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ABSTRACT 

Problem: Preterm birth is commonly preceded by preterm labor, a syndrome that is 

causally linked to both intra-amniotic infection and intra-amniotic inflammation. 

However, the stereotypical cellular immune responses in these two clinical conditions 

are poorly understood.

Method of Study: Amniotic fluid samples (n = 26) were collected from women 

diagnosed with preterm labor and intra-amniotic infection (amniotic fluid IL-6 

concentrations ≥ 2.6 ng/mL and culturable microorganisms, n = 10) or intra-amniotic 

inflammation (amniotic fluid IL-6 concentrations ≥ 2.6 ng/mL without culturable 

microorganisms, n = 16). Flow cytometry was performed to evaluate the phenotype and 

number of amniotic fluid leukocytes. Amniotic fluid concentrations of classical pro-

inflammatory cytokines, type 1 and type 2 cytokines, and T-cell chemokines were 

determined using immunoassays.

Results: Women with spontaneous preterm labor and intra-amniotic infection had: 1) a 

greater number of total leukocytes including neutrophils and monocytes/macrophages in 

amniotic fluid, 2) a higher number of total T cells and CD4+ T cells, but not CD8+ T cells 

or B cells, in amniotic fluid, and 3) increased amniotic fluid concentrations of IL-6, IL-1β, 

and IL-10, compared to those with intra-amniotic inflammation. However, no differences 

in amniotic fluid concentrations of T-cell cytokines and chemokines were observed 

between these two clinical conditions. 

Conclusions: The cellular immune responses observed in women with preterm labor 

and intra-amniotic infection are more severe than in those with intra-amniotic 

inflammation, and neutrophils, monocyte/macrophages, and CD4+ T cells are the main 

immune cells responding to microorganisms invading the amniotic cavity. These 

findings provide insights into the intra-amniotic immune mechanisms underlying the 

human syndrome of preterm labor.
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INTRODUCTION

Preterm birth remains one of the most common obstetrical syndromes today, and 

is a primary cause of perinatal morbidity and mortality worldwide1-5. On average, two-

thirds of all preterm births are preceded by spontaneous preterm labor6, a syndrome of 

multiple etiologies7. Of all the proposed causes of preterm labor, intra-amniotic 

inflammation/infection has been causally linked to preterm birth8-17. Intra-amniotic 

inflammation can result from microbial invasion of the amniotic cavity, which is referred 

to as intra-amniotic infection9,10,12,18-29. Yet, inflammation in the amniotic cavity can also 

occur in the absence of culturable microorganisms, which is simply known as intra-

amniotic inflammation16,27,30. More recently, we showed that a subset of patients with 

preterm labor and intra-amniotic inflammation do not have detectable bacteria using 

molecular microbiology techniques, which we termed sterile intra-amniotic 

inflammation31-34. This condition is associated with elevated concentrations of 

endogenous danger signals or alarmins (molecules released upon cellular stress or 

damage35-37) in amniotic fluid38-43 and, although of interest, it is not yet a clinical 

diagnosis since the use of molecular microbiological techniques is not common practice 

in obstetrics. Therefore, patients with preterm labor are either diagnosed with intra-

amniotic infection or intra-amniotic inflammation. Although both clinical conditions are 

associated with preterm labor and adverse neonatal outcomes32,44, their management is 

different (intra-amniotic infection is treated with antibiotics45), and only intra-amniotic 

infection is linked to maternal morbidity and mortality46. Therefore, elucidating the 

stereotypical immune responses in intra-amniotic infection and intra-amniotic 

inflammation is essential for understanding these clinical conditions. 

Flow cytometry has emerged as a cutting-edge technique for the evaluation of 

immune cells in small volumes of biological fluids such as cerebrospinal fluid47,48, 

urine49-51, ascitic fluid52, and sputum53 in the clinical setting. Indeed, flow cytometry has 

been utilized to identify specific immune cell types, as well as their expressed 
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mediators, in amniotic fluid of women with intra-amniotic inflammation/infection and 

clinical chorioamnionitis at term54,55. This technique also allowed for the identification of 

the newly described innate lymphoid cells in the amniotic cavity of women during the 

second trimester55,56. Herein, we utilized flow cytometry to characterize the cellular 

immune responses in the amniotic cavity of women diagnosed with preterm labor and 

intra-amniotic infection or intra-amniotic inflammation.

MATERIALS AND METHODS

Study population and characteristics

This was a cross-sectional study including patients who underwent 

transabdominal amniocentesis due to clinical indications. The collection of samples was 

approved by the Institutional Review Boards of the Detroit Medical Center (Detroit, MI, 

USA), Wayne State University, and the Perinatology Research Branch, an intramural 

program of the Eunice Kennedy Shriver National Institutes of Health, U.S. Department 

of Health and Human Services (NICHD/NIH/DHHS). All women provided written 

informed consent prior to the collection of amniotic fluid. This study included 26 amniotic 

fluid samples (collected from 2013 to 2016) from women classified into the following 

groups: 1) women with spontaneous preterm labor who delivered preterm with intra-

amniotic inflammation (n = 16) and 2) women with spontaneous preterm labor who 

delivered preterm with intra-amniotic infection (n = 10) (see diagnostic criteria below). 

For all patients who delivered preterm, the time between the collection of the amniotic 

fluid sample and delivery was ≤ 7 days. Demographic and clinical characteristics of the 

study population are shown in Table 1.

Clinical Definitions

Gestational age was determined by the date of the last menstrual period and 

confirmed by ultrasound examination. The gestational age derived from sonographic 

fetal biometry was used if the estimation was inconsistent with menstrual dating. 

Spontaneous preterm labor was diagnosed by the presence of regular uterine 

contractions (at least two contractions every ten minutes) associated with cervical 
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changes in patients < 37 weeks of gestation. Microbial invasion of the amniotic cavity 

(MIAC) was defined as a positive amniotic fluid culture, including genital 

mycoplasmas9,10,22,57,58. Intra-amniotic inflammation was defined as an amniotic fluid IL-

6 concentration ≥ 2.6 ng/mL27,59-62 in the absence of culturable bacteria63-65. Intra-

amniotic infection was defined as the presence of MIAC together with intra-amniotic 

inflammation31-33,66-75.

Placental histopathological examination

Placentas were examined histologically by perinatal pathologists blinded to 

clinical diagnoses and obstetrical outcomes according to standardized Perinatology 

Research Branch protocols76,77. Briefly, three to nine sections of the placenta were 

examined, and at least one full-thickness section was taken from the center of the 

placenta; others were taken randomly from the placental disc. Acute inflammatory 

lesions of the placenta (maternal inflammatory response and fetal inflammatory 

response) were diagnosed according to established criteria, including staging and 

grading76,78. The proportions of patients whose placentas presented acute maternal 

and/or fetal inflammatory responses are displayed in Table 1.

Amniotic fluid sample collection

Amniotic fluid samples were obtained by transabdominal amniocentesis under 

antiseptic conditions and monitored by ultrasound in order to detect intra-amniotic 

inflammation and/or infection in patients with preterm labor. Samples of amniotic fluid 

were transported to the laboratory in a sterile capped syringe and immunophenotyping 

was performed immediately. The rest of the sample was centrifuged at 1,300 x g for 10 

min at 4°C, and the supernatant was stored at −80°C until use. Also, an aliquot of 

amniotic fluid was transported to the clinical laboratory for culture of aerobic/anaerobic 

bacteria and genital mycoplasmas. The clinical tests also included the determination of 

amniotic fluid white blood cell count79, Gram stain examination80, glucose 

concentration81, and IL‐6 concentration27.
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Determination of IL-6 in amniotic fluid 

Amniotic fluid concentrations of IL‐6 were determined by using a sensitive and 

specific enzyme immunoassay obtained from R&D Systems (Minneapolis, MN). The 

IL‐6 concentrations were determined by interpolation from the standard curve. The inter‐ 
and intra‐assay coefficients of variation for IL‐6 were 8.7% and 4.6%, respectively. The 

detection limit of the IL‐6 assay was 0.09 pg/mL. The IL‐6 concentrations in amniotic 

fluid were determined for clinical purposes.

Immunophenotyping by flow cytometry

Amniotic fluid samples (0.5-1 mL) were centrifuged at 300 x g for 5 minutes at 

room temperature. The resulting amniotic fluid pellet was re-suspended in 1 mL of 1X 

phosphate-buffered saline (PBS) (Life Technologies, Grand Island, NY, USA) and 

stained with the BD Horizon Fixable Viability Stain 510 dye (BD Biosciences, San Jose, 

CA, USA). Cells were washed in 1X PBS and incubated with 20 μL of human FcR 

blocking reagent (Miltenyi Biotec, San Diego, CA, USA) in 80 μL of stain buffer (BD 

Biosciences) for 10 min at 4°C. Next, cells were incubated with extracellular 

fluorochrome-conjugated anti-human monoclonal antibodies for 30 min at 4°C in the 

dark (Supplementary Table 1). Stained cells were then washed with 1X PBS, re-

suspended in 0.5 mL of stain buffer, and acquired using the BD LSR II or LSRFortessa 

Flow Cytometer (BD Bioscience) and BD FACSDiva 6.0 software (BD Bioscience). The 

analysis was performed and the figures were generated using the FlowJo version 10 

software (FlowJo, Ashland, OR, USA). The absolute number of cells was determined 

using CountBright absolute counting beads (Molecular Probes, Eugene, OR, USA).

Amniotic fluid cytokine/chemokine concentrations

Amniotic fluid samples were assessed using the V-PLEX Proinflammatory Panel 

1 kit (Meso Scale Discovery, Rockville, MD, USA) to measure amniotic fluid 

concentrations of IFNγ, TNFα, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and IL-13, 

according to the manufacturer’s instructions. Plates were read using the SECTOR 2400 

Imager (Meso Scale Discovery). Standard curves were generated and the assay values 
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of the samples were interpolated from the curves. The detection limits of the assays 

were 0.37 pg/mL (IFNγ), 0.04 pg/mL (TNFα), 0.05 pg/mL (IL-1β), 0.09 pg/mL (IL-2), 

0.02 pg/mL (IL-4), 0.06 pg/mL (IL-6), 0.07 pg/mL (IL-8), 0.04 pg/mL (IL-10), 0.11 pg/mL 

(IL-12p70), and 0.24 pg/mL (IL-13). Inter-assay and intra-assay coefficients of variation 

were less than 10.5%.

Amniotic fluid concentrations of CXCL10 (Cat#DIP100, R&D Systems, 

Minneapolis, MN, USA) and CXCL11 (Cat#K151UWK-1, Meso Scale Discovery) were 

determined using individual sensitive and specific immunoassays, according to the 

manufacturer’s instructions. The concentrations of CXCL10 and CXCL11 were 

determined by interpolation from the standard curve. The detection limits of the assays 

were 1.67 pg/mL (CXCL10) and 1.5 pg/mL (CXCL11). The inter-assay and intra-assay 

coefficients of variation were less than 9.8% for CXCL10 and less than 16.8% for 

CXCL11.

Statistical analysis 

Statistical analyses were conducted using SPSS software version 19.0 (IBM 

Corporation, Armonk, NY, USA). For patient demographics, the Mann-Whitney U-test 

was performed for continuous variables and the Fisher’s exact test for nominal 

variables. The Mann-Whitney U-test was also performed when comparing cell numbers 

and cytokine/chemokine concentrations between study groups. A p‐value < 0.05 was 

considered statistically significant.

RESULTS

Characteristics of the study population

The demographic and clinical characteristics of the study population are shown in 

Table 1. A total of 26 amniotic fluid samples were collected from women who underwent 

spontaneous preterm labor and birth either with intra-amniotic infection (n = 10) or intra-

amniotic inflammation (n = 16). Amniotic fluid concentrations of IL-6 and white blood cell 

counts were higher in women with preterm labor and intra-amniotic infection compared 

to those with intra-amniotic inflammation (Table 1). Glucose concentrations tended to be 

lower in women with intra-amniotic infection compared to those with intra-amniotic 
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inflammation (Table 1). Both women with intra-amniotic inflammation and those with 

intra-amniotic infection presented acute maternal and fetal inflammatory responses in 

the placenta (Table 1). The following microorganisms were detected in women 

diagnosed with intra-amniotic infection: Ureaplasma urealyticum, Mycoplasma hominis, 

Fusobacterium spp., Candida spp., Gardnerella vaginalis, Peptostreptococcus, 

Streptococcus serogroup C, and Enterococcus faecalis. 

Leukocyte populations in amniotic fluid of women with preterm labor and intra-

amniotic inflammation or intra-amniotic infection

Figures 1A&C show representative images of the flow cytometry gating strategy 

used to detect leukocytes in amniotic fluid from women with preterm labor and intra-

amniotic inflammation (Figure 1A) or intra-amniotic infection (Figure 1C). 

Representative t-SNE plots illustrate the amniotic fluid leukocyte populations found in 

the two study groups (Figures 1B&D). Notably, more women with preterm labor and 

intra-amniotic infection (80%) displayed a high proportion of neutrophils and 

monocytes/macrophages in amniotic fluid compared to those with intra-amniotic 

inflammation without detectable microorganisms (50%) (Figure 1D vs. 1B). Indeed, the 

abundant neutrophils and monocytes/macrophages in amniotic fluid of women with 

intra-amniotic infection masked the other immune cell types (e.g. T cells and B cells) 

that are clearly identified in women with intra-amniotic inflammation (Figure 1D vs. 1B).

We then quantified the numbers of total leukocytes in amniotic fluid from the two 

study groups. Women with preterm labor and intra-amniotic infection had greater total 

numbers of leukocytes in amniotic fluid compared to those with intra-amniotic 

inflammation (Figure 2A). Quantification of neutrophils (CD15+ leukocytes) and 

monocytes/macrophages (CD14+ leukocytes) in amniotic fluid showed that the numbers 

of these innate immune cells were greater in women with intra-amniotic infection 

compared to those with intra-amniotic inflammation (Figure 2B&C), mirroring the relative 

differences observed between the t-SNE plots in Figure 1.

We previously demonstrated that adaptive immune cells (i.e. T cells and B cells) 

are also present in amniotic fluid during normal pregnancy55. Therefore, we then 
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determined whether the numbers of such cells were altered in amniotic fluid from our 

two study groups. We found that the total T-cell population (CD3+ leukocytes) as well as 

CD4+ T cells were significantly increased in women with preterm labor and intra-

amniotic infection compared to those with intra-amniotic inflammation (Figures 3A&B). 

The numbers of CD8+ T cells were also higher in women with preterm labor and intra-

amniotic infection compared to those with intra-amniotic inflammation, although this was 

not significant (Figure 3C). Lastly, we determined the numbers of B cells (CD19+ 

leukocytes) and found no statistical differences between the two study groups (Figure 

3D).

Together, these results indicate that total leukocytes, as well as specific 

leukocyte subsets, namely neutrophils, monocytes/macrophages, and CD4+ T cells, are 

increased in amniotic fluid of women with preterm labor and intra-amniotic infection 

compared to women with preterm labor and intra-amniotic inflammation. 

Cytokine and chemokine concentrations in amniotic fluid of women with preterm 

labor and intra-amniotic inflammation or intra-amniotic infection

Next, we investigated whether the increased numbers of amniotic fluid 

leukocytes in women with preterm labor and intra-amniotic infection were associated 

with an increase in cytokine concentrations. We found that the concentrations of the 

pro-inflammatory cytokines IL-6 and IL-1β were both significantly elevated in amniotic 

fluid of women with preterm labor and intra-amniotic infection compared to those with 

intra-amniotic inflammation (Figures 4A&B). In contrast, concentrations of IL-8 and IL-

12p70 were not significantly different between women with preterm labor and intra-

amniotic infection and those with intra-amniotic inflammation (Figures 4C&D).

Since the numbers of amniotic fluid total T cells and CD4+ T cells were increased 

in women with intra-amniotic infection, the concentrations of type 1 and 2 cytokines, as 

well as T-cell chemokines, were determined. The type 1 cytokines IL-2, IFNγ, and TNFα 

were not significantly different between women with intra-amniotic infection and those 

with intra-amniotic inflammation (Figures 5A-C). While IL-4 and IL-13 did not change, 

the amniotic fluid concentration of the type 2 cytokine IL-10 tended to increase in 
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women with intra-amniotic infection compared to those with intra-amniotic inflammation 

(Figures 5D-F). No differences were observed in amniotic fluid concentrations of the T-

cell chemokines CXCL10 and CXCL11 between the study groups (Figures 5G&H).

DISCUSSION 

Principal Findings

Herein, we report that women with spontaneous preterm labor and intra-amniotic 

infection had: 1) a greater number of total leukocytes including neutrophils and 

monocytes/macrophages in amniotic fluid, 2) a higher number of total T cells and CD4+ 

T cells, but not CD8+ T cells or B cells, in amniotic fluid, and 3) increased amniotic fluid 

concentrations of IL-6, IL-1β, and IL-10, compared to those with intra-amniotic 

inflammation. However, no differences in amniotic fluid concentrations of T-cell 

cytokines and chemokines were observed between these two clinical conditions. 

Collectively, these results indicate that the cellular immune responses observed in 

women with preterm labor and intra-amniotic infection are more severe than in those 

with intra-amniotic inflammation, and are characterized by an increased number of 

neutrophils, monocyte/macrophages, and CD4+ T cells. 

Amniotic fluid neutrophils in women with preterm labor and intra-amniotic 

infection or intra-amniotic inflammation

It is well known that neutrophils are the most abundant immune cell type in the 

amniotic cavity of women with intra-amniotic infection and/or inflammation54,79,82,83. Yet, 

whether the number of amniotic fluid neutrophils is different between intra-amniotic 

inflammatory processes with and without culturable microorganisms has until now not 

been shown. Herein, we showed that the number of amniotic fluid neutrophils is higher 

in women with preterm labor and intra-amniotic infection than in those with intra-

amniotic inflammation without culturable microorganisms, indicating that different 

thresholds in the number of these immune cells may allow for the differentiation of these 

two clinical conditions. 
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In women with preterm labor and intra-amniotic infection, as well as in other 

pathogen-mediated immune responses84,85, neutrophils participate in the main 

mechanisms of microbial killing: degranulation, phagocytosis, and neutrophil 

extracellular trap (NET) formation. For example, amniotic fluid neutrophils can produce 

reactive oxygen species86 and release anti-microbial molecules such as alpha-

defensins87-90, myeloperoxidase29,90,91, cathepsin G90,92, elastase90,93,94, lactoferrin95,  

pentraxin-396, and cathelicidin29,90, all of which are found in the intra-amniotic space. 

Amniotic fluid neutrophils of fetal or maternal origin83 can also actively participate in 

killing microbes invading the amniotic cavity by performing phagocytosis97 and forming 

NETs98. Indeed, NETs are also formed by maternal neutrophils invading the amniotic 

cavity98 and chorioamniotic membranes99,100 in cases with intra-amniotic infection. 

Besides killing microbes, amniotic fluid neutrophils can release pro-inflammatory 

cytokines such as interleukin (IL)-8, tumor necrosis factor (TNF)-α, macrophage 

inflammatory protein (MIP)-1α, MIP-1β, IL-1α, and IL-1β into the intra-amniotic space in 

cases with MIAC and clinical chorioamnionitis at term54. These cytokines have been 

implicated in the pathogenesis of preterm labor in the context of intra-amniotic 

infection38,39,43,82,101-110. Specifically, IL-1β is a central mediator in the pathogenesis of 

preterm labor since the systemic111,112 and intra-amniotic11,113-119 administration of this 

cytokine in pregnant animals induces preterm birth. The mechanisms whereby IL-1β 

induces preterm labor and birth, in the context of intra-amniotic infection, involve the 

Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Pyrin Domain 

Containing 3 (NLRP3) inflammasome, an intracellular multi-protein complex that can be 

activated in the fetal membranes by microbial products in mice (e.g. lipopolysaccharide; 

LPS)120. Consistently, women with preterm labor and acute histologic chorioamnionitis 

(a placental lesion associated with intra-amniotic infection121-123) also display 

inflammasome activation in the amniotic fluid34 and chorioamniotic membranes124. 

Together, these data indicate that amniotic fluid neutrophils participate in both the host 

defense and inflammatory mechanisms implicated in the pathogenesis of preterm labor 

and birth in women with intra-amniotic infection.      
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Women with intra-amniotic inflammation also had neutrophils in their amniotic 

fluid; however, the numbers were lower than in those with intra-amniotic infection. This 

finding suggests that the mechanisms of inflammation occurring in women without 

culturable microorganisms in amniotic fluid are distinct from and less severe than in 

those with intra-amniotic infection. One possibility is that a subset of women who 

underwent preterm labor with intra-amniotic inflammation had elevated amniotic fluid 

concentrations of alarmins43 (e.g. IL-1α39, HMGB142,125, HSP7041, and S100B40), 

referred to as sterile intra-amniotic inflammation32-34. Human studies have provided 

evidence that preterm labor with sterile intra-amniotic inflammation is less severe than 

preterm labor with microbial-induced intra-amniotic inflammation34,43,126. Indeed, only 

~50% of pregnant mice intra-amniotically injected with physiologically-relevant 

concentrations of alarmins undergo preterm birth127,128, whereas almost all of those 

injected with a microbial product (LPS) deliver preterm129,130. The mechanisms whereby 

alarmins induced preterm labor and birth also involved the NLRP3 inflammasome128,131; 

yet, these will be discussed below since sterile inflammation is mainly mediated by 

monocytes/macrophages132,133. Taken together, these data consistently show that 

women with preterm labor and intra-amniotic inflammation without culturable 

microorganisms had a milder intra-amniotic inflammatory response, including a lower 

number of amniotic fluid neutrophils, than those with intra-amniotic infection.  

It is worth mentioning that women with preterm labor and intra-amniotic 

inflammation may have been infected by non-culturable microorganisms. 

Microorganisms such as Sneathia spp.31,33,134, Neisseria spp.33,134, and Fusobacterium 

nucleatum31,135 have proven difficult to culture from amniotic fluid using traditional 

clinical methods. However, whether such non-culturable microorganisms can lead to a 

stronger intra-amniotic inflammatory response than that mediated by alarmins requires 

further investigation. 

Amniotic fluid monocytes/macrophages in women with preterm labor and intra-

amniotic infection or intra-amniotic inflammation
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We also demonstrated that the number of monocytes/macrophages is increased 

in women with preterm labor and intra-amniotic infection compared to those with intra-

amniotic inflammation. Monocytes/macrophages are commonly found together with 

neutrophils in amniotic fluid of women with intra-amniotic infection and/or 

inflammation54,79. Since neutrophils typically represent the dominant immune cell 

population in such women54,79, the functions of monocytes/macrophages in the context 

of intra-amniotic infection or inflammation have been less investigated. 

Monocytes are chemoattracted to sites of inflammation, where they attain one of 

several different activation states depending on the microenvironment136. Stimulation of 

innate sensors such as Toll-like receptors through detection of bacterial products 

activates the production of reactive oxygen species and pro-inflammatory cytokines 

such as TNFα, IL-1β, and IL-12 by monocytes136, which are mediators found in amniotic 

fluid of women with preterm labor and intra-amniotic infection38,39,54,105-107,137. A recent 

study demonstrated that placental macrophages can respond to microbes by releasing 

extracellular traps (METs)138, suggesting that monocytes/macrophages in the amniotic 

cavity may have other functions in addition to cytokine release. Yet, the question of 

whether amniotic fluid monocytes/macrophages are predominantly of maternal or fetal 

origin, especially in the context of intra-amniotic infection, remains unanswered.

Monocytes/macrophages were present, albeit in lesser numbers, in amniotic fluid 

of women with preterm labor and intra-amniotic inflammation, providing further 

confirmation that intra-amniotic inflammation is less severe in the absence of culturable 

microorganisms34,43,126. In tissues, resident macrophages act as sentinels, orchestrating 

the clearance of damaged cells in order to maintain homeostasis139.  This sentinel-like 

function relies, in part, on the variety of pattern recognition receptors (e.g. Toll-like 

receptors) and cytosolic receptors (e.g. NLRP3) expressed by macrophages 140-142. 

Macrophages are therefore considered to be the first to detect danger signals or 

alarmins released by damaged cells133. This concept was demonstrated by a murine 

study showing that sterile inflammation in response to cell death is driven by 

macrophages through the release of IL-1α and IL-1β132. Moreover, neutrophilic influx to 

the site of injury was dependent on macrophage-released cytokines, as deficient mice 
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lacked such infiltration132. These findings provide a model in which macrophages are 

the initiators of sterile inflammation that is followed by neutrophil recruitment133. 

Similarly, amniotic fluid monocytes/macrophages may be acting as sentinels, 

responding to alarmins released by placental/fetal tissues143 which, in turn, will induce 

pro-inflammatory immune responses and recruit more immune cells (e.g. neutrophils) 

into the amniotic cavity (i.e. sterile intra-amniotic inflammation). Yet, further research is 

required to test this hypothesis. In support of this concept, it has been shown that 

surfactant protein A released by the fetal lung can trigger migration and IL-1β secretion 

by amniotic fluid macrophages in mice144,145. 

The molecular mechanisms of sterile inflammation in the amniotic cavity32-34 are 

thought to involve the NLRP3 inflammasome128,131. Inflammasome complexes assemble 

to provide a scaffold for activation of caspase-1146-164, which in turn cleaves pro-IL-1β 

and pro-IL-18 into their mature and active forms165-173. Inflammasome activation can 

result in an inflammatory type of cell death, referred to as pyroptosis174-177, in which the 

molecule gasdermin D forms pores in the host cell membrane175,178-181 allowing for the 

release of cytosolic proteins such as IL-1β167,170. Pyroptosis was originally described in 

macrophages174,175,182, and we recently demonstrated that the effector molecule of 

pyroptosis, gasdermin D, is present in amniotic fluid of women with preterm labor and 

sterile intra-amniotic inflammation126. Herein, we propose that amniotic fluid 

monocytes/macrophages undergo inflammasome-mediated pyroptosis, a potential 

mechanism for sterile intra-amniotic inflammation in women with preterm labor. 

Collectively, these findings indicate that amniotic fluid monocytes/macrophages 

play different roles in subsets of women with preterm labor: while cytokine release and 

MET formation are central for intra-amniotic infection, inflammasome-mediated 

pyroptosis occurs in the setting of sterile intra-amniotic inflammation.

Amniotic fluid CD4+ T cells in women with preterm labor and intra-amniotic 

infection or intra-amniotic inflammation

In the current study, we found that CD4+ T cells, but not CD8+ T cells, are 

increased in women with preterm labor and intra-amniotic infection compared to those 
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with intra-amniotic inflammation. This is consistent with our previous report showing that 

T cells are one of the dominant immune cell populations present in the amniotic fluid of 

women in preterm gestation55. These adaptive cells are likely derived from the fetus 

since amniotic fluid neutrophils in preterm gestation are predominantly of fetal origin83; 

however, their origin has yet to be elucidated. Our findings are in line with previous 

reports showing that fetal immune activation occurs in preterm labor183,184 and that a 

population of central memory CD4+ T cells is increased in the cord blood of preterm 

neonates born to women with preterm labor185. Such a fetal T-cell response could be 

initiated by in utero exposure to pathogens186-188 and/or maternal antigens185,189. The 

mechanisms whereby fetal T cells could initiate preterm parturition involve the secretion 

of pro-inflammatory mediators, such as IFNγ and TNFα, and the activation of 

myometrial contractility185. Whether fetal T-cell activation is implicated in the 

mechanisms leading to preterm labor and birth in the absence of intra-amniotic 

infection/inflammation is still unknown.  

CONCLUSION

In the current study, we report that women with spontaneous preterm labor and 

intra-amniotic infection had increased numbers of amniotic fluid neutrophils, 

monocytes/macrophages, and CD4+ T cells compared to those with intra-amniotic 

inflammation. Such cellular immune responses were accompanied by elevated amniotic 

fluid concentrations of IL-6, IL-1β, and IL-10. These results provide evidence that the 

cellular immune responses observed in women with preterm labor and intra-amniotic 

infection are more severe than in those with intra-amniotic inflammation, and that 

neutrophils, monocyte/macrophages, and CD4+ T cells are the main immune cells 

responding to microorganisms invading the amniotic cavity.
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FIGURE LEGENDS

Figure 1. Leukocyte populations in amniotic fluid. Representative flow cytometry 

gating strategies and t-distributed stochastic neighbor embedding (t-SNE) plots showing 

leukocyte populations in amniotic fluid from women who underwent spontaneous labor 

and birth with intra-amniotic inflammation (A-B) or with intra-amniotic infection (C-D). 

Immune cells were initially gated within the viability gate and CD45+ gate followed by 

lineage gating for neutrophils (CD45+CD15+ cells), monocytes/macrophages 

(CD45+CD14+ cells), T cells (CD45+CD3+ cells) that were subsequently gated for 

CD4+ T cells (CD45+CD3+CD4+ cells) and CD8+ T cells (CD45+CD3+CD8+ cells), 

and B cells (CD45+CD19+ cells). Plots are representative of 10 – 16 samples per 

group.

Figure 2. Total leukocytes and innate immune cells in amniotic fluid. Numbers of 

(A) total leukocytes (CD45+ cells/mL), (B) neutrophils (CD15+ cells/mL), and (C) 

monocytes/macrophages (CD14+ cells/mL) in amniotic fluid from women who 

underwent spontaneous preterm labor and birth with intra-amniotic inflammation or with 

intra-amniotic infection. N = 10 – 16 per group. Midlines = medians, boxes = 

interquartile ranges, and whiskers = minimum/maximum ranges.
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Figure 3. Adaptive immune cells in amniotic fluid. Numbers of (A) total T cells 

(CD3+ cells/mL), (B) CD4+ T cells (CD3+CD4+ cells/mL), (C) CD8+ T cells (CD3+CD8+ 

cells/mL), and (D) B cells (CD19+ cells/mL) in amniotic fluid from women who 

underwent spontaneous preterm labor and birth with intra-amniotic inflammation or with 

intra-amniotic infection. N = 10 – 16 per group. Midlines = medians, boxes = 

interquartile ranges, and whiskers = minimum/maximum ranges. 

Figure 4. Pro-inflammatory cytokines in amniotic fluid. Concentrations of (A) IL-6 

(ng/mL), (B) IL-1β (pg/mL), (C) IL-8 (ng/mL), and (D) IL-12p70 (pg/mL) in amniotic fluid 

from women who underwent spontaneous preterm labor and birth with intra-amniotic 

inflammation or with intra-amniotic infection. N = 7 – 16 per group. Midlines = medians, 

boxes = interquartile ranges, and whiskers = minimum/maximum ranges.

Figure 5. Type 1 and 2 cytokines and T-cell chemokines in amniotic fluid. 

Concentrations of the type 1 cytokines (A) IL-2 (pg/mL), (B) IFNγ (pg/mL), and (C) 

TNFα (pg/mL), type 2 cytokines (D) IL-4 (pg/mL), (E) IL-13 (pg/mL), and (F) IL-10 

(pg/mL), and T-cell chemokines (G) CXCL10 (pg/mL) and (H) CXCL11 (pg/mL) in 

amniotic fluid from women who underwent spontaneous preterm labor and birth with 

intra-amniotic inflammation or with intra-amniotic infection. N = 7 – 13 per group. 

Midlines = medians, boxes = interquartile ranges, and whiskers = minimum/maximum 

ranges. 
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Table 1. Clinical and demographic characteristics of women who underwent spontaneous preterm labor 

 

Data are given as median (interquartile range, IQR) and percentage (n/N).   

a
Mann-Whitney U-test.  

 

Preterm labor and 

birth with  

intra-amniotic 

infection  

(n=10) 

Preterm labor and 

birth with  

intra-amniotic 

inflammation  

(n=16) 

p-value 

Maternal age (years; median [IQR])
a
 27.5 (22.8-35.8) 25.5 (22-28.3) 0.3 

Body mass index (kg/m
2
; median [IQR])

a
 28.3 (27-36.5)

d
 26.3 (24.2-30.7) 0.1 

Primiparity
b
 0% (0/10) 12.5% (2/16) 0.5 

Race
b
  1 

African-American 80% (8/10) 81.3% (13/16) 

 
Caucasian 20% (2/10) 12.5% (2/16) 

Other 0% (0/10) 6.3% (1/16) 

Gestational age at amniocentesis (weeks; median [IQR])
a
 25.9 (22.5-29.8) 27 (22.9-31.2) 0.4 

IL-6 (ng/mL; median [IQR])
a
 128.7 (78-186.2) 47.8 (16.7-122.9) 0.04 

White blood cell count, cells/mm
3,a

 307 (89-1254.5) 2 (0-11.8) 0.003 

Amniotic fluid glucose, mg/dL
a
 3.5 (1-9.8) 12.5 (6-26) 0.053 

Gestational age at delivery (weeks; median [IQR])
a
 25.9 (23-30) 27.6 (23.4-31.3) 0.4 

Cesarean section
b
 0% (0/10) 31.3% (5/16) 0.1 

Birthweight (grams)
a
 935 (533.3-1428.8) 1037.5 (697.5-1778.8) 0.6 

Acute maternal inflammatory response  

Stage 1 (acute subchorionitis)
b
 0% (0/8)

c
 23.1% (3/13)

d
 0.2 

Stage 2 ( acute chorioamnionitis)
b
 37.5% (3/8)

c
 30.8% (4/13)

d
 1 

Stage 3 (acute necrotizing chorioamnionitis)
b
 50% (4/8)

c
 30.8% (4/13)

d
 0.6 

Acute fetal inflammatory response  

Stage 1 (acute phlebitis/chronic vasculitis)
b
 50% (4/8)

c
 53.8% (7/13)

d
 1 

Stage 2 (acute arteritis)
b
 25% (2/8)

c
 0% (0/13)

d
 0.1 

Stage 3 (necrotizing funisitis)
b
 12.5% (1/8)

c
 0% (0/13)

d
 0.3 
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bFisher’s exact test.  
c
Two missing data. 

d
Three missing data.  
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