Ulam floating bodies

Han Huang, Boaz A. Slomka and Elisabeth M. Werner

Abstract

We study a new construction of bodies from a given convex body in \mathbb{R}^{n} which are isomorphic to (weighted) floating bodies. We establish several properties of this new construction, including its relation to p-affine surface areas. We show that these bodies are related to Ulam' s long-standing floating body problem which asks whether Euclidean balls are the only bodies that can float, without turning, in any orientation.

1. Introduction

1.1. Metronoids

Let K be a convex body in \mathbb{R}^{n} (that is, a compact convex set with non-empty interior), and denote its Lebesgue volume by $|K|$. The purpose of this paper is to study a new family of convex bodies $\mathrm{M}_{\delta}(K)$ associated to K, where $0<\delta<|K|$ is a parameter.

The construction of this family arises from the notion of metronoids which was recently introduced in [24] in order to study extensions of problems concerning the approximation of convex bodies by polytopes. Given a Borel measure μ on \mathbb{R}^{n}, the metronoid associated to μ is the convex set defined by

$$
\mathrm{M}(\mu)=\bigcup_{\substack{0 \leqslant f \leqslant 1, \int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1}}\left\{\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y)\right\},
$$

where the union is taken over all functions $0 \leqslant f \leqslant 1$ for which $\int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1$ and $\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y)$ exists. Note that for a discrete measure of the form $\sum_{i=1}^{N} \delta_{x_{i}}$, the corresponding metronoid is the convex hull of x_{1}, \ldots, x_{N}. Hence, $\mathrm{M}(\mu)$ can be thought of as a fractional extension of the convex hull.

1.2. Ulam's floating body

Our main object $\mathrm{M}_{\delta}(K)$ is the metronoid generated by the uniform measure on K with total mass $\delta^{-1}|K|$. Namely, let $\mathbb{1}_{K}$ be the characteristic function of K, and μ the measure whose density with respect to Lebesgue measure is $\delta^{-1} \mathbb{1}_{K}$. Then, $\mathrm{M}_{\delta}(K):=\mathrm{M}(\mu)$. It turns out that $M_{\delta}(K)$ is intimately related to the following long-standing problem proposed by Ulam, see, for example, $[\mathbf{5}, \mathbf{1 5}, \mathbf{1 8}, \mathbf{4 0}]$: Is a solid of uniform density which floats in water in every position a Euclidean ball? Although counterexamples were found in \mathbb{R}^{2} (convex and non-convex) and \mathbb{R}^{3} (only non-convex), this problem remains open in arbitrary dimensions. For a full account of the progress made on this problem, see [57] and references therein.

[^0]

Figure 1.1 (colour online). $H(\delta, \theta)$ is the hyperplane orthogonal to θ that cuts a set $C_{\delta}(\theta)$ of volume δ from a convex body $K:\left|C_{\delta}(\theta)\right|=\left|K \cap\left\{x:\langle x, \theta\rangle \geqslant\left\langle y_{\theta}, \theta\right\rangle\right\}\right|=\delta$. The point x_{θ} is the barycenter of $C_{\delta}(\theta)$. Then

$$
K_{\delta} \subseteq K \cap\left\{x:\langle x, \theta\rangle \leqslant\left\langle y_{\theta}, \theta\right\rangle\right\}
$$

while

$$
\mathrm{M}_{\delta}(K) \subseteq K \cap\left\{x:\langle x, \theta\rangle \leqslant\left\langle x_{\theta}, \theta\right\rangle\right\}
$$

As we show in Section 2.2 below, along with a precise description of Ulam's problem, one can restate Ulam's problem in terms of $M_{\delta}(K)$ as follows: If $M_{\delta}(K)$ is a Euclidean ball, must K be a Euclidean ball as well? For that reason, we call $M_{\delta}(K)$ an Ulam floating body. As far as we know, this construction and its relation to Ulam's problem is not mentioned anywhere in the literature.

We also define weighted variations of $\mathrm{M}_{\delta}(K)$ where the weight is given by a positive continuous function $\phi: K \rightarrow \mathbb{R}$. Namely, we define

$$
\mathrm{M}_{\delta}(K, \phi):=\mathrm{M}\left(\frac{\phi(x)}{\delta} \mathbb{1}_{K}(x) \mathrm{d} x\right)
$$

To understand $\mathrm{M}_{\delta}(K)$ geometrically, recall that a convex body $K \subseteq \mathbb{R}^{n}$ is determined by its support function $h_{K}(\theta)=\max _{x \in K}\langle x, \theta\rangle$, where $\langle\cdot, \cdot\rangle$ is the standard scalar product on \mathbb{R}^{n}. For every direction $\theta \in \mathbb{S}^{n-1}$, let $H(\delta, \theta)$ be the hyperplane orthogonal to θ that cuts a set of volume δ from K. That is

$$
C_{\delta}(\theta)=K \cap\left\{x:\langle x, \theta\rangle \geqslant\left\langle y_{\theta}, \theta\right\rangle\right\}
$$

has volume δ for any $y_{\theta} \in H(\delta, \theta)$. Then, the barycenter of $C_{\delta}(\theta)$ is a point on the boundary of $\mathrm{M}_{\delta}(K)$. More precisely, by $[\mathbf{2 4}$, Proposition 2.1], we have that for any direction θ,

$$
h_{\mathrm{M}_{\delta}(K)}(\theta)=\frac{1}{\delta} \int_{C_{\delta}(\theta)}\langle x, \theta\rangle \mathrm{d} x
$$

As illustrated in Figure 1.1, the body $\mathrm{M}_{\delta}(K)$ is closely related to the convex floating body K_{δ}, introduced independently in $[\mathbf{6}, \mathbf{5 1}]$. Using the above notation, we have that

$$
K_{\delta}=\bigcap_{\theta \in \mathbb{S}^{n-1}}\left\{x:\langle x, \theta\rangle \leqslant\left\langle y_{\theta}, \theta\right\rangle\right\},
$$

which is a non-empty convex set for a sufficiently small $0<\delta$. In fact, $\mathrm{M}_{\delta}(K)$ is isomorphic to K_{δ} in the sense that $K_{\frac{e-1}{e} \delta} \subseteq \mathrm{M}_{\delta}(K) \subseteq K_{\frac{\delta}{e}}$. We discuss this property in the more general case of weighted Ulam floating bodies in Section 2.3 below (also see Theorem 1.1).

The convex floating body is a natural variation of Dupin's floating body [16] from 1822. Dupin's floating body $K_{[\delta]}$ is defined as the body whose boundary is the set of points that are the barycenters of all the sections of K of the form $K \cap H(\delta, \theta)$, where $H(\delta, \theta)$ are the aforementioned hyperplanes that cut a set of volume δ from K. However, while K_{δ} coincides
with $K_{[\delta]}$ whenever $K_{[\delta]}$ is convex (for example, for centrally symmetric K, see [42]), in the non-centrally symmetric case, Dupin's floating body need not be convex, as in the case of some triangles in \mathbb{R}^{2} (see, for example, $[\mathbf{3 0}]$). Restating the above, every point on the boundary of K_{δ} is the barycenter of $K \cap H(\delta, \theta)$ for some θ, but the converse holds only if Dupin's floating body is convex.

Note that our construction $M_{\delta}(K)$ corresponds nicely to both definitions, that of the floating body and that of the convex floating body in the sense that it enjoys being convex as well as having the property that a point is on the boundary of $\mathrm{M}_{\delta}(K)$ if and only if it is the barycenter of a set of volume δ that is cut off by a hyperplane.

1.3. Main results

We present three main theorems concerning Ulam's floating bodies. Although the first result establishes an explicit relation between (weighted) floating bodies and (weighted) Ulam's floating bodies, the other two results are the analogous counterparts to the classical floating bodies.
1.3.1. Relation to floating bodies. Our first theorem shows that (weighted) Ulam's floating bodies are isomorphic, in a sense, to (weighted) floating bodies. Weighted floating bodies were introduced in [58] (also see [7, 9] for recent applications) as follows. Let $K \subseteq \mathbb{R}^{n}$ be a convex body, $0<\delta$, and $\phi: K \rightarrow \mathbb{R}$ be integrable and such that $\phi>0$ almost everywhere with respect to Lebesgue measure. For a hyperplane H in \mathbb{R}^{n}, let $H^{ \pm}$be the half-spaces separated by H. Then, the weighted floating body $F_{\delta}(K, \phi)$ is defined as

$$
F_{\delta}(K, \phi)=\bigcap\left\{H^{-}: \int_{H^{+} \cap K} \phi(x) \mathrm{d} x \leqslant \delta\right\}
$$

Note that for $\phi \equiv 1$, we have that $F_{\delta}(K, \phi)=K_{\delta}$.
We prove the following.
Theorem 1.1. Let K be a convex body in \mathbb{R}^{n}, and let $\phi: K \rightarrow \mathbb{R}^{+}$be an integrable logconcave function. Then, for all $0<\delta<|K|$, we have

$$
F_{\frac{e-1}{e} \delta}(K, \phi) \subseteq \mathrm{M}_{\delta}(K, \phi) \subseteq F_{\frac{\delta}{e}}(K, \phi)
$$

In particular, for $\phi \equiv 1$, we have that

$$
K_{\frac{e-1}{e} \delta} \subseteq \mathrm{M}_{\delta}(K, \phi) \subseteq K_{\frac{\delta}{e}}
$$

We remark that for $\phi \equiv 1$, Theorem 1.1 was proven in $[\mathbf{2 4}]$.
1.3.2. Smoothness of Ulam's floating bodies. Our second main result states that the boundary $\partial \mathrm{M}_{\delta}(K)$ of an Ulam floating body $\mathrm{M}_{\delta}(K)$ is always smoother than the boundary of K.

Theorem 1.2. Let $K \subseteq \mathbb{R}^{n}$ be a convex body, Suppose that $\partial K \in C^{k}$ for some $k \geqslant 0$. Then, for any $0<\delta<|K|$, we have that $\partial \mathrm{M}_{\delta}(K) \in C^{k+1}$.

We remark that in the case of the convex floating body, an analogous result to Theorem 1.2 is known only in the centrally symmetric case [42]. The main reason for this is that the proof in [42] relies on the abovementioned fact that in the centrally symmetric case the convex floating convex body and Dupin's floating body coincide.
1.3.3. Affine surface area. The affine surface area was introduced by Blaschke [10] in 1923 for smooth convex bodies in Euclidean space of dimensions 2 and 3 , and extended to \mathbb{R}^{n} by

Leichtweiss [28]. Given a convex body $K \subseteq \mathbb{R}^{n}$ with a sufficiently smooth boundary, let $\kappa_{K}(x)$ be the Gaussian curvature at $x \in \partial K$, and μ_{K} the surface area measure on ∂K. The affine surface area of K is defined by

$$
a s(K)=\int_{\partial K} \kappa_{K}(x)^{\frac{1}{n+1}} \mathrm{~d} \mu_{K}
$$

Even though it proved to be much more difficult to extend the notion of affine surface area to general convex bodies than other notions, like surface area measures or curvature measures, successively such extensions were achieved, by, for example, Leichtweiss [28], Lutwak [34], who also proved the long conjectured upper semicontinuity of affine surface area [34] and by Schütt and Werner [51] who showed that the affine surface area arises as a limit of the volume difference of the convex body and its floating body. All these extensions coincide as was shown in $[29,49]$.

Affine surface area is among the most powerful tools in equiaffine differential geometry (see Andrews [2, 3], Stancu [54, 55], Ivaki [26], Ivaki and Stancu [27] and Ludwig and Reitzner [33]). It appears naturally as the Riemannian volume of a smooth convex hypersurface with respect to the affine metric (or Berwald-Blaschke metric), see, for example, the thorough monograph of Leichtweiss [30] or the book by Nomizu and Sasaki [44]. In particular, the upper semicontinuity proved to be critical in the solution of the affine Plateau problem by Trudinger and Wang [56].

Applications of affine surface areas have been manifold. For instance, affine surface area appears in best and random approximation of convex bodies by polytopes, see Böröczky Jr. [11, 12], Gruber [21-23], Ludwig [32], Reitzner [46], Schütt [48, 50], Grote and Werner [20], and Schütt and Werner [52]. Furthermore, recent contributions indicate astonishing developments which open up new connections of affine surface area to, for example, concentration of volume (for example, $[\mathbf{1 7}, \mathbf{3 6}]$), spherical and hyperbolic spaces $[8,9]$, geometric inequalities $[39,60]$, and information theory (for example, $[4,14,37,38,45,61]$).

The L_{p}-affine surface area is a generalization of the classical affine surface area and a central part in the L_{p}-Brunn-Minkowski theory. It was introduced by Lutwak [35] for $p>1$ (see also Hug [25] and Meyer and Werner [43]) and extended for all $p \in[-\infty, \infty]$ in [53]. For $-\infty<p<\infty$, the L_{p}-affine surface area of a convex body $K \subseteq \mathbb{R}^{n}$ is given by

$$
\begin{equation*}
a s_{p}(K)=\int_{\partial K} \frac{\kappa_{K}(x)^{\frac{p}{n+p}}}{\left\langle x, N_{K}(x)\right\rangle^{\frac{n(p-1)}{n+p}}} d \mu_{K}(x) \tag{1.1}
\end{equation*}
$$

where $N_{K}(x)$ is the outer normal of K at x. For $p= \pm \infty$, it is given by

$$
\begin{equation*}
a s_{ \pm \infty}(K)=\int_{\partial K} \frac{\kappa_{K}(x)}{\left\langle x, N_{K}(x)\right\rangle^{n}} d \mu_{K}(x) \tag{1.2}
\end{equation*}
$$

As in the case of the classical affine surface area, several geometric extensions for the L_{p}-affine surface area have been proven. We refer to $[53,59]$ and references therein. These extensions all involve a construction of a special family of convex bodies $\left\{K_{t}\right\}_{t>0}$ which is related to a given convex body K, where the L_{p}-affine surface area can be written as a limit involving their volume difference.

We prove the following theorem which shows that this can also be achieved using weighted Ulam floating bodies.

Theorem 1.3. Let $K \subseteq \mathbb{R}^{n}$ be a convex body and $\phi: K \rightarrow(0, \infty)$ be a continuous function. Then,

$$
\begin{equation*}
\lim _{\delta \searrow 0} \frac{|K|-\left|\mathrm{M}_{\delta}(K, \phi)\right|}{\delta^{\frac{2}{n+1}}}=c_{n} \int_{\partial K} \kappa_{K}(x)^{\frac{1}{n+1}} \phi(x)^{-\frac{2}{n+1}} \mathrm{~d} \mu_{K}(x) \tag{1.3}
\end{equation*}
$$

where $c_{n}=2 \frac{n+1}{n+3}\left(\frac{\left|B_{2}^{n-1}\right|}{n+1}\right)^{\frac{2}{n+1}}$, and B_{2}^{n} is the Euclidean unit ball in \mathbb{R}^{n}.
For $-\infty \leqslant p \leqslant \infty, p \neq-n$, define the function $\phi_{p}: \partial K \rightarrow[0, \infty]$ by

$$
\begin{equation*}
\phi_{p}(x)=\frac{\left\langle x, N_{K}(x)\right\rangle^{\frac{n(n+1)(p-1)}{2(n+p)}}}{\kappa_{K}(x)^{\frac{n(p-1)}{2(n+p)}}} . \tag{1.4}
\end{equation*}
$$

Note that $\phi_{1}(x)=1$ for all $x \in \partial K$. If $\kappa_{K}(x)=0$, which is the case, for example, when $K=P$ is a polytope and x belongs to an $(n-1)$-dimensional facet of P, then

$$
\phi_{p}(x)=\left\{\begin{array}{cc}
\infty & p>1 \text { or } p<-n \\
0 & -n<p<1 .
\end{array}\right.
$$

If $\kappa_{K}(x)=\infty$, which is the case, for example, when $K=P$ is a polytope and x is a vertex of P, then

$$
\phi_{p}(x)= \begin{cases}0 & p>1 \text { or } p<-n \\ \infty & -n<p<1 .\end{cases}
$$

If K and p are such that ϕ_{p} is continuous on ∂K, we extend ϕ_{p} to a continuous function on K which we call again ϕ_{p}.

Applying Theorem 1.3 with ϕ_{p} yields the following extension of L_{p}-affine surface areas.
Corollary 1.4. Let $K \subseteq \mathbb{R}^{n}$ be a convex body. If ϕ_{p} is continuous on K, then,

$$
\lim _{\delta \geq 0} \frac{|K|-\left|\mathrm{M}_{\delta}\left(K, \phi_{p}\right)\right|}{\delta^{\frac{2}{n+1}}}=c_{n} a s_{p}(K) .
$$

In particular, for $p=1$, we have

$$
\lim _{\delta \geq 0} \frac{|K|-\left|M_{\delta}(K)\right|}{\delta^{\frac{2}{n+1}}}=c_{n} a s_{1}(K) .
$$

1.4. Some additional notation

Throughout the paper, we denote by $B_{2}^{n}(u, \rho)$ the Euclidean ball with radius $\rho>0$ centered at u. Let $\|\cdot\|$ denote the standard Euclidean norm on \mathbb{R}^{n}. For $u, v \in \mathbb{R}^{n},[u, v]$ will denote the line segment between u and v. We denote the interior of a set $C \subseteq \mathbb{R}^{n}$ by $\operatorname{int}(C)$. In the sequel, we will always assume that our convex body K contains the origin in its interior. Finally, c, c_{0}, c_{1}, etc. shall denote absolute constants that may change from line to line. Let O_{n} denote the orthogonal group of dimension n.

The paper is organized as follows. In Section 2, we discuss some properties of Ulam's floating bodies, and prove Theorems 1.1 and 1.2. Section 3 is devoted for the proof of Theorem 1.3.

2. Properties of Ulam's floating bodies

2.1. Basic properties

For $\theta \in \mathbb{S}^{n-1}$ and $d \in \mathbb{R}$, we denote the hyperplane orthogonal to θ at distance d from the origin by $H(\theta, d):=\left\{x \in \mathbb{R}^{n}:\langle x, \theta\rangle=d\right\}$. We also denote the closed half-space $H^{+}(\theta, d):=$ $\left\{x \in \mathbb{R}^{n}:\langle x, \theta\rangle \geqslant d\right\}$. Given a convex body $K \subseteq \mathbb{R}^{n}$ and a continuous function $\phi: K \rightarrow$ $(0, \infty)$, the function

$$
\mathbb{S}^{n-1} \times \mathbb{R} \longrightarrow\left[0, \int_{K} \phi(z) d z\right]
$$

$$
(\theta, d) \longrightarrow \delta(\theta, d):=\int_{K \cap H^{+}(\theta, d)} \phi(z) \mathrm{d} z
$$

is continuous in the product metric, for example, by using Lebesgue's dominated convergence theorem. Observe also that the function $(\theta, r) \rightarrow(\theta, \delta(\theta, r))$ is a bijection from

$$
\left\{(\theta, r): \theta \in \mathbb{S}^{n-1},-h_{K}(-\theta) \leqslant r \leqslant h_{K}(\theta)\right\}
$$

to $\mathbb{S}^{n-1} \times\left[0, \int_{K} \phi(x) \mathrm{d} x\right]$. We denote

$$
\begin{equation*}
(\theta, \delta) \rightarrow(\theta, d(\theta, \delta)) \tag{2.1}
\end{equation*}
$$

as the inverse function of $(\theta, d) \rightarrow(\theta, \delta(\theta, d))$, which is also a continuous function. Abusing the notation, we denote

$$
\begin{equation*}
H^{+}(\theta, \delta):=H^{+}(\theta, d(\theta, \delta)) \tag{2.2}
\end{equation*}
$$

Let $h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)$ be the support function of $\mathrm{M}_{\delta}(K, \phi)$. By definition of $\mathrm{M}_{\delta}(K, \phi)$,

$$
\begin{equation*}
h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)=\max _{x \in \mathrm{M}_{\delta}(K, \phi)}\langle\theta, x\rangle=\sup _{0 \leqslant f \leqslant 1, \int_{K} \frac{f(y) \phi(y)}{\delta} \mathrm{d} y=1} \int_{K}\langle y, \theta\rangle \frac{f(y)}{\delta} \phi(y) d y \tag{2.3}
\end{equation*}
$$

It follows from [24, Proposition 2.1] that the maximum in the above equation is attained for the function

$$
f=\mathbb{1}_{K \cap H^{+}(\theta, \delta)}
$$

and this maximal function is unique as $\phi(y) \mathbb{1}_{K} \mathrm{~d} y$ is absolutely continuous with respect to Lebesgue measure. Thus, we have the following proposition which is essentially a restatement of [24, Proposition 2.1].

Proposition 2.1. Let $K \subseteq \mathbb{R}^{n}$ be a convex body and $\phi: K \rightarrow(0, \infty)$ be a continuous function. Let $\theta \in \mathbb{S}^{n-1}$ and $\delta \in\left(0, \int_{K} \phi(y) \mathrm{d} y\right)$. Then, the barycenter of $K \cap H^{+}(\theta, \delta)$ with respect to the weight function ϕ,

$$
x_{K, \phi}(\theta, \delta):=\frac{\int_{K \cap H^{+}(\theta, \delta)} y \phi(y) \mathrm{d} y}{\delta}
$$

is the unique point in $\partial \mathrm{M}_{\delta}(K, \phi)$ with normal θ. In particular, $\mathrm{M}_{\delta}(K, \phi)$ is strictly convex. Moreover,

$$
h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)=\frac{\int_{K \cap H^{+}(\theta, \delta)}\langle\theta, y\rangle \phi(y) \mathrm{d} y}{\delta}
$$

Extending by limit, $h_{\mathrm{M}_{\delta}(K, \phi)}$ is a continuous function on $\mathbb{S}^{n-1} \times\left[0, \int_{K} \phi(y) \mathrm{d} y\right]$ and $h_{\mathrm{M}_{0}(K, \phi)}$ is the support function h_{K} of K.

We remark that we will use $x(\theta, \delta)$ in short for $x_{K, \phi}(\theta, \delta)$ whenever there is no ambiguity (which is actually everywhere, except for the proof of Theorem 1.2).

Proof. We only need to show that $h_{\mathrm{M}_{\delta}(K, \phi)}$ is continuous as a function of θ and δ. We put $g(\theta, d)=\int_{K \cap H^{+}(\theta, d)}\langle\theta, y\rangle \phi(y) \mathrm{d} y$. Then, g is continuous in the product metric. By the above, the function $(\theta, \delta) \rightarrow(\theta, d(\theta, \delta))$ is continuous in the product metric. Now,

$$
h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)=\frac{g(\theta, d(\theta, \delta))}{\delta}
$$

and therefore it is continuous for $0<\delta \leqslant \int_{K} \phi(y) \mathrm{d} y, \theta \in \mathbb{S}^{n-1}$. Moreover, for all $\theta \in \mathbb{S}^{n-1}$ and for all $\delta \in\left(0, \int_{K} \phi(y) \mathrm{d} y\right]$,

$$
d(\theta, \delta) \leqslant h_{\mathrm{M}_{\delta}(K, \phi)}(\theta) \leqslant h_{K}(\theta)
$$

Note that for $\delta=0, d(\theta, 0)=h_{K}(\theta)$. Let $\theta_{0} \in \mathbb{S}^{n-1}$ be fixed. For $\varepsilon>0$, there exists an open ball O containing $\left(\theta_{0}, 0\right) \in \mathbb{S}^{n-1} \times\left[0, \int_{K} \phi(y) \mathrm{d} y\right]$ such that for $\left(\theta_{1}, \delta_{1}\right) \in O$, we have $\left|h_{K}\left(\theta_{0}\right)-d\left(\theta_{1}, \delta_{1}\right)\right|<\varepsilon$. Thus, we conclude that $\left|h_{K}\left(\theta_{0}\right)-h_{\mathrm{M}_{\delta_{1}}(K, \phi)}\left(\theta_{1}\right)\right|<\varepsilon$ and hence $h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)$ is continuous at $\left(\theta_{0}, 0\right)$ if we define $h_{\mathrm{M}_{0}(K, \phi)}\left(\theta_{0}\right):=h_{K}\left(\theta_{0}\right)$.

2.2. Ulam's floating body problem

Let $K \subseteq \mathbb{R}^{n}$ be a body with a uniform density $0<\rho<1$. Suppose that we put K in a liquid of uniform density 1 , such that the surface of the liquid is orthogonal to the direction u. Let g be the barycenter of K, and b its center of buoyancy, that is the barycenter of the portion of K which is submerged in the liquid. We say that K floats in equilibrium in direction u if the barycenter of K is directly above its buoyancy center, namely $g-b$ is parallel to u.

A well-known fact in hydrostatics which was pointed out to us by Ning Zhang (see, for example, [19, Theorem 2]) states that if a body floats in liquid, then its barycenter, its center of buoyancy, and the barycenter of the portion of the body that is above the surface of the liquid, are all collinear. In terms of $M_{\delta}(K)$, this property translates to the following proposition:

Proposition 2.2. Let $K \subseteq \mathbb{R}^{n}$ be a convex body with $\operatorname{bar}(K)=0$ and $|K|=1$. Then, $\mathrm{M}_{1-\delta}(K)=-\frac{\delta}{1-\delta} \mathrm{M}_{\delta}(K)$.

Remark 2.3. An immediate consequence of the above proposition is that for any convex body $K \subseteq \mathbb{R}^{n}, \mathrm{M}_{\frac{1}{2}}(K)$ is centrally symmetric. Moreover, by Theorem 1.1 and Proposition 2.6 below, it follows that $\mathrm{M}_{\frac{1}{2}}(K)$ is isomorphic to B_{2}^{n}.

Proof. Recall that $h_{M_{\delta}(K)}(\theta)=\langle x(\theta, \delta), \theta\rangle$ where

$$
x(\theta, \delta):=\frac{\int_{K \cap H^{+}(\theta, \delta)} y \mathrm{~d} y}{\delta}
$$

and $H^{+}(\theta, \delta)$ is the half space in direction θ such that $\left|K \cap H^{+}(\theta, \delta)\right|=\delta$. Observe that

$$
0=\operatorname{bar}(K)=\int_{K} x \mathrm{~d} x=\int_{K \cap H^{+}(\theta, \delta)} x \mathrm{~d} x+\int_{K \cap H^{-}(\theta, \delta)} x \mathrm{~d} x,
$$

which is equivalent to

$$
0=\delta x(\theta, \delta)+(1-\delta) x(-\theta, 1-\delta) .
$$

Therefore, $x(-\theta, 1-\delta)=-\frac{\delta}{1-\delta} x(\theta, \delta)$, which is equivalent to $\mathrm{M}_{1-\delta}(K)=-\frac{\delta}{1-\delta} \mathrm{M}_{\delta}(K)$.
As mentioned in the introduction, Ulam's long-standing floating problem asks whether the only body of uniform density that floats in equilibrium in every orientation must be a Euclidean ball. A direct consequence of Proposition 2.2 is that Ulam's floating problem can be restated in terms of $M_{\delta}(K)$:

Corollary 2.4. Ulam's floating problem is equivalent to the following problem: Suppose that $M_{\delta}(K)$ is a Euclidean ball. Must K be a Euclidean ball?

We remark that this new form of Ulam's problem remains open if one replaces $M_{\delta}(K)$ with the convex floating body K_{δ}. Another related open problem asks whether a convex body K is centrally symmetric if and only if K_{δ} is symmetric. When replaced with $M_{\delta}(K)$, this problem seems also interesting. Note that Auerbach's counterexample in [5] to Ulam's problem in the plane provides an example for a non-centrally symmetric convex body $K \subseteq \mathbb{R}^{2}$ for which $M_{\delta}(K)$ is a Euclidean ball, thus answers both of the above problems in this case.

Figure 2.1 (colour online). Illustration for the proof of Theorem 1.1

2.3. Connection to floating bodies

We begin with the proof of Theorem 1.1:
Proof of Theorem 1.1. By Proposition 2.1, we have that

$$
h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)=\frac{1}{\delta} \int_{K \cap\left\{y \in \mathbb{R}^{n}:\langle y, \theta\rangle \geqslant d(\theta, \delta)\right\}}\langle x, \theta\rangle \phi(x) \mathrm{d} x \geqslant d(\theta, \delta) \geqslant h_{F_{\delta}(K, \phi)}(\theta)
$$

Therefore, $F_{\delta}(K, \phi) \subseteq \mathrm{M}_{\delta}(K, \phi)$.
Fix $\delta>0$ and $\theta \in \mathbb{S}^{n-1}$. For $\beta \in \mathbb{S}^{n-1}$, let $H_{\beta}^{+}:=\left\{y \in \mathbb{R}^{n}:\langle y, \beta\rangle \geqslant\langle x(\theta, \delta), \beta\rangle\right\}$. Consider the function $g_{\beta}(t):=\int_{\{y:\langle y, \beta\rangle=t\}} \mathbf{1}_{K \cap H^{+}(\theta, \delta)}(y) \phi(y) \mathrm{d} y$. Since ϕ is log-concave, it follows by Prékopa-Leindler's inequality that g_{β} is also log-concave. By [31, Lemma 5.4] (a generalization of Grünbaum's inequality), we have that

$$
\frac{1}{e} \int g_{\beta}(t) \mathrm{d} t \leqslant \int_{t \geqslant\langle x(\theta, \delta), \beta\rangle} g_{\beta}(t) \mathrm{d} t \leqslant\left(1-\frac{1}{e}\right) \int g_{\beta}(t) \mathrm{d} t
$$

or equivalently,

$$
\frac{1}{e} \int_{K \cap H^{+}(\theta, \delta)} \phi(y) \mathrm{d} y \leqslant \int_{H_{\beta}^{+} \cap K \cap H^{+}(\theta, \delta)} \phi(y) \mathrm{d} y \leqslant\left(1-\frac{1}{e}\right) \int_{K \cap H^{+}(\theta, \delta)} \phi(y) \mathrm{d} y
$$

Taking $\beta=\theta$, we have $H_{\theta}^{+} \cap K \cap H^{+}(\theta, \delta)=H_{\theta}^{+} \cap K$. Since $\int_{H_{\theta}^{+} \cap K} \phi(y) \mathrm{d} y \leqslant\left(1-\frac{1}{e}\right) \delta$, we obtain

$$
h_{\left(1-\frac{1}{e}\right) \delta}(K, \phi)(\theta) \leqslant d\left(\theta,\left(1-\frac{1}{e}\right) \delta\right) \leqslant\langle x(\theta, \delta), \theta\rangle=h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)
$$

and thus $F_{\left(1-\frac{1}{e}\right) \delta}(K, \phi) \subseteq \mathrm{M}_{\delta}(K, \phi)$. On the other hand (see Figure 2.1), for $\beta \in \mathbb{S}^{n-1}$, we have

$$
\int_{H_{\beta}^{+} \cap K} \phi(y) \mathrm{d} y \geqslant \int_{H_{\beta}^{+} \cap K \cap H^{+}(\theta, \delta)} \phi(y) \mathrm{d} y \geqslant \frac{\delta}{e}=\int_{H^{+}\left(\beta, \frac{\delta}{e}\right) \cap K} \phi(y) \mathrm{d} y
$$

Hence, $d\left(\beta, \frac{\delta}{e}\right) \geqslant\langle x(\theta, \delta), \beta\rangle$. Therefore, we have

$$
x(\theta, \delta) \in \bigcap_{\beta \in \mathbb{S}^{n-1}}\left\{y:\langle y, \beta\rangle \leqslant d\left(\theta, \frac{\delta}{e}\right)\right\}=F_{\frac{\delta}{e}}(K, \phi) .
$$

Since $\mathrm{M}_{\delta}(K, \phi)$ and $F_{\frac{\delta}{e}}(K, \phi)$ are convex sets, we conclude that $\mathrm{M}_{\delta}(K, \phi) \subseteq F_{\frac{\delta}{e}}(K, \phi)$.
The L_{p} centroid bodies were introduced by Lutwak and Zhang [39] (using a different normalization) as follows: For a convex body K in \mathbb{R}^{n} of volume 1 and $1 \leqslant p \leqslant \infty$, the L_{p} centroid body $Z_{p}(K)$ is this convex body whose support function is given by

$$
\begin{equation*}
h_{Z_{p}(K)}(\theta)=\left(\int_{K}|\langle x, \theta\rangle|^{p} d x\right)^{1 / p} . \tag{2.4}
\end{equation*}
$$

It is known that the floating body K_{δ} is close to some L_{p} centroid body of K. More precisely, one has:

Theorem 2.5 [45, Theorem 2.2]. Let K be a symmetric convex body of volume 1. For $\delta \in\left(0, \frac{1}{2}\right)$, we have

$$
c_{1} Z_{\log \left(\frac{e}{2 \delta}\right)}(K) \subseteq K_{\delta} \subseteq c_{2} Z_{\log \left(\frac{e}{2 \delta}\right)}(K)
$$

where $c_{1}, c_{2}>0$ are universal constants.
We obtain a similar result for Ulam floating bodies:
Proposition 2.6. Let K be a symmetric convex body in \mathbb{R}^{n} of volume 1 . Then, there is an absolute constant $c_{1}>0$ such that for all $\delta<\frac{1}{e}$

$$
c_{1} Z_{\log \left(\frac{e}{2 \delta}\right)}(K) \subseteq K_{\delta} \subseteq \mathrm{M}_{\delta}(K) \subseteq e Z_{\log \left(\frac{1}{\delta}\right)}(K) .
$$

Proof. The first inclusion holds by Theorem 2.5. The second one, $K_{\delta} \subseteq \mathrm{M}_{\delta}(K)$, follows from Theorem 1.1. By Hölder's inequality, we have for $p \in[1, \infty]$,

$$
\begin{aligned}
\int_{K \cap H^{+}(\theta, \delta)}\langle y, \theta\rangle \mathrm{d} y & \leqslant\left(\int_{K \cap H^{+}(\theta, \delta)} 1^{q} \mathrm{~d} y\right)^{\frac{1}{q}}\left(\int_{K}|\langle\theta, y\rangle|^{p} \mathrm{~d} y\right)^{\frac{1}{p}} \\
& =\delta^{\frac{1}{q}} h_{Z_{p}(K)}(\theta),
\end{aligned}
$$

where q satisfies $\frac{1}{p}+\frac{1}{q}=1$. Dividing both sides by δ, we get

$$
h_{\mathrm{M}_{\delta}(K)}(\theta, \delta) \leqslant\left(\frac{1}{\delta}\right)^{\frac{1}{p}} h_{Z_{p}(K)}(\theta)
$$

Putting $p=\log \left(\frac{1}{\delta}\right)$ yields

$$
h_{\mathrm{M}_{\delta}(K)}(\theta, \delta) \leqslant e h_{Z_{\log \left(\frac{1}{\delta}\right)}(K)}(\theta) .
$$

Therefore, we have that

$$
\mathrm{M}_{\delta}(K) \subseteq e Z_{\log \left(\frac{1}{\delta}\right)}(K)
$$

2.4. Smoothness of Ulam floating bodies

In this section, we prove Theorem 1.2. To this end, let $\rho_{v}(\cdot)$ denote the radial function of K with center v. That is,

$$
\rho_{v}(\theta)=\max \left\{r \in \mathbb{R}^{+}: v+r \theta \in K\right\} .
$$

We will need the following fact, which can be found implicitly in, for example, [47].
FACT 2.7. Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Then, the following are equivalent.
(1) K has C^{k} boundary.
(2) The function $(v, \theta) \rightarrow \rho_{v}(\theta)$ is C^{k} for every $v \in \operatorname{int}(K)$ and $\theta \in \mathbb{S}^{n-1}$.
(3) There exists $v \in \operatorname{int}(K)$ such that $\theta \rightarrow \rho_{v}(\theta)$ is C^{k}.

Proof of Theorem 1.2. For $a \in \mathbb{R}^{n} \backslash\{0\}$, let $H:=\{x:\langle x, a\rangle=1\}, \quad \delta(a)=$ $|K \cap\{\langle x, a\rangle \geqslant 1\}|$, and $U(a):=\int_{K \cap\{\langle x, a\rangle \geqslant 1\}} x \mathrm{~d} x$. We would like to show that

$$
\begin{gather*}
\nabla \delta(a)=\frac{1}{\|a\|} \int_{K \cap H} x \mathrm{~d} x \tag{2.5}\\
D U=\frac{1}{\|a\|}\left(\int_{K \cap\{\langle x, a\rangle=1\}} x_{i} x_{j} \mathrm{~d} x\right)_{i, j \in[n]}, \tag{2.6}
\end{gather*}
$$

where $D U$ denotes the differential of U and $[n]=\{1, \cdots, n\}$. Equation (2.5) was proved in [41, Lemma 5]. Using the same ideas, we prove (2.6) as follows. Pick a direction θ so that θ is not parallel to a, and let $H_{\varepsilon}:=\{x:\langle x, a+\varepsilon \theta\rangle=1\}$. As illustrated in Figure 2.2, we also define:

$$
\begin{aligned}
& K_{-}(\varepsilon)=\operatorname{int}(K) \cap\left\{y \in \mathbb{R}^{n}:\langle y, a\rangle \geqslant 1,\langle y, a+\varepsilon \theta\rangle \leqslant 1\right\}, \\
& K_{+}(\varepsilon)=\operatorname{int}(K) \cap\left\{y \in \mathbb{R}^{n}:\langle y, a\rangle \leqslant 1,\langle y, a+\varepsilon \theta\rangle \geqslant 1\right\} .
\end{aligned}
$$

Let U_{j} denote the j th coordinate of U. We have

$$
U_{j}(a+\varepsilon \theta)-U_{j}(a)=\int_{K_{+}(\varepsilon)}\left\langle x, e_{j}\right\rangle \mathrm{d} x-\int_{K_{-}(\varepsilon)}\left\langle x, e_{j}\right\rangle \mathrm{d} x .
$$

From now on, we choose $\varepsilon>0$ small enough so that $\langle a, a+\varepsilon \theta\rangle>0$. For $y \in \mathbb{R}^{n}$, we write y uniquely in the form $x+t \frac{a}{\|a\|}$, where $x=y+\frac{1-\langle y, a\rangle}{\langle a, a\rangle} a$ and $t=-\frac{1-\langle y, a\rangle}{\langle a, a\rangle}\|a\|$. Note that $x \in H$. Then,

$$
\begin{aligned}
& \left\{y \in \mathbb{R}^{n}:\langle y, a\rangle \geqslant 1,\langle y, a+\varepsilon \theta\rangle \leqslant 1\right\}= \\
& \left\{x+t a: x \in H, t \in \mathbb{R},\left\langle x+t \frac{a}{\|a\|}, a\right\rangle \geqslant 1,\left\langle x+t \frac{a}{\|a\|}, a+\varepsilon \theta\right\rangle \leqslant 1\right\}= \\
& \left\{x+t a: x \in H, 0 \leqslant t \leqslant \frac{-\varepsilon\langle x, \theta\rangle\|a\|}{\langle a, a+\varepsilon \theta\rangle}\right\}= \\
& \left\{x+t a: x \in H,\langle x, \theta\rangle \leqslant 0,0 \leqslant t \leqslant \frac{-\varepsilon\langle x, \theta\rangle\|a\|}{\langle a, a+\varepsilon \theta\rangle}\right\} .
\end{aligned}
$$

Thus,

$$
K_{-}(\varepsilon)=\left\{x+t a: x \in H,\langle x, \theta\rangle \leqslant 0,0 \leqslant t \leqslant \frac{-\varepsilon\langle x, \theta\rangle\|a\|}{\langle a, a+\varepsilon \theta\rangle}\right\} \cap \operatorname{int}(K) .
$$

Figure 2.2 (colour online). Regions for the proof of Theorem 1.2

Let

$$
O_{-}(\varepsilon):=\left\{x \in H:\langle x, \theta\rangle \leqslant 0,\left[x, x+\frac{-\varepsilon\langle x, \theta\rangle\|a\|}{\langle a, a+\varepsilon \theta\rangle} a\right] \cap \operatorname{int}(K) \neq \emptyset\right\} .
$$

For $x \in H$ such that $\langle x, \theta\rangle \leqslant 0$, we have that

$$
\frac{-\varepsilon\langle x, \theta\rangle\|a\|}{\langle a, a+\varepsilon \theta\rangle}=\frac{\varepsilon|\langle x, \theta\rangle|\|a\|}{\langle a, a+\varepsilon \theta\rangle}=\frac{|\langle x, \theta\rangle|\|a\|}{\langle a, a\rangle \varepsilon^{-1}+\langle a, \theta\rangle}
$$

decrease to 0 as $\varepsilon \searrow 0$. Thus, $O(\varepsilon)$ shrinks to

$$
\begin{aligned}
O_{-}(0) & =\{x \in H:\langle x, \theta\rangle \leqslant 0,[x, x] \cap \operatorname{int}(K) \neq \emptyset\} \\
& =\{x \in H \cap \operatorname{int}(K):\langle x, \theta\rangle \leqslant 0\}
\end{aligned}
$$

For $x \in O_{-}(\varepsilon)$, let $0 \leqslant t_{1}(\varepsilon, x) \leqslant t_{2}(\varepsilon, x) \leqslant \frac{-\varepsilon\langle x, \theta\rangle}{\langle a, a+\varepsilon \theta\rangle}\|a\|$ be defined such that

$$
\left\{x+t a: 0 \leqslant t \leqslant \frac{-\varepsilon\langle x, \theta\rangle\|a\|}{\langle a, a+\varepsilon \theta\rangle}\right\} \cap \operatorname{int}(K)=\left\{x+t a: t_{1}(\varepsilon, x)<t<t_{2}(\varepsilon, x)\right\} .
$$

Then, by Fubini's theorem, we have

$$
\begin{aligned}
\int_{K_{-}(\varepsilon)}\left\langle y, e_{j}\right\rangle \mathrm{d} y & =\int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)}\left\langle x+t \frac{a}{\|a\|}, e_{j}\right\rangle \mathrm{d} t \mathrm{~d} x \\
& =\int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)}\left\langle x, e_{j}\right\rangle \mathrm{d} t \mathrm{~d} x+\int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)}\left\langle t \frac{a}{\|a\|}, e_{j}\right\rangle \mathrm{d} t \mathrm{~d} x .
\end{aligned}
$$

We analyze each of the above terms, separately, as follows.

First, we have that

$$
\begin{aligned}
\left|\int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)}\left\langle t \frac{a}{\|a\|}, e_{j}\right\rangle \mathrm{d} t \mathrm{~d} x\right| & \leqslant \int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)} t \mathrm{~d} t \mathrm{~d} x \\
& \leqslant \int_{O_{-}(\varepsilon)} \int_{0}^{\frac{-\varepsilon\langle x, \theta) \backslash a \|}{\langle a, a+e \theta\rangle}} t \mathrm{~d} t \mathrm{~d} x \\
& \leqslant \frac{1}{2} \frac{\varepsilon^{2}\|a\|^{2}}{\langle a, a+\varepsilon \theta\rangle^{2}} \int_{O_{-}(\varepsilon)}\langle x, \theta\rangle^{2} \mathrm{~d} x .
\end{aligned}
$$

Since $O_{-}(\varepsilon)$ is bounded and shrinks as ε decreases, we conclude that

$$
\lim _{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)}\left\langle t \frac{a}{\|a\|}, e_{j}\right\rangle \mathrm{d} t \mathrm{~d} x=0
$$

Second, we have that

$$
\frac{\int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)}\left\langle x, e_{j}\right\rangle \mathrm{d} t \mathrm{~d} x}{\varepsilon}=\int_{H} \frac{\left(t_{2}(x, \varepsilon)-t_{1}(x, \varepsilon)\right)\left\langle x, e_{j}\right\rangle \mathbf{1}_{O_{-}(\varepsilon)}(x)}{\varepsilon} \mathrm{d} x .
$$

Fix $\varepsilon_{0}>0$. For $\varepsilon_{0}>\varepsilon>0$, we have that

$$
\left|\frac{\left(t_{2}(x, \varepsilon)-t_{1}(x, \varepsilon)\right)\left\langle x, e_{j}\right\rangle \mathbf{1}_{O_{-}(\varepsilon)}(x)}{\varepsilon}\right| \leqslant \frac{|\langle x, \theta\rangle|\|a\|}{\langle a, a\rangle-\varepsilon_{0}|\langle a, \theta\rangle|}\left|\left\langle x, e_{j}\right\rangle\right| \mathbf{1}_{O_{-}\left(\varepsilon_{0}\right)},
$$

where the function on the right-hand side is integrable.
Suppose $x \notin O_{-}(0)$. Then, $\frac{\left(t_{2}(x, \varepsilon)-t_{1}(x, \varepsilon)\right)\left\langle x, e_{j}\right\rangle 1_{O_{-}(\varepsilon)}(x)}{\varepsilon} \rightarrow 0$ as $\varepsilon \searrow 0$ since $\mathbf{1}_{O_{-}(\varepsilon)}(x)=0$ for small $\varepsilon>0$. For $x \in O_{-}(0)$, we have $t_{1}(x)=0$ and $t_{2}(x)=\frac{-\varepsilon\langle x, \theta\rangle\|a\|}{\langle a, a+\varepsilon \theta\rangle}$ for sufficiently small ε. We conclude that, as $\varepsilon \searrow 0$,

$$
\frac{\left(t_{2}(x, \varepsilon)-t_{1}(x, \varepsilon)\right)\left\langle x, e_{j}\right\rangle \mathbf{1}_{O_{-}(\varepsilon)}(x)}{\varepsilon} \rightarrow \frac{-\langle x, \theta\rangle\left\langle x, e_{j}\right\rangle}{\|a\|} \mathbf{1}_{O_{-}(0)}(x) .
$$

By Lebesgue's dominated convergence theorem, we have

$$
\begin{aligned}
& \lim _{\varepsilon \searrow 0}-\frac{\int_{K_{-}(\varepsilon)}\left\langle x, e_{j}\right\rangle \mathrm{d} x}{\varepsilon} \\
= & \lim _{\varepsilon \searrow 0}-\frac{\int_{O_{-}(\varepsilon)} \int_{t_{1}(\varepsilon, x)}^{t_{2}(\varepsilon, x)}\left\langle x, e_{j}\right\rangle \mathrm{d} t \mathrm{~d} x}{\varepsilon} \\
= & \frac{1}{\|a\|} \int_{K \cap H \cap\{\langle x, \theta\rangle \leqslant 0\}}\langle x, \theta\rangle\left\langle x, e_{j}\right\rangle \mathrm{d} x .
\end{aligned}
$$

Via the same argument, one also shows that

$$
\lim _{\varepsilon \searrow 0} \frac{\int_{K_{+}(\varepsilon)}\left\langle x, e_{j}\right\rangle \mathrm{d} x}{\varepsilon}=\frac{1}{\|a\|} \int_{K \cap H \cap\{\langle x, \theta\rangle \geqslant 0\}}\langle x, \theta\rangle\left\langle x, e_{j}\right\rangle \mathrm{d} x .
$$

Thus, we conclude that

$$
\lim _{\varepsilon \searrow 0} \frac{U_{j}(a+\varepsilon \theta)-U_{j}(a)}{\varepsilon}=\frac{1}{\|a\|} \int_{K \cap H}\langle x, \theta\rangle\left\langle x, e_{j}\right\rangle \mathrm{d} x .
$$

This completes the proof of (2.6).
Next, we show that $D U(a)$ and $\nabla \delta(a)$ are C^{k} functions.

Pick $v \in \operatorname{int}(K) \cap H$. Let σ_{a} be the normalized Haar measure on $S(a)=\mathbb{S}^{n-1} \cap a^{\perp}$. Then,

$$
\begin{align*}
\int_{K \cap H} x \mathrm{~d} x & =(n-1)\left|B_{2}^{n-1}\right| \int_{S(a)} \int_{0}^{\rho_{v}(\theta)} r^{n-2}(v+r \theta) \mathrm{d} r \mathrm{~d} \sigma_{a}(\theta) \\
& =\left|B_{2}^{n-1}\right| \int_{S(a)}\left(\rho_{v}^{n-1}(\theta) v+\frac{n-1}{n} \rho_{v}^{n}(\theta) \theta\right) \mathrm{d} \sigma_{a}(\theta) . \tag{2.7}
\end{align*}
$$

Fix $a_{0} \in \mathbb{R}^{n}$ so that $\operatorname{int}(K) \cap\left\{\left\langle x, a_{0}\right\rangle=1\right\} \neq \emptyset$ and let $v_{0} \in \operatorname{int}(K) \cap\left\{\left\langle x, a_{0}\right\rangle=1\right\}$. By Fact 2.7, $(v, \theta) \rightarrow \rho_{v}(\theta)$ is C^{k}, and hence the function $F_{a_{0}}: \mathbb{R}^{n} \times O_{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
(v, T) \mapsto\left|B_{2}^{n-1}\right| \int_{S\left(a_{0}\right)}\left(\rho_{v}^{n-1}(T \theta) v+\frac{n-1}{n} \rho_{v}^{n}(T \theta) T \theta\right) \mathrm{d} \sigma_{a_{0}}(\theta)
$$

is also C^{k}. We can find a smooth function $a \mapsto(v(a), T(a))$ in a neighborhood of a_{0} so that $v(a) \in \operatorname{int}(K) \cap\{\langle x, a\rangle=1\}$ and $T(a) S\left(a_{0}\right)=\mathbb{S}^{n-1} \cap a^{\perp}$. Indeed, for a close to a_{0}, we define the unique two-dimensional rotation $T(a)$ satisfying $T(a) \frac{a_{0}}{\left\|a_{0}\right\|}=\frac{a}{\|a\|}$ and $T(a) v=v$ for all $v \in \operatorname{span}\left(a, a_{0}\right)^{\perp}$. In particular, $a \mapsto T(a)$ is a smooth function around a_{0}. Also, $T(a)\left(S\left(a_{0}\right)\right)=$ $S(a)$. Let $v(a)$ be the projection of v_{0} onto $\{\langle x, a\rangle=1\}$. In other words,

$$
v(a):=v_{0}-\left\langle v_{0}, \frac{a}{\|a\|}\right\rangle \frac{a}{\|a\|}+\frac{a}{\|a\|^{2}},
$$

which is again smooth when $a \neq 0$. Also, $v\left(a_{0}\right)=v_{0}$, and $v(a) \in \operatorname{int}(K)$ if a is close to a_{0}.
Next, we express $\nabla \delta$ in terms of $v(a)$ and $T(a)$: By (2.7), we have

$$
\begin{aligned}
\nabla \delta(a) & =\int_{K \cap\{\langle x, a\rangle=1\}} x \mathrm{~d} x \\
& =\frac{1}{\|a\|}\left|B_{2}^{n-1}\right| \int_{S(a)}\left(\rho_{v(a)}^{n-1}(\theta) v(a)+\frac{n-1}{n} \rho_{v(a)}^{n}(\theta) \theta\right) \mathrm{d} \sigma_{a}(\theta) \\
& =\frac{1}{\|a\|}\left|B_{2}^{n-1}\right| \int_{S\left(a_{0}\right)}\left(\rho_{v(a)}^{n-1}(T(a) \theta) v(a)+\frac{n-1}{n} \rho_{v(a)}^{n}(T(a) \theta) T(a) \theta\right) \mathrm{d} \sigma_{a_{0}}(\theta) \\
& =\frac{1}{\|a\|} F_{a_{0}}(v(a), T(a)) .
\end{aligned}
$$

We conclude that $\nabla \delta(a)$ is C^{k} and thus $\delta(a)$ is C^{k+1}.
Recall that $\delta(\theta, d)=|K \cap\{\langle x, \theta\rangle \geqslant d\}|$. Consider the function from $\mathbb{S}^{n-1} \times \mathbb{R}$ to $\mathbb{S}^{n-1} \times \mathbb{R}$ defined by

$$
(\theta, d) \mapsto\left(\theta, \delta\left(\frac{1}{d} \theta\right)\right)=(\theta, \delta(\theta, d))
$$

By the above, it is C^{k+1} whenever $\operatorname{int}(K) \cap\{\langle x, \theta\rangle=d\} \neq \emptyset$. Thus, its inverse function $(\theta, d(\theta, \delta))$ is also C^{k+1} for $(\theta, \delta) \in \mathbb{S}^{n-1} \times[0,|K|]$. Repeating the same argument as for $\nabla \delta(a)$ implies that $U(a)$ is also C^{k+1}.

Recall that if $d(\theta, \delta)>0$,

$$
x_{K}(\theta, \delta)=\frac{1}{\delta} \int_{K \cap\{\langle x, \theta\rangle \geqslant d(\theta, \delta)\}} x \mathrm{~d} x=\frac{1}{\delta} U\left(\frac{\theta}{d(\theta, \delta)}\right) .
$$

Therefore, for a fixed $0<\delta<|K|$, and θ such that $d(\theta, \delta)>0$, the function $\theta \mapsto \frac{x_{K}(\theta, \delta)}{\left\|x_{K}(\theta, \delta)\right\|}$ is C^{k+1}. Moreover, it is invertible since $\mathrm{M}_{\delta}(K)$ is strictly convex. Thus its inverse, denoted by $G_{\delta}: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$, is also C^{k+1}. Therefore, the radial function of $\mathrm{M}_{\delta}(K)$, which is given by $\rho(\theta)=\left\|x\left(G_{\delta}(\theta), \delta\right)\right\|$ is also C^{k+1}.

Finally, we need to show that $\theta \rightarrow x_{K}(\theta, \delta)$ is C^{k+1} whenever $d(\theta, \delta) \leqslant 0$. Indeed, we may choose some vector $v \in \mathbb{R}^{n}$ and consider $M_{\delta}(v+K)$. Then, $x_{K}(\theta, \delta)=x_{v+K}(\theta, \delta)-v$. Clearly, we can always choose v such that, for $v+K, d(\theta, \delta)>0$. Thus, following the same argument, we can show $x_{v+K}(\theta, \delta)$ is C^{k+1}. As a consequence, $x_{K}(\theta, \delta)$ is C^{k+1}. Therefore, we conclude that $\rho(\theta)$ is C^{k+1} on \mathbb{S}^{n-1}. By Fact (2.7), the boundary of $\mathrm{M}_{\delta}(K)$ is C^{k+1}.

3. Relation to p-affine surface area

This section is devoted to the proof of Theorem 1.3.

3.1. Preliminary results

For the proof of Theorem 1.3, we will need a few preliminary results.
First, we focus on $\mathrm{M}_{\delta}\left(\rho B_{2}^{n}, \phi\right)$, where ρB_{2}^{n} is the Euclidean ball centered at 0 and with radius ρ, and $\phi(x)$ is a constant function. By symmetry, we know that $\mathrm{M}_{\delta}\left(\rho B_{2}^{n}, \phi\right)$ is again a Euclidean ball with the same center. Let $\Delta(\rho, \delta)$ be the difference of the radius of ρB_{2}^{n} and $\mathrm{M}_{\delta}\left(\rho B_{2}^{n}, \phi\right)$. If $\phi: \rho B_{2}^{n} \rightarrow(0, \infty)$ is a constant function, $\phi(x)=s$, for all $x \in \rho B_{2}^{n}$, then, we define $\Delta(\rho, \delta, s)$ to be the difference of radius of ρB_{2}^{n} and $\mathrm{M}_{\delta}\left(\rho B_{2}^{n}, s\right)$. One easily verifies that

$$
\begin{equation*}
\Delta(\rho, \delta, s)=\Delta\left(\rho, \frac{\delta}{s}\right) \tag{3.1}
\end{equation*}
$$

PROPOSITION 3.1. $\lim _{\delta \searrow 0} \Delta(\rho, \delta) / \delta^{\frac{2}{n+1}} \rho^{\frac{n+1}{n-1}}=c_{n}$, where $c_{n}=\frac{1}{2} \frac{n+1}{n+3}\left(\frac{n+1}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}}$.
Proof. We denote $h(\rho, \delta)$ to be height of the cap of ρB_{2}^{n} which has volume δ. To be specific, $h(\rho, \delta)$ satisfies the equality

$$
\delta=\left|B_{2}^{n-1}\right| \int_{0}^{h(\rho, \delta)} g^{n-1}(t) \mathrm{d} t
$$

where $g(t)=\left(\rho^{2}-(\rho-t)^{2}\right)^{1 / 2}$. Moreover,

$$
g(t)=\left(\rho^{2}-(\rho-t)^{2}\right)^{1 / 2}=\rho\left(1-(1-t / \rho)^{2}\right)^{1 / 2}=\rho(2-t / \rho)^{1 / 2}(t / \rho)^{1 / 2}
$$

We have

$$
\delta=\left|B_{2}^{n-1}\right| \rho^{n-1} \int_{0}^{h(\rho, \delta)}(2-t / \rho)^{\frac{n-1}{2}}(t / \rho)^{\frac{n-1}{2}} \mathrm{~d} t
$$

Thus, we have the inequality

$$
\begin{aligned}
\left|B_{2}^{n-1}\right| \rho^{n-1}(2-h(\rho, \delta) / \rho)^{\frac{n-1}{2}} & \int_{0}^{h(\rho, \delta)}(t / \rho)^{\frac{n-1}{2}} \mathrm{~d} t \leqslant \delta \\
& \leqslant\left|B_{2}^{n-1}\right| \rho^{n-1} 2^{\frac{n-1}{2}} \int_{0}^{h(\rho, \delta)}(t / \rho)^{\frac{n-1}{2}} \mathrm{~d} t
\end{aligned}
$$

Since

$$
\int_{0}^{h(\rho, \delta)}(t / \rho)^{\frac{n-1}{2}} \mathrm{~d} t=\frac{2}{n+1} h(\rho, \delta)^{\frac{n+1}{2}} \rho^{-\frac{n-1}{2}}
$$

we obtain

$$
\frac{1}{2}\left(\frac{n+1}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} \rho^{-\frac{n-1}{n+1}} \leqslant \frac{h(\rho, \delta)}{\delta^{\frac{2}{n+1}}} \leqslant \frac{1}{2-h(\rho, \delta) / \rho}\left(\frac{n+1}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} \rho^{-\frac{n-1}{n+1}}
$$

We conclude that

$$
\lim _{\delta \searrow 0} \frac{h(\rho, \delta)}{\delta^{\frac{2}{n+1}}}=\frac{1}{2}\left(\frac{n+1}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} \rho^{-\frac{n-1}{n+1}}
$$

We have that

$$
\Delta(\rho, \delta)=\frac{\left|B_{2}^{n-1}\right| \int_{0}^{h(\rho, \delta)} t g(t)^{n-1} \mathrm{~d} t}{\left|B_{2}^{n-1}\right| \int_{0}^{h(\rho, \delta)} g(t)^{n-1} \mathrm{~d} t}
$$

To compute the next limit, we apply twice L'Hospital's Rule,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{h}{\Delta} & =\lim \frac{h \int_{0}^{h} h^{n-1} \mathrm{~d} t}{\int_{0}^{h} t g^{n-1} \mathrm{~d} t} \stackrel{L}{=} \lim \frac{\int_{0}^{h} g^{n-1} \mathrm{~d} t+h g(h)^{n-1}}{h g(h)^{n-1}}=1+\lim \frac{\int_{0}^{h} g^{n-1} \mathrm{~d} t}{h g(h)^{n-1}} \\
& \stackrel{L}{=} 1+\lim \frac{\rho^{n-1}\left(2-\frac{r}{\rho}\right)^{\frac{n-1}{2}}\left(\frac{r}{\rho}\right)^{\frac{n-1}{2}}}{\rho^{n}\left(\frac{1}{\rho} \frac{n+1}{2}\left(\frac{r}{\rho}\right)^{\frac{n-1}{2}}\left(2-\frac{r}{\rho}\right)^{\frac{n-1}{2}}-\frac{1}{\rho} \frac{n-1}{2}\left(\frac{r}{\rho}\right)^{\frac{n+1}{2}}\left(2-\frac{r}{\rho}\right)^{\frac{n-3}{2}}\right)} \\
& =1+\lim \frac{\left(2-\frac{r}{\rho}\right)}{\frac{n+1}{2}\left(2-\frac{r}{\rho}\right)-\frac{n-1}{2}\left(\frac{r}{\rho}\right)}=1+\frac{2}{n+1}=\frac{n+3}{n+1} .
\end{aligned}
$$

So,

$$
\lim _{\delta \searrow 0} \frac{\Delta(\rho, \delta)}{\delta^{\frac{2}{n+1}}}=\lim _{\delta \searrow 0} \frac{h(\rho, \delta)}{\delta^{\frac{2}{n+1}}} \cdot \frac{\Delta(\rho, \delta)}{h(\rho, \delta)}=\frac{1}{2} \frac{n+1}{n+3}\left(\frac{n+1}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} \rho^{-\frac{n-1}{n+1}} .
$$

We will also need the next lemma from [51]:
Lemma 3.2. Let K and L be convex bodies in \mathbb{R}^{n} such that $0 \in \operatorname{int}(L)$ and such that $L \subseteq K$. Then,

$$
|K|-|L|=\frac{1}{n} \int_{\partial K}\langle x, N(x)\rangle\left(1-\left|\frac{\left\|x_{L}\right\|}{\|x\|}\right|^{n}\right) \mathrm{d} \mu_{K}(x),
$$

where x_{L} is the unique point in the intersection $\partial L \cap[0, x]$.
For the next lemma, we need a notion that was introduced in [51]. Let K be a convex body in \mathbb{R}^{n} and let $x \in \partial K$ be such that $N_{K}(x)$ is unique. We put $r(x)$ to be the radius of the biggest Euclidean ball contained in K that touches K in x,

$$
r(x)=\max \left\{\rho: B_{2}^{n}\left(x-\rho N_{K}(x), \rho\right) \subseteq K\right\} .
$$

If $N_{K}(x)$ is not unique, $r(x)=0$. It was shown in [51, Lemma 5] that for any convex body K in \mathbb{R}^{n} and any $0 \leqslant \alpha<1$,

$$
\begin{equation*}
\int_{\partial K} r(x)^{-\alpha} d \mu(x)<\infty . \tag{3.2}
\end{equation*}
$$

Lemma 3.3. Let K be a convex body in \mathbb{R}^{n}. Let $x \in \partial K$ and let $x_{M, \delta}=\partial\left(\mathrm{M}_{\delta}(K, \phi)\right) \cap[0, x]$. Then,

$$
\frac{\left\langle x, N_{K}(x)\right\rangle}{\delta^{\frac{2}{n+1}}}\left(1-\left|\frac{\left\|x_{M, \delta}\right\|}{\|x\|}\right|^{n}\right) \leqslant c n r(x)^{-\frac{n-1}{n+1}}
$$

where c is a constant independent of x and δ.
Proof. Let $x_{F, \delta}=\partial\left(F_{\delta}(K, \phi)\right) \cap[0, x]$. By Theorem 1.1, we have that $F_{\delta}(K, \phi) \subseteq M_{\delta}(K, \phi)$ and hence $\left\|x_{\mathbb{F}, \delta}\right\| \leqslant\left\|x_{M, \delta}\right\|$. Therefore,

$$
\frac{\left\langle x, N_{K}(x)\right\rangle}{\delta^{\frac{2}{n+1}}}\left(1-\left|\frac{\left\|x_{M, \delta}\right\|}{\|x\|}\right|^{n}\right) \leqslant \frac{\left\langle x, N_{K}(x)\right\rangle}{\delta^{\frac{2}{n+1}}}\left(1-\left|\frac{\left\|x_{F, \delta}\right\|}{\|x\|}\right|^{n}\right)
$$

and it was shown in [51, Lemma 8] that the latter is smaller than or equal to $c n r(x)^{-\frac{n-1}{n+1}}$.
The next lemma was proved in [51]. There, and in the proof of the main theorem, we need the indicatrix of Dupin (see, for example, [52]). A theorem of Alexandrov [1] and Busemann and Feller [13] shows that the indicatrix of Dupin exists almost everywhere on ∂K and is an ellipsoid or an elliptic cylinder. We also use the notation $C(r, h)$ for the cap of a Euclidean ball with radius r and height h.

Lemma 3.4 [51]. Let K be a convex body in \mathbb{R}^{n} with $0 \in \partial K$ and $N_{K}(0)=-e_{n}=$ $(0, \cdots, 0,-1)$. Suppose the indicatrix of Dupin at 0 exists and is an $(n-1)$-dimensional sphere with radius $\sqrt{\rho}$. Let ξ be an interior point of K.
(i) Let H be the hyperplane orthogonal to $N_{K}(0)$ and passing through z in $[0, \xi]$. We put $z_{n}=\left\langle z, e_{n}\right\rangle$. Then, we have for $0 \leqslant z_{n} \leqslant \rho$,

$$
\left|K \cap H^{+}\right| \leqslant f\left(z_{n}\right)^{n-1}\left|C\left(\rho, z_{n}\right)\right| .
$$

(ii) Let $d=\operatorname{dist}\left(z, B_{2}^{n}\left(\rho e_{n}, \rho\right)^{C}\right)$. There is $\varepsilon_{0}>0$ such that we have for all $z \in[0, \xi]$ with $\|z\| \leqslant \varepsilon_{0}$

$$
d \leqslant z_{n} \leqslant d+\frac{2 d^{2}}{\rho\left\langle\frac{\xi}{\|\xi\|}, N_{K}(0)\right\rangle^{2}}
$$

(iii) There is $\varepsilon_{0}>0$ and an absolute constant $c>0$ such that for all $z \in[0, \xi]$ with $\|z\| \leqslant \varepsilon_{0}$ and all hyperplanes H passing through z

$$
\left|K \cap H^{+}\right| \geqslant f(\gamma)^{-n+1} \mid C(\rho, d(1-c(f(\gamma)-1)) \mid
$$

Here, $\gamma=2 \sqrt{2 \rho d}$ and f is a monotone function on \mathbb{R}^{+}such that $\lim _{t \rightarrow 0} f(t)=1$.
The function f in Lemma 3.4 (iii) depends on K. It controls the error between the approximating ellipsoid and K at a boundary point of K.

Lemma 3.5. Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Moreover, we assume that $0 \in \partial K$ and that $N_{K}(0)=-e_{n}$ is the unique outer normal to ∂K at 0 . Let $\phi: K \rightarrow(0, \infty)$ be a continuous function. We set $H_{t}^{+}=H^{+}\left(-e_{n},-t\right)=\left\{y:\left\langle y, e_{n}\right\rangle<t\right\}$. Then, for each $t>0$, there exists $r>0$ such that for any $\delta>0$,

$$
\mathrm{M}_{\delta}(K, \phi) \cap B_{2}^{n}(0, r)=\mathrm{M}_{\delta}\left(K \cap H_{t}^{+}, \phi\right) \cap B_{2}^{n}(0, r)
$$

Proof. It is obvious that

$$
\mathrm{M}_{\delta}\left(K \cap H_{t}^{+}, \phi\right) \cap B_{2}^{n}(0, r) \subseteq \mathrm{M}_{\delta}(K, \phi) \cap B_{2}^{n}(0, r)
$$

Therefore, it is sufficient to show the other inclusion. Let $d \geqslant 0$. Observe that if (θ, d) is sufficiently close to $\left(-e_{n}, 0\right)$, then $H^{+}(\theta,-d) \cap K \subseteq H_{t}^{+}$, where $H^{+}(\theta,-d)=\{y:\langle y,-\theta\rangle<d\}$. As noted in (2.1), the function $d(\theta, \delta)$ is continuous in (θ, δ). Therefore, there exists $\delta_{0}>0$ and $\varepsilon>0$ such that

$$
\begin{equation*}
K \cap H^{+}(\theta, d(\theta, \delta)) \subseteq H_{t}^{+}, \tag{3.3}
\end{equation*}
$$

for $\left\|\theta-\left(-e_{n}\right)\right\|<\varepsilon$ and $0 \leqslant \delta<\delta_{0}$. For each x in the interior of K, let $\delta(x)$ be the value such that $x \in \partial \mathrm{M}_{\delta(x)}(K, \phi)$ and $\theta(x)$ denote the unique outer normal at x of $\mathrm{M}_{\delta(x)}(K, \phi)$.

Claim. For any $\delta_{0}>0$ and $\varepsilon>0$, there exists $r>0$ such that $\delta(x)<\delta_{0}$ and $\left\|\theta(x)-\left(-e_{n}\right)\right\|<\varepsilon$, for $x \in \operatorname{int}(K) \cap B_{2}^{n}(0, r)$.

Indeed, note that $\mathrm{M}_{\delta_{0}}(K, \phi)$ is strictly contained in K. Thus, $0 \notin \mathrm{M}_{\delta_{0}}(K, \phi)$. Since $\mathrm{M}_{\delta_{0}}(K, \phi)$ is convex, there exists $r>0$ so that $B_{2}^{n}(0, r) \cap \mathrm{M}_{\delta_{0}}(K, \phi)=\emptyset$. Then, $\delta(x)<\delta_{0}$ for $x \in \operatorname{int}(K) \cap$ $B_{2}^{n}(0, r)$.

It remains to show that there exists $r>0$ such that $\left\|\theta(x)-\left(-e_{n}\right)\right\|<\varepsilon$ for $\operatorname{int}(K) \cap$ $B_{2}^{n}(0, r)$. Suppose that it is false. Then, there exists a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in $\operatorname{int}(K)$ such that $x_{k} \rightarrow 0$ and such that $\left\|\theta\left(x_{k}\right)-\left(-e_{n}\right)\right\|>\varepsilon$. By the compactness of \mathbb{S}^{n-1}, we may replace $\left(x_{k}\right)_{k \in \mathbb{N}}$ by a subsequence, again denoted by $\left(x_{k}\right)_{k \in \mathbb{N}}$, so that $\theta\left(x_{k}\right)$ converges to some $\theta_{1} \neq-e_{n}$. Moreover, $\delta\left(x_{k}\right) \rightarrow 0$ since the first claim is true. Continuity of $h_{\mathrm{M}_{\delta}(K, \phi)}(\theta)$ implies that $h_{\mathrm{M}_{\delta\left(x_{k}\right)}(K, \phi)}\left(\theta\left(x_{k}\right)\right) \rightarrow h_{K}\left(\theta_{1}\right)$. As $-e_{n}$ is the unique outer normal to ∂K in $0, h_{K}\left(\theta_{1}\right)>$ $\left\langle 0, \theta_{1}\right\rangle=0$. Therefore, we obtain a contradiction, as $h_{\mathrm{M}_{\delta\left(x_{k}\right)}(K, \phi)}\left(\theta\left(x_{k}\right)\right)=\left\langle x_{k}, \theta\left(x_{k}\right)\right\rangle$, which converges to 0 as $x_{k} \rightarrow 0$. This completes the proof of the claim.

Hence, with the assumptions on δ_{0} and ε, we conclude that there exists $r>0$ such that for $x \in \operatorname{int}(K) \cap B_{2}^{n}(0, r)$,

$$
K \cap H^{+}(\theta(x), d(\theta(x), \delta(x))) \subseteq H_{t}^{+} .
$$

Let $x \in M_{\delta}(K, \phi) \cap B_{2}^{n}(0, r)$. Since $x \in \operatorname{int}(K) \cap B_{2}^{n}(0, r)$,

$$
K \cap H^{+}(\theta(x), d(\theta(x), \delta(x))) \subseteq H_{t}^{+},
$$

and thus $x \in \mathrm{M}_{\delta(x)}\left(K \cap H_{t}^{+}, \phi\right)$. Moreover, note that $\delta(x) \geqslant \delta$ and hence we have

$$
\mathrm{M}_{\delta(x)}\left(K \cap H_{t}^{+}, \phi\right) \subseteq \mathrm{M}_{\delta}\left(K \cap H_{t}^{+}, \phi\right)
$$

Hence, $x \in \mathrm{M}_{\delta}\left(K \cap H_{t}^{+}, \phi\right)$. Therefore, $\mathrm{M}_{\delta}(K, \phi) \cap B(0, r) \subseteq \mathrm{M}_{\delta}\left(K \cap H_{t}^{+}, \phi\right) \cap B(0, r)$.

3.2. Proof of Theorem 1.3

Recall that x_{M} is the unique point in $\partial\left(\mathrm{M}_{\delta}(K, \phi)\right) \cap[0, x]$. We will sometimes write in short x_{M} for $x_{M, \delta}$. By Lemmas 3.2 and 3.3, we have that

$$
\lim _{\delta \rightarrow 0} \frac{|K|-\left|\mathrm{M}_{\delta}(K, \phi)\right|}{\delta^{\frac{2}{n+1}}}=\frac{1}{n} \int_{\partial K} \lim _{\delta \rightarrow 0} \delta^{-\frac{2}{n+1}}\left\langle x, N_{K}(x)\right\rangle\left(1-\left|\frac{\left\|x_{M}\right\|}{\|x\|}\right|^{n}\right) \mathrm{d} \mu_{K}(x) .
$$

For $x \in \partial K$ fixed, the goal is to understand

$$
\lim _{\delta \searrow 0} \frac{1}{n} \int_{\partial K} \delta^{-\frac{2}{n+1}}\left\langle x, N_{K}(x)\right\rangle\left(1-\left|\frac{\left\|x_{M}\right\|}{\|x\|}\right|^{n}\right) \mathrm{d} \mu_{K}(x) .
$$

As x and x_{M} are collinear and as for all $0 \leqslant a \leqslant 1$,

$$
1-n a \leqslant(1-a)^{n} \leqslant 1-n a+\frac{n(n-1)}{2} a^{2}
$$

we get for δ sufficiently small that

$$
\begin{array}{r}
\frac{\left\|x-x_{M}\right\| \mid}{\|x\|}\left(1-\frac{n-1}{2} \frac{\left\|x-x_{M}\right\| \mid}{\|x\|}\right) \leqslant \frac{1}{n}\left(1-\left|\frac{\left\|x_{M}\right\|}{\|x\|}\right|^{n}\right)= \\
\frac{1}{n}\left[1-\left(1-\frac{\left\|x-x_{M}\right\|}{\|x\|}\right)^{n}\right] \leqslant \frac{\left\|x-x_{M}\right\| \|}{\|x\|} . \tag{3.4}
\end{array}
$$

(i) We assume first that the indicatrix of Dupin at $x \in \partial K$ is an ellipsoid. In fact, by a change of the coordinate system, we may also assume that $x=0$ and $N_{K}(0)=-e_{n}$. Let $\zeta \in \mathbb{R}^{n}$ be the origin in the previous coordinate system. Let $y_{M, \delta}:=\partial\left(\mathrm{M}_{\delta}(K, \phi)\right) \cap[0, \zeta]$. Note that $\left\|y_{M, \delta}\right\|=$ $\left\|x-x_{M, \delta}\right\|$ and that $y_{M, \delta} \rightarrow 0$ as $\delta \searrow 0$. Thus,

$$
\begin{equation*}
\lim _{\delta \searrow 0}\left\langle x, N_{K}(x)\right\rangle \frac{\left\|x-x_{M, \delta}\right\|}{\|x\|}=\lim _{\delta \searrow 0}\left\langle\zeta, e_{n}\right\rangle \frac{\left\|y_{M, \delta}\right\|}{\|\zeta\|}=\lim _{\delta \searrow 0}\left\langle y_{M, \delta}, e_{n}\right\rangle . \tag{3.5}
\end{equation*}
$$

There exists a volume preserving positive definite linear transform T such that $N_{T K}(0)=-e_{n}$ and such that the indicatrix of Dupin at 0 becomes a Euclidean ball with radius $\sqrt{\rho}$ (see, for example, [52, equation (5)]). Moreover, ρ satisfies

$$
\kappa_{K}(0)=\frac{1}{\rho^{n-1}} .
$$

Let H^{+}be the half space such that

$$
\delta=\int_{K \cap H^{+}} \phi(y) \mathrm{d} y \quad \text { and } \quad y_{M, \delta}=\frac{\int_{K \cap H^{+}} y \phi(y) \mathrm{d} y}{\delta} .
$$

As T is volume preserving, $\int_{T K \cap T H^{+}} \phi\left(T^{-1} y\right) \mathrm{d} y=\delta$, and thus

$$
\begin{aligned}
T y_{M, \delta} & =\int_{K \cap H^{+}} T y \phi(y) \mathrm{d} y / \delta=\int_{T K \cap T H^{+}} y \phi\left(T^{-1} y\right) \mathrm{d} y / \delta \\
& \in \partial \mathrm{M}_{\delta}\left(T K, \phi \circ T^{-1}\right) .
\end{aligned}
$$

As a consequence, we have

$$
\begin{gathered}
{[0, T \zeta] \cap \partial \mathrm{M}_{\delta}\left(T K, \phi \circ T^{-1}\right)=T y_{M, \delta},} \\
\phi\left(T^{-1} 0\right)=\phi(0),
\end{gathered}
$$

and

$$
\left\langle T y_{M, \delta}, e_{n}\right\rangle=\left\langle y_{M, \delta}, T e_{n}\right\rangle=\left\langle y_{M, \delta}, e_{n}\right\rangle .
$$

Hence, we have reduced the problem to the case when the indicatrix of Dupin at $0 \in \partial K$ is a Euclidean sphere with radius $\sqrt{\rho}$ and $\kappa_{K}(0)=\frac{1}{\rho^{n-1}}$.

Moreover, ∂K can be approximated in 0 by a Euclidean ball $B_{2}^{n}\left(\rho e_{n}, \rho\right)$ of radius ρ and center ρe_{n} in the following sense (see, for example, proof of [53, Lemma 23]):

Let $\varepsilon>0$ be given. Let $B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right)$ be the Euclidean ball centered at $(1-\varepsilon) \rho e_{n}$ whose radius is $(1-\varepsilon) \rho$. Similarly, let $B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right)$ be the Euclidean ball centered at $(1+\varepsilon) \rho$ with radius $(1+\varepsilon) \rho$. Then,

$$
\begin{aligned}
0 \in \partial\left[B_{2}^{n}\left(\rho e_{n}, \rho\right)\right], & 0 \in \partial\left[B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right)\right], \\
& 0 \in \partial\left[B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right)\right],
\end{aligned}
$$

and

$$
N_{B_{2}^{n}\left(\rho e_{n}, \rho\right)}=N_{B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right)}=N_{B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right)}=-e_{n}
$$

and (see, for example, proof of [53, Lemma 23]) there exists Δ_{ε}^{0} such that for $0<t<\Delta_{\varepsilon}^{0}$, the half-space $H_{t}^{+}=\left\{y:\left\langle y, e_{n}\right\rangle \leqslant t\right\}$ determined by the hyperplane orthogonal to e_{n} through the point $t e_{n}$ is such that

$$
\begin{align*}
H_{t}^{+} \cap B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right) & \subseteq H_{t}^{+} \cap K \\
& \subseteq H_{t}^{+} \cap B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right) . \tag{3.6}
\end{align*}
$$

By continuity of ϕ, there exists $s>0$ such that for all $y \in \operatorname{int}\left(B_{2}^{n}(0, s)\right)$,

$$
\begin{equation*}
(1-\varepsilon) \phi(0) \leqslant \phi(y) \leqslant(1+\varepsilon) \phi(0) . \tag{3.7}
\end{equation*}
$$

We will apply Lemma 3.5 with $t=\Delta_{\varepsilon}^{0}$ simultaneously to $K, B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right)$ and $B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right)$ with weights $\phi,(1-\varepsilon) \phi(0)$, and $(1+\varepsilon) \phi(0)$, respectively.

Let $H_{\Delta_{\varepsilon}}^{+}=\left\{y:\left\langle y, e_{n}\right\rangle \leqslant \Delta_{\varepsilon}\right\}$. We choose $\Delta_{\varepsilon} \leqslant \Delta_{\varepsilon}^{0}$ so small that

$$
H_{\Delta_{\varepsilon}}^{+} \cap B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right) \subseteq B_{2}^{n}(0, \min \{s, r\}),
$$

where r is given by Lemma 3.5. We denote

$$
d_{M, \delta}^{-}=\operatorname{dist}\left(y_{M, \delta}, B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right)^{c}\right)
$$

and

$$
d_{M, \delta}^{+}=\operatorname{dist}\left(y_{M, \delta}, B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right)^{c}\right) .
$$

Boundedness of ϕ on $B_{2}^{n}(0, s)$ and (3.6) imply that for $\delta \geqslant 0$,

$$
\begin{aligned}
& \mathrm{M}_{\delta}\left(B _ { 2 } ^ { n } \left((1-\varepsilon) \rho e_{n},\right.\right.\left.(1-\varepsilon) \rho) \cap H_{\Delta_{\varepsilon}}^{+},(1-\varepsilon) \phi(0)\right) \subseteq \mathrm{M}_{\delta}\left(K \cap H_{\Delta_{\varepsilon}}^{+}, \phi\right) \\
& \subseteq \mathrm{M}_{\delta}\left(B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right) \cap H_{\Delta_{\varepsilon}}^{+},(1+\varepsilon) \phi(0)\right)
\end{aligned}
$$

By Lemma 3.5 and the choice of Δ_{ε}, we have

$$
\begin{gathered}
\mathrm{M}_{\delta}\left(B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right),(1-\varepsilon) \phi(0)\right) \cap H_{\Delta_{\varepsilon}}^{+} \subseteq \mathrm{M}_{\delta}(K, \phi) \cap H_{\Delta_{\varepsilon}}^{+} \\
\subseteq \mathrm{M}_{\delta}\left(B_{2}^{n}\left((1+\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right),(1+\varepsilon) \phi(0)\right) \cap H_{\Delta_{\varepsilon}}^{+} .
\end{gathered}
$$

Choose δ so small that $y_{M, \delta} \in H_{\Delta_{\varepsilon}}^{+}$. Then,

$$
y_{M, \delta} \notin \operatorname{int}\left(\mathrm{M}_{\delta}\left(B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1-\varepsilon) \rho\right),(1-\varepsilon) \phi(0)\right)\right)
$$

and

$$
y_{M, \delta} \in \operatorname{int}\left(\mathrm{M}_{\delta}\left(B_{2}^{n}\left((1-\varepsilon) \rho e_{n},(1+\varepsilon) \rho\right),(1+\varepsilon) \phi(0)\right)\right) .
$$

Thus, we conclude that

$$
d_{M, \delta}^{-} \leqslant \Delta((1-\varepsilon) \rho,(1-\varepsilon) \delta \phi(0)) \text { and } d_{M, \delta}^{+} \geqslant \Delta((1+\varepsilon) \rho,(1+\varepsilon) \delta \phi(0)),
$$

where $\Delta((1+\varepsilon) \rho,(1+\varepsilon) \delta \phi(0))$ and $\Delta((1-\varepsilon) \rho,(1-\varepsilon) \delta \phi(0))$ are the differences of the radii of $(1+\varepsilon) \rho B_{2}^{n}$ and $\mathrm{M}_{\delta}\left(\rho B_{2}^{n},(1+\varepsilon) \phi(0)\right)$, and of $(1-\varepsilon) \rho B_{2}^{n}$ and $\mathrm{M}_{\delta}\left(\rho B_{2}^{n},(1-\varepsilon) \phi(0)\right)$, respectively. Applying Lemma 3.4(ii) with $z=y_{M, \delta}$ and Proposition 3.1 for sufficiently small δ yields

$$
(1-\varepsilon)^{\frac{n+1}{n-1}+\frac{2}{n+1}} \leqslant \frac{\left\langle y_{M, \delta}, e_{n}\right\rangle}{c_{n} \delta^{\frac{2}{n+1}} \rho^{-\frac{n-1}{n+1}} \phi(0)^{\frac{2}{n+1}}} \leqslant(1+\varepsilon)^{\frac{n+1}{n-1}+\frac{2}{n+1}} .
$$

Since $\varepsilon>0$ can be chosen arbitrary, we obtain, also using (3.5),

$$
\lim _{\delta \rightarrow 0} \phi(x)^{\frac{2}{n+1}}\left\langle x, N_{K}(x)\right\rangle \frac{\left\|x-x_{M, \delta}\right\|}{\|x\| \delta^{\frac{2}{n+1}}}=c_{n} \rho(x)^{-\frac{n-1}{n+1}}=c_{n} \kappa_{K}(x)^{\frac{1}{n+1}} .
$$

(ii) Now, we assume that x is such that the indicatrix of Dupin at x is an elliptic cylinder. We will show that then

$$
\lim _{\delta \rightarrow 0}\left\langle x, N_{K}(x)\right\rangle \frac{\left\|x-x_{M, \delta}\right\|}{\|x\| \delta^{\frac{2}{n+1}}}=0 .
$$

We only need to show that $\lim _{\delta \rightarrow 0}\left\langle x, N_{K}(x)\right\rangle \frac{\left\|x-x_{M, \delta}\right\|}{\|x\| \delta^{\frac{2}{2}+1}} \leqslant 0$.
We may assume that the first k axes of the elliptic cylinder have infinite lengths and the others not. Then, as above (see, for example, proof of [53, Lemma 23]), for all $\varepsilon>0$ there is an approximating ellipsoid \mathcal{E} and Δ_{ε} such that the hyperplane $\left.H\left(N_{K}(x), x-\Delta_{\varepsilon}\right) N_{K}(x)\right)$ orthogonal to $N_{K}(x)$ through the point $x-\Delta_{\varepsilon} N_{K}(x)$ is such that

$$
\left.\left.H^{+}\left(N_{K}(x), x-\Delta_{\varepsilon}\right) N_{K}(x)\right) \cap \mathcal{E} \subseteq H^{+}\left(N_{K}(x), x-\Delta_{\varepsilon}\right) N_{K}(x)\right) \cap K
$$

and such that the lengths of the k first principal axes of \mathcal{E} are larger than $\frac{1}{\varepsilon}$. As noted above, there is a support hyperplane H_{δ} to $F_{\delta}(K, \phi)$ such that $x_{F, \delta} \in H_{\delta}$ and such that $\delta=\int_{K \cap H_{\delta}^{+}} \phi(y) d y[58]$. Then,

$$
\delta \geqslant \min _{y \in K} \phi(y)\left|K \cap H_{\delta}^{+}\right| \geqslant \min _{y \in K} \phi(y)\left|\mathcal{E} \cap H_{\delta}^{+}\right| .
$$

As above, we may assume that the approximating ellipsoid \mathcal{E} is a Euclidean ball with radius $\rho=\rho(x)$ where $\rho \geqslant \frac{1}{\varepsilon}$. Then,

$$
\begin{aligned}
\left\langle x, N_{K}(x)\right\rangle \frac{\left\|x-x_{M, \delta}\right\|}{\|x\| \delta^{\frac{2}{n+1}}} & \leqslant\left\langle x, N_{K}(x)\right\rangle \frac{\left\|x-x_{F, \delta}\right\|}{\|x\| \delta^{\frac{2}{n+1}}} \\
& \leqslant \frac{\left\langle\frac{x}{\|x\|}, N_{K}(x)\right\rangle\left\|x-x_{F, \delta}\right\|}{\left(\min _{y \in K} \phi(y)\right)^{\frac{2}{n+1}}\left(\left|B_{2}^{n}\left(x-\rho N_{K}(x), \rho\right) \cap H_{\delta}^{+}\right|\right)^{\frac{2}{n+1}}} \\
& \leqslant \frac{\rho^{-\frac{n-1}{n+1}}}{c_{n}\left(\min _{y \in K} \phi(y)\right)^{\frac{2}{n+1}}} .
\end{aligned}
$$

The last inequality can be shown using similar methods as in the case (i). Or, one notices that we are precisely in the situation of [51, Lemmas 7, 10] where exactly this estimate is proved. As ρ is arbitrarily small, the proof is completed.

Acknowledgements. We thank Ning Zhang for pointing out Proposition 2.2 to us. We also thank Monika Ludwig for useful comments and references.

References

1. A. D. Alexandroff, 'Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it', Uchen. Zap. Leningrad. Math. Ser. 6 (1939) 3-35.
2. B. Andrews, 'Contraction of convex hypersurfaces by their affine normal', J. Differential Geom. 43 (1996) 207-230.
3. B. Andrews, 'The affine curve-lengthening flow', J. reine angew. Math. 506 (1999) 43-83.
4. S. Artstein-Avidan, B. Klartag, C. Schütt and E. Werner, 'Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality', J. Funct. Anal. 262 (2012) 4181-4204.
5. H. Auerbach, 'Sur un problème de M. Ulam concernant l'équilibre des corps flottants', Studia Math. 7 (1938) 121-142.
6. I. Bárány and D. G. Larman, 'Convex bodies, economic cap coverings, random polytopes', Mathematika 35 (1988) 274-291.
7. F. Besau, M. Ludwig and E. M. Werner, 'Weighted floating bodies and polytopal approximation', Trans. Amer. Math. Soc., 370 (2018) 7129-7148.
8. F. Besau and E. M. Werner, 'The spherical convex floating body', Adv. Math. 301 (2016) 867-901.
9. F. Besau and E. M. Werner, 'The floating body in real space forms', J. Differential Geom. 110 (2018) 187-220.
10. W. Blaschke, Vorlesungen über differentialgeometrie ii, affine differentialgeometrie, (Springer, Berlin, 1923).
11. K. Böröczky, Jr, 'Approximation of general smooth convex bodies', Adv. Math. 153 (2000) 325-341.
12. K. Böröczky, Jr, 'Polytopal approximation bounding the number of k-faces', J. Approx. Theory 102 (2000) 263-285.
13. H. Busemann and W. Feller, 'Krümmungseigenschaften Konvexer Flächen', Acta Math. 66 (1936) 1-47.
14. U. Caglar and E. M. Werner, 'Divergence for s-concave and log concave functions', Adv. Math. 257 (2014) 219-247.
15. H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved problems in geometry: unsolved problems in intuitive mathematics, vol II. Problem Books in Mathematics (Springer, New York, 1991).
16. C. Dupin, Application de géométrie et de méchanique, (Bachelier, Paris, 1822).
17. B. Fleury, O. Guédon and G. Paouris, 'A stability result for mean width of L_{p}-centroid bodies', Adv. Math. 214 (2007) 865-877.
18. R. J. Gardner, Geometric tomography, 2nd edn, Encyclopedia of Mathematics and its Applications 58 (Cambridge University Press, Cambridge, 2006).
19. E. N. Gilbert, 'How things float', Amer. Math. Monthly 98 (1991) 201-216.
20. J. Grote and E. M. Werner, 'Approximation of smooth convex bodies by random polytopes', Electron. J. Probab. 23 (2018) 9.
21. P. M. Gruber, 'Volume approximation of convex bodies by inscribed polytopes', Math. Ann. 281 (1988) 229-245.
22. P. M. Gruber, 'Aspects of approximation of convex bodies', vol. A and B, Handbook of convex geometry (eds P. M. Gruber and J. M. Wills; North-Holland, Amsterdam, 1993) 319-345.
23. P. M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 336 (Springer, Berlin, 2007).
24. H. Huang and B. A. Slomka, 'Approximations of convex bodies by measure-generated sets', Geom. Dedicata, to appear.
25. D. Hug, 'Contributions to affine surface area', Manuscripta Math. 91 (1996) 283-301.
26. M. N. Ivaki, 'On the stability of the p-affine isoperimetric inequality', J. Geom. Anal. 24 (2014) 1898-1911.
27. M. N. Ivaki and A. Stancu, 'Volume preserving centro-affine normal flows', Comm. Anal. Geom. 21 (2013) 671-685.
28. K. Leichtweib, 'Zur Affinoberfäche konvexer Körper', Manuscripta Math. 56 (1986) 429-464.
29. K. Leichtweib, 'Bemerkungen zur Definition einer erweiterten Affinoberfläche von E. Lutwak', Manuscripta Math. 65 (1989) 181-197.
30. K. Leichtweib, Affine geometry of convex bodies (Johann Ambrosius Barth, Heidelberg, 1998). MR 1630116
31. L. Lovász and S. Vempala, 'The geometry of logconcave functions and sampling algorithms', Random Structures Algorithms 30 (2007) 307-358.
32. M. Ludwig, 'Asymptotic approximation of smooth convex bodies by general polytopes', Mathematika 46 (1999) 103-125. MR 1750407
33. M. Ludwig and M. Reitzner, 'A classification of $\operatorname{SL}(n)$ invariant valuations', Ann. of Math. (2) 172 (2010) 1219-1267.
34. E. Lutwak, 'Extended affine surface area', Adv. Math. 85 (1991) 39-68.
35. E. Lutwak, 'The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas', Adv. Math. 118 (1996) 244-294.
36. E. Lutwak, D. Yang and G. Zhang, 'The Cramer-Rao inequality for star bodies', Duke Math. J. 112 (2002) 59-81.
37. E. Lutwak, D. Yang and G. Zhang, 'Moment-entropy inequalities', Ann. Probab. 32 (2004) 757-774.
38. E. Lutwak, D. Yang and G. Zhang, 'Cramér-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information', IEEE Trans. Inform. Theory 51 (2005) 473-478.
39. E. Lutwak and G. Zhang, 'Blaschke-Santaló inequalities', J. Differential Geom. 47 (1997) 1-16.
40. R. D. Mauldin (ed.), The Scottish Book: mathematics from the Scottish Café (Birkhäuser, Boston, MA, 1981). (Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979.)
41. M. Meyer and S. Reisner, 'Characterizations of ellipsoids by section-centroid location', Geom. Dedicata 31 (1989) 345-355.
42. M. Meyer and S. Reisner, 'A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces', Geom. Dedicata 37 (1991) 327-337.
43. M. Meyer and E. Werner, 'On the p-affine surface area', Adv. Math. 152 (2000) 288-313.
44. K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics 111 (Cambridge University Press, Cambridge, 1994). MR 1311248
45. G. Paouris and E. M. Werner, 'Relative entropy of cone measures and L_{p} centroid bodies', Proc. Lond. Math. Soc. (3) 104 (2012) 253-286.
46. M. Reitzner, 'The combinatorial structure of random polytopes', Adv. Math. 191 (2005) 178-208.
47. R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44 (Cambridge University Press, Cambridge, 1993).
48. C. SснÜтт, 'The convex floating body and polyhedral approximation', Israel J. Math. 73 (1991) 65-77.
49. C. Schütt, 'On the affine surface area', Proc. Amer. Math. Soc. 118 (1993) 1213-1218.
50. C. Schütt, 'Random polytopes and affine surface area', Math. Nachr. 170 (1994) 227-249.
51. C. Schütt and E. Werner, 'The convex floating body', Math. Scand. 66 (1990) 275-290.
52. C. SchÜtt and E. Werner, 'Polytopes with vertices chosen randomly from the boundary of a convex body', Geometric aspects of functional analysis, Lecture Notes in Mathematics 1807 (eds B. Klartag, S. Mendelson and V. D. Milman; Springer, Berlin, 2003) 241-422.
53. C. Schütt and E. Werner, 'Surface bodies and p-affine surface area', Adv. Math. 187 (2004) 98-145.
54. A. Stancu, 'The discrete planar L_{0}-Minkowski problem', Adv. Math. 167 (2002) 160-174.
55. A. Stancu, 'On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem', $A d v$. Math. 180 (2003) 290-323.
56. N. S. Trudinger and X.-J. Wang, 'The affine Plateau problem', J. Amer. Math. Soc. 18 (2005) 253-289.
57. P. L. VÁRKONYI, 'Neutrally floating objects of density $\frac{1}{2}$ in three dimensions', Stud. Appl. Math. 130 (2013) 295-315.
58. E. Werner, The p-affine surface area and geometric interpretations, Rend. Circ. Mat. Palermo (2) (2002) 367-382; IV International Conference in 'Stochastic Geometry, Convex Bodies, Empirical Measures \& Applications to Engineering Science', vol. II (Tropea, 2001).
59. E. Werner, 'On L_{p}-affine surface areas', Indiana Univ. Math. J. 56 (2007) 2305-2323.
60. E. Werner and D. Ye, 'New L_{p} affine isoperimetric inequalities', Adv. Math. 218 (2008) 762-780.
61. E. M. Werner, 'Rényi divergence and L_{p}-affine surface area for convex bodies', Adv. Math. 230 (2012) 1040-1059.

Han Huang and Boaz A. Slomka
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109
USA

sthhan@umich.edu
bslomka@umich.edu

Elisabeth M. Werner Department of Mathematics Case Western Reserve University Cleveland, Oh 44106 USA

elisabeth.werner@case.edu

[^0]: Received 12 May 2018; revised 31 March 2019; published online 9 May 2019.
 2010 Mathematics Subject Classification 52A20, 52A27, 52A38 (primary).
 The third author is partially supported by NSF grant DMS-1504701. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester.

