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Abstract

Prior to being alerted that a requirement has changed, project management typically recom-

mends that an engineer treat that requirement as fixed. But proper risk management emphasizes

that all uncertainties should be explicitly recognized prior to making any decisions. Hence the

engineer should explicitly recognize the possibility that their requirements may change. As a

result, systems engineering indexes each requirement by its stability, which reflects its proba-

bility of changing. Building on this insight, this paper presents a new technique for considering

the uncertainty associated with any requirement in design decisions.

Key Words: Systems engineering, Unstable requirements, risk management, Uncertainty mod-

elling

Introduction

Requirements management is critical in systems engineering. Since requirements drive considerable

work in the design process, unexpected changes in requirements are costly. Requirements can change

because of unforeseen changes in stakeholder needs (Ward and Chapman, 2003; Huemann, Turner

and Keegan, 2007). These changes reflect uncertainty about the capabilities a stakeholder will

require in using the deliverable in the intended environment.

In projects, including systems engineering projects, the project manager is required to treat

requirements as fixed. Meanwhile a change control process reviews potential changes to require-

ments, evaluates their cost, and then determines whether to adjust the requirement (Calhoun,

Deckro, Moore, Chris and Hove, 2002). Once the decision is made to change the requirement, the

change is communicated to all affected managers as quickly as possible. At this point, the focus of

the process is on minimizing the disruption caused by change.

Requirement change can lead to costly rework. Furthermore uncertain performance in some

activities may affect the needed performance across other activities. But some requirement change
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reflects the stakeholder not fully understanding and communicating what they need. To reduce

this source of potential change, agile approaches (Maylor, Vidgen and Carver, 2008) restructure

the work flow to allow for more frequent iterations with the customer. Since the stakeholder

requirements may also change because of changes in their environment, this may not completely

eliminate all requirement change. In this case, active monitoring and corrective action (Hu,Cui,

Demeulemeester and Bie, 2016) can reduce the time required to detect and react to the need for

change as well as speedy generation of options (Creemers, De Reyck and Leus, 2015).

Nonetheless these approaches do require costly and time-consuming changes in conventional

project management (Schwaber, 2004). But since even agile approaches cannot eliminate all re-

quirement change, the project manager will still have some residual uncertainty about whether a

requirement may change. Recognizing the inevitability of requirement uncertainty, best practices

in systems engineering project management classify requirements based on whether they are likely

to change (volatility.)

Fortunately, there already exist well-established tools for making decisions optimally once un-

certainty has been recognized (Ding and Zhu, 2015; Elmaghraby, 2003; Morgan and Henrion, 1992;

Chapman and Ward, 1997; Clemen, 1996; Khodakarami, Fenton and Neil, 2007; Pich, Loch and

DeMeyer, 2002). Many of these approaches, e.g., decision trees, influence diagrams, are already

recognized in both the Systems Engineering Body of Knowledge (SEBOK, BKCASE 2019) and

the Project Management Body of Knowledge (PMBOK, Project Management Institute, 2013).

These tools have been especially successful in strategic decision making as well as in evaluating the

uncertain outcomes of different design decisions.

To apply these well-established decision tools to requirement change, this paper shows how

requirement uncertainty can be formalized as a kind of outcome uncertainty – which is something

existing methods can handle. Hence the project manager, instead of treating a requirement as fixed
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until it changes, will be able to make decisions which recognize the uncertainty in their require-

ments. The value of recognizing uncertainty in making decisions (versus ignoring it) has already

been quantified as the expected value of including uncertainty (Morgan and Henrion, 1982). This

paper will show that simply recognizing requirement uncertainty (versus ignoring it) is sometimes

almost as valuable as recognizing and eliminating uncertainty using agile methods. Because agile

methods are often costly and time-consuming, this can make the proposed approach a cost-effective

alternative to agile.

The next section introduces set-based requirements for measuring the evolving degree of un-

certainty associated with a requirement over time. The subsequent section then introduces the

proposed technique for embedding this uncertainty within the existing structure of project man-

agement. Later sections then quantify the benefits of this approach using simulation.

Set-Based Requirements

This paper addresses requirement uncertainty by translating requirement uncertainty into an out-

come uncertainty which can then be addressed by existing decision analysis tools. As simulations

in this paper show, this approach can sometimes capture most of the benefits of agile approaches.

To measure this uncertainty, we follow best practices in uncertainty management by identifying

bounds on the amount of capability the stakeholder might require.

Thus at the start of the project, standard systems engineering practice, in addition to setting

hard requirements on external interfaces and regulations, also sets ‘best-case’ bounds on other

attributes. We define a bound as ‘best-case’ if the probability of the actual requirement being less

lenient is negligible. For example, a commercial airplane must have at least enough range to fly

from one airport to the nearest neighboring airport. An automobile must have sufficient range

to drive a customer to a nearby gas station. These ‘best-case’ bounds can be formulated as hard
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requirements, i.e., any performance below the bound is unacceptable. But as the project proceeds,

information is often collected which enables this ‘best-case’ capability bound to be made more

demanding.

We also define a bound as ‘worst-case’ if the probability of the actual requirement being more

stringent than the bound is negligible. There are many cases in which the system engineer also

often identifies ‘worst-case’ bounds on the capability a stakeholder needs. For example, there was

a maximum weight requirement set for the Direct TV satellite based on how much weight the

platform at Cape Canaveral could launch and still get the satellite into the desired geocentric orbit.

But the systems engineer(Winter, 2015) realized that the amount of weight that could be launched

from Cape Canaveral would change dramatically if there were a hurricane . To avoid the risk of

failure due to weather conditions, the systems engineer gave his design team a more aggressive

target with a more demanding weight limit than specified by the stated requirement. The wisdom

of using such safety margins in adjusting the requirement was confirmed when there was a hurricane

on the day that the Direct TV satellite was launched. So by setting a ‘worst-case’ bound on the

capability that might be required, the systems engineer enabled the successful launch of Direct

TV. New information might lead the systems engineer to update this ‘worst-case’ bound to be less

demanding.

Together the best-case and worst-case bounds define an interval which bounds the range of

uncertainty in the maximum capability the stakeholder will require in the intended application.

Since there is little probability of the capability the stakeholder needs being outside this interval,

future information about the uncertain capability needed will only shrink this interval (or set) by

making the best-case requirement more aggressive or the ‘worst-case’ requirement less aggressive.

In this case, the widely used stability and volatility indices measure the likelihood of the interval

shrinking. Any design work which was rejected given the ‘best-case’ bound will still be rejected
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when that bound changes. Any design work which was unnecessary given the ‘worst-case’ bound

will still remain unnecessary if that bound changes. Thus new information (or new requirements)

will not lead to a revisiting of previously rejected designs. It may however lead to a rejection of

designs that used to be under consideration. These requirements could be considered semi-hard

because they never become more lenient but may become more demanding.

The concept of describing requirements by a shrinking interval is consistent with the concept of

set-based design. Set-based design defines a set of feasible designs and, as new information about

requirements emerges, eliminates designs which are no longer feasible given this new information.

For this reason, we refer to this concept of using bounds to describe requirements as set-based

requirements.

Among the designs which satisfy the set-based requirement,the designs which perform closer

to the best-case bound are less likely to be fall below the lower bound when new information is

added. Hence the more a design’s capability outperforms the ‘best-case’ bound, the more robust

the design to the risk of a future tightening of that bound. As a result, the designer should favor

designs which (other things being equal) score better on the interval because of their robustness

even though they currently satisfy the set-based requirement.

Given complete information, the lower and upper bounds will not necessary converge to a

single point. Requirements are typically defined in terms of a threshold (which is the minimum

capability acceptable) and an objective (beyond which further improvements in capability have

negligible value.) Incremental improvements beyond the threshold but below the objective are

valued. The lower bounds on the uncertain requirements will converge, given perfect information,

to the threshold while the upper bound will converge to the objective. Hence the notion of set-based

or semi-hard requirements extends the concept of threshold and objective by recognizing existing

uncertainty about the capability needed.
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Figure 1: Convergence of Initial Bounds to Threshold and Objective

Before introducing the approach, it will be helpful to define a common ‘orientation’ for all

the requirements. For example, a higher fuel efficiency score is always better. In this case, the

optimistic requirement is the lower limit on the amount of fuel efficiency which the stakeholder

might require (while the pessimistic requirement is the upper limit). But a smaller score is always

better on the time required to accelerate a vehicle from zero to sixty miles. In this other case,

the optimistic bound is an upper limit on time and the pessimistic bound is the lower limit. To

avoid ambiguity, this paper will assume that all attributes are defined so that less is always better.

Thus the optimistic requirement always specifies an upper limit on what level of capability on

some dimension is acceptable while the pessimistic requirement specifies a lower limit beyond which

further improvement is of negligible value. Thus for the project deadline (Kolish and Padman,2000),

any project finishing later than the optimistic bound is unacceptably late while there is no benefit

to the project finishing any earlier than the pessimistic bound.

When a project is at risk of not satisfying a requirement (i.e., of not meeting the threshold on

that requirement), the manager must allocate additional resources to different activities so as to

improve capability on that requirement. Note that a manager who recognizes requirement uncer-

6



tainty might still take action on improving the project’s capability on some requirement dimension

even if the average capability satisfies the requirement. Hence the manager who recognizes require-

ment uncertainty will make different decisions than the manager who is unaware of requirement

uncertainty.

Proposed Solution

Motivation

The original Systems Vee description of systems engineering begins with the specification of stake-

holder requirements and terminates with the delivery of a system satisfying those requirements to

the stakeholder. But since this only reflects some of the steps in systems engineering (as specified in

the SEBOK), more comprehensive design models like the winged Vee (and the Systems M variant

on the winged Vee) have been developed. These models consider the ‘meta-system’ which precedes

the specification of stakeholder requirements as well as the subsequent meta-system in which the

stakeholder uses that deliverable to address that stakeholder’s problem. Thus the systems engineer

responsible for designing the Direct TV satellite also considers the transportation and launching of

the satellite from a launch vehicle at Cape Canaveral. Likewise the systems engineer responsible

for designing a vehicle also considers the additional vehicle-prep work done at the dealership. In

some cases, this post-delivery work can be substantial.

Consistent with these approaches, suppose the stakeholder, upon receiving the deliverables from

the manager’s project, starts a ’complementary’ activity designed to use those deliverables to finish

some longer term project. When the manager’s project and this complementary activity are fin-

ished, the stakeholder’s objectives have been achieved. Suppose the longer-term project’s required

performance on different dimensions is described by the vector r0. Suppose this complementary

activity ‘uses up’ some of the capability developed along all the requirement dimensions. Since
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lower values on the requirement dimensions are preferred to higher values, this complementary

activity will increase the score.

Then in order to meet the requirements, r0, the project needs to produce enough capability to

offset the capability lost in the complementary activity. Suppose the stakeholder knows that the

amount of capability lost by the complementary activity is some vector t. Then the stakeholder

could give the manager’s project the more aggressive requirement vector r = r0 − t which would

then allow the stakeholder to meet their requirement vector r0.

But suppose the complementary activity’s impact on each performance dimension is uncertain.

If t is uncertain, then the requirements, r = r0 − t, on the project will be uncertain. So the

stakeholder cannot give the systems engineer requirements for the original project until they learn

the outcome of the uncertainties in the complementary project. The systems engineer could address

this requirement uncertainty by redefining their actual project so that it only meets its requirements

when the longer term stakeholder project meets its requirements.

This enlarged project will have the same requirements r0 as the stakeholder’s long-term project.

The project network describing this enlarged project consists of the network for the original project

plus an additional activity, corresponding to the complementary activity. This complementary

activity will only start after all the activities in the original project finish. But while the manager

may be able to add resources to affect the work done on the activities in the original project, the

manager will not be able to affect the work done by the complementary activity.

Since a project typically has multiple requirements, r0 will be a vector of long-term requirements,

r will be the vector of capability delivered by the project and t will represent the vector of capability

lost in the complementary activity. The probability that the project satisfies all its long-term

requirements will be the probability that r + t ≤ r0. To quantify the uncertainty in t and thus

in r0 − t, the stakeholder might assess an optimistic upper bound tO on how lax tO might be, a
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pessimistic lower bound tP and a most likely value tL. (If the project manager treats requirement

change as analogous to scope creep and believes that requirements will only get tighter — and

never get more lax — than the project manager might estimate tO = 0 and treat the initially

stated requirement as the optimistic bound for the project’s eventual requirements.) Once tO,

tL and tP are specified, the manager can then use standard methods to model the probability

of the redefined project satisfying the requirement vector r0 (which is just the probability that

r+t ≤ r0.) The uncertainty in the requirements for the original project is completely determined by

the uncertainty in the complementary activity. Since the manager is now responsible for a redefined

project including the complementary activity, the manager will make decisions that appropriately

recognize the uncertainty in the requirements for the original project.

In this example, the stakeholders implemented one complementary project to achieve their

objectives. In the absence of information on a complementary project, we can have the stakeholder

express their uncertainty in the requirements by specifying estimates r0− tO, r0− tL and r0− tP for

the optimistic, most likely, and pessimistic level of requirements. Then tO, tL, tP define optimistic,

most likely and pessimistic estimates of how much the requirements will tighten. As before, making

decisions to maximize the probability of satisfying the vector of eventual requirements is equivalent

to maximizing the probability of the project’s characteristics, r, being no greater than r0 − t. To

model this with the classical project management structure, i.e., an activity network, the manager

re-defines the original project to have requirements vector r0 but adds an additional fictitious

complementary activity with uncertain performance vector t which starts when all other activities

finish.

Fictitious activities have been used, for other purposes, in other project management contexts

(Vanhoucke (2013), pg. 244; Schwindt (2005), pg.8). The classical project management solution

to the original project supplemented with this added activity will be the appropriate solution to
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the original project where the stakeholder’s completion time was uncertain. Figure 1 presents a

screenshot both of the project network with uncertain requirements and a redefined project network

with a fictitious complementary activity.
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Figure 2: Project Network with a Fictitious Complementary Activity

Analytical Comparison

If r is the vector describing a project’s performance on each requirement dimension, then the

probability the project meets all its requirements is the probability that r ≤ r0−t or the probability

that r+t−r0 ≤ 0. Define µ to be the mean of r+t−r0. Define σ2 to be the variance-covariance of r,

the outcome of the project. Define v0 to be the vector of variances of t−r0 which reflect uncertainty

in the requirement. If the requirement uncertainty is independent of the deliverable uncertainty,

then σ2 + v0 is the variance of the difference between the deliverable and the requirement.

Suppose we focus on the case in which there is a single requirement and let s =
√
σ2 + v0. Then

the probability this requirement is satisfied, if all uncertainties are Gaussian, is the probability that

r + t− r0 = 0 =⇒ r + t− r0 − µ
s

≤ −µ
s

If z = µ
s and if Φ is the cumulative normal distribution, then the probability is Φ(z).

Suppose that costs are rescaled so that the cost of a unit improvement in the performance of
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the project on this requirement is one unit. Suppose that the cost of reducing the variance in the

project’s deliverables from σ2 to σ2

n is cn. Then if we improve the path’s mean performance by C

units and reduce the variance by dividing it by a factor of n, the z-score becomes µ+C√
v0+

σ2

n

and the

overall cost is

Φ(
µ+ C√
v0 + σ2

n

)− C − cn

Differentiating by C gives

φ(z)

s
− 1 = 0 =⇒ φ(z) = s (1)

Differentiating by n gives

1

2

φ(z)

s3
σ2

n2
− c = 0 (2)

Substituting φ(z) = s into this equation gives

1

2

σ2

n2s2
= c =⇒ 1

2cn2
=

1

n
+
v0
σ2

This quadratic equation can be solved for n (and thus s). Note that as σ2

v0
decreases, the righthand-

side of the equation increases and n decreases. Thus the more the deadline uncertainty exceeds the

project uncertainty, the smaller the value of reducing project uncertainty. We can then solve for C

using

φ(z) = s =⇒ µ+ C = sφ−1(s)

Simulation Comparison of Alternate Approaches

The relationship between the project’s performance on each requirement dimension and the contri-

butions made by different activities is complex and varies from requirement to requirement. As a

result, the impact of adding resources to different activities will vary from requirement to require-

ment. However this relationship is particularly simple when the requirement dimension is project

completion time. Thus, considering how uncertainty may be incorporated in this case is both useful
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for its own sake and as a demonstration of the potential practicality of the proposed approach. Here,

the project completion time is the maximum completion time of each path through the project and

the completion time of each path is the sum of the completion times of each activity along the

path. The well-known PERT algorithm solves this problem by defining the project’s completion

time as the completion time of the path with the largest expected completion time (the critical

path.) This approach involves an approximation which is known to consistently underestimate a

projects actual completion time except in those cases when the critical path always finishes later

(or at the same time) as every other path in the project, Our approach, applied to PERT, simply

involves the addition of a fictitious activity along the critical path.

There is a trade-off between the ease of implementation and benefit of using PERT, with this

adjustment for requirement uncertainty, compared to that for more modelling intensive approaches.

To explore the usefulness of the proposed approach extended to other situations, we consider a

slightly more complicated activity network and simulate in Microsoft Excel the performance of the

PERT heuristic (modified to include requirement uncertainty) against an optimization approach

under different assumptions about uncertainty.

Specifically, we consider the activity network shown in Figure 4, which is a tree with one level

of branches of varying lengths beyond the root. This is still relatively simple, but different enough

from a linear project to test whether the results are an artifact of the critical path assumption.

The sequence of activities 1, 2 and 3 forms the first branch, activities 4 and 5 in sequence form

the second, and activity 6 is the third. All three branches precede activity 7. We select initial

parameters so that

• the mean deadline is greater than the mean project completion time;

• it is plausible that some activity not on the PERT critical path will delay completion;
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• there is a non-trivial chance that the project will not be on time.

We initialize random variables Yi for the activity durations with means m′i of 6, 5, 4, 8, 6, 13 and

8 respectively, each with the same initial standard deviation Si = S (which is varied across four

scenarios). The project’s deadline T is uncertain with mean 25 and standard deviation 3. The

effect of crashing activity i is to reduce its mean to m′′i ≥ 0, and to increase its standard deviation

to Si = S + (m′i −m′′i ). A crashing strategy, which leads to reductions in the mean time for each

activity, creates a new set of random variables Y ′′ and T which are Gaussian and independent. To

calculate the probability of on-time completion, we first compute the cumulative density function

for χ = max(Y1 + Y2 + Y3, Y4 + Y5, Y6), which is defined by

Pr .{χ ≤ w) = Pr .{Y1 + Y2 + Y3 ≤ w) Pr .{Y4 + Y5 ≤ w) Pr .{Y6 ≤ w},

noting that the sum of activity times on each branch is Gaussian with mean equal to sum of the

activity means and variance equal to the sum of activity variances on that branch. The project is on

time if χ+Y7 <= T , i.e., if χ < T −Y7 where T −Y7 is the difference between two Gaussian random

variables and hence is Gaussian. (This is equivalent to adding the dummy activity for deadline

uncertainty.) From the joint distribution of χ and T − Y7, we obtain the density Φ(T − Y7 − χ)
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and thus Pr .{T − Y7 − χ ≥ 0}, i.e. the probability the project finishes by its deadline. We then

use a generalized reduced gradient algorithm to solve for the crashing strategy which maximizes

this probability for given parameters of Y ′′ and T , subject to the constraint that each m′′i ≥ 0. We

do this once for the scenario in which initial activity times are known so that S = 0, once where

activity times have low uncertainty (S = 0.5), once with medium uncertainty (S = 1.0), and once

with high uncertainty (S = 2.0).

For each scenario, we identify the strategy which optimizes probability of success under four

different assumptions about uncertainty:

1. PERT: The deadline is assumed to be fixed with standard deviation 0, and there is no chance

that activities 4, 5 or 6 can enter the critical path (i.e., they are assumed to have means of 0

and standard deviations of 0);

2. Optimization: The deadline is fixed but all activities might be appear on the critical path

and therefore all might be crashed, i.e., the correct parameters are entered;

3. Enhanced PERT: The deadline is assumed to have its correct standard deviation of 3, but as

before activities off the initially identified critical path (1, 2, 3, 7) are ignored;

4. Enhanced optimization: all activities are crash-able and deadline uncertainty is included.

Note that strategies (1), (2) and (3) are optimal under conditions which somehow distort the project,

while strategy (4) is a gold-standard which is optimal under the correct assumptions. Our measure

of performance is the probability that each of the strategies thus identified leads to on-time comple-

tion under the assumptions of (4). For additional comparison, the table includes the probability of

success if there no crashing. The results in Table 1, as expected, show that no crashing is worst and

enhanced optimization is best in each scenario. For S ≤ 1.0, the performance of enhanced PERT
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No Crashing PERT Optimization Enhanced PERT Enhanced Optimization

S = 0.0 74.21 % 74.21 % 74.21 % 91.24% 94.49%

S = 0.5 72.1 % 85.47% 77.82% 88.29% 91.07%

S = 1.0 66.18% 82.81% 81.29% 84.65% 87.91%

S = 2.0 53.83% 77.25% 81.49% 77.29% 81.50%

Table 1: Outcomes of Simulation Experiment

is close to the performance of enhanced optimization with both enhanced PERT and enhanced op-

timization substantially outperforming both PERT and optimization. When S = 2.0, the deadline

uncertainty is small relative to the project duration uncertainty and optimization, with or without

enhancement, outperforms both PERT and enhanced PERT.

Also note that for S = 0.5 and 1, PERT counter-intuitively performs better than optimization

because

• the risk aversion of the project manager in a favourable situation is artificially strengthened

when deadline uncertainty is ignored which leads to too little crashing on any of the three

branches

• PERT ignores the possibility that any activities will be replaced on the critical path, and

so overweights the impact of crashing those activities. This offsets the bias the risk-aversion

created by ignoring deadline uncertainty

In practical terms, when the scale of the project is not so large or the structure of the project is

not so complex as to justify large modelling expense, project managers can still obtain considerable

benefit utilizing internal staff to conduct modified-PERT analysis in problems involving substantial

deadline uncertainty.
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Summary

Requirement uncertainty is a major problem in systems engineering. This paper proposed a general

approach toward solving the problem by introducing tentative thresholds and objectives that are

gradually tightened as more information surfaces about those requirements. This addresses the

concern of engineers being forced to ignore the uncertainty in their requirements by treating them

as fixed (and certain) until they change. At the same time, it recognizes that formalizing hard

requirements is essential to the design process.

We consider the case where this requirement uncertainty is due to stakeholder uncertainty about

the level of capability needed in meeting the stakeholder project for which the deliverables were

created. We then consider the general case by defining the fixed requirements to be the optimistic

or most lenient level of requirements. In projects where requirement change only lead to more

stringent requirements, the optimistic requirements will be the initially stated requirements and the

deviation between optimistic and pessimistic requirements reflects potential scope creep. A fictitious

customer expectations management activity is defined whose success is measured by the degree to

which requirement change is minimized. This activity is added after the existing activities in the

project network. Since this is now part of the systems engineering project, managing the project

using the standard methods of project management will now account for requirement uncertainty.

To demonstrate the benefits of this approach, we then considered its application to managing

uncertainty in a single requirement, the project deadline. This paper then demonstrated the poten-

tial benefit of this innovation in making project crashing decisions. The technique of introducing

an artificial activity was especially useful for address project deadlines. In the context of PERT

(and related network descriptions of projects), this way of recognizing deadline uncertainty requires

only minimal changes in existing methodologies. It is, in theory, possible to introduce a similar

artificial expectations management activities for other requirements. In similarly simple contexts,
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e.g., analogous to PERT, where weight (or cost) of the product is sum of weight (or cost) of its

parts, or cost extending to other features, we might have a fictitious part with random weight (or

cost), or even some combination of fictitious parts and activities. In more complex cases, sophis-

ticated algorithms are needed even without requirement uncertainty. As seen in the multi-path

activity network example, there may be substantial additional benefit to incorporating requirement

uncertainty to those algorithms.
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