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Calculation section 

S1.1 Binding Energy Analysis 

  Binding energy analysis on Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3, and Pt-SN/A-Fe2O3, provides 

valuable information on how Pt interacts with the support. The binding energy, EBE, between 

Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3, and Pt-SN/A-Fe2O3 can be defined as:  

EBE = (Etot – EPt – Esub)/N 

Where Etot is the energy of the total energy of Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3, and Pt-SN/A-

Fe2O3, EPt is the energy of Pt in different size, Esub is the energy of the Fe2O3 A support and 

N is the number of Pt atoms. 

 

 

S1.2 Charge Density Difference 

To explore the electron behavior between Pt and support, charge density difference was 

defined as follows: 

∆ρAB = ρAB - ρA - ρB 

where ∆ρAB is the charge density difference, ρAB, ρA and ρB is charge density of total slab, the 

corresponding Pt in various size and the support slab, respectively. 
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S1.3 Bader Charge Analysis 

To gain more accurate insight into electronic interaction at the interface between Pt and the 

support, we calculated the charge accumulation direction using the Bader charge analysis.5-8 

The transfer electron mainly including average, maximum and minimum extra electrons were 

shown in Table S3. 

 

S1.4 Adsorption Energy 

Adsorption energy for CO and O2 on four configurations including A-Fe2O3 Pt-SA/A-Fe2O3, 

Pt-SC/A-Fe2O3, and Pt-SN/A-Fe2O3, are determined (Figure 3a). The definition of adsorption 

energy is similar to our previous work.9 

 

S1.5 The d Band Center Analysis 

We also calculated the d-band center of Pt atoms in slab using the following formula: 

 

where  is the d band center with respect to Fermi level,  is the density of states about 

d band and  represents the energy.  
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Figure S1. High magnification of the nanosheets side view with (a) HAADF-STEM and (b, c) 

HRTEM for typical as-prepared nanocatalysts. Thickness measured from the nanosheets side 

in the images. (a) ~3.2nm, (b) average ~3.0nm, (c) average ~3.2nm. 
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Figure S2. More HAADF-STEM images for Pt-SA/A-Fe2O3 catalyst, indicating the atomically 

dispersed Pt. 
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Figure S3. Full XPS spectrum with all elements and peaks for the related samples. 
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Figure S4. XPS with deconvoluted peaks of as-prepared Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3, and 

Pt-SN/A-Fe2O3. 
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Figure S5. EXAFS χ(k) signals in k-space for the different samples. 
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Figure S6. The Pt Fourier transform-EXAFS spectrum in R space for various samples. The 

circles scatter lines are the corresponding fitted curves. 
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Figure S7. Structural characterizations of (a) Low-magnification TEM image, (b) HRTEM (c) 

SAED and (d) HAADF-STEM image for Pt-SA/A-Fe2O3 catalyst after CO oxidation stability 

test. 
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Figure S8. Comparison of the CO conversion performance for the Pt-SA/A-Fe2O3 catalyst in 

0h and after 30h use. 
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Figure S9. Comparison of the CO conversion performance at 70 ℃ for the Pt-SA/A-Fe2O3 

catalyst in 0h and after 30h use. 
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Figure S10. CO stripping voltammograms of various catalysts with the same Pt mass loading. 
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Figure S11. Projected d band density of (a) Fe in A-Fe2O3, (b) Fe in Pt-SA/A-Fe2O3, (c) Fe in 

Pt-SC/A-Fe2O3, (d) Fe in Pt-SN/A-Fe2O3. The red line in projected d band density indicates the 

corresponding d band center.  
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Figure S12. Projected d band density of (a) Pt in Pt-SA/ A-Fe2O3, (b) Pt in Pt-SC/ A-Fe2O3, (c) 

Pt in Pt-SN/ A-Fe2O3. The red line in projected d band density indicates the corresponding d 

band center. 
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Figure S13. EPR of Pt-SA/A-Fe2O3 and Pt-SA/C-Fe2O3 samples. 
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Table S1. ICP results of different Pt/A-Fe2O3 catalysts. 

catalysts Pt ratio (wt.%)  

Pt-SA/A-Fe2O3 1.20%  

Pt-SC/A-Fe2O3 4.56%  

Pt-SN/A-Fe2O3 8.62%  
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Table S2. EXAFS fitting parameters of samples 
sample shell N R (Å) Δσ2 (Å2) 

Pt foil Pt-Pt 12.0 2.75 0.005 
PtO2 Pt-O 6.0 2.02 0.003 
 Pt-Pt 6.0 3.02 0.002 
Pt-SA/A-Fe2O3 Pt-O 4.1 2.00 0.005 
 Pt-Fe 1.2 2.57 0.003 
Pt-SC/A-Fe2O3 Pt-O 2.0 1.98 0.003 
 Pt-Pt 2.1 2.77 0.007 
 Pt-Fe 1.0 2.53 0.005 

Note: N, R and σ2 are the coordination number, the average distance between absorber and backscatter atoms, Debye−Waller 
factor 
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Table S3. comparisons of the CO oxidation performance with references 

samples 
Metal loadings 

(wt%) 
Temperature (℃) 

specific rate × 
102, molCO h−1 

gPt
-1 

TOF × 102, s−1 note 

Pt-SA/A-Fe2O3 1.2 70 125.0 6.87 This work 

Pt-SA/C-Fe2O3 1.2 70 81.6 4.4 This work 

Pt1/FeOx 0.17 27 43.5 13.6 
Nature chemistry, 
2011, 3(8): 634. 

Au/Fe2O3 4.4 27 39.3 8.6 
ACS Catal. 2014, 

4, 2113−2117 

Pt/Al2O3 2.0 80 -- ∼0.2 
Chem. Commun. 
2005, 1429−1431. 

Pt/Fe2O3 5.11 60 71.1 2.40 

ACS applied 
materials & 

interfaces 2018,10 
(17), 15322-15327 

0.18% Pt/θ-Al2O3 0.18 200 - 1.3 
J. Am. Chem. Soc. 

2013, 135, 
12634−12645 

Ir1/FeOx 0.01 300 43.4 2.31 
J. Am. Chem. Soc. 

2013, 135, 
15314−15317 

Pt/γ -Al2O3  150  1.1 
J. Chem. Tech. 

Biotechnol. 52, 415 
(1991) 

Ir/TiO2 5.0 350 12 2.9 
Appl. Catal., A 
1996, 139, 131 
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Table S4. Bader charge of Pt on the surface of Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3 and Pt-SN/A-

Fe2O3. 

System 
Average extra electron 

towards Pt atoms (e-) 

Maximum extra electron 

towards Pt atom (e-) 

Minimum extra electron 

towards Pt atom (e-) 

Pt-SA/A-Fe2O3 
+0.746 +0.746 +0.746 

Pt-SC/A-Fe2O3 
+0.221 +0.370 -0.018 

Pt-SN/A-Fe2O3 
+0.114 +0.269 -0.058 
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Table S5. Binding energy between Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3 and Pt-SN/A-Fe2O3. 

System Binding energy (eV/atom) 

Pt-SA/A-Fe2O3 
-10.483 

Pt-SC/A-Fe2O3 
-5.317 

Pt-SN/A-Fe2O3 
-2.457 
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Table S6. The stable adsorption energy of CO and O2 for Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3 and 

Pt-SN/A-Fe2O3 

System ECO_ads (eV) EO2_ads (eV) 

Pt-SA/A-Fe2O3 -2.218 -0.966 

Pt-SC/A-Fe2O3 -2.252 -0.424 

Pt-SN/A-Fe2O3 -2.767 -0.272 

 

  



     

22 

 

Table S7. The d-band center (relative to the Fermi level) of Pt-SA/A-Fe2O3, Pt-SC/A-Fe2O3 

and Pt-SN/A-Fe2O3. 

System The d-band center of Pt (eV) The d-band center of Fe (eV) 

A-Fe2O3 
/ -1.658 

Pt-SA/A-Fe2O3 
-1.830 -1.886 

Pt-SC/A-Fe2O3 
-1.797 -2.321 

Pt-SN/A-Fe2O3 
-1.304 -2.553 

 

 

 

 

 

 


