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Summary.The paper introduces a multiway tensor generalization of the bigraphical lasso which
uses a two-way sparse Kronecker sum multivariate normal model for the precision matrix to
model parsimoniously conditional dependence relationships of matrix variate data based on
the Cartesian product of graphs. We call this tensor graphical lasso generalization TeraLasso.
We demonstrate by using theory and examples that the TeraLasso model can be accurately and
scalably estimated from very limited data samples of high dimensional variables with multiway
co-ordinates such as space, time and replicates. Statistical consistency and statistical rates of
convergence are established for both the bigraphical lasso and TeraLasso estimators of the
precision matrix and estimators of its support (non-sparsity) set respectively. We propose a
scalable composite gradient descent algorithm and analyse the computational convergence
rate, showing that the composite gradient descent algorithm is guaranteed to converge at a
geometric rate to the global minimizer of the TeraLasso objective function. Finally, we illustrate
TeraLasso by using both simulation and experimental data from a meteorological data set,
showing that we can accurately estimate precision matrices and recover meaningful conditional
dependence graphs from high dimensional complex data sets.

Keywords: Convergence guarantees; Covariance modelling for array-valued data; Kronecker
sum; Non-separable factor models; Precision matrix estimation; Sparsity

1. Introduction

The increasing availability of matrix and tensor-valued data with complex dependences has fed
the fields of statistics and machine learning. Examples of tensor-valued data include medical
and radar imaging modalities, spatial and meteorological data collected from sensor networks
and weather stations over time, and biological, neuroscience and spatial gene expression data
aggregated over trials and time points. Learning useful structures from these large-scale, complex
and high dimensional data in the low sample regime is an important task in statistical machine
learning, biology and signal processing.

As the precision matrix (inverse covariance matrix) encodes interactions and, for tensor-
valued Gaussian distributions, conditional independence relationships between and among
variables, multivariate statistical models, such as the matrix normal model (Dawid, 1981), have
been proposed for estimation of these matrices. However, the number of parameters of the
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precision matrix of a K-way data tensor X∈Rd1×:::×dK grows as ΠK
i=1d2

i . Therefore in high
dimensions unstructured precision matrix estimation is impractical, requiring very large sam-
ple sizes. Undirected graphs are often used to describe high dimensional distributions. Under
sparsity conditions, the graph can be estimated by using l1-penalization methods, such as the
graphical lasso (Friedman et al., 2008) and multiple (nodewise) regressions (Meinshausen and
Bühlmann, 2006). Under suitable conditions, such approaches yield consistent (and sparse)
estimation in terms of graphical structure and fast convergence rates with respect to the op-
erator and Frobenius norm for the covariance matrix and its inverse. However, many of the
statistical models that have been considered still tended to be overly simplistic and not fully
reflective of reality. For example, in neuroscience one must take into account temporal cor-
relations as well as spatial correlations, which reflect the connectivity that is formed by the
neural pathways. Yet, the line of high dimensional statistical literature mentioned above has
primarily focused on estimating linear or graphical models with independent and identically
distributed samples. In the case of graphical models, the data matrix is usually assumed to have
independent rows or columns that follow the same distribution. The independence assumptions
substantially simplify mathematical derivations but they tend to be very restrictive. For instance,
cortical circuits can change over time because of activities such as motor learning, attention or
visual stimulation. These data typically have a complex structure that is organized by the ex-
perimental design, with one or more experimental factors varying according to a predefined
pattern.

On the theoretical and methodological front, recent work demonstrated another regime where
further reductions in the sample size are possible under additional structural assumptions on
the conditional dependence graphs which arise naturally in the above-mentioned contexts when
handling data with complex dependences. For example, the matrix normal model as studied
in Tsiligkaridis et al. (2013) and Zhou (2014) restricts the topology of the graph to tensor
product graphs where the precision matrix corresponds to a Kronecker product representation.
Moreover, Zhou (2014) showed that one can estimate the covariance and inverse covariance
matrices well by using only one instance from the matrix variate normal distribution. Along
the same lines, the bigraphical lasso framework was proposed to model parsimoniously condi-
tional dependence relationships of matrix variate data based on the Cartesian product of graphs
(Kalaitzis et al., 2013) as opposed to the direct product graphs of the matrix normal models
above. These models naturally generalize to multilinear settings with more than two axes of
structure as demonstrated in the present work. The present work addresses the problem of
sparse modelling of a structured precision matrix for tensor-valued data; more precisely, we aim
to estimate the structure and parameters for a class of Gaussian graphical models by restricting
the topology to the class of Cartesian product graphs, with precision matrices represented by a
Kronecker sum for data with complex dependences.

Towards these goals, we shall introduce the tensor graphical lasso procedure called ‘Tera-
Lasso’ for estimating sparse K-way decomposable precision matrices. We shall show that our
concentration-of-measure analysis enables a significant reduction in the sample size require-
ment to estimate parameters and the associated conditional dependence graphs along different
co-ordinates such as space, time and experimental conditions. We establish consistency for both
the bigraphical lasso and tensor graphical lasso estimators and obtain optimal rates of con-
vergence in the operator and Frobenius norm for estimating the associated precision matrix,
and for structure recovery. Finally, we demonstrate by using simulations and real data that the
Kronecker sum precision model has excellent potential for improving computational scalability,
structural interpretation and its applications to classification, prediction and visualization for
complex data analysis.
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A philosophical motivation of TeraLasso’s Kronecker sum (Cartesian graph) model is that it
achieves the maximum entropy among all models for which the tensor component projections
of the covariance matrix are fixed; see Section 3. A compelling justification for the proposed
Kronecker sum model for the precision matrix is that similar models have been successfully used
in other fields, including regularization of multivariate splines, design of physical networks and
decomposition of solutions of partial differential equations governing many physical processes.
Additional discussion of these practical motivations for the model is in Section 1.3 below.

1.1. The multiway Kronecker sum precision matrix model
We follow the notation and terminology of Kolda and Bader (2009) for modelling tensor-valued
data arrays. Define the vector of component dimensions p= .d1, : : : , dK/ and let p denote the
product of these dimensions:

p=
K∏

k=1
dk

and

mk=
∏
i�=k

di=p=dk:

To simplify the multiway Kronecker notation, we define

I[dk:l]= Idk
⊗ : : :⊗ Idl︸ ︷︷ ︸

l−k+1 factors

where ‘⊗’ denotes the Kronecker (direct) product and l � k. Using this notation, the K -way
Kronecker sum of matrix components {Ψk}K

k=1 can be written as

Ψ1⊕ : : :⊕ΨK=
K∑

k=1
I[d1:k−1]⊗Ψk⊗ I[dk+1:K ]: .1/

In the special case of K= 2 this Kronecker sum representation reduces to the more familiar
Ψ1⊕Ψ2=Ψ1⊗ Id1+ Id2⊗Ψ2. The vectorization of a K -way tensor X is denoted as vec.X/ and
is defined as in Kolda and Bader (2009). Likewise, we define the transpose of a K-way tensor
XT ∈RdK×:::×d1 analogously to the matrix transpose, i.e. .XT/i1,:::,iK =XiK ,:::,i1 .

When the precision matrix Ω has a decomposition of the form (1), the Kronecker sum com-
ponents {Ψk}K

k=1 are sparse and the K-way data X have a multivariate Gaussian distribution,
the sparsity pattern of Ψk corresponds to a conditional independence graph across the kth
dimension of the data.

Fig. 1 illustrates the Kronecker sum model proposed in equation (1) for K= 3 and dk = 4.
Specifically, Ψk, k= 1, 2, 3, are identical 4× 4 tridiagonal precision matrices corresponding to
a one-dimensional auto-regressive (AR(1)) process. The precision matrix Ω=Ψ1⊕Ψ2⊕Ψ3
is shown in Fig. 1(a) and the covariance Σ=Ω−1 in Fig. 1(b). The entries of each Ψk are
replicated mk = 16 times across Ω for each k. This regular structure permits the aggregation
of corresponding entries in the sample covariance matrix, resulting in variance reduction in
estimating Ω. This Kronecker sum gives Ω a non-separable and interlocking repeating block
structure in the covariance matrix.

We propose the following sparse Kronecker sum estimator of the precision matrix Ω in equa-
tion (1), which we call the tensor graphical lasso, TeraLasso. TeraLasso minimizes the negative
l1-penalized Gaussian log-likelihood function over the domain K]

p of precision matrices Ω having
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(a) (b)

Fig. 1. Illustration of the Kronecker sum model for a tensor-valued AR(1) process (unlike the Kronecker
product precision model, the nested block structure in Σ is not representable by a product of component
factors): (a) sparse 4�4�4 precision matrix ΩDΨ1 ˚Ψ2 ˚Ψ3, where Ψk are identical tridiagonal precision
matrices corresponding to one-dimensional AR(1) models; (b) covariance matrix ΣDΩ�1

Kronecker sum form

Ω̂=arg min
Ω∈K]

p,‖Ω‖2�κ

{
− log |Ω|+ 〈Ŝ, Ω〉+

K∑
k=1

mk

∑
i�=j

gρk
.[Ψk]ij/

}
.2/

where

Ŝ= 1
n

n∑
i=1

vec.XT
i /vec.XT

i /T, .3/

gρ.t/ is a sparsity inducing regularization function parameterized by a regularization parameter
ρ and

K]
p={A	0 :∃Bk ∈Rdk×dk subject to A=B1⊕ : : :⊕BK} .4/

is the set of positive semidefinite matrices that are decomposable into a Kronecker sum of fixed
factor dimensions p= .d1, : : : , dK/. In this paper we consider .μ,γ/ amenable regularizers gρ
(Loh and Wainwright, 2017). The norm constraint ‖Ω‖2 �κ is required for the solution to be
well defined when gρ is not a convex penalty. These penalties include non-convex regularizers
such as smoothly clipped absolute deviation (SCAD) and the minimax convex penalty (MCP),
as well as the traditional l1-regularizer gρ.t/=ρ|t|.

Observe that sparsity in the off-diagonal elements of Ψk directly creates sparsity in Ω. As in the
graphical lasso, incorporating an l1-penalty over entries of Ω with the tensor-valued Gaussian
or matrix normal (pseudo)log-likelihood promotes a sparse graphical structure in Ω; see for
example Banerjee et al. (2008), Yuan and Lin (2007), Zhou (2014) and Zhou et al. (2011). In this
work, we allow for the more general case of non-convex regularization functions gρ as considered
in Loh and Wainwright (2017). Although sometimes difficult to tune in practice, non-convex
regularization provides strong non-asymptotic guarantees on the elementwise estimation error
of Ω, implying strong, single-sample support recovery guarantees when the smallest non-zero
element of Ω is bounded from below.

The contributions of this paper are as follows. The sparse multivariate normal bigraphical
lasso model called ‘BiGLasso’ is extended to the sparse tensor variate (K>2) TeraLasso, allow-
ing the modelling of data with arbitrary tensor degree K. A new sub-Gaussian concentration
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inequality (corollary 19 in the on-line supplement) is presented that gives rates of statistical con-
vergence (theorems 1–3) of the TeraLasso estimator as well as the BiGLasso estimator, when
the sample size is low (even equal to 1). TeraLasso’s generalization of BiGlasso from two-way
to K-way decompositions is important as it expands the domain of application, allowing a data
scientist to group variables into their natural domains along multiple tensor axes. For exam-
ple, with a health data set that is collected over space, time, people and replicates, TeraLasso’s
three-way tensor decomposition (time×space×people) can account for possible dependence
structure between people, whereas a two-way BiGLasso or KLasso (Tsiligkaridis et al., 2013)
approach decomposing over (time×space) would unnecessarily enforce an assumption of inde-
pendence between people. Alternatively, BiGLasso or KLasso could group two axes together
(e.g. (time×space)×people); however, this would create a large unstructured factor whose esti-
mation would require many more replicates than the three-way decomposition that TeraLasso
uses to give each axis its own factor.

A highly scalable, first-order algorithm based on iterative soft thresholding is proposed to
minimize the TeraLasso objective function. We prove (theorem 25 in the on-line supplement)
that it converges to the global optimum with a geometric convergence rate, and we demonstrate
its practical advantages on high dimensional problems. Compared with the alternating block
co-ordinate descent algorithm that was proposed by Kalaitzis et al. (2013) for BiGLasso, the
proposed iterative soft thresholding algorithm enjoys a per-iteration computational speed-up
over BiGLasso of order Θ.p/. Our numerical results show that the BiGLasso algorithm often
requires many more iterations to converge than does our iterative soft thresholding method.
Numerical comparisons are presented demonstrating that TeraLasso significantly improves
performance in small sample regimes. To demonstrate the application of TeraLasso to real world
data we use it to estimate the precision matrix of spatiotemporal meteorological data collected
by the National Center for Environmental Prediction. Our results show that the TeraLasso
precision matrix estimator degrades much more slowly than other estimators as we reduce the
number of samples that are available to fit the model. The intuitive graphical structure, the robust
eigenstructure and a maximum entropy interpretation make the TeraLasso model a compelling
choice for modelling tensor data, much as the bigraphical lasso provides a meaningful alternative
to the matrix normal model.

1.2. Relevant prior work
The use of tensor product models for multiway data has a long history. In the statistical context,
directly fitting a Kronecker product to multiway data yields a first-order approximation corre-
sponding to fitting the mean (Kolda and Bader, 2009) when the fitting criterion is the Frobenius
norm of the residuals. Many such methods involve low rank factor decompositions including
parallel factor analysis and CANDECOMP as in Harshman and Lundy (1994) and Faber et al.
(2003), Tucker decomposition-based methods such as Tucker (1966) and Hoff (2016), and hy-
brid methods such as Johndrow et al. (2017). In contrast, second-order methods have been
used to approximate multiway structure of the covariance (Werner et al., 2008; Pouryazdian
et al., 2016). Series decomposition methods have been proposed for fitting the covariance ma-
trix in Frobenius norm by using sums of Kronecker products (Tsiligkaridis and Hero, 2013;
Greenewald and Hero, 2015; Rudelson and Zhou, 2017; Greenewald et al., 2017).

Kronecker product approximations to the inverse covariance have fitted matrix normal models
(Allen and Tibshirani, 2010) and sparse matrix normal models (Leng and Tang, 2012; Zhou,
2014; Tsiligkaridis et al., 2013). In contrast with the Kronecker sum model (1) for the precision
matrix Ω, the K-way Kronecker product model is Ω=Ψ1⊗ : : : ⊗ΨK. The Kronecker product
decomposition implies a separable property of the precision matrix across the K data dimensions,
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which we might expect to become an increasingly restrictive condition as K increases. In this
paper we show that the proposed Kronecker sum model (1) can be a worthwhile alternative
representation.

A two-factor (K=2) sparse Kronecker sum model for the precision matrix Ω was introduced
and studied in Kalaitzis et al. (2013). The model was fitted to the sample covariance matrix by us-
ing an iterative procedure called BiGlasso, which required the diagonal entries of Ω to be known.
Conditions guaranteeing convergence were not provided. Here we extend the BiGlasso model
to arbitrary K �2 and unknown diagonal entries of Ω, provide a faster converging optimization
algorithm and obtain strong convergence guarantees and bounds on the convergence rate for all
K, including K= 2. For completeness, we also obtain (appendix B of the on-line supplement)
bounds on the convergence rate for the known diagonal setting of Kalaitzis et al. (2013).

The qualitative differences between the Kronecker product and Kronecker sum models for
the precision matrix can be better appreciated by considering the product graphs that are in-
duced by them. For given sparse Kronecker factors Ψ1, : : : , ΨK, the Kronecker product model
corresponds to the direct (tensor) product of the component graphs whereas the Kronecker sum
model corresponds to the Cartesian product of these components (Hammack et al., 2011). (The
Cartesian product of two graphs G1= .V1, E1/ and G2= .V2, E2/ is a graph with vertices being
the Cartesian product of V1 and V2, and with edges such that node .u, u′/ is adjacent to .v, v′/
if and only if either u=v and u′ is adjacent to v′ in G2, or u′ =v′ and u is adjacent to v in G1.)
The direct product graph and Cartesian product graph differ greatly; the former has a number
of edges equal to

1
2

K∏
k=1

.2|Ek|+ |Vk|/−
K∏

k=1
|Vk|,

whereas the latter has a number of edges equal to

K∑
k=1
|Ek|

∏
i�=k

|Vi|,

where Vi and Ei denote the node and edge sets of the ith component graph. (The notation
|Vi| = di denotes the row dimension of Ψi and |Ei| denotes the number of non-zero upper
triangular entries of Ψi.) To illustrate, if the number of non-zero entries of Ψk is cdi for some c,
the number of edges that are induced in the direct product graph by inserting a single new edge
into the first component graph is equal to 1

2 .2c+1/Kp=d1−p, where we recall that p=ΠK
k=1di

is the number of covariates (rows of Ω). In contrast, for the Cartesian product graph it is only
p=d1 regardless of c. Hence, as c and K increase, using the Kronecker product model a single
edge in Ψ1 can create a proliferation of edges whereas the number of new edges in the Kronecker
sum model is fixed, independent of K. A concrete example of these differences is illustrated in
Fig. 2. The qualitative differences between the Kronecker product and Kronecker sum models
for the precision matrix are summarized in Table 1.

1.3. Rationale for the proposed multiway Kronecker sum model
This paper develops a scalable, fast and accurate estimation procedure, TeraLasso, for multiway
precision matrices Ω by using higher order Kronecker sum models. To justify the practical utility
of TeraLasso we illustrate it on a spatiotemporal meteorological data set. We have also applied
it to other applications which are not presented here. Although a comprehensive validation
of the model on a larger corpus of real data is beyond the scope of this paper, there is ample
evidence that the model will have many statistical applications. We base this assessment on the
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(a) (b)

(c)

(d)

(e)

Fig. 2. Comparison of (a) the Kronecker sum (Cartesian product graph) and (b) Kronecker product (direct
product graph): the products are formed from the component graphs (c), (d) and (e); the number of factors in
the product graphs is K D3 and the dimensions are d1 Dd2 D4 and d3 D2, leading to product graphs with 32
nodes, arranged in a regular three-dimensional grid in the figures at the bottom; only the edges emanating
from the orange node are indicated (red and green edges); the Kronecker sum model has a total of 64 edges
whereas the Kronecker product model is much less sparse, having a total of 184 edges

Table 1. Qualitative differences between the multiway Kronecker sum (TeraLasso) and multiway Kronecker
product (BiGlasso) models for high dimensional precision matrix estimation

Multiway Kronecker product Multiway Kronecker sum

Covariance model Precision matrix Ω is separable across
K tensor components

Precision matrix is non-separable across
tensor components, motivated
by maximum entropy considerations

Graphical model Graph is the direct product of the K
graph components

Graph is the Cartesian product of the K
graph components

Sparsity Number of edges in Ω grows as the
product of the number of edges in
each component

Number of edges in Ω grows as the sum
of the number of edges in each
component

Graphical model
interpretability

Edges in sparse factors contribute to
large numbers of edges multiplicatively

Each edge in the sparse factors directly
map to edges in the overall
precision Ω; sparsity pattern follows
Cartesian Markov-like network

Inference Non-convex (multilinear) maximum
likelihood estimator, alternative
estimators usually favoured

Maximum likelihood estimator is convex

wide use of Kronecker sum models, equivalently Cartesian product graph models, in biology,
physics, social sciences and network engineering, among other fields (Imrich et al., 2008; Van
Loan, 2000). In particular the Kronecker sum arises in solving the celebrated Sylvester equation
for a matrix X which, for K= 2, takes the form XA+BX=N. The Sylvester equation can be
solved by expressing the equation in vectorized form as A⊕B vec.X/= vec.N/ (for arbitrary
K this becomes the tensor Sylvester equation .A1⊕ : : :⊕AK/vec.X/= vec.N/), but this is of-
ten impractical in high dimension. Such equations result from the discretization of separable
K-dimensional partial differential equations with tensorized finite elements (Grasedyck, 2004;
Kressner and Tobler, 2010; Beckermann et al., 2013; Shi et al., 2013; Ellner, 1986). As a result
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Kronecker sums come in many areas of applied mathematics, including beam propagation
physics (Andrianov, 1997), control theory (Luenberger, 1966; Chapman et al., 2014), fluid dy-
namics (Dorr, 1970) and spatiotemporal neural processes (Schmitt et al., 2001).

Closer to home, the Kronecker sum model arises in multivariate spline data analysis, e.g. as
applied to harmonic analysis on graphs (Kotzagiannidis and Dragotti (2019)). More recently,
Fey et al. (2018) have proposed tensor B-splines defined over a Cartesian product basis for
geometric convolutional neural networks. Kronecker sums have been proposed as precision
matrices for weighting the quadratic regularizer in smoothed multivariate spline regression. In
particular, Wood (2006) observed that, compared with the Kronecker product, the Kronecker
sum reduces the coupling between the axes when used as a spline smoothing penalty for general-
ized additive mixed model regression. This observation motivated Wood (2006) and Eilers and
Marx (2003) to use the inverse of a Kronecker sum matrix as a penalty, or prior, for smoothing
K-dimensional regressions (see also work by Lee and Durbán (2011) and Wood et al. (2016)).
This approach has been applied to spatiotemporal forest health modelling (for which K= 3)
(Augustin et al., 2009), brain development modelling (Holland et al., 2014) and analysis of the
effect of climate and weather on spatiotemporal patterns of beetle populations (Preisler et al.,
2012), among other applications. In these spline regression problems the Kronecker sum appears
as a precision matrix parameterizing a Gaussian prior on the spline coefficient vector β, where
the prior is of the form p.β/∝ exp{−βT.λ1S1⊕ : : :⊕λKSK/β=2}. Here, λi are regularization
coefficients and Si are co-ordinatewise smoothing matrices, i=1, : : : , K.

Instead of using the Kronecker sum to model the a priori precision matrix of a set of spline
parameters, this paper proposes the Kronecker sum as a model for the precision matrix of
the multiway data in the likelihood function, where the data matrix X takes the place of the
spline coefficient vector β. The stated advantages of the Kronecker sum model for the spline
regression setting (Wood, 2006) can be expected to carry over to the precision matrix estimation
setting of TeraLasso. In particular, like the spline regression prior, TeraLasso smooths each axis
separately, while summing over the others, thereby reducing coupling between the tensor axes
compared with the Kronecker product. For data that have structure similar to that imposed
by Wood (2006) on the spline regression coefficients this should result in a more accurate fit.
Indeed, if a population of regression spline problems was available, in principle one could apply
TeraLasso to estimating the best precision matrix of the spline coefficients that would minimize
the population-averaged fitting error.

1.4. Outline
The remainder of the paper is organized as follows. We introduce notation and some prelimi-
nary results in Section 2, and our proposed TeraLasso model in Section 3. High dimensional
consistency results are presented in Section 4, first with convex l1-regularizers and then with
non-convex sparsity regularizers. The first-order iterative soft thresholding optimization algo-
rithm is described in Section 5, and conditions are specified for which the algorithm converges
geometrically to the global optimum. Finally, Sections 6 and 7 illustrate the proposed Tera-
Lasso estimator on simulated and real data, with Section 8 concluding the paper. We place all
technical proofs in the on-line supplementary material, along with additional experiments and
further exploration of the properties and implications of the Kronecker sum subspace Kp and
the associated identifiable parameterization.

The programs that were used to analyse the data can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets
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2. Notation and preliminaries

We use upper case letters, e.g. A, for matrices and tensors, and bold lower case, e.g. a, for vectors,
and we denote the .i, j/ element of a matrix A as Aij and the .i1, i2, : : : , iK/ element of a tensor
A as Ai1,i2,:::,iK . Fibres are the higher order analogue of matrix rows and columns. A fibre of a
tensor is obtained by fixing every index except one; the mode k fibre of tensor X is denoted as the
column vector Xi1,:::,ik−1,:,ik+1,:::,iK . Following the definition by Kolda and Bader (2009), tensor
unfolding or matricization of X along the kth mode is denoted as X.k/, formed by arranging the
mode k fibres as columns of the resulting matrix of dimension dk×mk. The column ordering is
not important so long as it is consistent.

For a vector y= .y1, : : : , yp/ in Rp, denote by ‖y‖2=√Σjy2
j the Euclidean norm of y. The

operator and Frobenius norms of a matrix A are denoted as ‖A‖2 and ‖A‖F respectively; the
notation vec.A/ denotes the vectorization of the matrix A; ‖A‖∞ denotes the matrix∞ norm
and ‖A‖max=maxij |Aij| denotes the max-norm. The determinant is denoted as |A|. We use the
inner product 〈A, B〉= tr.ATB/ throughout. Define the set of p×p matrices with Kronecker
sum structure of fixed dimensions d1, : : : , dK:

Kp={A∈Rp×p :∃Bk ∈Rdk×dk subject to A=B1⊕ : : :⊕BK} .5/

where the set of matrices that is defined in expression (4) is obtained by restricting Kp to the
positive cone, i.e.

K]
p={A	0|A∈Kp}:

The set Kp (5) is linearly spanned by the K components, since there are no non-linear interactions
between any of the parameters. Thus Kp is a linear subspace of Rp×p, and we can define a unique
projection operator onto Kp:

ProjKp
.A/= arg min

M∈Kp
‖A−M‖2F:

A closed form expression for ProjKp
.A/ is given in section A.3 of the on-line supplementary

material. Note that the dimensionality of the Kp-subspace is 1−K+ΣK
k=1d2

k , which is often
significantly smaller than the ambient dimension p2=ΠK

k=1d2
k .

2.1. Parameterization of Kp by Ψk
Note that Ω=Ψ1⊕ : : :⊕ΨK does not uniquely determine {Ψk}K

k=1, i.e. without further con-
straints the Kronecker sum parameterization is not fully identifiable. It is easy to verify, how-
ever, that both offd.Ψk/ and diag.Ω/ are identifiable, where we define the notation offd.M/=
M−diag.M/. We can then write the identifiable decomposition

Ω̂= diag.Ω̂/+offd.Ψ̂1/⊕ : : :⊕offd.Ψ̂K/, .6/

and correspondingly Ω0=diag.Ω0/+offd.Ψ0,1/⊕ : : :⊕offd.Ψ0,K/. Note that, whereas the off-
diagonal factors can take on any values, diag.Ω0/ is not completely free (for a fully orthogonal
parameterization see section 4 of the on-line supplement).

2.2. Interpretation of correlation coefficients
The quantities [Ψk]ij=

√
.[Ψk]ii[Ψk]jj/ do not by themselves correspond to correlation coeffi-

cients. Because of the repeating structure of the Kronecker sum each element [Ψk]ij will appear
in mk distinct dk×dk symmetric subblocks of Ω, and in each (lth) subblock it will have a corre-
lation coefficient that is uniquely defined for that subblock:
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ρk,ij,l= [Ψk]ij√{.[Ψk]ii+ cl=dk/.[Ψk]jj+ cl=dk/}
where cl= tr.lth subblock of Ω/− tr.Ψk/. The overall correlation structure is preserved across
the mk blocks; simply the strength of the correlations are modulated by the contributions of the
other K−1 additive factors in the block. (Recall that the Ψk need not be positive definite and
cl need not be greater than 0.)

3. Models and methods

Let X1, : : : , Xn be n independent realizations of the K-way tensor X. Define xi= vec.XT
i / for

all i= 1, : : : , n. Define Ŝ= .1=n/Σn
i=1xixT

i as the sample covariance. The mode k Gram matrix
Sk and factorwise covariance Σ.k/=E[Sk] are given by

Sk= 1
nmk

n∑
i=1

Xi,.k/X
T
i,.k/ and Σ.k/= 1

mk
E[X.k/X

T
.k/], k=1, : : : , K,

noting that the elements of these matrices are effectively inner products between .K−1/-order
tensors. Sk is the sample covariance of the data unfolded across the kth tensor axis, whereas
Σ.k/ denotes the population covariance matrix along the same axis. These Gram matrices Sk can
be represented as elementwise aggregations over entries in the full sample covariance (3), with
locations indexed by Ψk,i,j as

[Sk]ij= 1
mk
〈Ŝ, I[d1:k−1]⊗ eieT

j ⊗ I[dk+1:K ]〉: .7/

In tensor covariance modelling when the dimension p is much larger than the number of samples
n, the Gram matrices Sk are often used to model the rows and columns separately, notably in
the matrix variate estimation methods of Zhou (2014) and Kalaitzis et al. (2013). Observe that
the TeraLasso estimator (2) of the precision matrix can be expressed as

Ω̂=arg min
Ω∈K]

p,‖Ω‖2�κ

[
− log |Ω|+

K∑
k=1

mk

{
〈Sk, Ψk〉+

∑
i�=j

gρk
.[Ψk]ij/

}]
.8/

where K]
p is the set of positive semidefinite Kronecker sum matrices (4).

Ignoring regularization, the objective function in square brackets can be written as
− log{p.Ŝ|Ω/} where p.Ŝ|Ω/=αΩΠK

k=1p.Sk|Ψk/ and p.Sk|Ψk/= exp.−〈mkSk, Ψk〉/, with αΩ
a normalizing constant. The non-negativity of the Kullback–Liebler divergence∫

p.S|Ω/ log
{

p.S|Ω/

αΩ
∏K

k=1 p.Sk|Ψk/

}
dS

implies that the Kronecker sum model is a maximum entropy model, as previously pointed out
for the case of K=2 by Kalaitzis et al. (2013). Alternatively, Kronecker sum models can be char-
acterized as regularizing the precision matrix estimation problem with a minimally informative
prior over the set K]

p.
The class of Kronecker sum matrices is a highly structured, lower dimensional subspace of

Rp×p. By definition of the Kronecker sum (1), each entry of Ψk appears in mk=p=dk entries of
Ω. By imposing that the precision matrix has both Kronecker sum structure and sparse structure
through the penalty gρ, TeraLasso can effectively regularize the precision estimation problem.

We assume that the penalty gρ is .μ,γ/ amenable in the sense of Loh and Wainwright (2017).
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Definition 1 (.μ,γ/ amenable regularizer). A regularizer gρ.t/ is .μ,γ/ amenable when μ�0
and γ ∈ .0,∞/ if

(a) gρ is symmetric around zero and gρ.0/=0,
(b) gρ.t/ and gρ.t/=t are both non-decreasing on R+,
(c) gρ.t/ is differentiable for all t �=0,
(d) the function gρ.t/+ .μ=2/t2 is convex,
(e) limt→0+ g

′
ρ.t/=ρ and

(f) g′ρ.t/=0 for all t �γρ.

Note that the l1-regularizer is .0,∞/ amenable. Example non-convex penalties in this class
include the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010), both defined
in appendix C of the on-line supplement.

Observe that for non-zero μ (i.e. non-convex gρ) the constraint on the spectral norm of
Ω (‖Ω‖2 � κ) in the TeraLasso objective function (8) is necessary since without it a global
minimum may not exist (Loh and Wainwright, 2017). For a spectral norm constraint parameter
set to κ=√.2=μ/, we show (lemma 21 in the supplement) that objective function (8) with gρ
.μ,γ/ amenable is convex and has a unique global minimizer. For the l1-penalty, the objective
is always convex and κ can be set to∞.

4. High dimensional consistency of TeraLasso

Let v= .v1, : : : , vp/T be an isotropic ψ2-sub-Gaussian random vector with independent en-
tries vj satisfying E[vj]= 0, 1= E[v2

j ] � ‖vj‖ψ2 � K. The ψ2-condition on a scalar random
variable V is equivalent to sub-Gaussian decay of the tails of V , implying that P.|V |> t/ �
2 exp.−t2=c2/ for all t>0. The extension to random vectors is straightforward. Specifically, x is
a sub-Gaussian random vector with positive definite covariance Σ∈Rp×p when

x=Σ1=2v, .9/

where Σ1=2 denotes a positive definite square-root factor of Σ. We then call X∈Rd1×d2×:::×dK an
order K sub-Gaussian random tensor with covariance Σ when x= vec.XT/ is a sub-Gaussian
random vector in Rp defined as in equation (9).

We assume that the data X1, X2, : : : , Xn are independent and identically distributed sub-
Gaussian random tensors whose inverse covariance follows the Kronecker sum model (1),
namely, that vec.XT

i /∼x, where x is a sub-Gaussian random vector in Rp as defined in equation
(9). A special case of the sub-Gaussian model is the Gaussian model, for which the 0s in the
precision matrix define the conditional independences among the variables Xi. This conditional
independence relationship does not hold for the general sub-Gaussian case, but nonetheless
strong convergence of the TeraLasso precision matrix estimator is preserved.

In addition to the sub-Gaussian generative model given above, we make the following tech-
nical assumptions on the true model, guaranteeing sparsity in Ω and its eigenvalues being
bounded away from 0 and∞.

Assumption 1. Define the support set of the kth Kronecker sum component Ψk of the pre-
cision matrix by Sk={.i, j/ : i �= j, [Ψk]ij �=0} for k=1, : : : , K. We assume that Sk is sparse, i.e.
card.Sk/� sk.

Assumption 2. The minimal eigenvalue satisfies φmin.Ω/=ΣK
k=1φmin.Ψk/ � kΩ > 0, and the

maximum eigenvalue satisfies φmax.Ω/=ΣK
k=1φmax.Ψk/�kΩ <∞.
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Defining the support set of Ω as S={.i, j/ : i �= j, }, assumption 1 implies that card.S/� s=
ΣK

k=1mksk.

4.1. Regularization with l1-penalty
With gρ.t/=ρ|t|, the constraint on ‖Ω‖2 is unnecessary, and objective function (8) becomes

Ω̂=arg min
Ω∈K]

p

{
− log |Ω|+

K∑
k=1

mk.〈Sk, Ψk〉+ρk|Ψk|1,off /

}
.10/

where |Ψk|1,off =Σi�=j|[Ψk]ij| is the off-diagonal l1-norm. The objective (10) is jointly convex, and
its minimization over Ω∈K]

p has a unique solution (see section 2.6 of the on-line supplement).
We require an additional assumption.

Assumption 3. The sample size n and the component dimensions dk satisfy the following
condition:

n.min
k

mk/2 �C2κ.Σ0/4.s+p/.K+1/2 log.p/ .11/

where mk=p=dk and κ.Σ0/=φmax.Σ0/=φmin.Σ0/ is the condition number of Σ0.

This assumption holds for n=1 and sufficiently large .mink mk/2 >O.p/, which can hold for
any K > 2. We obtain the following bounds on the Frobenius and operator norm error of the
TeraLasso estimator (10). The constants (c, C1, C2, C3) are given in the proof (see the on-line
supplement) and do not depend on K, n, s or p.

Theorem 1 (Frobenius error bound). Suppose that assumptions 1–3 hold, and that Ω̂ is the
minimizer of expression (10) with ρk � .1=kΩ/

√{log.p/=.nmk/}. Then with probability at
least 1−2.K+1/ exp{−c log.p/}

‖Ω̂−Ω0‖F � 2C1‖Σ0‖2
φ2

min.Σ0/

√{
.K+1/.s+p/

log.p/

n mink mk

}
:

Theorem 2 (factorwise and L2 error bounds). Suppose that the conditions of theorem 1
hold. Then with probability at least 1−2.K+1/ exp{−c log.p/}:

‖diag.Ω̂/−diag.Ω0/‖22
.K+1/ maxk dk

+
K∑

k=1

‖offd.Ψ̂k−Ψ0,k/‖2F
dk

�C2.K+1/

(
1+

K∑
k=1

sk

dk

)
log.p/

n mink mk
.12/

and as a result

‖Ω̂−Ω0‖2 �C3.K+1/

√{
p

.mink mk/2

(
1+

K∑
k=1

sk

dk

)
log.p/

n

}
:

Theorems 1 and 2 are proved in section 5 of the on-line supplement. Observe that theorem 2
predicts result (12) that, for fixed n and K > 2, the estimation error of the parameters of Ω
converges to 0 as the dimensions {dk} go to ∞ (recall that p=ΠK

k=1dk). This implies that
for increasing dimensions TeraLasso will converge even for a single sample n= 1. Because of
the repeating structure and increasing dimension of Ω, the parameter estimates can converge
without the overall Frobenius error ‖Ω̂−Ω0‖F converging.

4.1.1. Comparison with graphical lasso
The Frobenius norm bound in theorem 1 improves on the sub-Gaussian graphical lasso rate of
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Rothman et al. (2008) and Zhou et al. (2011) by a factor of mink mk. If the dimensions are equal
(dk=p1=K and sk are constant over k) and K is fixed, theorem 2 implies that

‖Δk‖F=Op

[√{
.dk+ sk/ log.p/

mkn

}]
,

indicating that TeraLasso with n replicates estimates the identifiable representation of Ψk with
an error rate equivalent to that of the graphical lasso with Ω=Ψk and nmk available replicates.

4.1.2. Independence along an axis
Suppose that the data tensor X is independent and identically distributed along the first axis,
i.e. Ψ1= Id1 . Then, instead of a K-way TeraLasso, a (K− 1)-model with nd1 replicates would
suffice, yielding a factorwise error bound (theorem (2)) of

O

[√{(
1+

K∑
k=2

sk

dk

)
log.p=d1/

nd1 mink>1.mk=d1/

}]
,

compared with the factorwise error bound of

O

[√{(
1+

K∑
k=2

sk

dk

)
log.p/

n mink mk

}]

associated with the full K-way model (since s1= 0). Hence having a priori knowledge of inde-
pendence (allowing the use of the (K−1)-model) does not meaningfully improve the rate over
the original K-way model so long as mink>1 mk≈mink mk. A similar satisfying result holds for
the Frobenius error bound in theorem 1.

4.2. Non-convex regularizers and single-sample support recovery
Non-convex regularization will provide non-asymptotic guarantees on the elementwise esti-
mation error, implying strong, single-sample support recovery guarantees when the smallest
non-zero element of Ω0 is bounded from below. However, these stronger results require more
restrictive assumptions on sparsity of the precision matrix and its smallest non-zero element.
Specifically, we shall require the following assumptions.

Assumption 4. The degree (maximum number of non-zero edges connected to a node) of the
sparsity graph of each factor Ψk is bounded by a constant d.

Assumption 5. The sample size satisfies n mink mk �c0d2 log.p/ for some c0 sufficiently large.

Assumption 6. There are constants c∞ and c3 such that ‖.Ω0⊗Ω0/SS‖∞� c∞ and

min
[i,j]∈S

|[Ω0]ij|�ρ.γ+2c∞/+ c3

√{
log.p/

n mink mk

}
:

In assumption 6 the notation ASS denotes the submatrix of A formed by extracting the rows
and columns corresponding to the index set S. Under these assumptions we have the following
result.

Theorem 3 (non-convex regularizers). Suppose that the regularizer gρ in objective function (8)
is .μ,γ/ amenable, andκ=√.2=μ/. Then with probability at least 1−2.K+1/ exp{−c log.p/}
as in theorem 1, expression (8) has a unique stationary point Ω̂ (given by the oracle estimator
defined in the on-line supplement), with (for all k)
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‖offd.Ψ̂k−Ψ0,k/‖max �‖Ω̂−Ω0‖max � c3.K+1/

√{
log.p/

n mink mk

}
,

‖offd.Ψ̂k−Ψ0,k/‖F � c3.K+1/

√{
sk log.p/

n mink mk

}
,

‖Ω̂−Ω0‖F � c3.K+1/

√{
.s+p/ log.p/

n mink mk

}
,

‖Ω̂−Ω0‖2 � c3d.K+1/

√{
log.p/

n mink mk

}
:

The proof of theorem 3 is given in Section 7 in the on-line supplement and uses arguments
that are analogous to those of Loh and Wainwright (2017) along with concentration inequalities
arising from the structure of the TeraLasso model.

Theorem 3 implies that the elements (of both Ω and the offdiagonals of Ψk), and thus the
support (of both Ω and the Ψk), can be estimated by using a single sample (n= 1) provided
that mink mk is sufficiently large. The Frobenius norm convergence rates (both factorwise and
overall) for the convex and non-convex regularizers remain effectively the same (comparing
theorem 3 with theorems 1 and 2); hence the primary benefit of the non-convex bound is the
ability to guarantee support recovery in exchange for additional assumptions.

5. Tensor graphical iterative soft thresholding algorithm

In this section, we introduce an iterative soft thresholding method, restricted to the convex
set K]

p of possible positive semidefinite Kronecker sum precision matrices, to implement the
TeraLasso optimization (8). We call this tensor graphical iterative soft thresholding implemen-
tation TG-ISTA.

5.1. Composite gradient descent and proximal first-order methods
Our goal is to solve the objective (8). This objective function can be decomposed into the sum of
a differentiable function f and a lower semicontinuous but non-smooth function g: for Ω∈Kp

Q.Ψ1, : : : , ΨK/=f.Ω/+g.Ω/,

where, for 〈Ŝ, Ω〉=ΣK
k=1mk〈Sk, Ψk〉,

f.Ω/=− log |Ω|+ 〈Ŝ, Ω〉
∣∣∣
Ω∈Kp

,

g.Ω/=
K∑

k=1
mk

∑
i�=j

gρk
.[Ψk]ij/:

.13/

For objectives of this form, Nesterov (2013) proposed a first-order method called composite
gradient descent. Composite gradient descent has been specialized to the case of g=| · |1 and
is widely known as iterative soft thresholding (see for example Tseng (2010), Combettes and
Wajs (2005), Beck and Teboulle (2009) and Nesterov (1983, 2004)). An extension to non-convex
regularizers g was given by Loh and Wainwright (2013).

The linearity of the constraint set Kp suggests the use of gradient descent where the gradients
are projected onto the associated .1−K+ΣK

k=1d2
k /-dimensional linear subspace. The positive

definite restriction can then be handled in a similar way to how Guillot et al. (2012) did for the
original graphical lasso. We therefore derive composite gradient descent in the linear subspace
Kp of Rp2

, creating a positive definite sequence of iterates {Ωt} given by the recursion
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Ωt+1 ∈ arg min
Ω∈K]

p

. 1
2‖Ω− [Ωt− ζtProjKp

{∇f.Ωt/}]‖2F+ ζtg.Ω//, .14/

where the initial matrix Ω0∈K]
p can be chosen as the identity. We enforce the positive semidefinite

constraint at each step by performing backtracking line search to find a suitable step size ζt (see
algorithm 1 in Table 2 in Section 5.2) (Guillot et al., 2012). We decompose and solve problem
(14) for the case of the TeraLasso objective in Section 5.2.

5.2. TG-ISTA implementation of TeraLasso
To apply this form of composite gradient descent to the TeraLasso objective, the projected
gradient of f.Ω/ is required for expression (13). For simplicity, consider the l1-regularized case.
The general non-convex case is described in the next section and the on-line supplement. Since
the gradient of 〈Ŝ, Ω〉 with respect to Ω is Ŝ (lemma 33 in the on-line supplementary material)

∇Ω∈Kp.〈Ŝ, Ψ1⊕ : : :⊕Ψk〉/=ProjKp
.Ŝ/= S̃1 ⊕ : : :⊕ S̃K= S̃ S̃k=Sk−K−1

K

tr.Sk/

dk
Idk

:

(15)

Although many different conventions for parameterizing the projection by using the S̃k are
possible, the projection remains unique. Alternative parameterizations will not affect the con-
vergence or output of the algorithm. Since the gradient of − log |Ω| with respect to Ω is Ω−1

(Boyd and Vandenberghe, 2009), the projected gradient takes the form

∇Ω∈Kp.− log |Ω|/=ProjKp
.Ω−1/=Gt

1⊕ : : :⊕Gt
K: .16/

The matrices Gt
k ∈Rdk×dk are computed via the expressions that are given in lemma 33 in the

on-line supplement. Combining expressions (15) and (16), the projected gradient of the objective
f.Ωt/ is

ProjKp
{∇f.Ωt/}= S̃− .Gt

1⊕ : : :⊕Gt
K/: .17/

Lemma 1 (decomposition of objective). For Ωt , Ω∈Kp of the form

Ωt=Ψt
1⊕ : : :⊕Ψt

K

and

Ω=Ψ1⊕ : : :⊕ΨK,

the unique solution to problem (14) with gρ=| · |1 is given by Ωt+1=Ψt+1
1 ⊕ : : :⊕Ψt+1

K where

Ψt+1
k = arg min

Ψk∈Rdk×dk

1
2‖Ψk−{Ψt

k− ζt.S̃k−Gt
k/}‖2F+ ζtρk|Ψk|1,off : .18/

The proof is in the on-line supplement section 2.5. The right-hand side of equation (18) is the
proximal operator of the l1-penalty on the off-diagonal entries. The solution has closed form,
as given in Beck and Teboulle (2009),

Ψt+1
k = shrink−ζtρk

{Ψt
k− ζt.S̃k−Gt

k/}, .19/

where we define the off-diagonal shrinkage operator shrink−ρ .·/ as

[shrink−ρ .M/]ij=
{

sgn.Mij/.|Mij|−ρ/+ i �= j,
Mij otherwise:

.20/
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Table 2. Algorithm 1: TG-ISTA implementation of TeraLasso (high level)

1, input: sample covariance matrix factors Sk , regularization parameters ρi, backtracking constant
c∈ .0, 1/, initial step size ζ1,0, initial iterate Ωinit= I ∈K]

p
2, while not converged do
3, compute the subspace gradient projKp.Ω

−1
t /=Gt

1⊕ : : :⊕Gt
K

4, line search, let step size ζt be the largest element of {cjζt,0}j=1,::: such that the following are
satisfied for Ψt+1

k = shrink−ζtρk
{Ψt

k− ζt .S̃k−Gt
k/}

Ψt+1
1 ⊕ : : :⊕Ψt+1

K �0

and

f.{Ψt+1
k }/�Qζt .{Ψt+1

k }, {Ψt+1
k }/

5, for k=1, : : :, K do
6, composite objective gradient update,

Ψt+1
k ← shrink−ζtρk

{Ψt
k− ζt .S̃k−Gt

k/}
7, end for
8, compute Barzilai–Borwein step size ζt+1,0 via expression (27) in on-line supplement section 2.2
9, end while

10, return {Ψt+1
k }K

k=1

The composite gradient descent algorithm is given in algorithm 1 in Table 2. In section 8
of the on-line supplement, a scalable geometric rate of convergence of TG-ISTA to the global
minimum is derived (theorem 25). In section 3.2 of the supplement we show that each iteration
can be computed in O.pK+ΣK

k=1d3
k / floating point operations.

5.3. TG-ISTA for a non-convex regularizer
The estimation algorithm is largely the same as algorithm 1, except with an additional term
added to the gradient. Specifically, the updates are of the form

Ωt+1= shrink−ζρ{Ωt− ζ∇L̄n.Ωt/} .21/

where ζ is the step size and

L̄n.Ω/=− log |Ω|+ 〈Ŝ, Ω〉+
K∑

k=1
mk

∑
i�=j

{gρ.[Ψk]ij/−ρ|Ψk]ij|}:

The update (21) can be decomposed into the factorwise updates

Ψt+1
k = shrink−ζρ[Ψt

k− ζ{S̃k−Gt
k+q′ρ.Ψk/}]

where q′ρ.t/=d{gρ.t/−ρ|t|}=dt for t �= 0 and q′ρ.0/= 0. These updates can be inserted into the
framework of algorithm 1, with an added step of enforcing the ‖Ω‖2 �κ constraint, e.g. via step
size line search. The algorithm is summarized in algorithm 2 in the on-line supplement section
2.1.

Theorem 4 (convergence of algorithm 2). Algorithm 2 will converge to the global optimum
when the norm constraint parameter κ is chosen to be less than or equal to

√
.2=μ/.

Proof. The proof follows since for κ�√.2=μ/ the objective (8) is convex on the convex
constraint set {Ω∈Kp|Ω�0, ‖Ω‖2 �κ} (lemma 21 in the on-line supplement).
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6. Validation on synthetic data

Random graphs were created for each factor Ψk by using both an Erdó́s–Renyi (ER) topology
and a random grid graph topology. (Code for the experiments is included in the supplementary
material and can be found at https://github.com/kgreenewald/teralasso.) These
ER-type graphs were generated according to the method of Zhou et al. (2010). Initially we set
Ψk=0:25In×n, where n=100, and randomly select q edges and update Ψk as follows: for each
new edge .i, j/, a weight a>0 is chosen uniformly at random from [0:2, 0:4]; we subtract a from
[Ψk]ij and [Ψk]ji, and increase [Ψk]ii and [Ψk]jj by a. This keeps Ψk positive definite. We repeat
this process until all edges are added. Finally, we form Ω=Ψ1⊕ : : :⊕ΨK. An example 25-node,
q=25 ER graph and precision matrix are shown in Fig. 3. The random grid graph is produced
in a similar way, with the exception that edges are allowed between adjacent nodes only, where
the nodes are arranged on a square grid (Fig. 3(c)). Algorithm 1 in section 2.3 of the on-line
supplement describes how the random vector x= vec.XT/ is generated under the Kronecker
sum model.

(a) (b)

(c) (d)

Fig. 3. (a), (b) Example ER graph with 25 nodes and 50 edges and (c), (d) random grid graph (square)
with 25 nodes and 26 edges: (a), (c) graphical representation; (b),(d) corresponding precision matrix Ψ
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6.1. Validation of theoretical algorithmic convergence rates
To verify the geometric convergence of the TG-ISTA implementation (theorem 25 in the on-line
supplement), we generated Kronecker sum inverse covariance graphs and plotted the Frobenius
norm between the inverse covariance iterates Ωt and the optimal point ΩÅ. We set the Ψk to be
random ER graphs with dk edges where d1= : : := dK, and determined the value for ρk=ρ by
using cross-validation. Fig. 4 shows the results as a function of iteration, for a variety of dk- and
K-configurations and the l1 convex regularization. Fig. 13 in the on-line supplement section
2.1 repeats these experiments with the non-convex SCAD and MCP penalties, using the same
random seed. For comparison, the statistical error of the optimal point is also shown, as opti-
mizing beyond this level provides reduced benefit. As predicted, linear or better convergence to
the global optimum is observed. The small number of iterations combined with the low compu-
tational cost per iteration confirm the algorithmic efficiency of the TG-ISTA implementation of
TeraLasso. Additional numerical experiments demonstrating fast convergence on larger-scale
problems are given in section 3.2 of the supplement.

6.2. Regularization with l1-penalty
In the TeraLasso objective (10), the sparsity of the estimate is controlled by K distinct tuning
parameters ρk for k=1, : : : , K. The convergence condition on ρk in theorem 1 suggests that the
ρk can be set as ρk= ρ̄√{log.p/=nmk} with ρ̄ being a single scalar tuning parameter, depending
on absolute constants and ‖Σ‖2. Below, we experimentally validate the reliability of this tuning
strategy.

The performance is empirically evaluated by using several metrics including the Frobenius
norm (‖Ω̂−Ω0‖F) and spectral norm (‖Ω̂−Ω0‖2) error of the precision matrix estimate Ω̂ and
the Matthews correlation coefficient to quantify the edge misclassification error. Let the number
of true positive edge detections be TP, true negative detections TN, false positive detections FP
and false negative detections FN. The Matthews correlation coefficient is defined as (Matthews,
1975)

MCC= TP TN−FP FN√{.TP+FP/.TP+FN/.TN+FP/.TN+FN/} ,

where each non-zero off-diagonal element of Ψk is considered as a single edge. Larger values of
MCC imply better edge estimation performance, with MCC=0 implying complete failure and
MCC=1 perfect edge set estimation.

Shown in Fig. 5 are the MCC, normalized Frobenius error and spectral norm error as func-
tions of ρ̄1 and ρ̄2 where the ρ̄k constants give ρk= ρ̄k=

√{log.p/=.nmk/}: Note that ρ̄1= ρ̄2= ρ̄3
achieves near optimal results.

Having verified the single-tuning-parameter approach, hereafter we shall cross-validate only
ρ̄. In the on-line supplement section 3.3, we provide experimental verification in a wide variety
of experimental settings (including varying the relative size of the tensor dimensions dk) that
our bounds on the rate of convergence for the l1 regularized model are tight. Fig. 6 illustrates
how increasing dimension p and K improves single-sample performance. Shown are the average
TeraLasso edge detection precision and recall values for various values of K in the single and
five-sample regimes, all increasing to 1 (perfect structure estimation) as p, K and n increase.

6.3. Non-convex regularization
Here the l1-penalized TeraLasso is compared with TeraLasso with non-convex regularization
(8). Shown in Fig. 7 are the MCC, normalized Frobenius error and spectral norm error for
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estimating K=2 and K=3 ER graphs as functions of regularization parameter ρ for each of l1,
SCAD (96) and MCP (97) regularizers in a variety of configurations. Fig. 8 shows similar results
for Ψk a variant of the spiked identity model of Loh and Wainwright (2017). Observe that non-
convex regularization improves performance slightly, not only for structure estimation (MCC)
but for the Frobenius norm error (due to the reduction in bias) as well. This improvement is
increased in the spiked identity case.

7. National Center for Environmental Prediction wind speed data

The TeraLasso model is illustrated on a meteorological data set. The US National Center for
Environmental Prediction maintains records of average daily wind velocities in the lower tropo-
sphere, with daily readings beginning in 1948. The data are available on line from ftp://ftp.
cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/surface. Velocities are
recorded globally, in a 144×73 latitude–longitude grid with spacings of 2.5◦ in each co-ordinate.
Over bounded areas, the spacing is approximately a rectangular grid, suggesting a K=2 model
(latitude versus longitude) for the spatial covariance, and a K=3 model (latitude versus longitude
versus time) for the full spatiotemporal covariance.

Consider the time series of daily average wind speeds. Following Tsiligkaridis and Hero (2013),
we regress out the mean for each day in the year via a 14th-order polynomial regression on the
entire history from 1948 to 2015. We extract two 20×10 spatial grids, one from eastern North
America, and one from western North America (Fig. 9). Figs 10 and 11 show the TeraLasso
estimates for latitude and longitude factors by using time samples from January in n years
following 1948, for both the eastern and the western grids. Observe the approximate AR(1)
structure, and the break in correlation (Fig. 11(b)) in the western longitude factor. The location
of this break corresponds to the high elevation line of the Rocky Mountains. In the on-line
supplement, we compare the TeraLasso estimator with the unstructured shrinkage estimator,
the non-sparse Kronecker sum estimator (TeraLasso estimator with sparsity parameter ρ=0)
and the Gemini sparse Kronecker product estimator of Zhou (2014). It is shown that TeraLasso
provides a significantly better fit to the data.

To illustrate the utility of the estimated precision matrices, we use them to construct a season
classifier. National Center for Environmental Prediction wind speed records are taken from the
51-year span from 1948 to 2009. We estimate spatial precision matrices on n consecutive days in
January and June of a training year, and running anomaly detection on m=30-day sequences
of observations in the remaining 50 testing years. We report average classifier performance by
averaging over all 51 possible partitions of the 51-year data into one training and 50 testing
years. The sequences are labelled as summer (June) and winter (January), and we compute the
classification error rate for the winter versus summer classifier obtained by choosing the season
that is associated with the larger of the likelihood functions

log |Ω̂summer|−
m∑

i=1
.xi−μi/

TΩ̂summer.xi−μi/,

log |Ω̂winter|−
m∑

i=1
.xi−μi/

TΩ̂winter.xi−μi/:

We consider the K= 3 spatial–temporal precision matrix for a spatial–temporal array of size
10×20×T , with the first (10×10)-factor corresponding to the latitude axis of the spatial array,
the second a .20×20/-factor corresponding to the longitude axis and the third factor a (T ×T )-
factor corresponding to a temporal axis of length T . The spatial–temporal array is created by
concatenating T temporally consecutive 10×20 spatial samples. We use l1-regularization.
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Results for various sized temporal covariance extents (T =d3) are shown in Fig. 12 for Tera-
Lasso, with the unregularized TeraLasso (maximum likelihood Kronecker sum) and maximum
likelihood Kronecker product estimator (Werner et al., 2008; Tsiligkaridis et al., 2013) results
shown for comparison. In this experiment, we use the maximum likelihood Kronecker product
estimator instead of Gemini, as for this maximum likelihood classification task the maximum-
likelihood-based approach performs significantly better than the factorwise objective approach
of the Gemini estimators, which is not surprising as the Kronecker product is not a good fit for
these data (section 3.4 of the on-line supplement). Note the superior performance and increased
single-sample robustness of the proposed maximum likelihood Kronecker sum and TeraLasso
estimates compared with the Kronecker product estimate, confirming the better fit of TeraLasso.
In each case, the non-monotonic behaviour of the Kronecker product curves is due partly to
randomness that is associated with the small test sample size, and partly because the Kronecker
product in K=3 has overly strong coupling across tensor directions, giving large bias.

8. Conclusion

A factorized model, called TeraLasso, is proposed for the precision matrix of tensor-valued
data that uses Kronecker sum structure and sparsity to regularize the precision matrix estimate.
An optimization algorithm like iterative soft thresholding is presented that scales to high di-
mensions. Statistical and algorithmic convergences are established for TeraLasso that quantify
performance gains relative to other structured and unstructured approaches. Numerical results
demonstrate single-sample convergence as well as tightness of the bounds. Finally, an applica-
tion to real tensor-valued (K=3) meteorological data is considered, where the TeraLasso model
is shown to fit the data well and enables improved single-sample performance for estimation
and anomaly detection. Future work includes combining first-moment tensor representation
methods for mean estimation such as parallel factor analysis (Harshman and Lundy, 1994)
with the second-order TeraLasso method that is introduced in this paper for estimating the
covariance.
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Zhou, S., Rütimann, P., Xu, M. and Bühlmann, P. (2011) High-dimensional covariance estimation based on

Gaussian graphical models. J. Mach. Learn. Res., 12, 2975–3026.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Supplementary material for Tensor graphical lasso (TeraLasso)’.


