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Research on Desirable ACC Behavior in Traffic Streams 

March 31,2003 

Executive Summary 

This research program focuses on the influences of ACC-equipped vehicles on traffic 
behavior. The vehicle manufacturing (OEM) partners are motivated to perform this 
research in order to ensure that their customers have a positive experience with ACC over 
the long term as ACC steadily increases its presence in the U.S. vehicle fleet. The 
partners from FHWA are interested in ensuring that the motoring public will have a 
positive experience in traveling from here to there on the roadway system as advanced 
technology is introduced into the vehicle population. In the worst-case scenario, which 
the partnership seeks to avoid, ACC systems of different manufacturers may interact with 
other vehicles in undesirable modes of motion that may occur spontaneously on the 
highway. These modes of motion may lead to a possible reduction in the throughput of 
freeways, as well as the possibility of passenger discomfort. This research is intended to 
increase the understanding of how various modes of motion occur and to develop 
microscopic knowledge that can be applied in assuring that strings of ACC vehicles will 
not have an adverse effect on traffic flow. 

The following objectives have been formulated to meet the challenges and concerns 
expressed above. 

1. Identify ACC-system characteristics that significantly influence traffic flow. 

2. Evaluate the performance of traffic streams containing both humanly driven and 
ACC driven vehicles. 

3. Provide a research foundation for use in evaluating and enhancing the string 
behavior of ACC-equipped vehicles operating in traffic streams. 

The partnership's research activities have been divided into phases for programmatic 
and logical reasons that provide an evolutionaly approach based upon the current level of 
microscopic understanding and knowledge concerning the control of velocity and range 
clearance from vehicle to vehicle in traffic. 

The measurement and modeling of the performance of ACC-equipped cars was 
addressed in Phase 1. Phase 1 was a cooperative effort sponsored by Nissan, BMW, and 
DaimlerChrysler. Each manufacturer provided UMTRI with a production or pre- 
production vehicle with an ACC system. UMTRI utilized GPS technology in devising 
test procedures for non-intrusively exploring ACC performance in typical driving 
situations involving a confederate preceding vehicle whose position and velocity were 
being recorded. The GPS data for each vehicle were analyzed using system identification 
techniques to formulate a linear dynamic model for approximating the range and velocity 
behavior measured in the neighborhood of various operating states. It was agreed that the 
data for each manufacturer's vehicle were proprietary information but linear models 
using prototypical parametric values for the coefficients in the equations were to be used 



for analyzing traffic flow. In this manner, the ACC-vehicle parameters used in 
preliminaly traffic flow simulations are representative of current production vehicles. 

The main results from Phase 1 are: 

(1) The evaluation method produces valid results concerning ACC performance 

(2) Depending on the amount of damping and lead compensation in the ACC algorithm, 
ACC systems are likely to influence traffic flow, and further study on the comparison 
of ACC driving and human-manual driving is needed to assess the impact of ACC. 

The Phase 1 results were presented to USDOT, thereby leading to FHWA funding for 
Phase 2. Phase 2 has been aimed specifically at developing microscopic models of driver 
behavior that are suitable for use in traffic flow simulations that contain both ACC- 
equipped vehicles and humanly-driven vehicles. The utility and validity of the results 
from those traffic flow simulations will clearly depend on the quality of the human- 
manual driving model employed in mixed traffic situations. 

The driver models developed in Phase 2 use parametric coefficients that are derived 
from sets of data measured during human-manual driving in naturalistic situations on 
highways, roads, and streets. The relationships employed in the models have been 
developed using concepts pertaining to kinematics, human behavior, and control system 
design. Ideas from previous traffic simulation algorithms have been considered and, 
where understood, utilized in structuring the form of these models. Details of the human- 
manual driving models and the data processing procedures utilized for characterizing the 
driving style of individual drivers are described in this Phase 2 report. Results for 143 
different drivers are presented in the report. 

The characteristic parameters pertaining to these drivers indicate a spectrum of 
significantly different driving styles. These differences represent major differences in the 
microscopic phenomena occurring in situations involving vehicles traveling in close 
proximity to each other. Analyses of the influences of these differences in driver 
characteristics on traffic flow capacity and flow sustainability have been made. The 
results show major differences in capacity and flow sustainability depending upon the 
characteristics of the driver involved. 

Proposed ideas for Phase 3 research involve applying the results and findings from 
Phases 1 and 2 to develop an improved understanding of the influence of ACC system 
features on traffic flow and string performance (flow sustainability). This is envisioned as 
including not only the development and utilization of an enhanced simulation capability 
but also the development and utilization of vehicles equipped with a mobile laboratory 
that can be used to gather data while traveling in traffic streams. Vehicles equipped with 
a mobile laboratoly are envisioned as an ideal platform for studying the microscopic 
phenomena associated with traffic flow. 

The mobile laboratoly would include sensors for measuring the range-clearances and 
range rates between a mobile-laboratory equipped-vehicle and its preceding and 
following vehicles. Other features might include sensors for measuring the location and 
speeds of vehicles in adjacent lanes. In addition, the mobile laboratory would include a 
feature allowing it to be positioned with respect to its preceding vehicle in accordance 



with control rules, which are representatives of those used in ACC driving or those used 
in models of manual driving. A vehicle containing a mobile laboratoly that has been 
structured to measure microscopic phenomena will constitute a probe for use in 
measuring the traffic situation in the vicinity of a single vehicle traveling within a traffic 
stream. 

The combination of simulation and microscopic phenomena vehicles (MPVs) 
equipped with mobile laboratoly capabilities will provide the potential for developing a 
research foundation to be used in evaluating and enhancing the performance of ACC- 
equipped vehicles in the traffic stream. The results from Phase 3 are expected to indicate 
to OEMs those ACC characteristics that they need to consider collectively for ensuring 
sustainable traffic flow. 

In addition, this combination of simulations and MPVs provides the capabilities 
needed to verify and validate the models of human-manual driving and ACC driving used 
in traffic flow simulations. It provides the tools needed to effectively address specific 
traffic flow issues as identified by the partnership. 



Introduction and Background 
The objective of the Phase 2 research, presented in this report, is to develop an 

improved microscopic understanding of driver control of range-clearance and time-gap. 
This improved understanding of the behavior of human drivers is to be applied in 
developing a research foundation for use in evaluating and enhancing the performance of 
ACC vehicles as their number increases in the traffic stream. The Executive Summary 
provides an overview indicating how the Phase 2 work on driver modeling is an integral 
element of a program aimed at examining the influence of ACC systems on traffic flow. 

The Phase 1 work addressed the development of data gathering and data analysis 
procedures that are suitable for characterizing the observed behavior of ACC-equipped 
vehicles in response to changes in speed and location of a preceding vehicle. In Phase 1, 
well-known system identification techniques were used to identify parametric values for 
linear models [I]. Similar system identification techniques were applied in Phase 2 but 
the emphasis in Phase 2 shifted to non-linear models because nonlinear models were 
shown to provide good utility in matching human-manual driving data as gathered in 
previous research programs [2,3]. 

This report covers the modeling, data-analysis, performance-prediction, and traffic- 
flow analysis activities performed in Phase 2. It concludes with recommendations based 
upon the results of the Phase 1 and Phase 2 work. 

Overall Approach 
The overall approach used in this research program involves four types of activities 

whose themes may be broadly classified as learning, understanding, contemplating, and 
knowing. Tasks oriented toward these underlying themes are expected to recur 
throughout the program. The objectives of this program are served by activities aimed at 
the following specific, ordered sequence of knowledge development steps: 

1. Learning what happens when people are driving with assistance from ACC systems 
and when people are driving manually. 

2. Understanding how the driving process works with or without ACC assistance in 
typical traffic situations involving control of speed and range clearance. 

3. Contemplating what concepts are useful in explaining traffic-flow related aspects 
of the control of speed and range clearance. 

4. Knowing how to apply the results, findings and discoveries of this research in a 
logical manner. 

In summary, we are striving to penetrate the data to discover what it tells us and to 
express ourselves as logically as we can. 

In the context of this program, measurements of ACC performance and driver 
behavior have been used in learning what ACC systems and drivers do. These 
measurements have been used in developing basic models describing the behavior of an 
individual driver-vehicle combination in response to the motions of a preceding vehicle. 
These basic models provide the foundations for computer simulation of the microscopic 



performance of each vehicle involved in a traffic stream. In this context, these models 
reflect our preliminary understanding of the control of speed and range clearance. The 
development of these models has involved conceptual reasoning. Concepts from 
kinematics, human-centered design, and vehicle dynamics and control have played an 
important role in challenging the face validity of these models. The knowledge derived 
from developing these models and evaluating their parameters provides evidence 
indicating how ACC logic and driver characteristics may influence traffic flow. 

Concepts Used in Designing the Driver Model 
Engineering design involves considerations at several levels of abstraction as 

illustrated in Figure 1, which is based upon Rasmussen's work on skills, rules, and 
knowledge [4]. The following exposition on driver modeling proceeds from functional 
purpose to a real simulation algorithm that can be exercised to experiment with the 
model. 

Levels of Abstraction in Enaineerina Desian and Evaluation 

Figure 1. From functional purpose to a real simulation algorithm. 

The functional purpose of the driver model is to emulate the microscopic behavior of 
drivers as they control speed and headway in natural driving situations. The model is to 
be suitable for use in conjunction with models of ACC driving to aid in assessing the 
influences of ACC systems on traffic flow. 
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Figure 2 is an information flow diagram that presents a conceptual view of the driving 
process from the perspective of a single driver. The labels on the arrows indicate 
pertinent information about the driving situation where: 
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Vp represents the velocity of the preceding vehicle 

V represents the velocity of the subject vehicle 

R represents the range-clearance between these vehicles 



Rdot represents the time-derivative of R, that is, the range-rate 

U represents the control action used to change V 

Driver andlor Vehicle 
E t3 vi rar-r m ent I I Vahicie 

Figure 2. Conceptual view of the driving process from a driver's perspective. 

Figure 2  contains blocks representing (1) the driving environment, ( 2 )  the driver or 
vehicle controller where intelligence andlor artificial intelligence is located, and (3) the 
prime mover in characterizing the driving process. In the context of the modeling work in 
Phase 2,  the center block pertains to the driver. Phase 1 focused on the driver assistance 
qualities of ACC systems and modeling the command and control properties of existing 
ACC-systems. 

Traffic-Rcad 
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The model of human driving is based upon fundamental premises concerning how a 
driver senses pertinent information, perceives the meaning of that information, decides on 
the course of action to take, and controls vehicle acceleration to achieve a desirable 
driving situation. Figure 3 illustrates the basic variables used in modeling one-on-one 
driving. 
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Figure 3. Physical variables sensed in human-manual driving andlor ACC driving. 
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The modeled driver has visual capabilities for sensing range-clearance R, range rate 
Rdot, and the velocity V as shown in figures 1 and 3. The modeled driver uses this sensed 
information to assess the current driving situation. Based upon this assessment, the driver 
of the following vehicle decides on a course of control action that will determine the 
accelerationldeceleration Vdot of the following vehicle. 

The fundamental premise underlying the model of the driver is that the driver adjusts 
speed in striving for a comfortable range clearance and its associated time gap. In this 
modeling approach, the driver's feeling of comfort is related to the driver's view 
concerning the relative risk of rear-ending the preceding vehicle. In a broad sense, the 
model is based upon the idea that drivers are concerned that they might crash. 

The equations for the modeled driver are based upon the idea that the driver learns 
and chooses to drive such that the hypothetical situation illustrated in Figure 4 will not 
cause a crash if the driver is attentive. The equations presented in figure 4 are crucial 
elements in the development of this model of driver behavior. 

Rh = hypo. area 

Rdot v h k , .  IVDO. area = T V +  G v2 + (Rdot/B~l(V + V ~ l / 2  

slope = Bp 

(stop) 0 
0 T 

t T f + T  - TP 
(now) 

e = er + erdot 

where er = R - (A + T V + G v2) and erdot = - (RdotB p) (V + Vp)/2 

Figure 4. Velocity-time diagram illustrating the driver's hypothetical concern, 

- 



In extreme situations, the modeled driver brakes as hard as necessaly to avoid a crash 
by stopping within the range clearance available. Unless engaged in an all-out stop, the 
modeled driver repeatedly (about once a second) asks, "What if the hypothetical situation 
were to happen now?'If the range R, minus a zero-speed range margin A, is currently 
greater than the range allowance implied by the "hypo area" (the area between the 
hypothetical velocities shown in the velocity-time diagram in figure 4), the driver may 
speed up. If the range is less than the range allowance, the driver will slow down. These 
are the basic conceptual ideas behind the model of driver behavior. 

Figure 4 portrays a constant deceleration analysis where Bp represents the level of 

deceleration (about -2.7 mls2) that the driver learns to use in determining a command U 
that will lead to a satisfying value of Vdot. Bp is the hypothetical deceleration of the 
preceding vehicle. B is the hypothetical deceleration of the subject vehicle. G is equal to 
[(1/2Bp) -(1/2B)] and it is a fundamental parameter, which is important in distinguishing 
differences between drivers and in determining steady-following characteristics. If G = 0, 
T represents a linear constant time-gap parameter for a driver who intends to decelerate at 
the hypothetical deceleration rate of the preceding vehicle. Otherwise, T is simply the 
linear parameter in the non-linear expression for the "hypo" area Rh as given in figure 4. 

Parameters Employed in Representing Steady Following 
The variables describing the dynamical state-space of vehicle operation are R, the 

range clearance from the preceding vehicle, and V the vehicle speed. The range rate, 
Rdot, is the time rate of change of the range, R, and Rdot is equal to the relative velocity 
between the preceding vehicle with velocity, Vp, and the subject vehicle with velocity, V. 
Hence, Rdot = Vp - V. In steady following, Rdot is approximately zero. The preceding 
vehicle and the following vehicle are traveling at approximately the same speed. This is 
one of the conditions needed for steady following. (If Rdot is not equal to zero, R will 
change since new values of R depend upon the integral of Rdot with respect to time.) 

The other condition needed for steady following is that the subject (following) vehicle 
is not accelerating. This means that Vdot, the time rate of change of velocity, V, is 
approximately equal to zero. The idea is that the driver will change speed (by using either 
the brake or the accelerator) if the driver's perception of range and speed is not to the 
driver's liking. If the driver wants to hold speed constant, the driver holds Vdot = 0. 

The computer simulation for predicting vehicle responses to changes in Vp or to 

situations in which R does not equal A + T V + G V2 will include routines for integrating 
Rdot to obtain R and Vdot to obtain V. For the vehicle to be in a steady following 
situation, both Rdot and Vdot need to be approximately equal to zero. If Rdot and Vdot 
are not approximately equal to zero, the vehicle is not in a steady-following situation. 

In terms related to the driver model, the steady-following relationship, R - (A + T V 

+ G v2) = 0, will be satisfied when the driver is satisfied with the driving situation and 
the preceding vehicle is moving at approximately constant velocity. The driving concept 
involved is that the driver will adjust velocity until the driver's desired steady-following 
relationship is satisfied with Rdot = 0 and Vdot = 0 approximately. The data from 
different drivers indicate that different drivers have different styles of steady-following 



behavior. These styles are characterized by substantially different values for the 
parameters T and G. 

So far in this discussion, we have not considered the transient response entailed in 
getting from a current driving state to the steady-following relationship. This will involve 
developing rules describing how the driver chooses to accelerate (or decelerate). 
However, control ideas and other associated dynamic matters are beyond the scope of this 
discussion of steady following. Dynamics and control matters will be treated in the next 
section. 

Figure 5 is a diagram whose purpose is to illustrate how the driver decides (in this 
model) to make acceleration (Vdot) equal to zero. Experience has shown that the 
approach described next is not easy to follow. It is wise to attack the Vdot = 0 situation 
before attempting to understand more complicated situations in which Vdot does not 
equal zero. 

The idea is that the driver operates from moment to moment (where moments may be 
about one second apart depending upon the driver). At each decision moment the driver 
decides what to do during the time between the current moment (now) and the next 
decision moment. The idea is that the driver uses the current, perceived values of V, 
Rdot, and R to calculate Vdot, which in this steady-following case turns out to be equal to 
zero. The conditions for steady following require that Rdot = 0 which means that Vp = V. 
Hence, the initial values of V and Vp are equal in figure 5, which differs from figure 4 in 
that regard. (Rdot does not equal zero in figure 4.) 

In the context of understanding this driver model, people tend to have difficulty in 
keeping straight the difference between what the driver is thinking might happen from 
what is actually happening as the vehicle proceeds along the road. In figure 5, the 
quantity, t, represents a time variable extending into the future from t = 0 ("now"). Figure 
5 portrays a driver's mental image of a hypothetical situation in which the preceding 
vehicle will have commenced decelerating at rate, Bp, at t = 0. In the case illustrated in 
figure 5, the deceleration, B, of the following vehicle is less than Bp (where B and Bp 
both have negative values). As indicated by the equations and relationships in figure 5, 
this means that the parameter, G, is less than zero. 
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A case 1. B < Bp meaning that 
the driver of the subject vehicle is planning 

T to brake harder than the preceding vehicle 
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0 
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R = A +  T V + G V ~  where G = ((112Bp) - (112B)) < 0 

Figure 5.  A driver style in which G < 0 and B < Bp. 

Based upon past experience, the driver of the following vehicle anticipates that the 
driver of the preceding vehicle might decelerate at a rate of Bp m!s2. Deceleration at the 
rate Bp would probably happen very infrequently on the road involved, but the driver's 
range allowance for contingencies depends upon the value of Bp used to represent the 
driver in the model. Empirical results, derived in other research work [2 ] ,  show that a 
value of Bp that is equal to approximately minus 2.7 mls2 yields a good fit to measured 
behavior for many drivers in many situations. This value of Bp has been used as a 
starting point for this program. 

The driver is presumed to have learned what the scene out the front window should 
look like during steady following. The figure indicates that the driver model allows a 
time period T (the model's parameter, T) in which he or she expects to hold Vdot equal to 
zero. Hence, V would stay constant for a period of T seconds in this hypothetical model 
of the driver's control processes. After that, the driver anticipates that he or she will 
decelerate at a rate of B mls2, if the driver of the preceding vehicle were to decelerate at a 
rate of Bp mls2. 



This concept of driver behavior has been described as if it were a cognitive process, 
but it is believed to be a learned skill and the driver may have little ability to provide a 
coherent description of how this is done. As far as we know, the driver just does it based 
upon what the driver sees. (We have no way to measure directly what the driver is 
thinking or how his or her mental processes are functioning.) 

In the hypothetical world that the driver has created, time moves forward toward 
anticipated hypothetical events as described above and as shown in figure 5.  The area 
between the V(t) and Vp(t) curves in figure 5 represents the integral of the time history of 
Rdot(t) in the hypothetical world created in the driver's mind. In other words, this means 
that the driver can do what has been anticipated if the actual value of R at this moment 
matches the value of R that was envisioned as acceptable in the driver's mind. 

One can now compute the integral of the hypothetical Rdot (where Rdot(t) = Vp(t) 
-V(t)) using the geometrical relationships portrayed in figure 5 to aid in computing the 
total enclosed-area, Rh, between the hypothetical curves for V(t) and Vp(t). Note that Rh 
is theoretically less than zero since Rdot(t) is negative as shown in figure 5. However Rh 
represents an area, which is a positive quantity. Now, if R - A = Rh, the condition for 
steady following is satisfied in the driver's mental image of the situation. The resulting 
expressions for steady following are as follows: 

R - A = v T + v ~ / ~ B ~ - v ~ / ~ B = v T + G v ~  

In this equation, Vp(0) = V(0) = V and the parameter G = (112Bp -112B). Or, in a 
convenient, algebraically equivalent form, G = (B - Bp)/2BBp. 

At first exposure, the resulting equation may seem to have appeared by a mysterious 
process. However, its utility lies in fitting the data. Perhaps it only represents a heuristic 
concept to be used for interpreting the data. In that regard, how might the equation be 
interpreted? First, R is associated with the location of the driver's eye, which is the 
driver's range sensor and it is located behind the front of the vehicle. In this sense, A is a 
distance margin that the driver provides so that the front of his or her vehicle will stop at 
a satisfactory distance behind the rear of the preceding vehicle. T is a time margin, which 
(when multiplied by V) converts to a distance margin that the driver allows before 
relatively hard deceleration might be required. And G has an interesting interpretation 
involving the hypothetical decelerations of the two vehicles. 

Case 1, which was shown in figure 5, involves a negative value of G. To provide an 
illustrative numerical example, let Bp = -3 mls2 and B = 4 mls2 so that B < Bp and G = 
-1124 = -0.042 s21m. The point to observe is that a negative value of G indicates a 
driving style in which the driver expects to brake harder than the preceding vehicle 
brakes. 

Figure 6 illustrates the hypothetical situation as envisioned by a driver who expects to 
brake at the same rate as the preceding vehicle brakes. This means that G = 0 and the 
steady-following relationship between V and R is linear. 
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Figure 6. A driver style in which G = 0 and B = Bp. 

Comparing the sizes of the hypothetical (hypo) areas shown in figures 5 and 6 leads 
to an important observation. These figures were constructed so that Vp, V, T, and Bp as 
shown in figure 6 are equivalent in size to those shown in figure 5. However, the hypo 
area in figure 6 is greater than the hypo area in figure 5. This means that the driver style 
portrayed in figure 6 represents a larger range clearance than that illustrated in figure 5.  
In other words, for all else equal, drivers with G < 0 will follow at closer ranges than that 
employed by a comparable driver but with G = 0. 

Now consider figure 7 for which G > 0. Clearly, the hypo area in figure 7 is larger 
than that shown in figures 5 and 6. The point is that larger G (in the algebraic sense 
where 1 > -2) implies a greater range clearance. 



velocity 

A case 3. B > Bp meaning that 
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T to brake less than the preceding vehicle brakes. 
v p = v  

0 I 

~f + T time 

Tp = -Vp/Bp Tf = -VB 

hypo. area = R -A = T V +Tf V12 - Tp Vpl2 or 

R = A+ T V + G V ~  where G = ((112Bp) - (112B)) > 0 

Figure 7. A driver style in which G > 0 indicates a relatively long range-clearance 

Clearly, the value of T influences range clearance and larger values of T imply a 
greater range clearance. 

The basic conceptual ideas behind the steady-following basis-function, R - (A + T V 
+ G V2) = 0, have now been presented. Equations that resemble those encountered in 
Gipps's work may be obtained by applying the quadratic formula to solve for V as a 
function of R [5]. 

The design transition step in the level of abstraction from function to form (unifying 
function to form) needs to be considered next in developing the driver model. The basis 
functions for human-manual driving have been programmed using the computing 
components available in MATLAB SIMULINK. SIMULINK is capable of providing the 
computer code needed to exercise the driver model. In that context, the next step in 
developing the model of human-manual driving is to use naturalistic data to evaluate 
parametric values for the coefficients T and G that appear in the steady-following basis- 
function. 



The sources of naturalistic data used for evaluating T and G are databases containing 
measured results from two previously completed projects, specifically, the ICC FOT [6] 
and FOCAS [7]. 

The FOCAS project involved 36 drivers driving for about one hour in the middle of a 
weekday on a freeway loop between Ann Arbor, Michigan and Detroit Metropolitan 
Airport. There were four freeway segments involved, along with some travel on surface 
streets between UMTRI and the freeway. 

The ICC FOT involved 108 drivers, driving wherever, whenever and however they 
wanted. These drivers used the subject vehicle as their personal car. They drove manually 
without ACC available for one week. Then, they drove with ACC available for at least 
one more week, but they could choose to drive manually if they wanted to. Only the 
manual driving data has been studied in phase 2 of the current study. The drivers 
constituted a sample of the licensed drivers in Southeastern Michigan. The sample was 
balanced to cover age, gender, and experience with conventional cruise control. (Data for 
107 of the 108 drivers were available to process in Phase 2.) In total, human-manual 
driving data were processed for 143 different drivers. 

The procedure for analyzing steady-following data involved the use of the relational 
features of the databases involved. Steady-following information was selected by 
screening the data for situations in which Rdot and Vdot were approximately equal to 
zero. The free flow speed called "Vset" was determined for each driver. (This is the 
speed the driver chooses to go when range is large in that driver's view of the situation.) 

Then data for range clearances and speeds such that the equation R = A + T V + G V2 
applies were used to find best-fit values of T and G, using A = 3 m as in CORSIM [8]. 
The steps in this process produced results, like those shown in figure 8, for each driver. 

The upper left graph indicates data points for one-on-one situations with proceeding 
vehicles up to 120 m away and speeds up to approximately 35  mls. These data are for the 
driver with code-number 32 in the ICC FOT study. Note the two long-range tails at 
about 18 mls and 30 mls. These tails are due to the set speeds, Vsets, that driver 32 
chooses to use on freeways (about 30 mls, or 68 mph) and on main arterial roads (about 
18 mls, or 40 mph). The upper right figure contains a histogram of range and a 
distribution of range in red. It is used to separate the range data at the 6Sh percentile into 
short and long range data. The long-range data is used to make the histogram shown in 
the lower left figure, because that histogram is used to determine Vset for freeways. 
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Figure 8. Illustration of the results from steady-following data analysis. 

Results like those shown in Figure 8 were obtained for each of the 143 drivers 
included in the Phase 2 research. The key results with regard to traffic flow are the values 
of Vset and the values of T and G for steady following. As shown in the equation above 
the lower left graph in figure 8, the values for T and G for driver 32 are T = 1.157 and G 
= - 0.0181. The values of Vset, T and G for an individual driver characterize the driving 
style (tendencies) of that driver. The values determined for each driver from the FOCAS 
and ICC FOT studies are tabulated in Appendix A. The results for Vset, T,  and G have 

been sorted from smallest to largest value and plotted in ascending order in figures 9 
through 14. Figures 9 through 11 apply to the FOCAS data and figures 12 through 14 
apply to the ICC FOT data. 
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Figure 9. Vset, mls, sorted into ascending order, FOCAS. 
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Figure 10. T, sec., sorted into ascending order, FOCAS 
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Figure 11. G, s21m, sorted into ascending order, FOCAS 
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Figure 12. Vset in ascending order, ICC FOT. 
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Figure 13. T in ascending order, ICC FOT. 

G in ascending order 

Figure 14. G in ascending order, ICC FOT. 



Figures 15 and 16 show the tendency for the values of T to be related to those for G. 

G versus T 

Figure 15. The relationship between G and T,  data from FOCAS 
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Figure 16. The relationship between G and T, data from ICC FOT 

The steady-following results portrayed in figures 9 through 16 are the basis for the 
following findings. 



The steady-following parameters, Vset and T, vary over a wide range of values 
depending upon the characteristics of the driver involved. 

The parameters T and G are approximately related by G = - 0.025 T + 0.013 for 
human-manual driving. 

These findings have significant implications regarding the capacity of traffic flow 
since flow capacity (Fc for an individual driver) is related to Vset and the density (Dset) 

at Vset for steady flow. (The following items apply here, Rset = A + T Vset + G  set)^ 
and Dset = ( Rset + L) and L is the vehicle length and Fc = Vset Dset.) These matters 
will be discussed further in the section entitled 'Traffic Flow Characteristics Related to 
Longitudinal Control Properties." 

Parameters Employed in Representing Transient Behavior 
Linear and non-linear models of human-manual driving have been considered in 

phase 2. The techniques used for fitting a linear model to the data were the same as those 
used in phase 1. They involve standard methods available in MATLAB for obtaining 
least square fits to time histories of measured data for range clearance and velocity. 
However as phase 2 progressed, the emphasis shifted to non-linear techniques associated 
with the non-linear equations portrayed previously in Figure 4. From a theoretical point 
of view, linear equations may represent approximations suitable for small perturbations 
of the variables in the underlying non-linear equations. These perturbation ideas could be 
pursued further in later phases of this research program. Some of the ideas behind 
perturbation analysis apply here in a restricted sense because the following material is 
aimed at transient behavior when traveling near highway speeds at slightly less than Vset, 
typically about 28 mls. This means that the following data analysis is based upon 
reducing the steady-following errors "eRn and "eRdo(' (shown in figure 4) toward zero 

using linear gain factors. This procedure may not be satisfactoly for situations involving 
panic hard braking, but those situations are treated conservatively in the modeled driver 
in order to avoid crashes in simulations whose purpose is to study traffic flow. 

Figure 17 provides an overview of the structure of the non-linear model. It is a 
SIMULINK diagram as used in exercising the model to study the one-on-one response of 
the modeled driver to the velocity Vp of the preceding vehicle. As shown in the figure, 
the model consists of two integrators, one for determining V from Vdot and the other for 
determining R from Rdot. This represents the traditional method for using integrators to 
solve differential equations. There is a zero order hold that emulates the driver's 
characteristic to update and hold Vdot from one decision moment to the next decision 
moment. The diagram shows two subsystems for computing eRdot and eR using the 

equations given in figure 4. The transient response parameters are labeled C1 "lead and 
damping" and C2 "frequency". The values of these parameters have been chosen to 
match measured results for situations in which Vp decreases by a small amount. 



Figure 17. Diagram of the non-linear model. 

At this point in the development of the driver model, the data need further analyses to 
determine values of C1, C2, and C3 for each of the 143 drivers. However, one 
observation is clear. Many drivers have values of C1 such that range and velocity will 
undershootlovershoot their steady following values as these variables approach steady 
following. For example, see figure 18, which uses the steady-following values of T and G 
for driver 7 in the ICC FOT study. 
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Figure 18a. Measured transient response data from driver 7 with the lead vehicle 
decelerating. 
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Figure 18b. Transient-Response data-fitting, Driver #7, C1=.0240, C2=.0157, C3=.929 



The point about overlundershoot is important with respect to the performance of a 
string of nearly identical vehicles and drivers. The microscopic phenomena concerning 
undershoot can be used to explain why traffic flow tends to breakdown at density levels 
beyond Dset, which is the density at capacity. The influences of the overlundershoot 
phenomena will be discussed in the next section entitled "Simulation Results Concerning 
Inherently Sustainable Strings." 

Figure 18 also contains simulated results based upon the modeled driver portrayed by 
figure 17, using the error equations displayed in Figure 4. In this case, the values of C1, 
C2, and C3 have been adjusted to get a good fit to transient data for driver 7. The RMS 
errors are 0.57 m in range and 0.21 mls in velocity. Experience indicates that this is a 
good fit for this type of fitting procedure. Figure 19 presents similar results for driver 9 in 
the ICC FOT study. Driver 9 has a value of T = 2.25 compared to T = 1.5 for driver 7. 
The fit is good in this case as well. 

32 
-. V - blue line 

Figure 19a. Measured transient response, driver 9 input string 
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Figure 19b. Transient-response data-fitting, Driver # 9, C1= ,01675, C2=.0089, C3=1.00 
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The parameters C1, C2, and C3 have interpretations based upon a mass-spring- 
damper analogy. The names "frequency", "mass", and "lead and damping" in Figure 17 
are meant to convey the meanings of C1, C2, and C3. These names are helpful in 
manually fitting data for the second order system implemented to represent a driver as in 
figure 17. However, a programmable algorithm for determining transient parameters (Cl, 
C2, and C3 in figure 17) can be created to handle databases involving large numbers of 
drivers. This step needs to be completed in a new phase of research. Nevertheless, based 
upon the current work, one can observe that if G < 0, the lead and damping (Cl) 
associated with the human-manual driving data is not likely to be large enough to prevent 
overlundershoot. Since G < 0 for all 143 drivers studied, it is anticipated that all of the 
modeled drivers are likely to exhibit overlundershoot characteristics. 

0 5 10 15 20 25 30 35 

There are a number of other observations that follow from the process of examining 
and penetrating data from human-manual driving. One observation concerns the 
variability within a single driver. People do not always adopt the same control behavior 
under repeated episodes of the same nominal driving circumstances. For example, figures 
20 and 21 show fits to the data for drivers 7 and 9. These were the drivers portrayed in 
figures 18 and 19 except longer periods of time around the time periods used previously 
are involved. When the fitting is done in these extended situations, the values of C1, C2, 
and C3 are different from those found previously. 

These differences are partly due to data fitting ambiguities but they are also due to 
variability in driver characteristics. Human-factors studies indicate that people perceive 
range clearance within k12 percent and they have a threshold on sensing Rdot that is 



significant [9]. In addition, the anatomy and physiology of the eye indicate that a driver 
must be looking directly at an object to detect its relative velocity (Rdot). These factors 
provide a basis for explaining some of the variability in the performance of a single 
driver. The least square errors in R in figures 20 and 21 are approximately 3 to 4 meters. 
At first this may seem large but it is about the same as the driver's range resolution at 
range clearances on the order of 30 m. In addition, the moment when the driver notices 
that Rdot has exceeded the threshold on Rdot may not be synchronized with when the 
driver samples and holds a new value of Vdot. Furthermore, a driver's intentions and 
stresses change for reasons like being late. Drivers will adjust their style of driving from 
time to time. All of these factors are expected to contribute to considerable variability in 
observed behavior. 

RbB error =4.485 - 

m . - 

R3m -green 

0 20 40 60 80 100 120 
sec 

Figure 20. Driver 7 for full stream with C1 = ,026, C2 = ,0106, C3 = 1.0 
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Figure 21. Driver 9 with full stream with Cl=.Ol81, C2=.007, C3=1.0 
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There are factors in interpreting human-manual driving data that have been classified 
as "altercontrol" [lo]. The idea is that the driver is not always controlling range and 
velocity for the purpose of maintaining range clearance. A simple example is when range 
is large enough and the driver simply doesn't care as long as Rdot is positive (the 
vehicles are separating). A subtler example that has been observed involves drivers 
closing the range-clearance gap ahead so that a driver in an adjacent lane will not take the 
gap. On the other hand, some gracious drivers may let a gap open up so that someone in 
an adjacent lane will have comfortable room for changing lanes. Sometimes drivers are 
maneuvering so that they can take a gap in an adjacent lane. Experience in examining 
data has shown that it is not uncommon to select approximately 10 data streams like 
those shown in figure 18 and then find that three of them appear to involve altercontrol. 
Given the presence of altercontrol phenomena, the selection of data samples to use in 
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evaluating driver characteristics is not as straightforward as the researcher would like it to 
be. Nevertheless, these phenomena need to be considered in processing naturalistic data. 

The modeled driver as portrayed in figure 17 has been completed by incorporating the 
decision to operate at Vset when the steady following rules would say to operate at 
speeds above Vset. This provides the long-range tails for each road type that are present 
in figure 8. Other constraints require that R not become less than A and that V not 
become less than zero. These represent simplifications that are acceptable for a 
preliminary simplified model. They could receive further attention in future research, but 
they are adequate for using simulation to gain insights into the influences on driving 
behavior of the basic parameters describing driver characteristics. 



The data that have been analyzed so far are not readily processed to recognize each 
driver's gap-taking preferences and tendencies for changing lanes. Those characteristics 
need to be included in microscopic simulations of traffic flow, and they have been 
studied elsewhere, for example [ l l ] ,  but further observations emphasizing microscopic, 
individual tendencies for each driver are in order. 

Although the study of transient behavior involves many nuances, phase 2 research 
provides evidence supporting the following observations. First, values for the transient 
parameters in the driver model can be found to fit measured transient responses well. 
Second, the results of the data analysis indicate that drivers have a general tendency to 
overlundershoot the velocity and range behavior of the preceding vehicle. The modeled 
driver emulates these tendencies. 

Simulation Results concerning Inherently Sustainable Strings 
The driver model for one-on-one situations can be extended to model a string of 

vehicles with identical longitudinal control characteristics. The duplication features of 
modern computer simulation systems such as SIMULINK make this process very easy. 
Duplicating the basic model as often as desired can create a string of any desired length. 
The idea is illustrated in figure 22. 

Conceptual diagram of a string of N + 1 vehicles with sensed variables (q. $/dt. and Vi). 

and control rules (Controli) for each of i = 1 to N trailing vehcles. 

Figure 22. A string of vehicles consisting of one-on-one situations in series. 

In figure 22, trailing vehicle #1 responds to the velocity Vp of the leading vehicle, 

which is the preceding vehicle for trailing vehicle # l .  The idea of a string is that vehicles 
cannot change lanes and they will respond to the velocity of their preceding vehicle. 
Hence, trailing vehicle #2 responds to the velocity of trailing vehicle #1 and so on until 
the last vehicle in the string is reached. Observe that Rdot2 = dRldT2 = V1 - V2, etc. 

Currently, many researchers are investigating string stability. (For example, a 
frequently referenced work is [12], which provides sufficient conditions for one type of 
string stability.) There are generally accepted results for linear systems. However, the 
types of systems observed for driver behavior (or ACC performance) may be non-linear 
and involve decision and switching rules, whose influences on string performance are not 
readily comprehended. Given the ease, with which string simulations can be created, 
string simulation provides a practical pragmatic means for assessing the influences of 
driver or ACC-system characteristics on string performance. The assessment procedure 



for studying a single set of driving characteristics involves examining the results of string 
simulation to see whether the maximums and minimums of range and velocity increase or 
decrease in response to a velocity change of the leading vehicle. 

(The ACC systems discussed here are autonomous and do not involve cooperative 
communication channels involving the transmission of information from the road 
environment andlor nearby vehicles. This is how the acronym "ACC" is used.) 

The suggested string calculation appears to be a hypothetical one for a given driver, 
since it is unlikely that a string of identical drivers driving identical vehicles with no 
possibility of changing lanes will occur in the real world. However, for ACC systems this 
is a possibly practical situation and one that has been arranged and tested. See reference 
[6] volume 111. From tests and analyses of ACC systems, a concept of "inherently 
sustainable strings" has been developed in phase 2. A set of driver or ACC system 
characteristics is said to have inherently sustainable string performance if there is no 
overlundershoot of range and velocity from vehicle to vehicle going back in a string of 
identical driverlvehicle combinations. 

Figure 23 illustrates results from a string simulation based upon the steady following 
and transient parameters for driver 7 in the ICC FOT study. In this case the simulated 
string consisted of a lead vehicle and four following vehicles. There are five velocities 
and four ranges to be considered in examining the results for this five-vehicle string. 
Examination of figure 23 indicates that driver 7 does not have inherently sustainable 
string performance. The range and velocity time histories undershoot the performance of 
each preceding vehicle in the string. 

sec 

Figure 23 . A string of identical vehicles showing unsustainable flow for driver 7. 



Although there are no close encounters between trailing and leading vehicles in this 
five-vehicle string, it is clear that the range clearance to the preceding vehicle decreases 
from vehicle to vehicle going back into the string. If the string were long enough, 
eventually a trailing vehicle would need to stop in order to prevent a collision with its 
preceding vehicle. In this sense, the parameters for driver 7 do not represent those 
required for inherently sustainable string-flow. 

A similar set of results are presented in figure 24, pertaining to driver 9 whose 
characteristic parameters differ significantly from those of driver 7. In particular T = 1.51 
for driver 7 and T = 2.26 for driver 9. However, as previously discussed the value of the 
transient response parameter C1 does not appear to be large enough in comparison to C2 
to provide an inherently sustainable string for either driver 7 or 9. 
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Figure 24. A string of identical vehicles showing unsustainable flow for driver 9. 

An important point to observe here is that an ACC algorithm can be programmed to 
employ any of the steady-following driver characteristics that were observed in phase 2 
(including those for drivers 7 and 9). However, in ACC systems, the transient response 
parameters can be adjusted (at least in theoly) to make strings of identical vehicles have 
inherently sustainable flow. This requires adding more lead compensation and damping 
(making (Cl)  larger). The analysis supporting this was done in phase 1 and reported in 
[13]. The concept of inherently sustainable string performance plays an important role in 
the discussion of traffic flow presented in the next section. 



Traffic Flow Characteristics Related to Longitudinal Control Properties 
Relationships between longitudinal control characteristics of ACC systems and 

drivers as determined in phases 1 and 2 and the capacity and sustainability of traffic flow 
are addressed in this section. 

Figure 25 illustrates basic ideas concerning flow-density relationships and the 
influences of Vset and steady-following characteristics on that relationship. In this 
example G= 0 so that flow F and density D are linearly related and the diagram is simple 
to construct. Specifically for this case, the flow, F, equals [-(A + L) D + lI(1IT) where L 
is the vehicle length and A and T are steady following parameters. 

(For all the drivers studied G was less than zero but an ACC system could be made 
with G = 0. The influences of G < 0 will be examined after this simpler example has been 
used to establish certain basic relationships.) 
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Figure 25. Hypothetical flow-density diagram in which G = 0 

At low traffic density, drivers may proceed at Vset because there is room to pass any 
slower moving vehicles that they may encounter. In this sense Vset is the free flow speed 
observed in traffic flow data. Figure 25 simplifies the general situation in that one free- 
flow speed rather than a distribution of free flow speeds is shown. 

Also, to cope with complexity, the diagram is for single values of A, T, and L. This is 
a matter of convenience for discussing concepts and ideas. In a general microscopic 
simulation of traffic, these parametric values would be distributed amongst different 
types of drivers according to on-road observations. 



Returning to figure 25, once the density gets high enough, drivers will be close 
enough to the preceding vehicle that they will slow down to follow a steady-following 
relationship. In this example, the steady following relationship is R = A + T V and the 
density D is given by D = 1l(R + L). This means, after some algebraic operations, that the 
flow F = V D = [-(A + L) D + lI(1lT) when density is greater than the density at Vset, 
which is the density at Rset = A + T Vset in this case. 

The flow at capacity occurs at Vset in this example. For the set of parameters (A + L) 
= 8, T = 1 s and Vset = 30 mls, the flow at capacity Fc would be 30138 = 0.789 vehiclesls. 
This is a large flow ( Fc = 2840 vehicleslhour), but in practice, capacity is restricted by 
the drivers who chose smaller values of Vset and larger values of T. 

Figure 26 illustrates the influences of the parameter G on the capacity of flow. In this 

example G = - 0.01 s21m. 
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Figure 26. Flow-density diagram and example illustrating the influence of G. 

The results for a numerical example are included in figure 26. The values of A, L, T, 
and Vset are the same as those discussed in connection with figure 25 except that G 
equaled 0 in that case. The figure clearly indicates and the numerical example shows that 
the value of G has a significant influence on capacity. The capacity for the G= 0 case is 

0.79 vehiclesls and it is 1.03 vehiclesls for G = -0.01 s21m. 
Figure 27 presents a numerical example showing the interaction of T and G. The 

results again show the significance of the value of G on the capacity of the flow. The 
basic finding is that a non-linear steady-following relationship of the form R = A + T V + 



G v2 with G < 0 will improve capacity depending upon the magnitude of G. The 
influences of larger values of T can be off set by larger negative values of G. 
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Figure 27. Flow-density diagram indicating the importance of G as T increases 

Based upon the type of analysis illustrated in figures 25, 26 and 27, the values of Dset 
and Fc have been computed for each of the ICC FOT and FOCAS drivers. See figures 28 
and 29, for example. These results show a wide spread of values for the capacity of a 
flow consisting exclusively of each type of driver. It is anticipated that for a traffic stream 
involving a mixture of driver types, the drivers with the lowest values of Fc would 
control the overall capacity. This is based upon the idea that as the density increases the 
opportunity to pass a slower moving vehicle is eliminated. Hence, a trailing vehicle is 
forced to go at the speed of its preceding vehicle whether the driver wants to or not. 
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Figure 28. Fc capacity in ascending order, ICC FOT data. 
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Figure 29. Dset (density at capacity) in ascending order, ICC FOT data. 



The next figure addresses a different type of question. Figure 30 involves situations in 
which vehicles are trying to operate at densities above Dset, the density at capacity. 

What would a demand for density mean? 
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Figure 30. Flow-density diagram illustrating where sustainable flow would be helpful 

The point of the numerical example shown in Figure 30 is that theoretically more 
vehicles could get on the road (i.e., density could be higher) if vehicles were capable of 
inherently sustainable flow. In the example, there is almost a 50 percent increase in 
density compared to that attained by restricting density at a comparable flow (0.72 vehls 
in this case). Although it may be vely difficult and practically impossible to get drivers to 
drive with the necessaly anticipation to sustain this flow, one might design ACC systems 
to do so. That would be theoretically possible, but it is not known whether people would 
like it. This is an area that could be studied in phase 3. None of the ACC systems used in 
the ICC FOT or FOCAS projects produce inherently sustainable flow. The measurements 
done in phase 1 indicate that current ACC systems are much like human-manual driving 
with respect to the inability to provide sustainable flow at high densities. 



Summary of Conclusions and Findings from Phase 2 Research 

Learning what happens when people are driving manually. 
Naturalistic data from the ICC FOT and FOCAS research programs provided the 

quantitative information used for learning how people control the range clearance to a 
preceding vehicle and the speed of their vehicle. This information was available in a 
relational database, thereby allowing it to be readily queried. The results of these queries 
have provided parametric values as needed for a model, which can be used for emulating 
human-manual driving. The model and the values of the parameters associated with the 
model describe the human-manual driving characteristics of the 143 different drivers 
studied in phase 2. 

Understanding how the driving process works in typical trajjic situations involving 
control of speed and range clearance. 

The human-manual driving data have been used to develop findings concerning the 
steady-following characteristics of drivers and their lack of an inherent capability for 
sustaining steady following in a string of similar driver-vehicle combinations. The 
equations for the model are based upon the premise that drivers follow other vehicles in a 
way that expresses their personalized style for avoiding rear-end crashes. Based upon this 
premise, a constant deceleration analysis was used to generate basis functions that were 
used to fit actual naturalistic driving data and to yield parameters that captured each 
driver's personalized style. 

The basis function used in the model for fitting steady following data is R = A + T V 

+ G v2 where R is the steady following range clearance and V is the velocity at steady 
following. The data show and the model contains a free flow speed, Vset, which drivers 
seek when the range clearance and roadway characteristics are viewed as appropriate for 
that speed. This provides the long-range tails observed at Vset for each road type. 
(Drivers select a free flow speed for each road, apparently depending upon their 
assessment of that road and its environment.) The model has provision for deciding when 
to use Vset and when to use R, Rdot, and V in determining the desired speed of travel. 
Two important findings concerning driver characteristics are as follows: 

The values of the free-flow speed parameter Vset and the steady-following 
parameter T both vary widely depending upon the personalized characteristics of the 
driver involved. 

The parameters T and G are approximately related by G = - 0.025 T + 0.013 for 
human-manual driving. The value of G was less than zero for all 143 drivers. 

Although the study of transient behavior involves many nuances, phase 2 research 
provides evidence supporting the following basic observations. 

First, values for the transient parameters in the driver model have been found to fit 
measured transient responses well. 



Second, the results of the data analysis imply that drivers in general will have a 
tendency to overlundershoot the velocity of the preceding vehicle and the steady 
following value of range clearance. 

The modeled driver emulates these tendencies using nonlinear expressions, which are 
functions of velocity, for determining acceleration corrections due to range discrepancies 
and also due to range-rate discrepancies 

At this point in the development of the driver model, the data need further analyses to 
determine values of the transient-response parameters for each of the 143 drivers. 
Nevertheless, based upon the current work, one can observe that if G < 0 and T < 
approximately 2.5 s, the lead and damping term associated with the human-manual 
driving data is not likely to be large enough to prevent overlundershoot. For drivers with 
values of T > approximately 2.5 s, their time histories frequently indicate a non-linear 
tendency of these drivers to limit their response to positive (or even very slightly 
negative, Rdot < 0) range-rate errors. This means that these drivers have a tendency to 
avoid closing on a preceding vehicle. They hang back letting their time-gap increase. 

There are a number of other observations that follow from the process of examining 
and penetrating data from human-manual driving. One observation concerns the 
variability within a single driver. People operate with limited accuracy in perceiving 
range, range-rate, and velocity. In this sense, the values of the transient response 
parameters involve some uncertainty and are representative of likely values in a given 
situation. Furthermore, driver intentions and stresses change from time to time, causing 
them to adjust their style of driving. Another observation involves "altercontrol", which 
covers driver intentions to change speed for reasons other than those related to range 
clearance. Given the presence of altercontrol, the selection of data samples to use in 
evaluating driver characteristics is not as straightforward as the researcher would like it to 
be. Nevertheless, these phenomena need to be considered in processing naturalistic data 
to obtain parameters describing driver characteristics pertaining to range clearance per se. 

The modeled driver has been completed by adding constraints that require that range, 
R, not become less than the stopped vehicle clearance, A, and that V not become less 
than zero. These represent simplifications that are acceptable for a preliminaly simplified 
model. They could receive further attention in future research, but they are adequate for 
using simulation to gain insights into the influences of the basic parameters describing 
driver characteristics on the flow of traffic. 

The data that have been analyzed so far are not readily processed to recognize each 
driver's gap-taking preferences and tendencies for changing lanes. Those characteristics 
need to be included in microscopic simulations of traffic flow. Observations emphasizing 
microscopic, individual lane-changing tendencies are in order. 

Contemplating what concepts are useful in explaining traffic-flow related aspects of 
the control of speed and range clearance. 

From tests and analyses of ACC systems, a concept of "inherently sustainable 
strings" has been employed in phase 2. A set of driver or ACC system characteristics is 
said to have inherently sustainable string performance if there is no overlundershoot of 



range and velocity from vehicle to vehicle going back in a simulated or tested string of 
nearly identical driverlvehicle combinations. 

An important point to observe here is that an ACC algorithm can be programmed to 
employ any of the steady-following driver characteristics determined in phase 2. 
However, in ACC systems, the transient response parameters can be adjusted to make 
strings of these types of identical vehicles have nearly inherently sustainable flow. The 
analysis supporting this was done in phase 1 and reported in [14]. The concept of 
inherently sustainable string performance plays an important role in considerations of 
traffic flow in high-density situations. 

Relationships between longitudinal control characteristics of ACC systems and 
drivers as determined in phases 1 and 2 and the capacity and sustainability of traffic flow 
have been addressed in phase 2. These are done at a high level of abstraction appropriate 
for engineering design and evaluation purposes. 

To cope with the complexity introduced by a wide range of human-manual driving 
characteristics, analyses involving individual sets of the steady-following characteristics 
were performed. These analyses show the influences of T and G on the capacity of the 
flow. The flow at capacity occurs at Vset in these analyses. The value of G has a 
significant influence on capacity. For example, the capacity for a typical G= 0 case is 

0.79 vehiclesls and it is a phenomenal 1.03 vehiclesls for G = -0.01 s21m and all else 
remaining the same. 

The values of Dset (density at capacity) and Fc (flow at capacity) have been 
computed for strings of each of the ICC FOT and FOCAS drivers. These results show a 
wide spread of values for the capacity of a flow consisting exclusively of each type of 
driver. It is anticipated that for a traffic stream involving a mixture of driver types, the 
drivers with the lowest values of Fc would control the overall capacity. This is based 
upon the idea that as the density increases the opportunity to pass a slower moving 
vehicle is eliminated. Hence, a trailing vehicle is forced to go at the speed of its preceding 
vehicle whether the driver wants to or not. 

Numerical examples performed in phase 2 show that theoretically more vehicles 
could get on the road (i.e., density could be higher) if the involved vehicles were capable 
of inherently sustainable flow. In a typical example, there is almost a 50 percent increase 
in density compared to that attained by restricting density at a comparable flow (0.72 
vehls in this example). Although it may be very difficult and practically impossible to get 
drivers to drive with the necessaly anticipation to sustain this flow, one might design 
ACC systems to approach this. That would be theoretically possible, but it is not known 
whether people would like it. This is an area that could be studied in phase 3. None of the 
ACC systems in the ICC FOT or FOCAS projects could produce inherently sustainable 
flow. The measurements done in phase 1 indicate that current ACC systems are much 
like human-manual driving with respect to the ability to provide sustainable flow at high 
densities. 

Knowing how to apply the results, findings and discoveries of this research in a 
logical manner. 

Phase 2 has produced significant discoveries and findings concerning the ACC 
system characteristics that may significantly influence traffic-flow. Specifically, the 



influences of Vset, T,  and G on capacity are now better understood. To the extent that 
ACC systems have properties that correspond to these parameters, the influences of ACC 
systems are better understood. 

The driver modeling work advances our ability to predict and evaluate results for 
mixed traffic involving both ACC and manually controlled vehicles. These new 
capabilities are now available for use in experimenting with models (i.e., simulation) and 
challenging their validity. In particular, the subject and utility of the concept of inherently 
sustainable strings and its relevance to mixed traffic flow can be studied. 

The recommendations that follow in the next section are based upon the scientific and 
engineering challenges remaining to be met in providing a research foundation for use in 
evaluating and enhancing the string behavior of ACC-equipped vehicles operating in 
traffic streams. The discussion in the previous subsection introduces areas where there is 
need for further measurements involving driver and traffic behavior. This need supports 
the development of a mobile laboratory and its installation in vehicles for observing 
microscopic phenomena in traffic streams. 



Recommendations for Applying the Findings from Phases 1 and 2 
In summary, action-oriented recommendations based on the experience gained and 

the findings developed in phases 1 and 2 are as follows: 
(1) Use simulation techniques to study issues concerning microscopic phenomena 
pertaining to traffic flow and ACC systems. 
(2) Design, develop, and verify the operational capabilities of microscopic- 
phenomena vehicles (MPVs) containing a specially designed mobile laboratory 
(ML). Verify and validate the operational capabilities of the MPVs and their MLs 
on a proving grounds and then in traffic. 
(3) Collect data in traffic streams using prescribed protocols for MPV behavior 
and analyze the data collected by the mobile laboratoly, thereby improving the 
understanding and modeling of pertinent aspects of traffic phenomena involving 
ACC-equipped and humanly driven vehicles. 

With regard to recommendation (I) ,  the partners have identified certain issues as 
candidates for consideration. (The partners have not decided whether these items are 
acceptable to them in a phase 3 activity.) With respect to ACC systems, these issues 
include further development and refinement of the driver models for: 

lane changing 
using the accelerator pedal during ACC 
take over from ACC at low speed 
resuming ACC 
behavioral characteristics on multi-lane roads 

The partners have identified (1) dense traffic near instability, (2) levels of braking and 
acceleration in stop-and-go andlor creep-and-go situations, (3) different types of roads, 
and (4) the influences of weather as possible areas of study. They see the need for 
comparisons with experimental and measured data to aid in verifying the models and in 
attaining plausible results in microscopic analyses 

With regard to recommendation (2), the main purpose of the mobile laboratoly is to 
measure microscopic variables of interest in the traffic stream. These variables are range 
to nearby vehicles, their range rates, velocity of the mobile-laboratoly equipped-vehicle, 
and its location. These variables have been measured and stored in several field 
operational tests involving UMTRI, for example [6,7]. Hence, pertinent design activity 
and experience related to measuring and storing data and creating databases are available. 

One possibility involving the OEM partners is for them to furnish ACC equipped cars 
and for them to aid in providing access to data from the range and range rate sensors in 
those cars. The sensors used in ACC operation provide the basic information that is 
critical to the utility of the mobile laboratoly function in microscopic performance 
vehicles (MPVs). 

In order to examine following vehicles (behind the MPV) a rearward looking sensor 
for measuring ranges and range rates is needed. This capability has been provided in the 
USDOT 100-car-study [15] and it could be added to the OEM or US DOT vehicles used 
as MPVs in traffic studies. 

The mobile laboratoly (ML) would be expected to provide two additional features as 
the program progressed. They are (1) the ability to controllconstrain the longitudinal 
control behavior of the MPV within prescribed bounds and (2) the capability to measure 



gap sizes in adjacent lanes as needed for emulatinglpredicting the maneuvering behavior 
of vehicles in traffic streams as the density increases 

The ACC systems in OEM vehicles provide one form of controllconstraint over range 
clearance and speed control. Furthermore, UMTRI has developed prototypical ACC 
systems for longitudinal control. These have involved algorithms that are readily installed 
in programmable electronic control units. These types of units were used to supply 
control commands to engine and transmission actuators in the ICC FOT cars. They were 
also used to provide baking commands to smart brake boosters in the FOCAS study for 
NHTSA. 

With regard to measuring gaps in adjacent lanes, the US DOT has published 
measured results as obtained in studies of merging events and crashes involving merging 
[I l l .  Although the traffic studies proposed here tend to emphasize flow rather than crash 
behavior, we are interested in the same microscopic phenomenon, i.e., taking a gap in an 
adjacent lane. 

The third recommendation concerns using mobile-laboratory-equipped vehicles to 
gather data on pertinent aspects of microscopic phenomena influencing traffic flow. The 
analysis of this data provides the basis for validating models and providing evidence 
supporting the validity of predictions made by these models. 

In conclusion, the purposes of the recommended actions based on the findings of 
phases 1 and 2 are to: 

Expand our knowledge of the driving process. 
Define desirable ACC characteristics, in light of such knowledge 
Aid the automotive sector in enhancing ACC performance. 
Aid the public sector in assuring reliable traffic flow in the future. 
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