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5 Abstract

6 The 2D arrangement of rows of enamel rods with alternating (decussating) tilt angles across the 

7 thickness of the inner layer in rat and mouse incisor enamel is well known and assumed to occur in a 

8 uniform and repetitive pattern. Some irregularities in the arrangement of rows have been reported but 

9 no detailed investigation of row structure across the entire inner enamel layer currently exists. This 

10 investigation was undertaken to determine if the global row pattern in mouse mandibular incisor 

11 enamel is predominately regular in nature with only occasional anomalies or if rows of enamel rods have 

12 more spatial complexity than previously suspected. The data from this investigation indicate that rows 

13 of enamel rods are highly variable in length and have complex transverse arrangements across the width 

14 and thickness of the inner enamel layer. The majority of rows are short or medium in length, with 87% 

15 having <100 rods per row). The remaining 13% are long rows (with 100-233 rods per row) that contain 

16 46% of all enamel rods seen in transverse sections. Variable numbers of rows were associated with the 

17 lateral, central and mesial regions of the enamel layer. Each region contained different ratios of short 

18 medium and long rows. A variety of relationships were found along the transverse length of rows in 

19 each region, including uniform associations of alternating rod tilts between neighboring rows, and 

20 instances where two rows having the same rod tilt were paired for variable distances then moved apart 

21 to accommodate rows of opposite tilt. Sometimes a row appeared to branch into two rows with the 

22 same tilt, or conversely where two rows merged into one row depending upon the mesial-to-lateral 

23 direction in which the row was viewed. Some rows showed both pairing and branching/merging along 

24 their length. These tended to be among the longest rows identified, and they often crossed the central 

25 region with extensions into the lateral and mesial regions. The most frequent row arrangement was a 

26 row of petite length nestled at the side of another row having the same rod tilt (30% of all rows). These 

27 were termed “focal stacks” and may relate to the evolution of uniserial rat and mouse incisor enamel 

28 from a multilayered ancestor. The mesial and lateral endpoints of rows also showed complex 

29 arrangements with the dentinoenamel junction (DEJ), the inner enamel layer itself, and the boundary 

30 area to the outer enamel layer. It was concluded that the diversity in row lengths and various spatial 

31 arrangements both within and between rows across the transverse plane provides a method to interlock 
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1 the enamel layer across each region and keep the enamel layer compact relative to the curving DEJ 

2 surface. The uniserial pattern for rows in mouse mandibular incisors is not uniform but diverse and very 

3 complex.

4 Introduction

5 There has been considerable interest over the past century and a half in classifying the many shapes and 

6 arrangements of enamel rods present in the teeth of extinct and extant mammals, especially rodents 

7 (Tomes, 1850, Kawai, 1955, von Koenigswald, 1985, Sahni, 1985, Martin, 1999, Martin, 2007). The 

8 diversity of enamel rod forms and organizational patterns, referred to as the enamel “Schmelzmuster” 

9 in the paleontological literature, e.g., (von Koenigswald and Clemens, 1992, Yilmaz et al., 2015), has led 

10 many investigators to suspect that most if not all the different patterns described correlate to 

11 differences in diet and a natural driving force directed toward developing the enamel layer with efficient 

12 and effective abrasion and fracture resistance (von Koenigswald, 1985, von Koenigswald et al., 1987, 

13 Vieytes et al., 2007, Yahyazadehfar et al., 2013). Other investigators have used rod organizational 

14 patterns to help define possible evolutionary interrelationships among predecessors across specific 

15 mammalian orders, e.g., (Kawai, 1955, Sahni, 1985, von Koenigswald, 1985, Martin, 1993, Martin, 1999, 

16 Martin, 2007 , Stefen and Rensberger, 1999, Tabuce et al., 2007, von Koenigswald et al., 2011, Alloing-

17 Séguier et al., 2014). In the past half century, the shape and arrangement of enamel rods have also been 

18 of special interest as potential indicators of the pathways ameloblasts follow in secreting the enamel 

19 layer (Boyde, 1969, Osborn, 1970, Warshawsky, 1978, Risnes, 1979a, Radlanski and Renz, 2006, 

20 Hanaizumi et al., 2010, Cox, 2013, Alloing-Séguier et al., 2017, Alloing-Seguier et al., 2018).

21 Diversity of rod shapes and organizational patterns in mammalian enamel occurs not only on 

22 different sides of the same tooth but also between different tooth types in the same mammal as well as 

23 dramatically between different mammalian species (Boyde, 1969, Risnes, 1979b, von Koenigswald and 

24 Clemens, 1992, Moinichen et al., 1996, Lyngstadaas et al., 1998, Goldberg et al., 2014). Underneath all 

25 this diversity, there are certain structural fundamentals shared by enamel covering all extant 

26 mammalian teeth. For example, the elemental building blocks of mammalian enamel are small but 

27 elongated crystallites of carbonated hydroxyapatite either grouped together into much larger enamel 

28 rods (prisms) or filling the spaces between the rods (interrod/interprismatic) (Boyde, 1969, von 

29 Koenigswald and Clemens, 1992, Yilmaz et al., 2015). Enamel rods originate near the dentinoenamel 

30 junction (DEJ) and travel toward the outer surface of the enamel layer, usually along some nonlinear 

31 path that may follow an angularly segmented, sigmoid or wavy/spiral trajectory (Boyde, 1969, 

32 Warshawsky, 1971, Warshawsky, 1978, Sahni, 1985, von Koenigswald and Clemens, 1992, Alloing-
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1 Séguier et al., 2017, Alloing-Seguier et al., 2018). Enamel rods traverse the thickness of the enamel layer 

2 usually in groups that follow the same nonlinear path (Alloing-Séguier et al., 2017, Alloing-Seguier et al., 

3 2018). Immediately adjacent groups of enamel rods follow different nonlinear paths, often at an 

4 opposite angle relative to neighboring groups of rods. This creates arrangements in the deeper regions 

5 of the enamel layer called Hunter-Schreger bands, a term that has come to imply sites within an enamel 

6 layer of a mammal tooth where groups of enamel rods decussate, that is, change angles relative to each 

7 other (Boyde, 1969, Hanaizumi et al., 1996, Hanaizumi et al., 2010, Kawai, 1955, Sahni, 1985, von 

8 Koenigswald, 1985, von Koenigswald and Pfretzschner, 1987, Osborn, 1990, Stefen and Rensberger, 

9 1999, Tabuce et al., 2007, Lynch et al., 2010, von Koenigswald et al., 2011, Alloing-Séguier et al., 2017). 

10 In rat and mouse incisors, Hunter-Schreger bands are not prominent and are superseded by an 

11 arrangement where the grouping of enamel rods occurs in single rows filling the inner region of the 

12 enamel layer. Each successive row characteristically is arrayed at an angle opposite to the row above 

13 and below across the thickness of the inner enamel layer (Tomes, 1850, Sahni, 1985, von Koenigswald, 

14 1985, Martin, 1993). In longitudinal sections of rat and mouse incisor enamel, this gives rise to the 

15 classical appearance of side-by-side lamellar sheets of vertically stacked rows arrayed at sequentially 

16 alternating angles with an incisal slant along the length and thickness of the inner enamel layer (Boyde, 

17 1969, Warshawsky, 1971, Risnes, 1979b).

18 There have been controversies about rod arrangement in ancestral rat and mouse incisor 

19 enamel (pauciserial versus multiserial), but for the most part paleontologists agree that the enamel in 

20 these mammals originated as a double layered structure with decussating portions of enamel rods 

21 forming the inner layer (portio interna) and radial portions of rods (traveling parallel to one another in 

22 straight lines) forming an outer layer (portio externa) (Tomes, 1850, Sahni, 1985, von Koenigswald, 1985, 

23 Martin, 1993). The inner layer was multilayered in arrangement, that is, with several rows of rods 

24 stacked on top of each other all having the same tilt angle, followed by several rows of rods having an 

25 opposite tilt angle, repeated across the thickness of the inner enamel layer. Over time this arrangement 

26 evolved into the classic uniserial pattern of single alternating rows present in modern rat and mouse 

27 incisor enamel (Sahni, 1985, von Koenigswald, 1985, Martin, 1993).

28 Most descriptions of the uniserial pattern of rods in mouse and rat incisor enamel have implied 

29 it is uniform in arrangement and has a highly repetitive alternation of tilt angles between rows across 

30 the thickness of the inner enamel layer (Sahni, 1985, von Koenigswald, 1985, Martin, 1993). Risnes 

31 (1979b) noted oddities in rodent enamel uniserial patterns and he described instances where at least 6 

32 different types of irregularities (aberrations) in row organization could be identified within the inner 
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1 enamel layer of rat incisor enamel. These included (1) rows having shorter length than its neighbors, (2) 

2 deviations in the transverse orientation of rows especially near the mesial and lateral sides of the 

3 enamel layer, (3) fusing or bifurcation in some rows depending upon the direction of view along the 

4 row, (4) parallel rather than opposing rod angulations between some neighboring rows, (5) directional 

5 changes by some rods out of original row orientation, and (6) variations in the dimensions of profile 

6 outlines of some rods. The author further noted that these aberrations seemed plentiful, but he did not 

7 quantify their frequencies and was unable to reach any specific conclusions about the significance of 

8 these irregularities to structural integrity within the inner enamel layer. There was speculation that 

9 these irregularities may have something to do with alterations in spatial packing within the ameloblast 

10 layer as the rods were being formed. This author also noted in a later study that similar irregularities in 

11 row structure were also present in mouse incisor enamel (Moinichen et al., 1996). These observations 

12 about peculiarities in uniserial row arrangements in rat and mouse incisor enamel seem to have 

13 received little attention/interest and there have been no subsequent studies probing this issue in more 

14 detail.

15 In a recent study on the gross distribution of enamel rods within transverse (cross) sections of 

16 mouse mandibular incisors (Smith et al., 2019), we noticed expected sites of very uniform uniserial 

17 distributions of rows as well as instances of row peculiarities identical to those described by Risnes 

18 (1979b) and Moinichen et al. (1996). What was not expected and very surprising was the high frequency 

19 at which these row oddities were encountered especially in relation to short rows and to 

20 branching/merging of rows having the same tilt. The purpose of this investigation therefore was to 

21 characterize and quantify row distributions across the thickness of the inner enamel layer and as rows 

22 extend in a mesial and lateral direction toward the cementoenamel junctions (CEJ). The results based on 

23 single sections made from 24 different incisors will demonstrate that row distributions are considerably 

24 more irregular, variable and complex than heretofore realized. This study focuses on the 2D 

25 arrangement of the rows of rods with limited reflection into 3D in trying to interpret how the 

26 ameloblasts might form this arrangement.

27

28 Material and Methods

29

30 Ethical compliance
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1 All procedures involving 7-week-old C57BL/6 wild type mice were reviewed and approved by the IACUC 

2 committee at the University of Michigan (UCUCA), and all aspects of the handling, care, and usage of 

3 100 g male Sprague-Dawley wild type rats were carried out under guidelines specified by 

4 federal/provincial governmental agencies of Canada as approved by local animal care committees at 

5 McGill University.

6

7 Mouse Incisor Enamel Preparations

8 All data on the arrangement of rows of enamel rods in transverse sections of fully mineralized 

9 mandibular mouse incisor enamel were obtained from high resolution scanning electron microscope 

10 montage maps prepared for a previous investigation (Fig. 1 in Smith et al., 2019). Briefly, mice were 

11 fixed by vascular perfusion, the hemi-mandibles were removed and embedded in Epon 812 substitute 

12 plastic. One-mm-thick transverse sections from 18 right and 6 left mandibular incisors were prepared 

13 with a fine diamond saw at a site located 8 mm from the apical end of the incisor (Level 8, crest of 

14 alveolar bone near gingival margin). Care was taken to align the saw so that the slice was cut normal 

15 (perpendicular) to the enamel surface with minimal apical-to-incisal angulation and with minimal mesial-

16 to-lateral angulation as was possible by free-hand dissection. Each section was re-embedded in castolite 

17 AC plastic and the incisal side of each block polished and etched. Overlapping images of the entire 

18 enamel layer from mesial to lateral CEJ were taken at x800 magnification in a Hitachi S-3000N variable 

19 pressure scanning electron microscope in backscatter mode. One montage map of the enamel layer 

20 from each of the 24 incisors were created in Adobe Photoshop (https://www.adobe.com) and rows of 

21 rods within the inner enamel layer were identified and color-coded by rod tilt (Fig. 1, mesial tilt= black, 

22 lateral tilt= red). The black and red color maps for each incisor were analyzed in ImageJ 

23 (https://imagej.nih.gov/ij/) using a standard threshold function and the polygon tracing function to 

24 outline the boundaries of each row of rods on the maps. Parameters quantified in scaled maps included 

25 the x- and y-coordinate centroid position of each enamel rod in the map, the number of rods per row 

26 (RPR) and the perpendicular distance in µm of the row from the DEJ measured from the lateral 

27 endpoint, the midpoint and the mesial endpoint of each row. Categorical variables used to classify 2D 

28 features of the rows in each map are described in Table 1. Data were collected and organized using MS 

29 Excel and then the completed files were opened in Statistica Version 13.3 for Windows 

30 (https://www.tibco.com/products/tibco-statistica) for routine analyses and graphing as well as for 

31 carrying out correspondence analyses of categorical variables (Sourial et al., 2010).

32

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://www.adobe.com
https://imagej.nih.gov/ij/
https://www.tibco.com/products/tibco-statistica


This article is protected by copyright. All rights reserved

1 Rat Incisor Ameloblast Preparations

2 The curvature of the DEJ at the central labial aspect of mandibular mouse incisors is relatively high as it 

3 sweeps in mesial and lateral directions toward the CEJ at the extreme sides of the enamel layer (Fig. 1). 

4 In order to get less distorted, light-microscopic images of ameloblasts, Tomes processes and enamel cut 

5 in the tangential plane the incisor (cuts made parallel to the long axis of ameloblasts, see Nishikawa, 

6 2017), we made use of unpublished data prepared from the mandibular incisors of rats from an old 

7 investigation (Smith and Warshawsky, 1977). Mandibular rat incisors were selected because they have a 

8 more extended and gentler curvature along the central labial side of the tooth compared to mandibular 

9 mouse incisors, but the enamel is almost the same thickness (Risnes, 1979b). Briefly, four male Sprague-

10 Dawley weighing 100 g were perfused with 2.5% glutaraldehyde, the hemimandibles were removed, 

11 washed in neutral buffer, decalcified, osmicated and embedded in Epon. Sites on the mandibular 

12 incisors corresponding to where preameloblasts face little or no predentin (early presecretory stage of 

13 amelogenesis) and where differentiated ameloblasts start secreting the enamel layer (early secretory 

14 stage of amelogenesis) were sawed from the initial large area blocks, reoriented and glued onto fresh 

15 Epon stubs so that sections could be cut tangential to the enamel organ through the height of 

16 ameloblasts to the DEJ area. Serial 1-µm-thick sections were cut, transferred to glass slides and stained 

17 with toluidine blue. The first of the serial sections cutting though ameloblasts at the level of the distal 

18 junctional complex were identified and this section and subsequent sections in the series were 

19 photographed on 35 mm film. After development, the film strip was projected vertically onto graph 

20 paper and the outlines of ameloblasts as enhanced by the cut edges of the terminal web in interrow 

21 locations were traced onto the graph paper. The next section in the series was projected and the 

22 rectangular outlines of ameloblasts in this section were aligned to the previous section. Any new 

23 ameloblast appearing in the outer edges of the projection were drawn on the same graph paper. This 

24 procedure compressed the central labial curvature of the DEJ into a linear map and was continued 

25 thereby building up the mesial-to-lateral and apical-to-incisal dimensions until a much large map of the 

26 arrangement of ameloblasts in rows at the level of the distal junctional complex was obtained (as shown 

27 in Fig. 7D,E). The tangential maps were arbitrarily colored in magenta and green in Photoshop to 

28 illustrate the possible arrangement of rows into which different groups of ameloblasts might be 

29 organized.

30

31 Results

32 Basic Arrangement of Rows of Enamel Rods in Mandibular Mouse Incisors
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1 The organization of enamel rods into rows having alternating tilt angles across the thickness of the inner 

2 enamel layer in transverse sections of rat and mouse incisors is well known and has been described in 

3 detail by many investigators including Boyde (1969), Warshawsky (1971), Risnes (1979b) and Moinichen 

4 et al. (1996) (Fig. 1A-C). The rows with alternating rod tilts are arranged vertically on top of each other 

5 and extend for varying distances in a mesial and/or lateral direction in the form of complete or partial 

6 semicircular arcs or mildly curvilinear and sometimes slightly wavy rows (Fig. 1B; Supporting Information 

7 Fig. S1). Arcing rows crossing the central labial aspect of the enamel layer rarely appeared symmetrical 

8 in the transverse plane and often showed a mesial arm arcing uniformly toward the DEJ and a more 

9 flattened lateral arm extending toward the outer enamel layer (Fig. 1B; Supporting Information Fig. S1). 

10 Several different types of row arrangements were evident in all regions of the enamel layer (Fig. 1; Table 

11 1). These included occurrences where vertically adjacent rows rhythmically alternated between mesial 

12 and lateral tilts (Fig. 1C, U), where a row of either tilt appeared to branch into two rows or conversely, 

13 two rows having the same tilt merged into a single row (Fig. 1C, B), where two rows having the same tilt 

14 were paired with each other for variable distances and then were separated by other rows having the 

15 opposite tilt (Fig. 1C, P), and where rows of short length were situated above or below a companion row 

16 having the same rod tilt angle at one or more sites along the length of the companion row (Fig. 1C, F, the 

17 short row called a focal stack). Collectively, these row irregularities added variety, complexity and sense 

18 of row interlocking across the transverse plane to what, at a quick glance, seemed to be a reasonably 

19 symmetrical arrangement of rows.

20

21 Enamel Rods Not in Rows (Single Rods)

22 During initial analyses of row distributions, it became apparent that not all enamel rods could be 

23 assigned unequivocally to a specific row, that is, they appeared as isolated single rods within the inner 

24 enamel layer, often positioned at odd angles relative to neighboring rows (Fig. 2A, blue arrows; Table 2). 

25 On average there were 6 ± 4 orphaned enamel rods per incisor and they accounted for only 0.1% of the 

26 total enamel rod population analyzed (Table 2). Single rods had either a mesial tilt or a lateral tilt and 

27 were present at many sites across the transverse plane and thickness of the enamel layer (Fig. 2A-D). 

28 Single rods were most frequently found in the lateral region of the enamel layer, least frequent in the 

29 central region, and with variable frequency in the mesial region (Fig. 2C). In the lateral and central 

30 regions, the number of single rods having a mesial tilt was about equal to the number having a lateral 

31 tilt, whereas in the mesial region single rods having a lateral tilt were roughly 4 times more frequently 

32 encountered than single rods having a mesial tilt (Fig. 2C). Single rods having a lateral tilt also showed a 
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1 slightly positive trend to be present at sites located farther away from the DEJ in the mesial region of the 

2 inner enamel layer (Fig. 2D).

3

4 Distribution of Rows of Enamel Rods by Row Length (Number of Rods Per Row; RPR)

5 The total number of rows found within the inner enamel layer on each incisor in transverse sections 

6 varied widely (98-154 rows; Supporting Information Fig. S1). The grand mean for 24 incisors was 124 ± 

7 15 rows per tooth equally distributed by tilt angle (Table 2). The number of rods per row was also highly 

8 variable on each incisor irrespective of rod tilt, from as little as 2 RPR to a maximum of 233 RPR (Fig. 3; 

9 Supporting Information Fig. S1). Three categories of row lengths were arbitrarily assigned for analytic 

10 purposes: short rows having 2-20 RPR, medium rows having 21-99 RPR, and long rows containing 100-

11 233 RPR (Tables 1 and 3, Fig. 3). Roughly one-half of all rows identified (51%) were short in length, 

12 followed in frequency by medium rows (36%) and long rows (13%) (Table 3). As expected, short rows 

13 collectively accounted for only 10% of all enamel rods quantified, whereas medium and long rows 

14 accounted for about 45% each of the remaining 90% of all rods organized into rows (Table 3; Fig. 3). On 

15 a per incisor basis, the inner enamel layer on average was composed of long, medium and short rows in 

16 a ratio of 1:3:4 (Table 3). Computed by length class across all incisors, long rows contained on average 

17 142 ± 32 RPR, medium rows 50 ± 22 RPR, and short rows 8 ± 5 RPR with no significant difference by rod 

18 tilt. Sequential alternating rows of rods were often of the same length class (short-short, medium-

19 medium, long-long) but they never had the same value for row length (e.g., 5-5, 56-56, 150-150 were 

20 never observed).

21

22 Distribution of Rows of Enamel Rods by Region

23 In the initial phases of this investigation it quickly became evident that rows of enamel rods displayed 

24 three regional associations (Table 1), that is, 44% of all rows were present in the lateral region, 31% 

25 were associated with the central region and 25% were found in the mesial region (Table 3; Fig. 3). There 

26 was a slightly higher frequency of rows having a mesial tilt in the lateral region and rows having a lateral 

27 tilt in the mesial region caused primarily by differences in rod tilts for short rows (Table 3). The 

28 distribution of short, medium and long rows in each region was noticeably different (Table 3). The lateral 

29 and mesial regions were comprised mostly of short and medium rows whereas the central region was 

30 predominately related to medium and long rows (Table 3; Fig. 3). The ratios of short, medium and long 

31 rows in each region were distinctly different, that is, 1:6:12 long-medium-short in the lateral region, 
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1 1:1.6:2 short-long-medium in the central region and 1:2 medium-short for the mesial region. Because of 

2 the preponderance of short rows associated with the lateral and mesial regions and the lack of long 

3 rows in the mesial region, the majority of all enamel rods analyzed were found in rows associated with 

4 the central region (61% of all rods), followed by rows forming the lateral region (29% of all rods) and 

5 rows forming the mesial region (10% of all rods) (Table 3; Fig. 3). 

6

7 Distribution of Rows by Row Type

8 Rows of enamel rods irrespective of tilt showed 5 distinct appearances and associations to neighboring 

9 rows (Tables 1 and 3; Fig. 4A). The row type most closely associated with a uniserial enamel pattern, 

10 termed a uniform row in this investigation, comprised only 22% of all rows and contained only 15% of all 

11 enamel rods analyzed (Table 3). The remaining 78% of rows containing 85% of all enamel rods in the 

12 inner enamel layer of mandibular mouse incisors were irregular and/or more complex in arrangement. 

13 The most frequent row type encountered was the focal stack, which accounted for 30% of all rows but 

14 because they were consistently petite rows (<40 RPR), they contained only 5% of all enamel rods 

15 analyzed (Table 3; Fig. 4A). They were usually nestled at the sides of longer rows having the same tilt 

16 (Fig. 1C and Fig. 4A). The other three more complex row types showed either pairing of two adjacent 

17 rows having the same rod tilt or branching/merging of one row into two rows, or vice versa, or a 

18 combination of both row pairing and branching/merging (Tables 1 and 3). Although not specifically 

19 analyzed in this investigation, most branching/merging rows showed only one such bifurcation along its 

20 length. The bifurcations in some cases bore a striking resemblance to the type of branching seen along 

21 human fingerprint ridges (Ramenzoni and Line, 2006). Rows associated with focal stacks were always 

22 preliminarily classified as paired. These three complex row types accounted for 49% of all rows and 81% 

23 of all enamel rods analyzed (Table 3). The least frequent row type found was simple branching/merging 

24 arrangement (7% of all rows containing 7% of all enamel rods analyzed; Table 3), whereas the second 

25 most frequent row type identified showed branching/merging plus pairing to another neighboring row 

26 having the same tilt (29% of all rows containing the majority, or 56%, of all enamel rods analyzed; Table 

27 3; Fig. 4A).

28 The five row types were not uniformly distributed within the three regions of the enamel layer 

29 and there were distinct differences in row frequencies by row tilt (Fig. 4B). In broad terms, the row types 

30 most frequently found in the lateral region were focal stacks followed at half frequency by uniform 

31 rows, and rows that branched/merged and had sites of pairing to other rows of similar tilt (Fig. 4B). The 

32 most frequent row types identified in the central region were those that showed branching/merging and 
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1 pairing to other rows of similar tilt, followed at one-third frequency by rows paired to other rows with 

2 similar tilt and by uniform rows (Fig. 4B). The row types most frequently found in the mesial region were 

3 uniform followed closely by focal stacks and rows that showed branching/merging and pairing with 

4 other rows of similar tilt (Fig. 4B). 

5

6 Distribution of Rows by Row Endpoint Locations

7 Rows of enamel rods irrespective of tilt showed 6 distinct arrangements of their mesial and lateral 

8 endpoints (Tables 1 and 3; Fig. 5A). The two most frequent endpoint relationships, which collectively 

9 accounted for 75% of all rows and 70% of all enamel rods analyzed, included one pattern where both 

10 endpoints were embedded somewhere within the inner enamel layer (IE-IE, most frequent; 55% of rows 

11 and 39% of all enamel rods) and another where one endpoint was close to the DEJ and the other 

12 endpoint was embedded somewhere inside the inner enamel layer (DEJ-IE, 20% of rows and 31% of all 

13 enamel rods; Table 3; Fig. 5A). The third most frequent arrangement was one where one endpoint was 

14 located somewhere within the inner enamel layer and the other endpoint extended to the boundary 

15 between the inner and outer enamel layers (IE-OE, 14% of rows and 18% of all enamel rods; Table 3; Fig. 

16 5A). The remaining three arrangements (DEJ-DEJ, DEJ-OE, OE-OE) accounted for 11% of rows and 12% of 

17 all enamel rods analyzed (Table 3; Fig. 5A).

18 Similar to what was observed for row types, the six arrangements of row endpoints were not 

19 uniformly distributed within the 3 regions of the enamel layer and there were distinct differences in 

20 frequency by row tilt (Fig. 5B). The endpoints stretching from DEJ-DEJ were most abundant in the lateral 

21 region followed by the central region and in very low frequency in the mesial region (Fig. 5B). Rows 

22 having the DEJ-IE arrangement were found with highest frequency in the central region and around one-

23 half the corresponding frequency in the lateral and mesial regions (Fig. 5B). Rows showing the DEJ-OE 

24 arrangement were rare and associated primarily with the central region (Fig. 5B). Rows having the IE-IE 

25 arrangement were found with highest frequency in the lateral region, and around one-half the 

26 corresponding frequency in the central and mesial regions (Fig. 5B). Rows with the IE-OE arrangement 

27 were found with highest frequency in the mesial region and with slightly lower frequency in the lateral 

28 and central regions (Fig. 5B). Lastly, rows showing the OE-OE arrangement were the second lowest in 

29 frequency and associated primarily with the lateral and mesial regions (Fig. 5B). 
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1 Correspondence Analyses by Row Tilt, Row Length, Regional Location, Row Type and Endpoint 

2 Location

3 Correspondence analyses of data for all row categorizations suggested several generalized intergroup 

4 relationships (Fig. 6). Row tilt occupies a central feature with mesial and lateral tilts equally distributed 

5 vertically above and below the origin on the 2D correspondence graphs (Fig. 6). Rows having a mesial tilt 

6 are most closely associated with the lateral region where the rows are medium or short in length, often 

7 in the form of a focal stack, and row endpoints are often buried within the inner enamel layer (IE-IE) or 

8 extending from DEJ-DEJ (Fig. 6). Rows having a mesial tilt are also associated, albeit less closely with the 

9 central region where the rows are generally organized in long or medium length rows that show 

10 branching/merging plus pairing with other rows having a mesial tilt. The endpoints of rows in the central 

11 region frequently extend from the DEJ into various locations within the inner enamel layer (DEJ-IE; Fig. 

12 6). Rows having a lateral tilt are most closely associated with the mesial region where the rows are 

13 mostly medium in length and show simple branching or less often pairing with other rows having the 

14 same rod tilt or are uniform along their lengths (Fig. 6). The endpoints of shorter rows in the mesial 

15 region often extend from OE-OE and longer medium length rows travel from IE-OE or from DEJ-IE (Fig. 

16 6).

17

18 Discussion

19 The Variable Nature Of 2D Transverse Row Arrangements In Mouse Mandibular Incisor Enamel

20 The results of this investigation were unexpected and very surprising considering the orderly 

21 arrangement of alternating row tilts implied to exist within the inner enamel layer of rat and mouse 

22 incisors, to the extent that deviations from a uniform uniserial pattern have been classified in the past as 

23 something abnormal (aberrations) (Risnes, 1979b). Figure 1 and Supporting Information Figure S1 

24 illustrate that row arrangements, when considered on a more global context, the theme of organization 

25 within the inner enamel layer is irregularity and diversity in the length of rows and complexity in their 

26 spatial packing across the transverse plane of the incisor (Table 3). Very few rows of enamel rods stretch 

27 continuously from the mesial to lateral sides across the entire face of an incisor transverse section (2% 

28 of rows with RPR>180; Fig. 3 and Supporting Information Figure S1). Only 22% of all rows decussate with 

29 their neighboring rows in an orderly and uniform fashion (Table 3), and there were no instances in this 

30 investigation where uniformly decussating rows of enamel rods were arranged sequentially across the 

31 entire thickness of the inner enamel layer (Fig. 1, from DEJ toward OE; Supporting Information Fig. S1) 

32 (Risnes, 1979b). In addition, of the 24 incisors and 2,974 rows of enamel rods sampled (Table 2), we 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

1 found no cases where two neighboring rows with alternating (decussating) tilt angles possessed the 

2 exact same row length (same number of RPR in neighboring rows having alternating tilts). It has not 

3 been apparent from past literature that most rows of enamel rods in typical transverse sections of the 

4 inner enamel layer of mandibular mouse incisors are short in length (51% of all rows; Table 3) with many 

5 of the short rows arranged in the form of focal stacks nestled on the side of other longer rows having 

6 the same rod tilt (30% of all rows; Table 3; Fig. 1; Supporting Information Fig. S1).

7 The various row types described in this investigation are known (reviewed in Risnes, 1979b), but 

8 the high frequency of the more complex arrangements of row pairing, branching/merging, or both, and 

9 of the numerous focal stacks situated at the sides of longer rows having the same tilt angle are new 

10 insights into global row organization in mouse incisors. It is curious on a global basis that 35% of all rows 

11 are either uniform along their whole length or have sites of pairing to other rows having the same tilt 

12 angle (22% + 13%; Table 3), that 35% of all rows show some form of branching/merging (7% + 29%; 

13 Table 3), and that the remaining 30% of rows form petite focal stacks with other rows having the same 

14 tilt angle (Table 3). Notable also are the roughly comparable frequencies by tilt for all row types in the 

15 central region versus the high frequencies of rows having a mesial tilt for focal stacks in the lateral 

16 region and uniform rows in the mesial region (Fig. 4). This contrasts to the high frequencies of rows 

17 having a lateral tilt associated with paired rows in the lateral region and branching/merging plus paired 

18 rows as well as focal stacks in the mesial region (Fig. 4). The reasons for these higher frequencies are 

19 unknown. 

20 The row types of special interest to this investigation are the branching/merging arrangement 

21 (with and without row pairing) and the focal stacks (Table 3; Fig. 4). The mode of development and 

22 functional significance of rows that branch/merge and have sites of row pairing is unknown (McIntyre et 

23 al., 2014, Varner and Nelson, 2014). These types of rows, if nothing else, add considerable variety and 

24 complexity to the packing of rows per unit volume within the inner enamel layer (Figs. 1 and 4; 

25 Supporting Information Fig. S1). Branching/merging of rows of enamel rods in Hunter-Schreger bands is 

26 an ancient pattern in mammalian enamel and, as noted in the Introduction, is especially prominent and 

27 complex in the enamel of ungulates. It has been associated most often with multiserial enamel where 

28 large groups of rods having same rod angulations spiral, twist or zigzag around one another (Rensberger 

29 and von Koenigswald, 1980, Sahni, 1985, von Koenigswald and Pfretzschner, 1987, Hanaizumi et al., 

30 1996, Hanaizumi et al., 2010, Stefen and Rensberger, 1999, Jiang et al., 2003, Tabuce et al., 2007, von 

31 Koenigswald et al., 2011, Alloing-Séguier et al., 2014, Alloing-Séguier et al., 2017). Descriptions of 

32 branching/merging rows in uniserial enamel have been infrequent but one of the most dramatic 
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1 examples was presented by von Koenigswald and Pfretzschner (1987) in their Fig. 16 for European water 

2 vole incisor enamel from the late Pleistocene period (0.012-2.58 Ma). The enamel in these extant 

3 rodents resembles almost exactly the arrangements shown in Figure 1 and Supporting Information 

4 Figure S1. Row branching achieves at least two purposes. First, it increases the volume of space in which 

5 a row having one tilt angle can interact with rows having the opposite tilt angle; prior to the branch 

6 point two rows of opposing tilts lie above and below the branching row, whereas after the branch point 

7 there are five tilt transitions thereby increasing complexity. Second, a row having an opposite tilt is 

8 always wedged between the two arms of the branch point providing secure interlocking of the row 

9 nestled within the branchpoint (Fig. 1; Supporting Information Fig. S1). Branching is the most frequent 

10 feature of rows associated with the central region (Table 3; Fig. 4A and 6) and this may be one of the 

11 methods used to interlock rows developing in the lateral and mesial regions with rows projecting in both 

12 directions from the central region (Fig. 1; Supporting Information Fig. S1).

13 At first glance focal stacks seem to serve little purpose and may even represent sites of reduced 

14 fracture resistance within the inner enamel layer, but their high global frequency (Table 3) and richness 

15 in the lateral and mesial regions of the inner enamel layer suggest otherwise (Table 3; Fig. 4B). They may 

16 serve a simple purpose such as acting as a buffer to “fill-in” small spaces that development across the 

17 thickness of the inner enamel layer as it forms by appositional growth (movement of ameloblasts away 

18 from the DEJ). One aspect of focal stacks that needs clarification concerns whether the focal stacks 

19 extend the entire distance from near the DEJ to the enamel surface, as we suspect they do, or if they are 

20 truncated in length. There has been speculation that some enamel rods in rat and mouse incisor enamel 

21 may not extend the entire thickness of the enamel layer, but evidence for this has been weak (Alloing-

22 Seguier et al., 2018). The origin of the focal stack arrangement may however be easier to explain. There 

23 is universal agreement by paleontologists that the uniserial enamel pattern in modern rat and mouse 

24 incisors evolved from a more ancient multilayered pattern, that is, multiple rows of enamel rods having 

25 the same tilt alternating with multiple rows of enamel rods having an opposite tilt. The debate has been 

26 whether the most primitive form was pauciserial or multiserial, arrangements distinguished by the 

27 direction of crystallites forming the interrod enamel (parallel versus angled to the rod crystallites, 

28 respectively) (Boyde, 1969, Sahni, 1985, von Koenigswald, 1985, Martin, 1993). The focal stacks could 

29 represent a remnant from the evolutionary change from the multi-row decussation pattern to the 

30 single-row decussation pattern reduced over millions of years to small clusters of enamel rods applied to 

31 sides of longer rows having the same tilt angle at various locations throughout the inner enamel layer.

32 Row Endpoints
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1 It is not surprising that 55% of all rows seen in reasonably well oriented transverse sections have 

2 their two endpoints located somewhere between the DEJ and the OE (classified as IE-IE, Tables 1 and 3), 

3 that only 7% of all rows have their two endpoints both near the DEJ (DEJ-DEJ), and that only 3% of rows 

4 span the boundary with the outer enamel layer (OE-OE) since the former comprises the bulk of the inner 

5 enamel layer and the latter in a 3D context are narrow boundary areas between where rows start and 

6 where the row arrangement is lost in transition to outer enamel. What is surprising is that 34% of all 

7 rows show intermediate positioning of their endpoints, that is, spanning from near the DEJ to 

8 somewhere within the inner enamel layer (DEJ-IE, 20%) or from somewhere within the inner enamel 

9 layer to the boundary with the outer enamel layer (IE-OE, 14%). These two categories of row endpoint 

10 locations have remarkable similarities in their range and means for row lengths by rod tilt (data not 

11 shown), frequency, and distribution pattern of row lengths for each region of the inner enamel layer 

12 (Fig. 5B). Figure 5 further documents that sampling in 24 incisors was insufficient to obtain reliable 

13 statistical analyses in 3 out of the 6 categories defined for row endpoint locations; these are DEJ-DEJ and 

14 DEJ-OE in the mesial region, OE-OE in central region, and DEJ-OE in the lateral region where these rows 

15 were rarely encountered, probably in part because they comprised some of the longest rows observed 

16 in the central region and there are only a limited number of long rows in any give transverse section of 

17 the inner enamel layer (Table 3). The mesial region has no long rows, and these are present in only low 

18 frequency in the lateral region (Table 3; Fig. 3). Row lengths and endpoint distributions are also affected 

19 by plane of section, which is never perfectly aligned in the transverse plane (Smith et al., 2019). This is 

20 one the reasons for using 24 incisors in an attempt to obtain an overall representative sample. The exact 

21 pattern of row endpoint distributions will have to wait until the real 3D distribution pattern of rows can 

22 be defined by serial reconstructions of the whole enamel layer.

23 Row Interrelationships

24 The correspondence graphs in Figure 6 show several interesting interrelationships between row 

25 length, region, row type and row endpoint distributions. First, of the five categories of row endpoint 

26 ranges that could be analyzed all but two are in different quadrants of the graphs. The ones together are 

27 DEJ-IE and IE-OE, rows stretching into the inner enamel layer from the DEJ and out of the inner enamel 

28 layer to the boundary of the outer enamel layer. These share a relationship to medium length rows 

29 having lateral tilt and rows that often branch/merge or show pairing with other rows having the same 

30 tilt. Rows spanning DEJ-DEJ are variable in length, regional associations, and row tilt. Rows spanning the 

31 inner enamel layer (IE-IE) are most frequently short in length, often as a focal stack located in the lateral 

32 region and have a tendency for mesial tilt. Rows stretching across the boundary with the outer enamel 
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1 layer (OE-OE) are also frequently short in length, uniform, and located in the mesial region with a 

2 tendency for having a lateral tilt.

3 Implication of Row Lengths To Their Mode Of Formation

4 The 2D data in this investigation (Table 3) imply that as rows of ameloblasts form in the time 

5 intervals between the presecretory and secretory stages of amelogenesis, they become organized in a 

6 way to create various ratios of short, medium and long rows. On a global average basis this is 4 short, 3 

7 medium and 1 long row per unit time of differentiation across the entire inner enamel layer starting 

8 near the DEJ. The process is considerably more complex than this because the three regions of enamel 

9 layer develop progressively over time with the central region starting first (equivalent to the cusp 

10 tip/incisal edge region of a human tooth) followed by the mesial region and the lateral region as the 

11 wave of differentiation spreads “sideways” toward the future sites of the CEJ and the labial side of the 

12 mouse incisor (Simmer et al., 2010). The mesial region is shorter in curvilinear length along the DEJ and 

13 therefore completes row formation before the wave of differentiation reaches the lateral CEJ (Smith and 

14 Warshawsky, 1976). As a result of these different timings in development, the ratio of short, medium 

15 and long rows in each region is much different compared to the global average. In the central region this 

16 ratio is 2 medium and 2 long rows for every short row, in the mesial region it is 3 short rows for every 

17 medium row, and in the lateral region it is 10 short rows and 6 medium rows for every long row (Table 

18 3). It is tempting to speculate that the controlling factor in the row creation process is something that 

19 allows short groups of ameloblasts either to remain as they are or extend into medium length groups or 

20 into much longer groups by incorporating additional short ameloblast groups, but this aspect of possible 

21 developmental controls in the development of ameloblast rows remains to be more precisely defined as 

22 does the question of whether physical (Cox, 2013) or chemical (Kondo and Miura, 2010, Hiscock and 

23 Megason, 2015) factors control the development of row lengths and row tilts.

24 The Arrangement of Ameloblasts Into Rows

25 Considering the complexity and irregularity in row arrangement patterns within the inner 

26 enamel layer, an obvious question is whether similar irregularities extend to the organization of 

27 ameloblasts which produce the enamel rods. Many past investigators, especially Nishikawa in Japan, 

28 have argued that secretory stage ameloblasts are arranged in rows and the Tomes processes projecting 

29 from their distal ends show both row arrangement and differing row tilts (Boyde, 1969, Warshawsky, 

30 1978, Hanaizumi et al., 1996, Hanaizumi et al., 2010, Risnes et al., 2002, Skobe, 2006, Yuan and 

31 Nishikawa, 2014, Nishikawa, 2017). Irregular row arrangements such as paired, branching/merging with 

32 or without row pairing, and focal stacks to the knowledge of the authors have not been described to any 
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1 extent in ameloblast row arrangements. Figure 7 illustrates that serial sections cut in the tangential 

2 plane of the incisor (sections cut parallel to the long axis of the ameloblasts) reveal short patches of the 

3 row arrangement in ameloblast when cut at the level of the distal terminal web (Fig. 7A) (Warshawsky, 

4 1978, Yuan and Nishikawa, 2014, Nishikawa, 2017). Branching/merging of ameloblast rows is easily 

5 visible as are other rows extending across the field in more uniform fashion. There is also the suggestion 

6 of groups of ameloblasts lying at the sides of other ameloblast rows that may represent the equivalent 

7 of what will become a focal stack of enamel rods in production. Sections that cut at a level where Tomes 

8 processes are projecting into the forming enamel (Fig. 7B) show even more detail including mesial and 

9 lateral row tilts, row endpoints, rows that branch/merge or are in a paired arrangement with other rows 

10 having the same tilt (see also Warshawsky, 1978). These features all extend later in development into 

11 enamel rod row arrangements also clearly evident in tangential sections of maturing enamel (Fig. 7C). A 

12 more extensive view of ameloblast row arrangements prior to and during the early secretory stage is 

13 visible in 2D surface maps constructed from serial sections at the level of the distal terminal web (Fig. 

14 7D,E; method of construction described in Materials and Methods). Early differentiating ameloblasts in 

15 the presecretory stage show a surprising high level of initial row organization that is noticeably wavy 

16 with individual ameloblasts in the rows appearing irregularly polygonal in outline at the level of the 

17 distal terminal web (Fig. 7D). The disorganized rows show the beginning of what is clearly 

18 branching/merging and sites where clusters of cells may represent the initial phases of delineating out 

19 new branching/merging sites reminiscent of patterns in development typical for the formation of 

20 mineralized structures in less complex organisms (McIntyre et al., 2014). Early secretory stage 

21 ameloblasts show a much more organized arrangement of rows, with the cells more regular and 

22 rectangular in outline (Fig. 7E) (Warshawsky, 1978, Yuan and Nishikawa, 2014). While row tilts cannot be 

23 defined at the level of the ameloblast terminal web, all row arrangements illustrated in Figure 4A for 

24 rows of enamel rods are evident in rows of ameloblasts at the very beginning of enamel secretion. The 

25 straightening out of the initial wavy rows of ameloblasts and of the ameloblasts themselves changing 

26 from irregular polygonal shape to a more rectangular shape at the distal terminal web provides two very 

27 simple physical methods, not requiring cell proliferation, to extend the rows outwards in the transverse 

28 plane (mesial-to-lateral direction) traditionally associated with gain in row length needed to prevent 

29 interrow spaces from developing internally as decussating rows move away from one another as the 

30 enamel rods are formed (discussed in Alloing-Séguier et al., 2018).

31 Development Of Rows Of Ameloblast Along The DEJ And Its Implication To Rod Decussation

32 The data from this investigation suggest that the reason why spaces do not develop because of 

33 physical sliding apart of two adjacent decussating rows of ameloblasts in rat and mouse incisors 
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1 (discussed in Boyde, 1969, Warshawsky, 1978, and Alloing-Séguier et al., 2018) is based on the manner 

2 in which row formation is induced and extended from the central region into the mesial and lateral 

3 regions at the level of the DEJ. This idea is schematically illustrated in Figure 8. The key element we 

4 suspect lies in the initial set up of the tilt angle of enamel rods forming for example in row A as it relates 

5 to the tilt angle of the next neighboring row B near the DEJ (Fig. 8). Once ameloblasts have defined these 

6 two angles they and all other ameloblasts in the same row move at this fixed tilt angle until the cells 

7 switch to forming the outer enamel portion of the enamel rod which has different transverse and 

8 sagittal tilt angles than the inner enamel portion (Fig. 8). At this changeover position, our hypothetical 

9 ameloblast A1 would now be positioned opposite a different ameloblast B2 that originated from an 

10 extension of the wave of differentiation spreading mesially earlier in time along the DEJ. The same 

11 happens for hypothetical ameloblast B1 which would be opposite to a different ameloblast A2 that 

12 originated from an extension of the wave of differentiation spread laterally along the DEJ also earlier in 

13 time (Fig. 8). The ameloblasts that are physically moving incisally (eruptive direction) and mesially or 

14 laterally away from one another maintain constant relationships to sister ameloblasts within the same 

15 row but they must constantly readjust their interrow relationships by mechanisms that remain poorly 

16 understood (Nishikawa, 2017). In this interpretation, space compensation for decussation-based 

17 separation distances is prebuilt into the system by creating and lengthening rows earlier in time along 

18 the DEJ as the wave of differentiation passes from central into the mesial and lateral regions, that is, as 

19 enamel formation first begins rather than after the ameloblasts in two adjacent decussating rows have 

20 moved in an incisal direction and physically apart from one another (Warshawsky, 1978). The fact that 

21 the decussation angles are different in the three regions of the enamel layer (Smith et al., 2019) makes 

22 3D theoretical modeling of the path of enamel rods across the whole thickness of the enamel layer a 

23 very challenging mathematical problem (Fig. 8).

24 Summary and Conclusions

25 The results from this investigation have demonstrated that there is considerably more variety, 

26 complexity and irregularity in the arrangement of rows of enamel rods in mouse mandibular incisors 

27 than is acknowledged in the current view of the uniserial enamel pattern. These features include:

28 1. Rows of enamel rods are variable in length with 7 times as many rows half the length of the longest 

29 rows across the transverse plane of the incisor.

30 2. Most rows are curvilinear and slightly wavy and not linear across the transverse plane of the incisor.

31 3. Rows are not universally uniform along their whole length with perfectly alternating tilt angles; some 

32 rows having the same tilt become neighbors for variable distances (paired rows), some rows 

33 branch seamlessly into two rows, or two rows with the same tilt merge into each other, with a 
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1 row having the opposite tilt nested within the bifurcation point, some rows are both paired to 

2 other rows of similar tilt as well as branch/merge, and a large percentage of all rows (30%) are 

3 small in length and often found at the sides of other rows having the same tilt in the form of 

4 focal stacks.

5 4. Two neighboring rows with decussating tilt angles rarely have the same length (RPR).

6 5. Only 31% of rows in any transverse section lay within or cross the central region of the enamel layer 

7 where the wave of differentiation and subsequent process of amelogenesis first begin. 

8 Additional and generally shorter rows develop in the lateral region (44% of all rows) and in the 

9 mesial region (25% of all rows) as the wave of differentiation spreads transversely toward the 

10 lateral and mesial CEJ during development of the enamel layer.

11 6. Neighboring rows of enamel rods with decussating angles are formed by ameloblasts that move 

12 sideways in opposite directions. When the ameloblasts complete formation of the inner enamel 

13 layer, the rods they have formed are now located at a distance apart from one another dictated 

14 by the spread of the decussation angle specific for a given regional location across the thickness 

15 of the inner enamel layer. The rows of opposite tilt they now abut originated from other rows of 

16 enamel rods newly created near the DEJ as the wave of differentiation spread mesially and 

17 laterally away from site where first starting rows were located.
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1 Supporting Information Figure S1. Color maps showing similarities and differences in the arrangement 

2 of rows of enamel rods having a mesial tilt (black) and lateral tilt (red) on 4 out of the 24 incisors 

3 analyzed in this investigation (Incisors T2, T7, T15, T20).

4 TABLE 1: CATEGORICAL VARIABLES USED FOR CLASSIFYING ROWS OF ENAMEL RODS

5 IN THE INNER ENAMEL LAYER OF MANDIBULAR MOUSE INCISORS

6

7 A. INCISOR NUMBER (tooth 1-24)

8 B. ROW TILT (1= mesial, 2= lateral)

9 C. ROW NUMBER (row 1-154, the maximum row count detected for a given tooth in the 24 incisors 

10 analyzed)

11 D. ROW LENGTH expressed as rods per row (RPR)

12 1= SHORT (2-20 RPR)

13 2= MEDIUM (21-99 RPR)

14 3= LONG (100-233)

15 E. REGION where row is located based on normalized X-axis location of row (Fig. 1, Vx):

16 1= LATERAL, Vx of mesial row endpoint <0.6

17 2= CENTRAL, Vx of mesial row endpoint >0.5999 or lateral row endpoint <0.6999

18 3= MESIAL, Vx of lateral row endpoint >0.6999

19

20 F. ROW TYPE

21 1= rows is UNIFORM across its whole length with opposite tilt angles in rows above and below

22 2= two rows with the same row tilt are PAIRED with each other for short distances at one or 

23 more locations across their transverse lengths

24 3= row appears to branch (bifurcate) into two rows having the same rod tilt or two rows with 

25 same tilt appear to merge into one row having same rod tilt depending upon the 

26 transverse direction in which the row is viewed (BRANCH/MERGE)

27 4= rows appear to branch/merge with two other rows have same rod tilt as well as have sites 

28 where they are paired with other rows having the same row tilt (BRANCH/MERGE + 

29 PAIRED)

30 5= a row with petite length appears positioned above or below another row having same rod tilt 

31 (called a FOCAL STACK)
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1 G. ROW RANGE

2 1= DEJ-DEJ, mesial and lateral row endpoints almost touch the DEJ

3 2= DEJ-IE, one row endpoint almost touches the DEJ and the other row endpoint is buried within 

4 inner enamel layer

5 3= DEJ-OE, one row endpoint almost touches the DEJ and the other row endpoint extends to the 

6 boundary with the outer enamel layer

7 4= IE-IE, both row endpoints are within the inner enamel layer

8 5= IE-OE, one row endpoint is within the inner enamel layer and the other row endpoint is at the 

9 boundary with the outer enamel layer

10 6= OE-OE, both row endpoints are at the boundary with the outer enamel layer

11

12 TABLE 2: OVERALL 2D GLOBAL ORGANIZATION OF ENAMEL RODS

13 IN THE INNER ENAMEL LAYER OF MANDIBULAR MOUSE INCISORS

14                

15

16

17      Average          Sum of

18    Per IncisorA       All IncisorsA

19

20      Number of rods per cross section 5,102 ± 397 122,438 (100%)

21

22      As isolated single rods 6 ± 400 143   (0.1%)

23

24      In rows with 2-233 rods per row (RPR)B 5,096 ± 395 122,295 (99.9%)

25

26 Mesial tilt 2,687 ± 232 64,480 (53%)

27 Lateral tilt 2,409 ± 204 57,815 (47%)

28

29

30 Number of rows per cross sectionB                              124 ± 15               2,974 (total rows)A

31

32 Mesial tilt        62 ± 7
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1 Lateral tilt        62 ± 9

2

3 AN=24

4 BData from Smith et al., 2019

5

6 TABLE 3: 2D DISTRIBUTION OF ROWS OF ENAMEL RODS IN THE INNER

7 ENAMEL LAYER OF MANDIBULAR MOUSE INCISORS BY ROW ATTRIBUTES

8

9           Average

10         Per Incisor             Sum of All IncisorsA

11

12   ROW ATTRIBUTES: Total Mesial Lateral Total Rows Total Rods

13                          Tilt  Tilt

14                       Number of rows per cross section ± SDB

15 ROW LENGTH

16 Short (2-20 RPRC) 63 ± 11 31 ± 6 32 ± 7 1,514 (51%) 12,788 (10%)

17 Med (21-99 RPR) 45 ± 70 22 ± 4 22 ± 4 1,069 (36%) 53,870 (44%)

18 Long (100-233 RPR) 16 ± 20 9 ± 2 7 ± 2 391 (13%) 55,637 (46%)

19

20 ROW REGIONAL LOCATION

21         Lateral      54 ± 8 30 ± 5                25 ± 5   1,302 (44%)      35,449 (29%)

22 Short 33 ± 6 19 ± 3 14 ± 5   801 (27%)[62%]D

23 Medium 18 ± 4 9 ± 3 9 ± 2 435 (15%)[33%]

24 Long     3 ± 2 1 ± 1 2 ± 1 66 (  2%) [  5%]

25 Central 39 ± 4 20 ± 2 19 ± 3 931 (31%) 74,282 (61%)

26 Short 8 ± 3 4 ± 2 4 ± 2 192 (  6%) [21%]

27 Medium 17 ± 3 8 ± 2 9 ± 2 414 (14%)[44%]

28 Long 14 ± 2 8 ± 1 6 ± 2 325 (11%)[35%]

29 Mesial 31 ± 7 13 ± 4 18 ± 4 741 (25%) 12,564 (10%)

30 Short 22 ± 6 7 ± 3 14 ± 4 521 (18%)[70%]

31 Medium 9 ± 3 5 ± 2 4 ± 2 220 (  7%) [30%]

32

33 ROW TYPE
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1 Uniform 27 ± 6 14 ± 4 14 ± 3 651 (22%) 17,949 (15%)

2 Paired 16 ± 5 6 ± 2 10 ± 4 384 (13%) 21,636 (18%)

3 Branch/merge 9 ± 4 5 ± 3 4 ± 2 209   (7%) 8,887   (7%)

4 Branch/merge+paired 36 ± 6 18 ± 4 17 ± 5 852 (29%) 67,940 (56%)

5 Focal stack 37 ± 7 19 ± 4 18 ± 5 878 (30%) 5,883 (  5%)

6

7 ROW ENDPOINT LOCATIONS

8 DEJ to DEJ 9 ± 3 4 ± 2 4 ± 1 212   (7%) 7,799   (6%)

9 DEJ to IE 25 ± 4 13 ± 2 12 ± 3 591 (20%) 37,355 (31%)

10 DEJ to OE 1 ± 2 1 ± 1 1 ± 1 30    (1%) 4,842   (4%)

11 IE to IE 68 ± 10 35 ± 6 34 ± 6 1,639 (55%) 47,561 (39%)

12 IE to OE 17 ± 7 8 ± 4 9 ± 4 415 (14%) 22,215 (18%)

13 OE to OE 4 ± 2 2 ± 1 2 ± 1 87   (3%) 2,523   (2%)

14

15

16 AN=24

17 BSD= standard deviation

18 CRPR= rods per row

19 D[Percentage composition of region]

20

21 Legends to Figures

22 Figure 1. Backscattered scanning electron microscopic (BEI) images of a right mandibular mouse incisor 

23 in transverse section viewed looking in an apical direction (toward growing apical end) and 

24 photographed at low and high magnification (A,B), and a cropped portion of the inner enamel 

25 layer from the central labial side of the incisor (C). Panel A, single low magnification BEI image of 

26 labial side of a mandibular mouse incisor in a typical transverse section of the tooth showing the 

27 location of dentin and enamel. The cracks in the dentin are an artifact caused by air drying the 

28 tissue slice after polishing. Panel B, a high-resolution map of the same tooth section shown in 

29 Panel A made from BEI images photographed at x800 and montaged to recreate the whole 

30 enamel layer. The cut open oval profiles of enamel rods are arranged in rows across the inner 

31 enamel layer between the limits of the mesial and lateral cementoenamel junctions (CEJ). The 

32 enamel rods are colored black for rows having a mesial tilt and red for rows having a lateral tilt. 

33 The mesial endpoints (MEP) and lateral endpoints (LEP) of the rows are color coded green for 
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1 rows having a mesial tilt and yellow for rows having a lateral tilt. Superimposed over the image 

2 are the x- and y-axes of a graph illustrating the normalized virtual coordinate system (Vx, Vy) 

3 used for defining the locations of individual rods or regions of the inner enamel layer: lateral 

4 region to the left of the vertical yellow line, central region within the two vertical yellow lines 

5 and mesial region to the right of second vertical yellow line (see Table 1 for classification 

6 details). Panel C, the rows of enamel rods show a variety of arrangements including uniform 

7 appearance along their length with opposite tilt angles in rows above and below (U), sites where 

8 two rows with the same tilt come into close proximity to each other (paired) (P), rows that 

9 appear to branch into two rows with the same tilt or where two rows with same tilt merge into 

10 one row (B), and sites where petite rows appear located at the sides of longer rows having the 

11 same tilt (called focal stacks, F). Key: DEJ, dentinoenamel junction; OE, outer enamel.

12 Figure 2. Distribution of single enamel rods that could not be assigned to a specific row. In every 

13 transverse section examined in this investigation, there were always some instances where 

14 single enamel rods appeared out of alignment to neighboring rows. Panel A, cropped area in the 

15 lateral region of the inner enamel layer showing rows of enamel rods having either mesial 

16 (black) or lateral (red) tilts. Many of the rows show uniform alternation of row tilts (e.g., 1-2-3-4) 

17 but there are cases where two rows with same tilt are paired with other (e.g., rows 4-5) and 

18 other irregularities where a row terminates (green, row endpoint for row with mesial tilt; 

19 yellow, row endpoint for row with lateral tilt) as well as cases where single enamel rods appear 

20 out of alignment with other neighboring enamel rods having similar tilt (black S1 with blue 

21 arrow for mesial tilt; red S2 with blue arrow for lateral tilt). Yellow arrows, sheets of interrod 

22 enamel; OE= outer enamel layer. Panel B, scatter plot in virtual coordinates illustrating sites 

23 where out-of-alignment single enamel rods were found in the 24 incisors examined. Panel C, bar 

24 graph showing the frequency of single enamel rods relative to rod tilt (blue=mesial, 

25 orange=lateral) and the three regions of the enamel layer. Numbers below regions indicate ratio 

26 of mesial tilt to lateral tilt, numbers on top of graph indicate total enamel rods irrespective of 

27 tilt. Panel D, scatter plot with linear correlation lines for single rods relative to their x-axis 

28 location and distance away from the DEJ (y-axis) as measured in scaled montage maps.

29 Figure 3. Graphic representations of Figure 1B illustrating the distribution of short, medium, and long 

30 rows and the distributions of rows in the lateral, central and mesial regions of the inner enamel 

31 layer. Criteria for classifying rows by length and region are shown in Table 1. The percentages in 
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1 each category for all 24 incisors analyzed are indicated. The arrows point to the longest row 

2 having a mesial tilt (black) and a lateral tilt (red) found on this tooth. 

3 Figure 4. Graphic representations of Figure 1B showing the distribution of the five row types classified 

4 by the region of the inner enamel layer in which they are located (Panel A). An enlarged cropped 

5 area of the central region is shown at the top of the panel. Criteria for classifying rows by region 

6 and by row type are shown in Table 1. Panel B, bar graphs showing the frequency distribution in 

7 all 24 incisors analyzed for row types associated with the lateral, central and mesial regions. 

8 Row types: Uni, uniform; Par, paired; Bm, branch/merge; P+B, paired+branch/merge; FS, focal 

9 stack. Mtilt, rows with mesial tilt; Ltilt, rows with lateral tilt.

10 Figure 5. Graphic representations of Figure 1B showing the distribution of the six arrangements of row 

11 endpoints classified by the region of the inner enamel layer in which they are located (Panel A). 

12 An enlarged cropped area of the central region is shown at the top of the panel. Criteria for 

13 classifying rows by region and row range are shown in Table 1. Panel B, bar graphs showing the 

14 frequency distribution in all 24 incisors analyzed for row endpoint locations associated with the 

15 lateral, central and mesial regions. DEJ, dentinoenamel junction, IE, inner enamel layer, OE, 

16 outer enamel layer.

17 Figure 6. Correspondence plots of 2D relationships between categorical variables for row tilt, row class 

18 (length), enamel layer region, row type (A) or row endpoint location (range, B). Row tilt, row 

19 class (length) and enamel layer region have similar interrelationships in the two plots. Row type 

20 and row range also show similar single factor distribution with one category in every quadrant 

21 and second category in the southwest quadrant: paired and branching/merging rows in the case 

22 of A and DEJ-IE and DEJ-OE in the case of B. B/M, branch/merge; Stk, stack.

23 Figure 7. One µm thick tangential sections (plastic) of secretory stage rat incisor ameloblasts at the level 

24 of their distal terminal webs (A) and at the level of the Tomes processes projecting into the 

25 forming enamel layer (B), and in nearly mature enamel from the maturation stage (C) stained 

26 with toluidine blue. The tilt of a row cannot be defined in Panel A but uniform rows (u), 

27 branching/merging rows (b), and sites where a focal stack might be located (f) are apparent. 

28 Tomes processes projecting into the forming enamel layer from secretory stage ameloblasts (B) 

29 show many of the row arrangements typically identified later in enamel rod arrangements (C) 

30 that develop from these distal extensions of the ameloblasts. This includes uniform rows (u), 

31 branching/merging rows (b), paired rows (p) and focal stacks (f). In B and C, the endpoint for 

32 rows having a mesial tilt are indicated in green with black outline and for rows having a lateral 
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1 tilt in yellow with red outline. The colored maps in Panels D and E are graphic reconstructions 

2 from serial sections (see Materials and Methods) of the row arrangement of ameloblasts at the 

3 level of the distal terminal web in young differentiating ameloblasts (D) and in early secretory 

4 stage ameloblasts (E). The development of rows of ameloblasts clearly begins very early as 

5 preameloblasts start to differentiate (Panel D) with focal areas where cells seem clustered (c) at 

6 sites that may have something to do with branching/merging of rows seen more clearly later in 

7 time (Panel D). As secretion of the enamel begins (E), row structure is more regular and spread 

8 out as uniform (u), paired (p), branching/merging (b) and focal stack (f) patterns. In all panels 

9 the magnification bars = 25 µm, apical is to the left, incisal to the right, lateral to the top, and 

10 mesial to the bottom.

11 Figure 8. Schematic illustrations of enamel rod decussation taking into account increases in the mean 

12 decussation angle from lateral to mesial regions of the inner enamel layer (46°, 54°, 74°; Smith 

13 et al., 2019) for the whole enamel layer (A) and central region only (B). Rows of ameloblasts that 

14 form the rows of enamel rods undergo their differentiation as the wave of tooth development 

15 spreads from central region toward the mesial and lateral regions of the future enamel layer 

16 (e.g., red and black arrows labeled +53 µm in top figure). Rows therefore are created and 

17 lengthen at sites close to the DEJ. A transverse section of the mature enamel layer is a time 

18 composite image of all the various generations of ameloblasts that were required to create the 

19 rows of rods layered one-on-top another. This implies that two neighboring ameloblasts, one 

20 from a row destined to form an enamel rod having a mesial tilt (black, A1) and the other from a 

21 row creating enamel rods having a lateral tilt (red, B1) spread apart by a distance that can be 

22 estimated from planar geometry using decussation angle and the thickness of the enamel layer 

23 over which the cells will travel (blue triangles). As these ameloblasts and their sister cells in the 

24 same row move to form a corresponding row of enamel rods, new ameloblasts continue to 

25 develop near the DEJ along the same row or as part of new rows having similar rod tilts (A2 and 

26 B2). At the boundary area where ameloblasts switch from forming the decussating inner enamel 

27 portions of the rods to forming the parallel outer enamel portions of the rods, ameloblast A1 

28 will oppose ameloblast B2 that differentiated at a more mesial spatial location than ameloblast 

29 B1, and ameloblast B1 will oppose ameloblast A2 that differentiated at a more lateral location 

30 than ameloblast A1. This implies that the potential space that would arise as ameloblasts in row 

31 A physically move in a mesial direction over space and time from ameloblasts in row B moving 

32 laterally is pre-compensated for by transverse extensions of arcing rows and creation of new 

33 rows as the wave of amelogenesis spreads into the mesial and lateral regions along the DEJ. It is 
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1 important to keep in mind that because enamel rods are tilted incisally (forwards) at about 45° 

2 to the DEJ in the plane of tooth eruption, the START positions for rows of rods at the DEJ in 3D 

3 space are positioned at least 100 µm more apically (backwards into the plane of the 

4 photographs shown here) than their END locations at the boundary with the outer enamel layer. 

5 It is not possible to see the start and end positions of an enamel rod in a single 2D section as 

6 represented in this figure, which is strictly for conceptual purposes.

7 Supporting Information Figure S1. Color maps showing arrangement of rows of enamel rods having a 

8 mesial tilt (black) and lateral tilt (red) in 4 out of the 24 incisors analyzed in this investigation 

9 (Incisors T2, T7, T15, T20). The distribution of rows of enamel rods across the transverse plane is 

10 noticeably variable. Rows with mesial tilt almost never have the exact same total number of 

11 enamel rods, the same total number of rows, or the same lengths (expressed as rods per row; 

12 RPR) forming the longest rows compared to rows having a lateral tilt both within and between 

13 incisors. There are, however, common themes in row organization including the non-linear and 

14 often wavy appearance of most rows, the arcing of rows across the central region (C) with 

15 variable arms extending into the mesial (M) and lateral (L) regions, the existence of some rows 

16 traversing only the mesial region (T7, black arrow for mesial tilt, red arrow for lateral tilt) or the 

17 lateral region (T15, black arrow for mesial tilt, red arrow for lateral tilt). The mesial region also 

18 shows distinct layering of rows towards the outer part of the inner enamel layer (T7, black and 

19 red arrows). Color code for small arrows: green, mesial and lateral endpoints for longest rows; 

20 magenta, uniform rows; dark blue, paired rows; muddy orange, branching/merging rows; cyan, 

21 branching/merging plus paired rows; dark red, focal stacks (classifications explained in Table 1).
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