, l), would be large.

On the contrary, when K is large, samples would be divided into more clusters, which
decreases the cluster size. It is observed that when K is small, accommodating outliers
with t-distributions is not as effective as removing them by comparing SLLiM-structure
and GLLiM-structure. When the number of clusters becomes larger, outliers could be
assigned to a cluster with less influence on the prediction and thus we can obtain similar
prediction performance from SLLiM-structure and GLLiM-structure. However, remov-
ing outliers would reduce the cluster size and result in unstable prediction performance.
To provide reliable model performance, HGLLiM controls the cluster size via the tun-
ing parameter minSize. In addition, HGLLiM estimates the covariance matrices under
global cluster level and this estimation is more reliable compared to GLLiM-structure,
which estimates covariance matrices locally. SLLiM does not remove any samples and
thus the performance would be better than GLLiM-structure when the cluster number,
K, is large. Although removing outliers is more effective, accommodating outliers may
still be an alternative to combat outliers when the cluster size is the concern.
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4.3. A magnetic resonance vascular fingerprint dataset
It is of great interest to the scientific community to be able to efficiently assess microvas-
cular properties, such as, blood volume fraction, vessel diameter, and blood oxygenation,
in brain so that the ability in diagnosis and management of brain diseases can be im-
proved. Recently, a new approach called magnetic resonance vascular fingerprinting
(MRvF) was proposed as an alternative to overcome the limitations of analytical meth-
ods in measuring microvascular properties. The approach was built on a system in which
the signal acquired in each voxel, also called “fingerprint”, was compared to a dictionary
obtained from numerical simulations. Finding the closest match to a fingerprint record
in the dictionary allows a direct link between the parameters of the simulations and the
microvascular variables (also referred to as parameters in these studies) at the image
voxel (Lemasson et al., 2016; Ma et al., 2013).

A synthetic MRv fingerprint (hereafter referred to as fingerprint) dataset composed
of 1, 383, 648 observations was created to serve as a “search/match” library. Each obser-
vation in the library consists of a fingerprint measurement and associated parameters:
mean vessel radius (Radius), Blood Volume Fraction (BVf) and a measurement of blood
oxygenation (DeltaChi). One goal is to predict these parameters (Lt = 3) using the
fingerprint measurement (D = 32). In addition to these three parameters, other param-
eters (variables) that have influence over the fingerprint measurements include Apparent
Diffusion Coefficient (ADC), vessel direction (Dir) and vessel geometry (Geo).

In Lemasson et al. (2016), numerical performances of a dictionary matching method
were presented. For comparison purpose, we implement the dictionary matching method
adopted in Lemasson et al. (2016). The coefficient of determination (r2) is used to
measure the similarity between a testing sample and the training samples (dictionary).
The coefficient of determination, r2, between a testing sample ytest and a training sample
ytrain is calculated as:

r2 = 1−

∑D
d=1

(ytestd − ytraind )2
∑D

d=1
(ytestd − ȳtest)2

, (11)

where ȳtest = 1

D

∑D
d=1

ytestd . The matched fingerprint is the training fingerprint with
the largest r2 and we predict the parameters of the testing data using the matched
fingerprint.

Computation time is a critical issue when analyzing large datasets. To speed up
the computation, we could take advantage of the hierarchical structure of HGLLiM by
subsetting the dataset into smaller groups and applying HGLLiM on the resulting groups
in parallel. Our current study consists of two components. Through cross-validation,
we first evaluate the feasibility and effectiveness of the parallel computation algorithms
and utilize it to compare the performance of different methods on the synthetic dataset.
We then apply these methods to a fingerprint dataset collected at an animal study; in
which, besides predicting the variable BVf (a main goal of Lemasson et al. (2016)), we
focus on predicting another variable ADC, a more challenging scenario which has not
been reported before.

We divide the synthetic library into 20 groups and apply the parallelization tech-
niques to accelerate the model building process (see Appendix B and Appendix C for
more details). When conducting the analysis at the animal study, we add a small amount
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Table 4: The mean predicted values within ROIs of different vascular parameters from
different categories.

Dictionarty matching GLLiM HGLLiM GLLiM-structure
9L Radius 21.85 20.14 22.12 21.52

BVf 14.49 14.33 14.71 14.25
DeltaChi 0.98 0.93 1.03 0.94

C6 Radius 13.59 16.01 13.67 13.81
BVf 4.17 4.01 4.25 4.52
DeltaChi 0.77 0.76 0.79 0.74

F98 Radius 11.56 13.14 11.13 11.23
BVf 3.86 3.96 4.01 3.97
DeltaChi 0.65 0.66 0.62 0.61

Stroke Radius 14.69 13.51 14.31 14.41
BVf 4.22 4.49 4.13 4.25
DeltaChi 0.60 0.63 0.62 0.63

Healthy Radius 8.16 7.96 8.54 8.34
BVf 3.58 3.51 3.63 3.56
DeltaChi 0.76 0.72 0.74 0.80

of the in vivo data in the training dataset. We noted that fingerprint samples from the
real world are noisier than their synthetic counterparts and thus this practice, as a cal-
ibration step, enables the training model to readily accommodate the real fingerprint
samples in prediction. The ratio of the synthetic samples to the real image samples is
4 to 1. The cluster number and latent factor number are selected using the method
described in Appendix A.2 and are set to K = 1240 and Lw = 9, respectively. We evalu-
ate and compare the performance of different methods on the synthetic dataset through
cross-validation. The cross-validation results in predicting Radius, BVf and DeltaChi
demonstrate that the model-based methods (GLLiM/HGLLiM/GLLiM-structure) can
achieve comparative prediction performance (Appendix D). Next, we apply these meth-
ods to a fingerprint data set collected at an animal study.

This animal study dataset contains samples from 115 rats categorized into 5 different
groups: healthy, 3 kinds of tumors (9L, C6 and F98) and stroke. For each rat, there
are 5 brain slices of 128×128 voxels and each voxel contains 32 dimension fingerprint
information. For each slice, the lesion (unhealthy) and the striatum (healthy) areas are
labeled and they form the region of interest (ROI). Figure 6 shows the predicted BVf
image using different methods. As indicated in Lemasson et al. (2016), the values of
true BVf is not available at the voxel level, and instead, they are measured over the
whole ROI’s. Nevertheless, the comparison between the true values and those obtained
by the dictionary matching method, at the ROI level, indicates that the method has
successfully provided close-to-truth match; see Lemasson et al. (2016). Table 4 shows
the mean prediction results within the ROI’s obtained by different methods. The three
additional methods considered here, besides the dictionary-matching method used in
Lemasson et al. (2016), are GLLiM, HGLLiM and GLLiM-structure. All four methods
provide similar results in predicting BVf.

There are 1,385,509 samples in the real image dataset. For the dictionary match-
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GLLiM Structure
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Fig. 6: The predicted BVf images of one animal from the 9L group using either (a)
dictionary matching, (b) GLLiM, (c) HGLLiM or (d) GLLiM-structure. In each plot,
the ROI on the left marks the lesion region and the ROI on the right is from the healthy
striatum.

ing method, using a parallel for-loop (parfor) and a pre-processing technique (Lemasson
et al. (2016)), it took about 2.4 hours (precisely 8639.53 seconds) to match the whole an-
imal image samples to the training dataset (N train = 1, 383, 648). A direct computation
without parfor and pre-processing took 429507.79 seconds and reach the same outcomes.
For the model-based method, utilizing the grouped structure and the parallel comput-
ing technique, it takes 1058.32/2133.51/1922.37 seconds for GLLiM/HGLLiM/GLLiM-
structure to process the animal image dataset. Thus, the prediction procedure of
GLLiM/HGLLiM/GLLiM-structure is much more efficient than the dictionary matching
method.

The parameter ADC was not thoroughly investigated in Lemasson et al. (2016). The
main reason is that the predicted ADC values, obtained using the dictionary matching
approach, were not comparable to the ones measured in vivo by MRI. With the in vivo
ADC values available at the voxel-level, being able to understand how the synthetic and
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Table 5: The 50%, 90% 99% quantiles of squared errors of predicting ADC for different
methods under different image categories.

Dictionary matching GLLiM HGLLiM GLLiM-structure
50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

9L 1.1180 3.9803 10.6829 0.2392 0.5684 14.5668 0.1132 0.7613 11.8721 0.1018 0.7154 10.9574
C6 1.1208 4.4719 14.4888 0.3043 2.6091 26.7575 0.3252 1.9840 22.5427 0.3138 1.7764 20.0213
F98 1.0994 4.2373 14.4888 0.3802 3.4129 55.4479 0.2951 2.3672 35.3199 0.2801 2.4129 50.8133

Stroke 1.1663 5.8045 14.8888 0.4779 4.5668 66.1164 0.3218 3.0975 55.7821 0.3192 3.1424 53.9315
Health 1.0931 3.8086 7.7912 0.2131 1.2510 14.5668 0.1527 1.1087 11.9597 0.1054 1.1145 13.2165

real measurements differ for a given parameter is scientifically important to developing
new instruments and to future knowledge advancements. Here, we study ADC and use
it to evaluate the prediction performances of different methods. Figure 7 shows the
true ADC image and the images of the differences between the true and predicted ADC
values. The differences are shown in the ratio against the signal levels for each ROI.
Most of the predictions made by dictionary matching are deviated from the true values.
On the other hand, HGLLiM and GLLiM-structure provide better ADC images. There
are some voxels with extreme differences that all methods cannot predict well. When
no suitable training information could be provided by the synthetic fingerprint data, the
prediction quality on these voxels tends to be dreadful regardless which method is used.

Table 5 shows the 50%, 90% and 99% quantiles of the ADC squared errors. The
outcomes reported under the 50th and 90th percentiles give the indication of “average”
and “almost-all” prediction performances for each method. The 99th percentile values
allow the comparisons of worse-case scenarios. We still obtain some predictions with large
errors using GLLiM/HGLLiM/GLLiM-structure. However, for majority of the data, the
squared errors are smaller than those obtained by the dictionary matching method. We
figure out that here is no suitable cluster to conducting prediction for these data. For
GLLiM/HGLLiM/GLLiM-structure, if a suitable cluster for conducting prediction does
not exist, the cluster with the closest Mahalanobis distance is applied for prediction.
However, the largest membership posterior probability rnkl among all k, l in Equation
(9) would be smaller than the majority of the data. This information could be utilized
to identify unreliable prediction results. The worst case of dictionary matching seems to
produce smaller prediction error when being compared to other methods. Nevertheless,
this is due to the nature of the difference among approaches. The dictionary matching
method always predict using values obtained from a member in the dictionary, so that its
prediction error cannot go beyond what would be provided by the possible values in the
dictionary. This phenomenon does not apply to model-based methods. When prediction
is conducted on the data outside of the range of the training dataset, the prediction error
could become considerably large, as shown by the outcome of 99 percentiles of prediction
squared errors. As a result, even though dictionary matching seems to outperform
other model-based methods at these extreme cases, it does not necessary indicates that
dictionary method is practically useful for these cases, with the outcomes being so much
worse than predicting the rest of the dataset. Our model-based approaches, on the
other hand, do have the advantage of identifying these troublesome cases for further
considerations.
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HGLLiM difference against signal level

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 -1.5

-1

-0.5

0

0.5

1

1.5

(e)

GLLiM Structure difference against signal level
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Fig. 7: The true ADC image and the differences between the true values and the pre-
dicted values against the signal levels of one animal from the 9L group. Differences
are normalized by the average true ADC values in each ROI. (a) The true ADC im-
age. Difference maps between true values and predicted values against the signal levels
using either (b) dictionary matching method, (c) GLLiM, (d) HGLLiM or (e) GLLiM-
structure.
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5. Discussion and conclusion

We propose HGLLiM as a parsimonious and structured version of GLLiM. HGLLiM
adopts a two level hierarchical structure of clusters. The assumed structure enables us
to assess the parameters in the mean association functions more locally without suffering
from the clustering outcomes being dominated by the dependence structures in the high-
dimensional predictors. Under the same construction, we also estimate the reduced
number of covariance parameters with more data points. In addition, we implement a
robust version of HGLLiM to enhance model stability and reduce prediction variation.
HGLLiM further leads to a post-learning version of GLLiM, called GLLiM-structure.
By using local means and local variances, while with unfitted points removed, GLLiM-
structure tends to reach improved empirical performances.

The motivation behind HGLLiM and GLLiM-structure is to obtain precise predictions
by constructing stable training models. Eliminating the existence of small clusters and
removing outliers assist to achieving this goal. The fact that HGLLiM only focuses on
preserving primary structures learned from the training dataset may reduce the quality
of its predictions of rare data points, which are insufficiently presented therein. Never-
theless, by utilizing the largest membership posterior probability rnkl among all clusters
(k, l) and by recognizing when this maximum be much smaller than those obtained from
the majority of the data, we can identify such testing samples with unreliable prediction
results.

In the analysis of the fingerprint dataset, we experimented predicting these testing
samples using the average predicted values based on nearest neighbor matching (re-
sults not shown). At the cost of slightly elevated computation time, such replacement
does have the predicted values being within the range of training measurements. The
prediction quality for these difficult-to-predict cases is similar to that of the dictionary
matching method. However, it is important to note that such quality, as for the dic-
tionary matching method, remains unsatisfactory. This outcome is not a surprise due
to the fact that these data points are either not present or poorly represented in the
training samples.

Albeit this drawback that the resulted training model obtained by HGLLiM may or
may not reflect the exact true model that generates all the data, it nevertheless captures
the critical structure and establishes a model that can be stably estimated using the
data available. The size and complexity of this model would be determined by the
data. Finally, the learning procedure could be accelerated by dividing data into groups
and adopting parallelization computation technique. We illustrate that this practice is
readily accommodated by HGLLiM’s hierarchical model structure.
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