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30 Abstract

31 Genetic structure can be influenced by local adaptation to environmental heterogeneity and 

32 biogeographic barriers, resulting in discrete population clusters. Geographic distance among 

33 populations, however, can result in continuous clines of genetic divergence that appear as 

34 structured populations. Here we evaluate the relevant importance of these three factors over a 

35 landscape characterized by environmental heterogeneity and the presence of a hypothesized 

36 biogeographic barrier in producing population genetic structure within 13 codistributed snake 

37 species using a genomic dataset. We demonstrate that geographic distance and environmental 

38 heterogeneity across western North America contribute to population genomic divergence. 

39 Surprisingly, landscape features long thought to contribute to biogeographic barriers play little 

40 role in divergence community wide. Our results suggest that isolation by environment is the most 

41 important contributor to genomic divergence. Furthermore, we show that models of population 

42 clustering that incorporate spatial information consistently outperform nonspatial models, 

43 demonstrating the importance of considering geographic distances in population clustering. We 

44 argue that environmental and geographic distances as drivers of community-wide divergence 

45 should be explored before assuming the role of biogeographic barriers.

46 Key words: comparative phylogeography, biogeographic barriers, generalized dissimilarity 

47 modeling, community ecology, population structure, gene flow

48 Introduction

49 Population structure across a species’ range is typically produced by isolation by distance 

50 (IBD), isolation by environment (IBE), or isolation by resistance (IBR). Isolation by distance, 

51 which is commonly reported in empirical data sets (Pelletier & Carstens, 2018; Wang, Glor, & 

52 Losos, 2013; Wright, 1943), is defined as spatial auto-correlation in the distribution of genetic 

53 variation and is the outcome of limited dispersal abilities which reduces opportunity for gene 

54 flow across the extent of a species’ geographic distribution. Limited dispersal therefore results in 

55 negative associations with genetic relatedness and geographic distance (Vekemans & Hardy, 

56 2004). Because IBD simply correlates Euclidian distance in geography and genetic distance, this 

57 metric ignores heterogeneity in the environment and landscape. By contrast, IBE predicts spatial 

58 genetic divergence based on environmental differences between sampled demes, regardless of 

59 geographic distance (Wang & Bradburd, 2014). Isolation by environment can result from several 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

60 unique processes, such as natural selection against immigrants, reduced hybrid fitness or biased 

61 rates of dispersal (Wang & Bradburd, 2014). Lastly, resistance distances across a heterogeneous 

62 landscape can structure spatial genetic divergence (McRae, 2006). Such resistance distances are 

63 often used to capture features of the landscape that may be acting as physically isolating barriers 

64 to dispersal rather than an adaptive barrier as is the case with IBE. Therefore, IBR may be 

65 considered the main force driving population structure at biogeographic barriers. Isolation by 

66 resistance is calculated as the probability that an individual will migrate from one population to 

67 the other, weighted by a friction to dispersal across unsuitable habitats and/or physical barriers 

68 (McRae, 2006; Wang & Bradburd, 2014). A pattern of IBR arises when characteristics of the 

69 landscape modify gene flow between demes such that resistance across these landscapes (e.g., 

70 across rivers or over mountains) provide a more appropriate predictor of genetic differentiation 

71 than do Euclidean distances or (non-spatial) environmental distances (McRae, 2006).

72 One or more of these three patterns may explain patterns of divergence in population 

73 genomic data and differentiating them may be difficult. In addition, if patterns of IBD dominate 

74 population genetic structure, inferences of discrete population clusters may be spurious 

75 (Bradburd, Coop, & Ralph, 2018; Meirmans, 2012), and these spurious inferences may also 

76 extend to local adaptation to clinal variation in environment. By contrast, sharp environmental 

77 transitions or migration resistance across biogeographic barriers will likely produce discrete 

78 population structure. Because distance, environment, and landscape are often spatially auto-

79 correlated with one another, failure to examine the effects of all of these variables may 

80 potentially result in incorrect estimates of the drivers of population divergence (Reid, Mladenoff, 

81 & Peery, 2017). Taking into account geographic distances, environmental variation, and 

82 heterogeneity in the landscape will help to understand the factors that facilitate adaptation and 

83 species diversification. 

84 Comparative studies of multiple codistributed species can advance our understanding of 

85 organism-landscape interactions, reveal factors that generate population genetic structure, and 

86 address whether multiple species are affected in similar ways to shared environments (Wang & 

87 Bradburd, 2014). Responses to shared landscapes can vary from concordant (Jackson et al., 

88 2018), to entirely discordant population genetic structure (Phillipsen et al., 2015). The degree to 

89 which spatial genetic structure is shared across codistributed species may be affected by 
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90 organismal traits (Phillipsen et al., 2015; Reid et al., 2017). For example, genomic divergence in 

91 taxa with greater dispersal abilities may have little to no signature of IBD compared to taxa with 

92 lower dispersal abilities (Phillipsen et al., 2015). 

93 Within arid, southwestern North America, several studies have demonstrated that 

94 codistributed species have a signature of population divergence between the Sonoran and 

95 Chihuahuan Deserts across the Cochise Filter Barrier (CFB; Zink et al., 2001; Pyron and 

96 Burbrink, 2010; Myers et al., 2017b), potentially making this an important regional 

97 biogeographic barrier (Figure 1). This region is both geographically and topographically 

98 complex and provides opportunities for allopatric divergence. The river networks of 

99 southwestern North America may have also driven allopatric divergence and population structure 

100 in numerous taxa (e.g., the Pecos River, the Rio Grande, and the Colorado River, Figure 1; Wood 

101 et al., 2013; Graham et al., 2015; O’Connell et al., 2017; Myers et al., 2019). The two deserts are 

102 also environmentally heterogeneous, with differences in temperature and precipitation (Figure 1). 

103 Divergence due to environmental variation across many species within an assemblage could 

104 potentially lead to codiversifcation at the community level (Johnson & Stinchcombe, 2007; 

105 Wang & Bradburd, 2014). 

106 The snake fauna codistributed across southwestern North America is an assemblage of 

107 ecologically, behaviorally and physiologically diverse taxa that presents an opportunity to 

108 examine how genomic variation is distributed across the landscape. For example, this community 

109 is composed of both oviparous and ovoviviparous species (e.g., Lampropeltis getula and 

110 Trimorphodon biscutatus versus Crotalus spp. and Thamnophis marcianus), strictly nocturnal 

111 and strictly diurnal taxa (e.g., Hypsiglena torquata versus Masticophis flagellum), and taxa that 

112 specialize on an invertebrate diet as well as those that feed primarily on small rodents (e.g., 

113 Sonora semiannulata versus Pituophis catenifer). These differences might be reflected in the 

114 determinants of population structure (Phillipsen et al., 2015; Reid et al., 2017). Previously, it has 

115 been shown that many of these snake taxa are reciprocally monophyletic in mtDNA gene trees 

116 across the CFB (Myers et al., 2017) and that geographic distance is an important variable in 

117 explaining genetic variation across these taxa. The authors concluded that divergence times were 

118 asynchronous among east-west population pairs in 12 snake taxon groups, indicating non-shared 

119 histories (Myers et al., 2017). Furthermore, numerous species delimitation studies have elevated 
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120 species east and west of the CFB (Anderson & Greenbaum, 2012; Cox et al., 2018; Devitt, 

121 LaDuc, & McGuire, 2008; Mulcahy, 2008; O’Connell & Smith, 2018; Pyron & Burbrink, 2009) 

122 while additional studies have suggested widespread cryptic diversity within these snake species 

123 (Dahn et al., 2018; Myers et al., 2017a), therefore distinct population structure is likely present 

124 across this biogeographic barrier.

125 Given the previous research conducted within this region, we hypothesize that the CFB 

126 drives population divergence across an entire assemblage of species, all of which are widely 

127 distributed across arid North America. We predict that IBR will be a key determinant of genomic 

128 divergence and that the location of the CFB will be concordant with the lowest effective 

129 migration rates in nearly all species. To test these predictions, we generate a reduced-

130 representation genomic data set, analyzing these data with both nonspatial and spatial population 

131 clustering methods. We then explicitly test for the impacts of IBD, IBE, and IBR on genetic 

132 structure, as well as quantify which environmental variables and geographic features (e.g., 

133 climate, riverine barriers or elevation) are most important in producing patterns of population 

134 genetic structure. 

135

136 Methods

137 Sample Collection

138 A total of 383 tissue samples were obtained throughout the range of each of the 13 snake 

139 species groups studied here (Arizona elegans, Crotalus atrox, Crotalus molossus, Crotalus 

140 scutulatus, Hypsiglena torquata, Lampropeltis getula, Masticophis flagellum, Pituophis 

141 catenifer, Rhinocheilus lecontei, Salvadora hexalepis, Sonora semiannulata, Thamnophis 

142 marcianus, and Trimorphodon biscutatus), with collecting efforts focused on sampling from 

143 within the Chihuahuan and Sonoran Deserts. The number of individuals per taxon ranged from 

144 15 – 44 and averaged 29.5 (Table 1). Snakes are difficult to collect in large numbers and 

145 therefore while sampling efforts were focused on collecting these thirteen species, samples were 

146 often collected opportunistically yet with the goal of broadly sampling each species within the 

147 Sonoran and Chihuahuan Deserts across the Cochise Filter Barrier.

148

149 Generation of Sequence Data
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150 Genomic DNA was extracted from muscle or liver tissues using DNeasy kits (Qiagen, 

151 Valencia, CA, USA) following manufacturer’s protocols. Double stranded DNA concentrations 

152 were quantified using a Qubit (Thermo Fisher Scientific, Waltham, MA USA). We sent up to 

153 30,000 ng of DNA from each sample to Cornell Institute of Genomic Diversity for genotyping-

154 by-sequencing (GBS; Elshire et al., 2011). GBS is a technique for building reduced 

155 representation libraries, similar to other restriction-site associated DNA sequencing methods 

156 where a restriction enzyme is used to reduce the complexity of the genome before sequencing 

157 (Elshire et al., 2011). Specifically, the method implemented uses methylation-sensitive 

158 restriction enzymes which targets low copy regions of the genome avoiding repetitive regions 

159 (Elshire et al., 2011). Genomic DNA was digested with the Pst1 enzyme and sample-specific 

160 barcode adapters as well as a common adapter were ligated to the sticky end of the fragments. 

161 Libraries were sequenced on a 100 bp single-end Illumina HiSeq 2000 at the Cornell Core Lab 

162 Center.

163

164 Bioinformatics/SNP calling

165 We processed raw Illumina reads using the bioinformatics pipeline pyRAD v.3.0 (Eaton, 

166 2014) to assemble de novo GBS loci. Each species group was analyzed independently and 

167 samples were demultiplexed using their unique barcode sequence. The maximum number of sites 

168 allowed with a Phred score <20 was set to 4 (these sites were changed to N’s), minimum 

169 sequence depth was set to 10 reads per locus, and we used a clustering threshold of 90%. All 

170 fragments >50 bps were retained. Additionally, we filtered sequences where loci with excessive 

171 heterozygous sites (>3) were removed to reduce the chances of keeping paralogous sequences. 

172 Lastly, minimum-taxon coverage was set at 75% of all individuals, allowing for 25% missing 

173 data per locus in the final sequence alignments. Filtered reads for each sample were clustered 

174 using vsearch (https://github.com/torognes/vsearch) and aligned with MUSCLE (Edgar, 2004). 

175 Only one SNP per locus was retained for downstream analyses, in order to reduce the possibility 

176 of linked SNPs.

177

178 Isolation by Distance
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179 As an initial exploration of IBD within these data, we fit a linear model between genetic 

180 distance and Euclidian geographic distance for all sampled individuals, and calculated an r2 value 

181 and p-value. Genetic distances were calculated as absolute genetic distances, without making any 

182 assumptions regarding mutation or genetic drift (Prevosti’s genetic distances; Kamvar, Tabima, 

183 & Grünwald, 2014; Prevosti, Ocaña, & Alonso, 1975), in adegenet using a matrix of one SNP 

184 per locus for each taxon and geographic distances between sampling localities were calculated 

185 using the R package fossil (Vavrek, 2011).

186 We also implemented the spatial method Estimated Effective Migration Surface (EEMS; 

187 (Petkova, Novembre, & Stephens, 2015), that is used to find patterns of genetic diversity across a 

188 landscape that deviate from a null expectation of IBD. We applied this method as an exploratory 

189 tool to find regions of the landscape that may act as biogeographic barriers in this system (e.g., 

190 the Cochise Filter Barrier or major river systems) and to explore if there are common patterns 

191 shared across taxa. This method is based on a stepping-stone model where individuals migrate 

192 locally between demes and migration rates are allowed to vary by location (Petkova et al., 2015). 

193 To capture continuous genetic diversity, the landscape is divided into demes and each deme can 

194 only exchange migrants with its neighbors. Under this model, expected genetic dissimilarities 

195 depend on sample location and migration rates (Petkova et al., 2015). EEMS explicitly represents 

196 genetic differentiation as a function of migration rates and correlates genetic variation with 

197 geography, producing visualizations that highlight portions of a species range where population 

198 divergence deviates from patterns expected under IBD. These regions are indicative of areas of 

199 the landscape that act as barriers to gene flow, or conversely promote gene flow acting as species 

200 corridors (Richmond et al., 2017). For example, regions where EEMS identifies spatial genetic 

201 patterns that have lower than expected effective migration under pure IBD is suggestive of 

202 population clustering (i.e., a region of lower than expected migration under IBD is potentially a 

203 contact zone between genetically distinct populations). Using the above genetic distance 

204 matrices, we ran EEMS using a deme size of 1200 (i.e., the density of populations), with three 

205 independent starting chains for 5 x 106 MCMC iterations following a burn-in of 1 x 106, with a 

206 thinning of 5000 and different starting seeds, for each taxon. Posterior plots were compared 

207 across independent runs for each taxon to ensure convergence. These three runs per taxon were 
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208 combined and visualized using the R package reemsplots2 

209 (https://github.com/dipetkov/reemsplots2).

210

211 Spatial Population Clustering: Spatial vs. Nonspatial

212 Whether genetic divergence should be represented as discrete clusters or continuous 

213 clines of variation is a well-known problem in population genetics (Bradburd et al., 2018). Here 

214 we implemented conStruct to avoid this potential issue. conStruct is a model-based method that 

215 simultaneously infers continuous and discrete patterns of population structure by estimating 

216 ancestry proportions for each sampled individual from two-dimensional population layers, where 

217 within each layer a rate at which relatedness decays with distance is estimated (Bradburd et al., 

218 2018). This method also allows for a cross validation procedure for model selection, between 

219 both spatial and nonspatial models as well as the number of underlying layers (Bradburd et al., 

220 2018). This analysis allows us to specifically test whether population structure con be attributed 

221 to IBD versus IBE or IBR. For example, under s scenario of pure IBD we would expect 

222 conStruct to find a strong support for spatial model a single population (K = 1), alternatively if 

223 the CFB has structured populations we expect to find support for two populations, with 

224 geographic distributions that meet approximately at the Western Continental Divide. Based on 

225 preliminary runs, large amounts of missing data may bias results. Therefore, with the unlinked 

226 SNP dataset, individual samples missing more than 75% of genotypes were removed and after 

227 these individuals were removed we again removed loci to ensure that there was only 25% 

228 missing data within a locus (see Table 1). Pruning of these data sets was conducted in vcftools 

229 (Danecek et al., 2011) and vcf files were converted to Structure input files (Pritchard, Stephens, 

230 & Donnelly, 2000) using plink (Purcell et al., 2007). The cross-validation procedure to test 

231 between discrete clusters versus continuous variation within conStruct was then run for each 

232 taxon with K = 1 – 6, or until the predictive accuracy reached a value of 0, with 10 repetitions per 

233 each K value, 100,000 iterations per repetition, and a training proportion of 0.9. When choosing a 

234 best fit value of K we required that all layers contribute >2% to the total covariance of the model.

235

236 Determinants of Population Genomic Structure: IBD, IBE, IBR
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237 To determine what variables best predict genomic divergence, we implemented 

238 generalized dissimilarity modeling (GDM; Ferrier et al. 2007). This method is a matrix 

239 regression technique that models variation in distance matrices by relating dissimilarity in 

240 genetic distances between sites to differences in environmental distances and the degree to which 

241 these sites are isolated from one another (e.g., geographical or resistance distances; Fitzpatrick & 

242 Keller 2015; Thomassen et al., 2010). GDM can fit nonlinear relationships of 

243 environmental/distance variables to genetic variation through the use of I-spline basis functions 

244 (Ferrier et al., 2007). This method uses the percent deviance explained as a measure of model fit 

245 (Fitzpatrick & Keller, 2015). We used this method to simultaneously examine the effects that 

246 geographic distance, environmental variables, and several potential resistance surfaces have on 

247 generating genomic divergence.

248 For environmental variables we downloaded the 19 BioClim variables (Hijmans, 

249 Cameron, Parra, Jones, & Jarvis, 2005) at 30 second resolution. We then reduced this to a set of 

250 variables such that correlation among variables was <0.7 using the raster.cor.matrix function in 

251 the ENMTools R package (Warren, Glor, & Turelli, 2010). This resulted in retaining nine 

252 Bioclim varaibles for use in GDM models (Annual Mean Temperature, Mean Diurnal Range, 

253 Isothermality, Temperature Seasonality, Mean Temperature of Wettest Quarter, Mean 

254 Temperature of Driest Quarter, Annual Precipitation, Precipitation of Driest Month, and 

255 Precipitation Seasonality). Environmental variation for each collecting locality for all species 

256 was extracted from this set of uncorrelated variables. We used three different resistance surfaces 

257 that may better reflect patterns of genomic divergence than pure geographic distance, these are 

258 resistance around major rivers of southwestern North America, elevation, and potential 

259 geographic distributions based on ecological niche models (ENMs). Major rivers were selected 

260 given that numerous studies have suggested that the Pecos River, the Rio Grande, and the 

261 Colorado River (e.g., Graham et al., 2015; Myers et al., 2019; O’Connell et al., 2017; Wood et 

262 al., 2013) are barriers to gene flow. Elevation was selected as a resistance surface because the 

263 Cochise Filter Barrier is often associated with the Western Continental Divide (Castoe, Spencer, 

264 & Parkinson, 2007), a high elevation region between major watersheds in North America and 

265 because the Central Mexican Plateau has been associated with lineage divergence in previous 

266 studies of the same taxa (Schield et al., 2018). A shape file of rivers was obtained from 
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267 https://www.naturalearthdata.com/downloads/50m-physical-vectors/ and elevation was obtained 

268 from https://research.cip.cgiar.org/gis. Both of these were converted to an ascii file using the 

269 raster library in R (Hijmans & van Etten, 2012). Lastly, we chose to use ENMs as a resistance 

270 surface because potential routes of dispersal and gene flow among populations are likely 

271 restricted by suitable habitat. ENMs were created for each taxon independently by first retrieving 

272 500 locality records from the Global Biodiversity Information Facility (GBIF.org) using the R 

273 package spocc (Chamberlain, Ram, & Hart, 2016). Any records outside the known geographic 

274 distributions of these species were then removed. Furthermore, occurrences outside our study 

275 region were then dropped (-126, -90, 18, 50) and thinned so that sampled localities within 50 km 

276 were removed, using spThin (Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 

277 2015). Using Biomod2 (Thuiller, Georges, & Engler, 2013) we sampled 10,000 pseudoabsence 

278 points within the study region and Maxent v3.4.1 (Phillips, Anderson, & Schapire, 2006) was 

279 used to construct ENMs using all 19 bioclim variables. We used all available bioclim variables 

280 because the regularization method implemented in MaxEnt is stable even if variables are 

281 correlated, therefore removing potentially correlated variables or preprocessing covariates 

282 through the use of PCA and selecting only the dominant axes for using analysis is unnecessary 

283 (Elith et al., 2011). Each analysis was replicated for 5000 iterations, reserving 25% of samples as 

284 a training dataset for model evaluation, and we created response curves and jackknifed our data 

285 to measure variable importance. The average of these ENMs were then projected and saved as 

286 ascii files. The ascii files were normalized to values of 0 – 1. In the case of rivers and elevation 

287 greater values represent increased resistance rates across the landscape (e.g., in the case of 

288 potential riverine barriers, rivers = 1 and non-river = 0) and were used as resistances in 

289 Circuitscape 4.0 (McRae, 2006; McRae et al., 2016) implemented in Julia. In the case of ENMs, 

290 the ascii files were also normalized to values of 0 – 1, but these were used as conductance 

291 surfaces in Circuitscape analyses.

292 Using GDM, we tested how these geographic distance (IBD), environmental variation 

293 (IBE; all uncorrelated Bioclim variables), and three models of distance matrices (IBR) contribute 

294 to genomic divergence. Our previously generated absolute genetic distance matrices (from all 

295 potentially unlinked SNPs) were used as the response variable and the gdm R package (Manion, 

296 Lisk, Ferrier, Nieto-Lugilde, & Fitzpatrick, 2016) was used to fit generalized dissimilarity 
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297 models. We also calculated Nei’s D genetic distances from our unlinked SNPs and repeated all 

298 GDM analyses using this measure of genetic distance as the response variable (Nei, 1972). We 

299 ran seven independent tests for each taxon with different sets of predictor variables: (1) a full 

300 model with geographic distance, environmental variables, and the resistance surfaces, (2) a 

301 model with geographic distance and environmental variables, (3) a model with geographic 

302 distance and resistance distances, (4) a model with environmental variables and resistance 

303 distances, (5) a model with environmental variables only, (6) distance only, and (7) resistance 

304 distances only. We used the gdm.varImp function in the gdm R package on on all seven models, 

305 which uses a matrix permutation to perform model and variable significance testing and 

306 estimates variable importance in a GDM.

307 Because a large percent deviance can be explained in our GDM models, we tested 

308 whether nucleotide diversity or sample size was correlated with percent deviance explained. 

309 Nucleotide diversity was calculated for each species in PopGenome (Pfeifer, Wittelsbürger, 

310 Ramos-Onsins, & Lercher, 2014) package of R. We then fit linear models between nucleotide 

311 diversity and percent deviance as well as between the total number of samples collected per 

312 species and percent deviance explained, an r2 and p-value were calculated for these two linear 

313 models. We also tested if environmental variation in the Bioclim variables can be explained by 

314 geographic distance alone. To do this we used GDM, for each set of collecting localities for each 

315 taxon. In GDMs we used the 19 BioClim variables as a response variable and latitude and 

316 longitude as the predictor variables.

317

318 Results

319 Sequencing and Bioinformatics

320 We generated GBS data for 383 specimens resulting in 1,009,845,311 reads and 72.12 

321 GB of raw data with an average of 2,120,912.5  1,446,417.4 reads per individual (see 

322 Supporting Information). After excluding loci with more than 25% missing data, 11,681 – 

323 46,444 total SNPs and 5,496 – 21,259 SNPs when restricted to one SNP per locus, depending on 

324 the species group were retained (Table 1). Raw sequence data are available on the NCBI 

325 Sequence Read Archive (Accession: PRJNA554495) and the assembled GBS data used in this 

326 study are available on Dryad (doi:10.5061/dryad.2172qg4).
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327

328 Patterns of IBD

329 The r2 values from linear models of correlations between genetic distances and 

330 geographic distances range from 0.13 – 0.73 (in P. catenifer and C. molossus, respectively) and 

331 in all cases p-values < 0.05 (Supporting Information). The EEMS analyses highlight regions of 

332 lower than expected migration across the geographic distributions of all 13 taxa. Many taxa show 

333 regions of reduced gene flow that run north to south separating populations into the Sonoran and 

334 Chihuahuan Deserts (Figure 2; e.g., C. atrox and H. torquata). However, within some taxa, the 

335 geographic features that might be creating these regions of reduced gene flow are less clear and 

336 are not strictly associated with the Cochise Filter Barrier, nor are there shared, community wide 

337 patterns of reduced gene flow (Figure 2). For example, rates of migration are reduced across 

338 much of the geographic distribution of C. scutualtus and not associated with any biogeographic 

339 barriers (e.g., these regions are not tightly associated with the CFB or major rivers). Likewise, 

340 within A. elegans reduced rates of migration are inferred across many of the sampling localities 

341 within the western portion of this species’ range and nearly all of the Sonoran Desert has reduced 

342 rates of migration within Sal. hexalepis (Figure 2).

343

344 Spatial Population Clustering

345 In cross-validation analyses of spatial versus nonspatial population clustering across all 

346 13 taxa, a model that includes spatial information outperforms nonspatial models using conStruct 

347 (Supporting Information). These analyses suggest that incorporating geographic information, 

348 which may be a reflection of a pattern of IBD, are important for determining the number of 

349 genetic clusters in all species across this assemblage. These cross-validation analyses coupled 

350 with a required threshold of 0.02 minimum contribution of each layer to total covariance, suggest 

351 that between K = 1 – 4 layers sufficiently describe the genomic data within each species (Figure 

352 3; Supporting Information). Within C. scutulatus and P. catenifer the best support is for a spatial 

353 model with K = 1 (e.g., adding an additional layer at K = 2 for C. scutulatus only contributed to 

354 explaining an additional 0.5% of the model covariance; for P. catenifer this additional layer only 

355 explained an additional 0.08%; see Supporting Information), suggesting that genomic variation 

356 within these two taxa are indicative of a continuous cline of ancestry, a pattern of IBD. With the 
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357 exception of these two groups, conStruct results provide strong support for discrete population 

358 structure across arid North America. Seven species show a strong signal of population 

359 divergence across the CFB (Figure 3) suggesting that IBR may have influenced population 

360 genetic structure in these groups. However, the cause of population structure in some species is 

361 less clear, for example the cause of population structure in R. lecontei, Sal. hexalepis, Son. 

362 semiannulata, and Th. marcianus are unidentifiable (Figure 3). Maps of all tested levels of K 

363 layers are included in the Supporting Information for both spatial and nonspatial models.

364

365 Determinants of Population Genomic Structure: IBD, IBE, IBR

366 Ecological niche models for all taxa had reasonable performance with AUC values 

367 ranging from 0.9 (P. catenifer) to 0.97 (C. molossus; Table 2 and Supporting Information for 

368 projected ENMs). BioClim variables related to temperature, specifically mean temperature of the 

369 coldest quarter, contributed the most to ENMs in the majority of species (Table 2). Only in two 

370 taxa, T. biscutatus and Sal. hexalepis, did variables related to precipitation contribute more to 

371 ENMs than did variables related to temperature (Table 2). Output ascii files for each ENM are 

372 available from Drayd (doi:10.5061/dryad.2172qg4).

373 When using absolute genetic distances as a response variable, the GDM models that 

374 account for all possible predictor variables (geographic distance, environmental variation, and 

375 resistances distances) potentially generating genomic variation across these 13 species explained 

376 between 35.9 and 95.4% (average deviance of 65.6% 20%) of the total observed genomic 

377 variation and were significant in all of the 13 species (Table 2). The variables that contributed 

378 the most to models that included all potential predictor variables varied by taxa but most often 

379 included geographic distance (9/13 species), and rarely included resistance surfaces generated 

380 from Circuitscape (3/13 species; Table 2). In each of the three cases where resistance surfaces 

381 were important predictor variables, the resistance variable differed (e.g., in L. getula elevation 

382 was important, where as in P. catenifer resistance distances around ENMs were important, and in 

383 S. hexalepis rivers as barriers were important). Furthermore, the climatic variables of most 

384 importance in explaining genomic variation from the full GDM models were never the same 

385 variables as contributing the most to the generated ENMs (Table 2). This suggests that the 

386 variables that predict the geographic distribution of a species are not the same as those promoting 
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387 population divergence. GDM models which only included climatic variables or climatic 

388 variables and geographic distance performed nearly as well as the full model (i.e., all predictor 

389 variables), while the GDM that included only geographic or resistances distances predicted much 

390 less variation alone (Table 2). Variable importance values resulting from model permutations 

391 and statistical significance are presented in the Supporting Information. The exact predictor 

392 variables differed slightly when using Nei’s D genetic distances as the response variable instead 

393 of absolute genetic distances (Supplemental Information). However, models that incorporated 

394 environmental variation or environmental variation and geographic distances were consistently 

395 the top models in explaining Nei’s D genetic distances within species, whereas models that only 

396 consisted of IBR distances explained less genetic differentiation (Supplemental Information).

397 GDM models were also able to explain between 19 – 76.2% of the variation in 

398 correlations between geographic distance and the climate variables used above, however GDM 

399 models were inconclusive in several cases suggesting that geographic distance is not always 

400 correlated with environmental variation across the geographic distribution of these thirteen 

401 species (Table 2). There was no correlation between observed nucleotide diversity and percent 

402 deviance explained in GDM models (Supplemental Materials), however there was a correlation 

403 between the number of samples per species and the deviance in genetic differentiation explained 

404 in our GDM models (r2 = 0.65, p-value < 0.05). This suggests that smaller samples sizes result in 

405 a larger percent deviance explained when using GDM models (see Supporting Information).

406

407 Discussion

408 Using comparative population genomic data across 13 codistributed snake species, we 

409 demonstrate that isolation by environment and isolation by distance are common patterns in 

410 population genomic divergence across an entire assemblage. Surprisingly, features of the 

411 landscape thought to contribute to biogeographic barriers (e.g., differences in elevation, for 

412 example the CFB, and rivers) play little role in population differentiation. Genetic clustering 

413 methods that explicitly account for spatial information consistently outperformed nonspatial 

414 clustering methods, which regularly over-split the number of populations within a species 

415 (Supporting Information). These spatial clustering analyses demonstrate that some species have 

416 population structure across the CFB, however, this pattern is inconsistent across the entire 
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417 species assemblage (Figures 2 & 3). Together these results suggest that local environmental 

418 conditions, not shared biogeographic barriers, are likely driving lineage divergence, and 

419 importantly the determinants of population divergence are taxon specific.

420

421 IBE Plays a Dominant Role in Population Structure

422 For 13 codistributed species, we find that both IBD and IBE contribute to spatial genomic 

423 divergence and that on average IBE contributes to approximately 2.5 times more genomic 

424 divergence than does IBD alone (mean IBE 62.0% vs. mean IBD 33.9%; Table 2). These two 

425 combined variables contributed to a large portion of genomic divergence in all taxa (e.g., up to 

426 95.4% in Sal. hexalepis; Table 2), suggesting that our analyses are capable of detecting the 

427 underlying processes of diversification. Results are consistent across taxa where environmental 

428 divergence was always highly predictive of genomic divergence. However, we also found that 

429 the most important environmental variable in driving genomic divergence varied among taxa and 

430 it was evenly divided whether temperature or precipitation was the most important variable in 

431 predicting divergence (Table 2). Therefore, while climatic differences are broadly important for 

432 driving divergence, the key components of diversification are species specific. Because much 

433 genomic divergence can be explained by environmental heterogeneity, future studies should 

434 focus on differential selection and functional adaptive differences between populations to 

435 separate ecological from historical processes in driving speciation within this region (Sobel, 

436 Chen, Watt, & Schemske, 2010). However, it is important to point out that the amount of 

437 genomic divergence explained by GDM models is sensitive to the total number of samples 

438 included in analyses, where GDM models explain more deviance with smaller sample sizes 

439 (Supporting Information). However, these models are statistically significant (Table 2) as are 

440 most of the variables of importance using permutation tests (Supporting Information).

441 The predominant role of environmental heterogeneity in shaping genomic divergence in 

442 this system suggests that local adaptation is an important process in structuring populations and 

443 potentially responsible for species level diversification (Nosil, 2012; Sexton, Hangartner, & 

444 Hoffmann, 2014; Shafer & Wolf, 2013). However, a dominant role of IBE in promoting genomic 

445 divergence is not the outcome of other similar studies. For example, the majority of mtDNA 

446 variation within Caribbean Anolis lizards can be attributed to patterns of IBD (Wang et al., 
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447 2013). Similarly, genomic variation within Australian skinks is best explained by a pattern of 

448 IBD (Singhal et al., 2018). Because of the contrasts between these previous studies and our 

449 results, it is important to highlight that the drivers of genomic divergence may vary greatly 

450 across taxa under investigation or study region (e.g., differentiation on islands compared to 

451 continental radiations).

452 Although comparative population genomics studies can identify correlations between 

453 landscape and environmental characteristics and population genetic structure, the underlying 

454 relationship between species traits and genetic variation can be difficult to determine (Reid et al., 

455 2017). It is likely that species traits are important in structuring population genetic patterns 

456 (Zamudio, Bell, & Mason, 2016) and therefore even closely related, codistributed species, while 

457 subjected to similar landscapes and environmental variation, can have very different population 

458 structure. For example, all taxa within the tribe Lampropeltinii (A. elegans, L. getula, P. 

459 catenifer, and R. lecontei) examined here, though closely related (divergence time ~12.2 mya; 

460 Chen, Lemmon, Lemmon, Pyron, & Burbrink, 2017), have unique determinants of population 

461 structure (Table 2). This may be an expected outcome of such comparative analyses given that 

462 previous studies have found landscape genetics patterns to be influenced by species-specific 

463 dispersal abilities, life history traits or habitat preferences (Reid et al., 2017; Robertson et al., 

464 2018). Therefore, understanding differences in species specific traits may ultimately help 

465 elucidate what landscape features promote connectivity and gene flow among populations 

466 (Zamudio et al., 2016). However, determining which traits are useful for predicting patterns of 

467 population genetic structure and gene flow may prove to be difficult. For example, codistributed 

468 species with very different physiologies and life histories can become locally adapted in response 

469 to similar environmental variation. Within our study taxa, two groups of distantly related taxa 

470 have similar determinates of population structure. For example, with both A. elegans and Tha. 

471 marcianus, genomic distance between populations is best explained by both geographic distance 

472 and Precipitation of Driest Month (Table 2). While these two taxa have broadly overlapping 

473 geographic distributions, they are very distantly related (diverged approximately ~42 mya; Pyron 

474 & Burbrink, 2012) with unique physiologies and ecologies; A. elegans is a medium sized, 

475 nocturnal, oviparous colubrine that preys largely on lizards (Rodríguez-Robles, Bell, & Greene, 

476 1999) and T. marcianus is a semi-aquatic, viviparous species that feeds on fish, anurans, and 
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477 invertebrates (Ernst & Ernst, 2003). Why these two species would have similar responses in 

478 population genetic structure to environmental heterogeneity is unclear. Additionally, GDM 

479 analyses demonstrate that geographic distance and Mean Temperature of Driest Quarter are the 

480 best predictors of population genetic structure in C. atrox, C. molossus, and M. flagellum. It is 

481 also unclear why these three species have similar determinates of population genetic structure, 

482 for example, while C. atrox and C. molossus are closely related, they occupied distinct habitats 

483 across arid North America (C. atrox is found throughout creosote bush/desert flats while C. 

484 molossus is a higher elevation taxon, rarely found in the desert flats).

485

486 Spatial Phylogeography & Co-Vicariance

487 It is often assumed that cyclical climatic changes during the Quaternary coupled with 

488 biogeographic barriers were responsible for lineage formation (Hewitt, 2000). Within arid North 

489 America numerous studies have cited the CFB as a soft ecological barrier promoting 

490 diversification across entire communities that are now in secondary contact (Myers et al., 2017b; 

491 Pyron & Burbrink, 2010; Riddle & Hafner, 2006). The CFB has also been described as an 

492 ecotonal region dividing the Chihuahuan and Sonoran Deserts (Laport & Minckley, 2013) where 

493 there are also climatic gradients from east to west (Figure 1; Schmidt Jr, 1979). Additional 

494 geographic features throughout the southwest have also been proposed as important barriers 

495 including major river systems (Graham et al., 2015; Myers et al., 2019; O’Connell et al., 2017; 

496 Wood et al., 2013) and increases in elevation at the Central Mexican Plateau (Bryson, García-

497 Vázquez, & Riddle, 2011; Schield et al., 2018). Our analyses that incorporate spatial information 

498 to account for continuous genetic variation best fit the observed genomic data for 13 

499 codistributed species (Supporting Information), with less than half of these taxa showing clear 

500 population structure across the CFB (Figure 3), while GDM models suggest little genetic 

501 divergence is explained by resistance distances that may be indicative of biogeographic barriers 

502 (Table 2). This implies that determinants of population divergence are dissimilar across many 

503 members of a biological community and that the CFB as a vicariant biogeographic barrier is not 

504 the direct cause of assemblage wide species diversification (Figures 2 & 3). The emphasis on 

505 identifying and supporting vicariant barriers within the field of phylogeography may have 

506 hampered our understanding of the direct causes of lineage divergence (e.g., Irwin, 2002). The 
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507 roles of neutral divergence resulting in clinal variation (e.g., IBD) and that of ecological 

508 differentiation due to climatic variation (e.g., IBE) have not been fully appreciated in driving 

509 diversification when compared to biogeographic barriers promoting allopatric divergence.

510 The patterns observed here might be expected to be general to other taxonomic groups 

511 regionally and likely at other potential biogeographic barriers globally. Because the geographic 

512 locations of population boundaries appear to be concordant with a physical barrier (e.g., a river, 

513 ecotone, or elevation) that does not imply that this geologic feature is the root cause of 

514 population divergence. Therefore, careful interpretation of phylogeographic results are 

515 necessary, specifically across regions proposed as model systems to understand comparative 

516 phylogeographic patterns and processes. This is especially important as additional genomic 

517 datasets are generated to reinvestigate previous studies based on single locus analyses. At the 

518 CFB, numerous single locus phylogeographic studies suggest this region is responsible for 

519 lineage divergence (e.g., Pyron and Burbrink, 2010; Myers et al., 2017b). However, our analyses 

520 here suggest that spatial patterns in genomic divergence do not match those found in mtDNA 

521 analyses, and therefore our understanding of phylogeographic barriers and locations of 

522 Pleistocene refugia, particularly in regions that are currently continuously distributed, may need 

523 to be reinterpreted. To fully understand the process of speciation and lineage divergence, 

524 additional comparative studies from disparate regions of the globe, with sampling across 

525 taxonomic diversity, and increased genome scale data, are necessary to explore what is really 

526 driving lineage divergence and speciation across communities. However, we suggest that 

527 environmental and geographic distances be explored as potential drivers of community-wide 

528 divergence before it is assumed that regional biogeographic barriers have promoted 

529 diversification.

530 Empirical data may also be prone to over interpretation. For example, forcing discrete 

531 population clusters on continuous data may result in a confirmation bias regarding regional 

532 biogeographic barriers. This can occur because new data may be interpreted in a manner that is 

533 consistent with preconceived ideas of where phylogeographic barriers are thought to occur 

534 (Carstens, Stoute, & Reid, 2009; Nickerson, 1998). This may incorrectly suggest the presence of 

535 common biogeographic barriers in comparative studies and ultimately influence all downstream 

536 phylogeographic analyses, such as isolation with migration models, species delimitation, and 
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537 comparative phylogeography. Phylogeographic studies should routinely analyze population 

538 genomic data with both discrete and continuous spatial analyses to avoid these issues. Notably, 

539 the taxa here that do not exhibit strong patterns of IBD have qualitatively similar population 

540 structure when comparing discrete and continuous population clustering results (e.g., C. atrox, H. 

541 torquata, and L. getula; Supporting Information). Furthermore, while IBE is common in nearly 

542 all species, climatic variables are also associated with geographic distance (Table 2). Because of 

543 auto-correlation between climate and distance, the use of spatially explicit models of population 

544 clustering should perform well given information on geographic distance alone.

545

546 Conclusions

547 Here, using a genomic data set generated across 13 codistributed species, we have 

548 demonstrated that population divergence across an entire assemblage of snakes has not been 

549 produced by vicariant biogeographic barriers (e.g., the Cochise Filter Barrier or major rivers). 

550 This is in contrast to our predictions based on what was previously thought about this region. 

551 Instead population genetic structure is largely influenced by variation in climate and geographic 

552 distance between sampled individuals across arid North America, resulting in patterns of 

553 isolation by environment and isolation by distance, that can explain a large proportion of 

554 genomic divergence. Given these results, we suggest that future phylogeographic studies explore 

555 multiple determinates of population structure before pointing to proposed biogeographic barriers. 

556
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812

813 Figure 1: Study system. A) The geographic distribution of the Sonoran and Chihuahuan Deserts 

814 in western North America. B) The major river systems of western North America. C) Elevation 

815 and the western continental divide. D) Climatic variation averaged across 32.0 and 32.01 

816 latitude. This latitude corresponds to a transect from the Sonoran Desert through the Cochise 

817 Filter Barrier into the Chihuahuan Desert, the horizontal solid line represents the location of the 

818 Western Continental Divide. Data are from WorldClim (http://www.worldclim.org/). The x-axis 

819 is longitude and y-axes are environmental variables.

820 Figure 2: EEMS plots for all thirteen species. White areas indicate regions where migration rates 

821 are consistent with a pattern of IBD, highlighted blue regions have higher than expected rates of 

822 migration, and orange shaded regions have lower than expected rates of migration. Circles on 

823 each plot represent sampled localities. A. Arizona elegans; B. Crotalus atrox; C. Crotalus 

824 molossus; D. Crotalus scutulatus; E. Hypsiglena torquata; F. Lampropeltis getula; G. 

825 Masticophis flagellum; H. Pituophis catenifer; I. Rhinochelius lecontei; J. Salvadora hexalepis; 

826 K. Sonora semiannulata; L. Thamnophis marcianus; M. Trimorphodon biscutatus.

827 Figure 3: Sampling localities and populations inferred from clustering analyses in conStruct 

828 plotted over the distributions of each species (in gray) and the Western Continental Divide (in 

829 black, is often used to delineated the Cochise Filter Barrier). Also shown are representatives of 

830 some of the major lineages of snakes from this study. Each circle represents an individual 

831 sample, the color of the circle is representative of clustering results where the proportion of the 

832 color corresponds to the population assignment of that individual. A. Arizona elegans; B., O. 

833 Crotalus atrox; C. Crotalus molossus; D. Crotalus scutulatus; E. Hypsiglena torquata; F. 

834 Lampropeltis getula; G. Masticophis flagellum; H. Pituophis catenifer; I., P. Rhinochelius 

835 lecontei; J. Salvadora hexalepis; K. Sonora semiannulata; L., N. Thamnophis marcianus; M. 
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836 Trimorphodon biscutatus. Geographic distribution data was obtained from the IUCN website 

837 (iucnredlist.org) for species A. – K, distributions for L. – M. were generated from locality 

838 information downloaded from VertNet.

839 Table 1: Total number of samples and number of SNPs per taxon used in analyses.

Taxon

Number 

of 

Samples

Total 

Number 

of SNPs

Number 

of 

Unlinked 

SNPs

Number 

of 

Samples 

Used For 

conStruct 

Analysis

Number 

of SNPs 

Used For 

conStruct 

Analysis

A) Arizona 

elegans
43 18,993 7,438 37 599

B) Crotalus 

atrox
44 11,710 7,929 40 3,955

C) Crotalus 

molossus
20 15,245 7,784 20 650

D) Crotalus 

scutulatus
36 11,681 5,496 32 4,075

E) Hypsiglena 

torquata
27 27,202 6,857 25 599

F) 

Lampropeltis 

getula

35 12,219 8,236 34 3,622

G) 

Masticophis 

flagellum

30 14,443 5,901 29 4,610

H) Pituophis 

catenifer
41 13,264 6,351 37 4,466A
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I) 

Rhinocheilus 

lecontei

40 19,809 11,136 35 503

J) Salvadora 

hexalepis
15 32,154 18,291 14 2,584

K) Sonora 

semiannulata
13 37,607 21,259 12 4,988

L) 

Thamnophis 

marcianus

24 22,092 9,948 23 5,970

M) 

Trimorphodon 

biscutatus

15 46,444 21,073 14 3,251
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841

842 Table 2: Results from generalized dissimilarity modeling analyses demonstrating the proportion of genomic divergence explained by 

843 climate, geographic distance, and resistance surfaces, the statistical significance of the full GDM model, as well as the particular 

844 variable that best explains genomic divergence in each of the full models and the most important climatic variable in predicting 

845 ecological niche models. Model values in bold represent statistically significant (p < 0.05) values, those not in bold and followed by 

846 (NS) are not statistically significant values.

Taxon GDM 

explaine

d – IBD 

+ IBE + 

IBR

GDM 

explaine

d - 

Distanc

e + 

Climate

GDM 

explaine

d - 

Distanc

e + 

Resistan

ce

GDM 

explaine

d - 

Climate 

+ 

Resistan

ce

GDM 

explaine

d - 

Distanc

e Only

GDM 

explaine

d - 

Climate 

Only

GDM 

explai

ned – 

Resist

ance 

Only

GDM 

Important 

Variables

ENM Most 

Important 

Variable

ENM AUC 

values

A) Arizona 

elegans

35.9 35.8 13.8 35.9 9 35.8 7.1 Geographic 

Distance, 

Precipitation of 

Driest Month

Mean 

Temperature 

of Coldest 

Quarter

0.96

B) Crotalus 

atrox

45.8 45.8 36.9 34.8 36.7 34.5 1.28 Geographic 

Distance, Mean 

Temperature of 

Driest Quarter

Mean 

Temperature 

of Coldest 

Quarter

0.96
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C) Crotalus 

molossus

88.7 88.7 69 88.7 66.2 88.7 N/A Geographic 

Distance, Mean 

Temperature of 

Driest Quarter

Mean 

Temperature 

of Coldest 

Quarter

0.97

D) Crotalus 

scutulatus

71.2 67.8 48.9 71.2 43.8 67 48.8 Mean Diurnal 

Range, Annual 

Precipitation

Min 

Temperature 

of Coldest 

Month

0.96

E) 

Hypsiglena 

torquata

70.9 70.9 N/A 70.5 29 70.4 N/A Annual 

Precipitation, 

Precipitation 

Seasonality

Mean 

Temperature 

of Driest 

Quarter

0.91

F) 

Lampropeltis 

getula

37.9 34.5 36.7 36.5 30.3 33.3 28.2 Geographic 

Distance, 

Elevation

Mean 

Temperature 

of Coldest 

Quarter

0.94

G) 

Masticophis 

flagellum

67.8 67.5 32.4 66.7 31.5 66.2 27 Geographic 

Distance, Mean 

Temperature of 

Driest Quarter

Annual Mean 

Temperature

0.92

H) Pituophis 40.3 28.4 37.3 40.1 8.3 28.2 36.5 Geographic Mean 0.90
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catenifer Distance, ENM Temperature 

of Warmest 

Quarter

I) 

Rhinocheilus 

lecontei

63 62.6 48.6 62.8 45.5 61.4 44.7 Geographic 

Distance, 

Isothermality

Mean 

Temperature 

of Coldest 

Quarter

0.94

J) Salvadora 

hexalepis

95.4 89.2 90 95.4 N/A 89.2 85 Temperature 

Seasonality, 

Rivers

Annual 

Precipitation

0.96

K) Sonora 

semiannulata

78.3 78.3 40.1 75.6 32.6 74.3 36.6 Mean 

Temperature of 

Driest Quarter, 

Precipitation 

Seasonality

Temperature 

Seasonality

0.95

L) 

Thamnophis 

marcianus

85 84.8 41.1 84.2 40.2 83.9 16.3 Geographic 

Distance, 

Precipitation of 

Driest Month

Min 

Temperature 

of Coldest 

Month

0.96

M) 

Trimorphodo

73.8 73.9 43.7 73.3 

(NS)

18.0 

(NS)

73.1 33 Geographic 

Distance, 

Precipitation 

of Driest 

0.96A
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n biscutatus Annual 

Precipitation

Month
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848 Supporting Information:

849 Appendix 1: Specimens used in these analyses, including the number of raw sequence reads per 

850 individual, and collecting latitude and longitude.

851 Appendix 2: Plots of geographic distance and genetic distances suggesting a strong pattern of 

852 isolation-by-distance in these data.

853 Appendix 3: Cross validation plots from conStruct analyses showing support for each value of K 

854 for both spatial and nonspatial clustering analyses. Results from spatial analyses are shown in 

855 red, which consistently outperform nonspatial analyses, shown in blue.

856 Appendix 4: Layer contribution for all possible tested layers in each taxon for both spatial and 

857 nonspatial analyses in conStruct. For each value of K, equal number of contributions are plotted.

858 Appendix 5: Alternative levels of K, inferred from conStruct, showing results from both spatial 

859 and nonspatial models.

860 Appendix 6: Projected ecological niche models for all 13 study species.

861 Appendix 7: Results of tests for environmental variation being explained by geographic 

862 distances.

863 Appendix 8: Variable importance values resulting from model permutations and statistical 

864 significance in GDM analyses.

865 Appendix 9: Results from GDM using Nei’s D genetic distances as response variable.

866 Appendix 10: Plots of nucleotide diversity versus percent deviance explained and total number 

867 of genetic samples versus percent deviance explained in GDM models.
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