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24 Abstract: A large international watershed, the St. Clair-Detroit River System, containing both 

25 extensive urban and agricultural areas, was modeled using the Soil and Water Assessment Tool 

26 (SWAT) model. The watershed, located in southeastern Michigan, US, and southwestern 
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1 Ontario, Canada, encompasses the St. Clair, Clinton, Detroit, Sydenham, Upper, and Lower 

2 Thames sub-watersheds. The SWAT input data and model resolution (i.e., Hydrologic Response 

3 Units, HRUs), were established to mimic farm boundaries, the first time this has been done for a 

4 watershed of this size. The model was calibrated (2007-2015) and validated (2001-2006) with a 

5 mix of manual and automatic methods at six locations for flow and water quality at various time 

6 scales.  The model was evaluated using Nash-Sutcliffe efficiency and percent bias and was used 

7 to explore major water quality issues. We showed the importance of allowing key parameters to 

8 vary among sub-watersheds to improve goodness of fit, and the resulting parameters were 

9 consistent with sub-watershed characteristics. Agricultural sources in the Thames and Sydenham 

10 sub-watersheds and point sources from Detroit sub-watershed were major contributors of 

11 phosphorus. Spatial distribution of phosphorus yields at HRU and subbasin levels identified 

12 locations for potential management targeting for both point and non-point sources and revealed 

13 that in some sub-watersheds non-point sources are dominated by urban sources.

14

15 (Keywords: SWAT; watershed modeling; international watershed; field-scale; flow and water 

16 quality.)

17

18 INTRODUCTION

19 Watersheds are widely accepted units of analysis for water resources planning and 

20 management (McKinney et al., 1999; IJC, 2009; Sheelanere et al., 2013), and have been the 

21 focus for guiding water resource and management decisions for decades. However, their natural 

22 and anthropogenic processes and activities are often too complex and variable, both spatially and 

23 temporally, to be captured thoroughly through monitoring alone (Mirchi et al., 2009). Therefore, 

24 watershed modeling tools, especially flow and water quality models, have been used increasingly 

25 to simulate watershed processes and human use to help guide those decisions at local, national 

26 and international scales (Daniel et al., 2011; Singh and Frevert, 2010; Madani and Marino, 

27 2009). These modeling tools are particularly valuable for developing a common understanding 

28 and framework for setting goals among nations with shared watersheds (IJC, 2009).

29 One of the most widely used watershed models is the Soil and Water Assessment Tool 

30 (SWAT) (Arnold et al., 1998); a semi-distributed, physically based flow and water quality model 
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1 that has been used in watersheds around the world with widely varying characteristics in size and 

2 composition (Gassman et al., 2007; 2014).  It is designed to capture information ranging from 

3 very coarse to fine spatial scales by dividing the watershed into subbasins based on topography, 

4 and then dividing the subbasins into smaller Hydrologic Response Units (HRUs) based on 

5 unique land use, soil type, slope, and/or management combinations. While these HRUs can be at 

6 very fine scales, this increased resolution and complexity improves results only when there is an 

7 equivalent level of input information (Johnston and Smakhtin, 2014; Jakeman et al., 2006).  

8 Fortunately, in recent years, extensive data sets, such as land-use data generated from remote 

9 sensing and tile drainage systems characteristics collected by government and non-government 

10 organizations, enable relatively detailed watershed models.  

11 However, even with detailed input data, SWAT still has a large number of parameters 

12 that cannot be measured directly and therefore need to be estimated through model calibration 

13 (Lie et al., 2010).  The most frequently used calibration practice is to evaluate simulation 

14 performance at a single downstream location (Shi et al., 2013), which ignores spatial 

15 heterogeneity.  This is particularly problematic for large systems where parameters estimated for 

16 some parts of the watershed may be unrealistic for other parts. For example, Leta et al. (2017) 

17 assessed the impact of calibrating at a single site, at multiple sites with constant parameter 

18 values, and at multiple sites with varying parameter values for a 1,162 km2 watershed in 

19 Belgium. Their results indicated using different parameter values among different regions 

20 improved calibration results. In their study for a 239 km2 watershed in Idaho, Zhang et al. (2008) 

21 also showed the importance of calibrating at multiple monitoring sites for better representations 

22 of regional conditions and goodness-of-fit. Hence, for large and/or spatially heterogeneous 

23 watersheds, calibration/validation processes at multiple locations is crucial to ensure accurate 

24 representations of local and regional flow, sediment, and nutrient simulations (Bai et al., 2017; 

25 Leta et al., 2017; Wang et al., 2012; Zhang et al., 2008). 

26 A water quality agreement between the United States and Canada (GLWQA, 2016), 

27 crafted in response to Lake Erie’s re-eutrophication (Scavia et al., 2014), has led to new 

28 phosphorous loading targets.  Attention has logically been placed on loads from the Detroit and 

29 the Maumee rivers because they contribute about 90% of total phosphorus (TP) load to the 

30 western basin of the lake (Scavia et al., 2016). While there have been several assessments for the 

31 Maumee watershed (e.g., Scavia et al., 2017;  Muenich et al., 2016; Kalcic et al., 2016), there has 
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1 been no similar assessment for the nearly 20,000 km2 international watershed that drains into 

2 Lake Erie from the Detroit River. This study was designed to begin filling that gap with a robust 

3 watershed model to allow assessing potential nutrient load reduction strategies.

4 The goal of this study is to calibrate the SWAT model for this very large, complex 

5 international watershed at multiple locations and investigate the spatial distribution of nutrient 

6 sources and loads.  In pursuit of this goal we first assembled and harmonized into seamless 

7 model input US and Canadian data that have their own characteristics, developed with different 

8 methodologies and interpretations, and with their own formatting and naming conventions (IJC, 

9 2015).

10 STUDY AREA

11 The St. Clair-Detroit River system (SCDRS) drains a 19,040 km2 watershed area from 

12 parts of southeastern Michigan in the US (40% of watershed area) and southwestern Ontario in 

13 Canada (60% of watershed area) and contributes its load to Lake Erie through the Detroit River 

14 (Figure 1).  It is composed of about 50% cropland, 20% urban area, 12% forest, 8% grassland, 

15 and 7% water bodies. The US portion of the watershed is dominated by the Detroit Metropolitan 

16 area, whereas the Canadian portion is dominated by tile-drained croplands growing corn, 

17 soybeans, and winter wheat. Over the 15 years study period (2001-2015), total annual 

18 precipitation and annual average temperatures vary between 740 and 1200 mm, and 7.5 and 

19 11.0oC, respectively, averaging at 908 mm and 9.3oC.  Elevation ranges from 422 m above sea 

20 level at the watershed boundary to 145m at the outlet, with mostly flat slopes.

21 The US portion drains three HUC8 watersheds (St. Clair [SC], Clinton [CL], and Detroit 

22 [DT] sub-watersheds) drained primarily by the Black River (BR), Clinton River (CR), and 

23 Rouge River (RR), respectively. The Canadian portion drains three tertiary watersheds (Upper 

24 Thames [UT], and Lower Thames [LT] and Sydenham [SY] sub-watersheds) through the 

25 Thames River (TR) and Sydenham River (SR). For this study, the TR includes both Upper 

26 (UTR) and Lower Thames River (LTR) segments. The watershed includes two smaller sub-

27 watersheds, Essex in Canada and Lake St. Clair in the US. While calibration and validation were 

28 performed at the outlet of the six major rivers (BR, CR, RR, SR, UTR and LTR), most load 

29 assessments were made for the entirety of each sub-watershed (SC, CL, DT, SY, UT and LT) 

30 that the major rivers drain. Hence, it is important to note the difference in names between the 
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1 sub-watershed and river, especially for the Detroit and St. Clair sub-watersheds that are drained 

2 through the Rouge and Black rivers. 

3 Overall, 79% of the watershed’s agricultural land is in Canada and 83% of the urban land 

4 is in the US. The CL and DT sub-watersheds are heavily urbanized (about 56% and 89% of each 

5 as urban, respectively), and the SC, SY, UT, and LT sub-watersheds are dominated by 

6 agriculture (63%, 89%, and 87% agricultural, respectively). This spatial variation in land 

7 use/land cover (LULC) provides both challenges and opportunities for investigating model 

8 performance.  Moreover, five of the six HUC8 (tertiary) sub-watersheds drain into the 1100 km2 

9 Lake St. Clair (Figure 1) that retained an average 13% of its TP input over the 1998-2016, and 

10 21% over the 2013-2015 time period (Bocaniov and Scavia, 2018; Scavia et al., 2019).

11 DATA

12 Basic inputs

13 With the exception of data on elevation and weather, all model input was obtained 

14 separately for the US and Canada and then merged.  DEM data with 30m x 30m resolution from 

15 the US Geological Survey–The National Map (USGS, 2016) were used for the entire watershed 

16 for elevation, slope, and subbasin delineation. Daily precipitation and maximum and minimum 

17 temperatures were obtained from the National Oceanic and Atmospheric Administration’s 

18 Global Historical Climatology Network (NOAA-GHCN, 2016) for 16 US stations and 15 

19 Canadian stations for 1999-2015 (Figure 1).  LULC layers for 2011-2015 with 30m x 30m grid 

20 cells were from the US Department of Agriculture National Agricultural Statistics Service 

21 (USDA-NASS, 2016) Cropland Data Layer and the Agriculture and Agri-Food Canada Annual 

22 Crop Inventory (AAFC, 2016). The 2015 LULC data layer was used to setup the SWAT model 

23 and the 5-year data set was used to generate crop rotations. Soil data layers were from the USDA 

24 Natural Resources Conservation Service Soil Survey Geographic Database (SSURGO) (USDA-

25 NRCS, 2017) and from the AAFC’s Soil Landscapes of Canada (version 3.2) (AAFC, 2016). 

26 Road network data was from U.S. Census Bureau (U.S. Census Bureau, 2016. TIGER/Line. 

27 Accessed November 2016, https://www.census.gov/cgi-

28 bin/geo/shapefiles/index.php?year=2015&layergroup=Roads) and Ontario Ministry of Natural 

29 Resources and Forestry (Ontario Ministry of Natural Resources and Forestry, 2016. OMNRF. 

30 Accessed November 2016, 
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1 https://www.javacoeapp.lrc.gov.on.ca/geonetwork/srv/en/main.home?uuid=290bfd40-0c8b-

2 46d0-9a6c-0c648d096515).

3 Flow and water quality

4 The USGS National Water Information System (USGS-NWIS, 2016) and the Canadian 

5 National Water Data Archive hydrometric data (HYDAT, 2016) were used to obtain daily flow 

6 data for the most downstream gauging stations in each sub-watershed (Figure 1, Table S2). Any 

7 data gap of 60 days or more was filled using either the stage discharge relationship, if stage data 

8 were available, or with the unit area method using data from a nearby station along the same or 

9 adjacent stream. If a gap was less than 60 days, it was filled using structural time series (Ryberg 

10 and Vecchia, 2017). 

11 Total suspended sediment (TSS), total nitrogen (TN), nitrate (NO3), total phosphorus 

12 (TP) and dissolved reactive phosphorus (DRP) concentration data for the US were obtained from 

13 the Water Quality Portal (WQP, 2016). Canadian data were from the Provincial Stream Water 

14 Quality Monitoring Network (PWQMN, 2016) and Environment and Climate Change Canada 

15 (ECCC, D. Burniston and A. Dove, personal communication, 2017).  Average sampling 

16 frequency ranged from 3 to 17 samples per year for the US and 7 to 21 for Canada.

17 Because flow and water quality data were often measured at different locations (Figure 

18 1), calibration points were generally at the most downstream water quality stations to avoid 

19 extensive interpolation of water quality concentrations and to account for most of the sub-

20 watershed areas. Daily flow data at the calibration locations were estimated using the drainage-

21 area method (Hirsch, 1979) from the upstream flow stations. Monthly and annual nutrient load 

22 estimates for calibration at these locations were made using the weighted regression on time, 

23 discharge and season (WRTDS) method (Hirsch et al., 2010) based on sample concentration 

24 values and daily flow. 

25 Management data layers

26 Management data layers include cropping systems, fertilizer and manure application rates 

27 and placement, tillage practices, and tile drainage. County level fertilizer sales data were from 

28 the International Plant Nutrition Institute (IPNI, 2016) for the US and provincial level fertilizer 

29 sale data were from Statistics Canada (STATCAN, 2016). Unique application rates for individual 
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1 crops were based on regional N and P fertilizer application rate information from USDA 

2 Economic Research Service (USDA-ERS, 2016) and Canadian Field Print Initiative (Canadian 

3 Field Print Initiative, 2017. Accessed March 2017, http://fieldprint.ca/fertilizer-use-survey/). 

4 Manure amounts were based on livestock (dairy, beef, swine, sheep, goat, chicken and turkey) 

5 counts in each county from USDA-NASS (USDA-NASS, 2016) and from the Ontario Ministry 

6 of Agriculture, Food and Rural Affairs (OMAFRA, 2016).  Spatial distribution of manure 

7 application in Canada was provided by OMAFRA (K. McKague, personal communication, 

8 2017) as locations (points) of animal farms and field areas that receive manure from each animal 

9 farm without explicit indication of which field (s).  

10 Tillage practices for sub-watersheds in the US and county/sub-county level for Canada 

11 were obtained from USGS and STATCAN, respectively. The latest US tillage data were from 

12 2004, but it detailed practices for each crop type. Canadian data were from 2011, but they did not 

13 distinguish among crop types. Data on the distribution of subsurface (tile) drainage systems in 

14 Canada were from OMAFRA (2016). Tile drainage information is not available for the US, so 

15 we assumed all cropland with poorly drained soils employed tiles (Kalcic et al., 2015). Tile 

16 drainage installation depth and spacing specification for the Canadian side of the watershed were 

17 recommended to vary by soil type (K. McKague, personal communication, 2017). As such, tile 

18 depths were set at 650 mm, 750 mm and 950 mm for clayey, silty, and sandy soils, respectively, 

19 with corresponding spacing at 8 m, 12 m, and 15 m, respectively. For the US side, a uniform 

20 1000 mm depth and 20m spacing were used.

21 Three reservoirs in the upper Thames region (Fanshawe, Wildwood, and Pittock) with 

22 surface-area (ha)/volume (ha-m) controls of 262/1235, 192/796, and 142/266, respectively, were 

23 included in the model. Information about the physical features of the reservoirs, daily outflow 

24 data, and water quality samples were obtained from the Upper Thames River Conservation 

25 Authority website (UTCA, 2017) and M. Helsten (personal communication, 2017). Monthly 

26 industrial and municipal point source (Figure 2) data were collected from EPA Enforcement and 

27 Compliance History (U.S. Environmental Protection Agency, 2017. ECHO. Accessed May 2017, 

28 https://echo.epa.gov/resources/general-info/loading-tool-modernization; ) and the Great Lakes 

29 Water Authority – Water Resources Recovery Facility (GLWA-WRRF) (M. Khan, C. Willey, 

30 personal communication, 2018) for the US, and from OMECC’s (Ontario Ministry of 
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1 Environment and Climate Change) Effluent Monitoring and Effluent Limits (EMEL) 

2 Regulations (https://www.ontario.ca/data/industrial-wastewater-discharges) for Canada.

3 METHODOLOGY

4 Data Assimilation

5 Because this was a binational watershed study, it was essential to ensure data from the 

6 two countries were harmonized. The US and Canadian LULC data have the same resolution but 

7 different land use type names and identification codes. Because SWAT is based on US data 

8 types, Canadian LULC type names and identification codes were converted to the US format 

9 (Figure 1). Canadian soil data required additional calculations and unit conversions to conform to 

10 US-based SWAT parameters (Table 1). Though there is some anecdotal evidence Canadian 

11 manure production per animal may be different from the US, we used US values for both. 

12 Model setup

13 Using an area threshold based on the DEM and identification of additional outlet 

14 locations to accommodate future comparison and/or spatial verification from smaller sub-

15 watersheds models and/or evolving monitoring efforts, the watershed was divided into 800 

16 subbasins (Figure 2) with an average area of 24 km2. Smaller subbasins were created in 

17 predominantly urban areas to capture their higher variation in drainage and land use types, and to 

18 potentially test urban management scenarios in future work at finer spatial scales. Each subbasin 

19 was further divided into HRUs using predefined field boundaries as discussed below. The 

20 ArcGIS interface, ArcSWAT, version 2012.10_3.18 was used for setup and SWAT2012 rev635, 

21 as modified by Kalcic et al. (2016), was used for simulations.

22 Field boundaries and data processing

23 LULC, road network, and subbasins were used to define field boundaries using a 

24 combination of the methods described by Kalcic et al. (2015) and Teshager et al. (2016). 

25 Following Teshager et al. (2016), LULC and road network data were used as the primary sources 

26 to identify field boundaries. As such, the watershed was divided into 27,751 “fields” with an 

27 average area of about 69 ha, of which 15,219 (54.8%) are cropland. These fields were assigned 

28 unique soil type identifiers (Kalcic et al., 2015), and an ArcGIS shapefile that contains the soil 
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1 identifiers and LULC for each field was created. The shapefile was then used to define HRUs in 

2 the ArcSWAT model setup with 0% thresholds for LULC, soil, and slope, and the 27,751 fields 

3 thus became the SWAT HRUs (Figure 2).

4 A key advantage of using field boundaries to generate HRUs is that management 

5 practices can be assigned at a more detailed spatial scale than in more traditional SWAT models. 

6 Crop rotations for each HRU were estimated by overlaying the 2011-2015 LULC data layers and 

7 extracting the major cropping systems in each cropland fields. The most dominant crop rotations 

8 involved corn, soybeans, and winter wheat. In order to maintain a manageable number of 

9 rotations, crop rotations were limited to a maximum of three years. Tile drainage data and field 

10 boundaries were overlaid to determine fields with tile drainage systems. If the majority of a field 

11 was covered by the tile drainage layer, the field was considered to have tiles. Canadian fields 

12 (HRUs) that receive manure were determined based on proximity to animal farm location and 

13 total field area receiving manure from the animal farm. 

14 The field boundaries were also used to distribute the county level conventional (Cv), 

15 conservation (Cs), and no-till (NT) tillage practices. The type of tillage practices assigned for a 

16 crop field in a county depended on the proportions of practices (Cv:Cs:NT) in that county and 

17 the cropping system (crop rotation) in the field. Conventional tillage practices were assigned 

18 more in fields with intensive corn, single crop, or non-alternate rotations (e.g., continuous corn). 

19 On the other hand, more conservative tillage practices (Cs and NT) were assigned more in fields 

20 with alternate rotations (e.g., corn-Soybeans-Winter wheat). Given this information on field-

21 scale crop rotations and regional application rates of mineral N and P for different crops, a 

22 similar approach was used to allocate county/provincial level fertilizer applications across 

23 agricultural HRUs. Corn fields generally received N and P fertilizer at higher application rates 

24 than winter wheat or soybeans. Corn in continuous-corn rotation received more mineral fertilizer 

25 than corn in any other alternate rotations (Table S1).

26 The field boundaries were also designed for analysis and display of input and output 

27 information (e.g., distribution of fertilizer/manure application, flow, phosphorus load, etc.), and 

28 to model infield best management practices (BMPs) (e.g., filter strips, grassed waterways, 

29 drainage management, etc.) at finer scales.  
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1 Calibration and validation

2 Calibration and validation were performed at the outlets of the three US sub-watersheds 

3 and the three Canadian sub-watersheds (Figure 1). The model simulated 1999-2015, using the 

4 first two years as the warm-up period. Flow was calibrated for 2007-2015 and validated for 

5 2001-2006 at daily, monthly, and annual time scales. Upon successful flow calibration, the 

6 model was calibrated for total suspended sediment loads, followed by nutrients (TN, NO3, TP, 

7 and DRP) at daily time steps. Since monthly and annual scales were more relevant for 

8 management application and policy advice, water quality parameters were further adjusted to 

9 also match WRTDS’s monthly and annual water quality loads.  

10 The significant variation in LULC and land management across such large watershed was 

11 expected to result in different controlling dynamics, especially physical drivers.  Therefore, 

12 during calibration, certain subbasin and HRU parameters were allowed to vary across the six 

13 major sub-watersheds (Table S3, S4). We used both manual calibration and SWATCUP’s SUFI2 

14 (Abbaspour, 2015) auto-calibration procedures. Watershed level parameters were initially 

15 adjusted manually based on experience and information about local conditions. For example, 

16 parameters that control snow cover were estimated based on comparisons of observed and 

17 simulated snowfall frequency and snow depth values for the area. Then, SUFI2 was used to 

18 estimate HRU and subbasin parameter values and to understand their general direction of change 

19 in each major sub-watershed. Finally, manual calibration was used for all parameters to improve 

20 fit. 

21 Model performance was evaluated by comparing observed and simulated values using 

22 three commonly used statistics for watershed modeling: coefficient of determination (R2), Nash-

23 Sutcliffe efficiency coefficient (NSe), and percent bias (PBs).  

24 The NSe is used to assess how good simulated values fit observations. The NSe values 

25 range from 1 to -∞ with 1 being a perfect 1:1 fit between simulated and observed values. PBs 

26 provides insights on the tendency of simulations in under- or over-estimating values, and ranges 

27 from -∞ to +∞. A PBs value of 0.0% indicates a perfect match between average simulated and 

28 observed values, and negative and positive values show under- and over-estimation, respectively. 

29 The R2 values examine how well simulated values are correlated with observations, i.e., follow 

30 similar trends; 0.0 indicates no correlation and 1.0 a perfect correlation. According to Moriasi et 

31 al. (2007), monthly simulations with NSe > 0.75 are considered “very good”, > 0.65 and ≤ 0.75 
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1 are “good”, > 0.50 and ≤ 0.65 are “satisfactory”, and values ≤ 0.50 are “unsatisfactory” for 

2 watershed models. Similarly, values of |PBs| < 10%, 10% - 15%, 15% - 25%, and ≥ 25% fall into 

3 those same categories for flow simulations. The same categories apply for sediment if |PBs| < 

4 15%, 15% - 30%, 30% - 55%, and ≥ 55% and for nutrients |PBs| < 25%, 25% - 40%, 40% - 70%, 

5 and ≥ 70%. 

6 Finally, to evaluate the significance of allowing parameters to vary among sub-

7 watersheds, the final calibrated flow parameter set for each sub-watershed was assigned 

8 uniformly across the entire watershed and NSe and PBs were compared to those for the varying 

9 parameter case. As a result, six sets of statistics for each sub-watershed were compared. 

10 RESULTS AND DISCUSSION

11 Input Characterization

12 Using the spatial allocation scheme (HRU boundaries), we distributed crop rotations, 

13 fertilizer/manure applications, tile drainage, and tillage practices for each HRU explicitly (Figure 

14 3) to better represent actual conditions. With respect to cropping systems, three-year rotations 

15 involving corn (C), soybeans (S), and winter wheat (W) covered about 43% of the cropland area. 

16 Distribution of crop rotation types was similar within each country, with CSW dominating, 

17 followed by CS and then SS (Table 2). However, corn-only or soybeans-only cropping systems 

18 were more abundant in Canada than the US (Figure 3), and 40% of the Canadian soybean 

19 intensive fields were in the Essex region. Crop rotations for each county and HUC8/tertiary sub-

20 watershed are detailed in Figure S1 and S2. 

21 Allocation of conventional (Cv), conservation (Cs), and no-till (NT) tillage practices 

22 (Figure 3) resulted in about 70% of cropland receiving alternating practices with either two or 

23 three tillage types (Figure 4). The most dominant tillage practice was Cs-NT (39.4%) and was 

24 mainly in Canada. US croplands were dominated by Cv-Cs tillage. While cropping systems that 

25 alternate corn-soybeans-winter wheat in a three-year rotation received all three tillage practices, 

26 most of the continuous conventional tillage practices were assigned for single crop rotations 

27 (Figure 5). 

28 Tile drainage was denser in Essex region, lower parts of SY and LT, and upper parts of 

29 SC and UT sub-watersheds (Figure 3). About 67% of Canadian and 55% of US agricultural areas 

30 were considered tiled (Table 3). Most of the UT and upper parts of SY agricultural fields receive 
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1 manure generated in their respective counties while few fields in LT and Essex area received 

2 manure. In the US, manure was assumed to be distributed across all agricultural fields, and 

3 because of this and fewer livestock, solid manure application rates in the US were lower (85-670 

4 kg/ha for dairy, 8-50 kg/ha for Beef and 1-35 kg/ha for swine) than in Canada (345-1082 kg/ha 

5 for dairy, 261-695 kg/ha for Beef and 667-1556 kg/ha for swine).

6 Calibration and Validation

7 Flow. The model reproduced observed flow hydrographs fairly well (Figure 6). Using 

8 Moriasi et al. (2007) performance criteria, the monthly flow calibration NSe (Table 4) were 

9 judged “very good” for the ULT, LTR, and SR sub-watersheds; “good” for BR and RR; and 

10 “satisfactory” for CR. PBs during calibration and both NSe and PBs during validation for all six 

11 locations were rated as “very good”. The model also performed well at daily (NSe > 0.5 except 

12 BR, and |PBs|<10%) and annual (NSe >0.65 and |PBs| < 10%) time scales (Table S5). 

13 As expected, allowing parameters to vary among sub-watersheds provided a better 

14 representation of regional conditions and improved model performance (Tables S2 and S3).  

15 During calibration, some flow parameter values varied substantially across the watershed, 

16 especially between agricultural- and urban-dominated sub-watersheds (Tables S4). Flow was 

17 particularly affected by changes in parameters for main channel average width (CH_W2) and/or 

18 depth (CH_D) and average slope (CH_S2) in both of the highly urbanized streams (CR and RR). 

19 This adjustment for urban streams is consistent with the fact urbanization not only increases 

20 runoff but also alters routing of flow downstream through changes in channel dimensions 

21 (Booth, 1990; Baker et al., 2008). 

22 The calibration also resulted in substantially lower soil water capacity parameter values 

23 (SOL_AWC) in urbanized areas, consistent with the fact urbanization reduces soil permeability, 

24 infiltration, and water holding capacity through soil disturbance, displacement, pore space 

25 reduction, low organic matter, and high surface traffic (Craul, 1985; Jim, 1998; Yang and Zhang, 

26 2015; Wiesner et al. 2016). For example, the European Commission Bio Intelligence Serve 

27 (2014) reported changing forest land to urban land could decrease the maximum soil water 

28 content by up to 25%. 

29 Differences in other parameter values, such as increasing the runoff curve number from 

30 the SWAT default value for moisture condition II (CNII) for the UT by 10% and the LT by 4% 
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1 reflected the differences in slopes between the two regions (~0.12% and ~0.03%, respectively, 

2 along the main stream course). These two regions also have different soil drainage class 

3 distributions. While the UT has more well drained soils, the LT is dominated by poorly drained 

4 soils. As such, SOL_AWC was increased by 10% above the default value and the soil 

5 evaporation compensation factor (ESCO) was set at 0.90 for the LT, compared to an ESCO value 

6 of 0.30, and the default value for SOL_AWC for the UT. The increase in SOL_AWC for the LT 

7 reflected the higher water holding capacity of the poorly drained soils. Moreover, the higher 

8 ESCO value for the UT was consistent with its higher water holding capacity of the soil that 

9 compensated for evaporation.

10 Overall, comparison of the final flow calibration statistics (Table 4) against statistics 

11 from uniform parameters across the entire watershed (Table S6) showed the strength of varying 

12 parameter values. If, for example, parameters which were best for UTR flow conditions were 

13 used across the watershed, the NSe values for CR, BR and RR would have dropped by 62%, 

14 11% and 6%, respectively, and the |PBs| values for CR, BR and SR would have increased by 

15 34.3%, 29.2%, and 12.7%, respectively. Similarly, if best parameter sets for CR flow conditions 

16 were used across the watershed, |PBs| values would have increased by 25.4%, 19.6%, 13.6%, 

17 12.5%, and 11.9%, for RR, BR, LTR, UTR and SR, respectively, and the NSe values for RR and 

18 BR would have dropped by 34% and 14%. 

19 A closer look at the effects of parameter values from one sub-watershed applied to 

20 another indicated that even exchanging parameter sets between urbanized sub-watershed (CR, 

21 RR) reduced fit.  For example, using the CR optimal parameter values for the RR reduced its 

22 NSe and increased its PBs values by 34.3% and 25.4%, respectively. The RR parameter values 

23 had similar effects for the CR. Interestingly, while parameter values from the agricultural sub-

24 watershed (SY) reduced fit for the urbanized river (CR), the urbanized sub-watershed (CL) 

25 parameters had less impact on the agricultural one (SR). 

26 Water quality. Measured nutrients and sediment dynamics were also replicated 

27 sufficiently (Figure 7, Table 5, Figure S4-S7). Monthly water quality calibration and validation 

28 statistics were better for TP than DRP and better for TN than NO3. All calibrations and 

29 validations were rated as “good” or better for PBs. Most calibration and validation NSe values 

30 were rated as “good” or “satisfactory”. However, the phosphorus-related NSe values for UTR 

31 calibration were unsatisfactory, as was the RR validation, and both calibration and validation for 
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1 the BR.  Similar to flow, ratings for the major rivers in agricultural sub-watersheds (SR, LTR 

2 and UTR) were better than river in urbanized sub-watersheds (CR and RR).

3 Similar to flow, some water quality parameters vary considerably across sub-watersheds 

4 (Table S4). For example, values of initial nitrate concentration in the soil layer (SOL_NO3) were 

5 set to 100 mg N/kg-soil for UT and SY, whereas values for CL and DT were 25 and 0 mg N/kg-

6 soil, respectively, perhaps reflecting differences in soil fertility. The rate constant for in-stream 

7 mineralization of organic phosphorus to dissolved phosphorus (BC4) was higher for Canadian 

8 rivers (0.28 day-1, 0.25 day-1 and 0.16 day-1 for SR, UTR and LTR, respectively) than for US 

9 rivers (0.018 day-1 for all BR, CR, RR), suggesting potentially higher concentrations of DRP in 

10 Canadian streams. There are also distinct differences in parameter values between UT and LT 

11 sub-watersheds. Almost all nutrient parameter values were higher for UT than LT, implying 

12 higher initial soil nutrient content and increased nutrient yields in the UT compared to LT.

13 Nutrient load assessments

14 Because phosphorus is the primary driver of interest in Lake Erie (Scavia et al., 2014; 

15 2016), we focus primarily on phosphorus loading. 

16 Annual average loads. The DT and the Thames (UT and LT) sub-watershed loads were 

17 similar and together contribute >60% of the TP and >70% of the DRP loads on an average 

18 annual basis (Table 6). However, about 90% of TP and DRP load from the DT sub-watershed 

19 came from point sources, mainly one waste water treatment plant, whereas about 90% of the load 

20 from the Thames comes from agriculture.  Despite being mainly urban, the CL sub-watershed 

21 load came primarily from non-point source runoff, with combined urban and agricultural non-

22 point sources accounting for 83% and 68% of Clinton’s TP and DRP loads, respectively. 

23 Moreover, urban non-point source accounts for about 68% and 75% of CL’s total non-point 

24 source TP and DRP loads, respectively. Phosphorus loads from the SY, the most agriculturally 

25 intense sub-watershed, accounted for 13% of the overall watershed’s TP and DRP loads. Among 

26 the six sub-watersheds, the SC delivered the lowest loads (10% and 5% of TP and DRP, 

27 respectively).  The smaller sub-watersheds (Essex and Lake St. Clair; Figure 1) contributed 4.4% 

28 and 0.8% of TP, and 2.5% and 0.5% of DRP loads, respectively. Even though the Essex region 

29 sub-watershed area was about twice that of the Lake St. Clair sub-watershed, it delivered about 

30 five times the phosphorus load due to extensive agriculture and densely tiled soils. 
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1 DRP represented 42% of the TP load overall; however, it was 52% of the point sources 

2 and 37% of the non-point source TP load. While this variation in the DRP/TP ratio did not seem 

3 to be correlated with the composition of LULC, there were clear differences among different 

4 sources.  The DRP fraction from US non-point sources was much lower than from Canadian 

5 non-point sources, likely due to extensive tile drainage in the Canadian portion. In contrast, US 

6 point sources had higher DRP fractions.

7 Our annual average TP load estimates were similar to the WRTDS-based averages 

8 reported by Scavia et al. (2019) because our model was calibrated to WRTDS estimates (Figure 

9 8). Our estimates were also similar to Maccoux et al. (2016) for the CR and BR, somewhat 

10 higher for the SR and TR, but considerably lower for the RR. Maccoux et al. (2016) and we used 

11 the same water quality monitoring station for the Rouge River (Figure 1), but Maccoux et al. 

12 considered the drainage area for the station to be 565 km2 whereas the actual drainage area for 

13 the station was 1,200 km2 (USGS, 

14 https://waterdata.usgs.gov/nwis/nwismap/?site_no=04168550&agency_cd=USGS). Hence 

15 Maccoux et al.’s TP estimations for RR were overestimated because they overestimated 

16 unmonitored loads. Our annual average DRP load estimates showed similar discrepancies with 

17 Maccoux et al. (2016).  Our estimate was much lower for the RR and much higher for the TR 

18 (Figure 11). Other discrepancies among the three studies could be due to the lack of more 

19 frequent water quality sample data, inherent differences in structure and assumptions of different 

20 estimation techniques, and span of years considered for the studies.  For example, Maccoux et al. 

21 (2016) estimates for 2003-2013 used the Stratified Beale’s Ratio Estimator (Beale, 1962; Dolan 

22 et al., 1981), Scavia et al (2019) estimates for 1998-2016 used WRTDS, and our estimates for 

23 2001-2015 used SWAT. 

24  In our analysis, annual TP loads increased slightly for all but CR between 2001 and 2009 

25 and then decreased through 2015, with the trends more obvious for rivers in the agriculture 

26 dominated areas: SR, TR, and BR (Figure S3). On average between 2001 and 2009, TP increased 

27 by 24.7 MTA, 14.8 MTA, 4.1 MTA, and 1.6 MTA for TR, SR, Black, and RR, respectively. The 

28 decreases in TP between 2010 and 2015 were of 42.2 MTA, 23.7 MTA, 8.9 MTA, and 4.0 MTA, 

29 respectively.  DRP followed similar trends, especially for the three rivers in agricultural sub-

30 watersheds, but to a lesser degree than TP, with DRP increases of 8.6 MTA, 4.4 MTA, 1.1 MTA 

31 and 0.8 MTA, and decreases of 20.0 MTA, 9.7 MTA, 2.5 MTA, and 1.1 MTA for the same time 
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1 intervals and river orders. Similar trends have been reported for the Maumee River (Baker et al. 

2 2014), another major P contributor to Lake Erie.  In most cases, these trends were reflecting 

3 changes in flow (Figure S3) but flow alone could not explain the trend for the TR and SR where 

4 flow was relatively constant between 2001 and 2005. It appears, in those cases, agricultural 

5 practices that provide access to more nutrient (e.g., high fertilizer applications) and facilitate 

6 nutrient movement into streams (e.g., tile drainage systems) are also responsible for these trends.

7 Spatial distribution of yields - Sub-watershed scale. Examining sub-watershed and 

8 HRU yields provide information potentially useful for targeting management actions to the 

9 highest source areas.  While the average annual TP loads from the DT and Thames sub-

10 watersheds were similar (Table 6), TP yields (3.43 kg /ha and 0.90 kg /ha, respectively) and DRP 

11 yields (1.80 kg /ha and 0.43 kg /ha, respectively) differ considerably due to the difference in 

12 drainage areas. In addition, the Thames delivered much more phosphorus from non-point sources 

13 (0.81 kg TP/ha and 0.38 kg DRP/ha) than the DT sub-watershed (0.35 kg TP/ha and 0.19 kg 

14 DRP/ha) (Figure 9). The Thames and CL sub-watersheds had similar overall TP yields; however, 

15 DRP yield was higher for the Thames. The SY and SC sub-watersheds had comparable TP yields 

16 but the SY produces much higher DRP per hectare. Overall, the TP yield from the US was about 

17 60% higher than that from Canada. However, Canadian non-point source TP and DRP yields 

18 were 40% and 140% higher than the US, and the US point source yields were 9 times and 10 

19 times higher than Canada for TP and DRP, respectively. 

20 These sub-watershed-specific yields of total, point, and non-point sources (Figure 9) can 

21 be useful for developing load reduction strategies. For example, while the overall TP yield from 

22 DT sub-watershed was about four times that of Thames; most of the yield from the DT sub-

23 watershed was from point sources. Comparing non-point source yields, on the other hand, 

24 showed the Thames sub-watershed yield was about twice that of the DT. Thus, in exploring 

25 management options at this scale, more attention should be placed on point sources in the DT 

26 sub-watershed and non-point source for agricultural areas of Thames sub-watershed.

27 Spatial distribution of non-point source yields – sub-basin and HRU scales. While 

28 evaluating yields at the sub-watershed scale was useful for higher-level strategies, assessments at 

29 sub-basin (24 km2) and HRU (field) scales enabled the potential targeting of management 

30 practices. Average HRU-level TP yields were 1.38, 1.10, 0.78, 0.53, 0.96, and 0.63 kg/ha for UT, 

31 LT, SY, DT, CL and SC sub-watersheds respectively.  Average DRP yields are 0.69, 0.50, 0.33, 
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1 0.36, 0.32, and 0.12 kg/ha, respectively. The median HRU-level yields for TP and DRP were 

2 lower than the average values (Figure 10). This indicated regional average values were skewed 

3 by very high yielding areas across the watershed which in turn implied the presence of a good 

4 opportunity to focus management practices on certain areas to reduce the majority of nutrient 

5 loading from the watershed.

6 Spatial patterns of non-point P yields at the HRU (field) and subbasin levels (Figure 11) 

7 provided further insight into potential areas of focus for non-point source reduction. High non-

8 point source DRP yields spread relatively evenly across the Canadian watershed; whereas some 

9 of the highest TP yields were found in the upper parts of SY and Thames sub-watersheds. DRP 

10 yields from the US sub-watersheds were distinctly lower than the Canadian counterparts; 

11 however, certain non-agricultural areas in the US (lower parts of SC, upper parts of CL and some 

12 places in Detroit sub-watershed) appeared to have high yields as well. The higher DRP yields 

13 from Canadian sub-watersheds could be attributed to higher tile drainage density, higher 

14 proportion of cropland, and higher fertilizer application rates. For example, inorganic P 

15 application rates ranged from 22.8 to 44.8 kg/ha, 7.8 to 24.4 kg/ha, and 7.4 to 13.7 kg/ha for 

16 corn, winter wheat and soybeans, respectively, in Canada.  These values were 5.9 to 10.9 kg/ha, 

17 5.7 to 10.1 kg/ha, and 4.8 to 7.8 kg/ha in the US. Similarly, manure application rates were higher 

18 in Canadian agricultural areas (see “Input Characterization” section). The Canadian tile drainage 

19 system was also about twice as dense as in the US (see “Management data layers” section). As a 

20 result, Canadian portions of the watershed had higher sources of DRP (inorganic fertilizer or 

21 manure) and a system that facilitates its movement (denser drainage tile system).

22 The distribution of P yields suggested US agricultural areas had relatively low TP and 

23 DRP yields. For example, while the northern part of the CL sub-watershed was agricultural, the 

24 higher P yields from that sub-watershed were actually from non-agricultural areas in the central 

25 and west portions of the sub-watershed. Similarly, yields from the agricultural areas in the 

26 northern part of the SC sub-watershed were smaller than those from the non-agricultural areas.  

27 Most of the high phosphorus yielding areas in CL, for example, were urban areas located in a 

28 relatively higher slope region of the sub-watershed. Moreover, the major point source 

29 contribution of the watershed came from the DT sub-watershed (Table 6). These underscored the 

30 need to focus on Canadian agricultural runoff reduction strategies and both US point source 

31 management and urban runoff reduction strategies.
32   333435
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1 CONCLUSION

2 We integrated and harmonized US and Canadian datasets, including crop rotations, 

3 fertilizer/manure applications, tillage practices, and tile drainage systems; structured a SWAT 

4 model at finer resolution (field-scale) than ever done before for a 19,000 km2 watershed; and 

5 calibrated and validated it at daily, monthly, and yearly time scales at six locations. While some 

6 input data (e.g., crop rotations) were constructed from a 30mx30m grid cell data, others (e.g., 

7 fertilizer application, tillage practice, manure generated, etc.) were available at county or 

8 provincial level. Hence, a great deal effort was invested in allocating model inputs from the 

9 lower spatial resolution to the field scale. Such distribution of model inputs not only improved 

10 model estimates at stream mouths but also provided more confidence in assessing flow and 

11 nutrient estimates at field level.

12 In most cases, a very good fit to flow measurements and good fit to water quality load 

13 estimates were achieved using manual and automatic calibration techniques at monthly time 

14 scales. It was evident from the calibration and validation processes that allowing some key 

15 parameters to vary across sub-watersheds improved model performance and the variations were 

16 consistent with different sub-watershed characteristics. 

17 Annual phosphorus loads increased between 2001 and 2009 and decreased afterwards, 

18 with the trend strongest in agricultural areas. Phosphorus yields were highest in Canadian 

19 agricultural areas and the US watershed was dominated by point sources, primarily from Great 

20 Lakes Water Authority treatment facility (Table 6 and Figure 8). Field-scale analysis used to 

21 identify areas within the Canadian agricultural and US urban landscapes with relatively high P 

22 yield from non-point sources point to where agricultural and urban management practices should 

23 be focused.

24 The main limitations of this study are the lack of some input data at the modeled scale 

25 and the relatively low number of water quality observations for calibration and validation. These 

26 limitations increased uncertainties in water quality calibration and validation results, and outputs 

27 at the field scale. More spatially explicit input data for nutrient inputs (fertilizer and manure 

28 application rates, soil nutrient content, etc.), agricultural practices (tillage, tile drainage, cover 

29 crop, filter strip in agricultural fields), and water quality observations would increase confidence 

30 of representations of nutrient and sediment estimates at both the field scale and stream mouths.
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1 SUPPORTING INFORMATION

2 Additional supporting information may be found online under the Supporting Information tab for 

3 this article: Tables and Figures showing detail model input characterizations, parameter estimations and 

4 result evaluations. 
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4 TABLES

5 Table 1: Relationship between Canadian versus SWAT major soil parameter names and units, 

6 and the changes made.

SWAT Soil Canadian Soil

Parameter Unit Parameter Unit
Comments Equations

SOL_ZMX mm max(LDEPTH) cm converted

SOL_Z mm LDEPTH cm converted
Unit conversions

SOL_AW

C

mmH2O/

mm soil
NA NA Calculated

SOL_AWC = 

KP1500-KP33

SOL_K mm/hr KSAT cm/hr Converted

ROCK
% total 

weight
COFRAG

% by 

volu

me

converted
Unit conversions

SOL_ALB fraction NA NA Calculated

SOL_ALB = 

0.4/(0.688*SOL_CB

N)

USLE_K

0.013 

(t.m2.hr)/ 

(m3.t.cm)

NA NA Calculated

Equation from SWAT 

I/O documentation 

(Arnold et al. 2012 

Page 307)

7 Notes: NA = parameter not available, SOL_ZMX=max(LDEPTH)= maximum rooting depth of soil, 

8 SOL_Z=LDEPTH=depth from soil surface, SOL_AWC=available water capacity of soil, SOL_K=KSAT=saturated 

9 hydraulic conductivity, ROCK=COFRAG=rock fragment content, SOL_ALB=moist soil albedo,  USLE_K=soil 

10 equation erodibility factor, SOL_CBN=organic carbon content of soil, KP1500=water retention at 1500 kP, KP33= 

11 water retention at 33 kP
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1 Table 2: Percentages of cropland area covered with the different types of crop rotations divided 

2 between US and Canada (C=corn, S=soybeans, W=winter wheat).

% cropland areaCrop

rotation Canada US Overall

CC 8.4 1.6 7.1

CS* 25.4 35.5 27.3

SS 13.5 13.1 13.4

CSW** 42.8 45.4 43.3

SW 0.4 0.3 0.4

SSW 9.5 4.1 8.5

Total 100.0 100.0 100.0

3 *Includes both CS and SC rotations

4 **Includes CSW or SWC or WCS rotations

5

6 Table 3: Percentages of agricultural area with tile drainage systems divided between US and 

7 Canada at sub-watershed level.

Tiled area
HUC8/Tertiary name

% total area % agricultural area

St. Clair (SC) 37 59

Clinton (CL) 8 46

Detroit (DR) 1 16

Lake St. Clair 5 29

U.S. total 18 55

Upper Thames (UT) 54 62

Lower Thames (LT) 49 55

Thames total 51 59

Sydenham (SY) 69 77

Essex 58 72

Canada total 58 67

Watershed total 42 64
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1 Table 4: Monthly flow estimation performance statistics for calibration (2007-2015) and 

2 validation (2001-2006) years (R2 = coefficient of determination, NSe = Nash-Sutcliffe 

3 efficiency, PBs = percent bias).

Monthly statistics for flow calibration(validation) period

Statistics

Upper 

Thames 

River 

(UTR)

Black River 

(BR)

Sydenham 

River 

(SR)

Clinton 

River 

(CR)

Lower 

Thames 

River 

(LTR)

Rouge 

Rover 

(RR)

R2 0.84(0.93) 0.72(0.76) 0.85(0.87) 0.63(0.80) 0.87(0.92) 0.71(0.78)

NSe 0.84(0.93) 0.72(0.76) 0.85(0.86) 0.53(0.75) 0.87(0.91) 0.70(0.75)

PBs 0.1(3.2) 9.2(-2.9) -1.2(8.4) -2.7(1.9) -2.7(5.4) -1.1(-8.5)

4

5 Table 5: Monthly water quality model performance statistics for calibration (2007-2015) and 

6 validation (2001-2006) years. PBs and NSe ratings: bold = “unsatisfactory”. 

Monthly statistics for water quality calibration(validation)

S
ta

ti
st

ic
s

Upper 

Thames
Black Sydenham Clinton

Lower 

Thames
Rouge

R2 0.54(0.63) 0.54(0.59) 0.75(0.68) 0.64(0.55) 0.62(0.75) 0.73(0.42)

TP NSe 0.48(0.59) 0.29(0.25) 0.73(0.62) 0.64(0.54) 0.59(0.70) 0.71(0.10)

PBs 22.6(9.7) -25.6(-29.1) 5.9(6.3) 5.6(4.8) 18.0(9.6) -5.0(-4.8)

R2 0.44(0.59) 0.48(0.50) 0.64(0.57) 0.57(0.51) 0.55(0.65) 0.71(0.49)

DRP NSe 0.42(0.52) 0.26(0.21) 0.53(0.52) 0.51(0.46) 0.52(0.58) 0.70(0.05)

PBs 27.8(12.1) -28.7(-35.2) -6.3(-8.2) 9.6(7.8) 21.5(10.9) 25.1(14.8)

R2 0.61(0.65) 0.52(0.55) 0.72(0.65) 0.55(0.54) 0.59(0.66) 0.64(0.53)

TN NSe 0.54(0.57) 0.27(0.32) 0.70(0.61) 0.54(0.52) 0.57(0.62) 0.61(0.40)

PBs 7.8(13.9) 36.4(42.9) 17.9(23.4) -15.8(-14.6) -8.0(8.6) -5.2(-11.4)

R2 0.55(0.52) 0.49(0.47) 0.56(0.52) 0.48(0.48) 0.58(0.66) 0.63(0.42)

NO3 NSe 0.53(0.49) 0.25(0.27) 0.54(0.47) 0.44(0.42) 0.53(0.55) 0.44(0.21)

PBs 15.6(14.2) -24.7(-31.1) 5.9(6.3) -27.3(-23.4) -3.0(13.6) -15.1(-24.8)

R2 0.66(0.77) 0.61(0.62) 0.73(0.67) 0.57(0.63) 0.67(0.70) 0.61(0.68)

TSS NSe 0.59(0.62) 0.49(0.52) 0.57(0.55) 0.47(0.57) 0.60(0.65) 0.58(0.60)

PBs -7.5(-2.9) -15.6(-9.9) 14.3(11.6) -16.5(-12.4) -12.0(-7.9) -14.0(-18.4)
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1 Note: TP = total phosphorus, DRP = dissolved reactive phosphorus, TN = total nitrogen, NO3 = nitrate, TSS = total 

2 suspended sediment, R2 = coefficient of determination, NSe = Nash-Sutcliffe efficiency, PBs = percent bias)

3

4 Table 6: Average annual total phosphorus (TP) and dissolved reactive phosphorus (DRP) loads 

5 in MTA (metric ton per annum) from both point sources (PS) and non-point sources (NPS) for 

6 each sub-watershed.

Total PS Total NPS Total Load
HUC8/Tertiary 

watershed name
TP DRP TP DRP TP DRP

Drainage 

Area 

(km2)

St. Clair 28 15 150 21 177 36 3025

Clinton 33 18 158 39 191 57 1969

Detroit 492 257 55 30 547 287 1594

Lake St. Clair 5 3 9 1 14 4 575

U.S. Total 558 293 372 91 929 384 7163

Sydenham 26 12 201 83 227 95 3508

Thames 51 24 472 224 523 248 5827

Essex 6 3 71 16 77 19 1098

Canada Total 83 39 744 323 827 362 10433

Watershed Total* 641 332 1116 414 1756 746 17596

7 *This does not include Lake St. Clair and other small unaccounted areas along St. Clair and Detroit connecting 

8 channels.

9 LIST OF TABLES

10 Figure 1: Study area with geographic location and weather stations (top-left), land use/land 

11 cover and sub-watershed boundaries (bottom-left), soil and county boundaries (bottom-right) 

12 and DEM and calibration locations (top-right) information. The channel which connects Lake 

13 Huron to Lake St. Clair is St. Clair River, and Lake St. Clair to Lake Erie is Detroit River. 

14 Water flows from Lake Huron to Lake Erie through Lake St. Clair.

15 Figure 2: Subbasins and hydrologic response units (HRUs) along with point source locations in 

16 the watershed.
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1 Figure 3: HRU-level agricultural management practice model inputs (C=Corn, S=Soybeans, 

2 W=Winter wheat, Cv=Conventional tillage, Cs=Conservation tillage, NT=No-till).

3 Figure 4: Estimated distribution of tillage practices in US and Canadian parts of the SCDRS 

4 watershed (Cont. Cv=Continuous conventional, Cont. Cs=Continuous conservation, Cont. 

5 NT= Continuous No-Till, Alter. = Alternating).

6 Figure 5: Estimated relationship between tillage practices and crop rotations (C=Corn, 

7 S=Soybeans, W=Winter wheat, Cont. Cv=Continuous conventional, Cont. Cs=Continuous 

8 conservation, Cont. NT= Continuous No-Till, Alter. = Alternating).

9 Figure 6: Monthly observed and estimated flow time series at each major sub-watershed outlet 

10 locations for both calibration (2007-2015) and validation years (2001-2006).

11 Figure 7: Monthly observed and estimated total phosphorus (TP) time series at the six major 

12 sub-watershed outlet locations for both calibration (2007-2015) and validation (2001-2006) 

13 periods.

14 Figure 8: Comparisons of average annual phosphorus load estimations of total phosphorus (TP, 

15 Top), and dissolved reactive phosphorus (DRP, bottom), for each major sub-watershed. The 

16 Detroit sub-watershed loads in this figure do not include the GLWA’s (Great Lakes Water 

17 Authority) waste water treatment point source loads.

18 Figure 9: Average non-point (left) and point source (right) total phosphorus (TP) and dissolved 

19 reactive phosphorus (DRP) yields at the outlet of each sub-watershed (dashed horizontal line 

20 shows watershed average values). 

21 Figure 10: Distributions of HRU-level non-point source total phosphorus (TP) and dissolved 

22 reactive phosphorus (DRP) yields for each sub-watershed. Dots indicate average yield 

23 values.

24 Figure 11: a) HRU-level (top) and subbasin-level (bottom) distributions of non-point source 

25 total phosphorus (TP, left) and dissolved reactive phosphorus (DRP, right) yields.
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