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Abstract. Projections of the growth and demise of ice sheets and glaciers7

require physical models of the processes governing flow and fracture of ice.8

The flow of glacier ice has been treated using increasingly sophisticated mod-9

els. By contrast, fracture, the process ultimately responsible for half of the10

mass lost from ice sheets through iceberg calving, is often included using ad11

hoc parameterizations. In this study we seek to bridge this gap by introduc-12

ing a model where ice obeys a power-law rheology appropriate for intact ice13

below a yield strength. Above the yield strength, we introduce a separate14

rheology appropriate for the flow of heavily fractured ice, where ice defor-15

mation occurs more readily along faults and fractures. We show that, pro-16

vided the motion of fractured ice is sufficiently rapid compared to that of17

intact ice, the behavior of glaciers depends solely on the rheology of intact18

ice and the yield strength of ice and is insensitive to the precise rheology of19

fractured ice. Moreover, assuming glacier ice is unyielded allows us to bound20

the long term average rate of terminus advance, providing a first principles21

estimate of rates of retreat associated with the marine ice cliff instability. We22

illustrate model behavior using idealized geometries and climate forcing and23

show that the model not only exhibits realistic patterns of advance and re-24

treat, but has the potential to exhibit hysteresis. This hysteresis could pro-25

vide an explanation for the sudden onset of rapid retreat observed in marine-26

terminating glaciers.27
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1. Introduction

The Greenland ice sheet is surrounded by glaciers that terminate in near-vertical ice cliffs28

submerged in the ocean, called tidewater glaciers. Observations show that these marine-29

based margins in contact with both the atmosphere and ocean are most susceptible to30

rapid glacier change and radically increased mass loss [e.g., Benn et al., 2007; Bassis ,31

2011; Rignot et al., 2011; Bassis and Walker , 2012]. Unlike melting, the other dominant32

contributor to ice sheet and glacier mass loss, iceberg calving—the process where blocks33

of ice detach from a glacier—can be very rapid and highly episodic [e.g., Howat et al.,34

2005, 2007; McFadden et al., 2011]. Moreover, observations indicate that mass shed from35

the termini of Greenland’s many tidewater glaciers is responsible for as much as half of36

annual mass loss from the ice sheet, and that it drives patterns of thinning and acceleration37

deep inland from the coasts [Joughin et al., 2008; Rignot et al., 2011; Straneo et al., 2013].38

Rapid disintegration is not limited to Greenland. In the early 1980s, Columbia Glacier,39

a tidewater glacier in Alaska, transitioned from a decades-long period of stability into40

a regime of rapid retreat characterized by more than 20 kilometers of terminus retreat41

and hundreds of meters of thinning [Meier and Post , 1987; Krimmel , 2001; O’Neel et al.,42

2005; McNabb et al., 2012]. More recently, DeConto and Pollard [2016] building on a43

theoretical model developed by Bassis and Walker [2012], have suggested that continued44

atmospheric warming could trigger a calving instability termed the ‘marine ice cliff in-45

stability’, destabilizing large portions of West Antarctica with catastrophic consequences46

for sea level on decadal to century time scales. A similar instability has been invoked47

to explain Heinrich events—episodic disintegration events from the Laurentide Ice Sheet48
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X - 4 BASSIS AND ULTEE: MARINE ICE CLIFF

that sporadically discharged vast armadas of icebergs through the Hudson Strait into the49

North Atlantic [Thomas , 1977; Bassis et al., 2017].50

Despite iceberg calving’s pivotal role in the mass balance and dynamics of glaciers, it51

remains poorly understood, defying convenient parameterization in the large-scale nu-52

merical ice sheet/glacier models used for sea level rise projections [Benn et al., 2007].53

Attempts to parameterize the iceberg calving process have traditionally focused on for-54

mulating models for fractures, assuming that an iceberg will detach when either a surface55

or bottom crevasse penetrates the entire thickness or some critical fraction thereof [e.g.,56

Weertman, 1980; Rist et al., 2002; Benn et al., 2007; Nick et al., 2010; Bassis and Ma,57

2015]. These models can be tuned to successfully reproduce large-scale patterns of glacier58

retreat, but complications remain. For example, researchers typically focus on tensile fail-59

ure, ignoring the potential for shear failure [Bassis and Walker , 2012; Bassis and Jacobs ,60

2013]. Moreover, these models often use the depth of surface melt water filling surface61

crevasses as a tuning parameter that can be adjusted to match observations [e.g., Nick62

et al., 2010].63

Alternatively, it is possible to describe fracture using a bulk phenomenological approach,64

such as continuum damage mechanics [e.g., Pralong and Funk , 2005; Duddu et al., 2013;65

Albrecht and Levermann, 2012; Duddu et al., 2013; Borstad et al., 2012b]. Damage me-66

chanics models introduce a scalar (or occasionally tensor) damage variable that evolves67

in response to the stress field [e.g., Duddu et al., 2013; Borstad et al., 2012b; Pralong and68

Funk , 2005]. Damage-based models are not limited by the instantaneous steady-state as-69

sumptions intrinsic to most fracture mechanics based approaches and are able to account70

for the slow, progressive accumulation of damage. However, it remains unclear how to71
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specify damage evolution; current theories either treat damage evolution heuristically or72

fit curves to limited laboratory experiments [e.g., Pralong and Funk , 2005; Borstad et al.,73

2012a; Duddu et al., 2013; Bassis and Ma, 2015; Borstad et al., 2016]. More recently, dis-74

crete element models have been used to simulate the flow and fracture of highly fractured75

glacier ice [Bassis and Jacobs , 2013; Astrom et al., 2014]. Granular models, unfortunately,76

are too computationally expensive to include in modern continental-scale ice sheet mod-77

els and are primarily used to examine the shorter time scale processes associated with78

individual calving events.79

The granular hypothesis of fractured ice sheet flow inherent in discrete element models80

is reminiscent of early theories of ice deformation based on plasticity theory, in which81

the ice was assumed to deform only once the stress exceeded a yield criterion [Nye, 1957;82

Cuffey and Paterson, 1994]. In this study, instead of trying to explicitly incorporate83

the fracture of ice into a continuum model, we follow a suggestion recently proposed by84

Bassis and Jacobs [2013] and Bassis and Walker [2012] and attempt to explain patterns85

of glacier retreat by assuming that heavily fractured ice deforms more readily than intact86

ice along pre-existing faults and fractures. Consistent with this hypothesis, we formulate a87

continuum model in which ice flows slowly like a power-law fluid beneath a yield stress, but88

fails above a critical yield strength, a type of approximation frequently used to simulate89

geological fractures within the framework of continuum mechanics [e.g., Dahlen, 1990;90

Moresi et al., 2003; O’Neill et al., 2006].91

2. Outline of paper

The bulk of this study is devoted to formulating and exploring the consequences of a92

newly proposed rheology for ice that allows ice to deform rapidly above a yield strength.93
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The key hypothesis of this study (illustrated in Figures 3 and 5) is that ice has a yield94

strength and, above the yield strength, the effective viscosity of fractured ice is much95

lower than for intact ice. When the effective stress exceeds the yield strength, the frac-96

tured/yielded ice will deform rapidly exposing the boundary separating yielded and intact97

ice as the calving front. In this situation, the migration of the boundary separating intact98

and yielded ice will then describe the migration of the calving front. Readers uninterested99

in the mathematical exposition provided may want to skip to sections 6 and 7. It is in100

these sections where we derive a bound on calving rates associated with the marine ice101

cliff instability and provide more concrete examples of how the bound can be implemented102

in numerical ice sheet/glacier models. The paper is structured as follows: In section 3 we103

start by presenting the newly proposed bi-viscous rheology and non-dimensionalization104

scheme used to make approximations. Next, in section 4, we proceed by making the thin105

film approximation to derive the equivalent to the usual ‘shallow ice’ and ‘shallow shelf’106

approximations appropriate for our yield-strength dependent rheology. In section 5, we107

examine the limiting case when the state of stress within the glacier first approaches the108

yield strength of ice. In this limiting case, our model reproduces the perfect plastic ap-109

proximation previously examined by Ultee and Bassis [2016]. Moreover, we show that in110

the perfect plastic approximation, the yield strength of ice provides a boundary condition111

on the ice thickness at the terminus. In section 6 we build on the results from section112

5 and show that provided the effective viscosity of yielded ice is small compared to the113

effective viscosity of intact ice, the effective stress everywhere must always be less than114

the yield strength of ice. Crucially, this provides a bound on the ice thickness at the115

terminus identical to the bound provided by Bassis and Walker [2012] (section 5.1, Equa-116
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tion 48). Moreover, we show that the inequality on the ice thickness near the terminus117

can be manipulated to provide a long-term bound on the calving rates of glaciers (section118

6.2, Equation 54). Our bound on the retreat rate, unlike the empirical parameterization119

proposed by DeConto and Pollard [2016], depends on the glacier geometry (ice thickness,120

bed slope and gradient in ice thickness) and climate forcing. Finally, in section 7, we121

provide some numerical examples to illustrate model behavior.122

3. Model description

3.1. Governing equations

Denoting the fluid velocity and pressure fields by (u(x, z, t), w(x, z, t)) and p(x, z, t),123

respectively, conservation of mass and momentum can be expressed in two dimensions as124

follows (Figure 1):125

ρ(ut + uux + wuz) = −px + ∂xτxx + ∂zτxz, (1a)

ρ(wt + uwx + wwz) = −pz + ∂xτxz − ∂zτxx − ρg, (1b)

ux + wz = 0, (1c)

where ρ is the density of ice (910 kg/m3) and g is the acceleration due to gravity (9.8126

m/s2). In the equations above, we denote partial derivatives with italic subscripts except127

when used to denote components of the deviatoric stress tensor (τxx, τxz), and we denote128

partial derivatives of deviatoric stress components by ∂i. Components of the strain rate129

tensor are given by:130

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2)

allowing us to define the second invariant of the strain rate:131

γ̇ =
√
ε̇2xx + ε̇2xz. (3)
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3.2. Rheology

Traditionally, a power-law creep rheology called Glen’s law is invoked to describe the132

flow of ice [e.g., Cuffey and Paterson, 1994]. However, both laboratory and field ob-133

servations [e.g., Vaughan, 1993; Schulson, 2001; Schulson and Duval , 2009] find that ice134

undergoes brittle failure when stress exceeds a critical value called the yield strength.135

Brittle failure permits motion along newly formed (or pre-existing) faults and fractures136

within the ice, resulting in an abrupt increase in deformation rates. To accomodate this137

behavior, we consider a constitutive relationship that generalizes Glen’s flow law such that138

glacier deformation only follows the usual power-law creep relationship for stresses up to139

a yield strength τy. When stress exceeds the yield strength, we assume that enhanced140

deformation along pre-existing fractures and faults results in a much smaller effective vis-141

cosity. We (crudely) approximate this behavior as power-law creep with effective viscosity142

much lower than that of intact ice. Using subscripts (i, j) to denote coordinates (x, z),143

our bi-viscous rheology can be expressed in the form:144

τij =

Bi γ̇
1
n
−1 ε̇ij for τ < τy

1

γ̇

(
Bf γ̇

1/n +

(
1− Bf

Bi

)
τy

)
ε̇ij for τ ≥ τy,

(4)

where (Bi, Bf) represent the rheological hardness parameters for intact and yielded ice,145

respectively, τ =
√
τ 2xx + τ 2xz denotes the effective stress (in two dimensions) and n is the146

flow law exponent for ice (typically 3). Effectively, Equation 4 defines an abrupt transition147

from an intact ice rheology to a much weaker failed—or yielded—rheology, similar to what148

is observed in laboratory experiments [Schulson, 2001; Schulson and Duval , 2009]. The149

region of transition from unyielded to yielded ice is called a yield surface, and components150

of the stress and strain rate tensors (along with their invariants) are continuous across151

the yield surface.152
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The advantage of the bi-viscous approach is that it reduces to the power-law rheology153

conventionally used by ice sheet modelers when the stress is beneath the yield strength, but154

accounts for rapid deformation of fractured ice above the yield strength. This transition155

from intact to failed ice is analogous to damage mechanics, except that here, the transition156

to failed ice occurs instantaneously instead of over a time scale determined by a heuristic157

damage production function [e.g., Pralong and Funk , 2005; Duddu et al., 2013]. In the158

absence of data to better constrain the rheology of yielded ice, we focus our mathematical159

exposition on the simple bi-viscous rheology defined by Equation 4 as a limiting case. We160

treat Bi and Bf as constant parameters, ignoring any temperature dependence.161

Figure 2 illustrates effective stress and strain rate for three cases of the bi-viscous162

rheology, distinguished by different values of the ratio Bf/Bi. As Bf/Bi tends toward163

zero, the effective stress is limited to the yield strength. This special case generalizes the164

perfect plastic rheology proposed by Ultee and Bassis [2016] and Nye [1957] such that165

unyielded ice is allowed the usual power-law creep deformation rather than assumed to166

be rigid.167

3.3. Boundary conditions

Denoting the surface and bottom elevation of the glacier by s(x, t), and b(x), respec-168

tively, we apply the usual kinematic boundary condition st + usx = w + ȧ at the surface,169

where the accumulation rate ȧ measures the net rate at which mass is added or removed170

from the glacier surface (units of meters of ice equivalent per unit time). We also impose171

the condition that the upper surface of the glacier is traction-free, neglecting the small172
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gradients in atmospheric pressure over the ice sheet:173

(τxx − p) sx = τxz

τzz − τxzsx = p

 z = s(x, t). (5)

At the base of the ice, we impose a no-penetration boundary condition, resulting in the174

requirement that ubx = w, neglecting the (small) freezing/melting that can occur beneath175

grounded glaciers. Defining the basal shear traction176

τ‖ = −2τxxbx + (1− b2x)τxz
1 + b2x

, (6)

we assume basal sliding only occurs when |τ‖| exceeds the yield strength of the bed τb.177

This sliding law allows the bed to transition between frozen (no-slip) and sliding. Thus,178

at z = b(x, t) we impose179

τ‖ = τb
u‖
|u‖|

+ β2
∣∣u‖∣∣m−1 u‖, ∣∣τ‖∣∣ ≥ τb, (7)

u = w = 0,
∣∣τ‖∣∣ < τb (8)

where u‖ = (u + wbx)/
√

1 + b2x is the component of ice velocity tangent to the bed, β180

an empirical sliding parameter, and m the sliding law exponent. This sliding law splices181

together a Weertman-type sliding law with a plastic sliding law [e.g., Cuffey and Paterson,182

1994]. We recover the Weertman-type sliding law in the limit that τb vanishes, and the183

plastic sliding law when β tends to zero.184

Finally, we assume a near-vertical calving face at x = L(t) where we require continuity185

of traction at the ice-air and ice-water portions of the interface,186

τxx − p = ρwg 〈z〉

τxz = 0

x = L(t). (9)

187

Here the angle brackets are defined such that 〈f〉 = 0 when f ≥ 0 and 〈f〉 = f when188

f < 0. We take z = 0 to represent mean sea level.189
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There are three flow regimes of interest. The first flow regime corresponds to the flow190

of intact ice where the effective stress is everywhere less than the yield strength of ice.191

This regime is appropriate for the flow of glaciers that lack active calving margins. The192

second flow regime occurs when the stress invariant exceeds the yield strength so that the193

entire glacier is yielded (disarticulated flow of mélange). The third flow regime, illustrated194

in Figure 3, corresponds to a situation where the stress invariant at the calving front is195

perched at the yield strength, permitting both the flow of intact ice in the interior and196

active calving along the ice-ocean interface. It is this third flow regime that is most197

relevant for calving glaciers and the one we focus on here.198

3.4. Non-dimensionalization

We define a characteristic ice sheet thickness H0 and horizontal length L0. We scale199

the velocity components, u and w, by U0 and H0U0/L0, respectively, and scale time by200

L0/U0. We then set:201

x = L0x̃, z = H0z̃, h = H0h̃, b = H0b̃, t = (L0/U0)t̃, ȧ = (H0U0/L0)˜̇a

τxz = β2Um
0 τ̃xz, τxx = Bi(U0/L0)

1/nτ̃xx, τzz = Bi(U0/L0)
1/nτ̃zz, p = ρgH0p̃,

γ =
U0

L0

γ̃, τ = β2Um
0 τ̃ ,

where the tilde indicates dimensionless variables. We also define the dimensionless yield202

strength Ty = τyL0/(ρgH
2
0 ) and dimensionless basal yield strength Tb = τbL0/(ρgH

2
0 ).203

To ease the expansion, we set β2Um
0 = ρgH2

0/L0, anticipating that stresses associated204

with sliding are order unity for calving glaciers. With these definitions the model dynamics205

depend on three dimensionless numbers,206

ε =
H0

L0

, ν =
Bf

Bi

, δ =
Bi (U0/L0)

1/n

ρgH0

. (10)
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The aspect ratio ε is small for all cases we consider here. The viscosity ratio ν, also207

assumed to be small for our analysis, compares the characteristic hardness of yielded208

and unyielded ice. The parameter δ is the ratio of the longitudinal deviatoric stress to209

the hydrostatic pressure and will be large or small, depending on the relative magnitude210

of basal friction and longitudinal stresses. We also define the dimensionless Reynolds211

number, Re = U2
0L

2
0/(gH

3
0 ). The Reynolds number may become large during the quasi-212

rigid body detachment of icebergs, but over the typically longer time scales associated213

with the evolution of glaciers and ice sheets we anticipate that Re will remain order unity214

or less.215

Non-dimensionalizing and dropping the tilde decoration, the incompressibility condition216

remains the same, and the conservation of momentum equations become:217

ε2Re (ut + uux + wuz) = −px + δ∂xτxx + ∂zτxz, (11a)

ε4Re(wt + uwx + wwz) = −pz + ε2∂xτxz − δ∂zτxx − 1, (11b)

So long as ε2Re remains small, as expected for long time scales, we can neglect the inertial218

terms on the left hand side of Equation 11a and 11b.219

The dimensionless deviatoric stress and strain rate invariants become:220

τ =

√
δ2

ε2
τ 2xx + τ 2xz, γ̇ =

1

ε

√
ε2u2x +

1

4
(uz + ε2wx)2. (12)

Recalling the dimensionless yield strength Ty = τyL0/(ρgH
2
0 ), the bi-viscous rheology can221

be written:222

τxx = γ̇1/n−1ux

τxz =
1

2

δ

ε2
γ̇1/n−1

(
uz + ε2wx

)
 τ < Ty, (13)
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and223

τxx =

[
(1− ν)

ε

δ

Ty
γ̇

+ νγ̇1/n−1
]
ux

τxz =
1

2ε

[
(1− ν)

Ty
γ̇

+ ν
δ

ε
γ̇1/n−1

] (
uz + ε2wx

)
 τ ≥ Ty. (14)

The surface boundary conditions at z = s(x, t) become:224

(δτxx − p) sx = τxz, (15a)

−ε2τxzsx + δτzz = p. (15b)

With the aid of the dimensionless basal traction vector:225

τ‖ =
−2δτxxbx + (1− ε2b2x)τxz

1 + ε2b2x
, (16)

the basal boundary conditions of Equations 7-8 become u = w = 0 for τ‖ < Tb and226

τ‖ =

(
Tb
|u‖|

+
∣∣u‖∣∣m−1)ub, τ‖ ≥ Tb, (17)

with u‖ = (u+ ε2wbx)/
√

1 + ε2b2x).227

At the calving front, the condition τxz = 0 remains the same, but the non-dimensional228

version of the longitudinal stress component of the calving front boundary condition ap-229

plied at x = L(t) can now be written,230

δτxx − p =
ρw
ρ
〈z〉 , x = L(t). (18)

4. Thin film approximation

4.1. Preliminaries

The thin film approximation proceeds by dropping terms of O(ε) or smaller from Equa-231

tions 10–18. Equations 11a-11b become:232
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233

δ∂xτxx + ∂zτxz = px, (19a)

−δ∂zτxx = pz + 1. (19b)

Integrating Equation 19b over the ice thickness and applying the surface boundary con-234

dition, defined by Equation 15b, we find that to O(ε2),235

p = (s− z)− δτxx. (20)

We can use Equation 20 to simplify the boundary condition at x = L(t). We still require236

τxz = 0, but substituting Equation 20 into Equation 18 and integrating over the depth, we237

obtain a force balance condition that must be satisfied at the calving front [e.g., Van der238

Veen, 1999]:239

δτ̄xx =
h

4

(
1− ρw

ρ

d2

h2

)
=
h

4

(
1− r2

)
, x = L(t), (21)

where τ̄xx denotes the depth averaged longitudinal deviatoric stress, h is the ice thickness240

and d is the depth from the surface of the ocean to the bottom of the glacier (Figure 1)241

with r2 ≡ ρwd
2/(ρh2). Equation 21 provides the form of the boundary condition to be242

enforced at the calving front in ‘shallow’ models.243

Standard integration of the continuity equation and application of kinematic boundary244

conditions further yields an evolution equation for ice thickness:245

Ht +Qx = ȧ, (22)

where the ice flux Q =
∫ s

b
udz.246

Just as for traditional ice sheet models, the limits δ � 1 and δ ∼ 1 correspond to247

important limiting cases of the dynamics. As we show next, δ � 1 corresponds to the248
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viscoplastic equivalent of the ‘shallow ice approximation’ used to simulate glaciers where249

vertical shear stresses dominate the force balance. In contrast, δ ∼ 1 corresponds to250

the ‘shelfy-stream approximation’, applied to rapidly sliding glaciers where longitudinal251

stresses play an important role in the force balance.252

4.2. Small horizontal extensional stresses

The first case we consider treats both ε and δ as small parameters (δ � 1, ε� 1). Small253

δ corresponds to a situation where the pressure gradient is primarily balanced by gradients254

in the vertical shear stress, implying that resistance from basal drag plays a dominant role255

in resisting flow. This includes the case of a glacier frozen to its bed. Here we shall find256

that, provided the viscosity ratio ν is small, the yield strength of ice limits the maximum257

ice surface slope, as in the perfect plastic approximation.258

When δ � 1 and ε � 1, we find from Equation 20 that pressure is hydrostatic. An-259

ticipating that vertical shear dominates the flow regime, we pose an expansion of the260

form:261

u = u0(x, z, t) + εu1(x, z, t) + . . . , (23)

where the indices correspond to the order of ε in each term of the expansion. Dropping262

terms of order δ we find from Equation 12 that γ̇0 = (2ε)−1 |∂zu0|, τ = |τxz| and, upon263

using the traction-free surface boundary condition given by Equation 15b, we can integrate264

Equation 19a to find:265

τ0xz = −sx(s− z). (24)

The maximum shear stress occurs at the bed and decreases towards the surface. Recall-266

ing Equations 12 and 24, it is now apparent that to leading order the effective stress is267

τ = |sx| (s− z). When h|sx| < Ty, yielding does not occur and deformation occurs solely268
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through slow creeping flow of intact ice. This, however, is precisely the shallow ice ap-269

proximation (SIA) frequently used in ice sheet modeling [e.g, Greve and Blatter , 2009],270

albeit with a basal-yield-strength-dependent sliding law.271

The horizontal velocity can be decomposed into a component due to sliding U and a272

component due to internal deformation of the ice D such that the total velocity u is given273

by u0 = U0 + D0. Recalling Equation 17, we can express the sliding velocity U in terms274

of the shear stress:275

U0 = 0, |sx|h < Tb

U0 = − (h |sx| − Tb)1/m
sx
|sx|

, |sx|h ≥ Tb. (25)

Investigating the deformational component of the velocity, we follow Balmforth and Cras-276

ter [1999] and define a yield surface, Y (x, t), demarking the boundary between intact ice277

(above) and yielded ice (below):278

z = Y = max

(
s− Ty
|sx|

, b(x)

)
, (26)

whence beneath the yield strength, deviatoric stresses take the leading order form:279

τ0xz =
δ

ε
1
n
+121/n

|∂zu0|
1
n
−1 ∂zu0. (27)

Above the yield strength, the stresses are slightly more complex with leading order form280

τ0xz =

[
(1− ν)

Ty
|∂zu0|

+ ν
δ

ε
1
n
+1

|∂zu0|
1
n
−1

21/n

]
∂zu0. (28)

Here we have adopted the more cumbersome (∂x, ∂z) notation for partial derivatives to281

avoid confusing subscripts labeling the order of terms in the expansion with those indi-282

cating partial derivatives.283
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We can substitute Equations 27–28 into Equation 24 to find the deformational compo-284

nent of the glacier velocity. After performing the vertical integration, we find285

D0 = −2
εn+1

νnδn
|sx|n−1 sx
n+ 1

{
[Y − b+ ν(s− Y )]n+1 − [Y − z + ν(s− Y )]n+1} , (29)

in the yielded region z ≤ Y and286

D0 = −2
εn+1

νnδn
|sx|n−1 sx
n+ 1

{
νn
[
(s− Y )n+1 − (s− z)n+1

]
+

[(Y − b) + ν(s− Y )]n+1 − νn+1 (s− Y )n+1

}
, (30)

in the intact region z > Y . The deformational velocity of intact ice is small unless287

δ ≤ ε1+
1
n , whereas for failed ice, deformational velocity is small unless νδ ≤ ε1+

1
n .288

The characteristics of the vertical velocity profile are illustrated in Figure 4 for various289

values of ν. Taking the limit ν → 0, i.e. Bf � Bi, we recover the Herschel-Bulkley290

velocity profile, in which the velocity field is plug-like above the yield strength [see e.g.,291

Balmforth and Craster , 1999]. However, inspecting Equation 30, we see that the defor-292

mational velocity in the yielded portion diverges like ν−n (see also Figure 4). Removing293

this divergence requires that the yield surface Y coincide with the bottom of the glacier,294

whence h |sx| = Ty and sx = ±Ty/h and we recover the perfect plastic approximation295

[Nye, 1957; Ultee and Bassis , 2016]. We now see that when yielded ice flows much more296

rapidly than intact ice, the yield strength limits the magnitude of the maximum slope of297

the ice sheet.298

We have now completely determined the velocity field for the case of small horizontal299

extensional stresses, but have yet to satisfy the calving front boundary condition. From300

Equations 27-28, we see that if τxz vanishes at the calving front, ∂zu0 must become O (ε2)301

or smaller and the velocity field becomes plug-like. The velocity field can only become302
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plug-like if deformational velocities are negligible, which requires that, at least near the303

calving front, the glacier is intact with stresses less than or equal to the yield strength. An304

intact calving front, however, is inconsistent with an active calving margin for grounded305

glaciers. The calving front boundary condition can be satisfied for an active calving306

margin in two ways. First, it is possible to have a region near the calving front where307

the extensional stress becomes large and δτxx becomes order unity or larger. Second, it308

is possible that the stress invariant near the calving front is at the yield strength. We309

consider next the case where extensional stresses near the calving front are large (Section310

4.3) before examining the more subtle situation when the effective stress at the calving311

front is perched at the yield strength (Section 5).312

4.3. Large horizontal extensional stresses

We next examine the case where there is little resistance to sliding. To this end, we313

treat δ as an O(1) parameter. In this regime, τxz is O(ε) smaller than τxx, but horizontal314

gradients in τxx remain comparable to vertical gradients in τxz. The effective stress then315

becomes τ = δε−1|τxx|, with components of deviatoric stress in the unyielded regime:316

τxx = γ̇1/n−1ux

τxz =
δ

2ε2
γ̇1/n−1uz

 τ < Ty, (31)

and in the yielded regime:317

τxx =

[
(1− ν)

ε

δ

Ty
γ̇

+ νγ̇
1
n
−1
]
ux

τxz =

[
(1− ν)

Ty
εγ̇

+ ν
δ

ε2
γ̇

1
n
−1
]

1

2
uz

 τ ≥ Ty. (32)

To leading order in Equations 31 and 32, we find uz ∼ O(ε2) and weak resistance to sliding318

results in plug flow [see, e.g., Greve and Blatter , 2009]. This suggests an expansion of the319
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form:320

u = u0(x, t) + ε2u2(x, z, t) + . . . . (33)

where we have built in the leading order plug-flow solution and we have again styled321

indices to reflect the order of terms in the expansion with respect to ε.322

For stresses beneath the yield strength, the analysis parallels the shelfy-stream ap-323

proximation (SSA) used to model glaciers where most of the resistance originates from a324

combination of sliding and horizontal stretching [c.f. Greve and Blatter , 2009]. Integrat-325

ing Equation 19a over the depth and applying the surface and basal boundary conditions326

yields an elliptic equation for velocity,327

2δ
∂

∂x

(
h

∣∣∣∣∂u0∂x

∣∣∣∣1/n−1 ∂u0∂x

)
−
(
Tb
|u0|

+ |u0|m−1
)
u0 = h

∂s

∂x
, (34)

equivalent to the usual SSA. The SSA is often used to simulate the rapidly flowing portion328

of glaciers and ice sheets, but is limited to intact ice.329

The case where effective stress exceeds the yield strength is more interesting. Assuming330

Ty remains order unity, we find using Equations 32–33 that the deviatoric stress compo-331

nents τ0xx = ν |∂xu0|
1
n
−1 ∂xu0 and τ0xz =

ν

2
δ |∂xu0|

1
n
−1 ∂zu2 are large compared to the yield332

strength. Using Equation 20 in Equation 19b and integrating over the glacier thickness333

results in the momentum equation:334

2δν
∂

∂x

[
h

∣∣∣∣∂u0∂x

∣∣∣∣1/n−1 ∂u0∂x

]
−
(
Tb
|u0|

+ |u0|m−1
)
u0 = h

∂s

∂x
, (35)

which can be combined with Equation 22 to find335

ht +
∂(hu0)

∂x
= ȧ. (36)

These equations are analogous to the shelfy-stream approximation [Greve and Blatter ,336

2009], but this regime corresponds to the flow of disarticulated ice above the yield strength.337
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Equations 35-36 thus apply to failed ice, and this motion of heavily fractured ice may be338

analogous to the dynamics of the mixture of failed ice, icebergs and sea ice called mélange339

that clogs many pro-glacial fjords. In this flowline model, however, buttressing from340

mélange could only arise in regions where bed protrusions provided resistance to flow.341

In more realistic, two-dimensional models, buttressing could also arise from shear stress342

along fjord margins.343

In the limit ν � 1, Equation 35 reduces to:344

−min

(
Tb
|u0|

+ |u0|m−1 ,
Ty
|u0|

)
u0 = hsx. (37)

The minimum arises because, as we saw in section 3.2, the basal shear stress cannot exceed345

the yield strength of ice in the small ν limit. This regime overlaps with the vertical shear-346

dominant solution with the O(εn+1/δn) vertical shearing term omitted. In the small ν347

limit, once the bed reaches the yield strength sx = ±Ty/h and we again recover the perfect348

plastic approximation [Nye, 1957]. However, the boundary condition at the calving front349

can be written in the form:350

∂u0
∂x

=
1

δnνn

[
h

4

(
1− r2

)
− ε(1− ν)Ty

]n
, (38)

and we see that with small ν, either ∂xu0 must diverge or the two terms in square brackets351

in Equation 38 must balance. Balancing these two terms requires that εTy ∼ h(1− r2)/4,352

which provides a boundary condition on the ice thickness. It is this situation, where the353

effective stress is at the yield strength, that we examine next.354

5. Limiting dynamics: Onset of flow at the yield stress and the perfect plastic

approximation
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Our next goal is to examine the onset of yielding, where the effective stress in the355

glacier first approaches the yield strength. Recalling that the yield surface demarks the356

boundary between intact and yielded ice, we shall show that in this limiting case the yield357

surface is required to extend along the bottom of the glacier and through the calving358

front, corresponding to the perfect plastic approximation. An important result in this359

limit is that the yield condition provides a boundary condition on the ice thickness at the360

calving front analogous to one deduced by Bassis and Walker [2012].361

To probe this limiting case, we assume ν � 1 (hardness of yielded ice is much smaller362

than the hardness of intact ice) and ε1/n+1 ≤ δ � 1, corresponding to a glacier where363

sliding is rapid and vertical shear deformation can be neglected—realistic assumptions364

near the terminus of many calving glaciers. Anticipating that the flow will be plug-like to365

leading order, we pose an expansion of the form:366

û =
1

ε
û0(x, t) + û1(x, z, t) + . . . , (39)

where the hat decoration is used to distinguish the expansion in this regime from the367

shallow ice and shallow shelf scalings considered previously. We have also built in the368

leading-order plug flow solution by explicitly omitting the z dependence of the leading369

order û0 term. Moreover, anticipating that flow in the yielded regime is much faster than370

flow in the intact regime, we included a leading order term that is inversely proportional371

to ε to describe the large velocity increase at or above the yield strength. For small ε, the372

first term û0(x, t) is much larger than û1(x, z, t). Breaking with prior notation, subscripts373

labelling the terms in the expansion start at zero to avoid negative indices.374
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With these assumptions, the strain rate invariant is given by375

ˆ̇γ0 =

√(
∂û0
∂x

)2

+
1

4

(
∂û1
∂z

)2

. (40)

For stresses beneath the yield strength, the rheology can be written:376

ε1/nτ̂xx = ˆ̇γ
1/n−1
0 ∂xû0, (41a)

ε1/n+1

δ
τ̂xz =

1

2
ˆ̇γ
1/n−1
0 ∂zû1, (41b)

and to leading order we find ∂xû0 = ∂zû1 = 0. In this limit, the strain rates vanish377

beneath the yield strength, recovering the ‘rigid-plastic’ limit considered by Ultee and378

Bassis [2016] in which glacier ice passively thickens until the yield strength is reached.379

Above the yield strength, the rheology can be written380

τ̂xx =

[
(1− ν)

ε

δ

Ty
ˆ̇γ0

+
ν

ε1/n
ˆ̇γ
1/n−1
0

]
∂û0
∂x

, (42a)

τ̂xz =

[
(1− ν)

Ty
ˆ̇γ0

+
νδ

ε1/n+1
ˆ̇γ
1/n−1
0

]
1

2

∂û1
∂z

. (42b)

If ν � 1, Equations 42a-42b can be approximated as381

τ̂xx =
ε

δ

Ty
ˆ̇γ0

∂û0
∂x

, (43a)

τ̂xz =
Ty
ˆ̇γ0

1

2

∂û1
∂z

. (43b)

Noting that the second stress invariant is382

τ̂ =

√
δ2

ε2
τ̂ 2xx + τ̂ 2xz =

Ty
γ̇0

√(
∂û0
∂x

)2

+
1

4

(
∂û1
∂z

)2

≡ Ty, (44)

we conclude that in the flow regime ‘above’ the yield strength, the stress invariant is, in383

fact, perched at the yield strength. Therefore, at the onset of yielding, the effective stress384

is at the yield strength through the full ice thickness.385

D R A F T July 2, 2019, 3:58pm D R A F T

This article is protected by copyright. All rights reserved.



BASSIS AND ULTEE: MARINE ICE CLIFF X - 23

To order ε we find:386

387

sx = ±Ty
h
, (45)

and we see that this situation corresponds to the perfect plastic approximation. The388

horizontal velocity is determined by integrating the mass balance equation such that389

û0 = ε

(
1

h(L)

∫ xL

0

(ȧ− ht) dx

)
, (46)

and we have now recovered the perfect plastic approximation [Nye, 1957; Ultee and Bassis ,390

2016].391

Because the effective stress reaches the yield strength throughout the ice thickness,392

satisfying the calving front boundary condition at x = L(t) requires that the calving front393

is also a yield surface. The boundary condition defined by Equation 21 is then:394

εTy =
h

4

(
1− ρw

ρ

d2

h2

)
. (47)

Consistently enforcing vanishing shear stress at the calving front along with the calving395

front boundary condition defined by Equation 47 requires that the ice thickness h and396

vertical shear strain rate ∂zû0 both become order ε or smaller and the asymptotic expan-397

sion breaks order—considered in Appendix A. Nonetheless, we anticipate from Equation398

47 that requiring the yield surface to extend through the calving front requires399

hL = hy = 2εTy +

√
ρwd2

ρ
+ 4ε2T 2

y , (48)

where hy is the required terminus thickness and we have discarded the unphysical negative400

square root.401

6. Simple models of calving glaciers
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In the previous section, we found that the perfect plastic approximation requires the402

yield surface demarking the boundary between intact and disarticulated ice to lie along403

the bed and the calving front. The assumption that ice is everywhere at the yield strength404

is, however, a very restrictive assumption. A less restrictive assumption is that the stress405

invariant at the bed must be less than the yield strength of ice. In this case, we use the406

rheology of intact ice. Focusing on rapidly sliding glaciers where the internal deforma-407

tion of intact ice can be neglected, the dynamics are encompassed by the shelfy-stream408

approximation (SSA) defined by Equation 34:409

2δ
∂

∂x

(
h |ux|1/n−1 ux

)
−min

(
Tb
|u|

+ |u|m−1, Ty
|u|

)
u = hsx. (49)

In Equation 49, we have dropped the order indices of Equation 34 to ease notation, and410

the minimum in the basal shear traction arises because the basal shear stress cannot411

exceed the yield strength (section 4.2). With the assumption of intact glacier ice, we also412

impose the condition that ice thickness at the terminus hL = h(L(t), t) not exceed the413

yield thickness hy, resulting in the inequality hL ≤ hy. As we show next, this inequality414

serves as a boundary condition and allows us to deduce bounds on the calving rate of415

glaciers.416

6.1. Bounds on the calving rate: kinematics of calving front evolution

Our goal is to derive an expression that describes the rate of terminus advance (or417

calving rate) appropriate for a glacier with terminus at—or beneath—the yield thickness.418

We start by taking the advective derivative of ice thickness at the terminus:419

DhL
Dt

=
∂hL
∂t

+ (u− uc)
∂h

∂x
(50)
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where u − uc denotes the rate of advance of the terminus and uc is the calving rate420

(units of length/time) associated with mass lost along the calving front. Next, we use the421

continuity equation in the form:422

∂h

∂t
= ȧ− ∂u

∂x
h− ∂h

∂x
u (51)

to eliminate ∂h/∂t from Equation 50, providing a kinematic expression for the ice thickness423

at the calving front:424

DhL
Dt

= ȧ− ∂u

∂x
h− ∂h

∂x
uc. (52)

The first term on the right hand side of Equation 52 denotes the accumulation rate at425

the terminus (often small and/or negative). The second term denotes the rate at which426

ice thickness decreases at the calving front due to dynamic thinning. The third term is427

an advective term associated with upstream migration of the calving front due to iceberg428

calving. Because ice thickness generally increases upstream (hx < 0), the advective term429

usually acts to increase ice thickness at the calving front. Provided hx < 0, the calving430

rate uc changes the balance between dynamic thinning and advective thickening at the431

calving front, controlling whether the terminus thins or thickens. Equation 52, however,432

is a purely kinematic description and does not provide a means of specifying the calving433

rate uc. To specify the calving rate, we must apply additional constraints.434

6.2. Bounds on the calving rate: Yield thickness greater than flotation

thickness

Icebergs detach from calving glaciers and this suggests that the stress invariant at the435

terminus of actively calving glaciers must be perched near the yield strength. Equation436

48 translates this requirement to a constraint on ice thickness. Moreover, for grounded437

glaciers, the ice thickness also cannot be less than the flotation thickness hf = ρwd/ρ.438
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Provided hf ≤ hy, the terminus thickness is bounded above and below and hf ≤ hL ≤ hy.439

We treat the case hf > hy in the next section.440

Considering first glaciers with a calving front thickness perched at the yield thickness,441

we take the advective derivative of the yield thickness:442

Dhy
Dt

= (u− uc)
∂hy
∂x

, (53)

and equate it to the advective derivative of ice thickness at the terminus defined by443

Equation 52, where we have also assumed that the bed topography is fixed (or evolves444

slowly enough that the time derivative of the yield thickness hy can be neglected). This445

allows us to uniquely determine the calving rate necessary to maintain the terminus at446

the yield thickness:447

uc = uy = u−
ȧ− u∂h

∂x
− h∂u

∂x(
∂hy
∂x
− ∂h

∂x

) , when hL = hy, (54)

where we have assumed (∂xhy − ∂xh) 6= 0 and uy denotes the specific calving rate uc448

required to maintain the ice thickness at the yield thickness hy.449

A similar calculation shows that if the ice thickness is required to remain at flotation,450

then the calving rate uf necessary to maintain the calving front at buoyancy is given by:451

uc = uf = u−
ȧ− u∂h

∂x
− h∂u

∂x(
∂hf
∂x
− ∂h

∂x

) , when hL = hf. (55)

Note that ẋg = u − uf is just the usual expression for grounding line migration [Schoof ,452

2007]. However, the physical interpretation of Equation 55 is that the calving front453

advances and thins to buoyancy before calving, analogous to the buoyant calving regime454

proposed for Helheim Glacier [e.g., Murray et al., 2015].455
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From Equation 52, if the ice thickness is initially less than the yield thickness and the456

calving rate uc is larger than uy, then the ice thickness will increase until the yield strength457

is reached and Equation 54 will become valid again. Hence, Equation 54 bounds the long-458

term calving rate from above. Similarly, if the ice thickness is initially greater than the459

flotation thickness and the calving rate uc is smaller than uf, then the ice thickness will460

decrease until the flotation thickness is reached and Equation 55 will become valid. Hence,461

Equation 55 bounds the calving rate from below.462

Formally Equation 54 is an upper bound and Equation 55 is a lower bound on calving463

rate when ∂xhY − ∂xh > 0 (i.e., when ice thickness decreases toward the terminus and464

bed topography varies on a length scale that is large compared with ice thickness—see465

Appendix A). When ∂xhY − ∂xh < 0, the bounds are reversed.466

At the onset of yielding, continuity of strain rate across the yield surface at the calving467

front requires:468

∂u

∂x
=

1

δn

[
1

4
h
(
1− r2

)]n
. (56)

So long as the ice thickness is known and we have a model capable of calculating the469

velocity at the terminus u, Equations 54-56 provide a self-consistent means of estimating470

the calving rate (or rates of terminus advance). Together, these two limits suggest that471

long term calving rates are constrained by the fact that the ice thickness must remain less472

than the yield thickness and greater than the flotation thickness. These bounds remain473

valid until the flotation thickness exceeds the yield thickness, which we consider next.474

6.3. Bounds on the calving rate: Yield thickness less than flotation thickness

For glaciers on retrograde beds, such as Pine Island and Thwaites glaciers grounded475

deep below sea level, retreat of the calving front will eventually result in an ice thickness476
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where the flotation thickness exceeds the yield thickness of ice [Bassis and Walker , 2012].477

In these cases, we must use Equation 35 to compute the velocity u for the portions of478

the glacier that are yielded. We can still use Equation 55 to compute the calving rate479

associated with migration of the fully yielded terminus, which must now be at the flotation480

thickness. However, we must use the yielded rheology in computing the horizontal strain481

rate:482

∂u

∂x
=

1

νnδn

[
1

4
h
(
1− r2

)]n
. (57)

Both the velocity and grounding line dynamics now depend on the viscosity of yielded483

ice via the hardness ratio ν. Despite poor constraints on the precise value of ν, in the484

plausible case that yielded ice is softer than intact ice (ν � 1) and in the absence of485

stabilizing features, dynamic thinning and grounding line retreat in this regime could occur486

as catastrophic disintegration—perhaps analogous to the disintegration of the Larsen B487

ice shelf [e.g., Scambos et al., 2000]. In our model, however, rapid disintegration could488

occur for grounded portions of the ice sheet. Even for modest values of ν, we anticipate489

retreat could occur much more rapidly than would be simulated by models that assume490

Glen’s flow law holds across all stress regimes. This potential progression of failure in491

deep retrograde beds is illustrated schematically in Figure 5.492

7. Numerical Examples

7.1. Four reduced models of calving glaciers

Equations 45-49 and Equations 54-56 provide a complete set of equations that specifies493

glacier evolution and terminus position. We illustrate the application of these equations494

for four limiting cases. The first model, which we call the ‘Weertman’ model, corresponds495
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to Equation 49 with the basal yield strength Tb = 0, resulting in the dynamic equation:496

2δ
∂

∂x

(
h |ux|1/n−1 ux

)
−min

(
|u|m−1, Ty

|u|

)
u = hsx. (58)

The second model, which we call the Plastic bed model, assumes Ty � Tb and hence the497

shear stress at the bed is equal to the yield strength of ice everywhere, resulting in the498

dynamic equation:499

2δ
∂

∂x

(
h |ux|1/n−1 ux

)
− Ty
|u|
u = hsx. (59)

These two models reduce further if δ � 1. Our third model, which we call the SIA500

model, corresponds to δ � 1 in the Weertman model. Dropping the term related to501

the longitudinal stress gradient and combining with the ice thickness evolution equation502

provides the usual SIA diffusive equation for the glacier surface elevation:503

ht =
(
h1/m+1 |sx|1/m−1 sx

)
x

+ ȧ, |sx| ≤
Ty
h
. (60)

Our fourth model corresponds to δ � 1 in the ‘Plastic bed’ model and reduces to the504

Perfect plastic approximation:505

sx = ±Ty
h
, u = ε

(
1

h(L)

∫ xL

0

(ȧ− ht) dx

)
. (61)

For a discussion of numerical methods, we refer the reader to Appendix B.506

7.2. Geometric setting

We applied the calving parameterization defined by Equation 54 to an idealized geom-507

etry motivated by Oerlemans [2008]. The idealized glacial geometry assumes a glacier on508

a gently sloping bed with a Gaussian bump, representing a sill. In dimensional units, the509

bed takes the form:510

b(x) = b0 − αx+ b1 exp

[
−
(
x− x0
σ

)2
]
. (62)
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Parameters follow Oerlemans [2008] and are provided in Table 1 in dimensional form.511

7.3. Glacier profiles

We first considered the temporal evolution of glaciers, including advance and retreat of512

the calving front. We assumed a slowly changing accumulation rate ȧ of the form513

ȧ = a0 + ∆a sin

(
2πt

T

)
. (63)

In all calculations we assumed ice at the terminus is at the yield strength and evolved514

the terminus according to Equation 54. Figure 6 shows a sequence of snapshots illustrat-515

ing glacier profiles constructed using the Perfect plastic approximation and Plastic bed516

model. For a given terminus position, differences between the Perfect plastic and Plastic517

bed profiles are largest upstream, away from the calving front. This pattern is a conse-518

quence of the Perfect plastic approximation neglecting deformation near the ice divide,519

requiring a larger slope and producing a thicker glacier. Figure 7 shows an equivalent set520

of snapshots, but this time comparing the Weertman model with the simpler boundary521

layer approximation defined by the SIA model. For the parameter regime used here, lon-522

gitudinal stresses are small everywhere except near the calving front and the profiles are523

in close agreement. Differences between profiles are greatest early on when the glaciers524

are relatively small and deformational creep cannot be neglected.525

Figure 8 shows a time series of glacier length, calving rate and terminus velocity as the526

accumulation rate changes computed for (1) the Perfect plastic, (2) Plastic bed and (3)527

Weertman models. (We omit the SIA model because the difference with the Weertman528

model is small.) Despite the slowly varying forcing, all three models exhibit sudden529

changes in terminus position that manifest as “spikes”, analogous to the sudden retreat530
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of real glaciers. In this case, the glacier responds slowly when its terminus is perched on a531

stable position on the sill. Retreat occurs rapidly when the glacier retreats (or advances)532

into an overdeepening, where ice thickness (and flux) rapidly increase. This is analogous533

to observations of rapid retreat when the bed is deep [e.g., Benn et al., 2007]. The Plastic534

bed, Perfect plastic and Weertman models predict advance rates and retreat rates that535

are broadly similar. However, the Plastic bed and Perfect plastic models are more stable536

to changes in accumulation rate and have a delayed retreat compared to the Weertman537

model.538

7.4. Multiple steady state and hysteresis

Observations show that advance and retreat of tidewater glaciers can exhibit complex539

patterns that are not clearly synced with climate forcing [e.g., Pfeffer , 2003]. To assess540

the ability of our suite of models to simulate a highly non-linear response to climate,541

we computed stable steady-state terminus positions for the forcing previously considered.542

Figure 9 shows bifurcation diagrams illustrating stable and unstable terminus positions as543

a function of accumulation rate ȧ. We find 3 bifurcation points, with the first bifurcation544

point located near the coastline where the glacier first comes into contact with the ocean.545

The second and third bifurcation points occur at the deepest part of the overdeeping and546

the top of the sill, respectively. The positions of these bifurcation points are determined by547

the geometry of the glacier bed. Different sliding laws and choices of yield strength result548

in identical bifurcation points along the bed. This suggests that bed geometry controls the549

stable positions in which we observe glaciers. However, the sliding law controls climate550

sensitivity and the rates of retreat and advance.551
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8. Discussion

The thin film plastic approximation for glaciers developed here provides an avenue to552

simulate intact and fractured ice in a single modeling framework. Assuming that (i)553

the bi-viscious rheology of ice approximates real glacier flow, (ii) yielded ice flows much554

faster than intact ice, and (iii) the calving front is the boundary separating yielded from555

unyielded ice, we can bound the long term calving rate and calving flux. This bound is556

independent of the rheology of failed ice provided the yield thickness remains less than the557

flotation thickness. However, once a glacier retreats into an over-deepening bed where the558

flotation thickness exceeds the yield thickness, grounding line retreat will be paced by the559

rheology of the yielded ice mélange. Mélange rheology is poorly constrained [e.g., Robel ,560

2017], but it is likely much weaker than intact ice. Weak mélange opens the potential561

for ice sheet disintegration that proceeds much more rapidly than is possible with fully562

intact ice—a consequence already deduced by Weertman [1974] in his original treatment563

of the marine ice sheet instability. The mechanical simplifications we adopted do neglect564

bending and buckling stresses, which could be important near the calving front of glaciers.565

A more detailed treatment in the future may seek to include these effects–especially as566

glaciers approach buoyancy.567

The idealized simulations that we conducted also display qualitatively realistic responses568

to climate forcing—including multiple steady states. Crucially, for the entire suite of569

glacier dynamics models considered, stable terminus positions are controlled by bed ge-570

ometry. Near the most advanced position, we found that glaciers can exhibit remarkably571

little sensitivity to changes in climate forcing. However, once the climate forcing reaches572

a tipping point, retreat is irreversible unless the accumulation rate becomes significantly573
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more positive. Although these results depend on the idealized geometry we assumed,574

most tidewater glaciers have a geometry that includes an over-deepening and sill. Thus,575

our results likely apply to more realistic geometries and may help explain the markedly576

different sensitivity of adjacent glaciers to changes in climate forcing.577

Our model, although simplified, builds on the recently proposed marine ice cliff instabil-578

ity [Bassis and Walker , 2012; DeConto and Pollard , 2016]. At least for two dimensions,579

where the maximum shear shear is equal to the effective stress, the bound on ice thickness580

we derived is identical to that proposed by Bassis and Walker [2012], with a factor of two581

error in Bassis and Walker [2012] corrected. However, unlike Bassis and Walker [2012],582

which only provides a threshold on the maximum ice thickness permissible, our model is583

able to relate the ice thickness threshold to the rate of retreat possible associated with the584

marine ice cliff instability. These bounds emerge from the assumption that the effective585

stress at the terminus must always be less than the yield strength of ice and only depend586

on a single parameter—the yield strength of ice. This should be contrasted with empir-587

ical calving law proposed by DeConto and Pollard [2016] that is based on retreat rates588

for Jakobshavn Isbræ and calibrated to match paleo ice sheet extents. Furthermore, our589

bound for retreat rates depends on the near-terminus geometry (ice thickness, bed slope590

and ice thickness gradient), accumulation rate and hardness of ice. A consequence is that591

our model predicts that glaciers with identical thickness may retreat at markedly different592

rates, depending on the geometric setting and climate forcing. This may help explain the593

observed breakdown in correlations between ice thickness and calving rates during glacier594

retreat [Van Der Veen, 1996] and agrees with observational evidence that geometry plays595

a dominant role in controlling calving rates [Catania et al., 2018; Enderlin et al., 2018].596
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Teasing out if our bound on calving rate holds for more realistic situations, however,597

requires a more thorough comparison of model predictions with observations using real-598

istic geometry and forcing. We previously used a model similar to the SIA-limit of the599

more general model developed here to successfully reproduce characteristics of Heinrich600

Events [Bassis et al., 2017], but this earlier study was highly idealized. Applying our601

model formalism to more realistic modern glacier configurations along with developing602

approximations that apply to two-dimensional (plan view) and fully three-dimensional603

models is a focus of current work.604

9. Conclusions

We have developed a thin film viscoplastic model that encapsulates the flow of intact605

and yielded ice. Requiring that the effective stress within a glacier is bounded from above606

by the yield strength provides an upper bound on the ice thickness at the calving front607

(Equation 47). Remarkably, a bound on the long term average rate of terminus advance608

emerges naturally as a consequence of the assumption that glacier ice cannot exceed609

the yield thickness (Equation 52). This approach differs from the current trends in ice610

dynamics in which the ‘fluid’ part of dynamics is treated independently of the ‘fracture’611

component. In our model, the evolution equation for terminus position emerges from612

the bi-viscous rheology as opposed to being imposed separately. This bi-viscous rheology613

provides a promising avenue to simulate the failure of glacier ice.614

The calving rate evolution equation we derived provides a bound on calving fluxes and615

depends on a single additional parameter—the yield strength. Promisingly, the yield616

strength is a material property that can be constrained by field and laboratory measure-617

ments [e.g., Vaughan, 1993; Bassis and Walker , 2012]. Furthermore, our model provides618
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a simple theoretical framework to study the rapid retreat rates that recent studies [Bassis619

and Walker , 2012; DeConto and Pollard , 2016; Bassis et al., 2017] suggest may affect the620

West Antarctic Ice Sheet under calving cliff collapse.621

Appendix A. Extensional stress boundary layer in the perfect plastic

approximation

We return to the perfect plastic approximation continuing with the expansion and nota-622

tion defined in section 5. Requiring a dominant balance between gradients in longitudinal623

stress and sliding when ice is at the yield strength at the bed suggests the rescaling:624

x− xc = ε2X, s = εS, h = εH, b = εB, û = ε−1U. (64)

Following Schoof [2007], we also assume that the bed topography B only varies sig-625

nificantly on the ‘outer’ length scale associated with the original horizontal coordinate626

x. With this rescaling, the strain rate components in the boundary layer become:627

ûx = ε−3UX , ûz = ε−2UZ , which motivates the strain rate invariant rescaling628

ˆ̇γ = ε−3E = ε−3
√
U2
X + U2

Z . (65)

Assuming an expansion of the form Û = Û0(X, t) + ε2Û2(X,Z, t) + . . . the leading order629

stress balance becomes630

2

(
HTy

∂XÛ0

|∂XÛ0|

)
X

− Ty
Û0

|Û0|
= HHX , (66)

whereas the ice thickness evolution equation to order ε becomes631

(HÛ0)X = 0. (67)

Our boundary condition that vertical shear stress vanish at X = 0 is now automatically632

satisfied, and the boundary condition on longitudinal stress becomes an ice thickness633
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boundary condition:634

Ty =
H

4

(
1− ρw

ρ

D2

H2

)
. (68)

This equation can only be satisfied if the ice thickness at the calving front Hc = H(0, t)635

is given by:636

Hc = Hy = 2Ty +

√
ρwD2

ρ
+ 4T 2

y (69)

where Hy is the required terminus thickness so the glacier is at the yield strength and we637

have discarded the unphysical negative square root.638

Using the boundary condition on ice thickness at the terminus given by Equation 69,639

Equation 66 now can be explicitly integrated to find an expression for ice thickness in the640

boundary layer:641

H = 2Ty +

√
4T 2

y +
ρw
ρ
D2 − 2TyX, −∞ < X ≤ 0. (70)

In the limit X → −∞, H ∼
√
−2TyX, matching equation 45 for ice thickness in the642

limit that the bed is flat. The flat bed condition, however, is exactly what we deduced643

is required in the boundary layer so long as bed topography varies on the ‘outer’ length644

scale and the solutions match in the limit x→∞ and X → −∞.645

Appendix B. Model numerics

For the SSA type models, we impose a symmetric boundary condition at the ice divide646

sx = 0 and u = 0 at x = 0. For the SIA type models we need to impose sx = 0 at x = 0.647

For the perfect plastic model we need only specify the thickness at the terminus. To648

accurately resolve the terminus position, we adopt a moving grid. If the terminus position649

is located at xc(t), then defining650

ξ =
x

xc
, t̃ = t, (71)
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maps the interval 0 ≤ x ≤ xc(t) into the interval 0 ≤ ξ ≤ 1. The variable t̃ is introduced to651

distinguish between partial derivatives obtained holding x or ξ constant. Straightforward652

application of the chain rule then leads to653

∂

∂x
=

1

xc

∂

∂ξ
(72)

∂

∂t
=

∂

∂t̃
− ξ

xc

dxc

dt̃

∂

∂ξ
. (73)

These transformations apply to all equations. To accurately resolve the boundary layer654

near the calving front, we use an unevenly spaced grid with points in the interval [−1, 1]655

given by ξj = 0.5 cos(jπ/N) + 0.5 where N is the number of grid points and 0 ≤ j ≤ N .656

The irregular grid spacing is accommodated using a finite element formulation with a657

basis set of ‘tent’ functions that are defined to be unity at a single node and to vary658

linearly between nodes. To avoid numerical artifacts or resolution issues, we set N=1600659

or higher.660
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system, Géographie physique et Quaternaire, 31 (3-4), 347–356, doi:10.7202/1000282ar,787

1977.788

Ultee, L., and J. Bassis, The future is Nye: an extension of the perfect plastic ap-789

proximation to tidewater glaciers, Journal of Glaciology, 62 (236), 1143–1152, doi:790

10.1017/jog.2016.108, 2016.791

Van Der Veen, C. J., Tidewater calving, Journal of Glaciology, 42 (141), 375385, doi:792

10.3189/S0022143000004226, 1996.793

Van der Veen, C. J., Fundamentals of glacier dynamics, Balkema, 1999.794

Vaughan, D. G., Relating the occurrence of crevasses to surface strain rates, Journal of795

Glaciology, 39 (132), 255266, doi:10.3189/S0022143000015926, 1993.796

Weertman, J., Stability of the junction of an ice sheet and an ice shelf, Journal of Glaciol-797

ogy, 13 (67), 3–11, doi:10.3189/S0022143000023327, 1974.798

Weertman, J., Bottom crevasses, Journal of Glaciology, 25 (91), 185188, doi:799

10.3189/S0022143000010418, 1980.800

D R A F T July 2, 2019, 3:58pm D R A F T

This article is protected by copyright. All rights reserved.



X - 44 BASSIS AND ULTEE: MARINE ICE CLIFF

Figure 1. Sketch showing the coordinate system and geometry assumed. A yield surface

Y(x) is also shown which is initially quasi-parallel to the bed, but rises and connects with

the surface near the calving front.

Figure 2. Diagram illustrating the bi-viscous rheology for various values of the ratio of

hardness of intact and yielded ice. When the ratio Bf/Bi = 1, yielded ice has the same

effective viscosity as intact ice, and power-law creep continues at the same rate above

the yield strength. When the ratio Bf/Bi < 1, there is an abrupt transition at the yield

strength to a smaller ice hardness that results in a smaller increase in effective stress for a

given increase in effective strain rate. As the ratio Bf/Bi approaches zero, ice behaves like

a power-law creeping material up until the yield strength, τy, at which point the effective

stress can no longer increase and ice behaves like a plastic material.
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Figure 3. Schematic illustrating the boundary between intact and yielded ice. Panel

(a) shows an initial condition that consists of intact and yielded ice separated by a yield

surface denoted by Y(x). Panel (b) shows deformation of yielded ice concentrated along

fractures and faults forming a yielded ice mélange. The yielded rheology simulates the

bulk effect of fractures and bergs, conceptually illustrated with the dashed line in Panel

(b). Panel (c) shows the end state after the yielded plug of mélange has rapidly deformed

and been exported away exposing the yield surface as the calving front. The transition

from Panel (a) to Panel (b) is paced by the characteristic time of the system and occurs

nearly-instantaneously if yielded ice deforms much faster than intact ice.

Figure 4. Illustration of the velocity profile above and below the yield surface Y as a

function of the ratio of the hardness parameter of yielded to intact ice ν. When ν = 1,

velocity follows the usual SIA profile of creeping above and below the yield surface. As ν

becomes smaller, the weaker rheology of yielded ice results in rapidly increasing velocities

in the yielded layer.
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Figure 5. Conceptual illustration of the evolution of a glacier. Starting at the most

advanced position (time t0, light gray shaded profile), thinning of the glacier decreases the

ice thickness. As the ice thickness at the terminus decreases, the calving front retreats to

a position where the thickness can again reach the yield thickness (time t2 medium shaded

gray profile). If the glacier retreats into a deep trough, then the buoyancy thickness may

exceed the yield thickness (illustrated with a dashed red line). In this case, the yielded

rheology will result in rapid thinning (with the yielded rheology, Equation 35), a (nearly)

instantaneous retreat of the grounding line to a position where the yield thickness can

again be reached and formation of a floating melange tongue (t2, dark gray shaded profile).
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Quantity value description

τy 150 kPa yield strength

Bi 108 Pa s−1/3 hardness of intact ice

Bf — Pa s−1/3 hardness of failed ice

β 7.624×106 Pa s/m sliding coefficient

m 1/3 sliding law exponent

ȧ0 0.75 m/a dimensional accumulation rate

∆a 1 m/a variation in accumulation rate

T 5000 a period accumulation change

b0 260 m bed elevation at x = 0

α 0.017 bed slope

b1 350 m height of bump in the bed

x0 40 km center of bump in the bed

σ 10 km width of bump in the bed

Table 1. Numerical values of parameters used in different models. The hardness

parameter of yielded ice is not used in any of the simulations.

Figure 6. Snapshots showing advance and retreat for the Plastic bed model (filled gray

outline) and Perfect plastic approximation (dashed red lines).

Figure 7. Snapshots showing advance and retreat for the Weertman model (filled gray

outline) and SIA model (dashed red lines).
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Figure 8. Time series showing the evolution of terminus position (panel a), calving

rate (panel b), terminus velocity (panel c) for a time varying accumulation rate (panel d).

The black line shows the trajectory based on the Perfect plastic approximation model.

The pink line shows the trajectory calculated using the Plastic bed model and the blue

line shows the trajectory calculated using the Weertman model.

Figure 9. Bifurcation diagram showing terminus position as a function of accumulation

rate for the Plastic bed model (black) and Weertman model (blue). Stable solutions

are indicated using a solid black line for the Plastic bed model and dashed line for the

Weertman model. Dotted lines show unstable branches. Circles denote bifurcation points

where the solutions transition from stable to unstable. Panels a and b show solutions

obtained for a yield strength τy = 150 kPa and τy = 200 kPa, respectively.
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