
 

A
ut

ho
r 

M
an

us
cr

ip
t 

Gregory Zajac    ORCID iD: 0000-0001-6411-9666 

Estimation of DNA contamination and its sources in genotyped 
samples 

Gregory J. M. Zajac1; Lars G. Fritsche1; Joshua S. Weinstock1; Susan L. Dagenais2; 
Robert H. Lyons2; Chad M. Brummett3; Gonçalo. R. Abecasis1 

1) Center for Statistical Genetics, Department of Biostatistics, University of Michigan 
School of Public Health, Ann Arbor, MI; MI; 2) Department of Biological Chemistry 
and DNA Sequencing Core, University of Michigan, Ann Arbor, MI; 3) Department 
of Anesthesiology, Division of Pain Medicine, University of Michigan Medical 
School, Ann Arbor, MI. 

Corresponding author: 

Gregory JM Zajac 

734-763-5315 

gzajac@umich.edu 

University of Michigan 

School of Public Health - Department of Biostatistics 

1415 Washington Heights 

Ann Arbor, MI 48109-2029 

Grant Numbers: 

HG007022 

  

This is the author manuscript accepted for publication and undergone full peer review 
but has not been through the copyediting, typesetting, pagination and proofreading 
process, which may lead to differences between this version and the Version of 
Record. Please cite this article as doi: 10.1002/gepi.22257. 

 

This article is protected by copyright. All rights reserved. 

https://doi.org/10.1002/gepi.22257
https://doi.org/10.1002/gepi.22257
https://doi.org/10.1002/gepi.22257


 

 

 
A

ut
ho

r 
M

an
us

cr
ip

t 
Abstract 

Array genotyping is a cost-effective and widely used tool that enables 
assessment of up to millions of genetic markers in hundreds of thousands of 
individuals. Genotyping array data are typically highly accurate but sensitive 
to mixing of DNA samples from multiple individuals prior to or during 
genotyping. Contaminated samples can lead to genotyping errors and 
consequently cause false positive signals or reduce power of association 
analyses. Here, we propose a new method to identify contaminated samples 
and the sources of contamination within a genotyping batch. Through analysis 
of array intensity and genotype data from intentionally mixed samples and 
22,366 samples of the Michigan Genomics Initiative, an ongoing biobank-
based study, we show that our method can reliably estimate contamination. 
We also show that identifying sources of contamination can implicate 
problematic sample processing steps and guide process improvements. 
Compared to existing methods, our approach can estimate the proportion of 
contaminating DNA more accurately, eliminate the need for external databases 
of allele frequencies, and provide contamination estimates that are more robust 
to ancestral origin of the contaminating sample. 

KeyWords: Genotyping array, quality control, genome-wide association study, DNA 
contamination, biobank 

Data availability statement 

Michigan Genomics Initiative data cannot be shared publicly due to patient 
confidentiality. The data underlying the results presented in the study are available 
from University of Michigan Medical School Central Biorepository at 
https://research.medicine.umich.edu/our-units/central-biorepository/get-access for 
researchers who meet the criteria for access to confidential data. 

The HapMap samples used to produce intentionally contaminated DNA can be 
purchased from the Coriell Institute: 
https://www.coriell.org/1/NIGMS/Linkouts/How-to-Order-Samples-from-the-
NIGMS-Repository 

1000 Genomes Phase 3 Version 5 allele frequencies and genotypes are available from 
http://www.internationalgenome.org 
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1. Introduction 

Array genotyping is the standard method to genotype large numbers of individuals for 
genome-wide association studies (GWAS), consumer genomics, evaluation of copy 
number in clinical settings, and sample quality control prior to sequencing (Diskin et 
al., 2008). Consortium efforts now include millions of directly genotyped samples, 
and array genotyping has successfully been applied to traits as diverse as height 
(Marouli et al., 2017), body mass index (Locke et al., 2015), blood pressure 
(Hoffmann et al., 2017), type 2 diabetes (Mahajan et al., 2014), schizophrenia (Goes 
et al., 2015), and inflammatory bowel disease (Liu et al., 2015), among many others. 
When coupled with imputation, genotyping arrays can achieve a similar coverage of 
the genome to sequencing for a fraction of the cost (Y. Li, Willer, Ding, Scheet, & 
Abecasis, 2010). 

Typically, genotyping arrays use fluorescent-tagged nucleotides or oligonucleotides 
that are specific to each allele of a genetic polymorphism. Measurements of allele-
specific intensities are collected in parallel at 100,000s of loci, post-processed and 
clustered to distinguish genotypes at different bi-allelic markers (G. Li, 2016). These 
steps are sensitive to DNA sample contamination and mixing so that contaminated 
samples will have a higher probability of missing or erroneous calls that can result in 
a loss of power (Flickinger, Jun, Abecasis, Boehnke, & Kang, 2015) or in erroneous 
downstream inferences. 

This DNA sample contamination is a common problem in large-scale studies. For 
example, the 1000 Genomes project reported that 3% of the sequenced samples were 
excluded due to high contamination (Flickinger et al., 2015). To address this problem, 
there are now several methods for detecting DNA contamination in both genotyping 
and sequencing data. Early methods flagged contaminated samples, but did not 
estimate the proportion of contamination (Homer et al., 2008). Newer methods like 
VerifyIDintensity and BAFRegress estimate contamination proportions by examining 
sample-specific shifts in allele intensity clusters for each genotype (Jun et al., 2012). 
Similar methods exist to examine the proportion of reads in sequencing data that are 
from contaminating DNA, for example ContEst and VerifyBAMID (Cibulskis et al., 
2011; Jun et al., 2012). Contamination estimation has even been applied to array 
methylation data (Heiss & Just, 2018). Although our focus here is on within-species 
contamination, methods also exist for estimating cross-species contamination in 
sequencing data (Schmieder & Edwards, 2011). However, none of these methods can 
simultaneously estimate both contamination and its sources in genotyping array 
samples. 

Here we present a new method, VICES (Verification of Intensity Contamination from 
Estimated Sources) that estimates contamination proportions and identifies 
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contaminating samples in genotyping array data. VICES initially uses sample allele 
frequencies to estimate contamination and then revises this estimate by iteratively 
searching for sources of contamination among other genotyped samples. When the 
contaminating sample can be identified, our method provides improved estimates of 
contamination proportions compared to existing methods VerifyIDintensity and 
BAFRegress. Identifying contaminating samples also helps revise laboratory 
protocols to prevent future contamination. Finally, by examining data from ongoing 
studies, we show that VICES can help flag problematic sample processing steps 
where contamination occurred. 

2. Methods 

Our method has three steps: 1. identifying contaminated samples, 2. identifying likely 
contaminating samples for each contaminated sample, and 3. producing a final 
estimate of contamination, quantifying contributions from each contaminating sample 
(Figure 1). 

We will first introduce some notation. We consider a set of individuals, each 
genotyped using an array. For each marker 𝑗, we assume two alleles, arbitrarily 
labelled A and B. We denote the frequency of B at this marker as 𝐴𝐹𝑗. We let 𝐺𝑖𝑗 
denote the estimated genotype for individual 𝑖 at marker 𝑗, encoded as 0 (homozygous 
for A), 1 (homozygous for B), or ½ (heterozygous). Following convention, we let 𝐼𝑖𝑗 
denote the relative intensity of the B-allele probe, measured on a 0 to 1 scale by 
interpolating allele intensity values with respect to the centers of the three genotype 
clusters and truncating any values that fall outside the 0 to 1 range (Illumina, 2010). 
Although other definitions of 𝐼𝑖𝑗 are possible, we choose this one because estimates 
are readily available from Illumina genotyping software. 

The following model relates 𝐼𝑖𝑗 of the sample being tested to its estimated genotype 
and to the genotypes of each potential contaminating sample. Let 𝛼𝑖 be the total 
proportion of contaminating DNA in sample 𝑖 and 𝛼𝑖𝑘 the proportion of DNA mixture 
from sample 𝑘. 

𝐸(𝐼𝑖𝑗) = (1 − 𝛼𝑖)𝐺𝑖𝑗 + ∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘  (Equation 1) 

Directly fitting this model performs poorly because even in the absence of 
contamination, average intensity 𝐼𝑖𝑗 ≤ 1 when 𝐺𝑖𝑗 = 1 and average intensity 𝐼𝑖𝑗 ≥ 0 
when 𝐺𝑖𝑗 = 0. Instead, we fit three genotype specific background intensity values 𝛾0, 
𝛾½, and 𝛾1 which model the expected intensity for each genotype class. This results in 
the model: 

𝐸(𝐼𝑖𝑗) = (1 − 𝛼𝑖)𝛾[𝐺𝑖𝑗] + ∑ 𝛼𝑖𝑘𝛾[𝐺𝑘𝑗]𝑘  (Equation 2) 
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which requires numerical optimization to estimate the total contamination proportion, 
𝛼𝑖, and the contamination proportions 𝛼𝑖𝑘 from each contaminating sample. Fitting 
the following linear regression model 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + ∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘  (Equation 3) 

Gave estimates within 0.1% of Equation 2 for the contamination proportion from each 
contaminating sample, 𝛼𝑖𝑘, while using only a fraction of the computational time. The 
𝛾[𝐺𝑖𝑗] intercept terms allow for a different mean 𝐼𝑖𝑗 for each cluster of sample 
genotypes, with each 𝛼𝑖𝑘 coefficient having the convenient interpretation as the 
contamination proportion from sample 𝑘.  

Identification of the contaminated and contaminating samples in a genotyping cohort, 
and estimation of the contamination proportion from each contaminating sample 𝛼𝑖𝑘 
proceeds as follows: 

2.1. Identification of contaminated samples 

We substitute the contaminating sample genotypes in Equation 3 with the allele 
frequencies 𝐴𝐹𝑗 to obtain initial estimates of the contamination proportion 𝛼𝑖 for each 
sample being considered. This enables us to exclude uncontaminated samples from 
the computationally intensive search for samples that contributed contaminating 
DNA. 

We fit the following model to obtain 𝛼�𝑖𝐴𝐹, an initial estimate of the contamination 
proportion 𝛼𝑖: 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗 (Equation 4) 

When fitting this model, we recommend excluding any sites with minor allele 
frequency less than 0.1 to reduce the influence of monomorphic and rare variants on 
the parameter estimation. 

If this first estimate of the contamination proportion based on allele frequencies, 𝛼�𝑖𝐴𝐹, 
is below a user-specified threshold 𝑇 (we recommend 𝑇 no less than 0.005), then we 
assume the sample is uncontaminated and estimation stops here. If it is above that 
threshold, then our method attempts to identify the contaminating samples among the 
other genotyped samples. 

2.2. Find the samples that contributed contaminating DNA 

After identifying the contaminated samples using allele frequencies, the next step is to 
estimate a set of likely samples that contributed DNA to them. To do this, we fit the 
following linear regression model where we regress allelic intensity on the 
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contaminated sample genotypes, allele frequency, and the genotypes of each 
candidate contaminating sample in turn: 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗 + 𝛼𝑖𝑘𝐺𝑘𝑗 (Equation 5) 

This step identifies a series of candidate contaminating samples for each contaminated 
sample. We specifically focus on pairings of contaminated and contaminating samples 
where the estimate of 𝛼�𝑖𝑘 is greater than our contamination threshold 𝑇. For these 
potential combinations of contaminated and contaminating samples, we proceed to the 
final step to calculate an improved contamination estimate. 

2.3. Fit the final model with all contaminating samples to 
produce a final estimate 

After identifying likely contaminating samples, this final step fits the following 
regression: 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗 + ∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘  (Equation 6) 

with the intensities 𝐼𝑖𝑗 and estimated genotypes 𝐺𝑖𝑗 of the contaminated sample, the 
allele frequencies 𝐴𝐹𝑗, and the genotypes 𝐺𝑘𝑗 of all the samples whose estimated 
contribution 𝛼�𝑖𝑘 to the contamination proportion was greater than the contamination 
threshold 𝑇.  

Since contamination only affects 𝐼𝑖𝑗 at sites where 𝐺𝑖𝑗 ≠ 𝐺𝑘𝑗, such sites tend to be 
highly polymorphic. As a result, any individual 𝑘′, even if it did not contribute DNA 
to sample 𝑖, is likely to have many 𝐺𝑖𝑗 ≠ 𝐺𝑘′𝑗  at those sites with large 𝐼𝑖𝑗 − 𝐺𝑖𝑗, and 
can appear to explain some of the contamination. Therefore, the set of potential 
contaminating samples identified in Step 2 may include false positives. When the 
contributions of these “false positive” contaminating samples are estimated jointly 
with those of the true contaminating samples, we expect their 𝛼�𝑖𝑘 coefficients to drop 
near zero. Therefore, we expect the best estimates of contamination proportions will 
be obtained after estimation in step 3 (using Equation 6). If at this point, there are any 
𝛼�𝑖𝑘 < 𝑇, we exclude the sample with the smallest 𝛼�𝑖𝑘 and refit the regression, 
repeating this step until we have excluded all candidate contaminating samples whose 
contributions 𝛼�𝑖𝑘 are below 𝑇. 

After inclusion of all contaminating samples, the background contamination estimate 
should also drop to near or below 0. We define background contamination as 𝛼𝑖𝐴𝐹 in 
equation 6. To be consistent with this interpretation, once all samples with 
contamination contribution 𝛼�𝑖𝑘 less than 𝑇 are removed, this background 
contamination term 𝛼𝑖𝐴𝐹 is also dropped if it is estimated ≤ 0 since the proportion of 
contaminating DNA from any source cannot be negative. 

The final model and resulting estimate of contamination can be one of the following 
three possibilities: 
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1. The estimated contamination contribution from allele frequencies, 𝛼�𝑖𝐴𝐹, drops 

to or below 0 and the model is refit with the estimated contaminating samples 
only. The estimate of the total contamination proportion is then the sum of the 
contamination contribution from each estimated source, as in Equation 3: 
𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + ∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘 . (Equation 3) 

2. No contaminating samples remain in the model, leaving only the 
contamination contribution from allele frequencies. This results in the model 
in Equation 4 and the same contamination proportion estimated in Step 1: 
𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗. (Equation 4) 

3. Both estimated contaminating samples and allele frequencies remain in the 
model. Then the 𝛼�𝑖𝐴𝐹 coefficient can be interpreted as the proportion of 
contamination that came either from outside the genotyping cohort or from 
contaminating samples in the cohort but at proportions that were too small to 
be estimated reliably. The estimate of the total contamination proportion is 
then the sum of the contamination contribution from the estimated sources and 
the contamination contribution from allele frequencies. In this scenario, the 
final model is as in Equation 6: 
𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗 + ∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘 . (Equation 6) 

2.4. Implementation 

We have implemented VICES in a free software package written in C++ and available 
for download at http://genome.sph.umich.edu/wiki/VICES. 

2.5. Experimental Data 

We analyzed contamination in two sets of genotyping data. These different data sets 
allowed us to quantify the effect of contamination in the context of different arrays 
and experiments. It also allowed us to compare the performance of VICES with 
previous contamination methods VerifyIDintensity and BAFRegress under different 
scenarios (Jun et al., 2012). 

2.5.1. Intentionally Contaminated HapMap Samples 

To evaluate the effect of contamination on genotype calling and the performance of 
our method, we used intensity data and genotype calls generated by Jun et al. (2012) 
from 34 samples that were intentional mixtures of DNA from 4 HapMap cell lines 
(International HapMap et al., 2010). The samples were 100:0, 0.5:99.5, 1:99, 2:98, 
3:97, 5:95, and 10:90 mixtures of mixed European ancestry (CEU) samples NA07055 
and NA06990, and 0:100, 0.5:99.5, 1:99, 2:98, 5:95, and 10:90 mixtures of Yoruban 
(YRI) samples NA19200 and NA18504 (Table 1) and genotyped on the Illumina 
MetaboChip (Voight et al., 2012) at 196,725 markers. We obtained contaminating 
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sample genotypes and allele frequency estimates for contamination estimation from 
the 1000 Genomes Phase 3 version 5 at sites that overlapped with the MetaboChip 
(Genomes Project et al., 2015). We estimated contamination in these 34 samples 
using: (1) VICES with contaminating sample genotypes (VICES-Geno), (2) VICES 
with allele frequencies (VICES-AF), (3) VerifyIDintensity (VID) and (4) 
BAFRegress (BAFR). Specifically, we compared root-mean-squared-error (RMSE), 
bias, and trend in absolute error as contamination increased for the four sets of 
contamination estimates. 

For the estimates calculated using VICES-Geno, the contaminating sample was 
already known in each case, so we estimated the contamination proportion by fitting 
the model in Equation 3. For all mixtures of HapMap YRI cell lines, we used the 1000 
Genomes genotypes from sample NA19200 to estimate contamination. For the 
uncontaminated CEU samples from NA07055, we randomly chose an unrelated CEU 
sample from 1000 Genomes, NA12776, to provide the contaminating sample 
genotypes to fit in the model. For the CEU mixture samples, we used the metabochip 
genotypes of NA07055 as the contaminating sample. We only used NA19200 
genotypes at sites with minor allele frequency above 10% in in 661 African ancestry 
samples of the 1000 Genomes Project (AFR). Similarly, we only used NA12776 or 
NA07055 genotypes at sites with minor allele frequency above 10% in 503 European 
ancestry samples of the 1000 Genomes Project (EUR).  

For the estimates calculated using VICES-AF, we regressed the Metabochip 
intensities on their respective genotypes and allele frequencies as in Equation 4. We 
used 1000 Genomes EUR allele frequencies to estimate contamination in the CEU 
samples and 1000 Genomes AFR allele frequencies to estimate contamination in the 
YRI samples. As in the previous, we only used allele frequencies with MAF above 
10%. We used the same sets of allele frequencies to estimate contamination with 
BAFRegress and VerifyIDintensity. We ran BAFRegress with default settings and 
VerifyIDintensity using the per-marker analysis option recommended by the authors 
of the software (Jun et al., 2012). 

We also used the intentionally mixed HapMap samples to illustrate the effect of using 
allele frequencies from a mis-specified population on contamination estimation with 
VICES-AF, BAFRegress, and VerifyIDintensity. For this analysis, we used the 1000 
Genomes EUR allele frequencies to estimate contamination in the YRI samples, and 
the 1000 Genomes AFR allele frequencies to estimate contamination in the CEU 
samples. Again, we only used allele frequencies with MAF above 10% and the per-
marker analysis option for VerifyIDintensity. 
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2.5.2. Michigan Genomics Initiative 

Next, we compared estimates from VICES with VerifyIDintensity and BAFRegress, 
in a large genotyping study where contamination may have occurred unintentionally. 
For this, we used data from the Michigan Genomics Initiative (Fritsche et al., 2018), 
an ongoing study of genetic data and health records from patient volunteers at the 
University of Michigan Hospital. We used 22,366 samples genotyped at 603,583 
markers on a customized Illumina Infinium HumanCoreExome-24 v1.0 array 
(Illumina, 2017). DNAs, extracted from blood, were assayed in batches of 288 to 576 
samples (3-6 plates of 96 samples each) per run according to the Illumina Infinium 
HTS Assay Protocol Guide (Illumina, 2013). The smallest assay runs with 288 
samples were combined with larger batches for genotype calling in GenomeStudio 
(Illumina, 2016), so sets of genotype calls ranged in size from 384 to 864 samples. 
We considered contamination between samples from different set of genotype calls to 
be unlikely, so we ran our method on each set of genotype calls separately using 
VICES with the default settings. We also ran VerifyIDintensity on each set of 
genotype calls separately and with the per-marker analysis option. BAFRegress was 
run under default settings. For both VerifyIDintensity and BAFRegress, we used 
variants that overlapped with the HumanCoreExome array and whose 1000 Genomes 
EUR MAF was above 10% at overlapping sites. VICES calculates allele frequencies 
for initial estimation so no external allele frequencies were used. The true 
contamination proportions were not known in MGI, but we were able to compare the 
concordance of the three methods’ contamination estimates, the proportion of samples 
with estimated contamination greater than 0.5%, and how strongly contamination 
estimates were correlated with the number of missing and excess heterozygous 
genotype calls as calculated by Plink 1.9 (Chang et al., 2015). 

3. Results 

3.1. HapMap 

3.1.1. Shift in Probe Intensities - HapMap 

We examined how contamination changed overall intensity for homozygous A/A, 
heterozygous, and homozygous B/B genotypes. We saw that, in each case, intensity 
clusters were shifted towards the contaminant genotype. This result supports the 
validity of the assumption in Equation 2 that the intensities shift in proportion to the 
contamination and the genotypes of the contaminant sample. The kernel density plots 
in Figure 2 show the distributions of the intensities for an uncontaminated sample and 
for a sample contaminated at the 10% level, as a function of genotypes for the 
contaminating sample. The distribution of the intensities in the contaminated sample 
is shifted towards the genotypes of the contaminating sample (for example, when the 
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contaminating sample has genotype B/B, all intensities are shifted towards the B 
allele). As expected, the distribution of intensities for the uncontaminated sample is 
independent of the genotypes of the potential contaminating sample. 

3.1.2. Estimation - HapMap 

We next examined whether we could accurately estimate contamination in the 
intentionally mixed HapMap samples. These samples were prepared by Jun et al. 
(2012) to assess the performance of their own methods to estimate contamination. A 
total of 179,935 markers overlapped between the Metabochip and 1000 Genomes. Of 
these, we used AFR allele frequencies of 90,401 markers with MAF above 10% and 
EUR allele frequencies of 88,747 markers with MAF in EUR above 10%. Compared 
to the intended contamination, VICES-Geno had a root-mean-squared-error (RMSE) 
of 0.0057 and bias of -0.0035 across the 34 samples (Table 2, Figure 3). As 
contamination increased, the absolute error of VICES-Geno estimates increased on 
average by 0.0012 for each percentage increase in contamination. VICES-Geno 
performed better than VICES-AF, which had RMSE of 0.0068, bias of -0.0041, and 
an increase in absolute error of 0.0015 for each percentage increase in contamination. 
This shows an additional benefit in estimating contamination by using the genotypes 
of the contaminating sample as opposed to sample or population allele frequencies. 

VICES-Geno’s performance was within 0.001 of existing method BAFRegress on the 
three criteria and outperformed VerifyIDintensity by a much wider margin. 
BAFRegress had a RMSE of 0.0054, bias of -0.0024, and absolute error increased by 
0.0011 for each percentage increase in contamination, while VerifyIDintensity had 
RMSE of 0.0310, bias of -0.0085, and absolute error increased by 0.0056 for each 
percentage increase in contamination (Figure 3). The results of this comparison are 
also summarized in Table 2. 

3.1.3. Estimation with Misspecified Allele Frequencies - HapMap 

We next evaluated the impact of ancestral population for reference allele frequencies 
on estimates of contamination. We expected this choice would have only a very 
limited impact for VICES-Geno as long as contaminating sample genotypes were 
available. However, the impact would be potentially larger for BAFRegress and 
VerifyIDintensity since they rely on estimated allele frequencies to estimate 
contamination. 

We used 1000 Genomes allele frequencies calculated in EUR with MAF > 10% at 
88,747 markers that overlapped with the Metabochip to estimate contamination in the 
intentionally mixed HapMap YRI samples. Similarly, we used 1000 Genomes allele 
frequencies calculated in AFR with MAF > 10% at 90,401 markers that overlapped 
with the Metabochip to estimate contamination in the CEU samples. Compared to the 
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intended contamination, VICES-AF using mis-specified allele frequencies had RMSE 
of 0.0231, bias of -0.0140, and absolute error increased by 0.0057 for each percentage 
increase in contamination across the 34 samples. When the correct allele frequencies 
were used, VICES-AF had RMSE of 0.0068, bias of -0.0041, and a 0.0015 increase in 
absolute error for each percentage increase in contamination. 

The other two methods also showed a similar drop in performance when using the 
misspecified allele frequencies. BAFRegress had a RMSE of 0.0261, bias of -0.0150, 
and the absolute error increased by 0.0065 for each percentage increase in 
contamination, while VerifyIDintensity had RMSE of 0.0312, bias of -0.0086, and the 
absolute error increased by 0.0056 for each percentage increase in contamination. The 
results of this comparison between our method, BAFRegress, and VerifyIDintensity 
with misspecified allele frequencies are also summarized in Table 3. 

All three methods performed worse when the population for the allele frequencies was 
misspecified than when they were correctly specified, as shown in Table 2. This result 
implies that when using BAFRegress or VerifyIDintensity, prior knowledge of the 
ancestry of contaminating DNA is necessary to find contaminated samples and 
exclude their genotype calls from downstream analyses, an impractical step in a large 
GWAS cohort of diverse ancestry. This result highlights the benefit to estimating 
samples that contributed contaminating DNA so that estimation is not as sensitive to 
the choice of population for allele frequencies. 

3.1.4. Shift in Allele Frequencies with Misspecified Allele Frequencies - 
HapMap 

We further explored the previous point about how using misspecified allele 
frequencies can lead to an underestimation of contamination levels. Figure 4 shows 
the distribution of intensities for each genotype for a contaminated and an 
uncontaminated sample in different 1000 Genomes EUR minor allele frequency bins 
instead of contaminating sample genotypes as in Figure 2. As expected, 
contamination results in a greater shift in the intensity distribution at markers with 
higher allele frequencies. Figure 5 recapitulates Figure 4 but uses minor allele 
frequencies calculated from 1000 Genomes AFR individuals. As shown, the 
distribution of probe intensities is similar in the uncontaminated sample regardless of 
MAF of the population in which the MAFs were calculated. However, the shift in the 
intensity distribution at higher allele frequencies is less pronounced when using 1000 
Genomes AFR MAFs compared to using 1000 Genomes EUR MAFs. This result 
highlights the benefit of using estimated contaminating sample genotypes for 
improving contamination estimation in genotyping samples.  
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3.2. Michigan Genomics Initiative (MGI) 

3.2.1. Estimation - MGI 

Our next aim was to investigate whether our method could accurately estimate 
contamination in a large-scale genotyping experiment. A test of the three methods in 
the 22,366 MGI samples suggests that VICES strikes a balance between the low 
estimates provided by BAFRegress and the higher estimates provided by 
VerifyIDintensity, consistent with our analysis of intentionally contaminated HapMap 
samples (see Figure 3, Table 2). Among the 22,366 samples, VICES found 354 with 
contamination greater than 0.5%, BAFRegress found 291 samples, while 
VerifyIDintensity found 4,498, or 20% of the samples tested. 

This last result raised the question of why VerifyIDintensity estimated contamination 
greater than 0.5% for 4,188 samples for which both BAFRegress and VICES 
estimated contamination less than 0.5%. Upon investigation, it turned out that in 
samples where VICES estimated contamination less than 0.5%, the VerifyIDintensity 
estimates tended to be higher when there was a greater mean squared difference 
between the probe intensity and called genotype centroid (Figure 7). The same 
relationship was not seen in the BAFRegress or VICES estimates in the same set of 
samples. This result shows that VerifyIDintensity is prone to overestimating 
contamination in samples with greater variability in their probe intensities.  

The true contamination proportions were not known in MGI, but we compared the 
estimates from the three methods to one another to determine which represented the 
best consensus. We found that the samples which VICES estimated as contaminated 
greater than 0.5% were validated more often by the other methods than the samples 
estimated as contaminated greater than 0.5% by BAFRegress or VerifyIDintensity. 
The bar plot in Figure 8 shows the counts for the number of samples with estimated 
contamination greater than 0.5% by at least two of the three methods, which also 
shows that VICES had the highest number of samples (316) with estimated 
contamination greater than 0.5% verified by at least one other method. VICES also 
had lower root-mean-squared-difference with estimates from BAFRegress (0.0075) 
and VerifyIDintensity (0.0062) than they did with each other (0.0089). 

Comparing the contamination estimates to call rate and excess heterozygosity of the 
MGI samples provided an independent metric which further supports the accuracy of 
VICES. Figures 9 and 10 show that all three methods exhibited the same relationship 
that, as estimated contamination increased, genotype call rates decreased and excess 
heterozygosity increased. However, the underestimation of BAFRegress was more 
pronounced in samples with a high level of contamination. BAFRegress did not 
estimate contamination greater than 13% for any sample, even for 11 samples that 
VICES and VerifyIDintensity both estimated as having contamination proportions 
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greater than 20%. For this reason, the trend between estimated contamination and 
excess heterozygosity, and estimated contamination and call rate was weaker with the 
BAFRegress estimates (R2 0.03 for both call rate and excess heterozygosity) than 
VICES (R2 0.18 for call rate, R2 0.19 for excess heterozygosity) or VerifyIDintensity 
(R2 0.11 for call rate, R2 0.12 for excess heterozygosity).  

Since the plot of sample call rate against VICES estimated contamination in Figure 9 
appeared to show two trend lines, we sought an explanation. Specifically, we 
observed that many contaminated samples had a lower call rate than would be 
predicted by their contamination as estimated by VICES (Figure 9, left panel). We 
found that log2 R ratio, a measure of the average genotyping array probe intensity for 
a sample (Peiffer et al., 2006), was a strong predictor of call rate (R2 0.48, Figure 11). 
In Figure 12 we removed all 165 samples with log2 R ratio 2 standard deviations 
below the mean before plotting sample call rate against estimated contamination. In 
this plot, compared to Figure 9, the relationship between contamination and call rate 
was stronger and more distinct (R2 0.71, 0.13, and 0.55 respectively for VICES, 
BAFRegress, and VerifyIDintensity). This result shows that this second trend line in 
Figure 9 was not due to underestimation by our method, but by heterogeneity in the 
array probe intensity among the samples. 

3.2.2. Contaminating Sample Search - MGI 

We sought to evaluate how often our method could find contaminating samples and 
whether the estimates implicated a clear mechanism for contamination. We used the 
VICES results from the 22,366 samples genotyped in the Michigan Genomics 
Initiative (MGI) and found that our method found contaminating samples from the 
same set of genotype calls for 301 or 85% of the 354 samples with estimated 
contamination above 0.5%. A total of 365 contaminating samples were estimated. Of 
these, 342 or 94% were on the same sample processing plate of 96 samples as the 
contaminated sample, and 328 or 90% were on the same genotyping array of 24 
samples, showing that VICES estimates of contaminating samples are not random, but 
in fact consistently implicate a step in the sample preparation and genotyping process 
where contamination often occurred. 

The number of contaminating samples offers further support for the accuracy of the 
VICES estimates relative to the other methods. Figure 6 shows that BAFRegress 
failed to detect contamination greater than 0.5% in 38 samples where VICES 
estimated such a level of contamination and found a contaminating sample, and 
VerifyIDintensity failed to detect contamination in 31 such samples. There were 26 
such samples where neither BAFRegress nor VerifyIDintensity estimated 
contamination greater than 0.5%. These results suggest that BAFRegress and 
VerifyIDintensity may be prone to false negatives in contamination estimation, 
allowing contaminated samples through QC filters. 
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Based on the data in Figure 6, we wondered if any of the samples estimated as 
contaminated by VICES but not all three methods were false positives. One reason is 
that VICES found contaminating samples for a higher proportion (92%) of the 279 
samples with estimated contamination greater than 0.5% by all three methods than in 
the 75 samples estimated as contaminated greater than 0.5% by VICES alone or by 
VICES and only one other method (57%). One explanation is that VICES estimated 
much lower contamination for the samples that were estimated to be uncontaminated 
by either BAFRegress or VerifyIDintensity. VICES estimated 48 (64%) of the 75 
samples (estimated as contaminated by VICES but not all three methods) to be 
contaminated below 1%, compared to 28 (10%) of the 279 samples estimated as 
contaminated by all three methods. Small discrepancies in the estimates between the 
three methods may have pushed the estimates for some samples either just above or 
just below the contamination threshold 𝑇 for a subset of the methods. For this reason, 
we expect that VICES will have more difficulty estimating sources of contamination 
for samples with borderline detectable contamination than for samples with high 
contamination. 

In addition to improving estimation, finding the contaminating samples enables 
understanding and troubleshooting the cause of contamination. In the MGI samples, 
Figure 13 shows that the contaminated samples as estimated by VICES appear 
adjacent to one another on both the sample processing plate and the genotyping array. 
Running the contaminating sample search algorithm reveals that the estimated 
contaminating samples for each contaminated sample were adjacent to it on the array 
but not the processing plate. Since it would be more difficult to explain the pattern 
between contaminating and contaminated samples on the processing plate, this 
constitutes strong evidence for contamination occurring on the genotyping array 
between adjacent inlet ports during sample loading or array sections during 
hybridization due to leaky seals. 

4. Discussion 

Contamination, or the mixture of DNA from multiple individuals prior to genotyping, 
decreases the quality of genotypes. Since genotyping arrays remain the predominant 
tool in genetic association studies, the ability to accurately diagnose contaminating 
DNA and its sources has the potential to improve data quality checks and data 
production for many genetic studies. Our results show that our method outperforms 
previous methods and can reliably find the contaminating samples, even at small 
contamination proportions. It can also perform contamination estimation in 
genotyping cohorts of mixed ancestry without relying on external allele frequency 
information or knowledge of the population origin of the contaminating samples. This 
feature makes the software appropriate for a wide range of genetic association studies. 
We also illustrate how one can conclude that contamination occurred on a genotyping 
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array as opposed to during other steps in sample preparation, which may lead to 
improved genotyping protocols. 

One of our central findings is that, compared to estimating contamination and its 
sources separately, doing so jointly, as described here, improves both and gives users 
of VICES a more useful combination of results. After contamination has been 
detected, researchers may be faced with several follow-up questions. For example, 
should a contaminated sample be excluded from downstream analyses? Can a sample 
be re-genotyped and yield uncontaminated genotype calls? Or is a sample’s DNA fit 
for whole-genome or whole-exome sequencing? VICES gives researchers accurate 
information to answer to these questions. 

The above analysis illuminated several ways in which contamination and 
contaminating sample identification can be further improved. One remaining issue is 
that the deviations in array probe intensities caused by contamination can appear to be 
correlated to the genotypes of any individual, and not only the contaminating sample. 
We observed a similar effect at the population level, with the shift in allele 
frequencies showing the strongest correlation with frequencies in the contaminating 
sample population but weaker correlation when the contaminating population allele 
frequencies were misspecified.  

This correlation between probe intensities and the genotypes of a sample that did not 
contribute DNA can be partially mitigated by including the sample allele frequencies 
in the regression as in Equations 5 and 6. However, at particularly high levels of 
contamination (greater than 25%) many false positive contaminating samples may 
still be identified. This problem can be improved by increasing the contaminating 
sample threshold for highly contaminated samples instead of the default threshold of 
0.5%. There are alternatives to threshold based selection of contaminating samples 
that may be worthy of future exploration. For example, instead of including samples 
in the final model based on a point estimate for contamination contribution, inclusion 
could have been decided by p-value or false discovery rate-adjusted q-value, or 
estimating inflation in contamination contribution estimates. 

An alternative strategy to make the contamination estimates more robust to the 
genetic ancestry of the contaminating DNA could be to iteratively estimate the 
ancestry of the contaminating allele frequencies instead of using the fixed allele 
frequencies of the sample or population. Such an approach could result in more 
accurate contamination estimates when no contaminating sample is found or could be 
used to narrow the search by the ancestry of the contaminating sample, resulting in 
greater computational efficiency. However, we have found that using contaminating 
sample genotypes improves contamination estimates compared to using population 
allele frequencies, even when the contaminating samples’ population is correctly 
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specified (Table 2). Furthermore, using population allele frequencies, the user would 
not gain any insight as to how contamination occurred in their study.  

In addition, several potential extensions or adaptations of this method exist. For 
example, a cross-array contamination check might be useful in studies where multiple 
arrays are used. In addition, the method could be adapted to impute missing and 
incorrect calls to salvage contaminated samples, as the CleanCall package does with 
contaminated sequencing data (Flickinger et al., 2015). Our own preliminary analyses 
suggest this would reduce the rate of missing and incorrect genotype calls in 
contaminated samples. 

Genotype probe intensities are approximately normally distributed around the values 
of 0, ½, and 1 (depending on the underlying genotype), with truncation resulting in 
additional point masses at 0 and 1. Contaminating DNA results in a proportional shift 
in these distributions, as reflected in Figure 2. In principle, direct modeling of this 
intensity distribution (see Appendix) would enable us to predict the distribution of 
probe intensities for samples with different degrees of contamination, to model 
resulting increases in missing genotype rates (when intensities are drawn from the 
shifted distributions they will fall more often in ambiguous regions that lie between 
two expected genotype clusters) and in genotyping error rates. These models would 
allow predictions of the impact of genotyping error rate on power (as in Sobel, Papp, 
and Lange (2002)) or, potentially, methods for association analysis that model the 
underlying intensity data directly rather than relying on discrete genotype calls (as 
done in Kim, Gordon, Sebat, Ye, and Finch (2008) for structural variants, for 
example). 

In our own work, we often must decide on acceptable thresholds for sample 
contamination. For simple regression-based approaches that model phenotypes as a 
function of genotypes and covariates, it’s tempting to be lenient and analyze samples 
that have modest amounts of contamination – after all, a contaminated sample with a 
few erroneous genotypes will still provide some useful information, albeit less 
information than an uncontaminated sample. However, many modern genetic analyses 
include additional analysis steps that involve sharing of information across samples – 
these steps might include haplotype estimation (which relies on identification of 
shared IBD segments between samples and is a key step in genotype imputation 
analyses) and also estimation of genetic kinship matrices or principal components of 
ancestry (which are also key steps for modern large scale genetic analyses that include 
related individuals or samples of diverse ancestry). In our experience, contaminated 
samples can have more deleterious effects for these analyses, corrupting the 
information contributed by other uncontaminated samples. Empirically, we typically 
recommend that samples with contamination greater than ~1% to 3% should be 
excluded from downstream analyses.  
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In conclusion, we have introduced VICES, a method that performs joint estimation of 
contamination and its sources in genotyping array samples. This innovation results in 
more accurate contamination estimates which are robust in genotyping cohorts of 
diverse ancestry. VICES allows researchers to estimate contamination easily without 
importing allele frequencies and provides additional information on how their samples 
were contaminated, so that it can be prevented or dealt with more effectively. 
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Appendix 
In an uncontaminated sample, the following probability distribution relates array 
intensity for sample 𝑖 at marker 𝑗, 𝐼𝑖𝑗, to the genotype 𝐺𝑖𝑗: 

Pr�𝐼𝑖𝑗 = 𝑥|𝐺𝑖𝑗� =

⎩
⎪
⎨

⎪
⎧ Φ�−𝐺𝑖𝑗

𝜎
� 𝑖𝑓 𝑥 = 0

1 −Φ�1−𝐺𝑖𝑗
𝜎
� 𝑖𝑓 𝑥 = 1

𝑥~𝑁(𝐺𝑖𝑗 ,𝜎2)
0

𝑖𝑓 0 < 𝑥 < 1
𝑜.𝑤.

. 

Under this model, intensities are normally distributed around the genotype 𝐺𝑖𝑗 with 
additional point masses reflecting the truncation at boundaries 𝐼𝑖𝑗 = 0 and 𝐼𝑖𝑗 = 1. 𝜎2 
represents the naturally-occurring variability in intensity values. 
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For a contaminated sample, 𝐼𝑖𝑗 is instead distributed around a linear combination of 
the sample’s own genotype and the genotypes of each contaminating sample, which 
we denote as 𝜇𝑖𝑗. Let 𝛼𝑖 be the total proportion of contaminating DNA in sample 𝑖 
and 𝛼𝑖𝑘 the proportion of DNA mixture from sample 𝑘. Then, we define 

𝜇𝑖𝑗 = (1 − 𝛼𝑖)𝐺𝑖𝑗 + ∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘   

and the distribution of 𝐼𝑖𝑗 in the presence of contamination now becomes 

Pr�𝐼𝑖𝑗 = 𝑥|𝜇𝑖𝑗� =

⎩
⎪
⎨

⎪
⎧ Φ�−𝜇𝑖𝑗

𝜎
� 𝑖𝑓 𝑥 = 0

1 −Φ�1−𝜇𝑖𝑗
𝜎
� 𝑖𝑓 𝑥 = 1

𝑥~𝑁(𝜇𝑖𝑗 ,𝜎2)
0

𝑖𝑓 0 < 𝑥 < 1
𝑜.𝑤.

.  
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Tables 

Table 1: Composition of 34 mixtures of HapMap cell lines from NA06990, 
NA07055, NA18504, and NA19200. The contamination percentages are in bold. 

Table 2. Root-mean-squared-error (RMSE), bias, and change in absolute error per 1% 
higher contamination of the three methods against the intended contamination of the 
34 HapMap CEU samples. 
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Table 3. Root-mean-squared-error, bias, and change in absolute error per 1% higher 
contamination of the three methods against the intended contamination of the 34 
intentionally mixed HapMap samples when 1000 Genomes allele frequencies from 
the incorrect population were used. 

Figures 

Figure 1: Flowchart of the contamination estimation algorithm. The flowchart shows 
how the algorithm progresses as contaminated samples are identified using allele 
frequencies, then potential contaminating samples are found for them and model 
selection performed to prune contaminating samples and calculate the final estimates.  
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Figure 2: Kernel density plots showing the distribution of array probe intensities for 
an uncontaminated HapMap Yoruban sample (NA18504, left) and a 10% 
contaminated HapMap European sample (NA06990, right) as a function of the 
genotypes of NA07055. It is apparent that the intensities of the contaminated sample 
shift in the direction of NA07055 genotypes. 

 

Figure 3: Comparison of estimates from our method using contaminating sample 
genotypes, BAFRegress, and VerifyIDintensity on the 34 mixtures of HapMap DNA 
to the intended contamination proportion.  
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Figure 4: Kernel density plots showing the distribution of array probe intensities for 
an uncontaminated HapMap Yoruban sample (NA18504, left) and a 10% 
contaminated HapMap European sample (NA06990, right) at different 1000 Genomes 
European minor allele frequency (MAF) bins. The sample NA07055 that contributed 
DNA to the contaminated sample on the right is from the same ancestral population 
that the MAFs were calculated in, so using the MAFs to estimate contamination with 
a method like BAFRegress in this case would result in a good estimate for the 
intended contamination of 10%. 

 

Figure 5: Kernel density plots showing the distribution of array probe intensities for 
an uncontaminated HapMap Yoruban sample (NA18504, left) and a 10% 
contaminated HapMap European sample (NA06990, right) at different 1000 Genomes 
African minor allele frequency (MAF) bins. The sample NA07055 that contributed 
DNA to the contaminated sample on the right is European while the MAFs were 
calculated from African samples, so using the MAFs to estimate contamination with a 
method like BAFRegress in this case would result in a dramatic underestimate for the 
intended contamination of 10%. 
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Figure 6: Venn diagram showing (black) the count of all Michigan Genomics 
Initiative samples with estimated contamination greater than 0.5% by VICES, 
BAFRegress (BAFR), or VerifyIDintensity (VID) or any combination of the three 
methods, and (red) the count with estimated contamination greater than 0.5% and a 
contaminating sample found by VICES. 

 

Figure 7: Estimated contamination of the three methods as a function of mean-
squared-error between intensity and called genotype, in 22,012 Michigan Genomics 
Initiative samples with contamination < 0.5% as estimated by VICES. 
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Figure 8: Bar plot of the count of Michigan Genomics Initiative samples with 
estimated contamination greater than 0.5% by VICES, BAFRegress, or 
VerifyIDintensity and at least one other method. 

 

 

Figure 9: Comparing estimated contamination in 22,366 Michigan Genomics 
Initiative samples and their call rates. Left: VICES. Center: BAFRegress. Right: 
VerifyIDintensity. In all three plots, the red triangles denote the samples that had a 
contaminating sample detected by our method. 
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Figure 10: Comparing estimated contamination in 22,366 MGI samples and excess 
heterozygosity as calculated using Plink 1.9. Left: VICES. Center: BAFRegress. 
Right: VerifyIDintensity. In all three plots, the red triangles denote the samples that 
had a contaminating sample detected by our method. 

 

 

Figure 11: Scatterplot of sample call rate for 22,366 genotyped samples from the 
Michigan Genomics Initiative and average array probe intensity as measured by log2 
R ratio. The black line shows the regression fit to these data. 
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Figure 12: Comparing estimated contamination against call rates in 22,201 Michigan 
Genomics Initiative samples that had average array probe intensity (defined as log2 R 
ratio) greater than a cutoff set at 2 standard deviations below the mean. Left: VICES. 
Center: BAFRegress. Right: VerifyIDintensity. In all three plots, the red triangles 
denote the samples that had a contaminating sample detected by our method. 

 

Figure 13: Left: Eight contaminated samples as they appeared on part of the sample 
preparation plate. The letters to the left of the plate indicate the rows and numbers 
below indicate columns. Arrows indicate our method's estimates for which sample 
contributed DNA to each contaminated sample. Right: The position of the same 
samples on the genotyping array. Letters and numbers indicate the row and column of 
the plate from which the samples were transferred. Arrows have the same 
interpretation. 

This figure shows that the contaminated samples are adjacent to their contaminating 
sample on the array, while far apart and without a clear pattern on the processing 
plate. The relative ease of explaining the pattern of adjacent mixing on the array 
compared to the processing plate suggests that the DNA mixture occurred on the array 
itself. 
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Table 1 : No. 
Samples 

NA06990 
(CEU) 

NA07055 
(CEU) 

NA18504 
(YRI) 

NA19200 
(YRI) 

6 0% 100% 0% 0% 

2 99.5% 0.5% 0% 0% 

2 99% 1% 0% 0% 

2 98% 2% 0% 0% 

2 97% 3% 0% 0% 

2 95% 5% 0% 0% 

2 90% 10% 0% 0% 

6 0% 0% 100% 0% 

2 0% 0% 99.5% 0.5% 

2 0% 0% 99% 1% 

2 0% 0% 98% 2% 

2 0% 0% 95% 5% 
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2 0% 0% 90% 10% 

 

Table 2 :  VICES-Geno VICES-AF BAFRegress VerifyIDintensity 

RMSE 0.0057 0.0068 0.0054 0.031 

Bias -0.0035 -0.0041 -0.0024 -0.0085 

Increase in 
abs. error per 
1% increase in 
contamination 

0.0012 0.0015 0.0011 0.0056 

 

Table 3 :  VICES-AF BAFRegress VerifyIDintensity 

RMSE 0.023 0.026 0.031 

Bias -0.014 -0.015 -0.0086 

Increase in abs. 
error per 1% 
increase in 
contamination 

0.0057 0.0065 0.0056 
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