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Impaired metabolism may play an important role in the pathogenesis of lethal prostate cancer, yet there is a paucity of

evidence regarding the association. We conducted a large prospective serum metabolomic analysis of lethal prostate cancer in

523 cases and 523 matched controls nested within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study.

Median time from baseline fasting serum collection to prostate cancer death was 18 years (maximum 30 years). We identified

860 known biochemicals through an ultrahigh-performance LC–MS/MS platform. Conditional logistic regression models

estimated odds ratios (OR) and 95% confidence intervals of risk associated with 1-standard deviation (s.d.) increases in

log-metabolite signals. We identified 34 metabolites associated with lethal prostate cancer with a false discovery rate

(FDR) < 0.15. Notably, higher serum thioproline, and thioproline combined with two other cysteine-related amino acids and

redox metabolites, cystine and cysteine, were associated with reduced risk (1-s.d. OR = 0.75 and 0.71, respectively;

p ≤ 8.2 × 10−5). By contrast, the dipeptide leucylglycine (OR = 1.36, p = 8.2 × 10−5), and three gamma-glutamyl amino acids

(OR = 1.28–1.30, p ≤ 4.6 × 10−4) were associated with increased risk of lethal prostate cancer. Cases with metastatic disease

at diagnosis (n = 179) showed elevated risk for several lipids, including especially the ketone body 3-hydroxybutyrate (BHBA),

acyl carnitines, and dicarboxylic fatty acids (1.37 ≤ OR ≤ 1.49, FDR < 0.15). These findings provide a prospective metabolomic

profile of lethal prostate cancer characterized by altered biochemicals in the redox, dipeptide, pyrimidine, and gamma-glutamyl

amino acid pathways, whereas ketone bodies and fatty acids were associated specifically with metastatic disease.

Introduction
Prostate cancer accounts for a large worldwide health burden
among men for both incidence and mortality, yet there are no
established etiologic factors beyond older age, family history, low
penetrance genetic variants, and African ancestry. The wide-
spread use of prostate-specific antigen (PSA) testing during the
past 25 years has led to over-diagnosis and overtreatment of

indolent, microscopic adenocarcinomas with resulting clinical
consequences.1 Therefore, among the challenges in studying
prostate cancer etiology is identification of men at higher risk of
developing clinically aggressive disease that is fatal. Recent
improvements in metabolomic technologies have enabled com-
prehensive assessment of hundreds and thousands of circulat-
ing metabolites that reflect biochemical activity, regulation and

Key words: metabolomics, lethal prostate cancer, nested case–control, antioxidants

Abbreviations: ATBC: Alpha-Tocopherol, Beta-Carotene Cancer Prevention; BMI: body mass index; CIs: confidence intervals; CV: coefficients of

variation; DHODH: dihydroorotate dehydrogenase; EPIC: European Prospective Investigation into Cancer and Nutrition; FDR: false discovery

rate; GGT: gamma-glutamylpeptidase; GSA: gene-set analysis; HDL: high-density lipoprotein; HPLC: high-performance liquid chromatography;

HRAM: high-resolution accurate mass; ICC: intraclass correlation coefficients; ICD: International Classification of Diseases; LC–MS/MS: liquid

chromatography/tandem mass spectrometry; OR: odds ratios; PCA: principal component analysis; PLCO: Prostate, Lung, Colorectal, and Ovarian

cancer screening trial; ROS: reactive oxygen species; s.d.: standard deviation; tRNA: transfer RNA

Additional Supporting Information may be found in the online version of this article.

Conflict of interests: The authors declare that they have no competing interests.

Grant sponsor: Intramural Research Program, U.S. National Cancer Institute, National Institutes of Health, U.S. Public Health Service,

U.S. Department of Health and Human Services

DOI: 10.1002/ijc.32218
History: Received 12 Oct 2018; Accepted 12 Feb 2019; Online 18 Feb 2019

Correspondence to: Demetrius Albanes, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center

Drive-6e342, Bethesda, MD 20892, E-mail: daa@nih.gov; or Jiaqi Huang, Division of Cancer Epidemiology and Genetics, National Cancer

Institute, 9609 Medical Center Drive-6e316, Bethesda, MD 20892, E-mail: jiaqi.huang@nih.gov

International Journal of Cancer

IJC

Int. J. Cancer: 145, 3231–3243 (2019) © 2019 UICC

C
an

ce
r
E
pi
de
m
io
lo
gy

https://orcid.org/0000-0002-7808-9477
https://orcid.org/0000-0002-8843-1416
mailto:daa@nih.gov
mailto:jiaqi.huang@nih.gov


dysregulation.2 Systematic prospective examination of altered
metabolites of lethal prostate cancer cases prior to clinical onset
may help identify unique metabolic traits that are potential early
markers of dysregulated biochemical pathways associated with
disease risk or progression.3

Few prospective studies have examined pre-diagnostic metabo-
lites in relation to prostate cancer risk.4–8 In our previous pro-
spective metabolomic study of 625 metabolites measured in
200 cases and 200 controls nested within the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention (ATBC) Study, nominal
inverse associations between serum energy and lipid metabolites
and aggressive prostate cancer risk were observed.5 A similar
metabolomics analysis of 1,077 cases and 1,077 controls in the
European Prospective Investigation into Cancer and Nutrition
(EPIC) study that identified 122 metabolites also showed 12 gly-
cerophopholipids inversely associated with advanced prostate can-
cer risk (208 cases), with some nominal associations for lethal
disease based on 127 cases.8 Our aim here was to identify pre-
diagnostic serum metabolites associated with lethal prostate
cancer risk in an unscreened population.

Methods
Study population
The ATBC Study was a randomized, 2 × 2 factorial, double-
blinded, placebo-controlled primary prevention trial to examine
whether supplementation of alpha-tocopherol (50 mg/day), beta-
carotene (20 mg/day), or both could reduce cancer incidence.
From 1985 to 1988, the ATBC Study enrolled 29,133 male
Caucasian smokers, aged 50–69 years, from southwestern
Finland. Details of the trial have been previously described.9 The
trial ended on April 30, 1993, and since that time, all participants
have been followed through linkage with the Finnish Cancer
Registry and Register of Causes of Death. Pre-supplementation
overnight fasting blood samples from all participants were
collected following a standard operating procedure at their
enrollment. Demographic characteristics, medical history, and
behavioral and lifestyle factors were collected via self-reported
questionnaires at enrollment. Height and weight were measured
by professional study personnel.9 Baseline serum concentrations
of retinol and alpha-tocopherol were measured using an isocratic
high-performance liquid chromatography (HPLC) platform.10

Case ascertainment and control selection
Prostate adenocarcinoma cases (n = 523) diagnosed through
December 31, 2014, were identified based on the International

Classification of Diseases (ICD) 9th revision, code 185. Selection was
limited to cases who died of prostate cancer (ICD-9 = 185 or ICD-
10 = C61; subsequently referred to as “lethal prostate cancer”).
Lethal cases with metastatic disease were defined as those with dis-
tant metastasis (M1) at clinical diagnosis. Using incidence-density
sampling without replacement, 523 controls were selected from the
cohort who were alive and cancer-free at the time of prostate cancer
case death and individually matched to cases by age at randomiza-
tion (�1 year) and date of baseline blood collection (�30 days).

Laboratory assays
We used a high-resolution accurate mass (HRAM) platform,
namely ultrahigh-performance liquid chromatography/tandem
mass spectrometry (LC–MS/MS) at Metabolon Inc., to conduct
serum metabolite profiling. All metabolite identifications were
based on multiple orthogonal criteria to a mass spectral library
built from authentic standards, namely tier 1 identification.11,12

We measured 1,170 metabolites; we included 860 identified
metabolites in further analysis, after excluding unknown metab-
olites or metabolites for which fewer than 10% of participants
had detectable values (Supporting Information Table S1). Miss-
ing values were imputed to one-half the minimum detectable
metabolite value. The identified metabolites were categorized
into eight chemical classes: amino acids and amino acid deriva-
tives (subsequently refer to as “amino acids”), carbohydrates,
cofactors and vitamins, energy metabolites, lipids, nucleotides,
peptides or xenobiotics, that are adapted according to the Kyoto
Encyclopedia of Genes and Genomics (KEGG) database, as well
as Human Metabolome Database (HMDB) (Supporting Infor-
mation Table S1). We calculated the Coefficients of Variations
(CVs) and Intraclass Correlation Coefficients (ICCs) for each
metabolite prior to log-transformation using 16 or 18 replicate
samples from 4 unique ATBC individuals (66 total QC samples),
to examine reliability and reproducibility of the metabolite data.

Serum retinol and alpha-tocopherol concentrations identi-
fied by metabolomics were highly correlated with concentra-
tions quantified for the cohort earlier using an isocratic HPLC
method, supporting good laboratory validity and reproducibil-
ity for the present metabolomics platform (retinol: r = 0.90,
p = 10−214; alpha-tocopherol: r = 0.79, p < 10−214; Supporting
Information Figs. S1 and S2).

Statistical analysis
Baseline characteristics of lethal prostate cancer cases and
controls were compared by either the Wilcoxon rank sum or

What’s new?
Impaired metabolism may play an important role in the pathogenesis of lethal prostate cancer (LPC), but evidence remains

scarce. This study examined the associations between serum metabolites and LPC risk years in advance of diagnosis using

untargeted mass-spectrometry-based metabolomics. Increased oxidative stress-related thioproline and two other cysteine-

related metabolites were prominently associated with lower LPC risk. By contrast, dipeptides including leucylglycine, and

several gamma-glutamyl aminoacids, were related to elevated risk. This prospective molecular pattern points to a role for

redox and peptide metabolism in LPC and provides potential leads regarding the molecular basis of its pathogenesis.
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χ2 test. All the metabolites were log-transformed and stan-
dardized (mean = 0 and variance = 1). Conditional logistic
regression was used to estimate odds ratios (OR) and 95%
confidence intervals (CIs) for a 1-standard deviation (s.d.)
increase in log-metabolite level on the risk of lethal prostate
cancer. The unadjusted model inherently conditions on the
matching factors. Sensitivity analyses also adjusted for body
mass index (BMI), number of cigarettes smoked per day, base-
line serum concentrations of total cholesterol, high-density
lipoprotein (HDL) cholesterol, alpha-tocopherol, and retinol,
and fasting hours (as continuous variables), and ATBC inter-
vention group (as a categorical variable). Adding any of these
covariates in the model did not change the risk estimate of
any of the metabolites by 10% or more; therefore, we present
results from the unadjusted conditional models. We assessed
if the metabolite-prostate cancer relationships differed based on
lower/higher BMI (<26 or ≥26 kg/m2), and time between blood
collection and prostate cancer death (≤18 or >18 years) by
including the cross-product term between the dichotomous vari-
able (BMI or time) and the log-metabolite level in the regression.
We also examined the metabolite-lethal prostate cancer associa-
tions within the first 10 years from serum collection to prostate
cancer death. Based on the Benjamini-Hochberg method, we
used a false discovery rate (FDR, q-value) <0.15 to present the
metabolite-risk associations.

We used Gene-Set Analysis (GSA) to estimate whether the
pre-defined metabolic chemical classes and sub-classes (subse-
quently referred to as super- or sub-pathways) were related to
lethal prostate cancer risk.13 Briefly, allowing {Z1,…, Zs} of the
Z values from testing the S metabolites in a pre-defined path-
way, GSA calculates the “maxmean” statistics max (+Z+, −Z−),
that +Z+(−Z−) is the mean of all positive (negative) values.13

We calculated the p-values for each pathway by 105 permuta-
tions. For each pathway that was associated with lethal prostate
cancer, we performed principal component analysis (PCA,
using the varimax rotation method) and defined a “pathway
score” as the first principal component. We further assessed
whether the pathway score was associated with lethal prostate
cancer using conditional logistic regression.

Thioproline and cystine have been reported as direct metab-
olites of cysteine in in vivo experiments,14 and cysteine-related
metabolites play an important role in modulating redox status
that may be related to risk of lethal prostate cancer. We there-
fore examined whether combinations of these cysteine-related
metabolites (thioproline, cysteine, and cystine) were associated
with risk of lethal prostate cancer by calculating the sum of the
standardized metabolite values weighted by their corresponding
beta coefficients from the conditional logistic regression ana-
lyses. We then entered the weighted sum value into a separate
conditional logistic regression model.

We also examined metabolite-lethal prostate cancer associ-
ations comparing all controls with subgroups of men defined
by having been diagnosed with or without metastases, using
unconditional logistic regression models adjusted for age at

blood collection, date of baseline blood collection, and time
interval from blood collection to cancer diagnosis (or, for con-
trols, to cancer diagnosis date of the matched case).

We created Gaussian graphical models to summarize rela-
tionships among metabolites in the pathways associated with
lethal prostate cancer risk. Gaussian graphical models include
edges between pairs of metabolites with a partial correlation
coefficient, conditioned on other metabolites, less than −0.2
or greater than 0.2 from the analysis.15,16

All analyses were performed using SAS version 9.4 (SAS Insti-
tute, Cary, NC), and R version 3.4.0 (R Development Core Team,
Vienna, Austria). All the reported statistical tests were two-sided.

Results
Table 1 presents baseline characteristics of the study population.
Cases were similar to controls with the exception of having a
higher prevalence of prostate cancer family history. Median time
from serum collection to prostate cancer death was 18 years
(inter-decile range = 9.6 to 26 years). The median metabolite
ICC and CV were 0.88 (interquartile range = 0.68 to 0.95) and
0.20 (interquartile range = 0.12 to 0.37), respectively.

Using conditional logistic regression models, we found
34 out of 860 identified serum metabolites associated with lethal
prostate cancer risk at an FDR < 0.15 (Table 2), including
9 amino acids, 1 cofactor/vitamin, 7 lipids, 5 nucleotides, and
12 peptides (Table 2). The two strongest associations were the
dipeptide leucylglycine (per 1-s.d., OR = 1.36, p = 8.19 × 10−5,
FDR = 0.029) and amino acid derivative thioproline (OR = 0.75,
p = 8.23 × 10−5, FDR = 0.029) (Table 2). We also found three
gamma-glutamyl amino acids yielded strong positive asso-
ciation signals for lethal prostate cancer: gamma-glutamylvaline,
gamma-glutamylglycine and gamma-glutamylleucine (per 1-s.d.,
ORs = 1.28–1.30, 2.60 × 10−4 ≤ p ≤ 4.58 × 10−4, FDR = 0.061–
0.064). Several other dipeptides such as histidylalanine, valyl-
glycine and leucylglutamine, as well as the uracil pyrimidines
pseudouridine, 2’-O-methyluridine, 5,6-dihydrouridine and
5-methyluridine, had positive associations with lethal disease
(Table 2). We observed inverse associations for three fibrino-
gen cleavage peptides, and the top lipid signals were eicosanoid
5-HEPE, androgenic steroid androstenediol (3beta,17beta)
disulfate, and glycerol (OR = 1.21–1.25, 0.0014 ≤ p ≤ 0.0043)
(Table 2). These results remained unchanged after additional
adjustment for potential confounding factors (Supporting
Information Table S2).

Only thioproline showed effect modification by latent time
(p = 0.002 and FDR q-value = 0.055 for interaction), with a
stronger lethal prostate cancer association observed within
18 years of serum collection (Supporting Information Fig. S3).
No metabolite was significantly associated with lethal prostate
cancer risk at an FDR of <0.15 when we restricted follow-up
time to less than 10 years from serum collection to prostate can-
cer death; however, there were only 59 case–control sets in that
early period (all FDR q-value >0.6, Supporting Information
Table S3). Stratification based on baseline BMI below and above
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the median of 26 kg/m2 revealed that associations with N-acetyl-
serine, 1-linoleoyl-GPC (18:2) and pseudouridine were stronger
among individuals with lower BMI, whereas dihydroorotate
and 2’-O-methyluridine were more prominently associated in

overweight and obese men (interaction p-values = 0.04–0.09;
all FDR q-values ≥0.60 and lack of statistical significance).

Based on Pearson correlation coefficients, a correlation
heat-map of the metabolites associated with lethal prostate

Table 1. Baseline characteristics of the cases and controls in the ATBC Study1

Cases Controls p-Value

N 523 523 Matched

Age at blood collection, years 57.9 (5.0) 57.4 (4.8) Matched

Height (cm) 173.9 (6.2) 173.7 (6.2) 0.59

Weight (kg) 79.4 (12.6) 79.6 (12.9) 0.90

BMI (kg/m2) 26.2 (3.6) 26.3 (3.8) 0.59

History of diabetes (%) 2.1 2.1 1.00

Physically active (%) 20.5 20.2 0.94

Cigarettes per day 19.3 (8.7) 19.1 (8.0) 0.87

Years of cigarette smoking 35.6 (8.8) 35.9 (8.6) 0.58

Family history of prostate cancer (%) 6.6 2.3 0.005

Serum total cholesterol (mmol/L) 6.3 (1.2) 6.3 (1.1) 0.77

Serum HDL cholesterol (mmol/L) 1.2 (0.3) 1.2 (0.3) 0.59

Serum alpha-tocopherol (mg/L) 11.9 (3.0) 12.1 (2.9) 0.16

Serum beta-carotene (μg/L) 231 (189) 234 (195) 0.94

Serum retinol (μg/L) 602 (131) 590 (117) 0.19

Dietary intake per day

Total energy (kcal) 2,745 (783) 2,713 (729) 0.72

Fruit (g) 136 (105) 129 (103) 0.27

Vegetables (g) 116 (74) 112 (63) 0.94

Red meat (g) 69.8 (33.8) 69.0 (31.6) 0.84

Coffee (g) 626 (349) 620 (377) 0.59

Alcohol (ethanol, g) 16.7 (21.8) 15.9 (19.3) 0.74

Supplement use

Vitamin A (%) 12.1 9.9 0.27

Vitamin D (%) 6.9 7.4 0.81

Calcium (%) 10.0 11.8 0.37

Clinical characteristics of cases

Calendar year of diagnosis, No. (%)

1988–1992 47 (9.1) –

1993–1997 155 (30.0) –

1998–2002 149 (28.8) –

2003–2007 96 (18.6) –

2008–2014 70 (13.5) –

Unknown 6

Cancer stage at prostate cancer diagnosis, No. (%)

I 76 (17.4) –

II 109 (24.9) –

III 55 (12.6) –

IV 198 (45.2) –

Unknown 85

Mean survival time since diagnosis, years 4.6 –

Mean follow-up time from blood collection to prostate cancer death, years 18 –

Number of cases with metastatic disease at diagnosis 179 –

1Values are means and standard deviations unless otherwise indicated.
Abbreviations: ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention; HDL, high-density lipoprotein.
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Table 2. ORs and 95% CIs (per 1-s.d.) from conditional logistic regression for the association between lethal prostate cancer risk and serum
metabolites achieving the FDR < 0.15 threshold based on 523 case–control pairs in the ATBC Study1

Metabolite2 Sub-class pathway

Detectable
values in %
of the study
population OR3 95% CI p-Value q-Value

p for
Chemical
Class4

Amino acids and amino acid
derivatives

0.063

Glutamine Glutamate metabolism 100 0.80 0.69, 0.93 0.0033 0.12

Cysteinylglycine disulfide Glutathione metabolism 100 0.81 0.70, 0.93 0.0032 0.12

N-Acetylserine Glycine, serine and threonine
metabolism

100 1.24 1.07, 1.44 0.0043 0.12

N-Acetylhistidine Histidine metabolism 100 1.22 1.06, 1.40 0.0048 0.12

Thioproline Methionine, cysteine, SAM and
taurine metabolism

100 0.75 0.65, 0.86 8.2 × 10−5 0.029

Cystine Methionine, cysteine, SAM and
taurine metabolism

100 0.80 0.70, 0.91 0.00086 0.088

Cysteine Methionine, cysteine, SAM and
taurine metabolism

100 0.80 0.68, 0.93 0.0044 0.12

C-Glycosyltryptophan Tryptophan metabolism 100 1.21 1.06, 1.38 0.0038 0.12

4-Hydroxyphenylpyruvate Tyrosine metabolism 98 0.81 0.71, 0.92 0.0013 0.093

Cofactors and vitamins 0.76

Oxalate (ethanedioate) Ascorbate and aldarate metabolism 100 0.83 0.73, 0.95 0.0047 0.12

Lipids 0.12

Androstenediol (3beta,17beta)
disulfate (2)

Androgenic steroids 100 1.22 1.08, 1.39 0.0021 0.093

5-HEPE Eicosanoid 57 1.25 1.09, 1.43 0.0014 0.093

Oleoyl ethanolamide Endocannabinoid 100 1.21 1.05, 1.38 0.0067 0.14

3-Methyl adipate Fatty acid, dicarboxylate 99 1.20 1.06, 1.36 0.0047 0.12

Glycerol Glycerolipid metabolism 100 1.21 1.06, 1.38 0.0043 0.12

3-Hydroxybutyrate (BHBA) Ketone bodies 100 1.19 1.05, 1.34 0.0062 0.14

1-Linoleoyl-GPC (18:2) Lysophospholipid 100 0.83 0.72, 0.95 0.0066 0.14

Nucleotides 0.028

Dihydroorotate Pyrimidine metabolism, orotate
containing

98 0.83 0.72, 0.94 0.0053 0.12

Pseudouridine Pyrimidine metabolism, uracil
containing

100 1.24 1.08, 1.42 0.0017 0.093

2’-O-Methyluridine Pyrimidine metabolism, uracil
containing

100 1.21 1.07, 1.37 0.0023 0.093

5,6-Dihydrouridine Pyrimidine metabolism, uracil
containing

100 1.21 1.06, 1.37 0.0038 0.12

5-Methyluridine
(ribothymidine)

Pyrimidine metabolism, uracil
containing

100 1.21 1.06, 1.38 0.0038 0.12

Peptides <0.0001

Leucylglycine Dipeptide 38 1.36 1.17, 1.58 8.2 × 10−5 0.029

Histidylalanine Dipeptide 25 1.29 1.11, 1.49 0.0010 0.090

Valylglycine Dipeptide 51 1.23 1.08, 1.41 0.0022 0.093

Leucylglutamine Dipeptide 39 1.21 1.06, 1.37 0.0043 0.12

Fibrinopeptide A, phosphono-
ser (ADPSGEGDFXAEGGGVR)

Fibrinogen cleavage peptide 98 0.79 0.69, 0.91 0.00088 0.088

Fibrinopeptide A (5–16) Fibrinogen cleavage peptide 99 0.81 0.71, 0.92 0.0017 0.093

Fibrinopeptide A, des-ala
(DSGEGDFXAEGGGVR)

Fibrinogen cleavage peptide 100 0.81 0.71, 0.93 0.0022 0.093

Gamma-glutamylvaline Gamma-glutamyl amino acid 100 1.30 1.13, 1.50 0.00026 0.061

(Continues)
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cancer is shown in Figure 1. Higher positive correlations were
seen within the fibrinogen cleavage peptide and gamma-glutamyl
amino acid chemical sub-classes.

GSA identified an association between lethal prostate cancer
and the peptide class pathway (p < 0.0001). The analysis also
identified associations with chemical sub-classes for dipeptides,
uracil-containing pyrimidines, gamma-glutamyl amino acids,
glycine/serine/threonine, polyunsaturated fatty acids (n3 and
n6), aminosugars, androgenic steroids, dicarboxylate fatty acids,
and endocannabinoids (FDR ≤ 0.1, Table 3). In the PCA analy-
sis, the first principal components of metabolites in pathways
of dipeptide, uracil-containing pyrimidine, gamma-glutamyl
amino acid, glycine/serine/threonine, polyunsaturated fatty acid
(n3 and n6), aminosugar, and endocannabinoid metabolism,
were positively associated with overall lethal prostate cancer risk,
representing 10% to 36% increased risk per 1-s.d. increment in
the pathway-score in the log-scale (FDR < 0.15, Table 3). In the
selected chemical sub-classes, the interconnected networks built
with Gaussian graphical models for metabolites with conditional
correlations (r ≤ −0.2 or ≥ 0.2) are represented in Figure 2. We
then repeated the GSA in subsets stratified by time between
baseline and prostate cancer death. Similar results were obtained
in the analysis focused on cases diagnosed within 18 years of
blood collection (FDR < 0.15, Table 3), but associations were
weaker among cases diagnosed more than 18 years after baseline
blood collection (FDR ≥ 0.32, Table 3).

Conditional logistic regression models of serum cysteine-
related metabolites on a continuous scale showed ORs of
0.71–0.80 for lethal prostate cancer risk per 1-s.d. increment
on the log-scale (p = 1.10 × 10−5-0.0040; Table 4). Men in the
top quartile of these amino acids were at 27%–47% reduced risk,
compared to those in the lowest quartile (Table 4). Results
were similar after adjustment for potential confounding factors
(Table 4). The combined cysteine-related metabolites stratified

by time from serum collection to prostate cancer death revealed
stronger associations within 18 years (Supporting Information
Table S4).

Unconditional logistic regression models of metastatic disease
(179 cases diagnosed with metastatic prostate cancer and who sub-
sequently died from their disease) showed that 17 out of 860 identi-
fied serum metabolites were associated with risk of fatal prostate
cancer in men with metastatic disease at diagnosis at an FDR < 0.15
(Table 5), including two amino acids, 13 lipids, a nucleotide and
a peptide. We observed higher risk for several elevated lipids,
including the ketone body 3-hydroxybutyrate (BHBA), acyl
carnitines hexanoylglycine and 3-hydroxybutyroylglycine and
acetoacetate, dicarboxylate fatty acid 3-methyladipate, N-acet-
ylglycine, and pimeloylcarnitine/3-methyladipoylcarnitine (per
1-s.d., 1.37 ≤ OR ≤ 1.49, FDR < 0.15) (Table 5). The lyso-
phospholipid 1-linoleoyl-GPC (18:2) was inversely associated
(OR ≤ 0.76, FDR < 0.15; Table 5). Other acyl carnitines and dicar-
boxylic and monohydroxy fatty acids were similarly associated
with metastatic disease (FDR < 0.15; Table 5), and of 88 metabo-
lites associated at p < 0.05, 56 were lipids. By contrast, the risk
associations among the 213 cases without metastases at diagno-
sis were inverse with fibrinogen cleavage peptides, two amino
acids, and 2’-O-methylcytidine (per 1-s.d., 0.68 ≤ OR ≤ 0.73,
FDR < 0.15; Supporting Information Table S5). At the nominal
p < 0.05 threshold, only 6 serum lipids out of 69 metabolites
were associated with non-metastatic disease.

Discussion
To the best of our knowledge, this is the largest prospective
metabolomic analysis of lethal prostate cancer to date. With an
average time from blood collection to prostate cancer death of
18 years, 34 serum metabolites in multiple biochemical path-
ways were associated with lethal disease. We found oxidative
stress-related thioproline, and its combination with two other

Table 2. ORs and 95% CIs (per 1-s.d.) from conditional logistic regression for the association between lethal prostate cancer risk and serum
metabolites achieving the FDR < 0.15 threshold based on 523 case–control pairs in the ATBC Study (Continued)

Metabolite2 Sub-class pathway

Detectable
values in %
of the study
population OR3 95% CI p-Value q-Value

p for
Chemical
Class4

Gamma-glutamylglycine Gamma-glutamyl amino acid 100 1.28 1.11, 1.47 0.00044 0.064

Gamma-glutamylleucine Gamma-glutamyl amino acid 100 1.29 1.12, 1.48 0.00046 0.064

Gamma-glutamylisoleucine Gamma-glutamyl amino acid 100 1.23 1.08, 1.41 0.0022 0.093

Gamma-glutamylphenylalanine Gamma-glutamyl amino acid 100 1.20 1.05, 1.36 0.0070 0.14

1Metabolites with FDR (q-value) <0.15 were included in the table.
2Metabolites were log-transformed and standardized (mean = 0, s.d. = 1). All metabolites had detectable values in >90% of the study population with
the exception of dipeptides leucylglycine, histidylalanine, valylglycine, leucylglutamine, and eicosanoid 5-HEPE (38%, 25%, 51%, 39% and 57%,
respectively).
3Odds ratio per 1 s.d. increase in metabolite level based on 523 case–control pairs. Lethal prostate cancer was defined as cases who died of pros-
tate cancer (ICD-9 = 185 or ICD-10 = C61). Matching variables included age at baseline blood collection (� 1 year), and date of baseline blood col-
lection (� 30 days).
4p-Value for Chemical Class was derived from the Gene-Set Analysis using all metabolites in the specific super-class pathway.
Abbreviations: OR, odds ratio; CI, confidence interval; s.d., standard deviation; ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention; FDR, false dis-
covery rate; ICD, International Classification of Diseases.
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cysteine-related metabolites, as top molecular species inversely
associated with risk. By contrast, serum dipeptides including
leucylglycine, as well as several gamma-glutamyl amino acids,
were associated with higher risk of lethal prostate cancer. Cases
with metastatic disease at diagnosis showed strong associations
with elevated fatty acid metabolites and ketone bodies.

The inverse associations we observed between lethal prostate can-
cer and serum thioproline, cysteine, and cystine, which appeared
stronger in the first 18 years of follow-up, are consistent with
experimental evidence.17–20 Given the fact that metabolomic
data are scant for fatal prostate cancer, we examined the
cysteine-related metabolic score in 298 aggressive prostate

cancers (cancer stage III/IV at diagnosis based on the tumor-
node-metastasis staging system, or a tumor Gleason score ≥8)
and their matched controls from a previously published analy-
sis in the Prostate, Lung, Colorectal, and Ovarian Cancer
Screening Trial (PLCO)7 and found an ORaggressive prostate cancer

of 0.91 per 1-s.d. increment (95% CI: 0.75, 1.11, p = 0.35).
Further, examining only aggressive cases diagnosed within 8 years
of blood collection (n = 64) showed a stronger association for the
cysteine-related metabolic score (1-s.d., ORaggressive prostate cancer =
0.74, 95% CI: 0.50–1.12, p = 0.16), a finding essentially con-
sistent with the present analysis, and supportive of a role for
alterations in redox metabolism in prostate cancer etiology

Figure 1. A heat map of correlation coefficients among metabolites associated with lethal prostate cancer. The colors represent the association
directions of Pearson correlation coefficients, with red indicating positive correlations, and blue indicating negative correlations. Magnitudes of
the correlation coefficients are represented by both numerical percents and circle sizes (i.e., larger circles for stronger correlations).
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or early detection. Thioproline, or thiazolidine-4-carboxylic
acid, is a cyclic sulfur amino acid and condensation product of
cysteine and formaldehyde,21 that, along with cysteine, func-
tions as an intracellular sulfhydryl antioxidant and free radical
scavenger to reduce cellular membrane and organelle oxygen-
radical damage of relevance to carcinogenesis.22 Genetic alter-
ations and rapid cell proliferation resulting in greater oxidative
stress from reactive oxygen species (ROS) have been reported
in various cancers, including prostate cancer.18 As the biosyn-
thetic precursor of intracellular glutathione (GSH), the extracel-
lular cysteine pool including its disulfide form, cystine, can act as
a redox buffer that tumor cells require to maintain an adequate
antioxidant-redox balance.19,23 For example, experimental data
show that cyst(e)inase treatment results in sustained depletion of

extracellular cysteine and prostate carcinoma allograft growth
suppression.20

We identified several gamma-glutamyl peptides and dipeptides
directly related to increased lethal prostate cancer risk. Gamma-
glutamylpeptidase (GGT) liberates free gamma-glutamyl pep-
tides through the breakdown of glutathione and is a clinical
indicator of chronic liver disease.24 Circulating gamma-glutamyl
peptides have been associated with risk of hepatocellular
carcinoma,24 and studies showed that elevated serum GGT is
related to higher risk of overall and site-specific cancers,
including prostate cancer.25,26 Collectively, data from prior
studies provide evidence that redox imbalance and peptide
metabolism impact prostate tumorigenesis, and data from the
present study support such a role in lethal disease specifically.

Table 3. Gene-set analysis (GSA) and principal components analysis (PCA) for the association between chemical sub-classes of serum
metabolites and lethal prostate cancer risk in the ATBC Study1

Sub-class pathway
No. of contributing
metabolites

GSA analysis PCA analysis

p-Value GSA q-value
OR (95% CI) for
pattern score2 p-Value q-Value

Overall lethal prostate cancer

Dipeptides 9 <0.0001 <0.001 1.36 (1.17, 1.58) 5.8 × 10−5 0.0012

Pyrimidine metabolism, uracil containing 10 <0.0001 <0.001 1.32 (1.16, 1.50) 3.7 × 10−5 0.0012

Gamma-glutamyl amino acids 16 0.002 0.013 1.20 (1.05, 1.37) 0.0093 0.074

Glycine, serine and threonine metabolism 9 0.006 0.029 1.10 (0.97, 1.25) 0.12 0.40

Polyunsaturated fatty acids (n3 and n6) 14 0.008 0.031 1.17 (1.02, 1.33) 0.022 0.12

Aminosugar metabolism 5 0.027 0.087 1.18 (1.03, 1.35) 0.017 0.12

Androgenic steroids 21 0.033 0.092 1.08 (0.96, 1.21) 0.23 0.46

Fatty acids, dicarboxylate 23 0.038 0.092 1.14 (1.004, 1.29) 0.044 0.17

Endocannabinoids 11 0.049 0.10 1.16 (1.02, 1.33) 0.025 0.12

Time to prostate cancer death3: 0–18 y

Pyrimidine metabolism, uracil containing 10 0.001 0.031 1.35 (1.12, 1.64) 0.002 0.044

Dipeptides 9 0.002 0.031 1.36 (1.13, 1.64) 0.001 0.044

Fibrinogen cleavage peptides 5 0.006 0.055 0.78 (0.66, 0.93) 0.0060 0.052

Glutathione metabolism 7 0.007 0.055 0.78 (0.65, 0.93) 0.0054 0.052

Pyrimidine metabolism, cytidine containing 5 0.015 0.094 0.77 (0.65, 0.93) 0.0049 0.052

Gamma-glutamyl amino acids 16 0.022 0.10 1.20 (1.02, 1.41) 0.027 0.17

Polyunsaturated fatty acids (n3 and n6) 14 0.023 0.10 1.23 (1.02, 1.49) 0.029 0.17

Fatty acids, dicarboxylate 23 0.033 0.13 1.19 (0.997, 1.43) 0.054 0.26

Time to prostate cancer death3: >18 y

Pyrimidine metabolism, uracil containing 10 0.008 0.32 1.29 (1.08, 1.54) 0.006 0.21

Dipeptides 9 0.011 0.32 1.36 (1.06, 1.76) 0.017 0.30

Aminosugar metabolism 5 0.077 0.94 1.20 (0.98, 1.47) 0.075 0.54

Fibrinogen cleavage peptides 5 0.082 0.94 0.84 (0.68, 1.03) 0.099 0.54

Histidine metabolism 14 0.14 0.94 1.12 (0.94, 1.33) 0.21 0.54

Endocannabinoids 11 0.15 0.94 1.17 (0.96, 1.41) 0.12 0.54

1Statistical significance of pathway analysis is defined as false discovery rate <0.15 and p-value <0.05. The GSA Sub-class pathway analysis for overall
lethal prostate cancer is based on 523 cases and 523 controls, for time to prostate cancer death (0–18 years) analysis is based on 263 cases and
263 controls. GSA and PCA q-value calculations are based on 59 tests.
2Odds ratio per 1 s.d. increase in pattern score derived from PCA analysis (mean = 0, s.d. = 1). Lethal prostate cancer was defined as cases who died
of prostate cancer (ICD-9 = 185 or ICD-10 = C61).
3Time to prostate cancer death: time (median split) from blood collection to prostate cancer death for cases, and their matched controls.
Abbreviations: OR, odds ratio; CI, confidence interval; s.d., standard deviation; ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention; ICD, Interna-
tional Classification of Diseases.
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The serum pyrimidines pseudouridine, 5,6-dihydrouridine,
2’-O-methyluridine and 5-methyluridine were elevated in cases
compared to their matched control subjects, and the overall
pathway showed a strong association. Pseudouridine is a modi-
fied nucleoside generated from the degradation of transfer RNA
(tRNA), and previous studies have demonstrated elevated levels
of modified nucleosides, particularly pseudouridine, in the bio-
logical fluids of cancer patients when compared to cancer-free
controls.27,28 Dihydrouridine is one of the most common modi-
fications of tRNA and has been related to cancer,29,30 cancer
cell growth and survival.30 Our data also showed that serum
dihydroorotate was inversely associated with lethal prostate
cancer risk. Dihydroorotate dehydrogenase (DHODH), local-
ized to the mitochondrial membranes, catalyzes the conversion
of dihydroorotate to orotate, leading to de novo pyrimidine bio-
synthesis which may facilitate tumor growth. A recent tissue-based
RNA expression analysis provided evidence supporting a role
for pyrimidine metabolism in prostate cancers.31

Dysregulation of lipid metabolism and particularly alterations
in fatty acids have been increasingly recognized to influence carci-
nogenesis. Only a few serum lipids were positively associated with
lethal prostate cancer in our study, including polyunsaturated fatty

acids, androgens, and the eicosanoid 5-HETE. Notwithstanding
laboratory-based data that eicosapentaenoic acid may suppress
prostate carcinogenesis, we found that the polyunsaturated fatty
acid (n3 and n6) pathway was associated with increased risk
(as were androgenic steroids), consistent with previous population-
based studies.7,32 The inflammatory biomarker 5-HETE, a meta-
bolic product of arachidonic acid concentrated in prostate
adenocarcinoma tissue,33 was also related to higher risk of lethal
prostate cancer, consistent with previously observed increased
prostate cancer cell proliferation34 and reduced apoptosis.35

Importantly, we observed a strong lipid-dominant metabolo-
mic profile of lethal metastatic disease, including elevated ketone
bodies (BHBA), and acyl glycine/acyl carnitine, dicarboxylic and
monohydroxy fatty acids, and lower serum lysophospholipid
1-linoleoyl-GPC (18:2). Alterations of BHBA potentially drive
tumor progression and metastasis,36 and higher circulating
BHBA has been associated with other cancers including liver,
esophagus, ovary and endometrium.37–40 The higher circulating
fatty acids we identified in cases with metastatic disease could indi-
cate de novo biosynthesis or lipolytic triglyceride mobilization of
fatty acids in response to the increased membrane lipid bilayer and
cell proliferation requirements of these aggressive cancers.41–43

Figure 2. Gaussian graphical model of metabolites in the chemical sub-class pathways most related to lethal prostate cancer risk in the
study. Metabolites are drawn as hexagons, and the pairs with an absolute value of conditional correlation ≥0.2 are connected by a line. The
colors represent the association directions of conditional correlations, with pink indicating positive conditional correlations, and blue
indicating negative conditional correlations. Magnitudes of the conditional correlations are represented by line width (i.e., wider lines for
stronger correlations). Hexagons are color-labeled by their associations with lethal prostate cancer (p-value <0.05), with pink indicating a
positive association with lethal disease and blue indicating an inverse association. Metabolites with an asterisk indicates that the
association had an FDR < 0.15.
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Upregulated fatty acid biosynthesis is also critical for increased
acylcarnitine beta-oxidation for mitochondrial ATP production.41,44

In addition to the present study nested within the ATBC
cohort, five prospective studies of metabolites and prostate
cancer risk have been published, including two others nested
within the ATBC study,4,5 and one each in the EPIC study,8

EPIC-Heidelberg,6 and PLCO.45 The reported metabolomic
profiles of risk differ considerably among these studies, proba-
bly as a result of differences in parent study designs (including
cancer screening and fasting status), sample sizes, source
populations, assay platforms, and time from blood collection
to cancer diagnosis (or death). For example, in the five prior
studies, the control participants were selected from among
those who were alive and free of cancer at the time of diagnosis
of the case, whereas controls in the present study were selected
based on vital status and being free of cancer at the time of
prostate cancer death. In addition, the EPIC study was the only
other one to report on fatal prostate cancer risk. This study
included only 127 fatal cases and 122 measured metabolites
(of which >60% were glycerophospholipids), however, as com-
pared to the present analysis of 523 fatal prostate cancers and

860 metabolites representing eight chemical class pathways.
The metabolomic profile of primarily non-lethal disease in pre-
vious studies showed nominal associations for lipids, and TCA
cycle and amino acid metabolites, including especially glycero-
phospholipids, inositols and sphingomyelins.4–8 For example,
of the several glycerophopholipids we originally found associ-
ated with aggressive prostate cancer in this same cohort,5

only 1-linoleoyl-GPC (18:2) was related to lethal disease in
the present analysis (and in the same association direction).
The nested case–control subset analysis of 127 fatal prostate
cancers in the EPIC study found seven metabolites nominally
associated with lethal disease.8 Only two of these (methionine
and trans-4-hydroxyproline) were identified in the present study,
however, and no significant associations were found. On the
other hand, there was one metabolite identified in our study
[acetylcarnitine (C2)] that is closely related to the acetylcarnitine
(C3) identified in the EPIC study that showed a similar increased
risk of fatal prostate cancer (OR = 1.68, 95% CI: 1.14, 2.49,
p = 0.009). This compares with the present findings for acetyl-
carnitine (C2): OR = 1.17, 95% CI: 1.03, 1.33, p = 0.014 (overall
analysis, data not shown); for follow-up time ≤10 years from

Table 4. ORs and 95% CIs from conditional logistic regression for the association between cysteine-related metabolites (thioproline, cysteine,
and cystine) and lethal prostate cancer risk in the ATBC Study

Model Thioproline Cysteine Cystine
Thioproline, cysteine,
and cystine1

Crude model adjusting for matching factors

Continuous

Per s.d. 0.75 (0.65, 0.86) 0.80 (0.68, 0.93) 0.80 (0.70, 0.91) 0.71 (0.61, 0.83)

p 8.2 × 10−5 0.004 0.0008 1.1 × 10−5

Quartile categories

First 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)

Second 0.93 (0.65, 1.34) 0.81 (0.56, 1.18) 0.78 (0.55, 1.11) 0.77 (0.54, 1.10)

Third 0.68 (0.47, 0.99) 0.63 (0.42, 0.93) 0.65 (0.45, 0.93) 0.67 (0.47, 0.96)

Fourth 0.54 (0.37, 0.79) 0.57 (0.37, 0.87) 0.73 (0.51, 1.05) 0.53 (0.36, 0.78)

p for trend2 0.0005 0.006 0.048 0.0011

Multivariable-adjusted model3

Continuous

Per s.d. 0.73 (0.63, 0.85) 0.79 (0.67, 0.93) 0.78 (0.68, 0.90) 0.70 (0.59, 0.82)

P 6.3 × 10−5 0.0038 0.0005 6.6 × 10−6

Quartile categories

First 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)

Second 0.89 (0.61, 1.29) 0.83 (0.57, 1.21) 0.80 (0.56, 1.14) 0.76 (0.53, 1.09)

Third 0.66 (0.45, 0.96) 0.64 (0.43, 0.96) 0.63 (0.43, 0.91) 0.63 (0.44, 0.92)

Fourth 0.51 (0.34, 0.76) 0.56 (0.36, 0.87) 0.73 (0.50, 1.06) 0.50 (0.33, 0.75)

p for trend2 0.0003 0.0055 0.039 0.0006

1The cysteine-related metabolite combination (thioproline, cysteine, and cystine) is modeled based on the formula: β1X1 + β2X2 + β3X3, Xj denoting the
standardized value from the jth metabolite, and βj denoting the coefficient of the metabolite from regression model. Lethal prostate cancer was defined
as cases who died of prostate cancer (ICD-9 = 185 or ICD-10 = C61).
2p for trend: the statistical significance of the coefficient of the quartile variable (median value within each quartile).
3Model adjusting for matching factors, BMI, smoking, ATBC intervention group, and baseline serum total cholesterol, HDL cholesterol, alpha-tocopherol
and retinol. Matching variables included age at baseline blood collection (� 1 year), and date of baseline blood collection (�30 days).
Abbreviations: OR, odds ratio; CI, confidence interval; s.d., standard deviation; ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention; ICD, Interna-
tional Classification of Diseases.
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serum collection to prostate cancer death, OR = 1.54, 95% CI:
1.05, 2.25, p = 0.028 (Supporting Information Table S3).

Strengths of our investigation include its relatively large sam-
ple size and that metabolites were measured in serum collected
up to three decades prior to prostate cancer death. Ascertainment
of lethal cases was from census-based Finnish population cancer
and mortality registries with complete follow-up and high accu-
racy. Using an untargeted approach with good laboratory validity
and reproducibility, we were able to identify nearly 900 meta-
bolites representing a large number of biochemical pathways.
Limitations of this study deserve consideration, including that
the homogenous nature of the male smoker population of
European ancestry may limit generalizability of our findings to
other populations, and the lack of validation from an external
study. Our metabolomic profile was of single serum samples col-
lected at baseline, and assays of two or more samples from the
same individual at different time points may have provided more
accurate metabolite estimates. Measurement error may exist
for the metabolomic profile measurement. It is important to
point out, however, that any such misclassification should be

nondifferential between metabolite measurement groups and
would theoretically only influence our findings toward the null.
The extensive panel of metabolites identified by the HRAM plat-
form is advantageous for discovery, but at the same time pre-
cluded our ability to validate the findings because of the large
number of metabolites not measured in other studies. Finally,
although we adjusted for potential confounding factors in the
sensitivity analyses, unmeasured or residual confounding remains
possible.

In conclusion, this study identified a novel serum meta-
bolite profile up to three decades prior to prostate cancer
death that is characterized by multiple altered biochemicals in
redox, dipeptide, pyrimidine and gamma-glutamyl amino acid
pathways. Of note, as the stronger inverse association of the
redox metabolites within the first 18 years suggested reverse
causality, it may be supportive of a role for alterations in redox
metabolism in prostate cancer early detection. The observed
profile differs from prior smaller studies that included cases of
non-aggressive and aggressive disease that were predominantly
not fatal. Men diagnosed with metastatic disease prospectively

Table 5. ORs and 95% CIs from unconditional logistic regression (per 1-s.d.) for the association between serum metabolites and lethal prostate
cancer with distant metastases at diagnosis in the ATBC Study (FDR < 0.15)1

Metabolite2 Sub-class pathway OR3 95% CI p-Value q-Value

Amino acids and amino acid derivatives

N-Acetylglycine Glycine, serine and threonine metabolism 1.37 1.14, 1.65 0.00065 0.083

Pro-hydroxy-pro Urea cycle; arginine and proline metabolism 1.32 1.10, 1.59 0.0025 0.13

Lipids

Pimeloylcarnitine/
3-methyladipoylcarnitine (C7-DC)

Fatty acid metabolism (acyl carnitine) 1.40 1.15, 1.69 0.00066 0.083

Suberoylcarnitine (C8-DC) Fatty acid metabolism (acyl carnitine) 1.37 1.13, 1.66 0.0013 0.11

Adipoylcarnitine (C6-DC) Fatty acid metabolism (acyl carnitine) 1.32 1.11, 1.58 0.0020 0.13

Hexanoylglycine Fatty acid metabolism (acyl glycine) 1.49 1.22, 1.83 0.000088 0.033

3-Hydroxybutyroylglycine Fatty acid metabolism (acyl glycine) 1.40 1.16, 1.69 0.00037 0.083

3-Methyladipate Fatty acid, dicarboxylate 1.40 1.16, 1.70 0.00048 0.083

Hexadecenedioate (C16:1-DC) Fatty acid, dicarboxylate 1.34 1.12, 1.60 0.0013 0.11

Suberate (C8-DC) Fatty acid, dicarboxylate 1.32 1.10, 1.59 0.0032 0.14

3-Hydroxysebacate Fatty acid, monohydroxy 1.35 1.12, 1.64 0.0020 0.13

3-Hydroxyoctanoate Fatty acid, monohydroxy 1.32 1.10, 1.59 0.0030 0.14

3-Hydroxybutyrate (BHBA) Ketone bodies 1.46 1.22, 1.75 3.8 × 10−5 0.029

Acetoacetate Ketone bodies 1.36 1.13, 1.64 0.0014 0.11

1-Linoleoyl-GPC (18:2) Lysophospholipid 0.76 0.64, 0.91 0.0024 0.13

Nucleotide

2’-O-Methyluridine Pyrimidine metabolism, uracil containing 1.33 1.11, 1.58 0.0014 0.11

Peptide

Gamma-Glutamylglycine Gamma-glutamyl amino acid 1.36 1.11, 1.67 0.0028 0.14

1Metabolites with FDR (q-value) <0.15 were included in the table.
2Metabolites were log transformed and standardized (mean = 0, s.d. = 1).
3We used unconditional logistic regression models adjusted for age at blood collection, date of baseline blood collection, and time interval from blood
collection to cancer diagnosis (or index date of their originally matched cases, for controls) to estimate odds ratio per 1-s.d. increase in metabolite level,
on the basis of 179 M1 cases and 523 controls. Lethal cases with metastatic disease were defined as those with distant metastasis (M1) at clinical
diagnosis.
Abbreviations: OR, odds ratio; CI, confidence interval; s.d., standard deviation; ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention; FDR, false
discovery rate.

Huang et al. 3241

Int. J. Cancer: 145, 3231–3243 (2019) © 2019 UICC

C
an

ce
r
E
pi
de
m
io
lo
gy



showed a prominent lipid profile comprised of ketone bodies
and fatty acids. Our findings warrant both re-examination in
other prospective studies and investigation of the underlying
pathogenic molecular mechanisms.
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