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M otivated by the importance of service quality in nowadays customer business environment, we focus on inventory
optimization under probabilistic service level constraints, namely, the a service level (also known as the ready rate) or

the b service level (also known as the fill rate). Under service level constraints, we consider two canonical stochastic
inventory models: (i) the classical inventory control model with backlogging and (ii) the remanufacturing inventory con-
trol model with random product returns. The random demands could be non-stationary, evolving and correlated over
time. For each model, we first establish the optimality of generalized base-stock policies, and then propose a new approxi-
mation algorithm that admits a worst-case performance guarantee of 2. The core concept developed in this study is called
the delayed forced holding and production cost, which is proven effective in dealing with service level constrained inventory
systems. We also provide an efficient heuristic algorithm for the multi-item inventory system. Our extensive computa-
tional experiments show that the proposed algorithms perform within 2% of optimality.

Key words: inventory; service level; remanufacturing; optimal policies; approximation algorithms
History: Received: March 2018; Accepted: April 2019 by Qi Annabelle Feng, after 1 revision.

1. Introduction

In the customer-driven business environment nowa-
days, it is vital for companies to focus on the quality
of service (QoS) when managing operations and busi-
nesses. Since the early 2000s, firms started to put
tremendous effort and resource into understanding
the customers and markets. Those who could consis-
tently provide superior service to their customers
would remain an excellent reputation and keep most
of their loyal buyers. Customers facing stockouts have
been observed abandoning their purchases, switching
retailers, substituting similar items and have seldom
gone back (see, e.g., Fitzsimons 2000). One of the most
common challenges in making supply chain deci-
sions, at its most fundamental level, boils down to
minimizing inventory control cost while still deliver-
ing high-quality customer service, which we are inter-
ested in modeling and solving in this study.
On one hand, the notion of service level require-

ment has been widely used both in theory and in
practice to measure the performance of inventory
replenishment policies (cf. Ghiani et al. 2005). It is
typically defined as a probabilistic constraint so that
the demand is satisfied with a high probability. By
enforcing a service level requirement, companies are
able to improve the QoS by guaranteeing small stock-
out rates. There are several empirical studies of the
sensitivity of inventory service levels on demand in
business-to-consumer settings (cf. Anderson et al.
2006, Fitzsimons 2000, Jing and Lewis 2011). In

particular, according to Jing and Lewis (2011), stock-
out rates have a significant impact on the firm’s prof-
itability and the firm can achieve many of the benefits
through small decreases in stockout rates.
There are a number of examples in practice where

the service level plays an important role in firms’ sup-
ply chain management. For example, the grocery
store industry has generally a very high service level
expectation, especially for its dairy product section. A
customer who wants to buy 2% reduced-fat milk
should find it with a very high probability. If not, the
store runs the risk of losing the sale as well as the cus-
tomer. Clearly, customers are more willing to buy
from those grocery stores that always have enough
stock. This directly explains why the Kroger Co., one
of the country’s largest supermarket chains, generally
enforces a high service level (from 85% to 98%) on
dairy products. Their optimal inventory replenish-
ment policy must meet the service level requirement
while minimizing the total inventory cost over the
planning horizon. Likewise, many other industries,
such as food and fashion, also set a high service level
that helps satisfy customers’ demands and avoid
stockouts. In addition, service level agreements (SLA)
are usually enforced in some industries such as the
semi-conductor industry to guarantee the delivery of
manufactured products. As pointed out by Katok
et al. (2008), SLAs are used to improve supply chain
coordination and there are contractual financial
penalties and rewards associated with failing or
achieving a target service level. In general, having a
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service level requirement helps firms maintain their
reputation and increase their revenue in the long run
(see Chen and Krass 2001 for more examples and
discussions).
On the other hand, after-sales services could also be

crucial in delivering great customer services (cf.
Cohen et al. 2006). Companies have to handle the
return, repair, and disposal of failed components. The
returned products, though some parts may be dam-
aged, can be remanufactured and resold. The remanu-
facturing process includes repair or replacement of
worn-out or obsolete components and modules,
which has a lower production cost than the manufac-
turing process. Examples of remanufacturing occur in
many industries, such as personal computers, cell
phones, automotive parts, etc. For example, Cummins
Inc., an American corporation that manufactures and
distributes engines, filtration, and power generation
products, has more than 45 years of remanufacturing
experience. The firm remanufactures engines and
other automobile parts by replacing all wear items
with new parts. In addition, Cummins also imposes a
high service level requirement on their long-term sup-
ply, as it cannot afford to lose customers. The com-
pany is ever more willing to make extra production
and hold them as inventory than having lost sales,
which may potentially jeopardize their reputation.
Both the service level requirement and its remanufac-
turing process help Cummins Inc. building up a great
reputation of customer service, which benefits the
company in the long run.
To address all the aforementioned issues in inven-

tory management, we study periodic-review service
level-constrained stochastic inventory systems where
the stockout probability is lower bounded by a thresh-
old value in each period. This type of service level
constraint is commonly known as the a service level
in the literature (see, e.g., Chen and Krass 2001, Sim-
chi-Levi et al. 2014, Snyder and Shen 2011). We con-
sider two fundamental stochastic inventory models
with a service level constraints: the multi-period back-
logging model and the multi-period backlogging model
with remanufacturing, with a general stochastic
demand process (i.e., correlated, non-stationary, and
evolving demand). In the service level-constrained
backlogging model, the firm makes a production deci-
sion in each period to minimize the total expected
production, holding and backlogging costs over a
finite planning horizon, subject to a given service level
requirement. In the counterpart model with remanu-
facturing, in addition to the regular production, there
are some products being returned at the beginning of
each period (commonly referred to as cores, see, e.g.,
Tao and Zhou 2014), which can be remanufactured
into regular products at a lower cost. The objective is
to decide the manufacturing and remanufacturing

quantities in each period so as to minimize the total
expected costs, subject to a given service level
requirement.
As seen from our literature review below, there has

been growing research on both the theoretical and
computational aspects of service level-constrained
inventory systems. There are mainly two sources of
motivation. First, traditional inventory models usu-
ally assume linear cost functions to penalize inven-
tory, backorders, or lost sales. However, the
assumption of linear backlogging or lost-sale penalty
is primary for analytical tractability rather than an
accurate representation of reality (see Bertsimas and
Paschalidis (2001) for a detailed discussion). The
mechanism of varying unit penalty costs can hardly
take effect on the QoS performance of a system,
mainly due to the difficulty of quantifying customer
satisfaction. In this regard, imposing a target service
level is a much more direct way to quantify and
improve the QoS performance of an inventory system.
Second, as extensively discussed in Chen and Krass
(2001), the backlogging cost is often very difficult to
quantify in practice. Hence, a target service level con-
straint is thus considered as an effective (if not more
so) alternative performance measure.
In this study, we consider a generalized model that

incorporates both the service level constraints and the
penalty cost for each unsatisfied demand, which has
several advantages. First, when the firm does not
have a good estimate of the backlogging cost, the firm
can simply set the per-unit penalty cost to be zero in
our model, which then reduces to the conventional
model with service level constraints only. Our algo-
rithms, analysis, and results hold for this special case.
Second, when the firm does have a good estimate of
the backlogging cost (e.g., from historical data), con-
sidering backlogging cost together can significantly
alleviate the problem of suffering from severe back-
logs in the worst-case scenarios (since the service level
constraints only guarantee that the demand will be
met with a certain positive probability in each
period).

1.1. Main Results and Contributions
We consider two canonical inventory systems under
probabilistic level constraints: (i) the classical inventory
control model with backlogging and (ii) the remanu-
facturing inventory control model with random pro-
duct returns. The service level constraint can either be
a type (ready rate) or b type (fill rate). The random
demand and return processes could be non-station-
ary, evolving and generally correlated. We summa-
rize the key results and our contributions as follows.

(1) For the classical backlogging model, we estab-
lish the optimality of a base-stock policy
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(Proposition 1). For the remanufacturing
model, we establish the optimality of a total
base-stock policy (Proposition 2), that is, in
each period, we bring the total inventory posi-
tion (after production) to an optimal threshold
level by remanufacturing as many returned
products as possible.

(2) Finding the exact optimal policy via a brute-
force dynamic programming (DP) approach is
computationally intractable, despite its simple
form. We propose two efficient approximation
algorithms, termed the Split-Merge-Balance
(SMB) algorithm and the Modified Split-Merge-
Balance (MSMB) algorithm, for the backlogging
model and the remanufacturing model,
respectively. Our theoretical performance
analysis shows that both algorithms admit a
worst-case performance of two, that is, the
expected cost of our algorithm is at most
twice the expected cost of an optimal solution
(Theorems 1 and 2).

(3) Leveraging the ideas from the SMB algo-
rithms, we also propose a heuristic algorithm
for the multi-item inventory system under an
aggregate service level. Through an extensive
numerical study, we demonstrate that the pro-
posed policies (SMB, MSMB, and the heuristic
algorithm) perform within 2% of optimality
and also yield a significant reduction of solu-
tion time.

The core new concept developed in this study is
the notion of delayed forced costs in designing prov-
ably-good policies for service level- constrained
inventory systems. The major difficulty of designing
approximation algorithms for service level con-
strained models is the impossibility of balancing the
expected marginal holding costs against the expected
marginal backlogging costs, which is the dominated
technique (i.e., cost-balancing technique) in some
related literature (see, e.g., Levi et al. 2007, 2008a,b).
Our algorithms first split the marginal costs into two
parts (i.e., forced costs and future costs) and shift all
the forced costs to one period later (called delayed
forced costs); after regrouping the future costs and
delayed costs according to their monotonicity, our
algorithms balance the expected overage cost against
the expected underage cost associated with each per-
iod. The introduction of the delayed forced costs
makes the worst-case analysis invariably harder—
one needs to group consecutive intervals together to
amortize the sum of future cost and delayed forced
cost against the optimal policy (Lemma 3). This is in
sharp contrast to the aforementioned studies where
period-by-period amortization is sufficient for the
classical backlogging model.

For the remanufacturing model, the amortization of
production costs becomes non-trivial and our worst-
case analysis builds upon on the elegant partitioning
technique introduced in Tao and Zhou (2014). There
is a challenge we need to overcome: due to the service
level constraints in our model, we split each holding
cost and production cost into two parts and use the
delayed holding cost and delayed production cost
when designing a modified SMB algorithm. Conse-
quently, our worst-case analysis needs to bound both
parts of production costs in different sets of periods,
which cannot be readily adapted from their results
(see the detailed discussions before Lemma 6).
In general, we believe that the concept of delayed

forced costs could be widely applied in designing
algorithms for any general service level constrained
inventory systems.

1.2. Literature Review
This study is closely related to the following research
domains and related literature.
Stochastic Inventory System with Service Level

Constraints. Bookbinder and Tan (1988) studied a
probabilistic lot-sizing problem using a “static-
dynamic uncertainty” strategy. In their two-stage
model, a retailer first decided a schedule (or replen-
ishment periods) to place orders. Then, the retailer
made adjustments to the planned orders when
demand was released. Chen and Krass (2001) showed
that the (s, S) policy is optimal under independently
and identically distributed (i.i.d.) demands for an infi-
nite-horizon stationary setting. Boyaci and Gallego
(2001) proposed effective heuristic procedures to
serial inventory systems with service level constraints
on stockout probabilities. Shang and Song (2006) also
studied a serial base-stock inventory model under
simple Poisson demands and the same type of service
level constraints. They developed a closed-form
approximation for the optimal base-stock levels. Bert-
simas and Paschalidis (2001) considered a multiclass
make-to-stock manufacturing system with probabilis-
tic service level guarantees, and devised a production
policy that minimized inventory costs under a stock-
out probability guarantee using queueing methods.
Goh and Sim (2011) carried out a computational study
(using a software called ROME) of a distributionally
robust periodic-review inventory problem with fill
rate constraints. More recently, Wei et al. (2018) stud-
ied a periodic-review service level constrained inven-
tory system with lost sales and lead times. They
proposed a simple heuristic by solving a linear pro-
gramming (LP) problem derived from a deterministic
inventory model with backlogging, and showed that
the proposed heuristic is asymptotically optimal as
the service level grows to 100%, and derived a simple
and explicit bound on the optimality gap. The
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probabilistic constraints that impose service level
guarantees in each period (i.e., a service levels) are
used in the majority of the literature, which is also the
primary focus of this study.
Stochastic Inventory System with Remanufactur-

ing. Zhou et al. (2011) studied the structure of opti-
mal policies for the remanufacturing inventory
system with multiple types of returned products.
They showed that the optimal policy is a modified
base-stock policy, which can be completely character-
ized by a sequence of control parameters. Tao and
Zhou (2014) proposed an approximation algorithm
for the stochastic inventory system with remanufac-
turing. They also proved that the cost of their pro-
posed algorithm is at most twice of the optimal cost.
Gong and Chao (2013) focused on the capacitated
inventory systems with remanufacturing. Building
upon the preservation result by Chen et al. (2013),
they showed that the optimal remanufacturing policy
is a modified remanufacture-down-to policy and the
optimal manufacturing policy is a modified total-up-
to policy. Our remanufacturing model differs from all
of the aforementioned models by incorporating ser-
vice level constraints in each period.
Approximation Algorithms on Inventory Systems.

The DP approach is effective in characterizing the
structural properties of optimal policies. However,
the computational complexity is very sensitive to the
dimension of the state space. In fact, it has been
shown in Halman et al. (2009) that the stochastic lot-
sizing model (without service level constraints) is NP-
hard. Our work is closely related to recent studies of
approximation algorithms for stochastic periodic-
review inventory systems pioneered by Levi et al.
(2007). They first introduced the marginal cost
accounting scheme, which associated a cost with each
decision made by a particular policy. They proposed
a dual-balancing policy which admitted a worst-case
performance guarantee of 2 for the backlogging
model. Subsequently, Levi et al. (2008a,b) and Levi
and Shi (2013) proposed approximation algorithms
for the lost-sales, capacitated, and lot-sizing models,
respectively. More recently, Truong (2014) re-derived
the 2-approximation ratio for the backlogging model
via a look-ahead optimization approach. Tao and
Zhou (2014) proposed an approximation algorithm
for a remanufacturing system with a worst-case per-
formance guarantee of two. Cheung et al. (2016),
Nagarajan and Shi (2016) proposed approximation
algorithms for submodular joint replenishment prob-
lems. There has also been a series of studies on perish-
able/fresh inventory systems (see, e.g., Chao et al.
2015, 2017, Zhang et al. 2016). However, their models
did not consider service level constraints while our
study focuses on designing approximation algorithms
for models with service level guarantees.

1.3. Structure of the Paper and General Notation
The remainder of the study is organized as follows.
We formulate the service level-constrained backlog-
ging model as a dynamic program and present the
structural properties of optimal policies in section 2.
We derive a 2-approximation algorithm for the classi-
cal backlogging model in section 3. We extend our
structural result to the remanufacturing system and
also derive a 2-approximation algorithm in section 4.
We also give a heuristic algorithm to the multi-item
setting in section 5. We carry out numerical experi-
ments and demonstrate the effectiveness of our pro-
posed policy in section 6. Finally, we conclude the
study and point out some future research avenues in
section 7.
Throughout the study, we use increasing and

decreasing in a non-strict sense. For notational conve-
nience, we often use a capital letter and its lower-case
form to distinguish between a random variable and
its realization. We use LHS and RHS as abbreviations
for the “left-hand side” and the “right-hand side” of
an equation, respectively. We use ≜ to mean “is
defined as”, and 1ðAÞ is the indicator function taking
value 1 if statement “A” is true and 0 otherwise. For
any x 2 R, we denote x+ = max{x, 0}. For any
sequence xi, i = 1, 2, . . ., we let x½i;j� ¼

Pj
k¼i xk and

x½i;jÞ ¼
Pj�1

k¼i xk, where the summation over an empty
set is defined as 0. For any a; b 2 R, we denote
a ^ b ¼ minfa; bg.

2. Periodic-Review Inventory Systems
with Service Level Constraints

Consider a finite planning horizon of T periods
indexed by t = 1, . . ., T. The production lead time is
assumed to be L ≥ 0.
Demand Structure. We adopt the same demand

structure as in Levi et al. (2007) and Tao and Zhou
(2014). An information set ft is observed at the begin-
ning of each period t. It contains all the available
information that can be used to predict future
demands, such as the realized demands (d1, . . ., dt�1)
and possibly some other exogenous information (de-
noted by qt at period t). For example, when the state
of economy is observed at each period, qt corresponds
to the state of economy at period t. The conditional
joint distribution of the future demands (Dt, . . ., DT)
is determined by ft = (d1, . . ., dt�1, q1, . . ., qt). We
denote F t as the set of all the possible realizations of
the information set ft. Our demand model generalizes
the existing correlated demand models in the litera-
ture, such as Markov-modulated demand process
(MMDP) (Sethi and Cheng 1997), autoregressive
demand (Mills 1991), which will be described in sec-
tion 6. Our demand model is also useful in practice, in
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which martingale model of forecast evolution (MMFE
for short, see, e.g., Graves et al. 1986, Heath and Jack-
son 1994) and advance demand information (ADI)
(see, e.g., Gallego and €Ozer 2001) are used to forecast
the future demand.
Service Level Rzequirements. Our model incorpo-

rates the service level requirement. There are mainly
two types of service level constraints used in practice.
The first one is the a type, also known as the ready
rate, defined as a stockout probability for each period
t. Following Chen and Krass (2001), the service level
constraint enforces that the demand in each period
t + L is satisfied by a certain probability ht (which is
in fact associated with period t + L), that is,

PðNItþL � 0jftÞ� ht; 8t ¼ 1; . . .;T; ð1Þ

where NIt denotes the net inventory at the end of
period t, which can be either positive (in the pres-
ence of on-hand inventory) or negative (in the pres-
ence of backorders). The ready rate has been
considered by, e.g., Bookbinder and Tan (1988),
Nahmias (1993), Sethi and Cheng (1997) and Chen
and Krass (2001).
The second one is the b type, also known as the fill

rate, defined as the percentage of demand that is met
from stock. More formally, given st 2 ð0; 1Þ as the tar-
get fill rate in period t + L, the fill rate constraint is
given by

min

�
1; E

�
ðNItþL�1 þ qtÞþ

DtþL

����ft
��

� st; 8t ¼ 1; . . .;T;

ð2Þ

where qt is the total production quantity at period t.
Note that practitioners often prefer using the fill rate
over the ready rate since the fill rate is arguably
much easier to evaluate.
Our service level constrained model is able to incor-

porate either constraint (1) or (2). Note that our pro-
duction decisions will not affect net inventories for
the first L periods, and hence we enforce the service
level requirements from period L + 1 to L + T.
System Dynamics. In each period t, events occur in

the following sequence: First, the manufacturer deter-
mines the production quantity (denoted by qt) in per-
iod t. The planned production quantity should satisfy
the service level constraint (1) or (2). Then dt units of
demands are received. As a consequence, unused
products are stored as inventory, which incurs the
holding cost; on the other hand, unsatisfied demands
incur the backlogging cost and are carried to the next
period. The production, holding and backlogging cost
functions are assumed to be linear, with per-unit costs
ct, ht and bt, respectively. The goal is to decide produc-
tion quantities that achieve the required service level

in each period and to minimize total expected cost at
the same time.
A Dynamic Programming Formulation. We formu-

late the problem using dynamic programming (DP)
approach. Since no products will arrive in the first L
periods, it suffices to consider the total cost from per-
iod L + 1 to period L + T. We first calculate the imme-
diate cost associated with decisions in period t. Define
xt as the inventory position at the beginning of period
t, which equals to the current on-hand inventory plus
the pipeline inventory minus the backorders, that is,
xt = NIt�1 + q[t�L,t). Then the inventory position in the
next period equals to the current inventory position
plus production quantity minus the demand in the
current period, that is, xt+1 = xt + qt � dt. Let
yt ¼ xt þ qt � xt be the inventory position in period t
after production. Then the net inventory at the end of
period t + L can be written as NItþL ¼ yt � D½t;tþL�:
Therefore, the total holding and backlogging cost is
given by

Gtðyt; ftÞ,htþLE½ðyt �D½t;tþL�Þþjft�
þ btþLE½ðD½t;tþL� � ytÞþjft�:

It is clear that Gt is continuous and convex in its
first component. Adding the production cost, the
total cost in period t is Gtðyt; ftÞ þ ctqt:
For the a service level constraints, we can rewrite

Equation (1) as

Pðyt �D½t;tþL� � 0jftÞ� ht; 8t ¼ 1; ;T: ð3Þ

To simplify the above constraint, we define a thresh-
old value

r1t ¼ r1t ðftÞ, inffr 2 Rþ : PðD½t;tþL� � rjftÞ� htg;

that is, r1t ðftÞ is the ht-quantile of the random vari-
able D[t,t+L] given information ft. Then the service
level constraint (3) is equivalent to yt � r1t for all
t = 1, . . ., T. In some special cases, r1t is very easy to
compute. For example, when demands are indepen-
dent Poisson or Normal random variables, the
aggregate demand D[t,t+L] follows the same distribu-
tion type. For general demand distributions, we can
use the Monte Carlo sampling method of Glasser-
man (2004) to empirically obtain r1t .
For the b service level constraints, we can rewrite

Equation (2) as

E

� ðyt �D½t;tþLÞÞþ

DtþL

����ft
�
� st; 8t ¼ 1; � � � ;T: ð4Þ

Note that the LHS of Equation (22) is non-decreas-
ing in yt, the above constraint can also be simplified
to yt � r2t for all t = 1, . . ., T, where r2t is a function
in ft satisfying
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E

� ðr2t �D½t;tþLÞÞþ

DtþL

����ft
�
¼ st:

In practice, the value of r2t can be obtained via bisec-
tion search and Monte Carlo sampling of future
demands Dt, Dt+1, . . ., Dt+L.
To summarize, both service level constaints can be

equivalently simplified to a lower bound on the
inventory position yt, that is, yt � rtðftÞ, for all
t = 1, . . ., T. In each period t = 1, . . ., T, we can
recompute rt, . . ., rT based on ft, using simulation.
Therefore, it is equivalent to imposing the lower
bound constraints in our model, regardless of the type
of service level constaints.
Let vt(xt, ft) be the minimal expected cost from per-

iod t + L to period T + L given the inventory position
xt and the information set ft 2 F t at the beginning of
period t. The Bellman’s equations are

vTþ1ðxTþ1; fTþ1Þ¼ 0;

8xTþ1 2R; fTþ1 2FTþ1;

vtðxt; ftÞ¼ min
yt�maxfrt;xtg�

Gtðyt; ftÞþ ctqtþE½vtþ1ðyt�Dt;F tþ1Þjft�
�
;

t¼ 1; . . .;T:

ð5Þ

Structure of Optimal Policies. Using Equation (5),
the structure of optimal policies is characterized in
Proposition 1. It is a special case of Proposition 2 and
its proof can be found in Appendix A.

PROPOSITION 1. For the inventory control problem
defined in Equation (5), an optimal policy is a modified
base-stock policy. More specifically, there exists fsðftÞgTt¼1

such that

y�t ðxtÞ ¼
maxfrt; sðftÞg; if xt\sðftÞ;
maxfrt; xtg; if xt � sðftÞ:

�

Proposition 1 asserts that any optimal policy has
the following structure: if the inventory position in
period t is no less than the threshold s(ft), an optimal
policy produces up to the service level rt; otherwise, it
brings the inventory position to max{rt, s(ft)}. There-
fore, the higher the service level, the more orders are
placed by the optimal policy. In particular, when
there is no service level requirement presented in the
model (i.e., rt = 0), the structure of optimal policy
reduces to the well-known base-stock policy (see, e.g.,
Zipkin 2000).

3. Provably-Good Policies for Service
Level Constrained Inventory
Systems

Computing an exact optimal policy through a brute-
force DP model is generally intractable under corre-
lated demand structures, despite the simple structure
of optimal policies. To this end, we provide an
approximation algorithm, called Split-Merge-Balance
policy (denoted by the SMB policy), for practically
solving the service level constrained inventory prob-
lem. We show that the SMB policy admits a worst-
case performance guarantee of 2, that is, the expected
cost of the policy is at most twice the expected cost of
an optimal policy, regardless of any distributions of
the random demands and choices of the cost parame-
ters. Moreover, the SMB policy performs empirically
near-optimal, demonstrated by extensive numerical
tests in section 6.
The traditional inventory cost accounting scheme

(in DP) decomposes the total costs by periods. In
the following, we present a new marginal cost
accounting scheme for our model under service
level constraints: it decomposes the total cost in
terms of the marginal costs of individual decisions
and these marginal costs may include costs in both
the current and subsequent periods. This extends
and generalizes the marginal cost accounting dis-
cussed by Levi et al. (2007).

3.1. Review of the Dual-Balancing Policy
The underlying idea of the SMB policy is based on the
dual-balancing policy proposed by Levi et al. (2007).
The traditional inventory cost accounting scheme (in
dynamic programming) decomposes the total costs
by periods; Levi et al. (2007) proposes a marginal cost
accounting scheme and computes the marginal hold-
ing cost by

HtðqtÞ ¼
XTþL

j¼tþL

hj
�
ðXt þ qt �D½t;j�Þþ � ðXt �D½t;j�Þþ

�
;

ð6Þ

where Xt denotes a random inventory position
which realizes at the beginning of period t.
The marginal backlogging cost is the same as the

classical per-period backlogging cost, that is,

PtðqtÞ ¼ btþLðD½t;tþL� � ðqt þ XtÞÞþ: ð7Þ

The dual balancing policy balances the marginal
holding cost in Equation (6) against the marginal
backlogging cost (7) and it admits a worst-case per-
formance guarantee of two.
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However, the dual balancing policy cannot be
directly applied to our model because the balancing
quantity for the marginal holding cost and the mar-
ginal backlogging cost may not exist due to the ser-
vice level constraints. In periods where the
constrained service level is much higher than the cur-
rent inventory position, the expected marginal hold-
ing cost is always greater than the expected marginal
backlogging cost. In such a case, one cannot find a fea-
sible production quantity which balances the
expected marginal holding cost against the expected
marginal backlogging cost (see Figure 1).

3.2. Split-Merge-Balance Policy
Without loss of generality, we assume that the unit
production cost in each period is zero following a
standard cost transformation in the literature (see,
e.g., Zipkin 2000). That is, for any system with posi-
tive unit production cost ct, there is an equivalent sys-
tem with revised costs c0t ¼ 0, h0tþL ¼ htþL þ ct � ctþ1

and b0tþL ¼ btþL � ct þ ctþ1. This allows us to only
consider holding costs and backlogging costs (Fig-
ure 1).
Marginal Cost Accounting Scheme (Split).We first

present a new marginal cost accounting scheme for
our inventory model under service level require-
ments, which generalizes the marginal cost account-
ing scheme discussed by Levi et al. (2007). In the
presence of service level constraints, we split the mar-
ginal holding cost into two parts. The first part is
called forced holding cost (denoted by ~Ht), which
accounts for the holding cost from producing up to
the service level �Xt ¼ max fXt; rtg in period t. The
forced holding cost is unavoidable and it is indepen-
dent of the current decision. The second part of the
marginal holding cost is an additional future holding
cost (denoted by Ĥt) incurred by producing additional
(controllable) gt ¼ Xt þ qt � �Xt. The reason behind
this split is that the forced marginal holding cost ~Ht is
fixed given production decisions in previous periods,
and hence only the additional marginal holding cost
Ĥt is affected by the current decision gt.

Suppose that Xt is the inventory position at the
beginning of period t. We compute the forced holding
cost ~Ht by

~Ht ¼
XTþL

j¼tþL

hj
�
ð�Xt �D½t;j�Þþ � ðXt �D½t;j�Þþ

�
; ð8Þ

where hjð�Xt � D½t;j�Þþ is the marginal holding cost in
period j for producing up to �Xt in period t and
hj(Xt � D[t,j])

+ is the marginal holding cost in period
j for producing nothing in period t. Similarly, the
additional future holding cost Ĥt is computed as

ĤtðgtÞ ¼
XTþL

j¼tþL

hj
�
ð�Xt þ gt �D½t;j�Þþ � ð�Xt �D½t;j�Þþ

�
;

ð9Þ

where hjð�Xt þ gt � D½t;j�Þþ stands for the marginal
holding cost in period j for producing an additional
gt in period t and hjð�Xt � D½t;j�Þþ is the marginal
holding cost in period j for producing nothing addi-
tionally in period t. The backlogging cost in period t
is the same as the classical per-period backlogging
cost, that is,

BtðgtÞ ¼ btþLðD½t;tþL� � ðgt þ �XtÞÞþ: ð10Þ

The left graph in Figure 2 shows the split marginal
costs.
Regrouping the Marginal Costs (Merge). After

splitting the marginal costs, we next regroup them.
The marginal costs fall into two categories. One is
called overage cost and it includes the marginal
costs incurred due to production. Specifically, the
additional holding cost Ĥt is overage cost since it
will increase when an additional production is
made. We name the other category underage cost,
which includes the marginal costs incurred due to
lack of productions, such as the backlogging cost
Bt(gt). For the forced holding cost ~Ht, however, it is
not affected by the decision in the same period
because it is pre-determined by the production

Figure 1 Dual-Balancing Policy Given by Levi et al. (2007) (no balancing point due to the service level constraint)

Jiang, Shi, and Shen: Service Level Constrained Inventory Systems
Production and Operations Management 28(9), pp. 2365–2389, © 2019 Production and Operations Management Society 2371



made in the last period. For this reason, we com-
pute the delayed holding cost in the subsequent per-
iod (i.e., ~Htþ1) as soon as the production is made
in period t. Specifically, once the additional pro-
duction quantity gt is determined, we compute the
delayed holding cost by

~Htþ1ðgtÞ ¼
XTþL

j¼tþLþ1

hj
�
ð�Xtþ1 �D½t;j�Þþ � ðXtþ1 �D½t;j�Þþ

�
:

ð11Þ

Note that the delayed holding cost requires to com-
pute rt+1 based on ft rather than ft+1. Hence, the term
�Xtþ1 in Equation (11) should be treated as a random
variable depending on the realization of Dt.
As seen from Equation (11), the more we produce

in period t, the more inventory position we have at
the beginning of period t + 1 and the less delayed
holding cost will be incurred. Thus, by shifting all the
marginal forced holding costs to one period later, we
conclude that ~Htþ1 is decreasing in gt and hence, it
belongs to underage cost. The right graph in Figure 2
illustrates the shifted cost.
SMB Policy (Balance). We describe the SMB policy

as follows: At the beginning of each period t, we first
calculate the balancing quantitygSMB

t , which balances
the conditional expected overage cost against the con-
ditional expected underage cost. In other words, gSMB

t

solves

E½ĤtðgtÞjft� ¼ E½ ~Htþ1ðgtÞ þ BtðgtÞjft�: ð12Þ

Then the SMB policy produces qSMB
t ¼ gSMB

t þ �xt
� xt in period t when Xt = xt is realized. Here in the
SMB policy, the balancing quantity must exist due
to the following facts: (i) ĤtðgtÞ, ~Htþ1ðgtÞ and Bt(gt)
are continuous; (ii) ĤtðgtÞ is non-decreasing in gt
while ~Htþ1ðgtÞ þ BtðgtÞ are non-increasing in gt; (iii)
As gt increases from 0 to +∞, the LHS of Equation
(12) also increases from 0 to +∞ while the RHS of
Equation (12) decreases from a positive number to
0. Moreover, the balancing quantity gSMB

t can be
computed efficiently using a bisection search
method.
To evaluate the total cost of a given policy P in a

convenient way, we define the required service level
in period T + L + 1 to be zero, that is, rT+1 = 0. Under
this convention, the forced costs must vanish in per-
iod t + 1, that is, ~HP

Tþ1 ¼ 0. Then for a given policy P,
the total cost CðPÞ is given by

CðPÞ ¼
XT
t¼1

ðð ~HP
t þ ĤP

t Þ þ BP
t Þ

¼
XT
t¼1

ðĤP
t þ ð ~HP

tþ1 þ BP
t ÞÞ þ ~HP

1 :

ð13Þ

We note that the delayed holding cost ~HP
tþ1 for any

policy P is computed using the demand information
ft obtained in the previous period. Also, note that
the forced cost ~HP

1 can be calculated without know-
ing specific stochastic demand information and the
policy P we use. Hence, they are realized at the
beginning of the planning horizon and are fixed in
any policy P we refer to.

Figure 2 Marginal Costs under the Split-Merge-Balance Policy [Color figure can be viewed at wileyonlinelibrary.com]
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3.3. Worst-Case Analysis of the SMB Policy
Now we establish the worst-case guarantee of 2 for
the proposed SMB policy, which is one of the main
results in this study. Due to service level constraints,
the forced holding cost and additional holding cost
components need to be considered separately. To this
end, we use an algebraic method to prove our desired
results, which departs from the unit-matching techni-
ques used in Levi et al. (2007).
To begin with, we define the following random sets

of periods:

• T H ¼ ftjYSMB
t \YOPT

t g denotes the set of peri-
ods in which the optimal policy yields more
ending inventory in period t + L than the SMB
policy;

• T B ¼ ftjYSMB
t � YOPT

t g denotes the set of peri-
ods in which the optimal policy yields less or
equal ending inventory in period t + L com-
pared to the SMB policy; it is evident that T H

and T B are disjoint sets and
T H [ T B ¼ f1; 2; . . .; Tg.

Our result is based on the following lemmas and
the detailed proofs can be found in Appendix A. The
key idea is to calculate the total cost of the SMB policy
using periods in sets T H and T B. Then in each period,
we bound either the overage cost or the underage cost
by the corresponding cost for the optimal policy,
according to which set the current period belongs to.

LEMMA 1. E½CðSMBÞ� ¼ 2E

�P
t2T H

ĤSMB
t þ

P
t2T B

ð ~HSMB
tþ1 þ BSMB

t Þ
�
þ ~HSMB

1
.

First, we consider the case when t 2 T B. In this case,
the ending inventory position in period t for the opti-
mal policy is lower than that of the SMB policy, and
therefore it yields more backlogging cost in the cur-
rent period. Moreover, given the relatively lower end-
ing inventory position for the optimal policy, the
inventory position at the beginning of the next period
for the optimal policy must also be lower. Thus, the
optimal policy must yield a larger forced holding cost
in period t + 1. We summarize these observations in
the following lemma.

LEMMA 2. For any t 2 T B, we have the following:

1. BSMB
t � BOPT

t ;
2. ~HSMB

tþ1 � ~HOPT
tþ1 .

For any period t 2 T H, the ending inventory of the
SMB policy is lower than that of the optimal policy.
Consider consecutive periods ½t1; t2� � T H. At the
beginning of period t1, the inventory position of the
SMB policy is higher while at the end of period t2 the
inventory of the SMB policy is lower. This implies that

the SMB policy must make fewer additional produc-
tions than the optimal policy. As a result, the addi-
tional holding cost of the SMB policy is dominated by
the additional holding cost of the optimal policy. We
summarize this result in the following lemma:

LEMMA 3. For t 2 T H,
P

t2T H
ĤSMB

t �
P

t2T H
ĤOPT

t .

Combining Lemma 1 to Lemma 3 together, we have

E½CðSMBÞ� ¼2E

� X
t2T H

ĤSMB
t þ

X
t2T B

ð ~HSMB
tþ1 þ BSMB

t Þ
�

þ ~HSMB
1

� 2E

� X
t2T H

ĤOPT
t þ

X
t2T B

ð ~HOPT
tþ1 þ BOPT

t Þ
�

þ ~HOPT
1

� 2E

�XT
t¼1

ðĤOPT
t þ ~HOPT

tþ1 þ BOPT
t Þ þ ~HOPT

1

�

¼ 2E½CðOPTÞ�:

Hence, we have proved the following theorem, which
provides a worst-case performance guarantee on the
result of the SMB policy.

THEOREM 1. The SMB policy has a worst-case perfor-
mance guarantee of two, that is, for each instance of the
backlogging model under service level constraints, the
expected cost of the SMB policy is at most twice the
expected cost of an optimal solution, that is,
E½CðSMBÞ� � 2E½CðOPTÞ�.

4. Remanufacturing System with
Service Level Requirements

We consider a hybrid manufacturing/remanufactur-
ing inventory system that produces a single product
over a planning horizon of T periods, indexed by
t = 1, . . ., T. In each period t, the manufacturer
receives random customer demand Dt for serviceable
products and random product return Ut. A service-
able product can be either manufactured from raw
materials or remanufactured from a returned product
(also known as a core). At the end of each period, left-
over returned products and unsold serviecable prod-
ucts are carried to the next period, and unsatisfied
demand units are backlogged to the next period. Our
objective is to coordinate a sequence of manufacturing
and remanufacturing quantities over the planning
horizon so as to minimize the expected total cost.
We assume that demand is indifferent between

manufacturing and remanufacturing products. For
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example, functional parts from the returned products
can be used in producing new products (which helps
reduce the manufacturing cost). The difference
between a new and a remanufactured product is
whether some components are new or recovered from
cores (see Gong and Chao 2013, Tao and Zhou 2014,
Zhou et al. 2011, for more examples). Following
Simpson (1978), we assume that manufacturing and
remanufacturing operations have identical lead times
L. For non-identical lead times, one may derive simi-
lar heuristic algorithms, but the approximation results
will not hold even without service level constraints
(see section 5.1 in Tao and Zhou 2014 for a more
detailed discussion on non-identical lead times).
The major difference between the remanufacturing

model and the basic model lies in the dual modes of
production, that is, the manufacturer can either pro-
duce by remanufacturing a returned product or by
regular way using raw materials. This leads to the
nonlinear production cost, which makes the model
challenging. In the following, we will first formulate
our model using the DP approach and show the struc-
ture of optimal policies. Then we will generalize the
proposed SMB policy to solve the remanufacturing
model, which also guarantees us a worst-case perfor-
mance of two. Our technique is based on Tao and
Zhou (2014), in which they proposed a two approxi-
mation algorithm for the remanufacturing system
without service level requirement. However, our
results are different in the following ways. First, due
to the service level requirements presented in our
model, our algorithm (see section 4.2) departs from
the one proposed in Tao and Zhou (2014). Second, in
the worst-case analysis, amortizing production costs
of the modified SMB policy is different since we need
to handle two parts of split production cost, that is,
the forced production cost and the additional produc-
tion cost (see section 4.3 for more details).

4.1. System Dynamics and DP Formulation
Here, we adopt most of the notation described in sec-
tion 2. In remanufacturing model, we also consider a
T-period inventory control problem. The sequence of
events in each period t is as follows. First, the manu-
facturer reviews the starting inventory levels of ser-
viceable products and returned products. After
observing the information set ft (defined below), the
manufacturer decides the remanufacturing quantity
q1t and the manufacturing quantity q2t . Both produc-
tion methods have the same lead times L (see, e.g.,
Zhou et al. 2011). The total number of productions at
period t is computed by qt ¼ q1t þ q2t . We use c1t and
c2t to denote the remanufacturing cost and the manu-
facturing cost with c1t \ c2t , since it is usually cheaper
to remanufacture. Following discussion from Zhou
et al. (2011), we also assume that c2t � c1t is non-

increasing. This assumption holds in practice where
manufacturing costs can be reduced significantly over
time while remanufacturing costs are lower and hard
to be reduced. Then the random customer demand
Dt = dt and the random product return Ut = ut are
realized. Finally, all costs (including manufacturing,
remanufacturing, holding, and backlogging costs) for
this period are assessed. Note that we use h1t to denote
the unit holding cost for each returned product and h2t
to denote the unit holding cost for each serviceable
product. The unit backlogging cost is denoted by bt.
In the remanufacturing model, the information set

ft is realized at the beginning of period t, which con-
sists of the realized demands (d1, . . ., dt�1), the real-
ized returns (u1, . . ., ut�1) and some exogenous
information (q1, . . ., qt) such as the state of economy.
The conditional joint distribution of future demand
and returns (Dt, . . ., DT, Ut, . . ., UT) is determined by
the information set ft.
We note that the return process is assumed to be

exogenous, which is a predominant assumption in
this line of literature (see Gong and Chao 2013, Tao
and Zhou 2014, Zhou et al. 2011, among others).
However, one may argue that the returns should be
capped by past sales, which essentially become
endogenous. Unfortunately, the methods of this study
(and also in the literature) will not be able to handle
such a case. Nevertheless, the current model can be
thought of as a random capacity model with two sup-
pliers, in which the equivalence is described in
Appendix C.
Identical to the basic backlogging model, we con-

sider either a or b type of service level constraint in
the remanufacturing model. As already discussed in
section 2, both a and b service level constraints can be
simplified to a lower bound rt(ft) on the inventory
position after ordering at period t. The lower bound rt
can be readily computed using numerical methods
discussed in section 2.
Before formally formulating the problem, we can

first simplify the problem via cost transformation. Let
xt be the inventory position at the beginning of period
t and wt be the total number of returned products at
the beginning of period t. Then we have

xtþ1 ¼ xt þ qt � dt; 8t ¼ 1; . . .;T � 1; ð14Þ

wtþ1 ¼ wt � q1t þ ut; 8t ¼ 1; . . .;T � 1: ð15Þ

Let Π be the set of all feasible policies and any pol-
icy p 2 Π is a mapping from (xt, wt, rt, ft) to
ðq1t ; q2t Þ 2 Qðxt; wt; rtÞ, where Qðxt; wt; rtÞ ¼
fðq1t ; q2t Þj0 � q1t � wt; q2t � 0; q1t þ q2t � rt � xtg is
the feasible set of the production quantities for two
production methods. Since the evolution of Fn is
assumed independent of the policy p, the total
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expected cost for policy p is computed as

Cp¼E

�XT
t¼1

	
h2tþLðXp

t þ qpt �D½t;tþL�Þþþh1t ðWp
t �q1;pt þUtÞ

þbtþLðD½t;tþL��Xp
t �qpt Þ

þþc1t q
1;p
t þc2t q

2;p
t


����f1
�
:

Using Equation (15), we can rewrite
Wp

t ¼ w1 þ
Pt�1

i¼1 Ui �
Pt�1

i¼1 q
1;p
i . Thus, if we define

dht ¼
PT

i¼t h
1
t , then E½

PT
t¼1 h

1
t ðWp

t � q1;pt þ UtÞjf1� ¼
dh1w1 þ E½

PT
t¼1 d

h
t Utjf1� �

PT
t¼1 d

h
t q

1;p
t . Hence, we can

simplify the total expected cost as

Cp ¼ E

"XT
t¼1

�
h2tþLðXp

t þ qpt �D½t;tþL�Þþ þ btþLðD½t;tþL�

� Xp
t � qpt Þ

þ þ ðc1t � dht Þq
1;p
t þ c2t q

2;p
t

������f1
#
þ dh1w1

þ E

�XT
t¼1

dht Utjf1
�
¼
XT
t¼1

E

�
�htþLðxt þ qt �D½t;tþL�Þþ

þ �btþLðD½t;tþL� � xt � qtÞþ þ �ctq
2
t

����f1
�
þ C0;

where

�htþL ¼ h2tþL þ c1t � c1tþ1 � h1t ;

�btþL ¼ btþL � c1t þ c1tþ1 þ h1t ;

�ct ¼ c2t � c1t þ dht ;

C0 ¼ dh1w1 þ E
XT
t¼1

dht Utjf1

" #
þ E

XT
t¼1

ðc1t � dht ÞDtþLjf1

" #
:

Note that in the above equation, C0 is a uncontrol-
lable cost (independent of any feasible policies),
and �htþL, �btþL and �ct are the modified unit holding
cost, the unit backlogging cost and the unit manu-
facturing cost, respectively. Therefore, we can
transform the per-unit costs so that any remanufac-
turing system is equivalent to another remanufac-
turing system with zero holding cost on returned
products and zero remanufacturing cost, up to a
constant difference between their expected costs.
We assume �htþL � 0 and �btþL � 0 for all
t = 1, 2, . . ., T, to prevent speculation for holding
inventory or backorders. We also have �ct [ 0 and
non-increasing since c2t [ c1t and c2t � c1t is non-
increasing. Thus, in the subsequent discussion, we
will focus on the system with zero holding cost on
returned products and zero remanufacturing cost,
with positive inventory holding cost, positive
backlogging cost and positive, non-increasing
manufacturing cost.

To derive a DP formulation, we first describe the
state vector as follows. It consists of a time period t,
inventory position xt at the beginning of period t, total
number of returned products wt at the beginning of
period t, and information ft 2 F t. The system dynam-
ics are given by Equations (14) and (15) with initial
inventory position x1 and initial number of available
returned products w1. The value function vt(xt, wt, ft)
is the minimal expected cost from period t + L to per-
iod T + L. In each period t, given the state vector
(xt, wt, ft), we need to decide the remanufacturing
quantity q1t and the manufacturing quantity q2t . The
remanufacturing quantity q1t is bounded above by wt,
while the service level constraint enforces
yt ¼ xt þ q1t þ q2t bounded below by rt. Hence, feasi-
ble choices of the two types of quantities are in the set

Qðxt;wt; rtÞ ¼ fðq1t ; q2t Þj0� q1t �wt; q2t � 0; q1t þ q2t � rt
� xtg:

Using the transformed unit costs described above,
we can write the Bellman’s equations as

vTþ1ðxTþ1;wTþ1;fTþ1Þ¼0;

8xTþ12R;wTþ12Rþ[f0g; fTþ12FTþ1;

vtðxt;wt;ftÞ¼ min
q1t ;q

2
t2Qðxt;wt;rtÞ�

�Gtðyt;ftÞþ�ctq
2
t þE½vtþ1ðyt�Dt;wt�q1t þUt;F tþ1Þjft�

�
;

8t¼1; . . .;T;

ð16Þ

where �Gtðyt; ftÞ ¼ E½�htþLðyt � D½t;tþL�Þþ þ �btþLðD½t;tþL�
� ytÞþ�. Using the above DP formulation (16), the
structure of optimal policies is characterized in the
following proposition. A detailed proof is given in
Appendix B.

PROPOSITION 2. For the inventory control problem
defined in Equation (16), an optimal policy is a total
base-stock (including both manufacturing and
remanufacturing) policy. More specifically, there exists
fsðwt; ftÞgTt¼1 such that

y�t ðxt;wtÞ ¼
maxfrt; sðwt; ftÞg; if xt\sðwt; ftÞ;
maxfrt; xtg; if xt � sðwt; ftÞ:

�

and

q1t
�ðxt;wtÞ ¼ minfwt; y

�
t � xtg;

q2t
�ðxt;wtÞ ¼ y�t � xt � q1t

�ðxtÞ:

Proposition 2 asserts that any optimal policy has
the following structure: if the inventory position in
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period t is no less than the threshold s(wt, ft), an opti-
mal policy produces up to the required service level
rt; otherwise, it brings the total inventory position
(after production) to max{rt, s(wt, ft)}. Therefore, the
higher the service level, the more orders are placed by
the optimal policy. Moreover, the optimal policy will
remanufacture returned products as many as possible
before manufacturing new products.

4.2. Modified Split-Merge-Balance Policy
The key idea of modified SMB policy (MSMB for
short) is similar to the SMB policy proposed in section
3.2, which has three phases, namely, split, merge and
balance. However, in the remanufacturing system, we
have to consider production cost in addition to the
holding and backlogging costs. Recall that
�Xt ¼ maxfXt; rtg is the required service level,
gt ¼ yt � �Xt is the controllable producing quantity in
period t, and the marginal production cost in period t
is given by

EtðgtÞ ¼ �ctðgt þ �Xt � Xt �WtÞþ:

First, we use the same definitions of the forced hold-
ing cost ~Ht, the future holding cost Ĥt and the back-
logging cost Bt as defined in Equations (8)–(10).
Similar as splitting the holding cost in section 3.2,
we also split the marginal production cost into two
parts: the forced production cost (denoted by ~Et)
which accounts for the cost of producing up to the
required service level �Xt ¼ max fXt; rtg in period t
and the additional production cost (denoted by Êt)
determined by the amount of additional (control-
lable) produces gt. Specifically, if the number of
returned products in period t is denoted by Wt, the
forced production cost ~Et is computed by

~Et ¼ �ctð�Xt � Xt �WtÞþ; ð17Þ

and the additional production cost is

ÊtðgtÞ ¼ �ct
�
ðgt þ �Xt � Xt �WtÞþ

� ð�Xt � Xt �WtÞþ
�
:

ð18Þ

Next, we regroup the costs based on whether they
are overage cost or underage cost. Similar as in the
manufacturing model, we shift the forced holding
cost ~Ht to one period later, as defined in Equation
(11), which belongs to underage cost. For production
costs, it is evident that the additional production cost
ÊtðgtÞ is overage cost since it increases when gt
increases (i.e., more productions are made). For the
forced production cost ~Et, although it does not
depend on the decision gt in the current period, it
occurs due to the lack of production in the previous
period. Hence, by shifting the cost to one period later,

we conclude that

~Etþ1ðgtÞ ¼ �ctþ1ð�Xtþ1 � Xtþ1 �Wtþ1Þþ ð19Þ

is non-increasing in gt and it belongs to underage
cost. Similar as the delayed holding cost, the delayed
production cost requires to compute rt+1 based on ft
rather than ft+1. Hence, the term �Xtþ1 in Equation
(19) should be treated as a random variable depend-
ing on the realization of Dt.
To summarize, if we use Φt and Ψt to denote the

total overage cost and the total underage cost in per-
iod t, we have UtðgtÞ ¼ ĤtðgtÞ þ ÊtðgtÞ and
WtðgtÞ ¼ ~Htþ1ðgtÞ þ ~Etþ1ðgtÞ þ BtðgtÞ. Figure 3 illus-
trates the split phase and the merge phase of the
MSMB policy.
Finally, we balance the overage cost against the

underage cost, that is, gMSMB
t solves

E½UtðgtÞjft� ¼ E½WtðgtÞjft�: ð20Þ

Thus, the MSMB policy produces qMSMB
t ¼ gMSMB

t

þ �xt � xt in period t. Moreover, it fully utilizes the
returned products to remanufacture, that is, q1;MSMB

t

¼ minfwt; qMSMB
t g and q2;MSMB

t ¼ ðqMSMB
t � wtÞþ.

4.3. Worst-Case Analysis of the MSMB Policy
Now we establish the worst-case guarantee of two for
the proposed MSMB policy. The main difficulty in
our analysis is to amortize the production costs of the
MSMB policy against that of the optimal policy. Our
proof techniques are based on Tao and Zhou (2014),
in which the authors constructed a set of periods such
that the total production costs of the balancing policy
are dominated by that of the optimal policy. They fur-
ther showed the same inequality holds for the set of
periods in which the optimal policy yields less or
equal inventory compared to the balancing policy
(see lemma 4 of Tao and Zhou 2014). However, our
proof is different since we need to bind both the
forced production cost and the additional production
cost at the same time. As a result, the same inequality
does not hold any more; instead, we delay the forced
production cost to one period later and bound the
total additional production costs in periods T U plus
the total delayed production costs in periods T W,
which is crucial in our analysis (see Lemma 6).
In the following discussion, we will only focus on a

particular type of policy, namely the rational policies.
These policies will not manufacture at a higher per-
unit cost unless there are no returned products to
remanufacture. As we have already shown in Propo-
sition 2, any optimal policy (indicated by OPT) is a
rational policy and the MSMB policy described above
is also rational. We will use superscripts to specify
which policy we refer to.
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We define new variables and introduce new notation.
For any given policy P, let WP

t be the total number of
returned products in period t, and SPt be the remaining
number of returned products after producing up to the
service level �XP

t in period t. We also split the additional
production quantity gt into two parts, denoted by g1;Pt

and g2;Pt , representing the additional remanufacturing
quantity and additional manufaturing quantity of a
given policy P. Because we only consider rational poli-
cies, we must have g1;Pt � SPt and g2;Pt ¼ ðgPt � SPt Þ

þ.
Moreover, the system dynamics follow

WP
t ¼ SPt�1 � g1;Pt�1 þUt�1;

SPt ¼ ðWP
t � ð�XP

t � XP
t ÞÞ

þ;

XP
t ¼ �XP

t�1 þ g1;Pt�1 þ g2;Pt�1 � dt�1:

8<
: ð21Þ

We rewrite the additional production cost as
ÊP
t ¼ �ctg

2;P
t , and define three random sets of periods

as follows.

• T U ¼ ftjYMSMB
t \YOPT

t g denotes the set of
periods t in which the optimal policy yields
more ending inventory in periods t + L than
the MSMB policy;

• T W ¼ ftjYMSMB
t � YOPT

t g denotes the set of
periods t in which the optimal policy yields
less or equal ending inventory in period t + L
compared to the MSMB policy; it is evident
that T U and T W are disjoint sets and T U [ T W

¼ f1; 2; . . .; Tg.
• T c ¼ ftj�XMSMB

t þ SMSMB
t þ g2;MSMB

t � �XOPT
t þ

SOPT
t þ g2;OPT

t g. Following the system dynam-
ics in Equation (21), we can equivalently pre-
sent the set as T c ¼ ftjWMSMB

tþ1 þ XMSMB
tþ1

� WOPT
tþ1 þ XOPT

tþ1 g. The quantity WP
t þ XP

t

stands for the maximum producing-up-to level
without having any production cost in period t
(which we refer to as the free-production level).
The set T c can be interpreted as the periods in
which the free-production level in the next
period for the MSMB policy is lower than that
of the optimal policy.

Our main results are based on the following lemmas.

LEMMA 4. E½CðMSMBÞ� ¼ 2E

�P
t2T U

UMSMB
t þP

t2T W
WMSMB

t

�
þ ~HMSMB

1 þ ~EMSMB
1

.

We note that both the forced holding cost ~HMSMB
1

and forced production cost ~EMSMB
1 can be computed

without knowing specific stochastic demand informa-
tion and the policy we use. Hence, they are realized at
the beginning of the planning horizon and are fixed in
any policy Pwe refer to.
The following lemma restates the results proved in

Lemmas 2 and 3, under the modified SMB policy. The
proof is identical to the proofs of Lemmas 2 and 3,
and thus omitted here.

LEMMA 5.

1. For any t 2 T W, we have BMSMB
t � BOPT

t and
~HMSMB
tþ1 � ~HOPT

tþ1 .
2. For t 2 T U, we have

P
t2T U

ĤMSMB
t �

P
t2T U

ĤOPT
t .

The next lemma is crucial in our analysis, which
deals with production costs. The difficulty of the analy-
sis lies in the fact that the production cost does not only
depend on the ending inventory level but also depends

Figure 3 Marginal Costs under the Split-Merge-Balance Policy [Color figure can be viewed at wileyonlinelibrary.com]
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on the number of returned products Wt. For this rea-
son, we first compare the production cost of the MSMB
policy and that of the optimal policy for sets T c and T c

c.
When t 2 T c, the free-production level for the MSMB
policy is higher than that of the optimal policy in the
next period t + 1. Therefore, the forced production cost
~Etþ1 for the MSMB policy must be lower. For set T c

c,
consider any consecutive time interval [t1, t2] that
belongs to T c

c. Compared with the optimal policy, the
free-production level for the MSMB policy is higher at
the beginning of period t1, while it becomes lower at
the end of period t2. This can happen only when the
MSMB policy uses more free productions. As a result,
the total production cost for the MSMB policy during
this time interval must be less than that of the optimal
policy. Finally, we extend the results to sets T U and T W

using the fact that g2;MSMB
t ¼ 0 for all t 2 T U \ T c

and g2;OPT
t ¼ 0 for all t 2 T W \ T c

c.
Connection and comparison with Tao and Zhou

(2014). Our construction of the set T c is based on the
technique used in Tao and Zhou (2014), but the analy-
sis is different in the following aspects. First, they
showed that the total production cost of the balancing
policy in periods T c is no more than that of the opti-
mal policy, that is,

X
t2T c

c

ðÊMSMB
t þ ~EMSMB

t Þ�
X
t2T c

c

ðÊOPT
t þ ~EOPT

t Þ:

However, the above inequality does not hold in our
model since the forced production cost ~EMSMB

t is pre-
determined by the previous decisions. This motivates
us to consider a delayed production cost which shifts
the forced production cost to one period later. The
reason behind this is that the delayed production cost
is determined as soon as the productions are made in
the current period and it can be treated as a penalty
for not producing enough in the current period. We
show that the total additional production cost plus
the total delayed production cost of our MSMB policy
in periods T c are no more than those of the optimal
policy. (See the second inequality in Lemma 6).
Secondly, after comparing the total production

costs in periods T c, Tao and Zhou (2014) proved the
same inequality holds in periods T U (see lemma 4 in
Tao and Zhou 2014), that is,

X
t2T U

ðÊMSMB
t þ ~EMSMB

tþ1 Þ�
X
t2T U

ðÊOPT
t þ ~EOPT

tþ1 Þ:

Again, this inequality does not hold in our case;
instead, we show that the total additional cost in
periods T U plus the total delayed production cost in
periods T W are dominated by those of the optimal
policy (see the third inequality in Lemma 6). The

idea is to bound the overage cost in periods T U and
the underage cost in periods T W. We summarize
our results in the following lemma.

LEMMA 6. For the production costs, we have

1. For t 2 T c, ~EMSMB
tþ1 � ~EOPT

tþ1 ; For t 2 T c
c,

~EMSMB
tþ1 � ~EOPT

tþ1 ;

2.
P

t2T c
c
ðÊMSMB

t þ ~EMSMB
tþ1 Þ �

P
t2T c

c
ðÊOPT

t þ ~EOPT
tþ1 Þ;

3.
P

t2T U
ÊMSMB
t þ

P
t2T W

~EMSMB
tþ1 �

P
t2T U

ÊOPT
t þP

t2T W
~EOPT
tþ1 .

Combining Lemmas 4, 5, and 6, we have

E½CðMSMBÞ� ¼ 2E

�X
t2T U

UMSMB
t þ

X
t2T W

WMSMB
t

�

þ ~HMSMB
1 þ ~EMSMB

1

¼ 2E
X
t2T U

ĤMSMB
t þ

X
t2T W

ð ~HMSMB
tþ1 þ BMSMB

t Þ
"

þð
X
t2T U

ÊMSMB
t þ

X
t2T W

~EMSMB
tþ1 Þ

#
þ ~HMSMB

1

þ ~EMSMB
1

� 2E
X
t2T U

ĤOPT
t þ

X
t2T W

ð ~HOPT
tþ1 þ BOPT

t Þ
"

þð
X
t2T U

ÊOPT
t þ

X
t2T W

~EOPT
tþ1 Þ

#
þ ~HOPT

1 þ ~EOPT
1

� 2E

�XT
t¼1

ðUOPT
t þWOPT

t Þ þ ~HOPT
1 þ ~EOPT

1

�

¼ 2E½CðOPTÞ�:

Hence, we have proved the following theorem, which
provides a worst-case performance guarantee on the
result of the MSMB policy.

THEOREM 2. The MSMB policy has a worst-case perfor-
mance guarantee of two, that is, for each instance of the back-
logging model under service level constraints, the expected
cost of the MSMB policy is at most twice the expected cost of
an optimal solution, that is, E½CðMSMBÞ� � 2E½CðOPTÞ�.

5. Multi-Item Inventory Systems with
Service Level Constraints

5.1. Model Setup and Bellman’s Equations
We extend our model in section 2 by considering a
multi-item inventory system where service level con-
straints are applied on the aggregate level. In our mul-
ti-item model, we consider a finite planning horizon of
T periods with N items, indexed by i = 1, . . ., N.
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Similar as single-item model we described in section 2,
an information set ft is observed at the beginning of
each period t and contains all available information
that can be used to predict future demands of all N
items, such as all past realized demand di,s
(1 ≤ i ≤ N,1 ≤ s < t) for item i at period s. Let xi,t be the
inventory position at the beginning of period t for item
i, qi,t be the production quantity for item i in period t,
and yi,t = xi,t + qi,t be the inventory position in period t
after production. Let hi,t and bi,t be the holding and
backlogging cost for item i at period t, then given lead
time L, we can write the total holding and backlogging
cost for item i at period t + L as

Gi;tðyi;t; ftÞ,hi;tþLE½ðyi;t �Di;½t;tþL�Þþjft�
þ bi;tþLE½ðDi;½t;tþL� � yi;tÞþjft�:

To define an appropriate service level constraint, we
follow a similar modeling approach in Chen et al.
(2017) and consider an aggregate service level con-
straint over all items.
For the a service level constraints, we have

P

	XN
i¼1

yi;t �
XN
i¼1

Di;½t;tþL� � 0

����ft


� ht; 8t ¼ 1; ;T:

ð22Þ

For the b service level constraints, we have

E

� ðPN
i¼1

ðyi;t �Di;½t;tþLÞÞþ

DtþL

����ft
�
� st; 8t ¼ 1; . . .;T: ð23Þ

Using the same argument as in section 2, we can
reduce either service level constraint (22) and (23) to a
lower bound on the aggregate level of inventory posi-
tion, that is,

PN
i¼1 yi;t � rðftÞ. Therefore, we can think

the service level constraints as a lower bound on the
aggregate total inventory position of N items.
Let vt(xt, ft) be the minimal expected cost from per-

iod t + L to period T + L given the inventory position
xt ¼ fxi;tgNi¼1 for each item i = 1, 2, . . ., N and the
information set ft 2 F t at the beginning of period t.
We can use the following Bellman’s equations to com-
pute the optimal inventory policy:

vTþ1ðxTþ1; fTþ1Þ ¼ 0; 8xTþ1 2 R; fTþ1 2 FTþ1;

vtðxt; ftÞ ¼ min

yt � xt;
PN
i¼1

yi;t � rðftÞ

XN
i¼1

	
Gi;tðyi;t; ftÞ þ ci;tqi;t


(

þE½vtþ1ðyt �Dt;F tþ1Þjft�
�
;

t ¼ 1; . . .;T;

ð24Þ

where ci,t denotes the manufacturing cost for item i
in period t and Dt = (D1,t, . . ., DN,t) denotes the ran-
dom demand for each item at period t according to
the information ft observed.

5.2. A Heuristic Algorithm
As already seen in section 3, computing an exact opti-
mal policy through a brute-force DP model (24) is
generally intractable due to the curse of dimensional-
ity. We describe a heuristic algorithm that can be used
to solve (24) more efficiently. Without loss of general-
ity, we assume that the unit production cost for each
item in each period is zero following a standard cost
transformation in the literature (see, e.g., Zipkin
2000). This allows us to only consider holding costs
and backlogging costs. Similar to the SMB algorithms
presented in sections 3 and 4, we consider marginal
costs of each item. The total marginal costs at period t
can be decomposed into the following parts:

• Marginal holding cost at period t:

MHtðqtÞ ¼
XN
i¼1

XTþL

j¼tþL

hi;j Xi;t þ qi;t �Di;½t;j�
� �þ�

�ðXi;t �Di;½t;j�Þþ
�
;

ð25Þ

where Xi,t denotes a random inventory position
which is realized at the beginning of period t.

• Marginal backlogging costs at period t:

MBtðqtÞ ¼
XN
i¼1

bi;tþLðDi;½t;tþL� � ðqi;t þ Xi;tÞÞþ: ð26Þ

The heuristic algorithm sequentially solves the fol-
lowing optimization problem for period
t = 1, 2, . . ., T, given xt is the vector of initial inven-
tory position at beginning of period t for each item:

qtðxtÞ ¼ argmin

qt � 0;
PN
i¼1

ðxi;tþqi;tÞ� rðftÞ

E½MHtðqtÞ þMBtðqtÞjft�:

ð27Þ

Since both marginal functions are convex in qt,
Equation (26) is equivalent to minimizing an N-
dimensional convex function, which is easy to
implement using, e.g., the golden-section search
method. We present our numerical experiments and
results in section 6.

6. Numerical Experiments

Since the remanufacturing model generalizes the clas-
sical backlogging model, we only focus on testing the
MSMB policy and compare with the optimal policies
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derived through DP (for small problem sizes). Our
numerical results show that the MSMB policy per-
forms near-optimal for a set of instances with diverse
demand and parameter settings. Moreover, the per-
formance of the MSMB policy improves as we
increase the levels of the QoS guarantee.
Demand Process. We consider the following three

demand settings:

1. Independent and identically distributed
(i.i.d.) demands. We test three specific demand
distributions, namely, Exponential, Erlang-2,
and Poisson all with mean equal to 10.

2. Markov-modulated demand process (MMDP).
MMDP considers an underlying Markov Chain
and assumes that the demand distribution
depends on the state of the Markov Chain. The
state at period t, denoted by st 2 f1; 2; 3g and
is interpreted as the state of the economy
(poor, fair or good). Given state st at period t,
the demand is a random variable with cumula-
tive distribution function Ft(�) and mean value
lt. The better the state of economy, the larger
the mean of the demand, that is, l1 < l2 < l3.
The transition probability matrix is defined by

P = (pij)393, where pij denotes the transition
probability from state si to state sj. In our test
data, the state of the economy follows a Mar-
kov chain with initial probabilities
p1 = p2 = p3 = 1/3 and transition probabilities

P ¼
0:6 0:3 0:1
0:2 0:6 0:2
0:1 0:3 0:6

2
4

3
5:

For each state st 2 f1; 2; 3g, we also set the demand
mean value as 5st in period t.

We test three specific demand distributions,
namely, Poisson, Uniform, and Normal. The para-
meter of the Poisson distribution is solely governed
by the mean value (set as 5, 10, and 15). For the Uni-
formly distributed demand, we consider intervals
[0, 10], [5, 15] and [10, 20] for the three states, respec-
tively. For the Normal distribution, we set the stan-
dard deviation r = 2 for all three states.

3. Autoregressive Demands. For the autoregres-
sive demand, we assume that there is a priori
estimation lt of the demand at the period t.
Besides, the realized demand also depends on

Table 1 Suboptimality Gap E for i.i.d. Demands with Different Parameters (independent return)

(c1, c2, p)

Exponential Erlang-2 Poisson

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 1.17% 0.95% 1.40% 1.07% 0.52% 0.24% 0.49% 0.81% 0.08% 0.21% 0.36% 0.57%
(30, 30, 70) 0.97% 0.81% 1.11% 1.09% 1.13% 0.48% 0.42% 0.94% 0.04% 0.09% 0.24% 0.49%
(30, 30, 90) 1.39% 0.65% 0.77% 1.43% 1.44% 0.69% 0.21% 0.56% 0.11% 0.07% 0.25% 0.43%
(30, 40, 50) 0.64% 1.11% 0.75% 0.65% 0.80% 0.46% 0.57% 0.82% 0.06% 0.15% 0.40% 0.58%
(30, 40, 70) 0.91% 0.70% 1.24% 1.61% 0.97% 0.56% 0.31% 0.53% 0.08% 0.11% 0.33% 0.51%
(30, 40, 90) 0.76% 0.84% 1.35% 1.40% 1.41% 0.72% 0.38% 0.41% 0.10% 0.07% 0.24% 0.41%
(30, 50, 50) 1.28% 0.99% 0.94% 1.01% 0.73% 0.19% 0.46% 0.95% 0.04% 0.11% 0.37% 0.55%
(30, 50, 70) 1.25% 1.00% 1.17% 1.13% 1.29% 0.48% 0.61% 0.63% 0.08% 0.09% 0.34% 0.52%
(30, 50, 90) 1.43% 1.23% 0.92% 1.14% 1.67% 0.53% 0.50% 0.65% 0.18% 0.12% 0.19% 0.40%
Max 1.43% 1.23% 1.4% 1.61% 1.67% 0.72% 0.61% 0.95% 0.18% 0.21% 0.40% 0.58%
Mean 1.09% 0.92% 1.07% 1.17% 1.11% 0.48% 0.44% 0.70% 0.09% 0.11% 0.30% 0.50%

Table 2 Suboptimality Gap E for MMDP Demands with Different Parameters (independent return)

(c1, c2, p)

Poisson Uniform Normal

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 0.42% 0.16% 0.66% 0.85% 0.39% 0.35% 0.71% 0.90% 0.20% 0.37% 0.65% 0.74%
(30, 30, 70) 0.77% 0.29% 0.37% 0.74% 0.55% 0.34% 0.61% 0.83% 0.27% 0.25% 0.55% 0.76%
(30, 30, 90) 0.95% 0.39% 0.49% 0.55% 0.72% 0.37% 0.54% 0.82% 0.40% 0.28% 0.49% 0.76%
(30, 40, 50) 0.39% 0.30% 0.64% 0.79% 0.40% 0.42% 0.72% 0.88% 0.21% 0.29% 0.61% 0.79%
(30, 40, 70) 0.65% 0.31% 0.51% 0.61% 0.56% 0.41% 0.67% 0.87% 0.28% 0.26% 0.56% 0.73%
(30, 40, 90) 0.79% 0.30% 0.40% 0.58% 0.65% 0.38% 0.54% 0.84% 0.41% 0.24% 0.43% 0.73%
(30, 50, 50) 0.46% 0.25% 0.50% 0.95% 0.40% 0.42% 0.75% 0.87% 0.21% 0.30% 0.62% 0.82%
(30, 50, 70) 0.63% 0.27% 0.43% 0.65% 0.56% 0.35% 0.62% 0.84% 0.28% 0.27% 0.61% 0.75%
(30, 50, 90) 0.98% 0.39% 0.43% 0.59% 0.64% 0.34% 0.55% 0.77% 0.36% 0.27% 0.49% 0.68%
Max 0.98% 0.39% 0.66% 0.95% 0.72% 0.42% 0.75% 0.90% 0.41% 0.37% 0.65% 0.82%
Mean 0.67% 0.30% 0.49% 0.70% 0.54% 0.38% 0.63% 0.85% 0.29% 0.28% 0.55% 0.75%
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the actual sales (or actual deviations from the
priori) of previous seasons. Hence, the generic
autoregressive demand model with parameter
c has the following form:

Dt � lt ¼
Xt�1

s¼t�c

wt�sðDs � lsÞ þ �;

where wt stands for the extent of correlation for the
demand deviations and e is the noise term which is

assumed to be a Gaussian white noise (i.e., standard
normal distribution). The coefficients fwtg

c
t¼1 are

usually determined by the auto-covariances follow-
ing the Yule-Walker Equations (cf. Hamilton 1994).
Our numerical tests cover the following three cases:

• c = 1, with coefficients w1 = 1;

• c = 2, with coefficients (w1, w2) = (3/4, 1/
4);

• c = 3, with coefficients (w1, w2, w3) = (1/
2, 1/3, 1/6);

Table 3 Suboptimality Gap E for Autoregressive Demands with Different Parameters (independent return)

(c1, c2, p)

AR(1) AR(2) AR(3)

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 0.26% 0.30% 0.52% 0.71% 0.22% 0.35% 0.54% 0.71% 0.20% 0.36% 0.58% 0.67%
(30, 30, 70) 0.39% 0.33% 0.44% 0.62% 0.33% 0.31% 0.49% 0.64% 0.24% 0.31% 0.50% 0.64%
(30, 30, 90) 0.59% 0.38% 0.46% 0.59% 0.51% 0.33% 0.54% 0.62% 0.31% 0.34% 0.43% 0.63%
(30, 40, 50) 0.27% 0.34% 0.55% 0.73% 0.24% 0.31% 0.57% 0.68% 0.18% 0.30% 0.57% 0.68%
(30, 40, 70) 0.46% 0.30% 0.42% 0.63% 0.30% 0.33% 0.52% 0.66% 0.26% 0.32% 0.46% 0.66%
(30, 40, 90) 0.64% 0.38% 0.43% 0.67% 0.41% 0.33% 0.47% 0.58% 0.34% 0.31% 0.44% 0.66%
(30, 50, 50) 0.29% 0.30% 0.58% 0.73% 0.24% 0.32% 0.49% 0.68% 0.20% 0.32% 0.60% 0.70%
(30, 50, 70) 0.45% 0.32% 0.49% 0.71% 0.31% 0.33% 0.50% 0.68% 0.24% 0.32% 0.50% 0.63%
(30, 50, 90) 0.63% 0.35% 0.43% 0.60% 0.42% 0.33% 0.46% 0.63% 0.30% 0.33% 0.46% 0.63%
Max 0.64% 0.38% 0.58% 0.73% 0.51% 0.35% 0.57% 0.71% 0.34% 0.36% 0.60% 0.70%
Mean 0.44% 0.33% 0.48% 0.66% 0.33% 0.33% 0.51% 0.65% 0.25% 0.32% 0.50% 0.66%

Table 4 Suboptimality Gap E for i.i.d. Demands with Different Parameters (dependent return)

(c1, c2, p)

Exponential Erlang-2 Poisson

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 0.48% 0.99% 1.54% 1.75% 0.51% 0.97% 1.57% 1.74% 0.41% 0.94% 1.42% 1.59%
(30, 30, 70) 0.46% 0.69% 1.33% 1.66% 0.50% 0.68% 1.37% 1.64% 0.31% 0.64% 1.21% 1.53%
(30, 30, 90) 0.58% 0.54% 1.14% 1.57% 0.61% 0.55% 1.11% 1.55% 0.34% 0.50% 1.05% 1.47%
(30, 40, 50) 0.47% 0.77% 1.29% 1.47% 0.47% 0.98% 1.57% 1.72% 0.35% 0.72% 1.15% 1.34%
(30, 40, 70) 0.46% 0.61% 1.14% 1.43% 0.49% 0.68% 1.36% 1.64% 0.32% 0.56% 1.01% 1.32%
(30, 40, 90) 0.57% 0.51% 1.00% 1.32% 0.59% 0.53% 1.19% 1.58% 0.34% 0.45% 0.89% 1.23%
(30, 50, 50) 0.45% 0.67% 1.10% 1.31% 0.49% 0.97% 1.55% 1.78% 0.32% 0.63% 1.02% 1.17%
(30, 50, 70) 0.49% 0.56% 1.02% 1.26% 0.48% 0.70% 1.36% 1.64% 0.32% 0.52% 0.91% 1.14%
(30, 50, 90) 0.58% 0.48% 0.88% 1.21% 0.64% 0.55% 1.14% 1.58% 0.34% 0.43% 0.80% 1.07%
Max 0.58% 0.99% 1.54% 1.75% 0.64% 0.98% 1.57% 1.78% 0.41% 0.94% 1.42% 1.59%
Mean 0.50% 0.65% 1.16% 1.44% 0.53% 0.73% 1.36% 1.65% 0.34% 0.60% 1.05% 1.32%

Table 5 Suboptimality Gap E for MMDP Demands with Different Parameters (dependent return)

(c1, c2, p)

Poisson Uniform Normal

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 0.55% 0.60% 0.90% 1.06% 0.50% 0.98% 1.54% 1.73% 0.35% 0.70% 1.32% 1.49%
(30, 30, 70) 0.99% 0.51% 0.83% 1.06% 0.50% 0.69% 1.37% 1.66% 0.22% 0.48% 1.14% 1.41%
(30, 30, 90) 0.58% 0.53% 0.55% 0.90% 0.58% 0.54% 1.12% 1.55% 0.18% 0.33% 1.01% 1.32%
(30, 40, 50) 0.64% 0.56% 0.83% 1.04% 0.44% 0.78% 1.27% 1.48% 0.27% 0.57% 1.10% 1.23%
(30, 40, 70) 0.99% 0.52% 0.64% 0.92% 0.48% 0.58% 1.13% 1.41% 0.19% 0.37% 0.94% 1.18%
(30, 40, 90) 0.41% 0.64% 0.56% 0.92% 0.61% 0.49% 0.98% 1.34% 0.19% 0.29% 0.81% 1.08%
(30, 50, 50) 0.73% 0.53% 0.69% 0.90% 0.45% 0.66% 1.10% 1.31% 0.24% 0.44% 0.93% 1.09%
(30, 50, 70) 0.57% 0.51% 0.59% 0.87% 0.50% 0.53% 1.01% 1.27% 0.19% 0.33% 0.82% 1.01%
(30, 50, 90) 0.41% 0.63% 0.55% 0.81% 0.55% 0.46% 0.89% 1.22% 0.19% 0.27% 0.71% 0.95%
Max 0.99% 0.64% 0.90% 1.06% 0.61% 0.98% 1.54% 1.73% 0.35% 0.70% 1.32% 1.49%
Mean 0.65% 0.56% 0.68% 0.94% 0.51% 0.64% 1.16% 1.44% 0.23% 0.42% 0.97% 1.20%
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Return Process. We consider two types of return
process (a) independent product return with Ut fol-
lowing a Normal distribution with mean l = 20 and
standard deviation r = 5; (b) dependent product
return on the previous sales with Ut = 0.3Dt�1 + mt,
where {mt} are i.i.d. Poisson random variables with
rate 1. We also cap the number of returned products
by the number of items sold in the past in the second

case (i.e., Ut �
Pt�1

i¼1ðminðdi; qiÞ � uiÞ; 8t ¼ 1; 2; . . .;
T).
Paramater Settings. We consider a planning hori-

zon T = 20 periods and production lead time L = 2.
We assume that the cost parameters are stationary
with a discounted factor a = 0.99 and a unit holding
cost being normalized to 1. We test different combina-
tions of cost parameters under the three types of

Table 6 Suboptimality Gap E for Autoregressive Demands with Different Parameters (dependent return)

(c1, c2, p)

AR(1) AR(2) AR(3)

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 0.52% 0.89% 1.42% 1.59% 0.51% 0.98% 1.43% 1.59% 0.62% 1.04% 1.46% 1.59%
(30, 30, 70) 0.51% 0.69% 1.26% 1.49% 0.48% 0.75% 1.28% 1.48% 0.50% 0.85% 1.33% 1.52%
(30, 30, 90) 0.69% 0.59% 1.10% 1.42% 0.49% 0.66% 1.12% 1.42% 0.46% 0.71% 1.19% 1.46%
(30, 40, 50) 0.44% 0.70% 1.14% 1.32% 0.42% 0.74% 1.16% 1.32% 0.46% 0.79% 1.19% 1.31%
(30, 40, 70) 0.46% 0.56% 1.02% 1.25% 0.39% 0.61% 1.05% 1.23% 0.42% 0.67% 1.10% 1.26%
(30, 40, 90) 0.55% 0.51% 0.86% 1.18% 0.44% 0.55% 0.93% 1.19% 0.41% 0.59% 0.96% 1.22%
(30, 50, 50) 0.39% 0.57% 0.99% 1.17% 0.38% 0.62% 1.00% 1.14% 0.42% 0.65% 1.01% 1.13%
(30, 50, 70) 0.43% 0.50% 0.88% 1.12% 0.37% 0.52% 0.91% 1.10% 0.38% 0.59% 0.94% 1.10%
(30, 50, 90) 0.51% 0.46% 0.78% 1.02% 0.43% 0.51% 0.81% 1.06% 0.39% 0.53% 0.85% 1.04%
Max 0.69% 0.89% 1.42% 1.59% 0.51% 0.98% 1.43% 1.59% 0.62% 1.04% 1.46% 1.59%
Mean 0.50% 0.61% 1.05% 1.29% 0.44% 0.66% 1.08% 1.28% 0.45% 0.71% 1.11% 1.29%

Table 7 Suboptimality Gap E for i.i.d Demands with Different Parameters (multi-item)

(c1, c2, p)

Exponential Erlang-2 Poisson

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 1.14% 0.98% 1.42% 1.17% 0.57% 0.34% 0.44% 0.71% 0.1% 0.26% 0.46% 0.47%
(30, 30, 70) 0.88% 0.89% 1.04% 1.05% 1.12% 0.52% 0.46% 0.97% 0.08% 0.19% 0.32% 0.38%
(30, 30, 90) 1.29% 0.68% 0.79% 1.35% 1.41% 0.65% 0.23% 0.55% 0.13% 0.06% 0.21% 0.41%
(30, 40, 50) 0.56% 1.04% 0.79% 0.69% 0.76% 0.43% 0.48% 0.79% 0.09% 0.12% 0.38% 0.49%
(30, 40, 70) 0.95% 0.68% 1.19% 1.57% 0.99% 0.59% 0.33% 0.49% 0.09% 0.11% 0.32% 0.56%
(30, 40, 90) 0.76% 0.81% 1.32% 1.51% 1.51% 0.79% 0.36% 0.44% 0.14% 0.09% 0.27% 0.42%
(30, 50, 50) 1.25% 0.95% 0.94% 1.04% 0.78% 0.22% 0.43% 0.98% 0.08% 0.17% 0.38% 0.45%
(30, 50, 70) 1.18% 0.98% 1.13% 1.11% 1.28% 0.56% 0.64% 0.67% 0.12% 0.16% 0.33% 0.46%
(30, 50, 90) 1.40% 1.27% 0.96% 1.18% 1.70% 0.73% 0.49% 0.62% 0.13% 0.07% 0.23% 0.36%
Max 1.40% 1.27% 1.42% 1.57% 1.70% 0.79% 0.64% 0.98% 0.14% 0.26 % 0.46% 0.56%
Mean 1.05% 0.92% 1.06% 1.19% 1.12% 0.54% 0.43% 0.69% 0.11% 0.14% 0.32% 0.44%

Table 8 Suboptimality Gap E for MMDP Demands with Different Parameters (multi-item)

(c1, c2, p)

Poisson Uniform Normal

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 0.47% 0.13% 0.67% 0.89% 0.49% 0.38% 0.77% 0.98% 0.29% 0.34% 0.59% 0.71%
(30, 30, 70) 0.77% 0.38% 0.39% 0.77% 0.59% 0.32% 0.54% 0.81% 0.31% 0.29% 0.57% 0.69%
(30, 30, 90) 0.91% 0.46% 0.49% 0.58% 0.77% 0.45% 0.54% 0.81% 0.46% 0.32% 0.53% 0.72%
(30, 40, 50) 0.39% 0.30% 0.63% 0.77% 0.44% 0.38% 0.69% 0.85% 0.25% 0.24% 0.56% 0.73%
(30, 40, 70) 0.78% 0.36% 0.55% 0.64% 0.46% 0.48% 0.78% 0.84% 0.21% 0.25% 0.57% 0.67%
(30, 40, 90) 0.78% 0.24% 0.48% 0.55% 0.60% 0.37% 0.52% 0.84% 0.43% 0.29% 0.36% 0.70%
(30, 50, 50) 0.47% 0.22% 0.52% 0.99% 0.42% 0.46% 0.74% 0.83% 0.28% 0.42% 0.56% 0.77%
(30, 50, 70) 0.65% 0.29% 0.38% 0.56% 0.65% 0.42% 0.55% 0.75% 0.34% 0.41% 0.56% 0.73%
(30, 50, 90) 0.91% 0.42% 0.48% 0.72% 0.66% 0.31% 0.58% 0.73% 0.39% 0.25% 0.46% 0.74%
Max 0.91% 0.46% 0.67% 0.99% 0.77% 0.48% 0.78% 0.98% 0.46% 0.42% 0.59% 0.77%
Mean 0.68% 0.31% 0.51% 0.72% 0.56% 0.40% 0.63% 0.83% 0.33% 0.31% 0.53% 0.72%
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demand patterns. Specifically, we assume the unit
remanufacturing cost c1 = 30, the unit manufacturing
cost c2 = 30, 40, 50, and the unit backlogging cost
p = 50, 70, 90. For multi-item model, we assume the
costs are the same among all three products.
Performance Measure. To evaluate the perfor-

mance of a policy P, we compare it with the results of
the optimal policy. We use CðPÞ and CðOPTÞ to denote
the costs given by the two policies, respectively. We
define the suboptimality gap of the policy P as the per-
centage of increase in the total cost of this policy com-
pared to the optimal cost over the planning horizon,
that is,

E ¼ CðPÞ � CðOPTÞ
CðOPTÞ 	 100%:

Clearly, the suboptimality gap E is always a positive
number. Moreover, a smaller suboptimality gap
means a better approximation algorithm. We report
the values of E for every testing combination to
empirically show that the proposed SMB policy pro-
vides close-to-optimal solutions in much more com-
petitive CPU time. All of the numerical experiments
are conducted on an Intel(R) Xeon(R) 2.93 GHz PC
and we use Matlab R2013a as the solver.

6.1. Numerical Results for the Single-Item Models
Tables 1–6 present all the numerical results: Tables
1–3 cover the independent product return case and
Tables 4–6 cover the dependent return case. For
each instance, we test performance errors of the
SMB policy for the i.i.d. demand, MMDP demand
and autoregressive demand. Note that the average
empirical suboptimality gap of the SMB policy is
<2% in all instances, demonstrating the efficacy of
the proposed approximation algorithm. Moreover,
comparing the results of i.i.d., MMDP, and
autoregressive demands, our algorithm performs

consistently better in instances when demands are
correlated. This indicates that the SMB policy takes
advantage of given demand correlation information.
On the other hand, the average CPU time of the
SMB policy is around 1.16 seconds. In contrast, the
DP algorithm for finding optimal solutions takes a
much longer time (173.9 seconds on average) per
test instance.

6.2. Numerical Results for the Multi-Item Model
For the multi-item model, we tested the corre-
sponding model with three items. The cost parame-
ters are the same as in the single-item model and
we also consider the aforementioned three demand
processes (i.e., i.i.d., MMDP and Autoregressive).
For each instance, we test performance errors of
the heuristic policy against the optimal policy
solved by dynamic program (24). From Tables 7–9,
we observe that the average empirical suboptimal-
ity gap of the heuristic policy is <2% in all
instances, demonstrating the efficacy of the pro-
posed heuristic algorithm.

7. Conclusion and Future Research
Directions

We have studied two stochastic inventory systems
with probabilistic guarantees of service level (inter-
preted as stockout probabilities) in each period of a
planning horizon. In particular, we have derived
structural properties of optimal policies for both back-
logging and remanufacturing models. We have also
proposed several efficient and easily implementable
approximation algorithms for computing near-opti-
mal solutions, of which the efficacy is demonstrated
through numerical experiments with diverse demand
settings.
To close this study, we point out two future

research avenues. First, one may consider a joint

Table 9 Suboptimality Gap E for Autoregressive Demands with Different Parameters (multi-item)

(c1, c2, p)

AR(1) AR(2) AR(3)

h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99 h = 0.9 h = 0.95 h = 0.98 h = 0.99

(30, 30, 50) 0.56% 0.96% 1.45% 1.53% 0.58% 0.97% 1.45% 1.54% 0.67% 1.18% 1.48% 1.67%
(30, 30, 70) 0.56% 0.57% 1.28% 1.34% 0.56% 0.79% 1.29% 1.45% 0.57% 0.83% 1.34% 1.56%
(30, 30, 90) 0.74% 0.56% 1.13% 1.44% 0.53% 0.68% 1.15% 1.46% 0.42% 0.72% 1.16% 1.48%
(30, 40, 50) 0.49% 0.64% 1.08% 1.32% 0.41% 0.80% 1.23% 1.33% 0.42% 0.75% 1.20% 1.33%
(30, 40, 70) 0.45% 0.52% 1.13% 1.35% 0.42% 0.61% 1.07% 1.14% 0.47% 0.68% 1.13% 1.27%
(30, 40, 90) 0.51% 0.50% 0.89% 1.17% 0.48% 0.53% 0.97% 1.24% 0.45% 0.66% 0.90% 1.24%
(30, 50, 50) 0.38% 0.59% 1.21% 1.19% 0.39% 0.65% 1.03% 1.11% 0.45% 0.63% 1.08% 1.14%
(30, 50, 70) 0.42% 0.56% 0.83% 1.16% 0.39% 0.59% 0.96% 1.10% 0.37% 0.64% 0.93% 1.18%
(30, 50, 90) 0.53% 0.47% 0.78% 1.10% 0.45% 0.57% 0.79% 1.03% 0.38% 0.52% 0.88% 1.06%
Max 0.74% 0.96% 1.45% 1.53% 0.58% 0.97% 1.45% 1.54% 0.67% 1.18% 1.48% 1.67%
Mean 0.52% 0.60% 1.09% 1.29% 0.47% 0.69% 1.10% 1.27% 0.47% 0.73% 1.12% 1.33%
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service level constraint for restricting the stockout
probability in any period over a finite time horizon.
To the best of our knowledge, only Zhang et al. (2014)
has considered a related dynamic lot-sizing problem
with a joint chance constraint on stockout probability.
The authors formulated as a multi-stage stochastic
integer programming model solved by cutting-plane
algorithms. There are no existing papers that charac-
terized optimal or near-optimal policies for stochastic
inventory models with joint service level constraints,
which we believe is an important future research
topic. Second, one may consider developing approxi-
mation algorithms for dual-sourcing problems (e.g.,
Xin and Goldberg 2017), where the lead times of two
sources are different.
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Appendix A. Technical Proofs for the
Backlogging Model

PROOF OF PROPOSITION 1. This is a special case of
Proposition 2.

PROOF OF LEMMA 1. Let ft be the random balanced
cost by the SMB policy in period t, that is, ft ¼
E½ĤSMB

t jFt� ¼ E½ ~HSMB
tþ1 þ BSMB

t jFt�. According to Equa-
tion (13), we have

E½CðSMBÞ� ¼
XT
t¼1

E

E½ĤSMB

t þ ð ~HSMB
tþ1 þ BSMB

t ÞjFt�
�

þ ~HSMB
1 ¼ 2

XT
t¼1

E½ft� þ ~HSMB
1

¼ 2
X
t

E
�
1ðt 2 T HÞ þ 1ðt 2 T BÞ

�
� ft
�
þ ~HSMB

1

¼ 2
X
t

E

E½ĤSMB

t � 1ðt 2 T HÞjFt�
�

þ 2
X
t

E

E½ð ~HSMB

tþ1 þ BSMB
t Þ � 1ðt 2 T BÞjFt�

�
þ ~HSMB

1

¼ 2E

� X
t2T H

ĤSMB
t þ

X
t2T B

ð ~HSMB
tþ1 þ BSMB

t Þ
�
þ ~HSMB

1 :

PROOF OF LEMMA 2. Suppose t 2 T B, then
YSMB
t � YOPT

t . Therefore,

BSMB
t ¼ btþLðD½t;tþL� � YSMB

t Þþ � btþLðD½t;tþL� � YOPT
t Þþ

¼ BOPT
t :

Moreover, since XSMB
tþ1 ¼ YSMB

t � Dt � YOPT
t �

Dt ¼ XOPT
tþ1 , we have

�XSMB
tþ1 � XSMB

tþ1 ¼ ðrtþ1 � XSMB
tþ1 Þþ � ðrtþ1 � XOPT

tþ1 Þþ

¼ �XOPT
tþ1 � XOPT

tþ1 :

Since Equation (8) is equivalent to

~Ht ¼
XTþL

j¼tþL

hj
�
�Xt � Xt � ðD½t;j� � XtÞþ

�þ
;

we conclude that

~HSMB
tþ1 ¼

XTþL

j¼tþ1þL

hjðð�XSMB
tþ1 � XSMB

tþ1 �

ðXSMB
tþ1 �D½tþ1;j�ÞþÞÞþ

�
XTþL

j¼tþ1þL

hjðð�XOPT
tþ1 � XOPT

tþ1 �

ðXOPT
tþ1 �D½tþ1;j�ÞþÞÞþ ¼ ~HOPT

tþ1 :

PROOF OF LEMMA 3. To show this, we prove the fol-
lowing inequality:X

t2T H

ðĤSMB
t þ ~HSMB

tþ1 Þ�
X
t2T H

ðĤOPT
t þ ~HOPT

tþ1 Þ: ðA1Þ

Since ~HSMB
tþ1 � ~HOPT

tþ1 for any t 2 T H (following a simi-
lar argument in Lemma 2), we conclude that Equa-
tion (A1) implies our desired inequality.
Notice that for any policy P, we have

ĤP
t þ ~HP

tþ1 ¼
XTþL

j¼tþL

hj

�
ðð�XP

t þ gt �D½t;j�Þþ � ð�XP
t �D½t;j�ÞþÞ

�
þ
XTþL

j¼tþL

hj

�
ðð�XP

tþ1 �D½tþ1;j�Þþ � ðXP
tþ1 �D½tþ1;j�ÞþÞ

�
¼
XTþL

j¼tþL

hj

�
ð�XP

tþ1 �D½tþ1;j�Þþ � ð�XP
t �D½t;j�Þþ

�
;

where the first equality applies the definition of ĤP
t

and ~HP
tþ1 (see Equations (8) and (9)) and the second

one cancels the first and the last terms using the sys-
tem dynamic XP

tþ1 ¼ �XP
t þ gPt � Dt.

Suppose that T H has n intervals, that is,
T H ¼ I1 [ I2 [ � � � [ In, where Is ¼ ½n1s ; n

2
s �. Then it
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suffices to show the desired inequality on each inter-
val, that is,

Xn2s
t¼n1s

ðĤSMB
t þ ~HSMB

tþ1 Þ�
Xn2s
t¼n1s

ðĤOPT
t þ ~HOPT

tþ1 Þ:

Let csðjÞ ¼ minfj � L; n2sg. By interchanging the
order of summation, we conclude that for each
interval Is and any policy P,

Xn2s
t¼n1s

ðĤP
t þ ~HP

tþ1Þ

¼
Xn2s
t¼n1s

XTþL

j¼tþL

hj

�
ð�XP

tþ1�D½tþ1;j�Þþ�ð�XP
t �D½t;j�Þþ

�

¼
XTþL

j¼n1sþL

hj
XcsðjÞ
t¼n1s

�
ð�XP

tþ1�D½tþ1;j�Þþ�ð�XP
t �D½t;j�Þþ

�

¼
XTþL

j¼n1sþL

hj

�
ð�XP

csðjÞþ1�D½csðjÞþ1;j�Þþ�ð�XP
n1s
�D½n1s ;j�Þ

þ
�
:

ðA2Þ

For all j ¼ n1s þ L; . . .; T þ L, csðjÞ 2 Is � T H, thus,

XSMB
csðjÞþ1 ¼ YSMB

csðjÞ �DcsðjÞ\YOPT
csðjÞ �DcsðjÞ ¼ XOPT

csðjÞþ1;

and consequently,

ð�XSMB
csðjÞþ1 �D½csðjÞþ1;j�Þþ � ð�XOPT

csðjÞþ1 �D½csðjÞþ1;j�Þþ: ðA3Þ

Also, since n1s � 1 62 T H, we obtain

XSMB
n1s

¼ YSMB
n1s�1

�Dn1s�1 �YOPT
n1s�1

�Dn1s�1 ¼ XOPT
n1s

;

(this inequality also holds when n1s ¼ 1 since
XSMB

1 ¼ XOPT
1 ) and hence

ð�XSMB
n1s

�D½n1s ;j�Þ
þ � ð�XOPT

n1s
�D½n1s ;j�Þ

þ: ðA4Þ

Therefore,Xn2s

t¼n1s
ðĤSMB

t þ ~HSMB
tþ1 Þ ¼

XTþL

j¼n1sþL

hj

�
ð�XSMB

csðjÞþ1 �D½csðjÞþ1;j�Þþ � ð�XSMB
n1s

�D½n1s ;j�Þ
þ
�

�
XTþL

j¼n1sþL

hj

�
ð�XOPT

csðjÞþ1 �D½csðjÞþ1;j�Þþ � ð�XOPT
n1s

�D½n1s ;j�Þ
þ
�

¼
Xn2s
t¼n1s

ðĤOPT
t þ ~HOPT

tþ1 Þ;

where the first and the third equalities follow from
Equation (A2), and the second inequality follows
from Equations (A3) and (A4).

Appendix B. Technical Proofs for the
Remanufacturing Model

PROOF OF PROPOSITION 2. For simplicity, we will omit
the information ft in the proof. We change the deci-
sion variable from ðq1t ; q2t Þ to ðq1t ; ytÞ where
yt ¼ xt þ q1t þ q2t and define

Jtðxt;wt; yt; q
1
t Þ ¼ �GtðytÞ þ �ctq

2
t þ E½vtþ1ðyt �Dt;wt � q1t

þUtÞ�
ðB1Þ

for t = 1, 2, . . ., T. Then the value function can be
computed by

vtðxt;wtÞ ¼ min
q1t ;yt2Yðxt;wt;rtÞg

fJtðxt;wt; yt; q
1
t Þg;

where Yðxt; wt; rtÞ ¼ fðq1t ; ytÞj0 � q1t � minfwt; yt �
xtg; yt � maxfxt; rtgg.
We first show that for all ft 2 F t, vt(xt, wt) is sepa-

rable, convex in (xt, wt) and linear and non-increas-
ing in wt with rate less than �ct, that is, there exists a
convex function zt(�) and a coefficient jt 2 ½0; �ct�
such that vt(xt, wt) = zt(xt) � jtwt.
Clearly, when t = T + 1, vT+1(xT+1, wT+1) = 0 satis-

fies these conditions.
Suppose the statement is true for vt+1(xt+1, wt+1),

then we can write

E½vtþ1ðyt �Dt;wt � q1t þUtÞ�
¼ E½ztþ1ðyt �DtÞ � jtþ1ðwt � q1t þUtÞ�
¼ ~ztþ1ðytÞ � jtþ1ðwt � q1t Þ � jtþ1E½Ut�;

where ~ztþ1ð�Þ is still a convex function. Hence,
applying Equation (B1), we conclude that

Jtðxt;wt; yt; q
1
t Þ ¼ �GtðytÞ þ �ctðyt � q1t � xtÞ

þ ~ztþ1ðytÞ � jtþ1ðwt � q1t Þ � jtþ1E½Ut�
¼ðjtþ1 � �ctÞq1t þ ð�GtðytÞ þ ~ztþ1ðytÞ þ �ctytÞ

� �ctxt � jtþ1ðwt þ E½Ut�Þ

Now we can compute vt(xt, wt) by first optimizing
with respect to q1t . Since jtþ1 � �ctþ1 � �ct, the coeffi-
cient of q1t is non-positive and hence Jtðxt; wt; yt; q1t Þ
is non-increasing in q1t . Observing the feasible set
Yðxt; wt; rtÞ ¼
fðq1t ; ytÞj0 � q1t � wt; yt � xt þ q1t ; yt � rtg, we con-
clude that q1t

� ¼ minfwt; yt � xtg.
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• If wt � yt � xt, q1t
� ¼ wt. Then

Jtðxt;wt; yt; q
1
t
�Þ ¼ ð�GtðytÞ þ ~ztþ1ðytÞ þ �ctytÞ

� �ctwt � �ctxt � jtþ1E½Ut�:

Since both �GtðytÞ and ~ztþ1ðytÞ are convex in yt we
conclude that Jtðxt; wt; yt; q1t

�Þ is a convex function
in yt. Thus, if we define

st ¼ sðwt; ftÞ ¼ argmin
yt

fJtðxt;wt; yt; q
1
t
�Þg

¼ argmin
y

f�GtðyÞ þ ~ztþ1ðyÞ þ �ctyg;

we conclude that y�t ¼ maxfst; xt; rtg minimizes
Jtðxt; wt; yt; q1t

�Þ with respect to the feasible set
Yðxt; wt; rtÞ. Moreover, ztðxtÞ ¼ ð�Gtðy�t Þ þ ~ztþ1ðy�t Þ
þ�cty�t Þ � �ctxt � jtþ1E½Ut� must be a convex
function in xt. Hence, vtðxt; wtÞ ¼
Jtðxt; wt; y�t ; q

1
t
�Þ ¼ ztðxtÞ � �ctwt, where zt(�) is a

convex function.

• If wt \ yt � xt, q1t
� ¼ yt � xt.

In this case,

Jtðxt;wt; yt; q
1
t
�Þ ¼

ð�GtðytÞ þ ~ztþ1ðytÞ þ jtþ1ytÞ
� jtþ1wt � jtþ1xt � jtþ1E½Ut�;

which is also convex in yt. Hence, by defining

st ¼ sðwt; ftÞ ¼ argmin
yt

fJtðxt;wt; yt; q
1
t
�Þg

¼ argmin
y

f�GtðyÞ þ ~ztþ1ðyÞ þ jtþ1yg;

we have y�t ¼ maxfst; xt; rtg minimizes Jtðxt; wt;
yt; q1t

�Þ. Moreover, ztðxtÞ ¼ ð�Gtðy�t Þ þ ~ztþ1ðy�t Þþ
jtþ1y�t Þ � jtþ1xt � jtþ1E½Ut� is convex in xt and vt
ðxt; wtÞ ¼ Jtðxt; wt; y

�
t ; q

1
t
�Þ ¼ ztðxtÞ� jtþ1wt, where

jtþ1 � �ctþ1 � �ct.
Combining the two cases discussed above, we

conclude that vt(xt, wt) = zt(xt) � jtwt where zt(�) is a
convex function and jt 2 ½0; c2t � c1t �. Moreover, the
minimizer ðy�t ; q1t

�Þ must satisfy

y�t ¼ maxfxt; st; rtg;
q1t

� ¼ minfwt; y
�
t � xtg;

where st ¼ sðwt; ftÞ ¼ argmin
yt

fJtðxt; wt; yt; q1t
�Þg.

PROOF OF LEMMA 4. Let ξt be the random balanced
cost by the MSMB policy in period t, that is,
nt ¼ E½UMSMB

t jFt� ¼ E½WMSMB
t jFt�. The total cost is

computed by

E½CðMSMBÞ� ¼
XT
t¼1

E½UMSMB
t þWMSMB

t �

þ ~HMSMB
1 þ ~EMSMB

1

¼
XT
t¼1

E

E½UMSMB

t þWMSMB
t jFt�

�
þ ~HMSMB

1 þ ~EMSMB
1

¼ 2
XT
t¼1

E½nt� þ ~HMSMB
1 þ ~EMSMB

1

¼ 2
X
t

E
�
1ðt 2 T UÞ þ 1ðt 2 T WÞ

�
	 nt

�
þ ~HMSMB

1 þ ~EMSMB
1

¼ 2
X
t

E

E½UMSMB

t 	 1ðt 2 T UÞjFt�
� 

þ
X
t

E

E½WMSMB

t 	 1ðt 2 T WÞjFt�
�!

þ ~HMSMB
1 þ ~EMSMB

1

¼2E

�X
t2T U

UMSMB
t þ

X
t2T W

WMSMB
t

�

þ ~HMSMB
1 þ ~EMSMB

1 :

PROOF OF LEMMA 5. The proof is almost identical to
that in Lemmas 2 and 3.

PROOF OF LEMMA 6. For the first inequality, we have

XMSMB
tþ1 þWMSMB

tþ1 ¼ �XMSMB
t þ SMSMB

t þ g2;MSMB
t �Dt þUt

� �XOPT
t þ SOPT

t þ g2;OPT
t �Dt þUt

¼ XOPT
tþ1 þWOPT

tþ1

whenever t 2 T c. Note that Equation (17) is equiva-
lent to ~Et ¼ �ctðrt � Xt � WtÞþ. Therefore,

~EMSMB
tþ1 ¼ �ctþ1ðrtþ1 � XMSMB

tþ1 �WMSMB
tþ1 Þþ

��ctþ1ðrtþ1 � XOPT
tþ1 �WOPT

tþ1 Þþ

¼ ~EOPT
tþ1 ;

for all t 2 T c. Similarly, the inequality reverses when
t 2 T c

c.
Our second inequality is different from the one

proved in Tao and Zhou (2014), in which they
showed that the total production cost in periods T c

c

is less than that of the optimal policy.
For the second inequality, suppose that T c

c has n
intervals, namely, T c

c ¼ I1 [ I2 [ � � � [ In where
Ia ¼ ½n1a ; n

2
a �. Then, we only need to show the
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inequality holds for each interval Ia. To see this, we
compare the free-production level �Xt þ St between
the MSMB and OPT policies. Given a policy P, fol-
lowing the system dynamics in Equation (21), we
have

�XP
t þ SPt ¼ �XP

t þ ððSPt�1 � g1;Pt�1 þUt�1Þ � ð�XP
t � XP

t ÞÞ
þ

¼ maxf�XP
t ; S

P
t�1 � g1;Pt�1 þ XP

t þUt�1g
¼ maxf�XP

t ; S
P
t�1 þ �XP

t�1 þ g2;Pt�1 �Dt�1 þUt�1g
¼ maxfrt; SPt�1 þ �XP

t�1 þ g2;Pt�1 �Dt�1 þUt�1g;

where the last equality follows from
St�1 þ �XP

t�1 þ g2;Pt�1 � Dt�1 � XP
t and �XP

t ¼ max
fXP

t ; rtg. Therefore, for t 2 T c
e,

�XMSMB
tþ1 þ SMSMB

tþ1 ¼ max rtþ1; S
MSMB
t þ �XMSMB

t

�
þg2;MSMB

t �Dt þUt

o
� max rtþ1; S

OPT
t þ �XOPT

t

�
þg2;OPT

t �Dt þUt

o
¼ �XOPT

tþ1 þ SOPT
tþ1

and similarly, �XMSMB
tþ1 þ SMSMB

tþ1 � �XOPT
tþ1 þ SOPT

tþ1 for
all t 2 T e. Using the system dynamics, for any given
policy P, the additional manufacturing quantity is
given by

g2;Pt ¼ ðXP
tþ1 þWP

tþ1 � �XP
t � SPt Þ þ ðDt �UtÞ:

Thus for any b 2 Ia,

Xb
t¼n1a

g2;Pt ¼
Xb
t¼n1a

ðXP
tþ1 þWP

tþ1 � �XP
t � SPt Þ

þ
Xb
t¼n1a

ðDt �UtÞ

¼
Xb
t¼n1a

ðXP
tþ1 þWP

tþ1 � �XP
tþ1 � SPtþ1Þþ

ð�XP
bþ1 þ SPbþ1Þ

� ð�XP
n1a
þ SP

n1a
Þ þ

Xb
t¼n1a

ðDt �UtÞ

¼ �
Xb
t¼n1a

ð�XP
tþ1 � XP

tþ1 �WP
tþ1Þ

þ þ ð�XP
bþ1 þ SPbþ1Þ

� ð�XP
n1a
þ SP

n1a
Þ þ

Xb
t¼n1a

ðDt �UtÞ:

ðB2Þ

Since b 2 T c
c and n1a � 1 2 T c, we have �XMSMB

bþ1

þ SMSMB
bþ1 � �XOPT

bþ1 þ SOPT
bþ1 and �XMSMB

n1a
þ SMSMB

n1a
�

�XOPT
n1a

þ SOPT
n1a

. Thus, from equality (B2), we obtain

Xb
t¼n1a

�
g2;MSMB
t þ ð�XMSMB

tþ1 � XMSMB
tþ1 �WMSMB

tþ1 Þþ
�

¼ ð�XMSMB
bþ1 þ SMSMB

bþ1 Þ � ð�XMSMB
n1a

þ SMSMB
n1a

ÞþXb

t¼n1a
ðDt �UtÞ

� ð�XOPT
bþ1 þ SOPT

bþ1 Þ � ð�XOPT
n1a

þ SOPT
n1a

Þ þ
Xb
t¼n1a

ðDt �UtÞ

¼
Xb
t¼n1a

�
g2;OPT
t þ ð�XOPT

tþ1 � XOPT
tþ1 �WOPT

tþ1 Þþ
�
:

Note that g2;MSMB
t is the additional manufacturing

quantity and ð�XMSMB
tþ1 � XMSMB

tþ1 � WMSMB
tþ1 Þþ is the

forced manufacturing quantity; the above inequality
allows us to compare the cumulative manufacturing
quantity.
Following the assumption that the unit production

cost �ct is non-increasing in t, we define
Dt ¼ �ct � �ctþ1 for all t 2 ½n1a ; n

2
aÞ and Dn2a

¼ cn2a . Then
since Dt ≥ 0 for all t 2 ½n1a ; n

2
a �, by interchanging the

order of summation, we conclude thatX
t2Ia

ðÊMSMB
t þ ~EMSMB

tþ1 Þ

¼
Xn2a
t¼n1a

�ct

�
g2;MSMB
t þð�XMSMB

tþ1 �XMSMB
tþ1 �WMSMB

tþ1 Þþ
�

¼
Xn2a
t¼n1a

	Xn2a
b¼t

Db


�
g2;MSMB
t þð�XMSMB

tþ1 �XMSMB
tþ1 �WMSMB

tþ1 Þþ
�

¼
Xn2a
b¼n1a

Db

Xb
t¼n1a

�
g2;MSMB
t þð�XMSMB

tþ1 �XMSMB
tþ1 �WMSMB

tþ1 Þþ
�

�
Xn2a
b¼n1a

Db

Xb
t¼n1a

�
g2;OPT
t þð�XOPT

tþ1 �XOPT
tþ1 �WOPT

tþ1 Þþ
�

¼
X
t2Ia

ðÊOPT
t þ~EOPT

tþ1 Þ;

which proves the second equality.
To show the last inequality, we first claim that for

g2;MSMB
t ¼ 0 for all t 2 T U \ T c. Otherwise, suppose

g2;MSMB
t [ 0, then gr;MSMB

t ¼ SMSMB
t . Thus,

YMSMB
t ¼ �XMSMB

t þ SMSMB
t þ g2;MSMB

t

� �XOPT
t þ SOPT

t þ g2;OPT
t �YOPT

t ;
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which contradicts with t 2 T U. Similarly, we can
show that g2;OPT

t ¼ 0 holds for all t 2 T W \ T c
c.

Hence, using the second inequality we have proved
above, we haveX

t2T U

�ctg
2;MSMB
t ¼

X
t2T U\T c

c

�ctg
2;MSMB
t �

X
t2T c

c

�ctg
2;MSMB
t

ðB3Þ

andX
t2T U

�ctg
2;OPT
t ¼

X
t2T U[T c

c

�ctg
2;OPT
t �

X
t2T c

c

�ctg
2;OPT
t : ðB4Þ

Therefore, using the above inequalities together with
the two inequalities we have already shown in the
lemma, we conclude thatX

t2T U

ÊMSMB
t þ

X
t2T W

~EMSMB
tþ1

�
X
t2T c

c

ÊMSMB
t þ

X
t2T W\T c

c

~EMSMB
tþ1 þ

X
t2T W\T c

~EMSMB
tþ1

¼
X
t2T c

c

ðÊMSMB
t þ ~EMSMB

tþ1 Þ �
X

t2T U\T c
c

~EMSMB
tþ1 þ

X
t2T W\T c

~EMSMB
tþ1

�
X
t2T c

c

ðÊOPT
t þ ~EOPT

tþ1 Þ �
X

t2T U\T c
c

~EOPT
tþ1 þ

X
t2T W\T c

~EOPT
tþ1

¼
X
t2T c

c

ÊOPT
t þ

X
t2T W\T c

c

~EOPT
tþ1 þ

X
t2T W\T c

~EOPT
tþ1

�
X
t2T U

ÊOPT
t þ

X
t2T W\T c

c

~EOPT
tþ1 þ

X
t2T W\T c

~EOPT
tþ1

¼
X
t2T U

ÊOPT
t þ

X
t2T W

~EOPT
tþ1 ;

where the first inequality follows from Equation
(B3), the third inequality follows from the results
proved in the first and second parts, and the fifth
inequality follows from Equation (B4).

Appendix C. An Equivalent Random
Capacity Model with Two Suppliers
Consider a single-product inventory system that
orders from two suppliers, namely, a regular supplier
and a discounted (but random) supplier, over a plan-
ning horizon of T periods, indexed by t = 1, . . ., T.
Both suppliers have the same lead times L.
The sequence of events is as follows. In each period

t, the decision maker reviews the starting inventory
level of the inventory system, and also queries the
available inventory from the discounted supplier. The
regular supplier, on the other hand, has unlimited
capacity. However, the unit cost from regular sup-
plier c2t is higher than the unit cost from discounted

supplier c1t . Then the decision maker decides how
many units to order from the regular supplier,
denoted by q2t , and how many units to order from the
discounted supplier, denoted by q1t . Then the random
customer demand Dt = dt is realized. Also, the dis-
counted supplier obtains a random amount of inven-
tory Ut = ut and then adds to her own available
inventory. Finally, all costs (including unit costs from
both suppliers, holding and backlogging costs) for
this period are assessed. Note that we use h2t to denote
the unit holding cost for each on-hand inventory and
bt to denote the unit backlogging cost. Moreover, to
incentivize the discounted supplier to reserve her
inventory for the decision maker (at a lower unit
price), the decision maker needs to compensate h1t per
unit of the inventory that the discounted supplier is
holding. On the other hand, the regular supplier
needs no compensation.
From the model description, it is evident

that this random capacity model with two suppli-
ers is equivalent to the original remanufacturing
model.
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