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ABSTRACT 

Extracellular matrix (ECM) remodeling is essential for the process of capillary morphogenesis. 

Here we employed synthetic poly(ethylene glycol) (PEG) hydrogels engineered with proteolytic 

specificity to either matrix metalloproteinases (MMPs), plasmin, or both to investigate the 

relative contributions of MMP- and plasmin-mediated ECM remodeling to vessel formation in a 

3D-model of capillary self-assembly analogous to vasculogenesis. We first demonstrated a role 

for both MMP- and plasmin-mediated mechanisms of ECM remodeling in an endothelial-

fibroblast co-culture model of vasculogenesis in fibrin hydrogels using inhibitors of MMPs and 

plasmin. When this co-culture model was employed in engineered PEG hydrogels with selective 

protease sensitivity, we observed robust capillary morphogenesis only in MMP-sensitive 

matrices. Fibroblast spreading in plasmin-selective hydrogels confirmed this difference was due 

to protease preference by endothelial cells, not due to limitations of the matrix itself. In 

hydrogels engineered with crosslinks that were dually susceptible to MMPs and plasmin, 

capillary morphogenesis was unchanged. These findings highlight the critical importance of 

MMP-mediated degradation during vasculogenesis and provide strong evidence to justify the 

preferential selection of MMP-degradable peptide crosslinkers in synthetic hydrogels used to 

study vascular morphogenesis and promote vascularization. 
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Matrix remodeling in engineered hydrogels during vasculogenesis  
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INTRODUCTION 

The microvasculature is essential to the normal function, maintenance, and repair of 

nearly all tissues. This complex network continuously evolves to meet changing demands of 

tissues. Throughout this process, the extracellular matrix is continuously remodeled, making 

extracellular proteolytic systems central to the regulation of capillary morphogenesis1,2.  

There are a wide range of proteolytic systems implicated in the formation of new 

vessels2. Matrix metalloproteinases (MMPs), and in particular the membrane-type (MT)-MMPs, 

have emerged as critical mediators of matrix remodeling not only in collagen but also in fibrin3-6. 

However, the serine protease plasmin, which is also activated at the cell membrane, may provide 

an alternative mechanism for proteolytic remodeling, and in some conditions, is necessary for 

capillary morphogenesis in fibrin7-10. The relative importance of these systems in capillary 

morphogenesis therefore remains an open question.  

In 3D models, endothelial cells co-cultured with supporting stromal cells undergo 

capillary morphogenesis5. We have observed that stromal cell identity modulates the contribution 

of the plasmin pathway to this process in fibrin5,11 and have correlated these observations with 

differences in the extent of vessel formation, morphology, and permeability both in vitro5,12 and 

in vivo13. These findings suggest the mechanisms of proteolytic remodeling during vessel 

formation may dictate functional properties of the resulting capillary network, which has 

important implications for the design of synthetic biomaterial scaffolds that support the 

formation of new vessels.  
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Deciphering the roles of specific proteolytic pathways has traditionally leveraged 

molecular genetic tools to create knock-out cells and animals3,6. However, redundancies in 

proteolytic enzyme expression and mechanisms of ECM degradation may complicate 

interpretations from knock-outs. To complement such approaches, here we used engineered 

hydrogels14 with selective degradability to investigate the relative importance of MMP- versus 

plasmin-dependent ECM degradation during capillary morphogenesis in 3D.  

MATERIALS AND METHODS 

Cell culture 

All reagents were obtained from Thermo Fisher Scientific (Waltham, MA) unless 

specified. Human umbilical vein endothelial cells (ECs) were harvested from fresh umbilical 

cords and cultured in fully supplemented EGM2 (Lonza, Walkersville, MD) as previously 

described15. ECs were used between passages 2-4. Normal human dermal fibroblasts (DFs, 

Lonza) and normal human lung fibroblasts (LFs, Lonza) were cultured in Dulbecco’s modified 

eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin 

streptomycin and were used up to passage 15. Bone marrow mesenchymal stem cells (MSCs, 

RoosterBio, Frederick, MD) were cultured in RoosterNourish-MSC medium (RoosterBio) and 

used up to passage 5. All cells were cultured at 37 oC and 5% CO2 with thrice weekly medium 

exchange. These cell types were chosen because prior work has suggested they exhibit 

differential utilization of MMP- and plasmin-mediated proteolysis5,11. 

Fibrin-based vasculogenesis assay with drug inhibitors 
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A 3D model of capillary morphogenesis was adapted from our previously described 

protocol 16 as follows. ECs (1.25x105 cells/mL) and a supportive stromal cell type (1.25x105 

cells/mL) were distributed in 0.5 mL fibrin hydrogels formed in a 24-well culture plate from 2.5 

mg/mL of 0.22 µm filtered bovine fibrinogen (Sigma-Aldrich, St Louis, MO) dissolved in serum 

free DMEM and polymerized with 1 U/mL bovine thrombin (Sigma). After gelation, 1 mL of 

Vasculife VEGF Endothelial Medium (Lifeline Cell Technology LLC, Frederick, MD) was 

added to the hydrogel with indicated inhibitors. Aprotinin, derived from bovine lung (Sigma), 

was added in sterile water at a final concentration 2.2 µM5, which is nearly 3 orders of 

magnitude greater than the IC50 for plasmin (4 nM)17 and has been previously shown to have a 

saturating effect on capillary morphogenesis18. The broad-spectrum MMP inhibitor, GM6001 

(Sigma), was supplemented in a constant volume of DMSO vehicle to achieve indicated 

concentrations.  

PEG-VS hydrogel formation 

Hydrogels were formed from 4-arm poly(ethylene glycol) vinyl sulfone (PEG-VS; 20 

kDa, Jenkem USA, Allen TX) and a combination of thiol containing adhesive and protease-

sensitive peptides adapted from published protocols14,19. All reagents were prepared in batches of 

single-use aliquots. Peptides, dissolved in 25 mM acetic acid, and PEG-VS, dissolved in 

ultrapure water, were 0.22 µm filtered, lyophilized, and stored desiccated at -20 oC. Precise thiol 

content of each batch of peptide aliquots was determined using Ellman’s reagent. An optimal 

thiol:vinyl sulfone ratio (typically 0.8-0.9) which yielded the maximum hydrogel shear modulus 
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was also determined for each batch. Immediately before use, PEG-VS was dissolved in HEPES 

(100 mM, pH 8.4) and CGRGDS peptide (RGD, Genscript, Piscataway, NJ) was reacted with the 

PEG-VS for 30 min at a final concentration of 400 µM. In rapid succession, dithiol crosslinking 

peptides at the optimized thiol:vinyl sulfone ratio (accounting for RGD conjugation) were added 

to the PEG-VS solution, gently mixed, dispensed into a sterile 0.5 (for 30 μl gels) or 1 mL (50 μl 

gels) syringe with the needle end cut off, and allowed to polymerize for 1 h at 37 oC in a sealed 

50 mL conical tube. Crosslinking peptides included: Ac-GCRDVPMS↓MRGGDRCG-NH2 

(“VPMS”), Ac-GCYK↓NRDCG-NH2 (“YKNR”), Ac-GCYK↓NRDVPMS↓MRGGDRCG-NH2 

(“Dual”), and Ac-GCY(D-K)N(D-R)DCG-NH2 (“YD-KND-R”) each containing an N-terminal 

acetylation and a C-terminal amidation (Genscript, cleavage site indicated by ↓). Polymerized 

hydrogels were punched into culture medium or phosphate buffered saline (PBS).  

Mechanical and proteolytic characterization of PEG-VS hydrogels 

Hydrogels were allowed to swell overnight, then were mounted on an AR-G2 rheometer 

(TA Instruments, New Castle, DE) between an 8-mm measurement head and a Peltier stage, each 

covered with P800 sandpaper. Shear storage modulus (G’) was determined at 0.05 N normal 

force, 5% strain amplitude, and 1 Hz frequency and averaged over a 2-minute time sweep. For 

proteolysis experiments, hydrogels were allowed to swell overnight then transferred to either 5 

mU/mL plasmin from human plasma (Sigma) in PBS or to 1 U/mL collagenase IV from 

Clostridium histolyticum (used as a qualitative surrogate for MMP degradation as both MMPs 

and collagenase IV were found to degrade the VPMS peptide sequence) in PBS supplemented 
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with 0.4 mM CaCl2 and 0.1 mM MgCl2. Shear modulus was measured at 0, 3, and 24 h. 30 µL 

hydrogels were used for proteolysis experiments. 50 µL hydrogels were used for all other 

experiments. 

PEG-based vasculogenesis assays 

Hydrogels were formed as above except that a cell pellet was resuspended just after 

adding the dithiol peptide to achieve a final cell density of 2x106 cells/mL of each cell type. 50 μl 

samples of the resulting suspension were dispensed into 1 mL syringes and polymerized as 

above. Each hydrogel was cultured in 2 mL of medium in a 12-well plate for 7 d. Either EGM2 

or Vasculife VEGF medium were used for these studies. Controls comparing results in both 

medium types were performed for selected conditions. For the drug inhibitor studies, medium 

was exchanged daily and inhibitors were added as in the fibrin-based experiments. For all other 

experiments, medium was exchanged on days 1, 3, and 5.  

Fluorescent imaging and quantification methods 

On day 7, co-cultures were fixed with Z-fix (Anatech, Battle Creek, MI). All PEG-VS 

hydrogels were cut down the cylinder diameter prior to staining, yielding two halves. Samples 

were stained with rhodamine-conjugated lectin from Ulex europaeus (UEA, Vector Laboratories, 

Burlingame, CA, specific for endothelial cells, 1:200), 4’, 6-diamidino-2-phenylindol (DAPI, 1 

μg/ml, Sigma), and AlexaFluor 488 phalloidin (1:200). PEG-hydrogels were imaged on the cut 

side to ensure images were representative of cellular behavior within the hydrogels. Images were 

acquired using an Olympus IX81 microscope equipped with a disk scanning unit (DSU, 
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Olympus America, Center Valley, PA) and Metamorph Premier software (Molecular Devices, 

Sunnyvale, CA). For all analyses, confocal z-stacks were acquired using the DSU. Z-series were 

collapsed into maximum intensity projections prior to analysis. Quantifications of vessel and 

nuclei densities were performed on 300 µm stacks (30 µm/slice) imaged at 4x. Total vessel 

length per region of interest (ROI) was quantified using the Angiogenesis Tube Formation 

module in Metamorph and reported as vessel length per volume of ROI (2.16 x 1.65 x 0.3 mm). 

Total nuclei per ROI was quantified using a custom ImageJ script (included in supplement). Cell 

body circularity and projected cell area per volume of ROI were quantified from 30 µm thick 

stacks (3 µm/slice) imaged at 10x with a custom ImageJ script (included in supplement). For 

each sample, 6 ROIs were used to determine a mean for each of 3 independent experiments.  

Statistics 

Statistical analysis was performed using GraphPAD Prism (La Jolla, CA). Unless noted, 

data are represented as mean ± standard deviation of at least 3 independent experiments. Data 

were analyzed using one- or two-way ANOVA with Tukey post-hoc testing for pre-specified 

comparisons. A value of α < 0.05 was considered significant.  

RESULTS 

Synergistic restriction of vasculogenesis by broad spectrum inhibition of MMP- and serine 

protease-dependent pathways is stromal cell dependent. 

We first investigated how inhibition of MMP-dependent and plasmin-dependent 

fibrinolysis affected capillary morphogenesis in a model of vasculogenesis in which ECs were 
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distributed with DFs, LFs, or MSCs for 7 d in fibrin hydrogels. The extent of baseline capillary 

morphogenesis depended on stromal cell identity, with the length of networks in EC-MSC co-

cultures 50% and 39% compared to EC-LF or EC-DF co-cultures respectively (Fig 1 and Fig 

S1). Baseline capillary morphogenesis was unaffected by vasculogenic medium used (Fig S2). 

GM6001, a broad-spectrum inhibitor of MMPs, consistently reduced vessel formation in a dose-

dependent manner regardless of stromal cell identity (Fig 1 and Fig S1, p < 0.0001 by two-way 

ANOVA). Aprotinin, a broad-spectrum inhibitor of serine-proteases including plasmin, similarly 

tended to reduce vessel formation regardless of stromal cell identity (Fig 1, p < 0.05 by two-way 

ANOVA). The magnitude of the effect, however, was comparatively subtle for EC-MSC co-

cultures (Fig 1D). In the absence of GM6001, aprotinin did not affect vessel density. However, 

the combination of aprotinin and GM6001 revealed a synergistic inhibitory effect from aprotinin 

that depended on GM6001 concentration for EC-DF and EC-LF co-cultures (two-way ANOVA 

interaction term p = 0.035 and 0.0009, respectively) but not MSCs (p = 0.46, Fig 1 and Fig S1). 

In EC-LF and EC-DF co-cultures, concentrations of GM6001 that were orders of magnitude 

greater than the nM IC50 range for most MMPs20 were insufficient to fully inhibit capillary 

morphogenesis unless aprotinin also was present. Because inhibition of either protease system 

alone was insufficient to block capillary morphogenesis, these results support a model of partial 

proteolytic plasticity for vasculogenesis in EC-fibroblast co-cultures in fibrin.  

 We also evaluated whether aprotinin and GM6001 induced changes in cell spreading and 

proliferation. The effects of protease inhibition on combined cell density (both EC and stromal 
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cell) closely mirrored vessel density (Fig S3). Qualitatively, protease inhibition affected 

spreading of endothelial cells more than stromal cells. Aprotinin and maximal GM6001 severely 

attenuated, but did not completely block, spreading of any stromal cell type (Fig S4).  

Direct matrix degradation by plasmin is insufficient to support robust capillary 

morphogenesis. 

To investigate the hypothesis that fibroblasts induce both MMP- and plasmin-mediated 

matrix remodeling during capillary morphogenesis, we generated synthetic extracellular matrices 

using 4-arm PEG-VS crosslinked with peptides selectively degradable nearly exclusively by 

either MMPs or plasmin (Fig 2A)14,19. Hydrogels formed from PEG-VS crosslinked with YKNR 

were rapidly degraded by plasmin as assessed by loss of shear modulus over time, while 

equivalent hydrogels formed from either a negative control peptide synthesized with the D-

isomer of lysine and arginine (YD-KND-R) or VPMS were unaffected by plasmin after 24h (Fig 

2B). Inclusion of aprotinin at 2.2 µM prevented YKNR-hydrogel degradation by plasmin, 

resulting in gels with G’ values of 141 ± 10 Pa after 24 hours (p=0.42 compared to untreated 

YKNR control). Taken together, these data show that plasmin exclusively degrades YKNR 

hydrogels.  

Because DFs are readily available from skin and therefore may represent a viable cell 

source for engineered microvascular constructs, we selected this stromal cell type for further 

investigation in engineered PEG-VS hydrogel matrices. When ECs and DFs were co-

encapsulated within plasmin-sensitive YKNR hydrogels with formulations similar to our prior 
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work (~40 mg/mL PEG-VS)14, there was no clear evidence of capillary morphogenesis. By 

contrast, capillary-like structures were observed in MMP-sensitive VPMS hydrogels (Fig 3A and 

3B). To investigate the possibility that vasculogenesis was limited by a grossly supraphysiologic 

number of matrix cleavage sites, we reduced the concentration of PEG-VS to generate hydrogels 

with decreasing crosslink density, as assessed by shear rheology21, to the practical limits of 

gelation (G’ range for 27 mg/mL PEG-VS hydrogels 37 to 61 Pa, Fig 3C). This approach 

reduced the number of proteolysis events required for local hydrogel dissolution as well as 

diffusion restrictions. Hydrogel crosslinking, assessed by shear rheology, did not depend on the 

crosslinking peptide identity (p= 0.30, Fig 3C). In loosely crosslinked YKNR hydrogels, we 

observed rare areas of minimal capillary morphogenesis (Fig 3A and 3B), but the formation of 

capillary-like structures was never as robust as observed in VPMS crosslinked hydrogels. 

Quantified vessel density in 27 mg/mL YKNR hydrogels was similar to that seen in YD-KND-R 

controls (Fig 3B, p= 0.42). In VPMS hydrogels, vessel density was greater in 27 mg/mL 

compared with 40 mg/mL (Fig 3B, p = 0.008). Capillary morphogenesis in VPMS hydrogels did 

not depend on the vasculogenic medium used (Fig S5).  

To confirm that cell-mediated degradation is possible in plasmin-selective hydrogels, we 

examined cell spreading in EC-dermal fibroblast co-cultures (Fig 4A) and quantified cell 

circularity as a measure of cell spreading (Fig 4B). Circularity discriminates rounded versus 

spread cells (values of 1 indicate perfectly round cells, lower circularity indicates increased 

elongation). Circularity was low for a large fraction of cells in all VPMS and loosely-crosslinked 
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YKNR hydrogels but was near 1 for most cells in 40 mg/mL YKNR hydrogels (Fig 4B). The 

lack of spreading in any YD-KND-R hydrogels indicated cell spreading depended on matrix 

degradation (Fig 4B). Qualitatively, we noted cell spreading in YKNR hydrogels predominantly 

occurred in UEA negative fibroblasts (Fig 4A), suggesting EC spreading was disproportionately 

restricted in plasmin-selective hydrogels.  

Hydrogels with dual susceptibility to both plasmin and MMPs do not enhance 

vasculogenesis compared with MMP-selective hydrogels.  

Our results to this point suggested that plasmin-mediated matrix remodeling was not 

sufficient to support capillary morphogenesis but did not rule out the possibility that plasmin 

may have an auxiliary role, perhaps partially degrading the matrix ahead of vessel invasion to 

facilitate localized MMP mediated degradation. To assess this possibility, we generated a 

synthetic ECM in which each crosslink could be degraded either by MMPs or by plasmin using a 

concatenated YKNR+VPMS dual susceptible peptide (Fig 5A). Hydrogels crosslinked with the 

dual susceptible peptide were degradable by both plasmin and collagenase (used as a surrogate 

for MMP-mediated degradation) (Fig 5B) and had shear moduli similar to VPMS controls (Fig 

5C). EC-DF cocultures in dual susceptible hydrogels resulted in vessel density, projected cell 

area, and nuclei density equivalent to gels crosslinked with the VPMS peptide (Fig 5D, 5E, 5F). 

Synergistic restriction of vasculogenesis by broad spectrum inhibition of MMP- and serine 

protease-dependent pathways is abolished in MMP-sensitive hydrogels. 
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Since plasmin can activate soluble MMPs, including those involved in capillary 

morphogenesis1, another potential explanation for the reduced vasculogenesis in fibrin cultures 

containing aprotinin may be inhibition of plasmin-dependent activation of MMPs. To investigate 

this possibility, inhibition experiments similar to those shown in Fig 1 were repeated in VPMS 

crosslinked PEG-VS hydrogels that could only be degraded by MMPs. Similar to results in 

fibrin, GM6001 reduced vessel formation in a dose dependent manner (Fig 6, two-way ANOVA 

p = 0.0003). However, unlike in fibrin, we observed no meaningful differences in vasculogenesis 

when aprotinin was added to cultures containing GM6001 (Fig 6, two-way ANOVA, aprotinin 

effect p = 0.21, interaction p = 0.75).  

DISCUSSION 

The goal of these studies was to implement a biomaterial engineering approach to 

investigate the relative importance of plasmin- and MMP-mediated matrix degradation in 

capillary morphogenesis. Our previous work has suggested that the identity of stromal cells used 

to support capillary morphogenesis influences the relative importance of MMP- and plasmin-

dependent matrix remodeling in fibrin5,11. These differences correlate with vessel function5,12,13. 

Therefore, determining the relative roles of plasmin and MMPs in capillary morphogenesis may 

have critical implications for neovessel function and in the design of biomaterial scaffolds to 

support vascularization.  

First, we investigated whether stromal-cell-dependent differences in the mechanism of 

proteolysis in fibrin hydrogels observed in angiogenesis models5,11 extended to a model of 
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vasculogenesis. This model mimics vascularization strategies often deployed for tissue 

engineering applications that involve injection of populations of cells13,14 or pre-patterned cell 

aggregates22,23 that organize into microvasculature. The phenotype and angiogenic potential of 

microvascular ECs24,25 and stromal cells5,11-13,26  vary widely according to their origin. We chose 

umbilical vein-derived ECs and supporting cells derived from bone marrow, lung, and dermis to 

explore in our model because our prior work has suggested differential utilization of MMP- and 

plasmin-mediated proteolysis with these combinations5,11. Furthermore, this EC source has been 

utilized widely for understanding mechanisms of capillary morphogenesis27. Though we did not 

specifically test ECs from other origins, an essential role for MMPs in capillary morphogenesis 

has been described for microvascular3,28, macrovascular3,5, and stem cell-derived25 ECs as has a 

role for plasmin with ECs derived from both macrovascular5 and microvascular sources7-10. As a 

result, we anticipate that programs of proteolytic remodeling implied by our investigation are 

likely generalizable to endothelium from a variety of origins.  

For EC-fibroblast co-cultures in this model, we observed 1) a synergistic inhibition of 

capillary morphogenesis between aprotinin and high concentrations of GM6001 (≥ 10 μM) and 

2) robust inhibition required both inhibitors. In contrast, GM6001 alone was sufficient to block 

capillary morphogenesis in EC-MSC co-cultures. These results suggest that fibroblasts can 

induce a program of capillary morphogenesis that utilizes both MMP- and plasmin-dependent 

mechanisms of matrix remodeling consistent with our prior observations5,11. The observed IC50 

for GM6001 for capillary morphogenesis, regardless of stromal cell identity, was approximately 
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1 µM. This level is at least two orders of magnitude greater than the IC50 for most MMPs20, 

suggesting that inhibition of capillary morphogenesis, and thus any evidence of escape from 

MMP inhibition due to pericellular plasmin activity, does not occur until MMP activity is fully 

abolished. While it is possible the observed aprotinin-GM6001 synergy represents off-target 

effects from the single inhibitor used for each enzyme class in these studies, the fact that similar 

findings have been observed with a wide range of inhibitors for both MMPs and plasmin 

pathways in similar models4,5,11,25 suggests this explanation is unlikely. Together, these results 

suggest that plasmin can act as a pericellular protease only in circumstances in which the 

preferred MMP-dependent pathway is essentially inactivated, highlighting the essential role 

MMPs play.  

To investigate the role of plasmin further, we designed synthetic PEG hydrogel 

ECMs14,19 in which matrix degradation was selectively limited to MMP- or plasmin-mediated 

mechanisms by crosslinking the scaffold with protease-selective peptides. We selected the 

peptide sequences VPMSMRGG (denoted VPMS), which can be degraded by a variety of MMPs 

(MT1-MMP and MMPs 1, 2, 3, 7, and 9)29, support cell invasion30, and support capillary 

morphogenesis14 and YKNR, which is plasmin-sensitive and previously optimized for Michael 

addition reactions31. Although this approach provides a selectively degradable ECM model, 

PEG-VS hydrogels lack many of the pro-angiogenic properties of fibrin, which include a fibrous 

architecture, macroporous features, binding sites for multiple cell adhesion molecules other than 

RGD, and binding sites for a variety of growth factors32. Also, cells encapsulated in PEG-VS 
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were never exposed to thrombin, which can activate endothelial cells, though the short duration 

of exposure in our study (30 min) leads to minimal EC activation33 and is unlikely to have a 

meaningful impact over a 7 d culture period. Furthermore, soluble proteases may play an 

important role in cell-mediated degradation and migration in peptide crosslinked PEG-based 

hydrogels34,35. This property may restrict capillary morphogenesis, which requires membrane 

bound MT1-MMP in natural ECMs3. Despite these limitations, capillary morphogenesis 

occurred in all VPMS-crosslinked hydrogels. However, a higher initial cell density was needed 

(targeted at the typical final cell density observed in fibrin gels) and the resulting capillary-like 

networks were never as extensive as in fibrin. 

Initially, in formulations similar to our previous work (40 mg/mL14), we observed that 

spreading of both ECs and stromal cells was severely restricted in YKNR-crosslinked hydrogels. 

This observation is potentially explained by the fact that PEG-VS hydrogels have a nanoscale 

architecture with a mesh size on the order of 10-100 nm, in contrast to micron-scale pores in 

fibrin36. As a result, the number of pericellular crosslinks that require degradation to permit cell 

spreading is at least 400 times greater in 40 mg/mL PEG-VS hydrogels compared with 2.5 

mg/mL fibrin (estimated using the starting concentrations of each material, with 2 degradation 

events per PEG-VS molecule and 1 degradation event per fibrin molecule37 needed for network 

dissolution). We also previously observed significant diffusion restrictions in these hydrogels for 

larger molecular weight molecules similar in size to plasminogen14, which is supplied by serum 
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in our vasculogenic culture medium and is a necessary precursor to plasmin-mediated 

proteolysis.  

To overcome these limitations, we generated PEG-VS matrices near the limits of gelation 

to reduce the number of pericellular crosslinks and minimize diffusion restrictions. In these 

loosely crosslinked YKNR hydrogels, we observed invasion of the surrounding matrix by 

fibroblasts. A persistent lack of spreading in control plasmin-insensitive YD-KND-R hydrogels 

confirmed cell spreading depended on degradation of the YKNR peptide. These observations 

indicated that limitations in vasculogenesis could be attributed to differences in the proteolytic 

preferences of endothelial cells rather than gross limitations in matrix degradability or 

plasminogen diffusion. This observation that plasmin-mediated degradation requires the PEG-VS 

hydrogel scaffold to be near the gelation point also may explain conflicting reports regarding the 

ability of fibroblasts to degrade YKNR crosslinked PEG hydrogels31,36. However, only in very 

loosely crosslinked YKNR hydrogels did we begin to observe occasional rudimentary 

vasculogenesis, which was never seen in similar soft control YD-KND-R hydrogels. In contrast, 

very soft control hydrogels crosslinked with VPMS tended to support more robust network 

formation, suggesting a correlation between MMP-degradability and vasculogenesis that 

highlights the dominant role of MMPs in capillary morphogenesis. 

These findings are also consistent with other studies noting that increasing crosslink 

degradability38 or a more loosely crosslinked network structure39 correlate with increased 

capillary morphogenesis. Furthermore, in adipocyte-derived stem cell-EC cocultures, others have 
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observed evidence that plasmin-mediated ECM degradation becomes increasingly important in 

densely crosslinked fibrin18. Consequently, we hypothesized that plasmin may partially degrade 

the fibrin network rendering it more susceptible to MMPs and thus facilitating vasculogenesis. 

To evaluate this hypothesis, we generated PEG hydrogels where each crosslink was susceptible 

to either MMPs or plasmin by merging both the VPMS and YKNR peptides sequences. These 

hydrogels were indistinguishable from VPMS-crosslinked controls, both in initial physical 

properties and in their ability to support capillary morphogenesis. These findings suggested that 

partial ECM-degradation by plasmin did not contribute significantly to capillary morphogenesis 

and that the kinetics of ECM remodeling were dominated by MMPs in our PEG-hydrogel co-

culture system.  

A possible explanation of the apparent role of plasmin-dependent pathways in fibrin 

hydrogels (based on inhibitor studies) but the failure of capillary morphogenesis in selectively 

plasmin-sensitive ECMs is that plasmin’s role does not involve direct matrix degradation. 

Plasmin is a potent activator of MMP-3, which in turn activates MMP-9 to increase cellular 

invasiveness40. If indirect plasmin-mediated activation of MMPs contributed to vasculogenesis, 

then we hypothesized that we should observe a synergy between aprotinin and GM6001 not only 

in fibrin but also in VPMS hydrogels. Moreover, the VPMS peptide is 8-times more sensitive to 

cleavage by MMP-9 than MT1-MMP29, which is of critical importance in vessel formation4,5, 

making VPMS hydrogels an ideal environment to test this hypothesis. However, our experiments 
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demonstrated no synergy between GM6001 and aprotinin in VPMS PEG-VS hydrogels, again 

highlighting the importance of MMPs alone.  

There are several other possible explanations for the observed GM6001-aprotinin 

inhibition synergy in fibrin which we did not investigate further. Plasmin binding to αvβ3 on 

endothelial cells has been shown to induce endothelial migration41, offering a potential 

alternative mechanism by which it may stimulate angiogenesis. Aprotinin also inhibits other 

serine proteases. Kallikrein, which is synthesized and secreted by ECs and cleaves kininogens 

into pro-angiogenic kinins42, may also be present and inhibited at the concentration of aprotinin 

utilized here (IC50 1-100 nM43) to reduce capillary morphogenesis under conditions of MMP 

inhibition.   

Taken together, these results emphasize the utility of engineered ECM mimetics to better 

understand the mechanisms by which the ECM regulates complex morphogenetic programs in 

3D. In particular, our results underscore the essential role for MMP-mediated ECM degradation 

during capillary morphogenesis and generalize the findings of prior studies in fibrin and collagen 

hydrogels3-6 to a precisely defined synthetic ECM. In contrast, our findings do not support a role 

for plasmin-mediated matrix remodeling in capillary morphogenesis, but instead suggest plasmin 

may contribute only under very limited circumstances (e.g. in fibrin with near complete MMP 

inhibition or in situations of supraphysiologic fibrin concentration18); such circumstances are 

unlikely to be physiologically significant. Our model also provides a tool to investigate matrix 

remodeling in organotypic capillary morphogenesis with specific EC and stromal cell 
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combinations. Finally, the unique matrix-centric perspective of these studies provides strong 

evidence to justify the preferential selection of MMP-degradable peptide crosslinkers in 

synthetic hydrogels used to study vascular morphogenesis38,39,44-49 and promote vascularization. 
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FIGURE CAPTIONS 

Fig 1:  Aprotinin acts synergistically with GM6001 to inhibit vasculogenesis in endothelial cell 

(EC) co-cultures with dermal fibroblasts (DFs) and lung fibroblasts (LFs) but not in co-cultures 

with bone-marrow mesenchymal stem cells (MSCs) in 2.5 mg/mL fibrin hydrogels. 

Representative images of capillary-like networks formed in EC-DF co-cultures after 7 d with 

indicated inhibitor concentrations are shown stained with the endothelial-selective lectin from 

Ulex europaeus (UEA, red) to highlight networks (A). Scale bar = 500 µm. Multiple images at 

prespecified locations were acquired for each condition for co-cultures of ECs and DFs (B), LFs 

(C), or MSCs (D) for 3 independent experiments and network lengths were quantified per 

volume as outlined in the methods. Two-way ANOVA (GM6001, aprotinin, interaction) results: 

EC-DF (p < 0.0001, p = 0.0218, p = 0.0349), EC-LF (p < 0.0001, p = 0.0059, p = 0.0009), EC-

MSC (p < 0.0001, p = 0.0177, p = 0.459). 

Fig 2: Design of MMP- and plasmin-selective PEG-VS hydrogels. We designed PEG-VS 

hydrogel scaffold systems with selective protease sensitivity by crosslinking multiple-arm PEG-

VS with dithiol peptides with selective sensitivity to plasmin or MMPs (A). Hydrogels were 

crosslinked, swollen in PBS overnight, exposed to plasmin (5 mU/mL), and at indicated times, 

characterized by shear rheology. Hydrogels crosslinked with YKNR were readily degradable by 

plasmin as measured by shear rheology, whereas VPMS and YD-KND-R crosslinked hydrogels 

were insensitive to plasmin (B).  
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Fig 3: Capillary morphogenesis is severely restricted in YKNR hydrogels regardless of 

crosslinking density. UEA (red) images from the centers of the constructs (see methods) are 

shown for loose (27 mg/mL PEG-VS) and dense (40 mg/mL) VPMS, YKNR, and YD-KND-R 

crosslinked hydrogels. Capillary-like networks formed in EC-DF co-cultures at all 

concentrations of PEG-VS when crosslinked with VPMS. In YKNR hydrogels, limited vessel 

formation was only observed in the softest (27 mg/mL) hydrogel formulation. No vessel 

formation was observed in non-degradable hydrogels (A). Scale bar: 500 µm. Vessel network 

length was quantified in each scaffold (*: p < 0.0009 compared with YD-KND-R at fixed 

concentration, #: p < 0.008 compared with 27 mg/mL VPMS) (B). Peptide identity did not 

influence the shear modulus of hydrogels (two-way ANOVA: p = 0.40) (C). 

Fig 4: Reduced crosslinking density allows for fibroblast spreading in YKNR crosslinked PEG-

VS hydrogels. ECs and DFs were encapsulated in PEG-VS hydrogels with varying peptide 

identity and crosslinking density, controlled by initial PEG-VS concentration. UEA (red), 

phalloidin (green), and DAPI (blue) co-stained images from the centers of the constructs are 

shown for loose (27 mg/mL PEG-VS) and dense (40 mg/mL) VPMS, YKNR, and YD-KND-R 

crosslinked hydrogels (A). Fibroblasts are phalloidin positive but UEA negative. Scale bar: 100 

µm. Circularity was quantified (see methods) as a measure of cell spreading in loose (27 mg/mL 

PEG-VS), intermediate (32 mg/mL), and dense (40 mg/mL) crosslinked hydrogels (*: p ≤ 0.003 

for comparison shown) (B). 
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Fig 5: Hydrogels with crosslinks sensitive to either plasmin or MMPs did not enhance capillary 

morphogenesis. PEG-VS hydrogels were crosslinked with a concatenated peptide containing 

both VPMS and YKNR sequences and used to form scaffolds in which each crosslink was 

susceptible to either MMPs or plasmin (A). Dense PEG-VS hydrogels were crosslinked with the 

dual susceptible peptide, swollen in PBS overnight, exposed to indicated proteases, and at 

indicated times, characterized by shear rheology (B). EC-DF co-cultures were generated in 

intermediate-crosslinked (32 mg/mL PEG-VS) scaffolds crosslinked with either VPMS or dual-

susceptible peptides (C-F). Network structure of these scaffolds, assessed by shear rheology, did 

not depend on crosslinking peptide (p = 0.36) (C). Vessel density, quantified after 7 d, was 

similar for VPMS and dual susceptible peptides (p = 0.65) (D). Cell spreading was estimated by 

projected cell area per volume and did not differ for VPMS and dual susceptible peptides (p = 

0.11) (E). There were no differences in cell density after 7 d, measured by automated counting of 

DAPI stained nuclei per volume (p = 0.63) (F).  

Fig 6: Cooperative GM6001 and aprotinin inhibition is abolished in VPMS crosslinked 

hydrogels. EC-DF co-cultures were generated in intermediate-crosslinked (32 mg/mL PEG-VS) 

hydrogels and cultured for 7 d in the presence of protease inhibitors GM6001 (concentration 

shown) or aprotinin (2.2 µM). Representative images stained with UEA (red) under indicated 

conditions are shown (A). Scale bar: 500 µm. Vessel density was quantified for each condition 

(B). Two-way ANOVA (GM6001, aprotinin, interaction) results: (p < 0.0003, p = 0.21, p = 

0.75). 
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