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Ulam floating bodies

Han Huang, Boaz A. Slomka and Elisabeth M. Werner

Abstract

We study a new construction of bodies from a given convex body in R
n which are isomorphic to

(weighted) floating bodies. We establish several properties of this new construction, including its
relation to p-affine surface areas. We show that these bodies are related to Ulam’ s long-standing
floating body problem which asks whether Euclidean balls are the only bodies that can float,
without turning, in any orientation.

1. Introduction

1.1. Metronoids

Let K be a convex body in R
n (that is, a compact convex set with non-empty interior), and

denote its Lebesgue volume by |K|. The purpose of this paper is to study a new family of
convex bodies Mδ(K) associated to K, where 0 < δ < |K| is a parameter.

The construction of this family arises from the notion of metronoids which was recently
introduced in [24] in order to study extensions of problems concerning the approximation of
convex bodies by polytopes. Given a Borel measure μ on R

n, the metronoid associated to μ is
the convex set defined by

M(μ) =
⋃

0�f�1,∫
Rn

f dμ=1

{∫
Rn

yf(y) dμ(y)
}
,

where the union is taken over all functions 0 � f � 1 for which
∫
Rn f dμ = 1 and

∫
Rn yf(y) dμ(y)

exists. Note that for a discrete measure of the form
∑N

i=1 δxi
, the corresponding metronoid is

the convex hull of x1, . . . , xN . Hence, M(μ) can be thought of as a fractional extension of the
convex hull.

1.2. Ulam’s floating body

Our main object Mδ(K) is the metronoid generated by the uniform measure on K with total
mass δ−1|K|. Namely, let 1K be the characteristic function of K, and μ the measure whose
density with respect to Lebesgue measure is δ−11K . Then, Mδ(K) := M(μ). It turns out that
Mδ(K) is intimately related to the following long-standing problem proposed by Ulam, see, for
example, [5, 15, 18, 40]: Is a solid of uniform density which floats in water in every position
a Euclidean ball? Although counterexamples were found in R

2 (convex and non-convex) and
R

3 (only non-convex), this problem remains open in arbitrary dimensions. For a full account
of the progress made on this problem, see [57] and references therein.
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Figure 1.1 (colour online). H(δ, θ) is the hyperplane orthogonal to θ that cuts a set Cδ(θ) of
volume δ from a convex body K: |Cδ(θ)| = |K ∩ {x : 〈x, θ〉 � 〈yθ, θ〉}| = δ. The point xθ is the
barycenter of Cδ(θ). Then

Kδ ⊆ K ∩ {x : 〈x, θ〉 � 〈yθ, θ〉}
while

Mδ(K) ⊆ K ∩ {x : 〈x, θ〉 � 〈xθ, θ〉}.

As we show in Section 2.2 below, along with a precise description of Ulam’s problem, one
can restate Ulam’s problem in terms of Mδ(K) as follows: If Mδ(K) is a Euclidean ball, must
K be a Euclidean ball as well? For that reason, we call Mδ(K) an Ulam floating body. As far
as we know, this construction and its relation to Ulam’s problem is not mentioned anywhere
in the literature.

We also define weighted variations of Mδ(K) where the weight is given by a positive
continuous function φ : K → R. Namely, we define

Mδ(K,φ) := M
(
φ(x)
δ

1K(x) dx
)
.

To understand Mδ(K) geometrically, recall that a convex body K ⊆ R
n is determined by

its support function hK(θ) = maxx∈K〈x, θ〉, where 〈·, ·〉 is the standard scalar product on R
n.

For every direction θ ∈ S
n−1, let H(δ, θ) be the hyperplane orthogonal to θ that cuts a set of

volume δ from K. That is

Cδ(θ) = K ∩ {x : 〈x, θ〉 � 〈yθ, θ〉}
has volume δ for any yθ ∈ H(δ, θ). Then, the barycenter of Cδ(θ) is a point on the boundary
of Mδ(K). More precisely, by [24, Proposition 2.1], we have that for any direction θ,

hMδ(K)(θ) =
1
δ

∫
Cδ(θ)

〈x, θ〉dx.

As illustrated in Figure 1.1, the body Mδ(K) is closely related to the convex floating body
Kδ, introduced independently in [6, 51]. Using the above notation, we have that

Kδ =
⋂

θ∈Sn−1

{x : 〈x, θ〉 � 〈yθ, θ〉},

which is a non-empty convex set for a sufficiently small 0 < δ. In fact, Mδ(K) is isomorphic
to Kδ in the sense that K e−1

e δ ⊆ Mδ(K) ⊆ K δ
e
. We discuss this property in the more general

case of weighted Ulam floating bodies in Section 2.3 below (also see Theorem 1.1).
The convex floating body is a natural variation of Dupin’s floating body [16] from 1822.

Dupin’s floating body K[δ] is defined as the body whose boundary is the set of points that
are the barycenters of all the sections of K of the form K ∩H(δ, θ), where H(δ, θ) are the
aforementioned hyperplanes that cut a set of volume δ from K. However, while Kδ coincides
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with K[δ] whenever K[δ] is convex (for example, for centrally symmetric K, see [42]), in the
non-centrally symmetric case, Dupin’s floating body need not be convex, as in the case of some
triangles in R

2 (see, for example, [30]). Restating the above, every point on the boundary of
Kδ is the barycenter of K ∩H(δ, θ) for some θ, but the converse holds only if Dupin’s floating
body is convex.

Note that our construction Mδ(K) corresponds nicely to both definitions, that of the floating
body and that of the convex floating body in the sense that it enjoys being convex as well as
having the property that a point is on the boundary of Mδ(K) if and only if it is the barycenter
of a set of volume δ that is cut off by a hyperplane.

1.3. Main results

We present three main theorems concerning Ulam’s floating bodies. Although the first
result establishes an explicit relation between (weighted) floating bodies and (weighted)
Ulam’s floating bodies, the other two results are the analogous counterparts to the classical
floating bodies.

1.3.1. Relation to floating bodies. Our first theorem shows that (weighted) Ulam’s floating
bodies are isomorphic, in a sense, to (weighted) floating bodies. Weighted floating bodies were
introduced in [58] (also see [7, 9] for recent applications) as follows. Let K ⊆ R

n be a convex
body, 0 < δ, and φ : K → R be integrable and such that φ > 0 almost everywhere with respect
to Lebesgue measure. For a hyperplane H in R

n, let H± be the half-spaces separated by H.
Then, the weighted floating body Fδ(K,φ) is defined as

Fδ(K,φ) =
⋂{

H− :
∫
H+∩K

φ(x) dx � δ

}
.

Note that for φ ≡ 1, we have that Fδ(K,φ) = Kδ.
We prove the following.

Theorem 1.1. Let K be a convex body in R
n, and let φ : K → R

+ be an integrable log-
concave function. Then, for all 0 < δ < |K|, we have

F e−1
e δ(K,φ) ⊆ Mδ(K,φ) ⊆ F δ

e
(K,φ).

In particular, for φ ≡ 1, we have that

K e−1
e δ ⊆ Mδ(K,φ) ⊆ K δ

e
.

We remark that for φ ≡ 1, Theorem 1.1 was proven in [24].

1.3.2. Smoothness of Ulam’s floating bodies. Our second main result states that the
boundary ∂Mδ(K) of an Ulam floating body Mδ(K) is always smoother than the boundary
of K.

Theorem 1.2. Let K ⊆ R
n be a convex body, Suppose that ∂K ∈ Ck for some k � 0. Then,

for any 0 < δ < |K|, we have that ∂Mδ(K) ∈ Ck+1.

We remark that in the case of the convex floating body, an analogous result to Theorem 1.2
is known only in the centrally symmetric case [42]. The main reason for this is that the proof in
[42] relies on the abovementioned fact that in the centrally symmetric case the convex floating
convex body and Dupin’s floating body coincide.

1.3.3. Affine surface area. The affine surface area was introduced by Blaschke [10] in 1923
for smooth convex bodies in Euclidean space of dimensions 2 and 3, and extended to R

n by
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Leichtweiss [28]. Given a convex body K ⊆ R
n with a sufficiently smooth boundary, let κK(x)

be the Gaussian curvature at x ∈ ∂K, and μK the surface area measure on ∂K. The affine
surface area of K is defined by

as(K) =
∫
∂K

κK(x)
1

n+1 dμK .

Even though it proved to be much more difficult to extend the notion of affine surface area to
general convex bodies than other notions, like surface area measures or curvature measures,
successively such extensions were achieved, by, for example, Leichtweiss [28], Lutwak [34],
who also proved the long conjectured upper semicontinuity of affine surface area [34] and by
Schütt and Werner [51] who showed that the affine surface area arises as a limit of the volume
difference of the convex body and its floating body. All these extensions coincide as was shown
in [29, 49].

Affine surface area is among the most powerful tools in equiaffine differential geometry (see
Andrews [2, 3], Stancu [54, 55], Ivaki [26], Ivaki and Stancu [27] and Ludwig and Reitzner
[33]). It appears naturally as the Riemannian volume of a smooth convex hypersurface with
respect to the affine metric (or Berwald–Blaschke metric), see, for example, the thorough
monograph of Leichtweiss [30] or the book by Nomizu and Sasaki [44]. In particular, the
upper semicontinuity proved to be critical in the solution of the affine Plateau problem by
Trudinger and Wang [56].

Applications of affine surface areas have been manifold. For instance, affine surface area
appears in best and random approximation of convex bodies by polytopes, see Böröczky Jr. [11,
12], Gruber [21–23], Ludwig [32], Reitzner [46], Schütt [48, 50], Grote and Werner [20], and
Schütt and Werner [52]. Furthermore, recent contributions indicate astonishing developments
which open up new connections of affine surface area to, for example, concentration of volume
(for example, [17, 36]), spherical and hyperbolic spaces [8, 9], geometric inequalities [39, 60],
and information theory (for example, [4, 14, 37, 38, 45, 61]).

The Lp-affine surface area is a generalization of the classical affine surface area and a central
part in the Lp-Brunn–Minkowski theory. It was introduced by Lutwak [35] for p > 1 (see
also Hug [25] and Meyer and Werner [43]) and extended for all p ∈ [−∞,∞] in [53]. For
−∞ < p < ∞, the Lp-affine surface area of a convex body K ⊆ R

n is given by

asp(K) =
∫
∂K

κK(x)
p

n+p

〈x,NK(x)〉n(p−1)
n+p

dμK(x), (1.1)

where NK(x) is the outer normal of K at x. For p = ±∞, it is given by

as±∞(K) =
∫
∂K

κK(x)
〈x,NK(x)〉n dμK(x). (1.2)

As in the case of the classical affine surface area, several geometric extensions for the Lp-affine
surface area have been proven. We refer to [53, 59] and references therein. These extensions
all involve a construction of a special family of convex bodies {Kt}t>0 which is related to a
given convex body K, where the Lp-affine surface area can be written as a limit involving their
volume difference.

We prove the following theorem which shows that this can also be achieved using weighted
Ulam floating bodies.

Theorem 1.3. Let K ⊆ R
n be a convex body and φ : K → (0,∞) be a continuous function.

Then,

lim
δ↘0

|K| − |Mδ(K,φ)|
δ

2
n+1

= cn

∫
∂K

κK(x)
1

n+1φ(x)−
2

n+1 dμK(x), (1.3)
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where cn = 2n+1
n+3 ( |B

n−1
2 |

n+1 )
2

n+1
, and Bn

2 is the Euclidean unit ball in R
n.

For −∞ � p � ∞, p 
= −n, define the function φp : ∂K → [0,∞] by

φp(x) =
〈x, NK(x)〉n(n+1)(p−1)

2(n+p)

κK(x)
n(p−1)
2(n+p)

. (1.4)

Note that φ1(x) = 1 for all x ∈ ∂K. If κK(x) = 0, which is the case, for example, when K = P
is a polytope and x belongs to an (n− 1)-dimensional facet of P , then

φp(x) =
{∞ p > 1 or p < −n

0 −n < p < 1.

If κK(x) = ∞, which is the case, for example, when K = P is a polytope and x is a vertex of
P , then

φp(x) =
{

0 p > 1 or p < −n
∞ −n < p < 1.

If K and p are such that φp is continuous on ∂K, we extend φp to a continuous function on K
which we call again φp.

Applying Theorem 1.3 with φp yields the following extension of Lp-affine surface areas.

Corollary 1.4. Let K ⊆ R
n be a convex body. If φp is continuous on K, then,

lim
δ↘0

|K| − |Mδ(K,φp)|
δ

2
n+1

= cn asp(K).

In particular, for p = 1, we have

lim
δ↘0

|K| − |Mδ(K)|
δ

2
n+1

= cn as1(K).

1.4. Some additional notation

Throughout the paper, we denote by Bn
2 (u, ρ) the Euclidean ball with radius ρ > 0 centered

at u. Let ‖ · ‖ denote the standard Euclidean norm on R
n. For u, v ∈ R

n, [u, v] will denote the
line segment between u and v. We denote the interior of a set C ⊆ R

n by int(C). In the sequel,
we will always assume that our convex body K contains the origin in its interior. Finally,
c, c0, c1, etc. shall denote absolute constants that may change from line to line. Let On denote
the orthogonal group of dimension n.

The paper is organized as follows. In Section 2, we discuss some properties of Ulam’s floating
bodies, and prove Theorems 1.1 and 1.2. Section 3 is devoted for the proof of Theorem 1.3.

2. Properties of Ulam’s floating bodies

2.1. Basic properties

For θ ∈ S
n−1 and d ∈ R, we denote the hyperplane orthogonal to θ at distance d from the

origin by H(θ, d) := {x ∈ R
n : 〈x, θ〉 = d}. We also denote the closed half-space H+(θ, d) :=

{x ∈ R
n : 〈x, θ〉 � d}. Given a convex body K ⊆ R

n and a continuous function φ : K →
(0,∞), the function

S
n−1 × R −→

[
0,
∫
K

φ(z)dz
]
,



430 HAN HUANG, BOAZ A. SLOMKA AND ELISABETH M. WERNER

(θ, d) −→ δ(θ, d) :=
∫
K∩H+(θ, d)

φ(z) dz

is continuous in the product metric, for example, by using Lebesgue’s dominated convergence
theorem. Observe also that the function (θ, r) → (θ, δ(θ, r)) is a bijection from{

(θ, r) : θ ∈ S
n−1, −hK(−θ) � r � hK(θ)

}
to S

n−1 × [0,
∫
K
φ(x) dx]. We denote

(θ, δ) → (θ, d(θ, δ)) (2.1)

as the inverse function of (θ, d) → (θ, δ(θ, d)), which is also a continuous function. Abusing
the notation, we denote

H+(θ, δ) := H+(θ, d(θ, δ)). (2.2)

Let hMδ(K,φ)(θ) be the support function of Mδ(K,φ). By definition of Mδ(K,φ),

hMδ(K,φ)(θ) = max
x∈Mδ(K,φ)

〈θ, x〉 = sup
0�f�1,

∫
K

f(y)φ(y)
δ dy=1

∫
K

〈y, θ〉f(y)
δ

φ(y)dy. (2.3)

It follows from [24, Proposition 2.1] that the maximum in the above equation is attained for
the function

f = 1K∩H+(θ, δ)

and this maximal function is unique as φ(y)1K dy is absolutely continuous with respect to
Lebesgue measure. Thus, we have the following proposition which is essentially a restatement
of [24, Proposition 2.1].

Proposition 2.1. Let K ⊆ R
n be a convex body and φ : K → (0,∞) be a continuous

function. Let θ ∈ S
n−1 and δ ∈ (0,

∫
K
φ(y) dy). Then, the barycenter of K ∩H+(θ, δ) with

respect to the weight function φ,

xK,φ(θ, δ) :=

∫
K∩H+(θ, δ)

yφ(y) dy

δ

is the unique point in ∂Mδ(K,φ) with normal θ. In particular, Mδ(K,φ) is strictly convex.
Moreover,

hMδ(K,φ)(θ) =

∫
K∩H+(θ, δ)

〈θ, y〉φ(y) dy

δ
.

Extending by limit, hMδ(K,φ) is a continuous function on S
n−1 × [0,

∫
K
φ(y) dy] and hM0(K,φ)

is the support function hK of K.

We remark that we will use x(θ, δ) in short for xK,φ(θ, δ) whenever there is no ambiguity
(which is actually everywhere, except for the proof of Theorem 1.2).

Proof. We only need to show that hMδ(K,φ) is continuous as a function of θ and δ. We put
g(θ, d) =

∫
K∩H+(θ, d)

〈θ, y〉φ(y) dy. Then, g is continuous in the product metric. By the above,
the function (θ, δ) → (θ, d(θ, δ)) is continuous in the product metric. Now,

hMδ(K,φ)(θ) =
g(θ, d(θ, δ))

δ
,

and therefore it is continuous for 0 < δ �
∫
K
φ(y) dy, θ ∈ S

n−1. Moreover, for all θ ∈ S
n−1 and

for all δ ∈ (0,
∫
K
φ(y) dy],

d(θ, δ) � hMδ(K,φ)(θ) � hK(θ).
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Note that for δ = 0, d(θ, 0) = hK(θ). Let θ0 ∈ S
n−1 be fixed. For ε > 0, there exists an

open ball O containing (θ0, 0) ∈ S
n−1 × [0,

∫
K
φ(y) dy] such that for (θ1, δ1) ∈ O, we have

|hK(θ0) − d(θ1, δ1)| < ε. Thus, we conclude that |hK(θ0) − hMδ1 (K,φ)(θ1)| < ε and hence
hMδ(K,φ)(θ) is continuous at (θ0, 0) if we define hM0(K,φ)(θ0) := hK(θ0). �

2.2. Ulam’s floating body problem

Let K ⊆ R
n be a body with a uniform density 0 < ρ < 1. Suppose that we put K in a liquid

of uniform density 1, such that the surface of the liquid is orthogonal to the direction u. Let g
be the barycenter of K, and b its center of buoyancy, that is the barycenter of the portion of
K which is submerged in the liquid. We say that K floats in equilibrium in direction u if the
barycenter of K is directly above its buoyancy center, namely g − b is parallel to u.

A well-known fact in hydrostatics which was pointed out to us by Ning Zhang (see, for
example, [19, Theorem 2]) states that if a body floats in liquid, then its barycenter, its center
of buoyancy, and the barycenter of the portion of the body that is above the surface of the
liquid, are all collinear. In terms of Mδ(K), this property translates to the following proposition:

Proposition 2.2. Let K ⊆ R
n be a convex body with bar(K) = 0 and |K| = 1. Then,

M1−δ(K) = − δ
1−δMδ(K).

Remark 2.3. An immediate consequence of the above proposition is that for any convex
body K ⊆ R

n, M 1
2
(K) is centrally symmetric. Moreover, by Theorem 1.1 and Proposition 2.6

below, it follows that M 1
2
(K) is isomorphic to Bn

2 .

Proof. Recall that hMδ(K)(θ) = 〈x(θ, δ), θ〉 where

x(θ, δ) :=

∫
K∩H+(θ, δ)

y dy

δ

and H+(θ, δ) is the half space in direction θ such that |K ∩H+(θ, δ)| = δ. Observe that

0 = bar(K) =
∫
K

x dx =
∫
K∩H+(θ, δ)

x dx +
∫
K∩H−(θ, δ)

x dx,

which is equivalent to

0 = δx(θ, δ) + (1 − δ)x(−θ, 1 − δ).

Therefore, x(−θ, 1 − δ) = − δ
1−δx(θ, δ), which is equivalent to M1−δ(K) = − δ

1−δMδ(K). �

As mentioned in the introduction, Ulam’s long-standing floating problem asks whether the
only body of uniform density that floats in equilibrium in every orientation must be a Euclidean
ball. A direct consequence of Proposition 2.2 is that Ulam’s floating problem can be restated
in terms of Mδ(K):

Corollary 2.4. Ulam’s floating problem is equivalent to the following problem: Suppose
that Mδ(K) is a Euclidean ball. Must K be a Euclidean ball?

We remark that this new form of Ulam’s problem remains open if one replaces Mδ(K) with
the convex floating body Kδ. Another related open problem asks whether a convex body K is
centrally symmetric if and only if Kδ is symmetric. When replaced with Mδ(K), this problem
seems also interesting. Note that Auerbach’s counterexample in [5] to Ulam’s problem in the
plane provides an example for a non-centrally symmetric convex body K ⊆ R

2 for which Mδ(K)
is a Euclidean ball, thus answers both of the above problems in this case.
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Figure 2.1 (colour online). Illustration for the proof of Theorem 1.1

2.3. Connection to floating bodies

We begin with the proof of Theorem 1.1:

Proof of Theorem 1.1. By Proposition 2.1, we have that

hMδ(K,φ)(θ) =
1
δ

∫
K∩{y∈Rn : 〈y, θ〉�d(θ, δ)}

〈x, θ〉φ(x) dx � d(θ, δ) � hFδ(K,φ)(θ).

Therefore, Fδ(K,φ) ⊆ Mδ(K,φ).
Fix δ > 0 and θ ∈ S

n−1. For β ∈ S
n−1, let H+

β := {y ∈ R
n : 〈y, β〉 � 〈x(θ, δ), β〉}. Consider

the function gβ(t) :=
∫
{y : 〈y, β〉=t} 1K∩H+(θ, δ)(y)φ(y) dy. Since φ is log-concave, it follows by

Prékopa–Leindler’s inequality that gβ is also log-concave. By [31, Lemma 5.4] (a generalization
of Grünbaum’s inequality), we have that

1
e

∫
gβ(t) dt �

∫
t�〈x(θ, δ), β〉

gβ(t) dt �
(

1 − 1
e

)∫
gβ(t) dt

or equivalently,

1
e

∫
K∩H+(θ, δ)

φ(y) dy �
∫
H+

β ∩K∩H+(θ, δ)

φ(y) dy �
(

1 − 1
e

)∫
K∩H+(θ, δ)

φ(y) dy.

Taking β = θ, we have H+
θ ∩K ∩H+(θ, δ) = H+

θ ∩K. Since
∫
H+

θ ∩K
φ(y) dy � (1 − 1

e )δ, we
obtain

hF(1− 1
e )δ

(K,φ)(θ) � d

(
θ,

(
1 − 1

e

)
δ

)
� 〈x(θ, δ), θ〉 = hMδ(K,φ)(θ),

and thus F(1− 1
e )δ(K, φ) ⊆ Mδ(K,φ).On the other hand (see Figure 2.1), for β ∈ S

n−1, we have∫
H+

β ∩K

φ(y) dy �
∫
H+

β ∩K∩H+(θ, δ)

φ(y) dy � δ

e
=

∫
H+(β, δ

e )∩K

φ(y) dy.
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Hence, d(β, δ
e ) � 〈x(θ, δ), β〉. Therefore, we have

x(θ, δ) ∈
⋂

β∈Sn−1

{
y : 〈y, β〉 � d

(
θ,

δ

e

)}
= F δ

e
(K, φ).

Since Mδ(K,φ) and F δ
e
(K, φ) are convex sets, we conclude that Mδ(K,φ) ⊆ F δ

e
(K, φ). �

The Lp centroid bodies were introduced by Lutwak and Zhang [39] (using a different
normalization) as follows: For a convex body K in R

n of volume 1 and 1 � p � ∞, the Lp

centroid body Zp(K) is this convex body whose support function is given by

hZp(K)(θ) =
(∫

K

|〈x, θ〉|pdx
)1/p

. (2.4)

It is known that the floating body Kδ is close to some Lp centroid body of K. More precisely,
one has:

Theorem 2.5 [45, Theorem 2.2]. Let K be a symmetric convex body of volume 1. For
δ ∈ (0, 1

2 ), we have

c1Zlog( e
2δ )(K) ⊆ Kδ ⊆ c2Zlog( e

2δ )(K),

where c1, c2 > 0 are universal constants.

We obtain a similar result for Ulam floating bodies:

Proposition 2.6. Let K be a symmetric convex body in R
n of volume 1. Then, there is

an absolute constant c1 > 0 such that for all δ < 1
e

c1Zlog( e
2δ )(K) ⊆ Kδ ⊆ Mδ(K) ⊆ eZlog( 1

δ )(K).

Proof. The first inclusion holds by Theorem 2.5. The second one, Kδ ⊆ Mδ(K), follows from
Theorem 1.1. By Hölder’s inequality, we have for p ∈ [1, ∞],

∫
K∩H+(θ, δ)

〈y, θ〉dy �
(∫

K∩H+(θ, δ)

1q dy

) 1
q (∫

K

|〈θ, y〉|p dy
) 1

p

= δ
1
q hZp(K)(θ),

where q satisfies 1
p + 1

q = 1. Dividing both sides by δ, we get

hMδ(K)(θ, δ)�
(

1
δ

) 1
p

hZp(K)(θ).

Putting p = log(1
δ ) yields

hMδ(K)(θ, δ) � e hZ
log( 1

δ )
(K)(θ).

Therefore, we have that

Mδ(K) ⊆ e Zlog( 1
δ )(K).

�
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2.4. Smoothness of Ulam floating bodies

In this section, we prove Theorem 1.2. To this end, let ρv(·) denote the radial function of K
with center v. That is,

ρv(θ) = max
{
r ∈ R

+ : v + rθ ∈ K
}
.

We will need the following fact, which can be found implicitly in, for example, [47].

Fact 2.7. Let K ⊆ R
n be a convex body. Then, the following are equivalent.

(1) K has Ck boundary.
(2) The function (v, θ) → ρv(θ) is Ck for every v ∈ int(K) and θ ∈ S

n−1.
(3) There exists v ∈ int(K) such that θ → ρv(θ) is Ck.

Proof of Theorem 1.2. For a ∈ R
n \ {0}, let H := {x : 〈x, a〉 = 1}, δ(a) =

|K ∩ {〈x, a〉 � 1}|, and U(a) :=
∫
K∩{〈x, a〉�1} x dx. We would like to show that

∇δ(a) =
1

‖a‖
∫
K∩H

x dx (2.5)

DU =
1

‖a‖

(∫
K∩{〈x, a〉=1}

xixj dx

)
i,j∈[n]

, (2.6)

where DU denotes the differential of U and [n] = {1, · · · , n}. Equation (2.5) was proved in
[41, Lemma 5]. Using the same ideas, we prove (2.6) as follows. Pick a direction θ so that θ
is not parallel to a, and let Hε := {x : 〈x, a + εθ〉 = 1}. As illustrated in Figure 2.2, we also
define:

K−(ε) = int(K) ∩ {y ∈ R
n : 〈y, a〉 � 1, 〈y, a + εθ〉 � 1},

K+(ε) = int(K) ∩ {y ∈ R
n : 〈y, a〉 � 1, 〈y, a + εθ〉 � 1}.

Let Uj denote the jth coordinate of U . We have

Uj(a + εθ) − Uj(a) =
∫
K+(ε)

〈x, ej〉dx−
∫
K−(ε)

〈x, ej〉dx.

From now on, we choose ε > 0 small enough so that 〈a, a + εθ〉 > 0. For y ∈ R
n, we write y

uniquely in the form x + t a
‖a‖ , where x = y + 1−〈y, a〉

〈a, a〉 a and t = − 1−〈y, a〉
〈a, a〉 ‖a‖. Note that x ∈ H.

Then,

{y ∈ R
n : 〈y, a〉 � 1, 〈y, a + εθ〉 � 1} ={

x + ta : x ∈ H, t ∈ R, 〈x + t
a

‖a‖ , a〉 � 1, 〈x + t
a

‖a‖ , a + εθ〉 � 1
}

=

{
x + ta : x ∈ H, 0 � t � −ε〈x, θ〉‖a‖

〈a, a + εθ〉
}

=

{
x + ta : x ∈ H, 〈x, θ〉 � 0, 0 � t � −ε〈x, θ〉‖a‖

〈a, a + εθ〉
}
.

Thus,

K−(ε) =
{
x + ta : x ∈ H, 〈x, θ〉 � 0, 0 � t � −ε〈x, θ〉‖a‖

〈a, a + εθ〉
}
∩ int(K).
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Figure 2.2 (colour online). Regions for the proof of Theorem 1.2

Let

O−(ε) : =
{
x ∈ H : 〈x, θ〉 � 0,

[
x, x +

−ε〈x, θ〉‖a‖
〈a, a + εθ〉 a

]
∩ int(K) 
= ∅

}
.

For x ∈ H such that 〈x, θ〉 � 0, we have that

−ε〈x, θ〉‖a‖
〈a, a + εθ〉 =

ε|〈x, θ〉|‖a‖
〈a, a + εθ〉 =

|〈x, θ〉|‖a‖
〈a, a〉ε−1 + 〈a, θ〉

decrease to 0 as ε ↘ 0. Thus, O(ε) shrinks to

O−(0) = {x ∈ H : 〈x, θ〉 � 0, [x, x] ∩ int(K) 
= ∅}
= {x ∈ H ∩ int(K) : 〈x, θ〉 � 0}.

For x ∈ O−(ε), let 0 � t1(ε, x) � t2(ε, x) � −ε〈x, θ〉
〈a, a+εθ〉‖a‖ be defined such that{

x + ta : 0 � t � −ε〈x, θ〉‖a‖
〈a, a + εθ〉

}
∩ int(K) = {x + ta : t1(ε, x) < t < t2(ε, x)}.

Then, by Fubini’s theorem, we have∫
K−(ε)

〈y, ej〉dy =
∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈x + t
a

‖a‖ , ej〉dtdx

=
∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈x, ej〉dtdx +
∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈t a

‖a‖ , ej〉dtdx.

We analyze each of the above terms, separately, as follows.
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First, we have that∣∣∣∣∣
∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈t a

‖a‖ , ej〉dtdx

∣∣∣∣∣ �
∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

tdtdx

�
∫
O−(ε)

∫ −ε〈x, θ〉‖a‖
〈a, a+εθ〉

0

tdtdx

�1
2

ε2‖a‖2

〈a, a + εθ〉2
∫
O−(ε)

〈x, θ〉2 dx.

Since O−(ε) is bounded and shrinks as ε decreases, we conclude that

lim
ε↘0

1
ε

∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)

〈t a

‖a‖ , ej〉dtdx = 0.

Second, we have that∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)
〈x, ej〉dtdx

ε
=

∫
H

(t2(x, ε) − t1(x, ε))〈x, ej〉1O−(ε)(x)
ε

dx.

Fix ε0 > 0. For ε0 > ε > 0, we have that∣∣∣∣ (t2(x, ε) − t1(x, ε))〈x, ej〉1O−(ε)(x)
ε

∣∣∣∣ � |〈x, θ〉|‖a‖
〈a, a〉 − ε0|〈a, θ〉| |〈x, ej〉|1O−(ε0),

where the function on the right-hand side is integrable.
Suppose x /∈ O−(0). Then,

(t2(x, ε)−t1(x, ε))〈x, ej〉1O−(ε)(x)

ε → 0 as ε ↘ 0 since 1O−(ε)(x) = 0
for small ε > 0. For x ∈ O−(0), we have t1(x) = 0 and t2(x) = −ε〈x, θ〉‖a‖

〈a, a+εθ〉 for sufficiently small
ε. We conclude that, as ε ↘ 0,

(t2(x, ε) − t1(x, ε))〈x, ej〉1O−(ε)(x)
ε

→ −〈x, θ〉〈x, ej〉
‖a‖ 1O−(0)(x).

By Lebesgue’s dominated convergence theorem, we have

lim
ε↘0

−
∫
K−(ε)

〈x, ej〉dx

ε

= lim
ε↘0

−
∫
O−(ε)

∫ t2(ε, x)

t1(ε, x)
〈x, ej〉dtdx

ε

=
1

‖a‖
∫
K∩H∩{〈x, θ〉�0}

〈x, θ〉〈x, ej〉dx.

Via the same argument, one also shows that

lim
ε↘0

∫
K+(ε)

〈x, ej〉dx

ε
=

1
‖a‖

∫
K∩H∩{〈x, θ〉�0}

〈x, θ〉〈x, ej〉dx.

Thus, we conclude that

lim
ε↘0

Uj(a + εθ) − Uj(a)
ε

=
1

‖a‖
∫
K∩H

〈x, θ〉〈x, ej〉dx.

This completes the proof of (2.6).
Next, we show that DU(a) and ∇δ(a) are Ck functions.
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Pick v ∈ int(K) ∩H. Let σa be the normalized Haar measure on S(a) = S
n−1 ∩ a⊥. Then,∫

K∩H

x dx = (n− 1)
∣∣Bn−1

2

∣∣ ∫
S(a)

∫ ρv(θ)

0

rn−2(v + rθ) dr dσa(θ)

=
∣∣Bn−1

2

∣∣ ∫
S(a)

(
ρn−1
v (θ)v +

n− 1
n

ρnv (θ)θ
)

dσa(θ). (2.7)

Fix a0 ∈ R
n so that int(K) ∩ {〈x, a0〉 = 1} 
=∅ and let v0 ∈ int(K) ∩ {〈x, a0〉 = 1}. By

Fact 2.7, (v, θ) → ρv(θ) is Ck, and hence the function Fa0 : R
n ×On → R

n defined by

(v, T ) �→ ∣∣Bn−1
2

∣∣ ∫
S(a0)

(
ρn−1
v (Tθ)v +

n− 1
n

ρnv (Tθ)Tθ
)

dσa0(θ)

is also Ck. We can find a smooth function a �→ (v(a), T (a)) in a neighborhood of a0 so that
v(a) ∈ int(K) ∩ {〈x, a〉 = 1} and T (a)S(a0) = S

n−1 ∩ a⊥. Indeed, for a close to a0, we define
the unique two-dimensional rotation T (a) satisfying T (a) a0

‖a0‖ = a
‖a‖ and T (a)v = v for all

v ∈ span(a, a0)
⊥. In particular, a �→ T (a) is a smooth function around a0. Also, T (a)(S(a0)) =

S(a). Let v(a) be the projection of v0 onto {〈x, a〉 = 1}. In other words,

v(a) := v0 − 〈v0,
a

‖a‖〉
a

‖a‖ +
a

‖a‖2 ,

which is again smooth when a 
= 0. Also, v(a0) = v0, and v(a) ∈ int(K) if a is close to a0.
Next, we express ∇δ in terms of v(a) and T (a): By (2.7), we have

∇δ(a) =
∫
K∩{〈x, a〉=1}

x dx

=
1

‖a‖
∣∣Bn−1

2

∣∣ ∫
S(a)

(
ρn−1
v(a)(θ)v(a) +

n− 1
n

ρnv(a)(θ)θ
)

dσa(θ)

=
1

‖a‖
∣∣Bn−1

2

∣∣ ∫
S(a0)

(
ρn−1
v(a)(T (a)θ)v(a) +

n− 1
n

ρnv(a)(T (a)θ)T (a)θ
)

dσa0(θ)

=
1

‖a‖Fa0(v(a), T (a)).

We conclude that ∇δ(a) is Ck and thus δ(a) is Ck+1.
Recall that δ(θ, d) = |K ∩ {〈x, θ〉 � d}|. Consider the function from S

n−1 × R to S
n−1 × R

defined by

(θ, d) �→
(
θ, δ

(
1
d
θ

))
= (θ, δ(θ, d)).

By the above, it is Ck+1 whenever int(K) ∩ {〈x, θ〉 = d} 
= ∅. Thus, its inverse function
(θ, d(θ, δ)) is also Ck+1 for (θ, δ) ∈ S

n−1 × [0, |K|]. Repeating the same argument as for ∇δ(a)
implies that U(a) is also Ck+1.

Recall that if d(θ, δ) > 0,

xK(θ, δ) =
1
δ

∫
K∩{〈x, θ〉�d(θ, δ)}

x dx =
1
δ
U

(
θ

d(θ, δ)

)
.

Therefore, for a fixed 0 < δ < |K|, and θ such that d(θ, δ) > 0, the function θ �→ xK(θ, δ)
‖xK(θ, δ)‖ is

Ck+1. Moreover, it is invertible since Mδ(K) is strictly convex. Thus its inverse, denoted by
Gδ : S

n−1 → S
n−1, is also Ck+1. Therefore, the radial function of Mδ(K), which is given by

ρ(θ) = ‖x(Gδ(θ), δ)‖ is also Ck+1.



438 HAN HUANG, BOAZ A. SLOMKA AND ELISABETH M. WERNER

Finally, we need to show that θ → xK(θ, δ) is Ck+1 whenever d(θ, δ) � 0. Indeed, we may
choose some vector v ∈ R

n and consider Mδ(v + K). Then, xK(θ, δ) = xv+K(θ, δ) − v. Clearly,
we can always choose v such that, for v + K, d(θ, δ) > 0. Thus, following the same argument,
we can show xv+K(θ, δ) is Ck+1. As a consequence, xK(θ, δ) is Ck+1. Therefore, we conclude
that ρ(θ) is Ck+1 on S

n−1. By Fact (2.7), the boundary of Mδ(K) is Ck+1. �

3. Relation to p-affine surface area

This section is devoted to the proof of Theorem 1.3.

3.1. Preliminary results

For the proof of Theorem 1.3, we will need a few preliminary results.
First, we focus on Mδ(ρBn

2 , φ), where ρBn
2 is the Euclidean ball centered at 0 and with radius

ρ, and φ(x) is a constant function. By symmetry, we know that Mδ(ρBn
2 , φ) is again a Euclidean

ball with the same center. Let Δ(ρ, δ) be the difference of the radius of ρBn
2 and Mδ(ρBn

2 , φ).
If φ : ρBn

2 → (0,∞) is a constant function, φ(x) = s, for all x ∈ ρBn
2 , then, we define Δ(ρ, δ, s)

to be the difference of radius of ρBn
2 and Mδ(ρBn

2 , s). One easily verifies that

Δ(ρ, δ, s) = Δ
(
ρ,

δ

s

)
. (3.1)

Proposition 3.1. limδ↘0 Δ(ρ, δ)/δ
2

n+1 ρ
n+1
n−1 = cn, where cn = 1

2
n+1
n+3 ( n+1

|Bn−1
2 | )

2
n+1 .

Proof. We denote h(ρ, δ) to be height of the cap of ρBn
2 which has volume δ. To be specific,

h(ρ, δ) satisfies the equality

δ =
∣∣Bn−1

2

∣∣ ∫ h(ρ,δ)

0

gn−1(t) dt,

where g(t) = (ρ2 − (ρ− t)2)
1/2

. Moreover,

g(t) =
(
ρ2 − (ρ− t)2

)1/2

= ρ
(
1 − (1 − t/ρ)2

)1/2

= ρ(2 − t/ρ)1/2(t/ρ)1/2.

We have

δ =
∣∣Bn−1

2

∣∣ρn−1

∫ h(ρ, δ)

0

(2 − t/ρ)
n−1

2 (t/ρ)
n−1

2 dt.

Thus, we have the inequality

∣∣Bn−1
2

∣∣ρn−1(2 − h(ρ, δ)/ρ)
n−1

2

∫ h(ρ, δ)

0

(t/ρ)
n−1

2 dt � δ

�
∣∣Bn−1

2

∣∣ρn−12
n−1

2

∫ h(ρ, δ)

0

(t/ρ)
n−1

2 dt.

Since ∫ h(ρ, δ)

0

(t/ρ)
n−1

2 dt =
2

n + 1
h(ρ, δ)

n+1
2 ρ−

n−1
2 ,
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we obtain

1
2

(
n + 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 � h(ρ, δ)

δ
2

n+1
� 1

2 − h(ρ, δ)/ρ

(
n + 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 .

We conclude that

lim
δ↘0

h(ρ, δ)

δ
2

n+1
=

1
2

(
n + 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 .

We have that

Δ(ρ, δ) =

∣∣Bn−1
2

∣∣ ∫ h(ρ, δ)

0
tg(t)n−1 dt∣∣Bn−1

2

∣∣ ∫ h(ρ, δ)

0
g(t)n−1 dt

.

To compute the next limit, we apply twice L’Hospital’s Rule,

lim
h→0

h

Δ
= lim

h
∫ h

0
hn−1 dt∫ h

0
tgn−1 dt

L= lim

∫ h

0
gn−1 dt + hg(h)n−1

hg(h)n−1 = 1 + lim

∫ h

0
gn−1 dt

hg(h)n−1

L= 1 + lim
ρn−1

(
2 − r

ρ

)n−1
2

(
r
ρ

)n−1
2

ρn
(

1
ρ
n+1

2

(
r
ρ

)n−1
2

(
2 − r

ρ

)n−1
2 − 1

ρ
n−1

2

(
r
ρ

)n+1
2
(
2 − r

ρ

)n−3
2

)

= 1 + lim

(
2 − r

ρ

)
n+1

2

(
2 − r

ρ

)
− n−1

2

(
r
ρ

) = 1 +
2

n + 1
=

n + 3
n + 1

.

So,

lim
δ↘0

Δ(ρ, δ)

δ
2

n+1
= lim

δ↘0

h(ρ, δ)

δ
2

n+1
· Δ(ρ, δ)
h(ρ, δ)

=
1
2

n + 1
n + 3

(
n + 1∣∣Bn−1

2

∣∣
) 2

n+1

ρ−
n−1
n+1 .

�

We will also need the next lemma from [51]:

Lemma 3.2. Let K and L be convex bodies in R
n such that 0 ∈ int(L) and such that L ⊆ K.

Then,

|K| − |L| =
1
n

∫
∂K

〈x,N(x)〉
(

1 −
∣∣∣∣‖xL‖
‖x‖

∣∣∣∣
n)

dμK(x),

where xL is the unique point in the intersection ∂L ∩ [0, x].

For the next lemma, we need a notion that was introduced in [51]. Let K be a convex body
in R

n and let x ∈ ∂K be such that NK(x) is unique. We put r(x) to be the radius of the biggest
Euclidean ball contained in K that touches K in x,

r(x) = max{ρ : Bn
2 (x− ρNK(x), ρ) ⊆ K}.

If NK(x) is not unique, r(x) = 0. It was shown in [51, Lemma 5] that for any convex body K
in R

n and any 0 � α < 1, ∫
∂K

r(x)−αdμ(x) < ∞. (3.2)
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Lemma 3.3. Let K be a convex body in R
n. Let x ∈ ∂K and let xM,δ = ∂(Mδ(K,φ)) ∩ [0, x].

Then,

〈x, NK(x)〉
δ

2
n+1

(
1 −

∣∣∣∣‖xM,δ‖
‖x‖

∣∣∣∣
n)

� c n r(x)−
n−1
n+1 ,

where c is a constant independent of x and δ.

Proof. Let xF,δ = ∂(Fδ(K,φ)) ∩ [0, x]. By Theorem 1.1, we have that Fδ(K,φ) ⊆ Mδ(K,φ)
and hence ‖xF,δ‖ � ‖xM,δ‖. Therefore,

〈x, NK(x)〉
δ

2
n+1

(
1 −

∣∣∣∣‖xM,δ‖
‖x‖

∣∣∣∣
n)

� 〈x, NK(x)〉
δ

2
n+1

(
1 −

∣∣∣∣‖xF,δ‖
‖x‖

∣∣∣∣
n)

and it was shown in [51, Lemma 8] that the latter is smaller than or equal to c n r(x)−
n−1
n+1 . �

The next lemma was proved in [51]. There, and in the proof of the main theorem, we need
the indicatrix of Dupin (see, for example, [52]). A theorem of Alexandrov [1] and Busemann
and Feller [13] shows that the indicatrix of Dupin exists almost everywhere on ∂K and is an
ellipsoid or an elliptic cylinder. We also use the notation C(r, h) for the cap of a Euclidean ball
with radius r and height h.

Lemma 3.4 [51]. Let K be a convex body in R
n with 0 ∈ ∂K and NK(0) = −en =

(0, · · · , 0,−1). Suppose the indicatrix of Dupin at 0 exists and is an (n− 1)-dimensional sphere
with radius

√
ρ. Let ξ be an interior point of K.

(i) Let H be the hyperplane orthogonal to NK(0) and passing through z in [0, ξ]. We put
zn = 〈z, en〉. Then, we have for 0 � zn � ρ,∣∣K ∩H+

∣∣ � f(zn)n−1|C(ρ, zn)|.
(ii) Let d = dist(z,Bn

2 (ρ en, ρ)C). There is ε0 > 0 such that we have for all z ∈ [0, ξ] with
‖z‖ � ε0

d � zn � d +
2 d2

ρ〈 ξ
‖ξ‖ , NK(0)〉2 .

(iii) There is ε0 > 0 and an absolute constant c > 0 such that for all z ∈ [0, ξ] with ‖z‖ � ε0

and all hyperplanes H passing through z∣∣K ∩H+
∣∣ � f(γ)−n+1|C(ρ, d(1 − c(f(γ) − 1))|.

Here, γ = 2
√

2 ρ d and f is a monotone function on R
+ such that limt→0 f(t) = 1.

The function f in Lemma 3.4 (iii) depends on K. It controls the error between the
approximating ellipsoid and K at a boundary point of K.

Lemma 3.5. Let K ⊆ R
n be a convex body. Moreover, we assume that 0 ∈ ∂K and that

NK(0) = −en is the unique outer normal to ∂K at 0. Let φ : K → (0,∞) be a continuous
function. We set H+

t = H+(−en,−t) = {y : 〈y, en〉 < t}. Then, for each t > 0, there exists
r > 0 such that for any δ > 0,

Mδ(K,φ) ∩Bn
2 (0, r) = Mδ

(
K ∩H+

t , φ
) ∩Bn

2 (0, r).

Proof. It is obvious that

Mδ

(
K ∩H+

t , φ
) ∩Bn

2 (0, r) ⊆ Mδ(K,φ) ∩Bn
2 (0, r).
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Therefore, it is sufficient to show the other inclusion. Let d � 0. Observe that if (θ, d) is suf-
ficiently close to (−en, 0), then H+(θ,−d) ∩K ⊆ H+

t , where H+(θ,−d) = {y : 〈y,−θ〉 < d}.
As noted in (2.1), the function d(θ, δ) is continuous in (θ, δ). Therefore, there exists δ0 > 0 and
ε > 0 such that

K ∩H+(θ, d(θ, δ)) ⊆ H+
t , (3.3)

for ‖θ − (−en)‖ < ε and 0 � δ < δ0. For each x in the interior of K, let δ(x) be the value such
that x ∈ ∂Mδ(x)(K,φ) and θ(x) denote the unique outer normal at x of Mδ(x)(K,φ).

Claim. For any δ0 > 0 and ε > 0, there exists r > 0 such that δ(x) < δ0 and
‖θ(x) − (−en)‖ < ε, for x ∈ int(K) ∩Bn

2 (0, r). �

Indeed, note that Mδ0(K,φ) is strictly contained in K. Thus, 0 /∈ Mδ0(K,φ). Since Mδ0(K,φ)
is convex, there exists r > 0 so that Bn

2 (0, r) ∩ Mδ0(K,φ) = ∅. Then, δ(x) < δ0 for x ∈ int(K) ∩
Bn

2 (0, r).
It remains to show that there exists r > 0 such that ‖θ(x) − (−en)‖ < ε for int(K) ∩

Bn
2 (0, r). Suppose that it is false. Then, there exists a sequence (xk)k∈N in int(K) such that

xk → 0 and such that ‖θ(xk) − (−en)‖ > ε. By the compactness of S
n−1, we may replace

(xk)k∈N by a subsequence, again denoted by (xk)k∈N, so that θ(xk) converges to some θ1 
= −en.
Moreover, δ(xk) → 0 since the first claim is true. Continuity of hMδ(K,φ)(θ) implies that
hMδ(xk)(K,φ)(θ(xk)) → hK(θ1). As −en is the unique outer normal to ∂K in 0, hK(θ1) >
〈0, θ1〉 = 0. Therefore, we obtain a contradiction, as hMδ(xk)(K,φ)(θ(xk)) = 〈xk, θ(xk)〉, which
converges to 0 as xk → 0. This completes the proof of the claim.

Hence, with the assumptions on δ0 and ε, we conclude that there exists r > 0 such that for
x ∈ int(K) ∩Bn

2 (0, r),

K ∩H+(θ(x), d(θ(x), δ(x))) ⊆ H+
t .

Let x ∈ Mδ(K, φ) ∩Bn
2 (0, r). Since x ∈ int(K) ∩Bn

2 (0, r),

K ∩H+(θ(x), d(θ(x), δ(x))) ⊆ H+
t ,

and thus x ∈ Mδ(x)(K ∩H+
t , φ). Moreover, note that δ(x) � δ and hence we have

Mδ(x)

(
K ∩H+

t , φ
) ⊆ Mδ

(
K ∩H+

t , φ
)
.

Hence, x ∈ Mδ(K ∩H+
t , φ). Therefore, Mδ(K,φ) ∩B(0, r) ⊆ Mδ(K ∩H+

t , φ) ∩B(0, r). �

3.2. Proof of Theorem 1.3

Recall that xM is the unique point in ∂(Mδ(K,φ)) ∩ [0, x]. We will sometimes write in short
xM for xM,δ. By Lemmas 3.2 and 3.3, we have that

lim
δ→0

|K| − |Mδ(K,φ)|
δ

2
n+1

=
1
n

∫
∂K

lim
δ→0

δ−
2

n+1 〈x, NK(x)〉
(

1 −
∣∣∣∣‖xM‖
‖x‖

∣∣∣∣
n)

dμK(x).

For x ∈ ∂K fixed, the goal is to understand

lim
δ↘0

1
n

∫
∂K

δ−
2

n+1 〈x, NK(x)〉
(

1 −
∣∣∣∣‖xM‖
‖x‖

∣∣∣∣
n)

dμK(x).

As x and xM are collinear and as for all 0 � a � 1,

1 − na � (1 − a)n � 1 − na +
n(n− 1)

2
a2,
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we get for δ sufficiently small that

‖x− xM‖|
‖x‖

(
1 − n− 1

2
‖x− xM‖|

‖x‖
)

� 1
n

(
1 −

∣∣∣∣‖xM‖
‖x‖

∣∣∣∣
n)

=

1
n

[
1 −

(
1 − ‖x− xM‖

‖x‖
)n]

� ‖x− xM‖|
‖x‖ . (3.4)

(i) We assume first that the indicatrix of Dupin at x ∈ ∂K is an ellipsoid. In fact, by a change
of the coordinate system, we may also assume that x = 0 and NK(0) = −en. Let ζ ∈ R

n be the
origin in the previous coordinate system. Let yM,δ := ∂(Mδ(K,φ)) ∩ [0, ζ]. Note that ‖yM,δ‖ =
‖x− xM,δ‖ and that yM,δ → 0 as δ ↘ 0. Thus,

lim
δ↘0

〈x, NK(x)〉‖x− xM,δ‖
‖x‖ = lim

δ↘0
〈ζ, en〉‖yM,δ‖

‖ζ‖ = lim
δ↘0

〈yM, δ, en〉. (3.5)

There exists a volume preserving positive definite linear transform T such that NTK(0) = −en
and such that the indicatrix of Dupin at 0 becomes a Euclidean ball with radius

√
ρ (see, for

example, [52, equation (5)]). Moreover, ρ satisfies

κK(0) =
1

ρn−1
.

Let H+ be the half space such that

δ =
∫
K∩H+

φ(y) dy and yM, δ =

∫
K∩H+ yφ(y) dy

δ
.

As T is volume preserving,
∫
TK∩TH+ φ(T−1y) dy = δ, and thus

TyM, δ =
∫
K∩H+

Tyφ(y) dy/δ =
∫
TK∩TH+

yφ
(
T−1y

)
dy/δ

∈ ∂Mδ

(
TK, φ ◦ T−1

)
.

As a consequence, we have

[0, T ζ] ∩ ∂Mδ

(
TK, φ ◦ T−1

)
= TyM, δ,

φ
(
T−10

)
= φ(0),

and

〈TyM,δ, en〉 = 〈yM,δ, T en〉 = 〈yM,δ, en〉.
Hence, we have reduced the problem to the case when the indicatrix of Dupin at 0 ∈ ∂K is a
Euclidean sphere with radius

√
ρ and κK(0) = 1

ρn−1 .
Moreover, ∂K can be approximated in 0 by a Euclidean ball Bn

2 (ρen, ρ) of radius ρ and
center ρen in the following sense (see, for example, proof of [53, Lemma 23]):

Let ε > 0 be given. Let Bn
2 ((1 − ε)ρen, (1 − ε)ρ) be the Euclidean ball centered at (1 − ε)ρen

whose radius is (1 − ε)ρ. Similarly, let Bn
2 ((1 + ε)ρen, (1 + ε)ρ) be the Euclidean ball centered

at (1 + ε)ρ with radius (1 + ε)ρ. Then,

0 ∈ ∂[Bn
2 (ρen, ρ)], 0 ∈ ∂[Bn

2 ((1 − ε)ρen, (1 − ε)ρ)],

0 ∈ ∂[Bn
2 ((1 + ε)ρen, (1 + ε)ρ)],

and

NBn
2 (ρen,ρ) = NBn

2 ((1−ε)ρen,(1−ε)ρ) = NBn
2 ((1+ε)ρen,(1+ε)ρ) = −en
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and (see, for example, proof of [53, Lemma 23]) there exists Δ0
ε such that for 0 < t < Δ0

ε, the
half-space H+

t = {y : 〈y, en〉 � t} determined by the hyperplane orthogonal to en through the
point ten is such that

H+
t ∩Bn

2 ((1 − ε)ρen, (1 − ε)ρ) ⊆ H+
t ∩ K

⊆ H+
t ∩Bn

2 ((1 + ε)ρen, (1 + ε)ρ). (3.6)

By continuity of φ, there exists s > 0 such that for all y ∈ int(Bn
2 (0, s)),

(1 − ε)φ(0) � φ(y) � (1 + ε)φ(0). (3.7)

We will apply Lemma 3.5 with t = Δ0
ε simultaneously to K, Bn

2 ((1 − ε)ρen, (1 − ε)ρ) and
Bn

2 ((1 + ε)ρen, (1 + ε)ρ) with weights φ, (1 − ε)φ(0), and (1 + ε)φ(0), respectively.
Let H+

Δε
= {y : 〈y, en〉 � Δε}. We choose Δε � Δ0

ε so small that

H+
Δε

∩ Bn
2 ((1 + ε)ρen, (1 + ε)ρ) ⊆ Bn

2 (0,min{s, r}),
where r is given by Lemma 3.5. We denote

d−M, δ = dist(yM, δ, B
n
2 ((1 − ε)ρen, (1 − ε)ρ)c)

and

d+
M, δ = dist(yM, δ, B

n
2 ((1 + ε)ρen, (1 + ε)ρ)c).

Boundedness of φ on Bn
2 (0, s) and (3.6) imply that for δ � 0,

Mδ

(
Bn

2 ((1 − ε)ρen, (1 − ε)ρ) ∩H+
Δε

, (1 − ε)φ(0)
) ⊆ Mδ

(
K ∩H+

Δε
, φ

)
⊆ Mδ

(
Bn

2 ((1 + ε)ρen, (1 + ε)ρ) ∩H+
Δε

, (1 + ε)φ(0)
)
.

By Lemma 3.5 and the choice of Δε, we have

Mδ(Bn
2 ((1 − ε)ρen, (1 − ε)ρ), (1 − ε)φ(0)) ∩H+

Δε
⊆ Mδ(K,φ) ∩H+

Δε

⊆ Mδ(Bn
2 ((1 + ε)ρen, (1 − ε)ρ), (1 + ε)φ(0)) ∩H+

Δε
.

Choose δ so small that yM,δ ∈ H+
Δε

. Then,

yM, δ /∈ int (Mδ(Bn
2 ((1 − ε)ρen, (1 − ε)ρ), (1 − ε)φ(0)))

and

yM, δ ∈ int (Mδ(Bn
2 ((1 − ε)ρen, (1 + ε)ρ), (1 + ε)φ(0))).

Thus, we conclude that

d−M, δ � Δ((1 − ε)ρ, (1 − ε)δφ(0)) and d+
M, δ � Δ((1 + ε)ρ, (1 + ε)δφ(0)),

where Δ((1 + ε)ρ, (1 + ε)δφ(0)) and Δ((1 − ε)ρ, (1 − ε)δφ(0)) are the differences of the
radii of (1 + ε)ρBn

2 and Mδ(ρBn
2 , (1 + ε)φ(0)), and of (1 − ε)ρBn

2 and Mδ(ρBn
2 , (1 − ε)φ(0)),

respectively. Applying Lemma 3.4(ii) with z = yM, δ and Proposition 3.1 for sufficiently small
δ yields

(1 − ε)
n+1
n−1+ 2

n+1 � 〈yM, δ, en〉
cnδ

2
n+1 ρ−

n−1
n+1 φ(0)

2
n+1

� (1 + ε)
n+1
n−1+ 2

n+1 .

Since ε > 0 can be chosen arbitrary, we obtain, also using (3.5),

lim
δ→0

φ(x)
2

n+1 〈x, NK(x)〉‖x− xM,δ‖
‖x‖δ 2

n+1
= cn ρ(x)−

n−1
n+1 = cn κK(x)

1
n+1 .
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(ii) Now, we assume that x is such that the indicatrix of Dupin at x is an elliptic cylinder.
We will show that then

lim
δ→0

〈x, NK(x)〉‖x− xM,δ‖
‖x‖δ 2

n+1
= 0.

We only need to show that limδ→0〈x, NK(x)〉‖x−xM,δ‖
‖x‖δ

2
n+1

� 0.

We may assume that the first k axes of the elliptic cylinder have infinite lengths and the
others not. Then, as above (see, for example, proof of [53, Lemma 23]), for all ε > 0 there
is an approximating ellipsoid E and Δε such that the hyperplane H(NK(x), x− Δε)NK(x))
orthogonal to NK(x) through the point x− ΔεNK(x) is such that

H+(NK(x), x− Δε)NK(x)) ∩ E ⊆ H+(NK(x), x− Δε)NK(x)) ∩ K

and such that the lengths of the k first principal axes of E are larger than 1
ε . As noted

above, there is a support hyperplane Hδ to Fδ(K,φ) such that xF,δ ∈ Hδ and such that
δ =

∫
K∩H+

δ
φ(y)dy [58]. Then,

δ � min
y∈K

φ(y)|K ∩H+
δ | � min

y∈K
φ(y)|E ∩H+

δ |.

As above, we may assume that the approximating ellipsoid E is a Euclidean ball with radius
ρ = ρ(x) where ρ � 1

ε . Then,

〈x, NK(x)〉‖x− xM,δ‖
‖x‖δ 2

n+1
� 〈x, NK(x)〉‖x− xF,δ‖

‖x‖δ 2
n+1

�
〈 x
‖x‖ , NK(x)〉 ‖x− xF,δ‖

(miny∈K φ(y))
2

n+1
(|Bn

2 (x− ρNK(x), ρ) ∩H+
δ |) 2

n+1

� ρ−
n−1
n+1

cn(miny∈K φ(y))
2

n+1
.

The last inequality can be shown using similar methods as in the case (i). Or, one notices that
we are precisely in the situation of [51, Lemmas 7, 10] where exactly this estimate is proved.
As ρ is arbitrarily small, the proof is completed.

Acknowledgements. We thank Ning Zhang for pointing out Proposition 2.2 to us. We also
thank Monika Ludwig for useful comments and references.
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52. C. Schütt and E. Werner, ‘Polytopes with vertices chosen randomly from the boundary of a convex

body’, Geometric aspects of functional analysis, Lecture Notes in Mathematics 1807 (eds B. Klartag, S.
Mendelson and V. D. Milman; Springer, Berlin, 2003) 241–422.
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