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where ® denotes the Kronecker (direct) product and £ > k_Usingt} tation,
the K-way Kronecker sum of matrix components { ¥z }5_, can be wfitten as G‘b?@f\ Ly ul/ol

ol

K
Vi@V =) Iy, 0TIyl (1
k=1

In the special case of K = 2 this Kronecker supr’representation reduces to
the more"familiar ¥; @ ¥, = ¥; ® I, + I3, ;. The vectorization of a
K -way tensor"Xyis denoted as vec(X) ands defined as in Kolda and Bader
(2009). Likewise, we define the transposg/6f a K -way tensor X7 € Rdx X xd:

analogously to'the matrix transpose, €. [XT);, .. = Xi,. ;..
When theprecision matrix {2 hds a decomposition of the form (1) the Kro-
necker sum components {¥;};* ; are sparse, and the K-way data X has a
multivariate Gaussian distsibution, the sparsity pattern of ¥y corresponds to

dy, = 4. Spegifically, Uy, k = 1,2, 3 are identical 4 x 4 tridiagonal precision
matrices cdfresponding to a one dimensional autoregressive-1 (AR-1) process.
In the Figure'the precision matrix Q- =$r-6- ¥y ¥y isshownonthe lefeand —

covariance B*=2()=! on the right. The e?ii 3
A

gstEation o nnecke nmede q ' SRS ahred . ’
ess, keft: Sparse 4 x 4 precision matrix ) = ¥y ¢ U5 & wﬁk
are identical tridiagonal precision matrices correspoﬁdhfg'to/&;e dimensional

AR(1) models., Right: c‘c}lxgrgggum XY = Q'. Unlike the Kronecker
product precisiop.n , the nested block structure in ¥ is not reperesentable

of corresponding entries in the sample covariance matrixW
reductionvinrestimating ). This Krz:?[l;_fir’s’u’m,gi\&es—ﬁ a nonseparable and
interlocking fepeatifig block structure-irthe covariance matrix.

We propose the-folfowing sparse Kronecker sum estimator of the precision
matrix{in (1 aich we call the Tensor Graphical Lasso (Teralasso). The
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erd ) 7
the crorécker
product model is 2 positlon

trary K > 2 and ufiknown d1agona1 entries of {2, provide a faster converging
optimizati ithm, and obtain strong convergence guarantees and bounds

on the c/amf engg rate for all K, including K = 2. For completeness, we also
obtain (Ap@ of the supplement) bounds on the convergence rate for the

Kknown-diag

The qua!ativ ditferences between the Kronecker product and Kronecker

sum mod precision matrix can be better appreciated by considering
the prodchat are induced by them. For given sparse Kronecker factors

Uy,.., 0 K, the Kronecker product model corresponds to the direct (tensor)
product um model corresponds
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where ¢’ (t) = %(g,,(‘t) — plt|) for t # () and ¢, (0)
be inserted into the framework of Algorithm 1, with
ing the ||| < & constraint, e.g. via step size line search. The ;
summarized in Algorithm 2 in Supplement 2.1.

verge to thg Elobaboptimu
be less tham or equal to

Random fraphs were created for each factor ¥y, using hdth an Erdos-Renyi
(ER) topolo a rangem grid graph topology¥. Thes€ ER type graphs were
generated ag€ordifig to'the method of Zhou et al. (20)0). Initially we set ¥, =

0.251,, xn,
follows: for eaeli new edge (4, ), a weight a > (s chosen uniformly at random
; wesubtract a from [Wy];; and ¥, and increase [Wy ], [Tr);
positive definite. We refeat this process until all edges

b @ Wiy, An example 25-node, ¢ = 2
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{*|| p of the difference between the estimate at the tth iteration angthe optimal
{1*. On the left are results comparing K = 2 and K = 4 op’the same data
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Showsrare t C, relative Frobenius error, and relative L2 e
aLasso estifiaté as\the scaled tuning parameters p; ed. Shown are de-
viations of the theoretically dictatedp2 = p1 = p3. Top: Equal di-
mensions, ﬁ = d3. First-afid third factors are random ER graphs with

dj; edges, and the Sgcond factor is random grid graph with dj, /2 edges. Bottom:
d1, each factor isa random ER graph with dk edges. Notice

Dimensionssds
i at usin ; redicted.

as functions of regularization parameter p for each of £1, SCAD-¢ ,w, amd - MCEP
(97) regularize a variety of configurations. Figure 8 shows simifar results
for ¥z av e splked f:n/y model of Loh etal. ). Observe that

es performance sli

odel is illustrated on a meteorological dataset. The US Na-
vironmental Prediction (NCEP) maintains records of aver-

HE- i p:/7ftp.cdc.noaa.gov e
ncep.reanalysi avgs/surface Velocmes are recorded vin a 144 x
73 latitude-longitude grid with spacings of 2.5 de h each coordinate. Over

bounded pacing is approz.imaté‘fff‘a rectangular grid, suggesting a

K=2 m%de vs. longitude) for the spatial covariance, and a K’ = 3

model (latitude vs. longitude vs. time) for the full spatio-temporal covariance.
Consi series of daily-average wind speeds. Following Tsiligkaridis

_—‘:_-—R‘_\““_
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sion p = [[;_, di. For each value of the

tensor order A-w = p/X, Observe single sample convergence as the
inciease increasing K creates additional structure.

aan"ﬂﬂJEgegress out the me

order polynomial regression on the entire history from 1948-2015. We/€xtract

estimates for
in n years fol-
serve the approximate
(b), longitude factor) in

latitude
lowing 1
AR structure
the Wes

the eastern and western grids.
e break in correlation (Figur

red shrinkage estimator, the non-sparse

Kronecker swnator (TeraLasSo estimator with sparsity pa ter p = 0),
and the Gemini sparse Kroneeker product estimator of Zhou (2014). It is shown

To illust dtility of the estimated precisioh matrices, we use them to
construct a segson lassifier. NCEP windspeed records are taken from the 51-
year span ffi@m 1948-2009. We estimate spatial precision matrices on n con-
secutive” days al uary and June of a training year respectively, and running

orhaly i = 30-day sequences of observations in the remaining

0 testing years. We report average classifier performance by averaging over all
51 possible partitions of the 51-year data into 1 training and 50 testing years.
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Fig. 7-No wregularizers in the single sample regime (1 = 1. W ER-with
. edges)” Shown are the MCC, relative Frgl)ggius.emlﬁ relative L2 error

as a function of p. Note nonconvex regularization improves performance.
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ision matrix for a spatial-temporal
array of size 107 x 10) factor corresponding to the
latitude axis-ofth€spatial anay, the second a 20 x 20 factor correspondmg to the
longitude axjz; and the third factor 3/

and maximumlikélihood Kronecker product estimator (Werpef et al., 2008:
Tsiligkaridis etu#l22013) results shown for comparison, this experiment,
we use the WL Kronecker product estimator instead of the Gemini, as for
this max fium-like€lihood classification task the maxyifium-likelihood based ap-
proac perfonns significantly better than the fagtorwise objective approach of
the , which 1s nof st e Kronecker product is not a

good fit for this data (Sectlon 3.4 of the supplement) Note the superior perfor-

in Figure 11 for/':;z;,Lﬁa s0, with unregularized TeraLasso (ML Kro
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C d relativeFrobenius error as a functi NeteTionconvex regular-

ization improves.performanc T p is chosen correctly.

mance and increased single sample robuStness of the proposed ML Kronecker

confirming thesbetter fit of Ter:

structured and unstructured’approaches. Numerical result€ demonstrate single-
. Finally, an application
to real tensor-value i = i a1s considered, where the Ter-
al.asso modegf(vﬁown to fit the data well and’enable improved single-sample
performance f6f estimation and anomaly detection. Future work includes com-
bining firsk-mement tensor representa

as PARAE :
method 1ntroduced in this paper for estlma '

This article is protected by copyright. All rights reserved



g Acknowledgement

The research repofted in-this-paper-was—partial oried-by-HS-Army Re-
search Office grant W911NF-15-1-0479, US Department of Energy gr, t DE-
NA000253 rant DMS-1316731, and the Elizabeth Caroline Crosby Re-
search Aw om the Advance Program at the University of Michigan.

Reference:

Allen, G. 1. ghirani, R. (2010) Transposable regulafized covariance mod-

els with an application to nfissing data imputationd’ The Annals of Applied
Statistics, 4, 790.

Andrianov, m997 ‘A matrix representatién of lie algebraic methods for
f

design of nonlinear/beam lines. In AIP Zonference Proceedings, vol. 391,

usio, M., von Wilpert, K., Kublin, E., Wood, S. N. and
Schu (2009) Modelipg spatiotemporal forest health monitori

Banerjeg, El Ghaoui, J£ and d’Aspremont, A. (2008) Modgt selection
throligh sparse maximys likelihood estimation for multivaript€ gaussian or
binary da eWougphal of Machine Learning Research, 9¢485-516.

Beck, A. and Teébodlle, M. (2009) A fast iterative s
gorithm fg ar inverse problems. SIAM Jou
183-202. L/

inkage-thresholding al-
[ on Imaging Sciences, 2,

Beckermd BumKressner, D. and Toblef, C. (2013) An error analysis of
gal' projection methodsforlinear's stems with tensor product structure.
SIAM Journal omiNumerical Analysis, 51, 3307=3326:

This article is protected by copyright. All rights reserved

w\ 9@1' He\vel'\&\




0 oo v o

(b) Western gnd. Graphical representation of latitude (lé(fr) and longitude factors<{bot-
tom) with thﬂondmg precision estimates.Obseérve the decorrelation (longitude

factor entries connecting nodes 1-13 to nodes 14-20 are essentially zero) in the Western

“ongitudinal factor, corresponding to the high-clevation line of the Rocky Mountains.
Ms@nberghe L. (2009) Convex optimization. Cambridge uni-
versity pr

Chapman bi-Abdolyousefi, ¥ Controllabil-
ity and obs ity of net il products. IEEE
Trans utomays Control 59, 2668-2679.

€ calibration with temperature
signal regression. Chemomet-
laboratory systems, 66, 159-174.

Eilers, P.
interact
rics and intellig

, B. D. (2003) Multivari

This article is protected by copyright. All rights reserved




o(:\clg — enlage to-
1y L3 pfkc%z o

é 05 s 0.5 L0 05 —an I
[ —&— Proposad ML Kron. Sum| | Proposed ML Kron, Sum | | —e FrvpondMLKrm Sum
% 048 —&— Fropossd Ta ralasso o4 —B5— Proposed Teralasso L —O— Propossd TeraLass: |
. 04 MLKron, Product (FF) | | 04| ML Kron. Product (FF) 04 MLKron, Produdt FF) |
035, 035 035
2 03 £ 0a 2 03|
5 g 5
T o5 T g25| | Tozs
g g g
& ozl & 02| & o2
0.15 0.15 015/ ]
o
o1 o1y 01 o
I 3] .
0.05 | e < L 0.05 ° ’ b o 1 oosp 7
—e 5 b—=a o5 o & 0t ——o—8
5 10 15 20 25

05 Tt 05 Fomdf=— 05 o
x S 045 | | 045 | 0.45
[—& ML
| I S I o R &hﬁﬁr\? a)- f
035) o | ML Kron. Product (FF) | | 035 | ML Kron. Product (FF) | 0.35 | i Toralasen.
2 03. | ;3 03, 2 o3| | ‘..
”E‘: 0.25 | £ ozsa | E 0.25 l‘ l
] 0.2‘.} 1 |
0.15 \ o v 0.15 0.5 |
A -] a
0. 0.1 o H 01

0.05 | i b | 0.05 | { 0.05

@mo\\ t e

M rall nice, 528554, /

Faber, N. K. M:7Bro, R. and Hopke, P. K. (2003) Recent developme ){(u in CAN-

DECOMP/PARAFAC al'g/mhf a critical review. Chemometfics and Intel-
ligent Laboratory Systems, 65, 119-137.

Fan, J. and Li, R 01) Variable selection via nonconCave penalized likelihood
and its oragl€ properties. Journal of the Amep'c’hn statistical Association, 96,
1348—[3 0. 7

Fey, M Eric Lenssen, J., Weichert, F. and Miiller, H. (2018) Spline
geometric deep learning with continuous b-spline kernels. In P ceedmgs of
the IEEE Conference on Cﬁﬁ{puter Vision and Pattern Recogfiition, 869-877.

Fnedman I, Hast1 ’I‘ and Tibshirani, R (2008) Spa/rge inverse covariance

This article is protected by copyright. All rights reserved



T R. Skehisk, Soc. ‘B (209 [ 3REC St

2% E@Lk '5; Rp 000-000 %[olo 2 -
0 N\ Greeneonld ebal.

—

—

Tensor éraphical«ésso (TeralLasso)

Kristjan Greenewaldz ’
IBM-Research, Cambridge, USA/
ShuhengZhou O.L'
a.ﬂd University of Californi%Hiverside, USA/
'/ Alfred Hero il
University of Michigan, Ann Arbor, US

[Reewwred Moy 2007, Rhel vovision Ruguel 20197

Summary.
4Th§paper intfroduces a muI@ay tensor generalization of tgggigraphical
+asso [Bi which uses a two-way sparse Kronecker!sum multivariate[#’

normal’model for the precision malg_toiggr_siﬂvggpﬂsily_ﬁo elconditional
dependence relationships of matrixjvariate data based on the Cartesian

(‘8 —product of graphs. We call this\generalization e Tensor graphical Fasso /
(Teralasso.X, We demonstrate'[vusing theory and examples that the Ter?)
alasso_madel can be accurately and scalably estimated from very Iim@
ited data samples of high dimensional variables with multiway coordinates
such as space, time and replicates. Statistical consistenc “and s_tal@@ tr \\\ Cb\l
cal rates of convergence are established for both theLB'rG%asso and Ters ﬁrq? '
alasso estimators of the precision matrix and estimators of its support
(non-sparsity) set) respectively. Me propose a scalable composite grad@
ent descent algorithm and analyZe the computational convergence rate,
showing that'the composite gradient descent algorithm is guaranteed to
converge atia'geometric rate to the global minimizer of the TeraLasso ob?)
jective funetion. Finally, we illustrate the TeraLa%'o@g both simulafion (’.‘j

and experimental data from a meteorological dataset, showing that we can
accurately eétimate precision matrices and recover meaningful conditional
dependenclgraphs from high dimensional complex dat%ets.

(VeTV) r‘a—S

@ 1. Introduction

The inc;gasing availability of matrix and tensor-valued data with complex d@
pendencies has.fed the fields of statistics and machine learning. Examples of
tensor-valued,datasinclude medical and radar imaging modalities, spatial and
meteorological data collected from sensor networks and weather stations over
time, and'biological, neuroscience and spatial gene expression data aggregated
over trials,and.time points. Learning useful structures from these largeLscale,
complex and highjdimensional data in the low sample regime is an important
task in statistical machine learning, biology and signal processing.

&IE o degfq for corvespondencet Krist jan Gfeenewad) MIT@‘.CBM
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As the precision matrix (inverse covariance matrix) encodes interactions
and, for tensor-valued Gaussian distributions, conditional independence rela?>
tionships between and among variables, multivariate statistical models, such as
the matrix normal model (Dawid) 1981)(],\have been proposed for estimation
of these matrices. However, the number of parameters of the precision matrix
of a K-way data tensor X € R% 9K grows as Hfil d?. Therefore in high
dimensions unstruCtured precision matrix estimation is impractical, requiring
very large sample sizes. Undirected graphs are often used to describe high dif (;H
mensional distributions. Under sparsity conditions, the graph can be estimatea/,(
using {1 -penalization.methods, such as the graphical.fasso (GLasso) (Friedman
et al., 2008) and multiple (nodewise) regressions (Meinshausen et al,, 2006).
Under suitable conditions, such approaches yield consistent (and sparse) estig\
mation in termssofigraphical structure and fast convergence rates with respect
to the operator and Frobenius norm for the covariance matrix and its inverse.
However, many of the statistical models that have been considered still tended
to be overly simplistic and not fully reflective of reality. For example, in nelg\
roscience ofic must take into account temporal correlations as well as spatial

“correlations, witich reflect the_éonnectivitnyormed by the neural pathways. Yet, ndepe nc o o an Ol

thﬁ line of high dimensional statistical literature mentioned abqve has primar:> den, a/[
ily focused on estimating linear or graphical models with %if{ samples. In \s“l"'t‘imf; d
the case of graphical models, the data matrix is usually assumed to have inde]’ '
pendent rowsserseolumns that follow the same distribution. The independence

assumptions substantially simplify mathematical derivations but they tend to be E w g

very restrictive. For instance, \.hq cortical circuits can change over time
activities suchsassmotor learning, attention or visual stimulation. "Fiig data typ?> ~
m a complex structure that is organized by the experimentiﬂdesign, with  — (hese

one or more experimental factors varying according to a predefined pattern.

On the theoretical and methodological front, recent work demonstrated anP
other regime where further reductions in the sample size are pgssible under
additional stru€tural assumptions on the conditional dependency graphs which
arise naturally in the above[:mentioned contexts when handling data with com‘D
plex dependencEs. For example, the matrix/normal model as studied in Tsiligkaridis

et al. (2013)and Zhou (2014) restricts the topology gfﬁt_:_gr_al&t_o tenso_r_pro@ "‘50
uct graphs wheresthe precision matrix correspondsja Kronecker product repreq —
sentation. Moreovei[zhﬂtfgo 14) showed that one can estimate the covariance
and Inverse Covariance matrices wellhxsing only one instance from the matrix
variate normal'distribution. Along the same lines, the B’igraphical Lasso frame?)
work was prop(%ed to[parsimonioq_s_l;_-'; 'r'r'ii)_d'ei]conditional dependence relations)
ships of matrix}-variate data based on the Cartesian product of graphs (Kalaitzis
etal,, 2013) as opposed to the direct product graphs of the matrixfnormal mod]/\
els above. ‘Thesesmodels naturally generalize to multilinear settings with more
than two axes,of structure as demonstrated inLthe present work. The present
work addresses the problem of sparse modﬁr?g of a structured precision matrix

This article is protected by copyright. All rights reserved
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L We follow the notation and terminology of Kolda and Bader (2009) for modi\
—aing tensorgvalued data arrays. Define the vector of component dimensions

7

Tensor-Graphicat-tasse-(Teratasso}~ 3
for tensor-valued data; more precisely, we aim to estimate the structure and pz}i\
rameters for a class of Gaussian graphical models by restricting the topology to

the class of Cartesian product graphs, with precision matrices represented by a
Kronecker sum for data with gomplex dependencf}\es. = o D
l V)

Towarcghese goals, we sul] introduce the tensor graphical assg/(TeraLasso
procedure Tor estimating sparse K-way decomposable precision fifatrices. We

"—%:H showsthatsour concentration of measure analysis enables a significant re?

duction in the;sample size requirement in-ordef to estimate parameters and the
associated conditional dependence graphs along different coordinates such as
space, timesandeXperimental conditions. We establish consistency for both the
<BPigraphical asso.and Tensor graphical Lasso estimators and obtain optimal
rates of conyergence in the operator and Frobenius norm for estimating the ash
sociated préeiSion matrix, and for structure recovery. Finally, we demonstrate
using simulationsand real data that the Kronecker sum precision model has
excellent potential for improving computational scalability, structural interpre_-Z}
tation/ and its applications to classification, predictionf and visualization for
complex data analysis.

A philosophical motivation of TeraLasso’s Kronecker sum (Cartesian graph)
model is thatitachieves the maximum entropy among all models for which the

tensor component projections of the covariance matrix are fixed/see Section 3.
A compelling justification for the proposed Kronecker sum model for the pr@
cision matrix is that similar models have been successfully used in other fields,
including regularization of multivariate splines, design of physical networks
and decomposition of solutions of partial differential equations governing many
physical processes, Additional discussion of these practical motivations for the
model is in Section 1.3 below.

A
1.1. The multélyay Kronecker sum precision matrix model

pP= (dl, coyd K} and let p denote the product of these dimens_@pns[‘.
(Sel

pZH:IIdk (;;d mk:Hi;gkdi :/?%,

To simplify the multiway Kronecker notation, we define

I[dk:l] = Idlu K. Id_‘
N el
!—k+1 factors
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where[g_‘ denotes the Kronecker (direct) product and ¢ > k. Using this notation,
the K'-way Kronecker sum of matrix components {¥}¥_, can be written as

K
vy S @ qlK:ZI[dl:k—I]®wk®1[dk+1:1(]' ¢))
k=1
In the special case of K = 2 this Kronecker sum representation reduces to
the more familiar ¥; & ¥, = ¥ ® I, + I;, ® Vs, The vectorization of a
K-way tensor Xis denoted as vec(X) and is defined as-in Kolda and Bader
(2009). Likewise, we define the transpose of a K -way tensor X7 € Rox X::xd:
analogously to the matrix transpose, i.e. (X . iryitire = Xigyins J
When the precision matrix 2 has a decomposition of the form ( l)lthe Kro{’\ -‘\&V‘e

necker sum_components {¥;}# , are sparsefand the K-way data X a
multivariate_Gaussian distribution, the sparsity pattern of ¥, corresponds to )
a conditional independence graph across the kth dimension of the data. ) on

Figure 1 illustrates the Kronecker sum model proposed in/(1) for K = 3 and
dy = 4%9 Specifically, ¥, k = 1,2, :Y')are identical 4x4 mﬁiagonal precision CP’Q{,&))
matrices comresponding to a oneZdimensional autoregressive process. ;" L(QJ
iglrerthe precision matrix ) = ¥y @ U, @ U3 is shown and L&

Lcovariance S=001 *ﬁhe-;;-g-h’ The entries of each ¥, are replicated my, =

-

— —

20 40 60 20 40 60
;

AL
Fig. 1/ Tlustration of the Kronecker sum model for a tensor valued AR(1) pro!
g , pros

'-—cgg's;\.@:efﬂ parse 4 x 4 x 4 precision matrix ) = ¥; @ U, @ U5, where U,

are identicalytridiagonal precision matrices corresponding to one dimensional
AR(1) models/=Right| Covariance matrix ¥ = 02~/ [Unlike the Kronecker
product precisiommodel, the nested block structure in 3 is not reperesentable
roduct of component factors} ! () .

—— -
S—

16 times across*Q+for each k. This regular structure permits the aggregation
of corresponding entries in the sample covariance matrix, resulting in variance
reduction in estimating 2. This Kronecker sum gives ) a nmfeparable and
interlocking-repeating block structure in the covariance matrix.

We propose,the following sparse Kronecker sum estimat)or of the precision
matrix ilZ(l), which we call the Tensor b(raphicalflfasso ZTeraLasscf@hd
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Yensor Graphical Lasso-(TeraLasso)} 5
TeralLasso minimizes the negative "ll -penalized Gaussian log-likelihood fun@
tion over the domain ICE, of precision matrices {2 having Kronecker sum form,

K
QWW Q= arg min —log || + (5, Q) + ka ngk([\llk]ij) 2)

A Qekh,IQ)<x k=1 i#j
= i#j
{}“’0‘«{?\0 b "“;___ \ 1 @T\
_—— ,Iwhera.ﬁ' Son Z;VGC(XiT Jvee(XT)T, )
z=

gp(t)isa sparsityﬁnducing regularization function parameterized by a regulari\
[ %

ization parameter 7{ and j‘u,l)] od La

(Tetmal, Qg d
'\,\ :y’.g/,.- /Cp = {AEO:HB]CER"X"%fv.A=Bl@J'.'_;_@BK} )

necker sum of fixed factor dimensions dy,...,dg. In this paper we consider ( OLl)'IO\LL
(1, v)famenable regularizers g, (Loh et al., 2017). The norm constraint ||€2]|, < \
k is requiredifor the solution to be well defined when gp 1s not a convex penalty.
These penaltiessineludes nonconvex regularizers such asE.SCADiand@ 1C] }?, as _d\ e M oor. coavex
well as the traditional #1/regularizer g,(t) = plt|. — }
Observe that'sparsity in the off diagonal elements of U, directly creates ? J
sparsity in { lgAsinithe graphical Lasso, incorporating an gl -penalty over entries
of Q with the tensor-valued Gaussian or matrix@lormal (pseudo)ﬂo#}ikelihood
3 romotes a sparse graphical structure in (2; see, for example lBanerjee et gl/
,n l}l\ @008 nYuan and Lini 2007% ou{@OlW & 31.{8019). In this work, we
o\ti[-\ allow for the moregeneral case of nErLonvex regularization functions g, as
considered in Loh et g]. (2017). Whilg sometimes difficult to tune in practice,
norEonveX regularization provides strong no%symptotic guarantees on the eleé/f\
mentwise estimation error of (2, implying strong, single[_sample support recovi
ery guarantees'when the smallest norjzero element of 2 is bounded from below.
The contributions of tfis paper are as follo_ws_. The sparse multivariateéf WU« e&
normal Bigraphical Lasso [[BiGLass6) lﬁm exte'ndéﬂlt(T the smarz‘ — G
variate (K > 2) Teralasso niodel, allowing tlﬁ: mode@n‘g of data with arbitrary
/h tensor degree’ KimAinew s%aussian concentration inequality (@orollmy 19 in
ON—AME e lement)uis,presented that gives rates of statistical convergence ( heoQ
A rems 1-3) of the TeraLasso estimator as well as the BiGLasso estimator, when
{w the sample sizesis'low (even equal to Eize). Teralasso’s generalization of Bi:fj
0-C  Glasso fromﬂh—way to K-way decompositions is important as it expands the
domain of application, allowing a data scientist to group variables into their

natural domains along multiple tensor axes. For example, with a health data se H\m ~
. . . . [
that is collectedwover space, time, people and replicates, TeraLasso’s -way texgj
(2

UD}'I 25005 sor decomposilion.( imexsp_z‘lce xp.g(}%lg’) can account for possible ependen%
& Qu\ structure between people, a z-way BiGLasso or KLasso approach decomz~
(£ ' (4

KLasss”

is the set of positive semidefinite matrices that are decomposable into a Kro? S’MOO‘H\L GL‘PS’GCL
3 2 deviab
eviabhon
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6 Greernewald, Zhou, Hero

posing over (time x space) would unnecessarily enforce an assumption of ind F
v .
pendence between people. Alternately, BiGLasso or KLasso could group two
axes together (e.g. (time X space)x people)’’however, this would create a large/‘ on TEQP&'Z';UG- [« t—
tk e S unstructured factor whose estimation would require many more replicates than Y 'H‘wf: d\oui 0
“" " the B-way decomposition that TeraLasso uses to give each axis its _ow_n__fg_cg S j
A highly scalable, first-order ased jalgorithmfis proposed to minilu\
mize the Jeral:asso objective function. We prove (Theorem 25 in the/supple
e ment) that it cenverges to the global optimum with a geometric convergence
rate, and/ demonstrate its practical advantages on high dimensional problems. | ,
ik ~ that ag

online

 ————

As.compareditbsthesalternating block ¢ yordinate descent algorithm/proposed by
Kalaitzis etyali(2013) for thd BiGLasso, the proposed H—? algorithm enjoysa 'Ve [ l,
per-iteratiom computational spee%lp over BiGLasso of order ©(p). Our numiery® es l C\f jl
dbes ical results show'that the BiGLasso algorithm often requircs many mrﬁe_itﬁra'}_(h : (\3
tions to converge@our lS—El method. Numerical comparisons are presented (ty
demonstrating that TeralLasso significantly improves performance in small sam?"
ple regimes. To demonstrate the application of TeraLasso to real world data
we use it to estimate the precision matrix of spatioftemporal meteorological
data collected/bygthe National Center for Environmental Prediction 9;@190
Our results show,that the TeraLasso pag%ision matrix estimator degrades —Hm’{— oe
more slowly than other estimators as & reducef the number of samples/avail®
able to fit the"model. The intuitive graphical structure, the robust eigenstruéf
L _ture and a maximum entropy interpretation make the TeraLasso model a com:’/ﬁ
pelling choi¢e for moddling tensor data, much as the Bi graphical'fasso provides
a meaningful alternative to the matri)i ormal model.

@ 1.2. Relevant prior work

The use of tensor product models for multiway data has a long history. In the
statistical contextpdirectly fitting a Kronecker product to multiway data yields
a firstjorder,approximation corresponding to fitting the mean (Kolda and Bader,
2009) when'the fitting criteria is the Frobenius norm of the residuals. Many POU'Q,U e{ &Zu.c,l‘or
(/\I“.c.\h\gig such methods involve lov%ank factor decompositions i c;éudingf - _
O 2 and CANDECOMP as in Harshman and Lundy (1994)] Faber et al. (2003)7”
7 ﬂwl ™, Tucker decomposition-based methods such as Tucker (1966) and Hoff (2016):
C‘-;PN)FCOMP} and hybrid methods such as Johndrow et al. (2017). In contrast, second@rder
" methods have been used to approximate multiway structure of the covariance
(Werner et al.;"2008; Pouryazdian et al., 2016). Series decomposition methods
have been proposed for fitting the covariance matrix in Frobenius norm jusing
sums of Kronecker products (Tsiligkaridis and Hero, 2013; Greenewald and
Hero, 2015; Rudelson and Zhou, 2017; Greenewald et al., 2017).
Kroneckerproduct approximations to the inverse covariance have fitted ma:l:
trix normal medels,(Allen and Tibshirani, 2010) and sparse matrix normal mod{™ .

s

els (Leng and Tang,2012; Zhou, 2014; Tsiligkaridis etal.,, 2013). In contrastg Lo
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Tensor-Graphical-Lasso-(Teratasse} 7
the Kronecker sum model (1) for the precision matrix €, the K -way Kronecker
product model is 2 = ¥; ® ... ® Y. The Kronecker product decomposition
implies a separable property of the precision matrix across the K data dimena%)\

we m might expect to become an increasingly restrictive condition
as K increases. In this paper we show that the proposed Kronecker sum model
(1) can be a worthwhile alternative representation.

A twojfactor(K = 2) sparse Kronecker sum model for the precision matrix
({j _ Qmwmed in Kalaitzis et al. (2013). The model was fitted
to the sample covariance m_an_‘iilusing an iterative procedure called BiGlasso,
which requiredsthe-diagonal entries of (2 to be known. Conditions guaranteeing
convergence weresnot provided. Here we extend the BiGlasso model to arbié®
trary K >-2 and unknown diagonal entries of {2, provide a faster converging
optimization algorithmi and obtain strong convergence guarantees and bounds
-{ on the convergen@e rate for all K, including K = 2. For completeness, we also
on-the obtain (Appendix B of the[supplement) bounds on the convergence rate for the

knowntdiagonal setting of Kalaitzis et al. (2013). —
L o @ ] T e W s TR —

alo~
N (@)
fiied R

sepocaltg
0 T

P

4

Kronecker Sum Kronecker Product b’)
: (8 the

_ Ejg.’gLCompan'son of/Kronecker sum (Cartesian pro;l)lct graph) dt-centes and
{ (¢ _Kroneckersproduct (direct product gl’hﬁlﬁz -fighti-{The products are formed d.,
] ¢ CDD » from the component graphs Fhown-in—ta)-tb)-te}] the number of factors in thg___/ﬂh
product graphs is K = 3 and the dimensions are d; = dy = 4@3 = 2, leading e
H\, _to product graphs with 32 nodes, arranged in a regular 1dimension51 grid in the “
e

ﬁgures?ﬂbottom[{@fnly the edges emanating from the orange node are indicated k N

(red and greefi edges)l; e Kronecker sum model has a total of 64 edges
the Kronecker product model is much less sparse, having a total of 184 edgesf

- Ry ““‘“—-ﬁ_,_ — — — _-\‘___, = =

The qualitative differences between the Kronecker product and Kronecker
sum models for the precision matrix can be better appreciated by considering
the produci.graphs:that are induced by them. For given sparse Kronecker factors

‘\IJ(\ Wy,..., Uy, th onecker product model corresponds to the direct (tensor)
erns product of the component graﬁ@i-lq the Kronecker sum model corresponds
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2ol | Multiway Kronecker Product — | Multiway Kronecker Sum —

/ Covariance | Precision matrix €2 is separable across K ten/ ‘f‘recmon matrx is no:reparable across tensor
[ Model /' sor components, / components, motivated by maximum entropy

y 4 considerations
{ Graphical y " Graph is the direct product of the K graph [y Graph is the Carteilan product of the K graph
I |

| odel | components/ components;
' Sparsity l; Number of ¢dges in {2 grows iis the product of L‘ Number of dges iti 2 grows as the sum of the
./ the number of edges in each componenty’ /' number of edges in each component,

/ Graphical >/ *| Edges in sparse factors cintribute to large | Each edge in the spiirse factors direétly map to
model inter{ '| numbers of edges multiplicatively, edges in the overall precision §2; Sparsity patf™
pretability. J': ; = b tern follows Cartesian Markov-like network [~
Inference "I Nc%:nvex (multilinear) matimum likelihcod | Maximum likelihodil estimator is convex, |

’ 1), «f| estiffiator, alternative estimators usually fai"

‘Uredj

& v 4
’lla/bP\/cJ Quahtatlve differences between n1u1t1way Kronecker sum (Teralasso)
’ and multiway Kronecker product (BiGlasso) models for high dimensional pre-/'

| cision matrix estlmatlon{

\.,, —— .
e — .—-'—_““—,____h_ = —— - — .-/——_-___-__

to the Cartesian productn of these components (Hammack et al., 2011).
1 direct product graph and Carte sian product graph differ greatly, ‘the former has a \Dlh., .h. s
( (‘)Jf?tuﬂ number of edges equal to[5 ]1’“ 12| Eg|+|Ve])— ﬁﬂ 1 |@W L
a number of edges ecilialt ;i B Tz lwvflere Vil E; denote.‘t.ahc node
—and edge sets'of'the z@th component graphf.+To illustrate, 1t1'the number of non- ,ﬁmd_ e
zero entries of Uy is cd; for some c, the number of edgesLMect
k product graph by }?se;tmg a single new edge into the ﬁrls_t[ component graph is
Ci 3t equal to 5 (2c+ 1Y% {p/d1) — p, where we recall that p 1 4 is the number <
[) L JP of covarlates (rows £f Q)! dy for the C artes’ian product graph it I co nJH\Q'SE
is only p/d; regardless of c. Hence, as c and K increase, using the Kronecker u)l\ e ba ¢
product model'a single edge in ¥ can create a proliferation of edges the T
a number of new edges in the Kronecker sum model is fixed, independent of K. A
5 concrete example of these differences is illustrated in Figife 2. The qualitative
T differencessbetween the Kronecker product and Kronecker sum models for the
{ clie } precision matrix aré summarized in Table 1.

| 1.3.  Rationale for the proposed multiway Kronecker sum model \
This paper develops a scalable, fast and accurate estimation procedure, the T_er{)f iB \
alLasso, for multiway precision matrices ngsmg higher order Kronecker sum
i' models. To justify the practical utility of th¢ TeraLasso we illustrate it on a

|

) f s atlohem oral meteorological datiset. We have also applied it to other apj ‘
whic P P B ;E EP Mif\wruﬂl\ o

| aj‘ﬁ-f’pllcatlons!not presented here. ‘comprehensive validation of the model

[ (The Cartestan product of two graphs G, = (V1, E1) and G2 = (Vz, E5) is a graph | |

| with vertices being,the Cartesian product of V; and V5, and with edges such that node [_,,/
i (u,u') is adjacent to (v, v') if and only if either u = v and «’ is adjacent to v’ in G, or J

1’ = v’ and w is adjacent to v in G. =
he notatieny|¥ly= d; denotes the row dimension of ¥; and | E;| denotes the number

of non-zero upper triangular entries of ¥, s)
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on a larger corpus of real data is beyond the scope of this paper, there is amg
ple evidence that the model will have many statistical applications. We base
this assessment on the wide use of Kronecker sum models, equivalently Cane@
g sian product graph models, in biology, physics, social sciences/ and network
' engineering, among other fields (Imrich et al., 2008; Van Loan, 2000). In pari®
. - L — = .\
ticular the Kronecker sum arises in solving the celebrated Sylvester equation
for a mamixeXawhich, for K = 2, takes the foom XA + BX = N. The
Sylvester equatien can be solved by expressing the equation in vectorized form
as A® B vec(X) = vec(N) (for arbitrary K this becomes the tensor Sylvester
! equation (A@Ele® Ax)vec(X) = vec(N)), but this is often impractical
in high dimensions Such equations result from the discretization of separable
- —ﬁﬁﬁeifsﬁék% with tensorized finite elements (Grasedyck, 2004; Kressi®
ner and Tobler,2010; Beckermann et _gl., 2013; Shi et _gl_l., 2013; Ellner et al., “em Q,L;tCS
1986). As ageésultKronecker sums come in many areas of applied mathr,'_ichﬂ'lTEF__
ing| beam propagation physics (AndrianO\‘I, 1997):%ntrol theory (Lu'énbergef',/
1966; Chapman et al., 2014),/ﬂ-uid dynamics (Dorr, 1970)f and spatidtemporal
neural proceésses (Schmitt et gl., 2001). o
Closer tothome, the Kronecker sum model arises in multivariate spline data
analysis, e.gmwassapplied to harmonic analysis on graphs (Kotzagiannidis and _ LA.\IP;
Dragotti (2017)). [More recently, Fey et al. (2018) hiq_proposed tensor B- ~
splings defil€d@"6Ver a Cartesian product basis for geometric Convolutional ﬁeug
ral Networks¢ENN). Kronecker sums have been proposed as precision matrices
for weighting the quadratic regularizer in smoothed multivariate spline regresZ o \H\
sion. In particular, Wood (2006) observed that, 4s compared @Mﬁec]&?r’ e
product, theKronecker sum reduces the coupling between the axes when used
as a spline smoothing penalty for generalized additive mixed model regres{)
sion. This observation motivated Wood (2006) and Eilers and Marx (2003)
to use the'inverse of a Kronecker sum matrix as a penalty, or prior, for smoot@
ing K-dimensionalyregressions (see also work by Lee and Durbdn (2011) and
L Wood et al«(2016)). This approach has been applied to spatioj?emporal for];
" est health mod B"{ling (for which K' = 3) (Augustin et al., 2009), brain develT e{{e b{’
L opment moddling (Holland et al,, 2014)/ and analysis of the of cl
mate and weather on spatioBemporal patterns of beetle populations (Preisler
et al., 2012)7among other applications. In these spline regression problems
the Kroneckerssum appears as a precision matrix parameterizing a Gaussian
prigég the (spline goefficient vector 3, where the prior is of the form p(8)

expd= AT (A S @ 1 @ Ax Sk )B/2]. Here, \; are regularization coefficients
and 5; are C(fgrdinate:{}vise smoothing matrices, i = 1,..., K.

Instead of using the Kronecker sum to model the a priori precision matrix
of a set of spline parameters, this paper proposes the Kronecker sum as a model
for the pregision"matrix of the multiway data in the likelihood function, where
the data matrixe=Xytakes the place of the spline coefficient vector 3. The stated
advantages of the Ktonecker sum model for the spline regression setting (Wood,
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10 Greenewald.-Zhou, Hero-

2006) can be expected to carry over to the precision matrix estimation setting of
TeraLasso. In particular, like the spline regression prior, th TeraLasso smooths

NCH\ ___ each axis separately, while summing over the others, thereby reducing coupling
between the tensor axes @8 compared 30 the Kronecker product. For data that
mstructure similar to that imposed by (° ood[ QOOG) on the spline regression

coefficients this should result in a more accurate fit. Indeed, if a population

of regression splific problems was available, in principle one could apply the

TeralLasso to estimating the best precision matrix of the spline coefficients that

would minjmize the population-averaged fitting error.
@. Lf e Outlines Thegemainder of the paper is organized as follows. We introduce

4 notation and some preliminary results in Section 2, and our proposed TeraLasso .

model in Section 3. High dimensional consistency results are presented in Sec@ ' {-Erv&\ve < t‘
tion 4, first:withseonvex ﬁﬂ!regularizers and then with non-convex sparsity reg?® ‘A’
vlarizers. The ﬁrs@rder A optimization algorithm is described in Section 5,
and conditi@ns are/specified for which the algorithm converges geometrically to
the global optifium. Finally, Sections 6 and 7 illustrate the proposed TeralLasso
estimator of'simulated and real data, with Section 8 concluding the paper. We
place all technical proofs in il@supplementary material, along with additional
experiments and further exploration of the properties and implications of the
Kronecker sum subspace K, and the associated identifiable parameterization,

11 The pregesim ot were vsed o Gj\ajﬁse the doln can be o\rl-uined fom

2. Notationand P/reliminaries
’ a.n& ) er ] )
We use upper €aseletters, e.g. A/for matrices and tensors,/bold lower &selaffor

vectors, and/denote'the (4, j) element of a matrix A as Aij a%the (t1,%2,..7,iK)

element of a tensor A as Ail,ia,...,z‘r Fibers are the higherforder analogue of
EDCC€P£' matrix rows and‘€olumns. A fibgf]of a tenlsor is obtained by fixing every in@

oney m the mo}g k fi f tensor X is denoted as the column vector
Kiyrooosixor,minss, ig . Following/definition by Kolda and Bader (2009), tensor
unfolding ormatricization of X along the kthL ode is denoted as X (k)» formed
by arrangingthe'mode/k ﬁb@% as columns of the resulting matrix of dimension
di X my. The column ordering is not important so long as it is congistent.

For a veetor y = (y1,...,y,) in RP, denote by ||y|, = v;-zj y]2 the Eu@

clidean norm of . The operator and Frobenius norms of a matrix A are del®
noted as || A j3 and\{| A|| £ respectively; the notation vec(A) denotes the Vectog“

Sve

eshading

on'ﬁne

2 ization of the,matrix A; || A[|oc denotes the matrix infinity norm and || A||max =

,?{Lh max;; |A;;| denotes the maxjnorm. T%nﬁnant is denoted as |A|. We use
\_S the inner product (A, B) "= tr(A” B) throughout. Define the set of p x p

no matrices withhKronecker sum structure of fixed dimensions di,...,dg:

Lol Sulrjeck

Kp'={A€ RP*F . 3 B), € R%*d 36 A=B1e. @Bk} (5)

of 8 expression
where the set of matrices/defined in/(4) is obtained by restricting ICp, to the

Les

ch:?luﬁ, D https:/irss.onlinelibrary. wiley.com/hubfjournal/14679868/series-b-datasets

CDI&\"& ] 77
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lensor-Graphical-asso-(FeraLasso}- 11

positive cone, i.e.,;
KL ={Ax>0]4€Kkp}.

No'ce-tha-t(‘@e set Kp (5) is linearly spanned by the K components, since there
are no no"q'linear interactions between any of the parameters. Thus Kj, is a linear
subspace of RP*?, and we can define a unique projection operator onto Kp:

. _ : 2
— Proji_(A) = arg I\IJ%IIICIP I|A — M||%"

G}L CC\[)\ # on-luwne
9\31"1&) A closedtform expression for Proji_(A) is given in éction A.3 of the [Eupf
E /) plementary 'material. Note that the dimensionality of the Kpjsubspace is 1 —
A + ZkK=1 dg, which is often significantly smaller than the ambient dimension

2 K 2
i p* = [y di-
o 2-(' 7 Parameterization of /C, by \I’k( Note that 2 = ¥; @ 5 @ Wy does not
(@ uniquely determine {V¥,}X ,, i.e.) without further constraints the Kronecker
' sum parameterization is not fully'identifiable. It is easy to verify, however,
that both offd(W,) and diag(2) are identifiable, where we define the notation
offd(M) = M — diag(M). We can then write the identifiable decomposition

Q= diag(Q) + offd(¥1) @, @ ofid(T ), (6)

wh eseoLs and correspondingly Qg = diag(£2o) +offd(¥,1) ® :-; ®offd( ¥,k ). Note that
ile the offdiagonal factors can take on any values, diag({2g) is not completely h
29 free (for a fully orthogonal parameterization see Section 4 of theﬁ@]e—rn@t'["tg\g e
R ' | Interpretation of correlation coefﬁcients(ﬁie quantities - : éj‘“ l‘m 'J'ﬁo not

U by themselves coffespond to correlation coefficients. 9@'![16 reﬁéa_tijr_lg strﬁc@ - Because ﬁ

ture of the Kironecker sum each element (¥ ];; will appear in my, distinct dy, x dj;
L‘ c&’ symmetric subblogks of €1, and in each (!;th) subblock it will have a correlation

s muniquely defined for that subblock:

Pryijd = (Tl
P (WK + /A (ilss + ce/d)}

where ¢p = tr(gth subblock of 2) — tr(W;). The overall correlation structure
is preservedacross the m; blocksEsimply the strength of the correlations are 3
modulated by,the contributions of the other K — 1 additive factors in the block.i [ N

@ 3. Models and ﬁethods

Let Xj,...,X, be m independent realizations of the K:-way tensor X. Define I';
X; = vec (&(F} foralli =1,...,n. Define S =/£5 » N e sample

i—1 X; X
Recall that the ¥, need not be ogl‘t;Se eﬁ;ité&g‘n%ﬁ need not be t 0 =

2
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#*

covariance. The modetk Gram matrix Sy, and factor}wme covariance ¥ (*) —

E[Sy] are glv:n by O (% j @
XX k) F

1
= (k) — =
Sk - nmy, £ an Z’E E[X(k X(k)] Z/k 1, e ,K,
noting that the elements of these matrices are effectively inner products between
}\ o008 (K —-1) ﬁ)rder tensors. Sy, is the sample covariance of the data unfolded across
W the kth tensor axis, ﬂ&u—]p % (*) denotes the population covariance matrix along
the same axis. These Gram matrices Sy can be represented as elementwise ag_/

gregations over entries in the full sample covariance (3), with locations indexed

by Uy, ) as" @
1

~ c‘\
[Seli; = p— (8, Iy} ® €i€] @ Ijg, ., ] >¢' (7

In tensor covariaice modgling when the dimension p is much larger than the

number of samples 7, the Gram matrices Sy often used to model the rows

and columns separately, notably in the matrixfvarjate estimation methods of

Zhou (2014) and Kalaitzis et al. (2013). Observe that the TeralLasso estlma}\
tor (2) of the precision matrix can be expressed as

—~

K
Q= arg min —log |92 + mg | (Sk, Uk) + 9or ([Pilij) ®)
ek, 90 <x ,; ; ? !

= - tv\LcLM
F\ where K, isthesset of positive semidefinite Kronecker sum matrices (4). J
U | Ignormg regulafization, the objectlve function in cugly brackets can be writ?)

/" ten as —10% SIQ}where p(8I0) = aq 15, p(Sk|¥s) and p(Sk|Ty) =

= exp (— (mgSk, UL Q a normahzmg constarzg Ig‘)he non- ne%?g]vuy of the
Kullback-Liebler d1ve ence| [ p(S)|Q) log a . —— Pt NICAD) u’ijlmphes that
the Kronecker sum model is xXimum entropy model as prev1ously pointed

out for the case of K = 2 by Kalaitzis et al. (2013). Alternatively, Kronecker
sum models can be characterized as regularlzmg the precmlon matrix estimation

problem with\a minimally informative prior over the set ICp. #

The class of Kronecker sum matrices is a highly structured, lowelzgimensional
subspace of RP*P.UBy definition of the Kronecker sum (1), each entry of ¥,
appears in myg_=4p/d;. entries of (2. By imposing that the precision matrix

, " ha¥e both Kronecker sum structure and sparse structure through the penalty 9
Teralasso effectively regularize the precision estimation problem.
‘&\Oif "_We—assﬁr‘n??the penalty g, is (u,’y)%nenable in the sense of Loh et al.
]/llﬂ \ (2017). @
%

i+ DEFINITION, L (1, ) AMENABLE I(EGULARIZER) A regularlzer 9p(t) is
(u,y)famenable when p > > 0andy € (0,00) if
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(a) 9p Is symmetric around zero and gp(O) = % 4 N
(b) gp(t) and g,(t)/ t are both no%ecreasing on ]R*Z 7 v &M ¢

(c) go(t) is differentiable for; eatll t# (Z 4 ; m‘%e,&
(d) The function g,(t) 4t ( Wwise
(o) limucfonegs®) = o/ 210 §

(f)e_g;,(g) =0for all t >p. # R

Note that the T:gularizer is (0, co)famenable. Example nonkonvex penalties
in this class,incliide the SCAD penalty (Fan and Li, 2001) and the MCP penalty

(Zhang et al, 2010), both defined in Appendix C of the/supplement. Oh/hne
Observesthatfor nonzero y (i.e. nonEc-)nvex gp) the constraint on the spectral
Obj QCRVE norm of Q (||| % ) in the TeraLasso objective function (8) is necessary since

M‘.’ho“ without it aiglobal minimum may nat exist (Loh et al., 2017). For@m
'1 constraint parameter setto k = A2/, we show @emma 21 in the supplement)
‘that(8) with g4 (14 7)L menable is convex and has a unique global minimizer.
For the _[/i[p?,nalty, the objective is always convex and & can be set to hﬂ'ﬁ?y{ Qo,

is conveJZ 7

@ 4. High ﬁmensional ¢{)nsistency of th¢ TeraLasso

Let v = (vigmmmmyup T be an isotropic z/)g—suzg—aussian random vector with inE
dependent entries v; satisfying IE@J-I: 0,1 =’IE@]2-I§ [lvs]l v, S K. The 9pg, =
condition off a's¢alar random variable V is equivalent to subtaussian decay of

‘H\"‘f the tails of V5 implying[]}” (V] > t) £ 2exp(—t%/c?) forall ¢t > 0. The ex?"
tension to random WVectors is straightforward. Specifically, x is a sulﬁaussia}f
random vector with positive definite covariance ¥ € R?*P when =

x = X2y, )

where %1/2 defibtes a positiv definite squareZgoot factor of ¥. We thencall X €
R *d=X 34556504 an order) K su?aussian random tensor with covariance ¥
'H,\u,{' when x = v@)’(ﬁ‘ ) is a subjgaussian Tandom vector in R? defined as inf9). ewbh
We ass@the data X7;X>,..., X, are independent and identically diLsz\
tributed sn:%aussian random tensors whose i% covariance follows the Kroé?)

6\“1‘ necker surtmeodely(1). namely. that vec(X;) ~ x, where x is a su?g_gussian :
9‘1}“ ©0 " random vector in RP as defined inZ(Q). A special case of the su[@auss afi model /C@-
is the Gaussianmmiodel, for which the zeyos in the precision mitrix define the ﬂg
~ g conditional indepcndenci\s among the variables Xi. This conditional indepe@

«“™MP " dence relation/does not hold for the general sng}aussian case, but nonetheless
strong convergence of the TeraLasso precision atrix estimator is preserved.

In additionstesthe subgaussian generative model given above, we make the

following technical assiﬂptions on the, %E_C_L_rp?gi!el, guaranteeing sparsity in {2

and its eigenvalues being bounded awa)>”h'r5m ?‘ifﬁ and Ln-ﬁ-nﬁ\ a0,

‘.thm \

.///_,,
3‘7_/
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(A,Q Define the support set of the kth Kronecker sum component ¥, of the

precision matrix by Sg = {(4,7) : 4 # J, [Wiij £ 0} fork = 1,..., K.

Ej We assume Sk is sparse ie. card(Sg)< sg.
Vﬂ‘ﬂe S— B CGuain ELO 32

Q@ The minimal elgenvalue satisfies ¢min (U = Zk 1 gbmm(\llk) kq >0,

S and the maximum eigenvalue satisfies Pmax((2) = Zk 1 gbmax(\llk)

ko=
Q008 a;mphon ‘[,\mi-
['Deﬁmng the support set of 2as S = {(4,7) : 1 # 7, }, %11 implies[c.;mrd(S <
s = Zk 1 M Sk.

4.1. Regularization with Eenalty o i
@ With g, (1) & ﬁl _ e chive ,Func;kcn

»the constraint on ||€2||2 is unnecessary, and/(8) becomes

.r'..-- —~ _ K
("‘\@ Q # drg m}él {—IOgIQHka Sk,‘I/k)+Pkl‘1’kl1ofr)} (10)

k=1

where (Ui o5 = D2 [[Trli] is the offkhagonal élklorm The objective (10)
is jointly convexyand its minimization over 1e ICﬁ has a unique solution (see

-Section 2 6 of thefs Lupplement) We require an addltlona] assumption; -on-line
7 7 T, e
Assump Q g . . ol [ =
{_ @4 amplesize n and the component dimensions dj, satisfy the following -
condltlon
nfmin my)? 2 C*r(So)*(s + p)(K + 1) loglp) (1)

where mp=, p/di, and £(X0) = Gmax(Z0)/Gmin(Zo) is the condition

;[ L@ N numbezof To.
r 7 Note hlS assumption holds for n = 1 and sufficiently large (ming mz)? >
O(p), Wthh can hold for any K > 2. We obtain the following bounds on
the Frobeniys,and operator norm error of the TeraLasso estimator (10). The 3 h-'l\ﬂ e
constants (¢, Cy,,Ca, C3) are given in the proof (see thez:suf)ﬁlé'ﬁl“eﬁfrlm—ﬂ'

depend on K, n, sfor p. ” |
N
(I THEOREM | (FA{OBENIUS E/RROR I{OUND) Supposejt assumptions ﬂ{z{: > @
——— ]

€APreESS L € _
v hj’/ hold, and that §) is the minimizer on( 10) with PE = § o\ - Then with
'{Q}lﬂ\lﬂ ' probability at least 1 — 2(K + 1) exp{_ c 10g@} = JE

10
Hﬂ?p 204 [Zol, \%(KH) 5y Joy) kg

¢$nm(20) nming m
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R | P{EOREM 2 (PZACTORWISE /(ND L2 ERROR B/OUNDS) SupposeZthe COU

| ditions of Theorem 1 hold. Then with probability at least 1—2(K +1) exp{ c log@}[:

(K + 1) maxy, d,

[ding(®) - dieg(Q0)]3 , &5 ot \Ilk—%wn ﬁ
(O&‘}F?[& Z = )

" S Co(K +1) (1+Z;_:> loip) (12)
k=1

n mlnk my

anﬁ as a result

J 4
7

19 —&%))3 < G(K + U\‘{{(mmk — T(l + Z S _@g

on-line
[1 Theorems 1 and 2 Jare proved in bfectlon 5 of theLsupplement. Observe that the

@

reSuy L~ theorem pred1ctsl(12) that, for fixed n and K > 2, the estimation error of the
— = — 0
% \ parameters of §dconverg as the dimensions {dj} go to 1hﬁ;§t—y (recall
10’4’ ) that p = Hk 1 di)- This implies that for increasing dimensions lhq TeralLasso f‘g ecourte 6
P A will converge even for a single sample n = 1. Bﬂtﬂ’l the repeating structure £

and increasing dimension of (1, the parameter estimates can converge without

the overall Froben" s error || — Q|| ¢ converging. SVQ.PLLCCLL

proves on the subgaussiar asso rate of Rothman et al, (2008) “Zhou et

LL( L — S U\ ) E’asso ‘?he Frobenius norm bound in Hjheor 1 1%'-P

i
\

?\\\Cﬁl‘) (2011) by a“facter’ of ming my. If the dimensions are e al.il\Y(d;c = pl/ K
ﬁﬂ and sy aresco ant over k) and K is fixed, Theorem 2 impiies “IAkHF =

1ndlcat1ng that Teral.asso with n replicates estimates the

identifiable re esetatlon of W, with an error rate equivalent to that of L/sso
L\: l 2. with ) = ¥, and nmy, available rephcates

b Z Independence along an Xis Suppose that the data tensor X isk along
@ the first axis;heally = 1, . e instead of a K-way Teral.asso, a Q{ odel

—  with nd; rephcat%would suffice, yleldlng a f-u.im}r\f/fse error boun (Theorem

@ s =) of[ [ s j log(p/d:)

k=2 dy
K-way model (since=57 = 0). Hence having a Erlorl nowledge of 1ndepen?\
dence (allowingsthe use of the (K — model) "does not meaningfully i 1mprove
the rate over,the the,original K -way model so long as mingsq my ~ ming my.
A similar satisfying'result holds for the Frobenius error bound in Z(heorem L.

f.ompared to-the factor/

nd; mings1(my/dy)

/ 11 " Tt
(:\, 1+ % 9 55) M)—}I ssociated with the full

nming m
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@ 4.2. _Nonconvex #egularizers and 8{ngleLS/ample Sfjpport F?gcovery
Nonconvex regularization will provide nohEsymptot’i_c guarantees on the ele-f\
mentwise estimation error, implyj_ng strong, single/sample support recovery
[{Ow oven guarantees when the smallest nonzero element of g is bounded from below.
. Onrthejother-hand; these stronger results require more Testrictive assumptions
ik QM on sparsity of the precision matrix and its smallest nonEero element. Specifis
cally, we mfikkreguire the fi llowing[\‘ 0\.39\1N\{){'1'0ﬂ$‘ -

lng) H—— BB sCumphion Lt _
0 _r) - r[_'( Wg}cb (maxim{l‘lm number of norﬁero edges connected to a node) of
: the spagsity gra.{p_il of each factor ¥, is bounded by a constant d. 2=l
ﬂH‘j

"-‘/Zhn‘e) oamp ton S L SufLicie

—

[4

’fsff/ I\,\D %;e sample size satisfies| nminy my > cod? Io{p) for some ¢ |large
(AL enougle (\csumpthion b.
N -‘5‘7 / e . QN L
iﬂ IAﬁ There e;ie%constants Coof €3 such that ||(Qg ® Qp)ss|lee < €00 and

4

D\T_\Qt}\\le ‘Gum’ko“ min_|[Qoli;| 2 p(y + 2¢00) + 03\5—]?@)— ’
lijlesS ln miny my
assumphion

E In %6’ the notation Ass denotes the submatrix of A formed by extracting the
rows and columns corresponding to the index set . Under these assumptions

we have thefollowing result. u;\ 0\?[? - WD m . Le CSL [
MQL;L

(1 TI¢fEOREM 3 (No F‘ONVEX ,I{EGULARIZERS). Suppose/the regularizer g, |
‘{af [ _— in[\(S) is (p, 'y)(jamenable, and Kk = \{2/ @‘ Then with probability at least 1 — x_QJ‘l‘._\TP/F(A) e~
\ S'? uﬂ, ( 2(K + 1) explf=elogp)/as in Theorem 1, (8) has a unique stationary point ) C’DC?TEESTB:\
- (given by the oracle estimator defined in thesupplement), with (for all k)

fd (b, — <[ -0 < K+1 g——\—g‘lo?‘-} J
”0 ( k O,k)”max \” 0”max \CS( ) ing k:,

~ )
TORA(T, — Top)llF < ca(K +1) )k 4P S
nming my

l@—mhg@m+nﬁﬁjﬁﬁy

nming my (7

19— ol o€+ 1) B
of the 0o g on-line g, R T gml' ore
[T The proofiis given in Section 7 in the/supplement/and uses arguments[a;malogous
to those of Loh et al. (2017) along with concentration inequalities arising from
the structure of'the'Teral_asso model.
Theorem3yimplies that the elements (of both 2 and the offdiagonals of
W), and thus the Support (of both ) and the ‘I'k)[gan be estimatedLusing a (B
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_(2009) Nesterov.(1983, 2004)). An extension to nmfonvex regularizers g %
~ given jh Lohrand Wainwright (2013).
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single sample (n = 1) provided miny, my, is/large ennuﬁh The Frobemus norm

convergence rates (both factorwise and overall) for the convex and nonconvex C&\
lé ﬁeorems

_regularizers remain effectively the same (companng Theorem 3
1 and 2)] hence the primary benefit of the nonconvex bound is the ability to

guarantee support recovery in exchange for additional assumptions.
Tensor gm\okuux Hernlive Sogt {\wexl\otohn&
5. mﬂeﬂ igorithm

In this section, we\introduce an iterative soft thresholding EISSEA(} method, ro:-:,h
stricted to the convex. set ICﬂ of possible positive semidefinite Kronecker sum

precision matrices, to 1mp1ement the TeraLasso optimization (8). We call this
l 1mplementat10n;ﬂ:_nsor Graphical dterative Soft 'fhresholdm,__] [T G-ISTA?'\

5.1. Composite gradient descent and proximal f/rstl'grder methods
Our goal is“te,selve the objective (8). This objective function can be decom?
posed into the sum of a differentiable function f and a lower semi/continuous

but nmLmooth funetion g: for Q2 € /Cp’ - = —
Q(Ty, wlig) = £(Q) +9(Q), w rere for (§, ) = Zsz me{Sk, Vi), \\_,/
F(@) = 16819 + (3, m‘ LR S SERCARSIE)
e o

For objectives,of this form, Nesterov (2007) proposed a ﬁrstLo’rder method called
composite gradientdescent. Composite gradient descent has been specialized to
the case of g = - |3 and is widely known as Tterative Soft 'Ph/resholdmg

(see for example/Tseng (2010); Combeites and Wajs (2005)’§eck and Teboulle 0.5

The linearitysof the constraint set K, suggests the use of gradient descent

where the¢'gradienis;are projected onto the associated/l — K + Ef 1 dk 1menT’
sional linear subspace. The positive definite restriction can then be handled 1n ﬂm?L CCII

_Iam Guillot et al. (2012) did for the vanilla f;_rasso We therefore

derive composite gradient descent in the linear subspace Ky, of RP”, creating a
positive definite sequence of iterates {{2;} given by the recursion

q Y ’ "0 Jh
Q1 € arg(xzn}él { HQ @t (tProji fo Qt}]” /' Ctg(ﬂ)}, (14)
€
where the initial matrix Qg € ICp can be chosen as the identity. We enforce the .
positive semidefinite cons%fint at each step by performing backtracking line 0 m 2.
search to find-assuitable stepsize (; (see Algorithm (Guillot et al., 2012). We i S)E '
0 .
decompose and solve the problem (14) for the cas€ of the Teral.asso objective n 9.2
in Section 5.2 Below.
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@ 5.2. TG-ISTA implementation of TeralLasso

regularized case. The general nontonvex case is described in the next section

on-ll&ea-msupplement Since the gradient of ( s, 2) with respect to 2 is S ﬂfemma

smaller

J“[(Luv Voaer, (8,8, & - - 1 ® Uy)) =Projg, (8) = Slea " ®Sk =258 %/

/Skzsk—K_ltr(Sk)Idk- (15)
K dy,

l\ bho uﬁ\n

Whﬁe many different conventions for parameterizing the prOJectlonblsmg the
Sy, are possiblepthe projection remains unique. Alternate parameterizations
will not affget theyconvergence or output of the algorithm. Since the gradlent
of —log || with respect to Q is Q! (Boyd and Vandenberghe, 2009), the prof
jected gradient takes the form cx ]»L i

Ve (— log []) = Proj (0 ):Giea~~-eaGt[ (16)

are
The matrices G}, € R%¥dk are computed via the expressions/given in L/emgla
33in thefsupplement CombmmgL(IS) and (16), the projected gradient of the

objective f(Q;) is

Proji {Vf(ﬂt)} S- G ®n@ Gﬁ() m a7

e

L’;{ LL[MMA t(dECOMPOSITION 6}? Z{BJECTIVE) For $, Q e IC of the form
L =vo. GB\I'K Fld Q \Iflea 69\I/K N{\l\sﬂuﬁ

on-line—

(bsplan —
\\ P ) the uni ! . g ’+1 bl
—_ que solution t0L(14) with ¢ 19p = |- |1 is given by Qi1 =95 SFRRL EB\II
where

e
U g min oo - oo &—G@}(l%ﬂwkhoﬂ (s

W, €Rx X dk 2
AAine
The proof i8 1n1_supplement B(ectlon 25. The nght hand side of&l 8) is the

proximal operatorof the Zleenalty on the off[;hagon entries. The solution has
closed form, as given in Beck and Teboulle (2009),

Pl = Shrink;pk{mz — ¢(Sk — G} (19)
where we'define'the off[iiiagonal shrinkage operator shrink, (-) as

[shrinlgy (M)];; = { sign(My;)(|M;;| - p)+ vFE i/ 20)

My o 2‘ o wise,
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To apply this form of composite gradient descent to the TeraLasso objecuﬁl:{i_’)
projected gradient of f({2) is required fmi( 13). For simplicity, consider the 1)--

33 in the supplementary material) C'ﬂ-w’ @g\ C&,(‘
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—— wTabte
The composite gradient descent algorithm is given in ﬁgorithm 1 A’:In Sect, q,b 2 :

~ne
oo~ tion 8 of the/supplement, a scalable geometric rate of convergence of TG-ISTA
2 to the global minimum is derived ('II(heorem 25). In Section 3.2 of the sup?)

f { "~,\
G)h m’PR\ plement we show that each iteration can be computed in 0. (pK + E,ﬁil dz)
s

Y SN ) . .
_ y floating pqlgt\ operations. ——

(e S B = P ¥ ~—
; V7 B L7 7
Tabee,‘l.’z Algorithm I}'TG-ISTA implementation of TeraLasso (high level) g
/T L:\l‘\/\ 1 K/ﬁlput: SCM factors S, regularization parameters p;, backtracking constant f ? Buw: € CM
light- | c € (0,1), initial step size (7 o, initial iterate iy = I € kP
J p , p

Y %OkCe//J while not converged _(_1&
¥ — 37/ IC8mpute the subspaceiéradient proje (1) =Gl ® v &Gy
47 | L{ne search /fet stepsize (; be the largLe/st element of {¢’ Gt,0}j=1,... such
that the follewing are satisfied for \Iffc"'l = ‘shyinka pkg‘llfc — (S —GYL)

(e, | | j 5
N | \I,:tl+1 @J—'i_@ \I/;H = 0 ,Eﬁd f({\I,}tc < QQ({\II;:_I}’ {\I’?—@ \[Q)’ e
5[ for k=A1,... K do )

6L) fra (‘ngposite objective gradient update
J Wil shrink;pk{\llfc — (S — ch)}.

J|
’ 7A il end for @ # expression of\«lme e S&c[\bn
3£) \ Eompute Barzilai-Borwein ste;iiize Ct+1,0 via£27) in@i)plementﬁll
% ’end while
10[’ Return {\I’ZJrl}kK:li
W | +
— . . T~ —— N

@ 5.3. TG-ISTAJor a norf_:onvex regularizer
The estimation,algerithm is largely the same as K{gorithm 1, except with an
additional term added to the gradient. Specifically, the updates are of the form
Q! = shrinkEP{Qt - cvc‘n(nt)} (21)

where ( is the'stepisize and

B R K

£n() gemslog 2] + (5, ) + 3 i 3 $0p([akis) ~ oI}

k=1 i#j

The update (21) caribe decomposed into the factorwise updates

T — shrink;, EIIQ - g{§k e q;,(q/k)}j
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where g/, (¢) —{ (t) — p|t|}for t # 0 and q,(0) = 0. These updates can
be inserted info thc ramework of Algorithm 1, with an added step of enforc™
_ ing the |||z £ & constraint, e.g. via step size line search. The algorithm is

1 'f(‘)%v\m ./ summarized in Algorithm 2 in K%pplementé*\ Se chion
A Lz TI&EOREMEZ (éONVERGENCE efF ALGORITHM 2). Algorithm 2 will con/ @
Or\k ?1 . verge to theiglobakoptimum when the norm constraint parameter  is chosen 73
| be less than or equal 10 /2 /1

~TheffTo8
PI(OOF [f/llows since for x V@_}_Z)the objective (8) is convex on the 'H'\ Q l
convex constraint set {Q € ICPIQ = 0,122 £ x} (Temma 21 supplement). ~ "\ 11e o0-lne

@ 6. Validation"oh synthetic data
(Cen

Random graphs were created for each factor ¥y, us;_g_Jlﬂlh-d-ﬂ_EMyl

(ER) topology"and a random grid graph topology@ Zj‘ hese ERLtype graphs were
generated according to the method of Zhou etal. (2010). Initially we set ¥, = \
0.251,xn, where m = 100, and randomly select q edges and update ¥; as }

follows: for each new edge (i, j), a weight a > 0 is chosen uniformly at random _ and \
from [0.2, 0.4]; we'subtract a from [¥}];; and [¥];;, and increase [\I!k],:y\llk] i

by a. Th1s keeps:W); positive definite. We repeat this process until all edges are -
added. Finally,we,form 2 = ¥, SERERRS) Wy An example 25-node, g = 25 ° l'

ER graph and precision matrix are shown in Flg%c 3. The randongnd graph \._

e~ —— Iy =

5 10 15 20 25

‘-a...__..-"' —— ez

5 10 15 20 25

~ Fig. 3}{ ] g nz/nd graphf € GLp)ucal repref{\
)?@,)J@' onmatnx’\L g . me = o Vg

ﬂéode fo E";Lpenmems can be found at https://github. com/kgreenewald/teralasso) ru______._-——-J

> ———
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Tensor Graphicat Lasso (Terakasso) 21
1 _1s produced in a similar way, with the exception that edges are only allowed
“between adjacent nodes/ where the nodes are arranged on a square grid (Figuse

). Algorithm 1 in _-_§Ection 2.3 of the/ supplement describes how the random
vector x = vec(X ' JTs generated under the Kronecker sum model.

6.1. Validation of theoretical algorithmic convergence rates

To verify the geometric convergence of the TG-ISTA implementation (Zileorem
25 in the supplement), we generated Kronecker sum inverse covariance graphs
and plotied the Frobenius norm between the inverse covariance iterates {2, and
the optimal point {)*. We set the ¥, to be random ER graphs with dj, edges

. whered; = - = d, and determined the value for px = plusing c?6§§,‘ffalid:jf_

_‘) tion. Figre.hshows the results as a function of iteration, for a variety of d;jand
© K/ configurationsyand the £1 convex regularization. Figyre 13 in,-_':"iﬁpplement h

2.1 repeats these experiments with the nonconvex SCAD and MCP penalties,
using the samé¥andom seed. For comparison, the statistical error of the optimal
point is also/shewa, as optimizing beyond this level provides reduced benefit.
As predicted, linear or better convergence to the global optimum is observed.
The small number of iterations combined with the low computational cost per
iteration confirm the algorithmic efficiency of the TG-ISTA implementation of
TeraLasso. Additional numerical experiments demonstrating fast convergence
on largerZscale problems are given in é(éction 3.2 of the supplement.

6.2. Regularization with Menalty
In the Terallassg objective (10), the sparsity of the estimate is controlled by K
distinct tuning parameters py fork = 1,..., K. The convergence condition on

P, in Théorem I"suggests that the py, can be setas p = 5 \I,.-‘gi?:jj:éﬁ-'ith p being

a single scalar tufiing parameter, depending on absolute constants and 1Z]]2.
Below, we experimentally validate the reliability of this tuning strategy. -
The performance is empirically evaluated/using several metrics including
the Frobenius norm (|| — || #) and spectral norm (1€ — Q|l2) error of the
precision matrix estimate {) and the Matthews correlation coefficient to quaqz
tify the edge misclassification error. Let the number of true positive edge detec?

tions be TP, ifue negativep )T N, false positive FP/ and false negativeg] FN. The

Matthews conelajjoa coefficient is defined as (Matthews, 1975) :

Feed Iptg>— poed——
TN —
= TP /TN — FP/FN

\J(TP'+ FP)[TP + FN)(TN + FP)(IN + FR)

where eachionzerd off diagonal element of ¥, is considered as a single edge.
Larger values of MCC imply better edge estimation performance, with MCC =
0 implying completg failure and MCC = 1 perfect edge set estimation.
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0 - o 0
10° (S i 10 """“‘""W’gan__‘.
0,143 sec N | "
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7 = 100 sample size b i Keag | "
: £ 10 —— K=4stal. aror
\ Ka=4,p=10* y o
\ —— K= 4stal, mor A = K=2,d 10
‘ | Ku2,p=10* 2 | K = 2tal, enor| L]
\ - | K= 2'sta. error '
—
| — 0 - ) R
7] . c 5 10 15 20 25 30 35 6 5 10 15 20 25 __an 35
" lterations. Ilerali’on;.- =

10° G S0y, i Eoton
|3768ec = = -
|

— = B
& = a
(b) /1 penalty, i ! i 0.0135 sec . L ;
. & 107 210 A <
— = : = 2,
n = 1 samplesize . | e =" 26600 | L
E wr £ == .
2 P inpoly | = K=4,d, =40 ]
K 2, ?_56!10‘ w4 glal. eiror 1
i | e e & . Ka2.d, =40 b
n C 4 o K=5;.ur"m‘o’|
\u qpe % 5 10 15 20 25 30 1% 5 10 15 20 25 3o
Iterations Iterations

N p/ ¢
. 4f Linear geometrie convergence of the convex ( [penahzed) TG-ISTA
1mp1 entation'of Teralasso] Shown is the normalized robenius norm ||Q; —
: (9") ('(,9 Q* | 7 of the difference between the estimate at the th iteration and the optimal
results comparing X = 2 and K = 4 on the same data C‘) Col) res u,u';!
w1th the same value of p (different dy); i com ;
same value ofdg(different p) .‘ﬁso included are the statistical error levels, and por “i
the computatientimes required to reach them, ‘Observe the consistent and rapid

linear convergence rate, v[&th loganthrruc dependence on K and dimension dj, 7
J Tot* CG.\ CC gy PR S LT f-‘l,}{ OU\-__ {_{ = i_f_‘_S‘a/m_'_i_&__RH":eL_

K‘j S’ ) Shown in Fig 5 are the MCC, normalized Frobenius error/ and spec{
\ tral norm r asgunctions of f p1 and py where the py constants giving p, =

4 Note/ 51 = ps = p3 achieves near optimal results.
(logp) nm,); P1 = P2 = ps achiev P sl-\a,u

Having verified, the single tuning parameter approach, hereafter we

“cross-validate only p. Injsupplement Section 3.3, we provide experimental
verification"if"a"wide variety of experimental settings (including varying the

==X relative size of the tensor dimensions d},) that our bounds on the rate of conver?”
\  gence for the gﬂ regularized model are tight. Fi 6 illustrates how increasin'"g/

) dimension prandsk improves single;sample performance. Shown are the av¥
—_ erage TeraLassoredge detection precision and recall values for &tﬁﬁﬁﬁ values
of K in the single and §-sample regimes, all increasing to 1 (perfect structure

estimation) as'pyK /[ and 7 increase.

6.3. Nonconvex éegularization _
% Here the f).enalized TeralLasso is compared to-Teralasso with nonlconvex
{ > regularization (8). Shown in Flgﬁre 7 are the MCC, normalized Frobenius s error/” ER
and spectral norm etror for estimating K = 2 and K = 3 lardorﬁtm graphs
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035 -

%SL Setting tuning parameters with K = 3, n = 1/and d; = d3 = 64

@Hown are the MCC, relative Frobenius error] and relative LZLErr or of the Ter @

aLasso estimatg as the scaled tuning parameters p; are varied,” Shown are d_e\j__“% @L}- C(- _)
viations of ga/from the theoretically dictated p = p; = ﬁg).:%— Pfqual dis

mensions, dy.=.ds = d3 1EF'i'rst and third factors are random ER graphs with ‘¢ GU c)

dj, edges, and the second factor i %ndom'[gﬁd graph with dj, /2 edges) ;4 —(£
gimensions do=2d; [(each factor is a random ER graph with dj, edge%'N’otige

____in these scenariosithat using 51 = p is near optimal, as theoretically predicted/

e S i R R SIS =

P as functions of regularization parameter p for each of £1; SCAD (96),/and MCP
F i (97) regularizers in\a variety of configurations. Figure'8 shows sinfilar results
' 3 ) for Uy a variant of the spiked identity model of Loh et al. (2017). Observe that
e — o noHEonvex regularization improves performance slightly, not only for structure

estimation (MEC) but for the Frobenius norm error (due to the reduction in
bias) as well. This improvement is increased in the spiked identity case.

IN odfSemverh g@“&r for 'Emftmnmenlml Predichon

@ 7. NiEPWindEpeed ata

The TeralLassommodel is illustrated on a meteorological dataset. The US sz?

tional Center for:Environmental PredictionﬂéNCEBj maintains records of avers
age daily wind velocities in the lowe&tropos here}%ﬂ\w
ning in_]948 wThe data js available onEine 'ft\p://ftp.cdc.n -gov/Datasets/.
ncep.redna {}i‘é.dailyavgsgurface. Velocities are recorded globally, in a 144 x
73 latitudg’longitude grid with spacings of 2.5 in each c?&rdjnate. Over
Versus ~ bounded areas, the spacjng is approximately a rectangular grid, suggesting a
s I_(:W vs. longitude) for the spatial covariance, and a K = 3
versus  model (Tatitude ¥ longitude ys, tégle) for the full spatl(\)ﬁemporal covariance.

.

o '@// Consider the time series of dailyEwerage wind speeds. Following Tsiligkaridis
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A
'“H/Fi - 6/ Edgesupport estimation on random ER graphs, with the pj, set according
to Theorem 1 G(raphical model edge detection ];gecision and recall curves are
shown as a function of data dimension p = kel dk; For each value of the
tensor order K, we set dj, = pl/X J' Observe singleEample convergence as the
dimension puincreases and as increasing K creates additional structure): (a)l (,H N = iJ* @;)) [o[) Q_ =9

e — —

Bmameer] e T ———— S — T S, S

and Hero (2013)ywe regress out the mean for each day in the year via a 14;[?11 [ o
order polynomialzégression on the entire history from 1948/2015. We extract — o
two 20 x 10 spatial grids, one from eastern North America, and one from west A. n

VA o,
88 [’j ern North America (Figyre 9). Figyre 10/showy the TeraLasso estimates for
9. (0,
-
20)

latitude andilengitude factors)using time samples from January in n years folZ®
lowing 1948, fonboth the eastern and ern grids. Observe the approximate
structure,.and the break in correlation (Figoge ltjb), longitude factor) in

the Westérm-¥ongitude factor. The location of this break corresponds to the o “’\\me_
u'L_H‘ __high elevation line of the Rocky Mountains. In thei_supplement, we compare

the Teral_asso estimator @ the unstructured shrinkage estimator, the non-sparse

Kronecker sum,estimator (TeraLasso estimator with sparsity parameter p = 0)

and the Gemini,sparse Kronecker product estimator of Zhou (2014). It is showh

that the Teralasso provides a significantly better fit to the data.

To illustratesthe utility of the estimated precision matrices, we use them to

/ construct a seasomrelassifier. &%ﬂ windspeed records are taken from the 51-

'L'O mmo& We estimate spatial precision matrices on n con?

/ secutive days in January and June of a training year t ively, and running

anomaly detectionson m = 30-day sequences of observations in the remaining

50 testing years. We report average classifier pergcﬁ:glance by averaging over all
51 possible partitions of the 51-year data into L aining and 50 testing years. —

- m n B Y

{gy
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< ’ WK =3,d = dg—d3—32
F1g 7 No egularizers in the single ample regime (n = 1, ¥, ER with
k& edges) n are t CC, relative Frobemus error/and relative L2 error

_asa funct on of pl; ote nonconvex regularization improves performance) A

- “_“x_
; —~ e == e ==
§ -’_.> The sequen: as summer (June)/and winter (J anuary), and we comff\ :
vertus
‘&Y pute the cl n error rate for the winter Lf?ummer classifier obtained
by choosing'the season[ftssomated with the larger of the likelihood functions

TA J
ummerl Z._ (xi = llﬂi) qummer( ,U,Z)
(ﬁ? =y A L
! winterl - =1 (xz - I»"z) Qwinter (xi o= ,U'z')-
X/

®

We consider =3 spatia?temporal precision matrix for a spatial-temporal
array of siz 0 x T, with the first (10 x 10)]factor corresponding to the
latitude atial array, the second aLO X ﬁactor corresponding to the

longitude axis/ and the third factor a Q’ afactor corresponding to a temporal

) axis of length T. The spatial-femporal array is created by concatenating T’
varous temporally Lve 10 x 20 spatial samples. We use j?Lregulanzatxon

= Results fordlifferent sized teppporal covariance extents (T’ = d3) are shown

Lasso, wi egularized TeraLasso (ML Kronecker Sum)

ﬁ | in Flg@e 1
8' and maximu ihood Kronecker product estimator (Werner et al., 2008;
— __ Tsiligkaridis 013) results shown for comparison. In this experiment,

we use the ME Kronecker product estimator instead of hq Gemini, as for
this maxi ood classification task the maximum- 11kehhoodllgased apj’
proach pe ificantly better than the factorwise objective approach of
the Gemini est s, which is not surprising as the Kronecker product is not a

ese ~ goodfitfor data, (S€ction 3.4 of the/supplement). Note the superior perfory®
'l

Mope MM \,l oocl
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k MCC and relative’Frobenius error as a function of p, ‘Not vex regula@

uig.,\S‘{\No onvex regularizers with spiked identity factogﬁ & Sflown are the
ization impreves;performance when p is chosen correctl)) ;L(a) =y /\

—

— . ey — e — -—
mance and increased singlel_gample robustness of the proposed M. Kronecker s 'H(\ (

Sum and TeraLasso estimates @y compared Ag the Kronecker product estimate, M Coét‘ﬁu.!, ok
confirming the'better fit of TeraLasso. In each case, the noffimonotonic behavigr ~ % L ‘\0 0
tre(l  of the Kroneckerproduct curves is due partly to randomnessé_sgoa:fe'ﬁith the S
OUEC “small test sample size, and partly ' the Kronecker product in

K = 3 has overly'strong coupling across tensor directions, giving large bias.

8. Conclusion

A factorized' model, called th{ TeraLasso, is proposed for the precision matrix of
tensor-valued data that uses Kronecker sum structure and sparsity to regularize .
the precisiongmatrix estimate. An [STA4like sptimization algorithnyfs presented T{ﬁm SQ{:}'
that scales to‘high'dimensions. Statistical and algorithmic conver: éncé)are es\'{? ?ES\\OL;\,\T\S
tablished for thesTeraLasso that quantify performance gains relative to other
structured and unstructured approaches. Numerical results demonstrate single-
sample convergence as well as tightness of the bounds. Finally, an application
to real tensor<valued (K = 3) metcorological data is considered, where the Ter,;l)

{Z’Qro‘ud alLasso model is shown to fit the data well and enabléZimproved single-sample

_ ‘Q&LGF performance for estimation and anomaly detection. Future work includes com$

CLhOJ.IiSfS bining firstymoment tensor representation methods for mean estimation such

‘g\'i Qi’ . as (Harshman and Lundy, 1994) with the secondLorder TeralLasso

\ S ?n?ﬂiﬂlin oduced in this paper for estimating the covariance.
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