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Abstract
Genetic	structure	can	be	influenced	by	local	adaptation	to	environmental	heteroge‐
neity	and	biogeographic	barriers,	resulting	in	discrete	population	clusters.	Geographic	
distance	among	populations,	however,	can	result	in	continuous	clines	of	genetic	di‐
vergence	that	appear	as	structured	populations.	Here,	we	evaluate	the	relevant	im‐
portance	 of	 these	 three	 factors	 over	 a	 landscape	 characterized	 by	 environmental	
heterogeneity	and	the	presence	of	a	hypothesized	biogeographic	barrier	in	producing	
population	genetic	structure	within	13	codistributed	snake	species	using	a	genomic	
data	 set.	We	 demonstrate	 that	 geographic	 distance	 and	 environmental	 heteroge‐
neity	across	western	North	America	contribute	to	population	genomic	divergence.	
Surprisingly,	landscape	features	long	thought	to	contribute	to	biogeographic	barriers	
play	little	role	in	divergence	community	wide.	Our	results	suggest	that	isolation	by	
environment	is	the	most	important	contributor	to	genomic	divergence.	Furthermore,	
we	show	that	models	of	population	clustering	that	 incorporate	spatial	 information	
consistently	outperform	nonspatial	models,	demonstrating	the	 importance	of	con‐
sidering	geographic	distances	in	population	clustering.	We	argue	that	environmental	
and	 geographic	 distances	 as	 drivers	 of	 community‐wide	divergence	 should	be	 ex‐
plored	before	assuming	the	role	of	biogeographic	barriers.
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1  | INTRODUC TION

Population	 structure	 across	 a	 species'	 range	 is	 typically	 produced	 by	
isolation	by	distance	 (IBD),	 isolation	by	environment	 (IBE)	or	 isolation	
by	resistance	(IBR).	 Isolation	by	distance,	which	is	commonly	reported	
in	empirical	data	sets	(Pelletier	&	Carstens,	2018;	Wang,	Glor,	&	Losos,	
2013;	Wright,	 1943),	 is	 defined	 as	 spatial	 autocorrelation	 in	 the	 dis‐
tribution	 of	 genetic	 variation	 and	 is	 the	 outcome	 of	 limited	 dispersal	
abilities	which	reduces	opportunity	for	gene	flow	across	the	extent	of	
a	species'	geographic	distribution.	Limited	dispersal	therefore	results	in	
negative	associations	with	genetic	relatedness	and	geographic	distance	
(Vekemans	&	Hardy,	2004).	Because	IBD	simply	correlates	Euclidian	dis‐
tance	in	geography	and	genetic	distance,	this	metric	ignores	heteroge‐
neity	in	the	environment	and	landscape.	By	contrast,	IBE	predicts	spatial	
genetic	divergence	based	on	environmental	differences	between	sam‐
pled	demes,	regardless	of	geographic	distance	(Wang	&	Bradburd,	2014).	
Isolation	by	environment	can	result	from	several	unique	processes,	such	
as	natural	selection	against	immigrants,	reduced	hybrid	fitness	or	biased	
rates	of	dispersal	(Wang	&	Bradburd,	2014).	Lastly,	resistance	distances	
across	a	heterogeneous	 landscape	can	structure	spatial	genetic	diver‐
gence	(McRae,	2006).	Such	resistance	distances	are	often	used	to	cap‐
ture	features	of	the	landscape	that	may	be	acting	as	physically	isolating	
barriers	to	dispersal	rather	than	an	adaptive	barrier	as	is	the	case	with	
IBE.	Therefore,	IBR	may	be	considered	the	main	force	driving	population	
structure	at	biogeographic	barriers.	Isolation	by	resistance	is	calculated	
as	the	probability	that	an	individual	will	migrate	from	one	population	to	
the	other,	weighted	by	a	friction	to	dispersal	across	unsuitable	habitats	
and/or	physical	barriers	(McRae,	2006;	Wang	&	Bradburd,	2014).	A	pat‐
tern	of	 IBR	arises	when	characteristics	of	 the	 landscape	modify	gene	
flow	between	demes	such	that	resistance	across	these	landscapes	(e.g.,	
across	rivers	or	over	mountains)	provides	a	more	appropriate	predictor	
of	genetic	differentiation	than	do	Euclidean	distances	or	(nonspatial)	en‐
vironmental	distances	(McRae,	2006).

One	or	more	of	these	three	patterns	may	explain	patterns	of	di‐
vergence	in	population	genomic	data	and	differentiating	them	may	be	
difficult.	 In	addition,	 if	patterns	of	 IBD	dominate	population	genetic	
structure,	inferences	of	discrete	population	clusters	may	be	spurious	
(Bradburd,	Coop,	&	Ralph,	2018;	Meirmans,	2012),	and	these	spurious	
inferences	may	also	extend	to	local	adaptation	to	clinal	variation	in	en‐
vironment.	By	contrast,	sharp	environmental	transitions	or	migration	
resistance	 across	 biogeographic	 barriers	will	 likely	 produce	 discrete	
population	 structure.	 Because	 distance,	 environment	 and	 landscape	
are	often	spatially	autocorrelated	with	one	another,	failure	to	examine	
the	effects	of	all	of	these	variables	may	potentially	result	in	incorrect	
estimates	of	the	drivers	of	population	divergence	(Reid,	Mladenoff,	&	
Peery,	2017).	Taking	into	account	geographic	distances,	environmental	
variation,	and	heterogeneity	in	the	landscape	will	help	to	understand	
the	factors	that	facilitate	adaptation	and	species	diversification.

Comparative	 studies	 of	 multiple	 codistributed	 species	 can	 ad‐
vance	 our	 understanding	 of	 organism–landscape	 interactions,	 re‐
veal	factors	that	generate	population	genetic	structure,	and	address	
whether	multiple	species	are	affected	in	similar	ways	to	shared	envi‐
ronments	(Wang	&	Bradburd,	2014).	Responses	to	shared	landscapes	

can	vary	from	concordant	 (Jackson	et	al.,	2018),	 to	entirely	discor‐
dant	population	genetic	structure	(Phillipsen	et	al.,	2015).	The	degree	
to	which	spatial	genetic	structure	is	shared	across	codistributed	spe‐
cies	may	be	affected	by	organismal	traits	(Phillipsen	et	al.,	2015;	Reid	
et	al.,	2017).	For	example,	genomic	divergence	in	taxa	with	greater	
dispersal	abilities	may	have	little	to	no	signature	of	IBD	compared	to	
taxa	with	lower	dispersal	abilities	(Phillipsen	et	al.,	2015).

Within	 arid,	 southwestern	 North	 America,	 several	 studies	 have	
demonstrated	that	codistributed	species	have	a	signature	of	population	
divergence	 between	 the	 Sonoran	 and	Chihuahuan	Deserts	 across	 the	
Cochise	Filter	Barrier	(CFB;	Myers,	Hickerson,	&	Burbrink,	2017;	Pyron	&	
Burbrink,	2010;	Zink,	Kessen,	Line,	&	Blackwell‐Rago,	2001),	potentially	
making	this	an	important	regional	biogeographic	barrier	(Figure	1).	This	
region	is	both	geographically	and	topographically	complex	and	provides	
opportunities	for	allopatric	divergence.	The	river	networks	of	southwest‐
ern	North	America	may	have	also	driven	allopatric	divergence	and	pop‐
ulation	structure	in	numerous	taxa	(e.g.,	the	Pecos	River,	the	Rio	Grande	
and	the	Colorado	River,	Figure	1;	Wood	et	al.,	2013;	Graham,	Hendrixson,	
Hamilton,	 &	 Bond,	 2015;	 O'Connell,	 Streicher,	 Smith,	 &	 Fujita,	 2017;	
Myers	et	 al.,	 2019).	The	 two	deserts	 are	 also	environmentally	hetero‐
geneous,	with	 differences	 in	 temperature	 and	 precipitation	 (Figure	 1).	
Divergence	due	to	environmental	variation	across	many	species	within	an	
assemblage	could	potentially	lead	to	codiversification	at	the	community	
level	(Johnson	&	Stinchcombe,	2007;	Wang	&	Bradburd,	2014).

The	 snake	 fauna	 codistributed	 across	 southwestern	 North	
America	 is	 an	assemblage	of	ecologically,	behaviourally,	 and	phys‐
iologically	 diverse	 taxa	 that	 presents	 an	 opportunity	 to	 examine	
how	genomic	variation	 is	distributed	across	the	 landscape.	For	ex‐
ample,	 this	 community	 is	 composed	of	both	oviparous	and	vivipa‐
rous	 species	 (e.g.,	 Lampropeltis getula and Trimorphodon biscutatus 
vs.	Crotalus	 spp.	and	Thamnophis marcianus),	 strictly	nocturnal	and	
strictly	diurnal	 taxa	 (e.g.,	Hypsiglena torquata	vs.	Masticophis flagel‐
lum),	and	taxa	that	specialize	on	an	invertebrate	diet	as	well	as	those	
that	 feed	 primarily	 on	 small	 rodents	 (e.g.,	 Sonora semiannulata	 vs.	
Pituophis catenifer).	These	differences	might	be	reflected	in	the	de‐
terminants	of	population	structure	(Phillipsen	et	al.,	2015;	Reid	et	al.,	
2017).	Previously,	it	has	been	shown	that	many	of	these	snake	taxa	
are	reciprocally	monophyletic	in	mtDNA	gene	trees	across	the	CFB	
(Myers,	Hickerson,	&	Burbrink,	2017)	and	that	geographic	distance	
is	an	important	variable	in	explaining	genetic	variation	across	these	
taxa.	The	authors	concluded	that	divergence	times	were	asynchro‐
nous	among	east–west	population	pairs	 in	12	snake	taxon	groups,	
indicating	nonshared	histories	(Myers,	Hickerson,	&	Burbrink,	2017).	
Furthermore,	numerous	species	delimitation	studies	have	elevated	
species	east	and	west	of	 the	CFB	 (Anderson	&	Greenbaum,	2012;	
Cox	et	al.,	2018;	Devitt,	LaDuc,	&	McGuire,	2008;	Mulcahy,	2008;	
O'Connell	&	Smith,	2018;	Pyron	&	Burbrink,	2009)	while	additional	
studies	 have	 suggested	widespread	 cryptic	 diversity	 within	 these	
snake	species	(Dahn,	Strickland,	Osorio,	Colston,	&	Parkinson,	2018;	
Myers,	Burgoon,	et	al.,	2017);	 therefore,	distinct	population	struc‐
ture	is	likely	present	across	this	biogeographic	barrier.

Given	the	previous	research	conducted	within	this	region,	we	hy‐
pothesize	that	the	CFB	drives	population	divergence	across	an	entire	
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assemblage	of	species,	all	of	which	are	widely	distributed	across	arid	
North	America.	We	predict	that	IBR	will	be	a	key	determinant	of	ge‐
nomic	divergence	and	that	the	location	of	the	CFB	will	be	concordant	
with	the	lowest	effective	migration	rates	in	nearly	all	species.	To	test	
these	 predictions,	 we	 generate	 a	 reduced‐representation	 genomic	
data	set,	analysing	 these	data	with	both	nonspatial	and	spatial	pop‐
ulation	clustering	methods.	We	then	explicitly	test	for	the	impacts	of	
IBD,	IBE,	and	IBR	on	genetic	structure,	as	well	as	quantify	which	en‐
vironmental	variables	and	geographic	 features	 (e.g.,	 climate,	 riverine	
barriers	or	elevation)	are	most	important	in	producing	patterns	of	pop‐
ulation	genetic	structure.

2  | METHODS

2.1 | Sample collection

A	 total	 of	 383	 tissue	 samples	were	 obtained	 throughout	 the	 range	
of	each	of	the	13	snake	species	groups	studied	here	(Arizona elegans,	

Crotalus atrox,	Crotalus molossus,	Crotalus scutulatus,	H. torquata,	L. get‐
ula,	M. flagellum,	P. catenifer,	Rhinocheilus lecontei,	Salvadora hexalepis,	
Son. semiannulata,	Tha. marcianus and Tri. biscutatus),	with	 collecting	
efforts	focused	on	sampling	from	within	the	Chihuahuan	and	Sonoran	
Deserts.	The	number	of	 individuals	per	taxon	ranged	from	15	to	44	
and	averaged	29.5	(Table	1).	Snakes	are	difficult	to	collect	in	large	num‐
bers,	and	therefore,	while	sampling	efforts	were	focused	on	collecting	
these	thirteen	species,	samples	were	often	collected	opportunistically	
yet	with	the	goal	of	broadly	sampling	each	species	within	the	Sonoran	
and	Chihuahuan	Deserts	across	the	Cochise	Filter	Barrier.

2.2 | Generation of sequence data

Genomic	 DNA	 was	 extracted	 from	 muscle	 or	 liver	 tissues	 using	
DNeasy	 kits	 (Qiagen)	 following	 manufacturer's	 protocols.	 Double‐
stranded	DNA	concentrations	were	quantified	using	a	Qubit	(Thermo	
Fisher	Scientific).	We	sent	up	to	30,000	ng	of	DNA	from	each	sam‐
ple	 to	 Cornell	 Institute	 of	 Genomic	 Diversity	 for	 genotyping	 by	

F I G U R E  1  Study	system.	(a)	The	geographic	distribution	of	the	Sonoran	and	Chihuahuan	Deserts	in	western	North	America.	(b)	The	major	
river	systems	of	western	North	America.	(c)	Elevation	and	the	western	continental	divide.	(d)	Climatic	variation	at	a	transect	at	32	degrees	latitude,	
which	corresponds	to	a	transect	from	the	Sonoran	Desert	through	the	Cochise	Filter	Barrier	into	the	Chihuahuan	Desert,	the	vertical	solid	line	
represents	the	location	of	the	Western	Continental	Divide.	Data	are	from	WorldClim	(http://www.world	clim.org/wileyonlinelibrary.com]).	 
The	x‐axis	is	longitude,	and	y‐axes	are	environmental	variables	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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sequencing	(GBS;	Elshire	et	al.,	2011).	GBS	is	a	technique	for	building	
reduced	representation	libraries,	similar	to	other	restriction‐site‐asso‐
ciated	DNA	sequencing	methods	where	a	restriction	enzyme	is	used	
to	reduce	the	complexity	of	the	genome	before	sequencing	(Elshire	
et	 al.,	 2011).	 Specifically,	 the	 method	 implemented	 uses	 methyla‐
tion‐sensitive	restriction	enzymes	which	targets	low	copy	regions	of	
the	genome	avoiding	repetitive	regions	(Elshire	et	al.,	2011).	Genomic	
DNA	was	digested	with	 the	Pst1	enzyme,	 and	 sample‐specific	bar‐
code	adapters	as	well	as	a	common	adapter	were	ligated	to	the	sticky	
end	of	the	fragments.	Libraries	were	sequenced	on	a	100	bp	single‐
end	Illumina	HiSeq	2000	at	the	Cornell	Core	Lab	Center.

2.3 | Bioinformatics/SNP calling

We	processed	raw	Illumina	reads	using	the	bioinformatics	pipeline	pyrad 
version	3.0	(Eaton,	2014)	to	assemble	de	novo	GBS	loci.	Each	species	
group	was	 analysed	 independently,	 and	 samples	were	 demultiplexed	
using	 their	unique	barcode	 sequence.	The	maximum	number	of	 sites	
allowed	with	a	Phred	score	<20	was	set	to	4	(these	sites	were	changed	
to	N's),	minimum	sequence	depth	was	set	 to	10	reads	per	 locus,	and	
we	 used	 a	 clustering	 threshold	 of	 90%.	All	 fragments	 >50	 bps	were	
retained.	Additionally,	we	filtered	sequences	where	loci	with	excessive	
heterozygous	sites	 (>3)	were	 removed	 to	 reduce	 the	chances	of	par‐
alogous	sequences.	Lastly,	minimum‐taxon	coverage	was	set	at	75%	of	
all	individuals,	allowing	for	25%	missing	data	per	locus	in	the	final	se‐
quence	alignments.	Filtered	reads	for	each	sample	were	clustered	using	
vsearch	(https	://github.com/torog	nes/vsearch)	and	aligned	with	muscle 
(Edgar,	2004).	Only	one	SNP	per	 locus	was	 retained	 for	downstream	
analyses,	in	order	to	reduce	the	possibility	of	linked	SNPs.

2.4 | Isolation by distance

As	an	initial	exploration	of	IBD	within	these	data,	we	fit	a	linear	model	
between	 genetic	 distance	 and	 Euclidian	 geographic	 distance	 for	 all	

sampled	 individuals,	and	calculated	an	 r2 value and p‐value.	Genetic	
distances	were	calculated	as	absolute	genetic	distances,	without	mak‐
ing	any	assumptions	regarding	mutation	or	genetic	drift	(Prevosti's	ge‐
netic	distances;	Kamvar,	Tabima,	&	Grünwald,	2014	;	Prevosti,	Ocaña,	
&	Alonso,	1975),	in	the	R	package	adegenet	using	a	matrix	of	one	SNP	
per	locus	for	each	taxon,	and	geographic	distances	between	sampling	
localities	were	calculated	using	the	r	package	fossil	(Vavrek,	2011).

We	 also	 implemented	 the	 spatial	 method	 Estimated	 Effective	
Migration	Surface	(EEMS;	Petkova,	Novembre,	&	Stephens,	2015),	
that	 is	 used	 to	 find	 patterns	 of	 genetic	 diversity	 across	 a	 land‐
scape	that	deviate	from	a	null	expectation	of	IBD.	We	applied	this	
method	as	an	exploratory	tool	to	find	regions	of	the	landscape	that	
may	act	as	biogeographic	barriers	 in	this	system	(e.g.,	 the	Cochise	
Filter	Barrier	or	major	river	systems)	and	to	explore	whether	there	
are	common	patterns	shared	across	taxa.	This	method	is	based	on	
a	stepping‐stone	model	where	individuals	migrate	locally	between	
demes	and	migration	rates	are	allowed	to	vary	by	location	(Petkova	
et	al.,	2015).	To	capture	continuous	genetic	diversity,	the	landscape	
is	divided	 into	demes	and	each	deme	can	only	exchange	migrants	
with	 its	 neighbours.	 Under	 this	 model,	 expected	 genetic	 dissim‐
ilarities	 depend	 on	 sample	 location	 and	 migration	 rates	 (Petkova	
et	al.,	2015).	EEMS	explicitly	 represents	genetic	differentiation	as	
a	function	of	migration	rates	and	correlates	genetic	variation	with	
geography,	 producing	 visualizations	 that	 highlight	 portions	 of	 a	
species	range	where	population	divergence	deviates	from	patterns	
expected	 under	 IBD.	 These	 regions	 are	 indicative	 of	 areas	 of	 the	
landscape	that	act	as	barriers	to	gene	flow,	or	conversely	promote	
gene	 flow	acting	as	 species	corridors	 (Richmond	et	al.,	2017).	For	
example,	 regions	 where	 EEMS	 identifies	 spatial	 genetic	 patterns	
that	have	lower	than	expected	effective	migration	under	pure	IBD	
are	suggestive	of	population	clustering	(i.e.,	a	region	of	lower	than	
expected	migration	under	IBD	is	potentially	a	contact	zone	between	
genetically	distinct	populations).	Using	the	above	genetic	distance	
matrices,	we	ran	EEMS	using	a	deme	size	of	1,200	(i.e.,	the	density	

TA B L E  1  Total	number	of	samples	and	number	of	SNPs	per	taxon	used	in	analyses

Taxon
Number of 
samples

Total number 
of SNPs

Number of un‐
linked SNPs

Number of samples used 
for construct analysis

Number of SNPs used 
for construct analysis

A)	Arizona elegans 43 18,993 7,438 37 599

B)	Crotalus atrox 44 11,710 7,929 40 3,955

C)	Crotalus molossus 20 15,245 7,784 20 650

D)	Crotalus scutulatus 36 11,681 5,496 32 4,075

E)	Hypsiglena torquata 27 27,202 6,857 25 599

F)	Lampropeltis getula 35 12,219 8,236 34 3,622

G)	Masticophis flagellum 30 14,443 5,901 29 4,610

H)	Pituophis catenifer 41 13,264 6,351 37 4,466

I)	Rhinocheilus lecontei 40 19,809 11,136 35 503

J)	Salvadora hexalepis 15 32,154 18,291 14 2,584

K)	Sonora semiannulata 13 37,607 21,259 12 4,988

L)	Thamnophis marcianus 24 22,092 9,948 23 5,970

M)	Trimorphodon biscutatus 15 46,444 21,073 14 3,251

https://github.com/torognes/vsearch
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of	populations),	with	three	independent	starting	chains	for	5	×	106 
MCMC	iterations	following	a	burn‐in	of	1	×	106,	with	a	thinning	of	
5,000	and	different	starting	seeds,	for	each	taxon.	Posterior	plots	
were	compared	across	 independent	runs	for	each	taxon	to	ensure	
convergence.	 These	 three	 runs	 per	 taxon	were	 combined	 and	 vi‐
sualized	using	the	r	package	reemsplots2	(https	://github.com/dipet	
kov/reems	plots2).

2.5 | Population clustering: spatial versus nonspatial

Whether	genetic	divergence	should	be	represented	as	discrete	clus‐
ters	 or	 continuous	 clines	 of	 variation	 is	 a	 well‐known	 problem	 in	
population	genetics	(Bradburd	et	al.,	2018).	Here,	we	implemented	
construct	 to	avoid	 this	potential	 issue.	construct	 is	a	model‐based	
method	that	simultaneously	infers	continuous	and	discrete	patterns	
of	population	structure	by	estimating	ancestry	proportions	for	each	
sampled	 individual	from	two‐dimensional	population	 layers,	where	
within	each	layer	a	rate	at	which	relatedness	decays	with	distance	
is	estimated	 (Bradburd	et	al.,	2018).	This	method	also	allows	 for	a	
cross‐validation	procedure	for	model	selection,	between	both	spa‐
tial	and	nonspatial	models	as	well	as	the	number	of	underlying	lay‐
ers	(Bradburd	et	al.,	2018).	This	analysis	allows	us	to	specifically	test	
whether	population	structure	can	be	attributed	 to	 IBD	versus	 IBE	
or	IBR.	For	example,	under	a	scenario	of	pure	IBD	we	would	expect	
construct	to	find	strong	support	for	a	spatial	model	with	single	popu‐
lation	(K	=	1),	alternatively	if	the	CFB	has	structured	populations,	we	
expect	to	find	support	for	two	populations,	with	geographic	distri‐
butions	that	meet	approximately	at	the	Western	Continental	Divide.	
Based	on	preliminary	runs,	large	amounts	of	missing	data	may	bias	
results.	Therefore,	with	the	unlinked	SNP	data	set,	 individual	sam‐
ples	missing	more	than	75%	of	genotypes	were	removed	and	after	
these	individuals	were	removed	we	again	removed	loci	to	ensure	that	
there	were	only	25%	missing	data	within	a	locus	(Table	1).	Pruning	of	
these	data	sets	was	conducted	in	vcftools	(Danecek	et	al.,	2011),	and	
vcf	files	were	converted	to	Structure	input	files	(Pritchard,	Stephens,	
&	Donnelly,	2000)	using	plink	(Purcell	et	al.,	2007).	The	cross‐valida‐
tion	procedure	to	test	between	discrete	clusters	versus	continuous	
variation	within	construct	was	then	run	for	each	taxon	with	K	=	1–6,	
or	until	 the	predictive	accuracy	reached	a	value	of	0,	with	10	rep‐
etitions	per	each	K	 value,	100,000	 iterations	per	 repetition,	and	a	
training	proportion	of	0.9.	When	choosing	a	best	fit	value	of	K,	we	
required	that	all	layers	contribute	>2%	to	the	total	covariance	of	the	
model.

2.6 | Determinants of population genomic structure: 
IBD, IBE, IBR

To	determine	what	variables	best	predict	genomic	divergence,	we	
implemented	 generalized	 dissimilarity	 modelling	 (GDM;	 Ferrier,	
Manion,	Elith,	&	Richardson,	2007).	This	method	is	a	matrix	regres‐
sion	technique	that	models	variation	 in	distance	matrices	by	relat‐
ing	 dissimilarity	 in	 genetic	 distances	 between	 sites	 to	 differences	
in	environmental	distances	and	the	degree	to	which	these	sites	are	

isolated	from	one	another	(e.g.,	geographical	or	resistance	distances;	
Fitzpatrick	&	Keller,	2015;	Thomassen	et	al.,	2010).	GDM	can	fit	non‐
linear	 relationships	 of	 environmental/distance	 variables	 to	 genetic	
variation	 through	 the	use	of	 I‐spline	basis	 functions	 (Ferrier	et	al.,	
2007).	This	method	uses	the	percent	deviance	explained	as	a	meas‐
ure	of	model	fit	(Fitzpatrick	&	Keller,	2015).	We	used	this	method	to	
simultaneously	examine	the	effects	that	geographic	distance,	envi‐
ronmental	variables,	and	several	potential	resistance	surfaces	have	
on	generating	genomic	divergence.

For	 environmental	 variables,	 we	 downloaded	 the	 19	 Bioclim	
variables	 (Hijmans,	 Cameron,	 Parra,	 Jones,	 &	 Jarvis,	 2005)	 at	
30‐s	 resolution.	We	 then	 reduced	 this	 to	 a	 set	 of	 variables	 such	
that	 correlation	 among	 variables	 was	 <0.7	 using	 the	 raster.cor.
matrix	function	in	the	enmtools r	package	(Warren,	Glor,	&	Turelli,	
2010).	 This	 resulted	 in	 retaining	 nine	Bioclim	 variables	 for	 use	 in	
GDM	 models	 (Annual	 Mean	 Temperature,	 Mean	 Diurnal	 Range,	
Isothermality,	 Temperature	 Seasonality,	 Mean	 Temperature	 of	
Wettest	 Quarter,	 Mean	 Temperature	 of	 Driest	 Quarter,	 Annual	
Precipitation,	 Precipitation	 of	 Driest	 Month	 and	 Precipitation	
Seasonality).	Environmental	variation	for	each	collecting	locality	for	
all	 species	was	 extracted	 from	 this	 set	 of	 uncorrelated	 variables.	
We	used	three	different	resistance	surfaces	that	may	better	reflect	
patterns	 of	 genomic	 divergence	 than	 pure	 geographic	 distance;	
these	 are	 resistance	 around	 major	 rivers	 of	 southwestern	 North	
America,	elevation,	and	potential	geographic	distributions	based	on	
ecological	niche	models	 (ENMs).	Major	rivers	were	selected	given	
that	numerous	studies	have	suggested	that	the	Pecos	River,	the	Rio	
Grande	and	the	Colorado	River	(e.g.,	Graham	et	al.,	2015;	Myers	et	
al.,	2019;	O'Connell	et	al.,	2017;	Wood	et	al.,	2013)	are	barriers	to	
gene	flow.	Elevation	was	selected	as	a	resistance	surface	because	
the	 Cochise	 Filter	 Barrier	 is	 often	 associated	 with	 the	 Western	
Continental	Divide	(Castoe,	Spencer,	&	Parkinson,	2007),	a	high	el‐
evation	 region	 between	major	watersheds	 in	North	 America	 and	
because	the	Central	Mexican	Plateau	has	been	associated	with	lin‐
eage	divergence	in	previous	studies	of	the	same	taxa	(Schield	et	al.,	
2018).	A	shape	file	of	rivers	was	obtained	from	https	://www.natur	
alear	thdata.com/downl	oads/50m‐physi	cal‐vecto	rs/,	 and	 elevation	
was	obtained	from	https	://resea	rch.cip.cgiar.org/gis.	Both	of	these	
were	converted	to	an	ascii	file	using	the	raster	library	in	r	(Hijmans	
&	van	Etten,	2012).	Lastly,	we	chose	to	use	ENMs	as	a	resistance	
surface	because	potential	routes	of	dispersal	and	gene	flow	among	
populations	 are	 likely	 restricted	 by	 suitable	 habitat.	 ENMs	 were	
created	for	each	taxon	independently	by	first	retrieving	500	local‐
ity	records	from	the	Global	Biodiversity	Information	Facility	(GBIF.
org)	using	the	r	package	spocc	 (Chamberlain,	Ram,	&	Hart,	2016).	
Any	 records	outside	 the	known	geographic	distributions	of	 these	
species	were	then	removed.	Furthermore,	occurrences	outside	our	
study	 region	were	 then	dropped	 (−126,	 −90,	 18,	 50)	 and	 thinned	
so	that	sampled	localities	within	50	km	were	removed,	using	spthin 
(Aiello‐Lammens,	Boria,	Radosavljevic,	Vilela,	&	Anderson,	 2015).	
Using	 biomod2	 (Thuiller,	 Georges,	 &	 Engler,	 2013),	 we	 sampled	
10,000	pseudoabsence	points	within	the	study	region	and	maxent 
version	 3.4.1	 (Phillips,	 Anderson,	 &	 Schapire,	 2006)	 was	 used	 to	

https://github.com/dipetkov/reemsplots2
https://github.com/dipetkov/reemsplots2
https://www.naturalearthdata.com/downloads/50m-physical-vectors/
https://www.naturalearthdata.com/downloads/50m-physical-vectors/
https://research.cip.cgiar.org/gis
https://www.gbif.org/
https://www.gbif.org/
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construct	ENMs	using	all	19	Bioclim	variables.	We	used	all	available	
Bioclim	variables	because	the	regularization	method	implemented	
in maxent	 is	 stable	 even	 if	 variables	 are	 correlated,	 therefore	 re‐
moving	potentially	correlated	variables	or	preprocessing	covariates	
through	the	use	of	PCA	and	selecting	only	the	dominant	axes	for	
using	analysis	is	unnecessary	(Elith	et	al.,	2011).	Each	analysis	was	
replicated	for	5,000	iterations,	reserving	25%	of	samples	as	a	train‐
ing	data	set	for	model	evaluation,	and	we	created	response	curves	
and	jackknifed	our	data	to	measure	variable	importance.	The	aver‐
age	of	these	ENMs	was	then	projected	and	saved	as	ascii	files.	All	
ascii	 files	were	normalized	 to	 values	of	 0–1.	 In	 the	 case	of	 rivers	
and	elevation,	greater	values	represent	 increased	resistance	rates	
across	 the	 landscape	 (e.g.,	 in	 the	 case	 of	 potential	 riverine	 barri‐
ers,	 rivers	=	1	 and	nonriver	 =	0)	 and	were	used	 as	 resistances	 in	
circuitscape	4.0	(McRae,	2006;	McRae,	Shah,	&	Edelman,	2016)	im‐
plemented	 in	 Julia.	 In	 the	 case	of	 ENMs,	 the	 ascii	 files	were	 also	
normalized	to	values	of	0–1,	but	these	were	used	as	conductance	
surfaces	in	circuitscape	analyses.

Using	GDM,	we	 tested	 how	 these	 geographic	 distance	 (IBD),	
environmental	 variation	 (IBE;	 all	 uncorrelated	 Bioclim	 variables)	
and	three	models	of	distance	matrices	(IBR)	contribute	to	genomic	
divergence.	 Our	 previously	 generated	 absolute	 genetic	 distance	
matrices	 (from	 all	 potentially	 unlinked	 SNPs)	 were	 used	 as	 the	
response	 variable,	 and	 the	 gdm r	 package	 (Manion,	 Lisk,	 Ferrier,	
Nieto‐Lugilde,	 &	 Fitzpatrick,	 2016)	 was	 used	 to	 fit	 generalized	
dissimilarity	models.	We	also	calculated	Nei's	D	genetic	distances	
from	our	unlinked	SNPs	and	repeated	all	GDM	analyses	using	this	
measure	of	genetic	distance	as	the	response	variable	 (Nei,	1972).	
We	ran	seven	independent	tests	for	each	taxon	with	different	sets	
of	 predictor	 variables:	 (a)	 a	 full	 model	 with	 geographic	 distance,	
environmental	 variables	 and	 the	 resistance	 surfaces,	 (b)	 a	model	
with	geographic	distance	and	environmental	variables,	(c)	a	model	
with	geographic	distance	and	resistance	distances,	(d)	a	model	with	
environmental	variables	and	resistance	distances,	(e)	a	model	with	
environmental	 variables	 only,	 (f)	 distance	 only	 and	 (g)	 resistance	
distances	only.	We	used	the	gdm.varImp	function	in	the	gdm r	pack‐
age	on	all	seven	models,	which	uses	a	matrix	permutation	to	per‐
form	model	and	variable	significance	testing	and	estimates	variable	
importance	in	a	GDM.

Because	a	large	percentage	of	deviance	can	be	explained	in	our	
GDM	 models,	 we	 tested	 whether	 nucleotide	 diversity	 or	 sample	
size	 was	 correlated	 with	 percent	 deviance	 explained.	 Nucleotide	
diversity	was	calculated	for	each	species	 in	the	popgenome	 (Pfeifer,	
Wittelsbürger,	 Ramos‐Onsins,	 &	 Lercher,	 2014)	 package	 of	 r.	We	
then	 fit	 linear	 models	 between	 nucleotide	 diversity	 and	 percent	
deviance	as	well	as	between	the	total	number	of	samples	collected	
per	species	and	percent	deviance	explained;	an	r2 and p‐value	were	
calculated	for	these	two	linear	models.	We	also	tested	whether	en‐
vironmental	variation	 in	 the	Bioclim	variables	can	be	explained	by	
geographic	distance	alone.	To	do	this,	we	used	GDM,	for	each	set	of	
collecting	localities	for	each	taxon.	In	these	GDMs,	we	used	the	19	
Bioclim	variables	as	a	response	variable	and	latitude	and	longitude	
as	the	predictor	variables.

3  | RESULTS

3.1 | Sequencing and bioinformatics

We	 generated	 GBS	 data	 for	 383	 specimens	 resulting	 in	
1,009,845,311	reads	and	72.12	GB	of	raw	data	with	an	average	of	
2,120,912.5	±	1,446,417.4	 reads	per	 individual	 (see	Appendix	 S1).	
After	 excluding	 loci	 with	 more	 than	 25%	 missing	 data,	 11,681–
46,444	 total	 SNPs	 and	 5,496–21,259	 SNPs	 when	 restricted	 to	
one	SNP	per	locus,	depending	on	the	species	group,	were	retained	
(Table	1).	Raw	sequence	data	are	available	on	 the	NCBI	Sequence	
Read	 Archive	 (Accession:	 PRJNA554495),	 and	 the	 assembled	
GBS	 data	 used	 in	 this	 study	 are	 available	 on	 Dryad	 (https	://doi.
org/10.5061/dryad.2172qg4).

3.2 | Patterns of IBD

The	r2	values	from	linear	models	of	correlations	between	genetic	
distances	 and	 geographic	 distances	 range	 from	 0.13	 to	 0.73	 (in	
P. catenifer and C. molossus,	 respectively),	 and	 in	all	 cases,	p‐val‐
ues	<0.05	(Appendix	S2).	The	EEMS	analyses	highlight	regions	of	
lower	 than	 expected	 migration	 across	 the	 geographic	 distribu‐
tions	of	all	13	taxa.	Many	taxa	show	regions	of	reduced	gene	flow	
that	 run	north	 to	south	separating	populations	 into	 the	Sonoran	
and	Chihuahuan	Deserts	(Figure	2;	e.g.,	C. atrox and H. torquata).	
However,	within	some	taxa,	the	geographic	features	that	might	be	
creating	 these	 regions	of	 reduced	gene	 flow	were	 less	clear	and	
not	 strictly	 associated	with	 the	 Cochise	 Filter	 Barrier,	 nor	were	
there	 shared,	 community‐wide	 patterns	 of	 reduced	 gene	 flow	
(Figure	 2).	 For	 example,	 rates	 of	migration	were	 reduced	 across	
much	of	the	geographic	distribution	of	C. scutulatus	and	not	asso‐
ciated	with	any	biogeographic	barriers	(e.g.,	these	regions	are	not	
tightly	associated	with	the	CFB	or	major	rivers).	Likewise,	within	
A. elegans	reduced	rates	of	migration	were	inferred	across	many	of	
the	sampling	localities	within	the	western	portion	of	this	species'	
range	and	nearly	all	of	the	Sonoran	Desert	showed	reduced	rates	
of	migration	within	Sal. hexalepis	(Figure	2).

3.3 | Spatial population clustering

In	cross‐validation	analyses	of	spatial	versus	nonspatial	population	
clustering	across	all	13	taxa,	a	model	that	included	spatial	informa‐
tion	outperformed	nonspatial	models	using	construct	 (Appendices	
S3	and	S4).	These	analyses	suggested	that	incorporating	geographic	
information,	which	may	be	a	reflection	of	a	pattern	of	IBD,	was	im‐
portant	for	determining	the	number	of	genetic	clusters	in	all	species	
across	this	assemblage.	These	cross‐validation	analyses	coupled	with	
a	required	threshold	of	0.02	minimum	contribution	of	each	layer	to	
total	covariance	suggested	that	between	K	=	1–4	layers	sufficiently	
describe	the	genomic	data	within	each	species	(Figure	3;	Appendix	
S4).	Within	C. scutulatus and P. catenifer,	the	best	support	was	for	a	
spatial	model	with	K	=	1	(e.g.,	adding	an	additional	layer	at	K	=	2	for	
C. scutulatus	only	contributed	to	explaining	an	additional	0.5%	of	the	

https://doi.org/10.5061/dryad.2172qg4
https://doi.org/10.5061/dryad.2172qg4
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model	covariance;	for	P. catenifer	this	additional	layer	only	explained	
an	additional	0.08%;	Appendix	S4),	suggesting	that	genomic	varia‐
tion	within	 these	 two	 taxa	was	 indicative	of	a	 continuous	cline	of	
ancestry,	a	pattern	of	IBD.	With	the	exception	of	these	two	groups,	
construct	 results	 provided	 strong	 support	 for	 discrete	 population	
structure	across	arid	North	America.	Seven	species	showed	a	strong	
signal	of	population	divergence	across	the	CFB	(Figure	3),	suggesting	
that	IBR	may	have	influenced	population	genetic	structure	in	these	
groups.	However,	 the	 cause	 of	 population	 structure	 in	 some	 spe‐
cies	was	less	clear;	for	example,	the	cause	of	population	structure	in	
R. lecontei,	Sal. hexalepis,	Son. semiannulata and Tha. marcianus	was	
unidentifiable	(Figure	3).	Maps	of	all	tested	levels	of	K	layers	are	in‐
cluded	in	the	Appendix	S5	for	both	spatial	and	nonspatial	models.

3.4 | Determinants of population genomic structure: 
IBD, IBE, IBR

Ecological	 niche	 models	 for	 all	 taxa	 had	 reasonable	 performance	
with	AUC	 values	 ranging	 from	0.9	 (P. catenifer)	 to	 0.97	 (C. molos‐
sus;	 Table	 2	 and	 Appendix	 S6	 for	 projected	 ENMs).	 Bioclim	 vari‐
ables	related	to	temperature,	specifically	mean	temperature	of	the	
coldest	quarter,	 contributed	 the	most	 to	ENMs	 in	 the	majority	of	
species	(Table	2).	Only	in	two	taxa,	Tri. biscutatus and Sal. hexalepis,	
did	variables	related	to	precipitation	contribute	more	to	ENMs	than	
did	 variables	 related	 to	 temperature	 (Table	 2).	 Output	 ascii	 files	
for	 each	 ENM	 are	 available	 from	Drayd	 (https	://doi.org/10.5061/
dryad.2172qg4).

F I G U R E  2  Estimated	Effective	Migration	Surface	plots	for	all	thirteen	species.	White	areas	indicate	regions	where	migration	rates	are	
consistent	with	a	pattern	of	IBD,	highlighted	blue	regions	have	higher	than	expected	rates	of	migration,	and	orange	shaded	regions	have	
lower	than	expected	rates	of	migration.	Circles	on	each	plot	represent	sampled	localities.	(a)	Arizona elegans;	(b)	Crotalus atrox;	(c)	Crotalus 
molossus;	(d)	Crotalus scutulatus;	(e)	Hypsiglena torquata;	(f)	Lampropeltis getula;	(g)	Masticophis flagellum;	(h)	Pituophis catenifer;	(i)	Rhinochelius 
lecontei;	(j)	Salvadora hexalepis;	(k)	Sonora semiannulata;	(l)	Thamnophis marcianus;	(m)	Trimorphodon biscutatus
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When	using	absolute	genetic	distances	as	a	 response	variable,	
the	GDM	models	that	accounted	for	all	possible	predictor	variables	
(geographic	 distance,	 environmental	 variation	 and	 resistances	 dis‐
tances)	across	these	13	species	explained	between	35.9%	and	95.4%	
(average	deviance	of	65.6%	±	20%)	of	 the	total	observed	genomic	
variation	and	were	significant	in	all	of	the	13	species	(Table	2).	The	
variables	that	contributed	the	most	to	models	that	included	all	po‐
tential	 predictor	 variables	 varied	 by	 taxa	 but	most	 often	 included	
geographic	 distance	 (9/13	 species),	 and	 rarely	 included	 resistance	
surfaces	generated	from	circuitscape	(3/13	species;	Table	2).	In	each	
of	 the	 three	cases	where	 resistance	surfaces	were	 important	pre‐
dictor	variables,	the	resistance	variable	differed	(e.g.,	in	L. getula,	el‐
evation	was	important,	where	as	in	P. catenifer	resistance	distances	
around	 ENMs	were	 important,	 and	 in	 S. hexalepis,	 rivers	 as	 barri‐
ers	 were	 important).	 Furthermore,	 the	 climatic	 variables	 of	 most	

importance	in	explaining	genomic	variation	from	the	full	GDM	mod‐
els	were	never	the	same	variables	as	those	contributing	the	most	to	
the	generated	ENMs	(Table	2).	This	suggests	that	the	variables	that	
predict	the	geographic	distribution	of	a	species	were	not	the	same	
as	those	promoting	population	divergence.	GDM	models	which	only	
included	climatic	variables	or	both	climatic	variables	and	geographic	
distance	performed	nearly	as	well	as	the	full	model	(i.e.,	all	predic‐
tor	variables),	while	the	GDM	that	 included	only	geographic	or	re‐
sistances	 distances	 predicted	much	 less	 variation	 alone	 (Table	 2).	
Variable	importance	values	resulting	from	model	permutations	and	
statistical	significance	are	presented	in	the	Appendix	S8.	The	exact	
predictor	variables	differed	slightly	when	using	Nei's	D	genetic	dis‐
tances	as	the	response	variable	instead	of	absolute	genetic	distances	
(Appendix	 S9).	 However,	 models	 that	 incorporated	 environmental	
variation	or	environmental	variation	and	geographic	distances	were	

F I G U R E  3  Sampling	localities	and	populations	inferred	from	clustering	analyses	in	construct	plotted	over	the	distributions	of	each	
species	(in	grey)	and	the	Western	Continental	Divide	(in	black,	is	often	used	to	delineated	the	Cochise	Filter	Barrier).	Also	shown	are	
representatives	of	some	of	the	major	lineages	of	snakes	from	this	study.	Each	circle	represents	an	individual	sample;	the	colour	of	the	circle	
is	representative	of	clustering	results	where	the	proportion	of	the	colour	corresponds	to	the	population	assignment	of	that	individual.	
(a)	Arizona elegans;	(b	and	o)	Crotalus atrox;	(c)	Crotalus molossus;	(d)	Crotalus scutulatus;	(e)	Hypsiglena torquata;	(f)	Lampropeltis getula;	(g)	
Masticophis flagellum;	(h)	Pituophis catenifer;	(i	and	p)	Rhinochelius lecontei;	(j)	Salvadora hexalepis;	(k)	Sonora semiannulata;	(l	and	n)	Thamnophis 
marcianus;	(m)	Trimorphodon biscutatus.	Geographic	distribution	data	were	obtained	from	the	IUCN	website	(https	://www.iucnr	edlist.org)	for	
species	a–k,	and	distributions	for	l	and	m	were	generated	from	locality	information	downloaded	from	vertnet
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consistently	the	top	models	in	explaining	Nei's	D	genetic	distances	
within	species,	whereas	models	that	only	consisted	of	IBR	distances	
explained	less	genetic	differentiation	(Appendix	S9).

Generalized	 dissimilarity	models	were	 also	 able	 to	 explain	 be‐
tween	19%	and	76.2%	of	the	variation	in	correlations	between	geo‐
graphic	 distance	 and	 the	 climate	 variables	 used	 above;	 however,	
GDM	 models	 were	 inconclusive	 in	 several	 cases	 suggesting	 that	
geographic	distance	was	not	always	correlated	with	environmental	
variation	across	 the	geographic	distribution	of	 these	 thirteen	spe‐
cies	 (Appendix	 S7).	 There	 was	 no	 correlation	 between	 observed	
nucleotide	diversity	and	percent	deviance	explained	in	GDM	mod‐
els	 (Appendix	S10);	however,	 there	was	a	correlation	between	the	
number	of	samples	per	species	and	the	deviance	 in	genetic	differ‐
entiation	explained	in	our	GDM	models	(r2	=	.65,	p‐value	<	.05).	This	
suggests	that	smaller	sample	sizes	resulted	in	a	larger	percent	devi‐
ance	explained	when	using	GDM	models	(Appendix	S10).

4  | DISCUSSION

Using	comparative	population	genomic	data	across	13	codistributed	
snake	 species,	we	demonstrate	 that	 isolation	 by	 environment	 and	
isolation	by	distance	are	common	patterns	in	divergence	across	an	
entire	 assemblage.	Surprisingly,	 features	of	 the	 landscape	 thought	
to	contribute	to	biogeographic	barriers	(e.g.,	differences	in	elevation	
and	rivers)	play	little	role	in	population	differentiation.	Genetic	clus‐
tering	methods	that	explicitly	account	for	spatial	information	consist‐
ently	outperformed	nonspatial	clustering	methods,	which	regularly	
oversplit	the	number	of	populations	within	a	species	(Appendix	S3).	
These	 spatial	 clustering	 analyses	 demonstrate	 that	 some	 species	
have	population	structure	across	the	CFB;	however,	this	pattern	is	
inconsistent	across	the	entire	species	assemblage	(Figures	2	and	3).	
Together,	these	results	suggest	that	local	environmental	conditions,	
not	 shared	 biogeographic	 barriers,	 are	 likely	 driving	 lineage	 diver‐
gence,	and	importantly,	the	determinants	of	population	divergence	
are	taxon	specific.

4.1 | IBE plays a dominant role in 
population structure

For	13	codistributed	species,	we	find	that	both	IBD	and	IBE	contrib‐
ute	to	spatial	genomic	divergence	and	that	on	average	IBE	contrib‐
utes	to	approximately	2	times	more	genomic	divergence	than	does	
IBD	 alone	 (mean	 IBE	 62.0%	 vs.	mean	 IBD	33.9%;	 Table	 2).	 These	
two	combined	variables	contributed	to	a	 large	portion	of	genomic	
divergence	 in	 all	 taxa	 (e.g.,	 up	 to	 95.4%	 in	Sal. hexalepis;	 Table	 2),	
suggesting	that	our	analyses	are	capable	of	detecting	the	underlying	
processes	of	diversification.	Results	are	consistent	across	taxa	where	
environmental	divergence	was	always	highly	predictive	of	genomic	
divergence.	However,	we	 also	 found	 that	 the	most	 important	 en‐
vironmental	 variable	 in	 driving	 genomic	 divergence	 varied	 among	
taxa	and	it	was	evenly	divided	whether	temperature	or	precipitation	
was	the	most	important	variable	in	predicting	divergence	(Table	2).	

Therefore,	while	climatic	differences	are	broadly	important	for	driv‐
ing	 divergence,	 the	 key	 components	 of	 diversification	 are	 species	
specific.	 Because	 much	 genomic	 divergence	 can	 be	 explained	 by	
environmental	heterogeneity,	future	studies	should	focus	on	differ‐
ential	selection	and	functional	adaptive	differences	between	popu‐
lations	 to	 separate	 ecological	 from	 historical	 processes	 in	 driving	
speciation	within	this	region	(Sobel,	Chen,	Watt,	&	Schemske,	2010).	
However,	it	is	important	to	point	out	that	the	amount	of	genomic	di‐
vergence	explained	by	GDM	models	is	sensitive	to	the	total	number	
of	samples	 included	in	analyses,	where	GDM	models	explain	more	
deviance	with	smaller	sample	sizes	(Appendix	S10).	However,	these	
models	are	statistically	significant	(Table	2)	as	are	most	of	the	vari‐
ables	of	importance	using	permutation	tests	(Appendix	S8).

The	predominant	role	of	environmental	heterogeneity	 in	shap‐
ing	genomic	divergence	in	this	system	suggests	that	local	adaptation	
is	 an	 important	 process	 in	 structuring	 populations	 and	 potentially	
responsible	 for	 species	 level	 diversification	 (Nosil,	 2012;	 Sexton,	
Hangartner,	&	Hoffmann,	2014;	Shafer	&	Wolf,	2013).	However,	a	
dominant	 role	 of	 IBE	 in	 promoting	 genomic	 divergence	 is	 not	 the	
outcome	 of	 other	 similar	 studies.	 For	 example,	 the	 majority	 of	
mtDNA	variation	within	Caribbean	Anolis	 lizards	can	be	attributed	
to	patterns	of	IBD	(Wang	et	al.,	2013).	Similarly,	genomic	variation	
within	Australian	skinks	is	best	explained	by	a	pattern	of	IBD	(Singhal	
et	al.,	2018).	Because	of	the	contrasts	between	these	previous	stud‐
ies	and	our	results,	it	is	important	to	highlight	that	the	drivers	of	ge‐
nomic	divergence	may	vary	greatly	across	taxa	under	investigation	
or	 study	 region	 (e.g.,	differentiation	on	 islands	compared	 to	conti‐
nental	radiations).

Although	 comparative	population	genomic	 studies	 can	 identify	
correlations	 between	 landscape	 and	 environmental	 characteristics	
and	 population	 genetic	 structure,	 the	 underlying	 relationship	 be‐
tween	species	traits	and	genetic	variation	can	be	difficult	to	deter‐
mine	(Reid	et	al.,	2017).	 It	 is	 likely	that	species	traits	are	important	
in	structuring	population	genetic	patterns	(Zamudio,	Bell,	&	Mason,	
2016)	 and	 therefore	 even	 closely	 related,	 codistributed	 species,	
while	 subjected	 to	 similar	 landscapes	 and	 environmental	 varia‐
tion,	can	have	very	different	population	structure.	For	example,	all	
taxa	within	the	tribe	Lampropeltini	(A. elegans,	L. getula,	P. catenifer 
and R. lecontei)	 examined	 here,	 though	 closely	 related	 (divergence	
time	~12.2	mya;	Chen,	Lemmon,	Lemmon,	Pyron,	&	Burbrink,	2017),	
have	unique	determinants	of	population	structure	(Table	2).	This	may	
be	 an	 expected	 outcome	 of	 such	 comparative	 analyses	 given	 that	
previous	studies	have	found	landscape	genetic	patterns	to	be	influ‐
enced	by	species‐specific	dispersal	abilities,	life‐history	traits,	or	hab‐
itat	preferences	(Reid	et	al.,	2017;	Robertson	et	al.,	2018).	Therefore,	
understanding	 differences	 in	 species‐specific	 traits	may	 ultimately	
help	 elucidate	 what	 landscape	 features	 promote	 connectivity	 and	
gene	 flow	 among	 populations	 (Zamudio	 et	 al.,	 2016).	 However,	
determining	which	 traits	are	useful	 for	predicting	patterns	of	pop‐
ulation	 genetic	 structure	 and	 gene	 flow	may	 prove	 to	 be	 difficult.	
For	example,	codistributed	species	with	very	different	physiologies	
and	life	histories	can	become	locally	adapted	in	response	to	similar	
environmental	 variation.	Within	 our	 study	 species,	 two	 groups	 of	
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distantly	related	taxa	have	similar	determinates	of	population	struc‐
ture.	For	example,	within	both	A. elegans and Tha. marcianus,	genomic	
distance	between	populations	is	best	explained	by	both	geographic	
distance	 and	 Precipitation	 of	Driest	Month	 (Table	 2).	While	 these	
two	 taxa	 have	 broadly	 overlapping	 geographic	 distributions,	 they	
are	very	distantly	related	(diverged	approximately	~42	mya;	Pyron	&	
Burbrink,	2012)	with	unique	physiologies	and	ecologies;	A. elegans	is	
a	medium	sized,	nocturnal,	oviparous	colubrine	that	preys	largely	on	
lizards	(Rodríguez‐Robles,	Bell,	&	Greene,	1999)	and	Tha. marcianus 
is	a	semi‐aquatic,	viviparous	species	that	feeds	on	fish,	anurans	and	
invertebrates	 (Ernst	&	Ernst,	2003).	Why	these	two	species	would	
have	 similar	 responses	 in	 population	 genetic	 structure	 to	 environ‐
mental	heterogeneity	is	unclear.	Additionally,	GDM	analyses	demon‐
strate	 that	 geographic	 distance	 and	 Mean	 Temperature	 of	 Driest	
Quarter	 are	 the	best	 predictors	of	 population	 genetic	 structure	 in	
C. atrox,	C. molossus,	 and	M. flagellum.	 It	 is	 also	unclear	why	 these	
three	species	have	similar	determinates	of	population	genetic	struc‐
ture;	for	example,	while	C. atrox and C. molossus	are	closely	related,	
they	occupied	distinct	habitats	across	arid	North	America	(C. atrox	is	
found	throughout	creosote	bush/desert	flats	while	C. molossus	 is	a	
higher	elevation	taxon,	rarely	found	in	the	desert	flats).

4.2 | Spatial phylogeography and covicariance

It	 is	 often	 assumed	 that	 cyclical	 climatic	 changes	 during	 the	
Quaternary	 coupled	with	 biogeographic	 barriers	were	 responsible	
for	 lineage	 formation	 (Hewitt,	 2000).	Within	 arid	 North	 America,	
numerous	 studies	 have	 cited	 the	 CFB	 as	 a	 soft	 ecological	 barrier	
promoting	diversification	across	entire	communities	that	are	now	in	
secondary	contact	(Myers,	Hickerson,	et	al.,	2017;	Pyron	&	Burbrink,	
2010;	Riddle	&	Hafner,	2006).	The	CFB	has	also	been	described	as	
an	 ecotonal	 region	 dividing	 the	Chihuahuan	 and	 Sonoran	Deserts	
(Laport	&	Minckley,	 2013)	where	 there	 are	 also	 climatic	 gradients	
from	east	to	west	(Figure	1;	Schmidt,	1979).	Additional	geographic	
features	 throughout	 the	southwest	have	been	proposed	as	 impor‐
tant	 barriers	 including	 major	 river	 systems	 (Graham	 et	 al.,	 2015;	
Myers	et	 al.,	 2019;	O'Connell	 et	 al.,	 2017;	Wood	et	 al.,	 2013)	 and	
increases	 in	 elevation	 at	 the	 Central	 Mexican	 Plateau	 (Bryson,	
García‐Vázquez,	&	Riddle,	2011;	Schield	et	al.,	2018).	Our	analyses	
that	 incorporate	spatial	 information	 to	account	 for	continuous	ge‐
netic	variation	best	fit	the	observed	genomic	data	for	13	codistrib‐
uted	species	(Appendix	S3),	with	less	than	half	of	these	taxa	showing	
clear	 population	 structure	 across	 the	 CFB	 (Figure	 3),	 while	 GDM	
models	suggest	 little	genetic	divergence	 is	explained	by	resistance	
distances	that	are	indicative	of	biogeographic	barriers	(Table	2).	This	
implies	 that	 determinants	 of	 population	 divergence	 are	 dissimilar	
across	many	members	of	a	biological	community	and	that	the	CFB	
as	a	vicariant	biogeographic	barrier	is	not	the	direct	cause	of	assem‐
blage‐wide	 species	diversification	 (Figures	2	and	3).	The	emphasis	
on	 identifying	and	supporting	vicariant	barriers	within	 the	 field	of	
phylogeography	may	have	hampered	our	understanding	of	 the	di‐
rect	 causes	 of	 lineage	 divergence	 (e.g.,	 Irwin,	 2002).	 The	 roles	 of	

neutral	divergence	resulting	in	clinal	variation	(e.g.,	IBD)	and	that	of	
ecological	differentiation	due	to	climatic	variation	(e.g.,	IBE)	have	not	
been	fully	appreciated	in	driving	diversification	when	compared	to	
biogeographic	barriers	promoting	allopatric	divergence.

The	 patterns	 observed	 here	might	 be	 expected	 to	 be	 general	
to	 other	 taxonomic	 groups	 regionally	 and	 likely	 at	 other	 potential	
biogeographic	barriers	globally.	Because	the	geographic	locations	of	
population	boundaries	appear	to	be	concordant	with	a	physical	bar‐
rier	(e.g.,	a	river,	ecotone	or	elevation)	this	does	not	imply	this	geo‐
logic	feature	is	the	root	cause	of	population	divergence.	Therefore,	
careful	interpretation	of	phylogeographic	results	is	necessary,	spe‐
cifically	 across	 regions	 proposed	 as	model	 systems	 to	 understand	
comparative	phylogeographic	patterns	and	processes.	This	is	espe‐
cially	important	as	additional	genomic	data	sets	are	generated	to	re‐
investigate	previous	studies	based	on	single	 locus	analyses.	At	the	
CFB,	 numerous	 single	 locus	 phylogeographic	 studies	 suggest	 this	
region	is	responsible	for	lineage	divergence	(e.g.,	Myers,	Hickerson,	
et	al.,	2017;	Pyron	&	Burbrink,	2010).	However,	our	analyses	here	
suggest	 that	 spatial	 patterns	 in	 genomic	divergence	do	not	match	
those	found	in	mtDNA	analyses,	and	therefore,	our	understanding	
of	 phylogeographic	 barriers	 and	 locations	 of	 Pleistocene	 refugia,	
particularly	 in	 regions	 that	 are	 currently	 continuously	 distributed,	
may	 need	 to	 be	 reinterpreted.	 To	 fully	 understand	 the	 process	 of	
speciation	 and	 lineage	 divergence,	 additional	 comparative	 studies	
from	disparate	regions	of	the	globe,	with	sampling	across	taxonomic	
diversity,	and	increased	genome	scale	data,	are	necessary	to	explore	
what	is	really	driving	lineage	divergence	and	speciation	across	com‐
munities.	However,	we	suggest	that	environmental	and	geographic	
distances	be	explored	as	potential	drivers	of	community‐wide	diver‐
gence	before	it	is	assumed	that	regional	biogeographic	barriers	have	
promoted	diversification.

Empirical	 data	 may	 also	 be	 prone	 to	 over	 interpretation.	 For	
example,	 forcing	 discrete	 population	 clusters	 on	 continuous	 data	
may	 result	 in	a	confirmation	bias	 regarding	 regional	biogeographic	
barriers.	This	can	occur	because	new	data	may	be	 interpreted	in	a	
manner	that	is	consistent	with	preconceived	ideas	of	where	phylo‐
geographic	barriers	are	thought	to	occur	(Carstens,	Stoute,	&	Reid,	
2009).	This	may	 incorrectly	 suggest	 the	presence	of	common	bio‐
geographic	barriers	in	comparative	studies	and	ultimately	influence	
all	 downstream	 phylogeographic	 analyses,	 such	 as	 isolation	 with	
migration	models,	species	delimitation,	and	comparative	phylogeog‐
raphy.	Phylogeographic	studies	should	routinely	analyse	population	
genomic	data	with	both	discrete	and	continuous	spatial	analyses	to	
avoid	these	issues.	Notably,	the	taxa	here	that	do	not	exhibit	strong	
patterns	of	IBD	have	qualitatively	similar	population	structure	when	
comparing	 discrete	 and	 continuous	 population	 clustering	 results	
(e.g.,	C. atrox,	H. torquata and L. getula;	Appendix	S5).	Furthermore,	
while	IBE	is	common	in	nearly	all	species,	climatic	variables	are	also	
associated	with	geographic	distance	(Table	2).	Because	of	autocor‐
relation	between	climate	and	distance,	 the	use	of	spatially	explicit	
models	of	population	clustering	should	perform	well	given	informa‐
tion	on	geographic	distance	alone.
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5  | CONCLUSIONS

Here,	using	a	genomic	data	 set	generated	across	13	codistributed	
species,	we	have	demonstrated	that	population	divergence	across	an	
entire	assemblage	of	snakes	has	not	been	produced	by	vicariant	bio‐
geographic	barriers	(e.g.,	the	Cochise	Filter	Barrier	or	major	rivers).	
This	is	in	contrast	to	our	predictions	based	on	what	was	previously	
thought	about	 this	 region.	 Instead,	population	genetic	 structure	 is	
largely	 influenced	 by	 variation	 in	 climate	 and	 geographic	 distance	
between	sampled	individuals	across	arid	North	America,	resulting	in	
patterns	of	isolation	by	environment	and	isolation	by	distance	that	
can	explain	a	large	proportion	of	genomic	divergence.	Given	these	
results,	we	suggest	that	future	phylogeographic	studies	explore	mul‐
tiple	determinates	of	population	 structure	before	pointing	 to	pro‐
posed	biogeographic	barriers.
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