
Supplementary Material for Tensor Graphical Lasso
(TeraLasso)

1. Supplement outline

This supplement is organized as follows. Sections 2-3 focus on the implemen-
tation and numerical convergence of the TeraLasso algorithm and Sections 4-8
focus on theory and proofs of convergence. Section 2 presents the algorithm for
TeraLasso with nonconvex regularization and describes additional properties of
the TeraLasso algorithm, including a discussion of the choice of step size, de-
composition of the gradient update, and proof of joint convexity of the objective.
Section 3 presents additional numerical experiments, including convergence of
the nonconvex algorithm, larger scale TG-ISTA convergence experiments, ad-
ditional discussion comparing the fit of the TeraLasso model to the wind speed
data, and a discussion of the geometric differences between the Gemini and
TeraLasso objectives.

We then proceed to the convergence analysis. Section 4 describes properties
of the Kronecker sum and the Kronecker sum subspace Kp that are needed for
the remainder of the discussion. Proof of the main Frobenius norm theorem and
of the spectral norm theorem are in Section 5, with the concentration bounds
proven in Section 6. Section 7 proves the result on nonconvex regularization,
and Section 8 presents and proves theorems on the geometrical convergence of
the TG-ISTA algorithm. Relevant properties and identities relating to the space
Kb spanned by Kronecker sum matrices are contained in Appendix A, and a
discussion of the case where the diagonal elements of Ω are known is given in
Appendix B.

2. TeraLasso algorithm step size and numerical convergence proofs

2.1. Convergence of nonconvex regularization algorithm

The TG-ISTA implementation of the TeraLasso algorithm for nonconvex reg-
ularizers is shown in Algorithm 2. The primary differences from the `1 regu-
larized case are (a) the addition of the norm constraint, and (b) the use of the
nonconvex regularizer in the gradient computation.
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Algorithm 2 TG-ISTA implementation of TeraLasso with nonconvex regular-
ization

1: Input: SCM factors Sk, regularization parameter ρ, regularizer gρ(·) and
associated q′ρ(·), backtracking constant c ∈ (0, 1), initial step size ζ1,0,
initial iterate Ωinit = I ∈ K]p.

2: while not converged do
3: Compute the subspace gradient ProjKp

(
Ω−1
t

)
= Gt1 ⊕ · · · ⊕GtK .

4: Line search: Let stepsize ζt be the largest element of {cjζt,0}j=1,... such
that the following are satisfied for Ψt+1

k = shrink−ζtρ(Ψ
t
k− ζt(S̃k−Gtk +

q′ρ(Ψk))):

(a) ‖Ψt+1
1 ⊕ · · · ⊕Ψt+1

K ‖2 ≤ κ,
(b) Ψt+1

1 ⊕ · · · ⊕Ψt+1
K � 0,

(c) f({Ψt+1
k }) ≤ Qζt({Ψ

t+1
k }, {Ψ

t+1
k }).

5: for k = 1, . . . ,K do
6: Composite objective gradient update:

Ψt+1
k ← shrink−ζtρ

(
Ψt
k − ζt(S̃k −Gtk + q′ρ(Ψk))

)
.

7: end for
8: Compute next Barzilai-Borwein stepsize ζt+1,0 via (27) in supplement

2.2.
9: end while

10: Return {Ψt+1
k }

K
k=1.

2.2. Choice of step size ζt
Here we propose a method (25) for selecting the stepsize parameter ζt at each
step t that ensures convergence of the algorithm. We follow the approach of
Beck and Teboulle (2009) and Guillot et al. (2012). Since Ωt � 0 and the the
positive definite cone is an open set, there will always exist a ζt small enough
such that Ωt+1 � 0. We prove geometric convergence when ζt is chosen such
that Ωt+1 � 0 and

f(Ωt+1) = − log |Ωt+1|+ 〈Ŝ,Ωt+1〉 ≤ Qζt(Ωt+1,Ωt) (25)

where Qζt is a quadratic approximation to f given by

Qζt(Ωt+1,Ωt) (26)

= − log |Ωt|+ 〈Ŝ,Ωt〉+ 〈Ωt+1 − Ωt,∇f(Ωt)〉+
1

2ζt
‖Ωt+1 − Ωt‖2F .
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At each iteration t, we thus perform a line search to select an appropriate
ζt. We first select an initial stepsize ζt,0 and compute the update (19). If the
resulting Ωt+1 is not positive definite or does not decrease the objective suffi-
ciently according to (25), we decrease the stepsize ζt to cζt,0 for c ∈ (0, 1) and
re-evaluate if the resulting Ωt+1 satisfies the conditions. This backtracking pro-
cess is repeated (setting stepsize equal to cjζt,0 where j is incremented) until
the resulting Ωt+1 satisfies the conditions. Since by construction Ωt is posi-
tive definite, and the positive definite cone is an open set, there will be a step
size small enough such that the conditions are satisfied. In practice, if after a
set number of backtracking steps the conditions are still not satisfied, we can
always take the safe step

ζt = λ2
min(Ωt) =

K∑
k=1

min
i

[sk]
2
i .

As the safe stepsize often leads to slower convergence, we use the more ag-
gressive Barzilai-Borwein step to set a starting ζt,0 at each time. The Barzilai-
Borwein stepsize presented in Barzilai and Borwein (1988) creates an approxi-
mation to the Hessian, in our case given by

ζt+1,0 =
‖Ωt+1 − Ωt‖2F

〈Ωt+1 − Ωt,∇f(Ωt)−∇f(Ωt+1)〉
(27)

We derive the gradient ∇f(Ωt) in the next section. The norms and inner prod-
ucts in (27) and (26) can be efficiently computed factorwise (using the Ψk and
Sk only) using the formulas in Appendix A.1.

2.3. Generation of Kronecker Sum Random Tensors
Generating random tensors given a Kronecker sum precision matrix can be
made efficient by exploiting the Kronecker sum eigenstructure. Algorithm 3
allows efficient generation of data following the TeraLasso model.

2.4. Detailed TeraLasso Algorithm
Algorithm 4 shows additional details of the implementation of Algorithm 1 in
the main text.

2.5. Decomposition of Objective: Proof of Lemma 4

For simplicity of notation define Gt to be the projection of Ω−1 onto the
cone Kp of positive definite Kronecker sum matrices:

Gt = Gt1 ⊕ · · · ⊕GtK = ProjKp
(Ω−1

t ).
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Algorithm 3 Generation of subgaussian tensor X ∈ Rd1×···×dK under Ter-
aLasso model.

1: Assume Σ−1 = Ψ1 ⊕ · · · ⊕ΨK .
2: Input precision matrix factors Ψk ∈ Rdk×dk , k = 1, . . . ,K.
3: for k = 1, . . . ,K do
4: Uk,Λk ← EIG(Ψk) eigendecomposition of Ψk.
5: end for
6: v = [v1, . . . , vp]← diag(Λ1)⊕ · · · ⊕ diag(ΛK) ∈ Rp.
7: Generate isotropic subgaussian random vector z ∈ Rp.
8: x̃i ← v

−1/2
i zi, for i = 1, . . . , p.

9: for k = 1, . . . ,K do
10: x̃← (I[d1:k−1] ⊗ Uk ⊗ I[dk+1:K ])x̃.
11: end for
12: Reshape x̃ into X ∈ Rd1×···×dK .

Using this notation and substituting in (17) from the main text, the objective
(14) becomes

Ωt+1 ∈ arg min
Ω∈Kp

{
1

2

∥∥∥Ω−
(

Ωt − ζt
(
S̃ −Gt

))∥∥∥2

F
+ ζt

K∑
k=1

mkρk|Ψk|1,off

}
(28)

Expanding out the Kronecker sums, for

Ωt = Ψt
1 ⊕ · · · ⊕Ψt

K , Ω = Ψ1 ⊕ · · · ⊕ΨK ,

the Frobenius norm term in the objective (28) can be decomposed into a sum
of a diagonal portion and a factor-wise sum of the off diagonal portions. This
holds by Property b in Appendix A which states the off diagonal factors Ψ−k
have disjoint support in Ω. Thus,∥∥∥Ω−

(
Ωt − ζt

(
(S̃1 −Gt1)⊕ · · · ⊕ (S̃K −GtK)

))∥∥∥2

F

=
∥∥∥(Ψ1 − (Ψt

1 − ζt(S̃1 −Gt1))
)
⊕ · · · ⊕

(
ΨK − (Ψt

K − ζt(S̃K −GtK))
)∥∥∥2

F

=
∥∥∥diag(Ω)−

(
diag(Ωt)− ζtdiag

(
S̃ −Gt

))∥∥∥2

F

+

K∑
k=1

mk

∥∥∥offd
(

Ψ1 − (Ψt
1 − ζt(S̃1 −Gt1))

)∥∥∥2

F
.
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Algorithm 4 TG-ISTA Implementation of TeraLasso (Detailed)
1: Input: SCM factors Sk, regularization parameters ρi, backtracking constant
c ∈ (0, 1), initial step size ζ1,0, initial iterate Ωinit = Ψ0

1 ⊕ · · · ⊕Ψ0
K .

2: for k = 1, . . . ,K do
3: sk, Uk ← Eigen-decomposition of Ψ0

k = Ukdiag(sk)U
T
k .

4: S̃k ← Sk − Idk
tr(Sk)
dk

K−1
K .

5: end for
6: while not converged do
7: {s̃}Kk=1 ← ProjKp

(
diag

(
1

s1⊕···⊕sK

))
.

8: for k = 1 . . .K do
9: Gtk ← Ukdiag(sk)U

T
k .

10: end for
11: for j = 0, 1, . . . do
12: ζt ← cjζt,0.
13: for k = 1, . . . ,K do
14: Ψt+1

k ← shrink−ζtρk(Ψ
t
k − ζt(S̃k −Gtk)).

15: Compute eigen-decomposition Ukdiag(sk)U
T
k = Ψt+1

k .
16: end for
17: Compute Qζt({Ψt+1

k }, {Ψ
t
k}) via (26).

18: if f({Ψt+1
k }) ≤ Qζt({Ψ

t+1
k }, {Ψ

t
k}) as in (26) and mini([s1 ⊕ · · · ⊕

sK ]i) > 0 then
19: Stepsize ζt is acceptable; break
20: end if
21: end for
22: Compute Barzilai-Borwein stepsize ζt+1,0 via (27)
23: end while
24: Return {Ψt+1

k }
K
k=1.

Substituting into the objective (28), we obtain

Ωt+1 ∈ arg min
Ω∈Kp

{
1

2

∥∥∥diag(Ω)−
(

diag(Ωt)− ζtdiag
(
S̃ −Gt]

))∥∥∥2

F

+

K∑
k=1

mk

(
1

2

∥∥∥offd
(

Ψk − (Ψt
k − ζt(S̃k −Gtk))

)∥∥∥2

F
+ ζtρk|Ψk|1,off

)}
.

This objective is decomposable into a sum of terms each involving either the
diagonal Ω+ or one of the off diagonal factors Ψ−k . Thus, we can solve for each
portion of Ω independently, giving
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offd(Ψt+1
k ) = arg min

offd(Ψk)

1

2

∥∥∥offd(Ψk)− offd(Ψt
k − ζt(S̃k −Gtk))

∥∥∥2

F
+ ζtρk|Ψk|1,off

(29)

diag(Ωt+1) = arg min
diag(Ω)

1

2

∥∥∥diag(Ω)− diag
(

Ωt − ζt
(
S̃ −Gt

))∥∥∥2

F
.

Since the diagonal diag(Ω) is not regularized in (29), we have

diag(Ωt+1) = diag(Ωt)− ζtdiag(S̃ −Gt),

i.e.

diag(Ψt+1
k ) = diag(Ψt

k)− ζtdiag(S̃k −Gtk). (30)

This means we can equivalently obtain the solution of the problem (29) by solv-
ing

Ψt+1
k = arg min

Ψk

1

2

∥∥∥Ψk − (Ψt
k − ζt(S̃k −Gtk))

∥∥∥2

F
+ ζtρk|Ψk|1,off ,

completing the proof.
2

2.6. Proof of Joint Convexity
Our objective function is

Q({Ψk}) = − log |Ψ1 ⊕ · · · ⊕ΨK |+ 〈Ŝ,Ψ1 ⊕ · · · ⊕ΨK〉+
∑
k

ρkdk|Ψk|1,off .

(31)

We have the following theorem. This theorem proves the joint convexity of the
objective function (31) and the uniqueness of the minimizer Ω̂.

THEOREM 6. The objective function (31) is jointly convex in {Ψk}Kk=1. Fur-
thermore, define the set A = {{Ψk}Kk=1|Q({Ψk}Kk=1) = Q∗} where the global
minimum Q∗ = min{Ψk}Kk=1

Q({Ψk}Kk=1). There exists a unique Ω∗ ∈ K]p,
defined in (4), that achieves the minimum of Q such that

Ψ1 ⊕ · · · ⊕ΨK = Ω∗ ∀ {Ψk}Kk=1 ∈ A. (32)

PROOF. By definition,

Ψ1 ⊕ · · · ⊕ΨK =Ψ1 ⊗ Im1
+ · · ·+ ImK

⊗ΨK (33)
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is an affine function of z = [vec(Ψ1); . . . ; vec(ΨK)]. Thus, since log |A| is a
concave function on the space of positive definite matrices (Boyd and Vanden-
berghe, 2009), all the terms of Q are convex since convex functions of affine
functions are convex and the elementwise `1 norm is convex. HenceQ is jointly
convex in {Ψk}Kk=1 on K]p. Hence, every local minima is also global. Further-
more, for positive ρk at least one global minimum must exist since | · |1 has a
global minimum at zero.

We show that a nonempty set of {Ψk}Kk=1 such that Q({Ψk}Kk=1) is mini-
mized maps to a unique Ω = Ψ1⊕ · · · ⊕ΨK . If only one point {Ψk}Kk=1 exists
that achieves the global minimum, then the statement is proved. Otherwise,
suppose that two distinct points {Ψk,1}Kk=1 and {Ψk,2}Kk=1 achieve the global
minimum Q∗. Then, for all k define

Ψk,α = αΨk,1 + (1− α)Ψk,2 (34)

By convexity, Q({Ψk,α}Kk=1) = Q∗ for all α ∈ [0, 1], i.e. Q is constant along
the specified affine line segment. This can only be true if (up to an additive
constant) the first two terms of Q are equal to the negative of the second two
terms along the specified segment. Since

− log |A|+ 〈Ŝ, A〉 (35)

is strictly convex and smooth on the positive definite cone (i.e. the second
derivative along any line never vanishes) (Boyd and Vandenberghe, 2009) and
the sum of the two elementwise `1 norms along any affine combination of vari-
ables is at most piecewise linear when smooth, this cannot hold when Ωα =
Ψ1,α⊕· · ·⊕ΨK,α varies with α. Hence, Ωα must be a constant Ω∗ with respect
to α. Thus, the minimizing Ω∗ is unique and Theorem 6 is established.

2

3. Additional experiments

3.1. Convergence of nonconvex regularization algorithm
Figure 13 illustrates the convergence of the nonconvex Algorithm 2 (experiment
described more thoroughly in the main text).

3.2. Computational Complexity of TG-ISTA
In Section 8, we show that TG-ISTA reaches the statistical error floor in

T = Op

2 logK + log(s+ p) + log log p− log(nminkmk)

log
(

1− 2
1+K2

)


iterations.
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Fig. 13: Geometric convergence of the nonconvex TG-ISTA implementation
of TeraLasso. Shown is the normalized Frobenius norm ‖Ωt − Ω∗‖F of the
difference between the estimate at the tth iteration and the optimal Ω∗. On
the left are results comparing K = 2 and K = 4 on the same data with the
same value of p (different dk), on the right they are compared for the same
value of dk (different p). Also included are the statistical error levels, and the
computation times required to reach them. Observe the consistent and rapid
linear convergence rate, with logarithmic dependence on K and dimension dk.

Each TG-ISTA iteration is also computationally efficient. Due to the repre-
sentation (10), the TG-ISTA implementation of TeraLasso never needs to form
the full p×p covariance. The memory footprint of the proposed implementation
is O(p+

∑K
k=1 d

2
k) as opposed to the O(p2) storage required by BiGLasso and

GLasso. Since the training data itself requires O(np) storage, the storage foot-
print of the TG-ISTA implementation of TeraLasso is scalable to large values of
p =

∏K
k=1 dk when the dk/p decrease in p, e.g. dk = p1/K . The computational

cost per iteration is dominated by the computation of the gradient, which is per-
formed by doing K eigendecompositions of size d1, . . . , dK respectively and
then computing the projection of the inverse of the Kronecker sum of the result-
ing eigenvalues. The former step costs O(

∑K
k=1 d

3
k), and the second step costs

O(pK), giving a cost per iteration of O
(
pK +

∑K
k=1 d

3
k

)
. For K > 1 and

dk/p � 1, this gives a dramatic improvement on the O(p3) = O(
∏K
k=1 d

3
k)
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cost per iteration of unstructured Graphical Lasso algorithms (Guillot et al.,
2012; Hsieh et al., 2014). In addition, for K ≤ 3 the cost per iteration is com-
parable to the O(d3

1 + d3
2 + d3

3) cost per iteration of the most efficient (K = 3)
Kronecker product GLasso methods such as Zhou (2014).

Figure 14 shows convergence speeds on various random ER graph estima-
tion scenarios, with the BiGLasso of Kalaitzis et al. (2013) shown for compari-
son. Note that the BiGLasso algorithm only applies when the diagonal elements
of Ω are known, so it cannot be considered to solve the general BiGLasso or
TeraLasso objectives. Observe that TeraLasso’s ability to efficiently exploit the
Kronecker sum structure to obtain computational and memory savings allows it
to quickly converge to the optimal solution, while the alternating-minimization
based BiGLasso algorithm is impractically slow. All computation was timed on
a 4-core, 64 bit, 2.5GHz CPU system using Matlab 2016b.

K p dk n TeraLasso Runtime (s) BiGLasso Runtime (s)
2 100 10 10 .0131 .84
2 625 25 10 .0147 6.81
2 2500 50 10 .0272 161
2 5625 75 10 .0401 1690
2 104 100 10 .0664
2 2.5× 105 500 10 1.62
2 106 1000 10 23.2
2 4× 106 2000 10 427
3 106 100 10 3.52 NA
3 8× 106 200 10 11.2 NA
3 1.25× 108 500 10 32.6 NA
3 1× 109 1000 10 70.0 NA
4 104 10 10 .281 NA
4 1.6× 105 20 10 .649 NA
4 6.25× 106 50 10 10.8 NA
4 1.00× 109 178 10 88.4 NA
5 1.16× 109 65 10 124 NA

Fig. 14: Run times for the BiGLasso algorithm (Kalaitzis et al., 2013) and the
proposed TG-ISTA on a K = 2 Kronecker sum model where the ground-truth
edge topology follows a Kronecker sum Erdös-Rényi graphs for various values
of the total dimension p = d1d2 with d1 = d2. Also shown are TeraLasso
results for K = 3, 4, 5, for which BiGLasso is not applicable. Note the 102 -
104 magnitude speed up of TeraLasso (increasing with p), allowing estimation
of billion-variable covariances (1018 elements).

3.3. Convergence rate verification
In this section, we verify that our bounds on the rate of convergence are tight
in the case of `1 regularization. We will hold ‖Σ0‖2 and s/p constant. We set
ρk as in Theorem 1. By Lemma 7 in the supplement, this implies an “effective
sample size” proportional to the inverse of the bound on ‖Ω̂− Ω0‖2F /p:

Neff ∝ (log p)−1nmin
k
mk. (36)
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Fig. 15: Frobenius norm convergence rate for the proposed TeraLasso. Shown
(ordered by increasing difficulty) are results for AR graphs with d1 = 40 (top
left), random ER graphs with d1 = 10 (top right), d1 = 40 (bottom left), and
random grid graphs with d1 = 36 (bottom right). For each covariance model, 6
different combinations of d2 and K are considered, and the resulting Frobenius
error is plotted versus the effective sample size Neff (36).

For each experiment below, we varied K and d2 over 6 scenarios. To ensure
that the constants in the bound were minimally affected, we held Ψ1 constant
over all (K, d2) scenarios, and let Ψ3 = 0 and d3 = d1 when K = 3. We let
d2 vary by powers of 2, i.e. d2(cd) = 2cdd2,base where d2,base is a constant,
allowing us to create a fixed matrix B and set Ψ2 = Id2/d2,base

⊗ B to ensure
the eigenvalues of Ψ2 and thus ‖Σ0‖2 remain unaffected as d2 (cd) changes.

Results averaged over random training data realizations are shown in Figure
15 for ER (dk/2 edges per factor), random grid (dk/2 edges per factor), and
AR-1 graphs (AR parameter .5 for both factors). Observe that in each case, the
curves for all scenarios are very close despite the wide variation in dimension-
ality, indicating that our bound on the rate of convergence in Frobenius norm is
tight.

3.4. Additional details for wind speed data experiments
For the wind speed data example in the main text, we first regressed out the
mean for each day in the year via a 14-th order polynomial regression on the



Supplementary Material for Tensor Graphical Lasso (TeraLasso) 11

entire history from 1948-2015. As in the main text, we extracted two 20 × 10
spatial grids, one from eastern North America, and one from Western North
America, with the latter including an expansive high-elevation area and both
Atlantic and Pacific oceans (Figure 9). We compare the TeraLasso estimator to
the unstructured shrinkage estimator, the non-sparse Kronecker sum estimator
(TeraLasso estimator with sparsity parameter ρ = 0), and the Gemini sparse
Kronecker product estimator of Zhou (2014). Figure 16 shows the estimated
precision matrices trained on the eastern grid, using time samples from January
in n years following 1948. Note the graphical structure reflects approximate
auto-regressive (AR) spatial and temporal structure in each dimension. The
TeraLasso estimation is much more stable than the Kronecker product estima-
tion for small sample size n.
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Fig. 16: Windspeed data, eastern grid. Spatial (K = 2) precision matrix es-
timation, comparing TeraLasso to unstructured and sparse Kronecker product
(Gemini) techniques, using n = 1, 10, and 50. Observe the increasing sparsity
and structure with increasing n, and TeraLasso’s consistent structure even from
one sample up to n = 50. For improved contrast, the diagonal elements have
been reduced in the plot.

To quantify the fit of the estimated precision matrices to the observed wind
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data, we compare to an unstructured estimator in a higher sample regime. Af-
ter training each estimated precision matrix (TeraLasso, Gemini, and ML Kro-
necker Product) on a 30-day summer interval from 1 year, as in the main ex-
periment, we create a sample covariance Ŝtest from the same 30-day summer
intervals in the remaining 50 years. We evaluate the precision matrices esti-
mated by TeraLasso, Gemini, and ML Kronecker product using a normalized
Frobenius error metric:

arg min
δ∈[0,1]

‖Ω̂− (Ŝtest + δIp)
−1‖F /‖(Ŝtest + δIp)

−1‖F .

If this metric is small, the structured Ω̂ is close to the unstructured (Ŝtest +
δIp)

−1, indicating a good fit to the data. The small ridge δ is included to en-
sure that the unstructured inverse estimator (Ŝtest + δIp)

−1 is well-conditioned,
with the minimum taken over δ to present the most optimistic view of Gemini
and the ML Kronecker product. The results for each precision matrix are Ter-
aLasso: 0.0728, Gemini: 0.903, and ML Kronecker Product: 0.76, confirming
the superior performance of the TeraLasso estimator.

3.5. Comparison between TeraLasso and Gemini (Kronecker product)
log determinant geometry

In this section, we present further analysis of the relation of the performance of
TeraLasso in this wind data setting to its inherently more robust eigenstructure.

Recall the `1 TeraLasso objective

− log |Ψ1 ⊕ · · · ⊕ΨK |+ 〈Ŝ,Ψ1 ⊕ · · · ⊕ΨK〉+

K∑
k=1

ρkmk|Ψk|1,off . (37)

where mk = p/dk. The Gemini Kronecker product algorithm Zhou (2014)
uses a similar objective function to estimate the Kronecker product covariance,
which can be shown to be equivalent to

− log |Ψ1 ⊗Ψ2|+ 〈Ŝ,Ψ1 ⊕Ψ2〉+

2∑
k=1

ρkmk|Ψk|1,off . (38)

Observe that, for K = 2, the Gemini objective function (38) is the same as in
TeraLasso objective function (37) except for the log determinant term. Figure
17 (a) compares the Kronecker product Gemini estimator to TeraLasso on data
generated using precision matrix Ψ1 ⊕ Ψ2, and again on data generated using
the Kronecker sum precision matrix Ψ1 ⊗ Ψ2, where Ψ1,Ψ2 are each 10 × 10
random ER graphs (generated as in the main text) with 5 nonzero edges. In all
cases, we used the theoretically dictated optimal `1 penalty for TeraLasso from
Theorem 1 in the main text and for Gemini from Theorem 3.1 in Zhou (2014).
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Note that both methods perform well in the single sample regime, even under
model misspecification. This apparent symmetricity is very different from the
relation of the ML Kronecker sum (TeraLasso with zero penalty) and the ML
Kronecker product (not directly related to Gemini), whose results on the same
data are also shown in Figure 17 (b). In this case, the ML Kronecker product
performs poorly in the single sample regime, whereas the ML Kronecker sum
performs well in all regimes, surpassing the ML Kronecker product method in
the low sample regime even when the data is generated under the Kronecker
product model.

This seems to indicate that the Gemini estimator leverages some of the in-
herent stability of the ML Kronecker sum objective (TeraLasso) to solve the
more unstable Kronecker product covariance estimation problem.
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(a) TeraLasso (proposed Kronecker sum) and Gemini (Kronecker product) estimators,
using optimal `1 penalties, under model misspecification. Note the largely symmetric
performance under model misspecification (TeraLasso on right, Gemini on left).
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(b) Gaussian maximum likelihood estimators under model misspecification. Note the
significant low-sample advantage of our proposed ML Kronecker Sum estimator even
under model misspecification (right).

Fig. 17: Kronecker sum and Kronecker product estimators under model mis-
specification. Left-hand plots were generated using Kronecker sum precision
matrix Ω = Ψ1 ⊕ Ψ2, and right-hand plots were generated using Kronecker
product precision matrix Ω = Ψ1 ⊗Ψ2.
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(b) Gaussian maximum likelihood estimators under model misspecification. Note the
significant low-sample advantage of our proposed ML Kronecker Sum estimator even
under model misspecification (right).

Fig. 18: Kronecker sum and Kronecker product estimators under model mis-
specification, using the wind data Kronecker sum precision matrix Ω = Ψ1⊕Ψ2

shown in Figure 10 (a). Left-hand plots were generated using Kronecker sum
precision matrix Ω = Ψ1 ⊕ Ψ2, and right-hand plots were generated using
Kronecker product precision matrix Ω = Ψ1 ⊗Ψ2.

To further illuminate the connection between TeraLasso and Gemini, we
now examine the relationship of the geometry of the differing log determinant
terms. Let the eigenvalues of Ψk be denoted as λk,1, . . . , λk,dk , and suppose
that Ψ1⊕· · ·⊕ΨK � 0 so we can assume all the λk,i ≥ 0. Using the properties
of determinants and the additivity of the eigenvalues in a Kronecker sum we
can write

log |Ψ1 ⊕ · · · ⊕ΨK | =
d1∑
i1=1

· · ·
dK∑
iK=1

log |λ1,i1 + · · ·+ λK,iK |.

Observe that the partial derivative of the log determinant with respect to any one
eigenvalue λk,ik is

∑
i1,...,ik−1,ik+1,...iK

1/|λ1,i1 + · · ·+ λK,iK | ≤ mk/|λk,ik |.
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Correspondingly, the log determinant of a Kronecker product is

log |Ψ1 ⊗ · · · ⊗ΨK | =
K∑
k=1

mk

dk∑
ik=1

log |λk,ik |.

Observe that the partial derivative of the log determinant with respect to any
one eigenvalue λk,ik is mk/|λk,ik |.

Thus, the geometry of the Kronecker sum log determinant term is signifi-
cantly flatter than the Kronecker product log determinant, especially for larger
K, indicating that the Kronecker sum estimator (TeraLasso) will enjoy more
flexibility when matching the sample covariances than a Kronecker product
method will.

A parallel interpretation can be obtained by recalling that the Kronecker sum
of two sparse graphs is significantly sparser than the Kronecker product of the
same two graphs, as discussed in the introduction of the main text.

4. Identifiable Parameterization of Kp

Observe that for any scalar c

A⊕B = A⊗ I + I ⊗B = A⊗ I − cI + cI + I ⊗B = (A− cI)⊕ (B + cI),

and thus the trace of each factor is non-identifiable, and we can write

Ψ1 ⊕ · · · ⊕ΨK = (Ψ1 + c1Id1
)⊕ · · · ⊕ (ΨK + cKIdK ) (39)

= (Ψ1 ⊕ · · · ⊕ΨK) +

(
K∑
k=1

ck

)
Ip

= Ψ1 ⊕ · · · ⊕ΨK ,

where ck are any scalars such that
∑K

k=1 ck = 0.
The following lemma addresses this trace ambiguity, and creates an orthog-

onal, identifiable decomposition of Ω into factors.
Based on the original parameterization

B = A1 ⊕ · · · ⊕AK ,

we know that the number of degrees of freedom in B is much smaller than the
number of elements p2. We thus seek a lower-dimensional parameterization of
B. The Kronecker sum parameterization is not identifiable on the diagonals, so
we seek a representation ofB that is identifiable. In the main text, we noted that
diag(B) + offd(A1) ⊕ · · · ⊕ offd(AK) is identifiable (where offd(A) = A −
diag(A)), but diag(B) cannot be a parameter of the model since not all diagonal
vectors can be expressed as a Kronecker sum. Hence while this diagonal-based
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decomposition is useful for stating identifiable factorwise error bounds, it is
does not truly serve as a parameterization. We show in Lemma 7 that the space
Kp is linearly, identifiably, and orthogonally parameterized by the quantities(
τB ∈ R,

{
Ãk ∈ {A ∈ Rdk×dk |tr(A) ≡ 0}

}K
k=1

)
. Specifically,

LEMMA 7. Let B ∈ Kp and B = A1 ⊕ · · · ⊕ AK ∈ Kp. Then B can be
identifiably written as

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK) (40)

where tr(Ãk) ≡ 0 and the identifiable parameters (τB, {Ãk}Kk=1) can be com-
puted as

τB = tr(B)
p , Ãk = Ak − tr(Ak)

dk
Idk . (41)

By orthogonality, the Frobenius norm can be decomposed as

‖B‖2F = pτ2
B +

K∑
k=1

mk‖Ãk‖2F ≥
K∑
k=1

mk

∥∥∥τB
K
Idk + Ãk

∥∥∥2

F
,

noting that

B =
(τB
K
Id1

+ Ã1

)
⊕ · · · ⊕

(τB
K
IdK + ÃK

)
.

PROOF. Part I: Identifiable Parameterization. Let B ∈ Kp. By defini-
tion, there exists A1, . . . , AK such that

B = A1 ⊕ · · · ⊕AK =

K∑
k=1

I[d1:k−1] ⊗Ak ⊗ I[dk+1:K ]

=

K∑
k=1

(
I[d1:k−1] ⊗ (Ak − τkIdk)⊗ I[dk+1:K ] + τkIp

)
=

(
K∑
k=1

τk

)
Ip + ((A1 − τ1Id1

)⊕ · · · ⊕ (AK − τKIdK )).

where τk = tr(Ak)/dk. Observe that tr(Ak − τkIdk) = 0 by construction, so
we can set Ãk = Ak − τkIdk , creating

B =

(
K∑
k=1

τk

)
Ip + (Ã1 ⊕ · · · ⊕ ÃK).
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Note that in this representation, tr(Ã1 ⊕ · · · ⊕ ÃK) = 0, so letting τB =
tr(B)/p,

τB =

K∑
k=1

τk,

and (40) in the Lemma results. It is easy to verify any B expressible in the form
(40) is in Kp.

Thus, (τB, {Ãk}Kk=1) parameterizes Kp. It remains to show that this param-
eterization is identifiable.

Part II: Orthogonal Parameterization. We will show that under the linear
parameterization of Kp by (τB, {Ãk}Kk=1), each of the K + 1 components are
linearly independent of the others.

To see this, we compute the inner products between the components:

〈τBIp, I[d1:k−1] ⊗ Ãk⊗I[dk+1:K ]〉 = τBmktr(Ãk) ≡ 0

〈I[d1:k−1] ⊗ Ãk ⊗ I[dk+1:K ], I[d1:`−1] ⊗ Ã` ⊗ I[d`+1:K ]〉

= tr
(
I[d1:k−1] ⊗ Ãk ⊗ I[dk+1:`−1] ⊗ Ã` ⊗ I[d`+1:K ]

)
=

p

dkd`
tr(Ãk)tr(Ã`) ≡ 0,

for all k 6= `. We have recalled that by definition, tr(Ãk) ≡ 0 for all k. Since
all the inner products are identically zero, the components are orthogonal, thus
they are linearly independent. Hence, by the definition of linear independence,
this linear parameterization (τB, {Ãk}Kk=1) is uniquely determined by B ∈ Kp

(i.e. it is identifiable).
Part III: Decomposition of Frobenius norm. Using the identifiability and

orthogonality of this parameterization, we can find a direct factorwise decom-
position of the Frobenius norm on Kp.

By orthogonality (cross term inner products equal to zero)

‖B‖2F = ‖τBIp‖2F +

K∑
k=1

‖I[d1:k−1] ⊗ Ãk ⊗ I[dk+1:K ]‖2F (42)

= pτ2
B +

K∑
k=1

mk‖Ãk‖2F .

This completes the first decomposition, representing the squared Frobenius norm
as weighted sum of the squared Frobenius norms on each component.

For convenience, we also observe that given any B ∈ Kp with identifiable
parameterization

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK),
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we can absorb the scaled identity into the Kronecker sum and still bound the
Frobenius norm decomposition. Specifically, observe that

pτ2
B = pK

K∑
k=1

(τB
K

)2
≥ p

K∑
k=1

(τB
K

)2
.

Substituting this into (42),

‖B‖2F = pτ2
B +

K∑
k=1

mk‖Ãk‖2F ≥ p
K∑
k=1

(τB
K

)2
+

K∑
k=1

mk‖Ãk‖2F

=

K∑
k=1

mk

(∥∥∥τB
K
Idk

∥∥∥2

F
+ ‖Ãk‖2F

)

=

K∑
k=1

mk

∥∥∥τB
K
Idk + Ãk

∥∥∥2

F
,

where the last term follows because tr(Ãk) ≡ 0 implies that 〈Idk , Ãk〉 ≡ 0.
Observe that

B =
(τB
K
Id1

+ Ã1

)
⊕ · · · ⊕

(τB
K
IdK + ÃK

)
,

hence Lemma 7 is proved.
2

The identifiable parameterization of Kp in Lemma 7 will provide a way to
bound the spectral norm relative to the Frobenius norm. This is used to form
the spectral norm bound in Theorem 2.

The following lemma is also used in the proof of Theorem 1 (cf. Proposition
18).

LEMMA 8 (SPECTRAL NORM BOUND). For all B ∈ Kp,

‖B‖2 ≤
√

K + 1

minkmk
‖B‖F .

PROOF. Using the identifiable parameterization of B

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK),
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and the triangle inequality, we have

‖B‖2 ≤ |τB|+
K∑
k=1

‖Ãk‖2 ≤ |τB|+
K∑
k=1

‖Ãk‖F ≤
√
K + 1

√√√√τ2
B +

K∑
k=1

‖Ãk‖2F

≤
√

K + 1

minkmk

√√√√pτ2
B +

K∑
k=1

mk‖Ãk‖2F

≤
√

K + 1

minkmk
‖B‖F .

2

4.1. Inner Product in Kp

LEMMA 9 (KRONECKER SUM INNER PRODUCTS). Suppose B ∈ Rp×p.
Then for any Ak ∈ Rdk×dk , k = 1, . . . ,K,

〈B,A1 ⊕ · · · ⊕AK〉 =

K∑
k=1

mk〈Bk, Ak〉.

PROOF.

〈B,A1 ⊕ · · · ⊕AK〉 =

K∑
k=1

〈B, I[d1:k−1] ⊗Ak ⊗ I[dk+1:K ]〉

=

K∑
k=1

mk∑
i=1

〈B(i, i|k), Ak〉

=

K∑
k=1

〈
mk∑
i=1

B(i, i|k), Ak

〉

=

K∑
k=1

mk〈Bk, Ak〉.

where we have used the definition of the submatrix notation B(i, i|k) and the
matricesBk = 1

mk

∑mk

i=1B(i, i|k). See Appendix A for the notation being used
here. 2

5. Proof of Theorems 1 and 2 (`1 regularized case)

Let Ω0 be the true value of the precision matrix Ω. Since Ω,Ω0 ∈ Kp and Kp

is convex, ∆Ω = Ω − Ω0 ∈ Kp and we can decompose ∆Ω into diagonal and
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Kronecker sum off diagonal components:

∆Ω = Ω− Ω0 = diag(∆Ω) + (offd(∆Ψ,1)⊕ · · · ⊕ offd(∆Ψ,K)), (43)

where diag(∆Ω) = diag(Ω − Ω0) and offd(∆Ψ,k) = offd(Ψk − Ψ0,1). Recall
that the diag(∆Ω) and offd(∆Ψ,k) terms are all identifiable given ∆Ω ∈ Kp.
Similarly, we can write

Ω = diag(Ω) + (offd(Ψ1)⊕ · · · ⊕ offd(ΨK))

Ω0 = diag(Ω0) + (offd(Ψ0,1)⊕ · · · ⊕ offd(Ψ0,K)).

Let I(·) be the indicator function. For an index set A and a matrix M =
[mij ], define the operator PA(M) ≡ [mijI((i, j) ∈ A)] that projects M onto
the set A. Let ∆k,S = PSk(offd(∆Ψ,k)) be the projection of offd(∆Ψ,k) onto
the true sparsity pattern of Ψk. Let Sck be the complement of Sk, and ∆k,Sc =
PSck(offd(∆Ψ,k)). Furthermore, let

∆S = (∆1,S ⊕ · · · ⊕∆K,S) and
∆Sc = ∆1,Sc ⊕ · · · ⊕∆K,Sc

be the projection of ∆Ω onto the sparsity set S and its complement. Recall
neither S nor Sc includes the diagonal.

We now provide a deterministic bound on the difference in the penalty terms.

LEMMA 10. Denote by

∆g :=
∑
k

ρkmk(|Ψk,0 + ∆Ψ,k|1,off − |Ψk,0|1,off),

Then

∆g ≥
∑
k

ρkmk(|∆k,Sc |1 − |∆k,S |1) (44)

Proof of Lemma 10. By the decomposability of the `1 norm and the
reverse triangle inequality |A+B|1 ≥ |A|1 − |B|1, we have

|Ψk,0 + ∆Ψ,k|1,off − |Ψk,0|1,off (45)
= |Ψk,0 + ∆k,S |1,off + |∆k,Sc |1 − |Ψk,0|1,off

≥ |Ψk,0|1,off − |∆k,S |1 + |∆k,Sc |1 − |Ψk,0|1,off

≥ |∆k,Sc |1 − |∆k,S |1

since Ψk,0 is assumed to follow sparsity pattern Sk by (A1). 2

Let A0 be the event that for some constant C0,

|tr(Ŝ)− tr(Σ0)|
p

≤ C0‖Σ0‖2

√
log p

pn
; (46)
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and for each k = 1, . . . ,K, denote by Ak the event such that

max
ij

∣∣∣[Sk − Σ
(k)
0 ]ij

∣∣∣ ≤ C0‖Σ0‖2
√

log p

mkn
(47)

holds for some absolute constantC0 which is chosen such that probability state-
ment in Lemma 11 holds:

LEMMA 11. Let A = ∩Kk=0Ak as in (47), (46). Then P(A) ≥ 1 − 2(K +
1) exp(−c log p).

Lemma 11 is proved in Section 6. Using the definition of event A, in Section
5.2 we prove the following lemma.

LEMMA 12. Denote by δn,k = C1 ‖Σ0‖2
√

log p
nmk

. Then on event A the fol-
lowing holds: for all ∆Ω as in (43)∣∣∣ 〈 offd(∆Ω), Ŝ − Σ0 〉

∣∣∣ ≤ K∑
k=1

mk |∆Ψ,k|1,off δn,k (48)

where C0 are some absolute constants.

We then have the following lemma, which we prove in Section 5.3.

LEMMA 13. On event A, we have for ∆Ω ∈ Kp,∣∣∣ 〈 diag(∆Ω), Ŝ − Σ0 〉
∣∣∣ ≤ C1 ‖Σ0‖2

√
log p

nminkmk

√
(K + 1)p ‖diag(∆Ω)‖F

≤ max
k

δn,k
√

(K + 1)p ‖diag(∆Ω)‖F

� ‖Σ0‖2 ‖diag(∆Ω)‖F max
k

√
dk

√
log p

n

where C1 is an absolute constant.

5.1. Proof of Theorem 1
Let

G(∆Ω) =Q(Ω0 + ∆Ω)−Q(Ω0) (49)

be the difference between the objective function (10) at Ω0 + ∆Ω and at Ω0.
Clearly ∆̂Ω = Ω̂ − Ω0 minimizes G(∆Ω), which is a convex function with a
unique minimizer on K]p (cf. Theorem 6). Define

Tn =
{

∆Ω ∈ Kp : ∆Ω = Ω− Ω0,Ω,Ω0 ∈ K]p, ‖∆Ω‖F = Mrn,p

}
(50)
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where for some large enough absolute constant C to be specified,

rn,p =
C ‖Σ0‖2
M

√
(s+ p) (K + 1)

√
log p

nminkmk
where (51)

M =
1

2
φ2

max(Ω0) =
1

2φ2
min(Σ0)

;

In particular, we set C > 9(maxk
1
εk
∨ C1) for C1 as in Lemma 13.

Proposition 14 follows from Zhou et al. (2010).

PROPOSITION 14. If G(∆) > 0 for all ∆ ∈ Tn as defined in (50). then
G(∆) > 0 for all ∆ in

Vn = {∆ ∈ Kp : ∆ = Ω− Ω0,Ω,Ω0 ∈ K]p, ‖∆‖F > Mrn,p}

for rn,p (51). Hence if G(∆) > 0 for all ∆ ∈ Tn, then G(∆) > 0 for all
∆ ∈ Tn ∪ Vn.

PROOF. By contradiction, suppose G(∆′) ≤ 0 for some ∆′ ∈ Vn. Let
∆0 = Mrn,p

‖∆′‖F ∆′. Then ∆0 = θ0+ (1− θ)∆′, where 0 < 1− θ = Mrn,p
‖∆′‖F < 1 by

definition of ∆0. Hence ∆0 ∈ Tn since by the convexity of the positive definite
cone Ω0 + ∆0 � 0 because Ω0 � 0 and Ω0 + ∆′ � 0. By the convexity of
G(∆), we have that G(∆0) ≤ θG(0) + (1 − θ)G(∆′) ≤ 0, contradicting our
assumption that G(∆0) > 0 for ∆0 ∈ Tn. 2

PROPOSITION 15. Suppose G(∆Ω) > 0 for all ∆Ω ∈ Tn. We then have
that

‖∆̂Ω‖F < Mrn,p.

PROOF. By definition,G(0) = 0, soG(∆̂Ω) ≤ G(0) = 0. Thus ifG(∆Ω) >

0 on Tn, then by Proposition 14 (section 4.1), ∆̂Ω /∈ Tn∪Vn where Vn is defined
therein. The proposition results. 2

LEMMA 16. Under (A1) - (A3), for all ∆ ∈ Tn for which rn,p = o
(√

minkmk

K+1

)
,

log |Ω0 + ∆| − log |Ω0| ≤ 〈Σ0,∆〉 −
2

9‖Ω0‖22
‖∆‖2F .

The proof is in Section 5.4.
By Proposition 15, it remains to show that G(∆Ω) > 0 on Tn under event

A. We show this indeed holds.

LEMMA 17. On event A, we have G(∆) > 0 for all ∆ ∈ Tn.
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PROOF. Throughout this proof, we assume that event A holds. By Lemma
16, if rn,p ≤

√
minkmk/(K + 1), we can write (49) using the objective (10),

G(∆Ω) = 〈Ω0 + ∆Ω, Ŝ〉 − log |Ω0 + ∆Ω| − 〈Ω0, Ŝ〉+ log |Ω0| (52)

+
∑
k

ρkmk| |Ψk,0 + ∆Ψ,k|1,off −
∑
k

ρkmk |Ψk,0|1,off

≥ 〈∆Ω, Ŝ〉 − 〈∆Ω,Σ0〉+
2

9‖Ω0‖22
‖∆Ω‖2F

+
∑
k

ρkmk(|Ψk,0 + ∆Ψ,k|1,off − |Ψk,0|1,off)

= 〈 diag(∆Ω), Ŝ − Σ0 〉 + 〈 offd(∆Ω), Ŝ − Σ0 〉 +
2

9‖Ω0‖22
‖∆Ω‖2F

+
∑
k

ρkmk(|Ψk,0 + ∆Ψ,k|1,off − |Ψk,0|1,off)︸ ︷︷ ︸
∆g

.

We next bound the inner product term under eventA. Substituting the bound of
Lemma 12 and (44) into (52), under eventA, we have by choice of ρk = δn,p/εk
where 0 < εk < 1 for all k,

K∑
k=1

mkρk

(
|Ψk + ∆Ψ,k|1,off − |Ψk|1,off

)
+ 〈 offd(∆Ω), Ŝ − Σ0 〉

≥
K∑
k=1

mkρk
(
|∆k,Sc |1 − |∆k,S |1

)
−

K∑
k=1

mk |∆Ψ,k|1,off δn,k

≥
K∑
k=1

mkρk
(
|∆k,Sc |1 − |∆k,S |1

)
−

K∑
k=1

mkδn,k
(
|∆k,Sc |1 + |∆k,S |1

)
≥ −2 max

k
ρk

K∑
k=1

mk |∆k,S |1 = −2 max
k

ρk |∆Ω,S |1

For the diagonal part, we have by Lemma 13

∣∣∣ 〈 diag(∆Ω), Ŝ − Σ0 〉
∣∣∣ ≤ C1 max

k
δn,k
√
p
√
K + 1 ‖diag(∆Ω)‖F
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we have for all ∆Ω ∈ Tn, and C ′′ = maxk(
2
εk

) ∨
√

2C1, and for K ≥ 1,

G (∆Ω) ≥ 〈diag(∆Ω), Ŝ − Σ0 〉 − 2 max
k

ρn,k |∆Ω,S |1 +
2

9‖Ω0‖22
‖∆Ω‖2F

>
2

9‖Ω0‖22
‖∆Ω‖2F

− max
k

δn,k

(
√
p
√
K + 1 ‖diag(∆Ω)‖F + 2 max

k

1

εk
|∆Ω,S |1

)
≥ 2

9‖Ω0‖22
‖∆Ω‖2F − C ′ ‖Σ0‖2

√
log p

nminkmk
·(√

(K + 1)p ‖diag(∆Ω)‖F +
√

2s‖∆Ω,S‖F
)

≥ 2

9‖Ω0‖22
‖∆Ω‖2F

− C ′
(√

2
√

(K + 1)(p+ s) ‖∆Ω‖F
)
‖Σ0‖2

√
log p

nminkmk

= ‖∆‖2F

(
2

9 ‖Ω0‖22
− C ′′ ‖Σ0‖2

√
log p

nminkmk

√
(K + 1)(p+ s)

Mrn,p

)
> 0

which holds for all ∆Ω ∈ Tn, where we use the following bounds: for all
K ≥ 1.√

(K + 1)p ‖diag(∆Ω)‖F +
√

2s‖∆Ω,S‖F ≤
√

2
√

(K + 1)(p+ s) ‖∆Ω‖F
and

C ′′ ‖Σ0‖2

√
log p

nminkmk

√
(K + 1)(p+ s)

1

Mrn,p

=
C ′′

CM
=

2C ′′

C
φ2

min(Σ0) <
2

9 ‖Ω0‖22
where M = 1

2φ2
min(Σ0) , which holds so long as C is chosen to be large enough

in

rn,p = C ‖Σ0‖2

√
(s+ p)(K + 1)

log p

nminkmk
;

For example, we set C > 9C ′′ = 9(maxk(
2
εk

) ∨
√

2C1).

Theorem 1 follows from Proposition 15 immediately. 2

5.2. Proof of Lemma 12
Assume that the event A of Lemma 11 holds. Using the definition of ∆Ω

(43), the projection operator ProjK̃p
(·), and letting τΣ = (K − 1) tr(Ŝ−Σ0)

p , we
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have∣∣∣〈offd(∆Ω), Ŝ − Σ0〉
∣∣∣ = |〈∆Ω,ProjK̃p

(Ŝ − Σ0)〉| (53)

=
∣∣∣〈offd(∆Ω), (S1 − Σ

(1)
0 )⊕ · · · ⊕ (SK − Σ

(K)
0 )− τΣIp〉

∣∣∣
=
∣∣∣〈offd(∆Ψ,1)⊕ · · · ⊕ offd(∆Ψ,K), (S1 − Σ

(1)
0 )⊕ · · · ⊕ (SK − Σ

(K)
0 )〉

∣∣∣ ,
where we have used the fact that offd(∆Ψ,1)⊕ · · · ⊕ offd(∆Ψ,K) is zero along
the diagonal and thus has zero inner product with Ip. Substituting Lemma 13
and the definitions of subevents under A, we have by (54) and Lemma 9,∣∣∣〈offd(∆Ω), Ŝ − Σ0〉

∣∣∣ =

K∑
k=1

mk|〈offd(∆Ψ,k), Sk − Σ
(k)
0 〉| (54)

≤
K∑
k=1

mk

dk∑
i,j=1

|[offd(∆Ψ,k)]ij | ·max
ij

∣∣∣[Sk − Σ
(k)
0 ]ij

∣∣∣
≤ C‖Σ0‖2

K∑
k=1

mk|∆Ψ,k|1,off

√
log p

mkn
.

2

5.3. Proof of Lemma 13: Bound on Inner Product for Diagonal
Let ∆̃Ω = ∆Ω−τΩIp. Recall the identifiable parameterization of ∆Ω (Lemma

7)

∆Ω = τΩIp + ∆̃Ψ,1 ⊕ · · · ⊕ ∆̃Ψ,K

where τΩ = tr(∆Ω)/p and ∆̃Ψ,k are given in the lemma. We then have tr(∆̃Ψ,j) =
0 and

K∑
k=1

∥∥∥diag(∆̃Ψ,k)
∥∥∥2

F
mk + pτ2

Ω = ‖diag(∆Ω)‖2F (55)

by othogonality of the decomposition. By Lemma 9, we can write∣∣∣ 〈 diag(∆̃Ω), Ŝ − Σ0 〉
∣∣∣ ≤ K∑

k=1

mk| 〈Sk − Σ
(k)
0 ,diag(∆̃Ψk

) 〉 |

≤ C ‖Σ0‖2
K∑
k=1

mk

∣∣∣diag(∆̃Ψ,k)
∣∣∣
1

√
log p

nmk

≤ C ‖Σ0‖2
K∑
k=1

√
mk

√
dk

∥∥∥diag(∆̃Ψ,k)
∥∥∥
F

√
log p

n
.
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Moreover, under A0, we have

∣∣∣ 〈 τΩIp, Ŝ − Σ0 〉
∣∣∣ ≤ C|τΩ|

√
p ‖Σ0‖2

√
log p

n
.

Summing these terms together, we have∣∣∣ 〈 diag(∆Ω), Ŝ − Σ0 〉
∣∣∣

≤ C0 ‖Σ0‖2

√
log p

n

(
K∑
k=1

√
mk

√
dk

∥∥∥diag(∆̃Ψ,k)
∥∥∥
F

+ |τΩ|
√
p

)

≤ C0 max
k

√
dk ‖Σ0‖2

√
log p

n

√
K + 1 ‖diag(∆Ω)‖F (56)

= C0 max
k

(√
log p

nmk
‖Σ0‖2

)√
(K + 1)p ‖diag(∆Ω)‖F

= C0

√
log p

nminkmk
‖Σ0‖2

√
(K + 1)p ‖diag(∆Ω)‖F

� max
k

δn,k
√

(K + 1)p ‖diag(∆Ω)‖F

where in (56), we have used the following inequality in view of (55):(
K∑
k=1

√
mk

∥∥∥diag(∆̃Ψ,k)
∥∥∥
F

+ |τΩ|
√
p

)
≤
√
K + 1 ‖diag(∆Ω)‖F .

2

5.4. Proof of Lemma 16
We first state Proposition 18

PROPOSITION 18. Under (A1)-(A3), for all ∆ ∈ Tn,

φmin(Ω0) > 2Mrn,p

√
K + 1

minkmk
≥ ‖∆‖2 /2 (57)

so that Ω0 + v∆ � 0,∀v ∈ I ⊃ [0, 1], where I is an open interval containing
[0, 1].

PROOF. We first show that (57) holds for ∆ ∈ Tn. Indeed, by Corollary 8,
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we have for all ∆ ∈ Tn

‖∆‖2 ≤
√

K + 1

minkmk
‖∆‖F =

√
K + 1

minkmk
Mrn,p

≤
√

K + 1

minkmk

C

2
‖Σ0‖2

√
(s+ p)(K + 1)

log p

nminkmk

1

φ2
min(Σ0)

=
C

2

φmax(Σ0)

φ2
min(Σ0)

√
(s+ p)

log p

n

(K + 1)

minkmk
<

1

2
φmin(Ω0) =

1

φmax(Σ0)

so long as

n(min
k
mk)

2 > 2C2κ(Σ0)4(s+ p)(K + 1)2 log p

where κ(Σ0) = φmax(Σ0)/φmin(Σ0) is the condition number of Σ0.
Next, it is sufficient to show that Ω0 + (1 + ε)∆ � 0 and Ω0 − ε∆ � 0 for

some 1 > ε > 0. Indeed, for ε < 1,

φmin(Ω0 + (1 + ε)∆) ≥ φmin(Ω0)− (1 + ε) ‖∆‖2

> φmin(Ω0)− 2

√
K + 1

minkmk
Mrn,p > 0

given that by definition of Tn and (57).

Thus we have that log |Ω0 + v∆| is infinitely differentiable on the open
interval I ⊃ [0, 1] of v. This allows us to use the Taylor’s formula with integral
remainder to prove Lemma 16, drawn from Rothman et al. (2008).

Let us use A as a shorthand for

vec {∆ }T
(∫ 1

0
(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv

)
vec {∆ } ,

where vec(∆) ∈ Rp2

is ∆p×p vectorized. Now, the Taylor expansion gives

log |Ω0 + ∆| − log |Ω0| =
d

dv
log |Ω0 + v∆|

∣∣∣∣
v=0

∆

+

∫ 1

0
(1− v)

d2

dv2
log |Ω0 + v∆|dv

= 〈Σ0,∆〉 − a. (58)

The last inequality holds because ∇Ω log |Ω| = Ω−1 and Ω−1
0 = Σ0.

We now bound a, following arguments from (Zhou et al., 2011; Rothman
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et al., 2008).

a =

∫ 1

0
(1− v)

d2

dv2
log |Ω0 + v∆|dv

= vec(∆)T
(∫ 1

0
(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv)

)
vec(∆)

≥ ‖∆‖2Fφmin

(∫ 1

0
(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv

)
.

Now, suppose that

φmin

(∫ 1

0
(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv

)
≥
∫ 1

0
(1− v)φ2

min((Ω0 + v∆)−1)dv

≥ min
v∈[0,1]

φ2
min((Ω0 + v∆)−1)

∫ 1

0
(1− v)dv

=
1

2
min
v∈[0,1]

1

φ2
max(Ω0 + v∆)

=
1

2 maxv∈[0,1] φ2
max(Ω0 + v∆)

≥ 1

2(φmax(Ω0) + ‖∆‖2)2
.

where (57), we have for all ∆ ∈ Tn,

‖∆‖2 ≤
√

K + 1

minkmk
‖∆‖F =

√
K + 1

minkmk
Mrn,p <

1

2
φmin(Ω0)

so long as the condition in (A3) holds, namely,

n(min
k
mk)

2 > 2C2κ(Σ0)4(s+ p)(K + 1)2 log p.

Hence,

φmin

(∫ 1

0
(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv

)
≥ 2

9φ2
max(Ω0)

.

Thus, substituting into (58), the lemma is proved. 2

5.5. Proof of Theorem 2: Factorwise and Spectral Norm Bounds
PROOF. Part I: Factor-wise bound. From the proof of Theorem 1, we

know that under event A,

‖∆Ω‖2F ≤ c(K + 1)(s+ p)
log p

nminkmk
. (59)
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Furthermore, since the identifiable parameterizations of Ω̂,Ω0 are of the form
(41) by construction in Lemma 7)

Ω̂ = τ̂ Ip + (Ψ̃1 ⊕ · · · ⊕ Ψ̃K)

Ω0 = τ0Ip + (Ψ̃0,1 ⊕ · · · ⊕ Ψ̃0,K),

we have that the identifiable parameterization of ∆Ω is

∆Ω = τ∆Ip + (∆̃1 ⊕ · · · ⊕ ∆̃K), (60)

where τ∆ = τ̂ − τ0, ∆̃k = Ψ̃k − Ψ̃0,k. Observe that tr(∆̃k) = tr(Ψ̃k) −
tr(Ψ̃0,k) = 0.

By Lemma 7 then,

‖∆Ω‖2F = pτ2
∆ +

K∑
k=1

mk‖∆̃k‖2F .

Thus, the estimation error on the underlying parameters is bounded by (59)

pτ2
∆ +

K∑
k=1

mk‖∆̃k‖2F ≤ c(K + 1)(s+ p)
log p

nminkmk
,

or, dividing both sides by p

τ2
∆ +

K∑
k=1

‖∆̃k‖2F
dk

≤ c(K + 1)
s+ p

p

log p

nminkmk
(61)

= c(K + 1)

(
s

p
+ 1

)
log p

nminkmk
.

Recall that s =
∑K

k=1mksk, so s
p =

∑K
k=1

sk
dk

. Substituting into (61)

τ2
∆ +

K∑
k=1

‖∆̃k‖2F
dk

≤ c(K + 1)

(
1 +

K∑
k=1

sk
dk

)
log p

nminkmk
. (62)

From this, it can be seen that the bound converges as the mk increase with
constant K. To put the bound in the form stated in the theorem, note that since
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τ∆Ip + (∆̃+
1 ⊕ · · · ⊕ ∆̃+

K)

‖diag(∆Ω)‖22
maxk dk

≤

(
τ∆ +

∑K
k=1 ‖∆̃

+
k ‖2
)2

maxk dk

≤ K + 1

maxk dk

(
τ2

∆ +

K∑
k=1

‖diag(∆̃k)‖22

)

≤ (K + 1)

(
τ2

∆ +

K∑
k=1

‖diag(∆̃k)‖2F
dk

)
.

Part II: Spectral norm bound. The factor-wise bound immediately implies
the bound on the spectral norm ‖∆Ω‖2 of the error under event A. We recall
the identifiable representation (60)

∆Ω = τ∆Ip + (∆̃1 ⊕ · · · ⊕ ∆̃K).

By Property ci in Appendix A and the fact that the spectral norm is upper
bounded by the Frobenius norm,

‖∆Ω‖2 ≤ |τ∆|+
K∑
k=1

‖∆̃k‖2 ≤ |τ∆|+
K∑
k=1

‖∆̃k‖F

≤
√
K + 1

√√√√τ2
∆ +

K∑
k=1

‖∆̃k‖2F

≤
√
K + 1

√
max
k

dk

√√√√τ2
∆ +

K∑
k=1

‖∆̃k‖2F
dk

≤ c(K + 1)

√√√√(max
k

dk)

(
1 +

K∑
k=1

sk
dk

)√
log p

nminkmk
,

where in the second line, we have used the fact that for ak elements of a ∈ RK

the norm relation ‖a‖1 ≤
√
K‖a‖2 implies (

∑K
k=1 |ak|) ≤

√
K
√∑K

k=1 a
2
k.

2

6. Proof of Lemma 11: Subgaussian Concentration

We first state the following concentration result, proved in Section 6.1. Recall
that mk = p/dk.
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LEMMA 19 (SUBGAUSSIAN CONCENTRATION). Suppose that log p� mkn
for all k. Then, with probability at least 1− 2 exp(−c′ log p),

|〈∆, Sk − Σ
(k)
0 〉| ≤ C|∆|1‖Σ0‖2

√
log p

mkn

for all ∆ ∈ Rdk×dk , where c′ is a constant depending on C given in the proof.

We can now prove Lemma 11.

PROOF. By Lemma 19 we have that event Ak (47), i.e. the event that

max
ij

∣∣∣[Sk − Σ
(k)
0 ]ij

∣∣∣ = max
ij

∣∣∣〈eieTj , Sk − Σ
(k)
0 〉
∣∣∣ ≤ C‖Σ0‖2

√
log p

mkn
,

holds with probability at least 1− 2 exp(−c′ log p).
Note that E[tr(Ŝ)] = tr(Σ0). Viewing 1

ptr(Σ0) as a 1× 1 covariance factor

since 1
ptr(Ŝ) = 1

pn

∑n
i=1 vec(Xi)vec(Xi)

T , we can invoke the proof of Lemma
19 and show that with probability at least 1−2 exp(−c′ log p) the eventA0 (46)
will hold. Recall that A = A0 ∩ A1 ∩ · · · ∩ AK . By the union bound, we have
P(A) ≥ 1− 2(K + 1) exp(−c log p). 2

6.1. Proof of Lemma 19
Define aK-way generalization of the invertible Pitsianis-Van Loan type (Van Loan
and Pitsianis, 1993) rearrangement operator Rk(·), which maps p× p matrices
to d2

k ×m2
k matrices. For a matrix M ∈ Rp×p we set

Rk(M) = [ m1 . . . mm2
k

], (63)

m(i−1)mk+j = vec(M(i, j|k)),

where we use the M(i, j|k) ∈ Rdk×dk subblock notation (see Section 2 in the
main text). Using this notation, we have the following concentration result.

LEMMA 20. Let u ∈ Sd2
k−1 and f = vec(Imk

). Assume that xt = Σ
1/2
0 zt

where zt has independent entries zt,f such that Ezt,f = 0, Ez2
t,f = 1, and

‖zt,f‖ψ2
≤ K. Let ∆n = Ŝ − Σ0. Then for all 0 ≤ ε√

mk
< 1

2 :

P(|uTRk(∆n)f | ≥ ε
√
mk‖Σ0‖2) ≤ 2 exp

(
−cε

2n

K4

)
where c is an absolute constant and ‖ · ‖ψ2

is the subgaussian norm.

PROOF. We prove the lemma for k = 1. The proof for the remaining k
follow similarly.
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By the definition (63) of the permutation operator R1 and letting xt(i) =
[xt,(i−1)m1+1, . . . , xt,im1

],

R1(Ŝ) =
1

n

n∑
t=1


vec(xt(1)xt(1)T )T

vec(xt(1)xt(2)T )T

...
vec(xt(d1)xt(d1)T )T

 (64)

Hence,

uTR1(Ŝ)f =
1

n

n∑
t=1

xTt (U ⊗ Imk
)xt =

1

n

n∑
t=1

zTt Mzt (65)

where M = Σ
1/2
0 (U ⊗ Imk

)Σ
1/2
0 , U = vec−1

d1,d1
(u).

Thus, by the Hanson-Wright inequality (Rudelson et al., 2013),

P(|uTR1(Ŝ)f − E[uTR1(Ŝ)f ]| ≥ τ) (66)

≤ 2 exp

[
−cmin

(
τ2N2

K4n‖M‖2F
,

τn

K2‖M‖2

)]
≤ 2 exp

[
−cmin

(
τ2N

K4m1‖Σ0‖22
,

τn

K2‖Σ0‖2

)]
since ‖U ⊗ Im1

‖2 = ‖U‖2 ≤ 1 and ‖U ⊗ Im1
‖2F = ‖U‖2F ‖Im1

‖2F = m1.
Substituting ε = τ√

m1‖Σ0‖2

P(|uTR1(∆n)f | ≥ ε
√
m1‖Σ0‖2) ≤ 2 exp

(
−cε

2n

K4

)
(67)

for all ε
2n
K4 ≤ εn

√
m1

K2 , i.e. ε ≤ K2√m1 ≤
√
m1

2 , since K2 > 1
2 by definition.

2

We can now prove Lemma 19.

PROOF. Consider the inner product 〈∆, Sk−Σ
(k)
0 〉, where ∆ is an arbitrary

dk × dk matrix. Let

h = vec(∆), f = vec(Imk×mk
).

By the definition of the factor covariances Sk and the rearrangement operator
Rk, it can be seen that

vec(Sk) =
1

mk
Rk(Ŝ)f ,

and that similarly by the definition of the factor covariances Σ
(k)
0

vec(Σ
(k)
0 ) =

1

mk
Rk(Σ0)f .
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Hence,

〈∆, Sk − Σ
(k)
0 〉 =

1

mk
〈vec(∆),Rk(Ŝ − Σ0)f〉 (68)

=
1

mk
hTRk(Ŝ − Σ0)f

=
1

mk

d2
k∑

i=1

hie
T
i Rk(Ŝ − Σ0)f

by the linearity of the rearrangement operator, the definition of the inner prod-
uct, and the definition of the unit vector ei as the i-th column of the d2

k × d2
k

identity matrix.
We can apply Lemma 20 and take a union bound over i = 1, . . . , d2

k. By
Lemma 20,

P
(∣∣∣eTi Rk(Ŝ − Σ0)f

∣∣∣ ≥ ε√mk‖Σ0‖2
)
≤ 2 exp

(
−cε

2n

K4

)
for 0 ≤ ε√

mk
≤ 1

2 . Taking the union bound over all i, we obtain

P
(

max
i
|eTi Rk(Ŝ − Σ0)f | ≥ ε‖Σ0‖2

√
mk

)
≤ 2d2

k exp

(
−cε

2n

K4

)
≤ 2 exp

(
2 log dk − c

ε2n

K4

)
.

Setting ε = C
√

log p
n for large enough C and recalling that mk = p/dk, with

probability at least 1− 2 exp(−c′ log p) we have

max
i
|eTi Rk(Ŝ − Σ0)f | ≤ C‖Σ0‖2

√
mk

√
log p

n

where we assume log p ≤ nmk

4C2 and let c′ = cC2

K4 − 2. Hence, by (68)

|〈∆, Sk − Σ
(k)
0 〉| =

1

mk

∣∣∣∣∣∣
d2
k∑

i=1

hie
T
i Rk(Ŝ − Σ0)f

∣∣∣∣∣∣
≤ 1

mk

d2
k∑

i=1

|hieTi Rk(Ŝ − Σ0)f |

≤ C‖Σ0‖2
1
√
mk

√
log p

n

d2
k∑

i=1

hi

= C‖Σ0‖2
√

log p

mkn
|∆|1
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with probability at least 1− 2 exp(−c′ log p). The first inequality follows from
the triangle inequality and the last inequality from the definition of h = vec(∆)
and | · |1. 2

7. Nonconvex Regularizers: Proof of Theorem 3

Recall that the support sets S,Sk are the set of nonzero elements of Ω0 and Ψk,0,
respectively. Define B to be the set of matrices in Kp with support contained in
S, that is

B = {Ω = Ψ1 ⊕ · · · ⊕ΨK ∈ Kp|supp(Ψk) ⊆ Sk, ∀k}.

The set B is the set of Kronecker sum matrices following the true sparsity pat-
tern of the Kronecker sum Ω0 = Ψ1,0 ⊕ · · · ⊕ΨK,0.

Note that B is a linear subspace of Rp×p since Kp is a linear subspace and
the intersection of two linear subspaces is a linear subspace. Hence the (L2
norm) projection ProjB : Rp×p → B onto B is given by

ProjB(A) = ProjS(ProjKp
(A)),

where ProjS is the linear projection operator projecting Rp×p onto matrices in
Rp×p with sparsity pattern S, and ProjKp

is the previously defined projection
onto Kp defined in Section 2 of the main text. Note that since the sparsity
pattern S is the sparsity pattern of a Kronecker sum matrix in Kp, projection
onto S does not change the Kronecker structure.

By reshaping we obtain the representation

vec(ProjB(A)) = PBvec(A) (69)

where PB ∈ Rp2×p2

is the projection matrix associated with the linear subspace
B. Recall that vec(·) is the vectorization operator, and the projection matrix in
linear algebra is UUT where U is an orthonormal basis for the subspace.

We first summarize the proof of Theorem 3.
Proof plan: The proof concept is to apply the primal-dual witness technique

of Loh et al. (2017) to our sparse Kronecker sum precision matrix estimator.
Since the nonconvex graphical lasso proof in Loh et al. (2017) relied on the set
of S sparse matrices being a linear subspace of Rp×p, we can simply replace the
sparse subspace in their proof with our sparse Kronecker sum subspace B and
proceed in a similar fashion. The primal-dual witness technique can be briefly
summarized as

(i) Prove the regularized objective function (8) is strictly convex over the
constraint set, so that any zero subgradient point is the unique global min-
imizer.
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(ii) Construct a zero subgradient point of the oracle estimator objective func-
tion using Brouwer’s theorem.

(iii) Prove this zero subgradient point Ω̂oracle converges to the true Ω0.
(iv) Prove that the zero subgradient point of the oracle objective is also a zero

subgradient point of the full objective function (8), hence it is the unique
global minimizer and converges to Ω0.

Proceeding with the full proof, we first have the following lemma.

LEMMA 21. Suppose gρ is µ-amenable. Then for κ =
√

2
µ , the objective

function (8) is strictly convex over the constraint set.

PROOF. Recall that

∇2
(
− log |Ω|+ 〈Ŝ,Ω〉

)
= (Ω⊗ Ω)−1 (70)

which is a deterministic quantity not depending on the data. Hence, for ‖Ω‖2 ≤√
1/µ, the minimum eigenvalue satisfies

λmin(∇2
(
− log |Ω|+ 〈Ŝ,Ω〉

)
) = λmin((Ω⊗ Ω)−1) ≥ µ

2
.

This implies that − log |Ω| + 〈Ŝ,Ω〉 − µ
2‖Ω‖

2
F is convex for ‖Ω‖2 ≤

√
1/µ.

Furthermore, by µ-amenability,
∑K

k=1mk

∑
i 6=j gλ([Ψk]ij)+ µ

2‖Ω‖
2
F is convex

for Ω ∈ Kp. Therefore, since Kp is a linear subspace, the complete objective
(8) is convex for ‖Ω‖2 ≤

√
1/µ and Ω ∈ Kp. Since it is convex over Kp, it

is convex over K]p as well, since K]p is the intersection of Kp and the convex
positive definite cone. 2

Since the objective is convex, a point in the subspaceKp with zero subgradi-
ent will be the unique global minimum. Our first step will be to construct such
a zero subgradient point.

We will first construct the (unique) oracle estimate where the oracle gives
the support set of Ω0. We will then show that this oracle estimate is also a zero-
subgradient point of the objective (8) and therefore its unique global minimizer.

Using the B notation, we can write the oracle estimate as

Ω̂oracle = arg min
Ω∈B
− log |Ω|+ 〈Ŝ,Ω〉. (71)

Our goal will be to construct a map F : B → B such that (a) ∆ is a fixed
point of F if and only if Ω0 + ∆ is a fixed point of the oracle estimate (71),
(b) F maps the intersection B ∩ B∞(r) of B and the radius-r `∞-ball centered
at the origin to itself for some r, and (c) this r is such that Ω = Ω0 + ∆ � 0,
for all ∆ ∈ B ∩ B∞(r). Then by Brouwer’s fixed point theorem we can show
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that F must have a fixed point ∆∗ in that ball. By construction (a) above, this
fixed point ∆∗ will correspond to a fixed point Ω0 + ∆∗ in the oracle estimator
objective, hence the oracle estimate will have `∞-ball error less than r.

For F , we will choose a Newton method step (gradient step preconditioned
by inverse Hessian). Denote the pseudoinverse of a matrix A as A†. We now
write the map F : B → B given by

F (∆S) := −Γ†vec
(

ProjB(Ŝ − (Ω0 + ∆S)−1)
)

+ vec(∆S)

where ∆S ∈ B, and we let Γ be the Hessian of the objective function within
B:†

Γ = PB(Σ0 ⊗ Σ0)PB.

The quantity Σ0 ⊗ Σ0 is included as it is the Hessian of the objective function
(70). The pseudoinverse is needed since PB is low rank, making the Hessian
within B low rank.

Clearly if ProjB(Ŝ − (Ω0 + ∆S)−1) = 0, F (∆S) = ∆S and vice versa,
hence ∆S is a fixed point of F if and only if Ω0 + ∆S is a fixed point of the
oracle objective (71). Now

‖∆S‖2 ≤ dr

since ∆S has at most d nonzero entries per row. Hence the matrix Ω0+∆S is in-
vertible and positive definite whenever dr < λmin(Ω0), making F a continuous
map on B∞(r) ∩ B and satisfying condition (c).

Define the constants κΓ = ‖Γ†‖∞ and κΣ = ‖Σ0‖∞, in other words, we
are assuming that the Hessian is well-conditioned in the∞-norm sense, which
is possible since Σ0 has eigenvalues bounded from above and below. We now
show the following lemma by verifying the remaining condition (b) on F and
applying Brouwer’s fixed point theorem. Several relevant quantities are sum-
marized in Table 1 for convenience.

LEMMA 22. Let r = 2C0κΓ‖Σ0‖2(K + 1)
√

log p
nminkmk

where C0 is a con-
stant depending only on the subgaussian parameter of the data and

dr ≤ min

{
1

2
λmin(Ω0),

1

2κΣ
,

1

4κΓκ3
Σ

}
.

Assume the sample size satisfies nminkmk ≥ κ2
Γ log p. Then under event A as

in Theorem 1 there exists Ω̂oracle ∈ B such that

‖Ω̂oracle−Ω0‖max ≤ r, ‖Ω̂oracle−Ω0‖2 ≤ dr, and ProjB(Ŝ−Ω̂−1
oracle) = 0.

†With PB = UUT as above (where columns of U form an orthonormal basis for the
subspace B), Γ = UUT (Σ0 ⊗ Σ0)UUT and hence Γ† = U

(
UT (Σ0 ⊗ Σ0)U

)−1
UT

since Σ0 is positive definite.
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Variable Definition
Ln(Ω) − log |Ω|+ 〈Ŝ,Ω〉

∣∣∣
Ω∈Kp

: Objective function less regularization terms.

qρ(t) gρ(t)− ρ|t|: Difference between regularizer and `1 penalty.
Kp Set of Kronecker sum matrices with fixed dimensions p = [d1, . . . , dK ].
B Set of matrices in Kp with support contained in S.

ProjB(·) Linear projection operator from Rp×p onto B.
PB Projection matrix corresponding to ProjB. PBvec(A) = vec(ProjB(A)).
Γ PB(Σ0 ⊗ Σ0)PB: Hessian of Ln within subspace B.
κΓ ‖Γ†‖∞
κΣ ‖Σ0‖∞
τΣ

tr(Ŝ)−tr(Σ0)
p

ei ith unit vector in Rp.

Table 1: Selected quantities used in the proof of Theorem 3

PROOF. First, note that Γ†Γvec(∆) = vec(∆) for any ∆ ∈ B, since Γ is the
projection of the positive definite matrix Σ0 ⊗ Σ0 onto the low rank subspace
B.

Suppose ∆S ∈ B∞(r). Then

F (vec(∆S)) := −Γ†
{

vec
(

ProjB(Ŝ − Σ0)
)

+vec
(
ProjB(Σ0 − (Ω0 + ∆S)−1)

)
+ Γvec(∆S)

}
,

hence

‖F (vec(∆S))‖∞ ≤κΓ‖vec
(

ProjB(Ŝ − Σ0)
)
‖∞ (72)

+ κΓ‖vec
(
ProjB(Σ0 − (Ω0 + ∆S)−1)

)
+ Γvec(∆S)‖∞,

by the definition of κΓ and the triangle inequality.
The first term of (72) can be bounded via the concentration inequalities used

for the `1 case. Specifically, note that

κΓ‖vec
(

ProjB(Ŝ − Σ0)
)
‖∞ (73)

≤ κΓ‖vec
(

ProjKp
(Ŝ − Σ0)

)
‖∞

= κΓ‖(S1 − Σ
(1)
0 ⊕ · · · ⊕ (SK − Σ

(K)
0 )− τΣIp‖max

≤ κΓ

K∑
k=1

‖Sk − Σ
(k)
0 ‖max +

|tr(Ŝ − tr(Σ0)|
p

.

where we have used τΣ = tr(Ŝ)−tr(Σ0)
p . Now recall that under eventAk, defined
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in (47) above,

max
ij

∣∣∣[Sk − Σ
(k)
0 ]ij

∣∣∣ = max
ij

∣∣∣〈eieTj , Sk − Σ
(k)
0 〉
∣∣∣ ≤ C0‖Σ0‖2

√
log p

mkn
,

and under event A0, defined above in (46),

|τΣ| ≤ C0‖Σ0‖2

√
log p

pn
.

Hence under event A =
⋃K
k=0Ak,

κΓ‖vec
(

ProjB(Ŝ − Σ0)
)
‖∞ ≤ C0κΓ‖Σ0‖2

[√
log p

pn
+

K∑
k=1

√
log p

mkn

]

≤ C0κΓ‖Σ0‖2(K + 1)

√
log p

nminkmk

=
r

2
. (74)

Finally, recall that by Lemma 11 event A holds with probability ≥ 1− 2(K +
1) exp(−c log p).

Moving on to the second term of (72), we apply the matrix expansion

(A+ ∆)−1 −A−1 =

∞∑
`=1

(−A−1∆)`A−1, (75)

and note that (since ∆S ∈ B implies PBvec(∆S) = vec(∆S))

Γvec(∆S) = PB ((Σ0 ⊗ Σ0)PBvec(∆S))

= vec
(
ProjB

(
vec−1 ((Σ0 ⊗ Σ0)vec(∆S))

))
= vec(ProjB(Σ0∆SΣ0)),

where we have used the fact that for symmetric matrices A,B, vec(ABA) =
(A⊗A)vec(B).

We then obtain

vec
(
ProjB(Σ0 − (Ω0 + ∆S)−1)

)
+ Γvec(∆S)

= vec
(
ProjB(Σ0 − (Ω0 + ∆S)−1 − Σ0∆SΣ0)

)
= vec

(
ProjB

( ∞∑
`=2

(−Σ0∆S)`Σ0

))
.

We have used vec−1(·) to denote the inverse of the vectorization operator.
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Via the triangle inequality and the linearity of the vectorization and projec-
tion operators,

‖vec
(
ProjB(Σ0 − (Ω0 + ∆S)−1)

)
+ Γvec(∆S)‖∞

≤ max
(j,k)∈S

∞∑
`=2

|eTj (Σ0∆)`Σ0ek|. (76)

Now we can apply Holder’s inequality to obtain

|eTj (Σ0∆)`Σ0ek| ≤ ‖eTj (Σ0∆)`−1Σ0‖1‖∆Σ0‖∞
≤ ‖Σ0(∆Σ0)`−1‖1‖∆‖max‖Σ0ek‖1
≤ ‖Σ0‖`−1

1 ‖∆‖max‖Σ0‖1
= ‖Σ0‖`+1

∞ ‖∆‖`−1
∞ ‖∆‖max.

Then, using the fact that ‖∆‖2 ≤ ‖∆‖∞ ≤ dr and substituting back into (76),
we have

‖vec
(
ProjB(Σ0 − (Ω0 + ∆S)−1)

)
+ Γvec(∆S)‖∞

≤
∞∑
`=2

κ`+1
Σ d`−2r`

=
κ3

Σdr
2

1− κΣdr

≤ 2κ3
Σdr

2.

Since our assumption implies that 2κ3
Σdr

2 ≤ r, we therefore have that

‖F (vec(∆S))‖∞ ≤ r

under event A. Since F (B∞(r) ∩ B) ∈ B∞(r) ∩ B, by Brouwer’s fixed point
theorem (Ortega and Rheinboldt, 1970), F must have a fixed point ∆∗S . Recall-
ing that ∆∗S ,Ω0 ∈ B, we choose Ω̂oracle = Ω0 + ∆∗S . Hence by construction
‖Ω̂oracle − Ω0‖max ≤ r and ‖Ω̂oracle − Ω0‖2 ≤ dr since both matrices have
degree bounded by d. The last equality follows since ∆∗S is the fixed point of
F , i.e. F (∆∗S) = ∆∗S , which can only occur if

vec
(

ProjB(Ŝ − (Ω0 + ∆∗S)−1)
)

= 0.

2

Using this lemma it remains to show that Ω̂oracle satisfies the constraints
and is a zero-subgradient point of the complete objective (8), and hence is the
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unique global optimum. Define Ln(Ω) to be the objective function (8) less the
regularization terms, i.e.

Ln(Ω) = − log |Ω|+ 〈Ŝ,Ω〉
∣∣∣
Ω∈Kp

.

LEMMA 23. The oracle estimate Ω̂oracle will be a zero-subgradient point of
the global objective (8) if the inequalities

‖∇Kp
Ln(Ω0)‖∞ ≤

1

2
ρ (77)

and

‖Q̂ScS(Q̂SS)†∇Kp
Ln(Ω0)S‖∞ ≤

1

2
ρ (78)

hold, where

Q̂ =

∫ 1

0
∇2
Kp
Ln
(

Ω0 + t(Ω̂oracle − Ω0)
)
dt.

We have denoted ∇Kp
f = PKp

∇f and ∇2
Kp
f = PKp

(∇2f)PKp
to be the

gradient and Hessian respectively of f projected onto the subspace Kp (PKp
is

the projection matrix onto Kp).

PROOF. In this proof, for simplicity we write qρ(Ω̂) to indicate qρ(t) =

gρ(t)− ρ|t| applied elementwise to the offdiagonal elements of Ω̂:

[qρ(Ω̂)]ij =

{
qρ(Ω̂ij) i 6= j
0 otherwise.

Observe that by construction ∇Kp
qρ(Ω) = ∇Rp×pqρ(Ω) = ∇qρ(Ω) for any

Ω ∈ Kp.
For the objective (8), the zero subgradient condition is given by

∇Kp
Ln(Ω̂)−∇qρ(Ω̂) + ρẑ = 0,

where ẑ = ∂|Ω̂|1,off is an element of the subgradient of the off-diagonal `1
norm at Ω̂. Adding and subtracting ∇Kp

Ln(Ω0) gives

(∇Kp
Ln(Ω̂)−∇Kp

Ln(Ω0)) + (∇Kp
Ln(Ω0)−∇qρ(Ω̂)) + ρẑ = 0.

By the fundamental theorem of calculus we have (for Ω̂ = Ω̂oracle) that∇Kp
Ln(Ω̂oracle)−

∇Kp
Ln(Ω0) = Q̂vec(Ω̂oracle − Ω0), hence

Q̂vec(Ω̂oracle − Ω0) + (∇Kp
Ln(Ω0)−∇qρ(Ω̂oracle)) + ρẑ = 0.
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Rewriting in block form gives[
Q̂SS Q̂SSc

Q̂ScS Q̂ScSc

](
Ω̂oracle − Ω0

)
+

([
∇Kp
Ln(Ω0)S −∇qρ(Ω̂oracle)S
∇Kp
Ln(Ω0)Sc −∇qρ(0)

])
+ ρ

[
ẑS
ẑSc

]
= 0,

where Q̂SS is the block of Q̂ corresponding to the elements in S along both
axes, Q̂ScSc is the block of Q̂ corresponding to the elements in the complement
of S, etc. After some algebra we obtain a solution

ẑSc =
1

ρ

{(
∇qρ(0)−∇Kp

Ln(Ω0)Sc
)

+ Q̂ScSQ̂
†
SS

(
∇Kp
Ln(Ω0)S −∇qρ(Ω̂oracle)S + ρẑS

)}
,

since ∇qρ(0) = 0 by definition. Now from Lemma 22, under event A

‖Ω̂oracle − Ω0‖max ≤ r,

and observe that ργ > r since we have assumed that nminkmk ≥ c0d
2 log p

for some c0 large enough. By our assumption that |[Ω0]ij | ≥ ργ + r for all i, j,
we then have (again under event A)

min
ij
|[Ω̂oracle]ij | ≥ ργ + r − r = ργ.

Therefore, using condition (f) of the definition of a (µ, γ) regularizer,−∇qρ(Ω̂oracle)S+
ρẑS = 0 and

‖ẑSc‖∞ =
1

ρ

∥∥∥−∇Kp
Ln(Ω0)Sc + Q̂ScSQ̂

†
SS∇Kp

Ln(Ω0)S

∥∥∥
∞

≤ 1

ρ
‖∇Kp

Ln(Ω0)Sc‖∞ +
1

ρ
‖Q̂ScSQ̂†SS∇Kp

Ln(Ω0)S‖∞

≤ 1

ρ
‖∇Kp

Ln(Ω0)‖∞ +
1

ρ
‖Q̂ScSQ̂†SS∇Kp

Ln(Ω0)S‖∞

≤ 1

2
+

1

2
= 1,

where we have applied the assumed inequalities. Since ‖ẑSc‖∞ ≤ 1, it is a fea-
sible subgradient and therefore Ω̂oracle is a zero subgradient point of the global
objective function (8).

2

We now show the inequalities (77), (78) assumed by Lemma 23 hold under
event A. Note that

‖∇Kp
Ln(Ω0)‖∞ = ‖ProjKp

(Ŝ − Σ0)‖max
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and thus by (74), under event A equation (77) holds with ρ = r
κΓ
.

It remains to show (78) holds with ρ = r. We will first bound

‖(∇2
Kp
Ln(Ω0))ScS(∇2

Kp
Ln(Ω0))†SS(∇Kp

Ln(Ω0)S‖∞,

and then show that the expression on the left hand side of (78) is close to this
quantity.

First, by the definition of the infinity norm and PKp
it can be shown that

‖PKp
‖∞ = sup

A∈Rp×p

‖PKp
vec(A)‖∞
‖A‖max

= sup
A∈Rp×p

‖ProjKp
(A)‖max

‖A‖max
≤ 2K,

(79)

where we have used the expression (95) for the elements of the projected matrix
and the fact that an average of a set of elements of A cannot have magnitude
larger than ‖A‖max. Noting that (∇2

Kp
Ln(Ω0))†SS = (Γ†)SS ,

‖(∇2
Kp
Ln(Ω0))ScS(∇2

Kp
Ln(Ω0))†SS(∇Kp

Ln(Ω0)S‖∞ (80)

≤ ‖(∇2
Kp
Ln(Ω0))ScS‖∞ · ‖(Γ†)SS‖∞ · ‖(∇Kp

Ln(Ω0)S‖∞

≤ O
(
r

κΓ

)
,

since ‖(∇2
Kp
Ln(Ω0))ScS‖∞ ≤ ‖∇2

Kp
Ln(Ω0)‖∞ =

∥∥PKp

(
∇2Ln(Ω0)

)
PKp

∥∥
∞ ≤

‖PKp
‖2∞‖∇2Ln(Ω0)‖∞ = ‖PKp

‖2∞‖Σ0⊗Σ0‖∞ = ‖PKp
‖2∞‖Σ0‖2∞ ≤ 4K2κ2

Σ,
and (77) holds under event A with ρ = r

κΓ
.

We now relate the bound in (80) to that required to show (78). Note that

‖Q̂ScS(Q̂SS)†∇Kp
Ln(Ω0)S‖∞ (81)

≤ ‖(∇2
Kp
Ln(Ω0))ScS(∇2

Kp
Ln(Ω0))†SS(∇Kp

Ln(Ω0)S)‖∞ + ‖Ξ(∇Kp
Ln(Ω0)S)‖∞

≤ O
(
r

κΓ

)
+ ‖Ξ(∇Kp

Ln(Ω0)S)‖∞,

where we have defined

Ξ = Q̂ScS(Q̂SS)† − (∇2
Kp
Ln(Ω0))ScS(∇2

Kp
Ln(Ω0))†SS .

Now, again invoking (77),

‖Ξ(∇Kp
Ln(Ω0)S)‖∞ ≤ ‖Ξ‖∞ · ‖∇Kp

Ln(Ω0)S‖∞ ≤ ‖Ξ‖∞O (r) . (82)
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The infinity norm of Ξ can be bounded as

‖Ξ‖∞ ≤
∥∥∥(Q̂ScS − (∇2

Kp
Ln(Ω0))ScS

)(
(Q̂SS)† − (∇2

Kp
Ln(Ω0))†SS

)∥∥∥
∞
(83)

+
∥∥∥(Q̂ScS − (∇2

Kp
Ln(Ω0))ScS)(∇2

Kp
Ln(Ω0))†SS

∥∥∥
∞

+
∥∥∥(∇2

Kp
Ln(Ω0))ScS

(
(Q̂SS)† − (∇2

Kp
Ln(Ω0))†SS

)∥∥∥
≤ δ1δ2 + δ1‖(Q̂SS)†‖∞ + δ2‖(∇2

Kp
Ln(Ω0))ScS‖∞

where we have set

δ1 := ‖Q̂ScS − (∇2
Kp
Ln(Ω0))ScS‖∞

δ2 := ‖(Q̂SS)† − (∇2
Kp
Ln(Ω0))†SS‖∞.

First note that by (79)

‖(∇2
Kp
Ln(Ω0))ScS‖∞ ≤ ‖(∇2

Kp
Ln(Ω0))‖∞

≤ ‖PKp
(∇2Ln(Ω0))PKp

‖∞
≤ ‖PKp

‖2∞‖∇2Ln(Ω0)‖∞
≤ 4K2‖∇2Ln(Ω0)‖∞ ≤ 4K2κ2

Σ,

and ‖(Q̂SS)†‖∞ = O(1 + δ2) by the definition of δ2.
Substituting into (83) gives

‖Ξ‖∞ ≤ O(δ1δ2) +O(δ1) +O(δ2). (84)

We bound δ1 and δ2 in the following lemma, proved in Section 7.1.

LEMMA 24. Under the conditions of Lemma 22,

δ1 = O(dr)

δ2 = O(dr).

Applying Lemma 24 to (84), we obtain

‖Ξ‖∞ = O(d2r2) +O(dr) +O(dr) = O(dr)

and substituting into (82)

‖Ξ(∇Kp
Ln(Ω0)S)‖∞ = O(dr) ·O(r) = O(r),

since dr = o(1) by our assumption that nminkmk ≥ c0d
2 log p for some c0

large enough.
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Therefore, substituting into (81) we obtain

‖Q̂ScS(Q̂SS)†∇Kp
Ln(Ω0)S‖∞ = O(r) +O(r) = O(r),

proving the desired condition (78) holds. Hence the conditions of Lemma 23
hold under event A, and Ω̂oracle is the unique global minimizer of the complete
objective (8).

The Frobenius and spectral norm bounds follow from the identities

‖Ω̂− Ω0‖F ≤
√
s+ p‖Ω̂− Ω0‖max

and
‖Ω̂− Ω0‖2 ≤ d‖Ω̂− Ω0‖max,

where the latter identity follows by symmetry of Ω.

7.1. Proof of Lemma 24: Bound on δ1, δ2

PROOF. Consider that

Q̂−∇2
Kp
Ln(Ω0) =

∫ 1

0
∇2
Kp
Ln
(

Ω0 + t(Ω̂oracle − Ω0)
)
dt−∇2

Kp
Ln(Ω0)

= PKp

(∫ 1

0
∇2Ln

(
Ω0 + t(Ω̂oracle − Ω0)

)
dt−∇2Ln(Ω0)

)
PKp

.

Hence, since ‖PKp
‖∞ ≤ 2K by (79),

‖Q̂−∇2
Kp
Ln(Ω0)‖∞

≤ ‖PKp
‖2∞
∥∥∥∥∫ 1

0
∇2Ln

(
Ω0 + t(Ω̂oracle − Ω0)

)
dt−∇2Ln(Ω0)

∥∥∥∥
∞

≤ 4K2

∥∥∥∥∫ 1

0
(Ω0 + t(Ω̂oracle − Ω0))−1 ⊗ (Ω0 + t(Ω̂oracle − Ω0))−1 − Ω−1

0 ⊗ Ω−1
0 dt

∥∥∥∥
∞

≤ 4K2

∫ 1

0

∥∥∥(Ω0 + t(Ω̂oracle − Ω0))−1 ⊗ (Ω0 + t(Ω̂oracle − Ω0))−1 − Ω−1
0 ⊗ Ω−1

0

∥∥∥
∞
dt.

By Lemma 22, for t ∈ [0, 1],

‖Ω0+t(Ω̂oracle−Ω0)−Ω0‖∞ = t‖Ω̂oracle−Ω0‖∞ ≤ d‖Ω̂oracle−Ω0‖max ≤ dr.

We make use of the following matrix inequalities (Loh et al., 2017). For any
invertible A,B ∈ Rp×p and matrix norm ‖ · ‖,

‖A−1 −B−1‖ ≤ ‖A−1‖2‖A−B‖
1− ‖A−1‖‖A−B‖

= O(‖A−1‖2‖A−B‖). (85)
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if ‖A−1‖‖A − B‖ ≤ 1/2. For any A and B matrices of equal dimension we
have

‖A⊗A−B ⊗B‖∞ ≤ ‖A−B‖2∞ + 2 min(‖A‖∞, ‖B‖∞) · ‖A−B‖∞.
(86)

Applying (85) we get∥∥∥∥(Ω0 + t(Ω̂oracle − Ω0)
)−1
− Ω−1

0

∥∥∥∥
∞

≤ O
(∥∥Ω−1

0

∥∥2

∞ ‖Ω0 + t(Ω̂oracle − Ω0)− Ω0‖∞
)

≤ O(dr),

since ‖Ω−1
0 ‖∞ = ‖Σ0‖∞ is bounded by κΣ. Applying (86) to this yields

‖Q̂−∇2
Kp
Ln(Ω0)‖∞ = O(dr),

which gives

δ1 = ‖Q̂ScS − (∇2
Kp
Ln(Ω0))ScS‖∞ = O(dr)

and
‖Q̂SS − (∇2

Kp
Ln(Ω0))SS‖∞ = O(dr). (87)

Finally, recall that the projection matrix onto Kp can be written as UUT

with UTU = I so

δ2 = ‖(Q̂SS)† − (∇2
Kp
Ln(Ω0))†SS‖∞

=

∥∥∥∥U ((UT Q̂SSU)−1
−
(
UT∇2

Kp
Ln(Ω0)SSU

)−1
)
UT
∥∥∥∥
∞
.

By the matrix expansion (75) we then have

(Q̂SS)† − (∇2
Kp
Ln(Ω0))†SS

= U

[(
UT Q̂SSU

)−1
−
(
UT∇2

Kp
Ln(Ω0)SSU

)−1
]
UT

= U

[ ∞∑
`=1

[(
−
(
UT∇2

Kp
Ln(Ω0)SSU

)−1 (
UT Q̂SSU − UT∇2

Kp
Ln(Ω0)SSU

))`
·
(
UT∇2

Kp
Ln(Ω0)SSU

)−1
]]
UT

=

∞∑
`=1

(
−
(

(∇2
Kp
Ln(Ω0))†SS

)(
Q̂SS − (∇2

Kp
Ln(Ω0))SS

))` (
(∇2
Kp
Ln(Ω0))†SS

)
.
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We can then use the bound (87) to obtain

δ2 = ‖(Q̂SS)† − (∇2
Kp
Ln(Ω0))†SS‖∞

≤
∞∑
`=1

O
(
‖Q̂SS − (∇2

Kp
Ln(Ω0))SS‖`∞

)
= O

(
‖Q̂SS − (∇2

Kp
Ln(Ω0))SS‖∞

1− ‖Q̂SS − (∇2
Kp
Ln(Ω0))SS‖∞

)
= O(dr),

since dr = o(1).
2

8. Numerical Convergence of TG-ISTA

The following theorem shows that the iterates of the TG-ISTA implementation
of TeraLasso converge geometrically to the global minimum:

THEOREM 25. Let ρk ≥ 0 for all k and let Ωinit be the initialization of the
TG-ISTA implementation of TeraLasso (Algorithm 4). Let

a =
1∑K

k=1 ‖Sk‖2 + dkρk
, b = ‖Ω∗‖2 + ‖Ωinit − Ω∗‖F ,

and assume ζt ≤ a2 for all t. Suppose further that Ω∗ is the global optimum.
Then

‖Ωt+1 − Ω∗‖F ≤ max

{∣∣∣∣1− ζt
b2

∣∣∣∣ , ∣∣∣∣1− ζt
a2

∣∣∣∣} ‖Ωt − Ω∗‖F .

Furthermore, the step size ζt which yields an optimal worst-case contraction
bound s(ζt) is ζ = 2

a−2+b−2 . The corresponding optimal worst-case contraction
bound is

s(ζ) = 1− 2

1 + b2

a2

. (88)

Our proof uses results on the structure of the Kronecker sum subspace to extend
to our subspace restricted setting the methodology that Guillot et al. (2012) used
to derive the unstructured GLasso convergence rates.

We decompose the claims of Theorem 25 into the following two theorems
which we prove separately.

THEOREM 26. Assume that the iterates Ωt of Algorithm 4 satisfy aI �
Ωt � bI , for all t, for some fixed constants 0 < a < b < ∞. Suppose fur-
ther that Ω∗ is the global optimum. If ζt ≤ a2 for all t, then

‖Ωt+1 − Ω∗‖F ≤ max

{∣∣∣∣1− ζt
b2

∣∣∣∣ , ∣∣∣∣1− ζt
a2

∣∣∣∣} ‖Ωt − Ω∗‖F .
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Furthermore, the step size ζt which yields an optimal worst-case contraction
bound s(ζt) is ζ = 2

a−2+b−2 . The corresponding optimal worst-case contraction
bound is

s(ζ) = 1− 2

1 + b2

a2

. (89)

THEOREM 27. Let ρk ≥ 0 for all k and let Ωinit be the initialization of the
TG-ISTA implementation of TeraLasso (Algorithm 4). Let

a =
1∑K

k=1 ‖Sk‖2 + dkρk
, b = ‖Ω∗‖2 + ‖Ωinit − Ω∗‖F ,

and assume ζt ≤ a2 for all t. Then the iterates Ωt of Algorithm 4 satisfy aI �
Ωt � bI for all t.

Observe that by Theorem 27, the worst case contraction factor (89)

s(ζ) = 1− 2

1 + (‖Ω∗‖2 + ‖Ωinit − Ω∗‖F )2(
∑K

k=1 ‖Sk‖2 + dkρk)2

scales at most as s(ζ) = O(1 − 2
1+K2 ) for ‖Ω∗‖2, ‖Σ0‖2 of fixed order, since

‖Sk‖2 ∼ ‖Σ0‖2 with high probability.
Let T be the number of iterations required for ‖ΩT − Ω∗‖F ≤ ‖Ω∗ − Ω̂‖F

to hold, i.e. for the optimization error to be smaller than the statistical error. By
Theorem 1, we require

‖ΩT − Ω∗‖2F ≤ C1K
2(s+ p)

log p

nminkmk
. (90)

Using worst case contraction factor s(ζ), (90) will hold for T such that (with
high probability)

‖Ωinit − Ω∗‖2F

(
1− 2

1 + b2

a2

)2T

≤ C1K
2(s+ p)

log p

nminkmk
.

Taking the logarithm of both sides and using s(ζ) = O(1 − 2
1+K2 ), we have

that the optimization error is guaranteed to equal the statistical error after T
iterations, where

T = Op

2 logK + log(s+ p) + log log p− log(nminkmk)

log
(

1− 2
1+K2

)
 .
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8.1. Proof of Theorem 26
For convenience, define the Kronecker sum shrinkage operator as

shrink−ρ (A) = shrink−ρ1
(A(1))⊕ · · · ⊕ shrink−ρK (A(K)) (91)

forA = A(1)⊕· · ·⊕A(K) ∈ Kp and ρ = [ρ1, . . . , ρK ] with all ρk ≥ 0. Note that

shrink−ρ (A) = arg minΩ∈Kp

{
1
2 ‖Ω−A‖

2
F +

∑K
k=1mkρk|Ψk|1,off

}
. Since∑K

k=1mkρk|Ψk|1,off is a convex function on Kp, and since Kp is a linear sub-
space, shrink−ε (·) is a proximal operator by definition.

Recall that we can write the TG-ISTA update (28) using this Kronecker sum
shrinkage operator as

Ωt+1 = arg min
Ω∈Kp

{
1

2

∥∥∥Ω−
(

Ωt − ζt
(
S̃ −Gt

))∥∥∥2

F
+ ζt

K∑
k=1

mkρk|Ψk|1,off

}

= arg min
Ω∈Kp

{
1

2

∥∥∥Ω−
(

Ωt − ζt
(

ProjKp
(Ŝ − Ω−1

t

))∥∥∥2

F
+ ζt

K∑
k=1

mkρk|Ψk|1,off

}
= shrink−ζtρ(Ωt − ζtProjKp

(Ŝ − Ω−1
t )),

where Ŝ is the sample covariance (3) and S̃ = ProjKp
(Ŝ) is its projection onto

Kp (15).
By convexity in Kp and Theorem 6, the optimal point Ω∗ρ is a fixed point of

the ISTA iteration (Combettes and Wajs (2005), Prop 3.1). Thus,

Ω∗ρ = shrink−ζtρ(Ω
∗
ρ − ζtProjKp

(Ŝ − (Ω∗ρ)
−1).

Since proximal operators are not expansive (Combettes and Wajs, 2005), we
have

‖Ωt+1 − Ω∗ρ‖F

=
∥∥∥shrink−ζtρ(Ωt − ζtProjKp

(Ŝ − Ω−1
t ))

−shrink−ζtρ(Ω
∗
ρ − ζtProjKp

(Ŝ − (Ω∗ρ)
−1))

∥∥∥
F

≤ ‖Ωt − ζtProjKp
(Ŝ − Ω−1

t )− (Ω∗ρ − ζtProjKp
(Ŝ − (Ω∗ρ)

−1))‖F
= ‖Ωt + ζtProjKp

(Ω−1
t )− (Ω∗ρ + ζtProjKp

((Ω∗ρ)
−1))‖F .

For γ > 0 define hγ : K]p → K]p by

hγ(Ω) = vec(Ω) + vec(γProjKp
(Ω−1)).

Since ∂Ω−1/∂Ω = −Ω−1 ⊗ Ω−1,

∂ProjKp
(Ω−1)

∂Ω
= −P (Ω−1 ⊗ Ω−1)P T
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where P is the projection matrix that projects vec(Ω) onto the vectorized sub-
space Kp. Thus, we have the Jacobian (valid for all Ω ∈ K]p)

Jhγ (Ω) = PP T − γP (Ω−1 ⊗ Ω−1)P T .

Recall that if h : U ⊂ Rn → Rm is a differentiable mapping, then if x, y ∈ U
and U is convex, then if Jh(·) is the Jacobian of h,

‖h(x)− h(y)‖ ≤ sup
c∈[0,1]

‖Jh(cx+ (1− c)y)‖‖x− y‖.

Thus, letting Zt,c = vec(cΩt + (1− c)Ω∗ρ), for c ∈ [0, 1] we have

‖hζt(x)− hζt(y)‖ ≤ sup
c∈[0,1]

‖PP T − ζtP (Z−1
t,c ⊗ Z

−1
t,c )P T ‖‖Ωt − Ω∗ρ‖F .

By Weyl’s inequality, λmax(Zt,c) ≤ max{‖Ωt‖, ‖Ω∗ρ‖} and

λmin(Zt,c) ≥ min{λmin(Ωt), λmin(Ω∗ρ)}.

Furthermore, note that for any Y and projection matrix P

λmax(PY P T ) ≤ λmax(Y ).

We then have

|PP T − ζtP (Z−1
t,c ⊗ Z

−1
t,c )P T ‖ ≤ ‖Ip2 − ζtZ−1

t,c ⊗ Z
−1
t,c ‖

≤ max

{∣∣∣∣1− ζt
b2

∣∣∣∣ , ∣∣∣∣1− ζt
a2

∣∣∣∣} ,
where the latter inequality comes from (Guillot et al., 2012). Thus,

‖Ωt+1 − Ω∗ρ‖F ≤ s(ζt)‖Ωt − Ω∗ρ‖F

and s(ζ) = max

{∣∣∣∣1− ζ

b2

∣∣∣∣ , ∣∣∣∣1− ζ

a2

∣∣∣∣}
as desired. Algorithm 4 will then converge if s(ζt) ∈ (0, 1) for all t. The
minimum of s(ζ) occurs at ζ = 2

a−2+b−2 , completing the proof of Theorem 26.
2

8.2. Proof of Theorem 27
We first prove the following properties of the Kronecker sum projection op-

erator.
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LEMMA 28. For any A ∈ Rp×p and orthogonal matrices Uk ∈ Rdk×dk , let
U = U1 ⊗ · · · ⊗ UK ∈ Kp. Then

ProjKp
(A) = UProjKp

(UTAU)UT .

Furthermore, if the eigendecomposition of A is of the form A = (U1 ⊗ · · · ⊗
UK)Λ(U1 ⊗ · · · ⊗ UK)T with Λ = diag(λ1, . . . , λp), we have

ProjKp
(A) = UProjKp

(Λ)UT

and

λmin(A) ≤ λmin(ProjKp
(A)) ≤ λmax(ProjKp

(A)) ≤ λmax(A).

PROOF. Recall

ProjKp
(A) = arg min

M∈Kp

‖A−B‖2F = arg min
B∈Kp

‖UTAU − UTBU‖2F

since UTAU = Λ and the Frobenius norm is unitarily invariant. Now, note that
for any matrix B = B1 ⊕ · · · ⊕BK ∈ Kp,

(U1 ⊗ . . .⊗ UK)TB(U1 ⊗ · · · ⊗ UK)

=

K∑
k=1

(U1 ⊗ · · · ⊗ UK)T (I[d1:k−1] ⊗Bk ⊗ I[dk+1:K])(U1 ⊗ · · · ⊗ UK)

=

K∑
k=1

I[d1:k−1] ⊗ UTk BkUk ⊗ I[dk+1:K]

= (UT1 B1U1)⊕ · · · ⊕ (UTKBKUK)

∈ Kp,

since UTk IdkUk = Idk . Since UTBU ∈ Kp, the constraint B ∈ Kp can be
moved to C = UTBU , giving

ProjKp
(A) = U(arg min

C∈Kp

‖UTAU − C‖2F )UT

= U(ProjKp
(UTAU))UT .

If A = (U1⊗ · · · ⊗UK)Λ(U1⊗ · · · ⊗UK)T , then UTAU = Λ, completing the
first part of the proof. As shown in Lemma 33, ProjKp

(Λ) is a diagonal matrix
whose entries are weighted averages of the diagonal elements λi. Hence

min
i
λi ≤ min

i
[ProjKp

(Λ)]ii ≤ max
i

[ProjKp
(Λ)]ii ≤ max

i
λi.

Since ProjKp
(Λ) gives the eigenvalues of ProjKp

(A) by the orthogonality of
U , this completes the proof. 2
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LEMMA 29. Let 0 < a < b be given positive constants and let ζt > 0.
Assume aI � Ωt � bI . Then for

Ωt+1/2 := Ωt − ζt(ProjKp
(Ŝ − Ω−1

t ))

we have

λmin(Ωt+1/2) ≥

{
2
√
ζt − ζtλmax(Ŝ) if a ≤

√
ζt ≤ b

min
(
a+ ζt

a , b+ ζt
b

)
− ζtλmax(Ŝ) o.w.

PROOF. Let UΓUT = Ωt be the eigendecomposition of Ωt, where Γ =
diag(γ1, . . . , γp). Then all b ≥ γi ≥ a > 0. Since Ωt ∈ Kp, by the eigende-
composition property in Appendix A we have U = U1⊗· · ·⊗UK and Γ ∈ Kp,
letting us apply Lemma 28:

Ωt+1/2 = Ωt − ζt(ProjKp
(Ŝ)− ProjKp

(Ω−1
t ))

= UΓUT − ζt(ProjKp
(Ŝ)− UProjKp

(Γ−1)UT )

= U
(

Γ− ζt(UTProjKp
(Ŝ)U − ProjKp

(Γ−1))
)
UT

= U
(

ProjKp
(Γ)− ζt

(
ProjKp

(UT ŜU)− ProjKp
(Γ−1)

))
UT

= ProjKp

(
U(Γ + ζΓ−1 − ζt(UT ŜU))UT

)
= ProjKp

(Ω̃t+1/2),

where we set Ω̃t+1/2 = U(Γ + ζΓ−1 − ζt(UT ŜU))UT and recall the linearity
of the projection operator ProjKp

(·) (Lemma 33). By Weyl’s inequality,

γ1 +
ζt
γ1
− ζtλmax(Ŝ) ≤ λmin(Ω̃t+1/2).

By Lemma 28,

γ1 +
ζt
γ1
− ζtλmax(Ŝ) ≤ λmin(Ωt+1/2).

Note that the only extremum of the function f(x) = x + ζt
x over a ≤ x ≤ b is

a global minimum at x =
√
ζt. Hence

inf
a≤x≤b

x+
ζt
x

=

{
2
√
ζt if a ≤

√
ζt ≤ b

min
(
a+ ζt

a , b+ ζt
b

)
o.w.

By our assumption, a ≤ γ1 ≤ b. Thus

λmin(Ωt+1/2) ≥

{
2
√
ζt − ζtλmax(Ŝ) if a ≤

√
ζt ≤ b

min
(
a+ ζt

a , b+ ζt
b

)
− ζtλmax(Ŝ) o.w.

as desired, completing the proof. 2
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We then have the following lemma.

LEMMA 30. For A ∈ K]p and ε = [ε1, . . . , εK ] with εk ≥ 0:

λmin(A)−
K∑
k=1

dkεk ≤ λmin(shrink−ε (A))

PROOF. Since by definition (91)

shrink−ε (A) = shrink−ε1(A(1))⊕ · · · ⊕ shrink−εK (A(K)),

we can use the fact that the eigenvalues of a Kronecker sum are the sums of the
eigenvalues to show

λmin(shrink−ε (A)) =

K∑
k=1

λmin(shrink−εk(A
(k))).

We have used the fact that A is positive definite since it is in K]p.
Via Weyl’s inequality and the proof of Lemma 6 in (Guillot et al., 2012),

λmin(shrink−εk(A
(k))) ≥ λmin(A(k))− dkεk.

Hence,

λmin(shrink−ε (A)) ≥
K∑
k=1

λmin(A(k))−
K∑
k=1

dkεk = λmin(A)−
K∑
k=1

dkεk

2

8.2.1. Proof of Theorem 27
To prove the lower inequality in Theorem 27, we show the following.

LEMMA 31. Let ρ = [ρ1, . . . , ρK ] with all ρi > 0. Define

χ =

K∑
k=1

dkρk

and let α = 1
‖Ŝ‖2+χ

< b′. Assume αI � Ωt+1. Then αI � Ωt+1 for every

0 < ζt < α2.

PROOF. Since ζt < α2,
√
ζt /∈ [α, b′], and min

(
α+ ζt

α , b
′ + ζt

b′

)
= α+ ζt

α .
Lemma 29 then implies that

λmin(Ωt+1/2) ≥ min

(
α+

ζt
α
, b′ +

ζt
b′

)
− ζtλmax(Ŝ)

= α+
ζt
α
− ζtλmax(Ŝ).
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By Lemma 30,

λmin(Ωt+1) = λmin

(
shrink−ζtρ(Ωt+1/2)

)
≥ λmin(Ωt+1/2)− ζtχ

≥ α+
ζt
α
− ζtλmax(Ŝ)− ζtχ.

Hence, since ζt > 0, λmin(Ωt+1) ≥ α whenever

ζt

(
1

α
− λmax(Ŝ)− χ

)
≥ 0

1

α
− λmax(Ŝ)− χ ≥ 0

α ≤ 1

‖Ŝ‖2 + χ
.

2

The upper bound in Theorem 27 results from the following lemma.

LEMMA 32. Let χ be as in Lemma 31 and let α = 1
‖Ŝ‖2+χ

. Let ζt ≤ α2 for

all t. We then have Ωt � b′I for all t when b′ = ‖Ω∗ρ‖2 + ‖Ω0 − Ω∗ρ‖F .

PROOF. By Lemma 31, αI � Ωt for every t. Since Ωt → Ω∗ρ, by strong
convexity αI � Ω∗ρ. Hence a = min{λmin(Ωt), λmin(Ω∗ρ)} ≥ α. For b > a

and ζt ≤ α2,

max

{∣∣∣∣1− ζt
b2

∣∣∣∣ , ∣∣∣∣1− ζt
a2

∣∣∣∣} ≤ 1.

Hence, by Theorem 25 ‖Ωt − Ω∗ρ‖F ≤ ‖Ωt−1 − Ω∗ρ‖F ≤ ‖Ω0 − Ω∗ρ‖F . Thus

‖Ωt‖2 − ‖Ω∗ρ‖2 ≤ ‖Ωt − Ω∗ρ‖2 ≤ ‖Ωt − Ω∗ρ‖F ≤ ‖Ω0 − Ω∗ρ‖F

so
‖Ωt‖2 ≤ ‖Ω∗ρ‖2 + ‖Ω0 − Ω∗ρ‖F .

2

This completes the proof of Theorem 27. 2

A. Useful Properties of the Kronecker Sum and Kp

A.1. Basic Properties
As the properties of Kronecker sums are not always widely known, we have
compiled a list of some fundamental algebraic relations we use.



54

(a) Sum or difference of Kronecker sums (Laub, 2005):

cA(A1⊕ · · · ⊕AK) + cB(B1 ⊕ · · · ⊕BK)

= (cAA1 + cBB1)⊕ · · · ⊕ (cAAK + cBBK).

(b) Factor-wise disjoint off diagonal support (Laub, 2005). By construction,
if for any k and i 6= j

[I[d1:k−1] ⊗Ak ⊗ I[dk+1:K ]]ij 6= 0,

then for all ` 6= k

[I[d1:`−1] ⊗A` ⊗ I[d`+1:K ]]ij = 0.

Thus,

|A1⊕· · ·⊕AK |1,off =

K∑
k=1

|I[d1:k−1]⊗offd(Ak)⊗I[dk+1:K ]|1 =

K∑
k=1

mk|Ak|1,off .

(c) Eigendecomposition: If Ak = UkΛkU
T
k are the eigendecompositions of

the factors, then (Laub, 2005)

A1 ⊕ · · · ⊕AK = (U1 ⊗ · · · ⊗ UK)(Λ1 ⊕ · · · ⊕ ΛK)(U1 ⊗ · · · ⊗ UK)T

is the eigendecomposition of A1 ⊕ · · · ⊕ AK . Some resulting identities
useful for doing numerical calculations are as follows:

(i) L2 norm:

‖A1 ⊕ · · · ⊕AK‖2 = max

(
K∑
k=1

max
i

[Λk]ii,−
K∑
k=1

min
i

[Λk]ii

)

≤
K∑
k=1

‖Ak‖2.

(ii) Determinant:

log |A1 ⊕ · · · ⊕AK | = log |Λ1 ⊕ · · · ⊕ ΛK |

=

d1∑
i1=1

· · ·
dK∑
iK=1︸ ︷︷ ︸

K sums

log

[Λ1]i1i1 + · · ·+ [ΛK ]iKiK︸ ︷︷ ︸
K terms

 .

(iii) Matrix powers (e.g. inverse, inverse square root):

(A1⊕· · ·⊕AK)v = (U1⊗· · ·⊗UK)(Λ1⊕· · ·⊕ΛK)v(U1⊗· · ·⊗UK)T .

Since the Λk are diagonal, this calculation is memory and computa-
tion efficient.
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A.2. Eigenstructure of Ω ∈ Kp

Kronecker sum matrices Ω ∈ Kp have Kronecker product eigenvectors with
linearly related eigenvalues, as contrasted to the multiplicatively related eigen-
values in the Kronecker product. For simplicity, we illustrate in theK = 2 case,
but the result generalizes to the full tensor case. Suppose that Ψ1 = U1Λ1U

T
1

and Ψ2 = U2Λ2U
T
2 are the eigendecompositions of Ψ1 and Ψ2. Then by Laub

(2005), if Ω = Ψ1 ⊕Ψ2, the eigendecomposition of Ω is

Ω = Ψ1 ⊕Ψ2 = (U1 ⊗ U2)(Λ1 ⊕ Λ2)(U1 ⊗ U2)T .

Thus, the eigenvectors of the Kronecker sum are the Kronecker products of
the eigenvectors of each factor. This “block” structure is evident in the inverse
Kronecker sum example in Section 1 of the main text. The structure of Ω−1 is
discussed further in Canuto et al. (2014).

This eigenstructure representation parallels the eigenvector structure of the
Kronecker product - specifically when Ω = Ψ1 ⊗Ψ2

Ω = Ψ1 ⊗Ψ2 = (U1 ⊗ U2)(Λ1 ⊗ Λ2)(U1 ⊗ U2)T .

Hence, use of the Kronecker sum model can be viewed as replacing the non-
convex, multiplicative eigenvalue structure of the Kronecker product with the
convex linear eigenvalue structure of the Kronecker sum. This additive struc-
ture results in relatively more stable estimation of the precision matrix. As the
tensor dimension K increases, this structural stability of the Kronecker sum
as compared to the Kronecker product becomes more dominant (K term sums
instead of K-order products).

A.3. Projection onto Kp

We first introduce a submatrix notation. Fix a k, and choose i, j ∈ {1, . . .mk}.
Let E1 ∈ R

∏k−1
`=1 dk×

∏k−1
`=1 dk and E2 ∈ R

∏K
`=k+1 dk×

∏K
`=k+1 dk be such that [E1 ⊗

E2]ij = 1 with all other elements zero. Observe that E1 ⊗ E2 ∈ Rmk×mk . For
any matrix A ∈ Rp×p, let A(i, j|k) ∈ Rdk×dk be the submatrix of A defined via

[A(i, j|k)]rs = tr((E1 ⊗ eres ⊗ E2)A), r, s = 1, . . . , dk. (92)

The submatrix A(i, j|k) is defined for all i, j ∈ {1, . . .mk} and k = 1, . . . ,K.
When A is a covariance matrix associated with a tensor X , this subblock cor-
responds to the covariance matrix between the ith and jth slices of X along the
kth dimension.

We can now express the projection operator ProjKp
(A) in closed form:
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Fig. 19: Submatrix notation (equation (92)). Shown is a 9x9 matrix A, with
K = 2 and d1 = d2 = 3. Displayed are the subblocks corresponding to the
A(i, j|2) and two example A(i, j|1). A(1, 1|1) ∈ R3×3 is formed from the 9
red entries, and A(3, 2|1) from the nine green entries. The remaining A(i, j|1)
follow similarly according to (92).

LEMMA 33 (PROJECTION ONTO Kp). For any A ∈ Rp×p,

ProjKp
(A) = A1 ⊕ · · · ⊕AK − (K − 1)

tr(A)

p
Ip

=

(
A1 −

K − 1

K

tr(A1)

d1
Id1

)
⊕ · · · ⊕

(
AK −

K − 1

K

tr(AK)

dK
IdK

)
,

where

Ak =
1

mk

mk∑
i=1

A(i, i|k).

Since the submatrix operator A(i, i|k) is clearly linear, ProjKp
(·) is a linear

operator.

PROOF. Since Kp is a linear subspace, projection can be found via inner
products. Specifically, recall that if a subspace A is spanned by an orthonormal
basis U , then

ProjA(x) = UUTx.
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Since Kp is the space of Kronecker sums, the off diagonal elements are inde-
pendent and do not overlap across factors. The diagonal portion is more difficult
as each factor overlaps on the same entries, creating an overdetermined system.
We can create an alternate parameterization of Kp:

ProjKp
(A) = Ā1 ⊕ · · · ⊕ ĀK + τAIp = τAIp +

K∑
k=1

I[d1:k−1] ⊗ Āk ⊗ I[dk+1:K ]

(93)

where we constrain tr(Āk) = 0. Each of the K + 1 terms in this sum is now
orthogonal to all other terms since by construction

〈I[d1:k−1] ⊗ Āk⊗I[dk+1:K ], I[d1:`−1] ⊗ Ā` ⊗ I[d`+1:K ]〉

=
p

dkd`
tr((Āk ⊗ Id`)(Idk ⊗ Ā`)) =

p

dkd`
tr(Āk)tr(Ā`) = 0

〈τAIp, I[d1:k−1] ⊗ Āk ⊗ I[dk+1:K ]〉
= 〈τAI[d1:k−1] ⊗ Idk ⊗ I[dk+1:K ], I[d1:k−1] ⊗ Āk ⊗ I[dk+1:K ]〉
= mk〈Idk , Āk〉 = mktr(Āk) = 0

for ` 6= k and all possible Āk, τA. Thus, we can form bases for the Āk and
τA independently. To find the Āk it suffices to project A onto a basis for Āk.
We can divide this projection into two steps. In the first step, we ignore the
constraint on tr(Āk) and create the orthonormal basis

u
(ij)
k :=

1
√
mk

I[d1:k−1] ⊗ eie
T
j ⊗ I[dk+1:K ]

for all i, j = 1, . . . dk. Recall that in a projection of x, the coefficient of a basis
component u is given by uTx = 〈u,x〉. We can thus apply this elementwise to
the projection of A. Hence projecting A onto these basis components yields a
matrix B

√
mk ∈ Rdk×dk where

Bij =
1

mk
〈A, I[d1:k−1] ⊗ eie

T
j ⊗ I[dk+1:K ]〉.

To enforce the tr(Āk) = 0 constraint, we project away fromB the one-dimensional
subspace spanned by Idk . This projection is given by

B − tr(B)

dk
Idk , (94)

where by construction

tr(B)

dk
=

1

dkmk

dk∑
i=1

〈A, I[d1:k−1] ⊗ eie
T
i ⊗ I[dk+1:K ]〉

=
1

p
〈A, Ip〉 =

tr(A)

p
.
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Equation (94) completes the projection onto a basis for Āk, so we can expand
the projection

√
mkB back into the original space. This yields a Āk of the form

[Āk]ij =

{
1
mk
〈A, I[d1:k−1] ⊗ eie

T
j ⊗ I[dk+1:K ]〉 i 6= j

1
mk
〈A, I[d1:k−1] ⊗ eie

T
i ⊗ I[dk+1:K ]〉 −

tr(A)
p i = j

Finally, for τA we can compute

τA =
1

p
〈A, Ip〉 =

tr(A)

p
.

Combining all these together and substituting into (93) allows us to define
the projection in terms of matrices Ãk, where we split the τAIp term evenly
across the other K factors. Specifically

ProjKp
(A) = Ã1 ⊕ · · · ⊕ ÃK .

where

[Ãk]ij =

{
1
mk
〈A, I[d1:k−1] ⊗ eie

T
j ⊗ I[dk+1:K ]〉 i 6= j

1
mk
〈A, I[d1:k−1] ⊗ eie

T
i ⊗ I[dk+1:K ]〉 − K−1

K
tr(A)
p i = j

. (95)

An equivalent representation using factorwise averages is

Ã = Ak −
K − 1

K

tr(A)

p
,

where

Ak =
1

mk

mk∑
i=1

A(i, i|k).

Moving the trace corrections to a last term and putting the result in terms of the
Ak yields the lemma.

In Algorithm 4 we use an efficient method of computing this projected in-
verse in our setting by exploiting the eigendecomposition identities in Section
A.2. 2

B. Known diagonal elements (correlation matrix form)

In the case where the diagonal diag(Ω0) of the precision matrix is known a
priori, the estimation problem becomes easier. For simplicity, we consider the
case that Ω0 is in the form of a correlation matrix, i.e. diag(Ω0) = Ip, noting
this was the setting originally the focus of Kalaitzis et al. (2013).

Note that since the diagonal elements are known, we do not need to estimate
them and indeed can set all the diag(Ψk) = 1/KIdk . Revisiting the proof
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of Theorem 1, it is easy to show the following corollary, which shows strong

O(
√

(K + 1)s log p
nminkmk

) convergence in the case of `1 regularization. This
replacement of the

√
p+ s term in rate of Theorem 1 with a

√
s guarantees

single sample convergence in the sparse setting when minkmk � s.

COROLLARY 1. Suppose the conditions of Theorem 1, and that diag(Ω0) =
Ip is known. Then under event A,

‖Ω̂− Ω0‖F ≤
2C1 ‖Σ0‖2
φ2

min(Σ0)

√
(K + 1)s

log p

nminkmk
.

Furthermore, eventA holds with probability at least 1−2(K+1) exp(−c log p).

PROOF. Dropping the diagonal term from the proof of Lemma 17, we have
that the

√
p dependence vanishes, and on event A, we have G(∆) > 0 for all

∆ ∈ Tn where

Tn = {∆Ω ∈ Kp : ∆Ω = Ω− Ω0, ‖∆Ω‖F = Mrn,p}

and

rn,p = C‖Σ0‖2
√
s(K + 1)

log p

nminkmk
.

The rest of the proof follows by substituting this new value of rn,p into the
proof of Theorem 1.

C. SCAD and MCP regularizers

The SCAD penalty (Fan and Li, 2001) with parameter a > 2 (giving µ =
1/(a− 1)) is given by

gρ(t) =


ρ|t| if |t| ≤ ρ
− t2−2aρ|t|+ρ2

2(a−1) if ρ < |t| ≤ aρ
(a+1)ρ2

2 if aρ < |t|
(96)

which is linear (as the `1 norm) for small |t|, constant for large |t|, and has a
transition between the two regimes for moderate |t|.

The MCP penalty (Zhang et al., 2010) with parameter a > 0 (giving µ =
1/a) is given by

gρ(t) = sign(t)ρ

∫ |t|
0

(
1− z

ρa

)
+

dz, (97)

giving a more smooth transition between the approximately linear region and
the constant region (t > ρa).
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